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Preface

Youri (Yuri) Kabanov was born in a city Cherkassy, now Ukraine, formerly the
USSR, in 1948. Even in high school he became interested in mathematics and ac-
tively and successfully participated in local and nationwide mathematical competi-
tions for high school students. As a result, without exams he was admitted to a spe-
cialized mathematical boarding school at Kiev State University and he graduated
from this school with the gold medal.

In the summer of 1966 Yuri came to Moscow with the hopes of studying theoret-
ical physics and to apply to the Moscow Institute of Physics and Technology. This
institute, known worldwide as Phystech (sometimes called the Russian version of
MIT), was initially created in 1946 to produce high quality specialists in different
fields of Physics. But it was located in a distant suburb of Moscow, and for a student
who came from a small provincial city, living in a dormitory there meant being cut
off from the life of the capital. One of his friends, who had a brother studying at
Moscow University, decided to apply to the Department of Mechanics and Mathe-
matics of Moscow State University (the internationally renowned MEKHMAT). He
convinced Yuri that MEKHMAT would be a better choice. After passing the difficult
entrance exams, Yuri became a student at Moscow University. Who knows, maybe
this random event triggered his later interest in random processes.

At that time, known as the Golden Years of Moscow Mathematics (the title of the
book, published by the American Math. Society), MEKHMAT had a reputation as
one of the leading centers of mathematical research and math education. Students
were taught by such great mathematicians as A.N. Kolmogorov, P.S. Aleksandrov,
I.M. Gelfand, B.V. Gnedenko as well as then young but well known people like
S. Novikov, Yu. Manin, D. Anosov, and Ya. Sinai.

In the beginning Yuri was interested in many fields and attended a variety of
courses, but at the end of the second year he had chosen the subfield of probability
theory. His scientific advisor was Albert N. Shiryaev, then a young professor, a for-
mer student of A. Kolmogorov. Shiryaev later became one of the most prominent
leaders of the theory of stochastic processes.

Yuri’s interests in his student years were not limited to mathematics only. He was
actively involved in sports, becoming a member of the prestigious all-university vol-
leyball team and excelling in track and field and the shot put. Having a phenomenal
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memory he knew many verses, and delighted his friends and girls by reciting from
heart verses from such poets as Baudelaire, Rimbaud, and Gumilyov, who were
rarely published during the Soviet years. The city where Yuri was born was a small
one but rather old, founded in the late 13th century, and Yuri loves history, in which
he is well-versed: today he enjoys presenting a short history of the Roman Empire
using his collection of ancient coins as an illustration.

After graduating with distinction from Moscow University in 1971 Yuri became
a postgraduate student at the Steklov Mathematical Institute. His first papers were
devoted to the integral representation of functionals of Wiener, Poisson, and other
processes with independent increments, and were published in the early 1970s in
Theory of Probability and its Applications. His next paper “A generalized Itô for-
mula for an extended stochastic integral with respect to Poisson random measure”
was published in the prestigious Russian Mathematical Surveys in 1974. This exten-
sion was obtained by means of a generalized Cameron-Martin expansion in series
of multiple Poisson integrals. Yuri also proved a generalized Itô formula for such
extended stochastic integrals. As a result of his work in this new and rapidly devel-
oping field of stochastic processes, he obtained his Ph.D. degree with the disserta-
tion topic Point Processes and Extended Stochastic Integrals. His supervisor was his
teacher A.N. Shiryaev.

As a graduate student he helped Shiryaev to organize the very popular an-
nual probability conferences in Bakuriani (Georgia). He recalls how he served as
a “bodyguard” for a foreign visitor (at the time rare at such conferences), F. Spitzer.
A striking feature of these conferences was a matching of intensive scientific spirit
during the talks and everyday snow-skiing in the surrounding mountains. The lead-
ing figure at these conferences was Shiryaev, who instilled his love of skiing not
only in Yuri but in many other participants.

After his postgraduate studies at the Steklov Institute, Yuri started working at
one of the best research institutes of the Russian Academy of Sciences—in the Cen-
tral Mathematical Economical Institute (CEMI) in Moscow. His ties to this Institute
continued even after he moved to Besancon, France. At this Institute Yuri contin-
ued his studies of stochastic processes and published a few fundamental papers with
R. Liptser and A. Shiryaev on absolute continuity and singularity of probability dis-
tributions, and on the convergence of distributions of counting processes. He also
started working on some problems of stochastic control and problems of mathemat-
ical economics. He had strong ties with statisticians, initially working in a group
headed by S. Aivasian and later becoming a member of the Probability Laboratory
headed by V. Arkin, who assembled a very strong group of probabilists, many of
whom became co-authors and friends of Yuri.

In the 1980s, under the influence of his teacher, A. Shiryaev, Yuri started working
in the field of functional limit theorems. The summary of his results, on the contigu-
ity of distributions of multivariate point processes and many others, was collected in
his D.Sc. thesis, which he defended in 1984. At the end of the 1980s Yuri, together
with his student S. Pergamenshchikov, started working in the area of singularly per-
turbed stochastic equations and partial differential equations. They published more
than ten papers on the subject.
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From the middle of the 1970s Yuri actively participated in teaching at a variety of
Moscow and foreign institutions such as the Moscow Institute of Advanced Studies
for Chemistry Managers and Engineers, the Moscow Institute of Aviation Technol-
ogy (MATI), the Friedrich Schiller University in Jena, Germany, and the Moscow
Institute of Electronics and Mathematics (MIEM). He also held a visiting position
at Bilkent University in Ankara, Turkey.

In the early 1990s A. Shiryaev, together with his students, organized a seminar on
financial mathematics, and this area defined the main directions of his studies there-
after. In 1994 a renowned issue of Theory of Probability and its Applications was
almost entirely devoted to financial mathematics. This issue contained four papers
which Yuri had participated in.

Since his 1995 nomination as a professor at the University of Besancon, Yuri
has revived a forgotten local tradition by devoting himself mainly to mathematical
finance: Louis Bachelier, the founder of mathematical finance, was a professor in
Besancon from 1927 until his retirement in 1937.

An initial series of his works is related to large financial markets; to the optional
decomposition theorem which is an essential tool for solving the superreplication
problem; and to a general model of bond markets, which necessitated the introduc-
tion of a new type of stochastic integral with respect to processes with values in the
space of continuous functions.

He soon became interested in financial markets with transaction costs, a field not
too actively studied at the time because of its difficulty. In 1997 he and M. Safar-
ian showed that Leland’s approximation strategy did not asymptotically hedge call
options, contrary to what was asserted in the literature. Then he launched himself
into modeling markets with several (finitely many) basis assets. In fact, all models
studied at that time comprised two assets only: a riskless and a risky one. Only the
model of Jouini and Kallal allowed for multiple assets, but under very restrictive
conditions: direct transfers being forbidden, all exchanges were required to pass by
the bank account. In his paper “Hedging and liquidation under transaction costs in
currency markets” (Finance and Stochastics, 1999) he proposed a geometric model
for markets with transaction costs and showed that the object analogous to martin-
gale measures is vector measures whose density processes take values in the dual
of the solvency cone. This kind of model, adopted by all researchers in this field,
has greatly contributed to progress, allowed for a satisfactory theory of arbitrage
and for attacking important problems of finance (in particular, the superhedging of
contingent claims) in the presence of proportional transaction costs. Yuri, working
with various co-authors, has obtained criteria for the absence of arbitrage and super-
replication theorems: in discrete time with complete or incomplete information; and
in continuous time in increasingly general settings. He has just completed his latest
book, with M. Safarian: “Markets with transaction costs, mathematical theory”.

Yuri has also continued to be interested in stochastic differential equations and
in problems of stochastic control. In his book, written together with S. Pergamen-
shchikov, “Two-scale stochastic systems, asymptotic analysis and control”, he es-
tablished a stochastic version of Tikhonov’s theorem, obtained an asymptotic ex-
pansion for this system and showed a large deviation limit theorem.
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Apart from his activities as a first-class researcher, Yuri has done a great deal for
the dissemination of mathematics. In 1997 he actively participated in the founding
of Finance and Stochastics, which in only a few years has become one of the leading
journals in mathematical finance. The three Bachelier Colloquia he has organized
(in 2000 in Besancon, in 2005 and in 2008 in Métabief) were extremely successful,
collecting researchers from every continent of the world.

Yuri is now in the prime of his research and career. He is not only one of the most
notable figures in financial mathematics and stochastic processes but also a very
friendly person with new and fresh ideas, ready to share them with others. Almost
30 people are counted among his co-authors. He is a father of a now adult son and
young daughter, and a loving and caring husband. His wife Margarita, or Rita as her
friends call her, is a gifted photographer, and those visiting his or her website can
see this for themselves.

There is no doubt that his friends, his co-authors, and many others who have had
the chance to meet him personally or just to read his papers, will join us in wishing
Yuri good health, happiness and many years to come of creative activity.

E. Presman, I. Sonin, and Ch. Stricker
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On the Extension of the Namioka-Klee Theorem
and on the Fatou Property for Risk Measures

Sara Biagini and Marco Frittelli

Abstract This paper has been motivated by general considerations on the topic of
Risk Measures, which essentially are convex monotone maps defined on spaces of
random variables, possibly with the so-called Fatou property.

We show first that the celebrated Namioka-Klee theorem for linear, positive func-
tionals holds also for convex monotone maps π on Frechet lattices.

It is well-known among the specialists that the Fatou property for risk measures
on L∞ enables a simplified dual representation, via probability measures only. The
Fatou property in a general framework of lattices is nothing but the lower order
semicontinuity property for π . Our second goal is thus to prove that a similar sim-
plified dual representation holds also for order lower semicontinuous, convex and
monotone functionals π defined on more general spaces X (locally convex Frechet
lattices). To this end, we identify a link between the topology and the order structure
in X —the C-property—that enables the simplified representation. One main appli-
cation of these results leads to the study of convex risk measures defined on Orlicz
spaces and of their dual representation.

Keywords Convex monotone map · Locally convex Frèchet lattice · Order (lower
semi-)continuity · Fatou property · Dual representation
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1 Introduction

The analysis in this paper was triggered by recent developments in the theory of
Risk Measures in Mathematical Finance. Convex risk measures were independently
introduced by [13] and [14] as generalization of the concept of a coherent risk mea-
sure developed in [3]. Consider a space of financial positions X (real-valued, mea-
surable functions on a fixed measurable space (Ω,F )) containing the constants.
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A convex risk measure on X is a map ρ :X → (−∞,+∞] with the following
properties:

1. ρ(0)= 0 (so ρ is proper, i.e. it does not coincide with +∞)
2. monotonicity: if X,Y ∈X , X ≤ Y , then ρ(X)≥ ρ(Y )

3. convexity: if λ ∈ [0,1], then ρ(λX+ (1− λ)Y )≤ λρ(X)+ (1− λ)ρ(Y ) for any
X,Y ∈X

4. cash additivity: if m ∈R then ρ(X+m)= ρ(X)−m for any X ∈X

When ρ is also positive homogeneous, i.e.

5. ρ(λX)= λρ(X) for all λ≥ 0 the risk measure is called coherent.

If X is also topological space (as it is always the case in the applications), it is
of course useful to have a result on the degree of smoothness of the risk measure ρ.
Strangely enough, when this paper was first written to our knowledge there was
yet no general result. This is exactly the message of the extended Namioka-Klee
Theorem, stated below in Theorem 1. The (topological vector) space of positions
X however must have some other properties, i.e. it must be a Frechet lattice.

Recall that a topological vector space (X , τ ) is a Frechet lattice if:

• its topology τ is induced by a complete distance d
• X is a lattice, that is it has an order structure (X ,≤) and each pair X1,X2 ∈X

has a supremum X1 ∨X2 in X
• X is locally solid, that is the origin 0 has a fundamental system of solid neigh-

borhoods (a neighborhood U of 0 is solid if for any X ∈U , Y ∈X , |Y | ≤ |X| ⇒
Y ∈U where |X| =X ∨ (−X)).
Note that a Frechet lattice is not necessarily locally convex. Examples of common

Frechet lattices are the spaces Lp on a probability space (Ω,F ,P ), for p ∈ [0,1)
(with the natural, a.s. pointwise order). When p ≥ 1, Lp is also Frechet lattice, but
with an extra property. The topology is induced by the Lp-norm (and thus the space
becomes locally convex). Moreover, the norm has a monotonicity property: |X| ≤
|Y | ⇒ ‖X‖p ≤ ‖Y‖p . So Lp,p ∈ [1,+∞] is in fact a Banach lattice. Other Ba-
nach lattices important for our applications belong to the family of Orlicz spaces—
denoted with LΨ for a Young function Ψ—which are described in details in Sect. 5.

Finally, we present the abstract statement of the extended Namioka-Klee Theo-
rem, proved in Sect. 2 (where there is also an extensive comparison with the existing
literature, as we discovered that there are a couple of recent, very similar results).
The Theorem is stated for convex, monotone increasing maps π , not necessarily
cash additive. But a similar result clearly holds for monotone decreasing maps.
Dom(π) indicates here and in the rest of the paper the subset of X where π is finite.
The topological dual space is denoted by X ′ and the set X ′+ indicates the convex
cone of those functionals Y in X ′ that are positive, i.e. 〈Y,X〉 ≥ 0 for all X ∈X ,
X ≥ 0. The symbol 〈 , 〉 indicates the bilinear form for the duality (X ,X ′). The
map π∗ :X ′ → (−∞,+∞] is the convex conjugate of π , also known as Fenchel
transform, and it is defined as

π∗(Y )= sup
X∈X

{〈Y,X〉 − π(X)}.
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Theorem 1 (Extended Namioka-Klee) Any proper convex and monotone increasing
functional π :X → (−∞,+∞] on a Frechet lattice (X , τ ) is continuous and sub-
differentiable on int(Dom(π)) (the interior of Dom(π)). Moreover, it admits a dual
representation as

π(X)= max
Y∈X ′+

{〈Y,X〉 − π∗(Y )} ∀X ∈ int(Dom(π)). (1)

To give an idea about the genesis of the second and most innovative part of the
paper, let us go back to the financial setup and let us focus first on the case L∞.
A risk measure ρ on L∞ has the pleasant property of being always finite-valued,
thanks to the boundedness of its elements and to the monotonicity and cash additiv-
ity property. The theorem above ensures that ρ is continuous and subdifferentiable
on the entire L∞. This implies the existence of a well-known dual representation
for ρ over L∞, namely

ρ(X)= max
Q∈M1,f (P )

{EQ[−X] − ρ∗(Q)} (2)

where:

(a) M1,f (P ) indicates the set of positive, finitely additive measures Q on (Ω,F )

that are absolutely continuous w.r. to P and are normalized (Q(IΩ)= 1);
(b) ρ∗ is the convex conjugate of ρ and should be interpreted as a penalty func-

tional.

These results are known and proved e.g. [12, Theorem 4.12]), where subdiffer-
entiability is proved by hand for the specific case study L∞.

Now, let us recall the definition of the Fatou property for risk measures (see e.g.
[10] or Sect. 4, [12], in the case L∞):

Definition 1 (Fatou property) A risk measure ρ : Lp→ R ∪ {∞}, p ∈ [1,∞], has
the Fatou property (F.P.) if given any sequence {Xn}n dominated in Lp and converg-
ing P -a.s. to X we have:

ρ(X)≤ lim inf
n→∞ ρ(Xn).

This property enables a simplified dual representation of ρ. Instead of the finitely
additive measures M1,f (P ), if a convex risk measure ρ : L∞→R has the F.P. one
can write

ρ(X)= sup
Q probability Q�P

{EQ[−X] − ρ∗(Q)}, (3)

so the supremum can be taken only over probabilities, the σ -additive elements of
M1,f , see [12, Theorem 4.26]. There is a price to pay: the above supremum may
not be attained over probability measures, but only on M1,f .

What can be said about the representation problem of a convex risk measures
defined on subspaces of L0?
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The spaces Lp are typical examples of spaces of financial positions in the ap-
plications (see, for example, [11, 14, 19]). Moreover, in [6] it is shown that Orlicz
spaces that can be associated with a utility function are the right framework for the
utility maximization problems which commonly arises in financial problems. Mo-
tivated by this idea, in the first version of this paper,1 we initiated the study of risk
measures defined on Orlicz spaces LΨ and more generally on Frechet lattices. Inde-
pendently, in [9] convex risk measures were defined on the Morse subspace MΨ of
the Orlicz space LΨ . As we shall see in Sect. 5 some of the findings in [9] are special
case our results, while other properties do not hold in the general case, essentially
because the topology on the (whole) Orlicz space LΨ is not order continuous.

Our generalization of the representation in (3) and its various implications will
be stated for maps π , defined of general Frechet lattice, that are convex, monotone
and increasing, not necessarily translation invariant. This latter implies that the set
of dual variables over which the supremum—or the maximum—is taken will not be
normalized in general.

To begin with, let us recall a few notions about Riesz spaces, i.e. linear spaces that
are lattices (see also Sect. 3). The first is that of order convergence. A generalized
sequence, or net, (Xα)α in a Riesz space R is order convergent to some X ∈ R,
notation Xα

o→X, if there is a net (Zα)α in R satisfying

Zα ↓ 0 and |Xα −X| ≤ Zα for each α (4)

(Zα ↓ 0 means that (Zα)α is monotone decreasing and its infimum is 0).
A functional f :R→R defined on R is order continuous if

Xα
o→X⇒ f (Xα)→ f (X),

and a topology τ on R is order continuous if

Xα
o→ 0⇒ Xα

τ→ 0.

These definitions readily imply that if the topology τ is order continuous then

f is (topologically) continuous⇒ f is order continuous.

We denote with (X ∼
n ) the cone of order continuous linear functionals on X . By

the classic Namioka Theorem, see Sect. 2, (X ∼
n )+coincides with X ′+, the positive

elements of topological dual space X ′. We recall that in a Banach lattice X the
norm topology is order continuous if and only if X ∼

n =X ′ and that the following
three classes of spaces all have order continuous norm: (a) Lp when p ∈ [1,+∞);
(b) MΨ when Ψ is a finite valued Young function; (c) LΨ when Ψ is a Young
function satisfying the �2 condition (in this case LΨ =MΨ ).

The above implication, together with Theorem 1, readily imply the following

1Presented by the second author at the Workshop on Risk Measures, University of Evry, France,
6–7 July 2006 and at the Conference on Risk Measures and Robust Control in Finance, The Bend-
heim Center, Princeton University, 6–7 October, 2006.
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Corollary 1 If Frechet lattice (X , τ ) has an order continuous topology and
π :X → R is convex and monotone (increasing), π is already order continuous
on X . Thus it admits a dual representation as

π(X)= max
Y∈(X ∼

n )+
{〈Y,X〉 − π∗(Y )}, X ∈X , (5)

where (X ∼
n )+ =X ′+.

(a) In the specific case X = Lp,p ∈ [1,+∞) the representation above becomes

π(X)= max
Y∈(Lq)+

{E[YX] − π∗(Y )}, X ∈ Lp,

(b) In the specific case X = MΨ and Ψ is a finite valued Young function, the
representation above becomes

π(X)= max
Y∈(LΨ ∗ )+

{E[YX] − π∗(Y )}, X ∈MΨ , (6)

where Ψ ∗ is the conjugate function of Ψ .

However, the order continuity of a topology is a strong assumption, which is not
satisfied by e.g. L∞, or by LΨ for general Young functions Ψ or by other Frechet
lattices, as shown in Sect. 5. Moreover, in general (X ∼

n )+ is only a subspace of
X ′+. This is exactly what happens with L∞:

((L∞)∼n )+ = L1+ and (L∞)′+ = L1+ ⊕ S+,

where S are the purely finitely additive measures.
It is then natural to investigate whether π admits a representation on (X ∼

n )+
under conditions, linking topology and order structure, less restrictive than the order
continuity of the topology τ .

As we shall see in Remark 3, when X = Lp , p ∈ [0,∞], the Fatou property
coincides with order lower semicontinuity, which is the appropriate concept in the
present general setting.

Definition 2 A functional π : R → (−∞,+∞] defined on a Riesz space R is
order lower semicontinuous if Xα

o→X implies π(X)≤ lim infπ(Xα).

From now on, local convexity is needed and in what follows the Frechet lattice
X is also supposed locally convex.

As a consequence of the Hahn-Banach theorem in any locally convex Frechet lat-
tice if the proper, increasing convex map π :X → (−∞,+∞] is also σ(X ,X ∼

n )

lower semicontinuous then

π(X)= sup
Y∈(X ∼

n )+
{〈Y,X〉 − π∗(Y )}, X ∈X , (7)
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where π∗ is the convex conjugate of π . Therefore π , as the pointwise supremum of
a family of order continuous functionals, is also order lower semicontinuous.

One could then conjecture that the converse always holds true i.e. any order lower
semicontinuous π on any locally convex Frechet lattice admits a representation in
terms of (X ∼

n )+, as in (7) or, in lucky cases, (5).
The conjecture is not true in general, see Example 1 at the end of this Intro-

duction. Proposition 1 contains the main result of the paper, that is there exists an
additional assumption “à la Komloś”, linking the topology τ and the order structure,
that enables the representation over (X ∼

n )+.

Definition 3 (C-property) A linear topology τ on a Riesz space has the C-property2

if Xα
τ→X implies the existence of a subsequence (Xαn)n and convex combinations

Zn ∈ conv(Xαn, . . .) such that Zn
o→X.

This property is quite reasonable, all the details are in Sect. 4. In particular, when-
ever a locally convex Frechet lattice (X , τ ) can be embedded in L1 with a linear
lattice embedding, then all the topologies: τ , σ(X ,X ′) and σ(X ,X ∼

n ) have the
C-property. A relevant example of spaces with an associated collection of topolo-
gies (norm, weak and σ(X ,X ∼

n )) satisfying the C-property is the family of Orlicz
spaces (Sect. 5.1).

In the case X = L∞ , it is well known that the sup in (7) in general is not a max,
but the sup is attained under some stronger continuity condition. In the general case,
in Lemma 7 we show that for a finite valued convex increasing map which is order
upper semicontinuous the sup in (7) is indeed a max.

Finally, in Sect. 5.2 we analyze convex risk measures defined on Orlicz spaces
and with values in R∪ {+∞}. This new setup allows for an extension of the known
dual representation on L∞. We further provide some new results on the convex risk
measures associated to utility functions, as in the case of the entropic risk measure.

Example 1 (When the C-property fails) When the σ(X ,X ∼
n )-topology does not

satisfy the C-property, there may be order l.s.c. convex functionals (even τ -continu-
ous!) that are not σ(X ,X ∼

n )-l.s.c.
Take X = C([0,1]), the Banach lattice of the continuous functions on [0,1]

with the supremum norm and the pointwise order. The dual X ′ consists of the Borel
signed measures on [0,1] and it is known (see e.g. [21, Example 87.5]) that there
is no non zero order-continuous functional in X ′. The topology σ(X ,X ∼

n ) =
σ(X , {0}) is therefore the indiscrete one and clearly it doesn’t have the C-property.

Consider then the convex, increasing ‘best case’ functional

π(X)= max
t∈[0,1]

X(t)

2The “C” stands for “convex combinations”. . .
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which is finite valued, so that the extended Namioka-Klee Theorem implies that π
is norm continuous and subdifferentiable and it admits a representation on X ′+ as

π(X)= max
Y∈X ′+

{〈Y,X〉 − π∗(Y )}.

But it evidently does not admit a representation on (X ∼
n )+ = {0} because it is not

constant.
To show that π is order-l.s.c. let Xα

o→ X and suppose by contradiction that
there exists a subnet (Xαβ )β (as a subnet, still order convergent to X) such that
π(X) > limβ π(Xαβ ). Let t∗ ∈ argmax(X). Then

π(Xαβ )≥Xαβ (t
∗)

and evidently

X(t∗)= π(X) > lim
β
π(Xαβ )≥ lim sup

β

Xαβ (t
∗),

which contradicts pointwise convergence.

2 The Extended Namioka Theorem

The following is the statement of the well-known Namioka-Klee Theorem in the
case of linear functionals ϕ.

Theorem 2 (Namioka-Klee) Any linear and positive functional ϕ : X → R on
a Frechet lattice X is continuous (see [17]).

In order to provide a technically straightforward, but quite relevant, extension of
Namioka-Klee Theorem to convex functionals π , the positivity assumption

0≤ Y ⇒ 0≤ ϕ(Y )

has to be replaced with the requirement that π is monotone increasing

X ≤ Y ⇒ π(X)≤ π(Y ).

Monotonicity and positivity are equivalent for linear functionals, but it is straightfor-
ward to see that for convex π monotonicity implies positivity (assuming π(0)= 0).
And it is easy to produce a positive but non-monotone convex map by taking
π(X)= |X| on X =R.

So, while on one hand one relaxes the linearity assumption, on the other hand
a stronger link with the order structure is required.

The properties in the next lemma are straightforward consequences of the defin-
itions.
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Lemma 1 Let R be a Riesz space and let π :R→ (−∞,+∞] be convex, increas-
ing and π(0)= 0. Then:

(i) π(αX)≤ απ(X), ∀α ∈ [0,1], ∀X ∈R;
(ii) απ(X)≤ π(αX), ∀α ∈ (−∞,0] ∪ [1+∞), ∀X ∈R;

(iii) |π(X)| ≤ π(|X|), ∀X ∈R.

Proof of Theorem 1 Step 1: Continuity. The proof of Namioka-Klee Theorem (see
e.g. [1, Theorem 9.6]) can be adapted, in a straightforward manner, to deal with
the current weaker assumptions. We repeat the argument so that the paper is self-
contained.

W.l.o.g. it can be assumed that the interior of Dom(π), int(Dom(π)), is not
empty that 0 ∈ int(Dom(π)) and π(0)= 0. Let Br be the centered open ball of ra-
dius r > 0 in a metric that generates τ . Take any sequence {Xn}n such that Xn

τ→ 0.
Fix r small enough, so that B2r ⊆ int(Dom(π)). Then pick a countable base {Vn}n
of solid neighborhoods of zero satisfying V1 + V1 ⊆ Br and Vn+1 + Vn+1 ⊂ Vn for
each n. Then Vn+1 ⊆ Vn ⊆ Br for each n. By passing to a subsequence of Xn, one
can suppose Xn ∈ 1

n
Vn for each n. Set Yn =∑n

i=1 i|Xi | and note that Yn ≤ Yn+1
and n|Xn| ≤ Yn. In addition

Yn+p − Yn =
n+p∑

i=n+1

i|Xi | ∈ Vn+1 + Vn+2 + · · · + Vn+p ⊂ Vn.

Therefore Yn ∈ Br for each n and {Yn}n is a Cauchy sequence, so Yn
τ→ Y for some

Y in X . Since Yn ∈ Br , Y ∈ Br ⊂ B2r ⊆ int(Dom(π)), π(Y ) is finite. This Y is
an upper bound for the sequence (actually, supn Yn = Y ). In fact, fix any n. Since
Ym − Yn ∈X+ for each m≥ n, the sequence {Ym − Yn :m≥ n} in X+ satisfies

Ym − Yn
τ→ Y − Yn, as m→∞.

Since X+ is τ -closed [1, Theorem 8.43-1], Y −Yn ∈X+ for each n. Hence Yn ≤ Y

for each n. From Lemma 1, |π(Xn)| ≤ π(|Xn|) ≤ 1
n
π(n|Xn|). By monotonicity of

π we derive

|π(Xn)| ≤ 1

n
π(n|Xn|)≤ 1

n
π(Yn)≤ 1

n
π(Y )→ 0

which shows that π is continuous at zero and therefore π is continuous on the whole
int(Dom(π)) [1, Theorem 5.43].

Step 2: Subdifferentiability. For all X∗ ∈ int(Dom(π)) we must exhibit a subgra-
dient Y ∗ ∈X ′, i.e. a Y ∗ such that

π(X)− π(X∗)≥ 〈Y ∗,X−X∗〉 for all X ∈X . (8)

To this end, again w.l.o.g. we can suppose X∗ = 0 ∈ int(Dom(π)) and π(0) = 0.
Then, the directional derivative functional D in 0

D(X) := lim
t↓0

π(tX)

t
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satisfies D ≤ π thanks to Lemma 1. It is finite valued and convex and thus the first
part of this proof implies that it is continuous. By the Hahn-Banach Theorem (see
e.g. [1, Theorem 5.53]) there exists a linear functional Y ∗ which satisfies 〈Y ∗,X〉 ≤
D(X) on X whence Y ∗ is a continuous subgradient for π at 0.

Step 3: Representation. Fix any X∗ ∈ int(Dom(π)). It is an exercise to show that
π increasing implies π∗ is finite at most over X ′+. Fix any subgradient Y ∗ (which
is then positive) of π at X∗. Reshuffling (8), this means

〈Y ∗,X∗〉 − π(X∗)= max
X∈X

{〈Y ∗,X〉 − π(X)} = π∗(Y ∗)

where the last equality follows from the definition of π∗. This chain of equalities
in turn implies that π(X∗)= 〈Y ∗,X∗〉 − π∗(Y ∗)=maxY∈X ′ {〈Y,X∗〉 − π∗(Y )} as
the inequality π(X∗)≥ 〈Y,X∗〉 − π∗(Y ) automatically holds for any Y ∈X ′. �

Remark 1 In [9] there is a formula identical to (1) for π defined on Banach lattices.

Corollary 2 Every finite-valued convex and monotone functional on a Banach lat-
tice is norm-continuous and subdifferentiable.

Corollary 3 If a Frechet lattice X supports a non-constant convex monotone
map π , then necessarily X ′ �= {0}.

As a generic Frechet lattice X is not necessarily locally convex, it may happen
that the topological dual X ′ is very poor or even {0}. This is the case, for example,
of the spaces Lp(Ω,F ,μ), p ∈ (0,1), when μ is a nonatomic measure (see [1,
Theorem 13.31]) and of the space L0(Ω,F ,μ), when μ is a nonatomic finite mea-
sure [1, Theorem 13.41]. Therefore, the only convex monotone πs on these spaces
are the constants.

2.1 The Current Literature

Surprisingly enough given their importance in the applications, it seems that results
on continuity and subdifferentiability for convex monotone maps have appeared
only very recently in the literature.

After finishing the first version of the paper, which did not contain the subdif-
ferentiability additional result, we came to know that in the recent articles [16] and
[20] there are statements very close to those of Theorem 1.

To start, in [16] it is shown that:

if L is an ordered Banach space, with L+ closed and such that L = L+ − L+ then any
convex monotone π :U→R defined on an open set U of L is continuous.

These hypotheses are stronger than ours on the topological part as L must be
a Banach space, but milder on the order part. In fact, their conditions: the positive
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cone L+ is closed and generating L = L+ − L+ are always satisfied in a Frechet
lattice. Note that nothing is said about subdifferentiability.

On the contrary, in [20] the authors were the first to prove subdifferentiability of
convex monotone maps π , but with the stronger assumption that π is defined on
a Banach lattice L:

If L is a Banach lattice, π : L→ R is proper, convex and monotone, then it is continuous
and subdifferentiable on the interior of the proper domain.

The line of their proof is the following. For any fixed X∗ ∈ int(Dom(π)), first
one exhibits a positive subgradient, which is then continuous by classic Namioka-
Klee theorem. This implies lower semicontinuity of π at X∗, which in turn implies
continuity.

Inspired by this work we also prove subdifferentiability of π , in the case of
Frechet lattices. However, we reverse the order, since first one proves continuity
of π on int(Dom(π)) and then subdifferentiability (this latter in the same way as
done by [20]). This is only a matter of taste and it would not be difficult to extend
the results in [20] with the same line of reasoning from Banach to Frechet lattices.
The only interesting aspect in proving first continuity is that one realizes that the
same proof of “classic” Namioka for linear positive functionals still holds, basically
unchanged, for convex monotone maps.

The interested reader is also referred to [9] for further developments.

3 On Order Lower Semicontinuity in Riesz Spaces

Let us recall some basic facts about Riesz spaces. The same notation ≤ is used for
the order relations in R, in (−∞,+∞] and for the direction of index sets of nets,
as the meaning will be clear from the context.

A subset A of a Riesz space R is order bounded if there exists X1 ∈ R and
X2 ∈ R such that X2 ≤ X ≤ X1 for all X ∈ A. A net (Xα)α in R is increas-
ing, written Xα↑, if α ≤ β implies Xα ≤ Xβ . A net (Xα)α in R is increasing to
some X ∈R, written Xα ↑X, if Xα↑ and supα Xα =X. A subset A of R is order

closed if Xα ∈A and Xα
o→X implies X ∈A. The space R is order complete when

each order bounded subset A has a supremum (least upper bound) and an infimum
(largest lower bound).

Recall [1, Theorem 8.15] that the lattice operations are order continuous. In ad-
dition [1, Theorem 8.16], if a net (Xα)α is order bounded and R is order complete,
then lim infα Xα � supα infβ≥α Xβ and lim supα Xα � infα supβ≥α Xβ are well de-
fined, and

Xα
o→X iff X = lim inf

α
Xα = lim sup

α
Xα.

The next lemma is an immediate consequence of the facts and definitions above
and of (4).
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Lemma 2 Let R be a Riesz space.

(i) Let Xα
o→X. Then there exists α∗ such that (Xα)α≥α∗ is order bounded, i.e. the

net is definitely order bounded. In case the index set of the net has a minimum
then (Xα)α is order bounded.

(ii) Let R be order-complete and let Xα
o→ X. If Yα � (infβ≥α Xβ) ∧ X, then

Yα ↑X.

Example 2 (Order convergence in Lp) In Lp spaces, p ∈ [0,∞], the notion of order
is the very familiar pointwise one, i.e. Y ≥X iff Y(ω)≥X(ω) P -a.e. As Lp is order
separable, see the next section, sequences can be used instead of nets to characterize
order convergence. A sequence (Xn)n in Lp is order bounded iff it is dominated in
Lp (i.e. there exists a Y ∈ Lp

+ such that |Xn| ≤ Y ). The order convergence in the Lp

case is just dominated pointwise convergence:

Xn
o→X⇔ Xn

P -a.e.−→ X and (Xn)n is dominated in Lp. (9)

Therefore, the Lp-norm topologies are order continuous for all p < +∞, as the
above equivalence implies that Lebesgue dominated convergence theorem can be

applied to conclude Xn
o→X⇒Xn

Lp→X.

3.1 Equivalent Formulations of Order l.s.c.

Definition 4 A functional π :R→ (−∞,+∞] defined on a Riesz space R

(a) is continuous from below if Xα ↑X⇒ π(Xα) ↑ π(X)
(aσ ) is σ -continuous from below if Xn ↑X⇒ π(Xn) ↑ π(X)
(b) is order lower semicontinuous if Xα

o→X⇒ π(X)≤ lim infπ(Xα)

(bσ ) is σ -order lower semicontinuous if

Xn
o→X⇒ π(X)≤ lim infπ(Xn). (10)

Note that the pointwise supremum of a family of order l.s.c. functionals is order
l.s.c.

As shown in the next lemma, if π is increasing and R possesses more structure
then the conditions (a), (aσ ), (b), (bσ ) are all equivalent. The order separability
of R (any subset A which admits a supremum in R contains a countable subset with
the same supremum) allows to formulate the order-l.s.c. property with sequences
instead of nets (i.e. (b)⇔ (bσ )).

Lemma 3 Let R be an order complete Riesz space and π :R → (−∞,+∞] be
increasing. Then: (a)⇔ (b), (aσ )⇔ (bσ ), (a)⇒ (aσ ), (b)⇒ (bσ ).

If in addition R is order separable then (a), (aσ ), (b), (bσ ) are all equivalent.
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Proof (a)⇒ (b). Let Xα
o→ X and set Yα = (infβ≥α Xβ) ∧ X. By Lemma 2(ii),

Yα ↑X and so π(X)
(a)= limπ(Yα)

(mon)≤ lim infπ(Xα).

(b)⇒ (a). Since Xα ↑ X implies Xα
o→ X, we get: π(X)

(b)≤ limπ(Xα)
(mon)≤

π(X).
(aσ )⇔ (bσ ) follows in the same way as (a)⇔ (b), while (a)⇒ (aσ ) and (b)⇒

(bσ ) are obvious.
To show the last sentence it is sufficient to prove e.g. (aσ )⇒ (a). For any net

Xα ↑X we can find a countable subnet Xαn such that Xαn ↑X. Hence

π(X)
(aσ )= lim

n
π(Xαn)≤ limπ(Xα)

(mon)≤ π(X). �

Remark 2 (On order separability) A sufficient condition for R to be order separable
is that, for every principal ideal RX , there exists a positive linear functional on R
which is strictly positive on RX (see [21, Theorem 84.4]).

All Banach lattices with order continuous norm verify this condition, as shown
in [2, Theorem 12.14].

Another sufficient condition for order separability is the existence of a linear
functional on R which is strictly positive on the entire R. This implies that all
the Orlicz Banach lattices LΨ = LΨ (Ω,F ,P ) (and henceforth all the Lp spaces,
p ∈ [1,∞]) are order separable (and order complete as well). See Sect. 5.1.

Remark 3 (On the Fatou Property) From (9), Definition 1 and Definition 4, we im-
mediate see that when R = Lp , p ∈ [0,∞], order lower semicontinuity coincides
with the Fatou Property.

Remark 4 (On decreasing functional) Analogous considerations hold for decreasing
functionals: if R is an order complete and order separable Riesz space and if ρ is
decreasing, then the conditions: (b), (bσ ), continuity from above [i.e.: Xα ↓ X⇒
ρ(Xα) ↑ ρ(X)] and σ -continuity from above [i.e.: Xn ↓X⇒ ρ(Xn) ↑ ρ(X)]are all
equivalent. These equivalent formulations will be used to study some properties of
convex risk measures in Sect. 5.2.

3.2 The Order Continuous Dual X ∼
n

Given a Frechet lattice X , the space of order bounded linear functionals X ∼ (those
which carry order bounded subset of X to order bounded sets of R) coincides with
the topological dual X ′. This is a consequence of Namioka-Klee Theorem 2. From
the general theory (see [21]) on the decomposition of X ∼

X ′ =X ∼ =X ∼
n ⊕X ∼

s

where X ∼
n is the order closed ideal (band) of X ∼ of all the order continuous

linear functionals on X and it is called the order continuous dual of X . The space
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of singular functionals X ∼
s is defined as the band disjoint complement of X ∼

n

in X ∼. Examples of this decomposition are given in Sect. 5. The main goal of the
next section is to provide some criteria that guarantee the C-property of the topology
σ(X ,X ∼

n ).

4 On the C-Property

The C-property is verified by the strong topology of all Frechet lattices without
passing to convex combinations, as shown below.

Lemma 4 Let (X , τ ) be a Frechet lattice. If (Xn)n τ -converges to X, then there
exists a subsequence which is order convergent.

Proof Call d a complete distance that induces τ , which is also absolute, i.e.
d(X,0) = d(|X|,0). Suppose d(Xn,X)→ 0 and select a subsequence such that∑

k≥0 d(Xnk ,X)=
∑

k≥0 d(Xnk −X,0) <+∞.
Set Y = ∑

k≥0 |Xnk − X|. By completeness of d , Y ∈ X . Now, if Yk :=
∑

h≥k |Xnh − X| then clearly Yk↓ and Yk
τ→ 0 so by [1, Theorem 8.43] Yk ↓ 0.

As

|Xnk −X| ≤ Yk

one deduces that Xnk order converges to X. �

We will be mainly concerned with the C-property of weak topologies in locally
convex Frechet lattice. This is the reason why the most to hope for is to extract an
order convergent subsequence of convex combinations from a topologically conver-
gent net, e.g. exactly the C-property.

Lemma 5 Let (X , τ ) be a locally convex Frechet lattice. Then the σ(X ,X ′)
topology verifies the C-property.

Proof Let Wα →W in the weak topology. By Hahn-Banach Theorem, W belongs
to the τ -closure of conv(Wα, . . .) for all α and as the topology τ is first countable
there exists a subsequence (αn)n and a sequence Yn ∈ conv(Wαn, . . .) which con-
verges to W in the τ topology. Lemma 4 ensures that we can extract a subsequence
(Ynk )k that order converges to W . �

Remark 5 The local convexity assumption cannot be dropped in the statement of the
previous lemma. An immediate counterexample is given by the Frechet lattice L0,
since when P has no atoms (L0)′ = {0}. So, the weak topology σ(L0, (L0)′) is the
indiscrete one and doesn’t satisfy the C-property.

However, even under the local convexity assumption, the C-property is not pre-
served if one keeps weakening the topology, from σ(X ,X ′) to σ(X ,X ∼

n ). An
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extreme situation is the one already encountered in Example 1 where the Banach
lattice X = C([0,1]) has dual X ′ consisting of the signed measures μ of finite
variation on [0,1], but no μ is order continuous apart from the null measure.

So the following lemma may be helpful.

Lemma 6 Let (L , τL ), (X , τ ) be locally convex Frechet lattices and suppose
there exists a linear, injective lattice morphism

(X , τ )
i→ (L , τL )

such that

{Y ◦ i | Y ∈L ′} ⊆X ∼
n . (11)

Then σ(X ,X ∼
n ) verifies the C-property.

Proof We specify that by “linear, injective lattice morphism” i we mean that i is
linear, injective, topologically continuous and preserves the lattice structure. Note
that X needs not to be homeomorphic to i(X ).

Let (Xα)α be a net such that Xα

σ(X ,X ∼
n )−→ X. The condition (11) implies that

Wα := i(Xα) converges to W := i(X) in the σ(L ,L ′)-topology. Applying the
same argument and using the same notations of the proof of Lemma 5, there ex-
ists (Ynk )k converging in order to W in L and so the inverse image Zk = i−1(Ynk )

verifies Zk ∈ conv(Xαnk
, . . .) and Zk

o→X. �

Condition (11) is evidently satisfied in case L ′ =L ∼
n , which is equivalent to the

assumption that τL is order continuous. If this holds, essentially the above lemma
applies to any locally convex Frechet lattice X that can be identified with a sub-
lattice of L , so the order structure is identical of that of L , but with possibly finer
topology than the one inherited from L . This is the content of the next Corollary,
that will be applied for the Orlicz Banach lattice LΨ .

Corollary 4 Any locally convex Frechet lattice X of random variables that can be
injected into L1 by a linear lattice morphism has τ , σ(X ,X ′) and σ(X ,X ∼

n )

topologies with the C-property.

4.1 The C-Property in the Representation of Convex and
Monotone Functionals

We present the result on the equivalence between the σ(X ,X ∼
n )-l.s.c. property for

convex functionals on locally convex Frechet lattices and the order-l.s.c. property,
under the assumption that the topology σ(X ,X ∼

n ) has the C-property.
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Proposition 1 Let (X , τ ) be a locally convex Frechet lattice and consider the fol-
lowing conditions for a proper, convex functional π :X → (−∞,+∞]:
1. π is σ(X ,X ∼

n )-l.s.c.
2. π admits the representation

π(X)= sup
Y∈X ∼

n

{〈Y,X〉 − π∗(Y )}, X ∈X , (12)

3. π is order l.s.c.

Then (1)⇒ (2)⇒ (3). If σ(X ,X ∼
n ) has the C-property, the three conditions

are equivalent.
If π is in addition monotone increasing, the conclusions are identical and in the

representation (12) X ∼
n can be replaced by (X ∼

n )+.

Proof (1) ⇒ (2) follows from (X , σ (X ,X ∼
n ))′ = X ∼

n and from Fenchel-
Moreau Theorem (see e.g. [8, Chap. I]); (2)⇒ (3) Since π is the pointwise supre-
mum of a family of order continuous functionals, it is also order l.s.c. Suppose now
that σ(X ,X ∼

n ) has the C-property and that (3) holds. To prove (1) we show that
for any real k the sublevel

Ak = {X ∈X | π(X)≤ k}

is σ(X ,X ∼
n )-closed. Suppose that Xα ∈ Ak and Xα

σ(X ,X ∼
n )→ X. By the C-

property, there exists Yn ∈ conv(Xαn, . . .) such that Yn
o→ X. The convexity of π

implies that π(Yn)≤ k for each n. From order l.s.c. of π

π(X)≤ lim infπ(Yn)≤ k

so that X ∈Ak . �

Remark 6 Note that the C-property could have been stated with order converging
subnets of convex combinations instead of subsequences (as in fact it was in the
first version of the present paper). However the current presentation is given with
subsequences as the applications rely only on Corollary 4, which in turn is based on
Lemma 5.

A natural question is whether the sup in formula (12) is attained when π is finite
valued. In general, the answer is no, as shown in the example below, where the max
is attained over X ′+ thanks to (1) but not over (X ∼

n )+.

Example 3 Consider the classic counterexample [12, Example 4.36] translated in
the language of monotone increasing maps, that is take π : L∞ → R, π(X) =
ess supX. This map is convex, increasing, positively homogeneous and order l.s.c.
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on L∞. For later use, observe also that it is not order u.s.c. From (12), taking into
account the “cash additivity” property π(X+ c)= π(X)+ c, c ∈R,

π(X)= sup
{Q probab., Q�P }

EQ[X]. (13)

Similarly, from (1) and the good properties of π ,

π(X)= max
Q∈M1,f (P )

EQ[X]

which is exactly the representation in (2) with zero penalty function. If X is selected
so that its ess-sup is not attained, the sup in (13) cannot be a maximum. We will
consider a similar case in the example of Sect. 5.3.

If π is finite valued and order u.s.c., then interestingly enough π admits a rep-
resentation as in (12) with the supremum replaced by a maximum, without the
C-property requirement.

Lemma 7 Let (X , τ ) be a locally convex Frechet lattice and π :X → R be a
convex increasing map. If π is order u.s.c. then

π(X)= max
Y∈(X ∼

n )+
{〈Y,X〉 − π∗(Y )}, X ∈X ,

and thus a fortiori π is order continuous.

Proof From (1),

π(X)= max
Y∈X ′+

{〈Y,X〉 − π∗(Y )} ≥ sup
Y∈(X ∼

n )+
{〈Y,X〉 − π∗(Y )}.

We now prove that any Y attaining the max on X ′+ is order continuous. In fact, sup-
pose by contradiction that the max is attained on a positive, non order continuous Y0.
Then, there exists Zα

o→ 0 such that lim supα〈Y0,Zα〉> 0 and

π(X)= {〈Y0,X〉−π∗(Y0)}< lim sup
α

{〈Y0,X+Zα〉−π∗(Y0)} ≤ lim sup
α

π(X+Zα)

which is a contradiction with order u.s.c. of π . �

5 Orlicz Spaces and Applications to Risk Measures

5.1 Orlicz Spaces Have the C-Property

The following Orlicz spaces and the Lp spaces, p ∈ [0,+∞], are defined on the
same probability space (Ω,F ,P ).

A Young function Ψ is an even, convex function Ψ : R→ R ∪ {+∞} with the
properties:
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1. Ψ (0)= 0;
2. Ψ (∞)=+∞;
3. Ψ <+∞ in a neighborhood of 0.

Note that Ψ may jump to +∞ outside of a bounded neighborhood of 0. In case
Ψ is finite valued however, it is also continuous by convexity.

The Orlicz space LΨ is then defined as

LΨ = {X ∈ L0 | ∃α > 0E[Ψ (αX)]<+∞}.
It is a Banach space with the Luxemburg (or gauge) norm

NΨ (X)= inf

{

c > 0
∣
∣
∣E

[

Ψ

(
X

c

)]

≤ 1

}

.

With the usual pointwise lattice operations, LΨ is also a Banach lattice, as the norm
satisfies the monotonicity condition

|Y | ≤ |X| ⇒NΨ (Y )≤NΨ (X).

Since Ψ is bounded in a neighborhood of 0 and it is convex and goes to +∞ when
|x| →∞, it is rather easy to prove that

L∞ i→LΨ i→L1 (14)

with linear, injective lattice morphisms (the inclusions i). The dual (LΨ )′ admits the
general decomposition in order continuous band and singular band

(LΨ )′ = (LΨ )∼n ⊕ (LΨ )∼s (15)

and (LΨ )∼n can be identified with the Orlicz space LΨ ∗ where

Ψ ∗(y)= sup
x∈R

{yx −Ψ (x)}

is the Young function conjugate of Ψ . The examples below illustrate different cases
and show that the Lp are in fact particular Orlicz spaces.

1. Suppose p ∈ (1,+∞) and Ψ = Ψp where

Ψp(x)= |x|
p

p

then LΨp = Lp . Since this space has an order continuous topology, the dual
consists only of order continuous functionals. As (Ψp)

∗ = Ψq with q = p
p−1 ,

one recovers the classic

(Lp)′ = Lq.
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2. Ψ = Ψ∞, where

Ψ∞(x)=
{

0 if |x| ≤ 1
+∞ otherwise.

Then the associated Orlicz space LΨ∞ is exactly L∞ and as (Ψ∞)∗(y) = |y|,
L(Ψ∞)∗ = L1.

The decomposition of the dual provided in (15) is nothing but the Yosida-
Hewitt decomposition (L∞)′ = L1⊕ (L∞)∼s and the singular band (L∞)∼s con-
sists of the purely finitely additive measures.

3. Ψe(x)= e|x| −1 is a genuine example of Young function which induces an Orlicz
space different from the Lp . LΨe is the space of random variables with some
finite exponential moment, i.e.

LΨe = {X ∈ L0 | ∃α > 0 s.t. E[eα|X|]<+∞}.
Analogously to what happens for L∞, this space has a topology which is not
order continuous. Thus the dual has the full general decomposition (15), with
non-null singular band, as

(LΨe)′ = L(Ψe)
∗ ⊕ (LΨe)∼s

where the conjugate (Ψe)
∗ is given by the function

{ |y|(ln |y| − 1)+ 1 if |y|> 1
0 otherwise

which will be indicated with Φ̂ . As better explained below, since Φ̂ doesn’t grow
too fast the Orlicz LΦ̂ displays a behavior similar to that of the Lp,1≤ p <+∞,
in the sense that its topology is order continuous. Then, its dual (LΦ̂)′ coincides
with LΦ̂∗ = LΨe . The consequence is that the topology induced on LΨe by the
order continuous functionals, σ(LΨe ,LΦ̂), is nothing but the weak* topology
on LΨe .

As anticipated in the examples above, when Ψ verifies a slow- growth condition,
known in the literature as �2 condition (see e.g. [18]):

∃t∗ > 0,∃K > 0 s.t. Ψ (2t)≤KΨ (t) for all t > t∗

then (LΨ )′ = (LΨ )∼n = LΨ ∗ , that is the norm-topology on LΨ is order continuous.
So by Lemmata 4 and 5 the norm topology and the weak topology σ(LΨ , (LΨ )′)=
σ(LΨ ,LΨ ∗) have the C-property.

In general, by (14) and Corollary 4, the following topologies on LΨ all have the
C-property:

(a) the norm topology,
(b) the weak topology,
(c) the σ(LΨ ,LΨ ∗)-topology.
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We remark that when it is Ψ ∗ that satisfies the �2 condition, as in Example 3
above, then the dual space of LΨ ∗ coincides with LΨ . Therefore in this case the
topology σ(LΨ ,LΨ ∗) is nothing but the weak* topology on LΨ and it has the C-
property.

One may also consider the Morse subspace MΨ of the Orlicz space LΨ :

MΨ = {X ∈ LΨ |E[Ψ (kX)]<+∞ ∀k > 0}. (16)

When Ψ is finite-valued, MΨ is a norm closed band of LΨ and its dual (MΨ )′ =
LΨ ∗ , so σ(MΨ ,LΨ ∗) has the C-property too.

In the context of expected utility maximization, the spaces MΨ were first used
in [5]. They are the object of study in [9] and applied to risk measures. In [9] it
has also been shown that a risk measure defined on MΨ has non empty topological
interior if and only if it is finite valued. As the dual of the Morse space MΨ can
be identified with a space of functions, the Orlicz LΨ ∗ , these spaces are easier to
handle than the whole LΨ . In particular, since MΨ has order continuous norm,
the dual representation (6) follows immediately from the Extended Namioka Klee
Theorem 1.

In [6] and in [7] it has been shown that the full duality (Lû, (Lû)′) can also be
successfully employed to cover new cases in the applications to expected utility
maximization and indifference pricing. In fact the Orlicz space Lû, defined by the
Young function û(x)=−u(−|x|)+ u(0) associated to the utility function u, is the
natural environment for such investigation. And the results on the indifference price
for claims in the general Lû obtained in [7] show that in the general setup the result
by [9] fails: a convex risk measure on Lû can have non empty topological interior
without being finite valued everywhere. For other examples of this situation self-
contained in the present paper, see the next Sect. 5.2 where there are some other
interesting applications of the full duality to risk measures.

5.2 New Insights on the Downside Risk and Risk Measures
Associated to a Utility Function u

We assume that the investment possibilities at a certain date in the future are mod-
eled by elements X of L0. As straightforward consequences of Proposition 1 we
have the following representations of decreasing functionals defined on subspaces
of L0.

Corollary 5 Let (X , τ ) be a locally convex Frechet lattice contained in L0. If
ρ : X → (−∞,+∞] is a proper convex order l.s.c. decreasing functional and
σ(X ,X ∼

n ) has the C-property, then ρ admits the representation

ρ(X)= sup
Y∈(X ∼

n )+
{〈Y,−X〉 − ρ∗(−Y)}, X ∈X . (17)
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If in addition ρ satisfies the cash additivity property

ρ(X+ c)= ρ(X)− c, ∀c ∈R ∀X ∈X , (18)

then

ρ(X)= sup
Y∈(X ∼

n )+,〈Y,1〉=1
{〈Y,−X〉 − ρ∗(−Y)}, X ∈X . (19)

If in addition ρ is positively homogeneous, then there exists a convex subset C ⊆
{Y ∈ (X ∼

n )+ | 〈Y,1〉 = 1} such that

ρ(X)= sup
Y∈C

〈Y,−X〉.

Let us consider an agent, whose preferences on the investments X can be repre-
sented via expected utility. We assume that the utility function

• u : R→ R is increasing and concave (though not necessarily strictly concave)
and satisfies limx→−∞ u(x)=−∞.

Without loss of generality, suppose

u(0)= 0.

The goal is that of describing a natural framework associated to the expected utility
of the agent, i.e. to the functional

E[u(X)],
to the related downside risk

Θ(X) :=E[−u(X)]
and to some associated convex risk measures. As it is not required that u is strictly
concave, u can be identically 0 on R+ and in this case Θ is nothing but the so-called
shortfall risk [12].

It turns out that a good setup is that of an Orlicz spaces duality induced by the
functional itself. As shown in [5] and [6] the function

û(x)=−u(−|x|)
is a Young function and defines the Orlicz space Lû associated to u. Call

Φ(y)= sup
x∈R

{u(x)− xy}

the convex conjugate of u. Since û is finite on R, then, as observed right after the
definition (16), Mû is a norm-closed band of Lû and its dual is LΦ̂ .
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It is clear that there must be a link between Φ and Φ̂ , the Young function conju-
gate to û. In fact

Φ̂(y)=
{

0 if |y| ≤ β

Φ(|y|) if |y|> β

where β ≥ 0 is the right derivative of û at 0, namely β =D+û(0)=D−u(0). If u
is differentiable, note that β = u′(0) and it is the unique solution of the equation
Φ ′(y)= 0. To fix the ideas, consider the following examples.

1. Fix γ > 0 and take

uγ (x)=−e−γ x + 1 (20)

whence ûγ (x)= eγ |x| − 1 and

Φγ (y)= y

γ
ln
y

γ
− y

γ
+ 1

and Φ̂(y)= (| y
γ
| ln | y

γ
| − | y

γ
| + 1)I{| y

γ
|≥1}. It is not difficult to see that the asso-

ciated Orlicz spaces do not depend on γ (in the sense that they are physically
the same and changing γ amounts to a dilation of the Luxemburg norm) and
therefore, as pointed out in Sect. 4.1, Example 3,

Lûγ = {X ∈ L0 | ∃α > 0 s.t. E[eα|X|]<+∞},

Mûγ = {X ∈ L0 | ∀α > 0E[eα|X|]<+∞},

LΦ̂γ = {Y ∈ L0 |E[(|Y | ln |Y |)I{|Y |>1}]<+∞} and

(Lû)′ = LΦ̂ ⊕ (Lû)∼s .

2. Let u be the quadratic-flat utility, i.e.

u(x)=
{− x2

2 if x ≤ 0
0 if x ≥ 0.

(21)

In this case, û(x) = x2

2 = Φ̂(x), and all the spaces Lû,Mû,LΦ̂ are equal and
coincide (modulo an isomorphism) with L2.

Let us recall that the Orlicz class of Lû is defined as

L û = {X ∈ L0 |E [̂u(X)]<+∞}
and it is a convex subset (not necessarily closed) of Lû.

The following lemma is a nice consequence of the right choice of the spaces.
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Lemma 8 The downside risk Θ : Lû→ (−∞,+∞], Θ(X)=E[−u(X)], is a well-
defined, proper, convex and monotone decreasing functional which is order l.s.c. In
addition,

Dom(Θ)= {X ∈ Lû |X− ∈L û}
and

int(Dom(Θ))= {X ∈ Lû | ∃ε > 0(1+ ε)X− ∈L û} ⊇Mû. (22)

Moreover, Θ admits the representation:

Θ(X)= sup
Y∈LΦ̂+

{E[−XY ] −E[Φ(Y)]}. (23)

Proof If X ∈ Lû, then by Jensen’s inequality

E[−u(X)] ≥ −u(E[X]) >−∞ (24)

since E[X] ∈ R from (14) and u < +∞ on R. So the definition is well-posed
and Θ is clearly convex and monotone decreasing. To prove the characterization
of Dom(Θ), simply note that

X ∈Dom(Θ) iff E[u(X)]>−∞ iff E[u(−X−)]>−∞
iff E [̂u(X−)]<+∞

where the second equivalence above is due to the fact that E[u(X+)] is always finite
as

u(0)≤ u(x+)≤ ax+ + b

for some a, b ∈R, so that u(0)≤E[u(X+)] ≤ aE[X+] + b <+∞.
To prove (22), if X ∈ int(Dom(Θ)) then clearly for some ε > 0 E[−u(X−εX−)]

is finite, that is E [̂u((1+ ε)X−)] is finite.
Conversely, suppose (1+ ε)X− ∈L û. Then, (1+ ε)X ∈ Dom(Θ) and for any

Z with Luxemburg norm Nû(Z) <
ε

1+ε , X+Z ∈Dom(Θ). In fact:

E[−u(X+Z)] = E

[

−u
(

1

1+ ε
((1+ ε)X)+Z

)]

≤ 1

1+ ε
E[−u((1+ ε)X)] + ε

1+ ε
E

[

−u
(

1+ ε

ε
Z

)]

<+∞

since 1+ε
ε
Z has Luxemburg norm less than 1 and thus

E

[

−u
(

1+ ε

ε
Z

)]

≤E

[

−u
(

−1+ ε

ε
Z−

)]

=E

[

û

(
1+ ε

ε
Z−

)]

≤ 1.
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Thanks to Remark 4, in order to show that Θ is order l.s.c. one just needs to check
whether Θ is σ -continuous from above. But this is an immediate consequence of
the monotone convergence theorem and (24). Finally, the σ(Lû,LΦ̂) topology has
the C-property so the representation (17) on the order continuous dual LΦ̂ applies

Θ(X)= sup
Y∈LΦ̂+

{E[−YX] −Θ∗(−Y)}.

By Kozek’s results [15] (or directly by hand), Θ∗, the convex conjugate of Θ ,

Θ∗(Y )= sup
X∈Lû

{E[YX] −Θ(X)}

verifies

Θ∗(−Y)=E[Φ(Y)], if Y ∈ LΦ̂. (25)
�

Clearly Θ satisfies all the requirements of a convex risk measure but cash addi-
tivity.

As shown in [4] in the L∞ case, the greatest convex risk measure smaller than
a convex functional θ : L∞ → R can be constructed by taking the inf-convolution
θ�ρworst of θ with ρworst = ρL∞+ , which is the risk measure associated to the accep-
tance set L∞+ . Then the penalty function of ρworst is equal to 0 on M1,f (P ), and is
equal to ∞ outside M1,f (P ). Since the penalty function of θ�ρworst is the sum of
the penalty function of θ and of ρworst, the representation of θ�ρworst will have the
same penalty function of θ, but the supremum in such representation is restricted
to the set M1,f (P ), i.e. to those positive elements in the dual space that are also
normalized. The same conclusion holds in our setting, as shown in the following
result.

Proposition 2 The map ζu : Lû→ (−∞,+∞] defined by

ζu(X)= sup
Q�P,

dQ
dP
∈LΦ̂+

{

EQ[−X] −E

[

Φ

(
dQ

dP

)]}

(26)

is a well-defined order l.s.c. convex risk measure and it is the greatest order l.s.c.
convex risk measure smaller than Θ and hence ζu =Θ�ρLû+ . Moreover, the sup in
(26) can equivalently be computed on the set

{

Q probab., Q� P

∣
∣
∣E

[

Φ

(
dQ

dP

)]

<+∞
}

.

Proof It is clear that ζu is an order l.s.c convex risk measure. From (23) we also
have: ζu ≤Θ. We need only to prove that if ρ̃ : Lû→ (−∞,+∞] is an order l.s.c.
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convex risk measure such that ρ̃ ≤ Θ, then ρ̃ ≤ ζu. Let α̃(Y ) = ρ̃∗(−Y) be the
penalty function associated with ρ̃ in the representation (19)

ρ̃(X)= sup
Y∈LΦ̂+ ,E[Y ]=1

{E[−XY ] − α̃(Y )}.

By cash additivity, ρ̃(X+Θ(X))= ρ̃(X)−Θ(X)≤ 0, for all X ∈ Lû, so that

ρ̃(X+Θ(X))= sup
Y∈LΦ̂+ ,E[Y ]=1

{E[−YX] −Θ(X)− α̃(Y )} ≤ 0.

This implies that, if Y ∈ LΦ̂+,E[Y ] = 1,

α̃(Y )≥E[−YX] −Θ(X) for all X ∈ Lû

and, by (25),

α̃(Y )≥ sup
X∈Lû

{E[−YX] −Θ(X)]} =Θ∗(−Y)=E[Φ(Y)].

Therefore,

ρ̃(X) = sup
Y∈LΦ̂+ ,E[Y ]=1

{E[−YX] − α̃(Y )}

≤ sup
Y∈LΦ̂+ ,E[Y ]=1

{E[−YX] −E[Φ(Y)] = ζu(X).

Since the integrability condition E[Φ(Y)]<+∞ on Y ≥ 0 is more severe than the
requirement Y ∈ LΦ̂+ , the last sentence is obvious. �

To any utility function satisfying our assumptions, one can also associate the map
ρu : Lû→ (−∞,+∞] defined by:

ρu(X)= inf{c ∈R |X+ c ∈Au}, (27)

where the set Au is defined as

Au := {X ∈ Lû |E[u(X)] ≥ u(0)= 0} = {X ∈ Lû |Θ(X)≤ 0}.

Lemma 9 Au has the properties:

1. it is convex;
2. if X ∈Au and Z ∈ Lû,Z ≥X, then Z ∈Au;
3. inf{c ∈R | c ∈Au}>−∞;
4. for any X ∈Au and Z ∈ Lû, the set {t ∈ [0,1] | (1− t)X + tZ ∈Au} is closed

in [0,1].
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Proof We only prove item 4, as the others are simple consequences of the prop-
erties of u. Fix any X ∈ Au and call Λ = {t ∈ [0,1] | (1 − t)X + tZ ∈ Au}. For
any cluster point t∗ of Λ, there exists a sequence (tn)n ∈ Λ, tn → t∗. But then,
(1 − tn)X + tnZ order converges to (1 − t∗)X + t∗Z. From Lemma 8, Θ is or-
der l.s.c., so Θ((1− t∗)X+ t∗Z)≤ lim infn Θ((1− tn)X+ tnZ)≤ 0 which means
t∗ ∈Λ. �

Proposition 3 ρu : Lû→ (−∞,+∞] is a well-defined order l.s.c. convex risk mea-
sure that admits the representation:

ρu(X)= sup
Q�P,

dQ
dP
∈LΦ̂+

{EQ[−X] − α(Q)}, (28)

where

α(Q)= sup
X∈Au

{EQ[−X]}. (29)

Moreover, Aρu := {X ∈ Lû | ρu(X)≤ 0}, the acceptance set of ρu, satisfies

Aρu =Au,

and, as a consequence, if ρ̃ : Lû→R∪ {+∞} is an order l.s.c. convex risk measure
such that ρ̃ ≤Θ, then ρ̃ ≤ ρu.

Proof The facts that ρu is a convex risk measure and that its acceptance set Aρu

coincides with Au are consequences of the above lemma and Propositions 2, 4 in
[13]. Now, since Θ is order l.s.c., Au is order closed, so that the acceptance set of ρu
is order-closed. And since σ(Lû,LΦ̂) has the C-property the acceptance set Aρu =
Au is σ(Lû,LΦ̂)-closed. Hence, by a classic result, as its sublevels are σ(Lû,LΦ̂)-
closed, ρu is σ(Lû,LΦ̂)-l.s.c. But this implies that it is also ρu order l.s.c. by the
first part of the statement in Proposition 1. Then, the representation (19) on the order
continuous dual LΦ̂ applies:

ρu(X) = sup
Q�P,

dQ
dP
∈LΦ̂+

{EQ[−X] − α(Q)}, X ∈ Lû,

α(Q) � ρ∗u(−Q)= sup
X∈Lû

{EQ[−X] − ρu(X)}.

It is straightforward to see that the penalty functional α admits the representation

α(Q)= sup
X∈A ρu

EQ[−X].

If ρ̃ : Lû→ (−∞,+∞] is an order l.s.c. convex risk measure such that ρ̃ ≤Θ

then Aρ̃ = {X ∈ Lû | ρ̃(X)≤ 0} ⊇Au =Aρu , and this implies ρ̃ ≤ ρu. �
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Remark 7 Obviously, ζu ≤ ρu, but ζu = ρu if and only if ρu ≤Θ which in general
is not true. Note that the inequality ρu ≤Θ would imply: Θ(X+Θ(X))≤Θ(X+
ρu(X)) ≤ 0 (this latter inequality follows from X + ρu(X) ∈ Aρu = Au)), but in
general Θ(X +Θ(X)) ≤ 0 does not hold. So, ρu and ζu may be different (see the
Sect. 5.3 below). In Sect. 5.4 there is a case where ρu = ζu.

5.3 Quadratic-Flat Utility

If u is the quadratic-flat utility function (21), then ζu and ρu are different. Indeed,
Lû = L2 and

Θ(X) = 1

2
E[(X−)2] = sup

Y∈L2+

{

E[−YX] − 1

2
E[Y 2]

}

, X ∈ L2,

ζu(X) = sup
dQ
dP
∈L2+

{

EQ[−X] − 1

2
E

[(
dQ

dP

)2]}

, X ∈ L2.

Since Au = {X ∈ L2 |Θ(X)≤ 0} = L2+, we have:

ρu(X)= inf{c ∈R |X+ c ≥ 0} = ρworst(X) := − ess inf(X).

The dual representation in (28) becomes

ρu(X)= sup
Q�P,

dQ
dP
∈L2+

EQ[−X]

since, from (29), the penalty term is given by

α(Q)= sup
X∈L2,Θ(X)≤0

EQ[−X] = 0, if
dQ

dP
∈ L2+.

Note also that

ρu(X)= sup
Q�P,

dQ
dP
∈L2+

EQ[−X] = sup
Q�P,

dQ
dP
∈L2+

EQ[X−] ≥ E[(X−)2]
E[X−]

and if 0 < E[X−] < 2, ρu(X) > Θ(X). Moreover, ρu is not even finite-valued.
Therefore, while Θ and ζu are finite valued and thus continuous and subdifferen-
tiable on L2, Dom(ρu) has empty interior thanks to the cited result of [9] for risk
measures on Morse subspaces (here, Lû =Mû = L2).
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5.4 Exponential Utility

Let u(x)=−e−x + 1 be the exponential utility function considered in (20). W.l.o.g.
we set γ = 1. Then,

Θ(X)=E[e−X] − 1, X ∈ Lû,

and Φ(y)= y lny − y + 1. From the definition (27) we have

ρu(X)= inf{c ∈R |E[e−X−c − 1] ≤ 0]} = lnE[e−X],

with the convention lnE[e−X] = +∞ if E[e−X] = +∞. Clearly ρu(X) =
lnE[e−X] ≤ E[e−X] − 1 = Θ(X) and therefore, in this case, ρu = ζu. So, from
(26) we recover the entropic risk measure together with its dual variational identity

lnE[e−X] = sup
Q�P,

dQ
dP
∈LΦ̂+

{

EQ[−X] −E

[

Φ

(
dQ

dP

)]}

= sup
Q�P,

dQ
dP
∈LΦ̂+

{

EQ[−X] −EQ

[

ln

(
dQ

dP

)]}

, X ∈ Lû.

The novelty here is that the space where this representation holds is Lû, naturally in-
duced by u and not an arbitrarily selected subspace of L0 (traditionally, the entropic
risk measure is defined on L∞ and the formula above is provided for X ∈ L∞ ⊂ Lû,
see [12] and the remarks below). And ρu is a genuine example of a risk measure on
the general Orlicz space Lû which is not finite valued everywhere and still has do-
main with no empty interior: as Dom(ρu)=Dom(Θ), the interior of the domain has
been computed in (22).

To conclude, let us focus on the restriction of ρu = ζu to the subspace Mû.

Corollary 6 The restriction υu of ζu to the subspace Mû is a well-defined norm
continuous (hence order continuous) convex risk measure υu :Mû→R that admits
the representation

υu(X)= max
Q�P,

dQ
dP
∈LΦ̂+

{

EQ[−X] −E

[

Φ

(
dQ

dP

)]}

, X ∈Mû.

We thus recover the representation formulae provided by [9] on Morse subspaces
and the formula with the max for the entropic risk measure on L∞ ⊂Mû.

Acknowledgements The first author would like to thank B. Rudloff, P. Cheridito and A. Hamel
for some discussions while she was visiting the ORFE Department at Princeton University. The
second author would like to thank Marco Maggis, PhD student at Milano University for helpful
discussion on this subject.



28 S. Biagini and M. Frittelli

References

1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin
(2005)

2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, San Diego (1985)
3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 4,

203–228 (1999)
4. Barrieu, P., El Karoui, N.: Pricing, hedging and optimally designing derivatives via minimiza-

tion of risk measures. In: Carmona, R. (ed.) Indifference Pricing: Theory and Applications.
Princeton University Press, Princeton (2008)

5. Biagini, S.: An Orlicz spaces duality for utility maximization in incomplete markets. In: Pro-
ceedings of Ascona 2005. Progress in Probability. Birkhäuser, Basel (2007)

6. Biagini, S., Frittelli, M.: A unified framework for utility maximization problems: an Orlicz
space approach. Ann. Appl. Prob. 18(3), 929–966 (2008)

7. Biagini, S., Frittelli, M., Grasselli, M.: Indifference price for general semimartingales. Sub-
mitted, 2007

8. Brezis, H.: Analyse fonctionnelle. Masson, Paris (1983)
9. Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Financ. 19(2), 189–214 (2009)

10. Delbaen, F.: Coherent risk measures on general probability spaces. In: Essays in Honour of
Dieter Sondermann. Springer, Berlin (2000)

11. Filipovic, D., Svindland, G.: The canonical model space for law-invariant convex risk mea-
sures is L1. Preprint (2008)

12. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 2nd edn. De
Gruyter, Berlin (2004)

13. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4),
429–447 (2002)

14. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Financ. 26(7), 1473–
1486 (2002)

15. Kozek, A.: Convex integral functionals on Orlicz spaces. Ann. Soc. Math. Pol. Ser. 1, Com-
ment. Math. XXI, 109–134 (1979)

16. Maccheroni, F., Marinacci, M., Rustichini, A.: A variational formula for the relative Gini
concentration index. In press

17. Namioka, I.: Partially Ordered Linear Topological Spaces. Mem. Am. Math. Soc., vol. 24.
Princeton University Press, Princeton (1957)

18. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)
19. Rüschendorf, L., Kaina, M.: On convex risk measures on Lp-spaces. Preprint (2007)
20. Ruszczynski, A., Shapiro, A.: Optimization of convex risk measures. Math. Oper. Res. 31(3),

433–452 (2006)
21. Zaanen, A.C.: Riesz Spaces II. North-Holland Math. Library. North-Holland, Amsterdam

(1983)



On Certain Distributions Associated
with the Range of Martingales

Alexander Cherny and Bruno Dupire

Abstract We study some properties of a continuous local martingale stopped at the
first time when its range (the difference between the running maximum and mini-
mum) reaches a certain threshold. The laws and the conditional laws of its value,
maximum, and minimum at this time are simple and do not depend on the local
martingale in question. As a consequence, the price and hedge of options which
mature when the range reaches a given level are both model-free within the class
of arbitrage-free models with continuous paths, which makes these products very
convenient for hedging.

Keywords Continuous martingales · Option hedging · Option pricing · Options on
the price range

Mathematics Subject Classification (2000) 91B62 · 91B70

1 Introduction

Let (St )t≥0 be a continuous local martingale on a filtered probability space
(Ω,F , (Ft ),P). We assume that F0 is trivial. Consider its running minimum and
maximum

mt = inf
u≤t Su, Mt = sup

u≤t
Su, t ≥ 0

and define the range process as

Rt =Mt −mt, t ≥ 0.

Define the stopping time

τ = inf{t ≥ 0 :Rt ≥ L},
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where L > 0 is a given threshold. We will be interested in the unconditional and
conditional laws of the random variables Sτ and Mτ . Below we will denote by δa
the Dirac delta-mass concentrated at a point a; by IA we will denote the indicator
of a set A. We have the following result; statement (ii) is actually known and can be
found in [2, 5.0.4].

Theorem 1 Assume that τ is finite almost surely.

(i) The distribution LawSτ is given by

(LawSτ )(dx)= L−2|x − S0|I(S0−L,S0+L)(x)dx.

(ii) The distribution LawMτ is given by

(LawMτ)(dx)= L−1I(S0,S0+L)dx.

(iii) The conditional distribution Law(Sτ |Ft ) on {t < τ } is given by

(Law(Sτ |Ft ))(dx) = L−1(Mt − St )δMt−L(dx)+L−1(St −mt)δmt+L(dx)

+L−2(St − x)I(Mt−L,mt )(x)dx

+L−2(x − St )I(Mt ,mt+L)(x)dx.

(iv) The conditional distribution Law(Mτ |Ft ) on {t < τ } is given by

(Law(Sτ |Ft ))(dx) = L−1(St −mt)δmt+L(dx)+L−1(Mt − St )δMt (dx)

+L−1I(Mt ,mt+L)(x)dx.

Remark 1 Point (ii) easily follows from (i) if one notes that

Mτ =
{
Sτ +L if Sτ ≤ S0,

Sτ if Sτ > S0.

Similarly, (iv) is an easy consequence of (iii) since on {t < τ }, we have

Mτ =
{
Sτ +L if Sτ ≤ St ,

Sτ if Sτ > St .

As mτ = Mτ − L, we see that from (i) one can recover the whole
Law(Sτ ,mτ ,Mτ ), while from (iii) one can recover Law(Sτ ,mτ ,Mτ |Ft ).

The above theorem might be given an interesting financial application. Let
(St )t≥0 describe the price process of an asset. Imagine an option that pays out
the amount f (Sτ ), where τ is the same as above and f is a given function (e.g.,
f (x)= (x −K)+). Then, as a corollary of the above result, we get the price of this
option in any arbitrage-free model with continuous paths. It is given by the theorem
below, where we are providing the hedge as well.
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Theorem 2 Assume that the risk-free rate is zero and f is integrable on any com-
pact interval. Assume also that τ <∞ a.s. and the model is arbitrage-free in the
sense that there exists an equivalent measure, under which S is a martingale.1

(i) For any equivalent martingale measure Q, the price V0 = EQf (Sτ ) is given by

V0 = L−2
∫ S0+L

S0−L
|x − S0|f (x)dx.

(ii) For any equivalent martingale measure Q, the corresponding price process
Vt = EQ[f (Sτ ) |Ft ] is given by

Vt = L−1(Mt − St )f (Mt −L)+L−1(St −mt)f (mt +L)

+L−2
∫ mt

Mt−L
(St − x)f (x)dx

+L−2
∫ mt+L

Mt

(x − St )f (x)dx on {t < τ }

and Vt = f (Sτ ) on {t ≥ τ }.
(iii) The hedge H is given by

Ht = I (t < τ)

[

−L−1f (Mt −L)+L−1f (mt +L)

+L−2
∫ mt

Mt−L
f (x)dx −L−2

∫ mt+L

Mt

f (x)dx

]

, t ≥ 0,

i.e.

Vt = V0 +
∫ t

0
HudSu, t ≥ 0.

We see that the price and the hedge do not depend on the equivalent martingale
measure and are thus model-independent within the class of arbitrage-free models
with continuous paths. These include, in particular, the Bachelier model, the Black-
Scholes-Merton model, the local volatility models as well as the stochastic volatility
models. What is more important, the price and the hedge admit a simple analytic
form. In those respects, options on the range have similarities with options having
the payoff f (Sσ ), where σ = inf{t ≥ 0 : 〈S〉t ≥ L} (for more information on such
options, see [1]).

Let us remark that on the set {t ≤ τ }, Vt has the form v(St ,mt ,Mt ), while Ht

has the form h(mt ,Mt), where

h(m,M)= ∂v(S,m,M)

∂S
,

1All the results remain the same if the word “martingale” is replaced by “local martingale”.
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i.e. H is the delta-hedge. The function v is linear in S, so that h does not depend
on S, which means that the hedge remains constant until the price St reaches its
running maximum or running minimum. This implies that the gamma of the option
is zero. However, each time when S breaks through its running maximum or mini-
mum, the hedge is updated (as Mt or mt changes). Loosely speaking, one can say
that the option has a non-zero “right-hand gamma”

∂2v(M + ε,m,M + ε)

∂ε2+
= L−2f (M)−L−2f (M −L)−L−1f ′(M −L)

at the time when the price breaks through its running maximum and a non-zero
“left-hand gamma”

∂2v(m+ ε,m+ ε,M)

∂ε2−
=−L−2f (m+L)+L−2f (m)+L−1f ′(m+L)

at the time when the price breaks through its running minimum. Here by ∂2/∂ε2+
(resp., ∂2/∂ε2−) we denote the right-hand (resp., left-hand) second derivative.

Thus, the hedge should be updated only at the times when the price breaks
through its running maximum or minimum. As time grows, these “break points”
appear more and more rarely (for example, in a random walk model, the number of
such points in the interval [0,N] is of order N1/2). This makes the product “quite
hedgeable”.

Let us finally remark that items (ii) and (iv) of Theorem 1 can also be given
a financial interpretation. Consider the same setting as before and imagine an option
that pays out the amount f (Mτ ). For these options, under the same assumptions as
in Theorem 3, the following result holds.

Theorem 3 (i) For any equivalent martingale measure Q, the price V0 = EQf (Mτ )

is given by

V0 = L−1
∫ S0+L

S0

f (x)dx.

(ii) For any equivalent martingale measure Q, the corresponding price process
Vt = EQ[f (Mτ ) |Ft ] is given by

Vt = L−1(St −mt)f (mt +L)+L−1(Mt − St )f (Mt)

+L−1
∫ mt+L

Mt

f (x)dx on {t < τ }

and Vt = f (Mτ ) on {t ≥ τ }.
(iii) The hedge H is given by

Ht = I (t < τ)[L−1f (mt +L)−L−1f (Mt)], t ≥ 0.
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2 Proofs

We will prove Theorems 1 and 2. Theorem 3 is proved in the same way as The-
orem 2. We are starting with an auxiliary lemma, which is a generalization of the
“plate problem” mentioned at the beginning of the paper.

Lemma 1 Let (Xn)n=0,1,... be a standard symmetric random walk on Z. Denote

Rn =max
i≤n Xi −min

i≤n Xi, n= 0,1, . . .

and let τ = inf{n :Rn =N}, where N is a fixed natural number. Then

P(Xτ = k)= |k|
N(N + 1)

, k =−N, . . . ,N.

Proof Denote mn =mini≤n Xi . For k ∈ Z, denote Tk = inf{n :Xn = k}. Due to the
martingale property of X,

P(mTk ≤ l)= P(Tl < Tk)= k

k − l
, l ≤ 0 < k.

Consequently,

P(mTk = l)= P(mTk ≤ l)− P(mTk ≤ l − 1)= k

(k − l)(k − l + 1)
, l ≤ 0 < k.

As a result,

P(Xτ = k)= P(mTk = k−N)= k

N(N + 1)
, k = 1, . . . ,N.

By the symmetry, we get the desired statement for k =−N, . . . ,−1. �

Proof of Theorem 1 In view of Remark 1, we have to prove only (i) and (iii).
(i) Step 1. Let (Ω ′,F ′, (F ′

t )t≥0,P′) be another probability space with an (F ′
t )-

Brownian motion B . Consider the enlarged filtered probability space defined by

Ω̃ =Ω ×Ω ′, F̃ =F ×F ′, F̃t =Ft ×F ′
t , P̃= P× P′.

Then the process

S̃t = St∧τ +
∫ t

0
I (s ≥ τ)dBs, t ≥ 0

is an (F̃t ,P)-continuous local martingale that coincides with S up to time τ and
satisfies 〈S〉∞ =∞. It is sufficient to prove the desired statement for S̃ instead of S.
Hence, we can assume from the outset that 〈S〉∞ =∞.
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Step 2. For N ∈N, define the stopping times ηN0 = 0,

ηNn+1 = inf{t ≥ ηNn : |St − SηNn
| =N−1L}, n ∈N.

Due to the assumption 〈S〉∞ =∞, all the stopping times ηNn are finite a.s. It follows
from the optional stopping theorem that the sequence

YN
n = SηNn

, n= 0,1, . . .

is a symmetric random walk (multiplied by N−1L). Consider

RN
n =max

i≤n Y
N
i −min

i≤n Y
N
i , n= 0,1, . . . ,

σN = inf

{

n :RN
n = L

N − 1

N

}

, τN = ηN
σN

.

It is easy to see that

L
N − 1

N
≤RτN ≤ L.

This yields the convergence SτN → Sτ a.s. Hence, the convergence in law also
holds. Employing Lemma 1, we complete the proof.

(iii) Using the same argument as in (i), Step 1, we can assume that 〈S〉∞ =∞.
Fix t ≥ 0 and denote

R̃s = sup
t≤u≤s

Su − inf
t≤u≤s Su, s ≥ t,

τ̃ = inf{s ≥ t : R̃s = L}.
The assumption 〈S〉∞ =∞ ensures that τ̃ <∞ a.s. For a.e. ω ∈ {τ > t}, the con-
ditional distribution LawQ(Su;u ≥ t | Ft )(ω) is the distribution of a continuous
martingale. Applying now (i), we see that, for a.e. ω ∈ {τ > t}, the conditional dis-
tribution Qω = LawQ(Sτ̃ |Ft )(ω) has the form

Qω(dx)= L−2|x − St (ω)|I(St (ω)−L,St (ω)+L)(x)dx.
A direct analysis of the path behavior shows that

Sτ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mt +L if mt +L< Sτ̃ < St +L,

Sτ̃ if Mt < Sτ̃ < mt +L,

Mt −L if St < Sτ̃ <Mt,

mt +L if mt < Sτ̃ < St ,

Sτ̃ if Mt −L< Sτ̃ < mt ,

Mt −L if St −L< Sτ̃ <Mt −L.

This yields the result. �
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Proof of Theorem 2 Statements (i) and (ii) follow directly from Theorem 1, so we
only have to prove (iii).

Step 1. Suppose that S is a Brownian motion. The process V remains the same if
the filtration (Ft ) is replaced by the natural filtration of S, so we can assume from
the outset that (Ft ) is the natural filtration of S. According to the representation the-
orem for Brownian martingales (see [3, Chap. V, Th. 3.4]), there exists a predictable
process (Gt )t≥0 such that

Vt = V0 +
∫ t

0
GudSu, t ≥ 0.

Fix v ≥ 0 and define the stopping time

σv = inf{u≥ v : Su =mv or Su =Mv}.
Consider the processes

G̃t =GtI (t ≤ σv), t ≥ 0,

H̃t =HtI (t ≤ σv), t ≥ 0,

Ṽt = V0 +
∫ t

0
G̃udSu, t ≥ 0,

X̃t = V0 +
∫ t

0
H̃udSu, t ≥ 0.

On {v ≤ t ≤ τ ∧ σv}, the value Vt is an affine function of St , and the slope of this
function is exactly Hv . Therefore,

Ṽt − Ṽv =Hv(St − Sv), v ≤ t ≤ τ ∧ σv.

Obviously, Ht is constant on {v ≤ t ≤ τ ∧ σv}, so that

X̃t − X̃v =Hv(St − Sv), v ≤ t ≤ τ ∧ σv.

As both processes Ṽ and X̃ are stopped at time τ ∧ σv , we see that

Ṽt − Ṽv = X̃t − X̃v, t ≥ v.

From this we deduce that G̃= H̃ μ× P-a.e. on [v,∞)×Ω , where μ denotes the
Lebesgue measure.

Thus, we have proved that G=H μ× P-a.e. on every stochastic interval of the
form {(ω, t) : v ≤ t ≤ τ(ω)∧ σv(ω)}. By the definition of H , Ht = 0 on {t ≥ τ }. As
V is stopped at time τ , we can assume from the outset that Gt = 0 on {t ≥ τ }. Thus,
G=H μ× P-a.e. on every stochastic interval {(ω, t) : v ≤ t ≤ σv(ω)}. Obviously,

{(ω, t) :mt(ω) < St (ω) <Mt(ω)} ⊆
⋃

v∈Q+
{(ω, t) : v ≤ t ≤ σv(ω)}. (1)
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It is seen from the form of the joint law of (St ,Mt ) (see [3, Chap. III, Ex. 3.14]) that,
for any t ≥ 0, P(St =Mt)= 0; similarly, P(St =mt)= 0. By the Fubini theorem,

μ× P
(
(ω, t) : St (ω)=mt(ω) or St (ω)=Mt(ω)

)

=
∫ ∞

0
P(St =mt or St =Mt)dt = 0.

Thus, the set on the left-hand side of (1), and hence, the set on its right-hand side,
have a complete μ× P-measure. We conclude that G = H μ× P-a.e. This yields
the desired result.

Step 2. Let us now consider the general case. Without loss of generality, S0 = 0.
Define the functions

g(S,m,M) = L−1(S −m)f (m+L)−L−1(M − S)f (M −L)

+L−2
∫ m

M−L
(S − x)f (x)dx +L−2

∫ m+L

M

(x − S)f (x)dx,

h(m,M) = −L−1f (M −L)+L−1f (m+L)

+L−2
∫ m

M−L
f (x)dx −L−2

∫ m+L

M

f (x)dx.

We can assume from the outset that S is stopped at time τ .
Consider the time change

Tt = inf{u≥ 0 : 〈S〉u > t}, t ≥ 0,

where inf∅ = ∞, and define the process Xt = STt . It follows from [3, Chap. IV,
Prop. 1.13] and [3, Chap. V, Prop. 1.5] that the process X is a continuous (FTt )-
local martingale with

〈X〉t = 〈S〉Tt = t ∧ 〈S〉τ , t ≥ 0.

Let RX denote the range process of X. On {t < 〈S〉τ }, we have Tt < τ , and hence,
RX
t = RTt < L; on {t ≥ 〈S〉τ }, we have Tt =∞, and hence, RX

t = R∞ = L. This
shows that the stopping time τ̃ = inf{t ≥ 0 : RX

t ≥ L} coincides with 〈S〉τ . Thus,
〈X〉t = t ∧ τ̃ . In particular, we see that X is stopped at time τ̃ .

Using the same method as in the proof of Theorem 1(i), we construct (possibly,
on an enlarged probability space) a Brownian motion X̃ that coincides with X up to
time τ̃ . Then τ̃ = inf{t ≥ 0 : RX̃

t ≥ L}, where RX̃ is the range process of X̃. Thus,
X appears as the Brownian motion stopped at the first time its range exceeds L.

Now, it follows from the result of Step 1 that on the set {t ≤ τ̃ } we have

g(Xt ,m
X
t ,M

X
t )= g(0,0,0)+

∫ t

0
h(mX

u ,M
X
u )dXu,
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where mX and MX are the running minimum and maximum of X. As X is stopped
at time τ̃ , we conclude that the above equality is valid for all t ≥ 0. Thus,

g(STt ,mTt ,MTt )= g(Xt ,m
X
t ,M

X
t )

= g(0,0,0)+
∫ t

0
h(mX

u ,M
X
u )dXu

= g(0,0,0)+
∫ t

0
h(mTu,MTu)dSTu

= g(0,0,0)+
∫ Tt

0
h(mu,Mu)dSu, t ≥ 0. (2)

The last equality is the time change for stochastic integrals (the combination of
[3, Chap. V, Prop. 1.5] with [3, Chap. IV, Prop. 1.13]).

It follows from [3, Chap. IV, Prop. 1.13] that, for a.e. ω, the path S(ω) is constant
on all the intervals of constancy of 〈S〉(ω). Hence, the same is true for m and M .
Moreover,

〈∫ ·

0
h(mu,Mu)dSu

〉

t

=
∫ t

0
h2(mu,Mu)d〈S〉u, t ≥ 0.

Hence, for a.e. ω, the path of the process
∫ ·

0 h(mu,Mu)dSu is constant on all the
intervals of constancy of 〈S〉(ω). The set of points {Tt (ω); t ≥ 0} occupies the
whole R+ except for the intervals of constancy of 〈S〉(ω), but contains all the right
endpoints of those intervals. Now, we get from (2) the desired result. �

3 Conclusion

We have established the laws of a continuous local martingale and its maximum at
a stopping time which is the first time its range reaches a given level. We apply this
result to compute the price of options which mature at that stopping time, only under
the assumptions of no interest rate, frictionless market, no arbitrage, path continuity,
and finiteness of the stopping time. The price is model-free in the sense that it does
not depend on the price process. The option is perfectly hedgeable, the hedge is
model-free, and it needs rebalancing only when the current minimum or maximum
is changed.
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it to one of his neighbors with probability 1/2. The random walk stops at the first time everyone
has touched the plate. Consider the function

p(n)= P (the n-th person is the last to touch the plate), n= 2, . . . ,N.

The question is at which point/points p attains its maximum.
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Differentiability Properties of Utility Functions

Freddy Delbaen

Abstract We investigate differentiability properties of monetary utility functions.
At the same time we give a counter-example—important in finance—to automatic
continuity for concave functions.

Keywords Risk measures ·Monetary utility functions · Differentiability ·
Automatic continuity
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1 Notation and Preliminaries

We use standard notation. The triple (�,F ,P) denotes an atomless probability
space. In practice this is not a restriction since the property of being atomless is
equivalent to the fact that on (�,F ,P), we can define a random variable that has
a continuous distribution function. We use the usual—unacceptable—convention to
identify a random variable with its class (defined by a.s. equality). By Lp we de-
note the standard spaces, i.e. for 0 < p <∞, X ∈ Lp if and only if E[|X|p]<∞.
L0 stands for the space of all random variables and L∞ is the space of bounded ran-
dom variables. The topological dual of L∞ is denoted by ba, the space of bounded
finitely additive measures μ defined on F with the property that P[A] = 0 implies
μ(A) = 0. The subset of normalised non-negative finitely additive measures—the
so called finitely additive probability measures—is denoted by Pba. The subset of
countably additive elements of Pba (a subset of L1) is denoted by P .

Definition 1 A function u : L∞→R is called a monetary utility function if

(1) ξ ∈ L∞ and ξ ≥ 0 implies u(ξ)≥ 0,
(2) u is concave,
(3) for a ∈R and ξ ∈ L∞ we have u(ξ + a)= u(ξ)+ a.

If u moreover satisfies u(λξ)= λu(ξ) for λ≥ 0 (positive homogeneity), we say that
u is coherent.
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Remark 1 It is not difficult to prove that monetary concave utility functions sat-
isfy a monotonicity property: ξ ≤ η implies u(ξ)≤ u(η). Consequently we get that
|u(ξ) − u(η)| ≤ ‖ξ − η‖∞ and |u(ξ)| ≤ ‖ξ‖∞. With a concave monetary utility
function u we associate the convex set A = {ξ | u(ξ) ≥ 0}. This set is necessarily
closed for the norm topology of L∞.

Following Föllmer-Schied [8], we can characterise a concave monetary utility
function by its Fenchel-Legendre transform. This transform, denoted by c, is defined
on ba but outside Pba it takes the value+∞. The function c :Pba →R+ ∪{+∞}
is defined as c(μ)= sup{μ(−ξ) | ξ ∈ A} = sup{u(ξ)− μ(ξ) | ξ ∈ L∞}. The func-
tion c satisfies

(1) c is convex
(2) it is lower semi-continuous for the weak∗ topology on Pba

(3) infμ c(μ)=minμ c(μ)= 0.

In case u is coherent we have that c is the indicator of a weak∗-closed convex set
S ba ⊂Pba, this means c(μ)= 0 for μ ∈ S ba and is +∞ elsewhere. In most appli-
cations the utility function will satisfy the following continuity property:

Definition 2 The concave monetary utility function u satisfies the Fatou property if
for uniformly bounded sequences ξn of L∞ the convergence in probability of ξn to
ξ implies u(ξ)≥ lim supu(ξn).

Remark 2 Using the Krein-Smulian theorem one can see that the Fatou property is
equivalent to A being weak∗-closed. In this case we get that (see [2] and [4] and
see [11] for details on convex analysis):

(1) u(ξ)= inf{EQ[ξ ] + c(Q) |Q ∈P},
(2) the set {(μ, t) | t ≥ c(μ);μ ∈Pba}, t ∈ R is the weak∗ closure (in ba×R) of

the set {(Q, t) | t ≥ c(Q);Q ∈P, t ∈R},
(3) the previous property can be written as: for each μ ∈Pba there is a generalised

sequence or net (Qα)α in P so that Qα converges weak∗ to μ and c(μ) =
limα c(Qα). This property is even equivalent to the Fatou property.

(4) If u is coherent and satisfies the Fatou property, then the set S =S ba∩L1 sat-
isfies u(ξ)= inf{EQ[ξ ] |Q ∈S } and S is weak∗ dense in S ba. This property
is even equivalent to the Fatou property.

The aim of this paper is to clarify some issues on the differentiability of mone-
tary concave utility functions u. The differentiability of utility functions is related
to equilibrium prices and plays a big role in economic theory. The Gateaux differ-
entiability of utility functions was used in the paper of Gerber and Deprez [6]. They
pointed out—without referring to any topology on the underlying space—that pre-
mium calculation principles can be derived from such utility functions and they also
gave examples. This is in line with general micro-economic principles. Although
Gateaux differentiability can be defined without any reference to a topology, the
topological properties of the underlying space cannot be avoided. This will become
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clear when we give some examples. For the moment let us remark that the points
where a continuous concave function defined on a separable Banach space, is dif-
ferentiable, form a dense Gδ set. This famous theorem (due to Mazur [10]) does not
generalise to general spaces. Especially for L∞ we will give natural examples of
coherent utility functions (with the Fatou property) that are nowhere differentiable.

The study of the differentiability of a monetary utility function can be restricted
to the point 0. Indeed if g0 is another point, then the differentiability at g0 is the
same problem as for the point g0 − u(g0). This already means that we may sup-
pose that u(g0) = 0. So let us introduce the new monetary utility function de-
fined as u0(ξ) = u(ξ + g0), the corresponding penalty function is then given by
c0(μ) = c(μ) + μ(g0). From convex analysis, see [11] and [10], we learn that a
concave monetary utility function is Gateaux differentiable at ξ if and only if there
is exactly one element μ ∈Pba such that u(ξ)= μ(ξ)+ c(μ). This unique element
is then the Gateaux derivative. If u is supposed to be coherent, we must have that
μ is an extreme (even exposed) point in the set S ba. For ξ = 0 this means that
there is exactly one element μ such that c(μ)= 0. For coherent utility functions we
immediately get that u can only be Gateaux differentiable at 0 if S ba is reduced to
one point, i.e. u is linear.

Some of the proofs below use a trick, called homogenisation. This allows the
concave utility function to be replaced by a coherent one, on the cost of enlarging
the space �. We will sketch how this works, leaving most of the elementary details
to the reader. The trick is probably not new, it is certainly not very deep but it has
some “didactical” values.

We replace the set � by the set �1 =� ∪ {p} where p is an element not in �,
e.g. p = {�}. The sigma algebra, F1, on �1 is generated by the sets A ∈F and
the set � ⊂ �1. The probability P is replaced by the probability P1 defined as
P1[A1] = 1

2P[A1 ∩�] + 1
2 1A1(p). Probabilities on �1 are convex combinations of

probabilities of � and the Dirac measure �p concentrated in the extra point p. The
utility function defined on L∞(�1) = L∞(�) × R, is defined via the acceptance
cone A1. The latter is defined as the norm closed cone generated by the elements
of the form (f,1) where f ∈A . An element of the cone A1 is either of the form
(tf, t) with t > 0 and f ∈A or of the form (f,0) where f is in the recession cone
(asymptotic cone) of A . This cone is defined as

⋂
t>0 tA . The utility function u1

defined on L∞(�1) does not have an easy expression as a function of u. But we
have u(f )≥ 0 if and only if u1(f,1)≥ 0 and u(f )= 0 if and only if u1(f,1)= 0.
Important is to note that when A is weak∗ closed then also A1 is weak∗ closed. This
follows from the expression for the recession cone. So u1 is Fatou when u is. Since
we will only apply this trick for Fatou utility functions, we will suppose that u and
hence u1, has the Fatou property. The scenario set S1 for u1, a subset of L1(�1), is
represented as (αQ, (1− α)�p) where

(1) 0≤ α ≤ 1
(2) Q ∈P
(3) for all ξ ∈A and all t > 0, we have αEQ[ξ ]t + (1−α)t ≥ 0. This is equivalent

to α ≤ 1
1+c(Q)

. If c(Q)=∞ this means that the measure becomes �p .
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Another representation of the set S1 is through the Radon-Nikodym derivative with
respect to P1. We find that

S1 =
{

(f,β) | 0≤ f ∈ L1(�),
2c(Q)

c(Q)+ 1
≥ β ≥ 0, E[f ] + β = 2

}

,

where the measure Q is defined as dQ= f
E[f ]dP for E[f ]> 0. If f = 0 we simply

ask that β = 2 since in this case we get the Dirac measure �p .

2 The Jouini-Schachermayer-Touzi Theorem

This section is devoted to the characterisation of a weak compactness theorem. The
theorem is a generalisation of the beautiful result of James’ on weakly compact sets,
see [7]. The original proof of [9] followed the rather complicated proof of James.
The proof below uses the homogenisation trick and allows to apply the original
version of James’ theorem. Let us recall this theorem

Theorem 1 Let E be a Banach space and let C be a convex closed subset of E.
A necessary and sufficient condition for C to be weakly compact in E is that every
continuous linear function e∗ ∈E∗ attains its maximum on C.

In one direction the statement is trivial: if C is weakly compact then every contin-
uous linear functional attains its maximum on C. From a topological viewpoint the
converse is surprising. First a topological space for which every real-valued contin-
uous function attains its maximum need not be compact, second we only need linear
functions, a class that is not dense in the space of continuous functions defined on C.

In the following theorem we use the same notation as in the homogenisation.

Theorem 2 (Jouini-Schachermayer-Touzi [9]) If u is a concave monetary utility
function satisfying the Fatou property then are equivalent:

(1) For each ξ ∈ L∞ there is a Q ∈P such that u(ξ)= EQ[ξ ] + c(Q).
(2) If (ξ, t) ∈ L∞(�1) there is a Q1 ∈S1 such that u1(ξ, t)=

∫
�1
(ξ, t)dQ1.

(3) The set S1 is weakly compact in L1(�1).
(4) The homogenisation u1 satisfies the Lebesgue property. This means that for

uniformly bounded sequences (θn)n in L∞(�1), converging in probability to
say θ , we have u1(θn)→ u1(θ).

(5) If ξn is a uniformly bounded sequence in L∞ converging in probability to a func-
tion ξ , then u(ξn)→ u(ξ), i.e. u has the Lebesgue property.

(6) For each k ∈ R the set {Q | c(Q) ≤ k} is weakly compact (or uniformly inte-
grable and closed) in L1, in particular c(μ)=+∞ for non countably additive
elements of Pba.

In the sequel we will say that such utility functions satisfy the weak compactness
property. For coherent utility functions with the Fatou property, the property means
S ba =S is a weakly compact convex set in L1.
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Remark 3 A simple reasoning shows that item (6) is implied by: “There is k > 0
such that {Q | c(Q)≤ k} is weakly compact”.

Proof The proof is divided into different steps (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒
(6)⇒ (1). We start with (1)⇒ (2). Let us consider an element (ξ, t) in L∞(�1).
We have to find an element of S1 so that the minimum is attained. It does not matter
if we replace (ξ, t) by an element of the form (ξ+η, t+η) where η ∈R. So we may
suppose that u1(ξ, t)= 0. There are two possibilities. If t = 0 this means that ξ is in
the recession cone and hence EQ[ξ ] ≥ 0 whenever c(Q) <∞. In this case we may
take the measure �p to realise the minimum. The other case is when t > 0. In this
case we may multiply by 1/t to get an element (ξ,1) with u1(ξ,1)= 0. This implies
u(ξ) = 0. By hypothesis there is an element Q such that EQ[ξ ] + c(Q) = 0. The
element Q1 = 1

1+c(Q)
Q+ c(Q)

1+c(Q)
�p then gives EQ1 [(ξ,1)] = 0. This is then a min-

imum since all other elements of S1 will give a larger expected value. The implica-
tion (2)⇒ (3) is the famous James’ theorem. The implication (3)⇒ (4) is standard
since weakly compact sets are uniformly integrable. The implication (4)⇒ (5) is
easy. Indeed, we can take a bounded sequence ξn converging in probability to ξ . We
may suppose (substract u(ξ) if necessary), that u(ξ)= 0. Then we use that (ξn,1)
converges in probability (P1) to (ξ,1). This gives u1(ξn,1) will tend to zero. But as
seen above this means that u(ξn) tends to zero as well. For the implication (5)⇒ (6)
we only need to show that if An is a decreasing sequence of sets with P[An] → 0,
then sup{Q[An] | c(Q)≤ k} tends to zero. Let us put ξn =−α1An where α > 0. Let
us apply item (5). We get that u(ξn) tends to zero, or infQ(EQ[−α1An ] + c(Q))

tends to zero. This implies that lim infn→∞ infc(Q)≤k(EQ[−α1An ] + c(Q)) ≥ 0.
Hence we have lim infn→∞ infc(Q)≤k(EQ[−α1An ] + k) ≥ 0. This is the same as
lim supn supc(Q)≤k Q[An] ≤ k/α. Since α can be taken arbitrary large, we get that
limn supc(Q)≤k Q[An] = 0. The implication (6) ⇒ (1) is standard. Let us take
ξ ∈ L∞. In the calculation of u(ξ) we only need to take Q with c(Q) ≤ 2‖ξ‖∞.
Since this set is weakly compact and since c is lower semi-continuous, we will find
an element realising the infimum. �

3 A Consequence of Ekeland’s Variational Principle and Other
Family Members of Bishop-Phelps

Differentiability properties of convex functions are well studied. We will use [10] as
a basic reference. In our context there are two functions that are important: the utility
function u and the penalty function c. The function u is defined on the whole space
whereas the function c is only defined on a (subset of) P or Pba. The subgradient
of u at a point ξ is defined as the set of elements ν ∈ ba such that u(η) ≤ u(ξ)+
ν(η− ξ). It is also equal to the set

∂u(ξ)= {μ ∈Pba | u(ξ)= μ(ξ)+ c(μ)}.
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At the same time we find that the subgradient of c at a point Q ∈P is the set

{ξ ∈ L∞ | u(ξ)= EQ[ξ ] + c(Q)}.
The Borwein-Rockafellar theorem (see [10]) now shows that the set

{ξ | there is Q ∈P with u(ξ)= EQ[ξ ] + c(Q)}
is norm dense in L∞. The function u is Gateaux differentiable at ξ if the set ∂u(ξ)
is a singleton.

4 A Consequence of Automatic Continuity

Theorem 3 Suppose that u is a monetary concave utility function satisfying the
Fatou property. If u is Gateaux differentiable at g, then its derivative is an element
of P , i.e. it is countably additive.

Proof Since u is Fatou, it is a Borel function for the weak∗ topology on L∞. Sup-
pose that μ ∈Pba is the derivative of u at the point g, then we have that μ is the
pointwise limit of the sequence

μ(f )= lim
n
n

(

u

(

g+ 1

n
f

)

− u(g)

)

.

The linear function μ is then a Borel measurable function for the weak∗ topology
and hence, by the automatic continuity theorem [1], it must be weak∗ continuous,
i.e. induced by an element of L1. �

Corollary 1 Under the extra hypothesis that u is also coherent, we have that the
derivative Q is an extreme (even exposed) point of S ba, but already lying in S .

5 The One-Sided Derivative

Because of concavity, monetary concave utility functions have a one-sided deriva-
tive at a point g ∈ L∞, defined as

ϕg(f )= lim
ε↓0

u(g + εf )− u(g)

ε
.

If g = 0 we get

ϕ(f )= lim
ε↓0

u(εf )

ε
.
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Proposition 1 The function ϕ is the smallest coherent utility function ψ such that
ψ ≥ u.

Proof This is easy since for each ε > 0 we have ψ(f )=ψ(εf )/ε ≥ u(εf )/ε. Tak-
ing limits gives ψ(f )≥ ϕ(f ). �

The acceptance cone for ϕ is easily obtained.

Proposition 2 The acceptance cone of ϕ, Aϕ , is given by the ‖ · ‖∞ closure of the
union

⋃
n nA (where as before A = {f | u(f )≥ 0}).

Proof Suppose first that f ∈ nA , then for ε ≤ 1/n we have by convexity of A that
u(εf )≥ 0. This shows that ϕ(f )≥ 0. It follows that

⋃
n nA ⊂Aϕ . Since the latter

set is norm closed we have that it also must contain the norm-closure of this union.
If ϕ(f ) > 0, we have that for ε small enough u(εf ) > 0 and hence for n big enough
we have f ∈ nA . This shows the opposite inclusion. �

The scenario set that defines the coherent utility function ϕ is given by the fol-
lowing theorem

Theorem 4 With the notation introduced above we have

ϕ(f )= inf
μ∈S ba

μ(f ),

where the set S ba is defined as S ba = {μ ∈Pba | c(μ)= 0}.

Proof Because of the previous proposition we have that μ ∈ S ba if and only if
μ(f )≥ 0 for all f ∈A . This is equivalent to saying that c(μ)= 0. �

Corollary 2 The one-sided derivative ϕ of u at 0 is Fatou if and only if {Q ∈P |
c(Q)= 0} is weak∗ dense in {μ | c(μ)= 0}.

The previous corollary allows for easy constructions of non-Fatou coherent util-
ity functions. For the derivative at a point g we use the transformation ug(f ) =
u(g + f )− u(g). It follows that the derivative at a point g is given by

ϕg(f )= inf{μ(f ) | c(μ)+μ(g)= u(g)}.

6 An Example

Let us fix a countable partition of � into a sequence of measurable sets An with
P[An]> 0. For μ ∈Pba we define

c(μ)=
∑

n

μ[An]2.
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Proposition 3 The function c is convex, takes values in [0,1], minμ∈Pba c(μ)= 0

and is lower semi-continuous for the weak∗ topology on Pba. The utility function u
defined by c is Fatou.

Proof The first four statements are obvious since the mapping μ→ μ[An]2 is
convex and weak∗ continuous. c is therefore the increasing limit of a sequence
of continuous convex functions and hence is lower semi-continuous and convex.
The existence of elements in Pba so that for all n, μ(An) = 0 is well known and
can be proved using the Hahn-Banach theorem. Of course we have for μ ∈Pba:∑

n μ(An)
2 ≤∑

n μ(An)≤ 1. The Fatou property is less trivial. As seen before we
must show that for μ ∈Pba we can find a generalised sequence or net Qα in P
so that c(Qα) tends to c(μ). For this it is sufficient to show the following. Given μ,
given ε > 0 and given a finite partition of � in non-zero sets B1, . . . ,BN we must
find Q ∈P so that c(Q) ≤ c(μ)+ ε and Q(Bj ) = μ(Bj ) for j = 1, . . . ,N . For a
set Bj there are two possibilities: either there is s with Bj ⊂⋃s

n=1 An or there are
infinitely many indices n with P[Bj ∩An]> 0. Since all the sets An have a non-zero
measure and since the family (Bj )j forms a partition of � the last alternative must
occur for at least one index j . So let us renumber the sets Bj and let us select s so
that

(1) for j ≤N ′ ≤N there are infinitely many indices with P[An ∩Bj ]> 0,
(2) for N ′ < j ≤N (if any) we have that Bj ⊂⋃s

n=1 An.

Fix now an integer L ≥ 1 so that 1/L ≤ ε. We will define the measure Q by its
Radon-Nikodym density. For j ≤N ′ we find indices as follows, we take L indices
s < n1

1 < n1
2 < · · ·< n1

L so that P[An1
k
∩ B1]> 0. We then take indices n1

L < n2
1 <

n2
2 < · · ·< n2

L with P[An2
k
∩B2]> 0 and so on. We can now define the density of Q

as

dQ

dP
=

N∑

j=1

s∑

k=1

μ(Bj ∩Ak)

P[Bj ∩Ak] 1Bj∩Ak
+

N∑

j=1

L∑

p=1

μ(Bj ∩ (⋃n>s An))

LP[Bj ∩An
j
p
] 1Bj∩A

n
j
p

.

The reader can convince himself that there is no reason to drop the terms with de-
nominator zero. For all j ≤N we have that Q[Bj ] = μ(Bj ). Furthermore we have
that for n≤ s :Q[An] = μ(An). For indices n > s there is at most one of the N sets
Bj ∩An that is chosen. So we get for n > s:

Q[A
n
j
p
] = 1

L
μ

(

Bi ∩
(⋃

n>s

An

))

and for other indices n we get = 0.

Finally we find

c(Q) =
∑

n

Q[An]2 =
∑

n≤s
Q[An]2 +

∑

n>s

Q[An]2

=
∑

n≤s
μ(An)

2 +
∑

n>s

Q[An]2
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≤ c(μ)+
N∑

j=1

L∑

p=1

1

L2
μ

(

Bj ∩
(⋃

n>s

An

))2

≤ c(μ)+ 1

L

N∑

j=1

μ(Bj )
2

≤ c(μ)+ ε. �

Corollary 3 The scenario set S ba for ϕ consists of purely finitely additive mea-
sures S ba = {μ ∈Pba | for all n : μ(An)= 0}. Consequently the coherent utility
function ϕ is not Fatou.

Remark 4 The coherent utility function ϕ is weak∗ Borel measurable since it is
the limit of a sequence of Borel measurable functions. The acceptance cone Aϕ is
norm closed, is Borel measurable but is not weak∗ closed. With some little effort
one can show that Aϕ is a weak∗ Fσδ . This shows—the already known fact—that
the automatic continuity theorems do not apply to concave or convex functions.

Proposition 4 For all s we have u(1⋃s
n=1 An

)= 0 also for each 2 ≥ ε ≥ 0 we have

u(−1An)=− ε2

4 . For ε ≥ 2 we have u(−ε1An)=−ε+ 1.

Proof The first statement is easy since it is sufficient to take an element μ ∈Pba

with μ(An)= 0 for all n. For the other equality, we may without loss of generality
suppose that n= 1. Let us write

u(−ε1A1)≤ μ(−ε1A1)+
∑

n

μ(An)
2 = μ(−ε1A1)+μ(A1)

2 +
∑

n≥2

μ(An)
2,

and observe that the minimum is taken for elements μ satisfying μ(A1)= ε/2 and
μ(Ak)= 0 for k ≥ 2. For ε ≥ 2 we find that u(−ε1A1)=−ε+ 1 and the minimum
is taken for elements μ with μ(A1)= 1. �

Remark 5 The last line of the proof shows that for some points g, the set {Q |
Q ∈P,EQ[g] + c(Q) = u(g)} is weak∗ dense in {μ | μ ∈Pba,μ(g) + c(μ) =
u(g)}. Indeed this is the case for α1An with α ≤−2. This means that the one-sided
derivative at these points g is Fatou.

Proposition 5 For f ∈ L∞ we have

ϕ(f )= lim inf
n

ess inf(1Anf )= lim inf
n

ess inf(1⋃
m≥n Am

f ).

Proof The proof follows from the description of S ba. We leave the details to the
reader. �
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Remark 6 The previous corollary shows that the function ϕ is related to the func-
tion lim inf on the space l∞. This function is also Borel measurable for the weak∗
topology. Its set of representing measures is the convex weak∗ closed hull of the
Banach limits. None of these representing measures is Borel measurable.

7 The Example of an Incomplete Financial Market

In this section we take a filtered probability space (�, (Ft )t∈[0,1],P). We sup-
pose that the filtration is continuous meaning that all martingales are continuous,
equivalently that all stopping times are predictable. On this space we consider a
d-dimensional continuous price process S : [0,1] ×�→ R

d . We assume that the
price process S satisfies the NFLVR property (see [5]). More precisely and to make
the notation easier we will suppose that the process S is a bounded martingale for P.
The market generated by S is supposed to be incomplete which in this case means
that the set M

a = {Q� P | S ia a Q-martingale} is strictly bigger than {P}. From [3]
we know that the set M

a is then a set without extreme points. The utility function u

is defined as the bid price

u(ξ)= inf{EQ[ξ ] |Q ∈M
a}.

This is a Fatou coherent utility function. If u were Gateaux differentiable at a point
ξ , then by the automatic continuity theorem we have that its derivative would be an
extreme point of M

a . Since this set has no extreme points we get

Theorem 5 The function u is nowhere Gateaux differentiable.
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Exponential Utility Indifference Valuation
in a General Semimartingale Model

Christoph Frei and Martin Schweizer

Abstract We study the exponential utility indifference valuation of a contingent
claim H when asset prices are given by a general semimartingale S. Under mild
assumptions on H and S, we prove that a no-arbitrage type condition is fulfilled
if and only if H has a certain representation. In this case, the indifference value
can be written in terms of processes from that representation, which is useful in
two ways. Firstly, it yields an interpolation expression for the indifference value
which generalizes the explicit formulas known for Brownian models. Secondly,
we show that the indifference value process is the first component of the unique
solution (in a suitable class of processes) of a backward stochastic differential
equation. Under additional assumptions, the other components of this solution are
BMO-martingales for the minimal entropy martingale measure. This generalizes re-
cent results by Becherer (Ann. Appl. Probab. 16:2027–2054, 2006) and Mania and
Schweizer (Ann. Appl. Probab. 15:2113–2143, 2005).

Keywords Exponential utility · Indifference valuation ·Minimal entropy
martingale measure · BSDE · BMO-martingales · Fundamental entropy
representation (FER)
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1 Introduction

One general approach to the problem of valuing contingent claims in incomplete
markets is utility indifference valuation. Its basic idea is that the investor valuing a
contingent claim H should achieve the same expected utility in the two cases where
(1) he does not have H , or (2) he owns H but has his initial capital reduced by the
amount of the indifference value of H . Exponential utility indifference valuation
means that the utility function one uses is exponential.
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Even in a concrete model, it is difficult to obtain a closed-form formula for the in-
difference value. The majority of existing explicit results are for Brownian settings;
see for instance Frei and Schweizer [10] and the references therein. In more general
situations, Becherer [2] and Mania and Schweizer [19] derive a backward stochastic
differential equation (BSDE) for the indifference value process. While [19] assumes
a continuous filtration, the framework in [2] has a continuous price process driven
by Brownian motions and a filtration generated by these and a random measure
allowing the modeling of non-predictable events.

The main contribution of this paper is to extend the above results to a setting
where asset prices are given by a general semimartingale. We show that the ex-
ponential utility indifference value can still be written in a closed-form expression
similar to that known for Brownian models, although the structure of this formula is
here much less explicit. Independently from that, we establish a BSDE formulation
for the dynamic indifference value process. Both of these results are based on a rep-
resentation of the claim H and on the relationship between a notion of no-arbitrage,
the form of the so-called minimal entropy martingale measure, and the indifference
value.

As our starting point, we take the work of Biagini and Frittelli [3, 4]. Their results
yield a representation of the minimal entropy martingale measure which we can use
to derive a decomposition of a fixed payoff H in a similar way as in Becherer [1]. We
call this decomposition, which is closely related to the minimal entropy martingale
measure, the fundamental entropy representation of H (FER(H)). It is central to all
our results here, because we can express the indifference value for H as a difference
of terms from FER(H) and FER(0). We derive from this a fairly explicit formula for
the indifference value by an interpolation argument, and we also establish a BSDE
representation for the indifference value process. Its proof is based on the idea that
the two representations FER(H) and FER(0) can be merged to yield a single BSDE.
This direct procedure allows us to work with a general semimartingale, whereas
Becherer [2] as well as Mania and Schweizer [19] use more specific models because
they first prove some results for more general classes of BSDEs and then apply
these to derive the particular BSDE for the indifference value. The price to pay
for working in our general setting is that we must restrict the class of solutions of
the BSDE to get uniqueness. Under additional assumptions, the components of the
solution to the BSDE for the indifference value are again BMO-martingales for the
minimal entropy martingale measure; this applies in particular to the value process
of the indifference hedging strategy.

The paper is organized as follows. Section 2 lays out the model, motivates, and
introduces the important notion of FER(H). In Sect. 3, we prove that the existence
of FER(H) is essentially equivalent to an absence-of-arbitrage condition. Moreover,
we develop a uniqueness result for FER(H) and its relationship to the minimal en-
tropy martingale measure. Section 4 establishes the link between the exponential
indifference value of H and the two decompositions FER(H) and FER(0). By an
interpolation argument, we derive a fairly explicit formula for the indifference value.
In Sect. 5, we extend to a general filtration the BSDE representation of the indif-
ference value by Becherer [2] and Mania and Schweizer [19]. We further provide
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conditions under which the components of the solution to the BSDE are BMO-
martingales for the minimal entropy martingale measure. Section 6 rounds off with
an application to a Brownian setting.

2 Motivation and Definition of FER(H)

We start with a probability space (�,F ,P ), a finite time interval [0, T ] for a fixed
T > 0 and a filtration F= (Ft )0≤t≤T satisfying the usual conditions of right-conti-
nuity and completeness. For simplicity, we assume that F0 is trivial and FT =F .
For a positive process Z, we use the abbreviation Zt,s := Zs/Zt , 0≤ t ≤ s ≤ T .

In our financial market, there are d risky assets whose price process S =
(St )0≤t≤T is an R

d -valued semimartingale. In addition, there is a riskless asset,
chosen as numeraire, whose price is constant at 1. Our investor’s risk preferences
are given by an exponential utility function U(x)=− exp(−γ x), x ∈R, for a fixed
γ > 0. We always consider a fixed contingent claim H which is a real-valued F -
measurable random variable satisfying EP [exp(γH)]<∞. Expressions depending
on H are introduced with an index H so we can later use them also in the absence
of the claim by setting H = 0. However, the dependence on γ is not explicitly men-
tioned. We define by dPH

dP := exp(γH)/EP [exp(γH)] a probability measure PH
on (�,F ) equivalent to P . Note that P0 = P . We denote by L(S) the set of all
R
d -valued predictable S-integrable processes, so that

∫
ϑdS is a well-defined semi-

martingale for each ϑ in L(S).
We always impose without further mention the following standing assumption,

introduced by Biagini and Frittelli [3, 4] for H = 0. We assume that

WH �= ∅ and W0 �= ∅, (1)

where WH is the set of loss variables W which satisfy the following two conditions:

(1) W ≥ 1 P -a.s., and for every i = 1, . . . , d , there exists some βi ∈ L(Si) such
that P [∃t ∈ [0, T ] s.t. βit = 0] = 0 and |∫ t

0 β
i
sdS

i
s | ≤W for all t ∈ [0, T ];

(2) EPH [exp(cW)]<∞ for all c > 0.

Clearly, WH =W0 if H is bounded. Lemma 1 at the beginning of Sect. 3 gives a less
restrictive condition on H for WH =W0. The standing assumption (1) is automati-
cally fulfilled if S is locally bounded since then 1 ∈WH ∩W0 by Proposition 1 of
Biagini and Frittelli [3], using PH ≈ P . But (1) is for example also satisfied if H
is bounded and S = S1 is a scalar compound Poisson process with Gaussian jumps.
This follows from Sect. 3.2 in Biagini and Frittelli [3]. So the model with condition
(1) is a genuine generalization of the case of a locally bounded S.

To assign to H at time t ∈ [0, T ] a value based on our exponential utility func-
tion, we first fix an Ft -measurable random variable xt , interpreted as the investor’s
starting capital at time t . Then we define

V H
t (xt ) := ess sup

ϑ∈A H
t

EP

[

− exp

(

−γ xt − γ

∫ T

t

ϑsdSs + γH

)∣
∣
∣
∣Ft

]

, (2)
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where the set A H
t of H -admissible strategies on (t, T ] consists of all processes

ϑI]]t,T ]] with ϑ ∈ L(S) and such that
∫
ϑdS is a Q-supermartingale for every

Q ∈ P
e,f
H ; the set P

e,f
H is defined in the paragraph after the next. We recall that

xt +
∫ T

t
ϑsdSs is the investor’s final wealth when starting with xt and investing ac-

cording to the self-financing strategy ϑ over (t, T ]. Therefore, VH
t (xt ) is the max-

imal conditional expected utility the investor can achieve from the time-t initial
capital xt by trading during (t, T ] and paying out H (or receiving −H ) at the ma-
turity T .

The indifference (seller) value ht (xt ) at time t for H is implicitly defined by

V 0
t (xt )= V H

t (xt + ht (xt )). (3)

This says that the investor is indifferent between solely trading with initial capital xt ,
versus trading with initial capital xt + ht (xt ) but paying an additional cash-flow H

at maturity T .
To define our strategies, we need the sets

P
f
H :=

{
Q� PH |I (Q|PH ) <∞ and S is a Q-sigma-martingale

}
,

P
e,f
H := {

Q ≈ PH |I (Q|PH ) <∞ and S is a Q-sigma-martingale
}
,

where

I (Q|PH ) :=
{
EQ[log dQ

dPH
] if Q� PH

+∞ otherwise

denotes the relative entropy of Q with respect to PH . Since PH is equivalent to P ,
the sets P

f
H and P

e,f
H depend on H only through the condition I (Q|PH ) <∞.

By Proposition 3 and Remark 3 of Biagini and Frittelli [3], applied to PH instead
of P , there exists a unique QE

H ∈ P
f
H that minimizes I (Q|PH ) over all Q ∈ P

f
H ,

provided of course that P
f
H �= ∅. We call QE

H the minimal H -entropy measure, or

H -MEM for short. If P
e,f
H �= ∅, then QE

H is even equivalent to PH , i.e., QE
H ∈ P

e,f
H ;

see Remark 2 of Biagini and Frittelli [3]. Note that the proper terminology would
be “minimal H -entropy sigma-martingale measure” or H -MEσMM, but this is too
long.

We briefly recall the relation between QE
H , QE

0 and the indifference value h0(x0)

at time 0 to motivate the definition of FER(H), which we introduce later in this
section. Assume P

e,f
H �= ∅ and P

e,f

0 �= ∅. The PH -density of QE
H and the P -density

of QE
0 have the form

dQE
H

dPH
= cH exp

(∫ T

0
ζHs dSs

)

and
dQE

0

dP0
= c0 exp

(∫ T

0
ζ 0
s dSs

)

(4)

for some positive constants cH , c0 and processes ζH , ζ 0 in L(S) such that
∫
ζHdS is

a Q-martingale for every Q ∈ P
f
H and

∫
ζ 0dS is a Q-martingale for every Q ∈ P

f

0 ,
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whence ζH ∈A H
0 and ζ 0 ∈A 0

0 . This was first shown by Kabanov and Stricker [16]
in their Theorem 2.1 for a locally bounded S (and H = 0), and extended by Biagini
and Frittelli [4] in their Theorem 1.4 to a general S for H = 0 (under the assumption
W0 �= ∅). By using this result also under PH instead of P , we immediately obtain
(4). It is now straightforward to calculate (and also well known—at least for locally
bounded S) that for x0 ∈R, we can write

VH
0 (x0)= sup

ϑ∈A H
0

EP

[

− exp

(

−γ x0 − γ

∫ T

0
ϑsdSs + γH

)]

=− exp(−γ x0)EP [exp(γH)] inf
ϑ∈A H

0

EPH

[

exp

(

−γ
∫ T

0
ϑsdSs

)]

=− exp(−γ x0)EP [exp(γH)]

× inf
ϑ∈A H

0

EQE
H

[
1

cH
exp

(∫ T

0
(−γϑs − ζHs )dSs

)]

=−exp(−γ x0)EP [exp(γH)]
cH

(5)

and therefore

h0(x0)= h0 = 1

γ
log

c0EP [exp(γH)]
cH

. (6)

In Sect. 4, we study the relation between QE
H , QE

0 and VH
t (xt ), ht for arbitrary

t ∈ [0, T ]. From this we can derive, on the one hand, an interpolation formula for
each ht in Sect. 4 and, on the other hand, a BSDE characterization of the process h
in Sect. 5. To generalize the static relations (5), (6) to dynamic ones, we introduce
a certain representation of H that we call fundamental entropy representation of H
(FER(H)). Its link to the minimal H -entropy measure is elaborated in the next sec-
tion. We give two different versions of this representation. The idea is that the first
definition only requires some minimal conditions, whereas the second strengthens
the conditions to guarantee uniqueness of the representation and ensure the identifi-
cation of the H -MEM; see Proposition 2.

Definition 1 We say that FER(H) exists if there is a decomposition

H = 1

γ
logE (NH )T +

∫ T

0
ηHs dSs + kH0 , (7)

where

(i) NH is a local P -martingale null at 0 such that E (NH ) is a positive P -
martingale and S is a P(NH )-sigma-martingale, where P(NH ) is defined by
dP(NH )

dP := E (NH )T ;

(ii) ηH is in L(S) and such that
∫ T

0 ηHs dSs ∈ L1(P (NH ));
(iii) kH0 ∈R is constant.
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In this case, we say that (NH ,ηH , kH0 ) is an FER(H). If moreover

∫ T

0
ηHs dSs ∈ L1(Q) and EQ

[∫ T

0
ηHs dSs

]

≤ 0 for all Q ∈ P
f
H

(8)

and
∫

ηHdS is a P(NH )-martingale,

we say that (NH ,ηH , kH0 ) is an FER�(H). For any FER(H) (NH ,ηH , kH0 ), we set

kHt := kH0 +
1

γ
logE (NH )t +

∫ t

0
ηHs dSs for t ∈ [0, T ] (9)

and call P(NH ) the probability measure associated with (NH ,ηH , kH0 ).

Because E (NH ) is by (i) a positive P -martingale, the local P -martingale NH

has no negative jumps whose absolute value is 1 or more, and P(NH ) is a prob-
ability measure equivalent to P . We consider two FER(H) (NH ,ηH , kH0 ) and
(ÑH , η̃H , k̃H0 ) as equal if ÑH and NH are versions of each other (hence indis-
tinguishable, since both are RCLL),

∫
η̃HdS is a version of

∫
ηHdS, and k̃H0 = kH0 .

For future use, we note that (7) and (9) combine to give

H = kHt +
1

γ
logE (NH )t,T +

∫ T

t

ηHs dSs for t ∈ [0, T ]. (10)

The next result shows that for continuous asset prices, we can write FER(H)

in a different (and perhaps more familiar) form. For its formulation, we need the
following definition. We say that S satisfies the structure condition (SC) if

Si = Si0 +Mi +
d∑

j=1

∫

λjd〈Mi,Mj 〉, i = 1, . . . , d,

where M is a locally square-integrable local P -martingale null at 0 and λ is
a predictable process such that the (final value of the) mean-variance tradeoff,
KT =∑d

i,j=1

∫ T

0 λisλ
j
s d〈Mi,Mj 〉s = 〈

∫
λdM〉T , is almost surely finite.

Proposition 1 Assume that S is continuous. Then a triple (NH ,ηH , kH0 ) is an
FER(H) if and only if S satisfies (SC) and ÑH = NH + ∫

λdM , η̃H = ηH − 1
γ
λ,

k̃H0 = kH0 satisfy

H = 1

γ
logE (ÑH )T +

∫ T

0
η̃Hs dSs + 1

2γ

〈∫

λdM
〉

T
+ k̃H0 (11)

and

(i′) ÑH is a local P -martingale null at 0 and strongly P -orthogonal to each com-
ponent of M , and E (ÑH )E (− ∫

λdM) is a positive P -martingale;
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(ii′) η̃H is in L(S) and such that
∫ T

0 (̃ηHs + 1
γ
λs)dSs is P(NH )-integrable, where

dP(NH )
dP := E (ÑH )T E (− ∫

λdM)T ;
(iii′) k̃H0 ∈R is constant.

Proof Let first (NH ,ηH , kH0 ) be an FER(H). Its associated measure P(NH ) is
equivalent to P and S is a local P(NH )-martingale since S is continuous. By The-
orem 1 of Schweizer [23], S satisfies (SC) and we can write NH = ÑH − ∫

λdM ,
where ÑH is a local P -martingale null at 0 and strongly P -orthogonal to each
component of M , and E (NH )= E (ÑH )E (− ∫

λdM). The last equality uses that
[ÑH ,

∫
λdM] = 0 due to the continuity of M . Hence conditions (i)–(iii) of FER(H)

imply (i′)–(iii′), and (7) is equivalent to (11) by (SC) and the continuity of S.
Conversely, let (ÑH , η̃H , k̃H0 ) be as in the proposition. We claim that the triple

(ÑH − ∫
λdM, η̃H + 1

γ
λ, k̃H0 ) is an FER(H). Because M is a local P -martingale

and E (NH )= E (ÑH )E (− ∫
λdM) is the P -density process of P(NH ), the process

L defined by

Lt :=Mt − 〈NH,M〉t , t ∈ [0, T ]
is a local P(NH )-martingale by Girsanov’s theorem; see for instance Theo-
rem III.40 of Protter [21] and observe that 〈E (NH ),M〉 = ∫

E (NH )−d〈NH,M〉
exists since M is continuous like S. Because ÑH is strongly P -orthogonal to each
component of M and M is continuous, we have

〈NH,Mi〉 =
〈
ÑH −

∫

λdM,Mi
〉
=−

d∑

j=1

∫

λjd〈Mj,Mi〉, i = 1, . . . , d,

and so (SC) shows that S = L + S0 is also a local P(NH )-martingale. The other
conditions of FER(H) are easy to check. �

Remark 1 (1) Suppose that S is continuous and satisfies (SC). If the stochastic ex-
ponential E (− ∫

λdM) is a P -martingale, conditions (i′) and (ii′) in Proposition 1

can be written under the probability measure P̂ defined by dP̂
dP := E (− ∫

λdM)T ,
which is called the minimal local martingale measure in the terminology of Föllmer
and Schweizer [9]. This means that condition (i′) in Proposition 1 is equivalent to

(i′′) ÑH is a local P̂ -martingale null at 0 and strongly P̂ -orthogonal to each com-
ponent of S, and E (ÑH ) is a positive P̂ -martingale,

and P(NH ) can be defined by dP(NH )

dP̂
:= E (ÑH )T . To prove the equivalence of

(i′) and (i′′), first assume that ÑH is a local P -martingale null at 0 and strongly
P -orthogonal to each Mi . Then

[
ÑH ,

∫

λdM
]
=

〈
ÑH ,

∫

λdM
〉
= 0



56 C. Frei and M. Schweizer

by the continuity of M , and hence ÑH is also a local P̂ -martingale by Girsanov’s
theorem; see, for instance, Theorem III.40 of Protter [21]. The continuity of S, (SC)
and the strong P -orthogonality of ÑH to M entail

[ÑH ,Si] = 〈ÑH ,Mi〉 = 0, i = 1, . . . , d,

implying that ÑH is strongly P̂ -orthogonal to each component of S. The proof of
“(i′′) =⇒ (i′)” goes analogously.

(2) Assume that S is not necessarily continuous but locally bounded and satisfies
(SC) with λi ∈ L2

loc(M
i), i = 1, . . . , d, and let (NH ,ηH , kH0 ) be an FER(H). Then

we can still write NH = ÑH − ∫
λdM for a local P -martingale ÑH null at 0 and

strongly P -orthogonal to each component of M , by using Girsanov’s theorem, (SC)
and the fact that E (NH ) defines an equivalent local martingale measure. However,
we cannot separate E (ÑH − ∫

λdM) into two factors.

3 No-arbitrage and existence of FER(H)

Theorem 1 below says that a certain notion of no-arbitrage is equivalent to the exis-
tence of FER(H). It can be considered as an exponential analogue to the L2-result
of Theorem 3 in Bobrovnytska and Schweizer [5]. For a locally bounded S, the im-
plication “=⇒” roughly corresponds to Proposition 2.2 of Becherer [1], who makes
use of the idea to consider known results under PH instead of P . This technique,
which already appears in Delbaen et al. [6], will also be central for the proofs of our
Theorem 1 and Proposition 2.

We start with a result that gives sufficient conditions for WH ⊆ W0 and
P
e,f

0 ⊆ P
e,f
H as well as for W0 = WH and P

e,f

0 = P
e,f
H . The relation between P

e,f

0

and P
e,f
H will be used later, while W0 =WH is helpful in applications to verify the

condition (1).

Lemma 1 If H satisfies

EP [exp(−εH)]<∞ for some ε > 0, (12)

then WH ⊆W0, P
f

0 ⊆ P
f
H and P

e,f

0 ⊆ P
e,f
H . If H satisfies

EP [exp((γ + ε)H)]<∞ and EP [exp(−εH)]<∞
for some ε > 0, (13)

then W0 =WH , P
f

0 = P
f
H and P

e,f

0 = P
e,f
H .

Proof We first show WH ⊆W0 under (12). For c > 0, Hölder’s inequality yields

EP [exp(cW)] =EP

[

exp

(

cW + εγ

ε+ γ
H

)

exp

(

− εγ

ε+ γ
H

)]
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≤
(

EP

[

exp

(
ε+ γ

ε
cW + γH

)]) ε
ε+γ

(EP [exp(−εH)]) γ
ε+γ

=
(

EPH

[

exp

(
ε+ γ

ε
cW

)]

EP [exp(γH)]
) ε

ε+γ

× (EP [exp(−εH)]) γ
ε+γ . (14)

Because of EP [exp(γH)]<∞ and (12), this is finite if W ∈WH , and then W ∈W0.
To prove W0 =WH under (13), we only need to show W0 ⊆WH . For c > 0 and

W ∈W0, we obtain similarly to (14) that

EPH [exp(cW)] ≤ (EP [exp((ε+ γ )H)]) γ
ε+γ

EP [exp(γH)]
(

EP

[

exp

(
ε+ γ

ε
cW

)]) ε
ε+γ

<∞

by (13), and hence W ∈WH .
The remainder of the second part follows from Lemma A.1 in Becherer [1].

The proof of the rest of the first part is very similar. Indeed, (12) and the stand-
ing assumption that EP [exp(γH)]<∞ imply EP [exp( ε̃|H |)] <∞, where ε̃ :=
min(ε, γ ). Lemma 3.5 of Delbaen et al. [6] yields

EQ[ ε̃|H |] ≤ I (Q|P)+ 1

e
EP [exp( ε̃|H |)] for Q� P. (15)

If Q ∈ P
f

0 , the right-hand side is finite, thus EQ[|H |]<∞, and we have

I (Q|PH )=EQ

[

log
dQ

dP
− log

dPH
dP

]

= I (Q|P)+ logEP [exp(γH)] − γEQ[H ],

which is finite. This shows Q ∈ P
f
H , and P

e,f

0 ⊆ P
e,f
H follows analogously. �

Theorem 1 We have that

P
e,f
H �= ∅ ⇐⇒ FER�(H) exists ⇐⇒ FER(H) exists.

In particular, if P
e,f

0 �= ∅ and H satisfies (12), then FER�(H) exists.

Proof We first show that P
e,f
H �= ∅ yields the existence of FER�(H). As already

mentioned, P
e,f
H �= ∅ (and the standing assumption WH �= ∅) imply by Proposition 3

and Remarks 2, 3 of Biagini and Frittelli [3], applied to PH instead of P , existence
and uniqueness of the H -MEM QE

H ∈ P
e,f
H . Using QE

H ≈ PH ≈ P , we can write

dQE
H

dP
= E (NH )T (16)
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for some local P -martingale NH null at 0 such that E (NH ) is a positive P -
martingale and S is a QE

H -sigma-martingale. Moreover, by Theorem 1.4 of Biagini
and Frittelli [4], applied to PH instead of P , we have as in (4)

dQE
H

dPH
= cH exp

(∫ T

0
ζHs dSs

)

(17)

for a constant cH > 0 and some ζH in L(S) such that
∫
ζHdS is a Q-martingale

for every Q ∈ P
f
H . Since dPH

dP = exp(γH)/EP [exp(γH)], comparing (17) with (16)
gives

E (NH )T = cH1 exp

(∫ T

0
ζHs dSs + γH

)

,

where cH1 := cH /EP [exp(γH)] is a positive constant. We thus obtain

H = 1

γ
logE (NH )T − 1

γ

∫ T

0
ζHs dSs + cH2 with cH2 := −

1

γ
log cH1 ,

and hence (NH ,− 1
γ
ζH, cH2 ) is an FER�(H). Note that

∫
ζH dS is a P(NH )-martin-

gale because the H -MEM QE
H equals the probability measure P(NH ) associated

with (NH ,− 1
γ
ζH , cH2 ) by construction; compare (16).

To establish the equivalences of Theorem 1, it remains to show that the existence
of FER(H) implies P

e,f
H �= ∅, because every FER�(H) is obviously an FER(H). So

let (NH ,ηH , kH0 ) be an FER(H) and recall that its associated measure P(NH ) is

defined by dP(NH )
dP := E (NH )T . We prove that P(NH ) ∈ P

e,f
H . By condition (i) on

FER(H), P(NH ) is a probability measure equivalent to P and S is a P(NH )-sigma-
martingale. To show that P(NH ) has finite relative entropy with respect to PH , we
write

dP(NH )

dPH
= dP(NH )

dP

dP

dPH
= E (NH )T exp(−γH)EP [exp(γH)]

= exp(−γ kH0 )EP [exp(γH)] exp

(

−γ
∫ T

0
ηHs dSs

)

, (18)

where the last equality is due to the decomposition (7) in FER(H). This yields by
(ii) of FER(H) that

I (P (NH )|PH )=EP(NH )

[

log
dP(NH )

dPH

]

=−γ kH0 + logEP [exp(γH)] − γEP(NH )

[∫ T

0
ηHs dSs

]

<∞.

Finally, the last assertion follows directly from the first part of Lemma 1. �
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While the existence of FER(H) and of FER�(H) is equivalent by Theorem 1, the
two representations are obviously different since FER�(H) imposes more stringent
conditions. The next result serves to clarify this difference.

Proposition 2 Assume P
e,f
H �= ∅ and let (NH ,ηH , kH0 ) be an FER(H) with associ-

ated measure P(NH ). Then the following are equivalent:

(a) (NH ,ηH , kH0 ) is an FER�(H), i.e., (NH ,ηH , kH0 ) satisfies (8);
(b) P(NH ) equals the H -MEM QE

H , and
∫
ηHdS is a P(NH )-martingale;

(c)
∫
ηHdS is a QE

H -martingale and EP(NH )[
∫ T

0 ηHs dSs] = 0;

(d)
∫
ηHdS is a Q-martingale for every Q ∈ P

f
H .

Moreover, the class of FER�(H) consists of a singleton.

Proof Clearly, (d) implies (a), and also (c) since QE
H exists by Proposition 3 of

Biagini and Frittelli [3], using P
e,f
H �= ∅ and the standing assumption WH �= ∅. We

prove “(a) =⇒ (b)”, “(c) =⇒ (b)” and finally “(b) =⇒ (d)”. The first implication
goes as in the proof of Theorem 2.3 of Frittelli [11], because we have by (18) that

dP(NH )

dPH
= cH3 exp

(

−γ
∫ T

0
ηHs dSs

)

with cH3 := exp(−γ kH0 )EP [exp(γH)]. (19)

The implication “(c) =⇒ (b)” follows from the first part of the proof of Proposi-
tion 3.2 of Grandits and Rheinländer [12], which does not use the assumption that
S is locally bounded. To show “(b) =⇒ (d)”, note that (b), (17) and (19) yield

cH3 exp

(

−γ
∫ T

0
ηHs dSs

)

= cH exp

(∫ T

0
ζHs dSs

)

P -a.s., (20)

where ζH in L(S) is such that
∫
ζH dS is a Q-martingale for every Q ∈ P

f
H . Tak-

ing logarithms and P(NH )-expectations in (20), we obtain cH3 = cH by using

that P(NH ) ∈ P
e,f
H by the proof of Theorem 1. Thus

∫ T

0 ηHs dSs = − 1
γ

∫ T

0 ζHs dSs
P -a.s. and hence

∫
ηHdS = − 1

γ

∫
ζHdS since both

∫
ηHdS and

∫
ζHdS are

P(NH )-martingales. Therefore,
∫
ηHdS =− 1

γ

∫
ζHdS is a Q-martingale for every

Q ∈ P
f
H .

Theorem 1 implies the existence of FER�(H) because P
e,f
H �= ∅. To show unique-

ness, let (NH ,ηH , kH0 ) and (ÑH , η̃H , k̃H0 ) be two FER�(H). Since the minimal H -
entropy measure is unique by Proposition 3 of Biagini and Frittelli [3], we have
from “(a) =⇒ (b)” that

E (NH )T = dQE
H

dP
= E (ÑH )T .
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So E (ÑH ) is a version of E (NH ) since both are P -martingales, and taking stochas-
tic logarithms implies that ÑH is a version of NH . Similarly, (19) and (c) yield

−γ kH0 + log(EP [exp(γH)]) = EQE
H

[

log
dQE

H

dPH

]

= −γ k̃H0 + log(EP [exp(γH)]),

thus k̃H0 = kH0 , and therefore again from (19) that

∫ T

0
ηHs dSs =− 1

γ
log

(
1

cH3

dQE
H

dPH

)

=
∫ T

0
η̃Hs dSs.

But both
∫
ηHdS and

∫
η̃HdS are QE

H -martingales due to (d), and so
∫
η̃HdS is

a version of
∫
ηHdS. �

Remark 2 Exploiting Proposition 3.4 of Grandits and Rheinländer [12], applied to
PH instead of P , gives a sufficient condition for FER�(H) by using our Proposi-
tion 2. Indeed, assume that S is locally bounded and P

e,f
H �= ∅. If for an FER(H)

(NH ,ηH , kH0 ),
∫
ηH dS is a BMO(P (NH ))-martingale and EPH [| dP(N

H )
dPH

|−ε]<∞
for some ε > 0, then (NH ,ηH , kH0 ) is the FER�(H).

Another sufficient criterion is obtained from Proposition 3.2 of Rheinländer [22]
in view of our Proposition 2. Namely, if S is locally bounded and for an FER(H)

(NH ,ηH , kH0 ) there exists ε > 0 such that EPH [exp(ε[∫ ηH dS]T )] < ∞, then
(NH ,ηH , kH0 ) is the FER�(H).

While there is always at most one FER�(H) by Proposition 2, the next example
shows that there may be several FER(H). This also illustrates that the uniqueness
for FER�(H) is closely related to integrability properties.

Example 1 Take two independent P -Brownian motions W and W⊥, denote by F

their P -augmented filtration and choose d = 1, S =W and H ≡ 0. The MEM QE
0

then equals P since S is a P -martingale, and (0,0,0) is the unique FER�(0).
To construct another FER(0), choose N0 := W⊥. Then E (N0) = E (W⊥) is

clearly a positive P -martingale strongly P -orthogonal to S =W so that condition (i)

in FER(0) holds. Define P(N0) as usual by dP(N0)
dP := E (N0)T = E (W⊥)T . By

Girsanov’s theorem, W and W̃⊥
t :=W⊥

t − t , 0≤ t ≤ T , are then P(N0)-Brownian
motions and we can explicitly compute

EP [logE (N0)T ] =EP [W⊥
T − T/2] = −T/2,

(21)
I (P (N0)|P)=EP(N0)[logE (N0)T ] =EP(N0)[W̃⊥

T + T/2] = T/2.
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This shows that P(N0) ∈ P
e,f

0 . Since S =W is a P -Brownian motion, Proposition 1
of Emery et al. [8] now yields for every c ∈R a process η0(c) in L(S) such that

− 1

γ
logE

(
W⊥)

T
− c=

∫ T

0
η0
s (c)dSs P -a.s. (22)

Because I (P (N0)|P) <∞, using the inequality x|logx| ≤ x logx + 2e−1 shows
that

∫ T

0 η0
s (c)dSs is in L1(P (N0)) so that (ii) of FER(0) is also satisfied. Hence

(N0, η0(c), c) is an FER(0), but does not coincide with (0,0,0) which is the
FER�(0). To check that property (8) indeed fails, we can easily see from (21) and
(22) that

∫
η0(c)dS cannot be a P(N0)-martingale if c �= − 1

2γ T . If c =− 1
2γ T , we

can simply compute, for P ∈ P
f

0 , that

EP

[∫ T

0
η0
s (c)dSs

]

=− 1

γ
EP [logE (N0)T ] + 1

2γ
T = 1

γ
T > 0.

We have just constructed an FER(0) different from FER�(0). Yet another FER(0)
can be obtained by choosing for k ∈R\{0} a process β0(k) in L(S) such that

∫ T/2

0
β0
s (k)dSs = k and

∫ T

T/2
β0
s (k)dSs =−k P -a.s.,

which is possible by Proposition 1 of Emery et al. [8]. Clearly,
∫ T

0 β0
s (k)dSs = 0

P -a.s. and (0, β0(k),0) is an FER(0) (with associated measure P ), which even sat-
isfies EQ[

∫ T

0 β0
s (k)dSs] = 0 for all Q ∈ P

f

0 ; but
∫
β0(k)dS is not a P -martingale.

This ends the example.

Example 1 shows that we should focus on FER�(H) if we want to obtain good
results. If S is continuous and we impose additional assumptions, the next result
gives BMO-properties for the components of FER�(H). This will be used later when
we give a BSDE description for the exponential utility indifference value process.
We first recall some definitions.

Let Q be a probability measure on (�,F ) equivalent to P and p > 1. An
adapted positive RCLL stochastic process Z is said to satisfy the reverse Hölder
inequality Rp(Q) if there exists a positive constant C such that

ess sup
τ stopping

time

EQ

[(
ZT

Zτ

)p∣∣
∣
∣Fτ

]

= ess sup
τ stopping

time

EQ[(Zτ,T )
p|Fτ ] ≤ C.

Recall that Zτ,T = ZT /Zτ for a positive process Z. We say that Z satisfies the
reverse Hölder inequality RL logL(Q) if there exists a positive constant C such that

ess sup
τ stopping

time

EQ[Zτ,T log+Zτ,T |Fτ ] ≤ C.
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Z satisfies condition (J) if there exists a positive constant C such that

1

C
Z− ≤ Z ≤ CZ−.

Theorem 2 Assume that S is continuous, H is bounded and there exists Q ∈ P
e,f

0
whose P -density process satisfies RL logL(P ). Let (NH ,ηH , kH0 ) be an FER(H).
Then the following are equivalent:

(a) (NH ,ηH , kH0 ) is the FER�(H);
(b) NH is a BMO(P )-martingale, E (NH ) satisfies condition (J), and

∫
ηHdS is

a P(NH )-martingale;
(c) NH is a BMO(P )-martingale, E (NH ) satisfies condition (J), and

∫
ηHdS is

a BMO(P (NH ))-martingale;
(d)

∫
ηHdM is a BMO(P )-martingale, where M is the P -local martingale part

of S;
(e) there exists ε > 0 such that EP [exp(ε[∫ ηHdS]T )]<∞.

The hypotheses of Theorem 2 are for instance fulfilled if H is bounded, S
is continuous and satisfies (SC), and

∫
λdM is a BMO(P )-martingale. To see

this, note that E (− ∫
λdM) then satisfies the reverse Hölder inequality Rp(P )

for some p > 1 by Theorem 3.4 of Kazamaki [18]. The fact that there exists
k <∞ such that x logx ≤ k + xp for all x > 0 now implies that E (− ∫

λdM)

also satisfies RL logL(P ). Hence the minimal local martingale measure P̂ given by
dP̂
dP := E (− ∫

λdM)T is in P
e,f

0 and its P -density process satisfies RL logL(P ).

Proof of Theorem 2 By Lemma 1, P
e,f
H = P

e,f

0 �= ∅ so that there exists an FER(H)

(NH ,ηH , kH0 ) by Theorem 1. Before we show that (a)–(e) are equivalent, we need
some preparation. Let Q̃ be a probability measure equivalent to P . Denoting by Z

the P -density process of Q̃ and by Y the PH -density process of Q̃, we prove that

Z satisfies RL logL(P ) if and only if Y satisfies RL logL(PH ), (23)

Z satisfies condition (J) if and only if Y satisfies condition (J). (24)

To that end, observe first that because H is bounded, there exists a positive con-
stant k with 1

k
≤ dPH

dP ≤ k, which yields

1

k
Z ≤ Y ≤ kZ. (25)

For any stopping time τ , (25) implies

EPH [Yτ,T log+ Yτ,T |Fτ ] ≤EP [Zτ,T log+(Zτ,T k
2)|Fτ ],

and so the inequality log+(ab)≤ log+ a + logb for a > 0 and b ≥ 1 yields

EP [Zτ,T log+(Zτ,T k
2)|Fτ ] ≤EP [Zτ,T log+Zτ,T |Fτ ] + 2 logk,
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which is bounded independently of τ if Z satisfies RL logL(P ). If Z satisfies condi-
tion (J) with constant C, then (25) gives

Y ≤ kZ ≤ kCZ− ≤ k2CY− and Y ≥ 1

k
Z ≥ 1

kC
Z− ≥ 1

k2C
Y−.

So the “only if” part of both (23) and (24) is clear, and the “if” part is proved
symmetrically.

By assumption, there exists Q ∈ P
e,f

0 whose P -density process satisfies
RL logL(P ), and so the PH -density process of Q satisfies RL logL(PH ) by (23). Be-

cause P
e,f
H = P

e,f

0 is nonempty, the unique minimal H -entropy measure QE
H exists,

and its PH -density process also satisfies RL logL(PH ) by Lemma 3.1 of Delbaen et
al. [6], used for PH instead of P . Since S is continuous, the PH -density process
of QE

H also satisfies condition (J) by Lemma 4.6 of Grandits and Rheinländer [12].
It follows from (23), (24) and Lemma 2.2 of Grandits and Rheinländer [12] that

the P -density process ZQE
H ,P of QE

H satisfies RL logL(P ) and condition (J),

and the stochastic logarithm of ZQE
H ,P is a BMO(P )-martingale. (26)

“(a) =⇒ (b)”. Since (NH ,ηH , kH0 ) is the FER�(H), Proposition 2 implies that

the P -density process ZQE
H ,P of QE

H is given by E (NH ) and that
∫
ηHdS is a

P(NH )-martingale. We deduce (b) from (26).
“(b) =⇒ (c)”. We have to show that

∫
ηHdS is in BMO(P (NH )). By condition-

ing (7) under P(NH ) on Fτ for a stopping time τ , we obtain by (b)
∫ τ

0
ηHs dSs =− 1

γ
EP(NH )[logE (NH )T |Fτ ] +EP(NH )[H |Fτ ] − kH0 ,

and hence
∫ T

τ

ηHs dSs = − 1

γ
logE (NH )T + 1

γ
EP(NH )[logE (NH )T |Fτ ]

+H −EP(NH )[H |Fτ ].
By Proposition 6 of Doléans-Dade and Meyer [7], there is a BMO(P (NH ))-
martingale N̂H with E (NH )−1 = E (N̂H ). This uses that ZQE

H ,P = E (NH ) satisfies
condition (J) and NH is a BMO(P )-martingale by (26). Since H is bounded, we get

EP(NH )

[∣
∣
∣
∣

∫ T

τ

ηHs dSs

∣
∣
∣
∣

∣
∣
∣
∣Fτ

]

≤ 2‖H‖L∞(P ) + 1

γ
EP(NH )

[∣
∣ logE (NH )T −EP(NH )[logE (NH )T |Fτ ]

∣
∣
∣
∣Fτ

]

= 2‖H‖L∞(P ) + 1

γ
EP(NH )

[∣
∣ logE (N̂H )T −EP(NH )[logE (N̂H )T |Fτ ]

∣
∣
∣
∣Fτ

]
,

(27)
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and now we proceed like on page 1031 in Grandits and Rheinländer [12] to show
that (27) is bounded uniformly in τ . This proves the assertion since S is continuous.

“(c)=⇒ (d)”. Due to (26), Proposition 7 of Doléans-Dade and Meyer [7] implies
that

∫
ηHdS+[∫ ηHdS,NH ] is a BMO(P )-martingale. By Proposition 1, S satisfies

(SC) and NH = ÑH − ∫
λdM for a local P -martingale ÑH null at 0 and strongly

P -orthogonal to each component of M . Since S is continuous and satisfies (SC),

[∫

ηHdS,NH
]
=

[∫

ηHdM,NH
]
=−

[∫

ηHdM,

∫

λdM
]

=−
d∑

i,j=1

∫

(ηH )iλjd〈Mi,Mj 〉.

Hence
∫
ηHdS + [∫ ηHdS,NH ] = ∫

ηHdM is a BMO(P )-martingale.
“(d) =⇒ (e)”. We set

ε := 1

2‖ ∫ ηHdM‖2
BMO2(P )

and L := √ε
∫

ηHdM.

Clearly, L is like
∫
ηHdM a continuous BMO(P )-martingale and we have that

‖L‖BMO2(P ) = 1/
√

2 < 1. Since S is continuous, the John-Nirenberg inequality (see
Theorem 2.2 of Kazamaki [18]) yields

EP

[
exp

(
ε
[∫

ηHdS
]

T

)]
=EP [exp([L]T )] ≤ 1

1− ‖L‖2
BMO2(P )

<∞.

“(e) =⇒ (a)”. This is based on the same idea as the proof of Proposition 3.2 of
Rheinländer [22]. Lemma 3.5 of Delbaen et al. [6] yields

EQ

[
ε
[∫

ηHdS
]

T

]
≤ I (Q|PH )+ 1

e
EPH

[
exp

(
ε
[∫

ηHdS
]

T

)]
<∞

for any Q ∈ P
f
H because H is bounded and (e) holds. So [∫ ηHdS]T is Q-integrable

and thus the local Q-martingale
∫
ηHdS is a square-integrable Q-martingale for any

Q ∈ P
f
H . This concludes the proof in view of Proposition 2. �

4 Relating FER�(H) and FER�(0) to the Indifference Value

In this section, we establish the connection between FER�(H), FER�(0) and the
indifference value process h. We then derive and study an interpolation formula
for h. Throughout this section, we assume that

P
e,f
H �= ∅ and P

e,f

0 �= ∅,
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and we denote by (NH ,ηH , kH0 ) and (N0, η0, k0
0) the unique FER�(H) and

FER�(0) with associated measures P(NH )=QE
H and P(N0)=QE

0 , respectively.
Our first result expresses the maximal expected utility and the indifference value

in terms of the given FER�(H) and FER�(0). For a locally bounded S, this is very
similar to Becherer [1]; see in particular there Propositions 2.2 and 3.5 and the
discussion on page 12 at the end of Sect. 3. Indeed, the main differences are that the
representation in [1] is given in terms of certainty equivalents instead of maximal
conditional expected utilities and S is locally bounded; but the results are the same.

Theorem 3 VH , V 0 and h are well defined and, for any t ∈ [0, T ] and any Ft -
measurable random variable xt , we have

V H
t (xt )=− exp(−γ xt + γ kHt ) (28)

and

ht (xt )= ht = kHt − k0
t , (29)

where kHt (and k0
t , with the obvious adaptations) are defined in (9).

Proof Let us first write (2) as

V H
t (xt )=− exp(−γ xt )ess inf

ϑ∈A H
t

ϕHt (ϑ) (30)

with the abbreviation

ϕHt (ϑ) :=EP

[

exp

(

−γ
∫ T

t

ϑsdSs + γH

)∣
∣
∣
∣Ft

]

.

Because (NH ,ηH , kH0 ) is the FER�(H), ϕHt (ϑ) can be written by (10) as

ϕHt (ϑ) = exp(γ kHt )EP

[

E (NH )t,T exp

(

γ

∫ T

t

(ηHs − ϑs)dSs

)∣
∣
∣
∣Ft

]

= exp(γ kHt )EP(NH )

[

exp

(

γ

∫ T

t

(ηHs − ϑs)dSs

)∣
∣
∣
∣Ft

]

, (31)

using Bayes’ formula. Since P(NH )=QE
H ∈ P

e,f
H and

∫
ϑdS is a Q-supermartin-

gale and
∫
ηHdS is a Q-martingale for every Q ∈ P

e,f
H , we have

EP(NH )

[∫ T

t

(ηHs − ϑs)dSs
∣
∣
∣Ft

]

≥ 0

which implies ϕHt (ϑ) ≥ exp(γ kHt ) by Jensen’s inequality and (31). On the other
hand, the choice

ϑ�
s := ηHs , s ∈ (t, T ], (32)



66 C. Frei and M. Schweizer

gives ϕHt (ϑ�) = exp(γ kHt ) by (31). Because
∫
ϑ�dS = ∫

ηHdS is a Q-martingale

for every Q ∈ P
e,f
H , ϑ� is in A H

t , and (28) now follows from (30).
By the same reasoning as for (28), we obtain

V 0
t (xt )=− exp(−γ xt + γ k0

t ).

Solving the implicit equation (3) for ht (xt ) then immediately leads to (29). �

The proof of Theorem 3, especially (32), gives an interpretation for the FER�(H).
An investor who must pay out the claim H at time T uses, under exponential utility
preferences, the decomposition (7). The portion of H that he hedges by trading in
S is

∫ T

0 ηHs dSs , whereas 1
γ

logE (NH )T remains unhedged. Moreover, the proof of

Theorem 3 shows that for t ∈ [0, T ] and an Ft -measurable xt , the value of V H
t (xt )

is not affected if we restrict the set A H
t to those ϑ ∈ A H

t such that
∫
ϑdS is not

only a Q-supermartingale, but a Q-martingale for every Q ∈ P
e,f
H .

Proposition 3 Assume that H satisfies (12). Then for any Q ∈ P
f

0 and t ∈ [0, T ],

ht =EQ[H |Ft ] − 1

γ
EQ

[

log
E (NH )t,T

E (N0)t,T

∣
∣
∣
∣Ft

]

. (33)

In particular,

h0 =EQ[H ] + 1

γ

(
I (Q|QE

H)− I (Q|QE
0 )

)
. (34)

The decomposition (34) of the indifference value h0 can be described as follows.
The first term, EQ[H ], is the expected payoff under a measure Q ∈ P

f

0 . This is
linear in the number of claims. The second term is a nonlinear correction term or
safety loading. It can be interpreted as the difference of the distances from QE

H and
QE

0 to Q (although I (·|·) is not a metric). This correction term is not based on all of
H , but only on the processes NH and N0 from the FER�(H) and FER�(0), i.e., on
the unhedged parts of H and 0, respectively. A similar decomposition also appears
for indifference pricing under quadratic preferences; see Schweizer [24].

If H satisfies (12), then the indifference value process h is a QE
0 -supermartingale.

In fact, Jensen’s inequality and (33) with Q=QE
0 yield ht ≥EQE

0
[H |Ft ] P -a.s. for

t ∈ [0, T ] and so h−t ∈ L1(QE
0 ) since H is QE

0 -integrable due to (12); compare (15).
Moreover, Z := E (NH )/E (N0) is a QE

0 -martingale as it is the QE
0 -density process

of QE
H . Thus logZ has the QE

0 -supermartingale property by Jensen’s inequality, and
so has h since ht = EQE

0
[H |Ft ] − 1

γ
EQE

0
[logZT |Ft ] + 1

γ
logZt for t ∈ [0, T ] by

(33). Now EQE
0
[ht ] ≤ h0 <∞ shows that ht is QE

0 -integrable for every t ∈ [0, T ].

Proof of Proposition 3 Since Q ∈ P
f

0 ⊆ P
f
H by Lemma 1,

∫
ηHdS is a Q-martin-

gale by Proposition 2. Moreover, H is Q-integrable due to (12); compare (15). From
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(10), we thus obtain for t ∈ [0, T ] that

kHt =EQ

[

H − 1

γ
logE (NH )t,T

∣
∣
∣Ft

]

. (35)

Plugging (35) and the analogous expression for k0
t into (29) leads to (33).

To prove (34), we first show that I (Q|QE
0 ) is finite. We can write

I (Q|QE
0 ) = EQ

[

log
dQ

dP
+ log

dP

dQE
0

]

= I (Q|P)−EQ[logE (N0)T ]<∞ (36)

because Q ∈ P
f

0 and −EQ[logE (N0)T ] = γ k0
0 by (35) for H = 0 and t = 0. More-

over, Q� P ≈QE
H gives dQ

dP > 0 Q-a.s. and thus from

dQ

dQE
H

= dQ

dP

dP

dQE
H

= dQ

dP

1

E (NH )T
Q-a.s.

that

− logE (NH )T = log
dQ

dQE
H

− log
dQ

dP
Q-a.s.,

and analogously for 0 instead of H . Hence

EQ

[

− log
E (NH )T

E (N0)T

]

= EQ

[

log
dQ

dQE
H

− log
dQ

dQE
0

]

= I (Q|QE
H)− I (Q|QE

0 ),

where we have used (36) for the last equality. Now (34) follows from (33). �

We next come to the announced interpolation formula for the indifference value.

Theorem 4 Let Q ∈ P
e,f
H and ϕ in L(S) be such that

∫
ϕdS is a Q- and

QE
H -martingale. Fix t ∈ [0, T ], denote by Z the P -density process of Q, set

�H
t :=

exp(γH + ∫ T

t
ϕsdSs)

Zt,T

(37)

and assume that �H
t and log�H

t are Q-integrable. Then there exists an Ft -measur-
able random variable δHt :�→[1,∞] such that for almost all ω ∈�,

kHt (ω)=
1

γ
log(EQ[|�H

t |1/δ|Ft ](ω))δ|δ=δHt (ω), (38)
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where

log(EQ[|�H
t |1/δ|Ft ](ω))δ|δ=∞ := lim

δ→∞ log(EQ[|�H
t |1/δ|Ft ](ω))δ

= EQ[log�H
t |Ft ](ω) (39)

for almost all ω ∈�.

In view of ht = kHt − k0
t by Theorem 3, (38) gives us a quasi-explicit formula

for the exponential utility indifference value if H is bounded and if we can find a
measure Q ∈ P

e,f

0 such that the corresponding �0
t given in (37) and log�0

t are Q-
integrable for some predictable ϕ such that

∫
ϕdS is a Q-, QE

0 - and QE
H -martingale.

For t = 0, one possible choice is the minimal 0-entropy measure QE
0 which is by

(19) and Proposition 2 of the form
dQE

0
dP = c0

3 exp(
∫ T

0 ζ 0
s dSs) for a constant c0

3 and a

predictable process ζ 0 such that
∫
ζ 0dS is a Q-martingale for every Q ∈ P

f

0 . One
disadvantage of this choice is that QE

0 is in general unknown; a second is that we still
need to find some ϕ, and we know almost nothing about the potential candidate ζ 0.
In Corollary 1, we give conditions under which the explicitly known minimal local
martingale measure P̂ satisfies the assumptions of Theorem 4.

Proof of Theorem 4 From (10) and (37), we obtain via
dQE

H

dP = E (NH )T and Bayes’
formula that

exp(−γ kHt )EQ[�H
t |Ft ] =EQ

[
E (NH )t,T

Zt,T

exp

(∫ T

t

(ϕs + γ ηHs )dSs

)∣
∣
∣
∣Ft

]

=EQE
H

[

exp

(∫ T

t

(ϕs + γ ηHs )dSs

)∣
∣
∣
∣Ft

]

≥ exp

(

EQE
H

[∫ T

t

(ϕs + γ ηHs )dSs
∣
∣
∣Ft

])

= 1 (40)

by Jensen’s inequality and because
∫
ϕdS and

∫
ηHdS are QE

H -martingales. Hence

kHt ≤
1

γ
logEQ[�H

t |Ft ]. (41)

On the other hand, (35), (37) and Jensen’s inequality yield

γ kHt =EQ[γH − logE (NH )t,T |Ft ]

=EQ

[

log�H
t − log

E (NH )t,T

Zt,T

∣
∣
∣
∣Ft

]

≥EQ[log�H
t |Ft ]. (42)
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Consider the stochastic process f (·, ·) : [1,∞)×�→R defined by

f (δ,ω) := log(EQ[|�H
t |

1
δ |Ft ](ω))δ, (δ,ω) ∈ [1,∞)×�.

Because |�H
t |1/δ ≤ 1+�H

t ∈ L1(Q) for all δ ∈ [1,∞), Lebesgue’s dominated con-
vergence theorem and Jensen’s inequality for conditional expectations allow us to
choose a version of f which is continuous and nonincreasing in δ for all fixed
ω ∈ �, so that by monotonicity, the limit f (∞,ω) := limδ→∞ f (δ,ω) exists for
all ω ∈�. We next show that

f (∞,ω)=EQ[log�H
t |Ft ](ω) for almost all ω ∈�. (43)

To ease the notation, we define g(·, ·) : [1,∞)×�→R by

g(δ,ω) := (exp(f (δ,ω)))
1
δ =EQ[|�H

t |
1
δ |Ft ](ω), (δ,ω) ∈ [1,∞)×�

so that f (δ,ω) = δ logg(δ,ω). Again since |�H
t |1/δ ≤ 1 + �H

t ∈ L1(Q) for all
δ ∈ [1,∞), dominated convergence gives

lim
n→∞g(n,ω)= 1 for almost all ω ∈�. (44)

For x > 1/2 we have x − 1≥ logx ≥ x − 1− |x − 1|2, from which we obtain by
(44) that for almost all ω ∈�, there exists n0(ω) ∈N such that

n(g(n,ω)− 1)≥ f (n,ω)≥ n(g(n,ω)− 1)− n|g(n,ω)− 1|2, n≥ n0(ω). (45)

In view of (44) and (45), we get (43) if we show that

lim
n→∞n(g(n,ω)− 1)=EQ[log�H

t |Ft ](ω) for almost all ω ∈�. (46)

But (46) follows from Lebesgue’s convergence theorem and

lim
n→∞n(|�H

t |
1
n − 1)= lim

n→∞n

(

exp

(
1

n
log�H

t

)

− 1

)

= log�H
t P -a.s.

if we show that n||�H
t |1/n − 1|, n ∈ N, is dominated by a Q-integrable random

variable. Due to ex − 1≥ x for x ∈R and

d

dx
x(a

1
x − 1)= a

1
x

(

1− 1

x
loga

)

− 1≤ a
1
x exp

(

− 1

x
loga

)

− 1= 0

for a > 0 and x > 0, it follows for a =�H
t that

log�H
t ≤ n

(

exp

(
1

n
log�H

t

)

− 1

)

≤�H
t − 1, n ∈N.

This gives n||�H
t |1/n − 1| ≤ | log�H

t | +�H
t ∈ L1(Q), n ∈N, and proves (43).
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Combining (41), (42) and (43) yields f (∞,ω)≤ γ kHt (ω)≤ f (1,ω) for almost
all ω ∈�. By the intermediate value theorem, the set

�(ω) := {δ ∈ [1,∞] | f (δ,ω)= γ kHt (ω)}
is thus nonempty for almost all ω ∈�. Define δHt :�→[1,∞] by

δHt (ω) := sup�(ω), ω ∈�, (47)

setting δHt := 1 on the P -null set {ω ∈�|�(ω)= ∅}. By continuity of f in δ, �(ω)
is closed in R∪ {+∞} for all ω ∈�, and we get for almost all ω ∈� that

f (δHt (ω),ω)= γ kHt (ω). (48)

It remains to prove that the mapping ω $→ δHt (ω) is Ft -measurable. Because f is
nonincreasing and due to (47) and (48), we have for any a ∈ [1,∞] that

{ω ∈�|δHt (ω) < a} = {ω ∈�|f (δHt (ω),ω) > f (a,ω)}
= {ω ∈�|γ kHt (ω) > f (a,ω)}
=

⋃

q∈Q

({ω ∈�|γ kHt (ω) > q} ∩ {ω ∈�|q > f (a,ω)})

up to a P -null set. The last set is in Ft because kHt and f (a, ·) for fixed a ∈ [1,∞]
are Ft -measurable random variables. Since Ft is complete, {ω ∈�|δHt (ω) < a} is
in Ft for every a ∈R∪ {+∞}, and so δHt is Ft -measurable. �

The next result provides a simplified version of Theorem 4 based on the use of
the minimal local martingale measure P̂ .

Corollary 1 Fix t ∈ [0, T ] and assume that H is bounded and S satisfies (SC).
Suppose further that P̂ given by dP̂

dP := E (− ∫
λdM)T is in P

e,f

0 , that
∫
λdS is a P̂ -,

QE
0 - and QE

H -martingale, and that the random variable

exp
(
−
〈∫

λdM
〉
+ 1

2

[∫

λdM
]c)

t,T

∏

t<s≤T

e−λs ·�Ms

1− λs ·�Ms

and its logarithm are P̂ -integrable. Then there exist Ft -measurable random vari-
ables δ0

t , δHt :�→[1,∞] such that for almost all ω ∈�,

ht (ω) = 1

γ
log(EP̂ [|�H

t |1/δ|Ft ](ω))δ
∣
∣
δ=δHt (ω)

− 1

γ
log(EP̂ [|�0

t |1/δ
′ |Ft ](ω))δ′

∣
∣
δ′=δ0

t (ω)
,
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where we use the convention (39) and the definition

�H
t :=

exp(γH − ∫ T

t
λsdSs)

E (− ∫
λdM)t,T

= eγH exp(− ∫
λdS)t,T

E (− ∫
λdM)t,T

. (49)

Proof We only need to check that �0
t , �H

t given by (49) and log�0
t , log�H

t are P̂ -
integrable as the result then follows from Theorems 3 and 4 with the choice Q := P̂

and ϕ := −λ. Using the formula for the stochastic exponential and (SC), we get

�0
t = exp

(
−
〈∫

λdM
〉
+ 1

2

[∫

λdM
]c)

t,T

∏

t<s≤T

e−λs ·�Ms

1− λs ·�Ms

,

and thus �0
t , log�0

t ∈ L1(P̂ ) by assumption. The same is true for �H
t because H

is bounded by assumption. �

To the best of our knowledge, results like Theorem 4 and Corollary 1 have not
been available in the literature so far. A closed-form expression for the exponen-
tial utility indifference value has been known only in specific cases when the asset
prices are modeled by continuous semimartingales; see for example [10] for explicit
expressions of the indifference value in two Brownian settings. There the adapted
process δH , called the distortion power, is closely related to the instantaneous cor-
relation between the driving Brownian motions. The model in [10] consists of a
risk-free bank account and a stock S = S1 driven by a Brownian motion W . The
claim H depends on another Brownian motion Y which has a time-dependent and
fairly general instantaneous stochastic correlation  with W , with | | uniformly
bounded away from 1. Theorem 2 of [10] proves that the indifference value is of the
form of Corollary 1 above, with δHt and δ0

t taking values between

δt := inf
s∈[t,T ]

1

‖1− | s |2‖L∞(P )

and δt := sup
s∈[t,T ]

∥
∥
∥
∥

1

1− | s |2
∥
∥
∥
∥
L∞(P )

.

For small | | (uniformly in s, in the L∞-norm), the claim H is almost unhedgeable
and 1/δH is nearly 1, whereas for | | close to 1, the claim H is well hedgeable and
1/δH is nearly 0. So in that Brownian model, 1/δH is closely related to some kind
of distance of H from being attainable or hedgeable. In the subsequent discussion,
we extend this idea to a more general setting, while we come back to the Brownian
model in Sect. 6.

Consider the setting of Corollary 1 where S is (in addition) continuous and sat-
isfies (SC), and H is bounded. Then the P -martingale part M of S is also continu-
ous and the mean-variance tradeoff process K = 〈∫ λdM〉 = 〈∫ λdS〉 is P -a.s. finite
by (SC). The quantity �H

t from (49) then reduces to �H
t = exp(γH− 1

2 (KT −Kt)),
and the assumptions of Corollary 1 are satisfied if KT is bounded, because

∫
λdM

is then a BMO(P )-martingale. If we now even suppose that KT is deterministic, the
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indifference value at time 0 simplifies to

h0 = 1

γ
log(EP̂ [exp(γH/δ)])δ|δ=δH0 (50)

by Corollary 1. If δH0 <∞, we can write

h0 =−Ũ−1
H (EP̂ [ŨH (−H)]), where ŨH (x) := − exp(−γ x/δH0 ), x ∈R,

which means that −h0 is a certainty equivalent of −H . Note, however, that this is
done under P̂ , not P , and with respect to the utility function ŨH , not U , where
ŨH depends itself on the claim H . If δH0 = 1, then ŨH and U coincide and H

is valued by the U -certainty equivalent under P̂ . Moreover, (38) shows that we
then must have equality in (40) for t = 0, which implies that

∫ T

0 (γ ηHs − λs)dSs is
deterministic, hence

∫
(γ ηH −λ)dS = 0. In other words, the equivalent formulation

(11) of FER(H) in Proposition 1 simplifies in this case to

H = 1

γ
logE (ÑH )T + 1

2γ
KT + kH0 ,

which means that H consists only of a constant plus an unhedged term. This may
be interpreted as saying that H has maximal distance to attainability. On the op-
posite extreme, the case δH0 =∞ leads by (50) and (39) (and still under the same
assumptions) to h0 = EP̂ [H ]. Hence for δH0 =∞, we get a familiar no-arbitrage
value for H . In this case, (38) and (39) show that we must have equality in (42) for
t = 0; hence E (NH )= E (− ∫

λdM) and thus (11) simplifies to

H =
∫ T

0
η̃Hs dS + 1

2γ
KT + kH0 ,

showing that H is attainable. Summing up, we can interpret 1/δH as the distance
of H from being attainable; for 1/δH = 0 (convention: 1/∞= 0), the distance is
minimal, whereas for 1/δH = 1, it is maximal. The following remark shows how
this idea can be made mathematically more precise.

Remark 3 Assume that S is continuous, satisfies (SC) and that KT = 〈
∫
λdM〉T is

bounded, but not necessarily deterministic. By Theorem 4 and Corollary 1, we can
attribute to any H ∈ L∞(P ) a number δ(H) := δH0 in [1,∞] uniquely defined via
(47) with Q= P̂ and ϕ =−λ. Defining for G,H ∈ L∞(P )

G∼H :⇐⇒ δ

(

G+ 1

2γ
KT

)

= δ

(

H + 1

2γ
KT

)

gives an equivalence relation on L∞(P ). We denote by D := L∞(P )/∼ the set of
its equivalence classes and associate to each equivalence class a representative. We
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further define the mapping d :D ×D→[0,1] for G,H ∈D by

d(G,H) :=
∣
∣
∣
∣

1

δ(G+ 1
2γ KT )

− 1

δ(H + 1
2γ KT )

∣
∣
∣
∣.

Clearly, d is a metric on D. A claim G ∈ L∞(P ) is called (P̂ -)attainable if it
can be written as G=EP̂ [G] +

∫ T

0 βsdSs for a predictable process β such that
∫
βdS is a P̂ -martingale, which is then even a BMO(P̂ )-martingale. If G is at-

tainable, the FER� of G + 1
2γ KT equals (− ∫

λdM,β + 1
γ
λ,EP̂ [G]), and so the

term log E (NH )T
E (− ∫

λdM)T
vanishes identically. This implies δ(G+ 1

2γ KT )=∞ by the

proof of Theorem 4, hence G∼ 0. Therefore,

d(0,H)= 1

δ(H + 1
2γ KT )

is a distance of H ∈ L∞(P ) from attainability.
The maximal value of d(0, ·) depends on the diversity of the filtration F. If S

has the predictable representation property in F in the sense that any H ∈ L∞(P ) is
attainable (as above), then∼ has only one equivalence class and d ≡ 0. On the other
hand, suppose that there exists a nondeterministic local P̂ -martingale N null at 0 and
strongly P̂ -orthogonal to each component of S such that E (N) is a P̂ -martingale
bounded away from zero and infinity. The maximal distance to attainability is then
attained by 1

γ
logE (N)T since d(0, 1

γ
logE (N)T )= 1.

5 A BSDE Characterization of the Indifference Value Process

In this section, we prove that the indifference value process h is (the first component
of) the unique solution, in a suitable class of processes, of a backward stochastic
differential equation (BSDE). This result is similar to Becherer [2] and Mania and
Schweizer [19], but obtained here in a general (not even locally bounded) semi-
martingale model.

We assume throughout this section that

P
e,f

0 �= ∅
and denote by QE

0 the minimal 0-entropy measure. Let us consider the BSDE

!t = !0 + 1

γ
logE (L)t +

∫ t

0
ψsdSs, t ∈ [0, T ] (51)

with the boundary condition

!T =H. (52)

We introduce three different notions of solutions to (51), (52).
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Definition 2 We say that the triple (!,ψ,L) is a solution of (51), (52) if

(Si) ! is a real-valued semimartingale;
(Sii) ψ is in L(S);

(Siii) L is a local QE
0 -martingale null at 0 such that E (L) is a positive

QE
0 -martingale and S is a Q(L)-sigma-martingale, where Q(L) is defined

by dQ(L)

dQE
0
:= E (L)T .

We call (!,ψ,L) a special solution of (51), (52) if furthermore

(Siv)
∫
ψdS is a Q-martingale for every Q ∈ P

e,f

0 ;

(Sv) EP [E (L)T dQE
0

dP log(E (L)T
dQE

0
dP )] <∞, i.e., the probability measure Q(L)

defined by dQ(L)

dQE
0
:= E (L)T has finite relative entropy with respect to P .

If S is locally bounded, we say that (!,ψ,L) is an orthogonal solution of (51), (52)
if it satisfies (51), (52), (Si), (Sii) and

(Siii′) L is a local QE
0 -martingale null at 0 and strongly QE

0 -orthogonal to every
component of S and such that E (L) is positive.

Under the assumption that S is locally bounded,

a triple (!,ψ,L) is a solution of (51), (52) if and only if

it is an orthogonal solution and E (L) is a QE
0 -martingale. (53)

To see this, note first that a locally bounded S is a Q(L)-sigma-martingale if and
only if E (L)S is a local QE

0 -martingale, under the assumption that Q(L) is a prob-
ability measure. If (!,ψ,L) is a solution, then (Siii) holds and all of E (L)S, E (L)
and S are local QE

0 -martingales. Hence E (L) is strongly QE
0 -orthogonal to every

component of S, and therefore so is L. Conversely, if (Siii′) holds, then E (L) is
like L strongly QE

0 -orthogonal to every component of the local QE
0 -martingale S.

Hence E (L)S is a local QE
0 -martingale and thus S is a Q(L)-sigma-martingale if

E (L) is a QE
0 -martingale.

Our main result in this section is then

Theorem 5 Assume that H satisfies (13). Then the indifference value process h is
the first component of the unique special solution of the BSDE (51), (52).

Theorem 5 looks at first glance like Theorem 13 of Mania and Schweizer [19].
The important difference, however, is that we do not suppose that the filtration F

is continuous, i.e., that all local P -martingales are continuous. If F is continuous,
then 1

γ
logE (L) = L/γ − γ

2 〈L/γ 〉 and Theorem 5 corresponds to Theorem 13 of
Mania and Schweizer [19]. (Since H is allowed to be unbounded in Theorem 5,
there are some differences in the integrability properties.) However, recovering the
latter result in precise form and almost full strength from Theorem 5 requires some
additional work which we discuss at the end of this section. The derivation in [19]
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uses the martingale optimality principle, the existence of an optimal strategy for
the indifference value process, and a comparison theorem for BSDEs. Our proof is
completely different; it is based on our results for the FER�(H) and its relation to
the indifference value.

Theorem 4.4 of Becherer [2] is another similar result. Instead of a continuous
filtration, the framework in [2] has a continuous price process driven by Brownian
motions, and a filtration generated by these and a random measure allowing the
modeling of non-predictable events. Again, to regain from Theorem 5 the same
statement as in Theorem 4.4 of Becherer [2], some additional work is necessary.

In Corollary 3.6 of the earlier paper [1], Becherer gives a characterization of
dQE

H

dQE
0

in a locally bounded semimartingale model. Theorem 5 can be viewed as a dynamic
extension of that result to a general semimartingale model.

Proof of Theorem 5 By Lemma 1, (13) implies that P
e,f
H = P

e,f

0 �= ∅, and so Theo-
rem 3 and (9) yield

ht = kHt − k0
t = h0 + 1

γ
log

E (NH )t

E (N0)t
+

∫ t

0
(ηHs − η0

s )dSs, 0≤ t ≤ T ,

where (NH ,ηH , kH0 ) and (N0, η0, k0
0) are the FER�(H) and FER�(0); see Propo-

sition 2 for their properties. Then ψ := ηH − η0 is in L(S) and
∫
ψdS is a Q-

martingale for every Q ∈ P
e,f

0 = P
e,f
H . By Bayes’ formula, E (NH )/E (N0) is the

QE
0 -density process of QE

H , and so it is a positive QE
0 -martingale and its stochastic

logarithm L, defined by E (L)= E (NH )/E (N0), is a local QE
0 -martingale null at 0.

Moreover, dQ(L)
dP = E (L)T

dQE
0

dP = dQE
H

dP shows Q(L) = QE
H . Hence S is a Q(L)-

sigma-martingale and (Sv) is satisfied because QE
H has finite relative entropy with

respect to P . Since hT = H by definition, we see that h is the first component of
a special solution of the BSDE (51), (52).

To prove uniqueness, let (!,ψ,L) be any special solution of (51), (52). Denote
by (N0, η0, k0

0) the unique FER�(0), and define

N :=N0 +L+ [N0,L], η := η0 +ψ and k0 := k0
0 + !0. (54)

We claim that

(N,η, k0) is the unique FER�(H). (55)

For the proof, we first note that E (N0)E (L) = E (N0 + L+ [N0,L]) = E (N) by
Yor’s formula. Using (51), (52) and (7) for H = 0 thus yields

H = 1

γ
log(E (N0)T E (L)T )+

∫ T

0
(η0

s +ψs)dSs + k0
0 + !0

= 1

γ
logE (N)T +

∫ T

0
ηsdSs + k0.
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Therefore (N,η, k0) satisfies (7) for H , and it is enough to show that the as-
sumptions on N and η for FER�(H) are fulfilled. By Bayes’ formula, E (N) =
E (N0)E (L) is a positive P -martingale, because E (L) is a positive QE

0 -martingale
by (Siii) and E (N0) is the P -density process of QE

0 . Writing next

dP(N)

dQE
0

= dP(N)

dP

dP

dQE
0

= E (N)T /E (N
0)T = E (L)T ,

we see that P(N)=Q(L) which implies that

I (P (N)|P)=EP

[

E (L)T
dQE

0

dP
log

(

E (L)T
dQE

0

dP

)]

<∞

by (Sv) and that S is a P(N)-sigma-martingale by (Siii). Because (N0, η0, k0
0) is the

FER�(0),
∫
ηdS = ∫

η0dS + ∫
ψdS is by Proposition 2 and (Siv) a Q-martingale

for every Q ∈ P
e,f

0 = P
e,f
H , hence also for P(N) and QE

H , and so (N,η, k0) is
an FER(H) satisfying (c) from Proposition 2. This implies (55). Uniqueness of
the FER�(H) and (54) now imply that !0, ψ are unique; so is L due to E (L) =
E (N)/E (N0), and finally also ! by (51). This ends the proof. �

The above argument shows in particular a close link between the FER�(H) and
the BSDE (51), (52). Provided we have the FER�(0), we can construct FER�(H)

from the special solution of (51), (52), and vice versa. This is familiar from ex-
ponential utility indifference valuation; indeed, knowing FER�(0) corresponds to
knowing the minimal 0-entropy measure QE

0 .

Remark 4 If S is locally bounded and H is bounded, there is another way to prove
uniqueness of the first component of a special solution of the BSDE (51), (52),
which we briefly sketch here. If (!,ψ,L) is a special solution of (51), (52), the
idea is to show that ! equals the indifference value process h, which then yields
the desired uniqueness result. Let t ∈ [0, T ] and replace in the definition of A H

t the

condition that
∫
ϑdS is a Q-supermartingale for every Q ∈ P

e,f
H by assuming that

it is a Q-martingale for every Q ∈ P
e,f
H . We do the analogous change for A 0

t and
note that this does not affect the values of VH

t and V 0
t , as mentioned after the proof

of Theorem 3. We now apply Proposition 3 of Mania and Schweizer [19] to obtain

ht = 1

γ
log ess inf

ϑ∈A H
t

EQE
0

[

exp

(

γH − γ

∫ T

t

ϑsdSs

)∣
∣
∣
∣Ft

]

. (56)

Using (51), (52) gives

γH = γ!0 + logE (L)T + γ

∫ T

0
ψsdSs = γ!t + log

E (L)T
E (L)t

+ γ

∫ T

t

ψsdSs,
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which we plug into (56) to obtain

ht = !t + 1

γ
log ess inf

ϑ∈A H
t

EQ(L)

[

exp

(

γ

∫ T

t

(ψs − ϑs)dSs

)∣
∣
∣
∣Ft

]

=: !t + 1

γ
log",

where the probability measure Q(L) is defined by dQ(L)

dQE
0
:= E (L)T . To show that

"= 1, we first note that Q(L) ∈ P
e,f

0 by (Sv), P
e,f
H = P

e,f

0 by Lemma 1, and
∫
ψdS

as well as
∫
ϑdS are Q-martingales for every Q ∈ P

e,f
H = P

e,f

0 by (Siv) and because
ϑ ∈A H

t . Jensen’s inequality then yields "≥ 1, and we obtain "≤ 1 by the choice
ϑ� :=ψ ∈A H

t . Note that also for this uniqueness proof, we have used the assump-
tion that (!,ψ,L) is a special solution of the BSDE (51), (52), i.e., that it also
satisfies (Siv), (Sv).

We have seen in Sect. 3 that the difference between FER(H) and the (unique)
FER�(H) is an issue of integrability. The same thing happens here: The next ex-
ample shows that the BSDE (51), (52) may have many solutions if we omit the
requirement (Siv) (which corresponds to (d) in Proposition 2).

Example 2 As in Example 1, take independent P -Brownian motions W and W⊥,
their P -augmented filtration F and d = 1, S = W , H ≡ 0. Then QE

0 = P and
(0,0,0) is the unique special solution of (51), (52).

As in Example 1, take N0 =W⊥ and use Proposition 1 of Emery et al. [8] to find
for any c ∈R a process ψ(c) in L(S) such that

− 1

γ
logE

(
N0)

T
− c=

∫ T

0
ψs(c)dSs P -a.s.

If we then set !t(c) := c+ 1
γ

logE (N0)t +
∫ t

0 ψs(c)dSs for t ∈ [0, T ], we easily see

as in Example 1 that (!(c),ψ(c),N0) is a solution to (51), (52) and satisfies (Sv),
but not (Siv). So we clearly have multiple solutions.

Theorem 5 allows us to obtain a result similar to Proposition 3.

Corollary 2 Assume that H satisfies (13). Then we have for any probability mea-
sure Q ∈ P

e,f

0 = P
e,f
H and t ∈ [0, T ] that

ht =EQ[H |Ft ] − 1

γ
EQ[logE (L)t,T |Ft ], (57)

where L is the third component of the unique special solution of the BSDE (51),
(52). In particular,

h0 =EQE
0
[H ] + 1

γ
I (QE

0 |Q(L)), (58)

where dQ(L)

dQE
0
:= E (L)T .
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Proof Equation (57) follows from Theorem 5 by taking conditional Q-expectations
between t and T in (51), using (52) and (Siv). Equation (58) follows for Q=QE

0 . �

Remark 5 Corollary 2 raises the question if one can find a probability measure
Q ∈ P

e,f

0 such that the indifference value is the Q-conditional expectation of H .
From (57) we see that logE (L) must then be a Q-martingale, and if we write the
QE

0 -density process of Q as E (R) for some local QE
0 -martingale R, Bayes’ formula

tells us that we want E (R) logE (L) to be a QE
0 -martingale. Itô’s formula gives

d(E (R) logE (L))t = logE (L)t−dE (R)t + E (R)t−
E (L)t−

dE (L)t

+ E (R)t−d

[

Lc,Rc − 1

2
Lc

]

t

+ E (R)t−((�Rt + 1) log(1+�Lt)−�Lt),

where Lc and Rc denote the continuous local QE
0 -martingale parts of L and R.

For E (R) logE (L) to be a local QE
0 -martingale, we must have that Rc = 1

2L
c

on {Lc �= 0} and �Rt = �Lt−log(1+�Lt )
log(1+�Lt )

on {�Lt �= 0}. Therefore, we define

R =Rc +Rd by

Rc
t :=

1

2
Lc
t and Rd

t :=
∑

0<s≤t

�Ls − log(1+�Ls)

log(1+�Ls)
I�Ls �=0 −At, (59)

where A is the dual predictable projection under QE
0 of the sum in (59). Note that

Rd is well defined, since �Ls >−1,�Ls �= 0 implies that
∣
∣
∣
∣
�Ls − log(1+�Ls)

log(1+�Ls)

∣
∣
∣
∣≤ |�Ls |;

in fact, log(1 + x) ≥ x
1+x for x > −1 implies that | x−log(1+x)

log(1+x) | ≤ |x| for x > −1,

x �= 0. By this construction, E (R) and E (R) logE (L) are local QE
0 -martingales,

but it is not clear whether they are true QE
0 -martingales. If they are and if Q de-

fined by dQ
dQE

0
:= E (R)T is in P

e,f

0 , then we obtain indeed ht =EQ[H |Ft ] for all

t ∈ [0, T ]. In general, this representation is not linear in H since the probability
measure Q may (via L) depend on H . Mania and Schweizer [19] showed in their
Proposition 11 that a representation of this type exists if the filtration is continuous
and H is bounded, in which case R = 1

2L.

Becherer [2] and Mania and Schweizer [19] show BMO-estimates for all com-
ponents of the solution to the BSDE for the indifference value process h. It seems
doubtful if one can obtain such results in our general framework here, but under
a mild additional assumption, we can still characterize (Siv) via BMO-properties
without being more specific about the filtration F; see Theorem 6 below.
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The indifference hedging strategy β is defined as the difference of the strategies
which attain V H

0 (h0) and V 0
0 (0), i.e., as that extra trading we do in the optimization

which can be attributed to the presence of a claim. If H satisfies (13), we have
β = ηH − η0 = ψ by (32) and the proof of Theorem 5, where ψ is the second
component of the unique special solution of the BSDE (51), (52). Hence it is of
particular interest to know when

∫
ψdS is a BMO(QE

0 )-martingale.

Theorem 6 Assume that S is continuous, H is bounded and there exists Q ∈ P
e,f

0
whose P -density process satisfies RL logL(P ). Let (!,ψ,L) be a solution of the
BSDE (51), (52) which satisfies (Sv). Then the following are equivalent:

(a) (!,ψ,L) is the special solution of (51), (52), i.e., it also satisfies (Siv);
(b) L is a BMO(QE

0 )-martingale, E (L) satisfies condition (J), and
∫
ψdS is

a QE
0 -martingale;

(c)
∫
ψdS is a BMO(QE

0 )-martingale;
(d)

∫
ψdM is a BMO(P )-martingale, where M is the P -local martingale part of S;

(e) there exists ε > 0 such that EP [exp(ε[∫ ψdS]T )]<∞.

Proof “(a) =⇒ (b)”. Denote by (NH ,ηH , kH0 ) and (N0, η0, k0
0) the unique

FER�(H) and FER�(0). Theorem 2 implies that NH , N0 are BMO(P )-martingales
and E (NH ), E (N0) satisfy condition (J), say with constants CH and C0. By the
proof of Theorem 5, we have E (L)= E (NH )/E (N0) and thus E (L) satisfies con-
dition (J) with constant CHC0. Since 1/E (N0) is the QE

0 -density process of P ,
E (N0)−1 = E (N̂0) for a local QE

0 -martingale N̂0, and so E (L)= E (NH + N̂0 +
[NH, N̂0]) by Yor’s formula. Due to the properties of N0 and NH , both N̂0 and
NH + [NH, N̂0] are BMO(QE

0 )-martingales by Propositions 6 and 7 of Doléans-
Dade and Meyer [7], and hence so is L= N̂0+NH + [NH, N̂0]. Finally,

∫
ψdS is

a QE
0 -martingale by Siv).

“(b) =⇒ (c)”, “(c) =⇒ (d)” and “(d) =⇒ (e)”. These go along the same lines as
the proofs of the corresponding implications in Theorem 2. Instead of (7) we take
(51), (52), and we replace P(NH ) by QE

0 .
“(e) =⇒ (a)”. Like for the corresponding implication in Theorem 2, we obtain

that
∫
ψdS is a square-integrable Q-martingale for any Q ∈ P

e,f

0 = P
e,f
H , which

implies (Siv). �

Remark 6 Example 2 also shows that even if the assumptions of Theorem 6 are
satisfied, none of the equivalent statements (a)–(e) need hold. This is another way
of saying that there exist solutions of (51), (52) which are not special solutions.

Corollary 3 Suppose the assumptions of Theorem 6 hold. Let (!,ψ,L) be an or-
thogonal solution of the BSDE (51), (52). Then (!,ψ,L) is the special solution of
(51), (52) if and only if both L and

∫
ψdS are BMO(QE

0 )-martingales and E (L) is
a QE

0 -martingale which satisfies condition (J).
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Proof The “only if” part follows immediately from Theorem 6. For the “if” part,
note first that (!,ψ,L) is a solution of (51), (52) by (53). So we need only show
that (!,ψ,L) satisfies (Sv) in view of Theorem 6. We first prove that

∫
ψdS is

a BMO(Q(L))-martingale, where dQ(L)

dQE
0
= E (L)T . Because 1/E (L) is the Q(L)-

density process of QE
0 , it can be written as E (L)−1 = E (L̂) for a local Q(L)-

martingale L̂ which must satisfy L+ L̂+ [L, L̂] = 0 by Yor’s formula. The conti-
nuity of S and the strong QE

0 -orthogonality of L to S entail

[∫

ψdS, L̂
]
=−

[∫

ψdS,L
]
= 0.

This yields by Proposition 7 of Doléans-Dade and Meyer [7] that
∫
ψdS is

a BMO(Q(L))-martingale. For the second component η0 of the FER�(0), we sim-
ilarly have that

∫
η0dS is a BMO(Q(L))-martingale since

∫
η0dS is a BMO(QE

0 )-
martingale by Theorem 2. Because (!,ψ,L) is a solution of (51), (52), we can write

logE (L)T =−γ
∫ T

0
ψsdSs + γH − γ!0,

and similarly, we have for the FER�(0) (N0, η0, k0
0) that

log
dQE

0

dP
= logE (N0)T =−γ

∫ T

0
η0
s dSs − γ k0

0 .

Because
∫
(η0 +ψ)dS is a BMO(Q(L))-martingale, we thus obtain

EQ(L)

[

log

(

E (L)T
dQE

0

dP

)]

= −γ!0 − γ k0
0 + γEQ(L)

[

H −
∫ T

0
(η0

s +ψs)dSs

]

= −γ!0 − γ k0
0 + γEQ(L)[H ]<∞

since H is bounded. Hence (!,ψ,L) satisfies (Sv) and we are done. �

Corollary 3 allows us to recover Theorem 13 of Mania and Schweizer [19] from
our Theorem 5. However, this still requires some work which is done in the next
two results. A similar approach can be used to recover Theorem 4.4 of Becherer [2]
from our Theorem 5, but we do not detail this here. Although the following lemma
is a special case of Proposition 7 of Mania and Schweizer [19], we give the proof
here as well, both for completeness and because it is quite simple in this case.

Lemma 2 Assume that the filtration F is continuous, H is bounded and let
(!,ψ,L) be an orthogonal solution of the BSDE (51), (52) with bounded first com-
ponent !. Then L and

∫
ψdS are BMO(QE

0 )-martingales.

Proof If L and
∫
ψdS are true QE

0 -martingales, (51) yields by continuity of L

EQE
0
[〈L〉T − 〈L〉τ |Fτ ] = 2γEQE

0
[!τ − !T |Fτ ] for any stopping time τ. (60)
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Because ! is bounded, the right-hand side of (60) is bounded independently of τ ,
and thus L is a BMO(QE

0 )-martingale. This implies that (EQE
0
[〈L〉T |Fs])0≤s≤T is

also a continuous BMO(QE
0 )-martingale, because

EQE
0
[|〈L〉T −EQE

0
[〈L〉T |Fτ ]||Fτ ] ≤ 2EQE

0
[〈L〉T − 〈L〉τ |Fτ ] ≤ 2‖L‖2

BMO2(Q
E
0 )

for any stopping time τ . Taking conditional QE
0 -expectations in (51) with t = T

gives
∫ s

0
ψydSy =EQE

0
[!T − !0|Fs] − 1

γ
Ls + 1

2γ
EQE

0
[〈L〉T |Fs], 0≤ s ≤ T ,

and so
∫
ψdS is a BMO(QE

0 )-martingale as well. Note that we obtain bounds for
the BMO2(Q

E
0 )-norms of L and

∫
ψdS that depend on ! (and γ ) alone.

For general L and
∫
ψdS, we stop at τn and apply the above argument with T

replaced by τn. Letting n→∞ then completes the proof. �

A closer look at the proof of Lemma 2 shows that we did not use the property that
L is strongly QE

0 -orthogonal to S. However, this is of course necessary if we want
to prove a uniqueness result. By combining Lemma 2 and Corollary 3, we obtain
the following sufficient conditions for the uniqueness of an orthogonal solution of
(51), (52) with bounded first component.

Proposition 4 Assume that F is continuous, H is bounded, and there exists
Q ∈ P

e,f

0 whose P -density process satisfies RL logL(P ). Then the indifference value
process h is the first component of the unique orthogonal solution of (51), (52) with
bounded first component. Moreover, L and

∫
ψdS are BMO(QE

0 )-martingales.

Proof By Theorem 5 and (53), h is the first component of an orthogonal solution
of (51), (52). Using the definition (3) of h and V H

t (ht )= exp(−γ ht )V H
t (0) easily

implies that the indifference value process h is bounded by ‖H‖L∞(P ). If (!,ψ,L)
is any orthogonal solution of the BSDE (51), (52) with bounded !, then L and∫
ψdS are BMO(QE

0 )-martingales by Lemma 2. By Corollary 3, (!,ψ,L) is then a
special solution, which is unique by Theorem 5. �

Proposition 4 is almost identical to Theorem 13 in Mania and Schweizer [19];
the only difference is that we have here the additional assumption that there exists
Q ∈ P

e,f

0 whose P -density process satisfies RL logL(P ). The explanation for this
is that we actually prove more than we really need for Proposition 4. Mania and
Schweizer [19] use a comparison result for BSDEs (their Theorem 8) to deduce
directly that one has uniqueness of orthogonal solutions to the BSDE within the
class of those with bounded first component. In contrast, the proof of Proposition 4
actually shows that under the RL logL-condition, any solution with bounded first
component is even a special solution—and then one appeals to Theorem 5 which
asserts uniqueness within that class.
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6 Application to a Brownian Setting

In this section, we consider as a special case a model with one risky asset driven
by a Brownian motion and a claim coming from a second, correlated Brownian
motion. All processes are indexed by 0 ≤ s ≤ T . Let W and Y be two Brownian
motions with constant instantaneous correlation  satisfying |ρ| < 1. Choose as F

the P -augmentation of the filtration generated by the pair (W,Y ), and denote by
Y= (Ys)0≤s≤T the P -augmentation of the filtration generated by Y alone.

As usual, the risk-free bank account has zero interest rate. The single tradable
stock has a price process given by

dSs = μsSsds + σsSsdWs, 0≤ s ≤ T , S0 > 0, (61)

where drift μ and volatility σ are F-predictable processes. We assume for simplicity
that μ is bounded and σ is bounded away from zero and infinity. We further assume
that

the instantaneous Sharpe ratio μ
σ

of the tradable stock is Y-predictable.

In the notation of Sect. 2, S = S0 + M + ∫
λd〈M〉, where M := ∫

σSdW is
a local (F,P )-martingale and λ := μ

σ
1
σS

is F-predictable. Since μ is bounded
and σ is bounded away from zero, the Sharpe ratio μ

σ
is also bounded, and

thus
∫
λdM = ∫

μ
σ

dW is a BMO(F,P )-martingale and E (− ∫
λdM) is an (F,P )-

martingale. We suppose that the contingent claim H is a bounded YT -measurable
random variable. Together with the structure of S in (61), this assumption on H

formalizes the idea that the payoff H is driven by Y , whereas hedging can only be
done in S which is imperfectly correlated with the factor Y .

In the literature, there are three main approaches to obtain explicit formulas for
the resulting optimization problem (2). In a Markovian setting, Henderson [13],
Henderson and Hobson [14, 15], and Musiela and Zariphopoulou [20], among oth-
ers, first derive the Hamilton-Jacobi-Bellman nonlinear PDE for the value function
of the underlying stochastic control problem. This PDE is then linearized by a power
transformation with a constant exponent, called the distortion power, which corre-
sponds to δH0 from Theorem 4 and Corollary 1. This method works only if one has
a Markovian model. Using general techniques, Tehranchi [25] first proves a Hölder-
type inequality, which he then applies to the portfolio optimization problem. The
distortion power there arises as an exponent in the Hölder-type inequality. A third
approach based on martingale arguments allows us in [10] to consider a more gen-
eral framework with a fairly general stochastic correlation  . In [10], we prove that
the explicit form of the indifference value from Musiela and Zariphopoulou [20] or
Tehranchi [25] is preserved, except that the distortion power, which is shown to exist
but not explicitly determined, may be random and depend on H like in our general
semimartingale model; compare Theorem 4 and Corollary 1.

We give here another proof based on the results of the previous sections. While
there are no new results, the arguments in comparison to [10] are easier and shorter,
give new insights, and show the advantage of FER�(H) compared to the BSDE
formulation (51), (52) in Sect. 5. Indeed, FER�(H) is a representation under the
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original probability measure P , whereas in the BSDE formulation (51), (52), one
must first determine the minimal 0-entropy measure.

Proposition 5 For any t ∈ [0, T ] and any Ft -measurable random variable xt ,

V H
t (xt )=− exp(−γ xt )EP̂ [|�H

t |1−| |
2 |Yt ]

1
1−| |2 ,

where �H
t = exp(γH − 1

2

∫ T

t
|μs

σs
|2ds) and the minimal martingale measure P̂ is

given by

dP̂

dP
= E

(
−
∫

μ

σ
dW

)

T
. (62)

The exponential utility indifference value ht of H at time t equals

ht = 1

γ (1− | |2) log
E
P̂
[|�H

t |1−| |2 |Yt ]
EP̂ [|�0

t |1−| |2 |Yt ]
.

In Corollary 1, we have shown that

ht (ω) = 1

γ
log(E

P̂
[|�H

t |1/δ|Ft ](ω))δ|δ=δHt (ω)

− 1

γ
log(EP̂ [|�0

t |1/δ
′ |Ft ](ω))δ′ |δ′=δ0

t (ω)
,

and have related 1/δH to a kind of distance of H from attainability. Here we have
1/δH = 1− | |2, which confirms our interpretation: The closer 1/δH is to one, the
greater is the distance of H from being attainable, because a smaller correlation  

between W and Y makes hedging more difficult.

Proof of Proposition 5 The idea is to explicitly derive the FER�(H) and FER�(0),
from which the result follows by Theorem 3. In view of Proposition 1 and (10),
we thus look for suitable real-valued processes ÑH and η̃H and an Ft -measurable
random variable kHt such that

H = 1

γ
logE (ÑH )t,T +

∫ T

t

η̃Hs σsSsdŴs + 1

2γ

∫ T

t

∣
∣
∣
∣
μs

σs

∣
∣
∣
∣

2

ds + kHt , (63)

where Ŵ := W + ∫
μ
σ

ds is by Girsanov’s theorem a Brownian motion under the

minimal martingale measure P̂ given by (62). Using Itô’s representation theorem as
in Lemma 1.6.7 of Karatzas and Shreve [17] for |�H

t |1−| |2 under Y and P̂ restricted
to YT , we can find a Y-predictable process ζ with E

P̂
[T0 |ζs |2ds]<∞ such that

|�H
t |1−| |

2 =EP̂ [|�H
t |1−| |

2 |Yt ]E
(∫

ζdŶ
)

t,T
, (64)
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where the (Y, P̂ )-Brownian motion Ŷ is defined by

Ŷs := Ys +
∫ s

0
 
μy

σy
dy for s ∈ [0, T ].

Note that this argument uses that �H
t is YT -measurable because μ

σ
is Y-predictable

and H is YT -measurable by assumption. We can write Ŷ =  Ŵ +√
1− | |2Ŵ⊥

for an (F, P̂ )-Brownian motion Ŵ⊥ independent of Ŵ . Taking the logarithm in
(64) results in

H = 1

γ

∫ T

t

ζs

1− | |2 dŶs − 1

2γ

∫ T

t

|ζs |2
1− | |2 ds + 1

2γ

∫ T

t

∣
∣
∣
∣
μs

σs

∣
∣
∣
∣

2

ds + kHt ,

where

kHt :=
1

γ (1− | |2) logEP̂ [|�H
t |1−| |

2 |Yt ].
But this is (63) with

ÑH :=
∫

ζ
√

1− | |2 dŴ⊥ and η̃H :=  ζ

γ (1− | |2)
1

σS
.

Clearly, ÑH is a local P̂ -martingale strongly P̂ -orthogonal to S, hence also a lo-
cal P -martingale strongly P -orthogonal to M . Moreover, �H

t is bounded away
from zero and infinity, which implies by (64) that E (

∫
ζdŶ ) is uniformly bounded

away from zero and infinity. By Theorem 3.4 of Kazamaki [18],
∫
ζdŶ is then

a BMO(F, P̂ )-martingale and thus so is ÑH because

〈
ÑH

〉= 1

1− | |2
∫

|ζ |2ds = 1

1− | |2
〈∫

ζdŶ
〉
.

This implies first that E (ÑH ) is an (F, P̂ )-martingale so that E (ÑH )E (− ∫
λdM)

is an (F,P )-martingale, and then that also
∫

(γ η̃H + λ)dS =
∫

γ η̃HσSdŴ +
∫

μ

σ
dŴ

= 1

1− | |2
∫

ζdŶ − ÑH +
∫

μ

σ
dŴ

is a BMO(F, P̂ )-martingale. So if we set dP(NH )

dP̂
= E (ÑH )T , then

∫
(̃ηH + 1

γ
λ)dS

is also a BMO(F,P (NH ))-martingale by Theorem 3.6 of Kazamaki [18]. By Propo-
sition 1, (ÑH −∫

μ
σ

dW, η̃H + μ
γσ

1
σS
, kHt ) is thus an FER(H) on [t, T ], and because

the P -density process of P̂ satisfies RL logL(P ) since μ
σ

is bounded, this FER(H) is
even the unique FER�(H) on [t, T ] by Theorem 2. The unique FER�(0) (N0, η0, k0

t )

on [t, T ] is constructed analogously, with �H
t replaced by �0

t . This concludes the
proof in view of Theorem 3. �
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Remark 7 Proposition 5 can be extended to the more general framework of case (I)
in Frei and Schweizer [10] where the correlation  is no longer constant, but Y-
predictable with absolute value uniformly bounded away from one. The explicit
form of the indifference value is then essentially preserved; see Theorem 2 of [10]
for the precise formulation. This can also be proved with our methods here, but
we only sketch the main steps for t = 0 since the full details are a bit technical.
First, one calls a triple (NH ,ηH , kH0 ) an upper (or lower) FER�(H) if it has the
properties of an FER�(H), except that the equality sign in (7) is replaced by “≥”
(or “≤”). One then shows that for an upper (lower) FER�(H), (28) is satisfied with
“≤” (“≥”) instead of equality. In a third step, one defines constants

δ := sup
s∈[0,T ]

∥
∥
∥
∥

1

1− | s |2
∥
∥
∥
∥
L∞(P )

and δ := inf
s∈[0,T ]

1

‖1− | s |2‖L∞(P )

and finds, in the spirit of (64), Y-predictable processes ζ and ζ such that

|�H
0 |1/δ =EP̂ [|�H

0 |1/δ]E
(∫

ζdŶ
)

T
and EP̂

[∫ T

0
|ζ s |2ds

]

<∞,

with an analogous construction for ζ . For this one uses that Ŷ is Y-adapted be-
cause  is Y-predictable. Similarly to the proof of Proposition 5, one shows that

(N
H
,ηH , k

H

0 ) is an upper FER�(H), where N
H = ∫

δ ζ
√

1− | |2dŴ⊥ − ∫
μ
σ

dW ,

ηH = δ ζ
γ

1
σS
+ μ

γσ
1
σS

and k
H

0 = δ
γ

logE
P̂
[|�H

0 |1/δ]. A completely analogous result
holds for δ. Therefore, one obtains

− exp(−γ x0 + γ kH0 )≤ V H
0 (x0)≤− exp(−γ x0 + γ k

H

0 )

by the above versions of (28). Because δ $→ δ logEP̂ [|�H
0 |1/δ] is continuous on

[δ, δ], interpolation then yields the existence of δH0 ∈ [δ, δ] such that

V H
0 (x0)=− exp(−γ x0)EP̂ [|�H

0 |1/δ
H
0 ]δH0 .

Solving the implicit equation (3) with respect to h0 finally gives an explicit expres-
sion for h0.
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The Expected Number of Intersections
of a Four Valued Bounded Martingale
with any Level May be Infinite

Alexander Gordon and Isaac M. Sonin

Abstract According to the well-known Doob’s lemma, the expected number of
crossings of every fixed interval (a, b) by trajectories of a bounded martingale (Xn)
is finite on the infinite time interval. For such a random sequence (r.s.) with an extra
condition that Xn takes no more than N , N <∞, values at each moment n ≥ 1,
this result was refined in Sonin (Stochastics 21:231–250, 1987) by proving that in-
side any interval (a, b) there are non-random sequences (barriers) (dn), such that the
expected number of intersections of dn by (Xn) is finite on the infinite time inter-
val. This result left open the problem of whether for such r.s. any constant barriers
dn ≡ d , n ≥ 1, exist. The main result of this paper is an example of a bounded
martingale Xn, 0 ≤ Xn ≤ 1, with at most four values at each moment n, such that
no constant d , 0 < d < 1, is a barrier for (Xn). We also discuss the relationship
of this problem with such problems as the behavior of a general finite nonhomo-
geneous Markov chain and the behavior of the simplest model of an irreversible
process.

Keywords Martingale · Finite nonhomogeneous Markov chain · Irreversible
process

Mathematics Subject Classification (2000) 60G42 · 60J10 · 82B35

1 Introduction

In this note we present some results that shed light on particular properties of ran-
dom sequences in discrete time (Xn) which satisfy two key assumptions. First,
(Xn) is a bounded (sub)(super)martingale in forward or reverse time. Second,
(Xn), at each moment n, takes no more that N values, where N <∞. In other
words, there exists a sequence of finite sets (Gn) such that P(Xn ∈ Gn) = 1 and
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|Gn| ≤N <∞, n≥ 1. The class of all random sequences that have the latter prop-
erty is denoted by GN ; the class of all random sequences that have both properties
is denoted by MN .

The random sequences from MN appear very naturally, for example, in the study
of finite nonhomogeneous Markov chains (MCs). Let S be a countable set, (Pn) be a
sequence of stochastic matrices, Z = (Zn) be a Markov chain from a family of MCs
defined by a Markov model (S, (Pn)). Let # be the corresponding “tail” σ -algebra
for Z, i.e. # =⋂

n Fn∞, where Fn∞ a σ -algebra generated by (Zn,Zn+1, . . .). It
is easy to check that if A ∈# and βn(i)= P(A|Zn = i), then the r.s. (Xn), where
Xn = β(Zn), is a martingale (in forward time). Another, even more important fam-
ily of (sub)martingales can be obtained as follows. Let D1 be a subset of S. Let us
set, for n≥ 1 and i ∈ S,

αn(i)=
{
P(Z1 ∈D1|Zn = i) if P(Zn = i) > 0;
0 otherwise.

(1)

It is easy to verify that the r.s. (Yn) specified by Yn = αn(Zn), n ≥ 1, is a martin-
gale in reverse time. If a subset D1 is replaced by a sequence of sets Dn ⊆ S, and
αn(i) is defined as αn(i)= P(Zs ∈Ds, s = 1,2, . . . , n|Zn = i), then (Yn) is a sub-
martingale in reverse time. Obviously, if |S| = N <∞ then the martingales and
submartingales described above belong to MN .

The random sequences from MN have much stronger properties than implied
by the well-known Doob’s convergence theorem, i.e. a theorem about the existence
of limits of trajectories of a bounded (sub)martingale when time tends to infinity.
Theorem 1 below describing these properties played a key role in the proof of the
final part of a general theorem describing the behavior of a family of finite nonho-
mogeneous Markov chains defined by a finite Markov model (S, (Pn)), where S is a
finite state space and (Pn) is a sequence of stochastic matrices. The striking feature
of this theorem called a Decomposition-Separation (DS) theorem in [7], is that no
assumptions on the sequence of stochastic matrices (Pn) are made. The DS theorem
was initiated by a small paper of A. Kolmogorov [4, 5] and was proved in steps in
a series of papers: D. Blackwell [1], H. Cohn ([2, 3] and other papers) and I. Sonin
([6–8] and other papers). We refer the reader to [7], where the final version of the
DS theorem was presented and a brief survey of related results was given, and to a
current expository paper [9]. Theorem 1 left an open problem described below and
the main goal of our paper is to give an answer to that problem.

Before formulating Theorem 1 and the main result of this paper, Theorem 2,
let us recall the well-known Doob’s Upcrossing Lemma (see [10]), which lies at
the foundation of Doob’s convergence theorem. If (Xn) is a r.s., then the number
of upcrossings of an interval (a, b) by a trajectory X1,X2, . . . on the infinite time
interval is the number of times when a transition, maybe in a few steps, occurs from
values less than a to values larger than b.

Doob’s Lemma If X = (Xn) is a (sub)martingale, then the expected number of
upcrossings of a fixed interval (a, b) by the trajectories of X on the infinite time
interval is bounded by supn E(Xn − a)+/(b− a).
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Similar statements are true for the number of downcrossings and the number of
crossings. The condition supn E(Xn−a)+ <∞ obviously holds if (Xn) is bounded,
so for simplicity we will consider only bounded random sequences with 0≤Xn ≤ 1
for all n.

Note that the width of the interval (b − a) is in the denominator of the above
estimate, so Doob’s lemma does not imply that inside the interval there exists a
level d , such that the expected number of intersections of this level is finite, and in
general such levels may not exist at all. But for the random sequences from MN

Doob’s lemma can be substantially strengthened.
The following definition was introduced in [6]. A nonrandom sequence (dn) is

called a barrier for the r.s. X = (Xn), if the expected number of intersections of (dn)
by trajectories of X on the infinite time interval is finite, i.e.

∞∑

n=1

[P(Xn ≤ dn,Xn+1 > dn+1)+ P(Xn > dn,Xn+1 ≤ dn+1)]<∞. (2)

Theorem 3 in [6] about the existence of barriers for processes with finite variation
and a bounded number of values implies the following

Theorem 1 Let (Xn) be a bounded r.s. from MN . Then inside each interval (a,b)
there exists a barrier (dn), dn∈ (a,b), n≥ 1.

An example in Sonin [8] shows that the barriers may not exist inside a given
interval if a bounded martingale (Xn) takes a countable number of values, but for
the random sequences from MN Theorem 1 left an open problem.

Problem 1 Is it true that for any r.s. from MN in any interval (a, b) there exists
a constant barrier dn ≡ d , n≥ 1?

For a r.s. (Xn) defined on a finite or infinite time interval {1,2, . . . , T }, T ≤∞,

with values in [0,1], denote by NT (x,X) the expected number of intersections of
level x by this sequence, i.e. the value of the sum in (2) when n runs from 1 to
T − 1 and dn ≡ x for all n. We will omit the indication of X and T , if T =∞ and
X is clear from the context. Similarly, by N+(x) we denote the expected number
of up-intersections, i.e. the first sum in (2) when T =∞ and dn = x for all n ≥ 1.
Obviously, both N(x) and N+(x) are finite or both are infinite.

In the sequel, the abbreviation MCM will mean a (nonhomogeneous) MC (Xi)

defined on a finite or infinite time interval [1,2, . . . , T ], T ≤∞, which is also a
martingale. We also assume that 0≤Xi ≤ 1 for all i. The main result of this paper
is

Theorem 2 1. For any X = (Xi) ∈M2, in forward time, any value x ∈ (0,1) is
a level barrier, i.e. N(x) <∞ for all x ∈ (0,1). In reverse time, one exception may
occur: if the two possible values of a martingale have the same limit x0, then N(x0)

may equal ∞.
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2. For any X = (Xi) ∈ M3, N(x) < ∞ for Lebesgue almost every (a.e.)
x ∈ (0,1), and it is possible that N(x) = ∞ for all x ∈ G, where G ⊂ (0,1) is
a countable set.

3. There is a MCM X = (Xi) ∈M4, such that N(x)=∞ for all x ∈ (0,1).

We prove only the most important first statement in part 2, and we leave out the
construction of a set G.

Remark 1 A Markov model (S, (Pn)) has a transparent deterministic interpretation
(see [7]), and the DS theorem mentioned above has such an interpretation as well.
According to this interpretation, the states of MC (Zn) are represented by “cups”
containing some solution (liquid), say tea. The entry pn(i, j) of the stochastic ma-
trix Pn represents the proportion of the solution transferred from cup i to cup j at
moment n. Correspondingly, P(Zn = i) = mn(i) represents the volume of the so-
lution in cup i at the moment n; αn(i) introduced in (1) can be interpreted as the
“concentration” of tea in the cup i at the moment n, and so on. Such a deterministic
“colored” flow is the simplest example of an irreversible process. The DS theo-
rem presented in the language of colored flows states that for any sequence (Pn)

of N ×N stochastic matrices the set of cups can be decomposed into a number of
groups, with the decomposition possibly depending on time n, such that in each
group, except possibly one, both the total volume and the concentration of tea have
limits. In the “exceptional group”, the total volume tends to zero, but the concen-
tration may oscillate. The total volume of tea exchanged between these groups is
finite on the infinite time interval. The number of groups and the decomposition
are unique (up to a certain equivalence) and depend only on the sequence (Pn).
Problem 1 described above is equivalent to the question of whether such a decom-
position can be provided by constant values of the concentration. Accordingly, our
Theorem 2 can be reformulated as follows. If there are only two cups and the con-
centrations of tea in those cups do not tend to a common limit, then the total amount
of liquid exchanged between the cups with the concentration higher than x (before
the transfer) and lower than x (after the transfer), or vice versa, is finite for any x.
For three cups—such values of x form a subset of (0,1) of full measure. For four or
more cups, such x may not exist at all. We are going to present this and other possi-
ble interpretations, as well as some related results, in a separate paper. The authors
would like to thank Robert Anderson and Joseph Quinn who read the first version
of this paper and made valuable comments, and the anonymous referee for careful
reading and thoughtful remarks.

2 Proof of Theorem 2. Cases N = 2 and N = 3

To simplify the presentation, we will consider only martingales in forward time.
We denote by EX and V (X), respectively, the expected value and the variance of
a random variable (r.v.) X.
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Case N = 2. The definition of X = (Xn) ∈M2 implies that at each moment n,
Xn ∈ {an, bn}, where 0 ≤ an < bn ≤ 1, an is decreasing and bn is increasing. Let
a∞ = liman, b∞ = limbn. For any x ≤ a∞ or x ≥ b∞, obviously, N(x) = 0. If
x ∈ (a∞, b∞), select d1 and d2 so that a∞ < d1 < x < d2 < b∞, and let n0 be a
number such that an < d1, bn > d2 for all n≥ n0. Then

N+(x)= c+
∞∑

n=n0

P(Xn ≤ d1,Xn+1 > d2), (3)

where c is the sum of the first n0 terms and therefore is finite.

Proposition 1 For any two r.v.’s X1,X2 and any two numbers d1 < d2,

P(X1 ≤ d1,X2 > d2)≤E(X1 −X2)
2/(d2 − d1)

2. (4)

Proof The assertion of Proposition 1 follows immediately from the implications
(X1 ≤ d1,X2 ≥ d2)⊂ (|X1 −X2| ≥ h), h= d2 − d1, and the Chebyshev’s inequal-
ity, P(|Y | ≥ h)≤EY 2/h2 for any r.v. Y .

To prove part 1 of Theorem 2, note that for a martingale (Xn) we have
E(Xn+1|Xn)=Xn, and V (Xn+1 −Xn)=E(Xn+1 −Xn)

2 =EX2
n+1 −EXn

2 and
hence for a bounded martingale (Xn), 0≤Xn ≤ 1,

T−1∑

n=k
E(Xn+1 −Xn)

2 =EX2
T −EXk

2 ≤ 1. (5)

Then formula (5) and Proposition 1 imply that the sum in (3) is finite for any T ≤∞.
Part 1 of Theorem 2 is proved.

For any r.v. X with EX =m, let us denote M+(X)=E(X−m)+. Then E(X−
m)+ =E(m−X)+, and M(X), the mean absolute deviation of X, is

M(X)=E|X−m| =E(X−m)+ +E(m−X)+ = 2M+(X). (6)

Let us also put M(X|c)=E|X− c| and M+(X|c)=E(X− c)+. If (Xn) is a mar-
tingale, then the equality E(Xn+1|Xn)=Xn and (6) imply that

M(Xn+1|Xn)= 2M+(Xn+1|Xn). (7)

To study the case of N = 3, we need some simple properties of r.v.’s and martingales
with two and three values. They are described in Propositions 2–4. Let X ∈G2, i.e.
an r.v. with two values a and b, a < b, b− a = d and P(X = b)= p, P(X = a)=
q = 1− p. Then it is easy to check that the following statement is true. �

Proposition 2 If X ∈G2, then M(X)= 2pqd , V (X)= pqd2, and hence

M+(X)= V (X)/d. (8)
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Let X be an r.v. with three values a ≤ e ≤ b, and P(X = b)= p, P(X = e)= r ,
P(X = a) = q , where p + r + q = 1. Let us denote by XU an r.v. obtained from
X by averaging the two upper values, i.e. XU takes two values a and b′ = (er +
bp)/(r + p) with probabilities q and p′ = r + p. Similarly, we define an r.v. XL as
an r.v. obtained from X by averaging the two lower values, i.e. XL takes two values
a′ = (aq+ er)/(q+ r) and b with probabilities q ′ = q+ r and p. It is easy to check
that for such r.v.’s the following statement is true

Proposition 3 (a) a ≤ a′ ≤ e ≤ b′ ≤ b, EX =EXA, V (XA)≤ V (X), A=U or L,
(b) M(XU)≤M(X), M+(XU)≤M+(X), with equalities when EX ≤ e,
(c) M(XL)≤M(X), M+(XL)≤M+(X), with equalities when EX ≥ e.

For a r.s. (Xn) ∈ M3, i.e. for a martingale with three values an ≤ en ≤ bn at
moment n, similarly to Proposition 3, it is easy to obtain

Proposition 4 (a) If (Xn) ∈M3, then E(XA
n+1|Xn)=Xn, E((XA

n+1 −Xn)
2|Xn)≤

E((Xn+1 −Xn)
2|Xn), V (XA

n+1 −Xn)≤ V (Xn+1 −Xn), A=U or L,
(b) M+(XU

n+1|Xn)≤M+(Xn+1|Xn), with equality when Xn ≤ en+1,
(c) M+(XL

n+1|Xn)≤M+(Xn+1|Xn), with equality when Xn ≥ en+1.

Now we can prove part 2 of Theorem 2 (case N = 3). The situation in this case
is substantially different from N = 2 and N > 3. It is possible to have N(x)=∞,
for example, for all rational numbers; nevertheless the Lebesque measure of the set
of all such x is always zero. We prove here only the latter statement.

Lemma 1 For any r.s. (Xn), 0≤Xn ≤ 1, and T ≤∞,

∫ 1

0
N+T (x)dx =

T−1∑

n=1

EM+(Xn+1|Xn). (9)

Proof The proof follows immediately from the definition of N+T (x) =∑T−1
n=1 P(Xn ≤ x,Xn+1 > x) and the equalities: (1) P(Xn ≤ x,Xn+1 > x) =

EI (Xn,Xn+1|x), where I (c, d|x) = 1 if c ≤ x < d , and 0 otherwise,
(2)

∫ 1
0 I (c, d|x)dx = (d − c)+ and (3) E(Xn+1 −Xn)

+ =EM+(Xn+1|Xn).
Let (Xn) ∈M3 and {an, en, bn} be the ordered set of possible values of Xn at

the moment n, 0 ≤ an ≤ en ≤ bn ≤ 1. The definition of a martingale again implies
that the sequence (an) can only decrease, the sequence (bn) can only increase but
the sequence (en) may oscillate between an and bn. WLOG we can assume that
liman = 0, limbn = 1.

Note that if, given a, b, 0≤ a < b ≤ 1, in the left side of (9) we change the limits
of integration from 0 and 1, to a and b, i.e. consider

∫ b

a
, then the equality (9) remains

true with M+(Xn+1|Xn) replaced by M+(Xn+1|Xn,a, b) ≡ E(min(b,Xn+1) −
max(a,Xn))

+. For simplicity we will denote M+(Xn+1|Xn,2ε,1 − 2ε) as
M+(Xn+1|Xn, ε).
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It is sufficient to prove that the integral similar to that in (9), with integration lim-
its replaced by 2ε and 1−2ε, is finite for any ε > 0. Then obviously N+T (x) <∞ al-
most surely. To prove this we will show that for any (Xn) ∈M3, any ε, 0 < ε < 1/4,
and sufficiently large n,

M+(Xn+1|Xn, ε)≤E((Xn+1 −Xn)
2|Xn)/ε. (10)

If (Xn) is a martingale, then E(E((Xn+1 − Xn)
2|Xn)) = E(Xn+1 − Xn)

2 =
V (Xn+1 −Xn). Since series in (5) is convergent, estimate (10) will prove that the
integral in (9) is finite.

Let ε > 0 and n0 be a number such that an < ε, and 1− ε < bn for all n≥ n0. In
the sequel we will consider only n≥ n0.

If Xn > 1 − 2ε, then, obviously, M+(Xn+1|Xn, ε) = 0. Since bn > 1 − ε, we
need to consider further only the cases Xn = an or Xn = en.

If Xn = an or en, and en+1 ≤ 2ε, then M+(Xn+1|Xn, ε) = M+(XL
n+1|Xn, ε).

Using formula (8) applied to XL
n+1 we have M+(XL

n+1|Xn, ε) ≤M+(XL
n+1|Xn)=

E((XL
n+1 − Xn)

2|Xn)/(bn+1 − a′n+1) and then using point (a) of Proposition 4,
we obtain M+(XL

n+1|Xn, ε)≤E((Xn+1 −Xn)
2|Xn)/(bn+1 − a′n+1). Since a′n+1 ≤

en+1 ≤ 2ε and bn+1 > 1 − ε, we have bn+1 − a′n+1 ≥ 1 − 3ε ≥ ε, and thus (10)
holds.

If en+1 ≥ 2ε and Xn ≤ 2ε then M+(Xn+1|Xn, ε) = M+(XU
n+1|Xn, ε). Us-

ing formula (8) applied to XU
n+1 we have M+(XU

n+1|Xn, ε) ≤ M+(XU
n+1|Xn) =

E((XU
n+1 − Xn)

2|Xn)/(b
′
n+1 − an+1) and then using point (a) of Proposition 4,

we obtain M+(XU
n+1|Xn, ε)≤E((Xn+1 −Xn)

2|Xn)/(b
′
n+1 − an+1). Since b′n+1 ≥

en+1 ≥ 2ε and an+1 < ε, we have b′n+1 − an+1 ≥ ε, and thus (10) holds. What re-
mains are two cases when 2ε ≤Xn = en ≤ 1− 2ε, en+1 ≥ 2ε and Xn = en ≤ en+1

or Xn = en ≥ en+1. The proofs are similar to the above. Part 2 of Theorem 2 is also
proved. �

3 Proof of Theorem 2. Case N > 3. An Example

We prove part 3 of Theorem 2 by a direct construction of the MCM X = (Xi) for
N = 4. First, we construct an auxiliary MCM U = (Ui). Let (ak), (bk), k = 1,2, . . .
be two deterministic sequences such that:

1 > a1 > a2 > · · ·> 0, a1 < b1 < b2 < · · ·< 1,
(11)

limak = 0, limbk = 1.

Given such sequences (ak) and (bk), we can define a MC U = (Ui), i = 1,2, . . . ,
such that P(U1 = b1) = 1, U2k−1 ∈ {ak, bk,1}, U2k ∈ {ak,1}, and the transi-
tion probabilities ui(x, y) are: uk(1,1) = 1, u2k−1(ak, ak) = 1, u2k−1(bk,1) +
u2k−1(bk, ak) = 1, u2k(ak, bk+1) + u2k(ak, ak+1) = 1, k ≥ 1. To obtain not just
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a MC but a (unique) MCM, it is sufficient to define

u2k−1(bk,1)= bk − ak

1− ak
, u2k(ak, bk+1)= ak − ak+1

bk+1 − ak+1
, k ≥ 1.

Assumptions (11) imply that this is possible and that mk = P(U2k−1 = bk) > 0
for all k ≥ 1.

The MCM U = (Ui) will serve as a “frame sequence” for MCM X = (Xi), i.e.
(Xi) will consist of “blocks” (Xk

i ), k ≥ 1, where each (Xk
i ) is a MCM defined on a

time interval [tk, ek], t1 = 1, tk+1 = ek+1, k ≥ 1, and each block is “inserted” into a
constructed above “frame sequence” U = (Ui) so that the time interval [2k− 1,2k]
“stretches” into the time interval [tk, ek], k ≥ 1. More precisely, the values and the
transition probabilities pi(x, y) for MCM (Xi) are defined as follows: Xi =Xk

i for
i ∈ [tk, ek], i = 1,2, . . . ;P(X1 = X1

1 = b1) = 1, P(Xe1 = Xk
e1
∈ {a1,1}) = 1. Any

other k-th block, k ≥ 2, has three entrance points {ak, bk,1} and two exit points
{ak,1}, i.e. P(Xtk = Xk

tk
∈ {ak, bk,1}) = 1, and P(Xek = X1

ek
∈ {ak,1}) = 1. The

state 1 is an absorbing state, pi(1,1)= 1 for all i ≥ 1. The transition probabilities
between blocks, i.e. at moments ek , k ≥ 1, are defined using the transition prob-
abilities from MCM U : if i = ek then pi(ak, y) = u2k(ak, y), where y = ak+1 or
bk+1. The transition probabilities of k-th block pi(x, y), tk ≤ i < ek , are as follows:
pi(ak, ak)= 1 for all i, the other transition probabilities are the “shifted” probabili-
ties from MCM Y k = (Y k

i ), k ≥ 1, where (Y k
i ) is defined on the time interval [1, Tk],

Tk = ek − tk + 1, i.e. ptk+i−1(x, y)= qki (x, y), where i = 1,2, . . . , Tk and qki (x, y)

are transition probabilities for (Y k
i ). We say that block Xk is obtained from a block

Y k by a shift from interval [1, Tk] to interval [tk, ek], ek = tk + Tk − 1.
The structure of each MCM Y k = (Y k

i ), k = 1,2, . . . is similar and its properties
are described in Lemma 2 which is the key element of our construction.

Lemma 2 For every tuple β = (a, b, ε,C), 0 ≤ a < b < 1, 0 < ε < b − a, C > 0,
there is a MCM Y = (Yi) defined on a finite time interval [1,2, . . . , T ], T = T (β),
and such that

(1) P(Y1 = b)= 1, P(YT ∈ {a,1})= 1, and for all other i, 1 < i < T , Yi takes no
more than three values ri , si ,1, a ≤ ri < si ≤ 1.

(2) NT (x,Y )≥ C for each x ∈ (a + ε, b).

We will prove Lemma 2 later. Assuming that Lemma 2 holds, we next construct
a MCM (Xi) satisfying part (3) of Theorem 2.

Let (εk) be a sequence, εk > 0, lim εk = 0, and let (ak), (bk) be two sequences
satisfying conditions (11). Let (Ui) be a corresponding “frame” MCM, ui(x, y)
its transitional probabilities, i = 1,2, . . . and mk = P(U2k−1 = bk) > 0, k ≥ 1.
Given k ≥ 1, let Y k = (Y k

i ), i = 1,2, . . . , Tk , be a MCM satisfying the conditions of
Lemma 2 with parameters (ak, bk, εk,Ck), where Ck = 1/mk . We define sequences
(tk) and (ek) by: t1 = 1, ek = tk + Tk − 1, tk+1 = ek + 1, k ≥ 1. Let us denote by
(Xi) the combined MC consisting of blocks Xk obtained by the corresponding shift
from Y k and connected by the frame sequence (Ui) as described above.
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Let us denote by Nk(x) ≡ NTk (x,Y
k) the expected number of intersections of

level x by a r.s. Y k = (Y k
i ), k ≥ 1, and N(x) ≡ N(x,X) the expected number of

intersections of level x by a r.s. X = (Xi). By our choice of Ck we have Nk(x) ≥
1/mk for each x ∈ (ak + εk, bk), where mk = P(Xtk = bk), k ≥ 1. Let x ∈ (0,1)
and let k(x) be a number such that x ∈ (ak + εk, bk) for all k ≥ k(x). Then by our
construction

N(x)≥
∞∑

k=1

P(Xtk = bk)N
k(x)≥

∞∑

k≥k(x)
mk/mk =∞.

Note that MCM (Xi) takes no more than four values on each time interval [tk, ek],
k ≥ 1. Three values, rki , s

k
i and 1 are from MCM Y k in Lemma 2, and the fourth

value is ak .
Thus, to prove part 3 of Theorem 2 we only need to prove Lemma 2. From

now on, the numbers (indices) i, k and n and such notation as pi(x, y) have a new
meaning.

We prove Lemma 2 for a special case when a = 0, b = 1
2 . The general case

requires only minor changes in notation.
We will construct (Yi) combining a finite number of MCMs, having a similar

structure. To avoid confusion with the “blocks” used above, we call these MCMs
modules. Each module (L

k,r
i ) is a MCM characterized by two parameters (k, r),

k ≥ 1, 0≤ r < 1, and defined on the time interval [1,2, . . . , k].
First we describe the standard module with parameters (k,0). This is a MC

(L
k,0
i ) ≡ (Si) defined on [1,2, . . . , k], and taking at each moment i two values 0

and si , where (si) is a deterministic sequence given by formula

si = 1

k + 1− i
, i = 1,2, . . . , k. (12)

Obviously 0 < 1
k
= s1 < · · ·< sk−1 = 1

2 < sk = 1, and si satisfy si+1(1− si)= si .
Point s1 is an initial point for a r.s. (Si), i.e. P(S1 = s1)= 1. The transition probabil-
ities pi(x, y) are defined as follows. State 0 is absorbing for all i, i.e. pi(0,0)= 1,
i = 2,3, . . . , k− 1. The other transition probabilities are given by

pi(si,0)= si , pi(si , si+1)= 1− si = k− i

k+ 1− i
, i = 1, . . . , k − 1. (13)

It is easy to see that E(Si+1|Si = si)= si+1(1− si)= si . Therefore, the r.s. (Si) is
also a martingale, i.e (Si) is a MCM.

It is easy to check that

P(Si = si)=
i−1∏

j=1

pj (sj , sj+1)= k + 1− i

k
= 1

ksi
, i = 1,2, . . . , k. (14)

Let us denote by Nk(x) the expected number of intersections of level x by the
r.s. (Si). If x ∈ (si , si+1), i = 1,2, . . . , k−2, then every trajectory can intersect x on
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the way up and after that on the way down, so Nk(x)= P(Si+1 = si+1)+P(Si+1 =
si+1, Sk = 0)= 2P(Si+1 = si+1)− P(Sk = 1)= 2(k−i)−1

k
≥ 1/ksi . These relations

imply that

Nk(x)≥ f k(x), where f k(x)= 1

kx
, if

1

k
< x ≤ 1/2. (15)

The module (L
k,r
i ) with parameters (k, r), 0 ≤ r < 1, k ≥ 1 is a r.s. defined on

the finite time interval i = 1,2, . . . , k by equalities

L
k,r
i = r + (1− r)Si, i = 1,2, . . . , k, (16)

where (Si)= (L
k,0
i ) is a standard module with parameters (k,0).

Formula (16) implies that the initial point for (Lk,r
i ) is

r + 1− r

k
(17)

and that (Lk,r
i ) is also a MCM with the same transitional probabilities as in (13)

but with possible values r and r + (1 − r)si instead of 0 and si . The value r is
the smallest of possible values for this module, so later we will refer to r as to the
“floor” of this module. The intersection function Nk,r (x) for (Lk,r

i ), instead of (15),
satisfies the inequality

Nk,r (x)≥ f k

(
x − r

1− r

)

, r + 1− r

k
≤ x < r + 1− r

2
= 1+ r

2
. (18)

Formula (14) for i = k and formula (16) imply that

P(L
k,r
k = 1)= 1

k
, P (L

k,r
k = r)= k − 1

k
. (19)

Now we will construct a sequence of MCMs (Y n
i ), n= 1,2, . . . , i = 1,2, . . . , Tn,

and we will show that for any ε > 0 and any C each of these MCMs will satisfy the
condition of Lemma 2 for sufficiently large n. Each (Y n

i ) consists of n modules con-
nected subsequently, each with parameters (kj , rj ), j = 1,2, . . . , n. The parameters
(kj , rj ), j = 1,2, . . . , n, given n= 1,2, . . ., are selected as follows

kj = n+ j, rj = n− j

2n
, j = 1, . . . , n. (20)

It is easy to check that

rj−1 = rj + 1− rj

kj
= rj + 1

2n
, j = 2, . . . , n. (21)

Thus, for each n, points rj divide the interval (0, 1
2 ) into n equal parts of size

1/2n and the interval (1− rj ,1) contains kj subintervals of this size. Let us denote,
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for the sake of brevity, (L
kj ,rj
i ) by (Lj

i ). Formulas (17) and (21) imply that the floor

rj of the module (Lj−1
i ) serves as the initial point for the next module (Lj

i ).
Let Tn =∑n

j=1 kj − n + 1 be the total length of the time interval where these
modules are sequentially defined. We define (Yi) ≡ (Y n

i ), 1 ≤ i ≤ Tn, as follows.
State 1 is absorbing for all i. At moment 1 r.s. (Yi) starts at r0 = 1

2 and on the

time interval [1, k1] coincides with the module (Lk1,r1
i )= (L1

i ). Then, at moment k1

according to (19), we have

P(Yk1 = 1)= P(L1
k1
= 1)= 1

k1
,

(22)

P(Yk1 = r1)= P(L1
k1
= r1)= k1 − 1

k1
.

On the time interval [k1, k1+ k2−1] r.s. (Yi) stays at 1 with probability 1
k1

and with

probability m2 = k1−1
k1

coincides with the module (L2
i ). As mentioned above, the

floor r1 of the module (L1
i ) serves as the initial point for the next module (L2

i ). And
so on. Obviously, MCM (Yi) satisfies the condition (1) of Lemma 2 with b= 1

2 and
a = 0.

From the above construction, using the last equality in formula (14) for i = k =
kj and denoting m0 = 1, we also obtain that for j = 1,2, . . . , n,

mj = P(Yk1+···+kj−j+1 = rj )

= mj−1P(L
j
kj
= rj )=mj−1

kj − 1

kj
= n

n+ j
. (23)

Our last step is to estimate N(n)(x), the expected number of intersections of
level x by the constructed MCM (Y n

i ), i = 1,2, . . . , Tn, and to show that for any ε,
0 < ε < 1/2, limn N

(n)(x)=∞ uniformly for all x, ε ≤ x ≤ 1/2. Therefore, given
any number C, for sufficiently large n, MCMs (Y n

i ) will satisfy the condition (2) of
Lemma 2.

By our construction, we have obviously N(n)(x) =∑n
j=1 mj−1N

j(x), where

Nj(x) is the expected number of intersections of level x by module (Lj
i ). Using for

each j the estimate (18) with k = kj and r = rj taken from (20), and taking into
account that by (23), 1

2 ≤mj ≤ 1 for all j , we obtain that

N(n)(x)≥ 1

2

n∑

j=1

f kj

(
x − rj

1− rj

)

, (24)

where f kj (
x−rj
1−rj ) is defined by (15) (see also (18)) for rj−1 ≤ x < (1+ rj )/2 and for

other x’s can be defined to be equal to zero. Hence f kj (
x−rj
1−rj )≥

1−rj
kj (x−rj ) =

1−rj
2n(x−rj )

for rj−1 ≤ x ≤ (1+ rj )/2. Using formulas (20) and (21), we obtain that for any x,
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0 < x ≤ 1/2,

N(n)(x) ≥ 1

2

n∑

j :rj−1≤x

1

2n(x − rj )
= 1

2

n∑

j :n−j+1≤2nx

1

2n(x − n−j
2n )

= 1

2

[2nx]−1∑

k=0

1

2n(x − k
2n )

, (25)

where [a] is an integer part of a.
The last sum is just a Riemann sum of the integral

∫ x

0
dy
x−y =∞. Thus, for large

n the sum N(n)(x) in (25) can be made arbitrarily large uniformly for all x, 0 < ε ≤
x ≤ 1/2. This proves Lemma 2 and therefore part 3 of Theorem 2.

Remark A slightly different but similar construction proves the analog of Theorem 2
for the case where (Xi) is a martingale in reverse time.
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Immersion Property and Credit Risk Modelling

Monique Jeanblanc and Yann Le Cam

Abstract The goal of this paper is to study the immersion property through its links
with credit risk modelling. The construction of a credit model by the enlargement of
a reference filtration with the progressive knowledge of a credit event occurrence has
become a standard for reduced form modelling. It is known that such a construction
rises mathematical difficulties, mainly relied to the properties of the random time.
Whereas the invariance of the property of semi-martingale in the enlargement is
implied by the absence of arbitrage, we address in this paper the question of the
invariance of the martingale property.

Keywords Initial and progressive enlargement of filtration · Credit risk ·
Risk-neutral probability

Mathematics Subject Classification (2000) 60G46

1 Introduction

Most of the literature on credit risk focuses on pricing problems and postulates the
existence of a pricing measure, without questioning its features. The purpose of this
paper is to propose a study of the set of equivalent martingale measures (e.m.ms)
in the context of credit modelling. Within the reduced form approach and particu-
larly under the filtration enlargement framework, such questions may be precisely
studied, and lead to interesting properties. Only finite time horizon problems will be
treated in this paper.

Three parts will be developed in the sequel, so that to present the issues relative
to the discussion about the completeness of a market potentially exposed to a credit
event.

• The first one presents the credit modelling framework and discusses the mean-
ing of the options taken. We adopt a reduced form model, and specify the split
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of the full information G between a “reference filtration” F and the credit event
(generating a filtration H) so that to benefit the methodology based on the haz-
ard process.1 A subsection is dedicated to the presentation of each filtration, and
another one to the financial interpretation of that splitting.

We model the credit event by a random time belonging to the class of initial
times.2 The choice of initial times insures that the semi-martingales in the refer-
ence filtration remain semi-martingales in the full filtration G.

• The second one is a mathematical part that aims at proving a representation the-
orem for martingales of the full filtration, as soon as the martingales of the refer-
ence market can be represented on a finite set of martingales, and when the credit
event is an initial time.

This theorem emphasizes the major role played by initial times in credit mod-
elling. A corollary allows to describe the positive G-martingales, hence the set of
GT -equivalent probabilities once an “historical probability” is given.

• The third one is a study of the special—and fundamental—case where the “refer-
ence market” is complete and arbitrage free. We describe thanks to the previous
martingale representation theorem the set of the probabilities equivalent to the
historical one on GT under which the reference assets remain martingales. Then
it is established under mild assumptions that the full market, where a credit event-
sensitive asset is added to the collection of the reference assets, is also complete
and without arbitrage opportunities.

A following section presents the links between the completeness and the im-
mersion property of the filtration enlargement: this property, often referred to as
(H )-hypothesis, denotes the fact that the F-martingales remain G-martingales.
We shall prove that immersion holds under any G-e.m.m., and characterize the
change of probability that allows to go from a “reference neutral-risk” probabil-
ity3 to a neutral risk probability, under which immersion holds. We derive the
important corollary that if the F-martingale part of the survival process defined
under a “reference neutral-risk” probability P∗ is not equal to zero, P∗ is not
neutral-risk probability of the full market.

• The last part is devoted to the case where the reference market is incomplete
and a default sensitive asset is traded. Starting from a reference e.m.m. P

∗, we
construct a unique e.m.m. in the full filtration that preserves the main properties
of the reference market.

Precisely, we prove that there exists a unique probability measure Q equiv-
alent to P

∗ such that the price process (composed of the reference assets and
the default sensitive asset) is a (G,Q)-martingale that preserves the “reference
pricing”, i.e., such that E

Q(XT )= E
∗(XT ), for any XT ∈ L2(FT ). We establish

1See Jeanblanc and Le Cam [23] for a survey on reduced form modelling and hazard process.
2See the following section, Jiao [21], El Karoui et al. [11] or the paper of Jeanblanc and Le Cam
[22] for a study of the properties of initial times and their application to progressive enlargement
of filtrations.
3A probability under which the reference assets are F-martingales.
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that here again, immersion property of the filtration enlargement holds under this
probability.

In this paper, all the processes are constructed on a probability space (Ω,A ,P),
where the probability measure P is referred to as the historical probability.

A financial market is represented in the sequel by a (n + 2)-dimensional price
process S̃ = (S0

t , . . . , S
n+1
t ;0≤ t ≤ T ), in which S0 will denote the saving accounts,

i.e., the risk-free asset,4 and its information by G assumed to be the natural (aug-
mented) filtration generated by S̃. We do not assume that GT =A , and we empha-
size that P is a probability measure defined on A (even if we shall be interested in
the sequel in restrictions of the probabilities on sub-σ -algebras of A ).

We denote by ΘG

P
(S̃) the set of G-e.m.ms, i.e., the set of probability measures Q

defined on A , equivalent to P on A , such that S̃/S0 ∈M loc(G,Q), i.e., such that
the discounted process (S̃t /S0

t , t ≤ T ) is a (G,Q)-local martingale. In what follows,
we assume for the sake of simplicity that S0 ≡ 1.

It is well known that there are strong links between no-arbitrage hypothesis and
the existence of an equivalent martingale measure (see Kabanov [25], Delbaen and
Schachermayer [10]). In this paper we are interested with the property of ΘG

P
(S̃)

being not empty. This condition is equivalent to the No Free Lunch with Vanishing
Risk condition (a condition slightly stronger than absence of arbitrage).

Recall that the market where the assets Si , i = 0, . . . , n+1 are traded is complete
if any contingent claim is replicable: For any payoff XT ∈ L2(GT ) there exists a
G-predictable self-financed strategy with terminal value XT . Our aim in this paper
is neither to make a fine discussion on the best hypotheses on trading strategies,
nor to use the most precise and efficient assumptions in that matter (the interested
reader may refer for example to Delbaen and Schachermayer [10], Kabanov [25]
or/and Protter [30]).

Given an e.m.m. Q ∈ ΘG

P
(S̃), we say that the Q-local martingale S̃ enjoys the

predictable representation property5 (under Q), if every (Q,G)-local martingale M
can be written M =M0 +m � S̃, where M0 belongs to G0 and m � S̃ is the process∫ t

0 msdS̃s with m a G-predictable locally bounded process. If S̃ enjoys the PRP,
the market is complete. When only considering probabilities equivalent to a given
one (in our case the historical probability P), it is straightforward that if ΘG

P
(S̃)

restricted to GT is a singleton, PRP holds under this martingale probability and the
market is complete.

2 Credit Modelling Framework

We work in this study within a progressive enlargement of filtration set-up, so that to
study the pricing of derivatives written on underlyings sensitive to a credit event τ .

4Sn+1 will represent in the sequel an asset on which may be read the occurrence of the credit event,
at the opposite of the n+ 1 first ones.
5General presentations of PRP are available in Revuz and Yor [32], Jacod and Shiryaev [19] or
Protter [31].
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We refer the reader to Elliott et al. [14] or to Jeanblanc and Rutkowski [24] for
a detailed presentation of this approach, and to Jeanblanc and Le Cam [23] for the
reasons that lead us to adopt it in this context.

In this framework, we shall split the information induced by the market into two
components: a first one generated by what will be called the default-free assets,
and a second by the knowledge of the occurrence of a credit event (the probability
of occurrence of this event will depend on factors adapted to the first filtration).
Precisely, two sources of information are introduced, the reference filtration and the
default-sensitive asset.

2.1 The Two Information Flows

The reference filtration. We consider an (n + 1)-dimensional vector S of assets
S0, . . . , Sn and its natural filtration F, that will be referred to as the reference fil-
tration6 in the sequel.7 These assets may be shares, vanilla options, interest rates,
change rates, etc.: All listed information that may be used by the market to build its
anticipations on the probability of occurrence of the risk—and impact the bid-ask
price of instruments written on τ . For example, if τ is the default time of a bond
issued by a firm X, it is in general not a stopping time with respect to the filtration
generated by the stock of X, or by interest rates (even it is far from being indepen-
dent of such variables). The information flow F does not contain the information of
the occurrence of the credit event, i.e., τ is not an F-stopping time.

We denote by ΘF

P
(S) the set of F-e.m.ms.8 The next hypothesis will be system-

atically imposed on the model, and implies the absence of arbitrage in the reference
market:9 ΘF

P
(S) is not empty. This hypothesis will hold until the end of the article.

Default-sensitive asset. We introduce an asset Sn+1, that bears direct information
on τ , i.e., that satisfies:

Ht ⊂ σ(Sn+1
s ,0≤ s ≤ t)⊂Ht ∨Ft for any t ≥ 0, (1)

where the notation H = (Ht , t ≥ 0) stands for the natural augmentation of the fil-
tration generated by the process Ht = 1τ≤t . This filtration models the knowledge of
the occurrence of the credit event.

6In [3] Bélanger et al. refer to F as the non firm specific information. For us, this information flow
must be considered as the “market risk” information, and can bear assets linked to the firm, for
example its equity or even its directly its spread risk, see later.
7If needed, we set Fs =FT for s > T .
8The set of probabilities Q defined on A , equivalent to P on A , such that S ∈M loc(F,Q), i.e.,
such that the process S = (St , t ≤ T ) is an (F,Q)-local martingale.
9Recall that we have assumed null interest rate to ease the presentation.
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This relation explains the fact that the default can be read on the paths of Sn+1,
and that this asset can be priced in terms of τ and F (think of a risky bond, a de-
faultable zero-coupon or a credit default swap).10

We denote by S̃ the vector (S0, S1, . . . , Sn+1) = (S,Sn+1), and by G = F ∨H,
the natural augmentation of the filtration generated by S̃ (the full information of the
market).

2.2 Financial Interpretation of This Decomposition

In terms of risk analysis, Sn+1 bears in general two types of risks (we consider in
this survey only the single default case, hence do not enter in a discussion about the
correlation risk):

• a “market risk”—typically a spread risk, i.e., the natural variation of the price of
the asset when time goes on without default;

• a jump risk—the specific risk of default, due to the occurrence of τ .

This framework is based on the assumption that the market risk can be hedged
with F-adapted instruments, and that the jump risk relies on H-adapted instruments.
Two points of view can be considered to justify this assumption.

1. The first one—based on economic analysis—lies on the observation that the
spread risk is mainly ruled out by the same noise sources as the assets that generate
the reference filtration. For example:

• In the context of firm bonds pricing, Bélanger et al. link in [3] the spread risk of
the defaultable zero-coupon to the stochastic interest rates. In such a modelling,
the credit event is constructed as the hitting time of an independent random barrier
by an increasing F-adapted increasing process (the F-intensity), where F is the
filtration bearing the stochastic interest rates movements.

The parameters of the intensity process may depend on the firm (see also
Ehlers and Schönbucher [12], where the authors insist on the rôle of the systemic
risk implied by the interest rates on a portfolio of credit risks).

• Moreover in a very close matter, Carr and Wu in [7] or Cremers et al. in [9] show
that corporate CDS spreads covary with both the stock option implied volatilies
and skewness.

It confirms that the factors ruling out the movements of the spreads are linked
to the variations of the interest rate and of the equity (and its volatility).

• In the context of modelling CDS on debt issued by states (in their example Mexico
and Brazil), Carr and Wu study in [8] the correlation between the currency options
and the credit spreads. They prove that these quantities are deeply linked and
propose a model in which the alea driving the intensity of the default is composed
by the sum of a function of the alea of the stochastic volatility of the FX (see
Heston [16]), and an independent noise (see also Ehlers and Schönbucher in [13]).

10CDS will refer to Credit Default Swap in the sequel.
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• More generally, this vision is shared by the supporters of structural modelling, in
which the default time is triggered by a barrier reached by the equity value (see
Merton [29] or Black and Cox [5] for example). In [2], Atlan and Leblanc model
the credit time as the reaching time by the Equity of the firm of value zero, the
stock following a CEV (see also Albanese and Chen [1] or Linetsky [28]).

2. The second one is based on the introduction of a new noise source, this alea
driving the spread risk, considered as having its own evolution (both approaches
can be combined). In this construction as well, the “market risk of the defaultable
security” does not contain the default occurrence knowledge, and can be sorted in
the F-information with the other “market risks sensible” assets.

In practice, it is easy to synthesize an asset that is sensible to this spread risk and
not to the jump risk. Take two instruments as Sn+1 of different maturity for example,
denoted by X1 and X2, and assume the market risk is modelled by a (risk-neutral)
Brownian motion W . Assume that M is the compensated martingale associated to
H , and that dXi

t = βit dMt + δit dWt under the e.m.m. Set up the self-financed port-
folio Π that is long at any time of β2

t of the asset X1 and short of β1
t of X2 (and

has a position in the savings account to stay self-financed). This portfolio has only
sensitivity against the spread risk, and does not jump with τ . Indeed,

dΠt = rΠtdt + β2
t dX

1
t − β1

t dX
2
t = rΠtdt + (β2

t δ
1
t − β1

t δ
2
t )dWt .

Remark that with a δ-combination (instead of the β-combination), we can set up
a portfolio only sensible of the jump risk (and that has no spread risk):

dΠ ′
t = rΠ ′

t dt + δ2
t dX

1
t − δ1

t dX
2
t = rΠ ′

t dt + (β1
t δ

2
t − β2

t δ
1
t )dMt .

The two points of view (that need to be combined to achieve a maximum of pre-
cision in calibration procedures) converge on the idea that splitting the information
of the market in two sub-filtrations is finally quite natural. Another nomenclature
may consist in “market risk filtration” for F, and “default risk filtration” for H.

2.3 Absence of Arbitrage

Starting from a reference market with no arbitrage, the absence of arbitrage of the
full market is not automatic and deeply depends on the nature of τ . For it to hold,
it is necessary to work in a mathematical set up where F-semi-martingales remain
G-semi-martingales.11

As developed in Jeanblanc and Le Cam [23], this property does not hold for
any random time τ , and we choose to work in all the paper, under the following
condition on τ .

11So that ΘG

P
(S̃) be not empty.
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Hypothesis H1 The credit event is an initial time, that is, there exists a family of
processes (αu,u ∈ R

+) such that for any u ≥ 0, the process (αut ,0 ≤ t ≤ T ) is an
F-martingale and that satisfies

P(τ > θ |Ft )=
∫ ∞

θ

αut du

for any θ ≥ 0, and any t ≤ T .

There exists a O(F ⊗ B)-measurable version12 of the mapping (ω,u, t)→
αut (ω), right-continuous with left limits.13 We shall consider this version in the se-
quel. In our setting, the law of τ admits a density w.r.t. Lebesgue measure, equal
to αu0 . In the general definition of initial times, α0(u)du may be replaced by any
probability measure on R

+ ν(du).
We denote by G the Azéma super-martingale

Gt := P(τ > t |Ft ).

We write G = Z − A the F-Doob-Meyer decomposition of this super-martingale
(of class (D)). From hypothesis H1, every (F,P)-martingale X is a (G,P)-semi-
martingale, and if the F-martingales are continuous:

Xt −
∫ t∧τ

0

d〈X,Z〉u
Gu−

−
∫ t

t∧τ
d〈X,αθ 〉u

αθu−

∣
∣
∣
∣
θ=τ

∈M (G,P) (2)

(see Jeanblanc and Le Cam [22]).

Proposition 1 When the law ν of the initial time τ has no atoms, for example under
the hypothesis H, it avoids the F-stopping times, i.e.,

P(τ = T )= 0, ∀T finite F-stopping time.

Proof This result is a consequence of Lemma 2 of [22], that states that if τ is an
initial time and if T is a finite F-stopping time,

E(1{τ=T }|FT )= αTT ν({T }) a.s.

It follows that if ν has no atoms,

P(τ = T )= E(1{τ=T })= 0,

hence τ avoids the F-stopping times. �

As we shall focus on in this paper in change of probabilities, it is necessary
to ensure that the initial property does not depend on the historical probability. It
follows from:

12The σ -field O(F⊗B) is the optional σ -field on (Ω ×R
+)× [0, T ].

13See Jacod [18] for a presentation of the paths regularity of the martingale density family.
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Proposition 2 If τ is an initial time under P, and if Q is a probability measure
equivalent to P, then τ is a Q-initial time.

Proof The definition of τ being an initial time can be formulated in the following
way: if QP

t denotes a regular version of the conditional law of τ : Qt(ω, ]θ,∞[) :=
P(τ > θ |Ft )(ω), there exists a deterministic measure ν such that QP

t (ω, dθ)�
ν(dθ) P-a.s. As two equivalent probabilities have the same null sets, if Q∼ P,
Q

Q

t (ω, dθ)� ν(dθ) Q-a.s., and the proposition is proved. The following alterna-
tive proof allows to derive the new martingale density.

Let (ηt , t ≥ 0) be the G-martingale which is the Radon-Nikodym density of Q

w.r.t. P

dQ|Gt
= ηtdP|Gt

.

Let T be fixed and θ, t < T . Then, the Bayes rule implies:

Q(τ > θ |Ft )= E
Q((1−Hθ)|Ft )= E

P((1−Hθ)ηT |Ft )

EP(ηT |Ft )

since (1−Hθ) is Gθ hence GT -measurable. Assume in a first step that ηT = η̃T h(τ ∧
T ) where η̃T is a (bounded) FT -measurable random variable and h is a (bounded)
deterministic function. We have:

E
P((1−Hθ)ηT |Ft ) = E

P((1−Hθ )̃ηT h(τ ∧ T )|Ft )

= E
P(̃ηT E

P((1−Hθ)h(τ ∧ T )|FT )|Ft )

= E
P

(

η̃T

∫ ∞

θ

h(u∧ T )αuT du

∣
∣
∣ Ft

)

=
∫ ∞

θ

E
P(̃ηT α

u
T |Ft )h(u∧ T )du

It follows that

Q(τ > θ |Ft )=
∫ ∞

θ

E
P(̃ηT α

u
T |Ft )

EP(ηT |Ft )
h(u∧ T )du.

Moreover, if μT denotes the FT -density of Q w.r.t. P, i.e., dQ|FT
= μT dP|FT

,
μT writes

μT = E
P(ηT |FT )= η̃T E

P(h(τ ∧ T )|FT )= η̃T

∫ ∞

0
h(u∧ T )αuT du := η̃T φT .

We now introduce the family of (F,Q)-martingales α̂u. , defined for any u≥ 0 by

α̂ut := h(u∧ T )EQ(αuT /φT |Ft ).
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Bayes rule implies:

E
Q(αuT /φT |Ft )= E

P(αuT μT /φT |Ft )

EP(μT |Ft )
= E

P(αuT η̃T |Ft )

EP(ηT |FT |Ft )
= E

P(̃ηT α
u
T |Ft )

EP(ηT |Ft )
,

and that, for any T , for any t, θ < T ,

Q(τ > θ |Ft )=
∫ ∞

θ

α̂ut du,

which means that τ is an F-initial time under Q. The general case follows by appli-
cation of the monotone class theorem. �

Remark 1 When the credit event avoids the F-stopping times, immersion property
under the probability measure P—M (F,P)⊂M (G,P)—is equivalent to the prop-
erty that for any u≥ 0, the martingale αu is constant after u (see Jeanblanc and Le
Cam [22]), i.e.,

αut = αut∧u, for any (u, t)≥ 0 (3)

That is the case under hypothesis H.
We recall that immersion property is not preserved by a change of probability

(see for example Kusuoka [27]).

3 Representation Theorem in the Enlarged Filtration

Under hypothesis H1 the F-martingales are G-semi-martingales and the initial time
property is stable when changing the probability. We also assume, to ease the proofs
the following condition:

Hypothesis H2 The process S is continuous.

This hypothesis will hold until the end of the paper. The aim of the following
first subsection is to prove that under a progressive enlargement of a filtration by an
initial time, if the reference filtration F enjoys a predictable representation property,
the enlarged filtration G enjoys the same property. The goal of the second one is to
apply this result to the description of all the G-martingales and to parameterize the
change of equivalent probabilities.

3.1 Representation of the G-Martingales

We starting this section by defining the:

Hypothesis H3 We assume that the F-market is complete and arbitrage free, i.e.,
that the (F,P∗)-local martingale S enjoys the PRP (with P

∗ ∈ΘF

P
(S)).
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As a consequence of Hypotheses H2 and H3, F-martingales are continuous (in
particular the densities). We start with a brief presentation of the two fundamental
(local) martingales on which we shall prove that any G-martingale can be repre-
sented.

The first one, M , is the martingale part of the Doob-Meyer decomposition of
the increasing G-adapted process H . It is well known (see for example, Bielecki
and Rutkowski [4]) that with no particular condition on τ , the G-compensator of H
writes: (1−H)dA/G−, where A is the F-compensator of the F-super-martingaleG,
hence

Mt =Ht −
∫ t∧τ

0

dAu

Gu−
.

From hypothesis H1, the conditional survival probability writes

Gθ
t := P

∗(τ > θ |Ft )=
∫ ∞

θ

αut du (4)

that allows to explicitly compute A, from

Gt =Gt
t =

∫ ∞

0
αut∧udu−

∫ t

0
αuudu≡ Zt −At, (5)

and to conclude (using that G is continuous):

Mt =Ht −
∫ t

0

1−Hu

Gu

αuudu. (6)

The second one is the local martingale part of the decomposition of the special G-
semi-martingale S (H1 implies that the F-martingales remain G-semi-martingales
from (2), and we will see that the form of τ makes them special). From the PRP
of F, there exist:

• An n-dimensional F-predictable process z= (z1, . . . , zn) such that Z (defined by
(5)) writes

Z = Z0 + z � S,

where z � S stands for the process t $−→∑
i≤n

∫ t

0 z
i
sdS

i
s ,• A family of n-dimensional F-predictable processes a, such that for any u≥ 0 the

(F,P∗)-martingale αu writes

αu = αu0 + au � S,

where au � S stands for the process t $−→∑
i≤n

∫ t

0 a
u,i
s dSis .

The quadratic covariations 〈S,Z〉 and 〈S,αθ 〉 are well defined, and from (2), the
process

Ŝt := St −
∫ t

0

(1−Hs)

GS

d〈S,Z〉S + HS

αθS
d〈S,αθ 〉s |θ=τ (7)
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is a (G,P∗)-local martingale. It follows that for any i ≤ n

Ŝit = Sit −
∫ t

0

(
1−HS

GS

zS + HS

ατs
aτs

)

· d〈Si, S〉s := Sit −Ct ,

where z · d〈Si, S〉 (resp. aτ · d〈Si, S〉) stands for d〈Si, z � S〉 (resp. d〈Si, aτ � S〉).
Predictable representation. The next theorem establishes a predictable represen-

tation property for G-local martingales under P
∗, as soon as the F-market enjoys this

predictable representation property. Indeed, any η which belongs to M loc(G,P∗)
will write as the sum of an integral14 with respect to the (G,P∗)-martingale M and
an integral with respect to the (G,P∗)-local martingale Ŝ. This result extends the
representation theorem by Kusuoka [27] to any complete reference market and to
the case where immersion does not hold.

Theorem 1 Assume that H1 to H3 hold. Denote by Ŝ the local martingale part
of the decomposition of S as G-semi-martingale, given by (7). For every η ∈
M loc(G,P∗), there exist n+ 1 G-predictable processes β and γ such that

ηt = η0 + (β �M)t + (γ � Ŝ)t .

Proof Without loss of generality we prove the theorem for n= 1 (considering only
one component of the vector S), to ease the notations. The vectorial version of the
proof is a straightforward generalization. By localization, we only consider martin-
gales. Let η ∈M (G,P∗), and as we are only interested in finite time horizon, we
write ηt = E

∗(ηT |Gt ) for t < T . By a monotone class argument, we reduce ourself
to the case where ηT writes FT h(τ ∧ T ), with FT ∈FT , assumed to be bounded
and h is a (bounded) deterministic function. We split the problem in three parts:

ηt = E
∗(FT h(T )1τ>T |Gt )+E

∗(FT h(τ)1τ≤T |Gt )

= at +E
∗(FT h(τ)1τ≤T |Gt )

= Lth(T )E
∗(FT GT |Ft )︸ ︷︷ ︸
at

+LtE
∗(FT h(τ)1t<τ≤T |Ft )

︸ ︷︷ ︸
bt

+HtE
∗(FT h(τ)1τ≤t |Ft ∨ σ(τ))

︸ ︷︷ ︸
ct

with Lt = (1 − Ht)/Gt = Dt(1 − Ht) ∈M (G,P∗), where Dt = G−1
t . From the

decomposition (5), we have dGt =−αtt dt + ztdSt , and from Itô’s formula, dDt =
D2
t (α

t
t dt + z2

t Dtd〈S〉t )−D2
t zt dSt .

Let us start by developing a: We first remark that the process a defined by at :=
Lth(T )E

∗(FT GT |Ft ) is a G-martingale, so one knows in advance that this partic-
ular semi-martingale has a null predictable bounded variation part; nevertheless, we

14Recall for any X ∈H1, one has E([X,M]∞)= EXτ ≤ ‖X‖H1 hence M is a BMO (the dual of
H1) martingale.
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keep all these terms in our computation. The process N where Nt := E
∗(FT GT |Ft )

is an F-martingale, and writes by representation theorem n+∫ t

0 nsdSs, with (ns, s ≥
0) predictable. Since S,D andN are continuous, [S,H ] = 0, [D,N ] = 〈D,N〉, and,
from (h(T ))−1at = (1−Ht)DtNt , one gets

(h(T ))−1dat = −DtNtdHt + (1−Ht)DtdNt + (1−Ht)NtdDt

+ (1−Ht)d〈D,N〉t
= −DtNtdHt + (1−Ht)DtntdSt + (1−Ht)NtD

2
t α

t
t dt

+ (1−Ht)Ntz
2
t D

3
t d〈S〉t − (1−Ht)NtD

2
t zt dSt

− (1−Ht)D
2
t nt zt d〈S〉t

= −DtNtdMt − (1−Ht)D
2
t Ntα

t
t dt + (1−Ht)(Dtnt −NtD

2
t zt )dSt

+ (1−Ht)NtD
2
t α

t
t dt + (1−Ht)(NtztDt − nt )D

2
t zt d〈S〉t .

In the third equality, we have used that the G-Doob-Meyer decomposition of the
increasing process H writes dHt = dMt + (1 − Ht)Dtα

t
t dt (from dAt = αtt dt),

with M ∈M (G,P∗) (see (6)). Moreover St = Ŝt + Ct with Ŝ ∈M (G,P∗), and
from (7) (1−Ht)dCt = (1−Ht)ztDtd〈S〉t . It follows

(h(T ))−1dat = −DtNtdMt + (1−Ht)(Dtnt −NtD
2
t zt )dŜt

+ (1−Ht)((Dtnt −NtD
2
t zt )ztDt +Ntz

2
t D

3
t − ntD

2
t zt )d〈S〉t

= −DtNtdMt + (1−Ht)(Dtnt −NtD
2
t zt )dŜt .

To explicit the decomposition of the special G-semi-martingale b, where bt =
LtE

∗(FT h(τ)1t<τ≤T |Ft ), we introduce for any u ≥ 0 the F-martingale Nu
t =

E
∗(FT αuT |Ft ) and its decomposition on S : Nu

t = yu + ∫ t

0 y
u
s dSs provided by the

martingale representation theorem on F. By definition of initial times, it follows:

bt = LtE
∗
(

FT

∫ T

t

h(u)αuT du

∣
∣
∣ Ft

)

= Lt

∫ T

t

h(u)Nu
t du

hence, one can differentiate using Itô Wentcell formula:

dbt = −Dt

(∫ T

t

h(u)Nu
t du

)

dHt + (1−Ht)

(∫ T

t

h(u)Nu
t du

)

dDt

− (1−Ht)Dth(t)N
t
t dt + (1−Ht)Dt

(∫ T

t

h(u)yut du

)

dSt

− (1−Ht)D
2
t zt

(∫ T

t

h(u)yut du

)

d〈S〉t
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and, introducing the G-decomposition of the semi-martingale S and the compen-
sator of H , we obtain finally:

dbt = −Dt

(∫ T

t

h(u)Nu
t du

)

dHt

+ (1−Ht)

(

αttD
2
t

∫ T

t

h(u)Nu
t du−Dth(t)N

t
t

)

dt

+ (1−Ht)

(

Dt

∫ T

t

h(u)(yut −DtN
u
t zt )du

)

dSt

− (1−Ht)

(

D2
t zt

∫ T

t

h(u)(yut −DtN
u
t zt )du

)

d〈S〉t

= −Dt

(∫ T

t

h(u)Nu
t du

)

dMt

+ (1−Ht)

(

Dt

∫ T

t

h(u)(yut −DtN
u
t zt )du

)

dŜt − (1−Ht)Dth(t)N
t
t dt.

Decomposition of c. We can write ct = HtE
∗(FT h(τ)1τ≤t |Ft ∨ σ(τ)) =

HtF(t, τ ), where for each u ≥ 0 the random variable F(t, u) is Ft -measurable
and for any t ≥ 0, u $−→ F(t, u) is a Borel function. Using the properties of initial
times, we compute from last expression F(t, u) = h(u)Nu

t /α
u
t . For any u ≥ 0, the

dynamics write (using dNu
t = yut dSt and dαut = aut dSt ):

dtF (t, u)= h(u)

(
yut

αut
− Nu

t a
u
t

(αut )
2

)

dSt + h(u)

(

Nu
t

(aut )
2

(αut )
3
− aut y

u
t

(αut )
2

)

d〈S〉t .

It follows that, since
∫ t

0
F(s, τ )dHs = F(τ, τ )1τ≤t =

∫ t

0
F(s, s)dHs,

we can write the decomposition of c:

dct = F(t, τ )dHt +Hth(τ)

(
yτt

ατt
− Nτ

t a
τ
t

(ατt )
2

)

dSt

+Hth(τ)

(
Nτ
t (a

τ
t )

2

(ατt )
3
− aτt y

τ
t

(ατt )
2

)

d〈S〉t

= F(t, t)dMt +Hth(τ)

(
yτt

ατt
− Nτ

t a
τ
t

(ατt )
2

)

dŜt + (1−Ht)DtF (t, t)α
t
t dt

+Hth(τ)

(
yτt

ατt
− Nτ

t a
τ
t

(ατt )
2

)

dCt +Hth(τ)

(
Nτ
t (a

τ
t )

2

(ατt )
3
− aτt y

τ
t

(ατt )
2

)

d〈S〉t
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= F(t, t)dMt +Hth(τ)

(
yτt

ατt
− Nτ

t a
τ
t

(ατt )
2

)

dŜt + (1−Ht)DtF (t, t)α
t
t dt

where the last equality comes from the expression (7) of dC on {τ ≤ t}.
Conclusion. Adding the three parts a, b, and c, we conclude, since F(t, t)αtt =

h(t)Nt
t , that the G-martingale can be decomposed on the two martingales (M, Ŝ)

and writes:

dηt = γtdŜt + βtdMt

where

γt = (1−Ht)Dt

(

(nt −NtDtzt )h(T )+
∫ T

t

h(u)(yut −Nu
t Dtzt )du

)

+Ht

(
yτt

ατt
− Nτ

t a
τ
t

(ατt )
2

)

βt = F(t, t)−Dt

(

Nth(T )+
∫ T

t

h(u)Nu
t du

)

which concludes the proof. �

3.2 Change of Probability

Once a probability P is given on A , each probability Q equivalent to P on GT

is fully described by its G-martingale density w.r.t. P. The representation theorem
established in the last section allows to describe all the (P,G)-martingales, hence to
describe all the probabilities equivalent to P on GT .

Applying Theorem 1 to the particular case of a strictly positive martingale—in
particular the density of a change of probability—we derive the

Proposition 3 If the filtration F is generated by the (F,P)-martingale S and enjoys
the PRP, and if η is a strictly positive (G,P)-martingale, then, there exists a pair of
predictable processes γ,β such that

dηt

ηt−
= γtdŜt + βtdMt ,

with β >−1, i.e., η= E (γ � Ŝ)E (β �M), with

{
E (γ � Ŝ)t = exp(

∫ t

0 γudŜu − 1
2

∫ t

0 γ
2
u d〈Ŝ〉u)

E (β �M)t = exp(
∫ t

0 ln(1+ βs)dHs −
∫ t

0 βs
1−Hs

Gs
αss ds).
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4 Complete Reference Market

In this section, we still make the assumption that the reference market is arbi-
trage free and complete: For any XT ∈ L2(FT ), there exist a constant x and n

F-predictable processes ϕi such that XT = x + ∫ T

0

∑
1≤i≤n ϕiudSiu (we recall that

we assume null interest rate). As recalled, this property is equivalent to the fact that
the restriction of ΘF

P
(S) on FT is a singleton (Jacod and Yor theorem [20]).

This assertion does not imply that there exists a unique probability measure Q

on A such that S is an (F,Q)-martingale, but that if two probabilities P
∗ and Q

∗
belong to ΘF

P
(S), then, their restriction to FT are equal: P

∗|FT
=Q

∗|FT
.

We shall prove in this section that the full market described by S̃ = (S0, . . . , Sn+1)

is also complete, and study the links of this property with immersion. Precisely,

• The first subsection describes the set ΘG

P
(S), i.e., the set of probabilities equiv-

alent to P on GT such that the (n + 1)-dimensional process S remains a local-
martingale15);

• The second subsection describes the unique martingale measure on the full mar-
ket, i.e., the unique element of ΘG

P
(S̃);

• The third subsection presents the links of this construction with the immersion
property.

4.1 Description of the G-Martingale Probabilities

In this first section, we study the behaviour of the reference assets in the full mar-
ket, i.e., the properties of the (F,P)-martingale S viewed as a G-adapted process.
The goal of this part is to describe the set ΘG

P
(S) of probabilities under which this

G-semi-martingale16 is a martingale
Before stating the proposition, we start by a technical remark. The following

proof is based on the martingale property of the process η = E (&) := E (−ϑ � Ŝ)

where

ϑt = (1−Ht)
zt

Gt

+Ht

aτt

ατt
. (8)

As Ŝ is a (G,P∗)-martingale, η is a local-martingale, and extra conditions have to
be assumed so that it be a true martingale and might be used for changing the prob-
ability. However, the conditions on the process−ϑ � Ŝ may be brought to F-adapted
processes, in the following way.

15We shall prove that the restrictions of ΘF

P
(S) and ΘG

P
(S) on FT are the same.

16Recall that the initial property of τ (H2 holds) ensures that S remains a G-semi-martingale.
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Define by R the process
∫ t

0 dZu/Gu, and Φt =
∫ t

0 (1 − Hu)
zu
Gu

dŜu. If R ∈
M (F,P),

R̂t = Rt −
∫ t∧τ

0

d〈R,Z〉u
Gu

−
∫ t

t∧τ
d〈R,αθ 〉u

αθu

∣
∣
∣
∣
θ=τ

= Rt −
∫ t

0
ϑu

zu

Gu

d〈S〉u ∈M (G,P)

hence17 Φt =
∫ t

0 (1−Hu)dR̂u ∈M (G,P). For the same reasons, if we define the
family of processes Rx

t =
∫ t

0 dα
x
u/α

x
u , and Φx

t =
∫ t

0 Hua
x
u/α

x
udŜu for any x ≥ 0, the

condition Rx ∈M (F,P) implies Φx ∈M (G,P). Indeed,

R̂x
t = Rx

t −
∫ t∧τ

0

d〈Rx,Z〉u
Gu

−
∫ t

t∧τ
d〈Rx,αθ 〉u

αθu

∣
∣
∣
∣
θ=τ

= Rx
t −

∫ t

0
ϑu

axu

αxu
d〈S〉u ∈M (G,P)

and18 Φx
t =

∫ t

0 HudR̂x
u ∈M (G,P).

It follows that if R and Rx (whose definitions only depends on the construction
of the random time) are F-martingales, & is an G-martingale. In the same way, if
these processes satisfy a Novikov-type condition, & also satisfy one and the density
η is a true martingale. For example, if E(exp 2〈R〉∞) <∞ and E(exp 2〈Rx〉∞) < K

for any x ≥ 0, then &=Φ +Φτ satisfies Novikov criterion:

E exp

(
1

2
〈&〉∞

)

≤ E exp〈Φ〉∞ exp〈Φτ 〉∞

≤ (E exp 2〈Φ〉∞)1/2(E exp 2〈Φτ 〉∞)1/2

and the result follows from

〈Φ〉∞ =
∫ t

0
(1−Hu)d〈R̂〉u =

∫ t

0
(1−Hu)d〈R〉u ≤ 〈R〉∞

〈Φτ 〉∞ =
∫ t

0
Hud〈R̂τ 〉u =

∫ t

0
Hud〈Rτ 〉u ≤ 〈Rτ 〉∞.

Hypothesis H4 We assume that E (−ϑ � Ŝ) is a true martingale.

As noticed in the last lines, this hypothesis holds for example if R and Rx satisfy
a Novikov-type condition. Under this condition, we can prove the

17(1−Hu)dŜu = (1−Hu)(dSu − zuDud〈S〉u) ∈M (G,P).
18HudŜu =Hu(dSu − aθu

αθu
|θ=τ d〈S〉u) ∈M (G,P).
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Proposition 4 Assume that H1 to H4 hold. Then, the set ΘG

P∗(S) is not empty and
we can fully describe it as

ΘG

P∗(S)=
{

Q : dQ

dP∗

∣
∣
∣
∣
Gt

= E (−ϑ � Ŝ)tE (β �M)t

}

,

with ϑ given by (8), and β >−1 a G-predictable process.

Proof If the F-conditional survival process writes Gt = P
∗(τ > t |Ft ) = Zt − At ,

the (G,P∗)-dynamics of S follow the decomposition (7):

St = Ŝt +
∫ t

0
ϑud〈S〉u with Ŝ ∈M (G,P∗),

where ϑ was defined in (8). Hence P
∗ is not a G-e.m.m. From Proposition 3, the set

of G-e.m.m can be perfectly described as:

ΘG

P∗(S)=
{

Q : dQ

dP∗

∣
∣
∣
∣
Gt

= E (−ϑ � Ŝ)tE (β �M)t

}

,

where β is a G-predictable processes, taking values in ] − 1,∞[. As a check, under
such a probability Q, as Ŝ ∈M (G,P∗), one has, setting ηt =Q : dQ

dP∗ |Gt

Ŝt −
∫ t

0

d〈Ŝ, η〉u
ηu

= Ŝt −
∫ t

0
d〈Ŝ,−ϑ � Ŝ + β �M〉u

= Ŝt +
∫ t

0
ϑud〈S〉u = St

where the second equality comes from the fact that 〈Ŝ〉 = 〈S〉 and 〈Ŝ,M〉 = 0, since
Ŝ is continuous and M purely discontinuous. It follows from Girsanov’s theorem
that S is a (G,Q)-martingale. �

As a conclusion, there exists at least a probability Q such that S is a (G,Q)-
martingale. We shall see in the immersion part that the drift relative to the change
of probability may be interpreted as a risk premium.

4.2 Completeness of the Full Market

When considering also a (n+ 2)th asset Sn+1 satisfying condition (1), we shall be
able to select an e.m.m., in a unique way, and prove that the market defined by the
price process S̃ is complete.
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4.2.1 The Default-Sensitive Asset

We start this section by emphasizing that it is necessary to introduce the asset Sn+1

to the collection (S0, . . . , Sn) when working on derivatives whose pay-off depends
on τ : It is not possible to hedge the jumping risk with F-adapted assets and without
such a product.

Let us consider for example a credit default swap19 (CDS). To ease the discus-
sion we take a continuous tenor, with a proportional continuous premium κ , and a
constant recovery fee δ (S0

t denotes the saving account, i.e., the value at t of one unit
invested at 0, and Q a martingale measure associated to this numeraire—that exists
by absence of arbitrage). The price of a CDS is the difference between the value of
the protection leg and the premium leg: CDS(t, δ, κ, T )= Prott − Premt with

Premt = S0
t κE

(∫ T

t

1−Hu

S0
u

du

∣
∣
∣
∣Gt

)

= (1−Ht)
S0
t κ

Gt

∫ T

t

E

(
1−Hu

S0
u

∣
∣
∣
∣Ft

)

du

and

Prott = S0
t δE

(∫ T

t

dHu

S0
u

∣
∣
∣
∣Gt

)

= (1−Ht)
S0
t δ

Gt

∫ T

t

E

(
(1−Hu)α

u
u

S0
uGu

∣
∣
∣
∣Ft

)

du.

Both legs have a value whose variation may be due to two factors: (i) F-events
(through the F-conditional expectation), that evolve according to the alea struc-
ture underlying the filtration F, and (ii) H events, mainly the occurrence of default
(through the expression 1−H ). Whereas it is reasonable to think that—under suit-
able assumptions—the “market/spread” variation of the value of the CDS (linked to
the F-events) may be hedged with F-adapted instruments, the “jump” risk being not
F-adapted will not be hedgeable with assets of the reference market F. It follows
that a model containing only F-adapted assets S would not be able to remove the
jump risk of defaultable portfolios.

For quoted instruments like CDS, a formula like above allows to calibrate the
parameters involved in the construction of the default time. A natural class of assets
for Sn+1 would be the risky bonds associated to τ or a CDS.

4.2.2 The Unique Martingale Probability

We introduce the asset Sn+1 that is sensitive to the jump risk, i.e., for any t , the r.v.
τ ∧ t is σ(Sn+1

s , s ≤ t)-measurable.20 Our aim is to prove that if the F-market is
complete, the G-market is complete as well, under weak assumption on Sn+1.

19Contract in which the holder buys a protection in paying a premium at each date of a tenor to the
seller until a predefined credit event occurs, and receives a recovery fee if default occurs.
20Precisely w.r.t. its natural augmented càd version.
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From Hypothesis H1, the F-compensator of G writes dAt = αtt dt . From

dMt = dHt − 1−Ht

Gt

αtt dt, (9)

we can derive the quadratic variation of process M :

[M]t = [H ]t =
∑

s≤t
�H 2

s =
∑

s≤t
�Hs =Ht,

since the two processes of the right-hand member of the equality (9) have finite
variation paths and the second one is continuous. It follows that

[M]t −
∫ t

0

1−Hs

Gs

αss ds =Mt ∈M (G,P),

hence that the angle brackets 〈M〉 exist and satisfy d〈M〉t = (1−Ht)α
t
t /Gtdt .

According to the last section, we consider the following framework for the full
market:

1. Reference assets. The “reference” assets are defined under the historical prob-
ability P by:

{
dSt = btdt + dS∗t
S0 = x,

where S∗ ∈M (F,P) continuous has a quadratic variation assumed to be absolutely
continuous w.r.t. Lebesgue measure, d〈S∗〉t = stdt . Let Ŝ be the (G,P)-martingale
part of the decomposition of S∗ viewed as a G-semi-martingale, which writes:

dŜt = dS∗t − ctdt,

with

cu = (1−Hu)zusu/Gu +Hua
τ
usu/α

τ
u = suϑu,

with previous notations. It follows that the G-decomposition of the semi-martingale
S writes under the historical probability P:

dSt = (bt + ct )dt + dŜt := νtdt + dŜt .

2. Default sensitive asset. We postulate for the asset Sn+1 the general form:

dSn+1
t = μtdt + εtdŜt + ζtdMt ,

where μt is a drift term and the three processes μ,ε and ζ are G-predictable, and
where ζt does not vanish (such a decomposition is quite general, from Theorem 1,
the only assumption being the absolute continuity of the drift w.r.t. Lebesgue mea-
sure).

We can state the most important result of this part.
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Theorem 2 Assume that the reference market F is complete. If H1 to H5 hold and
if the quadratic variation of S and the drifts of the assets are absolutely continuous
w.r.t. Lebesgue measure the full market composed of S̃ is complete.

Proof The set of martingale probabilities that make S a G-martingale writes, by
Proposition 3:

ΘG

P
(S) =

{

Q∼ P,∃γ,βG predictable β < 1,

dQ

dP

∣
∣
∣
∣
Gt

= ηt = E (−γ � Ŝ)tE (−β �M)t

}

.

It follows that the exists a unique G-e.m.m, i.e., a unique probability that makes
S̃ = (1, S1, . . . , Sn, Sn+1) a G-martingale. It is defined by:

γt = νt , and βt =Gt

μt − εtνt

αtt ζt
,

by application of Girsanov’s theorem. �

Once this probability has been defined, it is possible to price and hedge the
τ -sensitive claims with (S0, . . . , Sn+1), like for example CDS on τ (of shorter ma-
turities if Sn+1 is a CDS ) or derivatives written on Sn+1.

4.3 Immersion Property

We shall emphasize in this section the deep links between immersion and complete-
ness. We start with some general results, precise them in the case where the credit
event is an initial time and conclude with some considerations about the credit risk
premium.

4.3.1 Immersion and Completeness in an Arbitrage Free Set Up

Proposition 5 Assume that (i) the reference market is complete and (ii) the full
market is arbitrage free. Then:

1. The restrictions of all the G-e.m.m. on FT are the same and
2. Immersion holds under every G-e.m.m.

Proof 1. The restrictions of all the G-e.m.m. on FT are the same. For any
Q ∈ΘG

P
(S̃), it is straightforward21 that Q ∈ΘF

P
(S). As the reference market is com-

plete and S is finite dimensional, the restriction of all the Q’s to the σ -algebra FT

is unique: All the e.m.ms of the full market have the same restriction on FT .

21ΘG

P
(S̃)⊂ΘG

P
(S)⊂ΘF

P
(S), because S is F-adapted.
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2. Immersion holds under every G-e.m.m. Indeed if P1 holds, let Q ∈ΘG

P
(S)

and X ∈M 2(F,Q), with Xt = E
Q(XT |Ft ). As recalled above, the completeness

of the market implies the existence of a constant x and F-predictable processes
(ϕi, i = 1, . . . , n) such that XT = x + ∫ T

0

∑
1≤i≤n ϕiudSiu. Therefore,

E
Q(XT |Ft )= x +

∑

1≤i≤n

∫ t

0
ϕiudS

i
u +E

Q

(∫ T

t

ϕiudS
i
u

∣
∣
∣Ft

)

= x +
∑

i≤n

∫ t

0
ϕiudS

i
u,

where the first equality comes from the fact that the random variable
∫ t

0 ϕ
i
udS

i
u is

Ft -measurable (the process ϕi is F-predictable), and the second, from the fact that
the process

∫ ·
0 ϕ

i
udS

i
u is a (G,Q)-martingale (ϕ is G-predictable and Q ∈ΘG

P
(S)),

and an (F,Q)-martingale since it is F-adapted. Hence E
Q(

∫ T

t
ϕiudS

i
u|Ft ) = 0 and

E
Q(

∫ T

t
ϕiudS

i
u|Gt )= 0. Therefore

E
Q(XT |Ft )= x +

∑

i≤n

∫ t

0
ϕiudS

i
u +E

Q

(∫ T

t

ϕiudS
i
u

∣
∣
∣Gt

)

= E
Q(XT |Gt ),

hence X ∈M 2(G,Q) and immersion holds under Q. Such a result had already been
pointed out by Blanchet-Scaillet and Jeanblanc in [6]. �

4.3.2 Case Where the Credit Event is an Initial Time

The last result can be refined in the set up where the credit event is an initial time.
Indeed we shall prove the

Proposition 6 Assume that H1 to H4 hold. Then, immersion holds under any
Q ∈ΘG

P∗(S).

This result implies that immersion holds under any G-e.m.m22 for S (it does not
have to be a martingale probability of the full market).

Proof Let β be any predictable process such that βt > −1, and Q
β be the corre-

sponding e.m.m.:

• dQ
β |F∞ = dP

∗|F∞ . Indeed, for any bounded Ft ∈Ft with P
∗-null expectation,

Ft =
∫ t

0 fsdSs by PRP and

E
β(Ft ) = E

∗(Ftηt )= E
∗
(∫ t

0
ηsfsdSs +

∫ t

0
Fs dηs +

∫ t

0
fsd〈S,η〉s

)

22The set of G-e.m.m. is infinite, parameterized by the predictable processes β .
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= E
∗
(∫ t

0
ηsfsdSs +

∫ t

0
Fs dηs +

∫ t

0
fsϑsηsd〈Ŝ〉s

)

= E
∗
(∫ t

0
ηsfsdŜs +

∫ t

0
Fs dηs

)

= 0= E
∗(Ft ),

where the first equality is obtained by the integration by parts formula (f is pre-
dictable), the second comes from the definition of the dynamics of the density η

and the third from the definition of Ŝ, the expectation being null since Ŝ and η

belong to M (G,P∗). It follows that dQ
β |F∞ = dP

∗|F∞ .
• Let X be an (F,Qβ)-martingale. Then, it is a (F,P∗)-martingale (from the first

point) that writes dXt = xtdSt . From the decomposition formula in the change of
filtration

X̂t :=Xt −
∫ t

0
xuϑud〈S〉u ∈M (G,P∗),

and from the decomposition formula in the change of probability (Girsanov’s
theorem)

X̃t = X̂t −
∫ t

0

d〈X,η〉u
ηu

∈M (G,Qβ).

It remains to note (by definition of η) that

X̃t = X̂t +
∫ t

0
xuϑud〈S〉u =Xt,

hence that X ∈M (G,Qβ). It follows that immersion holds under Qβ .
�

It follows the important

Corollary 1 Assume that F is complete and that P
∗∈ΘF

P
(S). If the (F,P∗)-

conditional survival process G∗ has a non constant martingale part, P
∗ is not

a G-e.m.m., i.e., P
∗ /∈ΘG

P
(S).

Proof From (3), it follows that under immersion

Gt =
∫ ∞

0
αut∧udu−

∫ t

0
αuudu=

∫ ∞

0
αut du−At = P(τ > 0|Ft )−At = 1−At

hence G is decreasing and predictable. �

A broader class of credit event may be reached through a definition where the
martingale part of the survival process is not equal to zero (see [23]). Under such
a framework, immersion does not hold, which means that the “reference neutral-risk
probability” is not a neutral-risk probability. A change of measure has therefore to
be performed to re-enter a neutral-risk framework. Next section points out the links
of this remark with the credit risk premium.
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4.3.3 Credit Risk Premium

The last corollary may be interpreted in the following way. The change from the his-
torical probability P to a neutral-risk probability P

∗ aims at correcting the dynamics
from the market risk premium. It is well known that to any financial market can be
associated a risk premium. It characterizes the return over the risk-free return (the
interest rate) an investor may expect for bearing the risk of taking a long position on
a derivative written on this market.

Indeed if N is the martingale modelling the alea of this market, and if the asset’s
return writes:

dSt

St−
= μdt + σdNt ,

the dynamics of any derivatives written on S sold for a price Pt at a date t would
write dPt/Pt− = κdt + αdNt . A risk-free portfolio can be set-up in buying a quan-
tity Sσ of the derivative, for a total value of SσP and selling a quantity Pα of the
asset (completing by ςt of money market S0

t to remain self financed). The value of
this portfolio is Πt = ςtS

0
t + StσPt −PtαSt and the self-financing condition yields

dΠt = ςt rS
0
t dt + St−σdPt − Pt−αdSt

= ςt rS
0
t dt + σκStPtdt + ασSt−Pt−dNt − αPtStμdt − ασPt−St−dNt

= ((Πt − (σ − α)PtSt )r + (σκ − αμ)PtSt )dt.

By absence of arbitrage, the return of this risk-free portfolio must be equal to r , so
that:

(σκ − αμ)PtSt = r(σ − α)PtSt ⇐⇒ κ − r

α
= μ− r

σ
= λS.

On the reference market, the e.m.m. P
∗ corrects the historical probability P from

the market risk premium: If immersion does not hold under P
∗, it means the market

risk premium does not take into account the jump risk premium, and it is necessary
to change to a G-e.m.m. Q under which S remains a martingale.

5 Incomplete Markets

The question addressed in this last part is the adaptation of the above results in the
case where the reference market is incomplete.

When an incomplete model is chosen—in general for its ability to well repro-
duce a given class of (calibration) instruments and its dynamics property (regarding
to the products to price)—one is often conduced to focus on one particular mar-
tingale probability, even if the set of F-e.m.m. is not unique. The selection of the
e.m.m. is performed by the calibration procedure. The law of the price process is
then uniquely determined, and a change of probability within the set of F-e.m.m.
will change the price of the selected options or break the imposed constraints.
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We assume therefore in this section that an F-e.m.m has been chosen (for pricing
the default-free derivatives), hence we restrict our attention on a given F-e.m.m. P

∗
defined on A and equivalent to the historical probability P, such that S ∈M (F,P∗).

The purpose of this section is:

• To prove that there exists a unique probability measure Q equivalent to P
∗ such

that S̃ (defined in the last part as the (n+2)-uplet composed of the reference asset
S and Sn+1) is a (G,Q)-martingale, and that preserves the “reference pricing”,
i.e.,

E
Q(XT )= E

∗(XT ), for any XT ∈ L2(FT ).

• To prove that immersion property holds under this measure.

Recall that, from hypothesis H1 and H2, the random time τ is an initial time that
avoids the F-stopping times.

Recall that if X is a real valued local-martingale and Y a R
d -valued local-

martingale, a Galtchouck Kunita Watanabe decomposition of X is a decomposition
of the form X =X0 +H ∗ Y +L with H ∈ L2

loc(Y ) and L a local-martingale such
that L0 = 0 and strongly orthogonal23 to Y . It is classical that if Y is continuous or
locally square integrable, X admits a Galtchouck-Kunita-Watanabe decomposition
(Kunita and Watanabe [26], Galtchouck [15], Jacod [17]).

5.1 The Risk-Neutral Probabilities of the Full Market

Reference assets and ΘG

P∗(S). As in the complete case, we assume that S is contin-
uous and that its quadratic variation process is continuous w.r.t. Lebesgue measure,
d〈S〉t = stdt .

As S is continuous, there exist:

• for any u≥ 0, an F-predictable process au and a square integrable F-martingale
Nu strongly orthogonal to S and

• an F-predictable process z and a square integrable F-martingale NZ ∈M (F,P∗)
strongly orthogonal to S

such that the following Galtchouck-Kunita-Watanabe decompositions exist:

{
αu = αu0 + au � S +Nu

Z = Z0 + z � S +NZ
(10)

where Z = G + A. Moreover there exist optional versions of the functions au

and Nu.

23Recall that two local-martingales are strongly orthogonal if their product is a local martingale.
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We have seen in (7) that the decomposition of the (G,P∗)-semi-martingale S

writes S = Ŝ +C with:

dCt =
(

1−Ht

Gt

zt + Ht

ατt
aτt

)

d〈S〉t =: ϑtd〈S〉t ,

and Ŝ continuous. It follows that any G-martingale l admits a Galtchouck-Kunita-
Watanabe decomposition of the form

l = l0 + ϕ � Ŝ + h

with h a local martingale strongly orthogonal to l. Recall that the martingale M is
strongly orthogonal to Ŝ (it is purely discontinuous) and is a locally square martin-
gale, hence h admits a Galtchouck-Kunita-Watanabe decomposition:

h=ψ �M +N⊥

with N⊥ strongly orthogonal to (M, Ŝ). It follows that the set of probabilities
G-equivalent to P

∗ writes:

{

Q,
dQ

dP∗

∣
∣
∣
∣
Gt

= ηt = E (ϕ � Ŝ)tE (ψ �M)tE (N
⊥)t

}

,

with (ϕ,ψ) a pair of F-predictable processes and N⊥ a G-martingale that is strongly
orthogonal to Ŝ and M .

Finally, the set of G-e.m.m. ΘG

P∗(S) writes:

ΘG

P∗(S)=
{

Q,
dQ

dP∗

∣
∣
∣
∣
Gt

= ηt = E (−ϑ � Ŝ)tE (ψ �M)tE (N
⊥)t

}

with N⊥ ∈M (G,P∗) strongly orthogonal to the pair (Ŝ,M) and −1 <ψ ∈P(G).
Indeed the “Girsanov’s drift” under each such probability writes 〈−ϑ �Ŝ, Ŝ〉 because
of the strong orthogonality of the other terms w.r.t. Ŝ. This set is parameterized by
the pair (ψ,N⊥).

Default sensitive asset. If μt denotes the drift of the default sensitive asset Sn+1,
the general dynamics of the price process can be written as:

dSn+1
t = μtdt + εtdŜt + ζtdMt + dNn+1

t ,

with Nn+1 ∈M 2(G,P∗) strongly orthogonal to the pair (Ŝ,M) (same argument as
before). As before, we assume d〈Sn+1〉t � dt .

Finally, it follows that the set ΘG

P∗(S̃) writes:

ΘG

P∗(S̃)=
{

Q,
dQ

dP∗

∣
∣
∣
∣
Gt

= ηt = E (−ϑ � Ŝ)tE (ψ �M)tE (N
⊥)t

}
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with N⊥ ∈M (G,P∗) strongly orthogonal to the pair (Ŝ,M) and ψ ∈P(G), de-
fined24 by

ψtζtα
t
t dt = μtdt + εtϑt st dt − d〈Nn+1,N⊥〉t . (11)

5.2 Default-Free Pricing Invariance

In both cases, the martingale probability is going to be uniquely defined thanks to
the constraint of F-pricing invariance.

Let XT ∈ L2(FT ), such that E
∗(XT )= 0. The (F,P∗)-martingale X can be de-

composed as X = x � S + N , with (S,N) ∈M (F,P∗) strongly orthogonal. The
decomposition of this (G,P∗)-semi-martingale writes

X = x � Ŝ + x � C + N̂ +K,

with (Ŝ, N̂) ∈M (G,P∗), dCt = ϑtd〈S〉t = ϑtstdt and:

dKt = 1−Ht

Gt

d〈N,G〉t + Ht

αut
d〈N,αu〉t

∣
∣
∣
∣
u=τ

= 1−Ht

Gt

d〈N,NZ〉t + Ht

αut
d〈N,Nu〉t

∣
∣
∣
∣
u=τ

,

where Nu and NZ are defined in (10). It follows that

E
Q(XT ) = E

∗(XT ηT )= E
∗
(∫ T

0
ηtdXt + [X,η]T

)

= E
∗
(∫ T

0
ηt (xtdCt + dKt)+ [X,η]T

)

= E
∗
(∫ T

0
ηt (xtϑtd〈Ŝ〉t + dKt)+ [X,η]T

)

.

Moreover we can write:

E
∗([X,η]T )= E

∗([x � Ŝ + N̂,E (−ϑ � Ŝ)E (ψ �M)E (N⊥)]T )
since x � C +K is G-predictable with finite variation,

E
∗([X,η]T ) = E

∗([x � Ŝ,E (−ϑ � Ŝ)E (ψ �M)E (N⊥)]T )
+E

∗([N̂,E (−ϑ � Ŝ)E (ψ �M)E (N⊥)]T )

24Notice that d〈Nn+1,N⊥〉t � dt , from Kunita Watanabe (d〈Sn+1〉t � dt implies
d〈Nn+1〉t � dt ).
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= E
∗
(∫ T

0
−ηtϑtxtd[Ŝ]t

)

+E
∗
(∫ T

0
ηtψtd[N̂,M]t

)

+E
∗
(∫ T

0
ηtd[N̂,N⊥]t

)

and since K is G-predictable with finite variation, [K,M] = 0, and [N̂,M] =
[N,M] = 0 (recall τ avoids the F-stopping times—M is purely discontinuous and
jumps at τ ). It follows

E
∗([X,η]T )= E

∗
(∫ T

0
−ηtϑtxtd〈Ŝ〉t +

∫ T

0
ηtd[N̂,N⊥]t

)

hence

E
Q(XT )= E

∗
∫ T

0
ηtd(Kt + [N̂,N⊥]t ). (12)

We shall prove that there exists a unique N⊥ such that E
Q(XT ) = 0 for any

XT ∈ L2(FT ), such that E
∗(XT )= 0.

Let us define the F⊗B(R+)-optional process

Rx
t =−

∫ t

0
1{x≤u}

dNx
u

αxu−
,

which is for any x ≥ 0 an F-martingale. We start with the following

Lemma 1 If Xx is an F ⊗B(R+)-optional family of F-semi-martingales, X =
(Xτ∧t

t , t ≥ 0) is a G-semi-martingale.

Proof 1. The process X is G-adapted since τ ∧ t ∈ Gt , and the function X is F⊗
B(R+)-optional.

2. We shall prove that for any sequence of càg piecewise constant F-adapted
processes Kn that tends to zero uniformly in (t,ω), Kn � S tends to zero in proba-
bility.25

For any subdivision (t1, . . . , tn) of [0, T ], and any (Kn
1 , . . . ,K

n
n ) such that for any

i ≤ n Kn
i ∈ Gti , and Kn

i = Fn
i h

n
i (ti ∧ τ) with hni Borel measurable and Fn

i ∈Fti ,
we introduce

Kn � XT =
∑

i

Kn
i (Xi+1 −Xi)=

∑

i

Kn
i (X

τ∧ti+1
ti+1

−X
τ∧ti
ti

)

25Recall that an (F,P)-semi-martingale S can whether be define as the sum of an F-adapted process
of finite variation process and an (F,P)-local-martingale, or as an F-adapted processes such that
for any sequence of càg piecewise constant F-adapted processes Kn that tends to zero uniformly
in (t,ω), Kn � S tends to zero in probability (Bichteler-Dellacherie theorem). We use this second
definition in the proof.
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=
∑

i

F n
i h

n
i (ti ∧ τ)(X

τ∧ti+1
ti+1

−X
τ∧ti
ti

).

It is classical that a sequence of random variables In tends to zero in probability iff
the real sequence E(1∧ |In|) tends to zero. Following this trail, we have

E(1∧ |Kn � XT |) = E

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧ τ)(X

τ∧ti+1
ti+1

−X
τ∧ti
ti

)

∣
∣
∣
∣

)

=
∫ ∞

0
E

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧ u)(X

u∧ti+1
ti+1

−X
u∧ti
ti

)

∣
∣
∣
∣α

u
T

)

du

and from Lebesgue’s theorem, since

E

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧ u)(X

u∧ti+1
ti+1

−X
u∧ti
ti

)

∣
∣
∣
∣α

u
T

)

≤ E(1 ∗ αuT )≤ 1,

we can write

lim
n

E(1∧|Kn �XT |)=
∫ ∞

0
lim
n

E

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧u)(Xu∧ti+1

ti+1
−X

u∧ti
ti

)

∣
∣
∣
∣α

u
T

)

du.

Moreover, if the probability Q is defined on F∞ by

dQ

dP

∣
∣
∣
∣
Ft

= αut

αu0
,

we have

lim
n

E

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧ u)(X

u∧ti+1
ti+1

−X
u∧ti
ti

)

∣
∣
∣
∣α

u
T

)

= lim
n

E
Q

(

1∧
∣
∣
∣
∣

∑

i

F n
i h

n
i (ti ∧ u)(X

u∧ti+1
ti+1

−X
u∧ti
ti

)

∣
∣
∣
∣

)

= 0

since Xu is an F-martingale, hence an F-semi-martingale. It follows by a class
monotone argument that X is a G-semi-martingale. �

We deduce from this lemma that the process X =HRτ is a G-semi-martingale,
since X = Xτ∧t with Xx

t = 1x≤tRx
t (on {τ ≤ t}, τ = τ ∧ t). So that to be able to

develop the equality (12), we need to prove the

Lemma 2 If Yx is an F ⊗ B(R+)-optional family of G-semi-martingales, and
Y = (Y τ∧t

t , t ≥ 0) we have

(

[Y,HRτ ]t −
∫ t

0

Hu

αxu−
d〈Yx,Nx〉u

∣
∣
∣
∣
x=τ

, t ≥ 0

)

∈M (G).
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Proof 1. Let us first mention that the angle bracket 〈Yx,Nx〉 is well defined as

〈Yx,Nx〉 = 〈Yx, au � S〉 − 〈Yx,αx〉,
the first bracket being defined since S is continuous and the second from [22].
Moreover, [Y,HRτ ] exists from the last lemma, since both processes are semi-
martingales.

2. Let Ft be an Ft -measurable variable and h be Borel measurable. We have:

E(Fth(t ∧ τ)[Y,HRτ ]Tt ) =
∫ ∞

0
E(Fth(t ∧ x)[Yx,HRx]T αxT )dx

−
∫ ∞

0
E(Fth(t ∧ x)[Yx,HRx]t αxt )dx

=
∫ ∞

0
E

(

Fth(t ∧ x)

∫ T

t

αxu−d[Yx,HRx]u
)

dx

since by Itô’s rule (the last integral being an F-martingale):

[Yx,HRx]T αxT −[Yx,HRx]t αxt =
∫ T

t

αxu−d[Yx,HRx]u+
∫ T

t

[Yx,HRx]u−dαxu,

hence finally, by definition of Rx :

E(Fth(t ∧ τ)[Y,HRτ ]Tt ) =
∫ ∞

0
E

(∫ T

t

Fth(t ∧ x)αxu−
1x≤u
αxu−

d[Yx,Nx]u
)

dx

=
∫ ∞

0
E

(∫ T

t

Fth(t ∧ x)1x≤ud〈Yx,Nx〉u
)

dx.

Moreover

E

(

Fth(t ∧ τ)

∫ T

t

1x≤u
αxu−

d〈Yx,Nx〉u
∣
∣
∣
x=τ

)

=
∫ ∞

0
E

(∫ T

t

Fth(t ∧ x)
1x≤u
αxu−

d〈Yx,Nx〉uαxT
)

dx

=
∫ ∞

0
E

(∫ T

t

Fth(t ∧ x)1x≤ud〈Yx,Nx〉u
)

ηdx,

since E(αxT |Fu−) = αxu−, which concludes the proof, by a class monotone argu-
ment. �

We deduce from this lemma the two following points:

• The G-semi-martingale HRτ is special. Indeed, the lemma applied to Yx =HRx

leads to the existence of the angle bracket 〈HRτ 〉.
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• The lemma applied to the F-martingale N leads to

(

[N,HRτ ]t −
∫ t

0

Hu

αxu−
d〈N,Nx〉u

∣
∣
∣
x=τ , t ≥ 0

)

∈M (G).

We introduce the G-semi-martingale

Γt =
∫ t

0

Hu − 1

Gu

dNZ
u −HtR

τ
t .

As the first integral is special (NZ is an F-martingale, hence a special G-semi-
martingale, from 2), Γ is a special G-semi-martingale. We can conclude this part
with the

Proposition 7 There exists a unique G-e.m.m. Q ∈ΘG

P∗(S̃), that preserves F∞, i.e.,
such that

E
Q(XT )= E

∗(XT ), for any XT ∈ L2(FT ).

Proof 1. We have seen that for XT ∈ L2(FT ) with E
∗(XT )= 0,

E
Q(XT )= E

Q(XT )= E
∗
∫ T

0
ηtd(Kt + [N̂,N⊥]t ).

If we choose for N⊥ the (unique) G-martingale part of Γ (in its special decompo-
sition26), we have

E
∗
∫ T

0
ηtd[N̂,N⊥]t = E

∗
∫ T

0
ηt
Hu − 1

Gu

d〈N,NZ
u 〉t −E

∗
∫ T

0
ηt
Ht

αut
d〈N,Nu〉t

∣
∣
∣
u=τ

= −E
∗
∫ T

0
ηtdKt ,

where the first equality comes from the last lemma. It follows that E
Q(XT )= 0.

2. For any probability Q defined with another martingale Ñ⊥ =N⊥ + μ where
μ ∈ M 2(G,P∗) is strongly orthogonal to N⊥ non constant, when computing
E

Q(XT ) for a variable such that N̂ = μ,

E
∗
∫ T

0
ηtd(nt + 〈N̂, Ñ⊥〉t )= E

∗
∫ T

0
ηtd〈N̂,μ〉t = E

∗
∫ T

0
ηtd〈μ〉t �= 0.

It follows that this probability measure is unique. �

26The decomposition martingale plus predictable process with finite variation paths.
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5.3 Immersion Property

We have seen that given a reference risk-neutral probability there exists a unique
risk-neutral probability on the full market that preserve the “reference pricing”. We
conclude this survey by the important

Proposition 8 Under the G-e.m.m. Q ∈ΘG

P∗(S̃) that preserves F∞, immersion
holds.

Proof Let X ∈ M (F,Q), Xt = E
Q(XT |Ft ). As Q|F∞ = P

∗|F∞ , Xt =
E
∗(XT |Ft ). Indeed, for Ft ∈Ft ,

E
∗(XT Ft )= E

Q(XT Ft )= E
Q(XtFt )= E

∗(XtFt ).

Moreover, if X =X0+ x � S+N with N ∈M (F,P∗) strongly orthogonal to S, the
(G,P∗)-decomposition of this process writes:

X =X0 + x � Ŝ + x � C + N̂ +K.

Under Q, from Girsanov’s theorem:

X =X0 + x � S̃ + x � 〈Ŝ, logη〉 + x � C + Ñ + 〈N̂, logη〉 +K,

and by definition of Q, 〈Ŝ, logη〉 = −C and 〈N̂, logη〉 = −K (see above), hence

X = x � S̃ + Ñ ∈M (G,Q),

which concludes the proof. �

6 Conclusion

In this paper, we have given some arguments that show that it is natural to assume
that immersion hypothesis holds for a study of a single default, and proved its deep
link with completeness and martingale decomposition.

However, it is well known that it is usually impossible to assume this hypothesis
in case of (non-ordered) multi-defaults,and that the martingale parts of the survival
probabilities reflects the correlation between the different default times.

Acknowledgements The authors wish to thank Stéphane Crépey for pointing out some mistakes
in a preliminary version and the anonymous referee for all his/her accurate remarks.
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ing, Interest Rates and Risk Management, pp. 3–42. Cambridge University Press, Cambridge
(2001)

26. Kunita, H., Watanabe, S.: On square integrable martingales. Nagoya Math. J. 30, 29–245
(1967)

27. Kusuoka, S.: A remark on default risk models. Adv. Math. Econ. 1, 69–82 (1999)
28. Linetsky, V.: Pricing equity derivatives subject to bankrupcy. Math. Financ. 16, 255–282

(2005)
29. Merton, R.: On the pricing of corporate debt: The risk structure of interest rates. J. Finance

29, 449–470 (1974)



Immersion Property and Credit Risk Modelling 131

30. Protter, P.E.: A partial introduction to financial asset pricing theory. Stoch. Process. Appl. 91,
169 (2001)

31. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin
(2003)

32. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin
(1999)



©
M

ar
ga

ri
ta

K
ab

an
ov

a



Optimal Consumption and Investment
with Bounded Downside Risk
for Power Utility Functions

Claudia Klüppelberg
and Serguei Pergamenchtchikov

Abstract We investigate optimal consumption and investment problems for
a Black-Scholes market under uniform restrictions on Value-at-Risk and Expected
Shortfall. We formulate various utility maximisation problems, which can be solved
explicitly. We compare the optimal solutions in form of optimal value, optimal
control and optimal wealth to analogous problems under additional uniform risk
bounds. Our proofs are partly based on solutions to Hamilton-Jacobi-Bellman equa-
tions, and we prove a corresponding verification theorem.

Keywords Portfolio optimisation · Stochastic optimal control · Risk constraints ·
Value-at-Risk · Expected shortfall

Mathematics Subject Classification (2000) 91B28 · 93E20

1 Introduction

We consider an investment problem aiming at optimal consumption during a fixed
investment interval [0, T ] in addition to an optimal terminal wealth at maturity T .
Such problems are of prime interest for the institutional investor, selling asset funds
to their customers, who are entitled to certain payment during the duration of an
investment contract and expect a high return at maturity. The classical approach to
this problem goes back to Merton [10] and involves utility functions, more precisely,
the expected utility serves as the functional which has to be optimised.

We adapt this classical utility maximisation approach to today’s industry prac-
tice: investment firms customarily impose limits on the risk of trading portfolios.

This work was supported by the European Science Foundation through the AMaMeF programme.

C. Klüppelberg (�)
Center for Mathematical Sciences, Technische Universität München, Boltzmannstr. 3, 85747
Garching, Germany
e-mail: cklu@ma.tum.de

S. Pergamenchtchikov
Laboratoire de Mathématiques, Raphaël Salem Université de Rouen, BP. 12, 76801 Saint Etienne
du Rouvray, France
e-mail: Serge.Pergamenchtchikov@univ-rouen.fr

F. Delbaen et al. (eds.), Optimality and Risk—Modern Trends in Mathematical Finance,
DOI 10.1007/978-3-642-02608-9_7, © Springer-Verlag Berlin Heidelberg 2009

133

mailto:cklu@ma.tum.de
mailto:Serge.Pergamenchtchikov@univ-rouen.fr
http://dx.doi.org/10.1007/978-3-642-02608-9_7


134 C. Klüppelberg and S. Pergamenchtchikov

These limits are specified in terms of downside risk measures as the popular Value-
at-Risk (VaR) or Expected Shortfall (ES). We briefly comment on these two risk
measures.

As Jorion [5], p. 379 points out, VaR creates a common denominator for the
comparison of different risk activities. Traditionally, position limits of traders are
set in terms of notional exposure, which may not be directly comparable across
treasuries with different maturities. In contrast, VaR provides a common denomina-
tor to compare various asset classes and business units. The popularity of VaR as
a risk measure has been endorsed by regulators, in particular, the Basel Commit-
tee on Banking Supervision, which resulted in mandatory regulations worldwide.
One of the well-known drawbacks of VaR is due to its definition as a quantile. This
means that only the probability to exceed a VaR bound is considered, the values of
the losses are not taken into account. Artzner et al. [1] proposes as an alternative
risk measure the Expected Shortfall, defined as the conditional expectation of losses
above VaR.

Our approach combines the classical utility maximisation with risk limits in
terms of VaR and ES. This leads to control problems under restrictions on uni-
form versions of VaR or ES, where the risk bound is supposed to be in vigour
throughout the duration of the investment. To our knowledge such problems have
only been considered in dynamic settings which reduce intrinsically to static prob-
lems. Emmer, Klüppelberg and Korn [4] consider a dynamic market, but maximise
only the expected wealth at maturity under a downside risk bound at maturity. Basak
and Shapiro [2] solve the utility optimisation problem for complete markets with
bounded VaR at maturity. Gabih, Gretsch and Wunderlich [3] solve the utility opti-
misation problem for constant coefficients markets with bounded ES at maturity.

In the present paper we aim now at a truly dynamic portfolio choice of a trader
subject to a risk limit specified in terms of VaR or ES. We shall start with Merton’s
consumption and investment problem for a pricing model driven by Brownian mo-
tion with càdlàg drift and volatility coefficients. Such dynamic optimisation prob-
lems for standard financial markets have been solved in Karatzas and Shreve [7]
by martingale methods. In order to obtain the optimal strategy in “feedback form”
basic assumption in [7] on the coefficients is Hölder continuity of a certain order
(see e.g. Assumption 8.1, p. 119). In the present paper we use classical optimisation
methods from stochastic control. This makes it possible to formulate optimal solu-
tions to Merton’s consumption and investment problem in “explicit feedback form”
for different power consumption and wealth utility functions. We also weaken the
Hölder continuity assumption to càdlàg coefficients satisfying weak integrability
conditions.

In a second step we introduce uniform risk limits in terms of VaR and ES into
this optimal consumption and investment problem. Our risk measures are specified
to represent the required Capital-at-Risk of the institutional investor. The amount
of required capital increases with the corresponding loss quantile representing the
security of the investment. This quantile is for any specific trader an exogenous
variable, which he/she cannot influence. Additionally, each trader can set a specific
portfolio’s risk limit, which may affect the already exogenously given risk limit of
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the portfolio. A trader, who has been given a fixed Capital-at-Risk, can now use risk
limits for different portfolios categorising the riskiness of his/her portfolios in this
way.

It has been observed by Basak and Shapiro [2] that VaR limits only applied at
maturity can actually increase the risk. In contrast to this observation, when work-
ing with a power utility function and a uniform risk limit throughout the investment
horizon, this effect disappears; indeed the optimal strategy for the constrained prob-
lem of Theorem 5 given in (3.21) is riskless for sufficiently small risk bound: For
a HARA utility function, in order to keep within a sufficiently small risk bound, it
is not allowed to invest anything into risky assets at all, but consume everything.
This is in contrast to the optimal strategy, when we optimise the linear utility, which
recommends to invest everything into risky assets and consume nothing; see (3.12)
of Theorem 3.

Within the class of admissible control processes we identify subclasses of con-
trols, which allow for an explicit expression of the optimal strategy. We derive re-
sults based on certain utility maximisation strategies, choosing a power utility func-
tion for both, the consumption process and the terminal wealth. The literature to
utility maximisation is vast; we only mention the books by Karatzas and Shreve
[6, 7], Korn [8] and Merton [10]. Usually, utility maximisation is based on concave
utility functions. The assumption of concavity models the idea that the infinitesimal
utility decreases with increasing wealth. Within the class of power utility functions
this corresponds to parameters γ < 1. The case γ = 1 corresponds to linear utility
functions, meaning that expected utility reduces to expected wealth.

Our paper is organised as follows. In Sect. 2 we formulate the problem. In
Sect. 2.1 the Black-Scholes model for the price processes and the parameter restric-
tions are presented. We also define the necessary quantities like consumption and
portfolio processes, also recall the notion of a self-financing portfolio and a trad-
ing strategy. Section 2.2 is devoted to the control processes; here also the different
classes of controls to be considered later are introduced. The cost functions are de-
fined in Sect. 2.3 and the risk measures in Sect. 2.4. In Sect. 3 all optimisation prob-
lems and their solutions are given. Here also the consequences for the trader are
discussed. All proofs are summarised in Sect. 4 with a verification theorem post-
poned to the Appendix.

2 Formulating the Problem

2.1 The Model

We consider a Black-Scholes type financial market consisting of one riskless bond
and several risky stocks. Their respective prices (S0(t))0≤t≤T and (Si(t))0≤t≤T for
i = 1, . . . , d evolve according to the equations:

{
dS0(t)= rtS0(t)dt, S0(0)= 1,

dSi(t)= Si(t)μi(t)dt + Si(t)
∑d

j=1 σij (t)dWj(t), Si(0)= si > 0.
(2.1)
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Here Wt = (W1(t), . . . ,Wd(t))
′ is a standard d-dimensional Brownian motion;

rt ∈ R is the riskless interest rate, μt = (μ1(t), . . . ,μd(t))
′ ∈ R

d is the vector of
stock-appreciation rates and σt = (σij (t))1≤i,j≤d is the matrix of stock-volatilities.
We assume that the coefficients rt , μt and σt are deterministic functions, which
are right continuous with left limits (càdlàg). We also assume that the matrix σt is
non-singular for Lebesgue-almost all t ≥ 0.

We denote by Ft = σ {Ws, s ≤ t}, t ≥ 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermore, | · | denotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices. For (yt )0≤t≤T square
integrable over the fixed interval [0, T ] we define ‖y‖T = (

∫ T

0 |yt |2dt)1/2.
For t ≥ 0 let φt ∈R denote the amount of investment into bond and

ϕt = (ϕ1(t), . . . , ϕd(t))
′ ∈R

d

the amount of investment into risky assets. We recall that a trading strategy is an
R
d+1-valued (Ft )0≤t≤T -progressively measurable process (φt , ϕt )0≤t≤T and that

Xt = φtS0(t)+
d∑

j=1

ϕj (t)Sj (t), t ≥ 0,

is called the wealth process. Moreover, an (Ft )0≤t≤T -progressively measurable
nonnegative process (ct )0≤t≤T satisfying for the investment horizon T > 0

∫ T

0
ctdt <∞ a.s.

is called consumption process.
The trading strategy ((φt , ϕt ))0≤t≤T and the consumption process (ct )0≤t≤T are

called self-financing, if the wealth process satisfies the following equation

Xt = x +
∫ t

0
φudS0(u)+

d∑

j=1

∫ t

0
ϕj (u)dSj (u)−

∫ t

0
cudu, t ≥ 0, (2.2)

where x > 0 is the initial endowment.
In this paper we work with relative quantities, i.e. with the fractions of the wealth

process, which are invested into bond and stocks; i.e., we define for j = 1, . . . , d

πj (t) := ϕj (t)Sj (t)

φtS0(t)+∑d
j=1 ϕi(t)Si(t)

, t ≥ 0.

Then πt = (π1(t), . . . , πd(t))
′, t ≥ 0, is called the portfolio process and we assume

throughout that it is (Ft )0≤t≤T -progressively measurable. We assume that for the
fixed investment horizon T > 0

‖π‖2
T :=

∫ T

0
|πt |2dt <∞ a.s.
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We also define with 1= (1, . . . ,1)′ ∈R
d the quantities

yt = σ ′t πt and θt = σ−1
t (μt − rt1), t ≥ 0, (2.3)

where it suffices that these quantities are defined for Lebesgue-almost all t ≥ 0.
Taking these definitions into account we rewrite (2.2) for Xt as

dXt =Xt(rt + y′t θt )dt − ctdt +Xty
′
tdWt, t > 0, X0 = x > 0. (2.4)

This implies in particular that any optimal investment strategy is equal to π∗t =
σ ′−1
t y∗t , where y∗t is the optimal control process for (2.4). We also require for the

investment horizon T > 0

‖θ‖2
T =

∫ T

0
|θt |2dt <∞. (2.5)

Besides the already defined Euclidean norm we shall also use for arbitrary q ≥ 1 the
notation ‖f ‖q,T for the q-norm of (ft ), i.e.

‖f ‖q,T =
(∫ T

0
|ft |qdts

)1/q

. (2.6)

2.2 The Control Processes

Now we introduce the set of control processes (yt , ct )0≤t≤T . First we choose the
consumption process (ct )0≤t≤T as a proportion of the wealth process; i.e.

ct = vtXt ,

where (vt )0≤t≤T is a deterministic non-negative function satisfying

∫ T

0
vtdt <∞.

For this consumption we define the control process ς = (ςt )0≤t≤T as ςt =
(yt , vtXt ), where (yt )0≤t≤T is a deterministic function taking values in R

d such
that

‖y‖2
T =

∫ T

0
|yt |2dt <∞. (2.7)

The process (Xt )0≤t≤T is defined by (2.4), which in this case has the following
form (to emphasise that the wealth process corresponds to some control process ς
we write Xς )

dXς
t =X

ς
t (rt − vt + y′t θt )dt +X

ς
t y
′
tdWt, t > 0, X

ς
0 = x. (2.8)

We denote by U the set of all such control processes ς .
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Note that for every ς ∈U , by Itô’s formula, (2.8) has solution

X
ς
t = xeRt−Vt+(y,θ)tEt (y), (2.9)

where

Rt =
∫ t

0
rudu, Vt =

∫ t

0
vudu and (y, θ)t =

∫ t

0
y′uθudu. (2.10)

Moreover, E (y) denotes the stochastic exponential defined as

Et (y)= exp

(∫ t

0
y′udWu − 1

2

∫ t

0
|yu|2du

)

t ≥ 0.

Therefore, for every ς ∈U the process (Xς
t )0≤t≤T is positive and continuous.

We consider U as a first class of control processes for (2.4), for which we can
solve the control problem explicitly and interpret its solution. This is due to the fact,
as we shall see in Sect. 2.4, that because of the Gaussianity of the log-process we
have explicit representations of the risk measures.

It is clear that the behaviour of investors in the model (2.1) depends on the co-
efficients (rt )0≤t≤T , (μt )0≤t≤T and (σt )0≤t≤T which in our case are nonrandom
known functions and as we will see below (Corollary 3) for the “equilibrate utility
functions” case optimal strategies are deterministic, i.e. belong to this class.

A natural generalisation of U is the following set of controls.

Definition 1 Let T > 0 be a fixed investment horizon. A stochastic control
process ς = (ςt )0≤t≤T = ((yt , ct ))0≤t≤T is called admissible if it is (Ft )0≤t≤T -
progressively measurable with values in R

d × [0,∞), and (2.4) has a unique strong
a.s. positive continuous solution (X

ς
t )0≤t≤T on [0, T ]. We denote by V the class of

all admissible control processes.

2.3 The Cost Functions

We investigate different cost functions, each leading to a different optimal control
problem. We assume that the investor wants to optimise expected utility of con-
sumption over the time interval [0, T ] and wealth X

ς
T at the end of the investment

horizon. For initial endowment x > 0 and a control process (ςt )0≤t≤T in V , we
introduce the cost function

J (x,ς) := Ex

(∫ T

0
U(ct )dt + h(X

ς
T )

)

,

where U and h are utility functions. This is a classical approach to the problem; see
Karatzas and Shreve [7], Chapter 6.
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Here Ex is the expectation operator conditional on Xς
0 = x. For both utility func-

tions we choose U(z) = zγ1 and h(z) = zγ2 for z ≥ 0 with 0 < γ1, γ2 ≤ 1, corre-
sponding to the cost function

J (x,ς) := Ex

(∫ T

0
c
γ1
t dt + (X

ς
T )

γ2

)

. (2.11)

For γ < 1 the utility function U(z)= zγ is concave and is called a power (or HARA)
utility function. We include the case of γ = 1, which corresponds to simply optimis-
ing expected consumption and terminal wealth. In combination with a downside risk
bound this allows us in principle to dispense with the utility function, where in prac-
tise one has to choose the parameter γ . In the context of this paper it also allows us
to separate the effect of the utility function and the risk limit.

2.4 The Downside Risk Measures

As risk measures we use modifications of the Value-at-Risk and the Expected Short-
fall as introduced in Emmer, Klüppelberg and Korn [4]. They can be summarised
under the notion of Capital-at-Risk and limit the possibility of excess losses over the
riskless investment. In this sense they reflect a capital reserve. If the resulting risk
measure is negative (which can happen in certain situations) we interpret this as an
additional possibility for investment. For further interpretations we refer to [4].

To avoid non-relevant cases we consider only 0 < α < 1/2.

Definition 2 (Value-at-Risk (VaR)) Define for initial endowment x > 0, a control
process ς ∈U and 0 < α ≤ 1/2 the Value-at-Risk (VaR) by

VaRt (x, ς,α) := xeRt − λt , t ≥ 0,

where λt = λt (x, ς,α) is the α-quantile of Xς
t , i.e.

λt = inf{λ≥ 0 : P(Xς
t ≤ λ)≥ α}.

Corollary 1 In the situation of Definition 2, for every ς ∈U the α-quantile λt is
given by

λt = x exp

(

Rt − Vt + (y, θ)t − 1

2
‖y‖2

t − |zα|‖y‖t
)

, t ≥ 0,

where zα is the α-quantile of the standard normal distribution, and the other quan-
tities are defined in (2.3) and (2.10).

We define the level risk function for some coefficient 0 < ζ < 1 as

ζt (x)= ζxeRt , t ∈ [0, T ]. (2.12)
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We consider only controls ς ∈ U for which the Value-at-Risk is bounded by the
level function (2.12) over the interval [0, T ]; i.e. we require

sup
0≤t≤T

VaRt (x, ς,α)

ζt (x)
≤ 1. (2.13)

We have formulated the time-dependent risk bound in the same spirit as we have
defined the risk measures, which are based on a comparison of the minimal possible
wealth in terms of a low quantile to the pure bond investment. The risk bound now
limits the admissible risky strategies to those, whose risk compared to the pure bond
portfolio, represented by ζ , remains uniformly bounded over the investment interval.

Our next risk measure is an analogous modification of the Expected Shortfall
(ES).

Definition 3 (Expected Shortfall (ES)) Define for initial endowment x > 0, a con-
trol process ς ∈U and 0 < α ≤ 1/2

mt(x, ς,α)= Ex(X
ς
t |Xς

t ≤ λt ), t ≥ 0,

where λt (x, ς,α) is the α-quantile of Xς
t . The Expected Shortfall (ES) is then de-

fined as

ESt (x, ς,α)= xeRt −mt(x, ς,α), t ≥ 0.

The following result is an analogon of Corollary 1.

Corollary 2 In the situation of Definition 3, for any ς ∈ U the quantity mt =
mt(x, ς,α) is given by

mt(x, ς,α)= xFα(|zα| + ‖y‖t )eRt+(y,θ)t−Vt , t ≥ 0,

where zα is the α-quantile of the standard normal distribution and

Fα(z)=
∫∞
z

e−t2/2dt
∫∞
|zα | e

−t2/2dt
, z≥ 0.

We shall consider all controls ς ∈ U , for which the Expected Shortfall is
bounded by the level function (2.12) over the interval [0, T ], i.e. we require

sup
0≤t≤T

ESt (x, ς,α)

ζt (x)
≤ 1. (2.14)

Remark 1 (i) The coefficient ζ introduces some risk aversion behaviour into the
model. In that sense it acts similarly as a utility function does. The difference, how-
ever, is that ζ has a clear interpretation, and every investor can choose and under-
stand the influence of ζ with respect to the corresponding risk measures.
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(ii) If ‖y‖t = 0 for all t ∈ [0, T ], then VaRt (x, ς,α)= ESt (x, ς,α)= xeRt (1−
e−Vt ), 0≤ t ≤ T . On the other hand, if ‖y‖t > 0 for t ∈ [0, T ], then

lim
α→0

VaRt (x, ς,α)= lim
α→0

ESt (x, ς,α)= xeRt .

This means that the choice of α influences the risk bounds (2.13) and (2.14). Note,
however, that α is chosen by the regulatory authorities, not by the investor. The
investor only chooses the value ζ . If ζ is near 0 the risk level is rather low, whereas
for ζ close to 1 the risk level is rather high, indeed in such case the risk bounds may
not be restrictive at all.

3 Problems and Solutions

In the situation of Sect. 2 we are interested in the solutions to different optimisation
problems. Throughout we assume a fixed investment horizon T > 0.

In the following we first present the solution to the unconstrained problem and
then study the constrained problems. The constraints are in terms of risk bounds
with respect to downfall risks like VaR and ES defined by means of a quantile.

3.1 The Unconstrained Problem

We consider two regimes with cost functions (2.11) for 0 < γ1, γ2 < 1 and for
γ1 = γ2 = 1. We include the case of γ1 = γ2 = 1 for further referencing, although
it makes economically not much sense without a risk constraint. The mathematical
treatment of the two cases is completely different by nature.

Problem 1

max
ς∈V

J (x,ς).

Theorem 1 Consider Problem 1 with γ1 = γ2 = 1. Assume a riskless interest rate
rt ≥ 0 for all t ∈ [0, T ]. If ‖θ‖T > 0, then

max
ς∈U

J (x,ς)=∞.

If ‖θ‖T = 0, then a solution exists and the optimal value of J (x,ς) is given by

max
ς∈U

J (x,ς)= J (x,ς∗)= xeRT ,

corresponding to the optimal control ς∗t = (y∗t ,0) for all 0 ≤ t ≤ T with arbitrary
deterministic square integrable function (y∗t )0≤t≤T . In this case the optimal wealth
process (X∗t )0≤t≤T satisfies the following equation

dX∗t =X∗t rtdt +X∗t (y∗t )′dWt, X∗0 = x. (3.1)
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Consider now Problem 1 for 0 < γ1, γ2 < 1. To formulate the solution we define
functions

A1(t)= γ
q1
1

∫ T

t

e
∫ s
t β1(u)duds and A2(t)= γ

q2
2 e

∫ T
t β2(u)du, 0≤ t ≤ T , (3.2)

where qi = (1−γi)
−1 and βi(t)= (qi−1)(rt+ qi

2 |θt |2). Moreover, for all 0≤ t ≤ T

and x > 0 we define the function g(t, x) > 0 as solution to

A1(t)g
−q1(t, x)+A2(t)g

−q2(t, x)= x (3.3)

and

p(t, x)= q1A1(t)g
−q1(t, x)+ q2A2(t)g

−q2(t, x).

Theorem 2 Consider Problem 1 for 0 < γ1, γ2 < 1. The optimal value of J (x,ς)
is given by

max
ς∈V

J (x,ς)= J (x,ς∗)= A1(0)

γ1
g1−q1(0, x)+ A2(0)

γ2
g1−q2(0, x),

where the optimal control ς∗ = (y∗, c∗) is for all 0≤ t ≤ T of the form
⎧
⎨

⎩

y∗t = p(t,X∗t )
X∗t

θt (π∗t = p(t,X∗t )
X∗t

(σtσ
′
t )
−1(μt − rt1));

c∗t = (
γ1

g(t,X∗t )
)q1 .

(3.4)

The optimal wealth process (X∗t )0≤t≤T is the solution to

dX∗t = a∗(t,X∗t )dt + (b∗(t,X∗t ))′dWt, X∗0 = x, (3.5)

where

a∗(t, x)= rtx + p(t, x)|θt |2 −
(

γ1

g(t, x)

)q1

and b∗(t, x)= p(t, x)θt .

The following result can be found Example 6.7 on p. 106 in Karatzas and
Shreve [7]; its proof here is based on the martingale method.

Corollary 3 Consider Problem 1 for γ1 = γ2 = γ ∈ (0,1) and define

g̃γ (t)= exp

(

γRt + q − 1

2
‖θ‖2

t

)

and q = 1

1− γ
. (3.6)

Then the optimal value of J (x,ς) is given by

J ∗(x)=max
ς∈V

J (x,ς)= J (x,ς∗)= xγ (‖g̃γ ‖qq,T + g̃qγ (T ))
1/q ,
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where the optimal control ς∗ = (y∗, c∗) is for all 0≤ t ≤ T of the form
⎧
⎪⎨

⎪⎩

y∗t = θt
1−γ (π∗t = (σt σ

′
t )
−1(μt−rt1)
1−γ );

c∗t = v∗t X∗t and v∗t = g̃
q
γ (t)

g̃
q
γ (T )+

∫ T
t g̃

q
γ (s)ds

.
(3.7)

The optimal wealth process (X∗t )0≤t≤T is given by

dX∗t =X∗t
(

rt − v∗t +
|θt |2

1− γ

)

dt +X∗t
θ ′t

1− γ
dWt, X∗0 = x. (3.8)

Remark 2 Note that Problem 1 for different 0 < γ1 < 1 and 0 < γ2 < 1 was also
investigated by Karatzas and Shreve [7]. For Hölder continuous market coefficients
they find by the martingale method an implicit “feedback form” of the optimal solu-
tion in their Theorem 8.8. In contrast, Theorem 2 above gives the optimal solution in
“explicit feedback form” for quite general market coefficients. Our proof is based on
a special version of a verification theorem for stochastic optimal control problems,
which allows for càdlàg coefficients.

3.2 Value-at-Risk as Risk Measure

For the Value-at-Risk we consider again the cost function (2.11) and, as before, we
consider different regimes for 0 < γ1, γ2 < 1 and γ1, γ2 = 1.

Problem 2

max
ς∈U

J (x,ς) subject to sup
0≤t≤T

VaRt (x, ς,α)

ζt (x)
≤ 1.

To formulate the solution let zα be the normal α-quantile for 0 < α ≤ 1/2 and
the constant ζ ∈ (0,1) as in (2.12). Obviously, for α→ 0 we have |zα| →∞ and,
hence, the quotient in (2.13) tends to 1/ζ > 1. This means that the bound can be
restrictive. We define for θ as in (2.3) the following quantity

ρ∗VaR =
√

(|zα| − ‖θ‖T )2 − 2 ln(1− ζ )− (|zα| − ‖θ‖T ). (3.9)

Theorem 3 Consider Problem 2 for γ1 = γ2 = 1. Assume a riskless interest rate
rt ≥ 0 for all t ∈ [0, T ]. Then for

max(0,1− ez
2
α/2−|zα |‖θ‖T ) < ζ < 1 (3.10)

the optimal value of J (x,ς) is given by

max
ς∈U

J (x,ς)= J (x,ς∗)= xeρ
∗
VaR‖θ‖T+RT . (3.11)
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If ‖θ‖T > 0, then the optimal control ς∗ = (y∗, v∗X∗) is for all 0 ≤ t ≤ T of the
form

y∗t = ρ∗VaR
θt

‖θ‖T
(

π∗t = ρ∗VaR
(σtσ

′
t )
−1

‖θ‖T (μt − rt1)
)

and v∗t = 0. (3.12)

The optimal wealth process (X∗t )0≤t≤T is given by

dX∗t =X∗t
(

rt + ρ∗VaR
|θt |2
‖θ‖T

)

dt +X∗t ρ∗VaR
θ ′t
‖θ‖T dWt, X∗0 = x.

If ‖θ‖T = 0, then the optimal value of J (x,ς) is given by

max
ς∈U

J (x,ς)= J (x,ς∗)= xeRT , (3.13)

corresponding to the optimal control ς∗t = (y∗t ,0) for 0 ≤ t ≤ T with arbitrary
deterministic function (y∗t )0≤t≤T such that

‖y∗‖T ≤ ρ∗VaR =
√
z2
α − 2 ln(1− ζ )− |zα|.

In this case the optimal wealth process (X∗t )0≤t≤T satisfies (3.1).

Remark 3 (i) For |zα| ≥ 2‖θ‖T condition (3.10) gives a lower bound 0; i.e.
0 < ζ < 1. If |zα|< 2‖θ‖T , then condition (3.10) translates to

1− ez
2
α/2−|zα |‖θ‖T < ζ < 1;

i.e. we obtain a positive lower bound.
(ii) The optimal strategy implies that there will be no consumption throughout the

investment horizon. This is due to the fact that the wealth we expect by investment
is so attractive that we continue to invest everything. Note that the solution is the
same as the solution to the problem without possible consumption.

Now we present a sufficient condition for which the optimal unconstrained strat-
egy (3.7)–(3.8) is solution for Problem 2 in the case γ1 = γ2 = γ ∈ (0,1). For this
we introduce the following functions:

κ̃(γ )= ‖g̃γ ‖qq,T
‖g̃γ ‖qq,T + g̃

q
γ (T )

= 1− e−V ∗T = 1− e−
∫ T

0 v∗t dt ,

where (v∗t )0≤t≤T is the optimal consumption rate introduced in (3.7). By setting
l̃(γ )= ln(1− κ̃(γ )) we define

l∗(γ )=
{−q‖θ‖T |zα| + l̃(γ ) for 0 < γ ≤ 1/2;
−q‖θ‖T |zα| + l̃(γ )− q(q−2)

2 ‖θ‖2
T for 1/2 < γ < 1.
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Theorem 4 Consider Problem 2 with γ1 = γ2 = γ ∈ (0,1). Assume a riskless in-
terest rate rt ≥ 0 for all t ∈ [0, T ] and

1− el∗(γ ) ≤ ζ < 1. (3.14)

Then the optimal solution is given by (3.7)–(3.8); i.e. it is equal to the solution of the
unconstrained problem.

Remark 4 Theorem 4 does not hold for γ1 �= γ2, since the solution (3.4) does not
belong to U .

To formulate the result for different γi (i = 1,2) we introduce the following
function for 0≤ κ ≤ 1

G(x,κ) := xγ1κγ1‖ĝ1‖q,T + xγ2(1− κ)γ2 ĝ2(T ), x > 0, (3.15)

where q = (1− γ1)
−1, ĝi = ĝγi and

ĝγ = eγRt = eγ
∫ t

0 rudu.

Moreover, for x > 0 we set

κ∗(x)= arg max
0≤κ≤1

G(x,κ). (3.16)

Note that for 0 < γ1 < 1 and 0 < γ2 ≤ 1 this function is strictly positive for all
x > 0; i.e. 0 < κ∗(x)≤ 1. It is easy to see that in the case γ1 = γ2 =: γ the function
κ∗(x) is independent of x and equals to

κ̂(γ )= ‖ĝγ ‖qq,T
‖ĝγ ‖qq,T + ĝ

q
γ (T )

. (3.17)

Theorem 5 Consider Problem 2 with 0 < γ1 < 1 and 0 < γ2 ≤ 1. Assume a riskless
interest rate rt ≥ 0 for all t ∈ [0, T ] and

0 < ζ < min{κ∗(x), κ̂(γ1)}. (3.18)

Moreover, assume that

|zα| ≥
(

1+ max{γ1, γ2}
1− ζ

1
∂
∂ζ

lnG(x, ζ )

)

‖θ‖T . (3.19)

Then the optimal value of J (x,ς) is given by

max
ς∈U

J (x,ς)= J (x,ς∗)= xγ1ζ γ1‖ĝ1‖q,T + xγ2(1− ζ )γ2 ĝ2(T ), (3.20)
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where the optimal control ς∗ = (y∗, v∗X∗) is for all 0≤ t ≤ T of the form

y∗t = 0 (π∗t = 0) and v∗t =
ζ ĝ

q

1 (t)

‖ĝ1‖qq,T − ζ‖ĝ1‖qq,t
. (3.21)

The optimal wealth process (X∗t )0≤t≤T is given by the deterministic function

X∗t = xeRt
‖ĝ1‖qq,T − ζ‖ĝ1‖qq,t

‖ĝ1‖qq,T
= x

ζ

v∗t
eRt , 0≤ t ≤ T . (3.22)

Remark 5 We compare now conditions (3.18)–(3.19) for γ1 = γ2 = γ ∈ (0,1) with
condition (3.14). Making use of the notation in (3.6) we obtain

g̃γ (t)= ĝγ (t)e
q−1

2 ‖θ‖2
t ≥ ĝγ (t).

Taking this inequality into account we find that in the case 0 < γ ≤ 1/2 (i.e. 1 <

q ≤ 2), the function el∗(γ ) is bounded above by

el∗(γ ) = g̃
q
γ (T )e

−q‖θ‖T |zα |

‖g̃γ ‖qq,T + g̃
q
γ (T )

≤ ĝ
q
γ (T )e

−q(‖θ‖T |zα |− q−1
2 ‖θ‖2

T )

‖ĝ‖qq,T + ĝ
q
γ (T )

.

Moreover, condition (3.19) implies |zα| ≥ ‖θ‖T . Therefore, taking into account that
1 < q ≤ 2 we obtain

e−q(‖θ‖T |zα |−
q−1

2 ‖θ‖2
T ) ≤ 1.

Hence,

el∗(γ ) ≤ ĝ
q
γ (T )

‖ĝ‖qq,T + ĝ
q
γ (T )

= 1− κ̂(γ ).

Similarly, for 1/2 < γ < 1 (i.e. q > 2),

el∗(γ ) ≤ ĝ
q
γ (T )e

− q
2 ‖θ‖2

T

‖ĝ‖qq,T + ĝ
q
γ (T )

≤ 1− κ̂(γ ).

So we have shown that 1− el∗(γ ) ≥ κ̂(γ ), i.e. condition (3.14) is complementary to
conditions (3.18)–(3.19).

We present an example for further illustration.

Example 1 To clarify conditions (3.18)–(3.19) consider again γ1 = γ2 = γ ∈ (0,1)
and rt ≡ r > 0. We shall investigate what happens for T →∞. First we calculate

κ∗(x)= κ̂(γ )=
∫ T

0 eqγ rtdt
∫ T

0 eqγ rtdt + eqγ rT
= 1− e−qγ rT

1+ qγ r − e−qγ rT
∼ 1

1+ qγ r
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as T →∞, where q = (1 − γ )−1. Thus, condition (3.18) yields for T →∞ ap-
proximately

0 < ζ <
1

1+ qγ r
.

The function (3.15) has the following form

G(x,κ)= xγ eγ rT (κγ A(T )+ (1− κ)γ ) with A(T )=
(∫ T

0
e−qγ rtdt

)1/q

.

For the partial derivative with respect to ζ we calculate

∂

∂ζ
lnG(x, ζ )= γ

ζ γ−1A(T )− (1− ζ )γ−1

ζ γ A(T )+ (1− ζ )γ
.

Since

max{γ1, γ2}
1− ζ

1
∂
∂ζ

lnG(x, ζ )

= ζ γ+1A(T )+ ζ(1− ζ )γ

ζ γ (1− ζ )A(T )− ζ(1− ζ )γ
=O(ζ ) as ζ → 0,

condition (3.19) implies |zα|> ‖θ‖T approximately for ζ → 0. Moreover, the opti-
mal consumption (3.21) is given by

v∗t = ζ
γ qr

eγ qr(T−t) − ζ − (1− ζ )e−γ qrt

and the optimal wealth process (3.22) is

X∗t = x
ert

γ qr
(eγ qr(T−t) − ζ − (1− ζ )e−γ qrt ), 0≤ t ≤ T .

Conclusion 6 The preceding results allow us to compare the optimal strategies of
the unconstrained problems and the constrained problems with VaR bound. We con-
sider a riskless interest rate rt ≥ 0 for all t ∈ [0, T ].

When simply optimising expectation, i.e. γ1 = γ2 = 1, the VaR constrain puts
a limit to the investment strategy and also influences the optimum wealth. On the
other hand, there is no change in the consumption, which is zero throughout the
investment horizon in both cases.

For 0 < γ1, γ2 ≤ 1 the optimal strategy for the utility maximisation problem in-
volves investment and consumption during the investment horizon; cf. Theorem 3.
The influence of a VaR bound is dramatic, when it is valid, as it recommends the
optimal strategy of no investment, but consumption only; cf. Theorem 5.
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3.3 Expected Shortfall as Risk Measure

The next problems concern bounds on the Expected Shortfall.

Problem 3

max
ς∈U

J (x,ς) subject to sup
0≤t≤T

ESt (x, ς,α)

ζt (x)
≤ 1.

To formulate the solution for Problem 3 we define for ρ ≥ 0 and 0≤ u≤ 1

ψ(ρ,u)= ‖θ‖T ρu2 + lnFα(|zα| + ρu). (3.23)

Moreover, we set

ρ∗ES = sup{ρ > 0 :ψ(ρ,1)≥ ln(1− ζ )}, (3.24)

where we define sup{∅} =∞. We formulate some properties of ψ which will help
us to calculate ρ∗ES.

Lemma 1 Let 0 < α < 1/2 such that |zα| ≥ 2‖θ‖T . Then ψ satisfies the following
properties.

(1) For every ρ > 0 the function ψ(ρ,u) is strictly decreasing for 0≤ u≤ 1.
(2) The function ψ(·,1) is strictly decreasing.
(3) For every a ≤ 0 the equation ψ(ρ,1) = a has a unique positive solution. The

equation ψ(ρ,1)= ln(1− ζ ) has solution ρ∗ES as defined in (3.24). For |zα|> 1
we have

ρ∗ES ≤
− ln(1− z−2

α )− ln(1− ζ )

|zα| − ‖θ‖T . (3.25)

Now we present the solution of Problem 3, where we start again with the situation
of a small α, where the risk bound is restrictive.

Theorem 7 Consider Problem 3 for γ1 = γ2 = 1. Assume also that the riskless
interest rate rt ≥ 0 for all t ∈ [0, T ]. Then for every 0 < ζ < 1 and for 0 < α < 1/2
such that |zα| ≥ 2‖θ‖T the solution ρ∗ES of ψ(ρ,1) = ln(1 − ζ ) is finite, and the
optimal solution is given by (3.12) after replacing ρ∗VaR by ρ∗ES.

Now we consider Problem 3 with γ1 = γ2 = γ ∈ (0,1). Our next theorem con-
cerns the case of a loose risk bound, where the solution is the same as in the uncon-
strained case.

Theorem 8 Consider Problem 3 for γ1 = γ2 = γ ∈ (0,1). Assume that the riskless
interest rate rt ≥ 0 for all t ∈ [0, T ]. Assume also that |zα| ≥ 2‖θ‖T and

1− (1− κ̃(γ ))eq‖θ‖2
T Fα(|zα| + q‖θ‖T )≤ ζ < 1. (3.26)
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Then the optimal solution ς∗ is given by (3.7)–(3.8); i.e. it is equal to the solution of
the unconstrained problem.

Now we turn to the general case of 0 < γ1, γ2 ≤ 1, the analogon of Theorem 5.

Theorem 9 Consider Problem 3 for 0 < γ1 < 1 and 0 < γ2 ≤ 1. Assume a riskless
interest rate rt ≥ 0 for all t ∈ [0, T ]. Take κ∗(x) as in (3.16). Assume (3.18) and

|zα| ≥
(

2+ max{γ1, γ2}
1− ζ

1
∂
∂ζ

lnG(x, ζ )

)

‖θ‖T . (3.27)

Then the optimal solution ς∗ is given by (3.21)–(3.22).

Remark 6 For |zα| ≥ 2‖θ‖T we calculate

Fα(|zα| + q‖θ‖T )=
∫∞
|zα | exp(− (t+q‖θ‖T )2

2 )dt
∫∞
|zα | e

− t2
2 dt

≤ exp

(

−2q‖θ‖2
T −

q2‖θ‖2
T

2

)

.

Recalling from Remark 5 that g̃γ (t)= ĝγ (t)e
q−1

2 ‖θ‖2
t we obtain

(1− κ̃(γ ))eq‖θ‖2
T Fα(|zα| + q‖θ‖T )≤ g̃

q
γ (T )e

− q(q+4)
2 ‖θ‖2

T

‖g̃γ ‖qq,T + g̃
q
γ (T )

≤ ĝ
q
γ (T )

‖ĝ‖qq,T + ĝ
q
γ (T )

e−
5q
2 ‖θ‖2

T ≤ 1− κ̂(γ ),

i.e. condition (3.26) is complementary to condition (3.18).

Remark 7 (i) It should be noted that the optimal solution (3.21)–(3.22) for Prob-
lems 2 and 3 does not depend on the coefficients (μt )0≤t≤T and (σt )0≤t≤T of
the stock price. These parameters only enter into (3.18), (3.19) and (3.27). Conse-
quently, in practice it is not necessary to know these parameters precisely, an upper
bound for ‖θ‖T suffices.

(ii) If θ ≡ 0, then conditions (3.19) and (3.27) are trivial, i.e. the optimal solutions
for Problems 2 and 3 for 0 < γ1 < 1 and 0 < γ2 ≤ 1 are given by (3.21)–(3.22) for
every 0 < α < 1/2 and ζ satisfying (3.18).

Conclusion 10 The preceding results again allow us to compare the optimal strate-
gies of the utility maximisation problems and the constrained problems with ES
bound. The structures of the solutions are the same as for a VaR constrain, only
certain values have changed.
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4 Proofs

4.1 Proof of Theorem 1

First we consider ‖θ‖T > 0. Define for n ∈ N the sequence of strategies ς(n) =
(y(n), v(n)X(n)) for which v(n) = 0 and y(n) = nθ . For this strategy (2.9) implies

J (x,ς(n))= xeRT+n‖θ‖T →∞ as n→∞.

Let now ‖θ‖T = 0. Then the cost function can be estimated above by

J (x,ς)= x

(∫ T

0
eRt−Vt vtdt + eRT−VT

)

≤ xeRT

(∫ T

0
e−Vt vtdt + e−VT

)

= xeRT .

Thus, every control ς with v = 0 matches this upper bound.

4.2 Proof of Theorem 2

We apply the Verification Theorem 11 to Problem 1 for the stochastic control dif-
ferential equation (2.4). For fixed ϑ = (y, c), where y ∈ R

d and c ∈ [0,∞), the
coefficients in model (5.26) are defined as

a(t, x,ϑ)= x(rt + y′θt )− c,

b(t, x,ϑ)= x|y|, f (t, x,ϑ)= cγ1 , h(x)= xγ2 , 0 < γ1, γ2 < 1.

This implies immediately H1. Moreover, by Definition 1 the coefficients are contin-
uous, hence (5.27) holds for every ς ∈ V .

To check H1–H3 we calculate the Hamilton function (5.29) for Problem 1. We
have

H(t, x, z1, z2)= sup
ϑ∈Rd×[0,∞)

H0(t, x, z1, z2, ϑ),

where

H0(t, x, z1, z2, ϑ)= (rt + y′θt )xz1 + 1

2
x2|y|2z2 + cγ1 − cz1.

For z2 ≤ 0 we find (recall that qi = (1− γi)
−1)

H(t, x, z1, z2)=H0(t, x, z1, z2, ϑ0)= rtxz1 + 1

2|z2|z
2
1|θt |2 +

1

q1

(
γ1

z1

)q1−1

,
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where ϑ0 = ϑ0(t, x, z1, z2)= (y0(t, x, z1, z2), c0(t, x, z1, z2)) with

y0(t, x, z1, z2)= z1

x|z2|θt and c0(t, x, z1, z2)=
(
γ1

z1

)q1

. (4.1)

Now we solve the HJB equation (5.30), which has for our problem the following
form:

{
zt (t, x)+ rtxzx(t, x)+ z2

x(t,x)|θt |2
2|zxx(t,x)| + 1

q1
(

γ1
zx(t,x)

)q1−1 = 0,
z(T , x)= xγ2 .

(4.2)

We make the following ansatz:

z(t, x)= A1(t)

γ1
g1−q1(t, x)+ A2(t)

γ2
g1−q2(t, x), (4.3)

where the function g is defined in (3.3). One can now prove directly that this func-
tion satisfies (4.2) using the following properties of g

(−A1(t)q1g
−q1 −A2(t)q2g

−q2)
∂

∂x
g(t, x) = g(t, x),

Ȧ1(t)g
−q1(t, x)+ Ȧ2(t)g

−q2(t, x)

−A1(t)q1g
−q1−1 ∂

∂t
g(t, x)−A2(t)q2g

−q2−1 ∂

∂t
g(t, x) = 0

Ȧ1(t)g
−q1(t, x)+ Ȧ2(t)g

−q2(t, x)+ 1
∂
∂x
g(t, x)

∂

∂t
g(t, x) = 0.

This implies that

zt (t, x)=− Ȧ1(t)

1− q1
g1−q1(t, x)− Ȧ2(t)

1− q2
g1−q2(t, x). (4.4)

Moreover, zx(t, x) = g(t, x) and zxx(t, x) = −g(t, x)/p(t, x). Equation (4.2) im-
plies the following differential equations for the coefficients Ai :

{
Ȧ1(t)=−β1(t)A1(t)− γ

q1
1 , A1(T )= 0,

Ȧ2(t)=−β2(t)A2(t), A2(T )= γ
q2
2 .

(4.5)

The solution of this system is given by the functions (3.2) in all points of continuity
of (βi(t))0≤t≤T . We denote this set !. By our conditions (all coefficients in the
model (2.1) are càdlàg functions) the Lebesgue measure of ! is equal to T . Note
that conditions (2.5) and (4.5) imply that

∫ T

0
|Ȧi(t)|dt <∞
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for i = 1,2. Moreover, the definition of g(t, x) in (3.3) implies that g(·, ·) is contin-
uous on [0, T ] × (0,∞). Invoking (4.4) we obtain property (5.32). Hence condition
H2 holds.

Now by (4.1) we find that

H(t, x, zx(t, x), zxx(t, x))=H0(t, x, zx(t, x), zxx(t, x),ϑ
∗(t, x)),

where ϑ∗(t, x)= (y∗(t, x), c∗(t, x)) with

y∗(t, x)= p(t, x)

x
θt and c∗(t, x)=

(
γ1

g(t, x)

)q1

.

Hence H2 holds.
Now we check condition H3. First note that (5.33) is identical to (3.5). By Itô’s

formula one can show that this equation has a unique strong positive solution given
by

X∗t =A1(t)g
−q1(0, x)e−q1ξt +A2(t)g

−q2(0, x)e−q2ξt (4.6)

with

ξt =−
∫ t

0

(

ru + 1

2
|θu|2

)

du−
∫ t

0
θ ′udWu.

This implies H3.
To check the final condition H4 note that by definitions (3.3) and (4.6)

g(t,X∗t )= g(0, x)eξt .

Therefore, taking into account that

X∗s =A1(s)g
−q1(s,X∗s )+A2(s)g

−q2(s,X∗s )

we obtain for s ≥ t

X∗s =A1(s)g
−q1(t,X∗t )e−q1(ξs−ξt ) +A2(s)g

−q2(t,X∗t )e−q2(ξs−ξt ).

Hence, for s ≥ t we can find an upper bound of the process z(s,X∗s ) given by

z(s,X∗s )≤
g(t,X∗t )

min(γ1, γ2)
eξs−ξt X∗s ≤M∗(X∗t )(e(1−q1)(ξs−ξt ) + e(1−q2)(ξs−ξt )),

where

M∗(x)= sup0≤t≤T (A1(t)+A2(t))(g
1−q1(t, x)+ g1−q2(t, x))

min(γ1, γ2)
.

Moreover, note that the random variables ξs − ξt and X∗t are independent. There-
fore, for every m > 1 we calculate (Et,x is the expectation operator conditional
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on X
ς
t = x)

Et,x sup
t≤s≤T

zm(s,X∗s )≤ 2m−1Mm∗ (x)
(

E sup
t≤s≤T

em1(ξs−ξt ) + E sup
t≤s≤T

em2(ξs−ξt )
)
,

where m1 = m(1 − q1) and m2 = m(1 − q2). Therefore, to check condition H4 it
suffices to show that for every λ ∈R

E sup
t≤s≤T

eλ(ξs−ξt ) <∞. (4.7)

Indeed, for every t ≤ s ≤ T we set Et,s = e−λ
∫ s
t θ

′
udWu− λ2

2

∫ s
t |θu|2du, then

eλ(ξs−ξt ) ≤ e|λ|RT+ |λ|+λ2

2 ‖θ‖2
T Et,s .

We recall from (2.3) that (θs)0≤s≤T is a deterministic function. This implies that
the process (Et,s )t≤s≤T is a martingale. Hence applying the maximal inequality for
positives submartingales (see e.g. Theorem 3.2 in [9]) we obtain that

E sup
t≤s≤T

E 2
t,s ≤ 4EE 2

t,T = 4eλ
2
∫ T
t |θu|2du ≤ 4eλ

2‖θ‖2
T .

From this inequality (4.7) follows, which implies H4. Therefore, by Theorem 11 we
get Theorem 2.

4.3 Proof of Theorem 3

First note that restriction (2.13) is equivalent to

inf
0≤t≤T Lt (ς)≥ ln(1− ζ ), (4.8)

where

Lt(ς)= (y, θ)t − Vt − 1

2
‖y‖2

t − |zα|‖y‖t (4.9)

with notations as in (2.3) and (2.10). Inequality (4.8) and the Cauchy-Schwartz in-
equality imply that

‖y‖T ‖θ‖T − 1

2
‖y‖2

T − |zα|‖y‖T ≥ ln(1− ζ )

and, consequently,

‖y‖T ≤ ρ∗VaR, (4.10)



154 C. Klüppelberg and S. Pergamenchtchikov

where ρ∗VaR has been defined in (3.4) and satisfies the equation

‖θ‖T ρ∗VaR −
1

2
(ρ∗VaR)

2 − |zα|ρ∗VaR = ln(1− ζ ). (4.11)

Moreover, for every ς ∈U (2.9) yields

ExX
ς
t = xeRt−Vt+(y,θ)t .

For every y ∈R
d the upper bound (4.10) and the Cauchy-Schwartz inequality yield

sup
0≤t≤T

e(y,θ)t ≤ eρ
∗
VaR‖θ‖T .

Therefore, the cost function (2.11) has an upper bound given by

J (x,ς)= x

(∫ T

0
eRt−Vt+(y,θ)t vtdt + eRT−VT+(y,θ)T

)

≤ xeρ
∗
VaR‖θ‖T+RT

(∫ T

0
e−Vt vtdt + e−VT

)

= xeρ
∗
VaR‖θ‖T+RT .

It is easy to see that the control ς∗ defined in (3.12) matches this upper bound, i.e.
J (x,ς∗)= xeρ

∗
VaR‖θ‖T+RT . To finish the proof we have to check condition (4.8) for

this control. If ‖θ‖T = 0 then by (4.9)

Lt(ς
∗)=−1

2
‖y∗‖2

t − |zα|‖y∗‖t ≥−
1

2
‖y∗‖2

T − |zα|‖y∗‖T

≥−1

2
(ρ∗VaR)

2 − |zα|ρ∗VaR = ln(1− ζ ).

Let now ‖θ‖T > 0. Note that condition (3.10) implies |zα| ≥ 2‖θ‖T − ρ∗VaR. More-
over, we can represent Lt(ς

∗) as

Lt(ς
∗)= ρ∗VaRf (‖θ‖t /‖θ‖T )

with

f (η)= (2‖θ‖T − ρ∗VaR)
η2

2
− |zα|η, 0≤ η ≤ 1.

Then

inf
0≤t≤T Lt (ς

∗)= ρ∗VaR inf
0≤η≤1

f (η).

Taking into account that for |zα| ≥ 2‖θ‖T − ρ∗VaR this infimum equals f (1) we
obtain together with (4.11)

inf
0≤t≤T Lt (ς

∗)= ρ∗VaRf (1)= ln(1− ζ ).

This proves Theorem 3.
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4.4 Proof of Theorem 4

We have to prove condition (4.8) for the strategy (3.7)–(3.8):

Lt(ς
∗)=

(

q − q2

2

)

‖θ‖2
t − V ∗t − q|zα|‖θ‖t

≥
(

q − q2

2

)

‖θ‖2
T 1{q>2} − V ∗T − q|zα|‖θ‖T = l∗(γ ).

Now condition (4.8) follows immediately from the restrictions on ζ and the defini-
tion of l∗(γ ).

4.5 Proof of Theorem 5

We prove this theorem as Theorem 3. Firstly, we find an upper bound for the cost
function J (x,ς) and, secondly, we show that the optimal control (3.20) matches
this bound and satisfies condition (4.8). To this end note that from (2.9) we find that
for ς ∈U

Ex(X
ς
t )

γ = xγ ĝγ (t)e
−γVt+γ (y,θ)t− γ (1−γ )

2 ‖y‖2
t . (4.12)

This implies for ς ∈U that the cost function (2.11) has the form

J (x,ς)= xγ1

∫ T

0
(e−Vt vt )γ1 ĝ1(t )̂h1(t, y)dt + xγ2 ĝ2(T )e

−γ2VT ĥ2(T , y),

where

ĥi (t, y)= eγi(y,θ)t−
γi (1−γi )

2 ‖y‖2
t .

Hölder’s inequality with p = 1/γ1 and q = (1− γ1)
−1 yields

J (x,ς)≤ sup
0≤t≤T

ĥ(t, y)

(

xγ1

∫ T

0
(e−Vt vt )γ1 ĝ1(t)dt + xγ2 ĝ2(T )e

−γ2VT

)

≤ sup
0≤t≤T

ĥ(t, y)(xγ1(1− e−VT )γ1‖ĝ1‖q,T + xγ2 ĝ2(T )e
−γ2VT ),

where ĥ(t, y) = max{̂h1(t, y), ĥ2(t, y)}. We abbreviate as before ‖ĝ1‖q,T :=
(
∫ T

0 eqγ1Rt dt)1/q . By setting κ = 1− e−VT we obtain that

J (x,ς)≤ max
0≤t≤T

ĥ(t, y)G(x, κ), (4.13)
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where G(·, ·) is given in (3.15). Moreover, condition (4.8) implies

‖y‖T ≤
√

(|zα| − ‖θ‖T )2 + 2 ln
1− κ

1− ζ
− (|zα| − ‖θ‖T ) := ρ(κ) (4.14)

and 0 ≤ κ ≤ ζ < 1. It is easy to see that ρ(κ) ≤ ρ(0)= ρ∗VaR for every 0 ≤ κ ≤ ζ .

From this inequality follows that for i = 1,2 the functions ĥi (t, y) with 0 < γi ≤ 1
can be bounded above by

sup
0≤t≤T

ĥi(t, y)≤ exp

{

γi max
0≤x≤ρ(κ)

(

x‖θ‖T − (1− γi)x
2

2

)}

= exp

{

γiρi(κ)‖θ‖T − γi(1− γi)

2
ρ2
i (κ)

}

:=Mi(ρi(κ)), (4.15)

where ρi(κ) = min(ρ(κ), xi) with xi = qi‖θ‖T for 0 < γi < 1 and ρi(κ) = ρ(κ)

for γi = 1. Therefore, from (4.13) we obtain the following upper bound for the cost
function

J (x,ς)≤ max
1≤i≤2

Mi(ρi(κ))G(x, κ)≤ max
1≤i≤2

sup
0≤κ≤ζ

Mi(ρi(κ))G(x, κ).

If ρ(0)≤ xi then

sup
0≤κ≤ζ

Mi(ρi(κ))G(x, κ)= sup
0≤κ≤ζ

Mi(ρ(κ))G(x, κ).

We calculate this supremum by means of Lemma 2 with a = 0 and b = ζ . Note
that condition (3.18) guarantees that ζ < κ∗(x), which is defined in (3.16). There-
fore, the function G(x, ·) has positive first derivative and negative second on [0, ζ ].
Moreover, from (4.14) we find the derivative of ρ(·) as

ρ̇(κ)=− 1

(1− κ)
√
(|zα| − ‖θ‖T )2 + 2 ln(1− κ)− 2 ln(1− ζ )

and, therefore,

sup
0≤κ≤ζ

|ρ̇(κ)| ≤ 1

(1− ζ )(|zα| − ‖θ‖T ) .

By (3.19) we obtain that

sup
0≤κ≤ζ

|ρ̇(κ)| ≤ 1

max{γ1, γ2}‖θ‖T
∂ lnG(x, ζ )

∂ζ
.

Now Lemma 2 yields

max
0≤κ≤ζ

Mi(ρ(κ))G(x, κ)=Mi(ρ(ζ ))G(x, ζ )=G(x, ζ ). (4.16)
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Consider now xi < ρ(0). We recall that ρ(·) is decreasing on [0, ζ ] with ρ(ζ )= 0.
Therefore, there exists 0≤ κi < ζ such that ρ(κi)= xi . As G(x, ·) is increasing on
[0, ζ ] we obtain

max
0≤κ≤κi

Mi(ρi(κ))G(x, κ)=Mi(ρ(κi))G(x, κi).

This in combination with (4.16) yields

sup
0≤κ≤ζ

Mi(ρi(κ))G(x, κ)= sup
κi≤κ≤ζ

Mi(ρ(κ))G(x, κ)=G(x, ζ ).

This implies the following upper bound for the cost function

J (x,ς)≤G(x, ζ ). (4.17)

Now we find a control to obtain the equality in (4.17). It is clear that we have to take
a consumption such that

∫ T

0
ĝ1(t)(e

−Vt vt )γ1 dt = (1− e−VT )γ1‖ĝ1‖q1,T

and VT =− ln(1− ζ ). To find this consumption we solve the differential equation
on [0, T ]

V̇t e
−Vt = ζ

‖ĝ1‖q1
q1,T

ĝ
q1
1 (t), V0 = 0.

The solution of this equation is given by

V ∗t =− ln

(

1− ζ
‖ĝ1‖q1

q1,t

‖ĝ1‖q1
q1,T

)

and the optimal consumption rate is

v∗t = V̇ ∗t =
ζ ĝ

q1
1 (t)

‖ĝ1‖q1
q1,T

− ζ‖ĝ1‖q1
q1,t

.

We recall that rt ≥ 0, therefore, for every 0≤ t ≤ T

v∗t ≤ v∗T =
ζ ĝ

q1
1 (T )

(1− ζ )‖ĝ1‖q1
q1,T

.

The condition 0 < ζ ≤ κ̂(γ1) implies directly that the last upper bound less than 1,
i.e. the strategy ς∗ defined in (3.21) belongs to U . Moreover, from (4.14) we see
that for the value V ∗T = − ln(1 − ζ ) (i.e. κ = ζ ) the only control process, which
satisfies this condition is identical zero; i.e. y∗t = 0 for all 0 ≤ t ≤ T . In this case
ĥ(t, y∗)= 1 for every t ∈ [0, T ] and, therefore, J (x,ς∗)=G(x, ζ ).
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4.6 Proof of Lemma 1

(1) Recall the following well known inequality for the Gaussian integral

(1− x−2)e−x2/2 < x

∫ ∞

x

e−t2/2dt < e−x2/2, x ≥ 0. (4.18)

We use this to check directly that ψ(ρ, ·) is for every fixed ρ > 0 decreasing for
|zα| ≥ 2‖θ‖T . This implies for 0≤ u≤ 1

∂ψ(ρ,u)

∂u
= 2‖θ‖T ρu− ρ

e−(|zα |+ρu)2/2

∫∞
|zα |+ρu e

−t2/2dt
≤ ρ(2‖θ‖T − |zα|) < 0.

(2) Similarly, we can show that ψ(·,1) is strictly decreasing for |zα| ≥ ‖θ‖T .
(3) From (4.18) we obtain

ψ(ρ,1)≤ ‖θ‖T ρ − ln
∫ ∞

|zα |
e−t2/2dt − 1

2
(|zα| + ρ)2 − ln(|zα| + ρ). (4.19)

This implies that limρ→∞ψ(ρ,1) = −∞. As ψ(0,1) = 0 we conclude that the
equation ψ(ρ,1) = a has a unique root for every a ≤ 0. Thus ρ∗ES is equal to the
root of this equation for a = ln(1− ζ ). Now for |zα|> 1 inequalities (4.18)–(4.19)
imply directly the upper bound for ρ∗ES as given in (3.25).

4.7 Proof of Theorem 7

Note that Lemma 1 implies immediately that ρ∗ES <∞ and ψ(ρ∗ES,1)= ln(1− ζ ).
Furthermore, inequality (2.14) is equivalent to

inf
0≤t≤T L

∗
t (ς)≥ ln(1− ζ ), (4.20)

where

L∗t (ς)= (y, θ)t − Vt + ln(Fα(|zα| + ‖y‖t )).
First note that

L∗T (ς)= (y, θ)T − VT + ln(Fα(|zα| + ‖y‖T ))
≤ ‖y‖T ‖θ‖T + ln(Fα(|zα| + ‖y‖T ))=ψ(‖y‖T ,1).

Therefore, for every strategy ς ∈U satisfying inequality (4.20) for t = T we obtain

ln(1− ζ )=ψ(ρ∗ES,1)≤ L∗T (ς)≤ψ(‖y‖T ,1).

By Lemma 1(2) ψ(·,1) is decreasing, hence ‖y‖T ≤ ρ∗ES. Therefore, to conclude
the proof we have to show (4.20) for the strategy ς∗ as defined in (3.12) with



Optimal Consumption and Investment with Bounded Downside Risk 159

ρ∗VaR = ρ∗ES. If ‖θ‖T = 0, then ς∗ = (y∗,0) with every function y∗ for which
‖y∗‖T ≤ ρ∗ES. Therefore, if ‖θ‖T = 0, then

L∗t (ς∗)=ψ(‖y∗‖t ,1)≥ψ(‖y∗‖T ,1)≥ ln(1− ζ ).

If ‖θ‖T > 0, then

inf
0≤t≤T L

∗
t (ς

∗)= inf
0≤t≤T ψ

(

ρ∗ES,
‖θ‖t
‖θ‖T

)

=ψ(ρ∗ES,1)= ln(1− ζ ).

This proves Theorem 7.

4.8 Proof of Theorem 8

It suffices to prove condition (4.20) for the strategy (3.7)–(3.8). We have

L∗t (ς∗)=
∫ t

0
(y∗u)′θudu− V ∗t + ln(Fα(|zα| + ‖y∗‖t ))

= q‖θ‖2
t − V ∗t + ln(Fα(|zα| + q‖θ‖t ))

≥ψ0(‖θ‖t )− V ∗T , (4.21)

where

ψ0(u)= qu2 + lnFα(|zα| + qu) with q = 1

1− γ
.

It is clear that ψ0 is continuously differentiable. Moreover, by inequality (4.18) we
obtain for 0≤ u≤ ‖θ‖T

dψ0(u)

du
= 2qu− q

e−(|zα |+qu)2/2

∫∞
|zα |+qu e

−t2/2dt

≤ 2qu− q|zα| − q2u≤ q(2‖θ‖T − |zα|).
Since |zα| ≥ 2‖θ‖T , ψ0(u) decreases in [0,‖θ‖T ]. Hence, inequality (4.21) implies

L∗t (ς∗)≥ψ0(‖θ‖T )− V ∗T = q‖θ‖2
T + ln e−V ∗T Fα(|zα| + q‖θ‖T ).

Applying condition (3.26) yields (4.20). This proves Theorem 8.

4.9 Proof of Theorem 9

We recall that ψ(ρ,1)≤ 0 for ρ ≥ 0. Therefore condition (4.20) implies

ln(1− ζ )≤−VT +ψ(‖y‖T ,1)≤−VT . (4.22)
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As in the proof of Theorem 5 we set κ = 1−e−VT and conclude from this inequality
that 0≤ κ ≤ ζ . Moreover, from (4.22) we obtain also that

ln(1− ζ )− ln(1− κ)≤ψ(‖y‖T ,1).

Since, by Lemma 1(2) ψ(·,1) is decreasing, we get ‖y‖T ≤ ρ(κ), where ρ(κ) is the
solution of the equation

ψ(ρ,1)= ln(1− ζ )− ln(1− κ). (4.23)

By Lemma 1(3) the root of (4.23) exists for every 0 ≤ κ ≤ ζ and is decreasing
in κ giving ρ(κ) ≤ ρ(0) = ρ∗ES. Consequently, we estimate the cost function as in
Sect. 4.5 and obtain

J (x,ς)≤ max
1≤i≤2

max
κ∈[0,ζ ]

Mi(ρi(κ))G(x, κ), (4.24)

where G(x,κ) is as in (3.15), Mi(·) is defined in (4.15) and ρi(κ)=min(xi, ρ(κ))
for xi = ‖θ‖T /(1− γi) for 0 < γi < 1 with ρi(κ)= ρ(κ) for γi = 1.

To finish the proof we have to show condition (5.25) of Lemma 2. From (4.23)
we find that

ρ̇(κ)= 1

1− κ

(
dψ(ρ,1)

dρ

)−1

.

Now from the definition of ψ in (3.23) and inequality (4.18) follows

dψ(ρ,1)

dρ
= ‖θ‖T − e−(|zα |+ρ)2/2

∫∞
|zα |+ρ e

−t2/2dt
≤ ‖θ‖T − |zα|.

Therefore (3.27) yields (we set G1(x, ζ )= ∂G(x,ζ )

∂ζ
)

sup
0≤κ≤ζ

|ρ̇(κ)| ≤ 1

(1− ζ )(|zα| − ‖θ‖T ) ≤
G1(x, ζ )

max{γ1, γ2}‖θ‖T G(x, ζ ) .

We apply Lemma 2, and the same reasoning as in the proof of Theorem 5 implies
that

max
0≤κ≤ζ

Mi(ρi(κ))G(x, κ)≤G(x, ζ )

for i = 1,2. Therefore from the upper bound (4.24) follows

J (x,ς)≤G(x, ζ ).

The remainder of the proof is the same as for Theorem 5.
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Appendix

5.1 A Technical Lemma

Lemma 2 Let G be some positive two times continuously differentiable function
on [a, b] such that Ġ(x) ≥ 0 and G̈(x) ≤ 0 for all a ≤ x ≤ b. Moreover, let
ρ : [a, b]→R+ be continuously differentiable with negative derivative ρ̇ satisfying

sup
a≤κ≤b

|ρ̇(κ)| ≤ (lnG(b))′

max{γ1, γ2}‖θ‖T . (5.25)

Recall the definitions of Mi(·) in (4.15). Then the functions M1(ρ(·))G(·) and
M2(ρ(·))G(·) are increasing in [a, b].
Proof For ‖θ‖T = 0 the result is obvious. Consider now ‖θ‖T > 0. We prove that
for i = 1,2 the functions li (x)= lnMi(ρ(x))+ lnG(x) are increasing in [a, b]. As
derivative we obtain

l̇i (κ)= γiρ̇(κ)(‖θ‖T − (1− γi)ρ(κ))+ Ġ(x)

G(x)
.

Since the derivative of the function Ġ(·)/G(·) is negative on [a, b], Ġ(·)/G(·) is
decreasing on [a, b], hence

Ġ(x)

G(x)
≥ Ġ(b)

G(b)
> 0

for x ∈ [a, b]. Therefore, as ρ > 0 and ρ̇ < 0 we find

l̇i (x)≥ (lnG(b))′ − γi‖θ‖T |ρ̇(κ)| ≥ 0, a ≤ κ ≤ b. �

5.2 The Verification Theorem

We prove a special form of the verification theorem (see e.g. Touzi [11], p. 16).
Consider on the interval [0, T ] the stochastic control process given by the Itô process

dXς
t = a(t,X

ς
t , ςt )dt + b(t,X

ς
t , ςt )dWt, t ≥ 0, X

ς
0 = x > 0. (5.26)

We assume that the control process ς takes values in some set K ⊆ R
d × [0,∞).

Moreover, assume that the coefficients a and b satisfy the following conditions

(1) for all t ∈ [0, T ] the functions a(t, ·, ·) and b(t, ·, ·) are continuous on
(0,∞)×K ;

(2) for every deterministic vector υ ∈K the stochastic differential equation

dXυ
t = a(t,Xυ

t , υ)dt + b(t,Xυ
t , υ)dWt, Xυ

0 = x > 0,

has an unique strong solution.
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Now we introduce admissibles control processes for (5.26). We set Ft = σ {Wu,

0≤ u≤ t} for any 0 < t ≤ T .

Definition 4 A stochastic control process ς = (ςt )0≤t≤T = ((yt , ct ))0≤t≤T is called
admissible on [0, T ] with respect to (5.26) if it is (Ft )0≤t≤T -progressively mea-
surable with values in R

d × [0,∞), and (5.26) has a unique strong a.s. positive
continuous solution (X

ς
t )0≤t≤T on [0, T ] such that

∫ T

0
(|a(t,Xς

t , ςt )| + b2(t,X
ς
t , ςt ))dt <∞ a.s. (5.27)

In this context V is the set of all admissible control processes with respect to
(5.26); cf. Definition 1.

Moreover, assume that f : [0, T ] × (0,∞) ×K → [0,∞) and h : (0,∞)→
[0,∞) are continuous utility functions. We define the cost function by

J (t, x, ς) := Et,x

[∫ T

t

f (s,Xς
s , ςs)ds + h(X

ς
T )

]

, 0≤ t ≤ T ,

where Et,x is the expectation operator conditional on X
ς
t = x. Our goal is to solve

the optimisation problem

J ∗(t, x) := sup
ς∈V

J (t, x, ς). (5.28)

To this end we introduce the Hamilton function

H(t, x, z1, z2) := sup
ϑ∈K

H0(t, x, z1, z2, ϑ), (5.29)

where

H0(t, x, z1, z2, ϑ) := a(t, x,ϑ)z1 + 1

2
b2(t, x,ϑ)z2 + f (t, x,ϑ).

In order to find the solution to (5.28) we investigate the Hamilton-Jacobi-Bellman
equation

{
zt (t, x)+H(t, x, zx(t, x), zxx(t, x))= 0, t ∈ [0, T ],
z(T , x)= h(x), x > 0.

(5.30)

Here zt denotes the partial derivative of z with respect to t , analogous notation
applies to all partial derivatives.

We assume that the following conditions hold:

(H1) There exists some function z : [0, T ] × (0,∞)→ [0,∞), which satisfies the
following conditions.
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• For all 0 ≤ t1, t2 ≤ T there exists a B[0, T ] ⊗B(0,∞) measurable function
zt (·, ·) such that

z(t2, x)− z(t1, x)=
∫ t2

t2

zt (u, x)du, x > 0. (5.31)

• Moreover, we assume that for every u ∈ [0, T ] the function zt (u, ·) is continuous
on (0,∞) such that for every N > 1

lim
ε→0

∫ T

0
sup

x,y∈KN,|x−y|<ε
|zt (u, x)− zt (u, y)|du= 0, (5.32)

where KN = [N−1,N].
• The function z has second partial derivative zxx , which is continuous on [0, T ]×
(0,∞).

• There exists a set ! ⊂ [0, T ] of Lebesgue measure λ(!) = T such that z(t, x)
satisfies (5.30) for all t ∈ ! ⊂ [0, T ] and for all x > 0.

(H2) There exists a measurable function ϑ∗ : [0, T ] × (0,∞)→K such that

H(t, x, zx(t, x), zxx(t, x))=H0(t, x, zx(t, x), zxx(t, x),ϑ
∗(t, x))

for all t ∈ ! and for all x ∈ (0,∞).

(H3) There exists a unique a.s. strictly positive strong solution to the Itô equation

dX∗t = a∗(t,X∗t )dt + b∗(t,X∗t )dWt, t ≥ 0, X∗0 = x, (5.33)

where a∗(t, x) = a(t, x,ϑ∗(t, x)) and b∗(t, x) = b(t, x,ϑ∗(t, x)). Moreover, the
optimal control process ς∗t = ϑ∗(t,X∗t ) for 0≤ t ≤ T belongs to V .

(H4) There exists some δ > 1 such that for all 0≤ t ≤ T and x > 0

Et,x sup
t≤s≤T

(z(s,X∗s ))δ <∞.

Theorem 11 Assume that V �= ∅ and H1 − H4 hold. Then for all t ∈ [0, T ] and
for all x > 0 the solution to the Hamilton-Jacobi-Bellman equation (5.30) coincides
with the optimal value of the cost function, i.e. z(t, x) = J ∗(t, x) = J ∗(t, x, ς∗),
where the optimal strategy ς∗ is defined in H2 and H3.

Proof For ς ∈ V let Xς be the associated wealth process with initial value Xς
0 = x.

Define stopping times

τn = inf

{

s ≥ t :
∫ s

t

b2(u,Xς
u , ςu)z

2
x(u,X

ς
u )du≥ n

}

∧ T .
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Note that condition (5.27) implies that τn → T as n→∞ a.s. By continuity of
z(·, ·) and of (Xς

t )0≤t≤T we obtain

lim
n→∞ z(τn,X

ς
τn
)= z(T ,X

ς
T )= h(X

ς
T ) a.s. (5.34)

Theorem 12 guarantees that we can invoke Itô’s formula, and we conclude from
(5.26)

z(t, x) =
∫ τn

t

f (s,Xς
s , ςs)ds + z(τn,X

ς
τn
)−

∫ τn

t

(zt (s,X
ς
s )

+H1(s,X
ς
s , ςs))ds −

∫ τn

t

b(u,Xς
u , ςu)zx(u,X

ς
u )dWu, (5.35)

where

H1(s, x,ϑ)=H0(t, x, zx(t, x), zxx(t, x),ϑ).

Condition H1 implies

z(t, x)≥ Et,x

∫ τn

t

f (s,Xς
s , ςs)ds + Et,xz(τn,X

ς
τn
).

Moreover, by monotone convergence for the first term and Fatou’s lemma for the
second, and by observing (5.34) we obtain

lim
n→∞Et,x

∫ τn

t

f (s,Xς
s , ςs)ds + lim

n→∞Et,xz(τn,X
ς
τn
)

≥ Et,x

∫ T

t

f (s,Xς
s , ςs)ds + Et,xh(X

ς
T ) := J (t, x, ς), 0≤ t ≤ T . (5.36)

Therefore, z(t, x)≥ J ∗(t, x) for all 0≤ t ≤ T .
Similarly, replacing ς in (5.35) by ς∗ as defined by H2–H3 we obtain

z(t, x)= Et,x

∫ τn

t

f (s,X∗s , ς∗s )ds + Et,xz(τn,X
∗
τn
).

Condition H4 implies that the sequence (z(τn,X
∗
τn
))n∈N is uniformly integrable.

Therefore, by (5.34),

lim
n→∞Et,xz(τn,X

∗
τn
)= Et,x lim

n→∞ z(τn,X
∗
τn
)= Et,xh(X

∗
T ),

and we obtain

z(t, x)= lim
n→∞Et,x

∫ τn

t

f (s,X∗s , ς∗s )ds + lim
n→∞Et,xz(τn,X

∗
τn
)

= Et,x

(∫ T

t

f (s,X∗s , ς∗s )ds + h(X∗T )
)

= J (t, x, ς∗).

Together with (5.36) we arrive at z(t, x)= J ∗(t, x). This proves Theorem 11. �
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Remark 8 Note that in contrast to the usual verification theorem (see e.g. Touzi [11],
Theorem 1.4) we do not assume that (5.30) has a solution for all t ∈ [0, T ], but only
for almost all t ∈ [0, T ]. This provides the possibility to consider market models as
in (2.1) with discontinuous functional coefficients. Moreover, in the usual verifica-
tion theorem the function f (t, x,ϑ) is bounded with respect to ϑ ∈K or integrable
with all moments finite. This is an essential difference of our situation as for the op-
timal consumption problem f is not bounded over ϑ ∈K and we do not assume
that f is integrable.

5.3 A Special Version of Itô’s Formula

We prove Itô’s formula for functions satisfying H1, an extension, which to the best
of our knowledge can not be found in the literature. Consider the Itô equation

dξt = atdt + btdWt,

where the stochastic processes a = (at )0≤t≤T and b = (bt )0≤t≤T are measurable,
adapted and satisfy for the investment horizon T > 0

∫ T

0
(|at | + b2

t )dt <∞ a.s. (5.37)

Theorem 12 Let f : [0, T ] × (0,∞)→[0,∞) satisfy H1. Assume that the process
ξ is a.s. positive on 0≤ t ≤ T . Then (f (t, ξt ))0≤t≤T is the solution to

df (t, ξt ) =
(

ft (t, ξt )+ fx(t, ξt )at + 1

2
fxx(t, ξt )

)

b2
t dt

+ fx(t, ξt )btdWt. (5.38)

Remark 9 Note that in contrast to the usual Itô formula we do not assume that f
has a continuous derivative with respect to t and continuous derivatives with respect
to x on the whole of R. For example, the function (4.3) for γ1 = γ2 = γ ∈ (0,1)
factorises into z(t, x)= Z(t)xγ , i.e. is not continuously differentiable with respect
to x on R.

Proof First we prove (5.38) for bounded processes a and b, i.e. we assume that for
some constant L> 0

sup
0≤t≤T

(|at | + |bt |)≤ L a.s. (5.39)

Let (tk)1≤k≤n be a partition of [0, T ], more precisely, take tk = kT /n, and consider
the telescopic sums
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f (T , ξT )− f (0, ξ0)

=
n∑

k=1

(f (tk, ξtk )− f (tk−1, ξtk ))+
n∑

k=1

(f (tk−1, ξtk )− f (tk−1, ξtk−1))

:=
∑

1,n

+
∑

2,n

.

Taking condition (5.31) into account we can represent the first sum as

-1,n =
n∑

k=1

∫ tk

tk−1

ft (u, ξtk )du=
∫ T

0
ft (u, ξu)du+ r1,n,

where

r1,n =
n∑

k=1

∫ tk

tk−1

(ft (u, ξtk )− ft (u, ξu))du.

Now we prove that r1,n
P→ 0 as n→∞. To this end we introduce the stopping time,

τN = inf{t ≥ 0 : ξt + ξ−1
t ≥N} ∧ T , N > 0. (5.40)

As the process ξ is continuous and a.s. positive,

lim
N→∞P(τN < T )= 0, (5.41)

and, hence, τN
P→ T as N→∞. Moreover, the modulus of continuity of the process

ξ satisfies

�ε(ξ, [0, T ]) := sup
|t−s|≤ε,s,t∈[0,T ]

|ξt − ξs | a.s.→ 0, ε→ 0. (5.42)

Note now that condition (5.32) implies that for every N > 1

F ∗(η,N) :=
∫ T

0
sup

x,y,∈KN,|x−y|<η
|ft (u, x)− ft (u, y)|du→ 0 as η→ 0,

where KN = [N−1,N]. This implies that for every δ > 0 there exists ηδ > 0 such
that F ∗(ηδ,N) < δ. Moreover, taking into account that for ε = T/n the random
variable r1,n is bounded on the ω-set

{�ε(ξ, [0, T ])≤ ηδ} ∩ {τN = T }
by |r1,n| ≤ F ∗(ηδ,N) < δ, we obtain that

P(|r1,n|> δ)≤ P(�ε(ξ, [0, T ]) > ηδ)+ P(τN < T ).
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Relations (5.41) and (5.42) imply r1,n
P→ 0 as n→∞. Now define

r2,n :=-2,n −
∫ T

0
fx(t, ξt )dξt − 1

2

∫ T

0
fxx(t, ξt )b

2
t dt.

We show that r2,n
P→ 0 as n→∞. A Taylor expansion gives

-2,n =
n∑

k=1

fx(tk−1, ξtk−1)�ξtk +
1

2

n∑

k=1

fxx(tk−1, ξtk−1)

∫ tk

tk−1

b2
udu

+ 1

2

n∑

k=1

fxx(tk−1, ξtk−1)αk +
1

2

n∑

k=1

f̂k(�ξtk )
2, (5.43)

where αk = (�ξtk )
2 − ∫ tk

tk−1
b2
udu, f̂k = fxx(tk−1, ξ̂tk ) − fxx(tk−1, ξtk−1) and ξ̂tk =

ξtk−1 + θk�ξtk with θk ∈ [0,1]. Now taking into account that as n→∞
n∑

k=1

fx(tk−1, ξtk−1)�ξtk
P→

∫ T

0
fx(t, ξt )dξt ,

n∑

k=1

fxx(tk−1, ξtk−1)

∫ tk

tk−1

b2
udu

a.s.→
∫ T

0
fxx(t, ξt )b

2
t dt

it suffices to show that the last two terms in (5.43) tend to zero in probability. To this
end we represent the first sum as

n∑

k=1

fxx(tk−1, ξtk−1)αk =Mn +Rn,

where

Mn =
n∑

k=1

fxx(tk−1, ξtk−1)ηk with ηk =
(∫ tk

tk−1

budWu

)2

−
∫ tk

tk−1

b2
udu,

Rn =
n∑

k=1

fxx(tk−1, ξtk−1)α
∗
k with α∗k = (�ξtk )

2 −
(∫ tk

tk−1

budWu

)2

.

First we estimate the martingale part in this representation. Note that on the set
{τN = T } the martingale part coincides with the bounded martingale

Mn =
n∑

k=1

fxx(tk−1, ξtk−1∧τN )ηk.

Taking into account that

|fxx(tk−1, ξtk−1∧τN )| ≤ sup
t∈[0,T ],y∈[N−1,N ]

|fxx(t, y)| :=M∗
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we obtain

EM2
n = E

n∑

k=1

f 2
xx(tk−1, ξtk−1∧τN )η2

k ≤M2∗
n∑

k=1

E

(∫ tk

tk−1

budWu

)4

≤ 3L4M2∗
n∑

k=1

(�tk)
2 = 3L4M2∗T 2 1

n
→ 0, n→∞.

In the last inequality we used the bound (5.39) for b. We conclude

Mn
P→ 0, n→∞. (5.44)

Using the convergence (5.42) also for I (t)= ∫ t

0 budWu and the upper bound (5.39)
for a we obtain

|α∗k | ≤
(∫ tk

tk−1

audu

)2

+ 2
∫ tk

tk−1

|au|du
∣
∣
∣
∣

∫ tk

tk−1

budWu

∣
∣
∣
∣

≤ L2(�tk)
2 + 2L�ε(I, [0, T ])�tk,

where ε = �tk = T/n. This yields limn→∞
∑n

k=1 |α∗k | = 0 a.s. We use analo-

gous arguments as for (5.44) to show that Rn
P→ 0. Taking also into account that∑n

k=1(�ξtk )
2 is bounded in probability, i.e.

lim
m→∞P

(
n∑

k=1

(�ξtk )
2 ≥m

)

= 0,

it is easy to see that the last sum in (5.43) tends to zero in probability. This proves
Ito’s formula (5.38) for bounded coefficients (at ) and (bt ).

To prove Ito’s formula under condition (5.37) we introduce for L ∈ N the se-
quence of processes (ξLt )0≤t≤T by

dξLt = aLt dt + bLt dWt, ξL0 = ξ0,

where aLt := atχ{|at |≤L} and bLt := btχ{|bt |≤L}. For each of these processes we al-
ready proved (5.38). Therefore we can write

f (T , ξLT )= f (0, ξ0)+
∫ T

0
AL
t dt +

∫ T

0
BL
t dWt, (5.45)

where AL
t = ft (t, ξ

L
t )+ fx(t, ξ

L
t )a

L
t + fxx(t, ξ

L
t )(b

L
t )

2/2 and BL
t = fx(t, ξ

L
t )b

L
t .

Note that (5.37) implies immediately

lim
L→∞

∫ T

0
(|aLt − at | + (bLt − bt )

2)dt = 0 a.s.
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Taking this into account we show that

sup
0≤t≤T

|ξLt − ξt | P→ 0, L→∞. (5.46)

Indeed, from the definitions of ξ and ξL we obtain that

sup
0≤t≤T

|ξLt − ξt | ≤
∫ T

0
|aLt − at |dt + sup

0≤t≤T

∣
∣
∣
∣

∫ t

0
(bLt − bt )dWt

∣
∣
∣
∣.

Thus for (5.46) it suffices to show that the last term in this inequality tends to zero
as L→∞. By Lemma 4.6, p. 102 in Liptser and Shiryaev [9]) we obtain for every
ε > 0

P

(

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
(bLt − bt )dWt

∣
∣
∣
∣≥ δ

)

≤ ε

δ2
+ P

(∫ T

0
(bLt − bt )

2dt ≥ ε

)

.

This implies (5.46). Taking now the limit in (5.45) for L to infinity we ob-
tain (5.38). �
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On Comparison Theorem and its Applications
to Finance

Vladislav Y. Krasin and Alexander V. Melnikov

Abstract This paper studies a comparison theorem for solutions of stochastic dif-
ferential equations and its generalization to the multi-dimensional case. We show,
that even though the proof of the generalized theorem follows that of the one-
dimensional comparison theorem, the multi-dimensional case requires a different
condition on the drift coefficient, known in the theory of differential equations as
Kamke-Wazewski condition. We also present several examples of possible applica-
tions to option price estimation in finance.

Keywords Comparison theorem · Option pricing · Stochastic differential
equations
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1 Introduction

Stochastic domination theorems play an important role in the theory of stochas-
tic processes and their applications. We focus our attention on results, establishing
path-wise almost surely dominance (that is when one process is greater than or equal
to another with probability one), which in the theory of stochastic differential equa-
tions are referred to as the comparison theorems. These type of theorems are used in
a wide range of mathematical problems: from existence and uniqueness of solutions
of SDE’s to asymptotic behavior (see, for example, [13]). The first comparison the-
orem for diffusions was proven in [17], and later generalized in [20]. That result was
extended to continuous semimartingale case in [11], and in [5] to semimartingales
with jumps. The discontinuous case was also considered in [1] and [16].

All the above mentioned works study one-dimensional processes. Extension of
the comparison theorem to the multi-dimensional case demands an additional con-
dition on drift coefficient. It was done in [12] for SDE’s with respect to a continuous
semimartingale. Similar results have been proven in [7] for diffusion equations and
in [3] for inequalities.
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Our first goal is to give the proof of the multi-dimensional comparison theorem,
where we add jumps to the above mentioned cases. Presence of jumps can plays
an important role in domination/comparison theorems: for example, as shown in
[19], a well-known Hajek’s mean comparison theorem (see [8]) does not hold in the
Poisson case.

One of the main disadvantages of these theorems is that they only allow com-
parison of processes with identical diffusion coefficients. Moreover, as shown in
[15], if initial conditions are not specified, then identical diffusion coefficient is a
necessity for comparison of one-dimensional SDE’s. The papers [14] and later [6]
develop a comparison theorem for SDE’s with different diffusions, which requires
more specific conditions on the initial values. For a given stochastic process Xt with
diffusion coefficient g(Xt ) they consider F(Xt ), where F(x)= ∫ x

X0

1
g(u)

du. Using
Ito’s formula it is easy to show that the new processes will have diffusion coefficient
equal to 1. We use that technique in Example 1 in Sect. 3 of this paper.

Our second goal is to show how the comparison theorem can be used in mathe-
matical finance, mainly to estimate option prices. There are few publications, where
this question was studied before, for example the above mentioned Hajek’s mean
comparison theorem was used for this purpose in [9]. We present several examples
illustrating how the comparison theorem can be used in practice.

2 Comparison Theorem

As mentioned above, the comparison theorem was proven for discontinuous semi-
martingales in one-dimensional case, as well as continuous semimartingales in the
multi-dimensional case. In this section we combine the two results to prove the
multi-dimensional comparison theorem for strong solutions of stochastic differ-
ential equations with respect to semimartingales which contain a jump compo-
nent.

Let (�,F ,F= (Ft )t≥0,P) be a standard stochastic basis (see [10] for details).
Denote A as a set of increasing processes of finite, integrable variation and Aloc

a set of processes, whose localizations belong to A .
Let all processes below be cadlag and adapted to the given filtration. Defined

are a d-dimensional non-decreasing continuous process A= (A1,A2, . . . ,Ad) with
Ai ∈ Aloc, d-dimensional continuous local martingale M = (M1,M2, . . . ,Md)

and a d-dimensional jump measure μ = (μ1,μ2, . . . ,μd) with compensators
(ν1, ν2, . . . , νd). To simplify our considerations we assume that νi are continuous.

Consider stochastic differential equations:

dXi
t =

d∑

j=1

fij (Xt−)dAj
t +

d∑

j=1

gij (X
i
t−)dM

j
t

+ I{|u|≤1}hi(u,Xi
t−)d(μi

t − νit )+ I{|u|>1}ki(u,Xi
t−)dμi

t (1)
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dX̃i
t =

d∑

j=1

f̃ij (X̃t−)dAj
t +

d∑

j=1

gij (X̃
i
t−)dM

j
t

+ I{|u|)≤1}hi(u, X̃i
t−)d(μi

t − νit )+ I{|u|>1}k̃i (u, X̃i
t−)dμi

t (2)

where fij , gij , hi and ki depend on x, t and ω and are continuous in (t, x) (we write
f (x) instead of f (x, t,ω) to shorten notations). From now on we assume (without
going into details) that all considered SDE’s admit unique strong solutions.

For further considerations we need a non-negative nondecreasing function ρ(x)

such that
∫ ε

0 ρ2(x)dx =∞ for any ε > 0. Define {an} as a decreasing sequence of
positive numbers with a0 = 1 such that

∫ an
an+1

ρ−2(x)dx = n + 1, n = 0,1,2, . . . .
We assume that there exists a sequence of positive numbers {εn} such that εn ≤
an−1 − an and

n−1ρ2(an−1)ρ
−2(an−1 − εn)→ 0 as n→∞. (3)

We note that any Hölder function of order α > 1/2 will satisfy the above assump-
tion.

Theorem 1 Assume that for all i and j let functions fij , gij , hi and ki satisfy

f̃ij (X̃0) > fij (X0) (4)

f̃ij (x̃1, . . . , x̃i−1, xi, x̃i+1, . . .) > fij (x1, . . . , xi, . . .)

for x̃k ≥ xk, k = 1, . . . , d. (5)

There exist non-negative predictable processes Gt and Ht(u) such that

|gij (y, t)− gij (x, t)| ≤Gtρ(|y − x|) (6)

|hi(u, x, t)− hi(u, y, t)| ≤ ρ(|x − y|)Ht (u). (7)

For all y ≥ x

hi(u, y) ≥ hi(u, x) (8)

k̃i (u, y) ≥ ki(u, x) (9)

along with a technical conditions: the processes
∫ t

0 |gkl(Xk
s−)|d〈Mi

s,M
j
s 〉,

∫ t

0 |fkl(Xs−)|dAi
s ,

∫ t

0 |f̃kl( ˜Xs−)|dAi
s , as well as

∫ t

0 |Gs |2d〈Mi
s,M

j
s 〉 and

∫ t

0

∫
E
|Hs(u)|2νi(ds, du) belong to Aloc (here and everywhere below E =Rd \{0}).

Then X̃t ≥Xt for all t (a.s.).

Proof Without loss of generality assume that the above mentioned processes belong
to A , otherwise we can provide their localization.
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Following arguments presented in Lemma 1 of [5] and using condition (9) we
can see that it is sufficient to consider processes without big jumps (or make ki =
k̃i = 0).

Consider stopping times

Ti = inf
(
t > 0 : fij (Xt ) > f̃ij (X̃t ) for at least one j

)
.

Denote T = min(Ti) and τ = T ∧ t . Since fij are continuous, Xt and X̃t are
right-continuous and fij (X0) < f̃ij (X̃0), then Ti > 0 and, therefore τ > 0 (a.s.).

Now we consider a sequence of twice continuously differentiable functions ϕn(x)
such that ϕn(x) ↑ |x| as n→∞. Such sequence was originally proposed in [20].
Here we follow the procedure presented in [5]:

let {ψn(x)}n∈N be a sequence of non-negative functions with suppψn ⊆
(an, an−1) and

∫ an−1

an

ψn(x)dx = 1,

ψn(x) ≤ (2/n)× ρ−2(x)

arg maxψn = an−1 − εn.

Define ϕn(x)=
∫ |x|

0

∫ y

0 ψn(s)dsdy. It is easy to see that |ϕ′n(x)| ≤ 1
Applying Itô’s formula to ϕn(X̃

i
τ −Xi

τ ) we get

ϕn(X̃
i
τ −Xi

τ )= local martingale + I1 + I2 + I3, (10)

where

I1 =
∫ τ

0
ϕ′n(X̃i

s− −Xi
s−)

d∑

j=1

(f̃ij (X̃s−)− fij (Xs−))dAj
s

I2 = 1/2
∫ τ

0
ϕ′′n(X̃i

s− −Xi
s−)

×
d∑

j,k=1

(gij (X̃
i
s−)− gij (X

i
s−))(gik(X̃i

s−)− gik(X
i
s−))d〈Mj

s ,M
k
s 〉

I3 =
∫ τ

0

∫

E

I{|u|>1}
[
ϕn(X̃

i
s− −Xi

s− + hi(u, X̃
i
s−)− hi(u,X

i
s−))

− ϕn(X̃
i
s− −Xi

s−)− ϕ′n(X̃i
s− −Xi

s−)(hi(u, X̃i
s−)− hi(u,X

i
s−))

]
νi(ds, du).

We do not specify the structure of the local martingale in (10) because it is irrel-
evant for the proof.

Without resorting to additional localization we assume that all terms in (10) admit
expectations. Taking expectations of both sides of (10) yields

Eϕn(X̃i
τ −Xi

τ )= EI1 +EI2 +EI3. (11)
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Moreover,

EI1 ≤ E
∫ τ

0

d∑

j=1

(f̃ij (X̃s−)− fij (Xs−))dAj
s = E(X̃i

τ −Xi
τ )

EI2 ≤ 1/2
d∑

j,k=1

max
an≤x≤an−1

[ψn(|x|)ρ2(|x|)]E
∫ τ

0
|G2

s |d〈Mj
s ,M

k
s 〉

≤ 1/n
d∑

j,k=1

E
∫ ∞

0
|G2

s |d〈Mj
s ,M

k
s 〉→ 0 as n→∞.

Denote h(u, X̃i
s−)− h(u,Xi

s−) by �hi . The Taylor approximation formula im-
plies that there exists 0≤ α ≤ 1 such that

EI3 = 1/2E
∫ τ

0

∫

E

I{|u|>1}ϕ′′n(X̃i
s− −Xi

s− + α�hi)(�hi)
2νi(ds, du)

≤ 1/2E
∫ τ

0

∫

E

I{|u|>1}|Hs(u)|2ρ2(|X̃i
s− −Xi

s−|)

× ϕ′′n(X̃i
s− −Xi

s− + α�hi)ν
i(ds, du).

It is possible to show (see Theorem 1 of [5] for details) that

ρ2(|X̃i
s− −Xi

s−|)ϕ′′n(X̃i
s− −Xi

s− + α�hi)≤ n−1ρ2(an−1)ρ
−2(an−1 − εn),

and condition (3) implies that EI3 converges to 0 as n→∞.
Using the above considerations and taking limits as n→∞ in (11) we get

E|X̃i
τ −Xi

τ | ≤ E(X̃i
τ −Xi

τ ),

and therefore

X̃i
τ ≥Xi

τ (a.s.) (12)

Now consider stopping times θi = inf(t > τ : X̃i
t < Xi

t ), and denote θ =min(θi).
If θ(ω) = ∞ then the proof is complete. Otherwise X̃i

θ− ≥ Xi
θ− for all i by

definition of θ . If there is no jump at time θ , then X̃i
θ− = X̃i

θ ≥Xi
θ . Otherwise,

X̃i
θ = X̃i

θ− + I{|u|≤1}hi(u, X̃)

Xi
θ = Xi

θ− + I{|u|≤1}hi(u,X),

and it follows from (8) that X̃i
θ ≥Xi

θ for all i = 1, . . . , d .
Now fix i and limit the considerations below to a set Bi = {ω|θ(ω) =

θi(ω) <∞}. It follows from definition of θi and right-continuity of X̃t and Xt

that X̃i
θi
≤Xi

θi
for all ω ∈ Bi . Therefore, X̃i

θi
=Xi

θi
(a.s.).
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For j �= i we have that θj ≥ θi and, therefore, X̃j
θi
≥ X

j
θi

. Condition (5) implies

that f̃ij (X̃θi ) > fij (Xθi ) (a.s.) for all j . Define ηi = inf(t > θi : f̃ij (X̃t ) < fij (Xt )

for at least one j) and it follows from above that ηi > θi (a.s.).
Reproducing the above argument for ϕn(X̃i − Xi) on time interval [θi, ηi] we

get that there exist a stopping time τi > θi , such that X̃i
t ≥Xi

t on θi < t ≤ τi which
contradicts the definition of θi . Therefore, Bi = ∅ (a.s.) and thus θ =∞ (a.s.). �

The multi-dimensional comparison theorem has to be used when dealing with
processes, whose dynamics are influenced by each other. As an example of such
processes one can consider voting and non-voting stocks of the same corporation. It
seems very reasonable to assume that dynamics of voting stock prices is influenced
by non-voting stock prices and vice versa.

The question of price dependencies for stocks with different voting rights has
been studied before. For example in [4] the following discrete model is tested:

svt = lnSvt

snt = lnSnt

snt = α + βsvt + γ t + ut , t = 1,2, . . . ,

(13)

where Svt and Snt are voting and non-voting stock prices respectively, α, β and γ are
constants and ut is a long-memory process.

For continuous case let the stock prices satisfy the following system of SDE’s

dSvt = Svt (μ
v(t, Svt , S

n
t )dt + σv(t, Svt )dW

v
t ) (14)

dSnt = Snt (μ
n(t, Svt , S

n
t )dt + σn(t, Snt )dW

n
t ). (15)

As an analogy of (13) in this case one can assume that:

dsnt = βdsvt + γ dt + σdWt (16)

where Wt is a new Wiener process. Applying Itô’s formula to (14) and (15) we get:

dsvt =
(
μv(t, Svt , S

n
t )− 1/2(σ v(t, Svt ))

2)dt + σv(t, Svt )dW
v
t

dsnt =
(
μn(t, Svt , S

n
t )− 1/2(σ n(t, Snt ))

2)dt + σn(t, Snt )dW
n
t .

Equation (16) then becomes

dsnt =
(
βμv(t, Svt , S

n
t )− β/2(σ v(t, Svt ))

2 + γ
)
dt + βσv(t, Svt )dW

v
t + σdWt .

Equating the dt terms in two representations of dsnt we get:

βμv(t, Svt , S
n
t )− β/2(σ v(t, Svt ))

2 + γ = μn(t, Svt , S
n
t )− 1/2(σ n(t, Snt ))

2,

which shows, that the stock price dynamics (14) and (15) are indeed related.
Above considerations show that two or more dimensional processes can be used

in mathematical finance. The multi-dimensional comparison theorem can then be
used to estimate option prices in this model using some other pair of processes.
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3 Applications to Mathematical Finance

In this section we give specific illustrations showing how the stochastic domina-
tion/comparison theorems can be used in mathematical finance. For the purpose of
demonstration we shall restrict our attention to the simplest cases only.

Example 1 (Constant elasticity of variance (CEV) model) The model was proposed
by Cox and Ross [2] and is often used in mathematical finance. The stock price is
said to satisfy the following SDE

dSt = St (μdt + σSα−1
t dWt ), S0 = s (17)

where 0 < α < 1 and Wt is a Wiener process.
Let F(x) = σ−1

∫ x

s
u−αdu = (x1−α − s1−α)/(σ (1 − α)). Denote Xt = F(St )

and applying Itô’s formula we get

dXt = F ′(St )dSt + 1/2F ′′(St )(dSt )2

= (S1−α
t μ/σ − ασ/2Sα−1

t )dt + dWt

= μ
(
(1− α)Xt + σ−1s1−α)dt − α

(
2(1− α)Xt + 2σ−1s1−α)−1

dt + dWt .

The comparison theorem is used to estimate the process Xt from above by a new
process Yt , satisfying the equation

dYt = μ(σ(1− α)Yt + σ−1s1−α)dt + dWt, Y0 = 0

which is an Ornstein-Uhlenbeck process.
The process of this type is also used in [18] as an interest rate model and has

normal distribution.
Applying the comparison theorem to Xt and Yt yields

Yt ≥Xt = F(St ) (a.s.)

and so

St ≤ F−1(Yt ) (a.s.) (18)

Consider an increasing function f and an option with payoff f (ST ). Assuming
zero interest rates, the price of such option is given by Ẽf (ST ) for an appropriate
martingale measure P̃ . But, inequality (18) implies that Ẽf (ST ) ≤ Ẽf (F−1(YT ))

and thus we obtain an estimate for the option price. Due to normality of YT this
estimate is easily computable.

Example 2 (A complete model with stochastic volatility) Consider the processes

dSt = StσtdWt

dσt = a(σt )dt + δσtdWt
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where a(x) is a continuous function, such that:

a(x)+ δ/2x ≥ 0 for x ≥ 0. (19)

We also require that a(0) > 0 to ensure that σt ≥ 0 (a.s.).
Denote Yt = δ−1(σt − σ0)− ln(St/S0) and applying Itô’s formula we have

dYt = δ−1dσt − σtdWt + 1/2σtdt = (δ−1a(σt )δ + 1/2σt )dt.

Consider the process Zt = σt exp[(σt −σ0)− ln(St/S0)] = σt exp[δYt ] and using
again Itô’s formula we find that

dZt = exp[δYt ]dσt + δZtdYt

= {exp[δYt ]a(σt )+Zt(a(σt )+ 1/2δσt )}dt + δZtdWt

= Ztf (σt )dt + δZtdWt

where f (y)= a(y)/y + a(y)+ 1/2δy.
If Ztf (σt )|Zt=σt > a(σt ), then by the comparison theorem Zt ≥ σt (a.s.).
Calculating Ztf (σt )|Zt=σt = a(σt ) + σt (a(σt ) + 1/2δσt ) we observe that in-

equality (19) implies Zt ≥ σt , which is equivalent to δ−1(σt − σ0)− ln(St/S0)≥ 0,
or σt ≥ (σ0 + δ ln(St/S0)).

Now consider a new process Xt such that

dXt = (σ0 + δ ln(St/S0))dWt , X0 = S0.

Recall (see [8]) that for two processes satisfying

dRt = γ (Rt )dWt

dYt = βtdWt

the Hajek’s comparison theorem implies that Eh(Rt ) ≤ Eh(Yt ) for any convex
function h(x) if βt ≥ γ (Yt ). Applying the theorem to Xt and St we obtain that
Eh(XT )≤ Eh(ST ) for any convex payoff function h(x).

Example 3 (Pricing stock option using forwards) Consider a market with stochastic
interest rate rt and the stock price satisfying the following SDE’s

dSt = St (μtdt + σtdW
s
t ) (20)

drt = αtdt + βtdW
r
t , dWs

t dW
r
t = ρdt (21)

where ρ ∈ (−1,1) and the bank account is given by Dt = exp(
∫ t

0 rsds). To price
an option with payoff fτ = f (Sτ ) we will use bond Bt(T ) and a forward contact
on the stock, whose price is Ft(T )= St/Bt (T ) with the same maturity T > τ . The
following question arises: How does the choice of T affect the option price?
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To answer this question assume that dynamics of the bond price is given by

dBt (T )= Bt(T )(rt dt + δt (T )dW
r
t ). (22)

According to Ito’s formula we have

dFt (T ) = Ft(T )[(μt − rt − σtδt (T )ρ + 1/2δ2
t (T ))dt

+ σtdW
s
t − δt (T )dW

r
t ]. (23)

The option price then has to be computed under an equivalent measure, for
which both discounted tradable processes (Bt(T )/Dt and Ft (T )/Dt ) are martin-
gales. Since BtT /Dt is already a martingale, the unique equivalent martingale mea-
sure P̃ (T ) is defined by

σtdW
s
t + (μt − rt − σtδt (T )ρ + 1/2δ2

t (T ))dt = rtdt + σtdW̃
s
t ,

where W̃S
t is a P̃ (T )-Wiener process.

Under this new measure the stock price dynamics can be expressed as

dSt = St
(
(2rt + σtδt (T )ρ − 1/2δ2

t (T ))dt + σtdW̃
s
t

)
.

We note that the option price will be equal to ẼT (f (Sτ )/Bτ ) where ẼT denotes
expectation under P̃ (T ).

We see that as far as option pricing goes, changing bond and forward maturity T

is equivalent to changing drift coefficient of the stock price.
Suppose T1 > τ , T2 > τ and

σtδt (T1)ρ − 1/2δ2
t (T1) > σtδt (T2)ρ − 1/2δ2

t (T2). (24)

Consider two processes

dS1
t = S1

t

(
(2rt + σtδt (T1)ρ − 1/2δ2

t (T1))dt + σtdWt

)

dS2
t = S2

t

(
(2rt + σtδt (T2)ρ − 1/2δ2

t (T2))dt + σtdWt

)

with initial conditions S1
0 = S2

0 = S0. Applying the comparison theorem we see that
S1
T ≥ S2

T (a.s.) and thus E(f (S1
T )/BT ) > E(f (S1

T )/BT ) for an increasing function
f (x).

It is clear that the distributions of Sit are the same as the P̃ (Ti)-distributions of St .
Therefore,

ẼT1f (ST )= Ef (S1
T ) > Ef (S2

T )= ẼT2f (ST )

and we can compare two option prices for different bond and forward maturities T1
and T2.

As a particular example we consider the Vasicek interest rate model:

drt = a(b− rt )dt + σ rdWr
t .
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The bond price will be equal to

Bt(T )= exp[γ (t, T )− rta
−1(1− e−a(t−T ))]

for some deterministic function γ (t, T ) (see [18] for details)
In this case the expression for δt (T ) is

δt (T )=−a−1σ r(1− e−a(t−T )).

Taking ρ = 0 for simplicity, it is easy to see that −1/2δ2
t (T ) is an increasing

function of T . Thus, inequality (24) holds for T1 > T2. Therefore, increasing the
bond and forward maturity T is equivalent to increasing the option price.

Acknowledgements We would like to thank two anonymous referees for their remarks, which
were a great help to us.
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Examples of FCLT in Random Environment

R. Liptser

Abstract We consider a diffusion type process being a weak solution of Itô’s equa-
tion

dXε
t = b(ω,Xε

t /ε)dt + σ(ω,Xε
t /ε)dBt

relative to fixed initial condition Xε
0 = x0, Brownian motion (Bt )t≥0, and ergodic

stationary random process (b(ω,u), σ (ω,u))u∈R, treated as a “random environ-
ment”, where ε is a small positive parameter. Random environment and Brownian
motions are independent random objects. Functions b(ω,u), σ (ω,u) are uniformly
bounded and function σ 2(ω,u) is uniformly positive. Random environment obeys
some “weak dependence” property (see (9)). We show that the family {(Xε

t )t≤T }ε→0
converges in law to a continuous Gaussian process X = (Xt )t≤T with the expecta-
tion EXt = x0 + bt and covariance cov(Xt ,Xs)= a(t ∧ s), where

a= 1
/

E
1

σ 2(ω,0)
, b= E

b(ω,0)

σ 2(ω,0)

/
E

1

σ 2(ω,0)
.

Keywords Diffusion approximation · Oscillating environment · Random
environment

Mathematics Subject Classification (2000) 60K37

1 Introduction

1. We study a convergence in law, in the uniform metric on [0, T ], of the family
{(Xε

t )0≤t≤T }ε→0 being a weak solutions of Itô’s differential equation in “random
environment b(ω,u), σ (ω,u)”:

Xε
t = x0 +

∫ t

0
b(ω,Xε

s /ε)ds +
∫ t

0
σ(ω,Xε

s /ε)dBs, (1)

where ε is a small positive parameter and (b(ω,u), σ (ω,u))u∈R is a stationary ran-
dom processes independent of a Brownian motion (Bt )0≤t≤T .
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It is well known different type of assumptions providing limit theorems in ran-
dom environment, see Papanicolau and Varadhan [8], Yurinsky [11], and Sznitman
and Zeitouni [9], etc. (see also Fannjiang and Komorowski [4], Fannjiang and Pa-
panicolaou [5], Di Masi et al. [3]).

In this paper, we propose an approach for diffusion approximation in random
environment serving the case of b(ω,u), σ (ω,u) with discontinuous paths (see
Sect. 5) which is not completely compatible with existing techniques. Closely re-
lated results can be found in Butov and Krichagina [2].

2. The prelimit process Xε
t is a continuous semimartingale, defined on some

stochastic basis, with fixed initial point x0, drift Bε
t =

∫ t

0 b(X
ε
s /ε)ds and mar-

tingale Mε
t =

∫ t

0 σ(X
ε
s /ε)dBs having the quadratic variation process 〈Mε〉t =∫ t

0 σ
2(Xε

s /ε)ds. Taking into account well known homogenization ideas, we may
assume for a moment that a limit process Xt is also semimartingale with the same
initial condition x0, drift bt and continuous martingale with the quadratic variation
process at . Assume more that a,b are known. Then, due to [7] (Theorem 1, Chap. 8,

§3, adapted to the case considered) (Xε
t )t≤T

law−−→
ε→0

(Xt )t≤T in Skorokhod’s topology

provided that for any η > 0,

lim
ε→0

P
(

sup
t≤T
|Bε

t − bt |> η
)
= 0

and

lim
ε→0

P
(

sup
t≤T
|〈Mε〉t − at |> η

)
= 0

or, equivalently,

lim
ε→0

P

(

sup
t≤T

∣
∣
∣
∣

∫ t

0
[b(Xε

s /ε)− b]ds
∣
∣
∣
∣> η

)

= 0

lim
ε→0

P

(

sup
t≤T

∣
∣
∣
∣

∫ t

0
[σ 2(Xε

s /ε)− a]ds
∣
∣
∣
∣> η

)

= 0.

(2)

Since in reality a,b are unknown, in order to guess them we shall verify (2) for “os-
cillating environment”, when b(ω,u)≡ b(u), σ (ω,u)≡ σ(u) with smooth periodic
functions b(u), σ (u) of the period one and uniformly positive σ 2(u). We find new
presentations for

∫ t

0 [b(Xε
s /ε)− b]ds and

∫ t

0 [σ 2(Xε
s /ε)− a]ds compatible with the

proof of (2) and a,b determination. To this end, we introduce the function

H(x)=
∫ x

0

∫ v

0
θ(s)dsdv,

where θ(s) is a transform of b(s), σ (s), and analyze the random process ε2H(Xε
t /ε).

By the Itô formula applied to ε2H(Xε
t /ε), we find that
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ε2
∫ Xε

t /ε

0

∫ v

0
θ(s)dsdv

= ε2
∫ x0/ε

0

∫ v

0
θ(s)dsdv + ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsb(Xε

v/ε)dv

+ ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv +
∫ t

0
θ(Xε

s /ε)σ
2(Xε

s /ε)ds. (3)

We choose θ(s) such that θ(Xε
s /ε)σ

2(Xε
s /ε)=

{
b(Xε

s /ε)−b,

σ 2(Xε
s /ε)−a,

that is,

θ(s)=
{b−b(s)

σ 2(s)

1− a
σ 2(s)

,

and derive from (3) that
{∫ t

0 [σ 2(Xε
s /ε)− a]ds

∫ t

0 [b(Xε
s /ε)− b]ds

= ε2
∫ Xε

t /ε

0

∫ v

0
θ(s)dsdv− ε2

∫ x0/ε

0

∫ v

0
θ(s)dsdv

− ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsb(Xε

v/ε)dv− ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv. (4)

Denote by Ψ ε
t any term in the right-hand side of (4). Obviously, (2) holds true if for

any η > 0,

lim
ε→0

P
(

sup
t≤T
|Ψ ε

t |> η
)
= 0. (5)

Ψ ε
t contains an integral

∫ •/ε
0 θ(s)ds playing a crucial role in the proof of (5) and in

a,b determination.
It is readily to verify that (5) holds if

sup
t>0

∣
∣
∣
∣

∫ t

0
θ(s)ds

∣
∣
∣
∣<∞. (6)

Since θ(s) is periodic function of the period one, for supt>0 |
∫ t

0 θ(s)ds|<∞ to be
valid it suffices to have

∫ 1

0
θ(s)ds = 0. (7)

So, (7) guarantees (5) and simultaneously provides

a= 1
/∫ 1

0

1

σ 2(s)
ds, b=

∫ 1

0

b(s)

σ 2(s)
ds

/∫ 1

0

1

σ 2(s)
ds.
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3. Turning back to the random environment, we continue to keep the uniform
boundedness of b(ω,u), σ (ω,u) and the uniform positiveness of σ 2(ω,u). Both
formulas for θ(s) with b(u), σ (u) are replaced by b(ω,u), σ (ω,u) respectively:

θ(s)=
{b−b(ω,s)

σ 2(ω,s)

1− a
σ 2(ω,s)

.

We compute constants a and b replacing (7) by

Eθ(0)= 0. (8)

Unfortunately, under the random environment, (8) does not guarantee (5). Therefore,
we introduce “weak dependence property” of θ(s) relative to the filtration (Fu)u∈R

generated by (σ (ω,u), b(ω,u))u∈R:
∫ ∞

0

√

E|E(θ(u)|F0)|2du <∞. (9)

4. The paper is organized as follows. The main result is formulated in Sect. 2 and
is proved in Sect. 3. The existence of weak solution for (1) is discussed in Sect. 4.
Two examples are given in Sects. 5 and 6.

2 Assumptions, Notations and Main Result

The following notations and assumptions are fixed.

2.1 Notations

• ∗ is the transposition symbol for matrices and vectors.
• ⊥⊥ symbolizes the independence of random objects.
• (Ω,F , (Fu)u∈R,P) and (Ω,F , (Gt )t≥0,P) are stochastic bases’ with general

conditions such that
∨

u∈R
Fu ∈ G0.

2.2 Assumptions

(i) (σ (ω,u), b(ω,u))u∈R is stationary ergodic random processes with right con-
tinuous paths possessing left limits defined on (Ω,F , (Fu)u∈R,P).

(ii) Functions b(ω,u), σ (ω,u) are uniformly bounded and function σ 2(ω,u) is
uniformly positive.

(iii) With

a= 1
/

E
1

σ 2(ω,0)
, b= E

b(ω,0)

σ 2(ω,0)

/
E

1

σ 2(ω,0)
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zero mean random process

θ(s)=
⎧
⎨

⎩

1− a
σ 2(ω,s)

b(ω,s)−b
σ 2(ω,s)

(10)

obeys weak dependence property (9).
(iv) Brownian motion B = (Bt )t≥0 is defined on (Ω,F , (Gt )t≥0,P); (Bt )t≥0 ⊥⊥

G0, P-a.s.

Let X = (dXt)t≤T be a Gaussian random process with the expectation and co-
variance

EXt = x0 + bt and cov(Xt ,Xs)= a(t ∧ s).

Theorem 1 Assume (i)–(iv) and let (Xε
t )t≤T be any weak solution of (1).

Then, for any T > 0,

(Xε
t )t≤T

law−−→
ε→0

(Xt )t≤T

in Skorokhod’s and uniform metrics on [0, T ].

3 The Proof of Theorem 1

Notice that (2) provides the theorem statement in the Skorokhod metric. The limit
Gaussian process Xt has continuous drift and covariance and, so that, Xt is con-
tinuous process. Moreover, Xt − x0 − bt is Gaussian process with cov(Xt ,Xs) =
a(t ∧ s). Hence, Xt −x0−bt is a Wiener process with diffusion parameter a, that is,
Xt is a semimartingale on some stochastic basis, i.e., Xt = x0 + bt +√aWt , where
Wt is a standard Wiener process. Hence, the convergence in law in Skorokhod’ met-
ric with this limit process is also valid in uniform metric.

3.1 Auxiliary Lemma

Lemma 1 (Compare with (6))

E sup
0<v≤C

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

2

≤ ε const.

Proof Due to (iii), Lemma 1, §2, Chap. 9 and the corollary to Theorem 3, §11,
Chap. 4 in [7] provide Poisson’s type decomposition,

∫ v

0
θ(s)ds =Uv −U0 −Lv,
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where Uv = −
∫∞
v

E(θ(s)|Fv)ds is the stationary process and (Lv)v≥0 is a local
martingale on (Ω,F , (Fu)u∈R,P) with stationary increments and paths from the
Skorokhod space D[0,∞). Moreover

(1) E|U0|2 <∞,
(2) EL2

v = 2v
∫∞

0 E(θ(s)θ(0))ds.

The use of

sup
0<v≤C

∣
∣
∣
∣

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

2

≤ 3
[
U2

0 + sup
0<v≤C

U2
ν/ε + sup

0<v≤C
L2
ν/ε

]

enables us to reduce the proof to

Eε2 sup
0<v≤C

L2
ν/ε ≤ ε const and

Eε2 sup
0<v≤C

U2
ν/ε ≤ ε const.

(11)

The first part in (11) follows from the maximal Doob inequality

Eε2 sup
v≤C

|Lv/ε|2 ≤ 4ε2EL2
C/ε = 8Cε

∫ ∞

0
E(θ(s)θ(0))ds = ε const.

In order to verify the second part in (11), set αi = supi−1<v≤i U2
v and notice that

(αi)i≥1 forms a stationary sequence of random variables. Assume for a moment
that Eα1 <∞. Then, the desired property holds true since

E sup
v≤C

|εUv/ε|2 = ε2E max
i≤C/ε αi ≤ ε2

∑

i≤C/ε
Eαi = εCEα1.

Thus, it is left to prove Eα1 <∞. Write

Eα1 ≤ 3

[

E|U0|2 + E

(∫ 1

0
|θ(s)|ds

)2

︸ ︷︷ ︸

≤∫ 1
0 θ2(s)ds

+E sup
v≤1
|Lv|2

︸ ︷︷ ︸
≤4EL2

1

]

≤ 3
[
E|U0|2 + Eθ2(0)+ 4E|L1|2

]

= 3

[

E|U0|2 + Eθ2(0)+ 8
∫ ∞

0
Eθ(s)θ(0)ds

]

<∞. �

3.2 The Proof of (2)

Set H(x) = ∫ x

0

∫ v

0 θ(s)dsdv. If θ(s) is continuous function, for any fixed ω, the
random function H(x) = H(ω,x) is twice continuously differentiable in x. Then,
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by the Itô-Wentzell formula, we find that

ε2H(Xε
t /ε) = ε2H(x0/ε)+ ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsdXε

v

+
∫ t

0
θ(Xε

s /ε)σ
2(Xε

s /ε)ds. (12)

Otherwise, when θ(s) is measurable (bounded) function only, H(x) has Sobolev’s
second derivative only. Then, taking into account the independence of random en-
vironment and Brownian motion, we obtain (12) by Krylov’s version, [6], of Itô’s
(Itô-Wentzell’s) formula.

Due to (10) with chosen a,b we have

θ(s)= 1− a
σ 2(ω,s)

: ∫ t

0 [σ 2(Xε
s /ε)− a]ds

θ(s)= b(ω,s)−b
σ 2(ω,s)

: ∫ t

0 [b(Xε
s /ε)− b]ds

⎫
⎬

⎭
=

∫ t

0
θ(Xε

s /ε)σ
2(Xε

s /ε)ds.

Hence, according to (12), it is left to prove that for any η > 0,

lim
ε→0

P
(
ε2 sup

t≤T
|H(Xε

t /ε)| ≥ η
)
= 0 (13)

lim
ε→0

P
(
ε2 sup

t≤T
|H(x0/ε)| ≥ η

)
= 0 (14)

lim
ε→0

P

(

ε sup
t≤T

∣
∣
∣
∣

∫ t

0

∫ Xε
v/ε

0
θ(s)dsdXε

v

∣
∣
∣
∣≥ η

)

= 0. (15)

3.2.1 The Tightness {supt≤T |Xε
t |}ε→0

Lemma 2 limC→∞ limε→0 P(supt≤T |Xε
t |>C)= 0.

Proof Since x0 is a fixed number and b(ω,u) is bounded function, the proof is
reduced to

lim
C→∞ lim

ε→0
P

(

sup
t≤T

∣
∣
∣
∣

∫ t

0
σ(Xε

s /ε)dBs

∣
∣
∣
∣>C

)

= 0

and verified with the help of Chebyshev’s and maximal Doob’s inequalities:

P

(

sup
t≤T

∣
∣
∣
∣

∫ t

0
σ(Xε

s /ε)dBs

∣
∣
∣
∣>C

)

≤ 4

C2
E sup
t≤T

∣
∣
∣
∣

∫ t

0
σ(Xε

s /ε)dBs

∣
∣
∣
∣

2

≤ T

C2
E

∫ T

0
σ 2(Xε

s /ε)ds ≤
4lT

C2
−−−→
C→∞ 0. �
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3.2.2 The Proof of (13)–(15)

Denote by Bε any of sets:

• {ε2 supt≤T |H(Xε
t /ε)| ≥ η}

• {ε2 supt≤T |H(x0/ε)| ≥ η}
• {ε supt≤T |

∫ t

0

∫ Xε
v/ε

0 θ(s)dsdXε
v| ≥ η}

and by

• AC = {supt≤T |Xε
t | ≤ C}

• τC = inf{t ≤ T : |Xε
t |>C}.

Write, P(Bε) ≤ P(Bε ∩ AC)+ P(AC). Using the estimates below (recall τC = T

on the set AC ), being valid on the set AC ,

sup
t≤T
|ε2H(Xε

t /ε)≤ ε2T sup
|v|≤C

∣
∣
∣
∣

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

sup
t≤T
|ε2H(x0/ε)≤ ε2T sup

|v|≤|x0|

∣
∣
∣
∣

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

sup
t≤T

∣
∣
∣
∣ε

∫ t

0

∫ Xε
v/ε

0
θ(s)dsdXε

v

∣
∣
∣
∣≤ constT sup

|v|≤C

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

+ sup
t≤T

∣
∣
∣
∣ε

∫ t∧τC

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv

∣
∣
∣
∣,

we find that Bε ∩AC ⊆⋃2
i=1 B

(i)
ε , where (here η′ is any positive constant)

B
(1)
ε =

{

ε sup
|v|≤C∨|x0|

∣
∣
∣
∣

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣≥ η′

}

B
(2)
ε =

{

sup
t≤T

∣
∣
∣
∣ε

∫ t∧τC

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv

∣
∣
∣
∣≥ η′

}

.

Due to Lemma 2, (13)–(15) are valid provided that for any C > 0, η > 0,

lim
ε→0

P

(

sup
|v|≤C

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣≥ η

)

= 0 (16)

lim
ε→0

P

(

sup
t≤T

∣
∣
∣
∣ε

∫ t∧τC

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv

∣
∣
∣
∣≥ η

)

= 0. (17)

Since θ(s) is the stationary process,

sup
0≤v≤C

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

law= sup
−C≤v≤0

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣, (18)
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so that, (16) is implied by Lemma 1. The proof of (17) also uses (18) and Lemma 1
combining with the maximal Doob’s inequality,

P

(

sup
t≤T

∣
∣
∣
∣ε

∫ t∧τC

0

∫ Xε
v/ε

0
θ(s)dsσ (Xε

v/ε)dBv

∣
∣
∣
∣≥ η

)

≤ 4ε2E

∫ T∧τC

0

(∫ Xε
v/ε

0
θ(s)ds

)2

σ 2(Xε
v/ε)dv

≤ const E sup
|v|≤C

∣
∣
∣
∣ε

∫ v/ε

0
θ(s)ds

∣
∣
∣
∣

2
0−−→

ε→0
︸ ︷︷ ︸

by Lemma 1

.

The proof is done.

4 Diffusion in Random Environment

For function b(ω,u), σ (ω,u), Lipschitz continuous in u uniformly in ω, the exis-
tence and uniqueness of (1) is proved in a standard way (henceforth, the symbol “ω”
is omitted).

We consider the case of measurable function b,σ and restrict ourselves by con-
sidering a weak solution explicitly constructed by time scaling and change of proba-
bility measure (for other approaches see [1, 10]). This approach imposes the bound-
edness of |b|, |σ | and the uniform positiveness of σ 2.

4.1 b(ω,u) ≡ 0

Let βt be a Brownian motion independent of σ(ω,u). Assume that the pair (σ,β)
is defined on a probability space (Ω,F ,Q) supplied by two filtration’s (satisfy-
ing the usual conditions): (Fu)u∈R and (Gt )t≥0 such that

∨
u∈R

Fu ⊂ G0 and σ is
G0-measurable while β ⊥⊥ G0. Since σ 2 is uniformly positive, a stopping time

τt = inf

{

r :
∫ r

0

1

σ 2(ω, (βs + x0)/ε)
ds ≥ t

}

strictly increases in t , that is,
∫ τt

0
1

σ 2(ω,(βs+x0)/ε)
ds ≡ t and

τt =
∫ t

0
σ 2(ω, (βτs + x0)/ε)ds.

Then, obviously, (βτt ,Gτt ) is a continuous martingale with the quadratic variation
process τt and, by the Levy-Doob theorem, the random process

Bt =
∫ t

0

1

σ(ω, (βτs + x0)/ε)
dβτs
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is Brownian motion. Since B = (Bt )t≥0 is the process with independent increments
for non-overlapping intervals and B0 = 0, we have “B ⊥⊥ G0”⇒ “B ⊥⊥∨

u∈R
Fu”.

Set Yt := x0 + βτt . The definition of Bt implies

Yt = x0 +
∫ t

0
σ(ω,Ys/ε)dBs, (19)

that is, a weak solution of (1) with zero drift exists for P=Q.

4.2 b(ω,u) �≡ 0

A weak solution with nonzero drift is constructed by applying the Girsanov theorem.
With Yt , defined in (19), set

ϒT = exp

(∫ T

0

b(ω,Ys/ε)

σ (ω,Ys/ε)
dBs − 1

2

∫ T

0

b2(ω,Ys/ε)

σ 2(ω,Ys/ε)
ds

)

.

Since b(ω,Ys/ε)
σ (ω,Ys/ε)

is bounded and T <∞, we have
∫
Ω
ϒT dQ= 1 and define a proba-

bility measure P by letting dP :=ϒT dQ. Then, by the Girsanov theorem,

B̂t = Bt −
∫ t

0

b(ω,Ys/ε)

σ (ω,Ys/ε)
ds

is the Brownian motion on the stochastic basis (Ω,F , (Gt )t≥0,P). In other words,
the process Yt , defined on (Ω,F , (Gt )t≥0,P), admits the following representation

Yt = x0 +
∫ t

0
b(ω,Ys/ε)ds +

∫ t

0
σ(ω,Ys/ε)dB̂s .

So, it is left to prove that (B̂t )t≤T ⊥⊥ (b(u), σ (u))R relative to P. We mention that
(B̂t )t≤T ⊥⊥ G0 with respect to P while (b(u), σ (u))R ∈ G0 relative to Q and, due to
P�Q, with respect to P as well.

5 Markov Chain as Random Environment

We simulate the random environment as follow. Let (Zu)u∈R be a Markov stationary
random processes with values in the finite alphabet {a1, a2, . . . , an} and the transi-
tion intensity matrix Λ having simple zero eigenvalue. It is well known that, then,
z is the ergodic process.

Let b(u) = g(Zu) and σ(u) = h(Zu) for some bounded measurable function
g(·), h(·), where min1≤n h2(ai) > 0. Denote by π = (π1,π2, . . . , πn) the distrib-
ution of z0 and compute

a= 1

/ n∑

i=1

1

h2(ai)
πi, b=

n∑

i=1

g(ai)

h2(ai)
πi

/ n∑

i=1

1

h2(ai)
πi .
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For these a and b, θ(s) = 1 − a
σ 2(s)

and θ(s) = b(s)−b
σ 2(s)

are zero mean random
processes with finite second moments.

It is left to verify weak dependence condition (9) which in the Markov case be-
comes

∫ ∞

0

√

E(E(θ(s)|Z0))2ds <∞. (20)

Further,

E(θ(s)|Z0)= E(f (Zs)|Z0), where f (x)=
⎧
⎨

⎩

1− 1
h2(x)

,

b−g(x)
h2(x)

.

On the other hand, E(f (Zs)|Z0) =∑n
i=1 f (ai)P(Zs = ai |Z0), a.s., while by the

ergodic property of (Zu) there exist c > 0, λ > 0 such that

n∑

i=1

|f (ai)P(Zs = ai |Z0)| ≤ ce−λs, ∃c > 0, λ > 0.

Hence, (20) follows.

6 Langevin Random Environment

Let Zu =
(
qu
pu

)

u∈R
solves stochastic Langevin equation

q̇u = pu

ṗu =−(pu + qu)+ Ẇu,
(21)

relative to Gaussian white noise Ẇu is a Gaussian white noise independent of
Brownian motion (Bt )t≥0. It can be verified directly that the matrix A= ( 0 1

−1 −1

)
has

eigenvalues with negative real parts. Hence Zu is stationary and ergodic zero mean
Gaussian process on R with continuous paths. Moreover, Zu is Markov process too.

Set b(u) = g(pu) a σ(u)= h(qu), where g,h are bounded and h2 is uniformly
positive. In particular, then, (1) possesses a weak solution.

Let

f (x)=
⎧
⎨

⎩

1− a
h2(x1)

,

b−g(x2)

h2(x1)
,

x = (x1, x2).

Set θ(s) = f (qs,ps). To simplify further analysis, let us assume that g and h are
Lipschitz continuous functions and, therefore, f is Lipschitz continuous function
too.
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The Markov property of Zu enables us to verify (20) only. To this end, we show
that

√

E(E(θ(s)|Z0))2 ≤ ce−sλ, ∃c,λ > 0. (22)

Parallel to process Zu let us introduce its version (Zt )t≥0:

dqt = ptdt

dpt =−(pt + qt )dt + dWt

(23)

subject to the initial condition q0,p0. Denote by Zx
t =

(qxt
pxt

)
the solution of (23)

subject to qx0 = x1, px0 = x2. Set θx(s)= θ(s)|Z0=x and notice that

E(E(θ(s)|Z0))
2 =

∫

R2
(Eθx(s))2dF(X),

where F(x) is the distribution function of Z0. Now, the use of boundedness for
θ(s), θx(s), and Eθ(s)≡ 0, and the Lipschitz property of θ(s), imply

(Eθx(s))2 = (E[θx(s)− θ(s)])2
≤ const E|θx(s)− θ(s)|
≤ const E[|qx1

s − qs | + |px2
s − ps |].

On the other hand, Zx
t −Zt solves the linear differential equation

d

dt
[Zx

t −Zt ] =A[Zx
t −Zt ]

subject to [Z0 − x]. Hence [Zx
t −Zt ] = etA[Zx

0 − x] and, in a view of eigenvalues
of matrix A have strictly negative real parts, there exist positive constants c(x),
depending on x, and λ such that E[|qx1

s − qs | + |px2
s − ps |] ≤ c(x)e−sλ and c(x)=

const (1+ |x1| + |x2|). Thus, (22) is valid, with c= ∫
R2 c(x)dF (x), and Theorem 1

is applicable with

a= 1
/∫

R2

1

h2(x1)
dF (x) and b=

∫

R2

g(x2)

h2(x1)
dF (x)

/∫

R2

1

h2(x1)
dF (x).
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The Optimal Time to Exchange one Asset
for Another on Finite Interval

Yuliya Mishura and Georgiy Shevchenko

Abstract Let S1
t , S2

t be correlated geometric Brownian motions. We consider the
following problem: find the stopping time τ ∗ ≤ T such that

sup
τ∈[0,T ]

E[S1
τ − S2

τ ] = E[S1
τ∗ − S2

τ∗ ]

where the supremum is taken over all stopping times from [0, T ]. A similar prob-
lem, but on infinite interval, was studied by MacDonald and Siegel (Int. Econ. Rev.
26:331–349, 1985), and by Hu and Oksendal (Finance Stoch. 2(3):295–310, 1998),
who also considered multiple assets. For a finite time horizon, the problem gets con-
siderably more complicated and cannot be solved explicitly. In this paper we study
generic properties of the optimal stopping set and its boundary curve, and derive an
integral equation for the latter.

Keywords Optimal stopping · Geometric Brownian motion · Finite horizon · Free
boundary problem

Mathematics Subject Classification (2000) Primary 60G40 · 60J65 ·
Secondary 35R35

1 Introduction

Let (Ω,F ,P) be a complete probability space. Let also S1
t , S2

t be stochastic
processes modeling prices of two stocks S 1 and S 2, possibly correlated. We adopt
the most common model for a stock price process, namely, the geometric Brown-
ian motion. Precisely, we assume that the processes S1

t and S2
t solve the following

stochastic differential equations:

dSit = δiS
i
t dt + σiS

i
t dW

i
t , i = 1,2, (1)

where W 1
t and W 2

t are standard Brownian motions (w.r.t. the filtration Ft generated
by them) with a correlation coefficient ρ, i.e. E[W 1

t W
2
t ] = ρt . Here δi, σi, ρ are
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some constants. Suppose that investor holding stock S 2 should exchange it for
stock S 1 within given time interval [0, T ], and the choice of exchange time is up
to the investor; one may regard this as a futures exchange contract. Clearly, the cost
of the contract if exchanging at time t is S1

t − S2
t . It is natural to assume that the

investor intends to maximize the expected discounted cost of the contract, so we
have the following optimization problem:

E[e−rτ (S1
τ − S2

τ )]→max, (2)

where τ is an Ft -stopping time bounded by T , and r is a risk-free rate of return.
Observe that e−rtSit , i = 1,2 are geometric Brownian motions as well with δi re-
placed by δi − r , so we can assume without loss of generality that r = 0. Thus, we
want to find an Ft -stopping time τ ∗ such that

sup
τ∈[0,T ]

E[S1
τ − S2

τ ] = E[S1
τ∗ − S2

τ∗ ].

In the case of infinite time interval (i.e. T =∞) the problem was solved by Mac-
Donald and Siegel [8]: the optimal stopping time τ ∗ is given by

τ ∗ = inf{t ≥ 0 : S1
t ≥ μS2

t },
where the constant μ can be calculated explicitly in terms of δi and σi , i = 1,2.

The first paper, where options to exchange one asset for another were considered,
was by Margrabe [7]; since that such options are frequently called Margrabe options.
Ideas of this paper, which help to reduce the dimensionality of a pricing problem,
were further developed in Shiryaev and Shepp [9]. We refer to [3], where a beautiful
exposition of this so-called duality approach is given. In [4] this approach is applied
to investigate the problems of valuing contingent claims with homogeneous payoffs
in Lévy market model.

The purpose of this paper is to approach the solution of this problem for a finite
time horizon T . In such setting, problem (2) gets much more complicated. The
reason is that for infinite time horizon, it is time-homogeneous: starting from any
time moment is the same as starting from zero; however, for a finite time horizon it
is no longer time-homogeneous.

The paper is organized as follows. In Sect. 2 we give essential properties of the
stopping domain and the premium function. In Sect. 3, we show how integral equa-
tions for the premium function and the optimal stopping domain boundary are de-
rived. In Sect. 4, we give some useful properties of the optimal stopping domain
boundary.

2 Basic Properties of Premium Function and Stopping Domain

One can regard optimization problem (2) as a problem of optimal exercise of an
American type option. Thus, we can use the theory of American options pricing,
omitting the details which can be found e.g. in [1, 2].
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For t ∈ [0, T ], s1, s2 ∈R+ := (0,∞) define the premium function

f (t; s1, s2)= sup
τ∈[t,T ]

E[S1
τ − S2

τ | S1
t = s1, S

2
t = s2]

which identifies the maximal expected cost of continuation (i.e. of not exchanging
stock S 2) at time t . This is also can be treated as the value, or the price, of the
exchange contract at time t if the stock prices are s1 and s2. The cost of exchanging
at time t , as we have already mentioned, is

g(S1
t , S

2
t )= S1

t − S2
t .

Exchange at time t is optimal if f (t;S1
t , S

2
t ) ≤ g(S1

t , S
2
t ). Thus we can define the

stopping region

G = {(t; s1, s2) ∈ [0, T ] ×R
2+ : f (t; s1, s2)≤ g(s1, s2)}

and the continuation region

C = {(t, s1, s2) ∈ [0, T ] ×R
2+ : f (t; s1, s2) > g(s1, s2)}.

We will also use Gt and Ct for t-sections of these sets.
Then the optimal stopping time τ ∗ is

τ ∗ = inf{t ∈ [0, T ] : (t;S1
t , S

2
t ) ∈ G },

and τ ∗ = T if the latter set is empty.

Theorem 1 The stopping set G has the following properties:

1. ∀(t, s1, s2) ∈ G ∀λ > 0 : (t, λs1, λs2) ∈ G .
2. ∀(t, s1, s2) ∈ G ∀t ′ ≥ t : (t ′, s1, s2) ∈ G .

3a. If δ1 ≤ 0, δ2 ≥ 0, then G = [0, T ] ×R2+.
3b. If δ1 ≥ 0, δ2 ≤ 0 and δ1 − δ2 �= 0, then G = {T } ×R

2+.
3c. If δ1 > 0, δ2 > 0, then ∀tGt �=∅ and ∀(t, s1, s2) ∈ G ∀s′1 ≤ s1 : (t, s′1, s2) ∈ G .
3d. If δ1 < 0, δ2 < 0, then ∀tGt �=∅ and ∀(t, s1, s2) ∈ G ∀s′1 ≥ s1 : (t, s′1, s2) ∈ G .

4. ∀t ∈ [0, T ]{(s1, s2) ∈R
2+ : δ1s1 > δ2s2} ⊂ Ct .

Proof 1. This is because g(λs1, λs2)= λg(s1, s2) and f (t;λs1, λs2)= λf (t; s1, s2).
2. This is general property for American options on stocks with prices modeled

by homogeneous processes, see e.g. [10].
3. Let t ∈ [0, T ] be fixed. Assume (t, s1, s2) ∈ G . This amounts to

E[S1
τ − S2

τ | S1
t = s1, S

2
t = s2] = E[s1S

1
τ − s2S

2
τ | S1

t = S2
t = 1] ≤ s1 − s2

for all stopping times τ ∈ [t, T ], or, equivalently,

s1(E[S1
τ | S1

t = 1] − 1)≤ s2(E[S2
τ | S2

t = 1] − 1). (3)
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One can write by Doob’s optional sampling theorem:

E[Siτ | Sit = 1] − 1= E

[∫ τ

t

Siu(δidu+ σidW
i
u) | Sit = 1

]

= E

[∫ τ

t

δiS
i
udu | Sit = 1

]

.

Hence, E[Siτ | Sit = 1] − 1 ≥ 0 for δi ≥ 0 and E[Siτ | Sit = 1] − 1 ≤ 0 for δi ≤ 0;
moreover the inequalities are strict if δi �= 0 and P(τ > t) > 0. Thus in the case 3a
inequality (3) holds for all stopping times τ , in the case 3b it holds only for τ ≡ t

(hence, if (t, s1, s2) ∈ G , any stopping time τ ∈ [t, T ] should be identical to t , im-
plying t = T ), and the statements 3a, 3b follow. Further, the inequality (3) will
remain true if s1 is replaced by s′1 ≤ s1 in the case 3c and if it is replaced by s′1 ≥ s1

in the case 3d. Moreover, the expressions E[Siτ | Sit = 1] are bounded (one can use
supu∈[t,T ] |Wi

t | to get a bound), thus for some s1 and s2 (3) holds. Hence the state-
ments of 3c and 3d follow.

4. Now write for arbitrary stopping time τ ≥ t

Z(τ) := E[S1
τ − S2

τ | S1
0 = s1, S

2
0 = s2]

= s1 − s2 + E

[∫ τ

t

S1
u(δ1du+ σ1dW

1
u )

−
∫ τ

t

S2
u(δ2du+ σ2dW

2
u )

∣
∣
∣ S1

0 = s1, S
2
0 = s2

]

= g(s1, s2)+ E

[∫ τ

0
(S1

uδ1 − S2
uδ2)du

∣
∣
∣ S1

0 = s1, S
2
0 = s2

]

.

Define D = {(s1, s2) ∈ R2+ : δ1s1 > δ2s2}. Suppose (S1
t , S

2
t ) = (s1, s2) ∈ D. We

can define the exit time of (S1, S2) from D:

τD = inf{u≥ t : (S1
u, S

2
u) /∈D}

(τ = T if the set is empty). Since the process (S1, S2) is continuous and D is open,
we have τD > t , and Z(τD) > g(s1, s2). On the other hand, f (t, s1, s2) ≥ Z(τD),
therefore we have (t, s1, s2) ∈ C . The statement 4 is proved. �

Remark 1 Taking the stopping time τ ≡ T , we can moreover write that

∀t ∈ [0, T ]{(s1, s2) ∈R
2+ : (eδ1(T−t) − 1)s1 > (eδ2(T−t) − 1)s2} ⊂ Ct ,

which clearly gives a better result in the case δ1 > δ2.

As we see, the stopping set is trivial whenever δ1 and δ2 have different signs.
Thus we can assume that δ1δ2 > 0. We will moreover assume that

δ1 > 0, δ2 > 0.
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The financial background of this assumption is that on average returns on risky
assets are greater than on non-risky ones (recall that we assumed zero interest rate,
that is, asset prices are already discounted, and δi are discounted returns).

Corollary 1 The stopping set G has the structure:

G = {(t, s1, s2) ∈ [0, T )×R
2+ | s1 ≤ β(t)s2} ∪ ({T } ×R

2+),

where β(t) : [0, T ] → (0, δ2/δ1] is certain increasing function. Moreover, β(t) ≤
(eδ2(T−t) − 1)/(eδ1(T−t) − 1).

Remark 2 As one can see, β(T ) can be chosen freely. We put β(T )= δ2/δ1 to make
β continuous: it will be shown in Sect. 4 that β(T−)= δ2/δ1.

3 Integral Equations for the Premium Function
and the Threshold Curve

Recall that the optimal stopping time τ ∗ is the time when the process (t, S1
t , S

2
t )

enters the stopping region G :

τ ∗ = inf{t : (t, S1
t , S

2
t ) ∈ G },

and τ ∗ = T if the latter set is empty. Similarly, let

τ ∗(t)= inf{u ∈ [t, T ] : (u,S1
u, S

2
u) ∈ G },

and τ ∗(t)= T if the latter set is empty.
Then the premium function is, of course,

f (t; s1, s2)= E[S1
τ∗(t) − S2

τ∗(t) | S1
t = s1, S

2
t = s2]. (4)

We denoteΦ and φ the standard normal distribution function and probability density
function respectively.

Theorem 2 The premium function f solves the equation

f (t; s1, s2)= s1 − s2 + δ1s1

∫ T

t

eδ1(u−t)Φ(D1(s1, s2, β(u),u− t))du

− δ2s2

∫ T

t

eδ2(u−t)Φ(D2(s1, s2, β(u),u− t))du, (5)

D1,2(s1, s2, β(u),u− t)= 1

σ
√
u− t

[

log

(
s1

β(u)s2

)

+ (δ1 − δ2 ± σ 2/2)(u− t)

]

,



202 Y. Mishura and G. Shevchenko

where σ =
√
σ 2

1 + σ 2
2 − 2ρσ1σ2, and the optimal boundary β is a solution of the

equation

β(t)= δ2
∫ T

t
eδ2(u−t)Φ(d2(β(t), β(u),u− t))du

δ1
∫ T

t
eδ1(u−t)Φ(d1(β(t), β(u),u− t))du

, (6)

d1,2(β(t), β(u),u− t)= 1

σ
√
u− t

[

log

(
β(t)

β(u)

)

+
(

δ1 − δ2 ± σ 2

2

)

(u− t)

]

.

Proof As long as the premium function can be represented as (4), in the continuation
region C we have L f = 0, where

L = ∂

∂t
+ 1

2

[

σ 2
1 s

2
1
∂2

∂s2
1

+ σ 2
2 s

2
2
∂2

∂s2
2

+ ρσ1σ2s1s2
∂2

∂s1∂s2

]

+ δ1s1
∂

∂s1
+ δ2s2

∂

∂s2

is the generator of diffusion Yt := (t, S1
t , S

2
t ). Moreover, evidently one has

f (t, s1, s2) = g(s1, s2) = s1 − s2 for (t, s1, s2) ∈ G . Observe that L g = δ1s1 −
δ2s2 ≤ 0 for (t, s1, s2) ∈ G (item 4 of Theorem 1). Hence, we have

L f = 0 on C , (7)

L f ≤ 0 on G , (8)

or, since f = g on G ,

L f ≤ 0, (f − g)L f = 0. (9)

Also one has the following “smooth fit” conditions:

∂f

∂s1
= 1,

∂f

∂s2
=−1, on ∂G . (10)

Equations (7)–(10) make up so-called “free boundary problem”. On more informa-
tion on how they are derived, see e.g. [10].

Now write for t ∈ [0, T ]

f (t;S1
t , S

2
t )= f (T ;S1

T , S
2
T )−

∫ T

t

df (u,S1
u, S

2
u). (11)

One can write by the Itô formula

df (t;S1
t , S

2
t )= atdt + b1

t dW
1
t + b2

t dW
2
t ,

where

at =L f (t;S1
t , S

2
t ),



The Optimal Time to Exchange one Asset for Another on Finite Interval 203

and bit , i = 1,2 are square integrable processes, whose value is not essential for us.
Taking conditional expectation of (11) and using (7), we arrive to

f (t;S1
t , S

2
t )= E[f (T ;S1

T , S
2
T )|Ft ] +

∫ T

t

E[(δ2S
2
u − δ1S

1
u)1G (u,S

1
u, S

2
u)|Ft ]du

(12)
We have (u, s1, s2) ∈ G iff s1 ≤ β(u)s2. Further,

Siu = Sit exp{(δi − σ 2
i /2)(u− t)+ σi(W

i
u −Wi

t )}.
Thus,

S1
u ≤ β(u)S2

u ⇐⇒ exp{α(u− t)+ σ1(W
1
u −W 1

t )− σ2(W
2
u −W 2

t )} ≤ β(u)S2
t /S

1
t ,

where α = δ1 − δ2 − σ 2
1 /2 + σ 2

2 /2. Note that σ1(W
1
u −W 1

t ) − σ2(W
2
u −W 2

t ) =
σ
√
u− tZ, where Z is a standard normal variable independent of Ft , σ is as above.

Thus, we can further write

S1
u ≤ β(u)S2

u ⇐⇒ Z ≤Kt(u),

where

Kt(u)= 1

σ
√
u− t

[log(β(u)S2
t /S

1
t )− α(u− t)]

is Ft -measurable.
Now we want to evaluate the integrand in (12). Write

Wi
u −Wi

t =
√
u− t(ρiZ +

√
1− ρ2

i Z
i),

where the random variables Zi are standard normal and independent of Ft and Z;
ρ1 = (σ1 − ρσ2)/σ , ρ2 = (ρσ1 − σ2)/σ . Now we can write

E[exp{σi(Wi
u −Wi

t )1G (u,S
1
u, S

2
u)} |Ft ]

= E[exp{σiρi
√
u− tZ} exp{σi

√
(1− ρ2

i )(u− t)Zi}1Z≤Kt (u) |Ft ]

= E[exp{σiρi
√
u− tZ}1Z≤Kt (u) |Ft ]E[exp{σi

√
(1− ρ2

i )(u− t)Zi} |Ft ]
= exp{σ 2

i ρ
2
i (u− t)/2}Φ(Kt(u)− σiρi

√
u− t) exp{σ 2

i (1− ρ2
i )(u− t)/2}

= exp{σ 2
i (u− t)/2}Φ(Kt(u)− σiρi

√
u− t).

Plugging this into (12), after some routine transformations we arrive to (5).
We may substitute s1 = β(t)s2 to this equation and, taking into account that
f (t;β(t)s2, s2)= β(t)s2 − s2, get (6).

It is clear that having solved equation (6), one can plug its solution into (5) to get
the premium function. But the equation for the threshold curve β is quite compli-
cated and hardly can be solved explicitly. In the next section we approach somehow
the solution of this equation. �
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Remark 3 The problem can in fact be reduced to one state variable. Indeed, a direct
calculation shows that

E[S1
τ − S2

τ ] = EP1[eδ1τ (1− Sτ )], (13)

where

St = S2
0

S1
0

exp{(δ2 − δ1 − σ 2/2)t + σWt },

dP1/dP = S1
T /E[S1

T ] and Wt is a standard Brownian motion under P1. A detailed
derivation can be found in [4].

Formula (13) allows to derive (5) and (6) somewhat simpler. It will be used in
the next section to derive important properties of the threshold curve.

4 Approaching Solution of Integral Equation for Threshold
Curve

First we establish some properties of function β . First, analogously to (3), we can
write from (13) that (t, s1, s2) ∈ G iff

s2

s1
(E[Gτ ] − 1)≥ E[eδ1τ ] − 1

for all stopping times τ ∈ [0, T − t], where

Gt = exp{αt + σWt },
α = δ2 − σ 2/2, W is Brownian motion. Thus we can write

β(t)= inf
E[Gτ ] − 1

E[eδ1τ ] − 1
,

where the infimum is taken over all stopping times τ ∈ [0, T − t] (we define the
fraction to be equal to δ2/δ1 if τ ≡ 0, as β(t)≤ δ2/δ1 anyway). Notice that this way
β can be defined also for negative values.

We put μ(t)= β(T − t), t > 0.

Proposition 1 μ(t)= δ2
δ1
(1+c1t

1/2+O(t)), t→ 0, where c1 is a negative constant.

Proof Take a stopping time τ ∈ [0, t]. Write

eδ1τ − 1= δ1τ + 1

2
eδ1θ(τ)τ 2 = δ1τ(1+O(t)), t→ 0,

and O(t) is uniform w.r.t. τ , as τ ∈ [0, t]. Hence,

E[eδ1τ ] − 1= δ1E[τ ](1+O(t)), t→ 0.
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Further,

Gτ − 1= ατ + σWτ + αστWτ + 1

2
σ 2(Wτ )

2 + 1

6
σ 3(Wτ )

3 + · · · , (14)

We have by the Itô formula, integration by parts and the optional sampling theorem
E[Wτ ] = 0, E[(Wτ )

2] = E[τ ], E[(Wτ )
3] = 3E[∫ τ

0 Wsds] = 3E[τWτ ]. The dots in
(14) mean the terms with expectation E[τ ]O(t) (where O is uniform in τ ). This can
be checked easily: for instance,

E[(Wτ )
4] = 6E

[∫ τ

0
(Ws)

2ds

]

= 6E[τ(Wτ )
2] − 3E[τ 2] ≤ 6tE[(Wτ )

2] = 6tE[τ ].

Thus, we have

μ(t)= inf
δ2E[τ ] + δ2σE[τWτ ] + E[τ ]O(t)

δ1E[τ ](1+O(t))

= δ2

δ1

(

1+ σ inf
E[τWτ ]

E[τ ] +O(t)

)

(1+O(t)), t→ 0,

where the infimum is taken over stopping times τ ∈ [0, t]. By the scaling property
of Brownian motion we have

inf
τ∈[0,t]

E[τWτ ]
E[τ ] = t1/2 inf

τ∈[0,1]
E[τWτ ]

E[τ ] .

Observe that for τ ∈ [0,1] |E[τWτ ]| ≤ (E[τ 2]E[(Wτ )
2])1/2 ≤ E[τ ], thus the infi-

mum is finite. On the other hand, one can put τ = 1/2 if W1/2 ≥ 0 and τ = 1 other-
wise, with this choice E[τWτ ]< 0 clearly. The statement is proved.

In order to simplify matters, we introduce the following function:

γ (t)= δ1

δ2
β(T − t) exp{(δ1 − δ2)t}.

It is straightforward to check that γ solves

γ (t)=
∫ t

0 e
−δ2uΦ(g2(γ (t), γ (u), t, u))du

∫ t

0 e
−δ1uΦ(g1(γ (t), γ (u), t, u))du

, (15)

g1,2(γ (t), γ (u), t, u)= 1

σ
√
t − u

[

log

(
γ (t)

γ (u)

)

± σ 2

2
(t − u)

]

.

Now assume that this equation has a solution which can be found by successive
approximations. One can check that if one plugs a constant γ to the right-hand
side of (15), then the left-hand side has the form 1+ c1t

1/2 + c2t + c3t
3/2 + · · · .

Moreover, if one plugs γ of this form into the rhs, then the lhs is again of this form,
so it is natural to seek γ in this form, i.e. we assume

γ (t)= 1+ c1t
1/2 + c2t + c3t

3/2 + · · ·
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for t small enough. We moreover assume that

γ (t)= 1+ c1t
1/2 + · · · + ckt

k/2 + θk(t)t
(k+1)/2, (16)

where the function θk is locally bounded.
Now we are going to calculate first coefficients of this expansion. We will give

details only for the coefficient c1, the others can be computed in similar manner. In
what follows C(t) will denote generic function, which is bounded in neighborhood
of zero and may change from one line to another; similarly, C will denote generic
constant.

First, we write the Taylor expansion for logγ (t) in zero. For this, we use expan-
sion (16) with k = 3. It is clear that for t small enough, γ (t) ∈ [1/2,1], so we can
write for such t

logγ (t) = (γ (t)− 1)+ 1

2
(γ (t)− 1)2

+ 1

3
(γ (t)− 1)3 +C(t)(γ (t)− 1)4,

so, by the boundedness of θ3 in (16)

logγ (t)= c1t
1/2 + (c2 − c2

1/2)t + (c3 − c1c2 + c2
3/3)t3/2 +C(t)t2.

Thus, we can write

Φ(g2(γ (t), γ (u), t, u)) = Φ

(
c1

σ
μ

(
u

t

))

+ 1

σ
φ

(
c1

σ
μ

(
u

t

))

m(t,u)

+ 1

2σ
φ′(θ(t, u))m(t, u)2,

where φ is the standard normal density function,

μ(v) = 1− v1/2

(1− v)1/2
= (1− v)1/2

1+ v1/2
,

m(t, u) =
(

c2 − c2
1

2
− σ 2

2

)

(t − u)1/2

+
(

c3 − c1c2 + c3

3

)
t3/2 − u3/2

(t − u)1/2
+C(t)t2 +C(u)u2,

and θ(t, u) is some number, which is not essential for us. Further, write e−δ2t =
1 + C(t)t and evaluate the numerator in (15), changing the variable u→ vt and
noticing that functions μ and

1− v3/2

(1− v)1/2
= μ(v)(1− v1/2 + v)
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are bounded:
∫ t

0
e−δ2uΦ(g2(γ (t), γ (u), t, u))du

= t

∫ 1

0
(1+C(t)t)

[

Φ

(
c1

σ
μ(v)

)

+ 1

σ
φ

(
c1

σ
μ(v)

)

m(t, vt)

+ 1

2σ
φ′(θ(t, vt))m(t, vt)2

]

dv

= t

∫ 1

0

[

Φ

(
c1

σ
μ(v)

)

+ 1

σ
φ

(
c1

σ
μ(v)

){

t1/2
(

c2 − c2
1

2
− σ 2

2

)

(1− v)1/2 +C(v)t

}

+ 1

2σ
φ′(θ(t, vt))

{

t1/2
(

c2 − c2
1

2
− σ 2

2

)

(1− v)1/2 +C(v)t

}2

+C(t, v)(t + v)

]

dv

= t

∫ 1

0
Φ

(
c1

σ
μ(v)

)

dv

+ t3/2 1

σ

(

c2 − c2
1

2
− σ 2

2

)∫ 1

0
φ

(
c1

σ
μ(v)

)

(1− v)1/2dv+C(t)t2.

The same can be written for the denominator of (15):

∫ t

0
e−δ1uΦ(g1(γ (t), γ (u), t, u))du

= t

∫ 1

0
Φ

(
c1

σ
μ(v)

)

dv

+ t3/2 1

σ

(

c2 − c2
1

2
+ σ 2

2

)∫ 1

0
φ

(
c1

σ
μ(v)

)

(1− v)1/2dv+C(t)t2,

thus, expanding the fraction, we have

γ (t)= 1− σξ

(
c1

σ

)

t1/2 +C(t)t,

where

ξ(x)=
∫ 1

0 φ(xμ(v))(1− v)1/2dv
∫ 1

0 Φ(xμ(v))dv
.
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Hence we have

c1 = σx0,

where x0 is a solution of equation ξ(x)=−x. Clearly, it should be negative. �

Lemma 1 The equation ξ(x)=−x has unique negative solution.

Proof Integrating by parts, we can write t/ξ(−t) as

t

ξ(−t) =
√

2πt + 2t2
∫ 1

0 e−t2μ(v)2/2vμ′(v)dv
4
3e
−t2/2 − 4

3 t
2
∫ 1

0 e−t2μ(v)2/2μ(v)μ′(v)(1− v)3/2dv
.

Now consider the difference between the numerator and denominator of the last
expression. We can make the change of variable u= μ(v) (respectively, v = ν(u)=
(1− u2)2/(1+ u2)2) and represent it in the form:

D(t)= 4

3
e−t2/2 −√2πt + t2

∫ 1

0
e−t2u2/2

[
4

3
u(1− ν(u))3/2 + 2ν(u)

]

du.

Now note that 0 ≤ χ(u) := 4
3u(1− ν(u))3/2 + 2ν(u) ≤ 4

3 (1− ν(u))+ 2ν(u) ≤ 2,
thus we can write

D(t)≤ 4

3
e−t2/2 −√2πt + 2t

∫ 1

0
e−t2u2/2tdu

= 4

3
e−t2/2 −√2πt + 2t

∫ t

0
e−s2/2ds

= 4

3
e−t2/2 − 2t

∫ ∞

t

e−s2/2ds ≤ 4

3
e−t2/2 − 2

t2

t2 + 1
e−t2/2.

The last inequality is due to a well-know property of the standard normal distribution
function. Hence, for t >

√
2 the function D(t) is negative. Similarly, for t ≤√2

(2D(t)t−1/2)′ ≤ − 4

3t3/2
e−t2/2 −√2πt−1/2

+ 2
∫ 1

0

(
1

2
t−1/2 − t3/2u2

)

e−t2u2/2χ(u)du

≤ t−3/2
[

−4

3
e−t2/2 − t

√
2π + 2t

∫ 1∧ 1
t
√

2

0
(1− 2t2u2)e−t2u2/2du

]

≤ t−3/2
[

−4

3
e−t2/2 − t

√
2π + 2

∫ 1√
2

0
e−s2/2ds

]

.
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Fig. 1 β(T − t) for
δ1 = δ2 = 0.02, σ = 0.2

It is easy to check that 4
3e
−t2/2 + t

√
2π increases on [0,√2]. Thus, we can write

(2D(t)t−1/2)′ ≤ −4

3
+ 2
√

2π

[

Φ

(
1√
2

)

− 1

2

]

< 0.

Summing up, D(t)t−1/2 decreases on [0,√2], it is equal to +∞ in 0 and it is nega-
tive on (

√
2,+∞). Hence there is exactly one point t such that D(t)t−1/2 = 0, and

the statement follows. �

Remark 4 Solving ξ(x)=−x numerically by successive approximations, one gets
the following value: x0 ≈−0.6388332158. It is worth to mention that recently we
found the same constant (but calculated less accurately) in [6] with respect to the
problem of valuing American put option on a dividend-paying asset.

Remark 5 Combining the result of the lemma with the proof of Proposition 1, we
get the following interesting result:

sup
E[τWτ ]

E[τ ] = −x0,

where the supremum is taken over all stopping times τ ∈ [0,1].
The rest of coefficients in the expansion (15) can be found in the similar manner.

The formulas for them are quite cumbersome, we only give the one for c2:

c2 = δ2 − δ1 + σx0I1/I2

1− x2
0

+ σ 2x2
0

2
,

where

I1 = 1

2
√

2π

∫ 1

0
e−x2

0μ
2(u)/2μ(u)du, I2 =

∫ 1

0
Φ(x0μ(u))du,

and x0 is the solution of the equation ξ(x)=−x.
Figure 1 is the graph of β for some particular values of parameters, to draw it,

we cut the expansion of γ at t (i.e., four non-constant terms are used).
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Arbitrage Under Transaction Costs Revisited

Miklós Rásonyi

Abstract We present a novel arbitrage-related notion for markets with transaction
costs in discrete time and characterize it in terms of price systems. Pertinence of
this concept is demonstrated. A discussion of the case with one risky asset and an
outlook on continuous-time models complement the main result.

Keywords Transaction costs · Absence of arbitrage · Consistent price systems

Mathematics Subject Classification (2000) 91B28 · 60G42

1 Introduction

After the pioneering papers [17] and [5], a geometric approach to modelling markets
with transaction costs has been initiated in [18] and various versions of the funda-
mental theorem of asset pricing have been shown for discrete-time market models
in [1, 11, 19, 20, 24, 31] and [10].

In the present article we will deviate from the usual notion of arbitrage figuring
in previous papers and propose an alternative concept.

After introducing our geometric framework, Theorem 1 in Sect. 2 characterizes
the new “no sure gain in liquidation value” NGV property (see Definition 3) in
terms of the existence of price systems. Section 3 investigates NGV in models with
one risky asset. Section 4 contains the proofs. Section 5 refers to certain strongly
related phenomena in continuous-time models which motivated our investigations.
The appendix provides some necessary technical tools.

Scalar product in R
d will be denoted by 〈·, ·〉; B(Rd) stands for the Borel-sets

of R
d ; we will also need the unit ball U := {x ∈ R

d : |x| ≤ 1}. The closure of
a set H ⊂ R

d in the Euclidean topology is written as H . The positive dual cone of
a closed cone K ⊂R

d is defined as

K∗ := {x ∈R
d : 〈x, c〉 ≥ 0, for all c ∈K},
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this is also a closed cone. We say that K is proper if intK∗ �= ∅. For subsets M ⊂R
d ,

cone(M) denotes the cone generated by M .
Let (�,F , (Ft )

T
t=0,P ) be a discrete-time stochastic basis with finite time hori-

zon. In this paper we suppose that each σ -algebra we are dealing with contains
P -zero sets and that F0 is trivial. If G ⊂ F is a σ -algebra then an element
A ∈ G ⊗B(Rd) is called a G -measurable random set. If the sections A(ω) of this
random set are cones for almost all ω then we speak about a random cone and sim-
ilarly about random closed cones, random convex sets, etc.

If A is some (not necessarily G -measurable) random set which is nonempty a.s.
then L0(A,G ) denotes the family of G -measurable R

d -valued functions f such that
f (ω) ∈ A(ω) for almost all ω. Such an f is called a G -measurable selector of A.
The set of elements of L0(A,G ) with finite expectation is denoted by L1(A,G ).

We now recall elements of the abstract geometric approach to markets with pro-
portional friction, see [19, 24] or [31] for more detailed descriptions.

We assume that Gt is an Ft -measurable random closed cone in R
d containing

R
d+ a.s., for t = 0, . . . , T . We may think of Gt(ω) as the set of “nonnegative” posi-

tions in d assets at time t and in the state of the world ω ∈�.
Define

At
s :=

t∑

u=s
L0(−Gu,Fu).

Traders in the market are assumed to have the information structure Ft ,
t = 0, . . . , T and to act in a self-financing way hence At

s corresponds to the set of
attainable positions at time t when trading starts at time s with 0 initial endowment.

Starting with initial endowment ξ ∈ L0(Rd ,Fs) at time s an investor may attain
by time t the payoffs which are elements of the set

At
s(ξ) := {ξ + V : V ∈At

s}.

Definition 1 We say that there is efficient friction EF if Gt is proper a.s. for
t = 0, . . . , T .

In the model of [19] condition EF means that there are no freely exchangeable
assets (even allowing for indirect transfers), see Proposition 5.3 of [7].

2 Arbitrage and Price Systems

The following notion of arbitrage goes back to [24].

Definition 2 Weak absence of arbitrage NAw holds if V ∈ AT
0 ∩L0(Rd+,FT ) im-

plies V = 0 a.s.

This concept is called simply “no arbitrage” NA in [31] and [11].



Arbitrage Under Transaction Costs Revisited 213

The above notion means that a trader with 0 initial endowment is unable to attain
a non-zero nonnegative portfolio. In the present study we shall require that a position
with positive liquidation value should be attainable from a given endowment only if
the liquidation value of this endowment is itself positive. To put it in another way,
arriving at an a.s. solvent position is possible only if the investor was solvent already
at the beginning.

Definition 3 There is no sure gain in liquidation value NGV if for all 0 ≤ s ≤ T ,
ξ ∈ L0(Rd ,Fs) and V ∈AT

s (ξ) with VT ∈GT a.s. we necessarily have ξ ∈Gs a.s.

Remark 1 Take an arbitrary V ∈AT
0 (ξ) for some ξ ∈R

d . Write

Vt := ξ +
t∑

j=0

ηj , 0≤ t ≤ T ,

where ηj ∈ L0(−Gj,Fj ). If V = VT ∈GT a.s. then (as VT ∈AT
T−1(VT−1)) NGV

implies that VT−1 ∈ GT−1 a.s. Repeating the procedure we get Vt ∈ Gt a.s. for
0≤ t ≤ T and even ξ ∈G0.

Thus NGV implies that an investor ending up with a solvent position must have
been solvent during the whole period of his activity in the market. We do not know
if this latter condition is strictly weaker than NGV.

Remark 2 The analogous property holds in frictionless arbitrage-free models, too
(nonnegative terminal wealth implies that the portfolio value is nonnegative over the
whole trading period), and it is a strictly weaker condition than absence of arbitrage
(as the example in Remark 4 below witnesses). This shows that NGV is a fairly
natural and mathematically appealing concept.

Now we introduce the dual variables of this model.

Definition 4 Suppose EF. The set of martingales (Zt )s≤t≤v such that Zt ∈G∗t \ {0}
(resp. Zt ∈ intG∗t ), s ≤ t ≤ v is denoted by M v

s (G
∗ \ {0}) (resp. M v

s (intG∗)).

Following the terminology of [31], elements of M T
0 (G∗ \ {0}) (resp.

M T
0 (intG∗)) are called consistent price systems (resp. strictly consistent price sys-

tems). Also the expression “shadow price” is sometimes used in the related litera-
ture. In the absence of the EF property one has to replace interior by the relative
interior in the above definition.

At a given time instant s, elements of L0(intG∗s ,Fs) can be interpreted as pos-
itive price functionals (as they are positive on the set of positions Gs \ {0}). The
following condition requires that given any positive price today, we may prolongate
it in a consistent (martingale) way up to the end of the time horizon.

Definition 5 We say that prices are consistently extendable PCE, if for each 0 ≤
s ≤ T and X ∈ L1(intG∗s ,Fs) there exists Z ∈M T

s (intG∗) satisfying Zs =X a.s.
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Theorem 1 Under EF, the following are equivalent:

(a) NGV
(b) For each 0 ≤ t ≤ T − 1 and ξ ∈ L0(Rd ,Ft ) such that ξ ∈ Gt+1 a.s. we have

ξ ∈Gt a.s.
(c) PCE

Item (b) above means that it is not possible to make a gain in liquidation value
in one step. Thus, as in the classical case of frictionless markets, if it is not possible
to produce an “arbitrage” in one step then it is not feasible in several steps either
(see e.g. [6]). This property seems fairly convenient and in contrast with the previ-
ously used no-arbitrage concepts in the transaction cost case where such a one-step
reduction fails.

Remark 3 The notion PCE expresses a certain concatenation property for the dual
processes. It allows reducing multistep arguments to single step ones (see ∗) in the
proof of Theorem 1 in Sect. 4) and may be useful in e.g. dynamic programming type
arguments, too. More comments on the role of PCE are given in Sect. 5.

For comparison, we recall the main result of [11] about the characterization of
NAw in the two-dimensional case. Its multidimensional extension is a delicate issue,
see [31] and [16].

Theorem 2 Let d := 2, then NAw holds iff

M T
0 (G∗ \ {0}) �= ∅.

Theorem 2 holds for arbitrary d if � is finite, see [24], but fails for infinite �

and d ≥ 3, see [31] and [11]. In [24] a stronger no-arbitrage concept NAs has also
been introduced and found equivalent to the existence of a strictly consistent price
system, for � finite. This result was generalized in [19] for arbitrary � under the
EF hypothesis. Dropping EF one needs the NAr concept of [31] to get strictly
consistent price systems. All these developments are presented in [21].

Remark 4 It is unclear how to generalize Theorem 1 for the case where EF fails.
The analogous statement for frictionless markets fails (as noticed by D. Rokhlin):
take S0 = 1, P(S1 = 2)= P(S1 = 1)= 1/2. Starting from initial capital x < 0 and
using strategy φ ∈ R the value of our portfolio will be x + φ(S1 − S0) which is
never positive a.s., hence the analogue of NGV holds for this model. However, the
usual no-arbitrage property fails and there is no equivalent martingale measure for
the process S. In contrast, under EF, NGV implies, in particular, the existence of
(strictly) consistent price systems (by Theorem 1) and is thus stronger than any of
the previous no-arbitrage concepts NAw,NAs ,NAr .
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3 Markets with One Risky Asset

Let us consider a market with one risky asset (stock) traded at bid and ask prices
given by the adapted processes

0 < St ≤ St , t = 0, . . . , T . (1)

We assume that the riskless asset has constant price 1 (no interest rate).
Positions in the riskless asset and in the stock can be described by elements

(x, y) ∈ R
2. Non-negative (“solvent”) positions at time t are those which satisfy

either

x ≥ 0, y ≥ 0, (2)

or

x ≤ 0 and ySt + x ≥ 0, (3)

or

y ≤ 0 and ySt + x ≥ 0. (4)

We may thus define the Ft -measurable random (closed) cones

Gt := {(x, y) ∈R
2 : (2) or (3) or (4) holds}, t = 0, . . . , T ,

these sets a.s. contain the positive orthant.
It is easy to check that EF holds iff St < St a.s. for each t and that

G∗t = {(w1,w2) : Stw1 ≤w2 ≤ Stw1}.

Example 1 Let us consider the deterministic market with S0 = S1 = 0.9, S0 = 1.2,
S1 = 1.1. The process Z0 = Z1 = (1,1) is a (strictly) consistent price system, hence
this model is arbitrage-free in the sense of previous papers, e.g. [19] or [31].

However, the position (20/17,−1) is such that it has liquidation value −1 ×
1.2+ 20/17 < 0 at time 0 and −1× 1.1+ 20/17 > 0 at time 1 and thus NGV fails
in this model.

Failure of NGV arose because the bid-ask interval had shrunk from time 0 to
time 1. We have the following result.

Theorem 3 In the above setting assume EF. Then NGV holds iff for each t ≤ T −1,

[St , St ] ⊆ [min supp Law(St+1|Ft ), sup supp Law(St+1|Ft )] a.s. (5)

(Here the sup may be infinity.)

Remark 5 To put it differently, NGV fails iff at some time instant either the con-
ditional future bid is a.s. larger than the present bid price or the conditional future
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ask is a.s. smaller then the present ask price. We explain a possible argument that
such events should not occur in a liquid market: let us suppose that e.g. the bid price
a.s. will increase. Then nobody would be willing to sell the risky asset which is
in contrast with the observed uninterrupted trading. Hence the NGV seems to be
acceptable from the intuitive point of view, though rather stringent. It can be inter-
preted as “the situation can not get more favourable a.s.”.

In the case of constant proportional transaction costs the picture simplifies even
more. Let St be an adapted process representing stock price and let 0 < ε < 1 be the
constant transaction cost coefficient. Define

St := St (1− ε), St := St (1+ ε). (6)

The notation NGV-ε refers to the absence of gain in liquidation value property in
this market model with parameter ε; PCE-ε, G∗(ε), NAw are also self-explanatory.

The rigidity of the transaction cost structure in the present case causes that the
notion NGV does not depend on the effective value of ε (as long as it is strictly
positive).

Corollary 1 In the above model with proportional transaction costs the following
are equivalent:

(a) For some ε, NGV-ε.
(b) For some ε, PCE-ε.
(c) For each ε, NGV-ε.
(d) For each ε, PCE-ε.
(e) NAw-ε holds for each ε.
(f) There exist (strictly) consistent price systems for each ε.
(g) P(St+1 − St < 0|Ft ) < 1 a.s. and P(St+1 − St > 0|Ft ) < 1 a.s., for all

0≤ t ≤ T − 1.

Remark 6 Frictionless absence of arbitrage for the price process S can be char-
acterized as follows (see [6]): for each 0 ≤ t ≤ T − 1, for almost all ω, either
P(St+1 = St |Ft )(ω)= 1 or both P(St+1 − St ≤ 0|Ft )(ω) < 1 and P(St+1 − St ≥
0|Ft )(ω) < 1 hold (i.e. price can be neither nonincreasing a.s. nor nondecreasing
a.s.).

Note that (g) above is almost frictionless absence of arbitrage, but slightly
weaker: it prohibits only that the price strictly increases (decreases) with (con-
ditional) probability 1. When (g) holds it may thus happen that P(St+1 − St ≥
0|Ft ) = 1 a.s. and P(St+1 − St = 0|Ft ) < 1 a.s. on some event A ∈Ft of posi-
tive probability, which cannot hold if there is no arbitrage without transaction costs.

Example 2 If the Ft -conditional support of both St+1 and St+1 equals [0,∞) a.s.
then (5) and thus NGV trivially holds. In the context of continuous-time models the
analogous “conditional full support” CFS condition was introduced in [13] (inspired
by [12]). It was shown that CFS implies (f) (in fact, all the statements (a)–(f)) of
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Corollary 1 for processes with continuous trajectories. CFS is valid for a large class
of often used processes, see [13] and [4].

4 Proofs

Instead of showing the closedness of the set of attainable claims in an appropri-
ate topology and relying on consequences of the Hahn-Banach theorem in infi-
nite dimensional spaces, in this paper (as well as in [26, 28, 29] and [30]) finite-
dimensional separation theorems are combined with measurable selection. Thus we
return to the spirit of the seminal paper [6].

In the sequel we will use the measurable selection theorem as stated in e.g. III.
44–45 of [8]. Standard verifications for the measurability of certain subsets will be
omitted.

We need the notion of conditional expectation for random sets (see [25] for fur-
ther details). The following result is Lemma 4.3 of [26].

Lemma 1 Let G ⊂H be σ -algebras. Let C ⊂ U be an H -measurable random
convex compact set. Then there exists a G -measurable random convex compact set
E(C|G )⊂U satisfying

L0(E(C|G ),G )= {E(ϑ |G ) : ϑ ∈ L0(C,H )}.
If 0 ∈ C a.s. then 0 ∈E(C|G ) a.s., too.

We also recall Lemma 4.4 of the same paper.

Lemma 2 Let G ⊂H be σ -algebras and let C ⊂ U be a H -measurable random
compact convex set containing 0 such that intC �= ∅ a.s. Then intE(C|G ) �= ∅ a.s.
and

{E(ϑ |G ) : ϑ ∈ L0(intC,H )} ⊂ L0(intE(C|G ),G )

⊂ {E(ϑ |G ) : ϑ ∈ L0(2 intC,H )}.

Proof of Theorem 1 We add one more equivalent statement which is of auxiliary
nature.

(∗) Ht := cone(intE(G∗t+1 ∩U |Ft ))⊃ intG∗t for each 0≤ t < T .
(a)⇒ (b): Rather trivial since

ξ ∈Gt+1 =Gt+1 +R
d+ =R

d+ − (−Gt+1),

thus (using measurable selection) there is η ∈ L0(−Gt+1Ft+1) such that ξ + η ∈
R
d+ ⊂GT . As ξ + η ∈AT

t (ξ), NGV implies ξ ∈Gt a.s.
(b) ⇒ (∗): Let us suppose that (∗) fails, i.e. for some t , on a set A ∈ Ft of

positive measure, there exist points pω ∈G∗t (ω)\Ht(ω), ω ∈A. By the measurable
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selection theorem we may assume that pIA is an Ft -measurable function. The one
point set pω can be separated from the closed set Ht(ω) (Corollary 11.4.2 of [27]),
i.e. there exist ξω ∈ U and aω ∈ R such that 〈ξω,pω〉< aω and 〈ξω, q〉 ≥ aω for all
q ∈Ht(ω) and for all ω ∈ A. As Ht is a cone, we may choose aω := 0. Again, we
may assume that ξ is an Ft -measurable random variable and ξ = 0 on Ac .

We claim that ξ ∈Gt+1 a.s. Indeed, if this failed on a set B ∈Ft+1 of positive
measure then there would be ζ ∈ L0([intG∗t+1] ∩ U,Ft+1) such that 〈ζω, ξω〉 < 0
for ω ∈ B . Choosing ε > 0 small enough,

E〈ζ IB + f εIBc , ξ 〉< 0, (7)

where f is an arbitrary Ft+1-measurable selector of [intG∗t+1] ∩ U . But, by
Lemma 1, E(ζIB + εf IBc |Ft ) ∈Ht , hence E〈ξ,E(ζ IB + εf IBc |Ft )〉 ≥ 0 should
hold by the choice of ξ , but this contradicts (7).

To finish the proof of this implication notice that, on A, 〈ξ,p〉< 0, so necessarily
P(ξ /∈Gt) > 0, hence (b) cannot hold. We may conclude that (b)⇒ (∗).

(∗) ⇒ (c): Take any 0 ≤ s ≤ T − 1 and X ∈ L1(intG∗s ,Fs). We will con-
struct (Zu)s≤u≤T by induction, starting from Zs := X. Let us suppose that the
martingale Zs, . . . ,Zu has been defined, we shall construct Zu+1. By (∗), there
is α ∈ L0((0,∞),Fu) such that αZu ∈ intE(G∗u+1 ∩ U |Fu) a.s. Hence Lemma 2
implies that there is Y ∈ L0(2 int[G∗u+1∩U ],Fu+1) such that E(Y |Gu)= αZu. Set-
ting Zu+1 := Y/α we see that E(Zu+1|Fu)= Zu at least in a generalized sense, but
as Zu was integrable, Zu+1 is also integrable, and the inductive step is shown.

(c)⇒ (a): Take Vk = ξ+∑k
j=s ηj ∈Ak

s (ξ), s ≤ k ≤ T where ηj ∈ L0(−Gj,Fj )

and ξ is Fs -measurable. Then VT ∈ AT
s (ξ). Suppose that also VT ∈ L0(GT ,FT ).

We shall show ξ ∈Gs a.s., arguing by contradiction.
If ξ ∈ Gs failed on some set B ∈ Fs of positive measure we could choose

ζ ∈ L1(intG∗s ,Fs) in such a way that

〈ζ, ξ 〉< 0 on B. (8)

Then, by (c), there is Z ∈ M T
s (intG∗) such that Zs = ζ . We have 〈ZT ,VT 〉 ≥

0 a.s., hence, as ηT ∈ −GT , also 〈ZT ,VT−1〉 ≥ 0 a.s. Taking FT−1-conditional
expectations we find that 〈ZT−1,VT−1〉 ≥ 0 a.s.

Iterating the same argument, finally 〈Zs, ξ 〉 = 〈ζ, ξ 〉 ≥ 0 a.s., which is nonsense
by (8). �

Proof of Theorem 3 Roughly speaking, NGV is true iff the Ft -conditional projec-
tion of G∗t+1 contains G∗t (see (∗)) in the previous proof) and this latter is equivalent
to (5). The technical difficulty lies in proving that each element of the wedge

{(u, v) ∈R
2+ : u ess. infS1 < v < u ess. supS1}

is the expectation of some 2-dimensional random variable (X,Y ) satisfying a.s.

XS1 < Y <XS1,
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and then proving the conditional version of this statement (with Ft replacing the
trivial σ -algebra and St+1, St+1 replacing S1, S1). We need Lemmata 3 and 4 to
tackle this.

Let us first suppose (5). Take θ ∈ L1(intG∗t ,Ft ). Let ν be the (regular) Ft -
conditional law of (St+1, St+1). As EF holds, we have ν(W)= 1 a.s., see the defi-
nition of W in Lemma 3 below. Define

D(ω) := {(u, v) ∈R
d+ : umin supp Law(St+1|Ft )≤ v

≤ u sup supp Law(St+1|Ft )},
(if the sup is ∞ we mean < instead of ≤ in the second inequality) note that the
conditional probabilities above are the marginals ν1, ν2 of ν.

As (5) implies G∗t (ω) ⊂ D(ω) a.s. (and hence also intG∗t (ω) ⊂ intD(ω)), we
may apply Lemma 4. The random variable

θ̃ := f (St+1, St+1,ω)

satisfies E(θ̃ |Ft )= θ in the generalized sense and θ̃ ∈ L1 since θ ∈ L1. We claim
that θ̃ ∈ G∗t+1 a.s. Indeed, if we had e.g. θ̃2/θ̃1 > St+1 on some event of positive
probability, we would necessarily have some A ∈Ft with P(A) > 0 such that for
ω ∈A

0 <P(θ̃2/θ̃1 > St+1|Ft )= ν({f2(x, y)/f1(x, y) > y},ω),
which contradicts (13).

We will now prove that the existence of θ̃ entails (b) of Theorem 1, which then
implies NGV. Let ξ ∈ L0(Gt+1,Ft ). If we had ξ /∈ Gt on A ∈Ft then for some
θ ∈ L1(intG∗t ,Ft ) one has 〈θ, ξ 〉< 0 on A. We clearly have 〈θ̃ , ξ 〉 ≥ 0 by θ̃ ∈G∗t+1
hence, taking Ft -conditional expectation, also 〈θ, ξ 〉 ≥ 0 a.s. This is possible only
if P(A)= 0.

To see the converse implication, we remark that, by the proof of Theorem 1,
NGV implies (∗). Define D(ω) as in the previous argument.

If (5) failed on some A ∈Ft with P(A) > 0 we could take θ ∈ L1(intG∗t ,Ft )

such that θ /∈ D on A. (∗) implies that, for a suitable α ∈ L0((0,∞),Ft ), we
have αθ ∈ intE(G∗t+1 ∩ U |Ft ) a.s., hence Lemma 1 provides θ̃ ∈ G∗t+1 ∩ U with

E(θ̃ |Ft )= αθ . Then E(θ̃/α|Ft )= θ and θ̃/α is integrable as θ is.
Clearly, for any θ̂ ∈ L1(G∗t+1,Ft+1) we have E(θ̂ |Ft ) ∈ D a.s. But θ̂ := θ̃/α

contradicts the choice of θ . �

Proof of Corollary 1 The equivalence (e) ⇐⇒ (f) follows from Theorem 2, noting
that an ε/2-consistent price system is ε-strictly consistent.1

1This equivalence also follows from the main result of [31], see also [20], and remains true in
a multidimensional setting whenever we consider a family of polyhedral cone valued processes
G(ε), ε > 0, intGt(ε)⊃R

d+ \ {0} such that for 0 < ε′ < ε we have Gt(ε) \ {0} ⊂ intGt(ε
′) a.s. for

each t .
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Theorem 1 implies (a) ⇐⇒ (b) and (c) ⇐⇒ (d). The implication from (f) to
(d) has been shown in [14], even for continuous-time models. For completeness we
reproduce this proof in Lemma 5 below. (c)⇒ (a) and (d)⇒ (f) are trivial. So it
remains to show (a) ⇒ (c) and (a) ⇐⇒ (g). We get from Theorem 3 that (a) is
equivalent to

[St (1− ε), St (1+ ε)]
⊆ [min supp Law(St+1(1− ε)|Ft ), sup supp Law(St+1(1+ ε)|Ft )], (9)

a.s. for each t , but if this holds for one particular ε it holds for all 0 < ε < 1, showing
(a)⇒ (c). Notice also that (9) is equivalent to

St ∈ [min supp Law(St+1|Ft ), sup supp Law(St+1|Ft )],
a.s. for all t , which is precisely (g). �

5 Conclusion

We now make some comparisons to studies on continuous-time models. The equiv-
alence between (e) and (f) of Corollary 1 has been shown in [14] for processes
(St )t∈[0,T ] with continuous trajectories. Note that (f)⇒ (d) also holds in this model
class (see [14]).

It follows from results of [21] (see also [23] and [9]) that for continuous cone-
valued processes the so-called condition B implies the closedness of the set of pay-
offs of admissible strategies (bounded from below in a suitable sense), which is
crucial when establishing hedging theorems or building up a proper duality theory
(e.g. for utility maximization). Condition B is very closely related to PCE. In fact,
it can easily be checked that the above cited results can be derived assuming PCE.
In discrete time (under EF) one can show that condition B implies PCE (and is
a strictly stronger property).

In [2] the closedness of payoffs is proved for price processes with jumps admit-
ting a strictly consistent price system. However, a different class of trading strategies
and a different notion of admissibility are used. Under PCE one can show (along
the lines of Proposition 9 in [2]) that this new notion of admissibility coincides with
the usual one in [23].

We expect that (some suitable modification of) Theorem 1 holds for continuous-
time models with several assets and with a general bid-ask structure.

Appendix

The following technical material was needed in the above arguments. We denote by
C0(R2) the set of continuous functions on R2 vanishing at infinity, equipped with
the supremum norm. This is a Polish space.
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Lemma 3 Let ν be a probability measure on R
2 such that ν(W)= 1 where

W := {(u, v) ∈R
2 : u,v > 0, u < v}.

Let ν1, ν2 denote its marginals. Define the cone D as

D := {(u, v) ∈R
2+ : umin suppν1 ≤ v ≤ u sup suppν2}.

(If the sup is ∞ we mean < instead of ≤ in the second inequality.) For any point
p = (p1,p2) ∈ intD there exist ν-a.s. (strictly) positive functions f1, f2 ∈ C0(R2)

such that

pi =
∫

R2
fi(u, v)ν(du, dv), i = 1,2.

and f1(u, v)u < f2(u, v) < f1(u, v)v hold ν-almost surely.

Proof We shall use tricks from the key lemma of [22]. We first remark that intD �= ∅
under the conditions of the present Lemma. Let K be the set of p ∈ intD for which
the statement holds. The relative interior of a convex set coincides with that of its
closure (see III.2.1.8 in [15]). Hence, as K is a convex set, it suffices to show that
K is dense in D. It is thus enough to prove, for each p ∈D, the existence of ν-a.s.
strictly positive gn1 , g

n
2 ∈ C0(R2) such that
∫

R2
gni dν→ pi, n→∞, i = 1,2 (10)

and

gn1 (u, v)u < gn2 (u, v) < gn1 (u, v)v, ν-a.s.

We may and will assume p1 = 1. There are p ≤ p2 ≤ p such that p ∈ suppν1
and p ∈ suppν2. Hence p2 is a convex combination of p and p and we may and
will assume that e.g. p2 = p, i.e. p2 ∈ suppν1.

We could try to take e.g.

gn1 (u, v) :=
I[p2−1/n,p2+1/n](u)

ν2([p2 − 1/n,p2 + 1/n]) ,

gn2 (u, v) := (u+ (1/n)[v − u])gn1 (u, v),
but these fail to be continuous and do not vanish at infinity (in fact, gn1 does not
depend on v). Since for the measurable selection argument in Lemma 4 below we
need to insist on gni ∈ C0(R2), i = 1,2 a more complicated construction is used.

Define

Jn := [p2 − 1/n,p2 + 1/n] × [−N(n),N(n)], cn = ν(Jn), n≥ 1,

and choose N(n) so large that cn > 0, n ≥ 1. This is possible by the definition of
the support of a measure. Define also

Kn := [p2 − 2/n,p2 + 2/n] × [−N(n)− 1,N(n)+ 1].
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Denote by an(u, v), bn(u, v) the distance of the point (u, v) from Jn,K
c
n , respec-

tively. These are continuous functions of (u, v). We further set

&(u, v) := 1/(u2 + v2 + 1), u, v ∈R.

Define

gn1 (u, v) =
1

cn
IJn(u, v)+

1

n
&(u, v)IKc

n
(u, v)

+
[{

1− hn

(
an(u, v)

an(u, v)+ bn(u, v)

)}
1

n
&(u, v)

+ hn

(
an(u, v)

an(u, v)+ bn(u, v)

)
1

cn

]

IKn\Jn,

gn2 (u, v) := (u+ (1/n)[(v − u)∧ 1])gn1 (u, v),

where the continuous function hn : [0,1] → [0,1] is chosen in such a way that
hn(1)= 0, hn(0)= 1 and

∫

Kn\Jn
(|u| + 1)hn

(
an(u, v)

an(u, v)+ bn(u, v)

)

ν(du, dv) < cn/n. (11)

(This holds for hn(x) := (1− x)α(n), x ∈ [0,1] with α(n) > 0 suitably large.)
The functions gn1 , g

n
2 are ν-almost surely strictly positive, lie in C0(R2) and

clearly

gn1 (u, v)u < gn2 (u, v) < gn1 (u, v)v ν-a.s.

Let (X,Y ) be random variables with joint law ν. The expectation of the first term
of gn1 (X,Y ) equals 1, the second term tends to 0 uniformly by boundedness of & and
the third term vanishes as n→∞ due to (11); hence Egn1 (X,Y )→ 1. Similarly, the
first term of Egn2 (X,Y ) tends to p2, (|u| + 1)/&(u, v) is bounded hence the second
term goes to 0 uniformly and the third term vanishes again by (11). This shows (10)
and thus finishes the proof of this lemma. �

Lemma 4 Let G ⊂ F a σ -algebra. Let ν(A,ω), A ∈ B(R2), ω ∈ � be a G -
measurable stochastic kernel2 with marginals ν1, ν2 such that a.s. ν(W) = 1 (see
the statement of the previous lemma). Define

D(ω) := {(u, v) ∈R
2+ : umin suppν1(ω)≤ v ≤ u sup suppν2(ω)},

with < replacing ≤ if the sup is infinity.

2I.e. for almost all ω, ν is a probability measure on the Boreliens of R
2; for each fixed A ∈B(R2)

it is a G -measurable function.
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Let θ ∈ L0(intD,G ) be arbitrary. Then there exist a B(R2) ⊗ G -measurable
functions f1, f2 such that, for almost all ω,

∫

R2
fi(x, y,ω)ν(dx, dy,ω)= θi(ω), i = 1,2 (12)

and for almost all ω, ν(·, ·,ω)-a.s.

f1(x, y,ω)x < f2(x, y,ω) < f1(x, y,ω)y. (13)

Proof By Lemma 3, for (almost all) fixed ω there exist fi(·, ·,ω) ∈ C0(R2), i = 1,2,
such that (12) holds true. The measurable selection theorem enables us to choose
f1, f2 in a G -measurable way.3 Then fi(·, ·, ·), i = 1,2 are continuous in the
first two variables and measurable in the third one, hence they are B(R2) ⊗ G -
measurable (p. 70 of [3]). �

The following Lemma is taken from [14].

Lemma 5 Let M T
0 (G∗(η) \ {0}) �= ∅ hold for each 0 < η < 1 and take f ∈

L1(intG∗t (ε),Ft ). Then there exists W ∈M T
t (intG∗(ε)) such that Wt = f .

Proof Let W̃t (η) be a fixed element of M T
0 (G∗(η) \ {0}), for each η. We have, by

definition,

1− η ≤ gt (η) := W̃ 2
t (η)

W̃ 1
t (η)St

≤ 1+ η, (14)

and for ht := f2/(f1St ) we have

1− ε < ht < 1+ ε.

We define an Ft -measurable partition of �:

A+n := {1+ nε/(n+ 1) > ht ≥ 1+ (n− 1)ε/n}, (15)

A−n := {1− (n− 1)ε/n > ht ≥ 1− nε/(n+ 1)}, n≥ 1. (16)

Now set

W 1
u := f1

∞∑

n=1

IA+n ∪A−n
W̃ 1

u (ε/(9n+ 3))

W̃ 1
t (ε/(9n+ 3))

and

W 2
u := f1

∞∑

n=1

IA+n ∪A−n
ht

gt (ε/(9n+ 3))

W̃ 2
u (ε/(9n+ 3))

W̃ 1
t (ε/(9n+ 3))

, t ≤ u≤ T .

3We have again skipped here some standard arguments that the set of suitable pairs (ω,fi(·, ·,ω))
is measurable with respect to the product σ -algebra.
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It is clear that Wu, t ≤ u≤ T is a martingale and

Wt = f.

Moreover, on A+n we have for t ≤ u≤ T ,

1− ε <
1− ε/(9n+ 3)

1+ ε/(9n+ 3)
≤ ht

gt

(

1− ε

9n+ 3

)

≤ W 2
u

W 1
uSu

≤ ht

gt

(

1+ ε

9n+ 3

)

≤
(

1+ nε

n+ 1

)
1

1− ε/(9n+ 3)

(

1+ ε

9n+ 3

)

< 1+ ε,

where gt is an abbreviation for gt (ε/(9n+ 3)). Similarly, on A−n ,

1+ ε >
1+ ε/(9n+ 3)

1− ε/(9n+ 3)
≥ ht

gt

(

1+ ε

9n+ 3

)

≥ W 2
u

W 1
uSu

≥ ht

gt

(

1− ε

9n+ 3

)

≥
(

1− nε

n+ 1

)
1

1+ ε/(9n+ 3)

(

1− ε

9n+ 3

)

> 1− ε,

hence (Wu)t≤u≤T ∈M T
t (intG∗). �
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On the Linear and Nonlinear Generalized
Bayesian Disorder Problem (Discrete Time Case)

Albert N. Shiryaev and Pavel Y. Zryumov

Abstract This paper considers the generalized Bayesian disorder problem in the
discrete time case with two types of the penalty function—the linear and the non-
linear ones. The main results for these cases are given in Theorems 1 and 2, respec-
tively.

Keywords Disorder problem · Optimal stopping problem

Mathematics Subject Classification (2000) Primary 60G40 · Secondary 60J50 ·
60J05 · 62C99

1 Linear Penalty Case

1. Let θ be a parameter taking values in the set {0,1, . . . ,∞}. Suppose that on
the probability space (�,F ,P) we consider the sequence of independent random
variables X = (X0,X1, . . . ,Xn, . . .). For given θ we suppose that random variable
Xn with n < θ has the distribution F∞(x) and for n≥ θ the distribution function is
F0(x). Their density (with respect to the distribution (F0 + F∞)/2) will be denoted
by f∞(x) and f0(x), x ∈ R. For given θ let Pθ = Law(X | θ,P) be the law of X,
and let Fn = σ(X0,X1, . . . ,Xn). For simplicity of considerations we assume that
dF0 � dF∞.

Denote by MT the class of finite stopping times (with respect to (Fn)n≥0) such
that E∞τ ≥ T where T > 0.

The generalized Bayesian problem (with a linear penalty function) consists in
finding stopping time τ ∗T , if it exists, such that

∞∑

θ=0

Eθ (τ
∗
T − θ)+ = inf

τ∈MT

∞∑

θ=0

Eθ (τ − θ)+. (1)
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The similar problem for the case of Brownian motion was formulated and inves-
tigated in [1, 3, 4]. It turns out that the methods of these papers (especially of [1, 4])
permit to describe the structure of the optimal stopping time for the generalized
Bayesian problem in case of discrete time too.

2. The following theorem plays here the key role.

Theorem 1 For any finite stopping time τ from MT

∞∑

θ=0

Eθ (τ − θ)+ = E∞
τ−1∑

n=0

ψn, (2)

where the Markov sequence ψ = (ψn)n≥0 satisfies the recurrent equations

ψn = (1+ψn−1)
f0(Xn)

f∞(Xn)
, ψ−1 = 0. (3)

Proof It is evident that

(τ − θ)+ =
∞∑

k=1

I(τ − θ ≥ k)=
∞∑

k=θ+1

I(k ≤ τ).

So,

Eθ (τ − θ)+ =
∞∑

k=θ+1

Eθ I(k ≤ τ). (4)

Since k− 1≥ θ and {k ≤ τ } ∈Fk−1 we find

Eθ I(k ≤ τ)= Ek

d(Pθ |Fk−1)

d(Pk|Fk−1)
I(k ≤ τ)= E∞

d(Pθ |Fk−1)

d(Pk|Fk−1)
I(k ≤ τ), (5)

where Pθ |Fk−1 and Pk|Fk−1 are restrictions of the measures Pθ and Pk onto the
σ -algebra Fk−1.

Introduce the notation

Ln = d(P0|Fn)

d(P∞|Fn)
, n≥ 0, L−1 = 1.

Then

d(Pθ |Fk−1)

d(Pk|Fk−1)
= d(Pθ |Fk−1)

d(P∞|Fk−1)
=

d(Pθ |Fk−1)

d(P0|Fk−1)

d(P∞|Fk−1)

d(P0|Fk−1)

= Lk−1
d(P0|Fk−1)

d(Pθ |Fk−1)

= Lk−1
d(P0|Fθ−1)

d(P∞|Fθ−1)

= Lk−1

Lθ−1
, (6)
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where we used for k − 1≥ θ the property

d(P0|Fk−1)

d(Pθ |Fk−1)
= f0(X0) · · ·f0(Xθ−1) · f0(Xθ ) · · ·f0(Xk−1)

f∞(X0) · · ·f∞(Xθ−1) · f0(Xθ ) · · ·f0(Xk−1)

= d(P0|Fθ−1)

d(P∞|Fθ−1)
.

From (4)–(6) we deduce

∞∑

θ=0

Eθ (τ − θ)+ = E∞
∞∑

θ=0

[ ∞∑

n=θ+1

I(n≤ τ)
Ln−1

Lθ−1

]

= E∞
∞∑

θ=0

τ∑

n=θ+1

Ln−1

Lθ−1
= E∞

τ∑

n=1

(
n−1∑

θ=0

Ln−1

Lθ−1

)

(7)

which implies that (2) holds for

ψn =
n∑

θ=0

Ln

Lθ−1
, ψ−1 = 0. (8)

The recurrent equations (3) follow immediately from (8):

ψn = Ln

Ln−1

(

1+
n−1∑

θ=0

Ln−1

Lθ−1

)

= (1+ψn−1)
f0(Xn)

f∞(Xn)
.

�

3.

Remark 1 Statistical procedures based on the process ψ = (ψn)n≥0 are well known
in the statistical literature as “Shiryaev-Roberts procedures”.

Remark 2 From Theorem 1 it follows that for solving the conditionally Bayesian
problem (1) in the class MT we need to solve the following conditionally optimal
stopping problem: to find a stopping time τ ∗T ∈MT such that

E∞
τ∗T−1∑

n=0

ψn = inf
τ∈MT

E∞
τ−1∑

n=0

ψn. (9)

The standard method of solution of such problems is based on ideas of the La-
grange multipliers: for any C > 0, to find a stopping time τ̃C such that

E∞
τ̃C−1∑

n=0

(ψn −C)= inf
τ

E∞
τ−1∑

n=0

(ψn −C) (10)
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where imfimum is taken over all finite stopping times τ .
If there exist C = C(T ) such that E∞τ̃C(T ) = T , then this stopping time is opti-

mal in the class MT and so we may take τ ∗T = τ̃C(T ).

Remark 3 The “classical” Bayesian disorder problem consists (see [3]) in finding
stopping time τ ∗T ∈MT , if it exists, such that

P(τ ∗T ≤ θ)+ cE(τ ∗T − θ)+ = inf
τ∈MT

(
P(τ ≤ θ)+ cE(τ − θ)+

)
,

where θ has a geometric prior distribution with parameter p and c > 0. The optimal
τ ∗T for this problem was given in [3].

It turns out that when p→ 0 this Bayesian problem “converges” to the general-
ized Bayesian problem. This fact together with the result similar to the statement of
Theorem 1 were also obtained in [2].

2 Nonlinear Penalty Case

1. Instead of the “linear case” (1) now we consider the following nonlinear prob-
lem with “nonlinear penalty function” G=G(n),n≥ 0: to find a stopping time τ ∗T
in the class MT , T > 0, such that

∞∑

θ=0

EθG((τ
∗
T − θ)+)= inf

τ∈MT

∞∑

θ=0

EθG((τ − θ)+). (11)

In the linear case G(n) = n,n ≥ 0, Theorem 1 claims that in problem (1) there
exists one sufficient statistics, namely ψ = (ψn)n≥0, which is a Markov sequence
(with respect to P∞). Now we want to find under what conditions on function
G=G(n), n≥ 0, there exist a finite number of statistics which form a multidimen-
sional Markov system of sufficient statistics for solving the corresponding stopping
time problem.

2. Suppose that G=G(n),n≥ 0, is a nondecreasing function with G(0)= 0 and

G(n)=
n∑

k=1

g(k), where g(k)≥ 0 for k > 0.

If τ ≥ θ then

G(τ − θ) =
τ−θ∑

k=1

g(k)=
∞∑

k=1

I(1≤ k ≤ τ − θ)g(k)

=
∞∑

n=θ+1

I(n≤ τ)g(n− θ).
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Thus,

EθG((τ − θ)+) = Eθ I(τ ≥ θ)G(τ − θ)

= Eθ I(τ ≥ θ)

∞∑

n=θ+1

I(n≤ τ)g(n− θ)

= Eθ

∞∑

n=θ+1

I(n≤ τ)g(n− θ)=
∞∑

n=θ+1

g(n− θ)Eθ I(n≤ τ). (12)

Since {n≤ τ } ∈Fn−1, we deduce, using (6), that for n− 1≥ θ

Eθ I(n≤ τ)= En

dPθ
dPn

I(n≤ τ)= En

d(Pθ |Fn−1)

d(Pn|Fn−1)
I(n≤ τ)

= E∞
d(Pθ |Fn−1)

d(P∞|Fn−1)
I(n≤ τ)= E∞

Ln−1

Lθ−1
I(n≤ τ).

Substituting this into (12) implies that

EθG((τ − θ)+)=
∞∑

n=θ+1

g(n− θ)E∞
Ln−1

Lθ−1
I(n≤ τ).

Thus

∞∑

θ=0

EθG((τ − θ)+) =
∞∑

θ=0

[ ∞∑

n=θ+1

g(n− θ)E∞
Ln−1

Lθ−1
I(n≤ τ)

]

= E∞
τ∑

n=1

[
n−1∑

θ=0

g(n− θ)
Ln−1

Lθ−1

]

= E∞
τ∑

n=1

�n−1(g)= E∞
τ−1∑

n=0

�n(g) (13)

where

�n(g)=
n∑

θ=0

g(n+ 1− θ)
Ln

Lθ−1
.

From (13) we find the following representation:

inf
τ∈MT

∞∑

θ=0

Eθ (τ − θ)+ = inf
τ∈MT

E∞

[
τ−1∑

n=0

�n(g)

]

. (14)
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3. To get for the problem (11) a finite number of Markovian sufficient statistics let
us assume that for t ≥ 0

g(t)=
M∑

m=0

K∑

k=0

cmke
λmt tk, (15)

where λ0 = 0.
Consider first the case K = 0:

g(t)=
M∑

m=0

cm0e
λmt . (16)

Under this assumption

�n(g)=
n∑

θ=0

M∑

m=0

cm0e
λm(n+1−θ) Ln

Lθ−1

= c00

n∑

θ=0

Ln

Lθ−1
+

M∑

m=1

n∑

θ=0

cm0e
λm(n+1−θ) Ln

Lθ−1
. (17)

Put

ψn =
n∑

θ=0

Ln

Lθ−1
, ψ−1 = 0 (18)

and

ψ(m,0)
n =

n∑

θ=0

eλm(n+1−θ) Ln

Lθ−1
=

n∑

θ=0

L
(m)
n

L
(m)
θ−1

, (19)

where L(m)
n = eλmnLn.

Then

ψ(m,0)
n =

n∑

θ=0

L
(m)
n

L
(m)
θ−1

= L
(m)
n

L
(m)
n−1

+
n−1∑

θ=0

L
(m)
n

L
(m)
θ−1

= eλm
Ln

Ln−1
+ L

(m)
n

L
(m)
n−1

n−1∑

θ=0

L
(m)
n−1

L
(m)
θ−1

= eλm
f0(Xn)

f∞(Xn)
(1+ψ

(m,0)
n−1 ).

So, we have the following system of equations for ψn and (ψ
(1,0)
n , . . . ,ψ

(M,0)
n ):

⎧
⎨

⎩

ψn = f0(Xn)
f∞(Xn)

(1+ψn−1), ψ−1 = 0,

ψ
(m,0)
n = eλm

f0(Xn)
f∞(Xn)

(1+ψ
(m,0)
n−1 ), ψ

(m,0)
−1 = 0.

(20)
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It is interesting to note that (with respect to the measure P∞) all sequences
ψ = (ψn)n≥0, ψ(m,0) = (ψ

(m,0)
n )n≥0 are Markovian and by (17)

�n(g)= c00ψn +
M∑

m=1

cm0ψ
(m,0)
n , (21)

i.e. in the case (16) �n(g) is a sum of the Markovian sequences from the set
(ψ,ψ(1,0), . . . ,ψ(M,0)).

4. Now assume that M = 0. In this case

g(t)=
K∑

k=0

c0kt
k = c00 +

K∑

k=1

c0kt
k. (22)

Denote for 1≤ k ≤K

ψ(0,k)
n =

n∑

θ=0

(n+ 1− θ)k
Ln

Lθ−1
. (23)

Then

ψ(0,k)
n =

n∑

θ=0

k∑

i=0

Ci
k(n− θ)i

Ln

Lθ−1

=
n∑

θ=0

Ln

Lθ−1
+

k∑

i=1

n∑

θ=0

Ci
k(n− θ)i

Ln

Lθ−1

=ψn +
k∑

i=1

Ln

Ln−1

n−1∑

θ=0

Ci
k(n− θ)i

Ln−1

Lθ−1

=ψn + f0(Xn)

f∞(Xn)

k∑

i=1

Ci
kψ

(0,i)
n−1

= f0(Xn)

f∞(Xn)

(
k∑

i=0

Ci
kψ

(0,i)
n−1 + 1

)

, (24)

where ψ(0,0)
n−1 =ψn−1.

So, for the case (22) the family of statistics (ψn,ψ
(0,1)
n , . . . ,ψ

(0,K)
n )n≥0 is

Markovian satisfying to the following system:
⎧
⎨

⎩

ψn = f0(Xn)
f∞(Xn)

(1+ψn−1), ψ−1 = 0,

ψ
(0,k)
n = f0(Xn)

f∞(Xn)
(
∑k

i=0 C
i
kψ

(0,i)
n−1 + 1), ψ

(0,k)
−1 = 0, k = 1, . . . ,K.

(25)
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5. Consider finally the general case (15).
Denote for 1≤m≤M , 1≤ k ≤K

ψ(m,k)
n =

n∑

θ=0

eλm(n+1−θ)(n+ 1− θ)k
Ln

Lθ−1
=

n∑

θ=0

(n+ 1− θ)k
L
(m)
n

L
(m)
θ−1

(26)

where L(m)
n = eλmnLn. Then

ψ(m,k)
n =

n∑

θ=0

k∑

i=0

Ci
k(n− θ)i

L
(m)
n

L
(m)
θ−1

=
k∑

i=1

n∑

θ=0

Ci
k(n− θ)i

L
(m)
n

L
(m)
θ−1

+
n∑

θ=0

L
(m)
n

L
(m)
θ−1

=
k∑

i=1

n−1∑

θ=0

Ci
k(n− θ)i

L
(m)
n

L
(m)
θ−1

+ψ(m,0)
n

=
k∑

i=1

Ci
k

L
(m)
n

L
(m)
n−1

n−1∑

θ=0

(n− θ)i
L
(m)
n−1

L
(m)
θ−1

+ψ(m,0)
n

= eλm
f0(Xn)

f∞(Xn)

k∑

i=1

Ci
kψ

(m,i)
n−1 +ψ(m,0)

n . (27)

Together with (20) the formula (27) gives recurrent equations:

ψ(m,k)
n = eλm

f0(Xn)

f∞(Xn)

[
k∑

i=0

Ci
kψ

(m,i)
n−1 + 1

]

, ψ
(m,k)
−1 = 0. (28)

Hence, we get the following extension of Theorem 1 for nonlinear penalty func-
tions.

Theorem 2 For the case of independent observations and the nonlinear penalty
function G(n)=∑n

k=1 g(k) with g given by (15) the system

(ψn,ψ
(m,k)
n )n≥0, 0≤m≤M, 0≤ k ≤K (29)

is a Markovian family with recurrent equations (20), (25), (28). This family forms
a system of sufficient statistics in the sense that they define �n(g):

�n(g)=
M∑

m=0

K∑

k=0

cmkψ
(m,k)
n . (30)

Example 1 If G(n)= n,n ≥ 0, i.e. g ≡ 1, then there exists only one sufficient sta-
tistics ψ = (ψn)n≥0.
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Example 2 If G(n)= n2 + n, i.e. g(n)= 2n, then

�n(g)=�n−1(g)
f0(Xn)

f∞(Xn)
+ 2ψn. (31)

Remark 4 It is important to note that the recurrent equations of Theorems 1 and 2
can be directly extended on more general cases of nonindependent random vari-
ables: in all recurrent equations the ratios f0(Xn)/f∞(Xn) should be changed to
Ln/Ln−1. (See more details about “θ -models” in [5].)
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Long Time Growth Optimal Portfolio
with Transaction Costs

Lukasz Stettner

Abstract Discrete and continuous growth optimal portfolio optimization over long
time horizon is studied. Proportional transaction costs consisting of fixed propor-
tional plus proportional to the volume of transaction are considered. An obligatory
diversification is imposed, which allows the process of portions of capital invested in
assets to be ergodic. Existence of solutions to suitable Bellman equations is proved
and the form of optimal strategies is shown. For continuous time model an additional
fixed deterministic delay in transactions is assumed.

Keywords Growth of portfolio · Transaction costs ·Markov process · Bellman
equation · Long term portfolio selection

Mathematics Subject Classification (2000) 91B28 · 93E20

1 Introduction

Assume we are given a market with m risky assets. Denote by Si(t) the price of the
i-th asset at time t . Let

Si(t + s)

Si(t)
= ζi(t, s, z(·), ξ(·)), (1)

where (z(t)) ∈ D forms a right continuous Markov process on a complete sepa-
rable metric space D with transition operator Pt (z, dy) describing the evolution
of economic factors, (ξ(t)) stands for a Markov process with independent incre-
ments and the processes (z(t)) and (ξ(t)) are independent. We furthermore assume
that the function ζ(t, s, z(·), ξ(·)) is positive and right continuous in s and t , de-
pends on the trajectory of z(u) and on the increments ξ(u)− ξ(t) for u ∈ [t, t + s],
ζ(t,0, z(·), ξ(·))= 1 and ζ is a multiplicative functional i.e. ζi(t, s, z(·), ξ(·))(ω)=
ζi(s, z(·), ξ(·))(θtω) with θt standing for the Markov shift operator (see [4]) of the
pair (z(t), ξ(t)) and suitably defined ζi(s, z(·), ξ(·)) and

ζi(t + s, z(·), ξ(·))(ω)= ζi(t, z(·), ξ(·))(ω)ζi(s, z(·), ξ(·))(θtω).
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As typical examples of such multiplicative functional ζ one can consider an expo-
nent of sum of Riemann and stochastic integrals with respect to Levy or Brownian
motion noise (see e.g. [3, 9] or [11]).

Denote by X−(t) the wealth process at time t before possible transactions and by
X(t) the wealth process after possible transactions. Let π−i (t) be the portion of the
wealth process invested in the i-th asset at time t before possible transactions and
πi(t) the portion of the wealth located in the i-th asset after transactions at time t .
We shall say that π(t) = (π1(t), . . . , πm(t))

T (where T stands for the transpose)
and similarly π−(t) form portfolios at time t after or before possible transactions.

Denote by S0 the polyhedral set {(ν1, . . . , νm)
T : νi ≥ 0,

∑m
i=1 νi ≤ 1} and by S

the simplex {(ν1, . . . , νm)
T ∈ S0 :∑m

i=1 νi = 1}.
For given π ∈ S0 let g(π)= (g1(π), . . . , gm(π))

T , where gi(π)= πi∑m
j=1 πj

. Af-

ter change of portfolio from π to π ′ the wealth X is diminished by c(π̂ − π)X,
where π̂ is a certain element of S0 (we shall see in Lemma 1 below that it is defined
in a unique way) such that π ′ = g(π̂) and for ν ∈ S0 − S0 (the algebraic difference
of the sets S0)

c(ν)= κ +
m∑

i=1

c1i (νi)
+ +

m∑

i=1

c2i (νi)
− (2)

with 0 < c1i , c2i < 1 − κ and 1 > κ ≥ 0 and where (νi)
+ = max{0, νi} while

(νi)
− = max{−νi,0}. Given portfolio π and wealth X we can change portfolio to

π ′ if there exists π̂ such that

X(c(π̂ − π))=X−X

m∑

i=1

π̂i (3)

and g(π̂) = π ′. Consequently given π we can choose portfolio π ′ if and only if
there is π̂ ∈ S0 such that

m∑

i=1

π̂i + c(π̂ − π)= 1 (4)

where

π ′ = g(π̂). (5)

Given π,π ′ ∈ S define the function

Fπ,π ′(δ) := δ + c(δπ ′ − π). (6)

We have

Lemma 1 There is a unique continuous function e : S × S $→ [0,1− κ] such that
for π,π ′ ∈ S we have

Fπ,π ′(e(π,π ′))= 1. (7)
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Furthermore e is bounded away from 0 and provided that κ > 0 we have

e(π,π ′)e(π ′,π ′′) < e(π,π ′′). (8)

Proof The inequality (8) only has to be proved since the remaining part follows
directly from Lemma 1 of [19]. Notice that by the definition of e we have

e(π,π ′)+ c(e(π,π ′)π ′ − π)= 1

and

e(π ′,π ′′)+ c(e(π ′,π ′′)π ′′ − π ′)= 1.

Therefore using homogeneity of c

e(π,π ′)e(π ′,π ′′)+ (e(π ′,π ′′)− 1)κ + c(e(π,π ′)e(π ′,π ′′)π ′′ − e(π,π ′)π ′)

= e(π,π ′)= 1− c(e(π,π ′)π ′ − π). (9)

Since

c(e(π,π ′)e(π ′,π ′′)π ′′ − e(π,π ′)π ′)+ c(e(π,π ′)π ′ − π)

≥ κ + c(e(π,π ′)e(π ′,π ′′)π ′′ − π)

by (9) we obtain that Fπ,π ′′(e(π,π ′)e(π ′,π ′′)) < 1 from which (8) immediately
follows. �

Consequently, given an initial wealth process X−(t) and portfolio π−(t) we can
choose any post transaction portfolio π(t) ∈ S. Then, as a result of transaction costs
the wealth process is diminished to X(t), where following (3) and (4)

X(t)= e(π−(t),π(t))X−(t). (10)

Furthermore provided that there are no transactions in the time interval [t, t + s) we
have

X−(t + s) =
m∑

i=1

πi(t)X(t)

Si(t)
Si(t + s)

= X(t)

m∑

i=1

πi(t)ζi(t, s, z(·), ξ(·))

:= X(t)π(t)T ζ(t, s, z(·), ξ(·)) (11)

and

π−(t + s)= g(π(t) * ζ(t, s, z(·), ξ(·)), (12)

with (π(t) * ζ(t, s, z(·), ξ(·)))i := πi(t)ζi(t, s, z(·), ξ(·)).
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In the paper we restrict the class of admissible portfolio strategies to those which
do not allow multiple transactions at the same moment (due to (8) it is not optimal to
make more than one transaction at the moment). We maximize the following growth
portfolio rate

J ((π(t))= lim inf
N→∞

1

N
E{lnX(N)}. (13)

For this purpose we are interested in the ergodic behaviour of the process
(π(t)). In general this is a typical transient process with absorbing states at the
vertices of the simplex S. To “improve” its ergodic properties we obligatorily di-
versify our portfolio. This means as soon as the process (π(t)) leaves the set
Sδ = {(ν1, ν2, . . . , νm) ∈ S : ∀i=1,...,mνi ≥ δ} with a fixed δ > 0 we make an obliga-
tory transaction changing portfolio to π ′ ∈ Sδ . In the continuous time case we shall
additionally assume that after each transaction the next one can appear only after
h > 0 units of time so that consecutive impulses are separated by a fixed determin-
istic value h > 0. Consequently we control process (π(t)) changing it in an impulse
way. Each admissible control can be characterized by a sequence V = (τn,π

′
n) con-

sisting of the stopping times τn and new chosen at time τn portfolios π ′n.
Since

X−(t)=X−(0)
∞∏

n=0

e(π−(n),π(n))π(τn)T ζ
(
τn, τn+1∧ t−τn∧ t, z(·), ξ(·)

)
, (14)

our cost functional is of the form

J (V ) = lim inf
N→∞

1

N
E

{

ln

(

X−(0)
∞∏

n=0

e(π−(n),π(n))

× π(τn)
T ζ

(
τn, τn+1 ∧N − τn ∧N,z(·), ξ(·))

)}

. (15)

Portfolio selection with transaction costs with discounted cost has been studied
in a number of papers starting from [12] followed in [11] and [9] and references
therein. Long term portfolio selection has been considered first in [10] was contin-
ued for growth optimal portfolio (GOP) in [2] and for lognormal asset prices in [1].
An adaptive approach to such problem with proportional transaction costs was con-
sidered in [8, 17] and [6]. Portfolio selection with proportional fixed proportional
costs plus proportional costs to the amount of transaction was considered first in
[13] and then in [7]. This paper generalizes [13] and [7] in this sense that a very
general model for asset prices is admitted. Two cases are solved separately: discrete
time model, when we change portfolio at discrete time moments and continuous
time model. In the case of a continuous time it is imposed additionally that after
each portfolio change next possible portfolio change is allowed after deterministic
h > 0 units of time. Growth optimal portfolio with fixed plus proportional transac-
tion cost was considered (in this paper we have proportional costs: to the wealth
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process transaction and to the volume of transaction) in [14] and [15] under strong
assumption concerning the asset prices growth. General result in this case seems to
be still lacking.

2 Discrete Time Case

In this section we study discrete time case and therefore assume that t = 0,1, . . .

Si(t + 1)

Si(t)
= ζi(z(t + 1), ξ(t + 1)) (16)

where (z(t)) is a Markov process on locally compact separable metric space D with
transition operator P(x, dy), and (ξ(t)) is a sequence of i.i.d. random variables,
independent of (z(t)) with common law η. We assume furthermore that (z(t)) is
uniformly ergodic in the sense (see [5]) that

sup
z,z′∈D

sup
A∈B(D)

(P (z,A)− P(z′,A)) := d < 1. (17)

Our purpose is to maximize the following cost functional (an analog of (15))

J (V ) = lim inf
N→∞

1

N
E

{
N−1∑

t=0

(
1π−(t)�=π(t) ln e(π−(t),π(t))

+ ln
(
π(t)T ζ(z(t + 1), ξ(t + 1))

))
}

(18)

over all impulse strategies V = (τn,π
′
n), where π(τn) = π ′n ∈ Sδ with fixed δ > 0.

We shall approximate the cost functional by discounted cost with β > 0

Jβ
π,z(V ) = Eπ,z

{ ∞∑

t=0

e−βt
(
1π−(t)�=π(t) ln e(π−(t),π(t))

+ ln
(
π(t)T ζ(z(t + 1), ξ(t + 1))

))
}

(19)

where and in the sequel by Eπ,z we denote conditional expectation given the process
(π(t), z(t)) starts with π(0)= π and z(0)= z. Let

wβ(π, z)= sup
V

J β(π, z). (20)

Assume that the mapping

(π, z) $→ r(π, z) :=Eπ,z{ln(πT ζ(z(1), ξ(1)))} (21)

is bounded continuous. We have
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Proposition 1 Assume that the transition operator of the pair (π(t), z(t)) is con-
tinuous in total variation norm on Sδ ×D, i.e. for π(n)→ π ∈ Sδ , zn→ z

sup
A

∣
∣Pπ(n),zn{(π(1), z(1)) ∈A} − Pπ,z{(π(1), z(1)) ∈A}

∣
∣→ 0 (22)

as n→∞ with supremum over all Borel subsets A of S ×D. Then the function wβ

is bounded and continuous on Sδ ×D and on (S \ Sδ)×D separately. Moreover
wβ is a solution to the following Bellman equation

wβ(π, z)=max
{
Mwβ(π, z),Eπ,z

{
ln(πT ζ(z(1), ξ(1)))+ e−βwβ(π(1), z(1))

}}

(23)
for π ∈ Sδ with Mw(π, z)= supπ ′∈Sδ {ln e(π,π ′)+w(π ′, z)} and

wβ(π, z)=Mwβ(π, z) (24)

whenever π /∈ Sδ .

Proof Iterating (23) and (24) for all n≥ 1 we obtain

wβ(π, z) = sup
τ
Eπ,z

{
τ∧σ∧n−1∑

t=0

e−βt ln(π(t)T ζ(z(t + 1), ξ(t + 1)))

+ χτ∧n<σ e−βτ∧nMwβ(π(τ ∧ n), z(τ ∧ n))∨wβ(π(τ ∧ n), z(τ ∧ n))

+ χσ≤τ∧nMwβ(π(σ ), z(σ ))

}

(25)

where σ = inf{n≥ 0 : π(n) /∈ Sδ} with supremum over all stopping times τ . Letting
n→∞, taking into account that β > 0, and then substituting the form of Mwβ we
finally obtain that the solution to (23) coincides with the value (20). Consequently
it remains to show the existence of a continuous bounded solution to (25). Let for
a bounded continuous functions q and w

Fβ
q w(π, z) := max

{
Mq(π, z),Eπ,z

{
ln(πT ζ(z(1), ξ(1)))

+ e−β
(
χπ(1)∈Sδw(π(1), z(1))+ χπ(1)/∈SδMq(π(1), z(1))

)}}
(26)

for π ∈ Sδ and F
β
q w(π, z)=Mq(π, z) for π /∈ Sδ .

Since |a ∨ b− a′ ∨ b′| ≤ |a − a′| ∨ |b− b′| we have that

|Fβ
q w1(π, z)− Fβ

q w2(π, z)| ≤ e−β‖w1 −w2‖,

where ‖ · ‖ stands for the supremum norm, and therefore Fβ
q is a contraction in the

class of bounded functions on S ×D. Moreover under (21) and (22) Fβ
q transforms

bounded functions into bounded functions continuous separately on Sδ ×D and on
(S \ Sδ)×D. For each bounded q there is a fixed point of Fβ

q . Consequently one
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can define a sequence of solutions w0(π, z) = F
β
q0(π, z), with q0 ≡ 0, w1(π, z) =

F
β
w0(π, z) and inductively wn(π, z)= F

β
wn−1(π, z). Notice furthermore that wn(π, z)

corresponds to the optimal value of the at most n+ 1 portfolio changes and stopped
after the last transaction. Since the optimal portfolio strategies do not allow more
than one transaction at the moment and β > 0 we finally have that wn converges
uniformly to wβ which is a solution to (23) and (24). �

Remark 1 The assumption (22) says that joint density of the pair (π(1), z(1)), pro-
vided it exists, has a version which is continuous pointwise with respect to the
(π(0), z(0)) with π(0) ∈ Sδ , which is equivalent by Scheffe theorem [18] to the L1

continuity of the transition densities. From Lemma 4 of [20] we have the following
form of the density dπ,z of the first m− 1 coordinates of g(π * ζ(z, ξ(1))):

dπ,z(x1, x2, . . . , xm−1)

=
∫ ∞

0
xm−1
m

1

π1 · · ·πm

× qz

(
1

π1
x1xm,

1

π2
x2xm, . . . ,

1

πm−1
xm−1xm,

1

πm

(

1−
m−1∑

i=1

xi

))

dxm (27)

where qz is the density of ζ(z, ξ(1)). If qz is continuous function of its coordinates
and the density of z(1) is also continuous with respect to the initial state z(0) then we
have the continuity of the density of the pair (π(1), z(1)) from which (22) follows.

Remark 2 Notice that the value function wβ maybe discontinuous at the boundary
of Sδ . It happens when at certain π ∈ Sδ such that a coordinate πk = δ and z ∈ D
we have

Mwβ(π, z) < Eπ,z

{
ln
(
πT ζ(z(1), ξ(1))

)+ e−βwβ(π(1), z(1))
}

i.e. when it is optimal at point (π, z) do not make transaction even though we are at
the boundary of Sδ .

Proposition 2 Under (17) the family of functions

{
wβ(π, z)− inf

π ′∈S,z′∈D
wβ(π ′, z′), β > 0

}

is bounded.

Proof Notice first that supπ∈S wβ(π, z) > supπ∈S Mwβ(π, z) since e is bounded
from above by 1 − κ and as soon as π /∈ Sδ we have to change portfolio to have
portfolio in Sδ . On the other hand Mwβ(π, z) ≥ lnα + supπ ′′∈Sδ w

β(π ′′, z), where
α is a lower bound for e. Therefore by (23) we have for z, z′ ∈D
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sup
π∈S

wβ(π, z)− inf
π ′∈S

wβ(π ′, z′)

≤ sup
π∈S

Eπ,z

{
ln
(
πT ζ(z(1), ξ(1))

)+ e−βwβ(π(1), z(1))
}

− inf
π ′∈S

max
{

lnα + sup
π ′′∈Sδ

wβ(π ′′, z′),Eπ ′,z′
{
ln
(
π ′T ζ(z(1), ξ(1))

)

+ e−βwβ(π(1), z(1))
}}

≤ ‖r‖sp + | lnα| + sup
π∈S

|Eπ,z{wβ(π(1), z(1))} −Eπ,z′ {wβ(π(1), z(1))}|

≤ ‖r‖sp + | lnα| + d‖wβ‖sp (28)

where in the last line we have used (17) and ‖f ‖sp = supy f (y)− infy′ f (y′). Con-
sequently

‖wβ‖sp ≤ ‖r‖sp + | lnα|
1− d

(29)

which completes the proof. �

Let

vβ(π, z)=wβ(π, z)− inf
π ′∈S,z′∈D

wβ(π ′, z′). (30)

Then by (23) we have

vβ(π, z) = max
{
Mvβ(π, z),Eπ,z

{
ln
(
πT ζ(z(1), ξ(1))

)

− (1− e−β) inf
π ′∈S,z′∈D

wβ(π ′, z′)+ e−βvβ(π(1), z(1))
}}
. (31)

We can now formulate the main result of this section

Theorem 1 Assume that the transition operator of the pair (π(t), z(t)) is contin-
uous in variation norm on Sδ × D. Then under (17) and (21) there is a bounded
function v continuous separately on Sδ×D and (S \Sδ)×D and a constant λ such
that

v(π, z)=max
{
Mv(π, z),Eπ,z

{
ln
(
πT ζ(z(1), ξ(1))

)− λ+ v(π(1), z(1))
}}

(32)

for π ∈ Sδ and

v(π, z)=Mv(π, z) (33)

whenever π /∈ Sδ . Moreover λ= infV J (V ) and the strategy V̂ = (τ̂n, π̂n), where

τ̂1 = inf{t ≥ 0 : v(π(t), z(t))=Mv(π(t), z(t))}
τ̂n+1 = τ̂n + τ̂1 ◦ θτ̂n

(34)
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for n= 0,1, . . . with θ standing for the Markov shift operator of the pair (π(t), z(t))
and

π̂n = π̂(π−(n), z(n)) (35)

where π̂ stands for the Borel selector in the operator M , is optimal i.e. J (V̂ )= λ.

Proof We claim that the family {vβ(π, z),β > 0} is bounded and equicontinuous
separately on Sδ × D and (S \ Sδ) × D. The boundedness follows directly from
Proposition 2. From (23) we obtain that

vβ(π, z)− vβ(π ′, z′)

≤max

{

sup
π ′′∈Sδ

[∣
∣
∣
∣ln

e(π,π ′′)
e(π ′,π ′′)

∣
∣
∣
∣

+ ∣
∣Eπ ′′,z

{
ln
(
π ′′T ζ(z(1), ξ(1))

)}−Eπ ′′,z′
{
ln
(
π ′′T ζ(z(1), ξ(1))

)}∣
∣

+ ∣
∣Eπ ′′,z

{
vβ(π(1), z(1))

}−Eπ ′′,z′
{
vβ(π(1), z(1))

}∣
∣
]

,

∣
∣Eπ,z

{
ln
(
πT ζ(z(1), ξ(1))

)}−Eπ ′,z′
{
ln
(
π ′T ζ(z(1), ξ(1))

)}∣
∣

+ ∣
∣Eπ,z

{
vβ(π(1), z(1))

}−Eπ ′,z′
{
vβ(π(1), z(1))

}∣
∣
}

. (36)

Equicontinuity of the family {vβ(π, z),β > 0} on Sδ × D now follows from the
continuity of e (Lemma 1), (21) and Proposition 2 together with (22). Using (24)
and Lemma 1 we obtain the equicontinuity of the family {vβ(π, z),β > 0} on
(S \ Sδ) × D. By (21) (1 − e−β) infπ ′∈S,z′∈D wβ(π ′, z′) is bounded uniformly in
β > 0. Therefore one can find a subsequence βn → 0 and a constant λ such that
limn→∞(1 − e−βn) infπ ′∈S,z′∈D wβn(π ′, z′) → λ. Since the family {vβ(π, z)} is
equicontinuous on Sδ ×D and on (S \ Sδ)×D and bounded then by Ascoli Arzela
theorem [16] there is a further subsequence nk of n, and a continuous bounded func-
tion v such that vβnk (π, z)→ v(π, z) uniformly on compact subsets from Sδ ×D

and (S \ Sδ)×D as k→∞. Letting βnk → 0 in (31) we obtain (32). Notice that
(33) follows directly from (24). The form of optimal strategies (34) and (35) can
be obtained in a standard way (see the proof of Theorem 1 in [19] and references
therein). �

3 Continuous Time Case

We consider now a continuous time case in the setting from Sect. 1. We control port-
folio process π(t) so as to maximize the cost functional J defined in (13) with the
following restrictions: after each transaction (portfolio change) we are not allowed
to make new transactions for fixed h > 0 units of time; when

π(t) ∈ S̃δ := {π ∈ S,∃k πk ≤ δ}
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and we are allowed to make transaction we immediately change portfolio to enter
the set Sδ′ with δ′ > δ, when

π(t) ∈ S0
δ := {π ∈ S,∀k πk > δ}

we are allowed to change portfolio but we have no such obligation—we make trans-
action when it is profitable for us taking into account our fixed plus proportional
transaction costs c defined in (2). Our portfolio strategy is impulse of the form
V = (τn,π

′
n) consisting of transactions at moments τn, where τn+1 ≥ h+ τn, with

portfolio π(τn)= π ′n after transaction at time τn.
Consider first the following discounted costs functional

Jβ
π,z(V ) = Eπ,z

{ ∞∑

n=1

e−βτn
(
ln e(π(τ−n ),π(τn))

+ ln
(
π(τn−1)

T ζ(τn−1, τn − τn−1, z(·), ξ(·))
))
}

. (37)

Let wβ(π, z) = supV J
β
π,z(V ). Assume that for π(n) → π /∈ FrS, where FrS :=

{π ∈ S : ∃k,πk = 0} and zn→ z

sup
A

∣
∣Pπ(n),zn{(π(h), z(h)) ∈A} − Pπ,z{(π(h), z(h)) ∈A}

∣
∣→ 0 (38)

as n→∞ with supremum over all Borel subsets A of S ×D and

DFrS = inf{t ≥ 0 : π(t) ∈ FrS} =∞ (39)

P a.e. for any portions of wealth process invested in assets π(t) starting from
π(0) ∈ S \ FrS, provided that there are no transactions. Assume furthermore that
the mapping

(π, z) $→Eπ,z{ln(πT (h)ζ(0, h, z(·), ξ(·)))} (40)

is bounded continuous and for any bounded function, continuous on (S \FrS)×D

the function w

Fβw(π, z) = sup
τ
Eπ,z

{
e−βτ∧σ

(
ln
(
πT (τ ∧ σ)ζ(0, τ ∧ σ, z(·), ξ(·)))

+Mhw(π(τ ∧ σ), z(τ ∧ σ))
)}

(41)

where σ = inf{t ≥ 0 : π(t) ∈ S̃δ} and

Mhw
β(π, z) = sup

π ′∈Sδ′

{
ln e(π,π ′)+ e−βhEπ ′,z

{
ln
(
πT (h)ζ(0, h, z(·), ξ(·)))

+wβ(π(h), z(h))
}}

(42)

is bounded and continuous on (S \ FrS)×D. We have
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Proposition 3 Under (38)–(41) the function wβ is a solution to the following Bell-
man equation

wβ(π, z) = sup
τ
Eπ,z

{
e−βτ∧σ

(
ln
(
πT (τ ∧ σ)ζ(0, τ ∧ σ, z(·), ξ(·)))

+Mhw
β(π(τ ∧ σ), z(τ ∧ σ))

)}
(43)

and wβ is continuous on (S \ FrS)×D.

Proof Notice first that by (38) and (40) the mapping Mh transforms bounded func-
tions into continuous on (S \ FrS)×D. Moreover since h > 0, Fβ defined in (41)
is a contraction in the class of bounded functions and the functions w0(π, z) =
Fβ0(π, z), wn+1(π, z) = Fβwn(π, z) are value functions for the cost functional
(37) stopped after first, n plus one transactions. By contractivity of Fβ functions
wn converge uniformly to wβ . Consequently there is a solution wβ to (43). If wβ is
a solution to (43) that is continuous on (S \FrS)×D then by iteration (taking into
account (39)) we obtain that it coincides with the value function corresponding to
the cost functional (37). �

Remark 3 In the case of continuous time model we are thinking about ζ of the form
of exponent with Brownian or more general Levy noise ξ(·). Key assumption is (41)
which is satisfied for particular models of lognormal asset prices, generally speak-
ing nonsingular diffusion models or regular Levy models of asset prices (see [3]
for more details). Notice that we obligatorily diversify portfolio when the process
π(t) enters the closed set S̃δ . After transaction our portfolio is in Sδ′ ⊂ Sδ . The as-
sumption (39) is not strong. Under quite general assumptions (law of large numbers
holds) there is qk such that limt→∞ 1

t
ln ζk(0, t, z(·), ξ(·)) = qk for k = 1, . . . ,m.

Then whenever π(0) ∈ S \FrS we have that π(t)→ π(∞) where π(∞) is a Dirac
measure concentrated on the vertex (or vertices) of S corresponding to maximal qk .
Since the coordinates of π(0) and ζ are strictly positive π(t) reaches FrS in the
limit only.

In the remaining part of this section we follow the arguments used in discrete
time case. We assume additionally that

sup
z,z′∈D

sup
A∈B(D)

(Ph(z,A)− Ph(z
′,A)) := d < 1 (44)

and

sup
τ

sup
π∈S,z∈D

Eπ,z

{| ln(πT (τ ∧ σ)ζ(0, τ ∧ σ, z(·), ξ(·)))|} :=K <∞. (45)

We have

Proposition 4 Under (44) and (45) the family of functions
{
wβ(π, z)− inf

π ′∈S,z′∈D
wβ(π ′, z′), β > 0

}

is bounded.
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Proof By (42) and (45) we have that

sup
π,z

wβ(π, z)− inf
π ′,z′

wβ(π ′, z′)≤ 2K+ sup
π,z

Mhw
β(π, z)− inf

π ′,z′
Mhw

β(π ′, z′). (46)

On the other hand since the difference of supremums is majorized by supremum of
the difference, using also (44) we have

sup
π,z

Mhw
β(π, z)− inf

π ′,z′
Mhw

β(π ′, z′)

≤ 2L+ sup
π∈Sδ′

(
sup
z∈D

Eπ,z{wβ(π(h), z(h))} − inf
z′∈D

Eπ,z′ {wβ(π(h), z(h))}
)

≤ 2L+ d‖wβ‖sp (47)

with L standing for the bound of |Eπ,z{ln(πT (h)ζ(0, h, z(·), ξ(·)))}|. Therefore by
(46) and (47) we obtain

‖wβ‖sp ≤ 2(K +L)

1− d
(48)

which completes the proof. �

Following (30) let now vβ(π, z) = wβ(π, z) − infπ ′∈S,z′∈D wβ(π ′, z′). By (42)
we then have

vβ(π, z) = sup
τ
Eπ,z

{
−(1− e−β(τ∧σ)) inf

π ′∈S,z′∈D
wβ(π ′, z′)

+ e−βτ∧σ
(
ln
(
πT (τ ∧ σ)ζ(0, τ ∧ σ, z(·), ξ(·)))

+Mhv
β(π(τ ∧ σ), z(τ ∧ σ))

)}
. (49)

We shall need the following two technical assumptions: the family

{
Fβw(π, z);β > 0, sup

π∈S,z∈D
|w(π, z)| ≤K

}
(50)

is equicontinuous for (π, z) ∈ S \ FrS given that

{
Mhw(π, z), sup

π∈S,z∈D
|w(π, z)| ≤K

}

is equicontinuous for (π, z) ∈ S \ FrS, and furthermore

lim
β→0

Eπ,z

{
1

β
(1− e−βσ )

}

=Eπ,z{σ }<∞. (51)

The main result of this section can be formulated as follows
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Theorem 2 Under (38)–(41) and (44), (45), (50) and (51) there is a bounded func-
tion v continuous on (S \ FrS)×D and on FrS ×D and a constant λ such

v(π, z) = sup
τ
Eπ,z

{−λ(τ ∧ σ)+ (
ln
(
πT (τ ∧ σ)ζ(0, τ ∧ σ, z(·), ξ(·)))

+Mhv(π(τ ∧ σ), z(τ ∧ σ))
)}
. (52)

Moreover λ= infV J (V ) and the strategy V̂ = (τ̂n, π̂n), where

τ̂1 = inf{t ≥ 0 : v(π(t), z(t))=Mhv(π(t), z(t))},
τ̂n+1 = τ̂n + τ̂1 ◦ θτ̂n

(53)

for n= 0,1, . . . with θ standing for the Markov shift operator of the pair (π(t), z(t))
and

π̂n = π̂(π−(n), z(n)) (54)

where π̂ stands for the Borel selector in the operator Mh, is optimal i.e. J (V̂ )= λ.

Proof By (38) and (48) we see that the family {Mhv
β(π, z);β > 0} is equicontinu-

ous for (π, z) ∈ (S \FrS)×D. Therefore under (50) the family {vβ;β > 0} is also
equicontinuous for (π, z) ∈ (S \FrS)×D. Iterating (42) and using (45) we see that
β infπ ′∈S,z′∈D wβ(π ′, z′) is bounded. Therefore there is a subsequence βn→ 0 and a
constant λ such that βn infπ ′∈S,z′∈D wβn(π ′, z′)→ λ as n→∞. Choosing a further
subsequence we can find a function v such that subsequence of vβn(π, z) converges
uniformly on compact subsets of (S \ FrS)×D to v and by equicontinuity of vβ

on FrS ×D (follows directly from the definition of Mh and (44)) the convergence
is also uniform on compacts from FrS ×D. Consequently using (51) we can let
βn→ 0 in (49) to obtain finally (52). The remaining part of the proof follows as in
discrete time case. �

Remark 4 There are a number of technical assumptions since we wanted to treat
a very general scheme. In the case of nondegenerate diffusion asset prices model
or when large deviation estimates for log ζ hold (see [15]) we have finite moments
of σ for any initial state (π, z). Consequently (51) holds and in the case of con-
tinuous trajectories of the asset prices (together with continuous dependence of the
trajectories on initial conditions) also (41) and (50) are satisfied.
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On the Approximation of Geometric Fractional
Brownian Motion

Esko Valkeila

Abstract We give an approximation to geometric fractional Brownian motion. The
approximation is a simple corollary to a ‘teletraffic’ functional central limit theorem
by Gaigalas and Kaj in (Bernoulli 9:671–703, 2003). We analyze the central limit
theorem of Gaigalas and Kaj from the point of view of semimartingale limit theo-
rems to have a better understanding of the arbitrage in the limit model. With this
approximation we associate the corresponding pricing model sequence, which has
the no-arbitrage property and which is complete.

Keywords Arbitrage · Geometric fractional Brownian motion · Approximation

Mathematics Subject Classification (2000) 60F17 · 60H99 · 91B28

1 Introduction

1.1 Geometric Fractional Brownian Motion

In the classical Black-Scholes pricing model the stock price S is modeled by a geo-

metric Brownian motion: St = eWt− 1
2 t ; here W is the standard Brownian motion.

This model implies that the one dimensional distributions of the stock prices are
log-normal, and the log-returns of the stocks are independent normal random vari-
ables. But empirical studies show that log-returns often have so-called long-range
dependency property (see [18, Chap. IV]). One way to model this observed long-
range dependency is to replace the driving standard Brownian motion by fractional
Brownian motion. Then one obtains fractional Black-Scholes model, or geometric
fractional Brownian motion, given by the price process St = eB

H
t ; here BH is a frac-

tional Brownian motion.
Fractional Brownian motion (fBm) BH is a continuous centered Gaussian

process. Here H ∈ (0,1) is the self-similarity index and the covariance of the
process BH is given by

E(BH
s BH

t )= 1

2
(t2H + s2H − |t − s|2H ).
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A Lévy type of characterization theorem for fBm was recently proved in [15]. The
parameter H allows to include the standard Brownian motion W to the fBm family:

the process B
1
2 is a standard Brownian motion. The standard Brownian motion is a

martingale, but it is well-known that when the parameter H �= 1
2 , then fBm process

BH is not a semi-martingale.
The parameter H allows us to model dependency in the data, since for H ∈ ( 1

2 ,1)
the increments of the process BH are positively correlated. However, the fact that
the process BH is not a semimartingale, makes it difficult to use fBm as the source
of randomness in Stochastic Finance at least theoretically: the reason is the fact that
in the pricing models based on geometric fBm one can also give explicit arbitrage
strategies, see [18, p. 659].

But the possibility to model dependency in the data is an attractive feature of the
fBm process BH , also for the market models in Stochastic Finance. In spite of the
theoretical difficulties related to the arbitrage, there have been several proposals to
use it as a model in stochastic finance. One of them is based on the fact that the
arbitrage possibilities depend how one defines continuous trading, i.e. stochastic in-
tegrals. One can show that the arbitrage possibilities in the fractional Black-Scholes
model disappear, if one uses Skorohod integrals to model trading strategies (Hu and
Øksendal [9], Elliot and van der Hoek [5]). But a new problem appears: the con-
tinuous trading based on Skorohod integrals is difficult to interpret economically
(see Sottinen and Valkeila [20], Björk and Hult [2] for more information on this
point). On the other hand, if one goes to more realistic market models, and for ex-
ample includes transaction costs in the market models, then the ideal continuous
time trading strategies turn out to be of bounded variation. In this case one can show
that geometric fBm models can be economically meaningful (Guasoni [7], Guasoni
et al. [8]). It is also well known, that in the case where one cannot use continuous
time trading, the pricing models with geometric fBm are to some extent arbitrage
free (see [1, 3, 11]).

1.2 Motivation

The purpose of this note is to study the approximation of geometric fBm SHt = eB
H
t .

The approximation is understood in the sense of weak convergence, more precisely
the distributions of the approximating prelimit sequence converge weakly to the
distribution of the geometric fBm in the Skorohod space D.

This note has two different motivations. First comes from the fact that there are
at least two ‘financially’ motivated approximations to geometric fBm. The approx-
imation given by Sottinen [19] is based on complicated ‘fractional’ binomial tree,
and as a binary tree this approximation is complete. Surprisingly, this approxima-
tion is not arbitrage-free, if the step size in the fractional binomial tree is big enough.
Hence there are arbitrage opportunities already in the prelimit model. Klüppelberg
and Kühn [13] proposed an alternative approximation, based on Poisson shot noise
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processes, to geometric fBm. Their approximation is arbitrage free, but not com-
plete. So one can ask, if there is an approximation to geometric fBm, where the
prelimit sequence is arbitrage-free and complete? In this note we show how to con-
struct such an approximation. As mentioned, the limit has arbitrage opportunities,
and our approximation might give some new insight on the arbitrage in the limit.

The second motivation comes from our recent work with Bender and Sottinen [1].
In this work we consider a class of models, where the randomness of the risky asset
comes from mixed Brownian—fractional Brownian motion. Take this process to
be εW + BH , where W is a standard Brownian motion, BH is a fBm with index
H ∈ ( 1

2 ,1), and independent of W . If we take the model of the risky asset Sε to be

Sεt = exp

{

εWt +BH
t −

1

2
ε2t

}

,

then there is a unique hedging price for the standard European type of options,
provided that one uses so-called allowed (in the terminology [1]) strategies only. But
in this model one can let ε→ 0, and ask weather the limiting prices make sense? It
turns out that we have the following limiting price with an European call with strike
K : (S0−K)+. We get the same limiting price from our approximation, and we give
two different explanations for this. One is based on the path-wise approach given in
Dzhaparidze [4], and the other one is based on computing the limit price using the
martingale measure of the approximating sequence.

1.3 The Structure of the Note

First we introduce the ‘teletraffic’ approximation from [6], discuss its properties
from the point of view semimartingale weak limit theorems (see [10]), and prove
that the corresponding geometric processes also converge weakly. We then argue
that the prelimit sequence defines a sequence of pricing models, which are complete
and have the no-arbitrage property. We conclude with a discussion.

2 Approximation of fBm

2.1 Construction of the Approximation

We will not prove any new approximation to fBm. Instead, we will the use the ‘tele-
traffic’ approximation to fBm, interpret this weak limit theorem as a semimartingale
limit theorem of a special kind: the approximating sequence is based on semimartin-
gales, but the limit is not a semimartingale.

We start with an approximation given by Gaigalas and Kaj [6]. This goes as
follows: let G be a continuous distribution function of interarrival times ηi , i ≥ 2
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for a renewal counting process N . Let μ= Eη2. Assume that this distribution has
heavy tails:

1−G(t)∼ t−(1+β) (1)

as t→∞ with β ∈ (0,1). For the first interarrival time η1 we assume that it has the
distribution

G0(t)= 1

μ

∫ t

0
(1−Gs)ds, (2)

so that the renewal counting process

Nt =
∞∑

k=1

1{τk≤t}

is stationary, where τ1 = η1 and τk := η1 + · · · + ηk . Take now countably infinite
number of independent copies N(i) of N , numbers am > 0, am→∞ such that

m

a
β
m

→∞ as m→∞; (3)

in the terminology of Gaigalas and Kaj [6] this is the case of fast connection rate.
Define the workload process Wm

t by

Wm
t =

m∑

k=1

N
(k)
t .

Note that the process Wm
t is again a counting process, since the interarrival dis-

tribution is continuous and the components N(k) are independent, and these facts
imply that there are no simultaneous jumps of the components N(k). We have that
EWm

t = mt
μ

, since Wm
t is a stationary process. For the following proposition see

Gaigalas and Kaj [6]:

Proposition 1 Assume (1) and (3). Let

Ym(t) := μ
3
2

√
β(1− β)(2− β)

2

Wm
amt
−mμ−1amt

m
1
2 a

1− β
2

m

. (4)

Then Ym converges weakly in the Skorohod space D to a fBm BH , whereH = 1− β
2 .

2.2 Further Properties of the Approximation

In order to discuss the application to finance, and to construct an approximation to
geometric fBm SHt = eB

H
t , we will have a look at Proposition 1 from the viewpoint
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of semimartingale limit theorems. We can write the explicit semimartingale decom-
position, but only with respect to a big filtration, where we can keep track of the
jumps of individual components N(k).

First we recall how one obtains the compensator of a renewal counting process
by keeping track on the jump times and using the interarrival distributions; this is
due to Jacod (see [14, Theorem 18.2, p. 270]). Assume that N is a renewal counting
process with interarrival times ηj such that Gj(t)= P(ηj ≤ t) has the form

Gj(t)=
∫ t

0
gj (s)ds, where gj (s) > 0 ∀s ≥ 0. (5)

Let τj be the jump times and define bj (t)= τj ∧ t − τj−1 ∧ t , j ≥ 1. Let Hj be the
integrated hazard function of Gj :

Hj(t)=
∫ t

0

gj (s)

1−Gj(s)
ds.

Work with the history F
N of the process N . Then the (P,FN)-compensator A of N

can be written as

At =
∞∑

j=1

Hj(bj (t))

(see [14, 16]). Note that we have the relation

t =
∞∑

j=1

bj (t).

Next, consider the workload process Wm
t . Assume that we can keep track of

the jumps of the processes N(k), i.e. we work with the filtration F̄m, where F̄ m
t =

σ {N(k)
s : s ≤ t, k = 1, . . . ,m}. Define b(k)j (t)= τ

(k)
j ∧ t − τ

(k)
j−1 ∧ t , and then by the

independence of the processes N(k) the (F̄,P )-compensator of N(k) is

A
(k)
t =

∞∑

j=1

Hj(b
(k)
j (t)).

Hence we obtain that the (F̄m,P )-compensator Am of the workload process Wm is

Am
t =

m∑

k=1

A
(k)
t ;

note also that

mt =
m∑

k=1

∞∑

j=1

b
(k)
j (t).



256 E. Valkeila

The process Ym given by (4) is a semimartingale, since it has bounded variation on
compacts. Let us now write the semimartingale decomposition of the process Ym

with respect to the big filtration F
m, where Fm

t = F̄ m
amt

and probability measure P ,
associated to the interarrival times given by (1) and (2). To simplify notation put

c(μ,β) := μ
3
2

√
β(1− β)(2− β)

2
,

cm :=m
1
2 a

1− β
2

m and "m
t := mμ−1amt

cm
.

Since the process Ym is a semimartingale, it has a semimartingale decomposition

Ym =Mm +Lm; (6)

here Lm
t = c(μ,β)

Am
amt

cm
−"m

t .
The martingale part of the semimartingale Ym is

Mm
t := c(μ,β)

Wm
amt
−Am

amt

cm
.

Note that the compensator of Wm with respect to the big filtration F̄ is continuous,
and hence the process Lm is a continuous process with bounded variation.

The square bracket of the martingale part Mm of the semimartingale Ym is

[Mm,Mm]t = (c(μ,β))2
Wm

amt

c2
m

.

But our assumption (3) implies

E[Mm,Mm]t = (c(μ,β))2μtaβ−1
m → 0,

as m→∞. With the Doob inequality we obtain that sups≤t |Mm
s | P→ 0.

Denote uniform on compacts convergence in probability by
ucp→.

We obtain the following semimartingale interpretation of Proposition 1:

Proposition 2 Assume (1) and (3). Let

Ym =Mm +Lm

be the (Fm,P )-semimartingale decomposition of the process Ym given by (3). Then
the sequence Lm of continuous bounded variation processes converges weakly in

the Skorohod space D to the fBm BH with H = 1− β
2 , and Mm ucp→ 0, as m→∞.

Remark 1 We gave the semimartingale decomposition of the process Ym with
respect to the filtration Fm. Since the process Ym is adapted to its own filtra-
tion F

Ym = F
Wm

, it has a different semimartingale decomposition with respect to
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(FYm
,P ), and the new compensator is L̃m. The process L̃m is the (FYm

,P ) dual
predictable projection of the process Ym. To compute the process L̃m explicitly is
apparently difficult, because we do not know, which one of the components had
a jump.

2.3 Approximation to Geometric fBm

Consider the solution to the equation

dSmt = Smt−dYm
s , with Sm0 = S0, (7)

where Ym = c(μ,β)W
m

cm
−"m, and

�Ym
t = c(μ,β)

�Wm
t

cm
=�Mm

t .

It is known that (7) has a unique solution of the form

Smt = S0e
−"m

t

∏

s≤t
(1+�Ym(s))=: E (Ym)t . (8)

Proposition 3 Assume (1) and (3) and let Ym be as in (4). Then the solution to (7),
given by (8), converges weakly to the geometric fBm St = S0e

BH
t in the Skorohod

space D.

Proof Use the inequality x − 1
2x

2 ≤ log(1 + x) ≤ x valid for x ≥ 0 to obtain the
following:

S0e
Ym(t)− 1

2
Wm
amt

c2
m ≤ Smt ≤ S0e

Ym(t).

We already know that
Wm
amt

c2
m
→ 0 in L1(P ), as m→∞. Hence the claim follows by

Slutskys theorem and the continuous mapping theorem. �

With the notation of Proposition 2 we have

Corollary 1 The sequence of continuous bounded variation processes eL
n

con-
verges weakly to the geometric fBm eB

H
in the Skorohod space D.

3 Some Properties of the Approximation

3.1 Set-Up

Assume that we have (1) and (2), the process Ym is defined by (4), and Sm is defined
by (7). We interpret the prelimit approximation Sm as a stock price. To simplify the
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discussion we assume that the interest rate for the bank account is equal to 0, and
that there is no drift on the stock price. So we have a sequence of pricing models

(Sm,Fm,Pm)
w(Pm)−→ (S0e

BH

,FBH

,P ), (9)

where BH is a fBm with H = 1− β
2 ∈ ( 1

2 ,1).
We will show that the prelimit market model with Sm and bank account is

arbitrage-free model and complete.

3.2 Prelimit Market Models are Arbitrage-Free

The basic randomness of the approximating pricing model sequence Sm comes from
the workload process Wm. We shall show that there exists a probability measure Qm

such that Wm is a Poisson process with intensity m
μ

. Then the approximation Sm will
be a Qm-martingale, and the prelimit market models are arbitrage free.

We work first with a single component of the workload process.
Assume that N is a renewal counting process with first interarrival time distrib-

ution given by (2) and all the rest interarrival times have distribution given by (1).
We assume that with respect to the measure our counting process N is a renewal
counting process with respect to the measure P . Fix T > 0. First we shall show
that there exists a probability measure Q such that QT ∼ PT , where QT =Q|FN

T ,
PT = P |FN

T , and with respect to the measure Q the counting process N is a Poisson
process with intensity μ−1. Put Gi =G when i ≥ 1 and define

κ(s,N) := gNs−(s)

1−GNs−(s)
.

Define the density between the measures Q and P by

dQ

dP

∣
∣
∣FN

t = e
∫ t

0 (κ(s,N)− 1
μ
)ds+∫ t0 log 1

μκ(s,N)
dNs . (10)

Obviously we have

dP

dQ

∣
∣
∣FN

t = e
∫ t

0 (
1
μ
−κ(s,N))ds+∫ t0 log(μκ(s,N))dNs . (11)

The Hellinger process between the measures P and Q is then given by

h(P,Q)t = 1

2

∫ t

0

(√
κ(s,N)−

√
1

μ

)2

ds.

Under our assumptions h(P,Q)t ≤ At + νt <∞ (P +Q)-a.s.; we can now use
[10, Theorem IV.2.1] and conclude that the measures PT and QT are equivalent.
We have shown the following:
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Lemma 1 Assume that X is a counting process. With respect to measure Q it is
a Poisson process with intensity 1

μ
and with respect to a measure P is it a renewal

counting process with first interarrival time distribution given by (2) and all the rest
interarrival times have distribution given by (1). Moreover, the laws PT and QT are
equivalent.

The next step is to show that the law of the process

Wm
t =

m∑

k=1

N
(k)
t

is equivalent to the law of Poisson process with intensity m
μ

. Note that the process
Wm

t is not any more a renewal counting process. We show that the prelimit pricing
models driven by the processes Ym have the no-arbitrage property. For this it is
sufficient to show that the original probability measure is equivalent to a probability
measure Q such that the process Wm

t is a Poisson process with intensity m
μ

. The
proof is not very difficult, and will follow from Lemmas 1 and 2.

Lemma 2 Let Xk , k = 1, . . . ,m be a sequence of counting processes. Assume
that with respect to the measure Q they are independent Poisson processes with
intensity 1

μ
, and with respect to the measure P they are independent renewal

counting processes, and their interarrival times satisfy (5). Then the sum process
Wm =∑m

k=1 X
k is a counting process with respect to the measures P and Q, with

respect to the measure Q it is a Poisson process with intensity m
μ

, and the Q-law of
Wm, Qm is equivalent to the P -law, Pm of Wm on [0, T ]. Here the filtration is the
big filtration Fm

t :=
∨m

k=1 F
Xk

t .

Proof Since the processes Xk are stochastically continuous and independent with
respect to the measures Q and P , we have that P(�Xk

s = 1,�Xl
s = 1)= 0 for k �= l

for all s ≥ 0, and similarly with respect to the measure Q. Hence the aggregated
process Wm is a counting process.

Obviously the sum of independent Poisson processes is again a Poisson process,
not only in the big filtration F

m, but in the filtration F
Wm

, too. If the (P,FXk
) com-

pensator of Xk is Ak , and because the sum of martingales is a martingale again,
we have that the (P,Fm) compensator of Wm is

∑m
k=1 A

k . We can now repeat the
argument given to obtain Lemma 1 and conclude that the measures Qm

T and Pm
T are

equivalent in the filtration Fm. �

Remark 2 If we consider the measures Pm and Qm restricted to the filtration F
Wm

they are also equivalent on [0, T ], since F
Wm ⊂ F

m. But it is difficult to write the
(Pm,FWm

)-compensator of Wm explicitly (see also Remark 1).

Let us now return to the model driven by (4). We have that the aggregated process
Wm is a Poisson process with intensity m

μ
. We it has the law Qm described in

Lemma 1 and Lemma 2. With respect to the original measure P , which corresponds
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to the renewal counting process model with interarrival times given by (1) for in-
terarrivals after the first jump and by (2) for the first interarrival. We have that the
measures are equivalent on the interval [0, amT ]. This means that the approximation
process Ym is a martingale with respect to (Qm,Fm), or with respect to (Qm,FYm

),
too.

What happens with the approximation? Recall that Sm = E (Ym). But Ym =
Mm + Lm, where Lm is a continuous process, and hence [Mm,Lm] = 0. So using
Yor’s formula for stochastic exponents we can write the approximating sequence as

Smt = S0e
Lm
t E (Mm)t ,

where E (Mm)
ucp→ 1 with respect to the measure Pm. We know that the approxima-

tion (Sm,Fm,Pm) weakly converges to the geometric fBm. On the other hand, with
respect to the martingale measure Qm the sequence Ym is a martingale sequence,

Ym ucp−→ 0 with respect to Qm, and Sm
ucp−→ S0 with respect to Qm. So the price

(S0 −K)+ is a limit

(S0 −K)+ = lim
m

EQm(SmT −K)+

for the European call.

3.3 Prelimit Market Models are Complete

To show that the prelimit market models are complete, it is enough to show that the
market models driven by a Poisson process martingale are complete. We consider
the following market model, so-called Poisson market according to the terminology
of Dzhaparidze [4]. We follow the arguments of Dzhaparidze and show that the
prelimit market is complete. Note that the argument given below is pathwise.

Let N be a counting process, α > 0 and γ > 0 are constants, and consider the
pathwise solution S to the following linear equation

dSt = St−(αdNt − γ dt) with S0 = s;

then the unique solution to this is

St = se−γ t
∏

s≤t
(1+ α�Ns)= se−γ t (1+ α)Nt .

Denote the jump times N by τk , k = 1,2, . . . . Fix T > 0 and assume that there is no
jump at time T . Let M ≥ 0 be such that τM < T < τM+1. Define sk(t) by

sk(t)= s(1+ α)ke−γ t1[τk,τk+1)(t)= s(1+ α)ke−αλt1[τk,τk+1)(t);
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with λ= γ
α

. The functions sk describe the states of the price process St . Obviously

St =
M∑

k=0

sk(t)1[τk,τk+1)(t).

We can write the left-hand limit process St− as follows

St− = s0(t)1[0,τ1](t)+
M∑

k=1

sk(t)1(τk,τk+1](t).

Let St− be in the state sk(t). Then, at time t the stock price either stays in this state
or jumps to the state sk+1(t). Define the difference operator D in the state space of
S as follows: if St− is in state sk(t) then DSt is in the state

Dk+1(St )= sk+1(t)− sk(t). (12)

We have then the following

Proposition 4 The states of the stock price process satisfy the following differential
equations

dsk(t)

dt
=−λDk+1(St ), when t ∈ (τk, τk+1]. (13)

Proof See [4, Proposition 4.4.1]. �

The Poisson probabilities pj (λ) are defined by pj (λ) = λj

j ! e
−λ for λ > 0. One

can include the value λ= 0 by defining pj (0)= δj0, where δj0 = 10(j) is the Kro-
necker delta.

Consider the following system of differential-difference equations

dxk(t)

dt
=−λ(xk+1(t)− xk(t)), k = 0,1, . . . (14)

subject to boundary conditions

xk(T )=wk(T ), k = 0,1, . . . . (15)

Proposition 5 A solution to the system (14) with boundary conditions (15) is given
by

xk(t)=
∞∑

j=0

pj (λ(T − t))wk+j (T ), (16)

if the numbers wk(T ) allow differentiation under the summation sign.
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Proof See [4, Proposition 4.2.3]. �

Next we indicate how to apply the above results a hedging problem in finance.
Let WT be a functional of the price process path St , 0≤ t ≤ T . If the price process
S has a state sk(T ), then the value functional WT has a state wk(T ). Recall that
a market model is complete, if we can find a self-financing strategy π such that

WT = V π
T = v+

∫ T

0
πsdSs.

It follows from [4, Proposition 4.4.5] that if we define a value process V π by the
formula

V π
t = v+

∫ t

0
πsdSs, (17)

where

v =
∞∑

j=0

pj (λT )wj (T ) (18)

and when s ∈ (τk, τk+1] we define

πs =
∞∑

j=0

pj (λ(T − s))
(1+ α)wj+k(T )−wj+k+1(T )

α
, (19)

then we obtain self-financing strategy π , which replicates the claim W(T ).

Remark 3 The probabilistic interpretation of (17), (18) and (19) that the process N
is a Poisson process with intensity λ. Note that the results were obtained in a path-
wise way, without any probability.

We end this subsection by giving an option pricing formula (for European call
only, but of course all is valid for a more much bigger class of options).

Recall some properties of Poisson probabilities. Put

F(j0;λ)=
∑

j>j0

pj (λ). (20)

We have the following connection between F(j0;λ) in Gamma integrals

!(c, x)=
∫ ∞

x

e−t t c−1dt, where c, x > 0 :

F(j0;λ)= 1− !(j0 + 1, λ)

j0! . (21)
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Proposition 6 Consider the pricing of an European option (ST −K)+ in the Pois-
son market model. Then the fair price CE of this option is given by

CE = S0F(j0; (1+ α)λT )−KF(j0;λT ), (22)

where

j0 =
⌊ log( K

S0
)+ γ T

log(1+ α)

⌋

. (23)

We can now apply the above to the approximating model Sm. Now from (4) we
obtain

α = αm = c(μ,β)
a

β
2
m

m
1
2

,

γ = γm = c(μ,β)μ
a

β
2
m

m
1
2

and

λ = λm = γm

αm
= μ.

From (3) we obtain that αm → 0, βm → 0, and if K > S0, then j0 →∞, and if
K < S0, then j0 →−∞. Put this in (22) and we obtain that the limiting price is
(S0 −K)+.

4 Discussion and Conclusion

Consider the market model of the following type. The stock price S is driven by
a process X = εW +BH ; here W is a standard Brownian motion, BH is a fBm with
Hurst index H > 1

2 , independent of W ; the linear stochastic differential equation
defining the stock price is

dSεt = Sεt dXt , with S0 (24)

as the initial value. One can show that the solution to (24) is

Sεt = S0e
εWt+BH

t − 1
2 ε

2t .

It was shown in [17] that the hedging price for standard European type of options
is the same as in the model, where we do not have the fBm component BH at all.
Recently we in Bender et al. [1] have extended this argument to a bigger class of
options, and also discussed arbitrage possibilities in this kind of models. So the price
of an European call (SεT −K)+ is given by the classical Black & Scholes pricing
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formula

S0#

(
log S0

K
+ 1

2ε
2T

ε
√
T

)

−K#

(
log S0

K
− 1

2ε
2T

ε
√
T

)

. (25)

Take now εn→ 0 and define Sεn by

S
εn
t = S0e

εnWt+BH
t − 1

2 ε
2
nt .

We have that Sεnt
w→ S0e

BH
t , as n→∞, and we have again an approximation to

geometric fBm. It is easy to check that the limit, as εn→ 0, of the price in (25) is
given by

(S0 −K)+. (26)

Recall that we obtained the same limit for European call as a limit of hedging prices
in Sect. 3.3 and as a limit risk neutral prices in Sect. 3.2.

Note that if a price process S is continuous and has bounded variation, then we
have the following

(ST −K)+ = (S0 −K)+ +
∫ T

0
1{Ss≥K}dSs; (27)

hence a candidate for the hedging price would be (ST − K)+. But this makes no
sense, since this kind of pricing model has arbitrage opportunities, unless St = S0
for all t ≤ T .

We have shown that in our approximation:

• The prelimit sequence Sm = E (Ym) is a Pm semimartingale and Qm martingale.
• The weak limit along Pm is geometric fBm, which is not a semimartingale, and

along Qm is the constant S0, which is a martingale.

We can formulate yet another property of our approximation:

• The sequence of measures Pm and Q are entirely separated: there exists events
Cm such that Pm(Cm)→ 1 and Qm(Cm)→ 0, as m→∞.

In [12] Kabanov and Kramkov discuss so-called asymptotic arbitrage, which is
related to the notions of contiguity and entire separation.

This means the following: let πm be a sequence of self-financing strategies and
Sm a vector valued price process such that

(πm · Sm)t :=
m∑

k=1

∫ t

0
πm,k
s dSm,ks ≥−1. (28)

They defined the following three types of asymptotic arbitrage, but we mention only
one:

• If in addition to (28), we have lim supm P
m((πm · Sm) ≥ C)= 1 as m→∞ for

any C > 0, then πm realizes strong asymptotic arbitrage.
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We refer to Kabanov and Kramkov [12] for more information how asymptotic ar-
bitrage is related to contiguity and entire separation. We mention only that entire
separation implies some kind of asymptotic arbitrage.

We end our discussion by reformulating our approximation in the spirit of large
financial markets. Define the price process of the ith asset S(i) by

dS
(i)
t = S

(i)
t−c(μ,β)

1

cm
d(N

(i)
t −A

(i)
t ), (29)

where N(i) is the renewal counting process, A(i) is the compensator of N(i) with

respect to the filtration F
N(i)

, and where c(μ,β) := μ
3
2

√
β(1−β)(2−β)

2 , and cm :=
m

1
2 a

1− β
2

m , as before. Let S(i)0 = S0
m

. Then the model in (4) can be considered as the
sum Sm =∑m

i=1 S
(i), and as we know already, the martingale measures Qm and the

‘historical’ measures Pm are entire separated and the market model (S̃m,Fm,Pm)

with S̃m = (S(1), . . . , S(m)) admits asymptotic arbitrage.
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