
J.A. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2009, LNCS 5612, pp. 257–266, 2009.
© Springer-Verlag Berlin Heidelberg 2009

User-Definable Rule Description Framework for
Autonomous Actor Agents

Narichika Hamaguichi1, Hiroyuki Kaneko1, Mamoru Doke2, and Seiki Inoue1

1 Science & Technical Research Laboratories, Japan Broadcasting Corporation (NHK)
1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan

{hamaguchi.n-go, kaneko.h-dk, inoue.s-li}@nhk.or.jp
2 NHK Engineering Services, Inc.

1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8540, Japan
douke@nes.or.jp

Abstract. In the area of text-to-video research, our work focuses on creating
video content from textual descriptions, or more specifically, the creation of TV
program like content from script like descriptions. This paper discusses a de-
scription framework that can be used to specify rough action instructions in the
form of a script that can be used to produce detailed instructions controlling the
behavior and actions of autonomous video actor agents. The paper also de-
scribes a prototype text-to-video system and presents examples of instructions
for controlling an autonomous actor agent with our designed descriptive
scheme.

Keywords: Autonomous Actor Agent, Digital Storytelling, Text-to-Video,
TVML, Object-Oriented Language.

1 Introduction

Research into digital storytelling has attracted considerable interest in recent years,
and one approach of producing computer graphics (CG) video content from textual
descriptions has inspired a number of studies around the world. (We refer to this
approach as “text-to-video” [1])

In text-to-video production, figuring out how to make the actor agents (CG charac-
ters) in the video act and behave naturally is critically important. In big production
animated films, the mannerisms and behavior of actor agents can be manually edited
on a frame-by-frame basis which is extremely costly in terms of man-hours, time, and
budgets. But for smaller scale or personal video productions such lavish and costly
production techniques are impractical, thus creating a demand for an autonomous
method of controlling actor agents. A number of studies have addressed this issue of
autonomous actor agents [2].

Researchers have also investigated language-based descriptive methods of pro-
ducing video content and controlling the actions and behavior of actor agents, in-
cluding a specially designed scripting approach [3] and a method of controlling the
behavior of actor agents using natural language instructions [4]. Most of these

258 N. Hamaguichi et al.

studies of autonomous actor agent action and ways of describing such actions are
only able to describe such actions using a limited vocabulary based on rules set up in
advance under limited conditions. The problem is that if the user wants to add a new
autonomous action rule or wants to modify an existing rule, there are very few
schemes giving users access to the rules, and the expandability of those that do
provide access is quite limited.

This led us to design a system that is functionally separated into two parts—a video
content production part and an object-oriented description part— and instead of using
a special proprietary language, the object-oriented description part uses a dynamic
programming language that can be run as is from the source code without compiling
the code beforehand. Users are thus able to add, modify, and reuse actor agent action
rules by directly accessing the source code. Moreover, because this approach is based
on an existing programming language, it is infinitely expandable according to the
whims and desires of the user. In the next section, we will lay out the principle issues
that will be addressed in this paper.

2 Requirements

In this section we consider the requirements needed to enable users to represent rules
that control the behavior and actions of actor agents.

2.1 Openly Modifiable Object-Oriented Language

The object-oriented approach permits functions to be encapsulated which are highly
beneficial in terms of reusability, and today many advanced programming languages
have adopted the object-oriented approach. There are essentially two types of object-
oriented languages: languages that are executed after the source code is compiled
(compiler languages), and languages that are not pre-compiled but are interpreted at
run-time (dynamic programming languages or interpretive languages).

In compiler languages, the source code is separated from the executable file, and
because the executable file is a black box, the user is unable to modify functions or
copy and reuse portions of functions even if he is able to use functions created by
others.

To achieve our objectives, we need a language that will enable users to add, mod-
ify, and reuse rules for controlling the behavior and actions of actor agents. In short,
we need an object-oriented dynamic programming language that permits the user to
access the source code.

2.2 Versatile Layered Structure for Different Types of Users

With the goal of using descriptive language to control the actions of actor agents, our
first concern is to achieve the desired behavior or action using the simplest possible
expressions without inputting detailed instructions. The problem with the object-
oriented languages described earlier is that expressions inevitably become much more
complicated than can be handled by a simple script language the more encapsulation
and reuse is involved.

 User-Definable Rule Description Framework for Autonomous Actor Agents 259

The level of language used also varies depending on the type of user and the in-
tended use. For example, if one wants to produce a simple video clip with a minimum
of time and effort, the level of language abstraction and types of data manipulated are
very different than if one wants to produce content in which very detailed actions and
timing of the actor agents are critically important.

In order to address these issues, we adopted a three-layer structure that can be tai-
lored to different kinds of users and different intended uses. The lower layer (detailed
description instructions) is for pros enabling descriptions supporting detailed video
content to produce professional-grade video content. The upper layer (simple descrip-
tion instructions) is for beginners or amateurs. It hides the complexity of detailed
descriptions, and allows amateur users to produce video content using relatively sim-
ple descriptions. The rules that control the actions and behaviors of actor agents are
described in the middle layer sandwiched between the upper and lower layers. Essen-
tially, this layer converts the relatively simple instructions received from the upper
layer to the more detailed expressions required by the lower layer.

3 Language Design and Prototype System

Based on the requirements outlined in the previous section, we designed a prototype
system consisting of two parts as illustrated in Fig.1: an Object-Oriented Description
Module and a Presentation Module. The Object-Oriented Description Module is a
three-layer structure as described above. It consists of a Simple Scripting Layer, an
Automatic Production Layer, and a Detailed Description Layer, and runs using the
dynamic programming language Python.

A series of rough sequential instructions similar to the script for a TV program are
described in the upper Simple Scripting Layer. The instructions are in a format
that even someone with little or no experience with programming languages can
understand and edit.

The rules controlling the behavior and actions of the actor agents are described in
the middle Automatic Production Layer. The layer receives the rough instructions
described in the upper Simple Scripting Layer, acquires the situation using the func-
tions of the lower Detailed Description Layer, then automatically determines the spe-
cific actions and behavior of the agents based on rules in the middle layer, which are
sent to the lower Detailed Description Layer for execution.

The lower Detailed Description Layer provides a simple wrapped interface with a
TVML Player [5] in the Presentation Module, and through this intermediary wrapper,
the Detailed Description Layer obtains the video states and delivers the instructions.
Instructions are created using a descriptive language called TVML (TV program
Making Language), and the states are acquired using an external application program
interface called TvIF. TVML is a self-contained language featuring all the capabilities
needed to create TV program-like video content, including detailed control over
the speech and movement of actor agents, cameras, display of subtitles, and so on.
Essentially, complex descriptive instructions are substituted for detailed control.

The TVML Player uses software to interpret a TVML Script, then generates
video content using 3D computer graphics, synthesized speech, and other production

260 N. Hamaguichi et al.

Fig. 1. Layered structure of the object-oriented video content production framework

techniques. The TVML Script only provides the TVML Player with a one-way stream
of instructions, and the states are returned by way of the TvIF interface. Moreover, the
TVML Player was developed using C++. This relieves the user of dealing with the
technically challenging aspects of production such as handling 3D computer graphics
which is done by the TVML Player, but the internal operation of the TVML Player
itself is unalterable.

By adopting the layered approach outlined above, users can employ whichever
layer is best suited to their skills and objectives. And because users have direct access
to the source code of each layer, they can add, modify, reuse and inherit classes of
rules controlling the actions of actor agents.

4 Application Examples for Each Layer

In this section we will provide description and application examples for each layer.

4.1 Simple Scripting Layer

The Simple Scripting Layer is the upper layer. It is based on a very intuitive format: a
sequential string of instructions without any inherent control structure, much like the
script of a TV program. It is thus transparent and easily manipulated by anyone, even
people with little or no experience with programming languages.

Application Example. Fig.2 shows a typical example of an application in which a
description in the Simple Scripting Layer is edited, and the internal descriptions
written in Python are the followings. These descriptions in the Simple Scripting Layer
consist of a simple line-by-line sequence of unstructured instructions. So using a tool
such as illustrated in Fig.2, the user can easily edit the script in much the same way as

 User-Definable Rule Description Framework for Autonomous Actor Agents 261

Fig. 2. Application example for editing the descriptions in the Simple Scripting Layer

using a word processor. Any user capable of using a word processor is thus capable of
producing video content!

Description Examples

import apetest #Import of Automatic Production module

ape=apetest.APETest() #Constructor

ape.title(“Script Example”)

ape.text(“I wanna go over there!”) #Speech

ape.action_walk_to_goal() #Action

ape.subimage(“goal.jpg”) #Show image

ape.action_look_at_camera()

ape.text(“You see?”)

ape.end()

4.2 Automatic Production Layer

The specific rules that control the actions and the behavior of actor agents on the basis
of instructions received from the Simple Scripting Layer are described in the Auto-
matic Production Layer.

Description Examples. Here is an example of descriptions in the Automatic
Production Layer. Action rules are represented in classes, and inherit a new class
called APEBase. Basic action rules are defined in APEBase, so in order to create a

262 N. Hamaguichi et al.

new action rule, a user only needs to create or describe a rule that is different from
that in the APEBase. The module for producing new action rules in this way is called
the Automatic Production Engine (APE) [6].

goal.x=4

goal.z=0

class APETest(APEBase):

…

def setup(self): #Initialization

self.A=tvml.Character(filename=”bob.bm”, x=-4)

self.obst1=tvml.Prop(filename=”tsubo.obj”, x=1,…

…

def text(self, value): #Speech

self.A.talk(text=value)

…

def subimage(self, value): #How to show image

 self.img=tvml.Prop()

 self.img.openimageplate(filename=value,
 platesizeh=3.6, platesizev=2.7)

self.img.position(y=2, pitch=270)

…

def action_walk_to_goal(self): #How to walk to goal

props=getPropNameList() #Get all prop names

for prop in props:

loc=findPath(obstacle=prop) #Find a path per prop

self.A.walk(x=loc.x, z=loc.z) #Simple walk

self.A.walk(x=goal.x, goal.z)

As one can see, several method subroutines are defined: the setup method deals
with initialization, the text method relates to the speech of actor agents, and the
subimage method relates to how images are presented. The action_walk_to_goal
method is a new subroutine created by the user that instructs the actor agent to
avoid obstacles as it proceeds to a goal (the actual description has been simplified
in this example). Previously, the only walk-related method defined in the lower
Detailed Description Layer instructed the action agent to proceed in a straight line
from its current position to the goal. The new action_walk_to_goal subroutine
calculates a path from the position and size of obstacles (3D bounding box), thus

 User-Definable Rule Description Framework for Autonomous Actor Agents 263

Fig. 3. Operation of the action_walk_to_goal method

enabling the user to define an action rule permitting the agent to proceed to a goal
without bumping into things.

Output Example. Fig.3 shows an example of how the action_walk_to_goal method
is run based on descriptions in the Simple Scripting Layer.

Users are thus able to add and modify the rules controlling the actions and behavior
of agents in the Automatic Production Layer. Significantly, newly added action rules
can be used and manipulated using an easy user-friendly format from the upper Sim-
ple Scripting Layer just like any other instruction. Here we have discussed a user-
defined action rule enabling agents to avoid obstacles, but all sorts of powerful rules
can be created in the same way, such as:

−
− - Actor agent actions playing to a particular camera:
− - Actions of an agent can be controlled to play to a particular camera by acquiring

the names, positions, and angles of the cameras.
− - Actor agent actions can be synched to a movie file:
− Actions of an agent can be synchronized to the playback timing of a movie by

acquiring the playback timing of the movie file.
− - Actor agent behavior can be synched to speech:

264 N. Hamaguichi et al.

− The expressions and gestures of an agent can be synched to the character strings of
the synthesized speech lines spoken by the agent.

− - Evaluation of the output screen layout:
− The layout or composition of the output video screen can be evaluated and the

agent's actions adjusted to the layout by acquiring an on-screen 2D bounding box.

These various types of automatic production rules are actually executed by the func-
tional capabilities of the Detailed Description Layer. Let us next take a closer look at
the Detailed Description Layer, which must be endowed with powerful capabilities in
order to execute these rules.

4.3 Detailed Description Layer

The TvIF/TVML are wrapped by the method subroutines that are incorporated in the
Detailed Description Layer. This layer can obtain a comprehensive range of states in
the TVML Player including the prop bounding box, camera information, movie play-
back timing, and a host of other states. Table 1 shows some of the state acquisition
methods that are incorporated in the Detailed Description Layer.

Note too that all of the states incorporated in the TVML Player—orientation angle
and coordinates of the actor agents, speed, timing, and so on—can be directly con-
trolled by the TVML Script. This allows more experienced users who want direct
control over the production and editing of their video content to directly work at this
layer.

Description Examples. Here are some typical examples of Detailed Description
Layer descriptions. These descriptions enable detailed control over the movement of
actor agent joints, camera movements, and a host of other variables.

buddy.gaze(pitch=-30, wait=NO)

buddy.turn(d=-120, speed=0.5)

buddy.definepose(pose=GetWhisky, joint= LeftUpperArm,
 rotx=-105.00, roty=25.00)

buddy.definepose(pose=Getwhiskey, joint=Chest,
 rotx=5.00, roty=-15.00, rotz=0.00)

buddy.pose(pose=Getwhiskey, speed=0.25, wait=NO)

tvml.wait(time=0.7)

cam1.movement(x=-0.49, y=1.57, z=1.75, pan=400,
 tilt=-5.00, roll=1.00, vangle=45.00,
 transition=immediate, style=servo)

whisky.attach(charactername=buddy, joint=RightHand,
 switch=ON)

Output Example. Fig.4 illustrates how the agent actually moves based on the
Detailed Description Layer descriptions listed above.

 User-Definable Rule Description Framework for Autonomous Actor Agents 265

Table 1. Typical state acquisition methods incorporated in the Detailed Description Layer

getCharacterLocation Current position of an actor agent

getCharacterTalkingText
Character string currently spoken by an actor
agent

getCameraCurrent Name of camera currently selected

getCameraLocation Current location and angle of camera

getPropNameList List of prop names

getPropBoundingSolid 3D bounding box of a prop

getPropBoundingBox 2D bounding box of an on-screen prop

getMovieCurrentTime Playback position of a movie file

Fig. 4. Movement based on Detailed Description Layer descriptions

5 Conclusions

In this work we designed an object-oriented scheme for building a descriptive language
framework enabling users to add, modify, and replay rules controlling the behavior and
actions of autonomous actor agents. By dividing the object-oriented description into
three layers—the Simple Scripting Layer, the Automatic Production Layer, and the
Detailed Description Layer—we have implemented a structure that can be tailored to
different kinds of users and different intended uses. This scheme allows users them-
selves to describe rules for controlling the behavior and actions of autonomous actor
agents by editing the Automatic Production Layer.

Leveraging this Automatic Production Layer based scheme, we plan to design a
wide range of autonomous actor agents and develop applications that use the
agents.

266 N. Hamaguichi et al.

References

1. Bindiganavale, R., Schuler, W., Allbeck, J., Badler, N., Joshi, A., Palmer, M.: Dynamically
Altering Agent Behaviors Using Natural Language Instructions. In: The 4th International
Conference on Autonomous Agents, Proceedings, Barcelona, Spain, pp. 293–300 (2000)

2. Funge, J., Tu, X., Terzopoulos, D.: Cognitive Modeling: Knowledge, Reasoning and Plan-
ning for Intelligent Characters. In: The 26th International Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH 1999), Proceedings, Los Angeles, USA, pp.
29–38 (1999)

3. Hamaguchi, N., Doke, M., Hayashi, M., Yagi, N.: Text-based Video Blogging. In: The 15th
International World Wide Web Conference (WWW 2006), Proceedings, Edinburgh, Scot-
land (2006)

4. Hayashi, M., Doke, M., Hamaguchi, N.: Automatic TV Program Production with APEs. In:
The 2nd Conference on Creating, Connecting and Collaborating through Computing (C5
2004), Kyoto, Japan, pp. 20–25 (2004)

5. http://www.nhk.or.jp/strl/tvml/
6. Perlin, K., Goldberg, A.: IMPROV: A System for Scripting Interactive Actors in Virtual

Worlds. In: The 26th International Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 1996), Proceedings, New Orleans, USA, pp. 205–216 (1996)

	User-Definable Rule Description Framework for Autonomous Actor Agents
	Introduction
	Requirements
	Openly Modifiable Object-Oriented Language
	Versatile Layered Structure for Different Types of Users

	Language Design and Prototype System
	Application Examples for Each Layer
	Simple Scripting Layer
	Automatic Production Layer
	Detailed Description Layer

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

