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Abstract. Anticipation and prediction have been identified as key functions of 
many brain areas facilitating recognition, perception, and planning. In this chap-
ter we present a hierarchical neurocomputational model in which feedback,  
effectively predicting or anticipating task-relevant features, leads to sustained 
inattentional blindness. A psychological experiment on sustained inattentional 
blindness in human subjects is simulated to provide visual input to a hierarchy 
of Echo State Networks. Other parts of the model receive input relevant to 
tracking the attended object and also detecting the unexpected object, feedback 
from which is then used to simulate engagement in the task and compared to  
results obtained without feedback, simulating passive observation. We find a 
significant effect of anticipation enhancing performance at the task and simulta-
neously degrading detection of unexpected features, thereby modelling the sus-
tained inattentional blindness effect. We therefore suggest that anticipatory / 
predictive mechanisms are responsible for sustained inattentional blindness. 
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1   Anticipation and Prediction; From Neuroscience to Cognition 

In work published elsewhere [1, 2] we presented a model of sustained inattentional 
blindness in which predictive feedback enhanced performance at the feedback rele-
vant task while degrading performance at other tasks. Furthermore by systematically 
varying the similarity between target and unexpected stimuli we were able to replicate 
human data showing that the size of the sustained inattentional blindness effect is 
reduced as similarity is increased. Somewhat surprisingly we also found that in our 
model, the size of the sustained inattentional blindness effect is also reduced as simi-
larity decreases beyond a half way point. This prediction has yet to be confirmed in 
human data but provides an example of the classic U shaped curve where detection of 
the unexpected object is most likely if it is very similar or very dissimilar to the 
tracked object. Central to this model was the use of a predictive feedback signal 
which was artificially provided.  It was therefore not clear where this predictive feed-
back would originate from, just that given this kind of feedback the inattentional 
blindness effect was present. In this chapter we extend that original work providing a 
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minimal hierarchy of simulated cortical micro-columns making explicit how and why 
such predictive feedback signals can be generated and used.  

Neural mechanisms for prediction and anticipation are thought to be pervasive 
throughout much of the brain and are thought to vary greatly in instantiation in differ-
ent anatomical structures. For example, Downing and others [3-5] provide a review of 
neurocomputational models of the cerebellum, the basal ganglia, the neocortex, the 
hippocampus, and the thalamocortical loop. In each of these models, and reflecting 
the underlying neuroscience, the anticipatory systems differ both in their mechanics 
and functional significance, which ranges from the anticipation of relational and se-
quential data in neocortical models, to the prediction of reward stimuli in the cerebel-
lum and basal ganglia. Hawkins and Blakeslee [6] have suggested that “the cortex’s 
core function is to make predictions” [p. 113] and that “all predictions are learned by 
experience… if there are consistent patterns among the inputs flowing into your brain, 
your cortex will use them to predict future events” [p. 120]. This places prediction 
centrally in our understanding of brain function. To understand how this predictive 
process works, Hawkins depicts the neocortex as a macro hierarchy of homogeneous 
micro-circuits or structures, meaning that the same basic unit is repeated throughout 
the neocortex but the way they are wired together and thus their influence on each 
other varies from region to region. The hierarchical view of the cortex highlights the 
interplay between low levels (i.e. regions of cortex close to sensory input such as area 
V1 in the visual cortex) responding to fast changing ‘features’ and higher levels (such 
as the inferotemporal or prefrontal cortex) responding to more invariant, larger scale, 
and slower changing things such as faces and objects. Here, according to Hawkins, 
top-down signals indicating expectations or predictions, of which low level features 
will be active, not only fill in sensory gaps, but facilitate the higher level response and 
differentiate expected from unexpected bottom-up activity. In this chapter we develop 
such a model but highlight a different aspect of top-down predictive signals, specifi-
cally that they can be use to ‘tune’ input filters facilitating recognition of the antici-
pated features with consequences for the recognition of non-anticipated features. 

Accounts of cognition rooted in underlying predictive or anticipatory neuroscience 
are becoming increasingly common. Gallese and Lakoff [7], for example, site exten-
sive neuroscientific evidence for predictive / anticipatory circuitry in the sensorimotor 
systems of the brain and go on to propose a sensorimotor theory of conceptual knowl-
edge based therein. The point to note here is that prediction and anticipation are not 
simply ancillary functions of the brain but are central to its proper functioning and 
their existence is heavily supported by neuroscientific data. Such theories all have in 
common the idea that feedback or spreading activation from active regions, serves the 
role to anticipate, predict, and prime other related structures as a significant (and by 
some theories necessary) part of the cognitive perceptual process.  In many ways this 
is not a new idea and has much in common with spreading activation models in early 
connectionism [8] and also psychological theories of associationism [9]. Unlike those 
early models and theories, which were largely disembodied, the current focus on 
embodied and situated cognition or enactive perception provides a different perspec-
tive from which to view these problems. 

“...Human evolution has indeed led to increasingly complex forms of behaviour. 
However, these behaviours are not simply triggered from genetically determined 
mechanisms.  Rather they are the outcome of the gradual formation of internal repre-
sentations during the lengthy process of ontogenetic development.” [10][p. 144].  
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While the adult neocortex contains many function or behaviour specific areas, as 
Karmiloff-Smith [10] shows with extensive fMRI data, these functions are not geneti-
cally pre-specified but are globally processed in children and gradually formed into 
these areas by a process of active re-structuring according to relationships in external 
stimuli. Taking Hawkins [6] perspective this re-structuring is a matter of modifying 
the connectivity and thus influence of the already hierarchically connected cortical 
micro-columns. By comparison genetic disorders such as Williams Syndrome (WS), 
“appear to follow a deviant developmental pathway" [10][p. 151] whereby genetic 
alteration changes the adaptive mechanisms in the brain that would otherwise have 
led to the formation of these modules, as a result of which brain structuring by experi-
ence follows a different path. Thus what is different is not some genetic predisposi-
tion to develop such and such a capacity but rather the mechanics of the re-structuring 
process itself. 

While the plasticity of the cortex is well recognized, the extent of this re-
structuring is brought into focus by the work of Sharma et al [11] who performed a 
number of experiments in which the auditory nerve and the optic nerve were cut and 
crossed over in infant ferrets.  The ferrets subsequently developed visual orientation 
modules in the auditory cortex (these are structures only ever previously discovered in 
the visual cortex, and never normally present in the auditory cortex). This suggests 
that rather than the visual and auditory cortex being specialized for one type of proc-
essing, they are actively structured around the input streams they receive. This is a 
radical view to take but one for which there is a great deal of evidence. Clearly evolu-
tion has played a part in specialising regions of cortex but rather than providing innate 
structures, we suggest rather that evolution has refined the relative sizes of the various 
unimodal and polymodal regions involved in processing different sensory streams and 
their innate hierarchical structure. As an example, in primates the visual areas of the 
cortex are significantly larger than the auditory areas and so the auditory cortex is 
more limited in the structures it can construct than the visual cortex is. To some extent 
this can be seen as division of resources so that in our case greater resources are given 
to vision than to audition. 

Complementing this perspective is Mountcastle’s [12] view of the cortex as per-
forming the same operation everywhere. While most neuroscientists are highlighting 
the differences (functional or anatomical) between different regions of cortex, Mount-
castles’ analysis suggested that the cortex consists of the same basic unit, the cortical 
micro-column, everywhere one looks. While there may be some variation in micro-
columns in different regions they are to a large extent very similar throughout the 
cortex. This is the basic unit of the hierarchy that we model herein and we shall return 
to the cortical micro-column in section 5.  

This aim of this chapter is to investigate and model some of the less obvious con-
sequences of prediction or anticipation in hierarchical structures and their effect on an 
account of cognitive processes. To provide an example we further develop a cortical 
microcircuit model of sustained inattentional blindness already reported elsewhere  
[1, 2] implementing a hierarchical structure based on the literature just introduced. 
The resulting models are demonstrated to preserve the sustained inattentional blind-
ness effect. In the next section we introduce a cognitive theory of perception and work 
back to expose possible mechanisms able to implement such an account, in the hope 
that these match to some extent those neuroscientific mechanisms just introduced.  
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We then, in Section 3, highlight some of the computational difficulties in implement-
ing these cognitive theories in an embodied and situated agent. Section 4 departs 
somewhat from this discussion and introduces psychological literature on the phe-
nomena of sustained inattentional blindness, which is the target of the modelling ex-
periments provided in Section 5. Finally Section 6 provides some discussion and 
conclusions to this work. 

2   Perception and Action; From Cognition to Neuroscience 

The central claim of Noë’s [13] enactive theory of perception “is that our ability to 
perceive not only depends on, but is constituted by, our possession of… sensorimotor 
knowledge.” [p. 2], where sensorimotor knowledge “is implicit practical knowledge of 
the ways movement gives rise to changes in stimulation.” [p. 8]. This means that, sen-
sorimotor knowledge is not simply factual knowledge about a domain but is intimately 
about the dynamic relationship between an agent and its environment.  Mastering this 
dynamic relationship is manifest in the ability to predict the sensory consequences of 
actions, which in turn, according to Noë is constitutive of perception.  Under this view 
the distinction between skills and knowledge is collapsed [14], as Maturana and Varela 
[15] put it, “all doing is knowing, and all knowing is doing”.  For example, to perceive 
something as a round plate is to exercise a particular skill predicting how sensory con-
tact with the plate will change as one moves a little this way or a little that way.  Such 
perception can be mistaken and such mistakes ‘pop out’ when these predictions are 
invalidated by further experience (consider the Ames distorted room illusion [16]). 
Such predictive ability would seem essential to any embodied agent interacting with a 
complex environment; for example, simulating or anticipating the effects of possible 
actions for evaluation in an agent-centred way (e.g. [17-20]). Here theories such as the 
simulation hypothesis suggest the re-use of, primarily, sensory pathways. The idea is 
that sensory data is processed as normal but rather than producing an overt motor re-
sponse, the response is used to generate a prediction of what the next sensory input 
would be had that response been overt. By projecting this predicted sensory state back 
into the sensory areas the process can re-use the existing circuitry to iterate the predic-
tion process further and further ahead in time. For more detail on the biological basis of 
the simulation hypothesis see the chapter on this subject by Svensson et. al. also in this 
book. 

For Noë [13], the ability to make predictions is simply the application of sensori-
motor knowledge which comes from finding “pattern[s] in the structure of sensorimo-
tor contingency” [p. 103], i.e. patterns in the relationships between our actions and 
sensations.  While this may seem to the uninitiated trivial to implement there are sig-
nificant problems in the application of such pattern recognition, as we will discuss in 
Section 3. Going beyond Noë’s formulation we would draw a distinction between 
‘shallow’ perception of experience, which could result from merely recognising the 
relationship between optic flow and turning the head, and ‘deep’ perception of a 
world consisting of objects and affordances. ‘Deep’ sensorimotor knowledge requires 
the recognition of profiles of change and provides a means to recognize Gibsonian 
[21] affordances, i.e. “to perceive… is to perceive structure in sensorimotor contin-
gencies.  To see that something is flat is precisely to see it as giving rise to certain 
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possibilities of sensorimotor contingency [to see its affordances]. To feel a surface as 
flat is precisely to perceive it as impeding or shaping one’s possibilities of movement” 
[13] (italics added) [p. 105]. For any agent then, skilled action is practical knowledge, 
the mastery of which can be achieved through identifying the contextual regularities 
between action and sensory perception.  Here we can see a strong link between Noë’s 
account of perception, Gallese and Lakoff’s [7] theory of conceptual knowledge, and 
Hesslow’s [19] simulation hypothesis. 

This formulation of the enactive approach not only suggests that robots or agents 
could learn to “perceive an idiom of possibilities for movement” [13] [p. 105], but 
also suggests that such a capacity is both particularly amenable to the integration of 
other cognitive phenomena, such as planning (for which prediction would seem nec-
essary [18, 19, 22]), and significantly different from mainstream representational 
theories (e.g. [23, 24]). Although evolution obviously has a role in this, it seems rea-
sonably clear that much of our own world knowledge and skills are either derived 
from, or heavily shaped by, our life-time experiences. Learning sensorimotor relation-
ships from experience and then using these learnt relationships for prediction is the 
target of our neurocomputational model. 

While Gallese and Lakoff’s [7] theory of conceptual knowledge differs from 
Noë’s, the general form of both theories of cognition based on sensorimotor predic-
tion have much in common.  Having now briefly reviewed some of the biological 
(section 1) and the philosophical (section 2) theories of sensorimotor cognition, we 
turn in the next section to the computational problems any implementation of these 
perspectives faces. 

3   Circularity, Regularity, and Time, but Not in That Order… 

Acquiring the ability to predict changes in sensory streams that result from either 
motor actions (simulated or real), or from temporal aspects of our environment and 
embodiment requires an ability to learn temporal sequences and relational informa-
tion.  The latter would seem to be explained by known plasticity in biological nervous 
systems, roughly approximated by Hebbian plasticity [9] ‘what fires together wires 
together’. Such plasticity is highly suggestive of the idea that co-occurring features, 
presumably indicated by the activity of sub-sets of neurons would lead to those neu-
rons ‘wiring’ together with the result that activity in one set (caused by the presence 
of the relevant feature in sensory data) would lead to a spreading activation via the 
new wiring resulting in activation of the other set of neurons.  Such ideas are well 
developed in localist connectionist models which are able to replicate a great deal of 
psychological data from a variety of phenomena such as; semantic and associative 
priming [25], cued recognition, name processing and lexical processing [26], semantic 
and repetition priming [27-29], face recognition and visual prosopagnosia [30], clas-
sical and operant conditioning [29, 31], and many many more.  Though such connec-
tionist modelling is often far abstracted from computational neuroscience the basic 
principles of spreading activation (rather than localism) would seem to be highly 
plausible biological mechanisms capable of accounting for a great deal of psychologi-
cal phenomena.  As Page states: “I make no claim to be the first to note each of these 
properties; nonetheless, I believe the power they have in combination has either gone 
unnoticed or has been widely underappreciated.” [32][p. 450] 
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The power of such models to explain embodied cognition is highly limited by their 
assumption of localist representation which bypasses important questions such as 
where these representations come from and what from they take. Indeed for many the 
idea of an internal representation is a Cartesian regression with no explanatory power 
whatsoever, as Harvey puts it: “The gun I reach for whenever I hear the word 'repre-
sentation' has this engraved on it: ‘When *P* is used by *Q* to represent *R* to *S*, 
*who is Q and who is S?*  If others have different criteria for what constitutes a rep-
resentation, it is incumbent on them to make this explicit” [33]. While we do not wish 
to delve into the representation debate here it is clear that localist representation is 
neither present in neurobiology nor forthcoming in modelling without introducing 
significant design bias.  Detectors can often be achieved by supervised training or 
complex statistical analysis, however the design choice of which features to detect 
will always be a limiting factor on such approaches.  Restricting modelling methods 
to the more biologically plausible varieties of plasticity raises a serious problem con-
cerning the separation of features in data streams.  This is the problem of marginal 
regularity, as Kirsh [34] puts it; “what if so little of regularity is present in the data 
that for all intents and purposes it would be totally serendipitous to strike upon it?  It 
seems … that such a demonstration would constitute a form of the poverty of stimulus 
argument” [p. 317]. As anyone working in the fields of robotics, machine learning, or 
pattern recognition will tell you, this ‘what if’ is in fact the case for the vast majority 
of data and especially for the kinds of things that we humans seem to perceive so 
effortlessly. 

The problem of marginal regularity results from the fact that most interesting fea-
tures of a data stream, be it sensory or whatever, are not explicitly represented in that 
data stream, they are in fact relational by which we mean that their presence is indi-
cated by specific relationships between the ‘bits’ of the data streams. For example the 
image of a cup is distributed over many pixels or retinal cells, the majority of which 
take very similar values for a range of different images. What changes between each 
image is the relationships between the pixels; however, these relationships can change 
also for the same cup seen from different angles or different distances or in different 
parts of the image. Under traditional static conceptions of vision and data analysis such 
problems often seem insurmountable even given implausible supervision (c.f. [35]). 

Enactive sensorimotor theories such as that proposed by Alva Noë [13, 36] and in-
troduced in section 2 explicitly reject such a static view of perception and propose 
that rather than looking for statistical regularities in snapshot images, that instead we 
search for patterns of contingency between actions and sensory streams. That is to say 
we no longer identify environmental features such as objects and affordances by the 
sensory regularities they provide, as we know these are not fixed anyway, instead we 
look for regularities in the ways that sensory streams change over time relative to our 
actions. Learnt or otherwise acquired profiles of such changes is what Noë refers to as 
sensorimotor knowledge, and the application of this, in prediction, Noë argues is the 
basis of perception. Similarly Gallese and Lakoff [7] argue that the association of 
sensory and motor areas allows for the simulation of actions leading to the prediction 
of sensory consequences. Such stimulation of sensory and motor areas with predicted 
rather than actual sensory data also conforms with the simulation hypothesis [19] and 
various other theories of cognition. 
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While sensorimotor theories would seem to provide a way out of the problem of 
marginal regularity, as we have argued elsewhere [37], the profiling of such changes 
still requires consistent tracking over time before the profiles can be learned from 
which consistent tracking is supposed to follow. Thus the proposed solution can easily 
become circular. To clarify this point with an example, if I know this sub section of 
sensory data right now is a cup (or whatever) then I need to be able to track the cup 
over some changes in order to make a profile of those changes in order to be able to 
track the cup.  In part this circularity comes from not completely letting go of the 
static snapshot perspective, the way out is to recognise from experience that ‘this’ set 
of changes over time happens sometimes in coincidence with performing action X, 
AND that ‘this other’ set of changes consistently coincides with performing action Y, 
when the original set coincide with action X. Thus there are consistent clusters of 
relationships and actions that happen together, when they do occur we can infer the 
presence of some external object or more abstractly an external situation or event. 

The enactive solution we propose then is to find patterns in the dynamics of sen-
sory and motor streams over time; however, time introduces another important prob-
lem to the modelling of sensorimotor perception. The temporal problem as a variation 
of the credit assignment problem results from the fact that the result of an action may 
not be immediate, and may in fact result from a sequence of actions. The problem 
then is how to discover which subset of the actions performed is actually responsible 
for this sensory change. As a minimal requirement then the temporal problem necessi-
tates the inclusion of some form of memory such that past events in the sequence are 
available to take part in the formation of profiles of change and the marginal regular-
ity problem requires some consistent tracking of features as our sensory contact with 
them changes over time. Thus we argue for the inclusion of memory and the trans-
formation into warped high dimensional spaces to maximise the availability of fea-
tures from which to construct temporal profiles leading to perception of features and 
affordances in the environment.  In Section 5 we will develop a model that does ex-
actly this, but first, in the next section we introduce sustained inattentional blindness 
as this will be a bi-product of our predictive models. 

4   Sustained Inattentional Blindness 

Our perception of the world around us is subject to manipulation, even to the extent 
that we can be experientially blind to highly salient and temporally extended events.  
We can even be unaware of things we are looking directly at. Simons and Chabris 
[38] note that “we perceive and remember only those objects and details that receive 
focused attention.” p. 1059. Though it is not entirely clear in this context what atten-
tion is, similar claims have been made by many researchers e.g. [13, 36, 39].  This 
effect is demonstrated most startlingly in an experiment on sustained inattentional 
blindness by Simons and Chabris [40] in which human subjects watch a video show-
ing two intermingled groups of people, one dressed in white and the other in black, 
each passing a basketball between members of their own group. Subjects are asked to 
count how many times the ball is passed by one particular group (either those dressed 
in white or those dressed in black depending on which condition the subject is in). 
Somewhat surprisingly, many “observers fail to notice an ongoing and highly salient 
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but unexpected event…[a] Gorilla walked from right to left into the live basketball 
passing event, stopped in the middle of the players as the action continued all around 
it, turned to face the camera, thumped its chest, and then resumed walking across the 
screen” p. 1069. Observers in this study “were consistently surprised when they 
viewed the display a second time, some even exclaiming, ‘I missed that!?’ ” p. 1072.  
In this, and other psychological experiments, the effect of similarity between the at-
tended (the team the subject is watching), distracter (the other team) and unexpected 
objects (the gorilla) has been systematically varied showing that close similarity be-
tween the attended and unexpected objects reduces the occurrence of inattentional 
blindness [40-43]. For example subjects attending to the team dressed in white were 
more likely to miss the black-haired gorilla than subjects attending to the team 
dressed in black.  Most et al [44] vary the luminance of the attended and unexpected 
objects showing that increasing similarity (in terms of luminance) decreases the like-
lihood of failing to detect the unexpected object. In a different task Koivisto and Rev-
onsuo [43] ask subjects to count how many times balls of one colour bounce of the 
edge of a computer screen, while balls of a different colour also bounce around the 
screen (see figure 1 below). In this task the unexpected object appears on the left of 
the screen and travels across it until it exits on the right. Subjects engaged in the 
counting task often miss the unexpected object and thereby display sustained inatten-
tional blindness. In a number of experiments Koivisto and Revonsuo [43] systemati-
cally vary the number of distracter objects and their similarity to the attended objects 
showing that (a) distracter objects have little or no effect and that (b) sustained inat-
tentional blindness can occur even in the absence of any distracters. For simplicity 
sake it is this scenario, with no distracters that we will focus on here. 

 

Fig. 1. Illustration of Koivisto & Revonsuo’s task. Human subjects count how many times the 
green (lighter) balls bounce, while ignoring the blue (darker) balls. The unexpected object, here 
a blue cross moves across the screen, often undetected. 

5   Modelling a Cortical Hierarchy 

Following discussion of the connectivity between cortical microcolumns in different 
regions of cortex in section 1, and noting that others model cortical microcolumns in 
far more detail than they are treated herein, we are not the first to suggest that dy-
namic reservoirs such as those found in Liquid State Machines or Echo State Net-
works, capture many of their properties. In fact the Liquid State Machine originates 
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from attempts to model the neuroscientific data produced by Markram et al. [45] and 
Gupta et al. [46] on the cortical micro-columns of rat somatosensory cortex. While the 
number of cells in a microcolumn and density of each kind vary between regions, 
certain features of microcolumns remain constant. Of particular interest here is that 
micro-columns are sparsely internally interconnected, that they are observed not to be 
chaotic, and not to implement stable attractor dymanics. Shepherd [47] and Douglas 
& Martin [48] provide neuroscientific examples highlighting the stereotypical cir-
cuitry found in these structures and the wide range of tasks they seem to be involved 
in. While there is a great deal more structural detail to the cortical micro-column, 
some of which is currently being modelled elsewhere, Maass et al. [49-51] provide an 
abstract model using random connectivity between ‘leaky integrate and fire’ neurons 
with both static and dynamic synapse models, the parameters of which are based on 
Gaussian distributions of the data from Markram et al. and Gupta et al.’s experiments. 
The resulting model, the Liquid State Machine (LSM) has been shown to possess a 
number of important computational properties, acting as an analogue memory, and as 
a recursive kernel function [49-51]. Simpler models preserving these computational 
aspects of the cortical micro-column have been developed such as the Echo State 
Network (ESN) [52-55] which we implement here. While the ESN model is some-
what removed from the anatomical detail of the cortical micro-column, we view it as 
a useful abstraction preserving particular properties of the underlying neuroscience 
while providing significant advantages in terms of lower computational cost. 

To implement an ESN we generate a random valued and sparse (30%) randomly 
connected weight matrix for 100 neurons. The randomly achieved weight matrix W of 
the resulting network is restricted to have a spectral radius of less than one, i.e. | λmax | 
< 1, where λmax is the eigenvalue of W which has the largest absolute value, which 
guarantees a null state attractor. Similarly | λmin | > -1 where λmin is the smallest abso-
lute eigenvalue of W. As the separation property is also preserved the ESN is here 
viewed as a computational simplification of the biologically derived LSM architec-
ture. Unlike Jaeger [52-55], who uses a CTRNN, we update the neurons according to 
simple discrete time dynamics using the following standard equations. 

 

ai = Σ yj wij 

 
yi = ___1___ 
       1 + e (-ai) 

 
Next we turn to the uncontroversial and far from new idea that the cortex is loosely 
structured in a hierarchical manner, at least with respect to major pathways of inter-
micro-column connectivity. For example micro-columns in area V1 of the visual 
cortex are heavily connected to area V2 (about half the size of V1), and then to V4 
(again about half the size) and from there to the Inferotemporal-cortex (a larger area 
receiving input from several different modalities). The computational properties of the 
ESN rely in part on the input being significantly smaller than the size of the ESN, 
thereby forcing an expansion of dimensions in the data stream and fostering the linear 
separation of relational features in that input stream. Stacking such systems into a 
hierarchy presents a problem in that the output from a reservoir is the size of that  
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reservoir, and feeding the output from several into one would require increasingly 
large reservoirs at each level of the hierarchy in order to preserve a dimension expan-
sion at each step. The solution we adopt here is to autonomously compress the state of 
each ESN using a Self-Organizing Map (SOM) [56]. Each dimension of the map can 
be used as an output so that we effectively output the address of the winning SOM 
unit. 

 

Fig. 2. (Left) showing the internal structure of each unit in the cortical hierarchy.  Input flows 
into an ESN which is then classified by a SOM.  The SOM projects back into the ESN and the 
address of the winning SOM unit is passed on as output. Additionally associative connections 
are learned between the ESN and the SOMs of other units. (Right) the overall structure of the 
whole hierarchy. Neighbouring units pass their outputs to the same unit in the next layer of the 
hierarchy.  Associative connections are between the ESN of one unit and the SOMs of the units 
that that unit connects to. 

This approximates a principle component analysis passing variance information on 
to the next layer. While we fully recognize that this dimension reduction throws away 
a great deal of information, the reduced output then combines with the output from 
neighbouring units as input to an ESN at the next level of the hierarchy where the 
same process is repeated again (see fig 2). This allows for the discovery of new input 
features, specifically those relying on relational properties between the parts of the 
input stream kept separate at all previous levels. SOM units then also provide normal 
input via sparse random connectivity back into the ESN driving that SOM. 

As discussed in section 1 the development of functional regions of cortex results 
from plasticity refining and altering the connectivity between microcolumns within 
connected regions of cortex. This plasticity is modelled here using perceptrons 
autonomously trained to predict, from the activity of one ESN, what state connected  
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Fig. 3. Highlighting the plasticity between connected columns. Perceptrons are trained to pre-
dict the state (SOM) of one column, from the ESN activity of other connected columns. 

columns are in. Thus based on the information available in one column, predictions 
are made as to what the likely state of other columns, having other information avail-
able to them, is likely to be (see Figure 3). The output and weight changes to each 
perceptron were calculated using the following standard formulas. 
 

yi = Σ yj wij 

 

Δ wij = α (yi – targeti) yj 

5.1   Experimental Setup 

Following a model based account of sustained inattentional blindness presented in  
[1, 2], we here provide an extension of the same experiment using the hierarchy 
model just described. We constructed a small hierarchy with three cortical units in the 
first level, two in the second level, and one in the third level. In the experiments de-
tailed herein we simplified Koivisto and Revonsuo’s task in the following ways. 
Firstly we removed all distracter objects as the number or presence of distracter ob-
jects was found not to significantly alter the extent of sustained inattentional blindness 
in experiments carried out in [43]. Secondly we reduced the number of attended ob-
jects to 1 so as to simplify the modelling task. The visual area was then divided up 
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into a 4 x 4 grid and the average green or blue pixel values of each cell provided two 
inputs respectively from each cell. This provided a total of 32 inputs to an ESN at 
every time step. The task here is to constantly track the vertical aspect of the direction 
of the attended simulated object, i.e. is the blue ball moving upward or downward 
(ignoring left and right velocity). 

 

Fig. 4. The 6 unit hierarchy. Visual input is averaged over a 4 by 4 grid and then passed as 
input to the first cortical hierarchy unit. Tracking information and detection of the unexpected 
object are fed as input to the 2nd and 3rd units. Activity flows up the hierarchy driven by this 
input. Activity also flows down the hierarchy via the learnt associative connections, see text for 
a full explanation. 

Our two conditions are then whether we allow top down activity to reach the unit 
receiving the image as input. In the first stage of the experiment we provide input for 
a total of 10000 time steps during which the model is ‘conditioned’, in that the model 
indirectly learns the association between the different inputs. During this stage we 
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also record the SOM activity of the tracking and detection units and note a strong 
correlation between the input state and the SOM output. In stage 2 we enter a testing 
phase in which the tracking and detection input is removed but the visual input con-
tinues. We record the SOM activity of the tracking and detection units, recording a 
correct output at every time step that the observed SOM activity corresponds with the 
noted correlation of what the actual tracking and detecting input should be. Thus if the 
association has been learnt then the hierarchy should reproduce the same activity in 
the tracking and detecting unit SOMs even in the absence of that input. During stage 2 
the perceptron learning was also disabled. We repeated the whole experiment with 
feedback to the first unit enabled and disabled. 

5.2   Results 

As can be seen from figure 5 below, performance at tracking was considerably im-
proved by feedback from the hierarchy. This shows that top down predictive informa-
tion aids discrimination in correlated tasks. As can be seen from figure 6, performance 
at detection is hindered by the same feedback that improves tracking performance.  We 
conducted a repeated measures ANOVA on this data and found significant main and 
interaction effects. Where the effect of feedback on tracking had a probability of p < 
0.001, the effect of feedback on detection had a probability of p < 0.05  all interaction 
effects had a probability of p < 0.001. As can be seen from fig 5 and 6, feedback im-
proved performance at tracking while degrading performance at detection, thus we 
have the sustained inattentional blindness phenomena. During engagement in a diffi-
cult task, predictive feedback is necessary to produce adequate performance at that task 
but has the effect of making detection of an otherwise detectable object less likely. 

 

Fig. 5. Scatterplot showing the hierarchies performance at tracking with and without feedback. 
Note that the scale here is adjusted so that 0% indicates chance levels of performance. 
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Fig. 6. Scatterplot showing the hierarchies performance at detecting the unexpected object with 
and without feedback. Note that the scale here is adjusted so that 0% indicates chance levels of 
performance. 

6   Discussion, Whats Going on? 

The model presented here draws on biological and philosophical theories of the rela-
tion between sensormotor knowledge discussed in sections 1 and 2 to provide a scal-
able model of sensorimotor learning, one by-product of which is the inattentional 
blindness phenomenon. In this model, the role of each micro-column, is to identify 
relational patterns in and over time, from the activity of the input streams or columns 
in the layer below. Having identified these patterns, a spreading activation between 
layers provides anticipatory input from above and classification from below. The 
hierarchical model presented learns correlations between its inputs, without introduc-
ing supervision bias, allowing for the top down spreading of activation to aid, or hin-
der, the identification of relational features patterns and sequences. This is closely 
related to the simpler model of inattentional blindness presented in [1, 2] however we 
here provide a minimal hierarchical implementation to clarify and provide a more 
plausible account of where the feedback comes from. This model is very closely 
linked with the enactive account of sensorimotor perception, in as much as experi-
enced correlations between input streams are learned and then provide the basis for a 
spreading activation providing prediction or anticipation of what the unobserved or 
missing input could be. This is however, not done directly to the input but rather 
manifests in the form of tuning input filters (ESN’s) to improve separation of the 
anticipated features at the cost of less separation of other features. 

As a tentative explanation of why the sustained inattentional blindness phenomena 
is observed in this model we can analyse the effect of feedback on a single ESN.  
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Clearly the addition of new inputs to an ESN correlated with some feature, changes 
the attractor landscape of the ESN and moves the trajectory in state space (for a fuller 
analysis of this see [2]). However the Euclidean distance between input with that 
feature and input without that feature is enlarged by the presence of the correlated 
input. This means that the pointwise separation between ESN states following input 
with or without those inputs is also greater. This typically leads to enhanced separa-
tion of the streams and facilitates linear separation by a perceptron. This accounts for 
the improved performance at tracking (see figure 7 upper graph). As for degrading 
performance at detection we can see that an input image with one ball on it provides a 
different level of input than an image with two balls on it (one being the unexpected 
stimulus). This difference in input magnitude provides further separation of the fol-
lowing ESN states facilitating normal detection of the unexpected object. With the 
presence of an uncorrelated feedback input, however, this separation is distorted lead-
ing to loss in performance at detecting (see figure 7 lower graph). 

 

Fig. 7. The magnitude of the input to the visual ESN. In the case of tracking, the magnitude of 
input remains constant whether the ball is moving up or down, however, when the unexpected 
object appears the magnitude of input goes up thus the point-wise separation of these states is 
increased (Top figure). When feedback from tracking is made available, the magnitude (as-
suming correct feedback) as the ball moves up or down is different (e.g. 0-10 vs 10-20 in the 
lower figure), however the separation of the uncorrelated unexpected input is reduced (25-35 
in the lower figure). 
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