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Abstract. This paper proposes and discusses a modeling framework for embod-
ied anticipatory behavior systems. This conceptual and theoretical framework is 
quite general and aims to be a, quite preliminary, step towards a general theory 
of cognitive adaptation to the environment of natural intelligent systems and to 
provide a possible approach to develop new more autonomous artificial sys-
tems. The main purpose of this discussion outline is to identify at least a few of 
the issues we have to cope with, and some of the possible methods to be used, if 
we aim to understand from a rigorous standpoint the dynamics of embodied 
adaptive learning systems both natural and artificial. 
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1   Introduction 

According to many experimental results, [5,6,7,12,13,15], the human (and mammal) 
brain might be seen as a complex system which evolved mainly to control movement, 
in particular walking and what in the robotic domain is known as visual manipulation 
and grasping. To achieve that it minimizes uncertainty through Bayesian estimation, 
prediction of actions' consequence, controlling statistics of action effectiveness, com-
paring with expected outcomes and manage to smooth transition, from energy and 
information standpoint, from perception to action. 

In the natural domain, to our knowledge, at least on our planet, the human brain 
is the most sophisticated cognitive machine, nevertheless the basic organizational 
principles are shared with more ancient living beings and are evolved on top of evo-
lutionary earlier solutions. 

There are several evidences suggesting that cognition might be an emerging adap-
tive (meta) process of loosely coupled networks of embodied and situated agents, 
[24,29]. In the natural domain the most widely used method of 'intelligence', compu-
tation and 'cognition' seems to be 'embodied' biological neural networks. Although, 
see [66], there are good reasons to exclude an 'intelligent design' of natural cognitive 
systems and although these systems have evolved not only according to 'cheap de-
sign', [22], but also 'good enough' principles, it is apparent that not only the more 
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evolved human or mammal brains, but even the 'simple' 15-20000 neurons Aplysia 
nervous system shows much more robust than any current robotic application. 

This justifies the search for biomimetic and bioinspired solutions for the co design 
of cognitive physical agent structure, processes and organizational principles. 

Generally biological neural network are modeled by artificial neural networks, a 
simplified model of their natural counterpart. The original Rosenblatt's 'perceptron' 
[39], proposed in 1958, represents a neuron as a node of a graph where an output edge 
signal is triggered when a threshold of a sum of weighted connection values is 
reached. Although today most current neural network algorithms are more sophisti-
cated as they do not use thresholds, but rather  continuous valued squashing functions, 
they are still an approximation of their natural counterparts not considering plasticity 
and other characteristics of the biological neurons. 

It is interesting to speculate on the system level characteristics which allow auto-
nomous cognitive behavior in natural systems. 

In the past years Pfeifer and other researchers, [22,23], have shown the importance 
of 'embodiment' and 'situatedness' in natural intelligent systems, 'passive walkers' are 
a clear example of that. 

It is possible, anyhow, as it is pointed out by some researchers, that we still miss 
the quantitative framework to model the interplay between system dynamics and in-
formation processing in physical systems. In other terms we have a need to extend the 
theory of computation to the physical world, [65]. This (new) topic is called Cyber-
Physical system theory. A 'cyber-physical' system is a physical system where there is 
a two ways relationship between its physical behavior and its control system. The 
study of the so called cyber-physical systems is a priority of US NSF (National Sci-
ence Foundation). 

In this paper we will show and discuss how anticipatory behaviors might emerge 
from a loosely network of embodied agents and which metrics might be used to de-
velop such systems. The aim is to define a conceptual model capable of emulating the 
high level behaviors of natural intelligent and simple enough to be described in a 
quantitative way. We will describe such a conceptual and methodological framework 
aiming to be a first step towards a general theory on cognition in natural systems. We 
will derive a few preliminary relations and we will suggest some theoretical tools 
which in principle might allow to cope with these ambitious objectives. 

This is one of the possible approaches to a quantitative representation of an intelli-
gent physical system, equivalent others are possible.  

In the next paragraph we will review the ABC (Anticipatory Behavioral Control) 
model that we believe captures at least some of the requisites that an intelligent em-
bodied agent should have. In section 3 we will summarize the quantitative aspects of a 
quite general networked embodied intelligent system, following the discussions in 
[29,30] based on the findings in [25] and [34]. In section 4 we will highlight the req-
uisites of networked embodied anticipatory systems and a possible system architec-
ture coping with these needs. 

Eventually it will be highlighted the work ahead and the open issues involved by 
such an approach. 
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2   The ABC Model 

The observation of natural intelligent systems and the practice of robotics research and 
engineering lead us to think that 'intelligence' (and 'meaning' if not 'consciousness') are 
'emerging' characteristics springing from the evolution of loosely coupled networks of 
intelligent 'embodied' and 'situated' agents, [23,24]. 

In robotics research this has led to develop some systems leveraging on the body 
dynamics, like in 'passive walker' approach exemplified by MIT biped and others, 
[35], and 'behavior based' control architecture, starting from the 'subsumption' archi-
tecture originally proposed by Brooks, [21]. 

The behavior based approach, in particular in the context of subsidiary architec-
tures, has also proven capable of obtaining good performances, in tasks like naviga-
tion and obstacle avoidance and others, with a limited set of a priori hypotheses and 
programming effort.  

This approach can be seen as a translation to the AI and robotics domain of the 
Stimulus-Reaction model of animal behavior dating back to Pavlov, [70], and quite 
popular for some time in behaviorist psychology. 

It is also a natural application to robotics of the information processing model of 
cognition.  

This approach shows some limits at least if we consider human psychology and 
mammals ethology as it does not consider the intentional behavior. It makes more 
sense to think that the function of cognitive processes is to enable the production of 
anticipated 'stimuli'. 

The ABC theory (Anticipative Behavioral Control), [8,9,10], tries to go beyond 
those limits on the basis of theoretical considerations and experimental evidence, [8,5] 
coming from the investigation of animal and human associative learning processes 
and the impact of behavioral effects on the selection, initiation, and execution of sim-
ple voluntary acts. 

It is shown that 'intentions', based on the anticipated outcomes of finalized actions, 
play a key role in the shaping of behaviors of natural cognitive systems and that this 
approach is different from both the 'behavior based' one and from the top down sym-
bolic processing approach.  

It is not surprising that in nature such kind of information structuring have evolved 
as in an open ended stochastic high dimensional, non linear and even fractional de-
rivatives, environment the capability of generating 'cheap' and 'good enough' finalized 
actions strongly relies on the capability to generate 'reasonable' predictions at a low 
computational and energetic cost. 

If we assume that the fit behavior generation model for an autonomous cognitive 
agent is given by something similar to the ABC model, it is interesting to understand 
how such a model of interaction might emerge from a loosely coupled network of 
embodied agents without a preset internal explicit representation and exploiting the 
body dynamics, according to the mentioned 'cheap design' principles. In particular it 
is interesting to speculate on a model of interaction with (or within?) the environ-
ment which makes possible a quantitative or semi quantitative description of the  
interaction. 

Natural neural network themselves could be regarded as 'embodied' and 'situated' 
computing systems, as they are connected to a body. 
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So far we miss a quantitative comprehensive theory which allows us to model the 
interplay between the agents' 'morphology', in other words their mechanical structure, 
and the emerging of 'intelligence' and 'meaning'. Despite that some preliminary con-
siderations are already possible. 

3   Networks of Embodied Agents: Possible Models and Metrics 

It is reasonable to think that in nature the biological neural networks are an adaptation 
of cell based organisms to the intelligent and cognitive tasks. This leaves open the 
question of which features of these systems are necessary and sufficient in order to 
achieve a robust cognitive adaptation to the environment (from the unstructured natu-
ral outdoor ones to the structured factory floors or human buildings). 

If intelligence and cognition are emerging processes springing from loosely cou-
pled networks of embodied physical agents, how can a 'fit' anticipatory behavior 
emerge from a system of this kind ? And which metrics is it possible to identify? 

 

Fig. 1. Directed acyclic graphs representing a control process. (Upper left) Full control system 
with a sensor and an actuator. (Lower left) Shrinked Closed Loop diagram merging sensor and 
actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel en-
acted by the controller's state C=c. The random variable X represents the initial state, X' the final 
state. Sensor is represented by state variable S and actuator is represented by state variable A.  

After reviewing in this section some metrics of a network embodied system, in the 
following we will show how the nervous systems of natural intelligent systems might 
be regarded as huge networks of loosely structured 'resonators' and 'amplificators' of 
natural coupling processes, which actually, in simpler forms, for example in biped 
walking down a slope, occur without any specific and dedicated cognitive computing 
system.  

We will first explain how, from a theoretical standpoint, a network of embodied 
agents can process information in the physical morphology of its agents and the  
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network relations between the agents of the network. This discussion is taken from 
[25, 29, 30]. If we see, for simplicity, an embodied agent as a controlled dynamical 
system, as in fig. 1, it is possible to show how the algorithmic complexity of the con-
trol program is related to its phase space 'footprint'. 

max ( ; )controller closed openH H H I X CΔ ≅ Δ −Δ ≤
 

(1)

This is possible starting from [25] where Shannon theory is applied to the modeling 
of controlled systems and statistical information metrics based definitions of control-
lability and observability are derived. In equation (1) we recall the most important 
result in [25] from our perspective. Equation (1) applies to a general control system. 
The meaning of the variables is given in Fig. 1. It links the variation of Shannon en-
tropy in the controller to the variation of entropy in closed loop (with the controller 
in the loop) and the maximum variation of entropy in open loop (with feed forward 
control) to mutual information between the state variable and the controller state. 
Adding some reasonable hypotheses and exploiting the results described in [34] it is 
possible to derive: 

max
( ) log closed

open

W
K X

W

+
≤ (2)

The equation (2) bounds the algorithmic complexity of the control program (the intel-
ligence of the agent, in a simplified view) to the phase space volume, an estimate of 
the number of possible system state, of the controlled agent versus the phase space 
volume of the non controlled system. 

From a qualitative standpoint (at least) this relations explains why a simpler walker 
like the MIT biped or the one described in [35] can be controlled with a 'short' pro-
gram, while other walkers (like the Honda Asimo, [36], or the Sony Qrio) which don't 
have a limit cycle and show a larger phase space 'footprint' require more complex 
control systems.  

The Shannon entropy related measures have been shown to be useful to quantita-
tively characterize sensory motor coordination, the evolution of sensory layouts and 
the complexity of the agent environment, [26,28,32]. 

In general the intelligent system is here assumed to be constituted of, and to be part 
of, a network of weakly coupled agents.  

We assume (for simplicity) that the ‘cognitive network ‘ can be accessed by all the 
agents which are co evolving it and in fact share (constitute) it.  

The idea that learning may actually emerge from some kind of evolutionary proc-
ess was actually already proposed by Turing in a famous 1950’s paper, [57]. 

It must be noticed that the concept model described here is one in a large class of 
possible models, in particular one of most convincing is the semiotic dynamics ap-
proach, [58,60]. This idea is strongly influenced by Bateson’s concept of an ‘ecology 
of mind’, [69].  

We assume that the model of the environment is distributed among all the agents 
constituting the network and depends on the (co) evolution of their interactions in 
time. We will see below how this can be explained and quantified on the basis of rela-
tions between some information measures. 
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In this perspective it is interesting to notice that in [59] the mathematical model of 
the collective behaviors of systems like that described in [60] are based on the theory 
of random acyclic graphs which is the basis of most network system physics formal-
izations.  

In [59], the network of agents, where each word is initially represented by a subset 
of three or more nodes with all (possible) links present, evolves towards an equilib-
rium state represented by fully connected graph, with only single links. 

The statistical distribution, necessary to determine the information managing capa-
bility of the network of physical agents and to link to equation (2) can be obtained 
from equations derived in the statistical physics of network domain. 
From (2) it is possible to derive the relations recalled here below (these relations are 
demonstrated in the appendix). 

max
( ) log closed

open

W
K X

W

+
≤

 
(I)

As told, relation (I) links the complexity ('the length') of the control program of  a 
physical intelligent agent to the state available in closed loop and the non controlled 
condition. This shows the benefits of designing system structures whose 'basin of at-
tractions' are close to the desired behaviors in the phase space. 

( );
n

i
i

H N H I I X CΔ + Δ − Δ ≤∑
 

(II)

Relations (II) links the mutual information between the controlled variable and the 
controller to the information stored in the elements, the mutual information between 
them and the information stored in the network and accounts for the redundancies 
through the multi information term ΔI. 

Relations (III) links the program complexity of the controller to the information 
stored in the elements, the mutual information between them and the information 
stored in the network. 

( )
n

i
i

K X H N H I= Δ + Δ − Δ∑  
(III)

Relations (IV) links the program complexity of the controller to the information 
stored in the elements the mutual information between them and the information 
stored in the network. 

m a x
lo g c l o s e d

o p e n

H N I
ΩΔ = + Δ
Ω  (IV)

These relations are quite preliminary, and perhaps need a more rigorous demonstra-
tion, but give an insight on how information is managed within a network of physical 
elements or agents interacting with a given environment in a finalized way. They sug-
gest how the cognitive adaptation is at network level: in any environment niche it is 
possible with small networks of highly sophisticated individual agents, like in human 
societies, or with many limited autonomy individuals like in ant colonies, with a great 
variety of possibilities in the middle. 

It is worth to observe that the relations reported above are quite general and can also 
be applied to a continuous intelligent material structure if you consider as physical 
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elements a suitable mesh of material finite elements, see [30]. In this case the informa-
tion can be stored in the stress-deformation state itself.  

On a different respect, these relations can be applied to the whole environment, 
meaning to the whole network of agents interacting among them over a specified thre-
shold. The 'self' of the single cognitive agent might emerge by means of a process 
analogue to the mammal and human immune system, [55.56]. 

3.1   Example 

A simple embodied agent is given by the oscillator given in fig. 2. 

 

Fig. 2. A simple linear oscillator 

If we apply equation (3) representing energy conservation: 

= +
 

 (3)

We see that in phase space the system follows a closed curve. The shape of the curve 
depends on m and k and the initial values of x and its first derivative. If we assume an 
uniform distribution [0,X] for x and [0,XP] for the initial condition the phase space 
volume of equation (2) is given by the difference of the areas of the ellipses: 

2 2
max

2 2
tot

mXP kX
E = +  (4)

The equation of the ellipses is: 

+ =
 

 (5)

From which we derive the semi axis, a, b : 

max2
tot

E
a

m
=

 (6)

max2 totE
b

k
=
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And we eventually derive the phase space volume: 

max max
max2 2 2tot tot
tot

E E
W ab E

m k km

ππ π= = =
 

 (8)

Assuming that the closed loop phase region is inside the open loop region, K be-
comes, in absolute value, close to 0 when these two area are close, while it tends (in 
absolute value) to infinite when we want to force the system in an phase space volume 
(area in this case) going to zero. 

4   A possible Networked Embodied Cognitive System Model 

In the previous section we have reviewed some of the metrics that a multi agent em-
bodied intelligent system will comply to. Here we describe a conceptual model which 
on one side exhibit the capabilities that we think characterize the behavior of natural 
cognitive agents and on the other side allows the development of a a quantitative 
model. This quantitative model may eventually be compared to the reality and ex-
perimentally tested. 

 

Fig. 3. Phase space portrait of the elementary oscillator 

We define here a 'minimal set' networked embodied anticipatory behavior system 
architecture for an intelligent agent. We summarized above the requisites that an an-
ticipatory networked embodied system should have, here we describe at functional 
level a possible system architecture believed to be capable of generating through self 
organization the required behaviors.  

It seems reasonable to think that what we need is the capability to generate a wide 
set of coupled dynamical behaviors. Even in simpler and older cases like a moving 
target tracking by a rotating automated missile launch platform part of the anticipation 
is done by means of the inertial rotation of the platform.  
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A method to provide to a system a 'rich' internal dynamics is to model it as an n-
dimensional set of oscillators, randomly oscillating, (modeled like in figure 3), which 
for simplicity can be represented as in the figure below. This set evolves into a directed 
acyclic graph where the links between the oscillators evolve dynamically according to 
homokinetics and others criteria, see [45,46,47,48]. The dynamical couplings of a 
chain of oscillators are described in [64].In this context 'modules' , whose 'economical' 
usefulness is discussed in [67], must be seen as hierarchies of basins of attraction (see 
genome activation schemes). Each oscillator is governed by its equations, simpler as in 
our example above, or more sophisticated like in [43]. The 'modules' are embodied into 
fractional distributed form and spring from a self organizing co evolution process ex-
tended to the environment network of relations. This constitutes an high dimensional 
system. Hierarchical modules are an useful way to structure data analysis as they allow 
to reduce uncertainty through iterated processing, [11,14,16]. 

In summary we connect a hierarchical modular system in the sense specified above 
from the sensors to a similar hierarchical modular system managing the actuators 
through a rich homokinetic massive loosely coupled network of chaotic self organiz-
ing oscillators. In principle a simplified version of the mathematics of Schwinger 
fields might be of some help here, although this has to be investigated. 

As shown above in paragraph 3 the length of a control program is linked to the dif-
ference between the reachable phase space volume in open loop and the desired 
closed loop behaviors. 

 

Fig. 4. Schematic representation of a network where coupling is only with the adjacent nodes, 
(Left). Schematic representation of a network with (weak) coupling with adjacent nodes, 
(Right). 

 

Fig. 5. Potential functions for three adjacent not coupled nodes 
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The Lie symmetry of the physical world, [27], as it is experienced by a mechani-
cally extended body strongly reduces the reachable portion of the configuration and 
phase spaces making easier the control. The anticipation is based on the fixed point, 
limit cycles, attractors of the internal dynamics coupled to the 'external' environment. 
Consistency is guaranteed by homokinesys, energy minimization, complexity mini-
mization criteria. 

CPG will emerge naturally from a system like that described here, see [63]. 
A schematic representation is given in fig. 4 the links of the network allow to shape 

the information managed. Chaotic behaviors are induced from the outside environment 
noise. 

There are chances that such a system might exhibit sensory substitution behaviors 
like those observed in the mammal and human brains and sensory motor systems, see 
[41,42], this has to be thoroughly investigated. 

The most suitable tool to study such a system seems to be simulation as deducing 
closed form equations is challenging. 

5   Discussion 

Behavior based approaches in Robotics and AI have proven quite successful and 
might be considered a 'mapping ' of the S-R approach in psychology to the artificial 
domain. On the other end, as shown in section 2 there are hints that this might not be 
the best approach for the 'fit' interaction of an artificial or natural cognitive system 
with its environment. If we agree on that we must define an architectural framework 
capable to manage different anticipatory behavioral schemes.   

Traditionally in GOFAI (Good Old Fashioned Artificial Intelligence), the model of 
the environment is explicitly mapped into the artificial system with a specifically de-
signed symbolic structure superimposed and preimposed from the outside, by a sup-
posedly 'omniscient' agent, the designer of the system. (and here we may observe that 
the knowledge of the environment of the designer is still incomplete and with an inher-
ent probabilistic nature not necessarily capable of anticipating the real conditions with 
which the agent will have to cope). In control theory model based adaptive controls 
methods share the same inherent limitations. Predictive schemes based on stochastic 
identification methods like various kind of Kalman filters or less constraining polyno-
mial observers have the advantage of doing very limited assumptions on the controlled 
system equations (linearity for Kalman), but lack of flexibility as the objective of the 
control actions must be defined in advance. 

Under a certain respect, for a given physical system, the physical morphology and 
the natural dynamics force the possible combinations of sensor and actuator variables 
to a subset of all the values that in theory the system variables may assume while per-
forming a specific task, leading to 'morphological computation', [22,23]. 

We need a complex adaptive system which, exploiting his embodiment and situat-
edness and its network relations within its environment, it is capable of interacting 
within its environment in a proactive and purposive way anticipating 'desired' sensor  
input.  

A model of a typical environment should be a non linear (fractional derivatives?) 
stochastic many variable system exhibiting quite often itinerant chaos behavior with a 
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constant creation and disruption of new symmetries in a fractional (in the fractal 
sense) context. 

Actually we should not 'carve' in advance into the agent or network of agents such 
model as this will in any case restrict the autonomy and behavioral flexibility of the 
agent and limit them to the advance knowledge of the designer, but, instead we should 
conceive a framework which allows the 'spontaneous' emerging of the embodied 
model into the agent itself.  

We need a general behavioral structure generator exploiting its body dynamics and 
environment interaction patterns. The physics of the environment allows to limit the 
generality of the 'abstraction' that the system must be capable to generate. 
The prediction machine will be in general given by a wide set of interleaved fractional 
dimension – due to the attractors' fractional dimension in the phase space - internal 
processes continuously evolving multiply coupled with the 'external' processes origi-
nating by the active interactions (patterns) of the agent. 

There is a need to explain statistical learning as an emerging process from a net-
work of embodied agents with their own natural dynamics, [31]. 

As simple as it is, the model described above in the example given in paragraph 3.1 
allows to represent two essential aspects of our world: inertia (through the position 
second derivative and mass, and a basic (linear) force, or potential field (through the 
linear term in x), and energy conservation. The importance of 'time delay',i.e. phase 
relations, have proven to be important in the human and animal brains, [40]: they are 
a natural outcome of a physical oscillating system. 

Thanks to equation (2) we have a substantial equivalence between the computing 
made by the controller and that 'embodied' into the system. While the relations re-
called above, in section 3, show how the tasks can be split between the different 
agents. A system however implemented capable of representing these basic aspects is 
capable to have coupled oscillations with the external environment. Biological neu-
rons themselves can be modeled as non linear oscillators, [23,24]. On an different 
respect, also groups, subnetworks and networks of artificial neurons can show oscilla-
tory behaviors. We will see below some of the consequences we can (may) draw on 
the basis of these facts. 

In the classical target tracking example quoted above the PID controller together 
with 'body morphology' and the sensors allow this coupling. In this case the coupling 
is possible thanks to the external off line 'design' of an intelligent cognitive embodied 
agent: the system engineer who designed the 'intelligent' weapon.  

If dynamical coupling with 'external processes' is the basis of 'fit' interaction with 
the external environment, what we need is a system with a rich high dimensional dy-
namics, capable of establishing a wide set of multi scale recursive coupled oscillations 
with the environment. From what we have seen above in section 3 there is a substan-
tial equivalence between the 'extensive' information managed by the body morphol-
ogy and the 'intensive' information managed by a computer or by a biological neural 
network. 

The nervous system function in natural intelligent system might be that of mas-
sively increasing the number of dimensions of the system phase space allowing 
richer internal trajectories and making possible a wider number of dynamical cou-
plings with the exterior processes. The sensors and actuators translate from the  
'extensive' dynamics of the external world. 
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The modeling framework discussed in this paper is not the only possible one. 
For example, it has been shown that artificial neural networks may show attractors 

and limit cycles, so a possible alternative implementation can be by means of (a spe-
cial class) neural networks. It makes sense to think that the economy of program 
length and power absorption are more likely in nature in emerging structures coming 
from the evolution optimization process.  

Artificial autonomous systems have the same needs. We may think anyhow that 
any fit quantitative model of cognition should try to unify at deep level, information, 
control and non linear dynamics theory and general AI to be able to account for the 
behavioral complexities of what we observe in nature. 

We hypothesize here that hierarchical Bayesian systems observed in natural sys-
tems might be implemented as small-world networks of non linear oscillators. A sin-
gle neuron might be modeled as a chaotic non linear oscillator. From this perspective 
there is a continuous path from the the 'cognitive' processes in metabolic networks to 
the higher level behaviors in animals and humans. 

The basys of information processing is seen in system dynamics: like in a dance 
the coupled synchronized movements of the dancers deeply rely on their body inertial 
dynamics and the sympathetic knowledge of the other dancer inertial dynamics and 
'intentions'. 

It is thought that the symmetries of the physical world must be represented and 
mimicked inside a cognitive system. The biological neuron networks do that in a 
compressed volume, with limited program complexity and reduced power consump-
tion. This is possible thanks to the signal transduction operated by the sensor actua-
tion systems: from and to mechanical/electromagnetic (distributed) measures to chem-
ical electrical gradients. This gives a specific meaning to the interpretation of biologi-
cal neural networks as embodied massive parallel cognitive systems. 

6   Conclusions 

Although the theoretical framework discussed above may show serious mathematical 
challenges it is thought that it exemplifies some of the features that a working quanti-
tative general models of system of the kind we investigate and we aim to reproduce 
technically should have. An important characteristics of this conceptual model is the 
attempt to ground coordination of physical intelligent agents between them and with 
the environment on system dynamics and related information metrics, through the 
relations typical of stochastic control. 

In general what we need is a high dimensional system model with a rich internal 
dynamics capable of evolving over time many complex adaptive internal sub dina-
mycs coupled with the 'external' environment dynamics. 

This paper aims to suggest a methodology and to highlight a few of the challenges 
that the development of a working example of an embodied anticipatory cognitive 
system still presents. 

Perhaps what we need is an integrated approach putting together concepts and me-
thods from fields so far considered separated like non linear dynamics, information, 
computation and control theory as well as general AI and psychology. 

A lot of work has still to be done. 
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Appendix: Information Metrics Relation Proofs 

We will derive in the following the relations given in section 3. 
In a network model like those adopted in this discussion, [53,54], the probability βi 
that a new node will connect to a node i already present in the network is a function of 
the connectivity ki and on the fitness ηi of that node, such that 

j i

i
j jj
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η
η
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(A.1)

A node i will increase its connectivity ki at a rate that is proportional to the probability 
that a new node will attach to it, giving 
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The factor m accounts for the fact that each new node adds m links to the system. 
In [26] it is shown that the connectivity distribution, i.e. the probability that a node 
has k links, is given by the integral 
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where ρ(η) is the fitness distribution and C is given by: 

( )
( )

1
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(A.4) 

We define a proper ηi function which may basically be a performance index of the 
effectiveness of sensory motor coordination and which control the growth of the net-
work. 
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The physical agents constituting the system are connected physically, but also from 
an information standpoint. 

Equation (A.5) gives the expression for the Shannon entropy of the network of 
elements: 

1

( ) lo g ( )
k

H N P k P k
∞

=

= −∑
 

(A.5)

where P(k) represents the distribution of node connections and the 'infinite' in the 
summation is actually the big finite number of physical elements, considered, as a 
simplification, coinciding with the finite elements. 

It is important to notice that this is only a part of the information 'stored' into the 
system: the information in a single neuron or body element is given by equation (2). 

The aim of this short discussion is to show that a network of physical elements can 
actually manage information into the structure of its internal relations, as it can be 
shown starting from equation (A.5). The concept model described here actually repre-
sent a large class of similar models. 

In this section the discussion is related to the one in section 3, as the networks of 
agents we are considering here are actually embodied and situated dynamical sys-
tems, which do have a phase space representation. This allows to derive a few further 
relations. 

We can state, for a network of n physical elements, that: 

n

c o n tr o lle r i
i

H H N H IΔ = Δ + Δ − Δ∑  (A.6) 

where ΔHcontroller represents the information variation due to the controller, ΔHN is the 
information variation in the network itself, ΔHi  is the information variation for a sin-
gle embodied agent, ΔI the multi information between the n agents of the network and 
the network itself, this last term account for redundancies in information measures 
between the individual 'intelligent elements' of the structure and the structure itself. 
From equation (1), we have: 

max
n

closed open i
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And: 
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This is relation (II) 
Furthermore: 

( )
n

i
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This is relation (III) 
And from (2) and (A.6): 
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Applying again equation (2): 
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We derive: 
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If we define the quantities in (A.13), (A.14): 
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We obtain equation (A.15): 

m ax
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H N I
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This is relation (IV) 
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