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Abstract. I argue that data becomes temporarily interesting by itself to some
self-improving, but computationally limited, subjective observer once he learns to
predict or compress the data in a better way, thus making it subjectively
simpler and more beautiful. Curiosity is the desire to create or discover more
non-random, non-arbitrary, regular data that is novel and surprising not in the tra-
ditional sense of Boltzmann and Shannon but in the sense that it allows for com-
pression progress because its regularity was not yet known. This drive maximizes
interestingness, the first derivative of subjective beauty or compressibility, that
is, the steepness of the learning curve. It motivates exploring infants, pure math-
ematicians, composers, artists, dancers, comedians, yourself, and (since 1990)
artificial systems.

1 Store and Compress and Reward Compression Progress

If the history of the entire universe were computable [123, 124], and there is no evi-
dence against this possibility [84], then its simplest explanation would be the shortest
program that computes it [65, 70]. Unfortunately there is no general way of finding the
shortest program computing any given data [34,37,106,107]. Therefore physicists have
traditionally proceeded incrementally, analyzing just a small aspect of the world at any
given time, trying to find simple laws that allow for describing their limited observa-
tions better than the best previously known law, essentially trying to find a program
that compresses the observed data better than the best previously known program. For
example, Newton’s law of gravity can be formulated as a short piece of code which
allows for substantially compressing many observation sequences involving falling ap-
ples and other objects. Although its predictive power is limited—for example, it does
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not explain quantum fluctuations of apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream, by assigning short codes to events
that are predictable with high probability [28] under the assumption that the law holds.
Einstein’s general relativity theory yields additional compression progress as it com-
pactly explains many previously unexplained deviations from Newton’s predictions.

Most physicists believe there is still room for further advances. Physicists, however,
are not the only ones with a desire to improve the subjective compressibility of their ob-
servations. Since short and simple explanations of the past usually reflect some repeti-
tive regularity that helps to predict the future as well, every intelligent system interested
in achieving future goals should be motivated to compress the history of raw sensory
inputs in response to its actions, simply to improve its ability to plan ahead.

A long time ago, Piaget [49] already explained the explorative learning behavior of
children through his concepts of assimilation (new inputs are embedded in old
schemas—this may be viewed as a type of compression) and accommodation (adapting
an old schema to a new input—this may be viewed as a type of compression improve-
ment), but his informal ideas did not provide enough formal details to permit computer
implementations of his concepts. How to model a compression progress drive in arti-
ficial systems? Consider an active agent interacting with an initially unknown world.
We may use our general Reinforcement Learning (RL) framework of artificial curiosity
(1990-2008) [57,58,59,60,61,68,72,76,81,87,88,89,108] to make the agent discover
data that allows for additional compression progress and improved predictability. The
framework directs the agent towards a better understanding the world through active
exploration, even when external reward is rare or absent, through intrinsic reward or
curiosity reward for actions leading to discoveries of previously unknown regularities
in the action-dependent incoming data stream.

1.1 Outline

Section 1.2 will informally describe our algorithmic framework based on: (1) a contin-
ually improving predictor or compressor of the continually growing data history, (2) a
computable measure of the compressor’s progress (to calculate intrinsic rewards), (3)
a reward optimizer or reinforcement learner translating rewards into action sequences
expected to maximize future reward. The formal details are left to the Appendix, which
will elaborate on the underlying theoretical concepts and describe discrete time im-
plementations. Section 1.3 will discuss the relation to external reward (external in the
sense of: originating outside of the brain which is controlling the actions of its “ex-
ternal” body). Section 2 will informally show that many essential ingredients of intel-
ligence and cognition can be viewed as natural consequences of our framework, for
example, detection of novelty & surprise & interestingness, unsupervised shifts of at-
tention, subjective perception of beauty, curiosity, creativity, art, science, music, and
jokes. In particular, we reject the traditional Boltzmann / Shannon notion of surprise,
and demonstrate that both science and art can be regarded as by-products of the desire
to create / discover more data that is compressible in hitherto unknown ways. Section
3 will give an overview of previous concrete implementations of approximations of
our framework. Section 4 will apply the theory to images tailored to human observers,
illustrating the rewarding learning process leading from less to more subjective com-
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pressibility. Section 5 will outline how to improve our previous implementations, and
how to further test predictions of our theory in psychology and neuroscience.

1.2 Algorithmic Framework

The basic ideas are embodied by the following set of simple algorithmic principles
distilling some of the essential ideas in previous publications on this topic [57, 58, 59,
60, 61, 68, 72, 76, 81, 87, 88, 89, 108] As mentioned above, formal details are left to the
Appendix. As discussed in Section 2, the principles at least qualitatively explain many
aspects of intelligent agents such as humans. This encourages us to implement and
evaluate them in cognitive robots and other artificial systems.

1. Store everything. During interaction with the world, store the entire raw history of
actions and sensory observations including reward signals—the data is holy as it is
the only basis of all that can be known about the world. To see that full data storage
is not unrealistic: A human lifetime rarely lasts much longer than 3× 109 seconds.
The human brain has roughly 1010 neurons, each with 104 synapses on average.
Assuming that only half of the brain’s capacity is used for storing raw data, and
that each synapse can store at most 6 bits, there is still enough capacity to encode
the lifelong sensory input stream with a rate of roughly 105 bits/s, comparable to the
demands of a movie with reasonable resolution. The storage capacity of affordable
technical systems will soon exceed this value. If you can store the data, do not
throw it away!

2. Improve subjective compressibility. In principle, any regularity in the data history
can be used to compress it. The compressed version of the data can be viewed as
its simplifying explanation. Thus, to better explain the world, spend some of the
computation time on an adaptive compression algorithm trying to partially com-
press the data. For example, an adaptive neural network [8] may be able to learn
to predict or postdict some of the historic data from other historic data, thus incre-
mentally reducing the number of bits required to encode the whole. See Appendix
A.3 and A.5.

3. Let intrinsic curiosity reward reflect compression progress. The agent should
monitor the improvements of the adaptive data compressor: whenever it learns to
reduce the number of bits required to encode the historic data, generate an intrinsic
reward signal or curiosity reward signal in proportion to the learning progress or
compression progress, that is, the number of saved bits. See Appendix A.5 and
A.6.

4. Maximize intrinsic curiosity reward [57,58,59,60,61,68,72,76,81,88,87,108].
Let the action selector or controller use a general Reinforcement Learning (RL) al-
gorithm (which should be able to observe the current state of the adaptive compres-
sor) to maximize expected reward, including intrinsic curiosity reward. To optimize
the latter, a good RL algorithm will select actions that focus the agent’s attention
and learning capabilities on those aspects of the world that allow for finding or cre-
ating new, previously unknown but learnable regularities. In other words, it will try
to maximize the steepness of the compressor’s learning curve. This type of active
unsupervised learning can help to figure out how the world works. See Appendix
A.7, A.8, A.9, A.10.
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The framework above essentially specifies the objectives of a curious or creative sys-
tem, not the way of achieving the objectives through the choice of a particular adaptive
compressor or predictor and a particular RL algorithm. Some of the possible choices
leading to special instances of the framework (including previous concrete implemen-
tations) will be discussed later.

1.3 Relation to External Reward

Of course, the real goal of many cognitive systems is not just to satisfy their curiosity,
but to solve externally given problems. Any formalizable problem can be phrased as an
RL problem for an agent living in a possibly unknown environment, trying to maximize
the future external reward expected until the end of its possibly finite lifetime. The new
millennium brought a few extremely general, even universal RL algorithms (universal
problem solvers or universal artificial intelligences—see Appendix A.8, A.9) that are
optimal in various theoretical but not necessarily practical senses, e. g., [29, 79, 82,
83, 86, 85, 92]. To the extent that learning progress / compression progress / curiosity
as above are helpful, these universal methods will automatically discover and exploit
such concepts. Then why bother at all writing down an explicit framework for active
curiosity-based experimentation?

One answer is that the present universal approaches sweep under the carpet certain
problem-independent constant slowdowns, by burying them in the asymptotic notation
of theoretical computer science. They leave open an essential remaining question: If
the agent can execute only a fixed number of computational instructions per unit time
interval (say, 10 trillion elementary operations per second), what is the best way of us-
ing them to get as close as possible to the recent theoretical limits of universal AIs,
especially when external rewards are very rare, as is the case in many realistic envi-
ronments? The premise of this paper is that the curiosity drive is such a general and
generally useful concept for limited-resource RL in rare-reward environments that it
should be prewired, as opposed to be learnt from scratch, to save on (constant but pos-
sibly still huge) computation time. An inherent assumption of this approach is that in
realistic worlds a better explanation of the past can only help to better predict the fu-
ture, and to accelerate the search for solutions to externally given tasks, ignoring the
possibility that curiosity may actually be harmful and “kill the cat.”

2 Consequences of the Compression Progress Drive

Let us discuss how many essential ingredients of intelligence and cognition can be
viewed as natural by-products of the principles above.

2.1 Compact Internal Representations or Symbols as by-Products of Efficient
History Compression

To compress the history of observations so far, the compressor (say, a predictive neu-
ral network) will automatically create internal representations or symbols (for exam-
ple, patterns across certain neural feature detectors) for things that frequently repeat
themselves. Even when there is limited predictability, efficient compression can still
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be achieved by assigning short codes to events that are predictable with high proba-
bility [28, 95]. For example, the sun goes up every day. Hence it is efficient to create
internal symbols such as daylight to describe this repetitive aspect of the data history
by a short reusable piece of internal code, instead of storing just the raw data. In fact,
predictive neural networks are often observed to create such internal (and hiearchical)
codes as a by-product of minimizing their prediction error on the training data.

2.2 Consciousness as a Particular by-Product of Compression

There is one thing that is involved in all actions and sensory inputs of the agent, namely,
the agent itself. To efficiently encode the entire data history, it will profit from creating
some sort of internal symbol or code (e. g., a neural activity pattern) representing the
agent itself. Whenever this representation is actively used, say, by activating the corre-
sponding neurons through new incoming sensory inputs or otherwise, the agent could
be called self-aware or conscious.

This straight-forward explanation apparently does not abandon any essential aspects
of our intuitive concept of consciousness, yet seems substantially simpler than other
recent views [1, 2, 105, 101, 25, 12]. In the rest of this paper we will not have to attach
any particular mystic value to the notion of consciousness—in our view, it is just a nat-
ural by-product of the agent’s ongoing process of problem solving and world modeling
through data compression, and will not play a prominent role in the remainder of this
paper.

2.3 The Lazy Brain’s Subjective, Time-Dependent Sense of Beauty

Let O(t) denote the state of some subjective observer O at time t. According to our lazy
brain theory [67, 66, 69, 81, 87, 88], we may identify the subjective beauty B(D, O(t))
of a new observation D (but not its interestingness - see Section 2.4) as being propor-
tional to the number of bits required to encode D, given the observer’s limited previous
knowledge embodied by the current state of its adaptive compressor. For example, to
efficiently encode previously viewed human faces, a compressor such as a neural net-
work may find it useful to generate the internal representation of a prototype face. To
encode a new face, it must only encode the deviations from the prototype [67]. Thus
a new face that does not deviate much from the prototype [17, 48] will be subjectively
more beautiful than others. Similarly for faces that exhibit geometric regularities such
as symmetries or simple proportions [69,88]—in principle, the compressor may exploit
any regularity for reducing the number of bits required to store the data.

Generally speaking, among several sub-patterns classified as comparable by a given
observer, the subjectively most beautiful is the one with the simplest (shortest) de-
scription, given the observer’s current particular method for encoding and memoriz-
ing it [67, 69]. For example, mathematicians find beauty in a simple proof with a short
description in the formal language they are using. Others like geometrically simple,
aesthetically pleasing, low-complexity drawings of various objects [67, 69].

This immediately explains why many human observers prefer faces similar to their
own. What they see every day in the mirror will influence their subjective prototype
face, for simple reasons of coding efficiency.
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2.4 Subjective Interestingness as First Derivative of Subjective Beauty: The
Steepness of the Learning Curve

What’s beautiful is not necessarily interesting. A beautiful thing is interesting only as
long as it is new, that is, as long as the algorithmic regularity that makes it simple has
not yet been fully assimilated by the adaptive observer who is still learning to compress
the data better. It makes sense to define the time-dependent subjective Interestingness
I(D, O(t)) of data D relative to observer O at time t by

I(D, O(t)) ∼ ∂B(D, O(t))
∂t

, (1)

the first derivative of subjective beauty: as the learning agent improves its compression
algorithm, formerly apparently random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their encoding. As long as this process
is not over the data remains interesting and rewarding. The Appendix and Section 3 on
previous implementations will describe details of discrete time versions of this concept.
See also [59, 60, 108, 68, 72, 76, 81, 88, 87].

2.5 Pristine Beauty and Interestingness vs. External Rewards

Note that our above concepts of beauty and interestingness are limited and pristine in
the sense that they are not a priori related to pleasure derived from external rewards
(compare Section 1.3). For example, some might claim that a hot bath on a cold day
triggers “beautiful” feelings due to rewards for achieving prewired target values of ex-
ternal temperature sensors (external in the sense of: outside the brain which is control-
ling the actions of its external body). Or a song may be called “beautiful” for emotional
(e.g., [13]) reasons by some who associate it with memories of external pleasure through
their first kiss. Obviously this is not what we have in mind here—we are focusing solely
on rewards of the intrinsic type based on learning progress.

2.6 True Novelty and Surprise vs. Traditional Information Theory

Consider two extreme examples of uninteresting, unsurprising, boring data: A vision-
based agent that always stays in the dark will experience an extremely compressible,
soon totally predictable history of unchanging visual inputs. In front of a screen full
of white noise conveying a lot of information and “novelty” and “surprise” in the tra-
ditional sense of Boltzmann and Shannon [102], however, it will experience highly
unpredictable and fundamentally incompressible data. In both cases the data is bor-
ing [72, 88] as it does not allow for further compression progress. Therefore we re-
ject the traditional notion of surprise. Neither the arbitrary nor the fully predictable
is truly novel or surprising—only data with still unknown algorithmic regularities are
[57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89]!

2.7 Attention / Curiosity / Active Experimentation

In absence of external reward, or when there is no known way to further increase
the expected external reward, our controller essentially tries to maximize true nov-
elty or interestingness, the first derivative of subjective beauty or compressibility, the
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steepness of the learning curve. It will do its best to select action sequences expected
to create observations yielding maximal expected future compression progress, given
the limitations of both the compressor and the compressor improvement algorithm.
It will learn to focus its attention [96, 116] and its actively chosen experiments on
things that are currently still incompressible but are expected to become compress-
ible / predictable through additional learning. It will get bored by things that already
are subjectively compressible. It will also get bored by things that are currently in-
compressible but will apparently remain so, given the experience so far, or where the
costs of making them compressible exceed those of making other things compressible,
etc. [57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89].

2.8 Discoveries

An unusually large compression breakthrough deserves the name discovery. For exam-
ple, as mentioned in the introduction, the simple law of gravity can be described by a
very short piece of code, yet it allows for greatly compressing all previous observations
of falling apples and other objects.

2.9 Beyond Standard Unsupervised Learning

Traditional unsupervised learning is about finding regularities, by clustering the data, or
encoding it through a factorial code [4, 64] with statistically independent components,
or predicting parts of it from other parts. All of this may be viewed as special cases of
data compression. For example, where there are clusters, a data point can be efficiently
encoded by its cluster center plus relatively few bits for the deviation from the cen-
ter. Where there is data redundancy, a non-redundant factorial code [64] will be more
compact than the raw data. Where there is predictability, compression can be achieved
by assigning short codes to those parts of the observations that are predictable from
previous observations with high probability [28, 95]. Generally speaking we may say
that a major goal of traditional unsupervised learning is to improve the compression of
the observed data, by discovering a program that computes and thus explains the his-
tory (and hopefully does so quickly) but is clearly shorter than the shortest previously
known program of this kind.

Traditional unsupervised learning is not enough though—it just analyzes and en-
codes the data but does not choose it. We have to extend it along the dimension of
active action selection, since our unsupervised learner must also choose the actions that
influence the observed data, just like a scientist chooses his experiments, a baby its toys,
an artist his colors, a dancer his moves, or any attentive system [96] its next sensory in-
put. That’s precisely what is achieved by our RL-based framework for curiosity and
creativity.

2.10 Art and Music as by-Products of the Compression Progress Drive

Works of art and music may have important purposes beyond their social aspects [3]
despite of those who classify art as superfluous [50]. Good observer-dependent art
deepens the observer’s insights about this world or possible worlds, unveiling previ-
ously unknown regularities in compressible data, connecting previously disconnected
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patterns in an initially surprising way that makes the combination of these patterns sub-
jectively more compressible (art as an eye-opener), and eventually becomes known and
less interesting. I postulate that the active creation and attentive perception of all kinds
of artwork are just by-products of our principle of interestingness and curiosity yielding
reward for compressor improvements.

Let us elaborate on this idea in more detail, following the discussion in [81, 88]. Ar-
tificial or human observers must perceive art sequentially, and typically also actively,
e.g., through a sequence of attention-shifting eye saccades or camera movements scan-
ning a sculpture, or internal shifts of attention that filter and emphasize sounds made
by a pianist, while surpressing background noise. Undoubtedly many derive pleasure
and rewards from perceiving works of art, such as certain paintings, or songs. But dif-
ferent subjective observers with different sensory apparati and compressor improve-
ment algorithms will prefer different input sequences. Hence any objective theory of
what is good art must take the subjective observer as a parameter, to answer ques-
tions such as: Which sequences of actions and resulting shifts of attention should he
execute to maximize his pleasure? According to our principle he should select one
that maximizes the quickly learnable compressibility that is new, relative to his current
knowledge and his (usually limited) way of incorporating / learning / compressing new
data.

2.11 Music

For example, which song should some human observer select next? Not the one he
just heard ten times in a row. It became too predictable in the process. But also not
the new weird one with the completely unfamiliar rhythm and tonality. It seems too
irregular and contain too much arbitrariness and subjective noise. He should try a song
that is unfamiliar enough to contain somewhat unexpected harmonies or melodies or
beats etc., but familiar enough to allow for quickly recognizing the presence of a new
learnable regularity or compressibility in the sound stream. Sure, this song will get
boring over time, but not yet.

The observer dependence is illustrated by the fact that Schönberg’s twelve tone mu-
sic is less popular than certain pop music tunes, presumably because its algorithmic
structure is less obvious to many human observers as it is based on more complicated
harmonies. For example, frequency ratios of successive notes in twelve tone music of-
ten cannot be expressed as fractions of very small integers. Those with a prior education
about the basic concepts and objectives and constraints of twelve tone music, however,
tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our principle: The learning algorithm of the compressor of
a given subjective observer tries to better compress his history of acoustic and other
inputs where possible. The action selector tries to find history-influencing actions that
help to improve the compressor’s performance on the history so far. The interesting
musical and other subsequences are those with previously unknown yet learnable
types of regularities, because they lead to compressor improvements. The boring pat-
terns are those that seem arbitrary or random, or whose structure seems too hard to
understand.
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2.12 Paintings, Sculpture, Dance, Film etc.

Similar statements not only hold for other dynamic art including film and dance (taking
into account the compressibility of controller actions), but also for painting and sculp-
ture, which cause dynamic pattern sequences due to attention-shifting actions [96, 116]
of the observer.

2.13 No Objective “Ideal Ratio” between Expected and Unexpected

Some of the previous attempts at explaining aesthetic experiences in the context of
information theory [7, 41, 6, 44] emphasized the idea of an “ideal” ratio between ex-
pected and unexpected information conveyed by some aesthetic object (its “order” vs
its “complexity”). Note that our alternative approach does not have to postulate an ob-
jective ideal ratio of this kind. Instead our dynamic measure of interestingness reflects
the change in the number of bits required to encode an object, and explicitly takes into
account the subjective observer’s prior knowledge as well as the limitations of its com-
pression improvement algorithm.

2.14 Blurred Boundary between Active Creative Artists and Passive Perceivers
of Art

Just as observers get intrinsic rewards for sequentially focusing attention on artwork that
exhibits new, previously unknown regularities, the creative artists get reward for making
it. For example, I found it extremely rewarding to discover (after hundreds of frustrating
failed attempts) the simple geometric regularities that permitted the construction of the
drawings in Figures 1 and 2. The distinction between artists and observers is blurred
though. Both execute action sequences to exhibit new types of compressibility. The
intrinsic motivations of both are fully compatible with our simple principle.

Some artists, of course, crave external reward from other observers, in form of praise,
money, or both, in addition to the intrinsic compression improvement-based reward that
comes from creating a truly novel work of art. Our principle, however, conceptually
separates these two reward types.

2.15 How Artists and Scientists Are Alike

From our perspective, scientists are very much like artists. They actively select experi-
ments in search for simple but new laws compressing the resulting observation history.
In particular, the creativity of painters, dancers, musicians, pure mathematicians, physi-
cists, can be viewed as a mere by-product of our curiosity framework based on the com-
pression progress drive. All of them try to create new but non-random, non-arbitrary
data with surprising, previously unknown regularities. For example, many physicists
invent experiments to create data governed by previously unknown laws allowing to
further compress the data. On the other hand, many artists combine well-known objects
in a subjectively novel way such that the observer’s subjective description of the re-
sult is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.
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What is the main difference between science and art? The essence of science is to
formally nail down the nature of compression progress achieved through the discovery
of a new regularity. For example, the law of gravity can be described by just a few
symbols. In the fine arts, however, compression progress achieved by observing an art-
work combining previously disconnected things in a new way (art as an eye-opener)
may be subconscious and not at all formally describable by the observer, who may feel
the progress in terms of intrinsic reward without being able to say exactly which of his
memories became more subjectively compressible in the process.

The framework in the appendix is sufficiently formal to allow for implementation of
our principle on computers. The resulting artificial observers will vary in terms of the
computational power of their history compressors and learning algorithms. This will
influence what is good art / science to them, and what they find interesting.

2.16 Jokes and Other Sources of Fun

Just like other entertainers and artists, comedians also tend to combine well-known
concepts in a novel way such that the observer’s subjective description of the result
is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.

In many ways the laughs provoked by witty jokes are similar to those provoked by
the acquisition of new skills through both babies and adults. Past the age of 25 I learnt
to juggle three balls. It was not a sudden process but an incremental and rewarding one:
in the beginning I managed to juggle them for maybe one second before they fell down,
then two seconds, four seconds, etc., until I was able to do it right. Watching myself in
the mirror (as recommended by juggling teachers) I noticed an idiotic grin across my
face whenever I made progress. Later my little daughter grinned just like that when she
was able to stand on her own feet for the first time. All of this makes perfect sense within
our algorithmic framework: such grins presumably are triggered by intrinsic reward for
generating a data stream with previously unknown regularities, such as the sensory input
sequence corresponding to observing oneself juggling, which may be quite different
from the more familiar experience of observing somebody else juggling, and therefore
truly novel and intrinsically rewarding, until the adaptive predictor / compressor gets
used to it.

3 Previous Concrete Implementations of Systems Driven by
(Approximations of) Compression Progress

As mentioned earlier, predictors and compressors are closely related. Any type of par-
tial predictability of the incoming sensory data stream can be exploited to improve the
compressibility of the whole. Therefore the systems described in the first publications
on artificial curiosity [57,58,61] already can be viewed as examples of implementations
of a compression progress drive.

3.1 Reward for Prediction Error (1990)

Early work [57, 58, 61] described a predictor based on a recurrent neural network [115,
120,55,62,47,78] (in principle a rather powerful computational device, even by today’s
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machine learning standards), predicting sensory inputs including reward signals from
the entire history of previous inputs and actions. The curiosity rewards were propor-
tional to the predictor errors, that is, it was implicitly and optimistically assumed that
the predictor will indeed improve whenever its error is high.

3.2 Reward for Compression Progress through Predictor Improvements (1991)

Follow-up work [59,60] pointed out that this approach may be inappropriate, especially
in probabilistic environments: one should not focus on the errors of the predictor, but on
its improvements. Otherwise the system will concentrate its search on those parts of the
environment where it can always get high prediction errors due to noise or randomness,
or due to computational limitations of the predictor, which will prevent improvements
of the subjective compressibility of the data. While the neural predictor of the imple-
mentation described in the follow-up work was indeed computationally less powerful
than the previous one [61], there was a novelty, namely, an explicit (neural) adaptive
model of the predictor’s improvements. This model essentially learned to predict the
predictor’s changes. For example, although noise was unpredictable and led to wildly
varying target signals for the predictor, in the long run these signals did not change the
adaptive predictor parameters much, and the predictor of predictor changes was able to
learn this. A standard RL algorithm [114,33,109] was fed with curiosity reward signals
proportional to the expected long-term predictor changes, and thus tried to maximize
information gain [16, 31, 38, 51, 14] within the given limitations. In fact, we may say
that the system tried to maximize an approximation of the (discounted) sum of the ex-
pected first derivatives of the data’s subjective predictability, thus also maximizing an
approximation of the (discounted) sum of the expected changes of the data’s subjective
compressibility.

3.3 Reward for Relative Entropy between Agent’s Prior and Posterior (1995)

Additional follow-up work yielded an information theory-oriented variant of the ap-
proach in non-deterministic worlds [108] (1995). The curiosity reward was again pro-
portional to the predictor’s surprise / information gain, this time measured as the
Kullback-Leibler distance [35] between the learning predictor’s subjective probability
distributions before and after new observations - the relative entropy between its prior
and posterior.

In 2005 Baldi and Itti called this approach “Bayesian surprise” and demonstrated
experimentally that it explains certain patterns of human visual attention better than
certain previous approaches [32].

Note that the concepts of Huffman coding [28] and relative entropy between prior
and posterior immediately translate into a measure of learning progress reflecting the
number of saved bits—a measure of improved data compression.

Note also, however, that the naive probabilistic approach to data compression is un-
able to discover more general types of algorithmic compressibility [106, 34, 37, 73].
For example, the decimal expansion of π looks random and incompressible but isn’t:
there is a very short algorithm computing all of π, yet any finite sequence of digits will
occur in π’s expansion as frequently as expected if π were truly random, that is, no
simple statistical learner will outperform random guessing at predicting the next digit
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from a limited time window of previous digits. More general program search techniques
(e.g., [36, 75, 15, 46]) are necessary to extract the underlying algorithmic regularity.

3.4 Zero Sum Reward Games for Compression Progress Revealed by
Algorithmic Experiments (1997)

More recent work [68, 72] (1997) greatly increased the computational power of con-
troller and predictor by implementing them as co-evolving, symmetric, opposing mod-
ules consisting of self-modifying probabilistic programs [97, 98] written in a universal
programming language [18, 111]. The internal storage for temporary computational re-
sults of the programs was viewed as part of the changing environment. Each module
could suggest experiments in the form of probabilistic algorithms to be executed, and
make confident predictions about their effects by betting on their outcomes, where the
‘betting money’ essentially played the role of the intrinsic reward. The opposing module
could reject or accept the bet in a zero-sum game by making a contrary prediction. In
case of acceptance, the winner was determined by executing the algorithmic experiment
and checking its outcome; the money was eventually transferred from the surprised
loser to the confirmed winner. Both modules tried to maximize their money using a
rather general RL algorithm designed for complex stochastic policies [97, 98] (alterna-
tive RL algorithms could be plugged in as well). Thus both modules were motivated
to discover truly novel algorithmic regularity / compressibility, where the subjective
baseline for novelty was given by what the opponent already knew about the world’s
repetitive regularities.

The method can be viewed as system identification through co-evolution of com-
putable models and tests. In 2005 a similar co-evolutionary approach based on less
general models and tests was implemented by Bongard and Lipson [11].

3.5 Improving Real Reward Intake

Our references above demonstrated experimentally that the presence of intrinsic reward
or curiosity reward actually can speed up the collection of external reward.

3.6 Other Implementations

Recently several researchers also implemented variants or approximations of the cu-
riosity framework. Singh and Barto and coworkers focused on implementations within
the option framework of RL [5, 104], directly using prediction errors as curiosity re-
wards [57, 58, 61] —they actually were the ones who coined the expressions intrinsic
reward and intrinsically motivated RL. Additional implementations were presented at
the 2005 AAAI Spring Symposium on Developmental Robotics [9]; compare the Con-
nection Science Special Issue [10].

4 Visual Illustrations of Subjective Beauty and Its First Derivative
Interestingness

As mentioned above (Section 3.3), the probabilistic variant of our theory [108] (1995)
was able to explain certain shifts of human visual attention [32] (2005). But we can also
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Fig. 1. Previously published construction plan [69, 88] of a female face (1998). Some human
observers report they feel this face is ‘beautiful.’ Although the drawing has lots of noisy details
(texture etc) without an obvious short description, positions and shapes of the basic facial features
are compactly encodable through a very simple geometrical scheme, simpler and much more
precise than ancient facial proportion studies by Leonardo da Vinci and Albrecht Dürer. Hence
the image contains a highly compressible algorithmic regularity or pattern describable by few
bits of information. An observer can perceive it through a sequence of attentive eye movements
or saccades, and consciously or subconsciously discover the compressibility of the incoming
data stream. How was the picture made? First the sides of a square were partitioned into 24

equal intervals. Certain interval boundaries were connected to obtain three rotated, superimposed
grids based on lines with slopes ±1 or ±1/23 or ±23/1. Higher-resolution details of the grids
were obtained by iteratively selecting two previously generated, neighboring, parallel lines and
inserting a new one equidistant to both. Finally the grids were vertically compressed by a factor
of 1 − 2−4. The resulting lines and their intersections define essential boundaries and shapes of
eyebrows, eyes, lid shades, mouth, nose, and facial frame in a simple way that is obvious from
the construction plan. Although this plan is simple in hindsight, it was hard to find: hundreds of
my previous attempts at discovering such precise matches between simple geometries and pretty
faces failed.
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Fig. 2. Image of a butterfly and a vase with a flower, reprinted from Leonardo [67, 81]. An
explanation of how the image was constructed and why it has a very short description is given in
Figure 3.

apply our approach to the complementary problem of constructing images that contain
quickly learnable regularities, arguing again that there is no fundamental difference
between the motivation of creative artists and passive observers of visual art (Section
2.14). Both create action sequences yielding interesting inputs, where interestingness
is a measure of learning progress, for example, based on the relative entropy between
prior and posterior (Section 3.3), or the saved number of bits needed to encode the data
(Section 1), or something similar (Section 3).

Here we provide examples of subjective beauty tailored to human observers, and
illustrate the learning process leading from less to more subjective beauty. Due to the
nature of the present written medium, we have to use visual examples instead of acoustic
or tactile ones. Our examples are intended to support the hypothesis that unsupervised
attention and the creativity of artists, dancers, musicians, pure mathematicians are just
by-products of their compression progress drives.
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Fig. 3. Explanation of how Figure 2 was constructed through a very simple algorithm exploiting
fractal circles [67]. The frame is a circle; its leftmost point is the center of another circle of the
same size. Wherever two circles of equal size touch or intersect are centers of two more circles
with equal and half size, respectively. Each line of the drawing is a segment of some circle, its
endpoints are where circles touch or intersect. There are few big circles and many small ones.
In general, the smaller a circle, the more bits are needed to specify it. The drawing is simple
(compressible) as it is based on few, rather large circles. Many human observers report that they
derive a certain amount of pleasure from discovering this simplicity. The observer’s learning
process causes a reduction of the subjective complexity of the data, yielding a temporarily high
derivative of subjective beauty: a temporarily steep learning curve. (Again I needed a long time to
discover a satisfactory and rewarding way of using fractal circles to create a reasonable drawing.)

4.1 A Pretty Simple Face with a Short Algorithmic Description

Figure 1 depicts the construction plan of a female face considered ‘beautiful’ by some
human observers. It also shows that the essential features of this face follow a very
simple geometrical pattern [69] that can be specified by very few bits of information.
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That is, the data stream generated by observing the image (say, through a sequence
of eye saccades) is more compressible than it would be in the absence of such regu-
larities. Although few people are able to immediately see how the drawing was made
in absence of its superimposed grid-based explanation, most do notice that the facial
features somehow fit together and exhibit some sort of regularity. According to our pos-
tulate, the observer’s reward is generated by the conscious or subconscious discovery
of this compressibility. The face remains interesting until its observation does not re-
veal any additional previously unknown regularities. Then it becomes boring even in
the eyes of those who think it is beautiful—as has been pointed out repeatedly above,
beauty and interestingness are two different things.

4.2 Another Drawing That Can Be Encoded By Very Few Bits

Figure 2 provides another example: a butterfly and a vase with a flower. It can be spec-
ified by very few bits of information as it can be constructed through a very simple
procedure or algorithm based on fractal circle patterns [67]—see Figure 3. People who
understand this algorithm tend to appreciate the drawing more than those who do not.
They realize how simple it is. This is not an immediate, all-or-nothing, binary process
though. Since the typical human visual system has a lot of experience with circles, most
people quickly notice that the curves somehow fit together in a regular way. But few are
able to immediately state the precise geometric principles underlying the drawing [81].
This pattern, however, is learnable from Figure 3. The conscious or subconscious dis-
covery process leading from a longer to a shorter description of the data, or from less
to more compression, or from less to more subjectively perceived beauty, yields re-
ward depending on the first derivative of subjective beauty, that is, the steepness of the
learning curve.

5 Conclusion and Outlook

We pointed out that a surprisingly simple algorithmic principle based on the notions
of data compression and data compression progress informally explains fundamental
aspects of attention, novelty, surprise, interestingness, curiosity, creativity, subjective
beauty, jokes, and science & art in general. The crucial ingredients of the corresponding
formal framework are (1) a continually improving predictor or compressor of the con-
tinually growing data history, (2) a computable measure of the compressor’s progress
(to calculate intrinsic rewards), (3) a reward optimizer or reinforcement learner trans-
lating rewards into action sequences expected to maximize future reward. To improve
our previous implementations of these ingredients (Section 3), we will (1) study bet-
ter adaptive compressors, in particular, recent, novel RNNs [94] and other general but
practically feasible methods for making predictions [75]; (2) investigate under which
conditions learning progress measures can be computed both accurately and efficiently,
without frequent expensive compressor performance evaluations on the entire history so
far; (3) study the applicability of recent improved RL techniques in the fields of policy
gradients [110,119,118,56,100,117], artificial evolution [43,20,21,19,22,23,24], and
others [71, 75].
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Apart from building improved artificial curious agents, we can test the predictions of
our theory in psychological investigations of human behavior, extending previous stud-
ies in this vein [32] and going beyond anecdotal evidence mentioned above. It should
be easy to devise controlled experiments where test subjects must anticipate initially
unknown but causally connected event sequences exhibiting more or less complex,
learnable patterns or regularities. The subjects will be asked to quantify their intrinsic
rewards in response to their improved predictions. Is the reward indeed strongest when
the predictions are improving most rapidly? Does the intrinsic reward indeed vanish as
the predictions become perfect or do not improve any more?

Finally, how to test our predictions through studies in neuroscience? Currently we
hardly understand the human neural machinery. But it is well-known that certain neu-
rons seem to predict others, and brain scans show how certain brain areas light up in
response to reward. Therefore the psychological experiments suggested above should be
accompanied by neurophysiological studies to localize the origins of intrinsic rewards,
possibly linking them to improvements of neural predictors.

Success in this endeavor would provide additional motivation to implement our prin-
ciple on robots.

A Appendix

This appendix is based in part on references [81, 88].
The world can be explained to a degree by compressing it. Discoveries correspond

to large data compression improvements (found by the given, application-dependent
compressor improvement algorithm). How to build an adaptive agent that not only
tries to achieve externally given rewards but also to discover, in an unsupervised and
experiment-based fashion, explainable and compressible data? (The explanations
gained through explorative behavior may eventually help to solve teacher-given tasks.)

Let us formally consider a learning agent whose single life consists of discrete cycles
or time steps t = 1, 2, . . . , T . Its complete lifetime T may or may not be known in
advance. In what follows, the value of any time-varying variable Q at time t (1 ≤ t ≤ T )
will be denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t) by Q(≤ t),
and the (possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t). At any given t the
agent receives a real-valued input x(t) from the environment and executes a real-valued
action y(t) which may affect future inputs. At times t < T its goal is to maximize
future success or utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ)

∣∣∣∣∣ h(≤ t)

]
, (2)

where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple
[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eμ(· | ·) denotes the
conditional expectation operator with respect to some possibly unknown distribution
μ from a set M of possible distributions. Here M reflects whatever is known about
the possibly probabilistic reactions of the environment. For example, M may contain
all computable distributions [106, 107, 37, 29]. There is just one life, no need for pre-
defined repeatable trials, no restriction to Markovian interfaces between sensors and
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environment, and the utility function implicitly takes into account the expected remain-
ing lifespan Eμ(T | h(≤ t)) and thus the possibility to extend it through appropriate
actions [79, 82, 80, 92].

Recent work has led to the first learning machines that are universal and optimal in
various very general senses [29, 79, 82]. As mentioned in the introduction, such ma-
chines can in principle find out by themselves whether curiosity and world model con-
struction are useful or useless in a given environment, and learn to behave accordingly.
The present appendix, however, will assume a priori that compression / explanation of
the history is good and should be done; here we shall not worry about the possibility that
curiosity can be harmful and “kill the cat.” Towards this end, in the spirit of our previous
work since 1990 [57,58,61,59,60,108,68,72,76,81,88,87,89] we split the reward signal
r(t) into two scalar real-valued components: r(t) = g(rext(t), rint(t)), where g maps
pairs of real values to real values, e.g., g(a, b) = a + b. Here rext(t) denotes traditional
external reward provided by the environment, such as negative reward in response to
bumping against a wall, or positive reward in response to reaching some teacher-given
goal state. But for the purposes of this paper we are especially interested in rint(t), the
internal or intrinsic or curiosity reward, which is provided whenever the data compres-
sor / internal world model of the agent improves in some measurable sense. Our initial
focus will be on the case rext(t) = 0 for all valid t. The basic principle is essentially the
one we published before in various variants [57,58,61,59,60,108,68,72,76,81,88,87]:

Principle 1. Generate curiosity reward for the controller in response to improvements
of the predictor or history compressor.

So we conceptually separate the goal (explaining / compressing the history) from the
means of achieving the goal. Once the goal is formally specified in terms of an algo-
rithm for computing curiosity rewards, let the controller’s reinforcement learning (RL)
mechanism figure out how to translate such rewards into action sequences that allow
the given compressor improvement algorithm to find and exploit previously unknown
types of compressibility.

A.1 Predictors vs. Compressors

Much of our previous work on artificial curiosity was prediction-oriented, e. g., [57,
58,61,59,60,108,68,72,76]. Prediction and compression are closely related though. A
predictor that correctly predicts many x(τ), given history h(< τ), for 1 ≤ τ ≤ t, can
be used to encode h(≤ t) compactly. Given the predictor, only the wrongly predicted
x(τ) plus information about the corresponding time steps τ are necessary to reconstruct
history h(≤ t), e.g., [63]. Similarly, a predictor that learns a probability distribution of
the possible next events, given previous events, can be used to efficiently encode obser-
vations with high (respectively low) predicted probability by few (respectively many)
bits [28, 95], thus achieving a compressed history representation. Generally speaking,
we may view the predictor as the essential part of a program p that re-computes h(≤ t).
If this program is short in comparison to the raw data h(≤ t), then h(≤ t) is regular or
non-random [106,34,37,73], presumably reflecting essential environmental laws. Then
p may also be highly useful for predicting future, yet unseen x(τ) for τ > t.
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It should be mentioned, however, that the compressor-oriented approach to predic-
tion based on the principle of Minimum Description Length (MDL) [34,112,113,54,37]
does not necessarily converge to the correct predictions as quickly as Solomonoff’s uni-
versal inductive inference [106,107,37], although both approaches converge in the limit
under general conditions [52].

A.2 Which Predictor or History Compressor?

The complexity of evaluating some compressor p on history h(≤ t) depends on both
p and its performance measure C. Let us first focus on the former. Given t, one of the
simplest p will just use a linear mapping to predict x(t+1) from x(t) and y(t+1). More
complex p such as adaptive recurrent neural networks (RNN) [115, 120, 55, 62, 47, 26,
93,77,78] will use a nonlinear mapping and possibly the entire history h(≤ t) as a basis
for the predictions. In fact, the first work on artificial curiosity [61] focused on online
learning RNN of this type. A theoretically optimal predictor would be Solomonoff’s
above-mentioned universal induction scheme [106, 107, 37].

A.3 Compressor Performance Measures

At any time t (1 ≤ t < T ), given some compressor program p able to compress history
h(≤ t), let C(p, h(≤ t)) denote p’s compression performance on h(≤ t). An appropriate
performance measure would be

Cl(p, h(≤ t)) = l(p), (3)

where l(p) denotes the length of p, measured in number of bits: the shorter p, the more
algorithmic regularity and compressibility and predictability and lawfulness in the ob-
servations so far. The ultimate limit for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant
of the Kolmogorov complexity of h(≤ t), namely, the length of the shortest program
(for the given hardware) that computes an output starting with h(≤ t) [106, 34, 37, 73].

A.4 Compressor Performance Measures Taking Time into Account

Cl(p, h(≤ t)) does not take into account the time τ(p, h(≤ t)) spent by p on computing
h(≤ t). An alternative performance measure inspired by concepts of optimal universal
search [36, 75] is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (4)

Here compression by one bit is worth as much as runtime reduction by a factor of 1
2 .

From an asymptotic optimality-oriented point of view this is one of the best ways of
trading off storage and computation time [36, 75].

A.5 Measures of Compressor Progress / Learning Progress

The previous sections only discussed measures of compressor performance, but not of
performance improvement, which is the essential issue in our curiosity-oriented con-
text. To repeat the point made above: The important thing are the improvements of the
compressor, not its compression performance per se. Our curiosity reward in response
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to the compressor’s progress (due to some application-dependent compressor improve-
ment algorithm) between times t and t + 1 should be

rint(t + 1) = f [C(p(t), h(≤ t + 1)), C(p(t + 1), h(≤ t + 1))], (5)

where f maps pairs of real values to real values. Various alternative progress measures
are possible; most obvious is f(a, b) = a−b. This corresponds to a discrete time version
of maximizing the first derivative of subjective data compressibility.

Note that both the old and the new compressor have to be tested on the same data,
namely, the history so far.

A.6 Asynchronous Framework for Creating Curiosity Reward

Let p(t) denote the agent’s current compressor program at time t, s(t) its current con-
troller, and do:

Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and execute y(t + 1).
2. Observe x(t + 1).
3. Check if there is non-zero curiosity reward rint(t + 1) provided by the separate,

asynchronously running compressor improvement algorithm (see below). If not, set
rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) algorithm use h(≤ t+1) including
rint(t+1) (and possibly also the latest available compressed version of the observed
data—see below) to obtain a new controller s(t + 1), in line with objective (2).

Compressor: Set pnew equal to the initial data compressor. Starting at time 1, repeat
forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold = h(≤ t).
2. Evaluate pold on hold, to obtain C(pold, hold) (Section A.3). This may take many

time steps.
3. Let some (application-dependent) compressor improvement algorithm (such as a

learning algorithm for an adaptive neural network predictor) use hold to obtain
a hopefully better compressor pnew (such as a neural net with the same size but
improved prediction capability and therefore improved compression performance
[95]). Although this may take many time steps (and could be partially performed
during “sleep”), pnew may not be optimal, due to limitations of the learning algo-
rithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This may take many time steps.
5. Get current time step τ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (6)

e.g., f(a, b) = a − b; see Section A.5.
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Obviously this asynchronuous scheme may cause long temporal delays between con-
troller actions and corresponding curiosity rewards. This may impose a heavy burden
on the controller’s RL algorithm whose task is to assign credit to past actions (to in-
form the controller about beginnings of compressor evaluation processes etc., we may
augment its input by unique representations of such events). Nevertheless, there are
RL algorithms for this purpose which are theoretically optimal in various senses, to be
discussed next.

A.7 Optimal Curiosity and Creativity and Focus of Attention

Our chosen compressor class typically will have certain computational limitations. In
the absence of any external rewards, we may define optimal pure curiosity behavior rel-
ative to these limitations: At time t this behavior would select the action that maximizes

u(t) = Eμ

[
T∑

τ=t+1

rint(τ)

∣∣∣∣∣ h(≤ t)

]
. (7)

Since the true, world-governing probability distribution μ is unknown, the resulting
task of the controller’s RL algorithm may be a formidable one. As the system is re-
visiting previously incompressible parts of the environment, some of those will tend to
become more subjectively compressible, and the corresponding curiosity rewards will
decrease over time. A good RL algorithm must somehow detect and then predict this
decrease, and act accordingly. Traditional RL algorithms [33], however, do not provide
any theoretical guarantee of optimality for such situations. (This is not to say though
that sub-optimal RL methods may not lead to success in certain applications; experi-
mental studies might lead to interesting insights.)

Let us first make the natural assumption that the compressor is not super-complex
such as Kolmogorov’s, that is, its output and rint(t) are computable for all t. Is there
a best possible RL algorithm that comes as close as any other to maximizing objective
(7)? Indeed, there is. Its drawback, however, is that it is not computable in finite time.
Nevertheless, it serves as a reference point for defining what is achievable at best.

A.8 Optimal but Incomputable Action Selector

There is an optimal way of selecting actions which makes use of Solomonoff’s theo-
retically optimal universal predictors and their Bayesian learning algorithms [106, 107,
37, 29, 30]. The latter only assume that the reactions of the environment are sampled
from an unknown probability distribution μ contained in a set M of all enumerable
distributions—compare text after equation (2). More precisely, given an observation se-
quence q(≤ t) we want to use the Bayes formula to predict the probability of the next
possible q(t + 1). Our only assumption is that there exists a computer program that can
take any q(≤ t) as an input and compute its a priori probability according to the μ prior.
In general we do not know this program, hence we predict using a mixture prior instead:

ξ(q(≤ t)) =
∑

i

wiμi(q(≤ t)), (8)
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a weighted sum of all distributions μi ∈ M, i = 1, 2, . . ., where the sum of the constant
positive weights satisfies

∑
i wi ≤ 1. This is indeed the best one can possibly do, in a

very general sense [107, 29]. The drawback of the scheme is its incomputability, since
M contains infinitely many distributions. We may increase the theoretical power of the
scheme by augmenting M by certain non-enumerable but limit-computable distribu-
tions [73], or restrict it such that it becomes computable, e.g., by assuming the world
is computed by some unknown but deterministic computer program sampled from the
Speed Prior [74] which assigns low probability to environments that are hard to com-
pute by any method.

Once we have such an optimal predictor, we can extend it by formally including
the effects of executed actions to define an optimal action selector maximizing future
expected reward. At any time t, Hutter’s theoretically optimal (yet uncomputable) RL
algorithm AIXI [29] uses an extended version of Solomonoff’s prediction scheme to
select those action sequences that promise maximal future reward up to some horizon
T , given the current data h(≤ t). That is, in cycle t + 1, AIXI selects as its next action
the first action of an action sequence maximizing ξ-predicted reward up to the given
horizon, appropriately generalizing eq. (8). AIXI uses observations optimally [29]: the
Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the sense that
its average utility value converges asymptotically for all μ ∈ M to the optimal value
achieved by the Bayes-optimal policy pμ which knows μ in advance. The necessary
and sufficient condition is that M admits self-optimizing policies. The policy pξ is also
Pareto-optimal in the sense that there is no other policy yielding higher or equal value
in all environments ν ∈ M and a strictly higher value in at least one [29].

A.9 A Computable Selector of Provably Optimal Actions

AIXI above needs unlimited computation time. Its computable variant AIXI(t,l) [29] has
asymptotically optimal runtime but may suffer from a huge constant slowdown. To take
the consumed computation time into account in a general, optimal way, we may use the
recent Gödel machines [79, 82, 80, 92] instead. They represent the first class of math-
ematically rigorous, fully self-referential, self-improving, general, optimally efficient
problem solvers. They are also applicable to the problem embodied by objective (7).

The initial software S of such a Gödel machine contains an initial problem solver,
e.g., some typically sub-optimal method [33]. It also contains an asymptotically optimal
initial proof searcher based on an online variant of Levin’s Universal Search [36], which
is used to run and test proof techniques. Proof techniques are programs written in a
universal language implemented on the Gödel machine within S. They are in principle
able to compute proofs concerning the system’s own future performance, based on an
axiomatic system A encoded in S. A describes the formal utility function, in our case
eq. (7), the hardware properties, axioms of arithmetic and probability theory and data
manipulation etc, and S itself, which is possible without introducing circularity [92].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel ma-
chine rewrites any part of its own code (including the proof searcher) through a self-
generated executable program as soon as its Universal Search variant has found a proof
that the rewrite is useful according to objective (7). According to the Global Optimal-
ity Theorem [79, 82, 80, 92], such a self-rewrite is globally optimal—no local maxima
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possible!—since the self-referential code first had to prove that it is not useful to con-
tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewriting S at all, then humans will not
find one either. But if there is one, then S itself can find and exploit it. Unlike the pre-
vious non-self-referential methods based on hardwired proof searchers [29], Gödel ma-
chines not only boast an optimal order of complexity but can optimally reduce (through
self-changes) any slowdowns hidden by the O()-notation, provided the utility of such
speed-ups is provable. Compare [83, 86, 85].

A.10 Non-universal But Still General and Practical RL Algorithms

Recently there has been substantial progress in RL algorithms that are not quite as
universal as those above, but nevertheless capable of learning very general, program-
like behavior. In particular, evolutionary methods [53, 99, 27] can be used for training
Recurrent Neural Networks (RNN), which are general computers. Many approaches
to evolving RNN have been proposed [40, 122, 121, 45, 39, 103, 42]. One particularly
effective family of methods uses cooperative coevolution to search the space of net-
work components (neurons or individual synapses) instead of complete networks. The
components are coevolved by combining them into networks, and selecting those for
reproduction that participated in the best performing networks [43, 20, 21, 19, 22, 24].
Other recent RL techniques for RNN are based on the concept of policy gradients
[110, 119, 118, 56, 100, 117]. It will be of interest to evaluate variants of such control
learning algorithms within the curiosity reward framework.
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18. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)
19. Gomez, F.J.: Robust Nonlinear Control through Neuroevolution. Ph.D thesis, Department

of Computer Sciences, University of Texas at Austin (2003)
20. Gomez, F.J., Miikkulainen, R.: Incremental evolution of complex general behavior. Adap-

tive Behavior 5, 317–342 (1997)
21. Gomez, F.J., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevolution.

In: Proc. IJCAI 1999, Denver, CO. Morgan Kaufmann, San Francisco (1999)
22. Gomez, F.J., Miikkulainen, R.: Active guidance for a finless rocket using neuroevolution.

In: Proc. GECCO 2003, Chicago (2003); Winner of Best Paper Award in Real World Ap-
plications. Gomez is working at IDSIA on a CSEM grant to Schmidhuber, J.

23. Gomez, F.J., Schmidhuber, J.: Co-evolving recurrent neurons learn deep memory POMDPs.
In: Proc. of the 2005 conference on genetic and evolutionary computation (GECCO),
Washington, D.C. ACM Press, New York (2005); Nominated for a best paper award

24. Gomez, F.J., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through neu-
roevolution. Journal of Machine Learning Research JMLR 9, 937–965 (2008)

25. Haikonen, P.: The Cognitive Approach to Conscious Machines. Imprint Academic (2003)
26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8),

1735–1780 (1997)
27. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor (1975)
28. Huffman, D.A.: A method for construction of minimum-redundancy codes. Proceedings

IRE 40, 1098–1101 (1952)
29. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic

Probability. Springer, Berlin (1847); On Schmidhuber’s, J.: SNF grant 20-61847
30. Hutter, M.: On universal prediction and Bayesian confirmation. Theoretical Computer Sci-

ence (2007)

http://cs.brynmawr.edu/DevRob05/schedule/


72 J. Schmidhuber

31. Hwang, J., Choi, J., Oh, S., Marks II., R.J.: Query-based learning applied to partially trained
multilayer perceptrons. IEEE Transactions on Neural Networks 2(1), 131–136 (1991)

32. Itti, L., Baldi, P.F.: Bayesian surprise attracts human attention. In: Advances in Neural In-
formation Processing Systems 19, pp. 547–554. MIT Press, Cambridge (2005)

33. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of
AI research 4, 237–285 (1996)

34. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems
of Information Transmission 1, 1–11 (1965)

35. Kullback, S.: Statistics and Information Theory. J. Wiley and Sons, New York (1959)
36. Levin, L.A.: Universal sequential search problems. Problems of Information Transmis-

sion 9(3), 265–266 (1973)
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