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Preface 
 
 
 
 

Anticipatory behavior in adaptive learning systems continues to attract the attention of 
researchers in many areas, including cognitive systems, neuroscience, psychology, 
and machine learning. The ABiALS workshop series is now in its fourth edition – and 
it is very vital.  

The 4th Workshop on Anticipatory Behavior in Adaptive Learning Systems  
(ABiALS 2008) was held in collaboration with the 5th Six-Monthly Meeting of  
euCognition: “The Role of Anticipation in Cognition" in Munich, June 26–27, 2008.  

EuCognition, the European Network for the Advancement of Articial Cognitive 
Systems (FP6-26408), funded this stimulating two-day event which saw the participa-
tion of six invited speakers (four of whom contributed to this book) and over 50 re-
searchers from several European nations and abroad. Over 20 papers were discussed, 
either in oral or poster presentations. We are grateful to the euCognition's Executive 
Committee, and in particular to David Vernon, for giving us the possibility of holding 
the fourth ABiALS meeting in collaboration with the euCognition meeting, and for 
generously sponsoring both events. 

We are grateful to our Program Committee members for providing careful reviews 
of the contributions, and additional comments and suggestions, which have greatly 
enhanced the quality of this book. 

Thanks to the numerous participants – with different backgrounds, but with con-
verging interests – the workshop hosted an extremely stimulating discussion and 
comparison of ideas which touched numerous topics, including time scales in predic-
tion, how anticipation relates to hierarchies in the control of action, in what sense an-
ticipatory mechanisms of living organisms are related (or the same) across different 
domains, or what could be the foundations of artificial systems provided with antici-
patory capabilities. 

The numerous interactions we had during the two-day event testified an extremely 
vivid interest in basic issues related to prediction and anticipation in many disciplines 
and from several perspectives. This makes the sharing of a common language ex-
tremely important. For this reason, the introductory chapter of this volume revisits the 
current available terminology on anticipatory behavior and relates it to the available 
system approaches. In addition, the introductory chapter offers an overview of the 
contributions in this volume. The contributions have been grouped in six sections: 
“Anticipation in Psychology: Focus on the Ideomotor View,” “Conceptualizations,” 
“Anticipation and Dynamical Systems,” “Computational Modeling of Psychological 
Processes in the Individual and Social Domains,” “Behavioral and Cognitive Capa-
bilities Based on Anticipation,” and “Computational Frameworks and Algorithms for 
Anticipation, and Their Evaluation.” 

One remarkable aspect of this volume is that numerous papers encompass more than 
one discipline, and in particular study the close relationships between the study of living 
organisms and the realization of computational modeling of anticipatory mechanisms. 
This interaction is clearly bidirectional. Some papers start with psychological theories 
and empirical evidence to inform the study and realization of computational and robotic 
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models. Others apply insights from computer science or information theory to suggest 
novel ways to look at empirical phenomena, or to explain empirical data.  

In addition to its role in producing scientific advancements and promoting cross-
disciplinary discussions, ABiALS continues in its community-building activity, too. 
A novelty this year was the setting up of a Web portal focused on anticipatory 
behavior, with the intention of further disseminating ideas and fostering discussions 
and collaborations within and outside the ABiALS community:  
http://www.anticipatorybehavior.org/ 
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Abstract. This book continues the enhanced post-workshop proceed-
ings series on “Anticipatory Behavior in Adaptive Learning System”
(ABiALS), published as Springer LNAI 2684 and LNAI 4520 [3,5]. The
proceedings offer a multidisciplinary perspective on anticipatory mecha-
nisms in cognitive, social, learning, and behavioral processes, with con-
tributions from key researchers in psychology and computer science. This
introduction offers a conceptual terminology on anticipatory mechanisms
and involved predictive capabilities. Moreover, it provides an overview
of the book contributions, highlighting some of their peculiarities and
complementarities.

Keywords: Anticipation, anticipatory behavior, prediction, simulation,
goal-directed behaviour.

1 Introduction

This book is the third volume of extended post-workshop proceedings on “Antici-
patory Behavior in Adaptive Learning System” (ABiALS). The previous two vol-
umes were published as Springer LNAI 2684 and LNAI 4520 [3,5]. The theme of
anticipation and anticipatory behavior continues to gather attention from schol-
ars of many disciplines, including computer science, psychology, neuroscience,
and philosophy.

G. Pezzulo et al. (Eds.): ABiALS 2008, LNAI 5499, pp. 1–9, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 G. Pezzulo et al.

Anticipatory mechanisms are increasingly recognized as a key research area.
At the European level, the EU Commission has recognized the relevance of the
theme of anticipation by funding the MindRACES (from Reactive to Anticipa-
tory Cognitive Embodied Systems) project (FP6-511931) in the area of Cogni-
tive Systems research. One of the final outputs of the MindRACES project is
a collective book on anticipation [10]. Successively, the theme of anticipation
has been targeted by numerous EU-funded projects. For instance, the Technical
Background Notes for Proposers document of the EU Commission (relative to
FP7-ICT CALL 4, Work Programme 2009-10, Challenge 2: Cognitive Systems,
Interaction, Robotics, pag. 10) indicates the following key research question:
How can we predict (and anticipate) future events in their environment (includ-
ing, where relevant, the behavior of other agents - human or not - operating in
the same environment)?

The last edition of the ABiALS workshop was sponsored and hosted by the
EU-funded Coordination Action euCognition: The European Network for the
Advancement of Artificial Cognitive Systems (FP6-26408). Thanks to the eu-
Cognition’s Executive Committee, and in particular thanks to David Vernon,
the athors were able to organize an extremely stimulating two-days event (held
on 26 and 27 June 2008 at Munich), which combined ABiALS 2008 and the
Fifth Six-Monthly Meeting of euCognition“The Role of Anticipation in Cogni-
tion”. The two-days event saw the participation of six invited speakers (four of
whom contributed to this book), over twenty papers discussed either in oral or
poster presentations, and the participation of over fifty researchers coming from
several European nations and from outside Europe. Most of the contributors of
this book participated to this event.

Within this renewed interest on anticipation and anticipatory behavior, the
goal pursued by the ABiALS workshop series is to foster interactions, mutual
understanding, and effective communications and cooperations between scien-
tists belonging to different disciplinary domains, which nonetheless work on the
same subject. To do so, we believe that it is also necessary to continue develop-
ing the theoretical and computational foundations of the study of anticipation in
natural and artificial agents, and to integrate insights from many disciplines into
a principled approach for the study of living systems and the design of artificial
systems – also termed the anticipatory approach [4,10].

The anticipatory approach aims to understanding and conceptualizing antici-
pation and anticipatory behavior in natural cognition and to implementing them
in artificial systems. Anticipatory systems have capabilities that go far beyond
those of purely reactive ones and anticipation is a strong prerequisite for various
cognitive functions and for goal-directed behavior. This introductory chapter
first revisits the terminology of anticipatory systems and then introduces the
book’s contributions and their key aspects.

2 Basic Terminology Revisited

Although anticipations and predictions are often used nearly as synonyms in
natural language, in scientific realms there is a clear distinction between
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predictive systems and anticipatory systems. Generally, anticipatory systems
are those that use their predictive capabilities to optimize behavior and learn-
ing to the best of their knowledge. Rosen [11, ch. 6] might have been one of
the first who put this idea into a useful definition. According to this author, an
anticipatory system is:

[...] a system containing a predictive model of itself and/or its envi-
ronment, which allows it to change state at an instant in accord with
the model’s predictions pertaining to a latter instant.

More precisely, he also states that:

An anticipatory system S2 is one which contains a model of a system
S1 with which it interacts. This model is a predictive model; its present
states provide information about future states of S1. Further, the present
state of the model causes a change of state in other subsystems of S2;
these subsystems are (a) involved in the interaction of S2 with S1, and (b)
they do not affect (that is, are unlinked to) the model of S1. In general,
we can regard the change of state in S2 arising from the model as an
adaptation, or pre-adaptation, of S2 relative to its interaction with S1.

The most peculiar aspect of anticipatory systems is thus their dependence
on (predicted) future states and not only on past states. Although the defini-
tion provided by Rosen may be too strong (it excludes systems that coordinate
with future states without explicitly representing them – we call this form im-
plicit anticipation), it describes the kinds of systems we are mainly interested
in: those able to realize behavior mediated by explicitly formulated expectations
(explicit anticipation). In order to produce explicit expectations, anticipatory
systems need predictive mechanisms, which may have different realizations, but
nevertheless share the common feature of predicting future states.

Thanks to their predictive mechanisms, anticipatory systems can employ an-
ticipatory behavior, which may be defined according to [2, p. 3] as:

[...] a process or behavior that does not only depend on past and
present but also on predictions, expectations, or beliefs about the future.

It is this capability to formulate predictions and to use them for own pur-
poses that distinguishes an anticipatory system from a merely reactive one. For
example, anticipation plays a key role in goal-directed and proactive behavior,
since patterns of actions can be selected depending on their expected outcomes
and not (only) on stimuli that are available here and now. While reactive sys-
tems can be functionally described with stimulus → action (S-A) behavioral
patterns, anticipatory systems are instead based on expectation → action
(E-A) behavioral patterns, which are permitted by the explicit prediction of
a stimulus or an action effect (stimulus → expectation (S-E), or stimu-
lus action → expectation (S-A-E)). However consider that, as it will be
clearly shown by the works presented in the book, anticipatory behavior can have
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different functional organization and can rely upon a multitude of different spe-
cific mechanisms.

A last important distinction needs to be drawn between “prediction” and
“anticipation”:

Prediction is a representation of a particular future event.
Anticipation involves processes underlying future-oriented action, decisions,

and behaviors based on (implicit or explicit) prediction.

Thus, anticipation – the main focus of this book – includes prediction but goes
beyond mere forecasting in that it refers to processes which use predictive knowl-
edge to coordinate behavior and, more importantly, to act in a goal-directed
fashion and pro-actively to realize achievable and desirable future states while
avoiding unsuitable ones.

3 Overview of the Book

Due to the interdisciplinary nature of the theme of anticipation, and the var-
iegated audience of the ABiALS workshop, the book includes a diverse range
of contributions that vary from psychological theories to evaluation of compu-
tational frameworks based on anticipation and real-world applications. To ease
reading, the book contributions, now reviewed one by one, are grouped into six
categories.

A technical note before starting. This section references to all the works of
the book in terms of authors and title of the respective book chapters, but a
whole reference of the works can be searched for (for example) as:

Pezzulo G., Butz M.V., Sigaud O., Baldassarre G. (2009). From
sensorimotor to higher-level cognitive processes: An introduction to an-
ticipatory behavior systems. In Pezzulo G., Butz M.V., Sigaud O.,
Baldassarre G. (Eds.), Anticipatory Behavior in Adaptive Learning Sys-
tems – From Psychological Theories to Artificial Cognitive Systems,
LNAI 5499. Berling: Springer-Verlag.

3.1 Anticipation in Psychology: Focus on the Ideomotor Principle

The book includes two (invited) contributions by two leading cognitive psychol-
ogists, Joachim Hoffmann and Bernhard Hommel, that put forward an ideomo-
tor view of goal-directed action. They present their comprehensive frameworks
ABC (Anticipative Behavioral Control) [6] and TEC (Theory of Event Coding)
[7], which place anticipation at the very core of cognition. In addition, both
contributions discuss in depth how their ideas are being implemented in robotic
systems.

The first paper, contributed by Joachim Hoffmann (ABC: A Psychological
Theory of Anticipative Behavioral Control), offers a complete ideomotor model
of goal-directed action and discusses in detail the roles of action-effect con-
tingencies: how are they acquired and contextualized, and how can they be
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arranged hierarchically to realized nested loops of control that permit the trans-
formation of abstractly defined goals into motor patterns. The paper reviews
recent empirical evidence in favor of the ABC theory, and discusses a recent
computational implementation: the SURE REACH architecture [1].

The second paper, contributed by Pascal Haazebroek and Bernhard Hommel
(Anticipative Control of Voluntary Action: Towards a Computational Model),
describes another theory based on the ideomotor principle: the Theory of Event
Coding on human goal-directed action. Differently from Hoffmann’s theory, one
of the main tenets of the TEC is that integration of perceptual and motor codes
is realized at a distal level; specifically, at the level of distal perceptual effects
of actions, not their proximal ones such as reafferences. As a consequence, the
TEC describes planning as operating on distal perceptual codes and on-line
realization by different (automatic) processes. The paper discusses also a recent
implementation of the TEC theory: the HiTEC computational model.

3.2 Theoretical and Review Contributions

The book continues with three theoretical and review contributions that explore
multiple facets of anticipation and anticipatory behavior.

The first paper is a quite provocative invited contribution by Jurgen Schmid-
huber (Driven by Compression Progress: A Simple Principle Explains Essential
Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Cu-
riosity, Creativity, Art, Science, Music, Jokes). The author introduces the princi-
ple of ‘data compression progress’, that is equivalent to an augmented capability
to predict data, as a basic mechanism that makes data ‘interesting in itself’ and
motivates exploratory behavior. This principle has the potential to be relevant
for multiple domains, which range from art to science, and captures the slipping
concept of ‘beauty’ in a rigorous and extremely interesting way.

The second paper is contributed by Fabio P. Bonsignorio (Steps to a Cyber-
Physical Model of Networked Embodied Anticipatory Behavior). It sketches a
modeling framework for embodied anticipatory behavior systems by using a wide
range of formal notions such as entropy, complexity, and information. Although
still rather preliminary, this paper introduces numerous essential issues toward
the development of more autonomous artificial systems based on anticipatory
capabilities.

The last paper is authored by Henrik Svensson, Anthony Morse, and Tom
Ziemke (Neural Pathways of Embodied Simulation). This paper offers a deep
discussion of the many facets of recent theories based on the idea of internal
simulation. The main contributions of this paper are a comprehensive review of
the multiple pathways in neural simulations and a discussion of the differences
between procedural and declarative knowledge in covert simulation.

3.3 Anticipation and Dynamical Systems

Two papers explore anticipation in relation to internal agent dynamics, and
discuss two kinds of anticipatory processes that are coupled to internal dynamics
rather than responsible for the selection and triggering of overt behavior.



6 G. Pezzulo et al.

In the first paper, Michela Ponticorvo, Domenico Parisi, and Orazio Miglino
(The Autopoietic Nature of the “Inner World”: A Study with Evolved “Blind”
Robots) explore the internal dynamics of an agent that is deprived of any external
stimulation. In these extreme circumstances, the agent cannot rely on external
stimuli to predict the effects of its actions, but only on self-generated stimuli –
an ‘inner world’. The paper shows that, even in these conditions, artificial agents
can be evolved that show significant adaptivity thanks to the coupling of their
‘inner worlds’ and the external environment.

The second paper is contributed by Alberto Montebelli, Robert Lowe, and
Tom Ziemke (The Cognitive Body: From Dynamic Modulation to Anticipation).
Here the basic agent architecture is characterized by the presence of a moti-
vational internal state, having slowly changing dynamics, which modulates the
agent’s activity. This architecture is then augmented with an anticipatory mecha-
nism, which is directly coupled to the internal unit. The anticipatory mechanism
significantly enhances the agent’s adaptivity. The most peculiar aspect of this
paper is that – in contrast to standard implementations – anticipation operates
through bodily mediation by modulating the internal dynamics, rather than by
triggering direct behavioral responses.

3.4 Computational Modeling of Psychological Processes in the
Individual and Social Domains

Four papers are devoted to modeling and interpreting specific psychological ex-
periments. In particular, they investigate sustained inattentional blindness, the
foreperiod paradigm, collision avoidance behavior, and cooperative dynamics in
the Iterated Prisoner’s Dilemma game.

Anthony F. Morse, Robert Lowe, and Tom Ziemke (A Neurocomputational
Model of Anticipation and Sustained Inattentional Blindness in Hierarchies)
present a model of how sustained inattentional blindness results from a pro-
cess of anticipation of task-relevant features. In a simulated ‘input tracking’
task, the authors find that anticipation enhances performance of the task and
simultaneously degrades detection of unexpected features, thereby modeling the
sustained inattentional blindness effect.

Johannes Lohmann, Oliver Herbort, Annika Wagener, and Andrea Kiesel (An-
ticipation of Time Spans: New Data from the Foreperiod Paradigm and the
Adaptation of a Computational Model) first review empirical and theoretical
literature on the foreperiod paradigm, where subjects are asked to react to
events that occur at more or less unpredictable times after a warning stimu-
lus (foreperiod). Then in a model they systematically vary predictability of the
foreperiods and find adaptation to different probability distributions with a pro-
nounced adaptation for the peaked more-predictable one. Finally the authors
discuss their results in relation to the computational model proposed by Los
and colleagues [8].

Janneke Lommertzen, Eliana Costa e Silva, Raymond H. Cuijpers, and Ruud
G.J. Meulenbroek (Collision-Avoidance Characteristics of Grasping: Early
Signs in Hand and Arm Kinematics) have studied prehension kinematics and
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collision-avoidance strategies in grasping tasks. Their study shows that different
forms of objects (small or large cylinders) elicits different approaching phases
and subjects successfully avoid collisions by adapting the last phase of their
movements (aperture overshoots) and by adjusting the movements of their dis-
tal joints. The authors relate their study to computational models of reaching
and collision avoidance and succeed in replicating and interpreting the empirical
results within a robotic set-up.

The last paper, contributed by Maurice Grinberg and Emilian Lalev (The
Role of Anticipation on Cooperation and Coordination in Simulated Prisoner’s
Dilemma Game Playing) studies anticipatory strategies in a cooperative social
task: the Iterated Prisoner’s Dilemma game (“IPD”). The authors first describe
the results of experiments on IPD obtained with humans and then investigate
and interpret such data on the basis of a connectionist model. Within genetic sim-
ulations, the model shows how under certain circumstances anticipatory strate-
gies emerge and lead to increased cooperation payoffs, therefore making the case
that anticipation is a key ingredient for having a high level of cooperative coor-
dination in simulated and real societies.

3.5 Behavioral and Cognitive Capabilities Based on Anticipation

As discussed in the introduction, anticipation plays a major role in the acquisi-
tion and use of multiple behavioral and cognitive capabilities. The three papers
of this section address the role of anticipation in learning a stand-up posture, in
space perception, and in planning.

The first paper, contributed by Camille Salaun, Vincent Padois, and Olivier
Sigaud (A Two-level Model of Anticipation-based Motor Learning for Whole
Body Motion) presents a model of motor learning that combines Operational
Space Control and Optimal Control. The paper demonstrates the efficacy of the
latter approaches in a simulated robotic task that consists in learning to stand-
up. In the model anticipation has a two-fold important function, namely learning
the dynamics model of the system and coordinating the two types of control.

The paper contributed by Wolfram Schenck (Space Perception through Vi-
suokinesthetic Prediction) follows the “perception through anticipation” ap-
proach of [9] and demonstrates how objects can be localized by generating a
visuokinesthetic (iterative) simulation of reaching with a robotic arm. Within
this framework, space perception arises from the knowledge of how to move
(e.g. push) an object. Anticipation is used for sensory prediction and novelty
detection.

The last paper in this section, contributed by Irene Markelic, Tomas Kulvi-
cius, Minija Tamosiunaite, and Florentin Worgotter (Anticipatory Driving for a
Robot-Car Based on Supervised Learning) may be the most applicative of the
book. The authors construct a database that couples look-ahead sensory infor-
mation and action sequences. The constructed knowledge is the used to train a
car-like trajectory planning robot that runs at real-time by issuing steering and
velocity control commands in a human manner.
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3.6 Computational Frameworks and Algorithms for Anticipation
and Their Evaluation

The last section of the book includes three papers that discuss basic issues of
anticipatory mechanisms and algorithms.

Birger Johansson and Christian Balkenius (Prediction Time in Anticipatory
Systems) have run simulated robotic experiments in a guard-and-thieves scenario
with the aim of assessing what is the best length of the future time interval in
which thieves should anticipate the movement of the guard in order to success-
fully trick them and steal a treasure. Their results show that it is not always
better to predict long into the future and that the best performance is indeed
achieved when the time spent planning is comparable to the time it will take to
perform the tasks.

The paper contributed by Matthias Rungger, Hao Ding, and Olaf Sturs-
berg (Multiscale Anticipatory Behavior by Hierarchical Reinforcement Learning)
presents a two-level hierarchical reinforcement learning scheme that combines a
discrete representation (finite state automaton) at the higher layer, and a contin-
uous representation at the lower layer. The results of the test of the model within
in a robot grasping task show that the iteration between both layers permits to
autonomously determine suitable solutions to new tasks.

Olivier Sigaud, Martin V. Butz, Olga Kozlova, and Christophe Meyer (An-
ticipatory Learning Classifier Systems and Factored Reinforcement Learning)
compare both conceptually and empirically Factored Reinforcement Learning
(FRL) and Anticipatory Learning Classifier System (ALCS) techniques. Their
empirical comparison reveals that an instance of the latter (XACS) scales much
better than an instance of the former (SPITI) in two benchmark problems. The
authors conclude the work by analyzing what are the key mechanisms in XACS
that permit better performance, and propose importing them into FRL systems.

4 Conclusions and Important Open Issues on
Anticipation

As diverse as the included contributions are, as overarching their perspective
and inclusive the highlighted aspects of anticipatory mechanisms and behavior.
While the benefits of anticipatory mechanisms and the ubiquitous presence of an-
ticipatory behavior in various levels of perceptual processing and motor control
becomes increasingly clear, the challenge of combining these different anticipa-
tory mechanisms appropriately and efficiently appears to be the next challenge
in anticipatory processing systems.

In this respect, it is hoped that the next years will provide theoretical and
implementation advances on the interactions between different anticipatory func-
tions and mechanisms, with a particular emphasis on the different sensory-motor
feedback loops and the learning mechanisms which might allow both the acqui-
sition of predictive capabilities and their exploitation for guiding action. The
book shows that several ideas do exist on these issues in various forms, so in the
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near future it is paramount to invest research efforts to organize them within
comprehensive frameworks and, more importantly, within whole integrated ar-
chitectures.
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Abstract. Almost all behavior is purposive or goal oriented. People be-
have, for example, in order to cross the street, to open a door, to ring a
bell, to switch on a radio, to fill a cup with coffee, etc. Likewise, animals
behave to attain various goals as for example to escape from a predator,
to catch prey, to feed their offspring, etc. The ABC framework accords
with the purposive character of almost all behavior by assuming that
behavior is not determined by the current stimulation but by the desired
or the ’to-be-produced’ effects. For this to work, behavioral acts have to
be connected to the effects they produce in such a way that anticipations
of effects gain the power to address the behavior that brings them about
(often called the ideo-motor principle). Moreover, if action-effect con-
tingencies systematically depend on the situational context, the formed
action-effect relations have to be contextualized. Accordingly, the ABC
framework assumes the formation of representations that preserve in-
formation about which effects can be realized by which behavior under
which conditions. In the present article we review some of the empirical
evidence in favor of the ABC approach and discuss the structures by
which sensory anticipations might be transformed into the motor pat-
terns that move the body to bring the desired effects about.

1 The Limits of the Information Processing Approach

In the second half of the last century, information processing replaced behavior-
ism as the leading approach in theoretical and experimental psychology (cf. [44]).
This development was induced by new insights in other sciences in particular in
mathematics, communication, and system analyses: Norbert Wiener [63] estab-
lished “Cybernetics” as a new science for the analysis of informational processes
in machines and animals. One year later, Shannon and Weaver [54] provided a
mathematical calculus for the measurement of information. Concurrently, Alan
Turing [59] discussed intelligence as a feature of computing machines and John
von Neumann [61] delivered the architecture for such intelligent machines. All
these developments awaked the belief that also humans can be described and
analyzed as information processing systems.

This belief in the applicability of the information processing approach on the
analysis of psychic processes was strongly nurtured, when Hick [21] reported
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that the latencies of simple choice reactions increased linearly with the entropy
of the presented stimulus. And when Newell and Simon [46] implemented the
first computer program that was able to solve challenging problems, such as
the ’Tower of Hanoi’, many psychologists became convinced that higher mental
processes must be studied from an information processing perspective. Thus,
the information processing approach emerged and research efforts henceforward
were concentrated on mental processes such as perception, attention, language,
reasoning, and memory.

Although the information processing approach overcame the theoretical re-
strictions of behaviorism on merely stimulus-response relations, the now explored
mental activities were still considered as determined or driven by stimulation.
For example, in his seminal book “Cognitive Psychology”, Ulric Neisser [45] de-
fined cognition as referring ...to all the processes by which the sensory input is
transformed, reduced, elaborated, stored, recovered, and used. Thus, also in the
new information processing perspective, the unfortunate doctrine of behaviorism
survived, which posits that ’all’ starts with the impact of stimuli on the organism.
The question of how the stimuli drive behavior was merely shifted to the ques-
tion of how stimuli are processed in order to create an internal representation of
the information they transmit.

In the present article, I propose that this view is misleading if not basically
wrong. There are at least two arguments, which put the information processing
approach into question.

1. The information processing approach suggests that stimulus information is
processed to build a veritable mental representation of the ’information
source’, i.e. the ’environment’. However, there is no unique environment,
which is to be represented. For example, if you look at Figure 1 you cer-
tainly will see, i.e. you will mentally re-present, this stimulus as being two
interwoven squares. However, there are also eight triangles or the shape of
a house with some extra brackets, etc. In general, stimulations from the
environment contain information about countless properties from which we
always perceive or process only an evanescent part. Thus, the question is
not how we, or any other animal, process the given stimuli in order to cre-
ate a veritable representation of the transferred information, but rather the
question is what determines the particular information that is selected for
processing.

If one compares the perception of different species, it becomes obvious that
what a species can perceive is primarily determined by the behavioral require-
ments the species has to face. For example, bats are in particular sensitive for
sound waves of 50 kHz because they use such waves for echo-navigation and
frogs are especially sensitive for small, fast moving dots in their visual field
because the dots signal the presence of a potential prey etc. Thus, organism
perception is above all determined by the information they need in order to
behave successfully.

2. Any movement of our body produces changes in the sensory input the so
called reafferences [60]. Whether you move your finger, your eyes, and even if
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Fig. 1. Two squares, eight triangles, or the outline of a house with additional angles

you talk, you produce various new sensory input sorts of sensory stimulation.
Accordingly, you have to distinguish which aspects of the current stimulation
were produced by yourself and which ones might have other causes. And this
is true for any and every animal, even for such primitive organisms like an
earthworm: Without distinguishing the sensory consequences of one’s own
behavior from other sensory inputs, active organisms could not make at all
any meaningful use of stimulus information. Thus, every active organism has
to learn what the sensory consequences of its own behavior are.

Both arguments emphasize the importance of the interplay between stim-
uli and behavior instead of the relations between stimuli and representations.
Accordingly, one may claim that the primary function of cognition is not the
processing of stimulus information but rather the control of stimulus production
(cf. also [47]). In the following, I will elaborate on this claim both theoretically
and experimentally.

2 The Primacy of Action-Effect Learning Over
Stimulus-Response Learning

According to classical behaviorism, all behavior is finally due to stimulus-
response relations and stimulus-response learning is the basis of all behavioral
changes [58,62]. The tenet is indeed supported by countless experiments in an-
imal learning, in particular, by experiments in discriminative conditioning. In
discriminative conditioning a particular behavior is reinforced only if stimulus
A is present but the behavior is never reinforced if stimulus B is present. In
the test it appears that only stimulus A but not stimulus B evokes the formerly
reinforced behavior. Accordingly, it is concluded that an associative connection
has been formed between stimulus A and the particular response so that the
stimulus gained the power to evoke the associated response.
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However, the conclusion is premature. For example, if one varies not the stim-
ulus conditions and the reinforcer but the behavior and the reinforcer, it soon
becomes obvious that behavior is not determined by stimulus-response but by
response-effect relations. Imagine, for example, rats that experience that in the
experimental cage chain pulling leads to a reinforcement by some food pellets
and lever pressing leads to a reinforcement by a drop of sugar solution. After
this experience has made one of the reinforcers, let us say the sugar solution, be-
comes devaluated by adding something that causes a mild nausea whenever the
rats are drinking from it in their home cage. If then the rats again have access to
the chain and the lever in the experimental cage, they clearly avoid pressing the
lever, which would lead to the meanwhile devaluated reinforcer, whereas they do
not hesitate to pull the chain, which would lead to the still valuable food pellets
(cf. [9]).

The avoidance of respectively that behavior that would lead to the devaluated
reinforcer allows to conclude (1) that the rats have formed associations between
the actions and their respective outcomes, i.e. action-effect associations have
been formed, and (2) that in the test the behavioral choice is determined by
an anticipation of the respectively anticipated reinforcer and not by the current
stimulation (i.e. the experimental cage).

Meanwhile countless experiments demonstrated that action-effect relations
outrange stimulus-response relations in the determination of animal behavior
(e.g. [49,10])1. Surprisingly, in humans’ stimulus-response and response-effect
learning has been rarely, if ever, directly compared except in a study by Stock
& Hoffmann [57], which is shortly discussed next.

Participants get presented one start- and one goal-symbol on a computer
screen, both selected from a set of four possible figures (a star, a hexagon, a
rhombus, and a “sun”, cf. Figure 2). Participants were instructed to find out
which one of four possible response keys were to be pressed in order to attain
the current “goals” in the presence of the current “start”. Among others, we
varied in one of a series of experiments the feedback (the reinforcer so to say):
For half of the participants it was merely fed back whether the current response
key led to a “hit” or a “failure”. For the other half of the participants, the key
presses triggered the presentation of another effect-symbol on the screen, which
could either match (a hit) or could not match (a failure) the current goal-signal.

In both cases, simple stimulus-response relations had to be learned as to each
of the four start-symbols one of the four keys was assigned, which was always
successful, while all other keys failed in the presence of this particular start
symbol. Thus, in the presence of a certain start-symbol there was a certain key
to press in order to produce the feedback “hit” (in the former condition) or to
trigger another presentation of the current goal-symbol whatever it was (i.e. a
hit in the latter condition). This seemingly tiny manipulation of the feedback
had dramatic consequences for the learning rate (cf. Figure 3): If only “hits” and
“failures” are fed back, participants learn very fast that the key to select in order

1 This does not mean that the current stimulation lose any influence on behavior as
we will discuss in section 4 of this paper.
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Fig. 2. Illustration of the conditions in an experiment by Stock & Hoffmann 2002.
Only the feedback is shown which informs about hits and failures.

Fig. 3. The percentage of hits plotted against the number of learning trials in depen-
dence on whether only hits and failures or four different effects are fed back

to produce a hit depends on the current start-symbol. However, if pressing the
keys resulted into the presentation of another symbol on the screen only three
of fifteen participants learned the critical start-key relations whereas all other
participants despaired and were convinced to be fooled by the experimenter.

Figure 4 illustrates our account of this striking difference: Under the reduced
feedback, participants have no other option than to strive for the feedback “hit”
and they experience that every key sometimes produces a “hit” and sometimes
it does not. Accordingly, participants try to find out the critical condition from
which the success of each key may depend and they quickly learn that the success
depends on the current start-symbol so that each start-symbol requires a certain
key to press in order to launch a “hit”.

In contrast, under the elaborated feedback, participants strive to find out
which key is to press in order to trigger another presentation of the current
goal-symbol (i.e. a hit). If accidentally the correct key has been pressed, partici-
pants try to store the experienced successful key-effect relation, that is, they try
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Fig. 4. An illustration of the impact different feedback has on learning: If only hits
and failures are fed back associations between the successful keystrokes and the current
stimuli are formed (left side). However, if the keystrokes produce distinctive effects,
associations between the successful keystrokes and their current effects are formed
(right side).

to store that the currently pressed key is appropriate to produce the currently
presented goal-symbol as its effect2. The concurrently given start-key relations,
however, are not noticed so that the participants remain blind for their regular-
ity. In more general terms: If behavior results into different goal related effects,
learning is primarily directed onto the acquisition of the proper action-effect con-
tingencies, which in turn blocks learning of concurrent stimulus-response con-
tingencies. Thus, the data nicely demonstrate that the primacy of action-effect
learning over stimulus-response learning does not only hold for rats but also for
humans.

3 Anticipations Even of Non-intended Effects are
Indispensable in the Determination of Voluntary
Behavior

According to the preceding discussion, voluntary behavior is primarily deter-
mined by anticipations of the sensory effects the behavior produces instead of
being determined by the current stimulation. This insight can be traced back
more than 150 years to scholars like Herbarth [17], Lotze [43] and [15]; cf. [56]
for an overview). William James [32] finally used the term “ideo-motor princi-
ple” to denominate the notion that the motor output is determined by an idea
(anticipation) of the desired outcome: “An anticipatory image ... of the sensorial
consequences of a movement, ... is the only psychic state which introspection lets
us discern as the forerunner of our voluntary acts.” [32, p.1112].

2 Remember that in the presence of a certain start-symbol each of the keys always
triggered the presentation of the current goal-symbol again, whatever it was. Ac-
cordingly there were no systematic key-goal relations to detect.
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If we define voluntary behavior as behavior by which organisms strive for
a certain goal, it follows by definition that the goal has somehow to be re-
presented in advance because otherwise the respective behavior would not be
voluntary. Thus, in order to verify the ideo-motor principle it needs to be not
only shown that anticipations of the intended outcomes precede the voluntary
behavior (this is trivial) but that anticipations also of non-intended behavioral
effects take active part in the determination of the respective behavior.

Recently, the integration of incidental behavioral effects in the control of sim-
ple voluntary acts like pressing a button has become subject of numerous studies,
which preferred a methodological approach already suggested by Greenwald [14]:
In reaction time tasks, participants practice responses that produce distinctive
but unintended sensory effects. Concurrently or subsequently, it is tested whether
the incidental effects have gained the power to address the actions they were ef-
fects of. The test is mostly conducted by presenting the experienced effects as
the imperative stimuli to trigger either the responses they formerly were the ef-
fects of or to trigger responses they formerly did not follow as effects. The results
typically show that responses are performed faster and less error prone if they
are triggered by their former effect-stimuli compared to corresponding control
conditions, which indicates that the incidental effects are not only associated
with the preceding responses but that they become indeed involved in response
generation (e.g. [3,11,12,20,26,28,29,30,65,66]).

The evidence discussed so far convincingly shows that the presentation of
stimuli that have been experienced as response effects facilitates the generation
of the responses they were previously the effect of. However, the ideo-motor
principle claims that anticipations and not presentations of the effects determine
voluntary behavior. Thus, the reported evidence is consistent with the ideo-
motor principle but not yet “on the point”.

Anticipations are subjective entities and are consequently difficult to control
experimentally. However, if any access of a voluntary movement does indeed re-
quire an anticipation of its sensory effects, manipulations of the to-be-expected
effects should have an impact on the access to the movement that produces these
effects. Following this logic, Kunde [39] recently provided convincing evidence
for the more specific claim of the ideo-motor principle that not only effect pre-
sentations but also effect anticipations contribute to the control of voluntary
behavior.

Kunde [39] started from the well established stimulus-response compatibility
effect: If in a choice reaction time experiment the imperative stimuli and the
required responses vary on a common dimension (dimensional overlap), com-
patible S-R assignments are faster accomplished than incompatible assignments
(cf. Kornblum, Hasbroucq, & Osman, 1990). Consider for example, spatial com-
patibility: if participants have to respond to left and right stimuli with the left
and right hand, they respond faster with the left hand to a left stimulus and
with the right hand to a right stimulus than vice versa (e.g. [55]). Ongoing
from S-R compatibility, Kunde [39] proceeded to argue that if selecting and
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initiating a response does indeed require the anticipation of its sensory effects,
the same compatibility phenomena should appear between effects and responses
as between stimuli and responses.

Imagine, for example, that participants are asked to press a button either
softly or strongly in response to an imperative color signal. Each key press pro-
duces either a quiet or a loud effect tone. In the compatible assignment a soft
key press produces a quiet tone and a strong key press produces a loud tone.
In the incompatible case, the assignment is reversed. The results show that
participants responded significantly faster if their responses triggered tones of
compatible intensity than if they triggered incompatible tones. This response-
effect compatibility phenomenon meanwhile has been proven to be a very robust
one. The phenomenon occurs in the dimensions of space, time, and intensity
[39,40,38,41,37]. As in all these experiments, the effects were not intended but
appeared incidentally after the execution of the response. Their impact on re-
sponse latencies proves that representations also of these non-intended effects
were activated before the responses were selected and initiated. The use of re-
sponse alternatives that differ in intensity additionally allowed a qualification
of response execution. For example, if participants are required to complete a
soft or a strong key press the peak force that is reached provides an appropri-
ate measure of response execution, allowing to explore whether response-effect
compatibility would affect not only reaction times but also response execution.
This was indeed the case. The intensity of the effect-tones uniquely affected the
peak forces of soft as well as of strong key presses in a contrast like fashion. As
Figure 5 illustrates, loud effect-tones reduced and quiet effect-tones intensified
the peak forces of intended soft key presses as well as of intended strong key
presses.

Fig. 5. The peak force for intended strong and soft key presses in dependence on the
intensity of the effect-tones the keystrokes produced

For an appropriate account of the found contrast, it is to notice that peak
forces indicate the intensity of the tactile feedback by which participants start to
reduce the force of their hand because they feel the intended force
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(strong or soft) to be reached. In this view, the data show that less strong
tactile feedback is required to feel the intended force completed if a loud effect-
tone follows and stronger tactile feedback is needed if a quiet effect-tone follows.
Figure 6 illustrates two possible accounts for this contrast. A simple feedback
loop for the execution of a prescribed pressure force is depicted: The imperative
stimulus determines the set point (the proximal reference), i.e. the proprioceptive
feeling is anticipated which has to be reached in order to realize either a strong
or a soft key press. The difference between the set point and the current feeling
(the current proximal feedback) determines the appropriate motor commands
which are activated until the proprioceptive feedback from the finger tip and
from the muscles signal that the set point is reached.

Fig. 6. Illustration of two possible points of action at which anticipated effects might
affect behavioral control

Within this loop the additionally anticipated intensity of the distal effect-
tone might on the one hand (A) influence the set point so that the set point is
somewhat enhanced if a quiet tone is anticipated, and the set point is somewhat
reduced if a loud tone is anticipated. In this way the intended force of the key
press would be adjusted in order to compensate for the anticipated force of the
effect tones. On the other hand (B) it might be that the anticipated intensity of
the distal effect-tone is charged to the feedback so that an anticipated loud tone
earlier evokes the feeling that the set point is reached and an anticipated quiet
tone delays somewhat this feeling. Both mechanisms provide an account for the
contrast effect and it might be that they both conjointly contribute to it. In
any case, the present data provides profound evidence that anticipations even of
unintended response effects are not only involved in the selection and initiation
of voluntary actions but also take part in the control of their execution.
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4 Anticipative Behavioral Control Becomes Conditioned
to the Situational Context

As convincing the evidence for the determination of voluntary behavior by an-
ticipations of its intended and non-intended effects might be, it would be silly to
deny the contextual impact situations have on behavior. For example, if a bus
driver who drives home in his private car stops at a bus stop, his behavior is
obviously not determined by his goal to drive home but rather by perceiving the
bus stop, which immediately evokes the habit to stop there [16]. Indeed, several
theoretical conceptions in psychology acknowledged the fact that situations may
attain the power to evoke associated behavior. For example, Lewin (1928) spoke
in this context of the “Aufforderungscharakter” of objects, Ach [1] coined the
term ’voluntive Objektion’, and Gibson [13] argued that objects are not only
to be characterized by their physical features but also by their ’affordances’. All
these terms refer to the fact that suitable objects often afford us to do the things
we mostly do with them and that they immediately trigger habitual behavior if
one is already ready for doing it. For example, if one intends to post a letter, the
sight of a mailbox immediately triggers the act of posting and in driving a car,
flashing stop lights of the car ahead immediately evokes applying the brakes.

Fig. 7. Illustration of the experimental settings in Kiesel & Hoffmann [36]. Participants
were told that the dot represents a “ball” and the brackets represent “goals” and that
they are requested to push the ball as fast as possible into the respectively adjacent
goal. When the goals were horizontally arranged, balls in the left quadrants had to be
pushed with the left button and balls in the right quadrants had to be pushed with the
right button whereas, when the goals were vertically arranged, the upper quadrants
were assigned to the right and the lower quadrants to the left button. In all cases the
ball moved to the respective goal as soon as the correct button was pressed. However,
in order to vary a non-intended property of this visual effect, the ball moved quickly
(in 232 ms) if the goals were horizontally arranged and the ball moved slowly (in 1160
ms) if they were vertically arranged. Accordingly, one and the same action resulted in
either a slow or a fast ball movement depending on the current context.
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Fig. 8. Reaction times (RTs) in dependence of the duration of the sensory effects
produced by the currently required response

In order to reach a more complete picture of the representations that underlie
behavioral control, the integration of situational features also need to be con-
sidered. The situational context presumably becomes integrated into behavioral
control either if a particular context repeatedly accompanies the attainment of a
particular effect by a particular action or if situational conditions systematically
modify action-effect contingencies (cf. [25]). Especially the latter deserves atten-
tion as it points to the frequent case that the effects of an action change with the
situational context, as, for example, the effect of pressing the left mouse button
may dramatically change with the position of the cursor. There is no doubt that
people learn to take into account critical situational conditions in order to attain
the intended effects, but the issue to what extent the situational context might
also affect anticipations of situation-specific non-intended effects remains to be
discussed.

If one is going to explore whether the same action is preceded by different
effect anticipations in dependence on the situational context, first, one has to
vary the effects of the same responses in different contexts and second, one has
to show that respectively those effects are anticipated that correspond to the
current context. A corresponding study was recently reported by Kiesel and
Hoffmann [36]: In a choice reaction time experiment participants were presented
with a cross and a dot in one of its quadrants framed by either two horizontally
or two vertically arranged brackets (cf. Figure 7).

Experiments by Kunde [40] had shown that reaction times increase with the
duration of the effect tone the currently required response produces. Figure 8
shows this finding. Thus, if the velocity of the ball-move would indeed be an-
ticipated, the responses should be somewhat delayed when a slow movement is
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to be expected compared to when a fast movement is to be expected. Exactly
this result was found (see the right graph of Figure 8): When the context indi-
cated a slow movement, reaction times were consistently increased in comparison
to when the context indicated a fast movement of the ball. Additionally, it took
some extra time if the context had been switched in comparison to the pre-
vious trial, but the influence of the effect duration clearly was independent of
these “switch costs”. Thus, the data confirmed that the very same actions were
not only preceded but also affected by anticipations of either a fast or a slow
movement depending on the current situational context, which indicates that
participants acquired and used context-specific effect anticipations.

5 ABC: An Integrative Framework

In order to integrate the discussed relationships between voluntary actions, their
effects, and situational contexts, we [22,23,24,27] proposed a tentative frame-
work that takes into account the determination of voluntary behavior by effect
anticipations and the conditionalization of action-effect relations on critical sit-
uational contexts as well. The framework is based on the following assumptions
(cf. Figure 9):

Fig. 9. Illustration of the ABC framework: The acquisition of anticipative structures
for the control of voluntary behavior

1. A voluntary action is defined as performing an act to attain some desired
outcome or effect. Thus, a desired outcome, as general and imprecise as it
might be specified in the first place, has to be represented in some way before
a voluntary action can be performed. Consequently, it is supposed that any
voluntary act is preceded by corresponding effect anticipations.
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2. The actual effects are compared with the anticipated effects. If there is suf-
ficient coincidence between what was desired and what really happened,
representations of the just-performed action and of experienced effects be-
come interlinked, or an already existing link is strengthened. By this, action
representations become linked to intended as well as non-intended effects
provided that the effects are contingently experienced as outcomes of the
preceding act. If there is no sufficient coincidence, no link is formed, or an
already existing link is weakened. This formation of integrated action-effect
representations is considered as being the primary learning process in the
acquisition of behavioral competence.

3. It is assumed that situational contexts become integrated into action-effect
representations, either if a particular action-effect episode is repeatedly expe-
rienced in an invariant context or if the context systematically modifies the
contingencies between actions and effects. This conditionalization of action-
effect relations is considered as being a secondary learning process.

4. An awakening need or a concrete desire activates action-effect representa-
tions whose outcomes sufficiently coincide with what is needed or desired.
Thus, anticipations of effects address actions that are represented as being
appropriate to produce them. If the activated action-effect representations
are conditionalized, the coincidence between the stored conditions and the
current situation is checked. In general, an action will be performed that in
the current situational context most likely produces the anticipated effect.

5. Conditionalized action-effect representations can also be addressed by stim-
uli that correspond to the represented conditions. Thus, a certain situational
context in which a certain outcome has been repeatedly produced by a cer-
tain action can elicit the readiness to produce this outcome by that action
again.

The sketched framework integrates, still rather roughly, important aspects of
the acquisition of behavioral competence: First, it considers the commonly ac-
cepted fact that behavior is almost always goal oriented instead of being stimulus
driven. Second, it is assumed that any effect that meets an anticipated outcome
will act as a reinforcer. Consequently, learning is not only driven by a satisfac-
tion of needs but by anticipations, which can flexibly refer to any goal. Third,
the framework considers the given evidence that voluntary behavior is primarily
determined by action-effects instead of by stimulus-response associations. Fi-
nally, also stimulus driven habitual behavior is covered, as it is assumed that
action-effect relations become conditionalized and can be evoked by the typical
contexts in which they are experienced.

Although on a conceptual level the ABC framework is consistent with a huge
body of empirical evidence it still fails to give an account on how sensory antic-
ipations are transformed into the motor patterns, which let the body move so
that the anticipated effects are really produced. We now discuss this concern in
further detail.
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6 How Sensory Anticipations Might Be Transformed into
Appropriate Motor Patterns

It can be taken for granted that “ideo-motor” transformations comprise propri-
oceptive as well exteroceptive effects of the intended behavior. For example, if
Cole [8] describes how a deafferented patient (i.e. a patient without any proprio-
ception) is unable to maintain an upright posture in darkness, it becomes obvious
that proprioceptive feedback is indispensable even for the simplest motor control
(cf. also [33,2,52,7]. Also exteroceptive, especially visual feedback is fundamental
even for simple and highly trained grasping movements. For example, blocking
of visual feedback causes strong disturbances of a simple grasping movement
despite the movement was extensively trained [48]. Thus, it appears that motor
patterns are controlled by anticipations of the to-be-produced exteroceptive as
well as proprioceptive effects. However, there are reasons to assume that exte-
roceptive and proprioceptive effects play a different role in the determination of
concrete body movements.

Proprioceptive effects covary very systematically with the efferent activation
patterns they are produced from, so that each of the various properties of a
certain body movement as for example its strength or its velocity finds its coun-
terpart in a corresponding proprioceptive feeling [50]. Accordingly, anticipations
of proprioceptive effects can be specified to a degree which determines all pa-
rameter of a definite movement. In contrast, aspired exteroceptive effects like
opening a door, switching on a device, grasping an object etc. are almost never
accomplished by the very same movements. The same outcomes rather can and
are typically attained by numberless body-movements. This is the well known
redundancy problem in motor control [4]. Accordingly, anticipations of extero-
ceptive effects in most cases do not specify a definite movement but rather a
whole set of possible movements (e.g. [5,51]). Finally, even if one has learned
to attain a certain exteroceptive effect by a certain movement of one limb, the
learned goal-movement relation can be easily transferred to another limb. For
example if one trains to reach a goal by the left hand, the learned trajectory is
immediately transferred to the untrained right hand (e.g. [42,53]).

Altogether the preceding considerations convincingly suggest that a desired
exteroceptive effect, an environmentally related goal so to say, almost never spec-
ifies a definite body movement to bring the effect about3. It rather appears to
be likely that anticipated exteroceptive effects first are transferred into states
of a body-related space to which all limbs have equal access. Accordingly, de-
sired exteroceptive effects become recoded into desired bodily related but still
3 In the “Theory of Event Coding” (TEC, [31]), the authors emphasize that actions are

primarily represented by codes of the aspired exteroceptive or distal effects. However,
TEC explicitly deals only with ’early’ cognitive antecedents of actions that stand for,
or represent, certain features of events that are to be generated in the environment.
TEC does not consider the complex machinery of the “late” motor processes that
subserve their realization (i.e., the control and coordination of movements). Here it
is argued that anticipations of the proprioceptive effects of actions are indispensable
to “translate” desired distal effects into appropriate motor patterns.
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effector-unspecific effect. Only then, such effector-unspecific goal representations
might be transformed into effector specific anticipations of to-be-produced pro-
prioceptive feelings, which finally determine the corresponding movement of a
certain limb.

According to this view, at least three modes of anticipations are involved
in behavioral control: anticipations of to-be-reached states in the environment,
anticipations of to-be-reached states in an effector-unspecific “body space”, and
finally anticipations of to-be-reached states of a definite effector. If we add the
idea that for each of these modes sensory feedback is used in order to control the
progress of goal achievement, dynamic aspects of action-control come into focus,
which we have neglected so far. Because feedback needs time and because the
required amount of time differs between the different modes, the slower loops
must determine the faster ones in order to hold control steady. Accordingly, the
picture of hierarchically organized feedback loops emerges (Figure 10; cf. [47] for
a comparable account):

Fig. 10. A rough sketch of the assumption that anticipated sensory effects might be
transformed into appropriate motor commands by a hierarchy of feedback loops or a
cascade of inverse models

On the lowest level, we can think of fast (partial spinal) loops with which the
length and the tension of muscles, joint angles, and postures might be controlled.
At a higher level, destinations or trajectories in an effector-unspecific body space
might be controlled. And finally, yet at another dimensional level, the attainment
of environmental effects is controlled.

On each level it is assumed that the current deviation from the anticipated
state determines the updating of the “set points” of directly subordinated loops.
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Thus, at each level the respective desired (anticipated) and the currently given
state (provided by sensory feedback) constitute the input, and the desired state
of the subordinate level (the set point) constitutes the output. This “architec-
ture” corresponds to the structure of an inverse model with the goal and the
current state as input, and the action as output (e.g. [34,35,64]). Accordingly,
instead of hierarchically organized feedback loops we can also speak of a cas-
cade of inverse models. In such a structure, learning would refer to a continuous
and simultaneous adjustment of the distributed inverse models: On each level
the conversion of desired and perceived values into desired values for the next
subordinated level would have to be adjusted, so that finally the emergence of
an exteroceptive anticipation (an aspired goal state in the environment) auto-
matically prompts the body to move in a way that brings the anticipated effects
about.

The proposed structure of distributed feedback loops or adaptive inverse mod-
els, which are related among each other by sub- and super-ordinations, is still
rather speculative and is subject to future exploration. However, recent simu-
lations have shown that already a “cascade” of two control levels suffices for
the modeling of goal oriented arm movements [5,19,18]. Figure 11 illustrates
the basic structure of the SURE REACH model, which consists of two mod-
ules. First, there is a posture memory, which accomplishes the transformation
from an exteroceptive goal, represented as a desired hand location in an exter-
nal space, into a set of all those arm postures that have been experienced as
realizing the desired hand location. It thus transforms an exteroceptively de-
fined goal into a set of proprioceptively defined postures. Second, there is a
motor controller, which generates motor commands that move the arm toward
the closest goal posture. Motor control is realized in two steps. First, the motor
controller prepares a sensory-to-motor mapping, which provides suitable motor
commands to achieve the desired hand location. It can be considered an on-
line generated inverse model. Next, the sensory-to-motor mapping is used as
a proprioceptive closed-loop feedback controller, which moves the hand to the
target.

It is important to note that in SURE REACH the mappings of desired hand
locations into possible arm postures as well as the mappings of pairs of start-
and goal postures into appropriate motor commands, which move the arm from
the start to the goal, are learned from scratch by completely unsupervised learn-
ing mechanisms. In other words, SURE REACH completely autonomously de-
velops structures for the control of goal oriented arm movements by merely
monitoring covariations between “visually” represented hand positions and pro-
prioceptively represented arm postures on the one hand and proprioceptively
represented changes of arm postures and motor commands on the other hand.
Certainly, SURE REACH is of minor complexity compared to the huge num-
ber of degrees of freedom natural behavior has to face. Nevertheless, the high
flexibility and adaptability of the simulated behavior makes SURE REACH a
promising starting point for future elaborations.
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Fig. 11. The SURE REACH model consists of a variety of target representations
(”checkerboards”) and neural controllers (boxes). In the cartoon, the target in the
workspace of the hand is represented by visually defined population codes (top- most
checkerboard). The Posture Memory converts the visually defined target into a set of
appropriate arm postures which are represented by proprioceptively defined population
codes (left checkerboard). The right checkerboard represents possible additional pro-
prioceptive constraints of the target postures. The bottom-most checkerboard finally
represents target postures that realize both, the desired hand location and the desired
proprioceptive constraints. The Motor Controller then plans the transition from the
initial posture to the nearest target posture based on a learned sensorimotor model.
Proprioceptive feedback drives the execution of the movement plan. Visual Feedback
Networks may adjust the visual goal representation if discrepancies between desired
and actual hand locations cannot be corrected by the proprioceptive controller

7 Outlook

The replacement of the information processing approach by an “intentional
approach”, which acknowledges that cognition first and foremost serves the
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control of goal oriented, voluntary behavior instead of serving the processing
of stimulus information is still in its beginning. Substantial progress is already
made in elucidating the anticipatory mechanisms by which simple voluntary acts
are controlled [6]. These mechanisms already give a sense on how anticipations
might shape perception and attention in accordance to behavioral requirements.
However, to show, how from sensory-motor control higher cognitive abilities like
planning, language, or reasoning emerge is still a long but promising way.
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Abstract. Human action is goal-directed and must thus be guided by anticipa-
tions of wanted action effects. How anticipatory action control is possible and 
how it can emerge from experience is the topic of the ideomotor approach to 
human action. The approach holds that movements are automatically inte-
grated with representations of their sensory effects, so that reactivating the rep-
resentation of a wanted effect by “thinking of it” leads to a reactivation of the 
associated movement. We present a broader theoretical framework of human 
perception and action control—the Theory of Event Coding (TEC)—that is 
based on the ideomotor principle, and discuss our recent attempts to imple-
ment TEC by means of a computational model (HiTEC) to provide an effec-
tive control architecture for artificial systems and cognitive robots. 

1   Introduction 

Human behavior is commonly proactive rather than reactive. That is, people do not 
await particular stimulus events to trigger certain responses but, rather, carry out 
planned actions to reach particular goals. Planning an action ahead and carrying it out 
in a goal-directed fashion requires prediction and anticipation: in order to select an 
action that is suited to reach a particular goal presupposes knowledge about relation-
ships between actions and effects, that is, about which goals can be realized by what 
action. Under some circumstances this knowledge might be generated ad hoc. For 
instance, should your behavior ever make a flight attendant to drop you by parachute 
in a desert, your previously acquired knowledge may be insufficient to select among 
reasonable action alternatives, so you need to make ad hoc predictions to find out 
where to turn to. But fortunately, most of the situations we encounter are much more 
familiar and, thus, much easier to deal with. We often have a rough idea about what 
actions may be suitable under a given goal and in a particular context, simply because 
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we have experience: we have had and reached the same or similar goals and acted in 
the same or similar situations before. 

How experience with one's own actions generates knowledge that guides the effi-
cient selection of actions, and how humans carry out voluntary actions in general, was 
the central issue in ideomotor approaches to human action control. Authors like Lotze 
(1852), Harless (1861), and James (1890) were interested in the general question of 
how the mere thought of a particular action goal can eventually lead to the execution 
of movements that reach that goal in the absence of any conscious access to the re-
sponsible motor processes (executive ignorance). Key to the theoretical conclusion 
they came up with was the insight that actions are means to generate perceptions (of 
wanted outcomes) and that these perceptions can be anticipated. If there would be an 
associative mechanism that integrates motor processes (m) with representations of the 
sensory effects they produce (e), and if the emerging association between movements 
and effect representations would be bidirectional (m e), reactivating the represen-
tation of the effect by voluntarily “thinking of it” may suffice to reactivate the associ-
ated motor processes (e m). In other words, integrating movements and their  
sensory consequences provides a knowledge base that allows for selecting actions 
according to their anticipated outcomes—for anticipative action control that is. 

After a flowering period in the second half of the 19th century ideomotor ap-
proaches were effectively eliminated from the scientific stage (Prinz, 1987; Stock & 
Stock, 2004). A major reason for that was the interest of ideomotor theoreticians in 
conscious experience and the relationship between conscious goal representations 
and unconscious motor behavior, a topic that did not meet scientific criteria in the 
eyes of the behaviorist movement gaining power in the beginning of the 20th century 
(cf., Thorndike, 1913). Starting with an early resurrectional attempt by Greenwald 
(1970), ideomotor ideas have recently regained scientific credibility and explanatory 
power however. In their Theory of Event Coding (TEC), Hommel, Müsseler, 
Aschersleben, and Prinz (2001) have even suggested that the ideomotor principle 
may represent a firm base on which a comprehensive theory of human perception 
and anticipatory action control can be built. In the following, we will elaborate on 
what such a theory may look like. In particular, we will briefly discuss the basic 
principles and basic assumptions of TEC and then go on to describe our recent at-
tempts to implement these principles and assumptions by means of a computational 
model of human perception and action control—a model we coined HiTEC (Haaze-
broek & Hommel, submitted). 

2   TEC 

The core idea underlying TEC (Hommel et al., 2001) is that perception and action are 
in some sense the same thing and must therefore be cognitively represented in the same 
way—the notion of common coding (Prinz, 1990). According to the ideomotor princi-
ple, action consists in intentionally producing wanted effects, that is, in the execution 
of motor processes for the sake of creating particular sensory events. In contrast to ac-
tion, perception is commonly conceived of as the passive registration of sensory input. 
However, Hommel et al. (2001) argue that this conception is incorrect and misleading, 
as sensory input is commonly actively produced (Dewey, 1896; Gibson, 1979). For 
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instance, even though visual perception needs light hitting the retina, we actively move 
our eyes, head, and body to make sure that our retina is hit by the light that is reflecting 
the most interesting and informative events. That is, we actively search for the infor-
mation we are interested in and move our receptive surfaces to optimize the intake of 
that information. This is even more obvious for the tactile sense, as almost nothing 
would be perceived by touch without systematically moving the sensor surface across 
the objects of interest. Hence, we perceive by executing motor processes for the sake 
of creating particular sensory events. Obviously, this is exactly the way we just defined 
action, which implies that action and perception are one process. 

The second central assumption of TEC is that cognitive representations are com-
posites of feature codes (Hommel, 2004). Our brain does not represent events through 
individual codes or neurons but by widely distributed feature networks. For instance, 
the visual cortex consists of numerous representational maps coding for various visual 
features, such as color, orientation, shape, or motion (DeYoe & Van Essen, 1988) and 
similar feature maps have been reported for other modalities. Likewise, action plans 
are composites of neural networks coding for various action features, such as the di-
rection, force, or distance of manual actions (Hommel & Elsner, 2009). One implica-
tion of the assumption that cognitive event representations are composites is that 
binding operations are necessary to integrate the codes referring to the same event, 
and another is that different events can be related to, compared with, or confused with 
each other based on the features they do or do not share. For instance, TEC implies 
that stimuli and responses can be similar to each other, in the sense that the binding 
representing the stimulus and the binding representing the response can include the 
same features, such as location or speed, and can thus prime each other (which for 
instance explains effects of stimulus-response compatibility) or interact in other ways. 

The third main assumption of TEC is that the cognitive representations that under-
lie perception and action planning code for distal but not proximal aspects of the rep-
resented events (Prinz, 1992). In a nutshell, this means that perceived and produced 
events are coded in terms of the features of the external event as external event (i.e., 
as objectively or inter-subjectively definable) but not with respect to the specifics of 
the internal processing, such as retinal or cortical coding characteristics, or particular 
muscle parameters. This terminology goes back to Heider (1926, 1930), who dis-
cussed the problem that our conscious experience refers to objective features of visual 
objects (the distal attributes), even though the intermediate processing steps of the 
physical image on the retina and the physiological response to it (the proximal attrib-
utes) are not fully determined by the distal attributes. Brunswik (1944) extended this 
logic to action and pointed out that goal representations refer to distal aspects of the 
goal event and, thus, do not fully determine the proximal means to achieve it.  

To summarize, TEC assumes that perceived events are represented by activating 
and integrating feature codes—codes that represent the distal features of the event. 
Given that perceptions are actively produced, these bindings are likely to also include 
action features, that is, codes that represent the features of the action used to produce 
that perception. In turn, action plans are integrated bindings of codes representing the 
distal features of the action. As actions are carried out to create sensory events, action 
plans also comprise of feature codes referring to these events. In other words, both 
perceived and produced events are represented by sensorimotor bindings or “event 
files” (Hommel, 2004). However, not all features of a perceived or a produced event 
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are relevant in a particular context. To account for that, TEC assumes that feature 
codes are “intentionally weighted” according to the goal or task at hand. For instance, 
if you are searching for a particular color, or if what matters for your actions is the 
location of your fingertip, color and location codes would be weighted higher, respec-
tively, and thus affect perception and action planning more strongly. TEC was very 
helpful in interpreting and integrating available findings in a coherent manner, as well 
as in stimulating numerous experiments and studies on various topics and perception-
action phenomena. However, as Hommel et al. (2001) pointed out, TEC only provides 
a general framework and the theoretical concepts needed to get a better understanding 
of higher level perception, action, and their relationship. Deeper insight and theoreti-
cal advancement calls for more detail and additional assumptions. To meet this chal-
lenge we began developing HiTEC, a computational implementation of TEC’s basic 
principles and assumptions. In the following, we provide a brief overview of the main 
strategies guiding our implementation, but refer to Haazebroek and Hommel (submit-
ted) for a broader treatment. 

3   HITEC 

HiTEC (Haazebroek & Hommel, submitted) is an attempt to translate the theoretical 
framework of TEC (Hommel et al, 2001) into a runnable computational model. Our 
ambition is to develop a broad, cognitive architecture that can account for a variety of 
empirical effects related to stimulus-response translation and that can serve as a  
starting point for a novel control architecture for cognitive robots in the PACO-PLUS 
project (www.paco-plus.org). 

From a modeling perspective TEC provides a number of constraints; some of them 
enforce structural elements while others impose the existence of certain processes. 
First, we describe the general structure of HiTEC. Next, we elaborate on the processes 
operating on this structure, following the two-stage model (Elsner and Hommel, 
2001) for the acquisition of voluntary action control. Finally, we discuss how the 
mechanisms of HiTEC might operate in a real life scenario and show that anticipation 
plays a crucial role in quickly generating and controlling appropriate responses. 

4   HITEC’s Structure and Representations 

HiTEC is architected as a connectionist network model that uses the basic building 
blocks of parallel distributed processing (PDP; e.g., McClelland, 1992; Rumelhart, 
Hinton, & McClelland, 1986). In a PDP network model processing occurs through the 
interactions of a large number of interconnected elements called units or nodes. Nodes 
may be organized into higher structures, called modules, each containing a number of 
nodes. Modules may be part of a larger processing pathway. Pathways may interact in 
the sense that they can share common modules. 

Each node has an activation value indicating local activity. Processing occurs by 
propagating activity through the network; that is, by propagating activation from one 
node to the other, via weighted connections. When a connection between two nodes is 
positively weighted, the connection is excitatory and the nodes will increase each 
other’s activation. When the connection is negatively weighted, it is inhibitory and the 
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nodes will reduce each other’s activation. Processing starts when one or more nodes 
receive some sort of external input. Gradually, node activations will rise and propa-
gate through the network while interactions between nodes control the flow of proc-
essing. Some nodes are designated output nodes. When activations of these nodes 
reach a certain threshold (or when the time allowed for processing has passed), the 
network is said to produce the corresponding output(s). 

In HiTEC, the elementary units are codes. As illustrated in Figure 1, codes are or-
ganized into three main systems: the sensory system, the motor system and the com-
mon coding system. Each system will now be discussed in more detail. 
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Fig. 1. General architecture of HiTEC 

4.1   Sensory System 

As already mentioned, the primate brain encodes perceived objects in a distributed 
fashion: different features are processed and represented across different cortical maps 
(e.g., Cowey, 1985; DeYoe & Van Essen, 1988). In HiTEC, different modalities (e.g., 
visual, auditory) and different dimensions within each modality (e.g., visual color and 
shape, auditory location and pitch) are processed and represented in different sensory 
maps. Each sensory map is a module containing a number of sensory codes that are 
responsive to specific sensory features (e.g., a specific color or a specific pitch). Note 
that Figure 1, shows only two sensory codes per map for clarity. 

In the visual brain, there are two major parallel pathways (Milner & Goodale, 
1995) that follow a common preliminary basic feature analysis step. The ventral 
pathway is seen as crucial for object recognition and consists of a hierarchy of sen-
sory maps coding for increasingly complex features (from short line segments in the 
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lower maps to complex shapes in higher maps) and increasingly large receptive field 
(from a small part of the retina in the lower maps to anywhere on the retina in higher 
maps). The second pathway, the dorsal pathway, is seen as crucial for action guidance 
as it loses color and shape information but retains information about contrast, location 
of objects, and other action-related features.  

In HiTEC, a common visual sensory map codes for basic visual parts of perceptual 
events. This common basic map projects to both the ventral and the dorsal pathways. 
The ventral pathway consists of sensory maps coding for combinations (such as more 
specific shapes) or abstractions (e.g., object color). The dorsal pathway is currently 
simply a sensory map coding for visual location—to be extended for processing other 
action-related features in a later version of HiTEC. 

Distributed processing allows a system to dramatically increase its representational 
capacity as it no longer requires each combination of features to have its own dedi-
cated representational structure but can rather encode a specific combination on de-
mand in terms of activating a collection of constituting feature structures. On the 
downside, in typical scenarios, this inevitably results in binding problems (Treisman, 
1996). For instance, when multiple objects are perceived and they are both repre-
sented in terms of activating the structures coding for their constituting features, how 
to tell which feature belongs to which object? This clearly calls for an integration 
mechanism that can tell them apart.  

Recent studies in the visual modality have shown that this problem can, partly, be 
solved by employing local interactions between feed-forward and feed-back processes 
in the ventral and dorsal pathways (Van der Velde & De Kamps, 2001). It is true that 
higher ventral sensory maps do not contain information on location and that higher 
dorsal sensory maps do not contain information on object shape or color, but these 
pathways can interact using the common basic visual feature map as a visual black-
board (Van der Velde, De Kamps, & Van der Voort van der Kleij, 2004). For in-
stance: when a specific color is activated in a higher sensory map, it can feed back 
activation to lower sensory maps, thereby modulating the activity of these sensory 
codes in a way that those codes that code for simple parts of this color are enhanced. 
This can modulate the processing in the dorsal pathway as well resulting in enhanced 
activation of those codes in the location map that code for the location(s) of objects of 
the specified color.  

This principle also works the other way round: activating a specific location code 
in the location map can modulate the sensory codes in the lower sensory maps that 
code for simple parts at this location. This can modulate the processing in the ventral 
pathway, resulting in enhanced activation of the more complex or abstract features of 
the object at the specified location. In HiTEC, this is the way the visual sensory sys-
tem can be made to enhance the processing of objects with specific features or on a 
specific location. For now, we assume the following sensory maps in the HiTEC ar-
chitecture: visual basic features map, visual color map, visual shape map, visual loca-
tion map, auditory pitch map, auditory location map, tactile effector (i.e., hands or 
feet) map and tactile location map. 

4.2   Motor System 

The motor system contains motor codes, referring to proximal aspects of move-
ments. Motor codes can also be organized in maps, following empirical evidence that 
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suggests distributed representations at different cortical locations in the motor do-
main (e.g., Andersen, 1988; Colby 1998). For example, cortical maps can be related 
to effector (e.g., eye, hand, arm, foot) or movement type (e.g., grasping, pointing). It 
makes sense to assume that there is some sort of hierarchical structure as well in mo-
tor coding. However, in the present version of HiTEC, we consider only one basic 
motor map with a set of motor codes. As our modeling efforts in HiTEC evolve, its 
motor system may be extended further. 

It is clear that motor codes, even when structured in multiple maps, can only spec-
ify a rough outline of the motor action to be performed as some parameters depend 
strongly on the environment. For instance, when grasping an object, the actual object 
location is not represented by a motor code (this would lead to an explosion of the 
number of necessary motor codes, even for a very limited set of actions). So it makes 
sense to interpret a motor program as a blueprint of a motor action that needs to be 
filled in with this specific, on line, information, much like the schemas put forward by 
Schmidt (1975) and Glover (2004). In our discussion of HiTEC processes we will 
discuss this issue in more detail. 

4.3   Common Coding System 

According to TEC both perceived events and action generated events are coded in one 
common representational domain (Hommel et al, 2001). In HiTEC, this domain is the 
common coding system that contains common feature codes. Feature codes refer to 
distal features of objects, people and events in the environment. Example features are 
distance, size and location, but on a distal, descriptive level, as opposed to the proxi-
mal features as coded by the sensory codes and motor codes.  

Feature codes may be associated to both sensory codes and motor codes and are 
therefore truly sensorimotor. They can combine information from different modalities 
and are in principle unlimited in number. Feature codes are not given but they evolve 
and change. In HiTEC simulations, however, we usually assume a set of feature codes 
to be present initially, to bootstrap the process of extracting sensorimotor regularities 
in interactions with the environment. 

Feature codes are contained in feature dimensions. As feature dimensions may be 
enhanced as a whole, for each dimension an additional dimension code is added that 
is associated with each feature code within this dimension. Activating this code will 
spread activation towards all feature codes within this dimension, making them more 
sensitive to stimulation originating from sensory codes. 

4.4   Associations 

In HiTEC, codes can become associated, both for short term and for long term. Short 
term associations between feature codes reflect that these codes 'belong together in 
the current task or context’ and their binding is actively maintained in working mem-
ory. In Figure 1, these temporary bindings are depicted as dashed lines. Long term 
associations can be interpreted as learned connections reflecting prior experience. For 
now, we do not differentiate between episodic and semantic memory—even though 
later versions are planned to distinguish between a “literal” episodic memory that 
stores event files (see below) and a semantic memory that stores rules abstracted from 
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episodic memory (O'Reilly & Norman, 2002). At present, both types of experience 
are modeled as long term associations between (any kind of) codes and are depicted 
as solid lines in Figure 1. 

4.5   Event File 

Another central concept in the theory of event coding is the event file (Hommel, 
2004). In HiTEC, the event file is modeled as a structure that temporarily associates 
to feature codes that 'belong together in the current context’ in working memory. The 
event file serves both the perception of a stimulus as well as the planning of an action. 
Event files can compete with other event files. 

5   HITEC’s Processes 

How do associations between codes come to be? What mechanisms result of their 
interactions? And how do these mechanisms give rise to anticipation based, voluntary 
action control? Elsner and Hommel (2001) proposed a two-stage model for the acqui-
sition of voluntary action control. At the first stage, the cognitive system observes and 
learns regularities in motor actions and their effects. At the second stage, the system 
uses the acquired knowledge of these regularities to select and control its actions. For 
both stages, we now discuss in detail how processes take place in the HiTEC architec-
ture. Next, we discuss some additional process related aspects of the architecture. 

Stage 1: Acquiring Action-Effect Associations 

The framework of event coding assumes that feature codes are grounded representa-
tions as they are derived by abstracting regularities in activations of sensory codes. 
However, the associations between feature codes and motor codes actually signify a 
slightly different relation: feature codes encode the (distal) perceptual effect of the ac-
tion that is executed by activating the motor codes. Following the ideomotor principle, 
the cognitive system has no innate knowledge of the actual motor action following the 
activation of a certain motor code. Rather, motor codes need to become associated with 
their perceptual action effects so that by anticipating these effects, activation can 
propagate via these associations to those motor codes that actually execute the corre-
sponding movement.  

Infants typically start off with a behavioral repertoire based on stimulus-response 
(SR) reflexes (Piaget, 1952). As the infant exhibits these stimulus-response reflexes, 
as well as random behaviors (e.g., motor babbling), its cognitive system learns the 
accompanying response-perceptual effect (RE) regularities that will serve as some 
sort of database of ‘what action achieves what environmental effect’. Following Hom-
mel (1996), we assume that any perceivable action effect is automatically coded and 
integrated into an action concept, which is, in the HiTEC architecture, an event file 
consisting of feature codes. Although all effects of an action become integrated auto-
matically, intentional processes do affect the relative weighting of integrated action 
effects—TEC’s intentional-weighting principle. 

Taken together, action – effect acquisition is modeled in HiTEC as follows: motor 
codes mi are activated, either because of some already existing associations or simply 
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because of network noise. This leads to a change in the environment (e.g., the left 
hand suddenly touches a cup) which is picked up by sensory codes si. Activation 
propagates from sensory codes towards feature codes fi. And eventually, these feature 
codes are integrated into an event file ei which acts as an action concept. Subse-
quently, the cognitive system learns associations between the feature codes fi belong-
ing to this action concept and the motor code mi that just led to the executed motor 
action. Crucially, task context can influence the learning of action effects. Not by se-
lecting which effects are associated but by weighting the different effect features. 
Nonetheless, this is an interactive process that does not exclude unintended but utterly 
salient action effects to become involved in strong associations as well. 

Stage 2: Using Action Effect Associations 

Once associations between motor codes and feature codes exist, they can be used to 
select and plan voluntary actions. Thus, by anticipating desired action effects, feature 
codes become active. Now, by integrating the feature codes into an action concept, 
the system can treat the features as constituting a desired state and propagate their 
activation towards associated motor codes. Crucially, anticipating certain features 
needs integration to tell them apart from the features that code for the currently ob-
served environment. Once integrated, the system has ‘a lock’ on these features and 
can use these features to select the right motor action.  

Initially, multiple motor codes mi may become active as they typically fan out as-
sociations to multiple feature codes fi. However, some motor codes will have more 
associated features that are also part of the active action concept and some of the mi - 
fi associations may be stronger than others. Taken together, the network will – in PDP 
fashion – converge towards one strongly activated motor code mi which will lead to 
the selection of that motor action.  

In addition to the mere selection of a motor action, feature codes also form the ac-
tual action plan that specifies (in distal terms) how the action should be executed: 
namely, in such a way the intended action effects are realized. By using anticipated 
action effects to choose an action, the action actually is selected because the cognitive 
system intended this, not because of a reflex to some external stimulus. Thus, in Hi-
TEC, using anticipation is the key to voluntary action. 

5.1   Task Context 

Task context can modulate both action-effect learning and the usage of these links. 
This can help focus processing to action alternatives that ‘make sense’ in the current 
context. In real life this is necessary as the action alternatives are often rather uncon-
strained. Task context comes in different forms. One is the overall environment, the 
scene context in which the interaction takes place. The cognitive system may just 
have seen other objects in the room, or the room itself, and feature codes that code for 
aspects of this context may still have some activation. This can, in principle, influence 
action selection. As episodic and semantic memory links exist as well, this influence 
may also be less salient: the presence of a certain object might recall memories of 
previous encounters or similar contexts that influence action selection in the current 
task. 
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A task can also be very specific, as given by a tutor or instructor in terms of a ver-
bal description. In HiTEC, it is assumed that feature codes can be activated by means 
of verbal labels. Thus, when a verbal task is given, this could directly activate feature 
codes. The cognitive system integrates these codes into an event file that is actively 
maintained in working memory. For example, when approached with several options 
to respond differently to, different event files ei are created for the different options. 
Due to the mutual inhibitory links between event files, they will compete with each 
other. Because of the efficiency the cognitive system can now display, one could state 
that a cognitive reflex has been prepared (Hommel, 2000) that anticipates certain 
stimuli features. The moment these features are actually perceived, the reflex ‘fires’ 
and - by propagating activation to event codes and subsequently to other feature codes 
- quickly anticipates the correct action effects, which results in the selection and exe-
cution of the correct motor action.  

5.2   Online vs. Offline Processing 

In HiTEC, action selection and action planning are interwoven, but on a distal feature 
level. This leaves out the necessity of coding every minute detail of the action, but 
restricts action planning to a ballpark idea of the movement. Still, a lot has to be filled 
in by on line information. Currently, this falls outside the scope of HiTEC, but one 
could imagine that by activating distal features, the proximal sensory codes can be top 
down moderated to ‘focus their attention’ towards specific aspects of the environment 
(e.g., visual object location), see Hommel (in press). In addition, actions need still not 
to be completely specified in advance, as they are monitored and adjusted while they 
are performed—which in humans seems to be the major purpose of dorsal pathways 
(Milner & Goodale, 1995) 

5.3   Action Monitoring 

The anticipated action effects are a trigger for action selection, but also form an expec-
tation of the perceptual outcome of the action. Differences between this expectation 
and reality lead to adjusting the action on a lower sensorimotor level than is currently 
modeled in HiTEC. What matters now, is that the feature codes are interacting with the 
sensory codes, making sure that the generated perception is within the set parameters, 
as determined by the expected action outcome. If this is not (well enough) the case, the 
action should be adjusted. 

However, when a discrepancy of this expectation drastically exceeds 'adjustment 
thresholds’, it may actually trigger action effect learning (stage 1). Apparently, the 
action-effect associations were unable to deliver an apt expectation of the actual out-
come. Thus, anticipating the desired outcome falsely led to the execution of this ac-
tion. This may trigger the system to modify these associations, so that the motor codes 
become associated with the correct action effect features. 

Crucially, having anticipations serve as expectations, the system is not forced into 
two distinct operating modes (learning vs. testing). With anticipation as retrieval cue 
for action selection and as expectation of the action outcome, the system has the 
means to self-regulate its learning by making use of the discrepancy between actual 
effects and these anticipations. 
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6   Model Implementation 

The HiTEC model is implemented using neural network simulation software that fa-
cilitates the specification and simulation of interactive networks. In interactive net-
works, connections are bidirectional and the processing of any single input occurs 
dynamically during a number of cycles. Each cycle, the network is gradually updated 
by changing the activation of each node as a result of its interactions with other nodes. 

6.1   Code Dynamics 

HiTEC aims at a biologically realistic implementation of network dynamics. In the 
human brain, local interactions between neurons are largely random, but when look-
ing at groups of neurons (i.e., neuron populations) their average activation can be 
described using mean field approximation equations (Wilson and Cowan, 1972). In 
HiTEC, a single code is considered to be represented by a neuron population. Its 
dynamics can therefore be described using differential equations such as: 
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This equation states that the change in activation A of a code is a result of a decay 
term and the weighted sum of the outputs of those nodes k that it connects to. Also, 
each node receives additional random noise input N. Node output is computed using 
an activation function F(A) that translates node activation into its output as governed 
by the following logistic function: 
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The simulator uses numerical integration to determine the change of activation for 
each node in each cycle.  

6.2   Codes 

Currently, in our simulations we hard code all sensory codes including their receptive 
field specification (e.g., whether a code is responsive to a red or a blue color). Also, 
feature codes are assumed to exist, as well as all connections between sensory codes 
and feature codes reflecting prior experience with sensory regularities. In the future it 
may become an interesting endeavor to learn the grounding of feature codes in terms 
of proximal sensory codes, possibly by means of self organizing map methods that 
can be moderated by HiTEC processes (e.g., failing to predict an action outcome may 
signal relevant novelty and moderate the creation or update of a feature code). Also, 
for now, we assume a limited set of motor programs that are simply represented by 
fixed motor codes. Thus, in simulations we currently focus on the interactions be-
tween perception and action and how task context influence these interactions, rather 
than on the grounding of codes per se. 
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6.3   Action-Effect Learning 

Learning action effects is reflected by creating long term connections between feature 
codes and motor codes. This is currently done by simple associative, Hebbian learn-
ing, as described by the following equation: 
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Thus, the change of the connection strength is determined by the activation of the 
nodes i and j that are connected. This way, feature codes that were activated more 
strongly will become more strongly connected to the motor code that caused the per-
ceptual effect. Surely, this type of learning is known to be limited but serves our cur-
rent purposes. 

6.4   Short Term Associations and Event File Competition 

Crucial in HiTEC is the short term memory component. A task instruction is repre-
sented using short term connections between feature codes and event files. In the cur-
rent set up, an event file is simply a node that is created on demand, as a result of the 
task instruction, and temporarily connects to those feature codes that were activated 
by the task instruction (i.e., via verbal labels). An event file has an enhanced baseline 
activation, reflecting its task relevance. Moreover, event files compete with each other 
by means of lateral inhibition (i.e., they are interconnected with negative connections) 
resulting in a winner-take-all mechanism: as activation gradually propagates from 
feature codes to event files (and back), their activation changes as well. Due to the 
lateral inhibition, only one event file will stand as the ‘winner’, while weakening the 
other event files. This results in selective activation at the feature code level and sub-
sequently in action selection at the motor code level.  

6.5   Related Work  

We must note that we do not advertise the associative learning method used in HiTEC 
as a competitive alternative to highly specialized machine learning techniques that are 
traditionally used in classification tasks (e.g., Hiddden Markov Models, Support Vec-
tor Machines et cetera) or reward based learning tasks (e.g., Reinforcement learning,  
Q-learning et cetera). However, we do focus on the context of learning: the interplay 
between (the coding of) task context and action effect anticipation and perception trig-
gers and mediates learning. In particular, we stress that the cognitive system employs 
anticipation as reflection of both its learned knowledge so far and its interpretation of 
the current context. Anticipation can subsequently mediate learning by influencing 
which features engage in learning (and even further: what features to look for in the 
sensory input) and how strongly these features may be associated to motor codes, 
thereby constraining whatever (machine) learning technique used to actually create or 
change the associations. 

Moreover, failing to correctly anticipate an action effect may be a major trigger to 
update the learned knowledge. In the future we may add this as a reinforcement learn-
ing component that drives on biologically plausible reward mechanisms (e.g., dopa-
mine moderated learning).  
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Finally, we stress that although simulations may be set up in terms of instruction, 
train and test phases, the HiTEC model itself does not artificially ‘switch’ between two 
modes of operation: learning occurs on line as a result of perceiving action effects. 

7   Examplary Scenario: Responding to Traffic Lights 

In order to clarify the co-operation of the different processes and mechanisms in Hi-
TEC on a functional level, the following example real life scenario is presented: 
learning to respond to traffic lights. In this example, si  denotes sensory codes, fi  de-
notes feature codes and mi denotes motor codes in the HiTEC architecture. Figure 2 
shows a scenario-specific version of the HiTEC architecture. 
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Fig. 2. Learning to respond to traffic lights in HiTEC  

7.1   Action Effect Acquisition 

Let's say you are a student driver who has never paid attention to the front seat before 
and this is your first driving lesson. You climb behind the steering wheel and place 
your feet above the pedals. Now, the instructor starts the car for you and you get the 
chance of playing around with the pedals. After a while, you get the hang of it: it 
seems that pressing the right pedal results in a forward movement of the car, and 
pressing the left one puts the car on hold.  

From a HiTEC perspective, you just have tried some motor codes and learned that 
m1 (pressing the gas pedal) results in a forward motion, coded by fforward and m2 in 
standing still, coded by fstop. In other words: you acquired these particular action-effect 
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associations. Note that we assume that you have been able to walk before, so it is fair 
to say that fforward and fstop are already present as feature codes in your common coding 
system. 

7.2   Using Action Effect Associations 

Now, in your next lesson you actually need to take cross roads. The instructor tells 
you to pay attention to these colored lights next to the road. When the red light is on, 
you should stop, and when the green light is on, you can go forward.  

In HiTEC, this verbal instruction is modeled as creating two event files that hold 
short term associations in working memory: estop for red light for the ‘stop’ condition, and 
ego at green light for the ‘forward’ condition. The event file estop for red light contains bindings 
of feature codes fred, ftraffic light, fstop and the event file  ego at green light relates to the feature 
codes fgreen, ftraffic light, fforward.  

These event files are activated and their activation spreads to their associated fea-
ture codes which will become increasingly receptive for interaction with related sen-
sory codes. In addition to the specific features, the feature dimensions these features 
are contained in (dcolor, dmotion) are weighted as well. The anticipation of traffic lights 
also serves as a retrieval cue for prior experience with looking at traffic lights. As 
traffic lights typically stand at the side of the road, one could expect associations be-
tween ftraffic light and fside of road to exist in episodic or semantic memory. Consequently, 
anticipating a traffic light activates ftraffic light and propagates activation automatically 
towards fside of road , which makes the system more sensitive to objects located on the 
side of the road. 

Ok, there it goes... you start to drive around, take some turns, and there it is… your 
very first cross road with traffic lights!  

Now, from a HiTEC perspective, the following takes place: the visual scene con-
sists of a plethora of objects, like road signs, other cars, houses and scenery, and of a 
cross road with traffic lights at the side. The sensory system encodes the registration 
of these objects by activating the codes in the sensory maps. This leads to the classical 
binding problem: multiple shapes are registered, multiple colors and multiple loca-
tions. However, we now have a top down 'special interest' for traffic lights. As men-
tioned above, this has resulted in increased sensitivity of the ftraffic light feature code, 
that now receives some external stimulation from related sensory codes. Also, from 
prior experience we look more closely at fside of road locations in the sensory location 
maps. 

The interaction between this top down sensitivity and the bottom up external 
stimulation results in an interactive process where the sensory system uses feedback 
signals to the lower level visual maps where local interactions result in higher activa-
tion of those sensory codes that code for properties of the traffic light, including its 
color. In the visual map for object color, the traffic light color will be more enhanced 
than colors relating other objects. On the feature code level, the color dimension al-
ready was enhanced because of the anticipation of features in the dcolor dimension, 
resulting in fast detection of fred or fgreen. 

Meanwhile, the event files estop for red light and estop for red light are still in competition. 
When the sensory system collects the evidence, activation propagates towards feature 
codes and event codes, quickly converging into a state that where either fforward or fstop 
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is activated more strongly than the other. This activation is propagated towards the 
motor codes m1 or m2 via associations learned in your first drivers lesson. This results 
in the selection and execution of the correct motor action. 

It is clear that by preparing the cognitive system for perceiving a traffic light color 
and producing a stop-or-go action allows the system to effectively attend its resources 
to the crucial sensory input and already pre-anticipate the possible action outcome. 
This way, upon perceiving the actual traffic light color, the system can quickly re-
spond with the correct motor action. 

Luckily, for your safety and that of all your fellow drivers on the road, practicing 
this task long enough will also result in long term memory bindings between fred, ftraffic 

light and fstop that will also be retrieved during action selection and bias you towards 
pressing the brake pedal, even when no instructor is sitting next to you.  

8   Conclusions 

We have introduced HiTEC’s three main modules: the sensory system, the motor sys-
tem, and the emergent common coding system. These systems interact with each 
other. In the common coding system anticipations are formed that have a variety of 
uses in the architecture, allowing the system to be more flexible and adaptive. In ac-
tion selection, anticipation acts as a rich retrieval cue for associated motor programs. 
At the same time, forming this anticipation reflects the specification of an action plan 
that can be used during action execution.  

One of the drawbacks of creating anticipations is that it might not be worth the 
costs (Butz & Pezzulo, 2008). However, from a real life scenario perspective, the 
number of possible action alternatives is enormous. Creating anticipations at a distal 
level seems as a necessity to constrain the system in its actions to select from. Doing 
this, as we propose in HiTEC, not only aids action selection but also delivers the ru-
dimentary action plan at the same time.  

Another concern often mentioned is the inaccuracy of predictions. Following the 
framework of event coding, events – including action plans – are coded in distal terms 
that abstract away from the proximal sensory values. Only inaccuracies on the distal 
level could disturb the use of anticipations in action selection and planning. The fea-
ture codes on this distal level are based on sensorimotor regularities that are stable 
over time. Thus minor inaccuracies in sensors should be relatively easily overcome. 

Actions are usually selected and planned in a task context. When forced with dif-
ferent behavioral alternatives to choose from, multiple anticipations of features are 
created and compete with each other. When features are actually perceived, anticipa-
tory activation quickly propagates to the correct action effects, which results in the 
selection and execution of the correct motor action.  

In action monitoring, anticipation serves as the representation of expected and de-
sired action effects that helps adjusting the movement during action execution. In ac-
tion evaluation, this expectation acts as a set of criteria for success of the action. If the 
actual action effect can no longer – on a lower sensorimotor level - be adjusted to 
fulfill the expected action effect, the existing action-effect associations are considered 
insufficient and learning is triggered. During action-effect learning, anticipation also 
may weight the different action effect features in the automatic integration into action 
concepts, influencing the action-effect association weights.  
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In conclusion, anticipation plays a crucial role in virtually all aspects of action con-
trol within the HiTEC architecture. Just as it does in real life. 
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Abstract. I argue that data becomes temporarily interesting by itself to some
self-improving, but computationally limited, subjective observer once he learns to
predict or compress the data in a better way, thus making it subjectively
simpler and more beautiful. Curiosity is the desire to create or discover more
non-random, non-arbitrary, regular data that is novel and surprising not in the tra-
ditional sense of Boltzmann and Shannon but in the sense that it allows for com-
pression progress because its regularity was not yet known. This drive maximizes
interestingness, the first derivative of subjective beauty or compressibility, that
is, the steepness of the learning curve. It motivates exploring infants, pure math-
ematicians, composers, artists, dancers, comedians, yourself, and (since 1990)
artificial systems.

1 Store and Compress and Reward Compression Progress

If the history of the entire universe were computable [123, 124], and there is no evi-
dence against this possibility [84], then its simplest explanation would be the shortest
program that computes it [65, 70]. Unfortunately there is no general way of finding the
shortest program computing any given data [34,37,106,107]. Therefore physicists have
traditionally proceeded incrementally, analyzing just a small aspect of the world at any
given time, trying to find simple laws that allow for describing their limited observa-
tions better than the best previously known law, essentially trying to find a program
that compresses the observed data better than the best previously known program. For
example, Newton’s law of gravity can be formulated as a short piece of code which
allows for substantially compressing many observation sequences involving falling ap-
ples and other objects. Although its predictive power is limited—for example, it does

� First version of this preprint published 23 Dec 2008; revised April 2009. Variants are scheduled
to appear as references [90] and [91] (short version), distilling some of the essential ideas in
earlier work (1990-2008) on this subject: [57,58,59,60,61,68,72,76,108] and especially recent
papers [81, 87, 88, 89].
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not explain quantum fluctuations of apple atoms—it still allows for greatly reducing the
number of bits required to encode the data stream, by assigning short codes to events
that are predictable with high probability [28] under the assumption that the law holds.
Einstein’s general relativity theory yields additional compression progress as it com-
pactly explains many previously unexplained deviations from Newton’s predictions.

Most physicists believe there is still room for further advances. Physicists, however,
are not the only ones with a desire to improve the subjective compressibility of their ob-
servations. Since short and simple explanations of the past usually reflect some repeti-
tive regularity that helps to predict the future as well, every intelligent system interested
in achieving future goals should be motivated to compress the history of raw sensory
inputs in response to its actions, simply to improve its ability to plan ahead.

A long time ago, Piaget [49] already explained the explorative learning behavior of
children through his concepts of assimilation (new inputs are embedded in old
schemas—this may be viewed as a type of compression) and accommodation (adapting
an old schema to a new input—this may be viewed as a type of compression improve-
ment), but his informal ideas did not provide enough formal details to permit computer
implementations of his concepts. How to model a compression progress drive in arti-
ficial systems? Consider an active agent interacting with an initially unknown world.
We may use our general Reinforcement Learning (RL) framework of artificial curiosity
(1990-2008) [57,58,59,60,61,68,72,76,81,87,88,89,108] to make the agent discover
data that allows for additional compression progress and improved predictability. The
framework directs the agent towards a better understanding the world through active
exploration, even when external reward is rare or absent, through intrinsic reward or
curiosity reward for actions leading to discoveries of previously unknown regularities
in the action-dependent incoming data stream.

1.1 Outline

Section 1.2 will informally describe our algorithmic framework based on: (1) a contin-
ually improving predictor or compressor of the continually growing data history, (2) a
computable measure of the compressor’s progress (to calculate intrinsic rewards), (3)
a reward optimizer or reinforcement learner translating rewards into action sequences
expected to maximize future reward. The formal details are left to the Appendix, which
will elaborate on the underlying theoretical concepts and describe discrete time im-
plementations. Section 1.3 will discuss the relation to external reward (external in the
sense of: originating outside of the brain which is controlling the actions of its “ex-
ternal” body). Section 2 will informally show that many essential ingredients of intel-
ligence and cognition can be viewed as natural consequences of our framework, for
example, detection of novelty & surprise & interestingness, unsupervised shifts of at-
tention, subjective perception of beauty, curiosity, creativity, art, science, music, and
jokes. In particular, we reject the traditional Boltzmann / Shannon notion of surprise,
and demonstrate that both science and art can be regarded as by-products of the desire
to create / discover more data that is compressible in hitherto unknown ways. Section
3 will give an overview of previous concrete implementations of approximations of
our framework. Section 4 will apply the theory to images tailored to human observers,
illustrating the rewarding learning process leading from less to more subjective com-
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pressibility. Section 5 will outline how to improve our previous implementations, and
how to further test predictions of our theory in psychology and neuroscience.

1.2 Algorithmic Framework

The basic ideas are embodied by the following set of simple algorithmic principles
distilling some of the essential ideas in previous publications on this topic [57, 58, 59,
60, 61, 68, 72, 76, 81, 87, 88, 89, 108] As mentioned above, formal details are left to the
Appendix. As discussed in Section 2, the principles at least qualitatively explain many
aspects of intelligent agents such as humans. This encourages us to implement and
evaluate them in cognitive robots and other artificial systems.

1. Store everything. During interaction with the world, store the entire raw history of
actions and sensory observations including reward signals—the data is holy as it is
the only basis of all that can be known about the world. To see that full data storage
is not unrealistic: A human lifetime rarely lasts much longer than 3× 109 seconds.
The human brain has roughly 1010 neurons, each with 104 synapses on average.
Assuming that only half of the brain’s capacity is used for storing raw data, and
that each synapse can store at most 6 bits, there is still enough capacity to encode
the lifelong sensory input stream with a rate of roughly 105 bits/s, comparable to the
demands of a movie with reasonable resolution. The storage capacity of affordable
technical systems will soon exceed this value. If you can store the data, do not
throw it away!

2. Improve subjective compressibility. In principle, any regularity in the data history
can be used to compress it. The compressed version of the data can be viewed as
its simplifying explanation. Thus, to better explain the world, spend some of the
computation time on an adaptive compression algorithm trying to partially com-
press the data. For example, an adaptive neural network [8] may be able to learn
to predict or postdict some of the historic data from other historic data, thus incre-
mentally reducing the number of bits required to encode the whole. See Appendix
A.3 and A.5.

3. Let intrinsic curiosity reward reflect compression progress. The agent should
monitor the improvements of the adaptive data compressor: whenever it learns to
reduce the number of bits required to encode the historic data, generate an intrinsic
reward signal or curiosity reward signal in proportion to the learning progress or
compression progress, that is, the number of saved bits. See Appendix A.5 and
A.6.

4. Maximize intrinsic curiosity reward [57,58,59,60,61,68,72,76,81,88,87,108].
Let the action selector or controller use a general Reinforcement Learning (RL) al-
gorithm (which should be able to observe the current state of the adaptive compres-
sor) to maximize expected reward, including intrinsic curiosity reward. To optimize
the latter, a good RL algorithm will select actions that focus the agent’s attention
and learning capabilities on those aspects of the world that allow for finding or cre-
ating new, previously unknown but learnable regularities. In other words, it will try
to maximize the steepness of the compressor’s learning curve. This type of active
unsupervised learning can help to figure out how the world works. See Appendix
A.7, A.8, A.9, A.10.
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The framework above essentially specifies the objectives of a curious or creative sys-
tem, not the way of achieving the objectives through the choice of a particular adaptive
compressor or predictor and a particular RL algorithm. Some of the possible choices
leading to special instances of the framework (including previous concrete implemen-
tations) will be discussed later.

1.3 Relation to External Reward

Of course, the real goal of many cognitive systems is not just to satisfy their curiosity,
but to solve externally given problems. Any formalizable problem can be phrased as an
RL problem for an agent living in a possibly unknown environment, trying to maximize
the future external reward expected until the end of its possibly finite lifetime. The new
millennium brought a few extremely general, even universal RL algorithms (universal
problem solvers or universal artificial intelligences—see Appendix A.8, A.9) that are
optimal in various theoretical but not necessarily practical senses, e. g., [29, 79, 82,
83, 86, 85, 92]. To the extent that learning progress / compression progress / curiosity
as above are helpful, these universal methods will automatically discover and exploit
such concepts. Then why bother at all writing down an explicit framework for active
curiosity-based experimentation?

One answer is that the present universal approaches sweep under the carpet certain
problem-independent constant slowdowns, by burying them in the asymptotic notation
of theoretical computer science. They leave open an essential remaining question: If
the agent can execute only a fixed number of computational instructions per unit time
interval (say, 10 trillion elementary operations per second), what is the best way of us-
ing them to get as close as possible to the recent theoretical limits of universal AIs,
especially when external rewards are very rare, as is the case in many realistic envi-
ronments? The premise of this paper is that the curiosity drive is such a general and
generally useful concept for limited-resource RL in rare-reward environments that it
should be prewired, as opposed to be learnt from scratch, to save on (constant but pos-
sibly still huge) computation time. An inherent assumption of this approach is that in
realistic worlds a better explanation of the past can only help to better predict the fu-
ture, and to accelerate the search for solutions to externally given tasks, ignoring the
possibility that curiosity may actually be harmful and “kill the cat.”

2 Consequences of the Compression Progress Drive

Let us discuss how many essential ingredients of intelligence and cognition can be
viewed as natural by-products of the principles above.

2.1 Compact Internal Representations or Symbols as by-Products of Efficient
History Compression

To compress the history of observations so far, the compressor (say, a predictive neu-
ral network) will automatically create internal representations or symbols (for exam-
ple, patterns across certain neural feature detectors) for things that frequently repeat
themselves. Even when there is limited predictability, efficient compression can still
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be achieved by assigning short codes to events that are predictable with high proba-
bility [28, 95]. For example, the sun goes up every day. Hence it is efficient to create
internal symbols such as daylight to describe this repetitive aspect of the data history
by a short reusable piece of internal code, instead of storing just the raw data. In fact,
predictive neural networks are often observed to create such internal (and hiearchical)
codes as a by-product of minimizing their prediction error on the training data.

2.2 Consciousness as a Particular by-Product of Compression

There is one thing that is involved in all actions and sensory inputs of the agent, namely,
the agent itself. To efficiently encode the entire data history, it will profit from creating
some sort of internal symbol or code (e. g., a neural activity pattern) representing the
agent itself. Whenever this representation is actively used, say, by activating the corre-
sponding neurons through new incoming sensory inputs or otherwise, the agent could
be called self-aware or conscious.

This straight-forward explanation apparently does not abandon any essential aspects
of our intuitive concept of consciousness, yet seems substantially simpler than other
recent views [1, 2, 105, 101, 25, 12]. In the rest of this paper we will not have to attach
any particular mystic value to the notion of consciousness—in our view, it is just a nat-
ural by-product of the agent’s ongoing process of problem solving and world modeling
through data compression, and will not play a prominent role in the remainder of this
paper.

2.3 The Lazy Brain’s Subjective, Time-Dependent Sense of Beauty

Let O(t) denote the state of some subjective observer O at time t. According to our lazy
brain theory [67, 66, 69, 81, 87, 88], we may identify the subjective beauty B(D, O(t))
of a new observation D (but not its interestingness - see Section 2.4) as being propor-
tional to the number of bits required to encode D, given the observer’s limited previous
knowledge embodied by the current state of its adaptive compressor. For example, to
efficiently encode previously viewed human faces, a compressor such as a neural net-
work may find it useful to generate the internal representation of a prototype face. To
encode a new face, it must only encode the deviations from the prototype [67]. Thus
a new face that does not deviate much from the prototype [17, 48] will be subjectively
more beautiful than others. Similarly for faces that exhibit geometric regularities such
as symmetries or simple proportions [69,88]—in principle, the compressor may exploit
any regularity for reducing the number of bits required to store the data.

Generally speaking, among several sub-patterns classified as comparable by a given
observer, the subjectively most beautiful is the one with the simplest (shortest) de-
scription, given the observer’s current particular method for encoding and memoriz-
ing it [67, 69]. For example, mathematicians find beauty in a simple proof with a short
description in the formal language they are using. Others like geometrically simple,
aesthetically pleasing, low-complexity drawings of various objects [67, 69].

This immediately explains why many human observers prefer faces similar to their
own. What they see every day in the mirror will influence their subjective prototype
face, for simple reasons of coding efficiency.
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2.4 Subjective Interestingness as First Derivative of Subjective Beauty: The
Steepness of the Learning Curve

What’s beautiful is not necessarily interesting. A beautiful thing is interesting only as
long as it is new, that is, as long as the algorithmic regularity that makes it simple has
not yet been fully assimilated by the adaptive observer who is still learning to compress
the data better. It makes sense to define the time-dependent subjective Interestingness
I(D, O(t)) of data D relative to observer O at time t by

I(D, O(t)) ∼ ∂B(D, O(t))
∂t

, (1)

the first derivative of subjective beauty: as the learning agent improves its compression
algorithm, formerly apparently random data parts become subjectively more regular
and beautiful, requiring fewer and fewer bits for their encoding. As long as this process
is not over the data remains interesting and rewarding. The Appendix and Section 3 on
previous implementations will describe details of discrete time versions of this concept.
See also [59, 60, 108, 68, 72, 76, 81, 88, 87].

2.5 Pristine Beauty and Interestingness vs. External Rewards

Note that our above concepts of beauty and interestingness are limited and pristine in
the sense that they are not a priori related to pleasure derived from external rewards
(compare Section 1.3). For example, some might claim that a hot bath on a cold day
triggers “beautiful” feelings due to rewards for achieving prewired target values of ex-
ternal temperature sensors (external in the sense of: outside the brain which is control-
ling the actions of its external body). Or a song may be called “beautiful” for emotional
(e.g., [13]) reasons by some who associate it with memories of external pleasure through
their first kiss. Obviously this is not what we have in mind here—we are focusing solely
on rewards of the intrinsic type based on learning progress.

2.6 True Novelty and Surprise vs. Traditional Information Theory

Consider two extreme examples of uninteresting, unsurprising, boring data: A vision-
based agent that always stays in the dark will experience an extremely compressible,
soon totally predictable history of unchanging visual inputs. In front of a screen full
of white noise conveying a lot of information and “novelty” and “surprise” in the tra-
ditional sense of Boltzmann and Shannon [102], however, it will experience highly
unpredictable and fundamentally incompressible data. In both cases the data is bor-
ing [72, 88] as it does not allow for further compression progress. Therefore we re-
ject the traditional notion of surprise. Neither the arbitrary nor the fully predictable
is truly novel or surprising—only data with still unknown algorithmic regularities are
[57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89]!

2.7 Attention / Curiosity / Active Experimentation

In absence of external reward, or when there is no known way to further increase
the expected external reward, our controller essentially tries to maximize true nov-
elty or interestingness, the first derivative of subjective beauty or compressibility, the
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steepness of the learning curve. It will do its best to select action sequences expected
to create observations yielding maximal expected future compression progress, given
the limitations of both the compressor and the compressor improvement algorithm.
It will learn to focus its attention [96, 116] and its actively chosen experiments on
things that are currently still incompressible but are expected to become compress-
ible / predictable through additional learning. It will get bored by things that already
are subjectively compressible. It will also get bored by things that are currently in-
compressible but will apparently remain so, given the experience so far, or where the
costs of making them compressible exceed those of making other things compressible,
etc. [57, 58, 61, 59, 60, 108, 68, 72, 76, 81, 88, 87, 89].

2.8 Discoveries

An unusually large compression breakthrough deserves the name discovery. For exam-
ple, as mentioned in the introduction, the simple law of gravity can be described by a
very short piece of code, yet it allows for greatly compressing all previous observations
of falling apples and other objects.

2.9 Beyond Standard Unsupervised Learning

Traditional unsupervised learning is about finding regularities, by clustering the data, or
encoding it through a factorial code [4, 64] with statistically independent components,
or predicting parts of it from other parts. All of this may be viewed as special cases of
data compression. For example, where there are clusters, a data point can be efficiently
encoded by its cluster center plus relatively few bits for the deviation from the cen-
ter. Where there is data redundancy, a non-redundant factorial code [64] will be more
compact than the raw data. Where there is predictability, compression can be achieved
by assigning short codes to those parts of the observations that are predictable from
previous observations with high probability [28, 95]. Generally speaking we may say
that a major goal of traditional unsupervised learning is to improve the compression of
the observed data, by discovering a program that computes and thus explains the his-
tory (and hopefully does so quickly) but is clearly shorter than the shortest previously
known program of this kind.

Traditional unsupervised learning is not enough though—it just analyzes and en-
codes the data but does not choose it. We have to extend it along the dimension of
active action selection, since our unsupervised learner must also choose the actions that
influence the observed data, just like a scientist chooses his experiments, a baby its toys,
an artist his colors, a dancer his moves, or any attentive system [96] its next sensory in-
put. That’s precisely what is achieved by our RL-based framework for curiosity and
creativity.

2.10 Art and Music as by-Products of the Compression Progress Drive

Works of art and music may have important purposes beyond their social aspects [3]
despite of those who classify art as superfluous [50]. Good observer-dependent art
deepens the observer’s insights about this world or possible worlds, unveiling previ-
ously unknown regularities in compressible data, connecting previously disconnected
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patterns in an initially surprising way that makes the combination of these patterns sub-
jectively more compressible (art as an eye-opener), and eventually becomes known and
less interesting. I postulate that the active creation and attentive perception of all kinds
of artwork are just by-products of our principle of interestingness and curiosity yielding
reward for compressor improvements.

Let us elaborate on this idea in more detail, following the discussion in [81, 88]. Ar-
tificial or human observers must perceive art sequentially, and typically also actively,
e.g., through a sequence of attention-shifting eye saccades or camera movements scan-
ning a sculpture, or internal shifts of attention that filter and emphasize sounds made
by a pianist, while surpressing background noise. Undoubtedly many derive pleasure
and rewards from perceiving works of art, such as certain paintings, or songs. But dif-
ferent subjective observers with different sensory apparati and compressor improve-
ment algorithms will prefer different input sequences. Hence any objective theory of
what is good art must take the subjective observer as a parameter, to answer ques-
tions such as: Which sequences of actions and resulting shifts of attention should he
execute to maximize his pleasure? According to our principle he should select one
that maximizes the quickly learnable compressibility that is new, relative to his current
knowledge and his (usually limited) way of incorporating / learning / compressing new
data.

2.11 Music

For example, which song should some human observer select next? Not the one he
just heard ten times in a row. It became too predictable in the process. But also not
the new weird one with the completely unfamiliar rhythm and tonality. It seems too
irregular and contain too much arbitrariness and subjective noise. He should try a song
that is unfamiliar enough to contain somewhat unexpected harmonies or melodies or
beats etc., but familiar enough to allow for quickly recognizing the presence of a new
learnable regularity or compressibility in the sound stream. Sure, this song will get
boring over time, but not yet.

The observer dependence is illustrated by the fact that Schönberg’s twelve tone mu-
sic is less popular than certain pop music tunes, presumably because its algorithmic
structure is less obvious to many human observers as it is based on more complicated
harmonies. For example, frequency ratios of successive notes in twelve tone music of-
ten cannot be expressed as fractions of very small integers. Those with a prior education
about the basic concepts and objectives and constraints of twelve tone music, however,
tend to appreciate Schönberg more than those without such an education.

All of this perfectly fits our principle: The learning algorithm of the compressor of
a given subjective observer tries to better compress his history of acoustic and other
inputs where possible. The action selector tries to find history-influencing actions that
help to improve the compressor’s performance on the history so far. The interesting
musical and other subsequences are those with previously unknown yet learnable
types of regularities, because they lead to compressor improvements. The boring pat-
terns are those that seem arbitrary or random, or whose structure seems too hard to
understand.
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2.12 Paintings, Sculpture, Dance, Film etc.

Similar statements not only hold for other dynamic art including film and dance (taking
into account the compressibility of controller actions), but also for painting and sculp-
ture, which cause dynamic pattern sequences due to attention-shifting actions [96, 116]
of the observer.

2.13 No Objective “Ideal Ratio” between Expected and Unexpected

Some of the previous attempts at explaining aesthetic experiences in the context of
information theory [7, 41, 6, 44] emphasized the idea of an “ideal” ratio between ex-
pected and unexpected information conveyed by some aesthetic object (its “order” vs
its “complexity”). Note that our alternative approach does not have to postulate an ob-
jective ideal ratio of this kind. Instead our dynamic measure of interestingness reflects
the change in the number of bits required to encode an object, and explicitly takes into
account the subjective observer’s prior knowledge as well as the limitations of its com-
pression improvement algorithm.

2.14 Blurred Boundary between Active Creative Artists and Passive Perceivers
of Art

Just as observers get intrinsic rewards for sequentially focusing attention on artwork that
exhibits new, previously unknown regularities, the creative artists get reward for making
it. For example, I found it extremely rewarding to discover (after hundreds of frustrating
failed attempts) the simple geometric regularities that permitted the construction of the
drawings in Figures 1 and 2. The distinction between artists and observers is blurred
though. Both execute action sequences to exhibit new types of compressibility. The
intrinsic motivations of both are fully compatible with our simple principle.

Some artists, of course, crave external reward from other observers, in form of praise,
money, or both, in addition to the intrinsic compression improvement-based reward that
comes from creating a truly novel work of art. Our principle, however, conceptually
separates these two reward types.

2.15 How Artists and Scientists Are Alike

From our perspective, scientists are very much like artists. They actively select experi-
ments in search for simple but new laws compressing the resulting observation history.
In particular, the creativity of painters, dancers, musicians, pure mathematicians, physi-
cists, can be viewed as a mere by-product of our curiosity framework based on the com-
pression progress drive. All of them try to create new but non-random, non-arbitrary
data with surprising, previously unknown regularities. For example, many physicists
invent experiments to create data governed by previously unknown laws allowing to
further compress the data. On the other hand, many artists combine well-known objects
in a subjectively novel way such that the observer’s subjective description of the re-
sult is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.
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What is the main difference between science and art? The essence of science is to
formally nail down the nature of compression progress achieved through the discovery
of a new regularity. For example, the law of gravity can be described by just a few
symbols. In the fine arts, however, compression progress achieved by observing an art-
work combining previously disconnected things in a new way (art as an eye-opener)
may be subconscious and not at all formally describable by the observer, who may feel
the progress in terms of intrinsic reward without being able to say exactly which of his
memories became more subjectively compressible in the process.

The framework in the appendix is sufficiently formal to allow for implementation of
our principle on computers. The resulting artificial observers will vary in terms of the
computational power of their history compressors and learning algorithms. This will
influence what is good art / science to them, and what they find interesting.

2.16 Jokes and Other Sources of Fun

Just like other entertainers and artists, comedians also tend to combine well-known
concepts in a novel way such that the observer’s subjective description of the result
is shorter than the sum of the lengths of the descriptions of the parts, due to some
previously unnoticed regularity shared by the parts.

In many ways the laughs provoked by witty jokes are similar to those provoked by
the acquisition of new skills through both babies and adults. Past the age of 25 I learnt
to juggle three balls. It was not a sudden process but an incremental and rewarding one:
in the beginning I managed to juggle them for maybe one second before they fell down,
then two seconds, four seconds, etc., until I was able to do it right. Watching myself in
the mirror (as recommended by juggling teachers) I noticed an idiotic grin across my
face whenever I made progress. Later my little daughter grinned just like that when she
was able to stand on her own feet for the first time. All of this makes perfect sense within
our algorithmic framework: such grins presumably are triggered by intrinsic reward for
generating a data stream with previously unknown regularities, such as the sensory input
sequence corresponding to observing oneself juggling, which may be quite different
from the more familiar experience of observing somebody else juggling, and therefore
truly novel and intrinsically rewarding, until the adaptive predictor / compressor gets
used to it.

3 Previous Concrete Implementations of Systems Driven by
(Approximations of) Compression Progress

As mentioned earlier, predictors and compressors are closely related. Any type of par-
tial predictability of the incoming sensory data stream can be exploited to improve the
compressibility of the whole. Therefore the systems described in the first publications
on artificial curiosity [57,58,61] already can be viewed as examples of implementations
of a compression progress drive.

3.1 Reward for Prediction Error (1990)

Early work [57, 58, 61] described a predictor based on a recurrent neural network [115,
120,55,62,47,78] (in principle a rather powerful computational device, even by today’s
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machine learning standards), predicting sensory inputs including reward signals from
the entire history of previous inputs and actions. The curiosity rewards were propor-
tional to the predictor errors, that is, it was implicitly and optimistically assumed that
the predictor will indeed improve whenever its error is high.

3.2 Reward for Compression Progress through Predictor Improvements (1991)

Follow-up work [59,60] pointed out that this approach may be inappropriate, especially
in probabilistic environments: one should not focus on the errors of the predictor, but on
its improvements. Otherwise the system will concentrate its search on those parts of the
environment where it can always get high prediction errors due to noise or randomness,
or due to computational limitations of the predictor, which will prevent improvements
of the subjective compressibility of the data. While the neural predictor of the imple-
mentation described in the follow-up work was indeed computationally less powerful
than the previous one [61], there was a novelty, namely, an explicit (neural) adaptive
model of the predictor’s improvements. This model essentially learned to predict the
predictor’s changes. For example, although noise was unpredictable and led to wildly
varying target signals for the predictor, in the long run these signals did not change the
adaptive predictor parameters much, and the predictor of predictor changes was able to
learn this. A standard RL algorithm [114,33,109] was fed with curiosity reward signals
proportional to the expected long-term predictor changes, and thus tried to maximize
information gain [16, 31, 38, 51, 14] within the given limitations. In fact, we may say
that the system tried to maximize an approximation of the (discounted) sum of the ex-
pected first derivatives of the data’s subjective predictability, thus also maximizing an
approximation of the (discounted) sum of the expected changes of the data’s subjective
compressibility.

3.3 Reward for Relative Entropy between Agent’s Prior and Posterior (1995)

Additional follow-up work yielded an information theory-oriented variant of the ap-
proach in non-deterministic worlds [108] (1995). The curiosity reward was again pro-
portional to the predictor’s surprise / information gain, this time measured as the
Kullback-Leibler distance [35] between the learning predictor’s subjective probability
distributions before and after new observations - the relative entropy between its prior
and posterior.

In 2005 Baldi and Itti called this approach “Bayesian surprise” and demonstrated
experimentally that it explains certain patterns of human visual attention better than
certain previous approaches [32].

Note that the concepts of Huffman coding [28] and relative entropy between prior
and posterior immediately translate into a measure of learning progress reflecting the
number of saved bits—a measure of improved data compression.

Note also, however, that the naive probabilistic approach to data compression is un-
able to discover more general types of algorithmic compressibility [106, 34, 37, 73].
For example, the decimal expansion of π looks random and incompressible but isn’t:
there is a very short algorithm computing all of π, yet any finite sequence of digits will
occur in π’s expansion as frequently as expected if π were truly random, that is, no
simple statistical learner will outperform random guessing at predicting the next digit
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from a limited time window of previous digits. More general program search techniques
(e.g., [36, 75, 15, 46]) are necessary to extract the underlying algorithmic regularity.

3.4 Zero Sum Reward Games for Compression Progress Revealed by
Algorithmic Experiments (1997)

More recent work [68, 72] (1997) greatly increased the computational power of con-
troller and predictor by implementing them as co-evolving, symmetric, opposing mod-
ules consisting of self-modifying probabilistic programs [97, 98] written in a universal
programming language [18, 111]. The internal storage for temporary computational re-
sults of the programs was viewed as part of the changing environment. Each module
could suggest experiments in the form of probabilistic algorithms to be executed, and
make confident predictions about their effects by betting on their outcomes, where the
‘betting money’ essentially played the role of the intrinsic reward. The opposing module
could reject or accept the bet in a zero-sum game by making a contrary prediction. In
case of acceptance, the winner was determined by executing the algorithmic experiment
and checking its outcome; the money was eventually transferred from the surprised
loser to the confirmed winner. Both modules tried to maximize their money using a
rather general RL algorithm designed for complex stochastic policies [97, 98] (alterna-
tive RL algorithms could be plugged in as well). Thus both modules were motivated
to discover truly novel algorithmic regularity / compressibility, where the subjective
baseline for novelty was given by what the opponent already knew about the world’s
repetitive regularities.

The method can be viewed as system identification through co-evolution of com-
putable models and tests. In 2005 a similar co-evolutionary approach based on less
general models and tests was implemented by Bongard and Lipson [11].

3.5 Improving Real Reward Intake

Our references above demonstrated experimentally that the presence of intrinsic reward
or curiosity reward actually can speed up the collection of external reward.

3.6 Other Implementations

Recently several researchers also implemented variants or approximations of the cu-
riosity framework. Singh and Barto and coworkers focused on implementations within
the option framework of RL [5, 104], directly using prediction errors as curiosity re-
wards [57, 58, 61] —they actually were the ones who coined the expressions intrinsic
reward and intrinsically motivated RL. Additional implementations were presented at
the 2005 AAAI Spring Symposium on Developmental Robotics [9]; compare the Con-
nection Science Special Issue [10].

4 Visual Illustrations of Subjective Beauty and Its First Derivative
Interestingness

As mentioned above (Section 3.3), the probabilistic variant of our theory [108] (1995)
was able to explain certain shifts of human visual attention [32] (2005). But we can also
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Fig. 1. Previously published construction plan [69, 88] of a female face (1998). Some human
observers report they feel this face is ‘beautiful.’ Although the drawing has lots of noisy details
(texture etc) without an obvious short description, positions and shapes of the basic facial features
are compactly encodable through a very simple geometrical scheme, simpler and much more
precise than ancient facial proportion studies by Leonardo da Vinci and Albrecht Dürer. Hence
the image contains a highly compressible algorithmic regularity or pattern describable by few
bits of information. An observer can perceive it through a sequence of attentive eye movements
or saccades, and consciously or subconsciously discover the compressibility of the incoming
data stream. How was the picture made? First the sides of a square were partitioned into 24

equal intervals. Certain interval boundaries were connected to obtain three rotated, superimposed
grids based on lines with slopes ±1 or ±1/23 or ±23/1. Higher-resolution details of the grids
were obtained by iteratively selecting two previously generated, neighboring, parallel lines and
inserting a new one equidistant to both. Finally the grids were vertically compressed by a factor
of 1 − 2−4. The resulting lines and their intersections define essential boundaries and shapes of
eyebrows, eyes, lid shades, mouth, nose, and facial frame in a simple way that is obvious from
the construction plan. Although this plan is simple in hindsight, it was hard to find: hundreds of
my previous attempts at discovering such precise matches between simple geometries and pretty
faces failed.
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Fig. 2. Image of a butterfly and a vase with a flower, reprinted from Leonardo [67, 81]. An
explanation of how the image was constructed and why it has a very short description is given in
Figure 3.

apply our approach to the complementary problem of constructing images that contain
quickly learnable regularities, arguing again that there is no fundamental difference
between the motivation of creative artists and passive observers of visual art (Section
2.14). Both create action sequences yielding interesting inputs, where interestingness
is a measure of learning progress, for example, based on the relative entropy between
prior and posterior (Section 3.3), or the saved number of bits needed to encode the data
(Section 1), or something similar (Section 3).

Here we provide examples of subjective beauty tailored to human observers, and
illustrate the learning process leading from less to more subjective beauty. Due to the
nature of the present written medium, we have to use visual examples instead of acoustic
or tactile ones. Our examples are intended to support the hypothesis that unsupervised
attention and the creativity of artists, dancers, musicians, pure mathematicians are just
by-products of their compression progress drives.
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Fig. 3. Explanation of how Figure 2 was constructed through a very simple algorithm exploiting
fractal circles [67]. The frame is a circle; its leftmost point is the center of another circle of the
same size. Wherever two circles of equal size touch or intersect are centers of two more circles
with equal and half size, respectively. Each line of the drawing is a segment of some circle, its
endpoints are where circles touch or intersect. There are few big circles and many small ones.
In general, the smaller a circle, the more bits are needed to specify it. The drawing is simple
(compressible) as it is based on few, rather large circles. Many human observers report that they
derive a certain amount of pleasure from discovering this simplicity. The observer’s learning
process causes a reduction of the subjective complexity of the data, yielding a temporarily high
derivative of subjective beauty: a temporarily steep learning curve. (Again I needed a long time to
discover a satisfactory and rewarding way of using fractal circles to create a reasonable drawing.)

4.1 A Pretty Simple Face with a Short Algorithmic Description

Figure 1 depicts the construction plan of a female face considered ‘beautiful’ by some
human observers. It also shows that the essential features of this face follow a very
simple geometrical pattern [69] that can be specified by very few bits of information.
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That is, the data stream generated by observing the image (say, through a sequence
of eye saccades) is more compressible than it would be in the absence of such regu-
larities. Although few people are able to immediately see how the drawing was made
in absence of its superimposed grid-based explanation, most do notice that the facial
features somehow fit together and exhibit some sort of regularity. According to our pos-
tulate, the observer’s reward is generated by the conscious or subconscious discovery
of this compressibility. The face remains interesting until its observation does not re-
veal any additional previously unknown regularities. Then it becomes boring even in
the eyes of those who think it is beautiful—as has been pointed out repeatedly above,
beauty and interestingness are two different things.

4.2 Another Drawing That Can Be Encoded By Very Few Bits

Figure 2 provides another example: a butterfly and a vase with a flower. It can be spec-
ified by very few bits of information as it can be constructed through a very simple
procedure or algorithm based on fractal circle patterns [67]—see Figure 3. People who
understand this algorithm tend to appreciate the drawing more than those who do not.
They realize how simple it is. This is not an immediate, all-or-nothing, binary process
though. Since the typical human visual system has a lot of experience with circles, most
people quickly notice that the curves somehow fit together in a regular way. But few are
able to immediately state the precise geometric principles underlying the drawing [81].
This pattern, however, is learnable from Figure 3. The conscious or subconscious dis-
covery process leading from a longer to a shorter description of the data, or from less
to more compression, or from less to more subjectively perceived beauty, yields re-
ward depending on the first derivative of subjective beauty, that is, the steepness of the
learning curve.

5 Conclusion and Outlook

We pointed out that a surprisingly simple algorithmic principle based on the notions
of data compression and data compression progress informally explains fundamental
aspects of attention, novelty, surprise, interestingness, curiosity, creativity, subjective
beauty, jokes, and science & art in general. The crucial ingredients of the corresponding
formal framework are (1) a continually improving predictor or compressor of the con-
tinually growing data history, (2) a computable measure of the compressor’s progress
(to calculate intrinsic rewards), (3) a reward optimizer or reinforcement learner trans-
lating rewards into action sequences expected to maximize future reward. To improve
our previous implementations of these ingredients (Section 3), we will (1) study bet-
ter adaptive compressors, in particular, recent, novel RNNs [94] and other general but
practically feasible methods for making predictions [75]; (2) investigate under which
conditions learning progress measures can be computed both accurately and efficiently,
without frequent expensive compressor performance evaluations on the entire history so
far; (3) study the applicability of recent improved RL techniques in the fields of policy
gradients [110,119,118,56,100,117], artificial evolution [43,20,21,19,22,23,24], and
others [71, 75].
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Apart from building improved artificial curious agents, we can test the predictions of
our theory in psychological investigations of human behavior, extending previous stud-
ies in this vein [32] and going beyond anecdotal evidence mentioned above. It should
be easy to devise controlled experiments where test subjects must anticipate initially
unknown but causally connected event sequences exhibiting more or less complex,
learnable patterns or regularities. The subjects will be asked to quantify their intrinsic
rewards in response to their improved predictions. Is the reward indeed strongest when
the predictions are improving most rapidly? Does the intrinsic reward indeed vanish as
the predictions become perfect or do not improve any more?

Finally, how to test our predictions through studies in neuroscience? Currently we
hardly understand the human neural machinery. But it is well-known that certain neu-
rons seem to predict others, and brain scans show how certain brain areas light up in
response to reward. Therefore the psychological experiments suggested above should be
accompanied by neurophysiological studies to localize the origins of intrinsic rewards,
possibly linking them to improvements of neural predictors.

Success in this endeavor would provide additional motivation to implement our prin-
ciple on robots.

A Appendix

This appendix is based in part on references [81, 88].
The world can be explained to a degree by compressing it. Discoveries correspond

to large data compression improvements (found by the given, application-dependent
compressor improvement algorithm). How to build an adaptive agent that not only
tries to achieve externally given rewards but also to discover, in an unsupervised and
experiment-based fashion, explainable and compressible data? (The explanations
gained through explorative behavior may eventually help to solve teacher-given tasks.)

Let us formally consider a learning agent whose single life consists of discrete cycles
or time steps t = 1, 2, . . . , T . Its complete lifetime T may or may not be known in
advance. In what follows, the value of any time-varying variable Q at time t (1 ≤ t ≤ T )
will be denoted by Q(t), the ordered sequence of values Q(1), . . . , Q(t) by Q(≤ t),
and the (possibly empty) sequence Q(1), . . . , Q(t − 1) by Q(< t). At any given t the
agent receives a real-valued input x(t) from the environment and executes a real-valued
action y(t) which may affect future inputs. At times t < T its goal is to maximize
future success or utility

u(t) = Eμ

[
T∑

τ=t+1

r(τ)

∣∣∣∣∣ h(≤ t)

]
, (2)

where r(t) is an additional real-valued reward input at time t, h(t) the ordered triple
[x(t), y(t), r(t)] (hence h(≤ t) is the known history up to t), and Eμ(· | ·) denotes the
conditional expectation operator with respect to some possibly unknown distribution
μ from a set M of possible distributions. Here M reflects whatever is known about
the possibly probabilistic reactions of the environment. For example, M may contain
all computable distributions [106, 107, 37, 29]. There is just one life, no need for pre-
defined repeatable trials, no restriction to Markovian interfaces between sensors and
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environment, and the utility function implicitly takes into account the expected remain-
ing lifespan Eμ(T | h(≤ t)) and thus the possibility to extend it through appropriate
actions [79, 82, 80, 92].

Recent work has led to the first learning machines that are universal and optimal in
various very general senses [29, 79, 82]. As mentioned in the introduction, such ma-
chines can in principle find out by themselves whether curiosity and world model con-
struction are useful or useless in a given environment, and learn to behave accordingly.
The present appendix, however, will assume a priori that compression / explanation of
the history is good and should be done; here we shall not worry about the possibility that
curiosity can be harmful and “kill the cat.” Towards this end, in the spirit of our previous
work since 1990 [57,58,61,59,60,108,68,72,76,81,88,87,89] we split the reward signal
r(t) into two scalar real-valued components: r(t) = g(rext(t), rint(t)), where g maps
pairs of real values to real values, e.g., g(a, b) = a + b. Here rext(t) denotes traditional
external reward provided by the environment, such as negative reward in response to
bumping against a wall, or positive reward in response to reaching some teacher-given
goal state. But for the purposes of this paper we are especially interested in rint(t), the
internal or intrinsic or curiosity reward, which is provided whenever the data compres-
sor / internal world model of the agent improves in some measurable sense. Our initial
focus will be on the case rext(t) = 0 for all valid t. The basic principle is essentially the
one we published before in various variants [57,58,61,59,60,108,68,72,76,81,88,87]:

Principle 1. Generate curiosity reward for the controller in response to improvements
of the predictor or history compressor.

So we conceptually separate the goal (explaining / compressing the history) from the
means of achieving the goal. Once the goal is formally specified in terms of an algo-
rithm for computing curiosity rewards, let the controller’s reinforcement learning (RL)
mechanism figure out how to translate such rewards into action sequences that allow
the given compressor improvement algorithm to find and exploit previously unknown
types of compressibility.

A.1 Predictors vs. Compressors

Much of our previous work on artificial curiosity was prediction-oriented, e. g., [57,
58,61,59,60,108,68,72,76]. Prediction and compression are closely related though. A
predictor that correctly predicts many x(τ), given history h(< τ), for 1 ≤ τ ≤ t, can
be used to encode h(≤ t) compactly. Given the predictor, only the wrongly predicted
x(τ) plus information about the corresponding time steps τ are necessary to reconstruct
history h(≤ t), e.g., [63]. Similarly, a predictor that learns a probability distribution of
the possible next events, given previous events, can be used to efficiently encode obser-
vations with high (respectively low) predicted probability by few (respectively many)
bits [28, 95], thus achieving a compressed history representation. Generally speaking,
we may view the predictor as the essential part of a program p that re-computes h(≤ t).
If this program is short in comparison to the raw data h(≤ t), then h(≤ t) is regular or
non-random [106,34,37,73], presumably reflecting essential environmental laws. Then
p may also be highly useful for predicting future, yet unseen x(τ) for τ > t.
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It should be mentioned, however, that the compressor-oriented approach to predic-
tion based on the principle of Minimum Description Length (MDL) [34,112,113,54,37]
does not necessarily converge to the correct predictions as quickly as Solomonoff’s uni-
versal inductive inference [106,107,37], although both approaches converge in the limit
under general conditions [52].

A.2 Which Predictor or History Compressor?

The complexity of evaluating some compressor p on history h(≤ t) depends on both
p and its performance measure C. Let us first focus on the former. Given t, one of the
simplest p will just use a linear mapping to predict x(t+1) from x(t) and y(t+1). More
complex p such as adaptive recurrent neural networks (RNN) [115, 120, 55, 62, 47, 26,
93,77,78] will use a nonlinear mapping and possibly the entire history h(≤ t) as a basis
for the predictions. In fact, the first work on artificial curiosity [61] focused on online
learning RNN of this type. A theoretically optimal predictor would be Solomonoff’s
above-mentioned universal induction scheme [106, 107, 37].

A.3 Compressor Performance Measures

At any time t (1 ≤ t < T ), given some compressor program p able to compress history
h(≤ t), let C(p, h(≤ t)) denote p’s compression performance on h(≤ t). An appropriate
performance measure would be

Cl(p, h(≤ t)) = l(p), (3)

where l(p) denotes the length of p, measured in number of bits: the shorter p, the more
algorithmic regularity and compressibility and predictability and lawfulness in the ob-
servations so far. The ultimate limit for Cl(p, h(≤ t)) would be K∗(h(≤ t)), a variant
of the Kolmogorov complexity of h(≤ t), namely, the length of the shortest program
(for the given hardware) that computes an output starting with h(≤ t) [106, 34, 37, 73].

A.4 Compressor Performance Measures Taking Time into Account

Cl(p, h(≤ t)) does not take into account the time τ(p, h(≤ t)) spent by p on computing
h(≤ t). An alternative performance measure inspired by concepts of optimal universal
search [36, 75] is

Clτ (p, h(≤ t)) = l(p) + log τ(p, h(≤ t)). (4)

Here compression by one bit is worth as much as runtime reduction by a factor of 1
2 .

From an asymptotic optimality-oriented point of view this is one of the best ways of
trading off storage and computation time [36, 75].

A.5 Measures of Compressor Progress / Learning Progress

The previous sections only discussed measures of compressor performance, but not of
performance improvement, which is the essential issue in our curiosity-oriented con-
text. To repeat the point made above: The important thing are the improvements of the
compressor, not its compression performance per se. Our curiosity reward in response
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to the compressor’s progress (due to some application-dependent compressor improve-
ment algorithm) between times t and t + 1 should be

rint(t + 1) = f [C(p(t), h(≤ t + 1)), C(p(t + 1), h(≤ t + 1))], (5)

where f maps pairs of real values to real values. Various alternative progress measures
are possible; most obvious is f(a, b) = a−b. This corresponds to a discrete time version
of maximizing the first derivative of subjective data compressibility.

Note that both the old and the new compressor have to be tested on the same data,
namely, the history so far.

A.6 Asynchronous Framework for Creating Curiosity Reward

Let p(t) denote the agent’s current compressor program at time t, s(t) its current con-
troller, and do:

Controller: At any time t (1 ≤ t < T ) do:

1. Let s(t) use (parts of) history h(≤ t) to select and execute y(t + 1).
2. Observe x(t + 1).
3. Check if there is non-zero curiosity reward rint(t + 1) provided by the separate,

asynchronously running compressor improvement algorithm (see below). If not, set
rint(t + 1) = 0.

4. Let the controller’s reinforcement learning (RL) algorithm use h(≤ t+1) including
rint(t+1) (and possibly also the latest available compressed version of the observed
data—see below) to obtain a new controller s(t + 1), in line with objective (2).

Compressor: Set pnew equal to the initial data compressor. Starting at time 1, repeat
forever until interrupted by death at time T :

1. Set pold = pnew; get current time step t and set hold = h(≤ t).
2. Evaluate pold on hold, to obtain C(pold, hold) (Section A.3). This may take many

time steps.
3. Let some (application-dependent) compressor improvement algorithm (such as a

learning algorithm for an adaptive neural network predictor) use hold to obtain
a hopefully better compressor pnew (such as a neural net with the same size but
improved prediction capability and therefore improved compression performance
[95]). Although this may take many time steps (and could be partially performed
during “sleep”), pnew may not be optimal, due to limitations of the learning algo-
rithm, e.g., local maxima.

4. Evaluate pnew on hold, to obtain C(pnew, hold). This may take many time steps.
5. Get current time step τ and generate curiosity reward

rint(τ) = f [C(pold, hold), C(pnew , hold)], (6)

e.g., f(a, b) = a − b; see Section A.5.
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Obviously this asynchronuous scheme may cause long temporal delays between con-
troller actions and corresponding curiosity rewards. This may impose a heavy burden
on the controller’s RL algorithm whose task is to assign credit to past actions (to in-
form the controller about beginnings of compressor evaluation processes etc., we may
augment its input by unique representations of such events). Nevertheless, there are
RL algorithms for this purpose which are theoretically optimal in various senses, to be
discussed next.

A.7 Optimal Curiosity and Creativity and Focus of Attention

Our chosen compressor class typically will have certain computational limitations. In
the absence of any external rewards, we may define optimal pure curiosity behavior rel-
ative to these limitations: At time t this behavior would select the action that maximizes

u(t) = Eμ

[
T∑

τ=t+1

rint(τ)

∣∣∣∣∣ h(≤ t)

]
. (7)

Since the true, world-governing probability distribution μ is unknown, the resulting
task of the controller’s RL algorithm may be a formidable one. As the system is re-
visiting previously incompressible parts of the environment, some of those will tend to
become more subjectively compressible, and the corresponding curiosity rewards will
decrease over time. A good RL algorithm must somehow detect and then predict this
decrease, and act accordingly. Traditional RL algorithms [33], however, do not provide
any theoretical guarantee of optimality for such situations. (This is not to say though
that sub-optimal RL methods may not lead to success in certain applications; experi-
mental studies might lead to interesting insights.)

Let us first make the natural assumption that the compressor is not super-complex
such as Kolmogorov’s, that is, its output and rint(t) are computable for all t. Is there
a best possible RL algorithm that comes as close as any other to maximizing objective
(7)? Indeed, there is. Its drawback, however, is that it is not computable in finite time.
Nevertheless, it serves as a reference point for defining what is achievable at best.

A.8 Optimal but Incomputable Action Selector

There is an optimal way of selecting actions which makes use of Solomonoff’s theo-
retically optimal universal predictors and their Bayesian learning algorithms [106, 107,
37, 29, 30]. The latter only assume that the reactions of the environment are sampled
from an unknown probability distribution μ contained in a set M of all enumerable
distributions—compare text after equation (2). More precisely, given an observation se-
quence q(≤ t) we want to use the Bayes formula to predict the probability of the next
possible q(t + 1). Our only assumption is that there exists a computer program that can
take any q(≤ t) as an input and compute its a priori probability according to the μ prior.
In general we do not know this program, hence we predict using a mixture prior instead:

ξ(q(≤ t)) =
∑

i

wiμi(q(≤ t)), (8)
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a weighted sum of all distributions μi ∈ M, i = 1, 2, . . ., where the sum of the constant
positive weights satisfies

∑
i wi ≤ 1. This is indeed the best one can possibly do, in a

very general sense [107, 29]. The drawback of the scheme is its incomputability, since
M contains infinitely many distributions. We may increase the theoretical power of the
scheme by augmenting M by certain non-enumerable but limit-computable distribu-
tions [73], or restrict it such that it becomes computable, e.g., by assuming the world
is computed by some unknown but deterministic computer program sampled from the
Speed Prior [74] which assigns low probability to environments that are hard to com-
pute by any method.

Once we have such an optimal predictor, we can extend it by formally including
the effects of executed actions to define an optimal action selector maximizing future
expected reward. At any time t, Hutter’s theoretically optimal (yet uncomputable) RL
algorithm AIXI [29] uses an extended version of Solomonoff’s prediction scheme to
select those action sequences that promise maximal future reward up to some horizon
T , given the current data h(≤ t). That is, in cycle t + 1, AIXI selects as its next action
the first action of an action sequence maximizing ξ-predicted reward up to the given
horizon, appropriately generalizing eq. (8). AIXI uses observations optimally [29]: the
Bayes-optimal policy pξ based on the mixture ξ is self-optimizing in the sense that
its average utility value converges asymptotically for all μ ∈ M to the optimal value
achieved by the Bayes-optimal policy pμ which knows μ in advance. The necessary
and sufficient condition is that M admits self-optimizing policies. The policy pξ is also
Pareto-optimal in the sense that there is no other policy yielding higher or equal value
in all environments ν ∈ M and a strictly higher value in at least one [29].

A.9 A Computable Selector of Provably Optimal Actions

AIXI above needs unlimited computation time. Its computable variant AIXI(t,l) [29] has
asymptotically optimal runtime but may suffer from a huge constant slowdown. To take
the consumed computation time into account in a general, optimal way, we may use the
recent Gödel machines [79, 82, 80, 92] instead. They represent the first class of math-
ematically rigorous, fully self-referential, self-improving, general, optimally efficient
problem solvers. They are also applicable to the problem embodied by objective (7).

The initial software S of such a Gödel machine contains an initial problem solver,
e.g., some typically sub-optimal method [33]. It also contains an asymptotically optimal
initial proof searcher based on an online variant of Levin’s Universal Search [36], which
is used to run and test proof techniques. Proof techniques are programs written in a
universal language implemented on the Gödel machine within S. They are in principle
able to compute proofs concerning the system’s own future performance, based on an
axiomatic system A encoded in S. A describes the formal utility function, in our case
eq. (7), the hardware properties, axioms of arithmetic and probability theory and data
manipulation etc, and S itself, which is possible without introducing circularity [92].

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), the Gödel ma-
chine rewrites any part of its own code (including the proof searcher) through a self-
generated executable program as soon as its Universal Search variant has found a proof
that the rewrite is useful according to objective (7). According to the Global Optimal-
ity Theorem [79, 82, 80, 92], such a self-rewrite is globally optimal—no local maxima
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possible!—since the self-referential code first had to prove that it is not useful to con-
tinue the search for alternative self-rewrites.

If there is no provably useful optimal way of rewriting S at all, then humans will not
find one either. But if there is one, then S itself can find and exploit it. Unlike the pre-
vious non-self-referential methods based on hardwired proof searchers [29], Gödel ma-
chines not only boast an optimal order of complexity but can optimally reduce (through
self-changes) any slowdowns hidden by the O()-notation, provided the utility of such
speed-ups is provable. Compare [83, 86, 85].

A.10 Non-universal But Still General and Practical RL Algorithms

Recently there has been substantial progress in RL algorithms that are not quite as
universal as those above, but nevertheless capable of learning very general, program-
like behavior. In particular, evolutionary methods [53, 99, 27] can be used for training
Recurrent Neural Networks (RNN), which are general computers. Many approaches
to evolving RNN have been proposed [40, 122, 121, 45, 39, 103, 42]. One particularly
effective family of methods uses cooperative coevolution to search the space of net-
work components (neurons or individual synapses) instead of complete networks. The
components are coevolved by combining them into networks, and selecting those for
reproduction that participated in the best performing networks [43, 20, 21, 19, 22, 24].
Other recent RL techniques for RNN are based on the concept of policy gradients
[110, 119, 118, 56, 100, 117]. It will be of interest to evaluate variants of such control
learning algorithms within the curiosity reward framework.
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Abstract. This paper proposes and discusses a modeling framework for embod-
ied anticipatory behavior systems. This conceptual and theoretical framework is 
quite general and aims to be a, quite preliminary, step towards a general theory 
of cognitive adaptation to the environment of natural intelligent systems and to 
provide a possible approach to develop new more autonomous artificial sys-
tems. The main purpose of this discussion outline is to identify at least a few of 
the issues we have to cope with, and some of the possible methods to be used, if 
we aim to understand from a rigorous standpoint the dynamics of embodied 
adaptive learning systems both natural and artificial. 

Keywords: anticipation, adaptive ,embodiment, intelligent agents, information, 
entropy, complexity, dynamical systems, network, emergence. 

1   Introduction 

According to many experimental results, [5,6,7,12,13,15], the human (and mammal) 
brain might be seen as a complex system which evolved mainly to control movement, 
in particular walking and what in the robotic domain is known as visual manipulation 
and grasping. To achieve that it minimizes uncertainty through Bayesian estimation, 
prediction of actions' consequence, controlling statistics of action effectiveness, com-
paring with expected outcomes and manage to smooth transition, from energy and 
information standpoint, from perception to action. 

In the natural domain, to our knowledge, at least on our planet, the human brain 
is the most sophisticated cognitive machine, nevertheless the basic organizational 
principles are shared with more ancient living beings and are evolved on top of evo-
lutionary earlier solutions. 

There are several evidences suggesting that cognition might be an emerging adap-
tive (meta) process of loosely coupled networks of embodied and situated agents, 
[24,29]. In the natural domain the most widely used method of 'intelligence', compu-
tation and 'cognition' seems to be 'embodied' biological neural networks. Although, 
see [66], there are good reasons to exclude an 'intelligent design' of natural cognitive 
systems and although these systems have evolved not only according to 'cheap de-
sign', [22], but also 'good enough' principles, it is apparent that not only the more 
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evolved human or mammal brains, but even the 'simple' 15-20000 neurons Aplysia 
nervous system shows much more robust than any current robotic application. 

This justifies the search for biomimetic and bioinspired solutions for the co design 
of cognitive physical agent structure, processes and organizational principles. 

Generally biological neural network are modeled by artificial neural networks, a 
simplified model of their natural counterpart. The original Rosenblatt's 'perceptron' 
[39], proposed in 1958, represents a neuron as a node of a graph where an output edge 
signal is triggered when a threshold of a sum of weighted connection values is 
reached. Although today most current neural network algorithms are more sophisti-
cated as they do not use thresholds, but rather  continuous valued squashing functions, 
they are still an approximation of their natural counterparts not considering plasticity 
and other characteristics of the biological neurons. 

It is interesting to speculate on the system level characteristics which allow auto-
nomous cognitive behavior in natural systems. 

In the past years Pfeifer and other researchers, [22,23], have shown the importance 
of 'embodiment' and 'situatedness' in natural intelligent systems, 'passive walkers' are 
a clear example of that. 

It is possible, anyhow, as it is pointed out by some researchers, that we still miss 
the quantitative framework to model the interplay between system dynamics and in-
formation processing in physical systems. In other terms we have a need to extend the 
theory of computation to the physical world, [65]. This (new) topic is called Cyber-
Physical system theory. A 'cyber-physical' system is a physical system where there is 
a two ways relationship between its physical behavior and its control system. The 
study of the so called cyber-physical systems is a priority of US NSF (National Sci-
ence Foundation). 

In this paper we will show and discuss how anticipatory behaviors might emerge 
from a loosely network of embodied agents and which metrics might be used to de-
velop such systems. The aim is to define a conceptual model capable of emulating the 
high level behaviors of natural intelligent and simple enough to be described in a 
quantitative way. We will describe such a conceptual and methodological framework 
aiming to be a first step towards a general theory on cognition in natural systems. We 
will derive a few preliminary relations and we will suggest some theoretical tools 
which in principle might allow to cope with these ambitious objectives. 

This is one of the possible approaches to a quantitative representation of an intelli-
gent physical system, equivalent others are possible.  

In the next paragraph we will review the ABC (Anticipatory Behavioral Control) 
model that we believe captures at least some of the requisites that an intelligent em-
bodied agent should have. In section 3 we will summarize the quantitative aspects of a 
quite general networked embodied intelligent system, following the discussions in 
[29,30] based on the findings in [25] and [34]. In section 4 we will highlight the req-
uisites of networked embodied anticipatory systems and a possible system architec-
ture coping with these needs. 

Eventually it will be highlighted the work ahead and the open issues involved by 
such an approach. 
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2   The ABC Model 

The observation of natural intelligent systems and the practice of robotics research and 
engineering lead us to think that 'intelligence' (and 'meaning' if not 'consciousness') are 
'emerging' characteristics springing from the evolution of loosely coupled networks of 
intelligent 'embodied' and 'situated' agents, [23,24]. 

In robotics research this has led to develop some systems leveraging on the body 
dynamics, like in 'passive walker' approach exemplified by MIT biped and others, 
[35], and 'behavior based' control architecture, starting from the 'subsumption' archi-
tecture originally proposed by Brooks, [21]. 

The behavior based approach, in particular in the context of subsidiary architec-
tures, has also proven capable of obtaining good performances, in tasks like naviga-
tion and obstacle avoidance and others, with a limited set of a priori hypotheses and 
programming effort.  

This approach can be seen as a translation to the AI and robotics domain of the 
Stimulus-Reaction model of animal behavior dating back to Pavlov, [70], and quite 
popular for some time in behaviorist psychology. 

It is also a natural application to robotics of the information processing model of 
cognition.  

This approach shows some limits at least if we consider human psychology and 
mammals ethology as it does not consider the intentional behavior. It makes more 
sense to think that the function of cognitive processes is to enable the production of 
anticipated 'stimuli'. 

The ABC theory (Anticipative Behavioral Control), [8,9,10], tries to go beyond 
those limits on the basis of theoretical considerations and experimental evidence, [8,5] 
coming from the investigation of animal and human associative learning processes 
and the impact of behavioral effects on the selection, initiation, and execution of sim-
ple voluntary acts. 

It is shown that 'intentions', based on the anticipated outcomes of finalized actions, 
play a key role in the shaping of behaviors of natural cognitive systems and that this 
approach is different from both the 'behavior based' one and from the top down sym-
bolic processing approach.  

It is not surprising that in nature such kind of information structuring have evolved 
as in an open ended stochastic high dimensional, non linear and even fractional de-
rivatives, environment the capability of generating 'cheap' and 'good enough' finalized 
actions strongly relies on the capability to generate 'reasonable' predictions at a low 
computational and energetic cost. 

If we assume that the fit behavior generation model for an autonomous cognitive 
agent is given by something similar to the ABC model, it is interesting to understand 
how such a model of interaction might emerge from a loosely coupled network of 
embodied agents without a preset internal explicit representation and exploiting the 
body dynamics, according to the mentioned 'cheap design' principles. In particular it 
is interesting to speculate on a model of interaction with (or within?) the environ-
ment which makes possible a quantitative or semi quantitative description of the  
interaction. 

Natural neural network themselves could be regarded as 'embodied' and 'situated' 
computing systems, as they are connected to a body. 
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So far we miss a quantitative comprehensive theory which allows us to model the 
interplay between the agents' 'morphology', in other words their mechanical structure, 
and the emerging of 'intelligence' and 'meaning'. Despite that some preliminary con-
siderations are already possible. 

3   Networks of Embodied Agents: Possible Models and Metrics 

It is reasonable to think that in nature the biological neural networks are an adaptation 
of cell based organisms to the intelligent and cognitive tasks. This leaves open the 
question of which features of these systems are necessary and sufficient in order to 
achieve a robust cognitive adaptation to the environment (from the unstructured natu-
ral outdoor ones to the structured factory floors or human buildings). 

If intelligence and cognition are emerging processes springing from loosely cou-
pled networks of embodied physical agents, how can a 'fit' anticipatory behavior 
emerge from a system of this kind ? And which metrics is it possible to identify? 

 

Fig. 1. Directed acyclic graphs representing a control process. (Upper left) Full control system 
with a sensor and an actuator. (Lower left) Shrinked Closed Loop diagram merging sensor and 
actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel en-
acted by the controller's state C=c. The random variable X represents the initial state, X' the final 
state. Sensor is represented by state variable S and actuator is represented by state variable A.  

After reviewing in this section some metrics of a network embodied system, in the 
following we will show how the nervous systems of natural intelligent systems might 
be regarded as huge networks of loosely structured 'resonators' and 'amplificators' of 
natural coupling processes, which actually, in simpler forms, for example in biped 
walking down a slope, occur without any specific and dedicated cognitive computing 
system.  

We will first explain how, from a theoretical standpoint, a network of embodied 
agents can process information in the physical morphology of its agents and the  
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network relations between the agents of the network. This discussion is taken from 
[25, 29, 30]. If we see, for simplicity, an embodied agent as a controlled dynamical 
system, as in fig. 1, it is possible to show how the algorithmic complexity of the con-
trol program is related to its phase space 'footprint'. 

max ( ; )controller closed openH H H I X CΔ ≅ Δ −Δ ≤
 

(1)

This is possible starting from [25] where Shannon theory is applied to the modeling 
of controlled systems and statistical information metrics based definitions of control-
lability and observability are derived. In equation (1) we recall the most important 
result in [25] from our perspective. Equation (1) applies to a general control system. 
The meaning of the variables is given in Fig. 1. It links the variation of Shannon en-
tropy in the controller to the variation of entropy in closed loop (with the controller 
in the loop) and the maximum variation of entropy in open loop (with feed forward 
control) to mutual information between the state variable and the controller state. 
Adding some reasonable hypotheses and exploiting the results described in [34] it is 
possible to derive: 

max
( ) log closed

open

W
K X

W

+
≤ (2)

The equation (2) bounds the algorithmic complexity of the control program (the intel-
ligence of the agent, in a simplified view) to the phase space volume, an estimate of 
the number of possible system state, of the controlled agent versus the phase space 
volume of the non controlled system. 

From a qualitative standpoint (at least) this relations explains why a simpler walker 
like the MIT biped or the one described in [35] can be controlled with a 'short' pro-
gram, while other walkers (like the Honda Asimo, [36], or the Sony Qrio) which don't 
have a limit cycle and show a larger phase space 'footprint' require more complex 
control systems.  

The Shannon entropy related measures have been shown to be useful to quantita-
tively characterize sensory motor coordination, the evolution of sensory layouts and 
the complexity of the agent environment, [26,28,32]. 

In general the intelligent system is here assumed to be constituted of, and to be part 
of, a network of weakly coupled agents.  

We assume (for simplicity) that the ‘cognitive network ‘ can be accessed by all the 
agents which are co evolving it and in fact share (constitute) it.  

The idea that learning may actually emerge from some kind of evolutionary proc-
ess was actually already proposed by Turing in a famous 1950’s paper, [57]. 

It must be noticed that the concept model described here is one in a large class of 
possible models, in particular one of most convincing is the semiotic dynamics ap-
proach, [58,60]. This idea is strongly influenced by Bateson’s concept of an ‘ecology 
of mind’, [69].  

We assume that the model of the environment is distributed among all the agents 
constituting the network and depends on the (co) evolution of their interactions in 
time. We will see below how this can be explained and quantified on the basis of rela-
tions between some information measures. 
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In this perspective it is interesting to notice that in [59] the mathematical model of 
the collective behaviors of systems like that described in [60] are based on the theory 
of random acyclic graphs which is the basis of most network system physics formal-
izations.  

In [59], the network of agents, where each word is initially represented by a subset 
of three or more nodes with all (possible) links present, evolves towards an equilib-
rium state represented by fully connected graph, with only single links. 

The statistical distribution, necessary to determine the information managing capa-
bility of the network of physical agents and to link to equation (2) can be obtained 
from equations derived in the statistical physics of network domain. 
From (2) it is possible to derive the relations recalled here below (these relations are 
demonstrated in the appendix). 

max
( ) log closed

open

W
K X

W

+
≤

 
(I)

As told, relation (I) links the complexity ('the length') of the control program of  a 
physical intelligent agent to the state available in closed loop and the non controlled 
condition. This shows the benefits of designing system structures whose 'basin of at-
tractions' are close to the desired behaviors in the phase space. 

( );
n

i
i

H N H I I X CΔ + Δ − Δ ≤∑
 

(II)

Relations (II) links the mutual information between the controlled variable and the 
controller to the information stored in the elements, the mutual information between 
them and the information stored in the network and accounts for the redundancies 
through the multi information term ΔI. 

Relations (III) links the program complexity of the controller to the information 
stored in the elements, the mutual information between them and the information 
stored in the network. 

( )
n

i
i

K X H N H I= Δ + Δ − Δ∑  
(III)

Relations (IV) links the program complexity of the controller to the information 
stored in the elements the mutual information between them and the information 
stored in the network. 

m a x
lo g c l o s e d

o p e n

H N I
ΩΔ = + Δ
Ω  (IV)

These relations are quite preliminary, and perhaps need a more rigorous demonstra-
tion, but give an insight on how information is managed within a network of physical 
elements or agents interacting with a given environment in a finalized way. They sug-
gest how the cognitive adaptation is at network level: in any environment niche it is 
possible with small networks of highly sophisticated individual agents, like in human 
societies, or with many limited autonomy individuals like in ant colonies, with a great 
variety of possibilities in the middle. 

It is worth to observe that the relations reported above are quite general and can also 
be applied to a continuous intelligent material structure if you consider as physical 
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elements a suitable mesh of material finite elements, see [30]. In this case the informa-
tion can be stored in the stress-deformation state itself.  

On a different respect, these relations can be applied to the whole environment, 
meaning to the whole network of agents interacting among them over a specified thre-
shold. The 'self' of the single cognitive agent might emerge by means of a process 
analogue to the mammal and human immune system, [55.56]. 

3.1   Example 

A simple embodied agent is given by the oscillator given in fig. 2. 

 

Fig. 2. A simple linear oscillator 

If we apply equation (3) representing energy conservation: 

= +
 

 (3)

We see that in phase space the system follows a closed curve. The shape of the curve 
depends on m and k and the initial values of x and its first derivative. If we assume an 
uniform distribution [0,X] for x and [0,XP] for the initial condition the phase space 
volume of equation (2) is given by the difference of the areas of the ellipses: 

2 2
max

2 2
tot

mXP kX
E = +  (4)

The equation of the ellipses is: 

+ =
 

 (5)

From which we derive the semi axis, a, b : 

max2
tot

E
a

m
=
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max2 totE
b

k
=
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And we eventually derive the phase space volume: 

max max
max2 2 2tot tot
tot

E E
W ab E

m k km

ππ π= = =
 

 (8)

Assuming that the closed loop phase region is inside the open loop region, K be-
comes, in absolute value, close to 0 when these two area are close, while it tends (in 
absolute value) to infinite when we want to force the system in an phase space volume 
(area in this case) going to zero. 

4   A possible Networked Embodied Cognitive System Model 

In the previous section we have reviewed some of the metrics that a multi agent em-
bodied intelligent system will comply to. Here we describe a conceptual model which 
on one side exhibit the capabilities that we think characterize the behavior of natural 
cognitive agents and on the other side allows the development of a a quantitative 
model. This quantitative model may eventually be compared to the reality and ex-
perimentally tested. 

 

Fig. 3. Phase space portrait of the elementary oscillator 

We define here a 'minimal set' networked embodied anticipatory behavior system 
architecture for an intelligent agent. We summarized above the requisites that an an-
ticipatory networked embodied system should have, here we describe at functional 
level a possible system architecture believed to be capable of generating through self 
organization the required behaviors.  

It seems reasonable to think that what we need is the capability to generate a wide 
set of coupled dynamical behaviors. Even in simpler and older cases like a moving 
target tracking by a rotating automated missile launch platform part of the anticipation 
is done by means of the inertial rotation of the platform.  
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A method to provide to a system a 'rich' internal dynamics is to model it as an n-
dimensional set of oscillators, randomly oscillating, (modeled like in figure 3), which 
for simplicity can be represented as in the figure below. This set evolves into a directed 
acyclic graph where the links between the oscillators evolve dynamically according to 
homokinetics and others criteria, see [45,46,47,48]. The dynamical couplings of a 
chain of oscillators are described in [64].In this context 'modules' , whose 'economical' 
usefulness is discussed in [67], must be seen as hierarchies of basins of attraction (see 
genome activation schemes). Each oscillator is governed by its equations, simpler as in 
our example above, or more sophisticated like in [43]. The 'modules' are embodied into 
fractional distributed form and spring from a self organizing co evolution process ex-
tended to the environment network of relations. This constitutes an high dimensional 
system. Hierarchical modules are an useful way to structure data analysis as they allow 
to reduce uncertainty through iterated processing, [11,14,16]. 

In summary we connect a hierarchical modular system in the sense specified above 
from the sensors to a similar hierarchical modular system managing the actuators 
through a rich homokinetic massive loosely coupled network of chaotic self organiz-
ing oscillators. In principle a simplified version of the mathematics of Schwinger 
fields might be of some help here, although this has to be investigated. 

As shown above in paragraph 3 the length of a control program is linked to the dif-
ference between the reachable phase space volume in open loop and the desired 
closed loop behaviors. 

 

Fig. 4. Schematic representation of a network where coupling is only with the adjacent nodes, 
(Left). Schematic representation of a network with (weak) coupling with adjacent nodes, 
(Right). 

 

Fig. 5. Potential functions for three adjacent not coupled nodes 
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The Lie symmetry of the physical world, [27], as it is experienced by a mechani-
cally extended body strongly reduces the reachable portion of the configuration and 
phase spaces making easier the control. The anticipation is based on the fixed point, 
limit cycles, attractors of the internal dynamics coupled to the 'external' environment. 
Consistency is guaranteed by homokinesys, energy minimization, complexity mini-
mization criteria. 

CPG will emerge naturally from a system like that described here, see [63]. 
A schematic representation is given in fig. 4 the links of the network allow to shape 

the information managed. Chaotic behaviors are induced from the outside environment 
noise. 

There are chances that such a system might exhibit sensory substitution behaviors 
like those observed in the mammal and human brains and sensory motor systems, see 
[41,42], this has to be thoroughly investigated. 

The most suitable tool to study such a system seems to be simulation as deducing 
closed form equations is challenging. 

5   Discussion 

Behavior based approaches in Robotics and AI have proven quite successful and 
might be considered a 'mapping ' of the S-R approach in psychology to the artificial 
domain. On the other end, as shown in section 2 there are hints that this might not be 
the best approach for the 'fit' interaction of an artificial or natural cognitive system 
with its environment. If we agree on that we must define an architectural framework 
capable to manage different anticipatory behavioral schemes.   

Traditionally in GOFAI (Good Old Fashioned Artificial Intelligence), the model of 
the environment is explicitly mapped into the artificial system with a specifically de-
signed symbolic structure superimposed and preimposed from the outside, by a sup-
posedly 'omniscient' agent, the designer of the system. (and here we may observe that 
the knowledge of the environment of the designer is still incomplete and with an inher-
ent probabilistic nature not necessarily capable of anticipating the real conditions with 
which the agent will have to cope). In control theory model based adaptive controls 
methods share the same inherent limitations. Predictive schemes based on stochastic 
identification methods like various kind of Kalman filters or less constraining polyno-
mial observers have the advantage of doing very limited assumptions on the controlled 
system equations (linearity for Kalman), but lack of flexibility as the objective of the 
control actions must be defined in advance. 

Under a certain respect, for a given physical system, the physical morphology and 
the natural dynamics force the possible combinations of sensor and actuator variables 
to a subset of all the values that in theory the system variables may assume while per-
forming a specific task, leading to 'morphological computation', [22,23]. 

We need a complex adaptive system which, exploiting his embodiment and situat-
edness and its network relations within its environment, it is capable of interacting 
within its environment in a proactive and purposive way anticipating 'desired' sensor  
input.  

A model of a typical environment should be a non linear (fractional derivatives?) 
stochastic many variable system exhibiting quite often itinerant chaos behavior with a 
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constant creation and disruption of new symmetries in a fractional (in the fractal 
sense) context. 

Actually we should not 'carve' in advance into the agent or network of agents such 
model as this will in any case restrict the autonomy and behavioral flexibility of the 
agent and limit them to the advance knowledge of the designer, but, instead we should 
conceive a framework which allows the 'spontaneous' emerging of the embodied 
model into the agent itself.  

We need a general behavioral structure generator exploiting its body dynamics and 
environment interaction patterns. The physics of the environment allows to limit the 
generality of the 'abstraction' that the system must be capable to generate. 
The prediction machine will be in general given by a wide set of interleaved fractional 
dimension – due to the attractors' fractional dimension in the phase space - internal 
processes continuously evolving multiply coupled with the 'external' processes origi-
nating by the active interactions (patterns) of the agent. 

There is a need to explain statistical learning as an emerging process from a net-
work of embodied agents with their own natural dynamics, [31]. 

As simple as it is, the model described above in the example given in paragraph 3.1 
allows to represent two essential aspects of our world: inertia (through the position 
second derivative and mass, and a basic (linear) force, or potential field (through the 
linear term in x), and energy conservation. The importance of 'time delay',i.e. phase 
relations, have proven to be important in the human and animal brains, [40]: they are 
a natural outcome of a physical oscillating system. 

Thanks to equation (2) we have a substantial equivalence between the computing 
made by the controller and that 'embodied' into the system. While the relations re-
called above, in section 3, show how the tasks can be split between the different 
agents. A system however implemented capable of representing these basic aspects is 
capable to have coupled oscillations with the external environment. Biological neu-
rons themselves can be modeled as non linear oscillators, [23,24]. On an different 
respect, also groups, subnetworks and networks of artificial neurons can show oscilla-
tory behaviors. We will see below some of the consequences we can (may) draw on 
the basis of these facts. 

In the classical target tracking example quoted above the PID controller together 
with 'body morphology' and the sensors allow this coupling. In this case the coupling 
is possible thanks to the external off line 'design' of an intelligent cognitive embodied 
agent: the system engineer who designed the 'intelligent' weapon.  

If dynamical coupling with 'external processes' is the basis of 'fit' interaction with 
the external environment, what we need is a system with a rich high dimensional dy-
namics, capable of establishing a wide set of multi scale recursive coupled oscillations 
with the environment. From what we have seen above in section 3 there is a substan-
tial equivalence between the 'extensive' information managed by the body morphol-
ogy and the 'intensive' information managed by a computer or by a biological neural 
network. 

The nervous system function in natural intelligent system might be that of mas-
sively increasing the number of dimensions of the system phase space allowing 
richer internal trajectories and making possible a wider number of dynamical cou-
plings with the exterior processes. The sensors and actuators translate from the  
'extensive' dynamics of the external world. 
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The modeling framework discussed in this paper is not the only possible one. 
For example, it has been shown that artificial neural networks may show attractors 

and limit cycles, so a possible alternative implementation can be by means of (a spe-
cial class) neural networks. It makes sense to think that the economy of program 
length and power absorption are more likely in nature in emerging structures coming 
from the evolution optimization process.  

Artificial autonomous systems have the same needs. We may think anyhow that 
any fit quantitative model of cognition should try to unify at deep level, information, 
control and non linear dynamics theory and general AI to be able to account for the 
behavioral complexities of what we observe in nature. 

We hypothesize here that hierarchical Bayesian systems observed in natural sys-
tems might be implemented as small-world networks of non linear oscillators. A sin-
gle neuron might be modeled as a chaotic non linear oscillator. From this perspective 
there is a continuous path from the the 'cognitive' processes in metabolic networks to 
the higher level behaviors in animals and humans. 

The basys of information processing is seen in system dynamics: like in a dance 
the coupled synchronized movements of the dancers deeply rely on their body inertial 
dynamics and the sympathetic knowledge of the other dancer inertial dynamics and 
'intentions'. 

It is thought that the symmetries of the physical world must be represented and 
mimicked inside a cognitive system. The biological neuron networks do that in a 
compressed volume, with limited program complexity and reduced power consump-
tion. This is possible thanks to the signal transduction operated by the sensor actua-
tion systems: from and to mechanical/electromagnetic (distributed) measures to chem-
ical electrical gradients. This gives a specific meaning to the interpretation of biologi-
cal neural networks as embodied massive parallel cognitive systems. 

6   Conclusions 

Although the theoretical framework discussed above may show serious mathematical 
challenges it is thought that it exemplifies some of the features that a working quanti-
tative general models of system of the kind we investigate and we aim to reproduce 
technically should have. An important characteristics of this conceptual model is the 
attempt to ground coordination of physical intelligent agents between them and with 
the environment on system dynamics and related information metrics, through the 
relations typical of stochastic control. 

In general what we need is a high dimensional system model with a rich internal 
dynamics capable of evolving over time many complex adaptive internal sub dina-
mycs coupled with the 'external' environment dynamics. 

This paper aims to suggest a methodology and to highlight a few of the challenges 
that the development of a working example of an embodied anticipatory cognitive 
system still presents. 

Perhaps what we need is an integrated approach putting together concepts and me-
thods from fields so far considered separated like non linear dynamics, information, 
computation and control theory as well as general AI and psychology. 

A lot of work has still to be done. 
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Appendix: Information Metrics Relation Proofs 

We will derive in the following the relations given in section 3. 
In a network model like those adopted in this discussion, [53,54], the probability βi 
that a new node will connect to a node i already present in the network is a function of 
the connectivity ki and on the fitness ηi of that node, such that 
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A node i will increase its connectivity ki at a rate that is proportional to the probability 
that a new node will attach to it, giving 
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The factor m accounts for the fact that each new node adds m links to the system. 
In [26] it is shown that the connectivity distribution, i.e. the probability that a node 
has k links, is given by the integral 
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where ρ(η) is the fitness distribution and C is given by: 
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We define a proper ηi function which may basically be a performance index of the 
effectiveness of sensory motor coordination and which control the growth of the net-
work. 
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The physical agents constituting the system are connected physically, but also from 
an information standpoint. 

Equation (A.5) gives the expression for the Shannon entropy of the network of 
elements: 

1

( ) lo g ( )
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H N P k P k
∞

=

= −∑
 

(A.5)

where P(k) represents the distribution of node connections and the 'infinite' in the 
summation is actually the big finite number of physical elements, considered, as a 
simplification, coinciding with the finite elements. 

It is important to notice that this is only a part of the information 'stored' into the 
system: the information in a single neuron or body element is given by equation (2). 

The aim of this short discussion is to show that a network of physical elements can 
actually manage information into the structure of its internal relations, as it can be 
shown starting from equation (A.5). The concept model described here actually repre-
sent a large class of similar models. 

In this section the discussion is related to the one in section 3, as the networks of 
agents we are considering here are actually embodied and situated dynamical sys-
tems, which do have a phase space representation. This allows to derive a few further 
relations. 

We can state, for a network of n physical elements, that: 

n

c o n tr o lle r i
i

H H N H IΔ = Δ + Δ − Δ∑  (A.6) 

where ΔHcontroller represents the information variation due to the controller, ΔHN is the 
information variation in the network itself, ΔHi  is the information variation for a sin-
gle embodied agent, ΔI the multi information between the n agents of the network and 
the network itself, this last term account for redundancies in information measures 
between the individual 'intelligent elements' of the structure and the structure itself. 
From equation (1), we have: 
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And: 
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This is relation (II) 
Furthermore: 
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This is relation (III) 
And from (2) and (A.6): 
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Applying again equation (2): 
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We derive: 
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If we define the quantities in (A.13), (A.14): 
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We obtain equation (A.15): 

m ax
lo g c lo se d

o p e n

H N I
ΩΔ = + Δ
Ω  (A.15) 

This is relation (IV) 
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Abstract. Simulation theories have in recent years proposed that a cognitive 
agent's "inner world" can at least partly be constituted by internal emulations or 
simulations of its sensorimotor interaction with the world, i.e. covert perception 
and action. This paper further integrates simulation theory with the notion of the 
brain as a predictive machine. In particular, it outlines the neural pathways of 
covert simulations, which include implicit anticipation in cerebellar and basal 
gangliar circuits, bodily anticipation by means of forward models in the cere-
bellum, and environmental anticipation in the neocortex. The paper also dis-
cusses, to some extent, possible implications of the neural pathways of covert 
simulation for the frame problem, and the relation between procedural and de-
clarative knowledge in covert simulations. 

1   Introduction 

According to simulation (or emulation) theories [e.g. 1 ch. 9, 2-5], thinking is, quite 
literally, rooted in perception and action. In line with empiricist and associationist 
ideas, thinking is the coupling of covert actions and perceptions. What we mean by 
covert action is the ability to reactivate some of the neural processes and structures 
used to plan (and execute) bodily movements, but without any actual movements. 
Similarly, covert perception refers to reactivation, in the absence of external stimula-
tion to the sense organs, of some of the neural structures and mechanisms that process 
sensory input. Thus, simulation processes are off-line processes which can operate in 
the absence of sensory input and also without causing any movements (see Figure 1).  

 

 

Fig. 1. Covert simulation. Instead of eliciting a new action, covert action r1 generates a covert 
perception, s2, which then generates a new covert action r2 and so on. (Adapted from [3]) 
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Coupling covert actions and perceptions into covert or off-line simulations allows 
organisms to form, roughly speaking, an internal world. Several advantages come 
from having such an internal world, one being the ability to try out behavioral options 
in total safety; “letting our hypotheses die in our stead” to borrow a phrase from Pop-
per [cf. 6]. These Popperian creatures, as Dennett calls them, are the opposite to the 
stupid “who lights the match to peer into the fuel tank, who saws off the limb he is sit-
ting on, who locks his keys in his car and then spends the next hour wondering how 
on earth to get his family out of the car.” [7]. Although not the main topic of the pa-
per, it is worth pointing out that endowing agents with this kind of internal models 
might lead to something akin to the frame problem [7]. The frame problem was origi-
nally posed as a problem for traditional AI, but philosophers have applied it more 
generally and it may also be a problem that should be addressed by simulation theo-
ries, or any other theory, which aim to explain Popperian internal worlds [8]. Hase-
lager and van Rappard [9] interpreted the general frame problem as follows:  
 

Psychologically speaking, people have an amazing ability to quickly see the 
relevant consequences of certain changes in a situation. They understand what 
is going on and are able to draw the right conclusions quickly … The problem 
is how to model this ability computationally. What are the computational 
mechanisms that enable people to make common-sense inferences? Especially, 
how can a computational model be prevented from fruitlessly engaging in time-
consuming, irrelevant inferences? A rather straightforward suggestion is that 
seeing the relevant consequences of an event is made possible by an under-
standing of the situation. … Yet, human beings posses an enormous amount of 
information. The real difficulty underlying the frame problem is how the rele-
vant pieces of knowledge are found and how they influence one’s understand-
ing of the situation. [9] 

 

Covert simulations may be part of the process of understanding a situation by pro-
ducing simulations of the possible future states that can be reached from the current 
[cf. 10, 11]. However, there must be mechanisms that constrain simulations to the 
relevant aspects of the situation if covert simulations are to be part of the complex 
task of understanding a situation.  

Dennett [7] argued that a problem with many theories, for example associationist 
theories, was that they did not specify any real (physical) mechanisms to solve the 
frame problem [cf. 8, 9]:  
 

Hume explained this in terms of habits of expectation, in effect. But how do the 
habits work? Hume had a hand-waving answer - associationism - to the effect 
that certain transition paths between ideas grew more likely-to-be-followed as 
they became well worn, but since it was not Hume's job, surely, to explain in 
more detail the mechanics of these links, problems about how such paths could 
be put to good use - and not just turned into an impenetrable maze of untraver-
sable alternatives - were not discovered. [7] 

 

Simulation theories have argued to extend associationist ideas by paying close at-
tention to how brains work [3], which may provide answers to how the covert simula-
tions are organized and constrained. Looking at the neural mechanisms that produce 
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covert simulations, it seems that evolution have resulted in a rather general solution - 
anticipation. We argue in this paper that covert simulations to a large extent reuse the 
neural circuitry for so called procedural and declarative predictions [12, 13]. Downing 
[12] pointed out the possible compatibility of his work and simulation theories and 
also suggested that simulation theories need to explain the relationship between 
lower- and higher-level representations in covert simulations. 

The paper further incorporates the notions of procedural prediction and declarative 
prediction, although somewhat redefined, with simulation theories, reviews other 
sources of evidence for its incorporation including neurophysiological mechanisms, 
and addresses the relationship between lower- and higher-level representations. 

The paper is structured as follows. Section 2 provides a brief overview of simula-
tion theories and introduces three notions of anticipation: implicit, bodily, and envi-
ronmental anticipation. Section 3 is about implicit anticipation in simulations. The 
section first presents some empirical evidence for the presence of implicit predictions 
and then describes how implicit predictions might be implemented by the cerebellum 
and basal ganglia and their role in off-line simulations. Section 4 briefly reviews bod-
ily anticipations in simulations and presents the view of the cerebellum as a forward 
model. Section 5 focuses on environmental predictions and relates this view to the 
ideo-motor view of cognition, as well as provides some empirical support for envi-
ronmental predictions. Furthermore, it presents the view that environmental predic-
tions based on efference copies at various levels of the neocortex plays a crucial role 
in simulated behavior. The paper ends with a discussion in Section 6. 

2   Simulation Theories: What Are the Components? 

Simulation or emulation theories explain many aspects of cognition ranging from per-
ception to conceptualization. These theories share, although to various extent, the idea 
that cognition must be explained in terms of covert perceptions and actions, as de-
fined above [14]. There are differences though. Some simulation theories argue that 
covert simulations are to be considered as reactivated perceptions and actions [3], in-
puts and outputs of emulators [5], or perceptual symbols [15]. Although these might 
be seen as merely minor semantical differences, they can, for example, imply differ-
ent views on the extent to which simulations require additional theoretical and neural 
mechanisms beyond the sensorimotor systems. Related to this is whether simulations 
require the reactivation of the neural substrate closest to the sensory input and motor 
output terminals [cf. e.g. 11]. However, a more pragmatic perspective consistent with 
the empirical evidence is that covert simulations exist at many different levels of the 
sensorimotor hierarchy. There are also different views on the representational nature 
of covert simulations. Our view of simulation theory, suggests that covert simulations 
should not be equated with cognitivist notions of representation and internal models 
in cognitive science and AI. If covert simulations are to be seen as representations 
with epistemic functions, they cannot only be observer defined correspondences be-
tween aspects of the model and aspects of the world [16]. Rather, the covert simula-
tions function as representations because they reactivate the neural activity present 
during embodied interaction. Covert simulations are representations in the Piagetian 
sense: 
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[R]e-presentations in Piaget's sense are repetitions or reconstructions of items 
that were distinguished in previous experience. As Maturana explained … such 
representations are possible also in the autopoietic model [[e.g. 17]]. Maturana 
spoke there of re-living an experience, and from my perspective this coincides 
with the concept of representation as Vorstellung, without which there could 
be no reflection. From that angle, then, it becomes clear that, in the autopoietic 
organism also, "expectations" are nothing but re-presentations of experiences 
that are now projected into the direction of the not-yet-experienced. [18] 

 

Covert simulations may result in these kinds of reactivated experiences, but they 
can also be present without resulting in conscious experiences. The paper makes no 
further attempt to explain what states or processes are likely to be conscious ones.  

The starting point of our explanation of covert simulations is Hesslow’s [3] “simu-
lation hypothesis”, which postulates the following elements of covert simulations: 
 

(1) Simulation of actions: we can activate motor structures of the brain in a way 
that resembles activity during a normal action but does not cause any overt 
movement. (2) Simulation of perception: imagining perceiving something is es-
sentially the same as actually perceiving it, only the perceptual activity is gen-
erated by the brain itself rather than by external stimuli. (3) Anticipation: there 
exist associative mechanisms that enable both behavioral and perceptual activ-
ity to elicit perceptual activity in the sensory areas of the brain. [3] 

 

The next section describes the empirical evidence for the existence of simulations 
of perception and action, or covert perceptions and actions as they are termed here. 
Section 2.2 outlines the second aspect of simulations, anticipation, and distinguishes 
three different forms of anticipation, which are then elaborated in the remainder of the 
paper. 

2.1   Reactivation 

A wide range of psychological and neuroscientific studies have shown that cognition 
to a considerable extent involves the reactivation of the neural processes active during 
perception and action in humans [for a detailed review see e.g. 19]. Reactivations 
might also be present in other animals as well. An indicative, but not conclusive, ob-
servation is the running movements and yapping of sleeping dogs, which suggests that 
something like a mental simulation might be present [20]. 

Reactivation has for a long time been a hypothesis in memory research, dating 
back to William James, which specifically states that sensory and motor brain re-
gions that are active during encoding are also reactivated during retrieval of memo-
ries [21-24]. One of the first neuroscientists to adopt this reactivation hypothesis was 
Damasio [25] who explained procedural and declarative memory as “time-locked 
multiregional retroactivation”. According to Damasio [25], 
 

perceptual experience depends on neural activity in multiple regions activated 
simultaneously … during free recall or recall generated by perception in a rec-
ognition task, the multiple region activity necessary for experience occurs near 
the sensory portals and motor output sites of the system rather than at the end 
of an integrative processing cascade removed from inputs and outputs. [25] 
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Both behavioral and, recent neuroimaging experiments have provided further  
support for the reactivation hypothesis in memory tasks [26]. One of the most spec-
tacular behavioral demonstrations of the importance of the overlap of encoding and 
retrieval context comes from Godden and Baddeley’s [1975, cited in 27] memory 
context experiment with divers. Using a free recall methodology, Gooden and 
Baddeley had divers learn lists of words either on land or submerged, and to recall 
the words either in the same context as during encoding or in the other context. 
When encoding and retrieval context matched memory performance was enhanced 
compared to non-matching contexts. These results indicating an interdependence of 
encoding and retrieval are consistent with the hypothesis that similar neural mecha-
nisms are being used. 

Recent neuroimaging experiments of memory have provided further support for the 
reactivation hypothesis and the assumption that the behavioral effects are due to the ac-
tivation of the sensory and motor areas used to process the percept or associated action 
[cf. 21]. Using Positron Emission Tomography (PET), Nyberg et al. [24] found that re-
membering visual words that had been presented together with sounds at the encoding 
stage activated some of the auditory brain regions that were active during encoding. 
Moreover, this effect was present even when the subjects did not have to explicitly re-
member the sound, but only determine whether the word was part of the original list. 
This effect also transfers to other types of information, such as spatial location [Persson 
& Nyberg, 2000, cited in 24], and vivid visual information [23]. Furthermore, Nyberg et 
al. [22] found that both overt enactment and imaginary enactment of the to be remem-
bered action phrase are accompanied by encoding-retrieval overlaps. However, it should 
be noted that the studies also show that encoding and retrieval are associated with dif-
ferent activity patterns [22]. However, they do show that sensory and motor regions par-
ticipate in some cognitive processes that do not involve perception and action [cf. 22]. 

The reactivation hypothesis generally supports the reactivation of both perceptual 
and motor areas used during the encoding of the memory. Covert perceptions and 
covert actions are thus special cases of this general principle of memory and brain 
function. The two following sections focus on studies that emphasize the perceptual 
or motor aspect of the reactivation.  
 

Covert Actions. Many experimental results suggest that, to some degree, the same 
neural substrate is used for action and covert action. Although reactivation of motor ac-
tions has been observed in other cognitive tasks such as language understanding, the 
most encompassing reactivation occurs in explicit or implicit motor imagery [cf. 28] 
leading some to suggest that covert actions are in fact actions, with the exception that 
no overt movement occurs [e.g. 29]. Motor imagery is usually defined as the recreation 
of an experience of actually performing an action, for example, the person should feel 
as if he or she was actually walking [30]. Motor imagery experiments have shown that 
mentally simulating an action is similar to overt action in the following aspects: execu-
tion time including the reproduction of Fitt’s law and isochrony [5, 31-33], physiologi-
cal effects [34, 35], PET, fMRI, and TMS [for reviews see 4, 36, 37].  

In the case of motor imagery, the reactivation of actions is quite independent of the 
current input stimuli, i.e., independent in the sense that the reactivation is not caused 
by it. Covert motor activity has however also been found to be automatically elicited 
by various kinds of external sensory stimuli. The discovery of mirror neurons in the 
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macaque monkey [38, 39] and the possible existence of mirror systems in humans 
[40, 41] clearly illustrate this ability. Mirror neurons and canonical neurons have been 
found in the rostral region of the inferior premotor cortex (area F5) of the monkey 
brain which contains neurons that are known to discharge during goal directed hand 
movements, such as grasping, holding, tearing, or manipulating [42]. The special 
property of mirror neurons is that they are also activated by observation of the same 
goal-directed hand (and mouth) action being performed by someone else [38, 39]. 

The empirical evidence suggests that the brain has the ability to reactivate the brain 
areas responsible for action by means of internal or external stimuli. It also shows that 
it is possible to do this without causing overt actions. If the covert actions are suffi-
ciently similar to the patterns normally producing movements and actions, the covert 
actions could internally drive activations in the sensory cortex to resemble the activa-
tion that would have occurred if the action had been executed. 
 

Covert Perceptions. There is much empirical evidence, both behavioral and neuro-
scientific, that suggest that reactivation of covert perceptions is common in human 
cognition [43-45], but there are also animal learning studies that could suggest that 
even rats are able to reactivate a perception based on earlier cues [46]. Several studies 
have indicated that imagination evokes similar experiences to actual object interaction 
[e.g. 47], and are almost indistinguishable from the real perception [Perky, 1910 cited 
in 43, 48]. The seminal study by Shepard and Metzler [47], had subjects determine 
whether two three-dimensional forms had the same shape or not. The results showed 
that reaction times increased linearly with the angular difference, indicating that the 
imagined rotations were performed at a constant rate, as if a physical object were ro-
tated [cf. 43]. Furthermore, they found reaction times not to be longer for depth rota-
tions than for rotations in the picture plane. These two findings suggest that imagined 
rotations in some aspects correspond to actual physical rotations of objects [43]. 
Moreover, the subjects reported that they solved the task by mentally forming and ro-
tating three-dimensional forms to “see” if they were the same, which might also be 
taken as support for the involvement of perceptual processes in mental imagery. There 
have also been findings that suggest a considerable overlap between the mechanisms 
of spatial attention and spatial working memory [49]. Furthermore, Lauwereyns et al. 
[50] found that their finding generalizes to non-spatial visual dimensions, such as 
color and shape. 

A recurring issue in neuroscience is to what extent the sensorimotor loop and the 
off-line simulation overlap. As discussed above, some findings based on behavioral, 
physiological, brain imaging and single neuron recordings suggest that the overlap is 
almost complete, except for the overt execution. Other studies have observed small 
differences in some of the structures, such as a small shift in the rostral direction in 
the basal ganglia and dorsal premotor cortex for imagined as compared to real actions 
[51, 52]. The differential activation could perhaps be useful for thinking about an ac-
tion, while performing another. 

2.2   Anticipation  

So far we have reviewed evidence concerning the existence of covert perceptions and 
actions and the extent to which they are similar to actual perceptions and actions. The 
next step is to address the mechanisms which enable the coupling of covert actions 



 Neural Pathways of Embodied Simulation 101 

and perceptions into extended covert simulations (cf. Figure 1). Based on Downing’s 
[13] distinction between declarative and procedural prediction, we suggest that three 
forms of predictive processes are used to establish covert simulations, implicit, bod-
ily, and environmental anticipations1. Implicit anticipation: Action selection mecha-
nisms can be seen as anticipations, but of an implicit [53] or procedural [13] kind. 
This kind of prediction, formed by evolution or learning, allows an animal to act as if 
it has access to some future goal state, but without the need to produce a (sensory) 
state that correspond to that goal. In other words, implicit predictions generate ac-
tions, which mean that the only information about the external state is in the way that 
the animal coordinates its behavior with it. Bodily anticipation: Many models suggest 
that it is necessary to produce predictions of the (sensory) state of the body [54-56], 
because of the inherent time delays in the sensorimotor system. That means, since it is 
often not possible to successfully plan all motor commands in advance based on the 
current state and the time delays would prevent error correction during motion,  
predictions of the future states of the body have to be provided to update the motor 
planning process. Environmental anticipation: The ability to generate a prediction of 
a future perceptual state that is associated with a particular response in a given situa-
tion could be advantageous. For example, if this would lead an animal to reactivate 
the “image” of a predator, it could also automatically execute the associated action 
programs and might escape the predator (Hesslow, unpublished manuscript, cf. also 
[13]). Covert perceptions could initiate action selection mechanisms in similar ways 
as actual perceptions because of their similarity in terms of neural activity.  

3   Implicit Anticipation 

Although actions are situated in the sense that they are highly influenced by a particu-
lar bodily and environmental situation, prediction and the internal construction of 
simulated interactions are crucial aspects for the behaving animal. In AI one alterna-
tive has been to conceive of the internally constructed plans as prescriptions for ac-
tions [57]. An alternative view, the one favored here, is that internally constructed 
plans are but one of the causal influences (internal or external) on the resulting behav-
ior and that the influence on actual behavior is less direct [cf. 58, 59]. Marques and 
Holland [60] extensively discussed the necessary and sufficient criteria for an embod-
ied agent capable of planning by means of simulations or, in their terms, functional 
imagination. The neural mechanisms of implicit anticipation described in this section 
may also contribute to the understanding of such an agent by providing some hints 
about the neural mechanisms for goal-seeking behavior (i.e., approaching a goal 
without explicitly representing it) and action selection. These mechanisms also ensure 
that simulations are effective, i.e., only relevant simulation paths are considered, 
rather than simulating every possible action in a situation. However, this would also 
be the case for creatures not endowed with simulation abilities, since it is only possi-
ble to perform a few actions out of an almost infinite pool of possible actions simulta-
neously [cf. 61]. Thus, our hypothesis is that the non-simulating brain’s solution to 
the action selection problem is reused by the simulating brain. These mechanisms do 

                                                           
1 The terms prediction and anticipation are used synonymously.  



102 H. Svensson, A.F. Morse, and T. Ziemke 

not only speed up simulations by constraining them to a few simulation paths by 
means of implicit predictions, but also allow them to be directed towards future goals, 
without explicitly representing the goal.  

3.1   Implicit Predictions in Humans and Animals 

The establishment of stimulus-response (S-R) associations has been a major theory of 
animal learning. In the context of this paper, S-R associations can be seen as simple 
forms of implicit predictions. For example, eyeblink conditioning can be explained in 
terms of (implicitly anticipatory) S-R associations. A neutral conditioned stimulus 
(CS), e.g. a tone, is followed by an unconditioned stimulus (US), e.g. a puff of air, 
which elicits a conditioned response (CR), a blink [62, 63]. After training, the neutral 
stimulus directly elicits the conditioned response in anticipation of the unconditioned 
stimulus. The neural substrate of eyeblink conditioning is discussed further in the next 
section. Cisek and Kalaska [64] provided evidence for predictively activated (but not 
executed) motor representations in the dorsal premotor cortex of monkeys. More im-
portantly, they also found that the predictive and performance related activity was 
strikingly similar. Thus, it implements a predictive relationship between the stimuli 
and the about to-be-activated action. A similar finding is that the perception of objects 
automatically activates motor representations of the action normally performed when 
using the object [65]. 

3.2   Neural Substrate of Implicit Predictions 

Although many factors, processed in different parts of the brain, affect behavioral 
choices [66], basal-ganglia–cortex loops (including amygdala influence) [67] and cor-
tico–cerebellar loops [68] are commonly considered crucial for action selection. 
These action selection mechanisms are in some respects anticipatory in nature since 
the agent’s actions are directed towards a future situation. However, as described 
next, there are no explicit predictions involved in the anticipatory behaviors learnt by 
these action selection mechanisms [cf. 2, 13, 69].  
 

Cerebellum. It has been suggested that the cerebellum learns sensory-motor contin-
gencies through supervised learning [13, 70]. The cerebellum receives input from 
several different subcortical and cortical areas through mossy fibers to granular cells 
where the granular cell’s axon forms parallel fibers (PF). Each PF synapses onto the 
dendrites of many Purkinje cells (PC) (~100000:1), whose firing ultimately inhibit a 
motor response via cells deep in the cerebellum. Each PC receives input from one 
climbing fiber (CF) (1:1) which gives feedback from afferents located nearby the 
muscles via the inferior olive [71, 72]. The supervised learning is dependent on the 
timing of the error feedback, which is explained in the form of eligibility traces that 
enables long term depression of PF-PC synapses that was active around 100-250msec 
prior to climbing fire activation [13, 73-75]. In other words, the error feedback from 
the muscles, affects the signals that was active some time ago, often around the time 
when those actions that caused the error signals were activated. Some studies have 
also found that motor imagery activates the spinal cord and muscle spindles [76]. In 
these cases, it might be possible to covertly generate (simulate) the error signals that 
the cerebellum needs for learning the correct actions [cf. 71]. Increased activity of the 
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cerebellum in motor imagery [e.g. 4] and the ability of motor imagery to improve 
later performance [e.g. 35] is in line with this hypothesis. 

Eyeblink conditioning is also thought to be mediated by the cerebellum. In the case 
of eyeblink conditioning, the CS is presented via mossy fibers and the US via CFs [62]. 
During training, the PF-PC synapses are altered such that the PC response is decreased 
around the time of the tone (CS), which causes a disinhibition of the interpositus nu-
cleus and the downstream motor pathways leading to a blink (CR) that coincides with 
the airpuff (US) [62].  

The general conclusion is that the cerebellum can implement S-R relations; as soon 
as a particular sensory context is present, the cerebellum computes the correct signal 
to the motor system. The cerebellum could be part of extended simulation loops by 
helping to establish the S-R links (cf. Figure 1), i.e., to select the actions represented 
in the neocortex [cf. 77]. In that case, the cerebellum only implements an implicit 
model of the world, which means that the only criterion for being a model is that it 
generates correct actions. Other models suggest that the cerebellum functions as a 
forward model capable to generate predicted (sensory) states (discussed in Section 4). 
 

Basal Ganglia. The basal ganglia have been suggested to play a major role in action 
selection [78]. For example, Humphries, Stewart and Gurney [79] suggested that “the 
BG are a critical neural substrate in the vertebrate action selection system, resolving 
conflict between multiple neural command centers trying to access the final common 
motor pathway” (p. 12921). The way the basal ganglia implements implicit predic-
tions requires a longer explanation than is possible here [for full descriptions see 12, 
13, 78], but in essence the input station of the basal ganglia, the striatum, learns to de-
tect important (cortical) contexts which it maps to actions, represented in the cortex 
and the brain stem. The learning of a context-action pair is then guided by the emo-
tional response that the action results in. As in the cerebellum, eligibility traces makes 
sure that contexts active roughly 100msec before an emotional response are the ones 
strengthened. Furthermore, earlier and earlier contexts can be made to predict the 
emotional response [13]. The prediction of emotional states allows the basal ganglia 
to learn context-action pairs that anticipate emotional states. 

Several models argue that the basal ganglia together with associated cerebral and 
cerebellar structures are involved in off-line simulations [61, 80]. For example, Doya 
[80] suggested that a network consisting of the basal ganglia, parietal cortex and 
frontal cortex as well as the cerebellum could implement off-line simulations used 
for planning. However, in Doya’s model, the cerebellum does not generate implicit 
predictions but provides predictions of the new (sensory) state (discussed in Section 
4). A role more consistent with the view of the cerebellum as generating implicit 
predictions is that it contributes to covert simulations by fine-tuning the covert ac-
tions selected by the basal ganglia [81]. For example, Sears, Logue and Steinmetz 
[82] argued, in the context of eyeblink conditioning, that an efference copy of the CR 
may project to motor cortex, which serves to fine-tune movements and integrate 
simple responses with more complex movement sequences. A possible function of 
the basal ganglia (together with the cerebellum) in off-line simulations could be to 
direct and constrain the course of simulations by selecting some actions over others, 
but at the same time also prevent them from causing overt movements [2, 83]. In 
other words, just as the basal ganglia support action selection through reinforcement 
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learning they also might be able to select the action content of our thoughts [61]. The 
neuron populations in prefrontal, premotor and motor cortex activated by the basal 
ganglia can then serve as the input to cortical mechanisms, which predict the sensory 
consequences of that action (cf. Section 5).  

In summary, the resulting sensori-motor associations formed by the cerebellum and 
basal ganglia may during simulations anticipatorily activate the various parts of the 
motor system, resulting in covert actions (some of which might be experienced as mo-
tor images [30]) or actions [cf. 2, 81]. A central aspect of the learning mechanisms is 
the eligibility trace, which ensures that the associative learning occurs on synapses 
that were active roughly 100-250msec prior to a teaching signal [13, 73, 74]. This is 
could in some cases be an example of co-evolution between the nervous system and 
body [cf. 84], since the neurochemical processes that allow for the modification of 
synapses are closely tied to the feedback delays of the sensorimotor system. 

4   Bodily Anticipation 

For most people it is very difficult to tickle one self. However, it might be possible if 
you use a feather or better yet if someone else tries to tickle you (using a feather). A 
possible explanation is that since we have had lots more practice with and can with 
some certainty know what actions we are about to perform we can predict the proprio-
ceptive signals. Blakemore and colleagues [85-87] argued that the neural mechanisms 
that produce this phenomenon are based on efference copies feed to the cerebellum. The 
cerebellum both predicts the sensory consequences of that action and compares it with 
the resulting sensory feedback from touch sensors, which if there is no discrepancy at-
tenuates the activity in somatosensory cortex. This is usually described as that the cere-
bellum implements a model of the world, a so called forward model [e.g. 68, 80]. This 
means that the cerebellum implements a prediction of the state of the body or the sen-
sory afference from the proprioceptive (and proximal sense) organs based on efference 
copies [e.g. 68]2.  

Motor control experiments have also suggested that forward models are necessary 
because the motor system needs to act on predictive knowledge of future states to, for 
example, compensate for feedback delays [e.g. 54, 56]. Many models argue that the 
forward models are found in the cerebellum, and that the forward models can be run 
off-line to generate covert simulations [e.g. 5, 71]. For example, if motor activity 
(generated by a cerebellar S-R association, cf. Section 3.2) does not lead to overt ac-
tion, an efference copy might still be sent to the cerebellum to generate a sensory pre-
diction. These kinds of covert simulations are likely to be closely tied to details of the 
execution and proximal consequences of bodily movement. Hence, the sensory pre-
dictions are related to proprioceptive signals and the proximal senses of touch (and 
perhaps taste) [88].  

Bodily anticipation as we have chosen to call it is also declarative prediction in that 
it generates states that correlate to external states, i.e., external to the central nervous 
system, but at the same time the information is about events internal or at surface of 
the body. 
                                                           
2 However, whether or not the cerebellum implements a forward model that predicts future 

sensory states is a matter of discussion [88]. 
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5   Environmental Anticipation 

Environmental anticipation differs from bodily anticipation both in its function and 
neural substrate. The function of environmental anticipation is to generate predictions 
of future sensory states relating to objects and situations in the world external to the 
animal’s body. Environmental predictions are similar to declarative predictions in that 
they associate two neural states which each correlate to some environmental state. For 
example, if a particular perception is associated with the “image” of a predator then the 
animal might have a better chance of escaping its predator. This type of sensory-
sensory associations is certainly present in many mental simulations [3]. Some simula-
tion theories emphasize, as we do in this section, that motor patterns are often crucial 
in eliciting the sensory activity that is normally associated with the execution of the 
corresponding action [cf. 2, 3]. This type of environmental prediction might be crucial 
for implementing longer and more specific or goal directed covert simulations.  

5.1   Environmental Predictions in Humans and Animals  

The prediction of (sensory) effects was already a central tenet of William James’s 
Ideo-Motor Principle (IMP), i.e., the idea that every action is preceded by a prediction 
of its effect. 
 

An anticipatory image, then, of the sensorial consequences of a movement, 
plus (on certain occasions) the fiat that these consequences shall become ac-
tual, is the only psychic state which introspection lets us discern as the fore-
runner of voluntary acts. [James, 1890/1981, p. 1112, quoted in 89] 

 

The action-effect association is bi-directional [90], implying that it is both a predic-
tion of the effects and a determinant of the behavior [89]. However, in this section the 
focus is on the prediction of sensory effects, rather than the action selection aspect. 
The predictive action-effect association has been demonstrated in several animal 
learning experiments. For example, Colwill and Rescorla [as described in 89] showed 
that rats do not only learn S-R relationships, but their behavior is determined by the 
response reinforcer association by devaluation of one of two previously learned re-
sponse-reinforcement associations. 
 

Rats were first separately reinforced with food pellets after performing R1 
and with a sucrose solution after R2. Once instrumental training had occurred, 
one of the two reinforcers (outcomes/effects) was devalued by associating it 
with a mild nausea. Finally, the rats were given the choice between the two 
responses, but with all outcomes omitted. In this test-phase rats showed a 
clear suppression of performing the response the outcome of which had been 
devalued. Obviously, the rats had not only associated the two responses with 
a situation wherein these were reinforced (S-R1 and S-R2), but they had also 
learned which response leads to which outcome (R1-food pellets, R2-sucrose 
solution). [89] 

 

That means, the rats’ behavior is guided by the effect associated with the response. 
Response-effect predictions have been found in several experiments with humans as 
well [reviewed in detail in 91]. Furthermore, some of these experiments suggest that 
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the effects are in the form of covert perceptions as suggested by simulation theories 
[Kiesel & Hoffmann, 2004; Kunde, 2003 in 91].  

Furthermore, the experiments performed by Libet could be taken to demonstrate 
that the initiation of a movement reaches our awareness 50-80msec before the move-
ment has actually started [56], which lends further support to the existence of predic-
tive action-effect associations. Since the movement has not begun, the awareness 
cannot be generated by proprioceptive or sensory feedback but must be generated by 
other means, i.e., a prediction/simulation. The similarity of perceptions and covert 
perceptions, discussed earlier, indirectly also suggests the existence of predictive 
mechanisms for sensory activity. 

5.2   Neural Substrate of Environmental Predictions 

The ability to predict sensory states that correspond to various external states is the fi-
nal functional aspect of simulation to be addressed. The sensory predictions close the 
simulation loop such that agent-environment interactions can be rehearsed internally 
in various cognitive processes. They might provide the means to generate chained 
simulations at various levels of abstraction. However, we shall not discuss the process 
of abstraction per se here. There are at least three different neural circuits that could 
implement environmental predictions, the neocortex, thalamo-cortical loops and the 
hippocampus [13]. The focus here is on the neocortex, but as described in the last 
subsection there is a common mechanism for environmental predictions. 
 

Neocortex. Possible routes for predictions of sensory or perceptual consequences are 
located throughout the neocortex. The hierarchical structure of the motor and sensory 
cortices and the reciprocal connections between them at various levels [3, 92, 93] 
suggest the possibility of the cortex implementing both predictions from motor to sen-
sory activity and the reverse. Cotterill [2] argued that the premotor areas send infor-
mation back to the sensory cortex by way of axon collaterals. He further noted that 
“there are three such efference copy routes…One goes directly, another passes 
through the anterior cingulate, and the third goes via the thalamic ILN” (p. 22). Effer-
ence copy routes might indeed be a ubiquitous property throughout the sensorimotor 
hierarchy [Hesslow, personal communication cf. 92]. Gomez et al. [94] have, based 
on their own experiments with the contingent negative variation and other corroborat-
ing studies, suggested that there exists an attentional-anticipatory system that  
“include[s] not only the frequently described prefrontal, SMA, and primary motor 
cortices, but posterior parietal cortex, cingular cortex, and pulvinar thalamic nuclei 
too. The neural substrate of the perceptual domain is not so well-described, but, of 
course, the participation of primary sensory areas has been hypothesized” (p.67). 
Gomez et al.’s studies do not, however, show decisively how the preparatory activity 
of the sensory cortex is elicited, i.e., directly via the sensory cues or indirectly by pre-
paratory activity of the motor related cortices. The study by Kastner et al. [95] 
showed influence from frontal and parietal areas on extrastriate cortex during covert 
attention shifts, suggesting the possibility of motor areas modulating the activity of 
sensory areas in an anticipatory manner. 

The existence of predictive loops in the neocortex is also supported by research on 
the mirror neuron system. Canonical neurons are neurons whose response properties 
are somewhat more specific to particular visual (interaction) properties of objects (ac-
tion affordances) rather than the action-object conjunction typical of mirror neurons 
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(India Morrison, personal communication). Iacoboni [as described in 88] postulated 
that the mirror neuron related areas can implement predictions of the consequences of 
actions. This would involve projections from area F5 of the ventral premotor cortex, 
through area PF, and to STS, essentially “converting the motor plan back into a pre-
dicted visual representation (a sensory outcome of the action)”. However, it should 
also be pointed out that Miall [88] argued similar transformations might be imple-
mented by pathways incorporating the cerebellum. In line with the distinction  
between bodily and environmental anticipation, Miall pointed out that mirror neuron 
related activity reflects more general aspects of actions, whereas forward models in 
motor control would be more detailed, suggesting that prediction of sensory effects 
might take place at several different levels of abstraction. It should also be noted that 
although the emphasis has been on the generation of sensory activity by motor activ-
ity, several associations form between perceptual stimuli, which do not include a mo-
tor aspect [3]. In other words, covert perceptions may elicit other covert perceptions. 

Another type of covert simulations implicating the neocortex are the as-if loops of 
Damasio [96, 97]. He argued that feelings can occur in the absence of their normal 
bodily causes, by short circuiting the body loop. Instead, the feelings are simulated in 
loops involving the prefrontal cortex and the somatosensory cortex. One advantage 
according to Damasio [96], is that the connection between the prefrontal cortex and 
the somatosensory cortex, especially the insula, are very short, which means that the 
signaling can occur in hundreds of milliseconds as opposed to the body loop that 
takes up to 1 second to complete due to the long, often unmyelinated, axons. In effect, 
the as-if feelings can be seen as predictions of “bodily feelings”.  
 

Declarative Prediction Networks and Simulation. Downing [13] suggested a com-
mon model for how the kinds of declarative predictions are learnt in cortical, thalamo-
cortical, and hippocampal circuits, which he called the general declarative predictive 
network (GDPN). Although his focus was the association of consequent sensory 
states, the neurophysiology behind this type of association might also explain the pre-
dictive association between a motor representation and its sensory consequence (at 
some or several levels of the sensorimotor hierarchy, cf. [92]). The declarative predic-
tion networks that Downing postulates provide an unsupervised learning scheme. This 
would work in the neocortex as described briefly in the following text. The neocortex 
is organized horizontally into layers, and vertically into groups of cells linked synap-
tically across the horizontal layers called cortical columns or microcolumns [98]. As 
described by Swanson [99], the neocortex consists of the same number of layers 
throughout, six layers in both humans and rats while phylogenetically older parts of 
the cerebral cortex, such as the hippocampus only have 3 layers. In humans, as in rats, 
the first (outer) layer of the neocortex consists mainly of wiring and has relatively few 
cell bodies, layer 2 and 3 typically contain small pyramidal neurons which project to 
other cortical regions in the same and different hemispheres respectively. Layer 4 
consists mainly of granule cells which form local circuits, while layers 5 and 6 con-
tain larger pyramidal neurons typically projecting to the brainstem, thalamus, and spi-
nal cord, as well as to the motor system broadly defined. The precise makeup of these 
layers in terms of the density of cell bodies in each layer varies considerably in differ-
ent regions of cortex. Even though their function is not agreed upon, it has been sug-
gested that they are essentially predictive elements [13, 100]. In brief, Hawkins [100] 
explained it as follows:  
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Imagine you are a column of cells, and input form a lower region causes one of 
your layer 4 cells to fire. You are happy, and your layer 4 cell causes cells in 
layers 2 and 3, then 5 and the 6 also to fire. The entire column becomes active 
when driven from below. Your cells in layers 2, 3, and 4 each have thousands 
of synapses in layer 1. If some of these synapses are active when your layer 2, 
4, and 5 cells fire, the synapses are strengthened. If this occurs often enough, 
these layer 1 synapses become strong enough to make the cells in layers 2, 3 
and 5 fire even when a layer 4 cell hasn’t fired[cf. [101]] - meaning parts of the 
column can become active without receiving input from a lower region of the 
cortex. [100]  

 

Given that a large number of the connections onto a column come from other parts 
of the cortex, it is not to unlikely that some of the predictive associations are made be-
tween the motor areas of the cortex and sensory areas of the cortex via the different 
routes suggested above. Furthermore, as noted above it is possible that these associa-
tions form at different levels of the sensorimotor hierarchy. It is possible that the gen-
eral declarative prediction network in the hippocampus is able to learn even more 
complex and abstracted sensory-motor and motor-sensory associations.  

6   Discussion 

In the introduction we argued that covert simulations might provide some answers to 
the human brain’s solution to the general frame problem. One part of the answer lies 
in the way covert simulations are constructed to only focus on the relevant conse-
quences of an action and are able to influence overt behavior in time. The neuro-
chemical properties of the eligibility trace that closely matches the embodiment of 
the organism, or more specifically, time delays of the sensorimotor system ensure 
that the feedback signals that provide valuable information about the usefulness of an 
action is likely to be associated with the action that lead to the environmental state 
which the feedback is about. Furthermore, the learnt implicit predictions make the 
covert simulations effective by constraining the number of simulation paths that 
could otherwise be explored. At a higher level of abstraction, the general declarative 
prediction networks are biased toward only creating predictions that have been sup-
ported by environmental evidence to emerge. Covert simulations may then provide 
the kind of intrinsic representations thought to be necessary to be able to represent 
the world without describing everything about it [cf. 9]. The ability to focus on rele-
vant consequences is, even though only briefly discussed in this paper, also crucially 
dependent on the existence of special brain circuitry for affect and emotion and their 
close relationship to action selection mechanisms and off-line simulations [e.g. 102] 
constitute mechanisms for connecting additional meaning to sensorimotor associa-
tions. The view of covert simulations as implicit, bodily, and environmental anticipa-
tions is to some extent already implemented in computational models [11, 103, 104], 
which is where the actual frame problems arise [9]. For example, Möller and 
Schenck [11] showed how covert simulations could support the understanding of 
space and shape in object recognition. However, it might be argued that these models 
are still too simple for frame problems to be an issue as it is often thought to be a 
problem of common sense reasoning in humans [cf. 9]. Future work aiming to 
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achieve more advanced forms of planning [cf. 60] may need to consider the implica-
tions of the frame problem in more depth and especially to what extent the neural 
mechanisms proposed in this paper are able to resolve the problems. 

An important property of the neocortex that has largely been ignored in the paper, 
but may prove important to covert simulations is its hierarchical organization. Infor-
mation flows up and down within the sensory and the motor hierarchies and not just 
between them, as emphasized above, which can explain several aspects of off-line 
simulations. This can perhaps provide useful insights about how covert simulations 
are established at different levels of abstraction [100]. Furthermore, it can explain 
why brain damage closer in the lower parts of the hierarchy, such as primary motor 
and sensory areas sometimes (although not always) leaves the capacity for mental im-
agery intact [44]. Farah [44] argued that can be explained by the hierarchical structure 
of the neocortex and considering mental imagery mainly as a top-down process. 
 

Assume the damaged parts are among those shared by imagery and perception, 
not purely perceptual afferents, and consider the impact of interrupting proc-
essing at this stage: When the flow of processing is bottom-up or afferent, as in 
perception, the impact will be large because the majority of visual representa-
tions cannot be accessed. In contrast, when the flow of processing is top down 
or efferent, as in imagery, the impact will be smaller because just a minority of 
the representations normally activated in imagery is unavailable. [44] 

 

Similarly, but in the context of motor imagery, Jeannerod [4] speculated that le-
sions higher-up in the motor hierarchy, including the supplementary motor area 
(SMA) and premotor cortex, would cause more impairment to the imagery process. 
This is consistent with brain imaging experiments of motor imagery which do not al-
ways find activations of the primary motor cortex [105]. 

A final question to be addressed is the one posed by Downing [12]. He argued, on 
neuroscientific grounds, that declarative knowledge could not be created from proce-
dural knowledge and asked how this distinction could be explained by simulation 
theories. Our answer is that the two types of knowledge complement each other in 
covert simulations via multiple neural simulation pathways. As discussed earlier, a 
typical example of a task that involves off-line simulations is motor imagery (MI). MI 
involves both procedural and declarative properties, according to both neural and psy-
chological definitions. Procedurally, MI is associated with unconscious effects, such 
as increased respiratory and heart rates with increased imagined effort, and has been 
shown to activate the cerebellum, basal ganglia and primary motor cortex. Declara-
tively, MI is more or less defined as the conscious feeling of performing an action, 
and it involves higher motor areas, and perhaps also sensory areas [5]. This is not sur-
prising as many real agent-environment interactions would involve both procedural 
and declarative elements. For example, Downing [12] argued that although each word 
or phrase of a song is stored in the cortex, the extraction of a particular word or phrase 
is “mediated by the preceding cortical context (declarative) and basal gangliar wiring 
(procedural)” (p. 97). In other words, you access the declarative structures, the words 
and phrases, by performing a skill, in this case singing. In accordance with simulation 
theories, the extraction can be made either by singing or by rehearsing it internally 
without producing any actual sounds. It would seem that simulation theories that  
aim to explain conceptualization based on the reactivation of sensorimotor structures 
[15, 106], would not have to cross the gap between the procedural and declarative  
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either. Simulations are in those theories thought to enact the concept, which could 
then consist of both declarative knowledge and procedural or skill-based knowledge. 
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Abstract. In this paper we propose a model of anticipatory behavior
in robots which lack any sort of external stimulation. It would seem
that in order to foresee an event and produce an anticipatory action an
organism should receive some input from the external environment as a
basis to predict what comes next. We ask if, even in absence of external
stimulation, the organism can derive this knowledge from an “inner”
world which “resonates” with the external world and is built up by an
autopoietic process.

We describe a number of computer simulations that show how the be-
havior of living organisms can reflect the particular characteristics of the
environment in which they live and can be adaptive with respect to that
environment even if the organism obtains extremely little information
from the environment through its sensors, or no information at all. We
use the Evorobot simulator to evolve a population of artificial organisms
(software robots) with the ability to explore a square arena. Results indi-
cate that sensor-less robots are able to accomplish this exploration task
by exploiting three mechanisms: (1) they rely on the internal dynam-
ics produced by recurrent connections; (2) they diversify their behavior
by employing a larger number of micro-behaviors; (3) they self-generate
an internal rhythm which is coupled to the external environment con-
straints. These mechanisms are all mediated by the robot’s actions.

1 Introduction

From a psychological point of view past events and future events are essentially
the same: they do not actually exist in the environment experienced by the
organism but, this notwithstanding, they influence the organism’s behavior.

Past and future become real exclusively in the organism’s mind or brain, as the
organism recalls a past experience or foresees something which is going to hap-
pen. Recalling and foreseeing are two functions of memory, the neuro-cognitive
function that allows organisms to keep trace of what has happened in order to
decide what to do next (von Foerster, 1969). In recent years some psychologists
have proposed to add to the classical memory typologies (short-term memory,
long-term memory, episodic memory, etc.) another kind of memory defined as
prospective memory (Brandimonte et al., 1996) which is at work in forecasting
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and planning behavior. An organism’s mind/brain contains a structure/function
which encodes, at the same time, what the organism has experienced previously
(past), what the organism will potentially experience (future), and what the or-
ganisms is currently experiencing (present). The present, under the form of every
sensation, thought, expectation, movement which the organism is now experi-
encing, must be “digested” (elaborated) in the framework of this neuro-cognitive
structure/function. In this sense, cognition may be the result of an autopoietic
process as defined by Maturana and Varela (1980). According to these authors,
a genotype becomes an organism trough an active interaction with the external
environment: it extracts primary resources from the external environment (wa-
ter, food, etc.) and it transforms them into tissues, bones, organs, systems, etc.
The organism is the factory of itself. This view of the organism can be extended
to the genesis of cognitive structures. Cognition is an internal world that is linked
with the external environment but is not a direct copy of it. Living systems are
self-reproducing systems and cognition is one of the processes that characterize
their self-reproduction. These systems are self-referential, operationally closed,
and they compensate for the perturbations arriving from the external world to
save their organization. However they also transform as a consequence of envi-
ronmental stimulation.

This view can be related to Piaget’s (1971) conception of cognitive develop-
ment as an interaction between assimilation and accommodation. Assimilation
and accommodation are two complementary processes of adaptation. Assimila-
tion changes the external word to adapt it to the internal world. Accommodation
changes the internal world to adapt it to the external world. Cognition is the
result of both processes.

In the context of robotics research Tom Ziemke (Ziemke, 2005; 2007; 2008;
Jirenhed et al., 2001) has studied intensively this “nonphysical space” that
holds past, present, and future together in an “inner world”, a notion which
has been first introduced by Hesslow (2002) and developed by Grush (2004).
The metaphor is powerful and useful because it makes clear the crucial split
between the external, physical world the organism is immersed in and its “in-
ternal”, private world which is hidden to other organisms but is fundamental in
determining the organism’s behavior.

What is emerging in the new field of artificial adaptive systems is an issue
which has played a fundamental role in the philosophical reflection and psycho-
logical investigation concerning the behavior of organisms: the delicate balance
that exists in organisms between “external” (physical, concrete, public) reality
and “internal” (psychological, immaterial, private) reality. Consider two pio-
neers of psychological research, Wundt (1874) and Watson (1913; 1914). Wundt
investigated what happens inside a person’s mind by interrogating well-trained
subjects whereas Watson used animal models to study observable behavior, each
choosing one side of the split between “external” and “internal”. If in order to
understand the behavior of organisms it is necessary to consider both their in-
ner world and their external environment, constructing artificial organisms might
make this possible.
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The simultaneous consideration of both the internal and external side of be-
havior is particular relevant if we wish to study anticipatory behavior. In order
to produce an anticipatory action, organisms should possess some knowledge
concerning the environment in which they live. It is usually assumed that this
knowledge is founded upon integrating innate schemes with sensory experience,
where sensory experience is provided by environmental stimuli (light, sound,
smell, etc.) and is received by the organism’s sensory apparatus, including eyes,
ears, nose. However, in addition to the external environment the organism’s body
itself is a precious source of stimuli (Parisi, 2004). Examples are internal clocks,
proprioception, signals from the gastroenteric apparatus, the hormonal system,
etc. This stimulation is considered relevant to regulate the organism’s behavior
but not to build up a “knowledge” of the external environment. For example,
hunger can motivate an organism to choose a certain action to satisfy this need
but it is not useful to construct a representation of the environment in which
the organism lives.

Some authors have underlined that knowledge is not a registration of what hap-
pens in the external world. For example Maturana and Varela (1992) have stressed
the fundamental importance of the “inner world” to build neuro-cognitive func-
tions such as memory that allow organisms to survive in an unpredictable world.
Human experience is fallacious, as it is shown by the blind spot of the optic nerve
in the retina. If one looks at a fixed point and then he or she moves the gaze, the
point disappears from the visual field, showing a blind spot in the retina in the
area of departure of the optic nerve.

Beyond the physiological relevance of this phenomenon, it is interesting that
humans do not see that they do not see: human beings are tempted by an illusion
of certitude, by the inclination to think that they live in a world in which things
are what they seem to be, without considering alternatives. On the contrary,
neuronal activations which are primed by external stimulation are determined by
what is inside the person and not only by the perturbing agent, and are therefore
different from person to person. For this reason we do not “see the world” but
we “live our visual field”. We do not see the colors of the world but we live
our chromatic space: every experience involves the experiencer and it is deeply
rooted in his/her individual biological structure. An organism’s knowledge of the
world is not a representation of the world “out there” but is the production of
“sense for action”.

These challenging issues raise numerous and important questions and we have
tried to answer some of them using an Artificial Life approach. We aim at in-
vestigating the possible role of internal stimulation in building a knowledge of
the environment in which an organism lives and from which it receives no stim-
ulation at all. We will explain in detail our approach with a concrete example.
Let’s imagine an organism with a motor apparatus and an internal sensory ap-
paratus, but totally without sensory organs that directly inform the organism
concerning the current state of the external environment. The organism is com-
pletely closed inside itself at the sensory level. It can interact with the external
environment but it cannot get any direct information from the external environ-
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ment. The organism is forced to create its own inner world on the basis of purely
self-generated stimuli. But the organism cannot be said to be isolated from the
external environment in that its actions have effects that modify the physical
relation of the organism to the external environment and that the organism can
exploit to behave adaptively in the environment. In nature there may exist no
such organisms but the tools of Artificial Life can be used to explore this type of
questions because Artificial Life is the study of both real and possible organisms
(Langton, 1989). In the next paragraph we will describe our approach, summa-
rize some similar studied that have been already done, and make our research
hypothesis explicit.

1.1 The Agent/Environment Dynamic in the Animat Approach

In the last 15 years a research methodology that uses simulation of artificial
organisms to understand cognition in real organisms has carved out a space for
itself inside Cognitive Science. Using this methodology, often called the Animat
approach (Todd, 1992; Guillot and Meyer, 1994), it is possible to study how
cognition emerges in the interaction between the agent, that is to say the artificial
animal, and the environment, as represented in Figure 1.

Fig. 1. Environment/Agent dynamic in the Animat approach

The agent receives stimulation from the environment and reacts consequently.
The environment, in turn, reinforces the agent, as stressed by Wilson (1991). The
reinforcement can be given at different timescales. In embedded systems that use
the back-propagation learning algorithm, for any input from the environment the
experimenter provides the correct motor output to the artificial neural network
controlling the organism’s behavior. In this case the reinforcement is immediate
and provided step by step. In the framework of artificial evolution (Nolfi and
Floreano, 2000; Harvey et al., 1996), the reinforcement is given at the end of
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an individual’s lifetime as a fitness score which decides whether the individual
will or will not reproduce. The two systems can be combined together with both
artificial evolution at the population level and back-propagation learning at the
individual level (Parisi et al., 1990).

What happens if the agent doesn’t receive any stimulation from the environ-
ment? This is interesting because natural organisms receive information from the
external as well from the internal world whereas Animat models usually focus
on environmental stimulation.

In the present paper we use a modified version of the environment/agent
dynamic in the Animat approach. We eliminate any stimulation that the agent
may receive from the environment in order to address explicitly the issue of how
our artificial organisms can produce their own world by just relying on its their
“inner world”, as shown in Figure 2.

Fig. 2. Environment/Agent dynamic in the Animat approach: the inner world

As shown in the above Figure we modify the agent/environment interaction
by removing the sensory link between the agent and the environment. The agent
cannot rely on its sensory apparatus to decide which action to take but it can
still use its motor apparatus to produce actions that are not rewarded step by
step but at the end of the evolutionary process.

1.2 Some Seminal Studies

The research presented here draws inspiration from some seminal studies that
we quickly review here in order to underlie what is different in our study.

In 1994 Todd and colleagues published an experiment in which an adaptive,
survival-enhancing behavior emerged in simple simulated creatures which had
no direct sensory contact with their environment. They described the evolution
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of the behavioral repertoires of these sensor-less creatures in response to envi-
ronments with different spatial and temporal distributions of food. The main
difference with our study lies in the theoretical goals. They explored the level of
adaptiveness in these blind creatures to establish a baseline with which the adap-
tive behavior of Animats with sensors and internal states could be compared,
whereas we wish to understand how the internal world can come in resonance
with the external world to produce adaptation.

In this respect it is appropriate to report Ziemke and colleagues’ work (cfr.
Ziemke et al., 2005; Hesslow and Jirenhed, 2007, Jirenhed et al., 2001) who ex-
plored the possibility of providing robots with an “inner world” based on inter-
nal simulation of perception rather than an explicit representation world model.
Starting from a neuroscientific hypothesis they studied how internal simulation
of perception can be used by mobile robots to respond appropriately to their
environment, presenting various experiments with a simulated robot controlled
by a recurrent neural network shaped by an evolutionary algorithm. Their work
suggests that internal simulation of perception may be sufficient to adapt. We
start from a very similar research hypothesis and we use a very similar setup
but our agents do not have to explicitly simulate their perception.

The most recent paper we cite here is by Lungarella and Sporns (2006). In
their work they start from the idea that organisms continuously “select and sam-
ple information used by their neural structures for perception and action, and for
creating coherent cognitive states guiding their autonomous behavior” (ibidem).
They stress that information processing is not solely an internal function of the
nervous system, but instead sensorimotor interaction and body morphology can
act as constraints that create statistical regularities in sensory input which allow
the emergence of adaptive behavior. Their paper is important for interpreting
our results since we also wish to understand how internal and external worlds
can coordinate and generate regularities that can result in adaptive behaviors.

In the next section we will formulate more explicitly our research questions.

Our research hypothesis. In the present paper we continue to explore the
issues that have been raised by the studies reviewed above, trying to answer
the following questions: Can internal stimulation be sufficient to solve a spatial
task? Is there any difference with respects to Animats that rely on stimulation?
Which mechanism do our organisms use to adapt?

We have simulated a spatial behavior with two questions in mind:

1. Can robots exhibit adaptive spatial behaviors that rely only on internal
stimulation?

2. If yes, how is that possible?

Asking these questions may be important because the possible answers may
clarify how at an evolutionary scale anticipation can lead to adaptation even
in the extreme case of an organism with no direct sensory feedback from the
external world.

Our agents, even if they lack stimuli, can rely on two channels to get in
touch with the environment: action and “evolutionary” reinforcement, that is,
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the selective reproduction of the best individuals in a succession of generations.
In the simulations that we will describe the robots are able to move adaptively in
their environment by implicitly predicting the sensory input and by just relying
on their predictions to generate their behavior, and not on actual sensory input
coming from the outside environment.

2 Method

In our experiments we use the Evorobot simulator (Nolfi, 2000) to evolve popu-
lations of artificial organisms (software robots) with the ability to solve a spatial
task: exploring a square arena by visiting as many portions of the arena as pos-
sible. The simulator, developed by Stefano Nolfi at ISTC-Cnr, makes it possible
to run Evolutionary Robotics simulations that can then be transferred on real
robots.

2.1 Artificial Organisms

Each artificial organism consists of a physically accurate simulation of a robot
with a circular body of 5.5 cm of diameter, which is a model of the E-puck robot
developed at EPFL, Switzerland (www.e-puck.org)(Fig. 3).

Fig. 3. The E-puck robot model in the 3D simulated environment

Each robot is equipped with 8 infrared proximity sensors (that can detect
objects within 3 cm of the sensor) and a black/white linear camera with a
receptive field of 100 degrees whose content is encoded in 8 input units. The
robot displaces itself by using 2 wheels (one on each side of the robot) pow-
ered by separate, independently controlled motors. The control system is an
Artificial Neural Network. We use neural architectures with two properties: the
existence of recursive connections and the nature of the sensory input. All neural
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networks have an output layer with two units that control the robot’s two wheels.
In all neural networks, furthermore, there are five internal units which are all
connected to both output units. However, in different simulations the robots
have neural architectures that can be different with respect to sensory input and
internal structure. There are four conditions of sensory input: no sensory input,
infrared sensory input, visual (camera) input, both infrared and visual input.
There are also two internal architectures: no recursive connections and recursive
connections (from the output units to the internal units and Elman “memories”
for the internal units), for eight conditions in total which are shown in Figure 4.
At time t0, neural networks with no sensory input have an input pattern of 1
for each hidden unit that has a different, evolvable threshold.

Fig. 4. The neural architectures. In the graph are shown the eight different internal
architectures. In four of these architectures there are no recursive connections while
the recursive connections are present in the remaining four architectures. Each of these
internal architectures is associated with one of four possible sensory input conditions:
no sensory input, infrared sensory input, visual (camera) input, both infrared and
visual input. Therefore we have a total of eight different experimental conditions.

2.2 The Task and Training Procedure

A Genetic Algorithm is used to train the connection weights of all network ar-
chitectures. At the beginning of each simulation, we create 100 neural networks
with random connection weights that are assigned to 100 robots. We then test
each robot’s ability to solve the exploration task. Each robot is positioned at
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the centre of a square arena with peripheral walls and four lights placed at
the four corners of the arena. If the robot happens to hit the walls, the robot
dies. At the beginning of each trial the robot is positioned in the arena with a
randomly chosen face-direction and is allowed to move around for 500 compu-
tation cycles (1 ms per cycle). For analysis’s sake we consider the square arena,
which is actually continuous, as made up of cells that cover the entire square
area (40x40 cells). Each time a robot visits a cell it has not visited before its
fitness is increased by one unit. At the end of life the 80 robots with the lowest
fitness are eliminated (truncation selection) while the remaining 20 robots are
cloned (asexual reproduction). Each parent generates five offspring, and a value
randomly chosen from the uniform distribution [-1, +1] is added to 2 per cent
of the offspring’s connection weights. We run eight different experiments with
“recursive” vs. “non recursive” conditions and four “sensory” conditions (see
Figure 4). Each experiment is repeated 10 times with different initial conditions
(different randomly generated connection weights for the neural networks of the
individuals of the first generation).

3 Results

3.1 Fitness Values

The next graph (Fig. 5) shows the fitness values, that is, the number of cells
that are visited for the first time by the simulated robot, for each of our eight

Fig. 5. Fitness values (visited cells) for each simulation. See text for explanation
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Fig. 6. Behavioral strategy of the best robots in nonrecursive condition and their neural
architectures (on the left)

experiments. Data refer to the fitness values calculated on the last 10 generations
(on 100 total generations) for 10 repetitions (these are therefore aggregated data
calculated on 100 values). Each bar in the histogram represents the average for a
single simulation. Grey bars refer to average values while black bars refer to best
values. To identify each simulation we use this code: r means recursive condition
while nr means non recursive condition. Neural architectures without recursive
condition are shown on the left columns in Figure 4 while neural architectures
with recursive condition are shown on the right columns. Letters indicate sensory
input conditions where no letter means no external stimuli, A means 8 infrared
sensors, B means 8 units for the camera, and AB means 8 infrared sensors plus
8 units for the camera.

As can be seen from the graph, the fitness values of the best subjects of the
last 10 generations suggest that recursive connections are beneficial for robots
with no sensory information. In the graph, in fact, considering the best values for
each simulation we can see that in the experimental conditions without sensory
input and with recurrent connections as many cells are visited by the organisms
as in the conditions with sensory input, while in absence of recurrent connections
the performance of the organisms without sensory input is very bad.

Considering the best robots for r (no sensory input and recurrent connections)
and related condition rA, rB, and rAB and applying a one-way ANOVA, we see
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Fig. 7. Behavioral strategy of the best robots in recursive condition and their neural
architectures (on the left)

that there are no significant differences in the number of visited cells with sensory
condition as factor: F(3,36)= 2.667; p= 0.062.

The important role played by recursive connections depends on the fact that
they allow to overcome stereotypical behavior in favor of more variable behaviors,
as we will see in the next section. Therefore we have an interesting answer to our
first question: yes, it is possible to observe adaptive behaviors in robots with only
internal stimulation under certain conditions, namely the presence of recursive
connections that allow the robot to build an internal dynamic, an “inner world”
in Ziemke and colleagues’ words, which is coupled with the environment. They
succeed in coordinating endogenous stimuli with the constraints of the external
environment and to use this coordination to generate a motor behavior which is
adaptive.

3.2 Behaviors

In Figures 6 and 7 behavioral strategies of the best robot of each simulation with
and without sensory input are represented together with their neural architec-
ture. In absence of recurrent connections, robots can produce only stereotypical
behaviors: they draw a circular trajectory because a circular trajectory of the
appropriate radius allows them to avoid hitting the wall and die.
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Fig. 8. Number of output patterns in different sensory conditions. Bars represent
means, lines represent standard deviation. We use the same code as before (r means
recursive condition while nr means non recursive condition). Letters indicate sensory
input conditions where no letter means no external stimuli, A means 8 infrared sensors,
B means 8 units for the camera and AB means 8 infrared sensors plus 8 units for the
camera.

In fact it is worth noting that this circle has a radius that depends on the
size of the square arena. This is an efficient strategy, considering that the robots
has no access to external information and must avoid bumping into walls which
they cannot perceive. However, when the robots have recurrent connections their
performance increases dramatically: their recurrent connections generate an in-
ternal dynamic that, under evolutionary pressure, tends to be tuned with the
constraints of the external environment. We observe more variable trajectories
which are always curved but which lead the robots to visit many more cells of
the arena.

This behavioral strategy is quite different from what we observe in robots
with sensory input, because, in this case, the best thing to do is to go straight
until they perceive a wall and to turn before bumping into it. In absence of
stimulation walls become a constraint, because they must be avoided, and this
leads to the emergence of behavioral strategies which explore the cells that are
far enough from the walls.

3.3 Output Patterns

In order to answer our second question and investigate the role of the inner
world in producing appropriate behavioral sequences we examined the activation
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Fig. 9. The behavior (up) and the corresponding neural activation (down) of one of
the best performing sensor-less robot

patterns of the output layer for the single best agent of the last generation in
each replication of the simulations. The continuous activation value of the two
output units is made discrete when it is transferred to the two wheels, with val-
ues going from -20 to 20 for each motor. Therefore we can count the number of
different output patterns, which is a measure of the variability or variety of the
robots’ micro-behaviors. We focus on the recursive condition, as in absence of
recursion performance without external stimuli is very poor. The results indicate
that a larger number of different micro-behaviors (number of different output
patterns) are necessary to solve the task with self-generated stimulation. There
are significant differences between the experimental Conditions, with a decreas-
ing mean number of output patterns going from the condition with IR sensors
+ camera to the condition without stimulation, as shown in Figure 8.

Comparing for example the best robots of the last generation for condition r
(no sensory input and recurrent connection) and related condition rA, rB and
rAB and applying a one-way ANOVA, we see that there are significant differences
in the number of output patterns with sensory condition as factor: F(3,36)=
40.606; p= 0.00. In absence of variable external stimulation, the robots create
their own internal variable stimulation. Robots without any external stimulation
are able to accomplish the task to explore effectively the square arena if they
are provided with recursive connections that create an internal dynamic which
in turn produces a more varied behavior.
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3.4 Hidden Units Activation

To further answer our questions, we have also analyzed what kind of internal
dynamic emerges in robots with no access to external information. We have
observed that, when robots display an efficient behavior, a kind of oscillator
emerges in their hidden unit activation. Let us consider, for example, one of the
most interesting behavioral strategy and the corresponding neural activation of
motors and hidden units that was displayed by the best robot in the recursive
condition r without stimulation. Both behavior and neural activation are shown
in Figure 9.

As can be seen from the Figure, this very efficient sensor-less strategy results
from the emergence of an internal oscillator that provides an internal temporal
dynamic. It is important to underline that this temporal dynamic is strictly
coupled with the spatial constraints so as to make it possible to avoid bumping
on the wall while still visiting as many cells as possible. The spatial constraints
that are present in the environment are translated into a time rhythm in the
“inner world”.

4 Conclusions

The results of our simulations suggest that, at least for the simple artificial
organisms studied in our research, an adaptive behavior can indeed emerge even
in absence of direct sensory information from the external environment. Even if
they are closed in their own self-generated internal world, the simulated robots
establish a useful relation with the external environment through their action. In
fact, by realizing and exploiting a precise coordination between produced output
and self-generated internal input, i.e., between the external and the internal
worlds, the robots are able to successfully adapt to their environment. This is
possible because action is accurately selected under evolutionary pressure, and
the evolutionary pressure causes the emergence of a kind of resonance between
inner world and external world. Through the physical interactions between the
organism and the environment, after a demanding search the possibility emerges
to utilize action to know the environment, even if there is no sensory input from
the environment. In other words, the organism’s actions become the vehicle for
developing a representation of the environment.

Our sensor-less organisms, which cannot sense directly the external environ-
ment, are in fact not isolated from the external environment because action is
able to establish a link with the external world. This is an “operationally closed
system” in Maturana and Varela’s sense. Our organisms, in fact, are provided
with a motor apparatus and an internal dynamic but they completely lack sen-
sors that can collect information on what is “out there”. They can interact with
the external world but they cannot receive direct information from the external
world.

A system like this, since it cannot react to external stimulation, is forced to
build an internal model of the world on the basis of self-generated, internal,
private stimulation. The system is not actually isolated from the external world
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because it has an opportunity to act on the environment in such a way that it
becomes possible to develop a relation between the system and the environment,
a relation which is not sensory but is behavior-based. In other words, the organ-
ism cannot receive external stimuli but it can collect clues about the external
environment through action and these clues give the organism the possibility to
establish an useful system/environment interaction.

This interaction allows the simulated robot to anticipate what is going to hap-
pen. Even in absence of sensory stimulation the robot is able to avoid bumping
into the walls, anticipating the inauspicious event that would put an end to its
life. This anticipation ability emerges in the neural network in that the network’s
hidden units autonomously develop an oscillator that provides an internal tempo-
ral dynamic. This primordial form of anticipation resides in the neural network’s
rhythm which is strictly coupled with the spatial properties of the environment
and the robot’s current location and orientation in the environment.

Under evolutionary pressures the agents’ neural control architecture extracts
and incorporates the statistical regularities and information structure underlying
their interactions with the environment, and in this way the external constraints
and the internal dynamic come in resonance. The flow of information between
the hidden units and the robot’s effectors is actively shaped by the robot’s in-
teractions with the environment on an evolutionary scale. These results confirm
the fundamental importance of embodiment and situatedness in the behavior of
organisms.

Our computer simulations demonstrate how the behavior of artificial organ-
isms can reflect the particular characteristics of the environment in which the
organisms live. The behavior that emerges can be adaptive with respect to the
environment even if the organisms obtain extremely little information from the
environment through their sensors, or no information at all. Of course we ob-
serve very peculiar behavioral strategies in our cognitively challenged, sensor-less
creatures, including the use of looping movements as time-keepers. Our simu-
lations show how the ability to explore the environment can emerge from the
interaction, made possible by action, between two coupled processes: the agent’s
internal dynamic and the agent/environment dynamic.

From the point of view of autopoiesis the results of our simulations suggest
that at least for our simple artificial organisms internal stimulation can by itself
generate adaptive behaviours and can be the building block of an internal world
that produces adaptation to the external world.

One possible objection to our conclusion might be that real organisms hugely
rely on external stimulation to adapt to their environment. This is undoubtedly
true but we think that our simulations demonstrate that external stimulation is
only one of the information sources that make it possible to build a represen-
tation of the world. In principle, and in extreme cases, internal self-generated
stimulation may be sufficient. The “in” is as important as the “out”; they work
together in the process of “producing of world”.

This implies that real organisms, endowed with cognitive systems with very
complex dynamics, may exploit their internal dynamics to anticipate the future
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and on the basis of these anticipations generate useful behaviors. These results
also confirm that the brain is a self-referential recursive machine whose organiza-
tion is maintained in spite of environmental perturbations, even if it is triggered
by them.

Our simulated agent “knows” the external world in that its control system
is able to map the spatial structure of the environment (obstacle position, re-
inforcement area, etc.) in self-produced temporal structures (internal rhythms).
Spatial regularities in the outside world and temporal regularities in the “inner”
world come into resonance and this happens thanks to the agent’s actions in the
environment.

As already discussed in the introduction our work is inspirited by previous
studies and it tries to extends some of their results. With respect to Todd’s
simulations (1994) our work proposes a mechanism to explain how the internal
world can come into resonance with the external world to produce adaptation.
What we have found is that one type of spatial regularity (the square walled
arena) is translated into an internal representation based on time. In relation
to Ziemke and colleagues’ work (cfr. Ziemke et al., 2005; Hesslow and Jirenhed,
2007, Jirenhed et al., 2001) we start from a very similar research hypothesis and
use a very similar set-up with a minimal animal model, but our agents do not
have to explicitly simulate their perception. Rather than simulating the percepts
that they cannot obtain from the external world, our agents are forced to build
an independent internal dynamic that is coupled with the external constraints.

In our future research our goal is to extend the types of tasks that our organ-
isms have to accomplish and to use other neural architectures with and without
recurrence in order to understand what are the best architectures, and why.
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SE-541 28 Skövde, Sweden
{alberto.montebelli,robert.lowe,tom.ziemke}@his.se

Abstract. Starting from the situated and embodied perspective on the
study of cognition as a source of inspiration, this paper programmati-
cally outlines a path towards an experimental exploration of the role of
the body in a minimal anticipatory cognitive architecture. Cognition is
here conceived and synthetically analyzed as a broadly extended and dis-
tributed dynamic process emerging from the interplay between a body, a
nervous system and their environment. Firstly, we show how a non-neural
internal state, crucially characterized by slowly changing dynamics, can
modulate the activity of a simple neurocontroller. The result, emergent
from the use of a standard evolutionary robotic simulation, is a self-
organized, dynamic action selection mechanism, effectively operating in
a context dependent way. Secondly, we show how these characteristics
can be exploited by a novel minimalist anticipatory cognitive architec-
ture. Rather than a direct causal connection between the anticipation
process and the selection of the appropriate behavior, it implements
a model for dynamic anticipation that operates via bodily mediation
(bodily-anticipation hypothesis). This allows the system to swiftly scale
up to more complex tasks never experienced before, achieving flexible
and robust behavior with minimal adaptive cost.

1 Introduction: A Cognitive Body

While there is much agreement that cognition is embodied, it remains less clear
exactly what role(s) the body plays in cognitive processes. The obvious common-
sense answer would highlight the role of the body in dictating the physical relation
between an agent and its environment. Of course the fundamental function that
the body of any organism plays - the appropriate adaptive situating of its avail-
able set of sensors and actuators in a spatio-temporal frame of reference - cannot
be missed or ignored. However, this common-sense interpretation is broadened in
embodied and situated approaches to the study of cognition, both at theoretical
and experimental levels [1,2,3,4,5]. The body shapes the cognitive potential of the
agent by completely specifying the nature and range of all possible interactions
with its environment. A self-organized agent typically depends on and deeply
exploits such constraints [6].
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The basic idea of a highly systemic approach to the study of cognition was
already centrally present in the work of early cyberneticists (i.e. [7,8]), gestalt
psychology [9] and ecological psychology [10]. The sudden rise of cognitive sci-
ence cast a shadow on such historically prominent intellectual work. This should
not come as a surprise: apparently, large bodies of sometimes outstanding scien-
tific knowledge are destined to be reconsidered, or even completely rediscovered,
over and over, whenever there is an intellectual need for them. Presently massive
research efforts investigate the problem of understanding cognition by a system-
atic decomposition. In the scientific tradition, reductionism proved powerfully
effective in producing sound explanations (with predictive power) of natural phe-
nomena. Nevertheless, it is wrong to infer that all explanations are reductionistic.
Such a misconception might be particularly pernicious in an epoch where the
scientific community masters, and has large availability of, the necessary technol-
ogy to engage in the exploration of the problem of non-linear complexity, and is
intellectually committed to the development of the appropriate mathematics to
start addressing it. That is, dynamic systems theory offers a natural language to
a systemic approach to the study of adaptive behavior and cognition [11]. Much
work has already clarified the need for a consistent deployment of the existing
mathematical tools and for their further development [12,2,13,14].

Nowadays, a more systemic view of the mind pervades at least a few major
theoretical frameworks in the study of cognitive processes. Several authors are
currently committed to the underpinning of a theoretical background, in which
the specific embodiment of an organism has non-trivial cognitive consequences.
The body massively pre-/post-processes the information flow to and from the
nervous system, and the common evolutionary history and ontogenesis of body
and nervous system provides a deep, distributed integration of bodily and ner-
vous functions (e.g. see [15]). Perception and action are not causally sequential
activities, but can be seen as closely interrelated and in fact inseparable, one
supporting the other [16,6].

Nevertheless, we have reason to think that this perspective does not go far
enough. Rather than treating the body as a mere interface to the world, we
should also take into account what happens inside the body of an organism, and
its potential cognitive consequences [17,18,19,20,21]. We find that the hidden,
bio-regulatory dynamics developing under the surface of the body are largely
neglected in the study of cognitive phenomena. As some authors put it, the in-
teraction between bio-regulatory events that take place inside the body of an
agent and what is traditionally interpreted as its control system, might be a cru-
cial component of its ongoing cognitive processes [17]. In line with this thread,
in this paper we describe our current experimental work in cognitive robotics,
focusing on the role that the intrinsic non-neural bodily dynamics might play
in supporting and boosting cognition. In Section 2, we discuss some preliminary
results showing how a non-neural internal state can modulate the activity of
a simple neurocontroller. We then formulate the programmatic foundations for
an extension of our work towards a bodily-mediated anticipatory cognitive ar-
chitecture. Firstly, on theoretical grounds, we advocate that non-neural bodily
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dynamics might play a fundamental role in a new anticipatory cognitive ar-
chitecture (Section 4). Secondly and more concretely, we report on the initial
experimental analysis of this idea (Section 5). Then, we briefly comment on
the theoretical implications of our work and on necessary future developments
(Sections 6 and 7).

2 The Dynamic Role of the Cognitive Body:
A Minimalist Case Study

In a recent study [22,23], we have shown how even very simple non-neural bodily
states can play a crucial role in the modulation of the activity of an artificial ner-
vous system, i.e. on the behavior generated by an artificial neural network (ANN)
implementing the neurocontroller of our simulated robotic agent. We used stan-
dard evolutionary algorithms to set the weights and biases for a simple reactive
ANN with no hidden layers, driving the motoneurons of a simulated Khepera
robot (see Figure 1). The system self-organized in order to find a recharger for
its energy level (i.e. each instantiation of ANN during the evolution was simply
rewarded for the maintenance of a positive level of energy, punished otherwise),
thus overcoming its temporal linear energy decay. The invisible recharger was
placed in a circular area centered under one of the two visually identical light
sources, randomly selected for each replication. An energy level sensor, together
with a battery of light and infra-red sensors constituted the sensory inputs to
the ANN.

As part of the analysis of the successfully evolved system1, we manipulated
the energy level as the control parameter for the whole system [12,24]. By sys-
tematically clamping2 it to a discrete set of possible values, ranging from zero
to ’full’, we observed and classified a number of possible behaviors, exemplified
in Figure 2- left. After exhaustion of the behavioral transients, we found three
general classes of qualitative behavioral attractors. We observed: exploratory be-
haviors at the lowest levels of energy, i.e. the agent engaged in loops between
potential energy sources and also in external loops broadening its explorations
to the rest of the environment (i.e. see trajectory in panel ’A’ of Figure 2); more
local behaviors at higher levels of energy (i.e. the agent was closely looping in
the neighborhood of a single source as in panel ’C’; hybrid behaviors, embedding
characteristics from both previous classes (as in panel ’B’) for intermediate levels
of energy. The relative frequency of the three groups of behaviors was reliably
dependent on the current energy level (Figure 2- right).
1 By the term ’system’, here and in what follows, we refer not just to the evolved ANN,

but to the global system constituted also by the agent, its environment and its non-
neural dynamic mechanism of the energy level. Therefore, cognition is here conceived
and analyzed as a broadly distributed process; a cognitive aggregate, rather than a
localized and proprietary process.

2 The term ’clamping’ here refers to the injection of a constant energy level as input
for the ANN during the whole duration of the replication of the experiment. The
agent is free to behave in its environment for a period of time sufficient to exhaust
all behavioral transients and permit observations of satisfactory duration.
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Fig. 1. top - Experimental setup. A simulated Khepera robot moves in a square envi-
ronment containing two visually identical light sources (suspended white light bulbs).
Its neurocontroller is a simple reactive ANN with no hidden layers, directly controlling
the two motors of the robot and receiving information from the light sensors and from
an energy level mechanism. The choice of such a simple scenario aimed to facilitate our
analysis and emphasize the object of study. bottom - Example of the evolved behav-
ior. As its energy level sensor measures the temporal linear decay (graph labeled EnS),
the simulated agent (large cylinder) approaches the light to the right (filled circle).
The neutral effect on its energy level determines the approach of the next light. The
recharging area (dashed circle) is invisible to the robot, that can sense it only by virtue
of its effect on the energy level sensor. As its energy reservoir is instantaneously refilled
to the maximum level, the agent is engaged in a stable behavior in the proximity of the
rewarding light source. The signals labeled LM and RM show, as a function of time,
the activation of the left and right motors; LS1-8 represent the activation of the light
sensors.

Regarding the evolutionary task, we then examined the implications of the be-
haviors that we observed in clamped conditions. As the energy level is left free
to follow its natural dynamics, it constitutes an effective self-organized and dy-
namic action selection mechanism. Different classes of behaviors are locally avail-
able to the agent as a function of its current energy level. Apparently, high energy
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Fig. 2. left- Sample spatial trajectories for the three classes of behaviors observed
in clamped conditions after transient exhaustion. Exploratory behaviors (panel A),
local behaviors (panel C) and hybrid forms (panel B). Potential energy rechargers (i.e.
the position of the light sources) are indicated by red stars. For a better resolution
of details, the icons representing each class of trajectories zoom on the area of main
interest surrounding the light sources. right- The intensity of the pixels for each column
(corresponding to attractors belonging to classes A-C, as specified by their labels on the
top row) represents the relative frequency of the behavioral attractor as a function of
the energy level. For example, an energy level of 0.7 leads to the expression of attractor
C’’’ (in 70% of the replications), C’ (20%) or B’ (10%). For energy levels in the interval
[0.0, 0.4] we can observe a clear dominance of attractors in class A. A similar dominance
in the energy interval [0.7, 1.0] is shown by attractors in class C. The hybrid forms in
class B characterize intermediate energy levels. Adapted from [22].

levels imply that a source of energy was recently visited. Given the obvious phys-
ical constraints on the agent’s speed, it follows that it must be still in the prox-
imity of the agent, consistent with the selection of local behaviors. On the other
hand, low energy levels imply that the recent search for an energy source was
unsuccessful. This effectively correlates with broader exploratory behaviors. The
solution of this minimalist cognitive task relies on the self-organized dynamics
of the whole system. In the traditional cognitivist approach however, a similar
mechanism would be modeled in terms of explicit representations and memory.

3 The Dynamics of Anticipation

In the current paper we intend to present our work towards anticipatory cognitive
architectures, with an emphasis on the role of non-neural internal states. Thus
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far, we have discussed a fundamental premise demonstrating how the dynamics
of the body, and in particular its bio-regulatory processes, might be partially
constitutive of cognition.

Operative definitions of anticipatory behavior stress the effect that an esti-
mation of the future state of the system has on its current behavior [25,26].
Anticipation endows a cognitive agent with the capacity for faster and smoother
action execution, facilitate action initiation, improve information seeking, deci-
sion making, predictive attention and social interaction [27,28,29,30]. In a recent
paper, Butz argues how an anticipatory tension might influence both the devel-
opment of neural structures and bias the agent to anticipatory behavior [31].

We suggest that settling on a dynamic attractor (e.g. see [24]) constitutes
an implicit form of anticipation in at least one important sense. Once engaged
with an attractor, the system enters a stable and fully determined regime. Our
capacity to predict the trajectory of a strange attractor might well be limited by
the confidence in the prediction that we can draw, as the system’s non-linearities
amplify our error. Nevertheless, once settled on an attractor that currently satis-
fies specific functional requirements, the whole dynamic of the system is attuned
to a specific flow of events. An example of this attunement and its anticipa-
tory role is Pavlov’s dog, that salivates when food is made potentially available,
thus effectively preparing its body for the digestive process. Some authors con-
sider this kind of anticipation so important for an agent that conditioning, the
prototypical basic form of learning in organisms, can be interpreted as mainly
functional to its potentiation for originally neutral stimuli become suitable for
the elicitation of anticipatory responses [32].

This observation constitutes a second important premise for what follows. To
summarize, the body (in an extended sense that includes its non-neural internal
mechanisms) constitutes a critical component of the potential dynamical rich-
ness of an agent attuned to its environment. Such richness, when autonomously
viable, is intrinsically endowed with anticipatory power.

4 The Bodily Path of Anticipation

A brief example of a prototypical situation will shed some light on our proposal.
Let us consider a cognitive agent engaged in some activity, for example light-
heartedly roaming on a soft lawn, enjoying the sight of colorful flowers and pick-
ing up wild berries. Suddenly something unexpected pops up from the bushes,
something potentially noxious and maybe never experienced before (e.g., de-
pending on the agent’s particular sensitivity it could be a spider, a coral snake,
or even a carnivorous dinosaur). We can be quite confident that a viable evolved
agent would find a way to inhibit or redirect its current activity towards a more
conservative behavior.

With reference to Fig.3, we have to state a few preliminary assumptions:

– the global activity determining the current behavioral engagement between
the agent and its environment (namely, a behavioral attractor, similar
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to [22,33,34]) is described by a few global variables that compress the spe-
cific relevant information for the current sensory-motor activity out of the
enormous number of degrees of freedom of the system [12];

– the box labeled sensory-motor flow represents the neural activity asso-
ciated with the sensory-motor flow of the behavioral attractor;

– the corresponding non-neural bodily dynamics are summarized by the box
labeled non-neural internal dynamics;

– embedded within the global current dynamic we recognize a neural sensory-
motor emulator3 (box anticipation), whose evolution over time is dynami-
cally correlated with the actual sensory-motor flow (similar to [33]), although
not necessarily identical to it (as in [35]);

– the dynamics of the emulator (adapted during the evolutionary history
and/or during the agent’s ontogenesis) can anticipate, in the dynamic sense
illustrated above, the sensory-motor consequences of the engagement with a
potentially noxious activity, as they follow a faster time scale.

Crucially, the capacity to predict the potential negative outcome endows the
agent with a massive advantage: it attains the possibility to prepare itself before
confronting the consequences of its current behavior, or to inhibit its behavior
altogether. If we assume the possibility of a direct interaction between anticipa-
tory and actual sensory-motor dynamics (i.e. a direct path between the boxes
anticipation and sensory-motor flow in Fig.3), we immediately recognize
a critical problem. Which kind of dynamics would eventually emerge after the
current action is inhibited? Obviously, the dynamic structure emerging in the
emulator should elicit a viable alternative behavioral attractor. How would that
be selected?

Generalizing our example to other situations critical for the agent’s viabil-
ity, our bodily-anticipation hypothesis is that, rather than a direct influence on
the current behavior, the effect of the prediction of the emulator is actually
mediated by the body. The outcome of the emulator affects the actual bod-
ily dynamics (path a-b in Fig.3), and altered bodily quantities transiently act
as control parameters for the actual sensory-motor flow (path b-sm). Hence,
the problem of the determination of the next behavioral attractor is off-loaded
onto the bio-regulatory dynamics of the body. Destabilized by the input from the
sensory-motor emulator, the body viscerally reacts as-if actually engaged in such
sensory-motor experience, eliciting behaviors that pull back the system towards
viable regions. That implies that the body can achieve homeostatic balance not
only in virtue of isolated non-neural internal dynamics, but also by triggering
the selection of an appropriate behavior (path sm-b). This mechanism exploits
the knowledge ’accumulated’ by the body during a long and complex process of
evolutionary and ontogenetic adaptation, functional to the viability of the agent.
Equivalent knowledge, in case of a (theoretically possible) neural path directly

3 We follow here the terminology introduced by Grush [28], to denote an explicit
subsystem that dynamically generates a prediction of the agent-environment sensory-
motor interaction.
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Fig. 3. Illustration of the bodily-anticipation hypothesis. In its roaming, our agent
gets engaged with a potentially noxious interaction. Neural sensory-motor anticipatory
dynamics, here conveniently isolated within the global coupled system (box labeled an-
ticipation), predict the risk by determining a change in the current non-neural bodily
dynamics (box non-neural internal dynamics) through path a-b. This induces the
agent to a visceral reaction, as-if actually engaged in the noxious sensory-motor expe-
rience. From here, indirectly through a further path b-sm, the anticipatory dynamics
modulate the actual sensory-motor dynamics (box sensory-motor flow). Following
a quick reorganization of its behavioral attractor, our agent is attuned to escape the
danger thanks to the mediation of its body, as there is no direct neural coupling path
between anticipatory and sensory-motor dynamics.

coupling anticipatory and sensory-motor dynamics (through the missing path
a-sm), should be somehow achieved by the nervous system.

5 The Bodily Path Hypothesis Put to the Test

5.1 Implementation

The present section describes the first experimental steps toward a minimal
implementation of the architectural plan outlined in Section 4. The experimental
task takes place in the same simulated square arena and with the same agents as
described in Section 2. The experimental task is extended to a scenario that can
be abstractly likened to a go-no go task (loosely inspired by e.g. [36]). The light
sources in our simulated setup emit according to two different patterns4. The
4 In a more natural metaphor, this might model the case of a succulent berry whose

external pigmentation is different when unripe (and toxic) or ripe (and energizing).
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first matches exactly the characteristics used in the experiment described above
(continuous sensory regime), i.e. each light source emits a continuous steady
level of luminance. The sensory consequences for the agents have already been
demonstrated in Figure 2. Under this regime, nothing differs in the task with
respect to the experiment described in Section 2. The agent, whose energy level
is subject to a linear time decay (-0.008 per time step), is rewarded with an
instantaneous full energy recharge upon invasion of the recharging area. The
second sensory pattern is different in that the sensory input is rhythmically
set to zero every third time step (intermittent sensory regime). This implies
that during this modality the agent is subject to regular intervals of blindness.
As pointed out elsewhere [22], the agent evolved in the previous experiment is
robust enough to cope with massive perturbations, even of this nature, with
no significant alteration of its behavior. Under intermittent regime, entering in
the recharging area determines a punishment (-0.08 per time step) that speeds
up the linear time decay. Each individual, whose lifetime lasts 1200 time steps,
experiences the continuous sensory regime during time intervals [1, 200], [501,
700] and [1000, 1200]; intermittence occurs in the intervals [201, 500] and [701,
1000]. Severe punishment (-1000) was integrated in the fitness score in case of
crashing against the walls.

A neurocontroller, assembled as a simple implementation of the general ar-
chitecture introduced in Section 4, is sketched in Figure 4. We deployed simple

Fig. 4. Sketch of a minimal implementation of our anticipatory cognitive architecture.
Infra-red, light and energy sensors drive the two motorneurons through a feedforward
ANN with no hidden layers. They also constitute a sensory flow that is processed by a
mixture of recurrent experts. Each expert specializes on a specific sensory regime, and
the gating signal perturbates the non-neural internal dynamics of the agent.
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feedforward artificial neural networks with no hidden layers, extracted from the
population of the best individual in the previous experiment. Each ANN works in
parallel with a Mixture of Recurrent Experts [37,33,38] whose role is to discrim-
inate between the two different sensory regimes (continuous and intermittent).
As each expert tries to outperform the other by generating the most accurate
prediction on the sensor’s activity at the next time steps, they are actually chunk-
ing the sensory-motor flow according to its basic dynamical characteristics, as
illustrated in [33].

In other words, each expert, by suppressing the output of the other, signals the
engagement of the system with a specific sensory-motor flow, i.e. a specific stream
of coupled perception and action. The gating sequence of the mixture of experts
(that is, the description of which expert is currently active) can be mapped onto a
binary variable. When the continuous sensory regime is detected, nothing differs
with respect to the dynamics used in the previously described experimental
scenario. On the other hand, during the intermittent sensory regime, the energy
level mechanism is overridden by a different mechanism, where the decay rate is
freely evolved under the conditions specified above.

5.2 Results

A standard evolutionary algorithm was run in this new scenario in order to select
appropriate parameters for the neurocontrollers. Each agent was tested on its
capacity to maximize the integral of its energy level over its lifetime (averaged
over 10 epochs per individual), starting from random positions in the square en-
vironment.5 Nevertheless, during continuous regime, stationary behaviors within
the recharging area are discouraged, as the energy level is not integrated in the
fitness until the agent leaves the rewarding space under this condition.

In this paper we compare the results for three different neurocontrollers:

1. The basic feedforward architecture described in Section 2, whose weights and
biases have been evolved from scratch on the new task.

2. As above, with evolution starting from the population of the best individual
resulting from the previous experiment.

3. The minimal implementation of the general anticipatory cognitive architec-
ture just introduced. The decay rate of the overriding mechanism for the
energy level during intermittent regime is the only parameter modified by
the evolutionary algorithm, as the rest of the networks remain frozen.

Figure 5 reports the fitness of the best individual (averaged over ten epochs of
1200 time steps each) for the best replication of the experiments for each of the
three architectures described above (the parameters used in the evolutionary
algorithm are shown in Table 1). Evolving weights and biases for the whole
feedforward architectures (arch1 and arch2) produces similar results in terms of
final performances. Nevertheless, the evolutionary process is much quicker when
5 In order to partly make up for more advantageous starting positions, the first 100

time steps were non computed in the fitness function.
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Fig. 5. Performances of the best individuals of the three neurocontrollers during the
evolutionary process. Although facing a problematic exploration in its parameter space,
the minimal anticipatory cognitive architecture (arch3, continuous line) achieves satis-
factory performance without any bootstrap phase.

Table 1. Evolutionary Parameters

Number of generations: 1000
Number of individuals/generation: 100
Number of test epochs/generation: 10
Duration of one epoch (time steps): 1200 (= 120 s)

Starting position: random
Probability of mutation: 0.02
Probability of crossover: 0

Sensory noise: 0.05

it can develop on the basis of the best population evolved on the simplified task
presented in Section 2, although there is no initial advantage in this condition
(the two curves basically overlap during the first 40 generations). The evolution
of the new architecture (arch3) produces the best absolute performance and the
bootstrapping of its performance is immediate. The evolutionary algorithm tends
to select values for the single evolved parameter so that the energy level sensed
during the intermittent regime simulates high energy. Therefore, consistently
with the previous experiment, a tendency towards a photophobic behavior is
triggered. Nevertheless, the fitness curve in this condition shows a very high
variance, and in the long run the best individuals of the other architectures tend
to outperform it.

A qualitative behavioral analysis emphasizes the different strategies deployed
by the two classes of architecture, the simple feedforward ANNs with no hidden
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Fig. 6. Typical spatial trajectories developed by the different architectures during evo-
lutionary adaptation. top left - Simple feedforward ANNs tend to deploy a stereotyp-
ical strategy, i.e. their trajectories systematically engage in exploratory loops between
the two light sources, entering the recharging area during the continuous regime (con-
tinuous line) and avoiding it during the intermittent regime (dashed line). top right -
On the other hand, the behaviors that tend to emerge from our minimal anticipatory
architectures dynamically engage and disengage with the rewarding/punishing area
according to the different sensory regime (continuous/dashed lines represent the tra-
jectories during continuous/intermittent sensory regimes). For a better resolution of
details in the trajectory, the two pictures zoom on the area of main interest surround-
ing the light sources. bottom - The left and right panels exemplify, respectively for
a feedforward and an anticipatory architecture, the activation of the two motoneurons
(LM and RM), of the light sensors (LS1-8) and of the energy level sensor, during 600
time steps that include a double regime transition (continuous-intermittent-continuous)
occurring at time steps 700 and 1000.

layers on one hand and the anticipatory architecture on the other. In the ex-
periment described in section 2 we observed two main classes of strategy. The
first, briefly described above and extensively reported in previous work [22,23],
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is highly dynamic and determines, under the modulation of the non-neural in-
ternal control parameter, an overt engagement with a specific object of interest,
i.e. the rewarding light source (dynamic engagement). A second strategy relies
on the geometrical constraints of the environment: the agent draws ad hoc spa-
tial trajectories in order to achieve the appropriate timing required for the task
(stereotypical engagement). Interestingly, the two classes of architecture special-
ize in producing the two different strategies.

Figure 6 demonstrates the typical behaviors of fit individuals in the two
classes. Architectures belonging to the first class (arch 1 and arch2) tend to
produce stereotypical attractors. Under the modulation of the different regimes,
tighter loops invading the rewarding area will collect frequent rewards during
continuous sensory regime, whereas slightly wider loops will stay clear of the
recharging area in order to escape the punishment during intermittence. There-
fore, the agent ignores the local effect of the rewarding area on its energy level.
These behaviors depend on spatio-temporal constraints, as changes in the ge-
ometrical characteristics of the environment or in the timing of the different
regimes might induce a dramatic drop in terms of performance. Our minimal
anticipatory architectures, on the other hand, tend to develop a dynamic en-
gagement with the light source (i.e. moving towards it - continuous trajectory)
during the continuous sensory regime and a similarly straightforward disengage-
ment during the intermittent regime (moving to safe distance from the punishing
light - dashed line). In our viable anticipatory architectures, photophobic and
phototactic behaviors are constantly balanced in order to take the agent either
sufficiently close to, or far from, the recharging area, according to the current
sensory regime.

6 Discussion

The original task described in Section 2 (a stationary recharging area located in
the proximity of a light source) and the extended task (alternate regime of reward
and punishment on the same area) are obviously related. Nevertheless, it is in-
teresting to notice that although even simple feedforward ANNs with no hidden
layers can cope quite effectively with the new task, they achieve their skills after
several generations of evolutionary adaptation. We obtain slightly better results
starting the adaptation process from a population that already masters the orig-
inal task. Nevertheless, in both cases we observe a slow bootstrapping, beginning
with remarkably low performance (see Figure 5, arch1 and arch2). On the other
hand, the minimal anticipatory architecture introduced in this paper, starting
from the same population as used for arch2, demonstrates the instantaneous
capacity to achieve satisfactory performance. Interestingly, the viable emerging
behaviors with the anticipatory architecture are typically characterized by dy-
namical engagement and disengagement from the light sources, according to the
current sensory regime. This results in flexible and robust behaviors, that con-
trast with the stereotypical behaviors achieved during the evolution of simple
feedforward networks.
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It might be observed that high variability of the data plotted in Figure 5 for
our anticipatory architecture suggests a problematic evolution of its single free
parameter. This is not surprising, since we maintained the exact same parame-
ters for the evolutionary algorithm for all three architectures, and did not pay
any attention to an optimal tweaking in this particular condition. In fact, the
evolutionary process performs only slightly better on the anticipatory architec-
ture than a random search (result not shown in detail). Nevertheless the best
evolved neurocontroller achieves a fairly high (albeit isolated) performance, and
for that particular value of the parameter even the average fitness of the popula-
tion rises to the level of the best individuals (result not shown in detail). Rather,
what should be emphasized is that the performance is achieved in parallel with
a drastic dimensional reduction of the search space, and in these conditions even
a random search can produce a number of individuals that immediately exhibit
satisfactory behaviors in a dynamic scenario never experienced before. This is
reminiscent of Ashby’s proposal of a ’dumb’ mechanism that, in the need of
maintaining a homeostatic balance for a set of essential variables critical to the
agent’s survival, produce adaptive behaviors [8].

Obviously, our bodily-anticipation hypothesis does not rule out the feasibility
of a totally disembodied and direct influence of the sensory-motor emulation on
sensory-motor flow (the missing path a-sm in Fig.3). Nevertheless, our approach
drastically reduces the complexity of the problem of synthesis and adaptation.
The search for viable parameters in the (potentially) massive dimensionality
of the system’s degrees of freedom is reduced to a search in the subspace of
the bodily parameters (in this case, the mere energy level). In our preliminary
experiment, the search of the appropriate decay rate that is necessary to cope
with the new task proves an effortless procedure for the minimalist anticipatory
architecture. On the other hand, readaptation to the new task is cumbersome
when we evolve the whole set of weights and biases in the ANNs. In a more
naturalistic perspective, a basic organism constituted of a body coupled with a
simple nervous system learns to survive first, by deploying a set of elementary
sensory-motor reflexes in order to establish a basic form of viable coupling with
its environment. This involves the evolutionary and ontogenetic adaptation of the
interaction paths b-sm and sm-b in Fig.3. Then the agent adaptively extends its
viability by governing predictions. Incidentally, this is in accord with the design
principle of holistic reductionism [39], where the cognitive capacity of a minimal
realization of a whole and viable autonomous system is incrementally extended.

The adaptation of the emulator takes place on the basis of the sensory-motor
information provided along paths sm-a and b-a; paths ontogenetically adaptable,
whose role could be adaptively weighted during the agent’s life (as in [28]) and
that might be transiently wiped out as the emulator proves its ability to pro-
duce effective predictions. In this extreme situation the system would express
the capacity for ’blind navigation’, i.e. navigation achieved by relying on its
own sensory-motor predictions rather than on actual sensory information [35].
Therefore, the boxes anticipation and sensory-motor flow in Fig.3 act
as informationally semi-permeable subsystems. Their coupling, from the latter
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to the former, should be modulated in a context-dependent way. The opposite
coupling, far from absent, is indirectly realized via the body, according to our
bodily-anticipation hypothesis.

In Section 2, we have described our model using the intuitive metaphor of
an energy level mechanism, thus evoking biologically plausible dynamics of food
intake and metabolism. Nevertheless, our intentionally simple scenario aimed to
facilitate the abstraction to general principles. Metaphor aside, the fundamental
aspect to consider is the coupling of different dynamic systems characterized
by time scales that differ by several orders of magnitude (in particular we re-
fer to the dynamics of the sensory-motor and the energy level systems). The
availability of the slower dynamic of the energy level is exploited during the
evolutionary adaptation of the system. In fact, the neurocontroller receives in-
put vectors which are organized as dynamically related events in a continuous
sensory-motor flow (i.e. contexts with a similar, although continuously varying,
level of energy). The outcome of the adaptation process allows the system to
integrate information over time. Although the sensory-motor mapping as such
is purely reactive, this is not valid for the motor-sensory mapping and thereby
for the behavior of the system as a whole. On the basis of these observations,
we formulate the hypothesis that the access to a collection of attuned dynamic
sub-systems characterized by intrinsic dynamics at different time scales and the
exploitation of such differences, constitutes a powerful mechanism of embodied
cognition, widely operating at the different levels of organization of biological
cognition. A mechanism providing the cognitive system with the capacity to
structure information on events which are relevant to its survival, with no need
for explicit representations, memory or consciousness.

The focus on the role of multiple time scales, thus remapping the interpreta-
tion of our system in more abstract terms, dissolves the problematic distinction
between non-neural and neural dynamics. We are advocating a mechanism where
intrinsic time scales, characterizing mechanical, chemical and electrical phenom-
ena in the body, might be coherently integrated into the cognitive process [17].
The dynamical richness of non-neural bodily processes might support the charac-
teristic time scales of regular sensory-motor dynamics. The interest for the role
of multiple time scales is currently growing in the neuroscientific community
(e.g. [40,41]) as well as in cognitive robotics (e.g. [42,34,43,44]). A parallel might
be drawn with other nurocomputational architectures that deploy rich potential
dynamics at different time scales, like Echo State Networks and Liquid State
Machines [45,46]. Nevertheless, in the case of our architecture the bodily dy-
namics that inspire the non-neural internal mechanism are homeostatically and
evolutionary relevant, i.e. they have a crucial effect on the body of the agent and
on its behavior, independent on whether or not any cognitive process makes use
of them (e.g. see [47]). Reservoir dynamics in ESN and LSM, on the other hand,
can be completely random and irrelevant, and they have no effect whatsoever
unless they are actually read out.

Our own and related experimental evidence in cognitive robotics supports
our assumptions on paths b-sm and sm-b in Fig.3, as examined in the previous
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Section 2 (e.g. [22,48,49,34]). This is to say that bodily states can modulate
cognitive dynamics (e.g., think of the effects of particular chemical substances
injected in your body) and particular behaviors can critically affect our body
(e.g. in eating disorders). The capacity of the brain to anticipate sensory-motor
correlates (path sm-a) is also supported by experiments in cognitive robotics,
as in [33,34,35], and object of neuroscientific investigation (e.g., see [50]). In ad-
dition, the effect of mental imagery on non-neural bodily states is also rooted
in neuroscientific evidence of biological cognitive processes (e.g. see [20]). The
same author inspired the seemingly arbitrary choice to implement an overriding
energy mechanism that takes over during intermittent regime. False bodily infor-
mation can sometimes substitute for the correspondent actual state, for example
when a contingent urge induces us to ignore pain [21]. Damasio seems to bring
forth a somewhat opposite hypothesis, as he advocates as-if body loops [20,21]. In
Damasio’s theory, the emotional machinery, deeply integrated in the homeostatic
mechanisms, plays a crucial role even in the case of highly logical functions, as in
decision making. During the process of decision making it continuously supports
the mental activity (body loop). After multiple exposure the brain builds appro-
priate neural causal associations that completely obliterate bodily information
from the process (as-if body loops). Nevertheless, Bechara reports experimental
results suggesting that as-if body loops are more plausible during choices made
in highly predictable conditions (choice under certainty). As the decision process
takes place in less predictable scenarios (full uncertainty) the body loop mode of
operation becomes prominent [51]. We find this observation in perfect agreement
with the intuition deployed in our model.

The architecture sketched in Figure 3 evokes a dynamic complexity that is
drastically simplified in our initial implementation. The balance between the two
subsystems anticipation and sensory-motor flow is of course of the most
delicate nature. In fact, via their effect on the non-neural internal dynamics,
each of the two systems might simultaneously try to drive the system towards
different dynamic attractors. This apparent contradiction should not necessar-
ily be interpreted as a flaw in our proposed architecture. The dynamic tension
between two competing requests maintaining the system in a regime of metasta-
bility6, rather than (more traditionally) of stability, might also be exploited as
a potential opportunity. Some authors (e.g. [12]) consider metastability the fun-
damental state for a complex dynamic system like the brain, for it allows flexible
and fast engagement and disengagement with contingent environmental require-
ments and constraints. Kelso, for example, offers an inspiring dynamic image of
biological brains [ibid., p. 26]:

The human brain is essentially a pattern-forming self-organized system
governed by nonlinear dynamic laws. Rather than compute, our brain
”dwells” (at least transiently) in metastable states: it is poised on the
brink of instability where it can switch flexibly and quickly. By living

6 The concept of metastability can be intuitively introduced as a dynamical situation
where the system does not express stable states, but a mere tendency towards them
[12].
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near critically, the brain is able to anticipate the future, not simply react
to the present. All this involves the new physics of self-organization in
which, incidentally, no single level is any more or less important than
any other.

This intriguing scenario deserves further experimental investigation. Along a
related line, we advocate the intrinsic unity of the general anticipatory archi-
tecture sketched in Fig.3. We graphically split a system, that is actually mean-
ingful only as a whole, into three different compartments just for the sake of
clarity. The system should be conceived as a unity, where no component has
a dominant role over the others, consistent with the final statement in Kelso’s
quote. Incidentally, under this perspective the traditional dichotomy between
controlled and controller should be re-considered, as the different subsystems,
through their coupling, mutually influence and regulate each other. Such interac-
tions are graphically represented by the arrows in Fig.3. Nevertheless, we might
be interested in how a specific unbalance in one of the subsystems influences the
others, and accordingly, as observers, choose the most convenient perspective.
This step is legitimate and often even necessary to illuminate our analysis, albeit
it does not modify the unitary nature of the system. As much as we emphasize
the constitutional unity of our system, crucially linked with its environment, a
more traditional symbolic approach would draw a sharp distinction between the
agent and its environment.

7 Conclusions and Future Work

Non-neural internal states, in virtue of their different time scales, prove powerful
potential props in support of cognitive processes. With this paper we hope to
have contributed in some measure to highlighting their potential role, both in
synthetic cognitive systems and, by extension, in biological ones. Preliminarily,
we showed how a non-neural internal state, crucially characterized by a time
scale that is orders of magnitude slower than ordinary dynamics of the sensory-
motor interactions, can modulate the activity of a simple neurocontroller. What
we achieved is the implementation of a self-organized, dynamic action selection
mechanism, effectively operating in a context dependent way. Then we showed
how these characteristics can be exploited by a minimal anticipatory cognitive
architecture, using an explicit model for dynamic anticipation that operates via
bodily mediation (bodily-anticipation hypothesis). This allows the system to scale
up to more complex tasks never experienced before, achieving flexible and robust
behavior with minimal adaptive cost.

Clearly, our hypotheses presented in Section 4 and 6 require more experimen-
tal investigation and validation, which is currently under development in our
lab. The work presented in this paper is still in progress and far from maturity.
In order to facilitate the analysis and the extraction of general principles, our
starting point is the synthesis of simple systems. A first extension will be the
deployment of the full dynamic of the general anticipatory architecture sketched
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in Figure 3. The implementation of a more realistic internal dynamic, inspired
by natural or artificial metabolic systems such as microbial fuel cells [47], rep-
resents the necessary step in order to systematically assess the potential of the
architecture that we present here.

Acknowledgments

The authors thankSilviaCoradeschi andSergeThill for their comments on an early
version of this paper, and Malin Aktius, Anthony Morse, Pierre Philippe and Hen-
rik Svensson. We also thank the three anonymous reviewers for their suggestions.
This work has been supported by a European Commission grant to the project
Integrating Cognition, Emotion and Autonomy (ICEA, www.iceaproject.eu IST-
027819,) as part of the European Cognitive Systems initiative.

References

1. Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science
and Human Experience. MIT Press, Cambridge (1992)

2. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of
Cognition and Action. MIT Press, Cambridge (1996)

3. Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT
Press, Cambridge (1997)

4. Chrisley, R., Ziemke, T.: Embodiment. In: Encyclopedia of Cognitive Science, pp.
1102–1108. McMillan, London (2002)

5. Ziemke, T., Zlatev, J., Frank, R.M. (eds.): Body, Language and Mind: Embodi-
ment, vol. 1. Mouton de Gruyter, Berlin (2007)

6. Nolfi, S.: Power and limits of reactive agents. Neurocomputing 42(1-4), 119–145
(2002)

7. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the
Machine. MIT Press, Cambridge (1965)

8. Ashby, W.R.: Design for a Brain: The Origin of Adaptive Behavior. Chapman ‘&’
Hall, London (1952)
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Abstract. Anticipation and prediction have been identified as key functions of 
many brain areas facilitating recognition, perception, and planning. In this chap-
ter we present a hierarchical neurocomputational model in which feedback,  
effectively predicting or anticipating task-relevant features, leads to sustained 
inattentional blindness. A psychological experiment on sustained inattentional 
blindness in human subjects is simulated to provide visual input to a hierarchy 
of Echo State Networks. Other parts of the model receive input relevant to 
tracking the attended object and also detecting the unexpected object, feedback 
from which is then used to simulate engagement in the task and compared to  
results obtained without feedback, simulating passive observation. We find a 
significant effect of anticipation enhancing performance at the task and simulta-
neously degrading detection of unexpected features, thereby modelling the sus-
tained inattentional blindness effect. We therefore suggest that anticipatory / 
predictive mechanisms are responsible for sustained inattentional blindness. 

Keywords: Enaction, Anticipation, Prediction, Neurocomputation, Reservoir 
Systems, Association, Sustained Inattentional Blindness, Neural Modelling, 
Cortical Hierarchies. 

1   Anticipation and Prediction; From Neuroscience to Cognition 

In work published elsewhere [1, 2] we presented a model of sustained inattentional 
blindness in which predictive feedback enhanced performance at the feedback rele-
vant task while degrading performance at other tasks. Furthermore by systematically 
varying the similarity between target and unexpected stimuli we were able to replicate 
human data showing that the size of the sustained inattentional blindness effect is 
reduced as similarity is increased. Somewhat surprisingly we also found that in our 
model, the size of the sustained inattentional blindness effect is also reduced as simi-
larity decreases beyond a half way point. This prediction has yet to be confirmed in 
human data but provides an example of the classic U shaped curve where detection of 
the unexpected object is most likely if it is very similar or very dissimilar to the 
tracked object. Central to this model was the use of a predictive feedback signal 
which was artificially provided.  It was therefore not clear where this predictive feed-
back would originate from, just that given this kind of feedback the inattentional 
blindness effect was present. In this chapter we extend that original work providing a 
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minimal hierarchy of simulated cortical micro-columns making explicit how and why 
such predictive feedback signals can be generated and used.  

Neural mechanisms for prediction and anticipation are thought to be pervasive 
throughout much of the brain and are thought to vary greatly in instantiation in differ-
ent anatomical structures. For example, Downing and others [3-5] provide a review of 
neurocomputational models of the cerebellum, the basal ganglia, the neocortex, the 
hippocampus, and the thalamocortical loop. In each of these models, and reflecting 
the underlying neuroscience, the anticipatory systems differ both in their mechanics 
and functional significance, which ranges from the anticipation of relational and se-
quential data in neocortical models, to the prediction of reward stimuli in the cerebel-
lum and basal ganglia. Hawkins and Blakeslee [6] have suggested that “the cortex’s 
core function is to make predictions” [p. 113] and that “all predictions are learned by 
experience… if there are consistent patterns among the inputs flowing into your brain, 
your cortex will use them to predict future events” [p. 120]. This places prediction 
centrally in our understanding of brain function. To understand how this predictive 
process works, Hawkins depicts the neocortex as a macro hierarchy of homogeneous 
micro-circuits or structures, meaning that the same basic unit is repeated throughout 
the neocortex but the way they are wired together and thus their influence on each 
other varies from region to region. The hierarchical view of the cortex highlights the 
interplay between low levels (i.e. regions of cortex close to sensory input such as area 
V1 in the visual cortex) responding to fast changing ‘features’ and higher levels (such 
as the inferotemporal or prefrontal cortex) responding to more invariant, larger scale, 
and slower changing things such as faces and objects. Here, according to Hawkins, 
top-down signals indicating expectations or predictions, of which low level features 
will be active, not only fill in sensory gaps, but facilitate the higher level response and 
differentiate expected from unexpected bottom-up activity. In this chapter we develop 
such a model but highlight a different aspect of top-down predictive signals, specifi-
cally that they can be use to ‘tune’ input filters facilitating recognition of the antici-
pated features with consequences for the recognition of non-anticipated features. 

Accounts of cognition rooted in underlying predictive or anticipatory neuroscience 
are becoming increasingly common. Gallese and Lakoff [7], for example, site exten-
sive neuroscientific evidence for predictive / anticipatory circuitry in the sensorimotor 
systems of the brain and go on to propose a sensorimotor theory of conceptual knowl-
edge based therein. The point to note here is that prediction and anticipation are not 
simply ancillary functions of the brain but are central to its proper functioning and 
their existence is heavily supported by neuroscientific data. Such theories all have in 
common the idea that feedback or spreading activation from active regions, serves the 
role to anticipate, predict, and prime other related structures as a significant (and by 
some theories necessary) part of the cognitive perceptual process.  In many ways this 
is not a new idea and has much in common with spreading activation models in early 
connectionism [8] and also psychological theories of associationism [9]. Unlike those 
early models and theories, which were largely disembodied, the current focus on 
embodied and situated cognition or enactive perception provides a different perspec-
tive from which to view these problems. 

“...Human evolution has indeed led to increasingly complex forms of behaviour. 
However, these behaviours are not simply triggered from genetically determined 
mechanisms.  Rather they are the outcome of the gradual formation of internal repre-
sentations during the lengthy process of ontogenetic development.” [10][p. 144].  
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While the adult neocortex contains many function or behaviour specific areas, as 
Karmiloff-Smith [10] shows with extensive fMRI data, these functions are not geneti-
cally pre-specified but are globally processed in children and gradually formed into 
these areas by a process of active re-structuring according to relationships in external 
stimuli. Taking Hawkins [6] perspective this re-structuring is a matter of modifying 
the connectivity and thus influence of the already hierarchically connected cortical 
micro-columns. By comparison genetic disorders such as Williams Syndrome (WS), 
“appear to follow a deviant developmental pathway" [10][p. 151] whereby genetic 
alteration changes the adaptive mechanisms in the brain that would otherwise have 
led to the formation of these modules, as a result of which brain structuring by experi-
ence follows a different path. Thus what is different is not some genetic predisposi-
tion to develop such and such a capacity but rather the mechanics of the re-structuring 
process itself. 

While the plasticity of the cortex is well recognized, the extent of this re-
structuring is brought into focus by the work of Sharma et al [11] who performed a 
number of experiments in which the auditory nerve and the optic nerve were cut and 
crossed over in infant ferrets.  The ferrets subsequently developed visual orientation 
modules in the auditory cortex (these are structures only ever previously discovered in 
the visual cortex, and never normally present in the auditory cortex). This suggests 
that rather than the visual and auditory cortex being specialized for one type of proc-
essing, they are actively structured around the input streams they receive. This is a 
radical view to take but one for which there is a great deal of evidence. Clearly evolu-
tion has played a part in specialising regions of cortex but rather than providing innate 
structures, we suggest rather that evolution has refined the relative sizes of the various 
unimodal and polymodal regions involved in processing different sensory streams and 
their innate hierarchical structure. As an example, in primates the visual areas of the 
cortex are significantly larger than the auditory areas and so the auditory cortex is 
more limited in the structures it can construct than the visual cortex is. To some extent 
this can be seen as division of resources so that in our case greater resources are given 
to vision than to audition. 

Complementing this perspective is Mountcastle’s [12] view of the cortex as per-
forming the same operation everywhere. While most neuroscientists are highlighting 
the differences (functional or anatomical) between different regions of cortex, Mount-
castles’ analysis suggested that the cortex consists of the same basic unit, the cortical 
micro-column, everywhere one looks. While there may be some variation in micro-
columns in different regions they are to a large extent very similar throughout the 
cortex. This is the basic unit of the hierarchy that we model herein and we shall return 
to the cortical micro-column in section 5.  

This aim of this chapter is to investigate and model some of the less obvious con-
sequences of prediction or anticipation in hierarchical structures and their effect on an 
account of cognitive processes. To provide an example we further develop a cortical 
microcircuit model of sustained inattentional blindness already reported elsewhere  
[1, 2] implementing a hierarchical structure based on the literature just introduced. 
The resulting models are demonstrated to preserve the sustained inattentional blind-
ness effect. In the next section we introduce a cognitive theory of perception and work 
back to expose possible mechanisms able to implement such an account, in the hope 
that these match to some extent those neuroscientific mechanisms just introduced.  
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We then, in Section 3, highlight some of the computational difficulties in implement-
ing these cognitive theories in an embodied and situated agent. Section 4 departs 
somewhat from this discussion and introduces psychological literature on the phe-
nomena of sustained inattentional blindness, which is the target of the modelling ex-
periments provided in Section 5. Finally Section 6 provides some discussion and 
conclusions to this work. 

2   Perception and Action; From Cognition to Neuroscience 

The central claim of Noë’s [13] enactive theory of perception “is that our ability to 
perceive not only depends on, but is constituted by, our possession of… sensorimotor 
knowledge.” [p. 2], where sensorimotor knowledge “is implicit practical knowledge of 
the ways movement gives rise to changes in stimulation.” [p. 8]. This means that, sen-
sorimotor knowledge is not simply factual knowledge about a domain but is intimately 
about the dynamic relationship between an agent and its environment.  Mastering this 
dynamic relationship is manifest in the ability to predict the sensory consequences of 
actions, which in turn, according to Noë is constitutive of perception.  Under this view 
the distinction between skills and knowledge is collapsed [14], as Maturana and Varela 
[15] put it, “all doing is knowing, and all knowing is doing”.  For example, to perceive 
something as a round plate is to exercise a particular skill predicting how sensory con-
tact with the plate will change as one moves a little this way or a little that way.  Such 
perception can be mistaken and such mistakes ‘pop out’ when these predictions are 
invalidated by further experience (consider the Ames distorted room illusion [16]). 
Such predictive ability would seem essential to any embodied agent interacting with a 
complex environment; for example, simulating or anticipating the effects of possible 
actions for evaluation in an agent-centred way (e.g. [17-20]). Here theories such as the 
simulation hypothesis suggest the re-use of, primarily, sensory pathways. The idea is 
that sensory data is processed as normal but rather than producing an overt motor re-
sponse, the response is used to generate a prediction of what the next sensory input 
would be had that response been overt. By projecting this predicted sensory state back 
into the sensory areas the process can re-use the existing circuitry to iterate the predic-
tion process further and further ahead in time. For more detail on the biological basis of 
the simulation hypothesis see the chapter on this subject by Svensson et. al. also in this 
book. 

For Noë [13], the ability to make predictions is simply the application of sensori-
motor knowledge which comes from finding “pattern[s] in the structure of sensorimo-
tor contingency” [p. 103], i.e. patterns in the relationships between our actions and 
sensations.  While this may seem to the uninitiated trivial to implement there are sig-
nificant problems in the application of such pattern recognition, as we will discuss in 
Section 3. Going beyond Noë’s formulation we would draw a distinction between 
‘shallow’ perception of experience, which could result from merely recognising the 
relationship between optic flow and turning the head, and ‘deep’ perception of a 
world consisting of objects and affordances. ‘Deep’ sensorimotor knowledge requires 
the recognition of profiles of change and provides a means to recognize Gibsonian 
[21] affordances, i.e. “to perceive… is to perceive structure in sensorimotor contin-
gencies.  To see that something is flat is precisely to see it as giving rise to certain 
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possibilities of sensorimotor contingency [to see its affordances]. To feel a surface as 
flat is precisely to perceive it as impeding or shaping one’s possibilities of movement” 
[13] (italics added) [p. 105]. For any agent then, skilled action is practical knowledge, 
the mastery of which can be achieved through identifying the contextual regularities 
between action and sensory perception.  Here we can see a strong link between Noë’s 
account of perception, Gallese and Lakoff’s [7] theory of conceptual knowledge, and 
Hesslow’s [19] simulation hypothesis. 

This formulation of the enactive approach not only suggests that robots or agents 
could learn to “perceive an idiom of possibilities for movement” [13] [p. 105], but 
also suggests that such a capacity is both particularly amenable to the integration of 
other cognitive phenomena, such as planning (for which prediction would seem nec-
essary [18, 19, 22]), and significantly different from mainstream representational 
theories (e.g. [23, 24]). Although evolution obviously has a role in this, it seems rea-
sonably clear that much of our own world knowledge and skills are either derived 
from, or heavily shaped by, our life-time experiences. Learning sensorimotor relation-
ships from experience and then using these learnt relationships for prediction is the 
target of our neurocomputational model. 

While Gallese and Lakoff’s [7] theory of conceptual knowledge differs from 
Noë’s, the general form of both theories of cognition based on sensorimotor predic-
tion have much in common.  Having now briefly reviewed some of the biological 
(section 1) and the philosophical (section 2) theories of sensorimotor cognition, we 
turn in the next section to the computational problems any implementation of these 
perspectives faces. 

3   Circularity, Regularity, and Time, but Not in That Order… 

Acquiring the ability to predict changes in sensory streams that result from either 
motor actions (simulated or real), or from temporal aspects of our environment and 
embodiment requires an ability to learn temporal sequences and relational informa-
tion.  The latter would seem to be explained by known plasticity in biological nervous 
systems, roughly approximated by Hebbian plasticity [9] ‘what fires together wires 
together’. Such plasticity is highly suggestive of the idea that co-occurring features, 
presumably indicated by the activity of sub-sets of neurons would lead to those neu-
rons ‘wiring’ together with the result that activity in one set (caused by the presence 
of the relevant feature in sensory data) would lead to a spreading activation via the 
new wiring resulting in activation of the other set of neurons.  Such ideas are well 
developed in localist connectionist models which are able to replicate a great deal of 
psychological data from a variety of phenomena such as; semantic and associative 
priming [25], cued recognition, name processing and lexical processing [26], semantic 
and repetition priming [27-29], face recognition and visual prosopagnosia [30], clas-
sical and operant conditioning [29, 31], and many many more.  Though such connec-
tionist modelling is often far abstracted from computational neuroscience the basic 
principles of spreading activation (rather than localism) would seem to be highly 
plausible biological mechanisms capable of accounting for a great deal of psychologi-
cal phenomena.  As Page states: “I make no claim to be the first to note each of these 
properties; nonetheless, I believe the power they have in combination has either gone 
unnoticed or has been widely underappreciated.” [32][p. 450] 
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The power of such models to explain embodied cognition is highly limited by their 
assumption of localist representation which bypasses important questions such as 
where these representations come from and what from they take. Indeed for many the 
idea of an internal representation is a Cartesian regression with no explanatory power 
whatsoever, as Harvey puts it: “The gun I reach for whenever I hear the word 'repre-
sentation' has this engraved on it: ‘When *P* is used by *Q* to represent *R* to *S*, 
*who is Q and who is S?*  If others have different criteria for what constitutes a rep-
resentation, it is incumbent on them to make this explicit” [33]. While we do not wish 
to delve into the representation debate here it is clear that localist representation is 
neither present in neurobiology nor forthcoming in modelling without introducing 
significant design bias.  Detectors can often be achieved by supervised training or 
complex statistical analysis, however the design choice of which features to detect 
will always be a limiting factor on such approaches.  Restricting modelling methods 
to the more biologically plausible varieties of plasticity raises a serious problem con-
cerning the separation of features in data streams.  This is the problem of marginal 
regularity, as Kirsh [34] puts it; “what if so little of regularity is present in the data 
that for all intents and purposes it would be totally serendipitous to strike upon it?  It 
seems … that such a demonstration would constitute a form of the poverty of stimulus 
argument” [p. 317]. As anyone working in the fields of robotics, machine learning, or 
pattern recognition will tell you, this ‘what if’ is in fact the case for the vast majority 
of data and especially for the kinds of things that we humans seem to perceive so 
effortlessly. 

The problem of marginal regularity results from the fact that most interesting fea-
tures of a data stream, be it sensory or whatever, are not explicitly represented in that 
data stream, they are in fact relational by which we mean that their presence is indi-
cated by specific relationships between the ‘bits’ of the data streams. For example the 
image of a cup is distributed over many pixels or retinal cells, the majority of which 
take very similar values for a range of different images. What changes between each 
image is the relationships between the pixels; however, these relationships can change 
also for the same cup seen from different angles or different distances or in different 
parts of the image. Under traditional static conceptions of vision and data analysis such 
problems often seem insurmountable even given implausible supervision (c.f. [35]). 

Enactive sensorimotor theories such as that proposed by Alva Noë [13, 36] and in-
troduced in section 2 explicitly reject such a static view of perception and propose 
that rather than looking for statistical regularities in snapshot images, that instead we 
search for patterns of contingency between actions and sensory streams. That is to say 
we no longer identify environmental features such as objects and affordances by the 
sensory regularities they provide, as we know these are not fixed anyway, instead we 
look for regularities in the ways that sensory streams change over time relative to our 
actions. Learnt or otherwise acquired profiles of such changes is what Noë refers to as 
sensorimotor knowledge, and the application of this, in prediction, Noë argues is the 
basis of perception. Similarly Gallese and Lakoff [7] argue that the association of 
sensory and motor areas allows for the simulation of actions leading to the prediction 
of sensory consequences. Such stimulation of sensory and motor areas with predicted 
rather than actual sensory data also conforms with the simulation hypothesis [19] and 
various other theories of cognition. 
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While sensorimotor theories would seem to provide a way out of the problem of 
marginal regularity, as we have argued elsewhere [37], the profiling of such changes 
still requires consistent tracking over time before the profiles can be learned from 
which consistent tracking is supposed to follow. Thus the proposed solution can easily 
become circular. To clarify this point with an example, if I know this sub section of 
sensory data right now is a cup (or whatever) then I need to be able to track the cup 
over some changes in order to make a profile of those changes in order to be able to 
track the cup.  In part this circularity comes from not completely letting go of the 
static snapshot perspective, the way out is to recognise from experience that ‘this’ set 
of changes over time happens sometimes in coincidence with performing action X, 
AND that ‘this other’ set of changes consistently coincides with performing action Y, 
when the original set coincide with action X. Thus there are consistent clusters of 
relationships and actions that happen together, when they do occur we can infer the 
presence of some external object or more abstractly an external situation or event. 

The enactive solution we propose then is to find patterns in the dynamics of sen-
sory and motor streams over time; however, time introduces another important prob-
lem to the modelling of sensorimotor perception. The temporal problem as a variation 
of the credit assignment problem results from the fact that the result of an action may 
not be immediate, and may in fact result from a sequence of actions. The problem 
then is how to discover which subset of the actions performed is actually responsible 
for this sensory change. As a minimal requirement then the temporal problem necessi-
tates the inclusion of some form of memory such that past events in the sequence are 
available to take part in the formation of profiles of change and the marginal regular-
ity problem requires some consistent tracking of features as our sensory contact with 
them changes over time. Thus we argue for the inclusion of memory and the trans-
formation into warped high dimensional spaces to maximise the availability of fea-
tures from which to construct temporal profiles leading to perception of features and 
affordances in the environment.  In Section 5 we will develop a model that does ex-
actly this, but first, in the next section we introduce sustained inattentional blindness 
as this will be a bi-product of our predictive models. 

4   Sustained Inattentional Blindness 

Our perception of the world around us is subject to manipulation, even to the extent 
that we can be experientially blind to highly salient and temporally extended events.  
We can even be unaware of things we are looking directly at. Simons and Chabris 
[38] note that “we perceive and remember only those objects and details that receive 
focused attention.” p. 1059. Though it is not entirely clear in this context what atten-
tion is, similar claims have been made by many researchers e.g. [13, 36, 39].  This 
effect is demonstrated most startlingly in an experiment on sustained inattentional 
blindness by Simons and Chabris [40] in which human subjects watch a video show-
ing two intermingled groups of people, one dressed in white and the other in black, 
each passing a basketball between members of their own group. Subjects are asked to 
count how many times the ball is passed by one particular group (either those dressed 
in white or those dressed in black depending on which condition the subject is in). 
Somewhat surprisingly, many “observers fail to notice an ongoing and highly salient 
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but unexpected event…[a] Gorilla walked from right to left into the live basketball 
passing event, stopped in the middle of the players as the action continued all around 
it, turned to face the camera, thumped its chest, and then resumed walking across the 
screen” p. 1069. Observers in this study “were consistently surprised when they 
viewed the display a second time, some even exclaiming, ‘I missed that!?’ ” p. 1072.  
In this, and other psychological experiments, the effect of similarity between the at-
tended (the team the subject is watching), distracter (the other team) and unexpected 
objects (the gorilla) has been systematically varied showing that close similarity be-
tween the attended and unexpected objects reduces the occurrence of inattentional 
blindness [40-43]. For example subjects attending to the team dressed in white were 
more likely to miss the black-haired gorilla than subjects attending to the team 
dressed in black.  Most et al [44] vary the luminance of the attended and unexpected 
objects showing that increasing similarity (in terms of luminance) decreases the like-
lihood of failing to detect the unexpected object. In a different task Koivisto and Rev-
onsuo [43] ask subjects to count how many times balls of one colour bounce of the 
edge of a computer screen, while balls of a different colour also bounce around the 
screen (see figure 1 below). In this task the unexpected object appears on the left of 
the screen and travels across it until it exits on the right. Subjects engaged in the 
counting task often miss the unexpected object and thereby display sustained inatten-
tional blindness. In a number of experiments Koivisto and Revonsuo [43] systemati-
cally vary the number of distracter objects and their similarity to the attended objects 
showing that (a) distracter objects have little or no effect and that (b) sustained inat-
tentional blindness can occur even in the absence of any distracters. For simplicity 
sake it is this scenario, with no distracters that we will focus on here. 

 

Fig. 1. Illustration of Koivisto & Revonsuo’s task. Human subjects count how many times the 
green (lighter) balls bounce, while ignoring the blue (darker) balls. The unexpected object, here 
a blue cross moves across the screen, often undetected. 

5   Modelling a Cortical Hierarchy 

Following discussion of the connectivity between cortical microcolumns in different 
regions of cortex in section 1, and noting that others model cortical microcolumns in 
far more detail than they are treated herein, we are not the first to suggest that dy-
namic reservoirs such as those found in Liquid State Machines or Echo State Net-
works, capture many of their properties. In fact the Liquid State Machine originates 
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from attempts to model the neuroscientific data produced by Markram et al. [45] and 
Gupta et al. [46] on the cortical micro-columns of rat somatosensory cortex. While the 
number of cells in a microcolumn and density of each kind vary between regions, 
certain features of microcolumns remain constant. Of particular interest here is that 
micro-columns are sparsely internally interconnected, that they are observed not to be 
chaotic, and not to implement stable attractor dymanics. Shepherd [47] and Douglas 
& Martin [48] provide neuroscientific examples highlighting the stereotypical cir-
cuitry found in these structures and the wide range of tasks they seem to be involved 
in. While there is a great deal more structural detail to the cortical micro-column, 
some of which is currently being modelled elsewhere, Maass et al. [49-51] provide an 
abstract model using random connectivity between ‘leaky integrate and fire’ neurons 
with both static and dynamic synapse models, the parameters of which are based on 
Gaussian distributions of the data from Markram et al. and Gupta et al.’s experiments. 
The resulting model, the Liquid State Machine (LSM) has been shown to possess a 
number of important computational properties, acting as an analogue memory, and as 
a recursive kernel function [49-51]. Simpler models preserving these computational 
aspects of the cortical micro-column have been developed such as the Echo State 
Network (ESN) [52-55] which we implement here. While the ESN model is some-
what removed from the anatomical detail of the cortical micro-column, we view it as 
a useful abstraction preserving particular properties of the underlying neuroscience 
while providing significant advantages in terms of lower computational cost. 

To implement an ESN we generate a random valued and sparse (30%) randomly 
connected weight matrix for 100 neurons. The randomly achieved weight matrix W of 
the resulting network is restricted to have a spectral radius of less than one, i.e. | λmax | 
< 1, where λmax is the eigenvalue of W which has the largest absolute value, which 
guarantees a null state attractor. Similarly | λmin | > -1 where λmin is the smallest abso-
lute eigenvalue of W. As the separation property is also preserved the ESN is here 
viewed as a computational simplification of the biologically derived LSM architec-
ture. Unlike Jaeger [52-55], who uses a CTRNN, we update the neurons according to 
simple discrete time dynamics using the following standard equations. 

 

ai = Σ yj wij 

 
yi = ___1___ 
       1 + e (-ai) 

 
Next we turn to the uncontroversial and far from new idea that the cortex is loosely 
structured in a hierarchical manner, at least with respect to major pathways of inter-
micro-column connectivity. For example micro-columns in area V1 of the visual 
cortex are heavily connected to area V2 (about half the size of V1), and then to V4 
(again about half the size) and from there to the Inferotemporal-cortex (a larger area 
receiving input from several different modalities). The computational properties of the 
ESN rely in part on the input being significantly smaller than the size of the ESN, 
thereby forcing an expansion of dimensions in the data stream and fostering the linear 
separation of relational features in that input stream. Stacking such systems into a 
hierarchy presents a problem in that the output from a reservoir is the size of that  
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reservoir, and feeding the output from several into one would require increasingly 
large reservoirs at each level of the hierarchy in order to preserve a dimension expan-
sion at each step. The solution we adopt here is to autonomously compress the state of 
each ESN using a Self-Organizing Map (SOM) [56]. Each dimension of the map can 
be used as an output so that we effectively output the address of the winning SOM 
unit. 

 

Fig. 2. (Left) showing the internal structure of each unit in the cortical hierarchy.  Input flows 
into an ESN which is then classified by a SOM.  The SOM projects back into the ESN and the 
address of the winning SOM unit is passed on as output. Additionally associative connections 
are learned between the ESN and the SOMs of other units. (Right) the overall structure of the 
whole hierarchy. Neighbouring units pass their outputs to the same unit in the next layer of the 
hierarchy.  Associative connections are between the ESN of one unit and the SOMs of the units 
that that unit connects to. 

This approximates a principle component analysis passing variance information on 
to the next layer. While we fully recognize that this dimension reduction throws away 
a great deal of information, the reduced output then combines with the output from 
neighbouring units as input to an ESN at the next level of the hierarchy where the 
same process is repeated again (see fig 2). This allows for the discovery of new input 
features, specifically those relying on relational properties between the parts of the 
input stream kept separate at all previous levels. SOM units then also provide normal 
input via sparse random connectivity back into the ESN driving that SOM. 

As discussed in section 1 the development of functional regions of cortex results 
from plasticity refining and altering the connectivity between microcolumns within 
connected regions of cortex. This plasticity is modelled here using perceptrons 
autonomously trained to predict, from the activity of one ESN, what state connected  
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Fig. 3. Highlighting the plasticity between connected columns. Perceptrons are trained to pre-
dict the state (SOM) of one column, from the ESN activity of other connected columns. 

columns are in. Thus based on the information available in one column, predictions 
are made as to what the likely state of other columns, having other information avail-
able to them, is likely to be (see Figure 3). The output and weight changes to each 
perceptron were calculated using the following standard formulas. 
 

yi = Σ yj wij 

 

Δ wij = α (yi – targeti) yj 

5.1   Experimental Setup 

Following a model based account of sustained inattentional blindness presented in  
[1, 2], we here provide an extension of the same experiment using the hierarchy 
model just described. We constructed a small hierarchy with three cortical units in the 
first level, two in the second level, and one in the third level. In the experiments de-
tailed herein we simplified Koivisto and Revonsuo’s task in the following ways. 
Firstly we removed all distracter objects as the number or presence of distracter ob-
jects was found not to significantly alter the extent of sustained inattentional blindness 
in experiments carried out in [43]. Secondly we reduced the number of attended ob-
jects to 1 so as to simplify the modelling task. The visual area was then divided up 
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into a 4 x 4 grid and the average green or blue pixel values of each cell provided two 
inputs respectively from each cell. This provided a total of 32 inputs to an ESN at 
every time step. The task here is to constantly track the vertical aspect of the direction 
of the attended simulated object, i.e. is the blue ball moving upward or downward 
(ignoring left and right velocity). 

 

Fig. 4. The 6 unit hierarchy. Visual input is averaged over a 4 by 4 grid and then passed as 
input to the first cortical hierarchy unit. Tracking information and detection of the unexpected 
object are fed as input to the 2nd and 3rd units. Activity flows up the hierarchy driven by this 
input. Activity also flows down the hierarchy via the learnt associative connections, see text for 
a full explanation. 

Our two conditions are then whether we allow top down activity to reach the unit 
receiving the image as input. In the first stage of the experiment we provide input for 
a total of 10000 time steps during which the model is ‘conditioned’, in that the model 
indirectly learns the association between the different inputs. During this stage we 
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also record the SOM activity of the tracking and detection units and note a strong 
correlation between the input state and the SOM output. In stage 2 we enter a testing 
phase in which the tracking and detection input is removed but the visual input con-
tinues. We record the SOM activity of the tracking and detection units, recording a 
correct output at every time step that the observed SOM activity corresponds with the 
noted correlation of what the actual tracking and detecting input should be. Thus if the 
association has been learnt then the hierarchy should reproduce the same activity in 
the tracking and detecting unit SOMs even in the absence of that input. During stage 2 
the perceptron learning was also disabled. We repeated the whole experiment with 
feedback to the first unit enabled and disabled. 

5.2   Results 

As can be seen from figure 5 below, performance at tracking was considerably im-
proved by feedback from the hierarchy. This shows that top down predictive informa-
tion aids discrimination in correlated tasks. As can be seen from figure 6, performance 
at detection is hindered by the same feedback that improves tracking performance.  We 
conducted a repeated measures ANOVA on this data and found significant main and 
interaction effects. Where the effect of feedback on tracking had a probability of p < 
0.001, the effect of feedback on detection had a probability of p < 0.05  all interaction 
effects had a probability of p < 0.001. As can be seen from fig 5 and 6, feedback im-
proved performance at tracking while degrading performance at detection, thus we 
have the sustained inattentional blindness phenomena. During engagement in a diffi-
cult task, predictive feedback is necessary to produce adequate performance at that task 
but has the effect of making detection of an otherwise detectable object less likely. 

 

Fig. 5. Scatterplot showing the hierarchies performance at tracking with and without feedback. 
Note that the scale here is adjusted so that 0% indicates chance levels of performance. 
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Fig. 6. Scatterplot showing the hierarchies performance at detecting the unexpected object with 
and without feedback. Note that the scale here is adjusted so that 0% indicates chance levels of 
performance. 

6   Discussion, Whats Going on? 

The model presented here draws on biological and philosophical theories of the rela-
tion between sensormotor knowledge discussed in sections 1 and 2 to provide a scal-
able model of sensorimotor learning, one by-product of which is the inattentional 
blindness phenomenon. In this model, the role of each micro-column, is to identify 
relational patterns in and over time, from the activity of the input streams or columns 
in the layer below. Having identified these patterns, a spreading activation between 
layers provides anticipatory input from above and classification from below. The 
hierarchical model presented learns correlations between its inputs, without introduc-
ing supervision bias, allowing for the top down spreading of activation to aid, or hin-
der, the identification of relational features patterns and sequences. This is closely 
related to the simpler model of inattentional blindness presented in [1, 2] however we 
here provide a minimal hierarchical implementation to clarify and provide a more 
plausible account of where the feedback comes from. This model is very closely 
linked with the enactive account of sensorimotor perception, in as much as experi-
enced correlations between input streams are learned and then provide the basis for a 
spreading activation providing prediction or anticipation of what the unobserved or 
missing input could be. This is however, not done directly to the input but rather 
manifests in the form of tuning input filters (ESN’s) to improve separation of the 
anticipated features at the cost of less separation of other features. 

As a tentative explanation of why the sustained inattentional blindness phenomena 
is observed in this model we can analyse the effect of feedback on a single ESN.  
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Clearly the addition of new inputs to an ESN correlated with some feature, changes 
the attractor landscape of the ESN and moves the trajectory in state space (for a fuller 
analysis of this see [2]). However the Euclidean distance between input with that 
feature and input without that feature is enlarged by the presence of the correlated 
input. This means that the pointwise separation between ESN states following input 
with or without those inputs is also greater. This typically leads to enhanced separa-
tion of the streams and facilitates linear separation by a perceptron. This accounts for 
the improved performance at tracking (see figure 7 upper graph). As for degrading 
performance at detection we can see that an input image with one ball on it provides a 
different level of input than an image with two balls on it (one being the unexpected 
stimulus). This difference in input magnitude provides further separation of the fol-
lowing ESN states facilitating normal detection of the unexpected object. With the 
presence of an uncorrelated feedback input, however, this separation is distorted lead-
ing to loss in performance at detecting (see figure 7 lower graph). 

 

Fig. 7. The magnitude of the input to the visual ESN. In the case of tracking, the magnitude of 
input remains constant whether the ball is moving up or down, however, when the unexpected 
object appears the magnitude of input goes up thus the point-wise separation of these states is 
increased (Top figure). When feedback from tracking is made available, the magnitude (as-
suming correct feedback) as the ball moves up or down is different (e.g. 0-10 vs 10-20 in the 
lower figure), however the separation of the uncorrelated unexpected input is reduced (25-35 
in the lower figure). 
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Abstract. To act successfully, it is necessary to adjust the timing of
one’s behavior to events in the environment. One way to examine human
timing is the foreperiod paradigm. It requires experimental participants
to react to events that occur at more or less unpredictable time points
after a warning stimulus (foreperiod). In the current article, we first re-
view the empirical and theoretical literature on the foreperiod paradigm
briefly. Second, we examine how behavior depends on either a uniform or
peaked (at 500ms) probability distribution of many (15) possible forepe-
riods. We report adaptation to different probability distribution with
a pronounced adaptation for the peaked (more predictable) distribu-
tion. Third, we show that Los and colleagues’ [1] computational model
accounts for our results. A discussion of specific findings and general
implications concludes the paper.

1 Introduction

To act successfully it is not only necessary to behave in a skillful way, but also
the timing of the behavior is crucial. On a macroscopic timescale, timing of
buys and sells on the real estate market can make a considerable difference.
On a smaller timescale, waving down a bus or catching a ball requires us to
initiate movements in time. On an ever smaller timescale, in sports, like tennis
or baseball, the precise timing of a stroke is of paramount importance. And
finally, even the eye blink reflex may be adjusted by mere milliseconds.

Acting successfully is even more complex because the events on which we need
to react are not always fully predictable. Often, we have to learn which warning
signals precede critical events and the duration of the time interval between both.
Learning helps to anticipate the onset of critical events and to prepare or adjust
behavior to react quickly and adequately. Thus, to understand how humans excel
at a broad range of tasks and skills, we need to understand how humans adapt
their behavior in time, when events occur more or less predictable.

G. Pezzulo et al. (Eds.): ABiALS 2008, LNAI 5499, pp. 170–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Investigation of Behavior in Time

In the lab, behavior in time has been systematically studied with the foreperiod
paradigm [2,3], for a review see [4]. In these experiments, a human participant
has to react as quickly as possible to a target stimulus, like the onset of a visual
stimulus or a sound. To enable the formation of temporal anticipations, a warning
stimulus (WS) appears at a certain point in time before the target stimulus. The
interval between the WS and the target stimulus is called the foreperiod (FP).

If the FP stays constant for a while, participants are able to form expectations
about the time of the appearance of the target stimulus and thus react faster
upon it. Interestingly, they react the faster the shorter the FP, as the temporal
resolution is higher for shorter FPs [5,6]. Only if FPs are very short, between 0
and 100ms, RTs rise again [2].

If the FP varies unpredictably from trial to trial, it is not possible to anticipate
the exact time point of stimulus onset. Nevertheless, participants still have some
information to prepare their response. For example, as time passes by and the
target stimulus has not yet occured, the time window in which the target stimulus
might appear shrinks. Thus, in the case of unpredictable FPs, participants react
the faster the longer the FP [7,2,8,9].

In addition, the data reveal strong sequential effects. Compared to repetition
trials (subsequent trials with identical FPs) reaction times (RT) increase if the
preceding FP was longer than the current FP. The effect seems to exist only in
one direction, because the preceding FP does not affect RTs if it was shorter than
the current FP. Hence, RT increase if the current FP is unexpectedly shorter
while RTs are unaffected if the current FP is longer than expected [10,11,12]
(but see [13] for contradictory results).

The FP paradigm is well established and there is a substantial body of data
that describes how humans anticipate upcoming events and adapt to the pre-
dictability of those events [14,15,16,17,18,19,20]. The aim of the current article
is threefold. First, we review current theories of timing. Second, we provide new
experimental data that reveals how human behavior adapts to different prob-
ability distributions of FPs. Third, we test if the data can be explained by a
current model of timing [1].

The remainder of the article is structured as follows. The next section reviews
different theories of timing. Then, the behavioral experiment and the novel em-
pirical data will be described. After that, a mathematical formulation of a com-
putational model of timing will be given and it will be compared to empirical
data. A short discussion concludes the paper.

2 Theories of Timing

By now, mainly two theories of timing emerged to account for behavior in the FP
paradigm: Gibbon’s “scalar expectancy theory” (SET) [21] and the “behavioral
theory of timing” (BeT) by Killen and Fetterman [22]. The SET is a cognitive
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approach that explains temporal regularities of learned behavior by a number of
information processing devices. An internal pacemaker generates variable pulses
with a high frequency [23]. An accumulator accumulates the pulses up to a crit-
ical event. The number of accumulated pulses is stored in longterm–memory. To
recall or reproduce a certain duration, the memorized number of pulses is com-
pared to the currently accumulated number of pulses. The relative discrepancy
of these two values determines behavior, mediated by adjustable thresholds.

In contrast, the BeT conceives the organism as moving across an invariant
series of “behavioral classes” between a WS and a target stimulus. Like in SET
an internal pacemaker generates pulses that cause the organism to cycle through
the behavioral classes. When the target stimulus appears, the currently active
class is reinforced. When the organism perceives a WS later on, it again starts
to cycle through the behavioral classes. As its behavioral intensity is partially
determined by the activity of the currently active behavioral class, it is then able
to adjust its behavior to the experienced FP. The development of BeT as well
as SET stimulated the quantitative description of behavior in time.

However, crucial aspects of timing remained unexplained. The adjustable
thresholds in SET and the discriminative function of behavioral classes in BeT
imply a learning process, but both theories fail to specify one. Hence, Machado
[24] reformulated the BeT as a mathematical model, specifying two mechanisms
of adaptation: reinforcement and exinction (for other approaches see [25,26,27]).
Finally, Los and colleagues [1,28] reinterpreted the output of the model to ac-
count for human RTs. Their formulation of the BeT makes four assumptions:

1. Peaks of activation develop around the possible moments, at which the target
stimulus may appear. The more FPs are used in a experimental design, the
more peaks can be expected.

2. However, the temporal resolution is limited and degrades for longer intervals.
Activation peaks become broader and flatter as they are more remote from
the WS.

3. Reinforcement only occurs if the peak coincides with the time point of the
occurrence of the target stimulus.

4. Extinction occurs at any peak that is associated with a moment prior to the
relevant moment. Peaks of time points after the appearance of the target
stimulus remain unchanged.

The model conceives RTs as inverse proportional to the activation at the
moment the target stimulus occurs. The four assumptions explain most of the
observed effects. If FPs are predictable a single activation peak is reinforced and
will quickly reach its maximal amplitude. This results in faster reactions if the
target stimulus appears at the expected time point. If FPs vary unpredictably
from trial to trial, all FPs are reinforced or subject to extinction from time to
time. Because peaks associated to shorter FPs are activated more frequently,
they are also more often discounted than reinforced. This results in higher RTs
for shorter FPs.
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Assumption three and four explain sequential effects on RTs. All peaks that
are associated with time points in the FP of one trial are subject to extinction
and only the peak associated to the actual FP is reinforced in the respective trial.
If the subsequent trial requires a reaction at one of these early time points, the RT
tends to be higher because the respective peaks have just recently been decreased.
If the FP of a subsequent trial is longer then RTs are only slightly affected.

To conclude, our understanding of human timing is based on FP experiments
and models that assume that different time intervals are represented by discrete
peaks of activity. This raises further questions regarding the experimental meth-
odology and the theoretical models. First, in many FP experiments, FPs were ei-
ther completely predictable or unpredictable (e.g. [1,18]). However, in everyday
life, timing intervals are usually distributed around a specific duration. In most
cases an interval has a certain duration but also shorter or longer intervals might
be experienced from time to time. Thus, we are interested in how humans adapt
their anticipation to a single-peaked probability distribution of possible FPs. Sec-
ond, in most experiments, participants are exposed to a limited number of more
or less distinguishable FPs. However, in many situations not only some but a con-
tinuum of FPs may be expected. Thus, we examine if the same effects can be ob-
served if 15 possible FPs are applied in an experiment. Finally, we want to test
if the computational model of Los and Agter [18] is also valid for peaked, quasi-
continous distribution of FPs, or if the model needs to be further refined.

In the next section, the experimental protocol and results are described. We
then give a mathematical description of the computational model we used and
test the model on our data.

3 Foreperiod Experiment

In the following section, we report the protocol and results of two experiments.
According to the FP paradigm, participants had to press a key upon the ap-
pearance of a a target stimulus. A WS preceded the target stimulus at random
and thus unpredictable FPs, which ranged between 100ms and 1500ms. Both
experiments differed in the probability distribution of the different possible FPs.
In the first experiment, each FP had the same probability (uniform distribu-
tion), while in the second experiment, the 500ms FP was much more frequent
than any other (peaked distribution). To measure the degree to which partic-
ipants adapted their behavior, we recorded RTs, with shorter RTs indicating
better timing. To evaluate the general adaptation to the different probability
distributions, we compared RTs at different FPs. To further evaluate the short-
term adaptation based on single trials, we analyzed sequential effects, that is,
we compared RTs dependent on the FP of the current and the preceding trial.

3.1 Experimental Method

Participants. In each experiment, ten participants (uniform: 8 women and 2
men, age 19-22; peaked: 7 women and 3 men, age 19-25) volunteered to either
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Fig. 1. The schematic time course of one trial (ITI: intertrial interval)

satisfy course requirements or in exchange for pay. All participants reported
having normal or corrected-to-normal vision and were not familiar with the
purpose of the experiment.

Apparatus and Stimuli. Stimuli were displayed on a 17 inch CRT monitor
and RTs were recorded with an IBM-compatible computer (Pentium IV with 2.6
GHz) running E-Prime [29]. Figure 1 illustrates the trial procedure. Each trial
started with the presentation of a fixation cross. The onset of the fixation cross
also marked the onset of the FP. We used fifteen different FPs: 100ms, 200ms,
... , and 1500ms. After the FP, a circle (approximately 2 cm x 2 cm) was dis-
played as target stimulus for 100ms, followed by a blank interval of 900ms. All
stimuli appeared in white on dark-grey background. Participants had to press
a key with the right index finger upon appearance of the target. If participants
responded within 1000ms to the target stimulus, the screen stayed blank for
another 1500ms, then the next trial began. If participants failed to respond, the
German words “bitte schneller” (faster, please) were displayed in red letters for
1000 ms and the next trial was initiated another 500ms later. Both experiments
consisted of ten blocks with 120 trials each. Table 1 lists the distribution of
foreperiods in each block for both experiments. In the uniform distribution ex-
periment, all FP appeared with the same probability. In contrast, in the peak
distribution experiment, the FP of 500ms was 46 times as likely as any other
FP. The presentation order of all trials were randomized for each block and were
thus unpredictable for the participants.

3.2 Experimental Results

Uniform Distribution Experiment. We aggregated data from every three
FPs, resulting in the five different FP ranges (see left panel of Table 1) to enable
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Table 1. Frequencies of FPs, FP ranges, and data points in each FP range (Freq) in
each block of the peak and the uniform distribution experiment

Uniform Distribution Peaked Distribution
FP (ms) FreqFP FPRange FreqFPrange FreqFP FPRange FreqFPrange

100 8 100 - 300
24

2 100 - 400

8200 8 � 2 �
300 8 100 - 300 2
400 8 400 - 600

24
2 100 - 400

500 8 � 92 500 92
600 8 400 - 600 2 600 - 1000

10
700 8 700 - 900

24
2

�800 8 � 2
900 8 700 - 900 2
1000 8 1000 - 1200

24
2 600 - 1000

1100 8 � 2 1100 - 1500

10
1200 8 1000 - 1200 2

�1300 8 1300 - 1500
24

2
1400 8 � 2
1500 8 1300 - 1500 2 1100 - 1500

better illustration and statistical analysis. We analyzed the RT and response
validity1 data using ANOVAs2 with two within-subject factors: the FP range of
the trial (FP rangetrial) and the FP range of the preceding trial (FP rangetrial−1).

Figure 2 shows RT (A, B) and response validity data (C, D). The single
means for the different FP ranges are typical for unpredictable FPs: the shorter
the FP, the higher the RTs, F (4, 36) = 57.9, p < .001. Also, the FP range of
the preceding trial (FP rangetrial−1) has a significant influence on RT, resulting
in generally shorter RTs in a trial if the preceding trial also had a short FP,
F (4, 36) = 21.7, p < .001. Both factors are not independent but interact: The
impact of FP rangetrial−1 on RT data decreases with increasing FP rangetrial,
F (16, 144) = 4.2, p < .01.

Response validity data roughly follows the same pattern (Fig. 2C, D). Error
rates increase with the increasing FP rangetrial, F (4, 36) = 4.8, p < .05. Addi-
tional, there is a significant influence of FP rangetrial−1, F (4, 36) = 0.1, p < .01,
but the interaction failed to reach significane, F (16, 144) = 2.2, p = 0.11.

In general, the results fit nicely to existing data and model assumptions.
Participants respond the faster, the longer the FP in each trial. In addition,
the data reveals asymmetric sequential effects. If the current FP is short (FP

1 A trial response was invalid if the participant pressed the key either before the onset
of the target stimulus, more than 1000ms after its onset, or not at all. As most
invalid responses were due to premature key presses, invalid responses mostly reflect
a higher behavioral activation.

2 We applied the Greenhouse–Geisser correction because the assumption of sphericity
was violated in our data. For clarity, we report F-values with unadjusted degrees of
freedom.
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Uniform Distribution Experiment
FP Ranges Sequence Effects
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Fig. 2. The charts show the results of the uniform distribution experiment: the im-
pact of the FP range on RT (A) and response validity (C) and the impact of specific
sequences of FPs on RT (B) and response validity (D)

range 100-300) the impact of the previous FP seems to be much more severe
than when the current FP is long. However, our data does not show an ordered
influence of the preceding FP, as would be theoretically expected. Finally, in this
experiment, the repetition of the same FP did not necessarily cause the greatest
benefits for RT. Especially higher FP ranges showed the steepest increase in RT
if the preceeding trial’s FP was slightly longer.

Peaked Distribution Experiments. Again, we analyzed the data on the
level of aggregated FP ranges as displayed in Table 1 using ANOVAs with FP
rangetrial and FP rangetrial−1 as within subject factors. Note that due to the
non-uniform distribution of FPs (most of the trials had a FP of 500ms) the dif-
ferent FP ranges consist of different numbers of data points. Figure 3A, B show
that RTs decrease with increasing FP rangetrial, F (3, 27) = 31.0, p < .001 and
depended on the preceding trials FP (FP rangetrial−1), F (3, 27) = 3.8, p < .05.
There is no interaction between FP rangetrial and FP rangetrial−1 F (9, 81) =
0.6, p = 0.67. Interestingly, RTs seem to be generally much faster than in the
uniform distribution experiment. Especially, the decrease from the shortest FP
range to the next one is much more pronounced in the peaked distribution ex-
periment than for the uniform distribution experiment, but RT decrease further
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Peaked Distribution Experiment
FP Ranges Sequence Effects
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Fig. 3. The charts show the results of the peaked distribution experiment: the impact of
the FP range on RT (A) and response validity (C) and the impact of specific sequences
of FPs on RT (B) and response validity (D)

for the higher FP ranges. This may be due the high behavioral activation for the
frequent FP of 500ms, which seems to be maintained for higher FP. The same
trend can also be found in the response validity data, F (3, 27) = 8.3, p < .01.
However, there was neither a significant main effect for FP rangetrial−1 nor
a significant interaction for response validity data, F (3, 27) = 0.9, p = .48,
F (9, 81) = 1.5, p = .23. The analysis of sequence effects revealed an RT advan-
tage if the preceding trial contained one of the shorter FP ranges. Participants
responded especially fast in trials that followed a trial with the frequent FP of
500ms. We assume that the comparatively slow reactions following trials that
did not contain the frequent FP 500ms may be attributed to RT costs caused
by expectancy violations after trials with uncommon FPs.

4 Simulation

The following section mathematically formulates Machado’s / Los and colleagues’
model [1,24]. The model has a serial structure with interconnected timing nodes.
Every node has two connections, one to the subsequent node and one to an out-
put node. The links to the output node, which determines RT, are weighted,
the weights are adjustable through learning processes. After the occurrence of a
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WS activation is propagated through the nodes in the structure. Depending on the
time elapsed since the WS occurred the single nodes of the serial structure contain
a different amount of activation. Hence their contribution to the output differs over
time, with a characteristic activation peak for every node. The basic structure of
the model is shown in Figure 4. In this section, we now describe the propagation
of activity through the nodes, the learning rules, and the response rule.

Timing nodes (n)

Connections with
adjustable weights

Output node

Response strength

WS

Fig. 4. The basic structure of the model adapted from Machado [24]

4.1 Formal Outline of the Model

Node Activations. When the WS appears, all activity is contained in the
first node X0(t) and the remaining nodes with an n greater than 0 are not
activated at all: Xn(t) = 0 n = 1, . . . , N , (Fig. 5A). This activation is then
propagated through the system as time passes. The current activation of each of
the remaining nodes depends on the activation that a given node receives from its
predecessor and the activation it passes on to its successor. Figure 6A illustrates
this process of a constant flow of activation by Machado’s cascade analogy. The
flow of activation is modeled by the following differential equations:

δ

δt
X0(t) = −λX0(t) (1)

δ

δt
Xn(t) = λXn−1(t) − λXn(t) for n = 1, . . . , N (2)

where λ describes the time range and the speed of the activity propagation. The
solution of (1) and (2) leads to the poisson density function

Xn(t) =
e−λt(λt)n

n!
. (3)

The activation of one state over time can be described as a poisson process. With
the exception of the first node, the activity in each node Xn(t) rises continuously,
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Fig. 5. The charts show different aspects of the model, occurring in a single trial with
an FP of 500 ms. A: activation at t = 0; B: initial weight distribution; C: cumulative
activation of nodes at the onset of the target stimulus (t = 500ms); D: Decreased
weights (extinction) for nodes associated to time points before the onset of the target
stimulus; E: activation of nodes at the onset of the target stimulus; F: Increased weights
(reinforcement) after the end of the reinforcement period (λ = 0.01, n = 20, α = 2,
β = 0.03, K = 1, d = 200ms).

peaks at t = n
λ , and decreases afterward. The sum of activation is constant in the

system, because the area of the poisson density function is 1
λ , independent of the

value of n . However, mean and variance of the activation curves are proportional
to n yielding flatter and broader peaks for larger values of n. Consequently, the
temporal resolution is high for short FPs and decreases for longer FPs. Figure 6B
shows some activation curves for different values of n and λ = 0.01.

Extinction and Reinforcement. The weights of the links between the timing
nodes and the output node are adjustable. The following section introduces the
mathematical formulation of the learning rules.

The weight Wn(t) of the connection between node n and the output node is
subject to extinction and reinforcement during each trial. Initially, before the on-
set of the first trial of the experiment, no specific FP distribution can be expected
and all weights are set to Wn(0) = 0.5, n = 1, . . . , N (Fig. 5B). All later trials
start with the weight distribution that resulted from the previous trial.
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Fig. 6. A: The cascade analogy illustrates the propagation of activation through the
series of nodes. B: The chart shows the poisson density distribution for different values
of n and λ = 0.01.

Extinction takes place from the onset of the WS until the onset of the target
stimulus. The decrease of the weights depends on the activation a node received
during a trial, the activation of the node at the time the target stimulus occurs,
and the initial weight of the connection. The adaption takes place dynamically,
the changes are asymptotic, hence weights equal to zero are not possible, as well
as weights equal to the specified upper bound. The following differential equation
shows the dynamic extinction:

δ

δt
Wn(t) = −αXn(t)Wn(t) with α > 0 and 0 ≤ t ≤ FP (4)

with the following closed solution:

Wn(t) = Wn(0)e
−α

t∫
0

Xn(τ)δτ
(5)

where α is a learning rate parameter for the extinction process. The actual weight
change is proportional to the initial weight Wn(0). Extinction has a stronger
effect on strong connections and only mildly affects weak connections. The weight
change also depends on the cumulative activation of the respective state, that
is, the whole activation that was propagated through this node in the time
between WS and target stimulus (Fig. 5C). As shown in Fig. 5D, this results in
a depression of all weights of nodes that are associated to time points before the
appearance of the target stimulus.

Reinforcement is restricted to a fixed interval of duration d following the onset
of the target stimulus at t = FP and can be described through the differential
equation:

δ

δt
Wn(t) = βXn(FP )[1 − Wn(t)] with β > 0 and FP ≤ t ≤ FP + d (6)

with the closed solution:
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Fig. 7. The charts show simulated and empirical RTs depending on FP ranges (A) and
depending on different FP ranges of the preceding and current trial (B) of the uniform
distribution experiment

Wn(t) = K − (K − Wn(FP ))e−βdXn(FP ) (7)

where β is a reinforcement learning rate parameter, t is the time that elapsed
between WS and target stimulus, and K is the upper bound for every single
weight. During reinforcement the weights at the beginning of the reinforcement
period Wn(t) are strengthened depending on the initial weight, the activation of
the node at the time of reinforcement Xn(t), and the reinforcement duration d.
Figure 5E shows the activation of the nodes at the FP (i.e. at the appearance of
the target stimulus) and Fig. 5F shows the resulting weights.

Response Rule. After the description of the time sensitive structure and the
learning principles, we now turn to the response rule, which translates activations
and weights into RTs. In our adaptation of the model3, RT(t) is the RT that
would result in a given trial if the target stimulus is displayed at time t:

3 Note, that the response rule in [1] includes an additive term in the divisor, which
was introduced to study tonic and phasic activation levels. As we do not deal with
this topic here and to reduce the degrees of freedom of the model, we removed this
term from the response rule.
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Table 2. Uniform distribution experiment: R2 of the prediction of the RT, averaged
over sequences of FP ranges (sequential means, 25 predicted mean RTs per partic-
ipant) and FP ranges (FP means, 5 predicted mean RTs per participant), for each
particiant

participant R2
sequential means R2

FP means

9 0.90 0.98

3 0.87 0.98

4 0.87 0.98

6 0.82 0.96

7 0.69 0.91

5 0.68 0.81

2 0.63 0.85

8 0.58 0.99

10 0.58 0.93

1 0.57 0.99

M 0.72 0.94

RT (t) = RT0 +
A

N∑
n=1

Xn(t)Wn(t)
(8)

where Xn(t) is the activation of node n at time t, Wn(t) the corresponding weight,
RT0 is an intercept, and A is a scaling coefficient. RT0 represents the time taken
by other processes contributing to the RT, like sensory stimulus processing or
motor signal transmission. A is a necessary scaling factor, because the temporal
regulation given by the sum in the divisor is bound between zero and K.

4.2 Simulation Method

To test if this adaptation of Los and colleagues’ model [1] accounts for the
behavioral data we estimated the model parameters and analyzed the overall
fit to the empirical RTs. Following [1] and [24] we set the number of nodes
to N = 60 and the reinforcement interval to d = 200ms. The remaining five
parameters (RT0, λ, A, α, and β) were fitted with the downhill simplex algorithm
[30]. As each experimental participant received a different order of FPs and
the model is sensitive to the order of FPs, we optimized the parameters of
the model to predict each individual trial’s RT as closely as possible (1-norm).
We estimated individual parameter values for every participant. The resulting
simulated RTs were aggregated similar to the empirical data to enable a direct
comparison.
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Fig. 8. The charts show simulated and empirical RTs depending on FP ranges (A) and
depending on different FP ranges of the preceding and current trial (B) of the uniform
distribution experiment

4.3 Simulation Results

Model Fit to Uniform Distribution Experiment. Figures 7A displays the
results of our simulation of the uniform distribution experiment. The mean RTs
for the different FP ranges simulated by the model correspond very well to the
empirical data. Figure 7B shows the sequential effects of FP ranges for simulated
and empirical RTs. Most of the qualitative features of the empirical data were
reproduced by the model. However, the order of the impacts of previous trials
on the short FP range 100-300ms could not be reproduced. Additionally, the
impact of previous trial’s FP seems to be somewhat reduced in the simulated
data. Table 2 displays the amount of variance the simulated RTs can account
for (indicated by R2)4 when considering RTs dependent on the FP and RTs
dependent on the sequence of FPs (FP in trial n and trial n-1). Given the highly
noisy individual data, the model acceptably reproduces the empirical RTs.

Model Fit to Peaked Distribution Experiment. Figure 8A displays the
results of the simulation for the peaked distribution experiment. The empirical

4 We used the coefficient of determination to estimate the goodness of fit of the model.
R2 = SSregression

SStotal
is a measure for the amount of variance explained by the model.
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Table 3. Peaked distribution experiment: R2 of the prediction of the RT, averaged
over sequences of FP ranges (sequential means, 25 predicted mean RTs per participant)
and FP ranges (FP means, 5 predicted mean RTs per participant), for each participant

participant R2
sequential means R2

FP means

5 0.87 0.99

4 0.79 0.97

3 0.70 0.95

7 0.70 0.90

8 0.67 0.76

9 0.64 0.98

10 0.40 0.94

1 0.34 0.99

6 0.28 0.89

2 0.26 0.99

M 0.56 0.94

and simulated RTs corresponded for the different FP ranges. However, the be-
tween FP variability is smaller in the simulated data. This might be due to the
high number of data points contributing to the 500ms FP. Figure 8B shows the
empirical and simulated RTs as a function of FP range and FP range in the
preceding trial. Again, the simulated RTs exhibit less variability than the em-
pirical data. There are also some qualitative aspects of the empirical data that
were not reproduced. Especially, the highly reduced RTs for trials following a
trial with a 500ms FP could not be reproduced. We assume that this is caused
by an effect which is systematically produced by the experimental design but
not reflected by the model. The slower RTs for trials following a trial with a FP
different from 500ms might be caused by cognitive processes, which result from
the rather unexpected foreperiod in the previous trial. Probably, the model were
suitable to reproduce the data if we put more weight on rare FP ranges for the
fitting algorithm.

Table 3 displays the amount of variance the simulated RTs can account for
(indicated by R2) on different levels of aggregation. Similar to the results in the
uniform distribution experiment, the accounted variance on the level of individ-
ual RTs is acceptable. However, the variance of the R2 for sequential effects,
which ranges between .26 to .87, is rather high.

5 Discussion

The purpose of the present study was to examine the adaptation of behavior in
time to different distributions of many possible FPs. Our experimental results
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show that humans are able to adjust their behavior to different predictability
conditions. A comparison of both experiments reveals that RTs are much faster
in the peaked distribution experiment than in the uniform distribution experi-
ment. This implies that humans preactivate their behavioral system according
to the predictability of a stimulus and that they are then able to quickly process
that stimulus. Moreover, the described computational model accounts for human
behavior in time under the conditions of our experiments.

5.1 Experimental Results

In detail, the conducted experiments replicated and extended typical findings.
In general the RTs are the shorter the longer the FPs are. The typical sequential
effects were also reproduced. RT increase with the length of the preceding FP
relative to the current FP. These findings were in line with the common results
reported for unpredictable FPs [7,2,8,9]. An interesting aspect of the sequential
data is that participants did not respond fastest to direct repetitions of FPs.
This was also true in the peaked distribution experiment where one FP was
much more frequent than any other FP. Currently, we can only speculate how
to interpret these findings. The shape of the different FP–RT functions might
be the result of higher order sequential effects, also the FP distributions may be
involved as well as the participants’ ability to distinguish the FPs.

5.2 Computational Model

The computational model developed by Los and Agter [18] using the formal
outlines of Machado [24] proved its ability to account for most of our experi-
mental results. Please note that we fitted the model based on individual RTs
of single trials and thus the fitting algorithm had to cope with very noisy data.
We would expect even better fits if we ran several participants through identical
sequences of FPs to average out RT variance that is caused by other than the
preparatory mechanisms we want to study. Interestingly, the shifted minimum
of the FP–RT functions was clearly reproduced. This was caused both by the
model structure and the underlying learning mechanisms. The qualitative fit of
the model was very good, even if the quantitative features of the empirical data
could not be fully reproduced. Hence, in future research it might be beneficial
to adjust the response rule to allow for a tighter replication of the data. In sum,
both adjustments may improve fitting in future studies.

The supposed poisson process in connection with the applied learning rules
seems to be able to account for a lot of qualitative aspects of the human ability
of temporal anticipation. The quantitative fit may be improved by reformulating
or extending the applied learning rules, as well as the response rule. For instance
it seems to be quite simple to derive an expectancy of the length of the next
FP after a single trial. The adjustment of the different weights cause the struc-
ture to be more or less “prepared” to react at different time points. The time
point with the greatest product of activation and association strength could be
conceived as a temporal expectancy or anticipation. The match or mismatch of
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this “anticipation” with the subsequent FP could be used to predict erroneous
behavior like premature responses or misses.

Please note, the presented model has five free parameters, which were used to
predict five RT averages with high and 25 RT averages with acceptable accuracy.
Due to the amount of free parameters, one may assume that the model can be
fitted to a broad range of data. Indeed, the purpose of this paper is not to pro-
vide the most efficient model that accounts for the results but to present a model
that is based on neurophysiological and psychological considerations. Given the
neurologically derived architecture and the biologically plausible learning al-
gorithms, the model may yield more explanational value than sparser, purely
descriptive models.

5.3 Outlook

Another remarkable feature of the model is the possibility to adapt it to many
experimental settings, which could differ from the FP paradigm. Machado proved
the validity of the model in nearly all designs used to investigate the effects of
temporal manipulations on the behavior of animals [24]. In all cases the structure
of the model remained unchanged, only the response rule was adapted. Thus,
the model reflects basic properties of the processing of temporal information in
a wide range of species and behaviors [31].
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Abstract. Grasping an object successfully implies avoiding colliding
into it before the hand is closed around the object. The present study fo-
cuses on prehension kinematics that typically reflect collision-avoidance
characteristics of grasping movements. Twelve participants repeatedly
grasped vertically-oriented cylinders of various heights, starting from
two starting positions and performing the task at two different speeds.
Movements of trunk, arm and hand were recorded by means of a 3D
motion-tracking system. The results show that cylinder-height moder-
ated the approach phase as expected: small cylinders induced grasps
from above whereas large cylinders elicited grasps from the side. The
collision-avoidance constraint proved not only to be accommodated by
aperture overshoots but its effects already showed up early on as differ-
ential adaptations of the distal upper limb parameters. We discuss some
implications of the present analysis of grasping movements for designing
anthropomorphic robots.

1 Introduction

Grasping objects is a task that people perform almost on a continuous basis.
Such a seemingly simple task proves extremely complex when it comes to com-
putationally describing the mechanisms that allow us to do so. For example,
when developing anthropomorphic robots. Numerous studies have scrutinised
the kinematics of this basic human motor skill, often quantifying typical kine-
matic landmarks such as peak velocities of the wrist trajectory that vary sys-
tematically as a function of (I) the distance between the starting location of the
hand and the position of the to-be-grasped object, and (II) the evolution of the
grip aperture, of which the size and timing vary systematically as a function of
the size of the to-be-grasped object (Jeannerod 1981; Jeannerod 1984; Paulig-
nan, Frak, Toni and Jeannerod 1997; Smeets and Brenner 1999; Meulenbroek et
al. 2001; Smeets and Brenner 2001; Cuijpers, Smeets and Brenner 2004).

First we will give some background on research that focusses on collision
avoidance behaviour in human prehension. Next, we describe collision avoid-
ance techniques that are used in robotic manipulators including the ARoS

G. Pezzulo et al. (Eds.): ABiALS 2008, LNAI 5499, pp. 188–208, 2009.
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(Anthropomorphic Robotic System), which is an anthropomorphic robotic sys-
tem that was built on the Mobile and Anthropomorphic Robotics Laboratory
group at University of Minho, Portugal (ARoS, Silva, Bicho, Erlhagen 2008). We
will conclude our paper with a discussion of the implications of our experimental
results for robotics, we show that our anthropomorphic robot (ARoS) is capable
of reproducing human movement characteristics, thus facilitating interactions
with humans, and we discuss some implications.

1.1 Obstacle Avoidance in Humans

Only few prehension studies take into account the ways in which grasping
movements are tuned to avoid collisions with the target object or any inter-
mediate object (see e.g. Vaughan, Rosenbaum et al. 2001, Butz, Herbort and
Hoffmann 2007). The present study was conducted to fill this gap. Additionally,
the collision-avoidance component of grasping forms an essential ingredient of the
posture-based motion planning theory developed by Rosenbaum, Meulenbroek,
Vaughan and Jansen (2001). This theory states that the aperture overshoots
that are commonly observed when the hand shapes around to-be-grasped ob-
jects, or any other biphasic component of the movement pattern, are due to the
collision-avoidance constraint inherent in grasping. This claim also prompted the
present study.

It is still not fully understood how the human prehension system copes with
collision avoidance. Some studies focussed on reach-to-grasp movements in the
presence of distractor objects that may have acted as obstacles (Meegan and
Tipper 1998; Kritikos, Bennett, Dunai and Castiello 2000). In these studies it
was observed that the hand trajectory veered away from intermediate distractors.
This tendency was regarded as an interference effect related to the inhibition of a
planned movement towards the distractor. Humans smoothly adjust movements
of their effector system to circumvent obstacles by planning a movement through
a ’via point’(Edelman and Flash, 1987), or ’via posture’ (e.g. Rosenbaum et al.,
2001). Meulenbroek et al. (2001), emphasised, that in order to avoid collisions
with intermediate objects while grasping a target object, moving around the
obstacle requires a biphasic component that, when superimposed on the default
movement plan that will bring the hand to the target in the absence of the obsta-
cle, ensures that the obstacle is avoided with an acceptable spatial tolerance zone
(see also: Vaughan, Rosenbaum et al. 2001). It should be noted that these models
ignore the fact that an end posture depends both on start point and trajectory,
a recent paper by Butz et al. (2007), describes a model (SURE REACH), which
adds a neural-based, unsupervised learning architecture that grounds distance
measures in experienced sensorimotor contingencies. In this model, an obstacle
representation can inhibit parts of the hand space, causing the arm to generate
alternative movement trajectories when the inhibition is propagated through to
posture space.

In the present study, we focus on how grasping movements of which the
collision-avoidance characteristics were varied, are executed. To manipulate the
degree with which target objects itself acted as obstacles, we chose two starting
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positions at equal distances from the target location (see Figure 1). One from
which a straight hand movement would suffice for a safe and successful grasp,
and one from which additional arm-configuration adjustments were needed in
order to prevent a collision of the hand with the target. In line with Meulen-
broek et al. (2001), we expected movements with the right hand, starting to the
right from the target (S2) to elicit a smaller effect of the collision avoidance con-
straint on the grasp (i.e. less or no additional arm-configuration adjustments)
than movements starting from the left of the body midline (S1).

Fig. 1. Top view of experimental setup. ’S1’ and ’S2’ indicate the starting positions,
and ’T’ the target location.

Another way we manipulated the risk of collision was to vary the height of the
target cylinders between 1 to 15 cm. Conceivably, collision with the shallowest
cylinders is easily avoided by moving the fingers over the target cylinder before
grasping it, whereas such a grasping strategy would probably be inefficient for
the tallest cylinders. For the tallest cylinders, a lateral approach of the hand was
expected since lifting the arm upwards against gravity to manoeuvre the hand
above the cylinder top, was considered energetically suboptimal.
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1.2 Collision Avoidance in Robotics

The simplest way to model a grasping movement would be to compute the
required hand trajectory or joint rotations necessary to move from the starting
posture to the final posture. This can result in successful grasps in some cases
but will often result in a movement during which part of the effector system
will collide, or even virtually move through the target object. Knowledge about
how humans adjust their movements when avoiding collisions with obstacles is
necessary if one attempts to develop robots that can safely interact with humans
(Erlhagen et al. 2006). The latter challenge for roboticists formed the applied
context that inspired the present study.

Typically, the human arm is modelled as a rigid stick-figure of seven degrees
of freedom (DoF): three DoFs in the shoulder, one in the elbow, and three in the
wrist. Only six DoF are needed to describe the position and orientation of the
hand in Cartesian space (x, y, z, and Rx, Ry, Rz). Thus one degree of freedom
remains that enables multiple joint configurations to result in the same hand
position and orientation. This allows us to smoothly avoid obstacles or to choose
the most efficient movement path out of numerous possibilities. It should be
noted that the hand itself also has many degrees of freedom and that stretching
and flexing of the fingers also plays a role in obstacle avoidance behaviour. But
for this paper we focus on the upper limb with only two fingers as ’gripper’. We
use an anthropomorphic robotics system (ARoS, Silva et al., in press), with a
similar configuration for simulating reaching and grasping cylindrical objects in
3D space, as described below.

1.3 Antropomorphic Robotic System (ARoS)

The ARoS model is based on observations from experiments studying the human
upper limb: (I) movement planning is done in joint-space (Osheron, Kosslyn and
Hollerbach 1990; Rosenbaum 1990), (II) joints move in synchrony (Klein Breteler
and Meulenbroek 2006); (III) planning of a reaching and grasping movement in
joint space is divided into two sub-problems: (a) end posture selection and (b)
trajectory selection (Meulenbroek, et al. 2001; Rosenbaum et al. 2001; Elsinger
and Rosenbaum 2003) 1, (IV) end posture is computed prior to trajectory (Gréa,
Desmurget and Prablanc 2000; Elsinger and Rosenbaum 2003), (V) end posture
varies as a function of initial posture (Soechting, Buneo, Herrmann and Flanders
1995; Fischer, Rosenbaum and Vaughan 1997), and (VI) obstacle avoidance is in-
corporated by a mechanism that superposes two movements: a direct movement
from the initial to the end posture and a via movement from the initial posture
to the via posture and back (Rosenbaum, Meulenbroek et al. 1999; Meulenbroek,
Rosenbaum et al. 2001; Vaughan, Rosenbaum and Meulenbroek 2006). First, the
most adequate end posture is determined by choosing the posture that can be
obtained such that the object is successfully grasped without collisions with any
1 By posture we mean the set of joint angles of the arm and hand. Posture is rep-

resented using the well known, and widely used in robotics, Denavit-Hartenberg
(proximal) convention (Craig 1998).
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obstacle or the target itself at the moment of grasp, with a minimum displace-
ment of the joints from begin to the end of the movement. Different joints may
have different expense factors that contribute differently to the selection of end
posture and trajectory.

Next, the trajectory of the joints is computed. We applied the minimum jerk
principle to the joints of the arm and hand, such that the default movement of
the joints follows a bell-shaped unimodal velocity profile, resulting in a smooth
straight-line movement in joint space.

If this direct movement does not lead to collisions with obstacles, the move-
ment is performed, otherwise a ’via movement’ is added to the default movement
by finding a detour through joint space that is collision-free. This via movement
is a back-and-forth movement from the initial posture to a promising via posture
and back again to the initial posture. The ’via movement’ is superimposed on
the direct movement and both are performed simultaneously.

2 Method

2.1 Participants

Twelve participants, (4 male, 8 female), ranging in age between 20 and 34 years
(mean = 28 years) were included in the analyses of this study. All partici-
pants participated for course credit or remuneration after giving their informed
consent.

2.2 Procedure

Participants sat comfortably at a table on a height adjustable chair and they
were asked to make prehension movements from one of two starting positions
and to grasp a target cylinder that could vary in height. The table was mounted
with a board, on which two small strips of sandpaper were stuck to indicate
the starting positions, and a circular hole was sawn out to indicate the target
position (see Figure 1).

Participants started each trial with the index finger of their right hand aligned
with one of the two strips of sandpaper that indicated the start locations. Upon
hearing the auditory ’go’-signal, participants moved their right hand from one
of two start locations to the target cylinder, grasped the target between thumb
and index finger, and, as soon as a second auditory cue sounded, lifted the target
briefly put it back on the table, and returned their hand to the start location
(see Figure 2). During the response sequence we recorded the 3D movements of
the index finger, thumb, hand, wrist, upper arm, and trunk, and we evaluated
various kinematic variables normalised in time.

Movements were recorded by means of two Optotrak camera units (Optotrak
3020, Northern Digital). Recordings were made for 5 s with a sampling frequency
of 100 Hz, of the trunk, upper arm, wrist, hand, and thumb and index finger.
The thumb and index finger trajectories were recorded using single markers that
were attached to the tips of the nails of these digits. All other movements were
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Fig. 2. Timing of trial events. A top-view example of a trial starting from S1 (left
panel). As soon as the start cue sounds, the participant reaches out and grasps the
target cylinder (central panel). Then the participant waits until the second auditory
cue is sounded, lifts the cylinder, puts it back on the table, and returns to the starting
position to prepare for the next trial (right panel). (ITI = Inter-Trial Interval).

recorded by means of rigid bodies (RB). RBs consist of minimally three IRED
markers (the wrist and hand RB had four IREDs) at fixed positions relative
to each other. This enables recording of not only the spatial location, but also
the spatial orientation (Euclidean rotations around the x, y, and z- axes, see:
Bouwhuisen, Meulenbroek et al. 2002). A specific calibration procedure allowed
us to look at the relative orientations of the body segments making up the
kinematic chain of the arm, hand and fingers. The orientation of the upper arm
RB was recorded relative to the orientation of the trunk RB, the orientation of
the wrist RB was recorded relative to the upper arm RB, and the orientaton of
the hand RB relative to the wrist RB. This way, the upper arm RB rotations give
an estimate of the rotations in the shoulder joint around three axes in Cartesian
space (Bouwhuisen, Meulenbroek and Thomassen 2002). The displacements of
the individual markers and the trunk RB were recorded relative to an external
reference frame with the x-axis aligned with the horizontal, frontoparallel line,
the y-axis with the horizontal, midsaggital line, and the z-axis with the vertical.

In order to induce obstacle avoidance behaviour during this task, we manip-
ulated two factors, the Starting Position and the Target Height. We used eight
different target cylinders with a diameter of 4.5 cm that were 1, 3, 5, 7, 9, 11,
13 and 15 cm tall. The central Starting Position (S1) was about 17 cm directly
in front of the body midline on the tabletop and the lateral starting position
was about 17 cm laterally in front of the shoulder. The target location was at
about 47 cm distance from the trunk and at equal distance from the two start
locations (see Figure 1). In order to induce different movement speeds, we also
manipulated the response window, i.e. the interval in which participants had to
perform their grasping movements. We did this because we assumed that ex-
tra time stress would force/stimulate the participants to use the most efficient
movement plans (Rosenbaum et al. 2001).



194 J. Lommertzen et al.

2.3 Design

In every alternating block the Starting Positions changed, and eight Cylinder
Heights were quasi-randomly repeated twice. Every participant performed 196
trials, run in twelve blocks of 16. The response window, i.e. the time interval be-
tween the starting cue and the lifting cue changed after half of the trials. Half the
participants started with the fast condition (i.e. 1.5 s prehension interval), and
the other half of the participants started with the slow condition (2 s prehension
interval).

2.4 Analyses

Position and rotation data were linearly interpolated in case of missing data
(which occurred infrequently and never more than 10 successive samples), and
filtered by means of a Butterworth filter with a cut-off frequency of 12 Hz.
Computed velocities were filtered with a cut-off frequency of 8 Hz. Trials with
too many missing samples were excluded from further analyses, in total (2.7%)
of all trials.

We only analysed the first part of the response sequences, i.e. the movements
from start to the end of the grasp. Begin and end of this movement phase were
deduced from the tangential velocity of the grip, defined as the magnitude of the
first derivative of the mean position of thumb and index finger (as measured by
the respective IREDs). The start of the movement was defined as the last local
minimum in the tangential grip speed profile before it exceeded the threshold
of 5% of the maximum tangential grip speed, and the end of the movement
was defined as the first local minimum in the speed profile after it dropped
below this threshold again (after the maximum velocity was reached). After the
beginning and end of the prehension phase were determined, all displacements,
rotations, and derived variables were normalised to time and resampled to 50
samples.

Because we were interested in different grasping strategies, we looked at the
ways participants approached the cylinders, i.e. whether they approached the
cylinder with their hand from the side, or whether they moved their hand
over the top of the cylinder before completing their grasping. To this aim, we
analysed the locations of the fingertips relative to the centre of the hand -as
defined by the rigid body of IREDs attached to it- in the horizontal plane. The
cylinder is defined as a circle with a radius of 2.25 cm centered at the origin. The
finger trajectories were translated such that the final locations of thumb and in-
dex finger were positioned on the cylinder. We also determined the amount with
which the line connecting the location of the index finger and the centre of the
hand swept across the circle that defined the cylinder’s top. Trials in which this
occurred, were labelled as Overlap (OL) (see Figure 3A for an example) and all
other trials, in which the cylinder was approached and grasped from the side,
were labeled as No Overlap (NoOL).
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The most important variable we manipulated to induce obstacle avoidance
behaviour was the cylinder height. Because we expected the grip height to depend
on the target height, we first looked at the grip height in time. Grip height is the
mean z-coordinate of thumb and index markers, and therefore a good indicator
of the behaviour of the most distal part of the effector system.

Because we aimed at inducing obstacle avoidance behaviour, which we also
expected to be reflected in biphasic velocity profiles, we also studied the tangen-
tial velocity profiles of the grip (i.e. the average position of the thumb and index
markers).

Since participants were instructed to start their responses with their hand flat
on the table top, it is also interesting to study the change in hand orientation in
time. To this aim, we computed the hand plane angle (HPA). HPA was defined
as the angle between the horizontal plane and the plane that is defined by the
marker of the hand RB closest to the MCP-II joint, the index marker, and the
thumb marker. A horizontal position (palm down) is defined as 0 deg, and a
vertical orientation with the thumb down is defined to be 90 deg. We expected
the HPA to start near horizontal, to become more vertical during the prehension
phase, and rotate back to a more horizontal posture towards the end of the grasp.

Because we expected differences in obstacle avoidance to be reflected in the
relation between proximal and distal parts of the effector system, we contrasted
the HPA with the arm plane angle, which is defined as the angle between the
horizontal plane and the plane that is spanned by the vectors denoting the upper
arm RB and the wrist RB.

To compare the proximal and distal involvement (i.e. the shoulder and wrist)
in the grasping movements at joint level, we computed the net shoulder (Rs)
and wrist (Rw) rotations as the square root of the sum of the squared rotations
around the x, y, and z-axes of the upper arm RB relative to the trunk RB (Rs),
and of the hand RB, relative to the wrist RB (Rw), as described in Eq. 1.

Rw, s =
√

Rx2 + Ry2 + Rz2 (1)

where for the shoulder rotation (Rs), Rx, Ry, and Rz are the rotation angles of
the upper arm RB relative to the trunk RB, and for the wrist rotation (Rw),
Rx, Ry, and Rz are the rotation angles of the hand RB relative to the wrist
RB. These rotation measures are independent of rotation direction, and give an
estimate of the degree of rotation in the specific joint.

After deriving all these variables, every time series of these variables was
normalised in time to 50 samples. This way we were able to compare trials with
different durations.

3 Results

First we established that our experimental manipulations were effective in caus-
ing different types of obstacle avoidance behaviour, as reflected by different ways
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Table 1. Incidence (number of trials) of the two distinguished Grip Types (NoOL =
No Overlap grip; OL = Overlap grip) as a function of Starting Position (Start=1 and
Start=2) and Cylinder Height (in cm)

Start = 1 Start = 1 Start = 2 Start = 2
Cylinder Height (cm) No OL OL NoOL OL
1 49 94 117 26
3 87 56 131 13
5 116 28 133 10
7 123 20 140 4
9 129 12 142 2
11 134 8 141 3
13 137 5 141 2
15 138 4 139 5
Grand Total 913 227 1084 65

to approach and grasp the target cylinder. Figure 3 shows examples of grasping
responses to the shallowest and highest cylinders from both starting locations.
Participants moved their hand over the top of the target cylinder in some trials,
and approached the cylinders sideways in other trials. As mentioned before,
we labeled the trials in which participants moved their index finger over the
cylinder as ”Overlap trials” (OL) and all other trials as ”No Overlap trials”
(NoOL). Figure 4 and Table 1 show the overall number of OL trials per starting
position plotted against cylinder height. Note that the shallowest cylinders are
most often grasped with an overlap grip, and that this occurs most often in
responses starting from S1, as we expected.

3.1 Grip Height

After having established that varying start location and cylinder height yielded
different grasp types, we focused on how our main variables of interest varied
as function of cylinder height and start location. As expected, the grip height
increases and decreases in time, and differentiates between different cylinder
heights (see Figure 5). The moment at which the grip height starts to differentiate
between different cylinder heights was captured by analysing the time-normalised
standard deviations (SD) across cylinder heights (see Figure 5B). ’Kick-in’ was
defined as the moment at which the SD reached the threshold of 1% of the range
of grip heights. This analysis clearly shows that the effect kicked in early on in
the movements, in particular already at 10% of the movement time.

3.2 Arm-Plane Angle and Hand-Plane Angle

Now we know that the kinematic variable grip height, that characterises the most
distal part of the upper limb is affected by the target height, it is interesting to
look at two other variables that -together- incorporate the whole movement of
the upper limb. The Arm Plane Angle (APA) and Hand Plane Angle (HPA) are
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Fig. 3. Top view of the position changes of the hand in the horizontal plane during
individual grasps. The bottom black line of the V-shapes connects the centre of the
hand RB with the IRED on the tip of the thumb; the top black line of the V-shapes
connects the centre of the hand RB with the IRED on the tip of the index finger.
(A) from S1 to the shallowest cylinder with an Overlap grip, (B) from S2 to the
shallowest cylinder with a No Overlap grip, (C) from S1 to the tallest cylinder with a
No Overlap grip, and (D) from S2 to the tallest cylinder with a No Overlap grip. See also
Figure 1.

shown as a function of normalised time in Figure 6, revealing that HPA varies
with cylinder height, whereas APA shows a very stable pattern across cylinders
(see Figure 6A, C). The final APA and HPA are shown in Figure 6C and D.

To find the moment at which the effect of cylinder height on the HPA kicked
in, we used the same method as earlier described for the grip height:

The moment at which the standard deviations of APA and HPA started to dif-
ferentiate was defined as the moment the difference between the SDs of APA and
HPA reached the threshold of 1% of the mean range of SD(HPA) and SD(APA).
This occurred at 12% of movement time for S1 and at 20% of movement time
for S2 (see Figure 6B).
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Fig. 4. Number of trials with an overlap grip counted across all participants, for every
cylinder height. The dashed line represents Start 1 and the solid line represents Start 2.

Fig. 5. (A) Time-normalised Grip Height changes for Start 1 and Start 2, averaged
across participants (N=12). Different lines represent different cylinder heights, as in-
dicated by the numbers at the righthand-side of the curves. (B) Standard deviations
across cylinder heights as a function of time for Start 1 (bottom left) and Start 2
(bottom right).
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Fig. 6. (A) Arm-plane (solid lines) and hand-plane (dashed lines) angles (deg) in time
for Start 1 and Start 2. Different lines represent different cylinder heights. (B) Standard
deviation across cylinder heights in time for Start 1 and 2. (C) Final hand plane per
cylinder height, averaged across cylinders for Start 1 and Start 2, (D) Final arm plane
per cylinder height, averaged across cylinders for Start 1 and Start 2.

3.3 Wrist Rotation and Shoulder Rotation

A similar approach can also be applied to a comparison of the net shoulder and
wrist rotations (Rs and Rw). Figure 7A shows that wrist-rotation patterns overlap
in some cases, but still differentiate more between cylinder heights than the shoul-
der rotation patterns do (see also the final Rw and Rs, as plotted in Figure 7C,D).
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Fig. 7. Wrist rotation (solid lines) and shoulder rotation (dashed lines) in time for
Start 1 and Start 2. Different lines represent different cylinder heights. (B) Standard
deviation for wrist- (solid line) and shoulder rotation (dashed line) across cylinder
heights in time for Start 1 and 2. (C) Final wrist rotation per cylinder height, averaged
across cylinders for Start 1 and Start 2, (D) Final shoulder rotation per cylinder height,
averaged across cylinders for Start 1 and Start 2.
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Fig. 8. Wrist rotation and shoulder rotation. Columns represent the two starting po-
sitions and grasp types (Overlap and No Overlap) (A) Wrist rotation (solid lines) and
Shoulder rotation (dashed lines) in time. Different lines represent different cylinder
heights. (B) Standard deviation for wrist- (solid line) and shoulder rotation (dashed
line) across cylinder heights in time. (C) Mean final wrist rotation per cylinder height
(D) Mean final shoulder rotation per cylinder height.

SDs computed across cylinder heights, are larger for the wrist rotation than for the
shoulder rotation (see Figure 7B). Furthermore, the SD patterns seem to differ for
the two start locations, suggesting that the effects of the Cylinder Height kick in
later during the response in responses starting from S2 than from S1. The differ-
ence between Rw and Rs is also evident in Figures 7C,D: the final wrist rotation
angle (Rw) differs slightly between the shortest cylinders, whereas final shoulder
rotation angle (Rs) is stable across cylinder height.
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The difference we observed between the rotation patterns for the two start
locations might be related to the effects of Overlap and No Overlap grasps.
To evaluate this aspect, we also compared the development of these variables
between the two grip types (See Figure 8). Both the wrist and shoulder rotation
were most strongly affected by the cylinder height in the OL trials, presumably
because participants grasped the cylinders near the top. The development of
SDs across cylinder heights, as shown in Figure 8B showed steeper SD curves for
the OL trials, and this was most pronounced in the wrist rotation. It should be
noted that OL and NoOL trials were not equally distributed across participants
and conditions (see Table 1), therefore it is hard to statistically test these data
patterns.

3.4 Speed Instructions

Movement time was compared between the two Speed Instruction conditions
and the two Starting Positions by means of a 2 x 2 repeated measures ANOVA.
The participants followed the speed instructions; movements in the high-speed
instruction condition took less time than in the low-speed condition (914 ms and
967 ms, respectively; F (1, 13) = 6.228; p < .05). Movements starting from S2
lasted longer than from S1 (910 and 972 ms, respectively; F (1, 13) = 45.542; p <
.001). There was no interaction between Speed Instruction and Starting Position.

4 Discussion

One of the main purposes of our experimental study was to gain more insights
in the ways upper-limb movements are altered in order to prevent collisions
with a target to-be-grasped. The paradigm we used showed that participants
roughly used two collision-avoidance strategies: circumnavigating the cylinder
and approaching from the side (NoOL grip), or approaching it from above (OL
grip). As expected, the OL grip types occurred more frequently in the trials
starting from S1 than S2, because the shortest trajectory from start to target
would collide with the cylinder starting from S1 but not from S2. OL grip types
occurred also more frequently when shallow cylinders had to be grasped, because
lifting the hand over the cylinder requires less effort for shallow cylinders than
taller ones.

We analysed the time-normalised grip height, hand-plane angle (HPA), arm-
plane angle (APA), wrist- and shoulder rotations (Rw and Rs) for the two start-
ing positions and all cylinder heights. APA and Rs did not show any target
height-dependent patterns. There seems to be some differentiation in Rw for
the shortest cylinders, but the strongest effects of target height were reflected in
the time-normalised Grip height and HPA -patterns. These height-effects were
present immediately at the start of the response for the HPA, and at 10% of
movement time for the grip height. Showing that the more distal parts of the
effector system are more sensitive to slight alterations in task requirements than
proximal parts.



Collision-Avoidance Characteristics of Grasping 203

Because Rw and Rs showed different SD patterns for the two start locations
(see Figure 7B), and knowing that start location has a strong effect on the grasp
type, we zoomed in on the difference between the development of wrist and
shoulder rotations, in relation to the grasp type (see Figure 8). The effect of
cylinder height is stronger in the overlap-trials, as reflected in the steeper in-
creasing SD patterns. This difference between grip strategy is strongest reflected
in the shoulder rotation data.

4.1 Implications for Robotics

As stated in the Introduction, Obstacle avoidance is generally reflected in bipha-
sic velocity profiles (Rosenbaum et al. 2001), The top panel of Figure 9 shows
such a biphasic tangential grip velocity profile of a trial in which a 15-cm tall
cylinder had to be grasped from S1. The lower panels show the whole trajectory
of the lines connecting the centre of the handRB with the thumb and the index
finger (like in Figure 3), and snapshots of the movement at 1, 20, 40, 50, 60, 70,
80, 90 and 100% of movement time. Although such biphasic tangential veloc-
ity profile is not recognisable in every trial, the idea of planning and executing
movements with a bouncing posture, or through a via-point can be a valuable
addition to the present anthropomorphic robot models 2. A simulator can per-
form a similar task, and the tangential grip velocity is a variable that is easy
to compare qualitatively. Figure 10 shows an example of a simulation of a trial
(Start location 1, cylinder height = 15 cm) with obstacle avoidance character-
istics. The panels show snapshots of a top view of the simulator at successive
moments in time. The progress in time is indicated with a star shape on the
biphasic tangential velocity profiles plotted in the left top of every panel.

In order to build anthropomorphic robots that have to interact with humans,
it is convenient if these robots move like humans. Since humans are well trained
in interpreting gestures and other movements of other humans, the intentions
of a robot that behaves more humanlike, are recognised more easily and its
human collaborator can smoothly adapt to this, which is safer, and facilitates
the collaboration. But for safety reasons it is also a prerequisite that robots are
able to avoid colliding into their human collaborators.

Our behavioural data show that the distal parts of the human prehension
system are more flexible in adjusting to different target heights and starting
positions or directions than the proximal parts. The snapshots of the ARoS robot
simulator (Silva et al. in press) in Figure 10 also show the largest rotations in
the distal joints while the simulator successfully approaches the cylinder while
avoiding collisions with itself, the tabletop and the target. The present findings
further illustrate that grasping an object from the side is not always the preferred

2 It should be noted that not all trials showed such a biphasic pattern, and that the
mean pattern of the tangential velocity shows a positively skewed bell shape. This
can be explained by the relative difference in peak height between the first and
second velocity peak and the fact that the second peak occurs at different moments
across trials.
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Fig. 9. Example of a trial (Start location 1, cylinder height = 15 cm) with obstacle
avoidance characteristics. The top panel shows a biphasic tangential velocity profile
and the other panels show estimates of the thumb and index finger movements in the
horizontal plane at successive moments in time, the dashed lines show the trajectories
of the thumb and index finger and the numbers indicate the relative moment during
the response (in %).

option, therefore anthropomorphic robot models should have the flexibility to
be able to approach and grasp target objects from above.

4.2 Alternative Approaches to Obstacle Avoidance in Robotics

The research on collision avoidance for movement of robotic manipulators can be
divided into global and local methods. In global methods the collision avoidance
is carried out by on-line algorithms before movement starts. On the other hand,
in local methods, on-line algorithms are used in which possible collisions are
tested during the motion, and the robot reacts by activating strategies to avoid
obstacles when necessary.

Global methods include approaches where the motion planning is performed
by searching for collision-free paths from start to goal configuration, in the
robot’s configuration space. Obstacles are mapped into this space as forbidden
regions (for a review see Latombe 1999). Other methods treat the motion plan-
ning problem as an optimisation problem, where obstacles and joint limits are
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Fig. 10. Top view snapshots of the ARoS robot grasping a cylinder while avoiding
collisions with itself, the tabletop and the target. Every panel shows the tangential
velocity of the gripper in time, the star indicates the tangential velocity at the moment
the snapshot was taken, the dashed lines show the trajectories of both sides of the
gripper and the configuration of the robot’s upper limb is shown at t=1, 20, 40, 50, 60,
70, 80, 90 and 100% of movement time in the successive panels from top left to bottom
right.

the problem’s constraints, and techniques like optimal control theory (Galicki
1998), nonlinear programming (Park 2006) and dynamic programming (Fiorini
and Shiller 1996) are used.

Potential field methods are quite popular on-line collision avoidance methods
for robot manipulators. These methods were first introduced by Khatib (1986),
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and there is a large variety of these methods. At each step, the robot moves
by following the gradient of a potential field consisting of attractive potentials,
due to goal positions, repulsive potential due to obstacles and also repulsive
potentials due to joint limits. Another local method is the attractor dynamics
approach initially introduced for mobile robots (see e.g. Bicho 2000) and more
recently to anthropomorphic robotic arms (Iossifidis and Schoner 2006). Here the
time courses of the heading direction of the end effector, elevation and azimuth
angles, and elbow motion were obtained from an attractor dynamics, into which
obstacles contributed repulsive force-lets and joint limit constraints were coupled
as repulsive force-lets as well.

In general alternative methods cannot produce human-like movements. How-
ever, experimental studies on human behaviour show that human-like movement
facilitate interactions between robot and human. The movements of the anthro-
pomorphic robot we have described before, are qualitatively similar to human
movements, as is evident from our experimental and simulation results.

4.3 General Conclusion

We have found that humans avoid collisions while reaching to, and grasping cylin-
ders by adjusting the movements of their distal joints. We successfully mimicked
the resulting biphasic velocity profile in the ARoS simulation of a prehension and
grasping movement like one of the conditions of our behavioural experiment. This
validates the human-like movement characteristics of ARoS and, consequently,
facilitates human-robot interaction.
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Abstract. We present a connectionist model for the Iterated Prisoner’s
Dilemma game which we explored in different game-playing environ-
ments. The role of anticipation on cooperation and coordination was
our main interest. The model was validated by comparisons with hu-
man subjects’ experiments in which subjects played individually against
a computer opponent. After reproducing several interesting character-
istics of individual play, we used the model in multi-agent simulations
of small societies in which agents interacted among each-other by play-
ing the Iterated Prisoner’s Dilemma game. In genetic simulations, we
demonstrated how anticipation will evolve in the societies to achieve
either higher cooperation rates or payoffs. Our results favor the assump-
tion that anticipation is decisive for high level of cooperation and higher
cooperative coordination in the simulated societies.

1 Introduction

The games defined in formal game theory (like e.g. the Prisoner’s Dilemma game)
are widely used to model social interactions (Colman, 2003). Recently, several
influential research efforts (e.g. Axelrod, 1984 and Epstein and Axtell, 1996),
based on Multi-Agent Simulations (MAS), have been carried out successfully in
order to explain (and even try to influence) such important aspects of societies
like cooperation and competition. The typical framework of such approaches
consists of the use of simple agents interacting with an environment with simple
rules or game playing. Although the phenomena arising in such environments are
important enough to deserve detailed investigation, we have adopted a different
approach here. We are interested in cognitively plausible agents whose perfor-
mance can be compared against experimental data from human participants.

The above problem can be regarded as a development of the opposition of
standard game theory and the bounded rationality framework (Colman, 2003).
In standard game theory, players are described as perfectly rational and possess-
ing perfect information about the game including knowledge about the possible
moves and payoffs, and opponents. On the other hand, the bounded rationality
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view on cognition states that people are almost never perfectly rational (Colman,
2003) due to limitations in perception, time, thinking, and memory. Moreover,
people tend to minimize the cognitive effort while making decisions. Finally,
the results of experiments involving games demonstrate that people rarely play
as prescribed by the normative game theory. One such famous example is the
Prisoner’s Dilemma (PD) game which will be dealt with in this chapter.

For instance the influence of cognitive constraints and mechanisms on deci-
sion making in the Iterated Prisoner’s Dilemma Game (IPDG) and thus on the
simulations describing social interactions has been studied in a series of inves-
tigations (see Hristova and Grinberg, 2004 and Lalev and Grinberg, 2007). The
use of cognitively plausible agents can insure that the information gained by
using them in simulations of complex social interactions will take into account
specific cognitive mechanisms which are essential for the explanation of certain
observed phenomena.

One such cognitive mechanism is anticipation and its role in explaining co-
operation and coordination. Special attention will be devoted to the use of the
anticipation model proposed by Lalev and Grinberg (2007) in MAS, where the
role of anticipation on cooperation in IPDG has been investigated. The analysis
of the model features and the comparison with previous experiments with human
participants demonstrated the importance of prediction for adequate description
of the behavioral data on cooperation. These results were obtained in the ex-
periments and in the theoretical frameworks by using individual playing against
a tit-for-tat opponent focusing on individual decision making. Here, we want to
present results which demonstrate the role of anticipation in small societies of
agents. The key characteristics of interest will be cooperation and coordination
as related to the essence of social interaction.

1.1 The Prisoner’s Dilemma Game

The Prisoner’s dilemma is a two-person game and a famous example of a social
dilemma game. The payoff table for this game is presented in Table 1. The
players simultaneously choose their move - C (cooperate) or D (defect), without
knowing their opponent’s choice.

In Table 1, R is the payoff if both players cooperate (play C), P is the payoff
if both players ’defect’ (play D), T is the payoff if one defects and the other
cooperates, S is the payoff if one cooperates and the other defects. The payoffs
satisfy the inequalities T > R > P > S and 2R > T + S. This structure of
the payoff matrix of that game offers a dilemma to the players: there is no
obvious best move. The dominant D move (T > R and P > S) would lead
to lower payoffs if adopted by all the players (payoff P) although this is the
choice prescribed by standard game theory. Cooperation seems to be the best
strategy in the long run (R > P) but at the risk of one of the opponents to start
to defect and the other to receive the lowest payoff S. This quite complicated
situation is at the heart of the dilemma in this game and is the reason for
the on-going interest in this game over the past 50 years and continuing today.
The importance of the possibility to predict the opponents’ moves is obvious
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Table 1. Payoff table for the PD game. In each cell the comma separated payoffs are
the Player I’s and Player II’s payoffs, respectively.

especially in the iterated version of the game. Reliable prediction would lead in
some cases to trust in the opponent and higher cooperation while in other cases
to ’punishment’ of expected defection. In any case, anticipatory agents playing
IPDG will be involved in specific interactions, which have to be investigated.

Rapoport and Chammah (1965) proposed the quantity CI = (R-P)/(T-S),
called cooperation index, as a predictor of the probability of C choices,
monotonously increasing with CI. In Table 2, two examples of PD games with
different CI 0.1 and 0.9, respectively are presented.

Table 2. Examples of PD game matrices with different CI - 0.1 and 0.9, respectively.
The first payoff in each cell is the payoff of the ’row’ player and the second of the
’column’ player.

CI does not explain all the cases in which people choose to cooperate in the
Iterated Prisoner’s Dilemma (IPDG); there are also non-CI influenced subjects
(Hristova and Grinberg, 2004). This is an indication that there is more than one
reason for the presence of cooperation and those reasons probably work together.

2 Approaches for Modeling Cooperation in IPDG

One possible reason for people to cooperate, apart from considering CI, could
be that players learn their strategies according to positive or negative reinforce-
ments associated to their past moves in the IPDG (Macy and Flache, 2002).



212 M. Grinberg and E. Lalev

Players learn with experience that cooperation might be more rewarding than
defection in the long run. Fictitious play (Brown, 1951) is a behavior in which
a player evaluates reinforcements from situations that did not actually happen
but were only imagined (Camerer and Ho, 1999). Additionally, in IPDG there is
an opponent whose move players may try to guess. Therefore, it seems natural
and realistic that knowledge of the opponent’s moves be included in the mod-
els. Awareness of the presence of an opponent in IPDG implies that the player
tries to make a model of the opponent’s strategy which leads to a more com-
plicated behavior related to attempts to utilize this model (Sutton and Barto,
1981). Provided players are able to predict the opponent’s move, they may want
to maximize their payoff by choosing the most profitable move given the pre-
dicted opponent’s move. Or in case the players assume the opponents are trying
to predict their strategy, they may try to mislead their opponents by pretending
to play with different strategy (Camerer et al., 2002; Taiji and Ikegami, 1999).
Such sophisticated relations, including theory of mind and social interactions,
are related to anticipation in cognition (Rosen, 1985). They provide explanation
of cooperation in IPDG based on forward-looking decision-making.

3 Connectionist Model with Anticipation

From a cognitive modeling point of view, the challenge is to understand the
decision making mechanisms that would lead to the results observed in the ex-
periments with human participants taking account all of the important char-
acteristics (e.g. the dependence of cooperation on CI or of cooperation on the
level of predictive capabilities). We are convinced that an adequate agent model
should have a minimal but sufficient level of complexity and should perform in
a environment similar to the environments of human experiment participants
(e.g. they should perceive the payoff matrix of the game before making a move
and take into account the opponent’s moves and game outcomes). In the same
time human players rely on past experience and on predictions of future events.

The model presented here, following Lalev and Grinberg (2007), is aimed at
complying with these requirements. It has taken into consideration the results
from extensive recent theoretical and experimental research on the cognitive pro-
cesses involved in decision making in IPDG (see Hristova and Grinberg, 2004 and
Lalev and Grinberg, 2007) using different approaches involving psychological ex-
periments, eye-tracking studies, and modeling and simulations.

It is reasonable to argue that a realistic IPDG model should use different
sources of information - such as history of game outcomes, gains, and CI - in
parallel in order to be able to have the behavior observed in subjects. Based
on all aforementioned assumptions derived from reinforcement learning the-
ory (Macy and Flache, 2002; Camerer and Ho, 1999), anticipation in cognition
(Rosen, 1985; Camerer et al., 2002), game theory (Colman, 2003), we have built
a connectionist IPDG model player (Lalev and Grinberg, 2007) to account for
several effects such as cooperation, received payoffs and CI dependence in the
game.
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3.1 Architecture

The basic unit in the architecture of the model is an Elman recurrent neural
network (Elman, 1990) which has all available game information in time as inputs
(see Figure 1). The outputs, in turn, are predictions about game information,
such as the opponent’s move, for the next game. The purpose of the network is
to process the information flow within prolonged IPDG sessions.

All the inputs of the network were re-scaled within the range [0, 1]. As can
be seen in Figure 1, the values of the payoffs from the current game matrix
(excluding the payoff S which was always 0), as well as the past game payoff
received, the player’s and opponent’s moves in the previous game were presented
at the input nodes at each cycle.

Fig. 1. Schematic view of the recurrent neural network and its inputs and out-
puts/targets. Notation: Sm and Cm are respectively the simulated subject and computer
opponent (probability for) moves; Poff(t) is the player’s received payoff at time t.

The past moves were recoded as [0,1] - for C and [1,0] - for D moves, so that
activation would always come from any of the two couples of input nodes, no
matter what the moves were - C or D.

The values of the T, R, and P payoffs from the current game had to be
reproduced as an output by the model thus implementing an in-built autoas-
sociator. There were two reasons to decide to include this component in the
network architecture. The first was that this would force the network to estab-
lish representations of the games in its hidden layer which is crucial to account
for the game payoff structure in the decision-making process. The second one
was related to the anticipatory decision mechanism of the model where the out-
put nodes concerning T, R, and P were used as predictions of the next games’
payoffs.

At the output, the player’s move (’Sm’ node) and the computer-opponent’s
move (’Cm’ node) nodes were interpreted as the probability for cooperation for
the player and the prediction about the probability for cooperation of his/her
opponent in the game at hand. The payoff (’Poff’) node represented the expected
gain from the current game.
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3.2 Training

The network was trained using back-propagation on an input consisting of over-
lapping sequences of five games - the current game and the four previous games.
Such sequences are further called micro-epochs. At each time step, a training
micro-epoch was updated with the addition of the current PD game, and the
last game was discarded. Then the network was trained as its initial weights
were the existing weights from the previous time step.

The values at the six output nodes were used as predictions when the network
was trained within the current micro-epoch. The ’T’, ’R’, and ’P’ output nodes
were expected to reproduce the corresponding input values in the input payoff
matrices. The output of the ’Sm’ node was trained with the model-player’s prob-
ability for cooperation in the current game and the output at the node ’Cm’ was
the prediction for the cooperation probability of the opponent (after the end
of the game when they were already known). The output at the ’Poff’ node
meant the expected game payoff. When both player and opponent had made
their moves, and the payoff for the model-player was known, the network was
trained with the inputs it was simulated with and the new targets.

3.3 Model Decision-Making

Decision-making of the model is done with the help of an anticipatory unit that
uses predictions from the network and thus the model explores two possible own
strategy paths - one, starting with a C move in the present game, and another,
starting with a D move. The model uses this forward-looking fictitious play to
evaluate corresponding to both choices payoffs and make move decisions that
will lead to higher gains in the future. The payoffs from both sequences (PoffC
for initial move C and PoffD for initial move D) were then considered.

The obtained payoffs from five fictitious games for each initial move choice
were evaluated using a discount factor as follows:

PoffC,D =
5∑

t=1

PoffC,D(t)βt−1 (1)

where Poff C,D(t) is the value of the payoff at moment t, for initial move C
or D and β is a discount parameter that indicated to what extend the remote
fictitious game payoffs were important for making decisions at present. If β was
0, only the first fictitious payoff would matter, and if β was 1, all the payoffs
would be considered as equally important. In IPDG simulations of the model
the parameter β was set to β = 0.7.

P (C) =
ePoffk

C

ePoffk
C + ePoffk

D

(2)

where P(C) is the calculated cooperation probability and k is a parameter for
the sensitivity of the function towards the difference between PoffC and PoffD.
The smaller the value k had, the greater the sensitivity to the difference between
the C and D alternative choices became.
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4 Game Simulations with Individual Agents: Comparison
with Experimental Results

In this Section, the most relevant results from Lalev and Grinberg (2007) will be
presented as they are the basis of the MAS simulation presented in Section 4.

4.1 Comparison of the Model with Experimental Results

The agents play individually against a probabilistic Tit-for-two-Tats (Tf2T)
computer strategy. Their moves depend on the player’s two previous moves,
thus being adaptive to their temporal cooperativeness without being easily pre-
dictable. The computer opponent probability for cooperation thus obtained is
respectively: 0.5 for [C, D] and [D, C], 0.8 for [C, C], and 0.2 for [D, D]. This
choice of a computer opponent is the same as the one in the experiments re-
ported in (Hristova and Grinberg, 2004) and allows for a comparison with the
experimental results.

The results presented in this section are based on 30 IPDG sessions of two-
hundred games against the Tf2T computer strategy. For the comparisons with
the experiment the first 50 games are taken to match the number of games
played by human participants (see Hristova and Grinberg, 2004). From the ex-
periment reported in Hristova and Grinberg (2004), only data from the first
part and for the control condition was used in the comparison. In this experi-
ment (see Hristova and Grinberg, 2004 for details) 30 participants played 50 PD
games against the computer opponent described above. After each game the sub-
jects got feedback about their and the computer’s choice and could permanently
monitor the total number of points they had won and its money equivalent. The
subjects received information about the computer’s payoff only for the current
game and had no information about the computer’s total score. This was made
to prevent a possible shift of subjects’ goal - from trying to maximize the number
of points to trying to outperform the computer. In this way, the subjects were
stimulated to pay more attention to the payoffs and their relative magnitude
and thus indirectly to CI. Games of different CI, ranging from CI = 0.1 to CI =
0.9, were presented both to participants and in simulations with models A and
B. Games were coming at random regarding their CI.

The best fit of the experimental results was obtained with the following pa-
rameters (see eqs. (1) and (2)): β = 0.7 and k = 0.05.

Mean Cooperation and Payoffs. The results for the mean cooperation and
payoffs for the model and human participants’ experimental data taken from
Hristova and Grinberg (2004) are respectively presented in Figures 2 and 3. No
statistically significant differences are found between the model simulation data
and the experiment.

Dependence of Cooperation Rate on CI. The adequacy of the model can be
further seen from the comparison of the influence of CI on cooperation displayed
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Fig. 2. Comparison of the mean cooperation between the model and the experimental
data from (Hristova and Grinberg, 2004)

Fig. 3. Comparison of the mean payoffs between the model and the experimental data
from (Hristova and Grinberg, 2004)

by the model and by human subjects (see Figure 4; main effect observed with
F=16.908 and p<0.01).

In Figure 4, a detailed comparison, concerning the cooperation rate depen-
dence on CI, between the predictions of the model and the experimental results
is shown. It is seen from Figure 4, that the model gives a good description of
the experimental results with no statistical differences between the mean coop-
eration of subjects and the model at all CI levels, and no main effect of the type
of player (model or human) on cooperation (F = 0.386, p = 0.856).

As stated earlier, our main interest is related to the CI dependence of the
cooperation rate. The ability to reproduce such details in the experimental data
seems very important to us in order to assess the model’s validity. The simulation
by the model of possible games and moves and outcomes involves the prediction
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Fig. 4. Influence of CI on cooperation rates for the model and in the experiment from
(Hristova and Grinberg, 2004)

Fig. 5. Comparisons of types of game outcomes for the model with human subjects
experiment taken from (Hristova and Grinberg, 2004) (with all values for the CI)

about the payoff structure of the game and thus indirectly of the CI. The main
effect in the CI dependence found in the simulations comes from the specific
anticipatory form of evaluation of the best move involving the payoffs of the
game at hand and of anticipated payoffs reflecting the structure of the current
game (see Lalev and Grinberg, 2007 for details).

Comparison of Game Outcomes. In Figure 5, the distribution of the pos-
sible types of game outcomes for the model and the subjects were compared
and no significant difference was found. This statistics is very important as it
shows not only the cooperation rate but gives information on the specifics of
the interactions between players. Of special interest is the outcome CC in which
both players cooperate.
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5 Multi-agent Simulations

As seen from the comparison with experiments with human participants, the
model presented in the previous sections gives a good account for human play-
ing in IPDG against a Tf2T player. In this section, we present the results from
simulations of the interactions in a society of artificial players implementing such
a model. The aim of the simulations was to investigate what is the role of antici-
pation in a society of payoff-maximizing agents on cooperation and coordination
among them.

5.1 Agent Societies

For this purpose, groups of ten agents, with different parameterizations of the
model, played IPDG in simulated social environments. They played against each-
other in randomly assigned couples. The length of the IPDG interaction sessions
was 100 games for a pair of players. The PD game payoff matrices used in the
simulations were identical to the ones used in the previous sections i.e. with CI
from 0.1 to 0.9 (see the description in Section 4). In a society, only one pair of
agents at a time played a whole game session. The pairs were chosen randomly
with replacement so it was possible that one or both players from the previous
IPDG session also play in the current one. There were 50 sessions in a simulation.
After the end of a session, agents kept their trained network weights from their
play with the opponent and these weights were kept as initial weights of the
agent when it started a new IPDG with the next opponent. The sequences of
last inputs and targets were also kept for each particular agent as experience
from the previous session. These served as initial inputs and targets in the next
IPDG sessions for the agents. When a new session began in the sequence of
inputs the values of the new PD game’s payoffs were used in the input vector
along with the values for the last payoff, last own and opponent’s moves. The
overall performance of all players in the society determined its specific states and
processes. When starting a new IPDG session, each player was influenced by its
experiences in previous sessions with other opponents from the same society. In
these simulations no mixing of agents from different societies has been done. This
simulation scheme was chosen to have some common basis for comparisons with
the simulations with Model A alone and with the experimental results reported
earlier.

In order to investigate the role of anticipation, several parameters of the agents
were varied like the number of the recurrent network’s hidden units, the train-
ing method and the importance and number of fictitious games used for move
evaluation (the parameter β in eq. (1). We considered five societies of agents
by varying their capabilities to predict future opponent’s moves and received
payoffs:

1. Agents without anticipation of payoffs and opponent’s move beyond the
present PD game, i.e. β=0 in eq. (1) (further referred to as Low-Anticipation
society);
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2. Agents implementing exactly ’Model A’ (30 hidden units) from
(Lalev and Grinberg, 2007) used in the comparison with the experimental
data in Section 4 (further referred to as Model-A-30 society);

3. Agents with a larger number of hidden units (50 hidden units) which should
increase the predictive power for the model (Further referred to as Model-
A-50 society);

4. Agents with 50 hidden units and the pseudo rehearsal training method
used (see Ans et al., 2002 for details). The method circumvents the neu-
ral networks’ catastrophic interference problem and improves the learning
and therefore the predictive capability of the model by a rehearsal proce-
dure using pseudo training vectors. The agents trained by using this method
are very sensitive to the learned in the past in IPDG sessions with other
opponents which makes their behavior difficult to predict (Further referred
to as Pseudo-rehearsal society);

5. Agents with 50 hidden units and strengthened anticipation predispositions:
the number of fictitious games was set to 10 (twice as more as in Model A) as
well as the importance of remote games was increased by setting the discount
parameter from β=0.7 to β=0.9 (Further referred to as High-Anticipation
society).

5.2 Simulation Results and Discussions

In order to compare the five societies of agents formed on the basis of their
anticipation capabilities, we have concentrated on the following characteristics:
cooperation rate, payoffs, type of games outcomes, and coordination in cooper-
ation (sequences of games in which both agents cooperated).

Cooperation Rates. In a simulated society, agents played ten IPDG sessions
on average. With each next session the experience of players grew. In Figure 6,
the cooperation rates for all agents in a society are averaged over their subsequent
playing sessions from the first to the tenth. For example, the cooperation rates
for all agents from their first IPDG session in the simulation are averaged, then
for the second and so forth till the tenth.

There was no significant difference between the mean cooperation of the High-
Anticipation and Pseudo-rehearsal simulations (F=1.45, p=0.231) (see Figure 7).
These two societies had the highest cooperation rates among the societies as
there was a significant difference between the mean cooperation of the Pseudo-
rehearsal society and the Model-A-50 society (F=18.72, p<0.01). There was also
no difference in the cooperation rates between the agents from the Model-A-30
and Model-A-50 societies (F=1.93, p=0.168). Their mean cooperation rates were
higher than the mean cooperation in the Low-Anticipation agent society as in
the comparison between Model-A-30 and the Low-Anticipation societies F=69.95
and p<0.01 (see Figure 7).

Overall, the results presented in Figure 6 show that the anticipatory capabil-
ities of adaptive players in social settings may be basic for sustaining reasonable
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Fig. 6. Comparison between agent societies of the mean cooperation rates as a function
of experience measured in terms of the number of IPDG sessions

Fig. 7. Mean level of cooperation in simulations

levels of cooperation over time. Only in simulated societies where agents ac-
counted to a higher extent for previous experience and used it to predict further
behavior a stable level of cooperation among its players could emerge at least
during the first ten IPDG sessions (as in the Pseudo-rehearsal society). In all
other cases there was a tendency towards gradual decrease in the cooperation
rate with time or low cooperation rate for all sessions.
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Fig. 8. Mean level of payoffs in simulations

In Figure 7 the mean cooperation in the agent societies is presented. It is
seen that cooperation increases with anticipation capabilities and reaches about
0.3 for the High-Anticipation and Pseudo-rehearsal society while in the Low-
Anticipation society it is below 0.05.

Payoffs. The mean payoff received by agents is another interesting character-
istic because the agents use maximal payoff-based evaluation mechanism
(see Figure 8). The High-Anticipation and the Pseudo-rehearsal societies did
not differ in the mean payoffs that were received (F=0.004, p=0.953). They got
payoffs higher than the Model-A-50 society: the difference between the Pseudo-
rehearsal and Model-A-50 societies was significant (F=7.82, p<0.01). The payoffs
of society Model-A-30 did not significantly differ from those of society Model-A-
50 (F=2.36, p=0.128). The Low-Anticipation society got the lowest payoffs as
its payoffs were lower than Model-A-30 society’s (F=62.21, p<0.01).

As a whole, comparison of both the analyses of cooperation and payoffs (Fig-
ures 7 and 8) reveal a rule according to which in the simulations higher cooper-
ation rates corresponded to higher payoffs.

Again, as with mean cooperation, the High-Anticipation and the Pseudo-
rehearsal societies showed the largest number of CC games and the smallest
number of DD games (see Figure 9). The number of CC games was not different
for these two simulated societies (F=0.74, p=0.39). On the other hand, the DD
game outcomes were more for the Pseudo-rehearsal society than in the High-
Anticipation society (F=4.99, p<0.05).

The number of CC games was significantly lower for each next society (as
follows, in Model-A-50, Model-A-30, and Low-Anticipation societies), and in the
Low-Anticipation society they had the smallest number (see Figure 9). Concern-
ing the mutual defection (DD) game outcomes the situation is inverse. In the
High-Anticipation society the smallest number DD games was observed. The
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Fig. 9. Comparison of the mean number of CC and DD game outcomes calculated for
the agent societies

Fig. 10. CI dependence of the mean cooperation rate in the agent societies

largest mean number of DD games per IPDG session (more than 90 percent of
the games) was reached in the Low-Anticipation simulation. For the DD game
outcomes there was no difference only between Model-A-50 and Model-A-30
societies (F=1.8, p=0.183).
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Fig. 11. Agents’ coordination in terms of the mean length of the series of mutual
cooperation (CC games) per IPDG session averaged over 50 IPDG sessions in each of
the agent societies

A tendency of increase of the mean number of CC game outcomes per sim-
ulation is observed with increase of the anticipatory propensities of agents in
the societies. The opposite is valid for the mean number of DD game outcomes
per simulation regarding the anticipatory propensities of agents in the societies
(Figure 9).

For each agent society, we calculated the mean cooperation rates of agents
for games with a specific CI (see Figure 10). It was interesting to see if the
dependence on CI will be preserved in games among the agents using only a
recurrent network model and playing against a Tf2T opponent as it was the case
in the experiment replication (see Section 3). In all societies the monotonously
increasing dependence of cooperation on the CI is clearly observed except for
the Low-Anticipation society. This confirms again the role of anticipation in
getting this dependence as in the experimental results with human subjects
(Rapoport and Chammah, 1965).

Coordination. We adopted as a first measure of the level of coordination be-
tween the agents the mean number of CC games played in a row per IPDG
session. In Figure 11, the statistics for the agent societies are presented. The
longest CC coordination lasted for five games and was present only in the High-
Anticipation and Pseudo-rehearsal societies. Four-games-long sequences were ob-
served also in the latter and in the Model-A-30 societies. In the Low-Anticipation
society no sequences longer than two were found. Although the sequences are
not very long (especially compared to DD sequences some of which were 100
games long) the influence of anticipation is considerable.
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Fig. 12. Number of agents which played a series of CC games of a given length for
each agent society

This conclusion is confirmed by a related analysis we performed: the number
of agents in a society that participated in a CC game sequence of given length
(see Figure 12). It is seen from Figure 12 that for example only 70 percent of the
agents from the Low-Anticipation society ever played a CC game whereas for all
other societies this percentage equals 100. Moreover, a considerable number of
agents with sequences of CC games longer than two are observed only in societies
with anticipation.

6 Evolution of Societies

For the parametrization of the agents in the simulated societies was predefined in
the simulations in Section 5, the question arose whether anticipatory properties
will also appear in societies of evolving agents. Therefore, we run and explored
several simulations of the interactions within societies of game playing agents as
their parameters for anticipation were subject to evolution. The aim of evolving
such societies was either to achieve a highly cooperative society, or alternatively,
to obtain a society with the highest possible group payoffs. An additional attempt
was made to compare the behavior within a 10-agents’ society, and in case there
were were only 2 agents interacting with each-other, though the same overall
number of games were played by each of the agents in both cases. Then we
investigated the evolved parameters.
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6.1 Settings of the Simulations

We maintained the general settings and rules of societies as described in
Section 5. All agents in a society were identical in their architecture. This
included the number of considered fictitious games, discount factor β, and num-
ber of hidden units. The interactions within one society from its start, until each
agent had played approximately 500 games with other agents, was considered
as an individual in the evolutionary algorithm. There were several such individ-
uals that were run in a generation. In the history of each society, every agent
had their anticipation parameters unchanged. Still, agents could learn during
their play by changing their network weights. When a set of parameters turned
out more evolutionary fit in one population, a new population of societies was
generated to evolve these parameters further on.

Matlab Genetic Algorithm Toolbox was used to perform the evolutionary
search for the best parameters. Here are some details on the used genetic algo-
rithm in the Matlab environment:

1. Evolving populations consisted of 10 individuals (or 10 separate societies)
for reasons regarding computational limitations

2. The fitness function evaluated how far the individual was from the ideal case,
e.g. 100 percent cooperation

3. The best 5 individuals of a population were chosen to give procreation
4. There were 100 generations for each genetic simulation to last
5. As mutation function ’mutationadaptfeasible’ was used
6. The crossover fraction was 0.5
7. The initial values of the parameters for each simulation were deliberately

chosen low as follows: 1 fictitious game, β=0.1, and 5 was the number of
initial hidden units

8. The allowed ranges of parameters was also considered: [1, 10] - for fictitious
games, [0,1] - for β, and [1, 50] - for the number of network hidden units.

6.2 Evolving Cooperative Societies

With these simulations we tried to answer the question whether anticipation
will evolve in the agents when cooperation is required. Also we checked if there
would be any difference in cooperation by evolution of relatively big societies
(10 agents) versus evolution of the minimal group of 2 agents.

Results. The general observation was that all three evolved parameters of the
agents outgrew their initial low values during the simulations. The number of
fictitious games usually reached 10 at the end of simulations, the discount factor
β reached 1, and the number of hidden units reached higher than the initial
values - usually about 35-40. This gives us the answer of the first question -
in these settings, anticipatory properties evolve in the agents to achieve higher
cooperation rates in the group. Cooperation rates grew accordingly robustly in
the long run until they reached a plateau (see Figure 13).
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Fig. 13. Mean cooperation of the best individuals during 100 consecutive generations

It turned out that there was no influence of the count of agents in the society
on the reached fitness value. In both cases when the society consisted of 10 or
only 2 agents, they reached fitness values of about 0.6, corresponding to about
40 percent cooperation for the finally evolved societies.

6.3 Evolving Payoff Maximizing Societies

Using the same setting, we changed the fitness function to a payoff maximizing
one. The expected result after evolution was that payoff maximizing, mediated
by cooperation, would lead to increase in the anticipation of the agents.

Results. We observed how the parameters responsible for anticipation also grew
in this case, thus augmenting the anticipatory properties of the agents and of
the group as a whole. Compared to the finally evolved parameters in the evolved
cooperation condition, there were, however, several things to notice. Apparently,
anticipation developed less in the payoff maximizing condition as the number of
fictitious games in payoff maximizing was 6 versus approximately 9 fictitious
games in the cooperation maximizing condition. The importance of far forward
fictitious payoffs β was about 0.6 in the payoff maximizing condition versus
values close to 1 in the cooperation maximizing condition.

As for the size of the group, it turned out that the number of hidden units
was higher in case there were only 2 agents in the society trying to maximize
their payoffs, than in the case of 10 agents in the society. These numbers were 45
and 22, respectively. This was the only observable parameter difference between
both types of evolved payoff maximizing groups. But it obviously had a big
impact on the overall performance regarding the fitness in the societies. In the
case of 2 agents, the fitness was 0.72 (equal to 0.38 average payoff for the evolved
population), whereas in the case of 10 agents in the society, the fitness was much
lower (better) - about 0.4 (equal to 0.6 average payoff for the population).
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6.4 Discussion

As visible from these simulations, anticipation is a solution to the problem of sus-
tainable high cooperation and payoffs. The evolving societies of agents reached
anticipatory properties very close to those we initially predefined in the simu-
lations from Section 5. Results were alike for cooperation no matter what the
count of agents in the society was. But anticipation developed more when coop-
eration was directly linked to the fitness of the evolved populations, than did it
develop when payoff was accounted for in the fitness of populations.

There was an interesting observation in evolving of payoff maximizing agents.
Judging from the results, the mean payoff for a society could reach higher values
when the society is composed of more agents, than when it has less members. We
could speculate that when an agent has little opponents to play with in IPDG,
it tries to increase its predictive capabilities in order to outguess the opponent’s
actions more often. This is valid for both members of the small group. They strive
to get more of payoff T, but end up with less cooperation, and consequently,
smaller payoffs. On the other hand, in a bigger group, there were more possible
opponents who were coming randomly one after the other. This would disprove
an agent from refining its predictions (increasing the number of network hidden
units) and would result in higher cooperation and payoffs.

7 Conclusion

Several multi-agent models of social interaction based on anticipation were pre-
sented and discussed. Special attention was devoted to recurrent neural network
model used to simulate IPDG playing in a society of agents. The model has been
validated by comparison with human subjects experiments in a previous paper
(see Lalev and Grinberg, 2007) in which participants played individually against
a computer opponent. Several interesting effects could be reproduced which gave
confidence that this model could be used in a multi-agent simulation modeling
a small society of agents interacting among themselves by playing IPDG. We
were interested in the role of anticipation of two essential for successful social
functioning characteristics - cooperation and coordination. The agents were dis-
tributed in five types of societies based on their anticipatory abilities - from
agents with low predictive ability to agents with high predictive one.

The results show that the higher the anticipatory ability is, the higher the
cooperation rate and the coordination in cooperation between agents are. In the
same time, anticipatory agents opposed to each other get involved into sophisti-
cated behavior making mind-reading difficult. As human cooperation in IPDG
is close in rates to the cooperation of our anticipatory agents, the prediction is
that coordination series among human subjects may be in close ranges to those,
observed in the simulations.

Using an evolutionary approach, we found out how anticipation develops in
the agents, as long as the evolutionary fitness of societies is measured in overall
cooperation or payoffs. This finding confirms once more the assumption that
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anticipation and prediction are solutions to cooperation, coordination and gain
maximization.

In general, there are no many investigations of anticipatory agent societies.
Further research, e.g. based on the PD game and/or other games, is needed in
order to explore the full importance of anticipation for social functioning.
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Abstract. We present a model of motor learning based on a combina-
tion of Operational Space Control and Optimal Control. Anticipatory
processes are used both in the learning of the dynamics model of the
system and in the coordination between both types of control. In or-
der to illustrate the proposed model and associated control method, we
apply these principles to the control of a simplified virtual humanoid
performing a stand-up task starting from a crouching posture.

1 Introduction

Early in the history of motor control studies, Bernstein raised the following para-
dox: thanks to the redundancy of their motor system, human beings can realize
a task with an infinity of ways. However, for a given task, they always reproduce
the same kind of stereotypic motion. The problem consists in explaining where
these regularities come from, given the diversity of possible solutions [1].

An attractive solution to this problem consist in stating that motor control
optimises some criterion, thus the performed motion among the many possible
ones is the optimal one with respect to that particular criterion. Several poten-
tial criteria have been proposed such as the Minimum jerk [2], the Minimum
torque-change [3] and their variants (Minimum motor command change [4] and
Minimum commanded torque change [5]). These criteria are all based on the idea
that human motion must optimise smoothness, but a principled explanation of
why motion should optimise smoothness is missing.

By contrast, the Minimum end-point variance criterion comes with a convinc-
ing explanation: natural movements must reach their target accurately, in spite
of a neural noise that is proportional to the motor signal. Thus motor control
must minimise the error on the terminal position of the controlled effector. Har-
ris and Wolpert [6] showed that an optimal controller based on this principle can
reproduce all motor invariants on which previous criteria were based, but also
additional invariants such as Fitts’ law [7] which relates accuracy to the speed
of execution.

The direct consequence of this criterion is the Minimum intervention principle
[8] that stipulates that the motor system activates muscles as few as possible to
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achieve its task, so as to minimise the motor signal related noise. As a result,
the generated control only acts in the dimensions that are relevant with respect
to the task and rejects the noise to the other dimensions. This fact is validated
experimentally by [9] who showed that fluctuations are larger on the Uncon-
trolled manifold consisting of the irrelevant dimensions than on the relevant
ones.

Fig. 1. A global view of SOFC: the controller must estimate the state of the system
and maximise movement accuracy in the presence of sensory and motor noise

Based on these findings, the Stochastic Optimal Feedback Control (SOFC)
method [10,11], illustrated in Fig. 1, and some variants (Terminal Optimal Feed-
back Controller [12,13,14] and Task Optimisation in the Presence of Signal de-
pendent noise [15]) have received a wide agreement as good models of human
motor control for elementary tasks for a single arm. However the computational
cost of Optimal Control (OC) methods such as SOFC make them unsuitable
to solve larger problems such as the synthesis of whole body motion. Thus an
important issue in this domain consists in finding computationally less expensive
approaches endowed with the same properties.

Another issue is concerned about learning and adapting to changing dynamic
conditions. Several authors [16,17] propose a general framework in which hu-
man motor control is model-based, combines feedforward and feedback control
processes [18] and calls upon optimisation processes as explained above. In this
framework, motor adaptation results from learning the dynamics model of the
system.

These principles were first implemented in Modular Selection And Identifica-
tion for Control (MOSAIC) [19], a modular architecture where each module gets
specialised to deal with particular dynamic circumstances. In MOSAIC, control
learning is based on an handcrafted corrector that requires a priori knowledge
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on the dynamics of the system. Multiple Model-Based Reinforcement Learning
(MMRL) [20] solves this limitation by introducing a reinforcement learning pro-
cess. Each module in MMRL calls upon an optimal control module, thus it still
suffers from the computational cost of OC approaches.

One way to overcome this computational cost problem is suggested by Shad-
mehr’s global view of the motor system [21]. From studies based on reaching and
pointing movements, Shadmehr considers that motion generation can be decom-
posed into two parts: at the higher level, the central nervous system computes,
in a visual frame of reference centred on the fixation point, a vector from the
end-point effector to the target. This vector defines a trajectory in the opera-
tional visual space. Then this trajectory is converted into a muscular, low-level
control of the joints angles by calling upon learned visuo-articular velocity and
position mappings.

The most adequate robotics control tool to formalise Shadmehr’s intuition
consists in projection methods, such as Operational Space Control (OSC) [22].
These methods perform their computation in the so-called operational space,
a space relative to the task, which is usually smaller than the joints space.
They can thus be applied to large robotic systems [23]. They also give rise to
a mathematically straightforward way of decoupling a set of tasks ranked by
priority [24], but are sensitive to these priorities and cannot directly perform a
global optimisation of a cost function associated to the motion of the system
over time.

By contrast, optimisation methods, such as OC perform their computation
in the joints space, but benefit from the easy definition of the constraints and
performance criteria [25] of the tasks. However, the only way to express priorities
among tasks within this framework consists in tuning the relative weights of the
corresponding performance criteria.

In this contribution, we present an hierarchical model combining the assets of
both control methods. Our model is consistent with Shadmehr’s view in that a
high level control loop computes a global trajectory in the operational space and
then a low level control loop dynamically realizes it at the joints level. Besides,
our model calls upon a velocity kinematics model and a dynamics model of the
system, respectively. We show how these models can be learned from experience
within an anticipatory process. Finally, the coordination of both control levels
also results from an anticipatory process, the control set point being chosen as
a point that is forward in time with respect to the current time. Our model is
functional rather than neuromimetic: It focuses on the level of computational
principles of human motor control and does not claim anything about the un-
derlying neuroanatomy.

The contribution is organised as follows. Section 2 gives the technical back-
ground of each component of our model. The global structure of the controller
itself is presented in section 3. In section 4, we describe an empirical study about
the control of a simplified virtual humanoid performing a stand-up task starting
from a crouching posture. We discuss the results in section 5.
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2 Background

We present a model of human motor learning that combines the definition of
tasks in the operational space, the use of OC at the joints level and experience-
based, incremental model learning processes. An inverse velocity kinematics
model is learned with the Locally Weighted Projection Regression (lwpr) non-
linear function approximation algorithm [26] whereas a direct linearised model
of the dynamics is learned with a classical Recursive Least Squares algorithm.
Learning is performed on-line, during the control of the system. The different
components of the resulting adaptive control architecture are described below.

2.1 Forward and Inverse Velocity Kinematics

The operational space or task space is the most natural space to describe the
motion of the end effector of a system, whereas the joints space is the most
natural space to control the system. The OSC approach consists in specifying
the goal in the operational space and then using a linear transformation from
the operational space to the joints space to control the system. Let ξ be an
m-dimensional vector of operational coordinates used to describe the task (e.g.
position and orientation of the end-point effector) and let q be an n-dimensional
vector of generalised coordinates – i.e. the vector of parameters necessary to
describe the configuration of the system without ambiguity. For systems with
a fixed base, the generalised coordinates are often chosen as the joints angles.
The relation ξ = f(q) is called forward kinematics model (FKM). It describes
the operational coordinates as a function of the configuration of the system.
Differentiating with respect to time, we obtain

ξ̇ = J(q)q̇, (1)

where J(q) =
∂f(q)

∂q
is the Jacobian matrix of f .

To control the system, we need q̇ as a function of ξ̇. For a redundant system
(rank(J) < n) for which the inversion of (1) has an infinity of solutions, one
particular solution is:

q̇ = J(q)�ξ̇ (2)

where J(q)� is a weighted pseudoinverse of J(q) [27].
Weighted pseudo-inverse of J (q) are written:

J(q)� = W−1J (q)T
[
J (q) W−1J (q)T

]−1

where W is a symmetric and positive matrix of dimension n. This particular set
of solutions to (1) minimises the Euclidean W-weighted norm

√
q̇T W q̇ of the

solution. In the case where W = In, this solution is called the Moore-Penrose or
pseudoinverse of the Jacobian matrix and is noted J+.

The general form of the solution can be written as:

q̇ = J(q)�ξ̇ +
(
In − J (q)�

J (q)
)

q̇0, (3)
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where
(
In − J (q)�

J (q)
)

is a projector onto the nullspace of J (q) (i.e. the
space of internal mobility with respect to the main task) and q̇0 any vector of
dimension n. The second term of the right-hand term of equation (3) gives access
to the redundancy of the system in a hierarchical manner: any secondary task
or constraint projected onto the nullspace of the Jacobian matrix is given less
priority than the main task. It is achieved as long as it does not disturb this
main task.

2.2 Operational Space Control

OSC consists in reaching a target ξref from an initial position. This control
method uses the inverse velocity kinematics model described by equation (2) as
well as a proportional controller to compute the desired operational velocity:

ξ̇des = KP (ξdes − ξ) , (4)

where Kp is a positive definite matrix used as a proportional gain. This method
is called resolved rate motion control.

Using the inverse velocity kinematics model described by equation (2), we
have:

q̇des = J(q)�ξ̇des. (5)

Thus, given a desired task velocity ξref and knowing J(q)�, one can derive
the desired joints velocities ξ̇des. If one wishes to specify the desired joints ac-
celerations, one may use a progressive differentiation:

q̈des =
q̇des − q̇

Δt
(6)

Independently of the formalism used (Lagrange or Newton-Euler), the equa-
tions of motion of a fully-actuated, holonomic system in the contact-free case
can be written:

Γ = M(q)q̈ + b(q, q̇) + g(q) (7)

where M is the symmetric positive definite inertia matrix of the system, b is
the vector of nonlinear effects modelling centrifugal and Coriolis forces, g is the
gravity vector and Γ represents the torques applied to the system. This inverse
dynamics model is used to compute, for a given state, the torque that must be
applied to the system to get the desired joint accelerations:

Γ = M(q)q̈des + b(q, q̇) + g(q) (8)

where q̈des is computed from ξ̇des using equations (4), (5) and (6).
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2.3 Linearisation of the Dynamics Model

It is possible to linearise the dynamics model around a state o:

F1o q̈ + F2o q̇ + F3oq = Γ ,

We can reformulate this as:[
q̇
q̈

]
=
[

0 Id
−F−1

1o
F3o −F−1

1o
F2o

] [
q
q̇

]
+
[

0
F−1

1o

]
Γ .

This formula is called state representation and can be rewritten ẋ = Ax+Bu.
The state and action matrices A and B generally depend on the state. This

will not be the case in the study hereafter, the dynamics model being linearised.
In its discrete form, this equation is written:

xk+1 = A′xk + B′uk (9)

where xk =
[
qk

q̇k

]
and uk = Γ k.

xk+1 is the future state whereas xk and uk are the current state and control
input. A′ and B′ are the current state and action matrices.

In this study, we learn a model of the dynamics using the state space form of
equation (9).

2.4 Optimal Control

Optimal control is a family of control methods that optimize a cost function over
the achievement of a task. In the Linear Quadratic Regulator (LQR) framework
in discrete time, the cost function (or optimality criterion) is written:

J =
∞∑

k=0

(xk
T Qxk + uk

T Ruk),

where Q and R are semi-definite positive and definite positive matrices associated
to the cost on the state error and on the control input respectively.

The minimization of the cost function is obtained by solving the Riccati equa-
tion whose unknown is P :

A′T PA′ − (A′T PB
) (

R + B′T PB′)−1 (
B′T PA′)+ Q = P,

where A′ and B′ are the state representation matrices defined above.
Solving this equation provides L =

(
R + B′T PB′)−1

B′T PA′, a constant state
feedback matrix used to generate the following feedback controller:

u = L (xdes − x) ,
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where x =
[
q
q̇

]
and where xdes =

[
qdes

q̇des

]
. q̇des is computed using the inverse

velocity kinematics model described by equation (2) whereas qdes is extrapolated
from the current configuration:

qdes = q + q̇desΔt.

A schematic view of LQR in shown in Fig. 2.

Fig. 2. LQR Feedback control: The feedback matrix L is computed from A’ and B’
using a discrete time Riccati equation

2.5 Model Learning

We want to learn models of our system incrementally and from experience. The
nonlinear function we want to approximate can be written y = f(x). We use
two techniques, one for obtaining a unique linear model β with y ≈ βx and the
second for obtaining a nonlinear one f̂ with y ≈ f̂(x) where f̂ is a combination
of linear models.

Least squares and recursive least squares. In the linear case, given some
input-output data Xk = [x1 x2 ... xk] and Yk = [y1 y2 ... yk] organised into
a matrix, one can obtain the β matrix using the Least Squares approach: By
multiplying Yk = βkXk by XT

k (XkXT
k )−1 on both sides, one gets YkX+

k = βk

where X+
k = XT

k (XkXT
k )−1 and βk represents the average for each term over

β1 ... βk in the least squares sense.
This algorithm can be made incremental through a recursive formulation:

βk = βk−1 + (yk − βk−1xk)λ

Thus, from this so-called Recursive Least Squares (rls) method, we can get
βk for any k given the previous matrix and a forgetting factor λ that must be
tuned.
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LWPR. For most systems, linear models will not be accurate enough and must
be replaced by nonlinear or piecewise-linear approximators such as neural net-
works, decision trees [28] or radial basis function networks [29].

The lwpr algorithm [30] is an incremental radial basis function approximator
which provides accurate approximation in very large spaces in a O(k) complexity,
where k is the number of sample data. We use it here to learn the FKM of our
robot. The algorithm uses a combination of linear models, which are valid on an
elliptic zone of the input spaces and whose relative strengths are weighted by a
gaussian. This space may evolve during training to match the training data. The
domain of validity of each model is called a Receptive Field (RF). The prediction
of an entire lwpr model on an input vector is the weighed sum of the results of
all the active surrounding RFs. The RFs of a model are created when new input
data are not part of any existing RF. Conversely, when a field overlaps another,
some criterion can be used to delete it.

Fig. 3. Example of lwpr learning on a sample function

Each RF first projects the input vector on the most relevant dimensions for
estimating the output vector by using Partial Least Squares [31]. During each
update, the projector is updated and the algorithm checks whether increasing
the complexity by adding another dimension to the input projection significantly
reduces the estimation error. If it is so, it modifies the projector accordingly. The
projected vector is then used in the n dimension linear model (n being the output
dimension) to give the output of the RF.

During prediction with an input vector, the distance between the vector and
the RF area is tested for activation and only the significant RFs are activated
(see Fig. 3 for an example of RF repartition for function approximation).

The latest version of the algorithm also computes the first and second differ-
ential of the learned function with respect to each input dimension (Jacobian
and Hessian matrices) when learning the model. lwpr can estimate them for
any input value. This calculation is made easier by the fact that the model is a
simple sum of multiple linear functions which are easily differentiated. We use
this method to extract the Jacobian matrix from the learned model.
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3 Our Motor Learning Model

Our global control scheme, illustrated in Fig. 4, consists of:

– a definition of the task in the operational space, resulting on the easy defi-
nition of tasks;

– learning the inverse velocity kinematics model with lwpr and a high level
control law based on a proportional controller given by equation (4);

– learning the dynamics model with rls and a low level optimal control law
optimising a quadratic cost.

Our presentation below distinguishes three layers: high level control, low level
control and the coupling between the two.

Fig. 4. Global control scheme

3.1 High Level Control

The operational space control part of our controller consists in the proportional
controller given by equation (4) based on the difference between ξdes and ξ̂. ξ̂ is
the output of the FKM learned with lwpr, taking the joints positions as input
and the operational space position as output.

After equation (4), we apply equation (5) to transform the error in the op-
erational space into a desired velocity in the joints space. The inverse velocity
kinematics model is learned with lwpr taking ξ̇ as input and q̇ as output, as
shown in Fig. 5. This approach is similar to the one used in the work of D’Souza
et al. in [32] who also choose to directly learn a specific inverse of the Jacobian
matrix using the lwpr algorithm. Given the fact that there is an an infinity of
inverses for the Jacobian matrix, the choice of a specific inverse leads to a loss of
information regarding the redundant nature of the system. However, the learned
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Fig. 5. Learning a generalised inverse with lwpr

inverse which we can expect to be a weighted pseudoinverse J (q)�, i.e. to have
minimum norm properties, is the one that best fits the trajectories generated
so far.

3.2 Low Level Control

At the low level, we use an LQR controller to track the desired joints veloc-
ities q̇ computed by the high level control. In the linearised dynamics model
xk+1 = Axk + Buk, the state xk is [q q̇]T , the action uk corresponds to the
vector of joints torques, and the matrices A and B are learned incrementally
with the rls algorithm as shown in Fig. 6, taking (xk,uk) as input and xk+1
as output. Note that, in order to bootstrap the learning process of rls, rather
than initialising A and B randomly, we rather store samples (xk,uk,xk+1) and
apply a standard LS method until A and B are full rank.

Fig. 6. Learning the dynamics model with rls
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3.3 Coupling Both Levels with Anticipation

If we take the current q̇ and q coming from the high level controller as reference,
the tracking delay combined with the estimation errors results in an oscillatory
behaviour. Thus, we couple the high level and low level control loops by antici-
pating the values of q̇ and q after some horizon H in the future and using these
vectors in the low level control objective function to track them.

Algorithm 1. Anticipatory coupling algorithm.
ξ0 = ξ ;1

for i = 0 to H do2

ξ̇i+1 = Kp (ξdes − ξi) ;3

q̇i+1 = J�ξ̇i+1 ;4

qi+1 = qi + q̇i+1Δt ;5

ξi+1 = FKM
(
qi+1

)
;6

u0H = LQR
(
A, B, [qH q̇H ]T

)
;7

To perform such an anticipation, taking the current operational point ξ as
initial value ξ0, we perform a loop on ξi. First, we infer its derivative ξ̇i with a
proportional controller (Algol. 1, line 3). This operational velocity can be trans-
lated into joints velocities through the weighted pseudoinverse of the Jacobian
matrix (line 4). From these joints velocities, we estimate the next configuration
(line 5) which, from the FKM, can be translated into an estimation ξi+1 of the
next operational position (line 6). We iterate this anticipation H times and this
results in values for q̇ and q after H time steps. Finally, u0H is the control input
applied at moment 0 with horizon H .

Note that the way we estimate the next configuration does not take dynamics
effects into account. We assume that our controller will reach the desired state
at each step, which may not be true in practice if dynamics effects are not fully
balanced by the low level controller.

By using the state representation xi =
[
qi

q̇i

]
, one can improve the estimation

by using the xi+1 = A′xi + B′ui into the anticipation loop, but preliminary
experiments have shown that this does not result in a significant difference in
our context.

4 Empirical Study

4.1 A Simplified Virtual Humanoid System

To evaluate our control architecture, we work with a simplified 3 degrees of
freedom (DOFs) mannequin model whose feet are fixed to the ground so as to
alleviate the need to care about equilibrium. Thechoice of this simple model is
intented to facilitate the presentation of our approach which we expect to be
easily scalable to much higher dimension systems. The mannequin is simulated
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Fig. 7. Our 3 DOFs mannequin in its initial and final configurations

with Arboris [25], a Matlab simulator dedicated to the study of the dynamics
of poly-articulated tree-like systems. Its parameters of our simplified mannequin
model are extracted from anthropometric tables [33]. It is 1.74 meters tall and
weighs 73 kg.

4.2 Task and Parameters

The task consists in making the mannequin stand up from a crouching posture, so
that the vertex (upper extremity of the head) reaches 1.70 meters and stabilises
over 1.65 meters, as shown in Fig. 7. Thus our operational task consists in
reaching ξdes =

[
ξx ξy

]T =
[
1.70 0.05

]T .
As for parameters, in (4), after testing diverse values, we take KP = 10.

Furthermore, a preliminary study of the low level control loop resulted in tuning
the Q and R matrices of the LQR controller as follows:

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
0.4 0 0 0 0 0
0 0.6 0 0 0 0
0 0 0.3 0 0 0
0 0 0 0.05 0 0
0 0 0 0 0.2 0
0 0 0 0 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎦R = 10−4

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

4.3 Empirical Results

Fig.8 shows that, for a controller without an anticipation loop, the system is able
to stand-up, but a vertical oscillation may be observed. With a short anticipation
(h = 2 to 6), the system still reaches the operational target but is able to stay
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Fig. 8. Trajectory as a function of the anticipation horizon H

(a) (b)

Fig. 9. Learning the weighted pseudoinverse Jacobian matrix of the vertex of the man-
nequin. (a) Inputs are operational velocities ; (b) Output are joints velocities.

there for a longer time period and without oscillation. For a larger anticipation,
the system is not able to maintain the desired position any more. Fig.9 shows
an example of the input/output data used by lwpr to learn. After building the
corresponding model, lwpr can predict the output ˆ̇q from the input ξ̇.

Fig.10 shows that, if we perform only one learning epoch along the trajectory,
the predicted output cannot be used. We must perform 20 learning epochs where
each set of input/output data is presented ten times so as to get a satisfactory
model of the weighted pseudoinverse of the Jacobian matrix.
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(a) (b)

Fig. 10. Error in prediction of joints velocities after one (a) and twenty (b) learning
epochs where each input/output data was presented ten times

Note that, once the system is stabilised, we must stop learning with lwpr.
Indeed, if the system is stable, its output is constant and the learned models
degenerate. The persistent activation principle used in adaptive control [34] can
be used here to stop the learning process.

5 Discussion and Perspectives

5.1 Learning the Dynamics Model

Learning a linear model of the dynamics with rls is a limited approach that
can tackle easy problems such as the control of our 3 DOFs system, but as soon
as the dynamics gets more complicated, the approximation error will get too
large. Our most immediate future work will consist in using lwpr to learn a
piecewise linear model of the dynamics. As explained in section 2.5, one can
learn a nonlinear evolution of the A and B matrices with the state [qk q̇k]T and
the control input [uk] as input at any instant and the next state

[
qk+1, q̇k+1

]T
as output.

However, it is not trivial to exploit the explicit dynamics model learned by
lwpr under the form of matrices as it was done with rls. The output given
by lwpr is a weighted sum of the outputs of linear models multiplied by a
gaussian. The global dynamics model matrices cannot be reconstructed eas-
ily from this collection of linear models. Nevertheless, we are working on di-
rectly learning an inverse dynamics model in order to control our system with
a computed torque [35] approach. Furthermore, we need to control the inter-
nal mobility (see equation 3) of the system when it is redundant, which boils
down to learning a specific weighted pseudoinverse. This is a matter for future
work.



A Two-Level Model of Anticipation-Based Motor Learning 243

5.2 Related Models

An important related model is the work of Mitrovic [36], who combines learning
a dynamics model of a 6 DOFs arm with lwpr and performing Iterative Linear
Quadratic Gaussian (iLQG) optimal control [37] based on that learned model.
To our knowledge, Mitrovic et al. are the only authors who succeeded in using
a dynamics model learned with lwpr so far. By contrast, N’Guyen-Tuong [38]
performed such a learning process on more general systems in the context of
a comparison with other learning approaches, but without using the model to
control a system. Note that iLQG does not use the operational versus joints
space distinction, thus it does not benefit from the dimensionality reduction
properties of OSC and is limited to addressing systems with no more than 10
DOFs.

Another important related model is MMRL. As in MMRL, the low level con-
troller of our model is based on LQR. So far, our model does not benefit from the
modular specialisation mechanism that MMRL shares with MOSAIC. However,
such a modularity property will come into play as soon as we will use lwpr at
the dynamics level, since lwpr calls upon a collection of local linear models.
But here again, the main originality of our approach results from the way we use
OSC to specify the task in the operational space. To our knowledge, the only
other model that is endowed with the same property is presented in [39] and is
based on neural networks.

5.3 State Estimation

In our model, we considered the state of the system exactly known at any mo-
ment. In robots, if the FKM of the system is known and if fast enough sensors
in servo-motors can give an accurate estimation of the configuration, one can
get a good estimation of the current operational state of the system. But when
the FKM is learned and inaccurate, state estimation must be used. To per-
form such an estimation, one must combine informations coming from several
exteroceptive and proprioceptive sensors whose accuracy is varying under the
environmental conditions and whose delay is generally not compatible with the
constraints of feedback control-based motion. Even motor control itself is noisy,
as we highlighted in the introduction. Thus maintaining an accurate estimation
of the joints state of the musculoskeletal system is a central issue that we must
address in the future.

6 Conclusion

We have presented a model of human motor learning that combines two levels.
At the higher level, we specify a task in the operational space and use the OSC
approach to derive a target trajectory that will be tracked in the joints space
by the lower level. The transformation from the operational space to the joints
space is performed with an inverse Jacobian matrix that learned with the lwpr
algorithm. At the lower level, we use LQR control to compute the optimal joints
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torques that realizes the trajectory specified in the operational space, based on a
simple dynamics model learned with rls. In our approach, optimal control does
not lead to a globally optimal motion but rather to a piecewise optimal solution
with respect to the learned system dynamics. In that respect, we can expect our
method to be more easily scalable to large dimension systems and it would be
of interest to study the best compromise between the computational complexity
and the chosen optimal control horizon.

We illustrated this model on a stand-up task. One advantage of the combina-
tion of OSC with learning is its flexibility in the definition of the task. Indeed,
if we change the end-point effector with respect to which the goal is expressed,
or if we change the actuators with which the low-level control is performed, we
should just need to learn again the corresponding dynamics to obtain a different
controller. Validating this property is in our future work agenda.

Furthermore, we have shown that, due to the approximation error of the linear
model learned with rls, we need to stabilise the control architecture by tuning
the anticipation horizon of the low level control loop with respect to the high
level one. Thus anticipation appears in our control architecture both in model
learning processes and in the coupling between the high and the low level control
loops.
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Abstract. A model of visual space perception within the framework
of the “perception through anticipation” approach is proposed. In this
model, objects are localized by generating a simulated sequence of mo-
tor commands which would move the end effector of the agent from its
current location to a location where it touches the object. Space percep-
tion arises whenever the agent knows how to move to the object. The
main components of the model are a visuokinesthetic forward model for
sensory prediction and a visual memory for novelty detection. Movement
sequences are generated by the optimization method “differential evolu-
tion”. The approach was implemented and successfully tested on a robot
arm setup in the domain of block pushing on a table surface. The results
indicate that visuokinesthetic prediction is superior to purely visual pre-
diction for an iterative internal simulation of future sensory states. Fur-
thermore, it is demonstrated that the generated movement sequences
encode the location of the target object in a straightforward way.

1 Introduction

In psychology, the two main theoretical approaches to visual perception are
the constructivist and the ecological one [19]. In the constructivist approach,
perception is viewed as an inferential process. The sensory signals are regarded
as inherently insufficient for unequivocal perception. Instead, it is assumed that
the sensory information has to be processed on the basis of stored schemata and
unconscious thought-like processes before perception can arise. On the contrary,
the ecological approach is build around the conception of the so-called “direct
information pickup” [3]. In this view, perception is an active process in which
an active observer explores his environment by deliberately moving his eyes, his
head, and his whole body. Perception extends over space and time, and objects
are not perceived by the knowledge-driven interpretation of cues found in a single
retinal image, but instead by directly detecting the affordances the objects offer
to the observer. For example, surfaces can be “stand-on-able”, “climb-on-able”,
or “sit-on-able”. These affordances are closely related to the shape of the body
of the observer and to his repertoire of motor actions. Basically, perception in
the ecological approach is the direct perception of the behavioral meaning of the
objects in the environment.

G. Pezzulo et al. (Eds.): ABiALS 2008, LNAI 5499, pp. 247–266, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Left: Inverse model (IM). It generates a motor command mt to minimize the
difference between the current sensory state st and the desired sensory state s∗. Right:
Forward model (FM). It predicts the future sensory state ŝ(t+1) as consequence of the
current sensory state st and the motor command mt.

The general idea that perception is closely related to action has a long tradi-
tion in psychology and neurophysiology [2,6]. It is supported by a large body of
experimental evidence showing that the brain integrates sensory and motor in-
formation at various processing levels (e.g. [21]). So-called internal models are
widely used to describe these sensorimotor representations [24]. The most impor-
tant classes of internal models are “inverse models” (IM) which act like motor
controllers (see Fig. 1, left) and “forward models” (FM) which predict the sensory
consequences of motor commands (see Fig. 1, right). Both aspects, the generation
of motor commands and the prediction of their sensory consequences, are the ba-
sis for simulation theories of perception (e.g. [4]) and cognition (e.g. [6]). Their
core assumption is that the brain uses inverse and forward models to iteratively
predict into the future, in this way enabling perception and cognition.

Möller [15,16] suggested the “perception through anticipation” approach
(PtA), which is related to the ecological view, but replaces the direct percep-
tion of affordances by a mental simulation process based on internal models.
The main thesis of this approach is: “Perception of space and shape is based on
the anticipation of the sensory consequences of actions that could be performed
by the agent, starting from the current sensory situation. Perception and the
generation of behavior are two aspects of one and the same (neural) process”
([16], p. 186). Starting from the current sensory situation, several motor actions
are suggested (e.g., by random variation of the output of an IM). A correspond-
ing FM predicts the sensory consequences of all suggested actions. On the basis
of the predicted sensory situations, further motor actions are suggested, after-
wards their consequences are predicted as well, and so on, until a maximum step
size is reached or at least some simulated action sequences have led to sensory
results with a clear positive or negative meaning to the agent (Fig. 2 illustrates
the internal simulation process, omitting the IM and FM for clarity). In this way,
a human agent can for example detect if an object is “sit-on-able”, because at
least one of the simulated movement sequences would result in a typical sitting
posture with support for the body by the top surface of the object. Together
with the affordances which have emerged from the other movement sequences
simulated in parallel, this may result finally in the perception of a chair. Thus,
in this approach, perception is an integrated sensorimotor process which relies
on IMs, FMs, and the evaluation of sensory states.
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Fig. 2. Sketch of the internal simulation process in the “perception through anticipa-
tion” approach [16]. Starting from the current sensory state s0, different movement
sequences with motor commands mij are simulated by internal prediction (the pre-
dicted sensory states are depicted in dashed ellipoids). The predicted sensory state s24

is evaluated as a negative outcome, thus it is not used for further simulation. When the
simulation process encounters the predicted sensory state s33 with a positive rating,
the simulation is halted (at a simulation depth of three steps) (adapted from [25]).

The behavior-based approach to perception is contradictory to classical arti-
ficial intelligence (AI). Classical AI assumes that visual perception relies on the
construction of an explicit representation of the outer world [14]. This represen-
tation is created purely on the basis of sensory data and conceptual knowledge.
In computer vision research, this approach is successful in well-controlled task
domains with a restricted or well-known set of objects, but lacks the flexibility
and adaptivity of human vision. Thus, it is highly questionable if classical infor-
mation processing is a good starting point to model real perception. This view
is meanwhile widely acknowledged [20].

Previous robot and simulation studies in the framework of the PtA approach
aimed mainly on visual shape perception [9,7,18]. In the present study, a robot
model of space perception in a restricted domain is proposed in which a robot arm
pushes a small block on a table surface (see Fig. 4, left). The model has two main
components: first, a visuokinesthetic FM which predicts the visual image of the
gripper tool and the kinesthetic state of the robot arm after a small movement
step, and second an abstract recurrent network which associates the visual image
of the gripper tool and the visual image of the block during pushing while they
touch each other. The ability to push the block around in small movement steps
is the underlying motor capability of the agent which is not learned but prewired.

In the proposed model, space perception means to perceive the location of
the block on the table surface by generating a movement sequence which would
move the gripper of the robot arm from its current location to a location where
it would touch the block (as during pushing). This movement sequence is not
executed, but just internally simulated. Thus, space perception is not linked to
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Initial situation:

Successfully
simulated movement

sequence:

Fig. 3. The image in the first row shows the initial situation; the gripper tool (depicted
in gray) and the block (depicted in black) are at different locations in the workspace.
To perceive the location of the block, the agent internally simulates a multitude of
movement sequences, resulting in various virtual gripper trajectories in the workspace
(second row; the imagined final visual image of the gripper tool is shown as gray
outline). Whenever the combination of the imagined gripper tool image and the real
image of the block create a visual impression in which the gripper tool and the block
are as close to each other as during pushing movements (third row), successful space
perception arises.

a metric coordinate system, but arises whenever the system knows how to move
to the goal object (here: the block).

The correct movement sequence is generated by an optimization process in
which many sequences are tested in parallel. Each sequence has a final visual
outcome (the visual image of the gripper tool after the last movement step as
predicted by the FM). This outcome is overlayed with the current real image of
the block, creating a composed visual state. Most of these states will show the
gripper tool and the block at very different locations on the table surface; these
visual states are irrelevant for space perception. Only if the (imagined) gripper
tool and the block are as close to each other as during pushing, the corresponding
movement sequence indicates the location of the block (for an illustration of this
process, see Fig. 3). To distinguish between irrelevant and relevant movement
sequences, the abstract recurrent network (the visual memory) is used as novelty
detector (novel overlayed visual state never encountered during pushing → irrel-
evant, non-novel → relevant). As optimization method, “differential evolution”
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Fig. 4. Left: The robot arm in a pushing posture with the block in front of the gripper.
Upper right: Base coordinate system on the table surface (see also left picture). The
working area for pushing movements is shown in gray color. The kinesthetic state sKIN

is defined by the gripper position (x, z) and the pushing orientation α. Lower right:
Tool held by the gripper during pushing (adapted from [26]).

(DE) [28] is applied. The optimization criterion enforces the minimization of the
novelty of the overlayed visual states.

2 Setup and Method

The used robot arm setup is shown in Fig. 4 (left). The robot arm has six
rotatory degrees of freedom and a gripper; it is built from PowerCube modules
by Schunk. With the help of a special gripper tool (Fig. 4, lower right), the
robot arm pushes a small block made of foam on the table surface. For this task,
movements of the arm are restricted to a 2D plane at the white table surface.
The posture of the robot arm is defined by the workspace coordinates x and
z of the gripper tip and by an angle α indicating the pushing orientation. The
remaining degrees of freedom are fixed, resulting in robot arm postures as shown
in Fig. 4 (left). Collision-free operation is only possible for a restricted area of the
table surface defined by x ∈ [330 mm; 730 mm] and z ∈ [−69.5 mm; 250.5 mm]
(α ∈ [−40◦; +40◦]) (Fig. 4, upper right). Visual data is collected with a camera
that records the entire white table surface from above.

2.1 Sensory Processing

Three different sensory states are relevant for the overall model: the kinesthetic
state of the robot arm (sKIN), the visual state related to the gripper tool (sVG),
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Fig. 5. Basic image processing steps, illustrated for the red block (for details see text)

and the visual state related to the block (sVB). The kinesthetic state is just
defined by sKIN = (x, z, α). The visual states are based on the camera image; to
facilitate image processing, the block and the gripper tool have opposite colors
(red and green). To compute the visual block state sVB, the camera image is first
converted into a monochrome image in which all pixels of the block get maximum
intensity and all other pixels zero intensity. From this image, a lowpass-filtered
and subsampled version with only 3 × 3 pixels is created. The resulting 9 pixel
intensity values encode the position of the block. The orientation of the block is
encoded by the four values of a compass filter histogram. Four compass filters
enhance the edges of the block segment in the full-size monochrome image in four
different directions (0◦, 45◦, 90◦, and 135◦). After thresholding, the remaining
pixels in each image are counted to give a value for the distribution of edges in
a given direction [10] (see Fig. 5). Image processing for the visual gripper tool
state sVG is carried out in an analogous way.

2.2 Visuokinesthetic FM

The visuokinesthetic FM receives the current kinesthetic state of the robot arm
s(t)
KIN, the current visual state related to the gripper tool s(t)

VG, and a motor com-
mand mt = (Δxt, Δzt, Δαt) for a small translational or rotational gripper move-
ment as inputs. Although the motor command mt and the kinesthetic state s(t)

KIN

share the same coordinate system, and the computation of s(t+1)
KIN is straightfor-

ward with s(t+1)
KIN = s(t)

KIN + mt, it is important to note that this addition is never
carried out in the model, in which the motor space and the kinesthetic space
are conceptually different entities. The compatibility between mt and s(t)

KIN was
only exploited at the level of software implementation for the functions which
evaluate learning success and which move the robot arm.

As output, the FM produces ŝ(t+1)
KIN and ŝ(t+1)

VG of the next time step (see Fig. 6,
left). Learning this relationship is a function-approximation task; for this reason,
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Fig. 6. Left: Visuokinesthetic FM. Right: Purely visual FM (for details see text).

the FM was implemented by a set of multi-layer perceptrons (MLP; [23]).1 37500
learning examples for the MLPs were generated by systematically moving the
gripper of the robot arm along different trajectories through the working area,
while it was pushing the red block. The movements were either translations in the
current gripper direction α of a size of 10, 20, or 30 mm or rotations by a small
angle Δα of 5 or 10 degrees. At the beginning and the end of each movement
step, a camera image was recorded, so that a full learning example consisting of
kinesthetic and visual data could be constructed. The systematic approach and
the large number of learning examples ensured a uniform distribution of learning
examples in the whole working area (including the gripper orientation α).2 This
process can be interpreted as a “motor babbling” stage in which the system
learned the relevant sensorimotor relationships through its own experience.

The visual output ŝ(t+1)
VG is divided into two parts: ŝ(t+1)

VG/OR comprises the four
compass filter values, and ŝ(t+1)

VG/POS comprises the 9 pixel intensity values encoding
the position of the gripper tool. For each of the outputs ŝ(t+1)

KIN , ŝ(t+1)
VG/OR, and

ŝ(t+1)
VG/POS, a single MLP was trained. The first had no hidden layer, the latter two

had 25 units in their hidden layers. Plain online gradient descent was used as
learning algorithm (for 1000 complete iterations through the training set with
exponentially decreasing learning rate from 0.004 to 0.0008). After training, the
mean squared error (MSE) per pattern per output unit amounted to 0.068 for
the ŝ(t+1)

VG/OR network, to 0.027 for the ŝ(t+1)
VG/POS network, and to 0.0 for the ŝ(t+1)

KIN

network (on normalized data).
Furthermore, a purely visual FM was trained to find out if the kinesthetic

input is necessary for precise prediction. The structure of this FM is shown in
Fig. 6 (right); it consisted only of two MLPs for the outputs ŝ(t+1)

VG/OR and ŝ(t+1)
VG/POS

(otherwise, the specifications and the training were equal to the visuokinesthetic
FM). As result, the MSE values amounted to 0.078 for the ŝ(t+1)

VG/OR network and
to 0.028 for the ŝ(t+1)

VG/POS network. Thus, the performance of the visual FM seems
to be only marginally worse than that of the visuokinesthetic FM.

1 In a preceding study, this architecture proved to result in the most precise prediction
performance [27].

2 Since the data range in the different input and output dimensions varied considerably,
all dimensions were normalized to a mean value of 0.0 and a variance of 1.0 before
MLP training.
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A B

C D

Fig. 7. A: Visual memory for novelty detection. B: NGPCA network composed from
local PCA units (ellipsoids) which approximate a data manifold (gray dots). C: A new
data point in close vicinity to the local PCA units is classified as familiar. D: A new
data point far away from the local PCA units is classified as novel.

2.3 Visual Memory

The visual memory for novelty detection was implemented through an abstract
recurrent network. These networks can be used for pattern association like dy-
namic recurrent networks, but they do not need to settle down to an attractor
state first. In this study, a network architecture called NGPCA (“neural gas
principal component analysis”) was applied which is based on vector quanti-
zation and employs local PCA (principal component analysis) units instead of
codebook vectors to represent data manifolds [17] (in Fig. 7b, a two-dimensional
example is illustrated). We chose NGPCA because the resulting networks can
easily be used for novelty detection after training (see below).

The NGPCA network for the visual memory consisted of 30 PCA units with
7 principal components each. It was adapted to 30000 training patterns which
contained the vectors s(t)

VG (visual state related to the gripper tool) and s(t)
VB

(visual state related to the block). This training data was also acquired during
the abovementioned systematic pushing movements of the robot arm, thus the
combined visual state s(t)

VIS =
(
s(t)
VG, s(t)

VB

)
represents scenes in which the gripper

tool always touches the block. Since the sVIS space has overall 26 dimensions, a
local dimensionality reduction was performed by using PCA units with only 7
principal components.
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A

B

Fig. 8. Top: The iterative application of the visuokinesthetic FM, depicted exemplary
as chain of two FMs (N = 2). The initial sensory state is used as input to the chain, the
final output ŝ

(3)
VG is combined with s

(1)
VB as input for the visual memory. The estimated

novelty indicates how strongly
(
ŝ
(3)
VG, s

(1)
VB

)
differs from visual states showing the gripper

tool as it touches the block. Bottom: Variation with a purely visual FM.

After the training of an NGPCA network, it can be used for novelty detection
by computing the minimum of the distances3 between a newly presented data
point and all of the PCA units (which are interpreted as elliptical potential
fields). Data points from the region(s) covered by the training set get a small
minimum distance, data points outside this area get a large minimum distance
(see Fig. 7c-d). In this way, novel data points can be distinguished from familiar
data points. This mechanism was used for the visual memory to separate visual
states sVIS which show the red block close to the green gripper tool as during
pushing (familiar data points) from visual states sVIS which show the red block
far away from the green gripper tool in the workspace (novel data points).

2.4 Iterative Prediction

The internal simulation process for motor planning and perception requires an
iterative application of the visuokinesthetic FM. For t = 1 with known sensory
input, an adequate motor command m1 has to be generated (without execut-
ing it). The FM predicts the sensory state ŝ2 = (ŝ(2)

KIN, ŝ(2)
VG) of the next time

step t = 2, a second motor command m2 is generated (without execution), the
FM predicts the sensory state for t = 3 on the basis of the input (ŝ2,m2), and
repeatedly so, until the number of prediction steps is equal to a predefined max-
imum N . Such an iterative application of an FM is illustrated in Fig. 8 for two
prediction steps.
3 As distance measure, the normalized Mahalanobis distance plus reconstruction error

was computed [8].
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After the last iteration, the final predicted visual state ŝ(N+1)
VG (related to the

gripper tool) is combined with the real visual block state s(1)
VB as input for the

visual memory. This combination is interpreted here as an overlay of an imag-
ined and an actually sensed visual impression, and the visual memory is used to
determine if the agent has encountered this combined impression before. Tech-
nically, this was achieved by computing the minimum unit distance as novelty
estimate as explained in the previous section (see also Fig. 8).

The PtA approach to visual perception hypothesizes that many movement
sequences {mt} are simulated in parallel. In previous studies, the motor com-
mands were either generated by an IM with additional random variation of its
motor output [18], they were determined on the basis of a movement heuristic
or by recursive search [7], or they were computed by an optimization process [9].
The present study relies on the latter method because this leaves the generation
of motor commands in a kind of “black box”. One may even argue that the op-
timization process acts like an IM which produces an entire movement sequence
from a given initial sensory state and a given sensory goal state.

The optimization problem is stated as follows. The initial sensory state is
given by s1 = (s(1)

KIN, s(1)
VG), the number of iteration steps is set to a fixed number

N . The free parameters in the optimization process are the motor parameters
in the sequence {mt} (t = 1..N). The main optimization criterion is the mini-
mization of the novelty estimate of the visual memory (thus, the minimization
of the minimum unit distance). In each internal simulation step, the visuokines-
thetic FM predicted first a translational movement in direction of the current
estimated gripper orientation with length rt, afterwards it predicted on the ba-
sis of the new estimated sensory state the rotation by an angle Δαt. Thus, in
each iteration step t a double prediction was carried out to prevent the MLPs
from operating in an untrained part of the input data space, since they were only
trained with purely translational and purely rotational movements. For the same
reason, Δxt and Δzt were not allowed to vary freely, but were instead computed
as Δxt = rt cos(α̂t) and Δzt = −rt sin(α̂t) since the training data only contained
purely translational movements in direction of the current gripper orientation.
In summary, the free motor parameters were (rt, Δαt) for each movement step.
Overall, this defined an optimization problem with 2N free parameters.

Differential evolution (DE) [28], an evolutionary optimization algorithm, was
used as optimization method with a population size of NDE = 30 and a maximum
number of Gmax = 15 generations.4 Since the distance between the gripper
and the block was not known beforehand, the optimization process had to be
carried out with different numbers of iteration steps N . N was varied between 7
and 15. Thus, overall 4050 movement trajectories were internally simulated and
evaluated for a single perception task. The movement sequence which resulted
from the optimization trial with the smallest novelty estimate was picked as
solution of the perceptual task.

4 Further parameter settings according to the specification of DE in [25]: λ = 0.7,
γ = 0.7, pCR = 0.95; these parameter values were carefully chosen to ensure optimum
performance.
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Table 1. Performance results of the different task conditions

Type of forward model (FM)
visuokinesthetic visual

Motor suppression Motor suppression
strong weak strong weak

epos [mm] 14.3 (10.2) 13.1 (10.0) 33.5 (20.4) 26.5 (16.6)

eα [deg] 3.6 (4.0) 2.5 (2.2) 6.7 (5.1) 6.0 (4.8)

Steps 10.5 (2.7) 10.5 (2.6) 9.5 (2.5) 9.5 (2.4)

In the following experiments, two different factors were varied. The first fac-
tor determined the applied FM: visuokinesthetic vs. purely visual (see Fig. 8,
top vs. bottom). The second factor affected the optimization criterion and was
mainly introduced to explore the properties of the overall model at the technical
level. In the task conditions with strong motor suppression, movement trajecto-
ries with movement parameters (rt, Δαt) outside the training range of the FMs
were heavily punished during the optimization process. In contrast, in the task
conditions with weak motor suppression, there was only a slight punishment.
Overall, the two factors yielded four different task conditions (2 × 2).

3 Results

3.1 Performance

To test the performance of this computational approach, 100 perceptual tasks
with random positions and orientations of the gripper and of the block were gen-
erated for each of the four task conditions (applying certain constraints to ensure
that the required simulated movement was geometrically possible).5 Each per-
ceptual task was solved by the optimization process, finally yielding a sequence of
motor commands. From this sequence, the (hypothetical) gripper position and
5 The results reported in Sect. 3 were generated in a simulation study based on senso-

rimotor data from the real-world robot setup. For each perceptual task, the sensory
states were retrieved from the pattern sets for the training of the visuokinesthetic
FM and the visual memory. Two learning examples were drawn at random, one
from each set. From the learning example for the FM, s1 = (s(1)

KIN, s
(1)
VG) was ex-

tracted (sensory state before the small pushing movement encoded in the example),
while s

(1)
VB was determined from the learning example for the visual memory (visual

block state). Certain constraints were applied to these randomly generated tasks to
ensure that the required movement sequences were geometrically possible (e.g., the
gripper position had to be closer to the base joint of the robot arm than the block
position), that the overall orientation difference was not too large, and that grip-
per and block were not placed at the very border of the workspace. This procedure
is largely equivalent to directly using the real-world setup for the creation of the
perceptual tasks but saves experimental time and effort.
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13/7 22/0 7/2 7/5 7/1

epos [mm] / eα [deg]

Fig. 9. Simulated trajectories for 5 different gripper and block positions/orientations
(for details see text). The figures underneath each trajectory indicate the final position
error (left; in mm) and the final orientation error (right; in degrees).

orientation after the last movement step were computed. Ideally, this should
equal the position and orientation of the gripper after pushing the block to its
actual location.

In Table 1, the results for the four different task conditions are reported. Per-
formance measures are the Euclidean position difference epos between the final
gripper position in the simulation and the ideal gripper position (x∗, z∗) in which
the gripper tool would touch the block like during pushing, and the orientation
difference eα which is defined in an analogous way. Overall, the performance re-
sults are quite good for a workspace size on the table surface of 400 mm×320 mm.
Regarding the difference between the visuokinesthetic and the visual FM, it is
obvious that the former exhibited a better performance. In summary, the final
error values are only half as large for visuokinesthetic prediction compared to
purely visual prediction. Thus, the slightly worse performance of the visual FM
in a single prediction step (see Sect. 2.2) caused a considerable performance drop
as soon as iterative prediction was required. Concerning the second experimental
factor, strong motor suppression had a slightly negative impact. Thus, overall
it seems to be advantageous if the FMs are sometimes allowed to operate in a
region of motor space where they have to extrapolate.

Furthermore, Table 1 states the average number of simulation steps in the
movement sequences. In this regard, visuokinesthetic prediction required more
steps than visual prediction (10.5 vs. 9.5). An explanation might be that the
less precise purely visual prediction yielded better results concerning novelty re-
duction the fewer prediction steps were involved. Based on these results, it was
decided to focus this study on visuokinesthetic prediction and to base further
analysis within this results section on the task condition with the visuokines-
thetic FM and weak motor suppression.

Figure 9 illustrates five perceptual tasks, showing the best simulated trajec-
tory from the location of the gripper to the location of the block. Each panel
depicts the complete working area, the x-axis pointing in the vertical, the z-
axis in the horizontal direction. The ideal final position (x∗, z∗) is indicated by a
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Fig. 10. Descriptors for the spatial location of the block: distance d and direction β.
The gripper orientation is indicated by the dashed line. The relative orientation Δα∗

of the block is not shown.

circle with a diameter of 20 mm in each panel. The longer bar of the cross at the
center of the circle points into the ideal final orientation α∗. Single movement
steps are separated by small ticks.

3.2 Space Perception

So far, it has been shown that the overall model consisting of the visuokinesthetic
FM and the visual memory is capable of generating movement sequences which
would move the gripper to a location where the gripper tool would touch the
block as during pushing. This capability is interpreted as a perceptual one: The
agent perceives the location of the block because he knows how to move to the
block. This knowledge is encoded in a gripper-centric coordinate system because
one and the same movement sequence encodes different locations in space de-
pending on the initial gripper location. To perceive space in a body-centered ref-
erence frame, it would be necessary to consider the kinesthetic gripper state s(1)

KIN

at the beginning of the movement sequence as well. This property of the overall
model is compatible with findings from neurophysiological studies which indicate
that the brain encodes spatial information in different reference frames and com-
putes the transformations between them [1]. In conclusion, body-centered space
perception relies in the present model on both s(1)

KIN and the motor sequence
{mt}, while gripper-centered space perception only requires the latter. In the
following, the ability to switch from gripper-centered space to body-centered
space is taken for granted (actually, in the present model with its rather simple
encoding of the kinesthetic state this transformation is trivial), and the main
focus will be on gripper-centered space perception.

One may ask if it is computationally efficient to represent spatial locations
through movement sequences. Of course, the answer depends heavily on the en-
coding of the motor commands and the motor task per se. Nevertheless, I will
attempt such an analysis here. The goal of this endeavor is not to introduce
a homunculus which “looks” internally at the motor representation and starts
a perceptual process based on this data instead of the sensory data. Instead,
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d / R [mm]

Fig. 11. Systematic tests illustrating the relationship between the distance d and the
movement length R. The figures underneath each trajectory indicate d and R (in mm).

the goal is to demonstrate that information about spatial properties is easily
available from the motor data without complex computations, and thus can be
directly used for subsequent processing.

The following space descriptors define the position and orientation of the
block in a gripper-centric coordinate system (see Fig. 10): the Euclidean distance
d between the gripper position (x(1), z(1)) and the ideal final gripper position
(x∗, z∗), the direction β = tan

(
(z∗ − z(1))/(x∗ − x(1))

)
in which the block is

located relative to the gripper, and the relative orientation of the block Δα∗ =
α∗ − α(1). Thus, it has to be shown that d, β, and Δα∗ can be derived from
the parameters of the movement sequence {mt} in a straightforward way. For
this purpose, three different movement indicators were computed based on {mt}
with mt = (Δxt, Δzt, Δαt):

1. the movement length R =
∑N

t=1

√
(Δxt)2 + (Δzt)2,

2. the movement re-orientation A =
∑N

t=1 Δαt,

3. and the maximum slope of the trajectory Amax =
∑N̂

t=1 Δαt

with N̂ = argmaxN |∑N
t=1 Δαt|.

For d and Δα∗, the relation to the movement indicators is explicit. On a test
set with 100 random perceptual tasks (generated as in Sect. 3.1), the following
correlations were determined: r(d, R) = 0.97, r(Δα∗, A) = 0.99 (see also Fig. 11
for an illustration of the relationship between r and D). Unfortunately, for the
direction β such a simple relation does not exist. Fig. 12 shows that the maximum
slope of the trajectory Amax varies depending on β. However, Amax is also
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42/49 29/29 0/-5 -20/-24 -42/-73

23/36 15/29 0/11 -10/-20 -23/-51

β / Amax [deg]

Fig. 12. Systematic tests illustrating the relationship between the direction β and the
maximum slope Amax. The figures underneath each trajectory indicate β and Amax

(in degrees).

directly related to Δα∗ if β is kept constant as in Fig. 13. Since Δα∗ is predicted
very precisely by A, it is reasonable to assume that A and Amax form together
a reliable set of predictors for β. This assumption was tested on a set of 100
perceptual tasks which were generated in a systematic way such that β and
Δα∗ were completely uncorrelated to avoid statistical artifacts. On this test set,
the multiple correlation between the predictors A and Amax and the criterion
β amounted to 0.73. Thus, a good approximation of β can also be derived from
{mt} by a rather simple computational model.

These results suggest that the encoding of spatial information by movement
sequences is not hampered by a huge amount of computational overhead. Quite
the contrary, the space descriptors are easily accessible. However, one has to
admit that the present analysis is facilitated by the fact that the motor space
and the spatial frame of reference are defined by the same dimensions. E.g., if
the motor commands were specified as joint angle changes, the relation between
movement indicators and space descriptors would be more complex.

Finally, I would like to point out that the model also allows for an interest-
ing interpretation regarding the perceived distance. If we identify the movement
length R with the percept of how far away the block is, the model would pre-
dict that the perceived distance depends on the block’s orientation. Figure 14
illustrates this relationship for a fixed real distance d, a fixed value of β = 0◦,
and varying values of the relative block orientation Δα∗. If d and β are kept
constant as in Fig. 14, it becomes noticable that R varies depending on Δα∗. In
Fig. 14 with β = 0◦, this is the case because larger absolute Δα∗ values require
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40/37 20/15 0/-5 -20/-22 -40/-43

40/40 20/24 0/11 -20/22 -40/-37

Δα∗ / Amax [deg]

Fig. 13. Systematic tests illustrating the relationship between the relative block orien-
tation Δα∗ and the maximum slope Amax for a fixed β = 0◦. The figures underneath
each trajectory indicate Δα∗ and Amax (in degrees).

40/198 20/183 0/167 -20/183 -40/178

Δα∗ [deg] / R [mm]

Fig. 14. Systematic tests illustrating the relationship between the relative block ori-
entation Δα∗ and the movement length R for a fixed β = 0◦. The figures underneath
each trajectory indicate Δα∗ (in degrees) and R (in mm).

more curved trajectories resulting in larger R values. Thus, the model would
predict for such a task configuration that the perceived distance depends on the
object’s orientation because of the varying required movement effort. Such a pre-
diction is qualitatively in line with experimental results demonstrating that the
distance perceived by human subjects depends partly on the anticipated motor
effort [30,29].
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4 Discussion

In the presented approach, visual space perception is linked to the localization
of objects by identifying a sequence of motor commands which would move the
end effector from its current location to a location where it touches the object.
The experimental results show for the tested task domain that this approach
is successful in generating movements sequences with sufficient precision. It has
not been experimentally verified yet, but it is not expected that human subjects
show a better performance in a similar perceptual task.

The proposed system architecture comprises two main components (a vi-
suokinesthetic FM and a memory for visual states showing the end effector close
to the object) and three main processes: iterative prediction by the FM, novelty
detection by the visual memory, and the generation of movement sequences by an
optimization process. This architecture is an instantiation of the PtA approach.
It was argued that the generated movement sequences encode the location of the
target object in an easily accessible way. Thus, the overall model demonstrates
the feasibility of the PtA approach for visual space perception for a real-world
agent in a specific task domain (see also [7,18]).

The comparison between iterative visuokinesthetic and iterative visual pre-
diction showed that kinesthetic data can only be omitted if one is willing to
sacrifice the precision of the final prediction. If one assumes that visual data
is generally of higher dimensionality and complexity than kinesthetic data and
thus more difficult to predict, this result might indicate that reliable long-term
visual prediction is only viable in a multi-modal framework.

Extensions and Alternative Interpretations. The model can be extended
to space perception of objects which are not directly reachable by incorporating
movements of the whole body. Moreover, if the end effector is not visible in the
beginning, the simulated movement sequence could rely on a visuokinesthetic
prediction which is only driven by kinesthetic inputs until the prediction provides
a valid visual state for the end effector. In this way, the proposed model of visual
space perception might be extended to a more general approach.

The results on space perception based on visuokinesthetic prediction can also
be interpreted in a different way. Since the agent knows the final predicted kines-
thetic state, this state could be the basis for space perception in the sense of “I
know how my arm would feel touching the object and thus I know where the
object is”. Following this line of thought, one can even propose a visuokines-
thetic memory which associates images of the red block with the accompanying
kinesthetic impression of the arm in the corresponding pushing posture. In this
version, iterative prediction would not be necessary at all. One cannot rule out
that shortcuts like this are used by the brain within the grasp space of the
arm (or of the whole body if stretching movements of the other body parts are
considered as well). Nevertheless, whenever an object is outside this directly
reachable region, these approaches would fail. In this case, the agent has to rely
on movement sequences for space perception which include lifting the body and
walking towards the object. Unfortunately, the robot arm agent of the present
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study lacks this capability, thus a test of such an extended model has to be post-
poned into the future (for now, see the study by Hoffmann et al. [9] for related
work with a mobile robot). In conclusion, space perception on the basis of motor
commands offers a more general account than space perception on the basis of
kinesthetic information. Further support for a close link between motor com-
mands and perception stems from studies on motor priming (the pre-activation
of motor commands) by spatially corresponding stimuli [11].

Biological Plausibility. The main components of the model, a visuokinesthetic
FM and a memory for visual states, are in principle biologically plausible. The
same holds for the visual overlay hypothesis since studies on mental imagery show
that visual mental images have clear neural correlates in the visual cortex [13].
For this reason, it is a plausible assumption that brain regions dedicated to visual
processing can hold activation patterns which are partly induced by real sensory
data and partly by internally generated (“imagined”) data. These overlayed
states could be used as retrieval patterns for the recall from visual memory.
As a side effect, the visual overlay hypothesis mitigates the frame problem since
only a precisely defined part of the world needs to be included in the prediction
process (i.e. the gripper tool). Other aspects of the world, e.g. obstacles on the
way from the initial gripper location to the hypothetical location close to the
block are completely ignored.

One may critize from the cognitive and biological modeling perspective that
the representation of the kinesthetic state and of the motor commands is too
abstract. However, the conversion between sKIN and the joint angles of the robot
arm is purely kinematic, and the joint angles would be a plausible representation
of the kinesthetic body state, even though their neural encoding in the brain may
be rather complex. The visual “sensory” representations are also rather abstract.
However, the compass filters work by extracting edges of a specific orientation
and therefore act in analogy to the simple cells in the primary visual cortex [12].

From a general viewpoint, simulation theories of perception and cognition do
not seem to be biologically plausible at first glance: For the internal simulation,
the brain has to store the real sensory state and a series of hypothetical states
simultaneously, and it has to keep track of which motor commands have been
tested in which hypothetical sensory state. Moreover, the iterative prediction
has to be very fast since a time interval of less than 30 ms of cortical activation
seems to be sufficient for the recognition of visual stimuli [22]. Möller suggested
a detailed neural model of the cerebral cortex which addresses these issues [15].
It is a modified version of Hebb’s assembly theory [5]. The main mechanisms are
first a distinction between real and hypothetical sensory states by the activation
level of the assembly neurons, and second short-term synaptic plasticity to link
hypothetical sensory states to motor commands. Furthermore, it is assumed
that only a small number of motor sequences is tested (restriction to typical
motor commands for a given situation). Nonetheless, further work on the neural
underpinnings is needed to strengthen the simulation theories.

A Final Word on Perception. The term “perception” is ambiguous. On the
one hand, it refers to the whole process which “transforms” a physical stimulus
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into a conscious experience, on the other hand, it only refers to perception as
a conscious event. It is clearly obvious that the presented robot model is not
capable of conscious experience. Accordingly, this study shows in the first place
that motor simulation might be an essential part of the perceptual process. Any
further interpretation, e.g. identifying properties of the generated trajectories
with the conscious experience of distance, is imposed on the system from an
outside viewpoint. Nevertheless, I think interpretations like this are useful and
legitimate as long as one is aware of their origin and their limitations.
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Abstract. Prediction and Planning are essential elements of success-
ful human driving, making them equally important for autonomously
driving systems. Many approaches achieve planning based on built-in
world-knowledge. However, we show how a learning-based system can
be extended to planning, needing little a priori knowledge. A car-like
robot is trained by a human driver by constructing a database, where
look ahead sensory information is stored together with action sequences.
From that we achieve a novel form of velocity control, based only on
information in image coordinates. For steering we employ a two-level
approach in which database information is combined with an additional
reactive controller. The result is a trajectory planning robot running at
real-time, issuing steering and velocity control commands in a human
manner.

Keywords: anticipatory behavior, example based learning, robot car
driving, longitudinal control, lateral control, learning from experience.

1 Introduction

Automated system control is important in industry and has many applications
for everyday life. For example, autonomously driving cars have the potential to
increase safety and reduce costs. In driving, planning plays an important role.
Look ahead information helps us decide which actions to take in response to
upcoming events. We can either act immediately or prepare ahead of time for
taking certain actions, thus reducing reaction time. For this reason we propose
that an autonomously driving car should also be equipped with such capabilities
as using look ahead and plan making, which is what we call anticipatory driving.
The advantages are that it can a) react to upcoming events, b) cope with short
lacks of sensory information, and c) use these plans for making predictions about
its own state, which is useful for higher-level planning. For a more thorough list
of the advantages of action sequence generation in general, see [1].
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In this paper we focus on the task of lane following, which is a basic skill
in autonomous driving. Lane following is a visuomotor skill, i.e. one in which
visual sensory input must be transferred into appropriate motor output. Many
approaches rely on predefined control laws which require a map of the environ-
ment in Cartesian coordinates, the known state of the plant, and possibly the
known states of other entities, e.g. other cars. Thus, the work consists of a)
identifying the necessary control law(s), b) identifying the model for the plant
as well as other desired object models, and c) transforming the (relevant) visual
input into the required map. In this type of approach most knowledge, such as
what is expected to be sensed (object models), how it is sensed (sensor models),
and how to act upon it (control laws), is built int the system a priori. Exam-
ples of approaches matching this description to a great extent are [2,3,4,5]. We
refer to them as ”model-based”. They have the property that forward simula-
tions of the system are possible by using the state estimation process and the
control law(s). This can be used for planning algorithms like path planning.
Despite many advantages, the massive dependency on built-in world-knowledge
presents a bottleneck. Everything that a system might need to act upon cannot
be predefined.

As alternatives, machine learning based approaches to lane following can be
implemented. A prominent example is ALVINN [6,7,8,9], where actions of a hu-
man driver were associated with concurrent visual input from a camera via a
neural network. The inputs to the network were the pixel values of the (down-
scaled) camera image and the output was an appropriate steering angle. Velocity
control was handled by a human. Two important points to note are: 1) the sys-
tem learned to take the correct actions not by explicit control laws and state
estimators, but instead based only on the provided examples, and 2) no trans-
formation of the visual input into another representation was required, thus
no conventional image processing (e.g. feature extraction, or reconstruction of
3d-information) was necessary since the visual input was directly mapped to a
motor command. Further examples of machine learning based approaches are:
[10] using reinforcement learning, and [11] using genetic algorithms. We refer to
these approaches as ”learning-based”. A shortcoming of these systems is the lack
of an explicit mechanism for planning, making them dependent on continuous
sensor input.

Our goal is to utilize the most advantageous quality of the learning-based ap-
proaches, i.e. not having to rely on built-in knowledge, and to extend the method
with an explicit planning component. Path planning in model-based approaches
can be achieved by using the Cartesian map of the environment, a model of the
system to be controlled, and a control law. How can one plan a path if all these
items are not available? We solve this problem by equipping our system with
very simple mechanisms, that are thought to play a role in human learning, too.
Precisely, we give it the ability to make associations and to store and retrieve
data (memory). First, a reactive controller is obtained from human control data,
by associating visual information concerning the nearby street trajectory with
a steering command. Second, a planner learns to associate visual information
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about the entire observable street trajectory with action sequences. We show
how this leads to robust lateral and longitudinal control of the robot, and how it
also works in open-loop situations, i.e. when no sensory input is available. Our
goal is not to compete with current state-of-the-art autonomous driving systems,
which are quite advanced and also generally make use of many additional sensors
besides visual ones, instead, we intend to present an alternative to many current
approaches relying on task-specific knowledge.

As described our system is capable of generating speed control as well. This
concept has been much less investigated than steering, at least for approaches
that do not make use of environmental maps, for which a sensor model is nec-
essary. Simpler controls also exists, such as Adaptive Cruise Control (ACC)
systems, which use radar or laser to slow down the vehicle when detecting an
obstacle in front, or Intelligent Speed Adapters and Limiters, ISAs and ISLs
[12], which adjust, or limit, a vehicle’s speed according to the given mandatory
limits. Other approaches determine speed, with the help of a leading vehicle [13].
More related to this work are [14] and [15], which employ fuzzy neural networks
trained on human control data to anticipate curves and regulate speed accord-
ingly. In contrast to our approach, that work was done using simulations, and
single actions per timestep were generated instead of action plans.

The structure of the paper is as follows: In the Experimental Setup section we
describe the means for realizing this approach. In the Methods section we explain
planner, reactive controller, and their combination, followed by their evaluation
in the Results section. In the Discussion section we discuss our work and shortly
compare it to predictive control based on Kalman filtering [16].

2 Experimental Setup

Experiments are carried out in an indoor environment on a four-wheeled robot
(a modified VolksBot [17] of 50 cm x 60 cm size) with two motors, one for driv-
ing the wheels on each side (differential steering). The robot is equipped with
a monochrome firewire camera operating at approx. 20 Hz, see. Fig. 1A. The
laboratory setup simulates a street environment, where the driver can control
the robot from a special station, see Fig. 1B. Here, one can see ”through the
robot’s eyes” by means of a TV on which we display the camera output. The
driver can manipulate the robot’s actuators using a steering wheel and pedal
set where the communication between human control output and robot sensory
input is realized via a peer-to-peer architecture. A laptop placed on the robot, is
connected to the camera and motors. In a cyclical fashion the robot acquires a
camera image, sends it to the TV, and waits for a control input from the desktop
computer connected to the steering wheel and pedal set. The control, or action
input, is a steer and a velocity command, for which we use the following notation:
ast denotes the steer signal, and av velocity. Both signals take numerical values
with ast ∈ [−128, 128] related to the steering angle and av ∈ [−512, 512] related
to the voltage sent to each motor. Throughout this text, we skip the superscripts
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st or v, when referring to both action signals. They are generated by the human
and sent to the robot-laptop via the desktop computer, which in turn passes
them to the motors of the robot, (see Fig. 1C). Thus, every communication cycle
defines a discrete timestep t where every incoming image frame It is related to
the corresponding control av

t , and ast
t . In Fig. 1D, we show a sketch of the track

on which we trained the robot.

Fig. 1. A: A car-like robot. B: Control station. C: Information flow in the experimental
setup: cam denotes camera, and ML and MR left and right motor, the shaded area
indicates the robot. D: Sketch of the track used for training the robot. E: Short and
long term visual information. x and α define short term information for the reactive
controller and s0, s1, s2, the corner points of the polygonized lane boundary, define the
long term information for the planner.

During the supervised learning the robot associates visual information with
human actions. This visual information is derived from the right street lane
boundary that we detect in each image in real-time. We developed a simple and
fast algorithm based on conventional edge detection (Canny [18]) which returns
the detected boundary as an ordered 2d-curve.

3 Methods

Regulation of steering and speed are necessary for vehicle control. Steering con-
trol is considered to be a two-level process [19] using short-term and look ahead
information, whereas we assume speed control to be based only on look ahead
information. We use the word ”short-term” to denote relevant visual informa-
tion that is temporally and spatially close to the vehicle and ”look ahead” to
denote visual information that is relevant in the future, i.e. further away from
the vehicle. As explained we use two modules, a reactive controller (RC) and
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a planner, where the former maps short-term information to a single steering
control value, and the latter is in charge of processing look ahead information
and generating action plans, i.e. sequences for steering and speed control. The
final steering command is a combination of planner and RC output. This setup
is visualized in Fig. 2. In the following we describe both modules starting with
the reactive controller.

Fig. 2. The system setup. It denotes the image frame at time t and Seq a sequence of
actions.

3.1 The Reactive Controller

The purpose of the reactive controller is two-fold. It is supposed to correct the
planner if necessary, and it is used in the case that no sufficiently well suited
plan is contained in the database. It is also learned from human actions and
designed as follows: We define the immediate future (short-term information) of
the robot-car by the tangent constructed from the beginning of the extracted
street boundary and describe it by the angle α between tangent and horizontal
border of the image and its starting position x on the x-axis at the bottom line
of the image, see Fig. 1E. To acquire the supervisor’s policy with respect to
these parameters we assign human actions (from the training set) to the state
space (see 3A). To fill the empty spaces, generalizing to unknown situations, we
use k-nearest neighbor, shown in 3B. Of course, other approximation methods
can be used instead. Note that this simple approach results in an extremely fast
controller, only requiring the time necessary for looking up a steering signal in
a matrix.

Fig. 3. A: The acquired policy from the supervisor. B: The interpolated policy using
k-nearest neighbour. Different gray values denote different steering angles.
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3.2 Planner

We follow the idea that a system should be able to associate experienced action
sequences with visually perceived situations. When exposed to similar situations
it should remember the previously conducted action maneuver. For example, if
the system observes a right turn, it should remember that in the past it always
conducted a similar sequence of actions after it had seen the right turn. Thus,
right turns should be directly associated with right turns in the action space.
Even if this associated action plan is not completely exact, for example the steer-
ing amplitude would not be exactly correct for taking the turn, it still provides
guidance in the desired direction. We realized this idea by building a database,
wherein the system stores triples containing a perceived situation description
along with the corresponding sequence of steering and velocity actions. When
driving in autonomous mode, the system queries the database with the currently
perceived situation and receives (remembers) the assigned action plans. Based
on these retrieved plans, it computes current and, if necessary, future actions.
Thus, the following steps are necessary: a) database construction, b) database
query at runtime, and c) control sequence calculation at retrieval time.

a) For the database construction a visual state or situation description, s, is
needed, comprising look ahead information. For that purpose we use a polygo-
nized approximation of the right street lane, such that s = [s0, s1, ..sl], where si,
with 0 ≤ i ≤ l, are the corner points of the polygon. The polygonization is done
using the Douglas-Peucker method [20]. Note that the vertices of the vector s
are ordered, i.e. s0 is the first vertex at the bottom of the image and sl describes
the last vertex on the 2d-curve. The vector length l can vary. An example is
shown in Fig. 1E and 4. It is a rough description of the observed street which
contains look ahead information, but not explicitly extracted information like
curvature or path length.

To each st corresponding control sequences are assigned. Control sequences
are ordered series of actions, Seqsteer = [ast

t , ast
t+1, ..a

st
t+n], and Seqspeed = [av

t ,
av

t+1, .. av
t+n]. The length n of a given sequence is supposed to resemble the

number of actions that are executed while following the observed trajectory at
a given timestep. That is, if only a short stretch of the street is visible we only
assign a short action sequence to it and vice versa. Since we do not know exactly
how many actions correspond to the observed street we use the experimentally
determined value:

n = �1
8

l∑
i=1

|si−1 − si|�. (1)

A triple (st, Seqsteer, Seqspeed) is stored in the database, unless a similar entry
is already available, (i.e. ε ≤ 10, see below and equation 2). The database is
complete if a predefined number of entries is reached, or no more triples are
added by the routine. We denote the total amount of database entries as K.
Thus, Seqk

steer, with 1 ≤ k ≤ K is the steering sequence of the k′th database
entry. If we are referring to Seqsteer and Seqspeed interchangeably we skip the
subscripts.
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Fig. 4. Screenshot example of the planner operating mode. Left: The observed street
(gray, originally red) is compared to the database entries and the best match is returned
(black, originally blue). Right: The assigned steering sequence of the best match.

b) For the retrieval step, we need a metric to determine the difference ε
between the extracted vectors, s, which describe the street ahead. We use a
weighted euclidean distance between vectors of same length l, normalized by l.
The weighting enforces similar curves to be those that are especially similar in
the beginning, which is the part of the street that is closest to the robot:

ε =
1
l

l∑
i=0

ωi

√
(sqi − sdbi)

2, (2)

where sqi denotes the i’th element of the queried vector and sdbi the i’th element
of a vector in the database, ω is a vector containing weights where ωi+1 < ωi

(we used 20, 10, 5, 5 for the first four ω entries and 1 for all remaining ones).
Equipped with such a database, the robot can use its current visual input for
making queries. The return values are: 1) the difference ε to the best found match
and 2) Seqsteer and Seqspeed that were assigned to it.

c) The action sequences from the database retrieval contain valuable infor-
mation, not only for the current timestep t but also for t + 1, t + 2, ..., t + n.
However, the database output as such only corresponds to the observed street to
a certain degree. How can we drive on unknown streets? Even on the same track
it is unlikely that identical images are retrieved multiple times. In other words,
how can we generalize using the database output? Here, we postpone this gen-
eralization step until retrieval time which is typical for lazy-learning algorithms
([21,22,23,24]).

In principle there are two different ways in which the action sequences ob-
tained from the database query can be used:
1) an action plan can be computed based on single retrieved sequences, or
2) based on all (or the latest N) retrieved sequences.

For the former we propose a method that we refer to as DIFF, because it is
based on a difference equation, and for the latter a method that we refer to as
AVG, because it is based on simple averaging. We will find that both methods
yield comparable results, and because AVG is much simpler to implement we
will only use this method later. Even so, we believe that chaining single action
sequences together is an important concept that should be considered as well.
For this reason we include a description of the DIFF method.
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Fig. 5. A) and B) visualize schematically the data DIFF (A) and AVG (B) operate
on. A) The solid gray lines denote parts of single retrieved action sequences that are
used until a better match is found, which is indicated by the vertical slashed lines.
As can be seen, there is no smooth transition from one retrieved action sequence to
the next. The proposed difference equation smoothly joins two sequences together by
taking into account future values from the previous sequence, which are depicted by
the gray slashed line segments. In the equation we refer to these as ã. As an example,
we took t = 10 as the current timestep. Thus, ãt+i denotes the action value from the
previous sequence i timesteps ahead. The resulting action plan is drawn as the thicker
black line denoting the function a(t). B) The AVG method uses values from the last
N retrieved action sequences, which must be held in a buffer and which are drawn as
thin gray lines. The new action sequence is computed by simply taking the average
from the action values in the buffer at each timestep, indicated the drawn rectangle,
which denotes the vector v (see text). C) and D) show real data examples for DIFF
(C) and AVG (D). Again, the thin gray lines denote retrieved sequences and the thick
black line denotes the new sequence returned by each method.

As explained the DIFF method computes an action plan based on single action
sequences obtained from database queries. At every timestep a database query
is conducted and the returned sequence is compared to the one obtained in a
previous timestep. If it is better, i.e. the affiliated error ε, which is returned
together with the sequence by the database, is smaller than the error affiliated
with the previous sequence, then the new result is kept and the old sequence
is discarded and vice versa. (To acknowledge that a good match found a few
timesteps ago, is less well suited at the current moment, we discount previous
sequences by adding a discount factor, λ = 5, to their affiliated error.) The
concept is visualized in 5A, where the gray line segments denote current action
sequences. It can be seen that whenever a better match is found, there is a gap
between two consecutive signals, indicated by the vertical, dashed lines in the
figure. The purpose of the DIFF method is to create a smooth transition between
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two such signals by taking the future values (the dashed gray line segments in
the figure) of the previous signal into account. The action plan is given by at as
shown in 3 and 4.

at+1 = at + Δat (3)

Δat =
n−1∑
i=0

αi
ãt+iτ − at

(1 + at

amax
)G

, (4)

where at is representing a steering or velocity command, i.e. either ast
t or av

t , and
n is the length of the sequence currently being used. We denote action values
from sequences from the database retrieval at the current timestep with ãt, see
Fig. 5A. Thus, future values, i.e. those values in the sequence at t+1, t+2, t+ ..,
t + n are given by ãt+i. The variable τ is a constant determining the sampling
frequency on the current sequence. It influences how fast to move from one signal
to another. If a low value is chosen, the resulting control sequence lingers longer
in the vicinity of the previous segment before reaching the values of the new
segment and vice versa. From the training data we know that the human used
steering and speed commands that did not exceed a certain amplitude. These
upper and lower limits, which we denote with amax should not be exceeded by
the system either. Hence, the denominator decelerates the growth of the action
plan function if the previous action was already close to these known limits. It is

determined by the constant G, which we set to 10, and αi = e
−i2

σ2 a decay term,
which discounts the influence of future values given by ã. The σ is a constant,
which we set to 4. In Fig. 5A the action plan at is drawn in black. In 5C the
result of the difference equation is shown for real data.

We now turn to the second method, AVG, which also makes a query every
timestep, but in contrast to DIFF keeps the returned sequence of each retrieval
in a buffer. To determine an action value at a given timestep, we simply compute
the average on the action values from the latest N retrievals, which are contained
in a vector v as shown in the figure. The value N is usually also the number of
values that the average is computed from. Thus:

at =
1
|v|

|v|−1∑
i=0

vi. (5)

An example for this method is shown in Fig. 5B, and a result computed on real
data in Fig. 5D.

3.3 Combination of Planner and Reactive Controller

The next step is the combination of RC and planner. The RC should correct
the planner in critical, i.e. unfamiliar situations. Therefore, a measure is needed
that informs about this state. We find that an appropriate measure is the error ε
returned from the database query. If no sufficiently good match to the currently
observed image is contained in the database the system performance decreases
and this correlates with the value of ε.
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We can now combine RC and planner as a function of ε, f(ε) → ωc with
0 ≤ ωc ≤ 1. The smaller ε the more we want to rely on the planner, the larger ε
the more we consider RC output:

steer = ωc ∗ RC + (1 − ωc) ∗ planner, (6)

with f(ε) = ea, and a =
(ε − εtolerable)

150
, (7)

where we set εtolerable to 700.

4 Results

To test the algorithms DIFF, AVG and RC, training and test data is produced
from eight laps of human driving on the described track in the lab (always in
the same direction). The database is constructed from five of these laps and the
remaining data is used as test set. First we consider the performance of a single
action generation for the current timestep, i.e. at. For velocity prediction with
AVG we found best results when averaging over the last N = 20 buffer entries
and for steering the last N = 10. The result is shown in Fig. 6A-E. It can be
seen that all three methods capture the human behavior, where AVG and DIFF
give smooth output and RC is comparably jerky.

We further compare the methods by plotting the root of the summed squared
error between algorithmic output and human signal,
(error =

√
(algorithmout − humanout)2). This error and confidence interval

(95%) are plotted in Fig. 7A for steer and 7B for speed. It can be seen that
there is little difference between AVG and DIFF. The higher error for RC com-
pared to AVG and DIFF can be explained by its jerkiness. It is also observable
that the error for speed prediction on average is higher than for steer. This is un-
derstandable because there is more variance in the human velocity data than in
the steering data. Consider for example the velocity plot in Fig. 6B or C between
timesteps 300 and 500 on the x-axis. The depicted speed signal in this intervall
can be considered to be constant, however, the small deviations between human
and synthesized signal accrue to a relatively large error.

As this is a quantitative comparison, it is necessarily offline, and does not
prove that the system behavior would also be acceptable if the controllers were
used inside the closed-loop setup, i.e. when the generated action of the controller
affects its future sensory input. Therefore, we let the robot run on the track in
autonomous mode. We find that with all three controllers it can follow the road
well, i.e. it stays on the track. The jerkiness of the RC output also results in a
jerky lateral behavior. However, due to the inertia of the robot it is less strongly
visible than what could be expected from the plotted signal.

Next we test wether or not the combination of planner and RC indeed im-
proves the system performance as supposed. In case of an unfamiliar street envi-
ronment that is not represented in the database, the robot should still be able to
issue appropriate steering signals, albeit, without the ability to plan ahead. We
trained the robot in one direction, and since our setup track is circular the robot
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Fig. 6. A and B: Performance of AVG on generating ast
t and av

t . ”N” is the amount
of entries in the buffer over which was averaged. C and D: Performance of DIFF on
generating ast

t and av
t . E: Performance of RC on generating ast

t .

Fig. 7. A: Comparing the performance of AVG, DIFF and RC for steering generation
for at. The plotted error is the root of the summed squared difference between the
human action signal and the signal generated by each method. B: Comparing the
performance of the methods for speed generation. C: The quality of steer predictions
of RC for t, t+10..t+30 timesteps ahead. D: The quality of steer predictions of AVG
for t, t+10..t+30 timesteps ahead. As expected, the error for AVG is much less than
for RC, which indicates the capacity of AVG for action prediction.
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Fig. 8. Comparison of the combined signal to RC, Planner, and human output, where
the robot was driven by the human. At around t = 100 it can be seen how the combined
signal is better than the Planner output by being drawn closer to the RC signal.

is almost exclusively exposed to turns in the same direction, in this case to the
right, thus, when turned around it is facing turns to the left, which are not part
of its database. For a first evaluation we let the human drive the unknown track
and at the same time record the suggested steering actions of RC, planner, and
the combined signal. One would expect the latter to capture the human signal
better than RC or planner output alone. We show an excerpt of the steering
signal of this drive in Fig. 8, where at around timestep 100 on the x-axis this
behavior can be well observed. The negative human steering value indicates a
steep (left) curve, which is not well known by the robot. The amplitude of the
signal is important as it describes how much is turned. Over- or understeering
without correction leads the robot off the track. It can be seen that the sug-
gested signals from the planner indicate less left steering, since it does not know
what to do in this situation. The RC signal captures the amplitude of the human
steering signal better. In this unfamiliar situation the combined output is more
determined by the RC signal, therefore it also captures the human behavior bet-
ter - however, it is also jerkier. In less critical situations the combined signal is
smooth, since it is more determined by the planner.

As a second evaluation we let the robot drive on the unknown track using a)
only the planner, b) only RC, and c) the combined signals. With the planner it
drives smoothly but looses the track in difficult (high curvature) turns due to
the explained reason that this situation is not represented in its database. Using
RC it is able to stay on track as expected, however, the behavior is less smooth.
Finally, when using the combination it drives smoothly on the known parts,
which constitutes the majority of the encountered situations, and in addition
it manages to stay on the track even during the described difficult turns. To
evaluate the performance of the system concerning sequence prediction, which
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Fig. 9. Top view on part of the track. Shown is the driven trajectory of the drivers and
the robot, sampled every 10 centimeters. The horizontal line denotes where the view
was blocked.

is our main interest, we do not consider the DIFF method but only AVG, since
DIFF is more complicated with more parameters to tune than AVG, yet fails to
lead to significantly better results in generating single actions as shown above.
Again we test quantitatively and qualitatively.

For the quantitative evaluation we apply AVG on the test set to generate
an action a few timesteps (t = 0, 10, 20, 30) ahead, which we then compare to
the signal elicited by the human at that timestep. We sum the difference over
the entire test set and plot it in Fig. 7D. We also included RC1 in this plot,
mainly for comparison. This result is shown in Fig. 7C. It can be seen that RC’s
predictive capacity is very poor - as expected, and that AVG’s predictive capacity
is high in comparison, but the error increases with the number of timesteps to
be predicted ahead. This indicates that the actions in the sequence generated by
AVG are more precise in the beginning and less reliable with longer predictions,
just as expected.

For qualitative testing we abruptly blocked the human controller’s view during
driving. This can be interpreted as a short sensor ”black-out”, which might occur
due to technical problems. We then measure the number of timesteps the human
was able to stay on the street without visual feedback. For that we only let the
human control steering. The speed signal is set to a constant value uninfluenced
by the driver, (during human performance, not for the robot). This is done

1 Since the RC cannot predict sequences we had to ”trick” here. To predict the action
for t = 10, we constructed the RC by mapping (αt, xt) �→ at+10. We proceeded
analogously for t = 20 and t = 30.
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because the drivers stop the robot during the experiment as soon as they cannot
see the street anymore. Furthermore, we decide to block the view shortly before a
curve, requiring a real change in actions. We repeat this with three more drivers:
two are not trained in driving the robot, one intermediate driver, and the expert,
who also generated the training data set for the robot. The result is shown in
Fig. 9. It can be seen that the robot does perform the turn, which means that
it successfully uses its generated plan and executes it it similarly to the trainer.
It also shows that the less well trained humans lose the track quicker than the
robot.

5 Discussion

We presented a robot-car that learns anticipatory driving from a human su-
pervisor and visual sensory data. Anticipatory means that it learns to generate
action sequences and to react to upcoming events, which is necessary for velocity
control (e.g. speed must be decreased when approaching sharp turns). It runs
at real-time and issues steering and velocity controls in a human-like way. Its
planning capability allows it to cope with missing visual input.

In contrast to many current approaches to vehicle control, which are mostly
model-based, very little a priori knowledge was required. Instead the system
achieved its behavior by being equipped only with mechanisms for associative
learning and memory.

First, a reactive controller associated short-term visual information with single
actions from a human teacher. Following the idea that a system that repeatedly
executes similar action sequences after observing similar images should be able
to also associate these things, a planner learned to correlate observed street tra-
jectories with subsequently performed action sequences. During performance the
combined signal between reactive controller and planner was shown to lead to
robust lane following behaviour. As described in the Results section, the com-
bined signal is jerkier when relying on RC in unknown situations and smoother
when using the planner in well known situations. This appears natural when
considering that humans also produce smoother action sequences (in dancing
for example) after training. In particular, it was not necessary to build a map of
the environment from the visual sensor input to acquire action plans. Visual in-
formation could be processed directly in image coordinates. No sensor model was
needed, thus it was not necessary to know the camera geometry or to undistort
image frames. This makes this approach easy to implement and to use.

Concerning velocity control this work makes a novel contribution with respect
to the work in autonomous driving that is not based on constructing environ-
mental maps, namely the ability of the system to generate speed control based
on the visually perceived upcoming curves.

Since this work is related to predictive control, we shortly compare it to meth-
ods usually used in this context. All of the cited model-based work in the Intro-
duction uses state estimators for generating action control. As state estimators,
a variant of the Kalman filter [16] is often used. Such a filter requires knowl-
edge about the state-transition probability of the system, i.e. it must be known
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how the system’s state changes under the influence of actions or time. Based
on this, and possibly also on knowledge about the sensing process, a probable
future state can be predicted. Then actions can be chosen with regard to the
predicted future state of the system. If this is done repeatedly (like a mental
simulation), action sequences can be obtained. The main difference between this
way of achieving predictions and our method is that we skip the state prediction.
We generate action predictions not by inferring them from a predicted state, but
by memorizing entire sequences. We see two advantages in that: 1) it is faster,
simply because the step of state generation is not necessary; 2) it is less prone to
error, because fixed sequences are stored and do not have to be generated step
by step based on predicted states that get more and more erroneous. Of course,
not being able to predict future states is a disadvantage. For example, we cannot
link multiple sequences together, which would be possible if we knew the state
of the system after the execution of an action sequence. However, this approach
could be extended to also predict future states.

Acknowledgments. This work was supported by the European Comission
grant DRIVSCO.
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Abstract. We investigated the role of the length of the future time
interval in which an agent predicts what will happen. A number of simu-
lated robot experiments were performed where four thieves try to collect
pieces of gold from a house that is guarded by a single robot. The thieves
try to anticipate the movement of the guard to select behaviors that will
allow them to steel the gold without being seen. This scenario was inves-
tigated in four experiments with different visual fields of the guard and
different strategies of the thieves. The results show that it is not always
better to predict longer into the future and that best behavior would
results when the agents match their predictions to the time it will take
to perform their tasks.

1 Introduction

How important is it to anticipate what will happen in the future? Is it better
to anticipate far into the future or to focus on the next few seconds? We have
investigated this question using a number of detailed computer simulations of
robots that collect pieces of gold while trying to avoid being seen by a guard that
patrols the environment. A central ability of the simulated robots is to anticipate
where the guard will be and select their actions accordingly. Anticipation is also
important for predicting the agent’s own behavior and thus bridge sensory delay.
To be able to predict or anticipate we need a way to represent a future state.
Rosen [1] might have been one of the first to put this idea into a useful definition:
“An anticipatory system is: [...] a system containing a predictive model of itself
and/or its environment, which allows it to change state at an instant in accord
with the models predictions pertaining to a latter instant.”

Davidsson [2] used simulations to investigate the benefits of anticipation. Two
different types of experiments were conducted. The first investigated competi-
tion between agents and in the second, the agents were cooperative. In the
experiments, the task of the agents was to pick up targets in a two dimensional
grid-world in a particular order. By using a linearly quasi-anticipatory agent
architecture, one agent could realize that it would not reach the target before
the other agent and would instead start to move toward the following target.
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Only one of the robots used an anticipatory behavior. In the second experiment,
the agents cooperated, which lead to a decreased total time for fetching all tar-
get objects. More recently, Sharifi et al. [3] describe a system for the simulation
league of RoboCup where the anticipated future state is used to decide which
robot will posses the ball next, while Veloso et al. [4] anticipate the state of the
whole team.

When studying anticipation, one of the most challenging tasks is to analyze
the models used for prediction. The challenge lies particularly in the amount
of states that the model must handle to be able to predict. Seemingly simple
tasks have an enormous amount of current and future states. To understand
the difficulties of predictive models, let us make a short and far from complete
analyze of a simple everyday situation. Your task is to cross a busy street. During
years of training, you have developed a feeling for how long it will take for you
to cross the street depending on its width. You also have a feeling for how the
traffic changes. Here we focus on the traffic prediction model. This model must
predict how long it will take for the cars to travel to the point where you are
planning to cross the street.

A simple model could use linear extrapolation of the cars current positions
to where they will be when you are planning to cross the street. This prediction
can then be used together with the prediction of how long it will take for you to
cross the street to determine if you should start crossing the street immediately
or if you should wait for a better opportunity. In this scenario, the input for
the model is just the position of the car. In reality, anything that influences the
prediction should be considered by the model. This can require a very complex
model. It must handle vehicles with different velocities, colors, sizes, weather
conditions and other things that may influence the prediction. Although the
predicted position will be independent of the color of the car in most cases, a
red car may be a red fire truck with its sirens on. In this case, the sound will
influence the prediction and we may assume the fire truck has a higher velocity
than an ordinary red car. Other assumptions that can be made are that other
drivers will react differently to the fire truck and that the path for the fire truck
may be more important than your crossing the road.

Another problem that is always present when dealing with the real world is
sensory latencies and processing delays. When running the robot system used in
this paper, the camera and tracking parts are slow and computationally costly.
To grab an image and visually track all obstacles and robots takes approximately
200 ms. These processes are allowed to use up to 250 ms. The tracking is run on
a dedicated tracker node and the communication to the rest of the nodes takes
an additional 250 ms. This leaves us with a total delay of half a second before
the sensory information reaches the system.

These types of system latencies are often minimized by faster hardware with
more processing power. Another way is to compensate for the latency using
predictive models and this is the method used here. A similar approach was
used by Benke et al. who used predictive modelling to minimize control latency
in their RoboCup team [5].
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In previous work, we investigated the importance of anticipation in navigation
tasks [6]. The results of this work show that a multi-robot system will benefit
from anticipation compared to a system without anticipation. However, the mod-
els used to anticipate must have high precision, otherwise a reactive or a pure
planning strategy will perform equally well as one with anticipation. The ben-
efits of anticipation also depend on the task. A complex task will increase the
usefulness of anticipatory mechanisms [6]. In a simple task, a reactive or plan-
ning strategy that did not take the future into account would perform better
than an anticipatory strategy.

In this paper we study one additional variable that we call the prediction time.
The prediction time sets the boundary for the future time interval for which a
prediction will be made. How does the prediction time influence the success of
a task? We have investigated this question within a multi-agent scenario where
we compared the performance of agents with different predictive abilities.

2 A Task with Guards and Thieves

In the guards and thieves scenario that we use to study predictive models, we
use 5 agents in a dedicated robot arena. The task for the thief agents is to collect
gold from different locations. In our setup we use one guard and four thieves.
The guard protects a building where the gold is stored by patrolling the area
around the building along a fixed route. The thieves hide in the home zone and,
when there is an opportunity, they sneak out and try to collect gold. If a thief
is seen by the guard, the thief seeks shelter in the home zone. In this scenario,
we are not interested in the guards behavior. We only measure the anticipatory
behaviors of the thieves.

The guard and thief scenario shares some features with the street crossing
scenario described above. The thief must predict where the guard will be and
use this to decide if it should try to fetch the gold or not. With the guard and
thief scenario, we manage to eliminate a large amount of possible states. The
model used in our experiments is very simplified, but handles simple contexts,
occlusion, velocity and the visual field of agents. The model is minimalistic which
gives us a chance to analyze it, but is still complex enough to study how the
prediction time inuences the task.

The environment (Fig. 1) is similar to that used in an earlier experiment where
the robots had to switch places with each other in environments of different
complexity [6]. In this setup, the guard has intentionally been made less gifted
than the thieves. The behavior of the guard is to follow an already defined route
around the buildings. It would be possible to give the guard more complex and
more realistic behavior like letting it anticipate the thieves and having it patrol
in an autonomous way. Behaviors like that would give the guard and thieves
scenario more dynamics and more interesting behaviors, but at the expense of
results that would be much harder to interpret.
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Fig. 1. The robot area with robots and obstacles. Black indicates obstacles. Each robot
is trying to collect gold from one of the four openings and to bring it back home without
being seen by the patrolling guard which is draw on top of its dashed path. If the guard
sees the thief during an attempt to collect gold, the thief looses its gold.

3 AARC Architecture

All the simulations made in this paper used the AARC architecture [7]. The
AARC architecture consists of a large number of modules connected into a com-
plex system using the Ikaros framework [8]. The AARC architecture needed to
control five robots consists of more then 300 modules and 1000 connections,
where each module performs a task such as visual tracking, Kalman filtering,
planning or motor control. The relatively large complexity of the system has to
do with the internal compensation for many different types of processing de-
lays. The architecture can be used both as a pure simulation and to control real
robots. Here we use a simulated e-puck. The software system consists of four
interacting layers (Fig. 2). The bottom layer is the host operating system (OS)
which executes one or several Ikaros processes. The simulations reported here
run on an eight node Linux cluster. Ikaros provides software support for real-
time execution and message passing, as well as tools for the design of complex
networks of interacting computational modules. The third layer is the AARC ar-
chitecture which is implemented as a set of interacting Ikaros modules. Finally,
the top layer consists of task specific control which sets the overall goals and
tasks for the system.

3.1 Anticipatory Learning

To be able to predict, we need a way to represent a future state. The AARC
architecture uses linear associators in combination with traditional planning al-
gorithms to build models. The thieves model the behavior of the guard. The
route of the guard is learned using a linear associator which learns the associa-
tion between the current position and a future position.
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Fig. 2. The four main levels of the implemented system

The learning can be done both online or offline. With online learning, the
model will be rather imprecise during learning which will inuence the result of
the experiment. Instead, in these experiments, the learning was made off line.
No learning is done during experiments to avoid the duration of the experiment
influencing the predictive model. The online learning used data from 10 laps to
build the model of the guards route.

The linear predictors learns a function from a number of observed positions
p(t − n), . . . p(t − 1) to the estimated position p∗(t) at time t. Any of a number
of learning algorithms could learn such a function by minimizing the prediction
error e(t) = p(t)−p∗(t). The learned function constitutes an anticipatory model
of the target motion.

We now add the constraint that the perception of the target, including its
localization, takes τ time units. In this case the problem translates to estimating
p∗(t) from p(t−n), . . . p(t−τ), since the rest of the sequence is not yet available.
In addition, this means that the system only has access to the prediction error
e(t) after τ additional time steps, that is, learning has to be set off until the error
can be calculated and the estimate of p∗(t) has to be remembered until time t+τ
when the actual target location p(t) becomes available. The important point here
is that a system of this kind will never have access to the current position of the
target until after a delay. The central problem for the predictor is thus to learn
the mapping

p∗(t) = f(p(t − n), . . . , p(t − τ)|c),
where c is a set of parameters. With an appropriate model f , a system will
be able to anticipate the target location p∗ and direct its attention or actions
toward it. Any of a number of learning mechanisms can be used to learn f . We
have found that in many cases, such as in tracking a regularly moving object, a
linear association trained with a gradient descent method is sufficient although
other methods may give faster convergence and better noise sensitivity. Here, a
number of parallel predictors are used to estimate a number of future positions
of the thief p∗i (t) using different τi.

An example of the guards predicted route is presented in Fig. 3. In simulation,
it is generally possible to chose to make a perfect model, but in real robot
experiments even the simplest environment results in noisy predictions. The
noise in the predicted path in Fig. 3 depends on the inaccuracies of the control
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Fig. 3. An example of the prediction of the future positions of the guard. The circle
is the current position and the white line in the position for the next 85 seconds. The
white dashed line is the path that the guard attempts to follow.

system of the gaurds as well as on sensory noise in the thieves and limitations
of the prediction method used.

Although we have chosen a linear associator in this setup there exist many
other possible algorithms for predictive models. Some examples are neural net-
works [9], Kalman filters [10], anticipatory classifier systems [11] or Bayesian
approaches [12]. We chose linear associators because they are simple and fit well
for this type of task.

3.2 Thief Control

Using the learned route of the guard, the thieves can predict the position of the
guard t time steps ahead based on its current observation of the guard. The
output from the prediction system is used to mark regions that are or will be
visible to the guard and the thieves try to avoid these areas (Fig. 4). When the
guard is at location p, the polygon representing its visual field is denoted by V (p)
and is calculated using a ray-casting algorithm in the model of the environment.
The visible part of the environment is formed as the union of all the visibility
polygons generated by each location where the guard is predicted to pass in the
next t time steps: ⋃

0≤i≤t

V (p∗i ).

3.3 Delay and Timing

In the system, the internal model of the world is running in phase with the real
world, even through it does not yet have access to the sensory information for



Prediction Time in Anticipatory Systems 289

Fig. 4. Left: The robot simulator provides an input to the learning system, which is
used to predict the future positions of the guard. This prediction is subsequently used
to determine a local goal for the agent. Right: The agent marks areas that are visible
to the guard and tries to avoid these.

Fig. 5. Top: The total processing time for the whole system is 850 ms. The Tracker
takes 500 ms, the Anticipatory Model 50 ms, Path Planner 250 ms and Steering and
Robot control 50 ms. Bottom: The different parts operate in different time frames. The
real environment, model and the steering work in synchrony in the same time frame
despite different delays.

this state. To manage this, the system predicts the state of the environment
500 ms into the future. A latency of 500 ms is fairly large. With a speed of 13
cm/s, the robot can move 6.5 cm before it will influence the prediction model.
The system thus depends on the predicted state of the world for control.

Not only is there a delay of the sensory input, there is also a delay for the out-
going motor commands. To overcome this, the path planning uses the positions
predicted by the anticipatory model to calculate a possible path to the goal. This
calculation takes approximately 250 ms and the path is subsequently forwarded
to the steering module and finally to the robot module, which takes an addi-
tional 50 ms. To compensate for these delays, the path planning system uses the
current position, but compensates for its own execution time when calculating
the future path. Overall, the system compensates for a total delay of over 850 ms
from sensors to effectors using calculations in different time frames for different
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Fig. 6. Left: Guard agent with 360 degree field of view. Right: Guard with a visual
field of 135 degrees.

parts of the system (Fig. 5). The anticipatory model and the steering work in
the same time frame although they base their processing on differently delayed
information. When the tracker has processed an image, the output is already
old. As a consequence, the path planning compensates for its own computation
delay as well as the reaction time of the steering. The anticipatory model is set
initially to a future state and by providing it with motor commands from the
same timeframe, it will stay in phase with the actual robot in the environment.

4 Simulations

In the simulations, the thieves try to steal gold from the guarded house. One
lap for the guard’s route takes approximately 85 seconds (tg). During its route,
the guard cannot simultaneously defend all the pieces of gold and this is used by
the thieves to collect gold without being seen. In the first experiment, the visual
field of the guard can, at most cover, two of the gold areas and will cover the
same location within a minimum of a half lap (Fig. 6). If the guard has a 360
degree field of view, the time where the thief agents can steal gold is:

tns =
tg
2

Where tns is the time when the guard cannot see the thief.
Each of the robots will collect gold at different places (Fig. 7) and, depending

on the distance to the gold and the direction of the guard’s route, each agent
faces a different degree of difficulty. The time taken for the agent to fetch a piece
of gold, without interference from the guard, is called its action time (ta). Thief
A, B, C, D have action times of 30, 45, 45, 30 seconds.

Four experiments have been conducted in this paper. In the first experiment,
the guard’s visual field is 360 degrees and in the second, 135 degrees. In the 360
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Fig. 7. Each of the thieves fetches gold at different places. Each with its own level of
difficulty.

visual field experiment, the agent can cover up to half the environment, with the
135 degrees visual field, only a maximum of one fourth of the environment can
be covered. With the 135 degrees visual field, the thieves can run behind the
guard’s back. This gives the thieves more time to collect the gold:

tns =
tg
4

How far ahead each thief predicts is called its prediction time tp. Each of
the experiments, except for the last one, is running repeatedly with different
prediction times for the thieves. The prediction time used in the experiment
ranges from no prediction at all to prediction of a whole lap for the guard (0 -
85 seconds). With a small prediction time, the thief will only use the next few
seconds to calculate a path to the gold. If the thief is seen by the guard, it will
return home without any gold. If the thief predicts that it will be seen it tries
to find a location that is hidden from the guard’s visual field. When predicting
that the guard will see it, the hiding place will be in the direction of its home
zone and not towards the gold. During the experiment, each thief recalculates
the prediction of the guard continuously. With a small prediction time, the robot
can start to run towards the gold and halfway realize that it will soon be visible
for the guard and be forced to turn back.

Each of the agents is given 100 trials to collect gold pieces for each prediction
time and for all experiments the amount of gold and the elapsed time is stored.
Initially, the thieves are located in the safe zone and are not seen by the guard
who is located in the upper left corner of the environment.

Each trial starts with a waiting period for the thief. The thief waits a random
period of time from 0 to the time for the guard to finish one lap (85 seconds). The
waiting period gives each trial a random position of the guard which neutralizes
the risk of a thief getting stuck in a phase where the initial state is the same
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for each trial. After the waiting period, the thief tries to collect gold. When the
guard is at location p, the extent of its visual field is denoted by V (p) and is
calculated using a ray-casting algorithm in the model of the environment. If the
agent does not use any predicting the following criteria must be fulfilled for the
thief to head for a piece of gold:

tp = 0 ∧ pT /∈ V (pG)

If the thief does not use any prediction, it will try to fetch gold if it is not
currently visible to the guard. When the agent starts to use prediction, the
condition are extended to the following:

tp �= 0 ∧ pT /∈ V (pG) ∧ pT (t) /∈
⋃
i

V (p∗i )

With prediction the agent is allowed to try to fetch a piece of gold if it is not
currently visible or predicted to be visible.

If the conditions described above are not satisfied, the robot will seek shelter
instead of going for the gold. This will lead to a waiting behavior if a trial has
started but the guard is currently at a location where it will see the thief. The
thief will wait in a safe position near its home zone until the path is clear from
the guard and then continue its mission to fetch a piece of gold.

If the thief agent has managed to leave the home zone before it realizes that
it soon will be visible to the guard, it will seek shelter. The agent always tries to
find a hiding place towards its home and this can lead to the guard chasing the
thief all the way back to the home zone. If the thief is seen during this retreat,
the trial is not valid. Otherwise, it makes another try to fetch the gold.

For the thief agent to collect a valid piece of gold, one of the following condi-
tions must be fulfilled: With no prediction at all, the agent can mange to collect
a piece of gold if it is not seen by the guard during an attempt to fetch the gold

∀t : 0 ≤ t ≤ ta ⇒ tp = 0 ∧ pT (t) /∈ V (pG(t)).

If the agent uses prediction, a piece of gold is collected if its not seen by the
guard or predicts to be seen by a guard in the second half of its mission:

∀t : 0 ≤ t ≤ ta ⇒ tp �= 0 ∧ pT (t) /∈ V (pG(t)) ∧
[
pT (t) /∈

⋃
i

V (p∗i ) ∨ GT

]
,

were G is true when the thief is carrying gold.
To summarize, four experiments have been conducted in this paper. In Ex-

periment 1, the guards visual field was 365 degrees, in Experiment 2, the guards
visual field was 135 degrees, in Experiment 3, the thief agents know how long
time it takes to fetch a piece of gold and finally in Experiment 4, the thief agents
use the provided action time to calculate the prediction time needed to fetch a
piece of gold.
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5 Results

In all experiments except the last, the agent tries to collect gold 100 times. An
overall result for all the simulations is that longer prediction times cause the
total time for the experiment to increase. The maximum experimental time that
the thieves needed to fulfil their task was 3 hours and 30 minutes. The fastest
experiments were without any prediction. In these cases the total time for the
experiment was less then 2 hours. The experiments simulated a tp from 0 to 85
seconds with a resolution of 1 second, which gives a total of 256 simulations for
all the experiments.

5.1 Experiment 1

In the first experiment, the guard had a 360 degrees visual field. With a large
visual field, the guard will cover more of its surroundings and this will give the
thieves less places to hide.
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Fig. 8. The number of number successful trails for the thieves for each prediction time
when the guard has a 360 degrees field of view

The results show that thief agents A and B, who collect gold from the left
side of the environment, reach a high rate of success (Fig. 8). Thief A collected
a maximum of 98 pieces of gold in 100 trials and both thief A and thief B were
collecting pieces of gold in 80% of the trials with only a 5 second prediction time.

Thief A is able to fetch gold until the prediction time reaches 12 seconds and
thief B until 15 seconds. With a longer prediction time, the agents are not able
to collect any more gold.

Thief C and D collected less gold compared to thieves A and B. At maximum,
thief C manages to collect 90 pieces of gold and thief D collect only 68 pieces
of gold. Neither thief C nor D collected as much gold as thief A or B. With a 5
second prediction time, thief C collects gold on 80% of its trials and thief D on
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Fig. 9. The graph shows the mean number successful trails for the thieves when the
guard has a 360 degrees vision field

65%. With prediction time longer than 5 seconds, the success rate stabilizes and
drops to 0 after 8 seconds for thief C and after 12 seconds for thief D.

5.2 Experiment 2

In this experiment, the guard’s visual field was 135 degrees (Fig. 9). With a
narrower visual field, the guard cannot cover an as large area, which gives the
thieves more time to fetch gold. In this experiment thief A and B reached a
success rate of 90%.

With a prediction time over 25 seconds, the gold rate stabilizes at a high
success rate. Thief A fetches gold until its prediction time reaches 35 seconds
and thief B until the prediction time is over 58 seconds. Thief C starts at the
same level as thief A and thief D as thief B. Both thief C and thief D decrease
their performance with longer prediction time. With a prediction time of over
58 seconds, none of the thieves manage to collect any gold. The success rate for
thief D decreases temporarily down to almost zero at a prediction time of 35
seconds and then raises to a success rate of 40%.

5.3 Experiment 3

In this experiment, the thief agents had a 135 degrees visual field and know their
action times. With this information, an agent no longer tries to fetch a piece of
gold if it cannot predict that it will succeed. The result shows that agents only
try to fetch gold with a prediction time longer than the agents’ action time
(Fig. 10). At this point, the thief will have an optimal success rate until the
prediction time reaches approximately 60 seconds. The result is identical to the
result form the previous experiment when the prediction time is longer than the
action time.
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Fig. 10. The graph shows number successful trails for the thieves when the guard has
a 135 degrees visual field

5.4 Experiment 4

In the last experiment, the thief agents again had a 135 degrees visual field and
use the provided action time to calculate its prediction time. Instead of always
predicting a static length ahead, the agent uses its action time to predict only
the time necessary to fulfill the task. The agents predicts, at least as long as
the action time in the beginning of a trial. During a trial the prediction time is
decreased according to how much the agent manages to fulfill its mission. Instead
of always predicting from the starting location to the gold point and back again,
it only predicts the states from where it is currently, to the end of the task.

The result for this experiment is not the same as in previous experiment
series, where success rate depend on the prediction time. In this experiment,
the prediction time is constantly changing within the system. This gives us an
optimal gold rate for the thief agents. The optimal rate is 0.78, 0.86, 0.51, 0.58
for thief A to D.

6 Discussion

The four experiments conducted in this paper used four different anticipatory
behaviors. The first experiment uses a simple strategy where the guard can see
in all directions. In the second experiment, the guard’s visual field is limited to
135 degrees and in the third, the action time is used when choosing an action
for the agent. In the last experiment, the action time is used to optimize the
prediction time throughout different situations in the experiment.

When the agent does not use any prediction (tp = 0), it only tries to fetch
a piece of gold if it is not currently visible to the guard (pT /∈ V (pG)). With
no prediction, the success rate is higher in the second experiment than the first.
This is due to the limited field of vision of the guard in the second experiment.
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With a broader visual field for the guard, the areas where the thief agents can
hide is reduced. Thief A and B cannot leave their home while the guard is on
the right side of the gold area or between the home zone and the gold area. If
the prediction time is the same or larger than the action time (tp ≤ ta), an agent
will be able to predict the whole route back and fourth to the gold.

Safety margins are an important feature when predicting a task. When the
prediction time is longer than the action time (tp > ta) the agent will be able to
predict the whole task with safety margins. For example, when crossing a street
with traffic, you may want a large safety margin between the cars and your-
self. An erroneous prediction of the cars’ movements, could lead to devastating
consequences.

When agents in the first experiment use prediction, the gold rate will increase
with the prediction time, until the tp reaches the tns. The tns is the time slot
that the thieves have in which they cannot be seen by the guard.

The safety margin is closely connected to the performance of the model. With
a precise model you are less dependent on the safety margin, but usually the
models need to be fast, at the expense of accuracy.

A safety margin that is too long, may reduce the performance of the task.
With a safety margin that is too long, you will never be able to cross the road.
In the agents’ case, a prediction time that is too long will result in agents not
leaving their home zone.

In the second experiment, the guard’s visual field is limited, which gives more
interesting behaviors to the system. The guard is no longer aware of everything
around it. Instead it has limited resources and focuses its attention on the envi-
ronment in front of it. The guard’s limited resources gives the thieves more time
to fetch gold.

The limitation of the visual field for the guard gives the system two interesting
features. First the direction of the guard is now more important for the outcome
of the experiment. In the previous experiment, the thieves that moved along
with the guard when going after the gold were having a lower success rate than
the other thieves. Thieves C and D reach the state where they do not leave the
home zone at all earlier than thief A and B.

When comparing the result from Experiment 1 with Experiment 2, one can
see a clear difference between the two pairs of thieves. For thieves A and B,
the success rate is increasing with longer prediction time in Experiment 1 and
decreasing in Experiment 2. This shows how small changes like the broadness of
the guard’s visual field can have a large impact on the success of the task.

Another difference between the experiments, are the interesting behaviors
that start to appear in the simulations. The thieves start to exploit the guard’s
directed attention to avoid being seen when fetching pieces of gold. Instead of
waiting until the guard is out of their direct line of sight, they sneak out as soon
as the guard has passed. In Experiment 2, the thieves also get trapped when
trying to fetch gold and put themselves in more dangerous situations.

When the thieves start sneaking behind the guarding agent’s back, it gives
the thief a much more dynamic behavior. The behavior is looking more animal
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Fig. 11. The graph shows number successful trails for the thieves

like. Not only will the thieves leave their hiding place earlier, they also start to
sneak behind the guard’s back to avoid being seen while fetching a piece of gold.
An example of this is when the thief is just behind a guard that is about to
turn. When turning the guard may see the thief and the thief is forced to seek
shelter. By using the limitation of the guard, the thief can choose an alternative
behavior. Instead of going back home, it finds a closer hiding place behind the
moving guard’s back. While the guard is turning, the thief follows behind the
guards back.

The change of the guard’s visual field can also lead to trapping situations
where the thief predicts a clear path but, during its mission, the guard manages
to cut off the path between the thieves and their home zone. The result of a trap
could be seen clearly for thief D at a prediction time of 35 seconds, where the
success rate is almost zero (Fig. 9). When the prediction time is more then 35
seconds the thief start to predict the trap and will avoid it.

The last and most important change between Experiment 1 and Experiment 2,
is that the thieves are active closer to the guard in the second experiment. In the
first experiment the thieves had large margins between the guard and themselves
because of the broadness of the guard’s visual field. Now they are more aggressive
and start going after the gold right after the guard has passed.

This is especially true for thief C and D. They are sneaking after the guard
for as long as half their action time which puts them at a higher risk of being
seen compared to a thief that has a larger distance to the guard or is located
where it is not visible to the guard.

The theoretical result and the simulation result are compared in Fig. 11. The
theoretical result indicates that a longer prediction will increase the performance
of the task and this is compatible with the results in Experiment 1 and thief
A and thief B in Experiment 2. The decreasing performance, for thief C and
D in Experiment 2, is harder to calculate theoretically as it depends on the
precisions of the whole system. With a perfect model, thieves C and D would
probably also increase their performance in the second experiment. The result
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from Experiment 2 indicates that with lower safety margins the model must be
able to handle this, otherwise the result could lead to unwanted behaviour.

In Experiment 3, the thieves use their given action time to start a trial only if
it can predict the success of the trial. In our guard and thief scenario, the thief
looses its gold if it is seen but can continue with a new trial afterwards. A thief
behavior like this would be crucial if the task were to be more important. For
example, if the whole experiment ended if a thief was seen, a behavior like this
could give a better result than the behaviors used in Experiment 1 and 2. This
type of importance when making decisions is always present in human decision
making. If we were in a life and death situation, we would be prone to use a
strategy like this, because a failure is worse than not fulfilling the task in the
most efficient way.

In Experiment 4, we let the thief use its action time to adjust its prediction
time. The agent only needs to predict to the estimated end of fetching the gold.
Instead of having a constant prediction time, the agent adjusts its prediction to
fit the particular task better. This way of handling prediction is similar to how
humans handle situations which need prediction.

We use this type of anticipation every day. An example of just this type of
anticipation is when driving a car. When approaching a roundabout, we predict
the other cars in the roundabout and use this together with the prediction for
ourselves to enter the roundabout. This is similar to the anticipation in the third
experiment.

The result from Experiment 4 indicates that a longer prediction time will
actually reduce the performance of the task. The reason for this is that, with a
longer prediction time, the guard and thief will stay closer to each other so the
risk of being seen increases. This is a result of this particular environment where
the thief tries to avoid being seen by the guard on the next lap by moving closer
to on this lap.

In the third experiment, the thieves have a safety margin when the guard is
going towards them but a smaller safety margin when they are going in the same
direction as the guard.

To really benefit when using the prediction, the prediction time must be set
depending on the task. In the guard and thief scenario the most important factor
when deciding the time needed for prediction is the action time. If we know how
long it will take to fetch a piece of gold we can predict according to current
situation.

The action time in the guard and thief scenario is given but could easily be
learnt be the thieves. One scenario could be to let the thieves have a prediction
strategy, as in the first experiment when the action time is unknown, and dur-
ing the experiment they learn it and change their strategy to the one used in
experiment four.

The prediction strategy, used in Experiments 1 and 2, may be more realistic
when there is a number of possible paths to the gold. If the thief has an option
between two routes to the gold and only one is patrolled by the guard, the
strategy in Experiments 1 and 2 would work very well. With a low tp, the path
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where the guard could appear would be used, as the tp increases, the other route
will be chosen more frequently.

The next step would be to apply these simulations to more interesting be-
haviors. The complexity could be increased, by using guards with an attention
system that can be used to turn the visual field in a desire direction or to make
the task more complex by changing the environment. Here, the thieves always
use the shortest path to the guarded houses, but a longer path could potentially
be safer. With the very limited intelligences of the guard, it cannot turn its at-
tention in a way other than in the direction, in which it is heading. If they were
allowed to direct their attention towards interesting areas, it would influence the
task even more than the narrowing of the visual field. In previous work we have
used attention together with event learning [13] and this will be combined with
the current system for future experiments with even more interesting behaviors.
The most exciting extension would be to let the thieves start to manipulate the
prediction with their own actions. In the simplest case by just regulating their
speed in an intelligent way. Just like when approaching a roundabout we make a
prediction and decide to change the predicted state by accelerating or by slowing
down to get a more satisfactory future state.

Simulations with this type of anticipation will be conducted using the AARC
system in the future and some of the experiment will also move from simulation
to real robots.

The results in this paper indicate that a system can gain much using predictive
and anticipatory behaviors. However, a prediction must be used in the right way,
otherwise the result get worse with prediction compare to without.
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Abstract. In order to establish autonomous behavior for technical sys-
tems, the well known trade-off between reactive control and delibera-
tive planning has to be considered. Within this paper, we combine both
principles by proposing a two-level hierarchical reinforcement learning
scheme to enable the system to autonomously determine suitable solu-
tions to new tasks. The approach is based on a behavior representation
specified by hybrid automata, which combines continuous and discrete
behavior, to predict (anticipate) the outcome of a sequence of actions.
On the higher layer of the hierarchical scheme, the behavior is abstracted
in the form of finite state automata, on which value function iteration is
performed to obtain a goal leading sequence of subtasks. This sequence is
realized on the lower layer by applying policy gradient-based reinforce-
ment learning to the hybrid automaton model. The iteration between
both layers leads to a consistent and goal-attaining behavior, as shown
for a simple robot grasping task.

Keywords: Reinforcement learning, hierarchical model, hybrid automa-
ton, behavioral programming, artificial intelligence, planning.

1 Introduction

A characteristic property of intelligent autonomous systems is the capability to
determine goal-attaining behavior for tasks that are posed to the system for the
first time. A crucial point in determining such behavior is to anticipate what the
outcome of an own action is and how the environment reacts to the action, in
order to be able to select the best choice. Several approaches for anticipatory be-
havior of learning systems have been developed in recent years and are described,
e.g. in [5,6]. Reinforcement learning (RL) is one of the main approaches to estab-
lish anticipatory behavior [20,3]. RL uses an estimate of the outcome of future
actions and selects the actions for which a reward is maximized. The estimate of
the outcome is either based on the observation of past behavior (i.e. the system
runs iteratively through similar evolutions and assesses which actions lead to
an preferable outcome) or on model-based computation. The latter approach,
which is chosen in this paper, allows the system to evaluate the effects of a large
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variety of actions, even those which are potentially harmful for the system or its
environment (i.e the system should not encounter corresponding situations in
reality). Depending on the type of model used within RL and the period of time
over which future behavior is anticipated, one can distinguish between reactive
and deliberative planning. Reactive planning (often referred to as bottom-up
approach) considers the momentary situation and produces in response a single
action or a sequence of actions over a short period of future time. Often this
response is suitably determined based on a sophisticated model of the situation
or on a learned knowledge-base. Deliberative planning, in contrast, usually does
not only consider the momentary situation but, in addition, the future evolution
up to the point at which a task is accomplished – this means often that a (longer)
sequence of future actions has to be determined. The model must be appropriate
for anticipating the outcome of this sequence, i.e. the anticipation typically has
to cover a longer time horizon and, as an implication, the underlying model en-
codes behavior in a more abstract setting to enable real-time computation. For
planning of animals or humans, it is natural to combine both types of planning
and learning in a hierarchical setting, i.e. deliberative planning leads to a rough
plan for accomplishing a task, and this plan is further refined into concrete be-
havior using repetitively reaction to a changing environment along the envisaged
plan.

To employ this principle in technical systems, a number of approaches have
been proposed in the last decades, as e.g. multi-modal control, also referred to
as behavior-based robotics in [1]): a behavior based architectures consists of a
reactive controller and deliberative planner. The reactive controller is designed
as a basis behavior with direct access to sensor and actuator signals. The planner
acts on the behavior modules and is responsible for the interconnection of the
different behaviors, which may be executed in parallel. A crucial point within
these approach is the behavior coordination [16], such that emergent behaviors,
not designed by the programmer, may arise. In [12] the behavior-based approach
is used to speed up RL.

Other relevant published approaches combining learning with hierarchical
planning include the following: Parameterized nonlinear differential equations
are used in [19] to define motion primitives, which can be concatenated to build
complex behavior. Hierarchical reinforcement learning schemes, like MAXQ [7],
Options [17], and HAMS [15] use Semi-Markov processes to define subtasks –
this, however, in a rather rigid scheme since the exit states for the subtasks are
defined in advance. A hierarchical reinforcement learning approach on continu-
ous dynamics is described in [14], where a two-level hierarchy is introduced to
speed up learning. The higher level algorithm identifies subgoals in predefined
distances within the state space of the dynamic system, which are then used to
guide the system faster into the desired goal state.

The method presented in this paper is distinct from previously published ones
in the following respects: To represent behavior on two layers of a learning and
planning hierarchy, we use two types of formal dynamic models: On the lower
layer, behavior is formulated in terms of continuous dynamics (specified by ordi-
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nary differential equations) which changes discretely if certain logical conditions
become true or false. Hybrid automata, as introduced in [11], are suitable to
express such combined continuous-discrete behavior which is either controlled
by the discrete mode or in which controllers of the continuous dynamics imply
a certain sequence of discrete modes, see. e.g. [4,10,8,13]. For the example of a
robotic arm for transporting objects, the mode (or logical condition) may model
that different trajectories need to be realized depending on whether an object
is currently grasped or not. Starting from the hybrid automaton on the lower
layer, a more abstract representation of the behavior is derived for the higher
layer to allow deliberative planning. Finite state automata are chosen as the type
of the model, where the states represent different subgoals, and the transitions
encode the continuous evolution of the system in between two subgoals. The
rewards assigned to the transitions on the higher layer are calculated on-line on
the lower level. Based on the finite state automaton, value iteration [3] is used to
find the sequence of transitions with highest reward. This sequence is refined on
the lower layer by applying reinforcement learning to the continuous dynamics
of the hybrid automaton for each mode which corresponds to a transition of the
higher layer sequence. The result is a goal-attaining sequence of actions which
are obtained as a sequence of continuous control trajectories. Compared to the
approach proposed before by the authors in [18], we here combine reinforcement
learning on two layers, and the subgoals represented on the higher layer are cal-
culated on-line. Using this hierarchical scheme, two scale anticipatory behavior
is enforced in the sense that model-based anticipation of the reward of future
actions is the basis for a suitable (or even best) choice of actions.

The paper is organized as follows: Section 2 defines the hybrid automaton
and the problem of computing the respective action sequence for a given task.
The abstraction of the hybrid automaton to the subgoal representation by a
finite state automaton, is described in Sec. 3. The learning algorithms on the
two layers are introduced in Sec. 4. As the main result, the overall algorithm
for combining the two layers is specified in Sec. 5. An illustrating example is
introduced in Sec. 7, and Sec. 8 provides conclusions and an outlook on future
work.

2 Model and Problem Formulation

2.1 Lower Layer Model: Hybrid Automaton

Hybrid automata, as the type of the model chosen for the lower layer of the
learning hierarchy, enable the modeler to formulate distinct continuous behavior
for different modes of operation. In a first modeling step, the set of possible
modes is identified and a discrete state, referred to as location, is assigned to each
mode. Next the possible transitions between pairs of locations are identified and
are formally defined as the transition structure of the hybrid automaton. For
each location, a set of differential equations is identified to suitably describe the
change of the relevant continuous state variables over time. This change usually
depends on continuous input variables and is expressed by first order differential
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equations. Well-known principles of balancing energy, mass, or impulse lead for
many systems straightforwardly such rigorous dynamic models; the identification
based on measured is a possible alternative if the physical principles of the
system to be modeled are not well understood. Finally, the transitions are made
dependent on discrete inputs and on the continuous dynamics by specifying
conditions for the continuous state variables under which a transition is enabled.

Formally a hybrid automaton HA can be defined as a tuple

HA = (Z ,V ,X ,U , inv,Θ , g, r , f )

consisting of:

– Z = {z1, . . . , znz } as the finite set of discrete locations to represent the dis-
crete modes of operation;

– V = {v1, . . . , vnv } as the finite set of discrete inputs, triggering the transi-
tions by specifying the follow-up location1;

– the continuous state x defined on the continuous state space X ⊆ R
nx ;

– the continuous input u defined on the continuous input space U ⊆ R
nu ;

– inv : Z → 2X represents the assignment of invariants to locations; these
invariants, which are compact subsets of R

nx , represent the permitted values
of x as long as HA is in the respective location z ;

– the finite set of discrete transitions Θ ⊆ Z × Z ;
– a mapping g : Θ → 2X which assigns the so-called guard sets to the transi-

tions as the subset of continuous states g((zi, zj)) ⊆ X for which a transition
(zi, zj) ∈ Θ is enabled;

– the reset function r : Θ×X → X which is evaluated when a transition occurs
and which updates the continuous state upon execution of a transition;

– the continuous state dynamics f : Z × X × U → R
nx defining for every

location z the evolution of the continuous states over time by a set of ordinary
differential equations ẋ = f z (x ,u) := f (z ,x ,u).

For these syntactical elements, the evolution of the hybrid automaton can be
written formally as follows: Let the ordered set of event times T = {t0, t1, t2, . . .}
contain the initial time t0 and all points of time at which a discrete transition
is taken. Let z (t) denote the piecewise constant trajectory of the discrete loca-
tions with zk := z (t) for t ∈ ]tk , tk+1]. Likewise, v(t) is the piecewise constant
trajectory of discrete inputs, u(t) the continuous input trajectory, and x (t) the
continuous state trajectory. Define x k := x (tk ) and x+

k := x (t+
k ) with x (t+)

denoting the right hand limit of x at t .
An admissible hybrid state trajectory (z (t),x (t)) resulting from a given control

trajectory (u(t), v(t)) is then obtained as follows: After initialization to z0 =
z (t0) and x+

0 = x (t0), and assuming that no immediate transition occurs at t0,
the progress of HA between two event times tk and tk+1 is given by:

1 As transitions may occur non-deterministically when the guard sets overlap, the
discrete input selects the desired transition.
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– the continuous evolution x (t), t ∈]tk, tk+1] as existing unique solution of

ẋ (t) = f (zk ,x (t),u(t)),

x (tk ) = x+
k

with x (t) ∈ inv(zk ) ∀t ∈]tk , tk+1];
– followed by a transition (zk , zk+1) ∈ Θ which is subject to the guard set

according to x k+1 ∈ g((zk , zk+1)) and triggered by zk+1 = v(tk+1). The
updated continuous state is then obtained from:

x+
k+1 := r((zk , zk+1),x k+1) ∈ inv(zk+1).

Along a hybrid state trajectory (z (t),x (t)), the guard sets can be interpreted
as a sequence of subgoals into which the continuous trajectory is driven within
each location. When a guard set is reached, the system can change from one
location to another. The combination of the continuous dynamics within an
active location and the subgoal is understood as a subtask to be accomplished to
realize the hybrid state trajectory. A subtask is solved by determining the part
of the input trajectory (u(t), v(t)) which refers to the particular location.

2.2 Control Synthesis

A task to be solved can be defined such that a system has to be driven from a
current (or initial) state x k into a given future (or final) state x k+p (p events
later) – obviously, accomplishing the task means to solve a sequence of subtasks.
If solving the task is based on a behavior representation given by HA, a straight-
forward interpretation is that the model is used to anticipate the behavior of the
system under the effect of a chosen input trajectory. We formalize the evolution
from an initial state into a goal state by introducing the following sets:

– an initial hybrid state set (z0,X0) consisting of hybrid states build from one
initial location z0 ∈ Z and possible continuous initial states x 0 ∈ X0 and
X0 ⊂ inv(z0),

– a final hybrid state set (zF ,XF ) in which any element is composed of one
final discrete location zF ∈ Z and a possible continuous final state with
xF ∈ XF and XF ⊂ inv(zF ).

The control synthesis task is to find an input trajectory (u(t), v(t)) for HA
such that:

– an admissible trajectory (z (t),x (t)) results for any x 0 ∈ X0;
– the end state lies within the final set z (te) = zF and x (te) ∈ XF .

In general it is desired to find not only a feasible solution, but one which is op-
timal with respect to some performance criteria, e.g. the time to accomplish the
transfer from the initial state to the goal state. To circumvent the difficulty to solve
an optimal control problem for a hybrid automaton as the underlying dynamical
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system, local performance criteria are introduced for each location. The continu-
ous control u(t) is calculated to maximize the given local performance criteria.

An example is illustrated in Fig. 1: It consist of two locations {z1, z2} rep-
resenting two different continuous dynamics. The invariants for each location,
defining the state space of each continuous subsystem are illustrated by the
gray shaded regions. The two continuous dynamics {f 1, f 2}, defined on R

2, are
restricted to the subsets inv(z1) and inv(z2) respectively. A trajectory start-
ing within location z (t0) = z1 and x (0) ∈ X0, is depicted by the bold black
line. When the trajectory reaches the guard set g12, the discrete input is set to
z (t1) = v(t1) = z2. Thus, the discrete transition is taken and the reset function
r is evaluated for the state x (t1). The evolution of the trajectory starts again in
the co-domain of the reset function, governed then by the new dynamics f 2, and
progresses until the final set XF is reached. A corresponding technical example

inv(z1)

inv(z2)

x1

x2

X0

g12
XF

g21

r((z1, z2), x )

Fig. 1. An illustrating example of an hybrid automaton with two discrete locations z1
and z2

from the area of robotics is the transition from a locomotion task to a grasp-
ing task. The robot chassis dynamics is active while approaching the object to
grasp. When the object is within reach, the grasping dynamics of the robot arm
become active.

2.3 Higher Layer Model: Subgoal Automaton

Before introducing the algorithm for solving the control synthesis task, the sub-
goal automaton for modeling the system behavior in an abstract form on the
higher layer is introduced. As mentioned in Sec. 1, the reason for using a sec-
ond, less detailed behavior representation is that goal attainment by deliberative
planning usually requires to cover longer time horizons – searching for control
trajectories to solve the aforementioned control problem for HA and for long
time horizon often turns out to be too complicated to be accomplished in real
time. Thus, we here choose the approach to vertically decompose the problem
by temporarily searching for a solution to a task on a simplified behavior repre-
sentation. This model must still have enough structure to represent the behavior
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on a qualitative scale as well as a sufficiently small state space to allow finding
an action sequence quickly.

As mentioned above, the trajectory (z (t),x (t)) of a hybrid automaton con-
sists of the alternating sequence between the continuous evolution within one
location and the discrete transition to change locations, which represent partic-
ular modes of operation or capabilities of the technical system. In this regard,
the continuous evolution of the system can be considered as a subtask while the
subgoal, associated with the subtask, is given in terms of the guard set. The con-
tinuous evolution within one location of the HA is represented by a transition
of the subgoal automaton SGA, and a state of SGA corresponds to a guard set
of HA for representing a particular subgoal. For example, the hybrid trajectory
from the previously introduced example (see Fig. 1), is modeled by the sequence
(s0, s12, sF ). For each guard set as well as for the initial set and the final set,
a discrete state is introduced in SGA – the corresponding model is shown in
Fig. 2.

s21

s0

sFs12

a121

a012

a212 a1F

a20

Fig. 2. SGA model for the example in Fig. 1

Formally, the automaton is defined by:

SGA = (S ,A, h)

with:

– the finite set of discrete states S = {. . . , sij , . . .}∪{s0, sF} with one state sij
for each guard set gij defined for HA, complemented by the initial state s0
and the desired final state sF ;

– the set A = {. . . , ass′ , . . .} of actions ass′ which represent the hybrid evo-
lution of all trajectories originating from the guard set gs and leading to
gs′ ;

– the transition function is defined by h(s , ass′) = s ′ for a transition from
the state s to the state s ′ under effect of the action ass′ (introduced for
any possible transition of HA). Additionally, transitions for the initial state
s0 and the final state sF are defined, i.e. s0 is connected to all states s ∈ S
representing a guard set contained in the invariant gs ∈ inv(z0), and a similar
construction is used for the final state sF .
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2.4 Example

The modeling procedure is illustrated for a simple example consisting of a 1-
DOF robot arm which can move forward and backward. The task is to grab the
ball at position p0 and move it to p1.

p0 p1

ma

mb
x

Fig. 3. Robot arm with the aim to move the ball to position p1

The HA for the robot is modeled by two locations (z1, z2), where one repre-
sents free arm movement and one represents the movement of the arm with the
ball. The dynamics within the locations are given by

z1 : ẍ =
u

ma
, z2 : ẍ =

u
ma + mb

,

and the guard sets by:

g12 = {x | x = p0}, g21 = {x | x = p1}.

The grabbing/releasing of the ball is considered to be triggered by the discrete
input signal v ∈ {z1, z2}.

The states of the corresponding abstract model SGA are given by s0 (the
initial state as shown in Fig. 3), s12 (representation of the guard set g12), s21
(corresponding to the guard set g21), and sF : (the final state). A task for this
system would be to design a controller which drives the robot arm from x 0 to
p0, set v(t) = z2 such that the ball is grabbed and the transition is taken. Then,
the ball has to be moved to p1 and the discrete input is reset to v(t) = z1.

In general, the control synthesis task for the hybrid automaton is solved by: a)
determining an appropriate sequence of locations, b) identifying the appropri-
ate switching times/states for triggering the discrete transitions, and c) finding
the continuous control laws within each location for driving the system to the
identified states within the chosen guard sets.

3 Solution Algorithm

In the following, value iteration is used to find the sequence of locations on
the higher layer and reinforcement learning is used to calculate the continuous
control law on the lower layer. The reward signal on the higher layer, as the
underlying driving force of the value iteration algorithm, is first initialized to a
guess and then iteratively updated based on computation on the lower layer. The
reward signal on both layers is designed such that a positive reward is assigned
if a desired state is reached, and a negative reward if not.
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3.1 Value Iteration

Given the SGA model on the higher layer, value iteration is applied to find an
action sequence which leads the system from the initial state to the desired goal
state.

For a policy π : S → A, which provides for each state an appropriate action,
the accumulated reward from the initial state s0 to the goal state sN is given
by:

W π(s0) =
N−1∑
k=0

c(sk , h(sk , π(sk ))),

where (s0, s1, . . . , sN ) is the indexed state sequence of the resulting trajectory.
The calculation of the rewards css′ := c(s , s ′) associated with every action ass′

will be described in detail in Sec. 4. For realizing the goal oriented behavior, the
policy (a state to action mapping) is derived such that the reward-to-come is
maximized:

W (s0) = max
π

N−1∑
k=0

c(sk , h(sk , π(sk ))).

Applying the Bellman Principle, the maximal reward-to-come, referred to as the
value function, is formulated recursively

W (s) = max
a

{c(s , h(s , a)) + W (h(s , a))}, ∀s ∈ S . (1)

A greedy policy is directly derived by maximizing the one step reward plus the
expected/anticipated reward-to-come from the resulting state.

The subgoal automaton is a deterministic finite state automaton. Thus, value
iteration (see [3]) with a look-up table representation is a viable solution method
for the calculation of the value function.

After initialization of all values to zero, W0(s) = 0 for all s , the value function
is iteratively updated for all states by:

Wi(s) = max
a

{c(s , h(s , a)) + Wi−1(h(s , a)},

where i is the iteration index. Since no uncertainty of the outcome of actions
need to be considered, the incremental update rule (normally included in value
iteration schemes) is omitted. The pseudo code of the iterative procedure is listed
in Alg. 1. The state sequence from the initial state to the final state is obtained
by using the greedy policy.

3.2 Continuous Valued and Time Reinforcement Learning

In this section, the algorithm for the realization of the control commands on
the lower layer is introduced. The objective is to implement a solution which
is consistent to the sequence of discrete actions on the higher layer. The same
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Algorithm 1. Value iteration
INITIALIZATION: ∀s : W0(s) = 0, i = 0, δ = ∞
VALUE ITERATION:
while δ > Δ (a small threshold) do

for all s ∈ S do
Wi+1(s) := maxa∈A{c(s, h(s, a)) + Wi(h(s, a))}
δ = min(δ, |Wi+1(s) − Wi(s)|)
i := i + 1

end for
end while
STATE SEQUENCE:
return (s0, . . . , sn )

reward principle as on the higher layer is used. The algorithm for the implemen-
tation of a continuous time, continuous-valued version of reinforcement learning
was introduced in [9]. It is stated here in condensed form: Since each location is
considered separately, the system dynamics is specified by:

ẋ (t) = f (x (t),u(t)),

where the index for the location z is here omitted for simplicity of notation.
The reward signal is denoted by l(x (t),u(t)) and control inputs are calculated
to maximize the cumulative reward – this may model, e.g., the inverse time to
reach the next subgoal or the negative quadratic distance to the subgoal.

Similarly as previously introduced for SGA, the reward-to-come for a policy
u(t) = μ(x (t)) is given by:

V μ(x (t)) =
∫ tF

t

e−
s−t

τ l(x (s),u(s))ds ,

where tF is the time at which the trajectory x (t) reaches the guard set, or the
subgoal respectively. τ is the time constant for discounting future rewards. The
optimal value function maximizing the cumulative future reward is given as:

V ∗(x (t)) = max
u(s)

∫ tF

t

e−
s−t

τ l(x (s),u(s))ds ,

with u(s), s ∈ [t , tF ]. Applying the Bellman principle of optimality leads to a
discounted version of the Hamilton-Jacobi-Bellman equation (see [9] for details):

1
τ
V ∗(x (t)) = max

u
{l(x (t),u(t)) +

V ∗(x (t))
x

f (x (t),u(t))}, (2)

and the policy at a certain time is derived from the right-hand side to:

u = μ(x ) = argmax
u

{l(x ,u) +
V ∗(x )

x
f (x ,u)} (3)
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Since a continuous time, continuous-valued dynamical system is considered
(within one location), a look-up table representation of the value function is not
appropriate. Instead a function approximation architecture is used to represent
the value function:

V μ(x (t)) ≈ V (x (t),w).

Learning of the value function is performed in terms of updating the parameter
w of the function approximation. The self-consistency condition, which follows
from Eq. (2) to V̇ μ(x (t)) = 1

τ (V μ(x (t))−l(x (t), μ(x (t))), is used to evaluate the
current estimate V (x (t)) of the value function. The weights of the approximation
are adapted such that the error:

E (t) =
1
2
|V̇ (x (t)) − V (x (t)) + l(x (t), μ(t))|2 (4)

is minimized. As described in [9], a potential problem using V̇ to update the
weights is the symmetry in time. An approach to update the past estimates of
V (x (t)) without affecting the future estimates is to employ an Euler approxi-
mation V̇ (x (t)) = (V (x (t)) − V (x (t − Δt)))/Δt . The gradient of the squared
error (4) with respect to the parameter wi results then in:

∂E (t)
∂wi

= δ(t)
1

Δt

[(
1 − Δt

τ

)
∂V (x (t),w)

∂wi
− ∂V (x (t − Δt),w)

∂wi

]
with:

δ(t) =
1

Δt

[(
1 − Δt

τ

)
V (x (t)) − V (x (t − Δt))

]
+ l(x (t), μ(x )) (5)

as the temporal difference error. It coincides with the conventional TD error (see
[20]). A gradient descent algorithm to search for the wi , which minimizes the
error, uses the rule:

ẇi = −ηδ(t)
[(

1 − Δt
τ

)
∂V (x (t),w)

∂w i
− ∂V (x (t − Δt),w)

∂wi

]
(6)

with η as the learning rate. This update scheme corresponds to the residual-
gradient algorithm (see [2]).

The control law: The proposed procedure is an on-line learning approach,
thus the control law stated in Eq. (3) has to be solved in every simulation step.
Depending on the complexity of the reward l(x ,u) and the system dynamics
f (x ,u), the solution of this static optimization problem is in general difficult
to obtain. A possible approach is to establish an actor-critic architecture: the
feedback mapping μ : X → U is approximated by a function approximator and
is learned online. Under the assumptions that the reward function l is convex
in x and the dynamics is linear with respect to u , an analytic solution can be
derived by differentiating Eq. (3), leading to:

0 =
∂l(x ,u)

∂u
+

∂f (x ,u)T

∂u

∂V (x )T

∂x
. (7)
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The solution with respect to u results in the control law. In [9], this is referred
to the value-gradient based policy.

The algorithm which realizes the described steps is specified below as(Alg. 2.
For each of a chosen number of N trials, the dynamics and parameter equation is
numerically simulated for the time interval [0P ], where P is an estimated upper
bound of time required to reach the corresponding subgoal.

The algorithm (Alg. 2) is embedded into the overall scheme according to Alg. 1
as the step to compute the rewards c, see the next section. A value function Vg

for each guard set g is determined when the corresponding continuous evolution
into g is requested as part of the action sequence computed on the higher layer.

Algorithm 2. Value-Gradient based value iteration within one location
PARAMETERS: N , P
INITIALIZATION: w(0) := 0
PROGRESS:
while j < N do

SET: x (0) := x0, t := 0
while t ≤ P do

Simulate x (t) and w(t) with
ẋ (t) = f (x (t),u(t))
ẇi(t) = −ηδ(t) 1 − Δt

τ
∂V (x(t),w)

∂wi
− ∂V (x(t−Δt),w)

∂wi

end while
j := j + 1

end while

4 The Hierarchical Learning Approach

Based on the algorithms 1 and 2, this section describes the overall procedure of
hierarchical learning. A crucial point of this procedure is the calculation of the
transition rewards for the algorithm 1. The rewards cijk represent the cumulative
reward obtained along the trajectory of the system within one location. Addi-
tionally, for each state s of the SGA, a goal state x s ∈ gs for the corresponding
subtask is assigned. It is used on the one hand to set the discrete control input
v when the continuous state trajectory enters a subgoal, and on the other hand
to guide the system within one location, i.e. to determine the low-level reward
signal l .

4.1 Subtask Reward Calculation

A transition ass′ of the subgoal automaton SGA represents the transfer of the
system from the entry into a location (e.g. by the preceding reset) into the next
guard set of the hybrid automaton HA. The transition can be interpreted as the
set of all possible trajectories connecting gs with gs′ , i.e. the rewards css′ in the
SGA represent the cumulative reward arising from such a transfer.
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For the calculation of the transition reward, the value function Vs′ of the
goal location is used in combination with the continuous goal state x s of the
preceding location:

css′ = Vs′(r s(x s)). (8)

As will be described below, the continuous subgoal state x s is calculated online
and may change over the iterations. In the case that the subtask cannot be
achieved, i.e. the subgoal state is not reachable, a low reward value is assigned
to the corresponding transition of SGA.

4.2 Subgoal State Calculation

Until now, the focus was on the calculation of the sequence of goal leading
locations and the corresponding continuous control trajectories u(t). To obtain
the control for setting the discrete input v , and thus to trigger a particular
transition, the subgoal state x s ∈ gs is examined further. The subgoal state of a
subtask is restricted to lie within the particular guard set gs which terminates
the subtask.

Starting the continuous evolution x (0) ∈ inv(zi) of the system within location
zi , the discrete input is set when the trajectory reaches the subgoal state

v = zj if x (t) = x sij ∈ gsij .

By determining the subgoal state within a guard set, the decision where and
when to switch is determined autonomously.

The subgoal plays a crucial role for the decision where to change location. The
subgoal state is the goal state for the current subtask. It is chosen to complete the
subtask (inside the guard set) and to give an initialization for the next subtask.
Thus, the subgoal state is calculated within the corresponding guard set and to
maximize the reward-to-come for the subsequent subtask s ′:

x s = argmax
x∈gs

Vs′(r s(x )). (9)

Thus, the choice of x s is based on an anticipation of the reward-to-come of the
next subtask. If the optimization result is not unique, the subgoal state is picked
randomly from the set of possible states.

4.3 Algorithm

The formulae Eq. (8) and Eq. (9) complete the set of components required to
formulate the overall learning algorithm. After the initialization of the value
function Vs for each state s of the SGA, the iteration is started. The first value
iteration results in a shortest path sequence from the initial state s0 to the final
state sF , since no value function on the lower layer is trained and no subgoal
x s is reached yet (equal rewards for all transitions). After the sequence of guard
sets (s0, . . . , sn) is determined by Alg. 1, the following is carried out for each



314 M. Rungger, H. Ding, and O. Stursberg

transition ass′ referring to this sequence: first, the continuous subgoal state x ′
s

is calculated, and then Alg. 2 is executed to learn Vs′ . If the system trajec-
tory reaches the subgoal state x (t) = x s′ , the transition ass′ proposed by the
higher layer is realized and the learning of Vs continues for the next location.
If the subgoal state was found to be not reachable, the learning for the partic-
ular sequence (s0, . . . , sn) stops, the value function results in a low reward, and
thus the corresponding transition of the SGA is avoided subsequently. Then,
the value iteration on the higher layer resumes, this time with updated value
functions Vs to adapt the transition rewards. In this manner, the higher layer
value iteration is steered towards a state sequence for which the the guard sets
on the lower layer are reachable, and accordingly the control synthesis task in
Sec. 3.1 is solved. The algorithm, which is listed in Alg. 3, stops when the fi-
nal state is reached. Of course, the iteration may be repeated to enhance the
performance.

Algorithm 3. Algorithm for hierarchical reinforcement learning
INITIAL/FINAL STATE: x s0 := x0, x sF := xF

INITIALIZATION: render SGA, w s(0) := 0,
PROGRESS:
while ||x (t) − xF || < ε do

for all ass′ ∈ A do
css′ := Vs′(r s(x s))

end for
determine (s0, . . . , sn ) by Alg. 1
for i = 1 : n do

x si+1 := arg maxx∈g
si+1 Vsi+2(r(x ))

use Alg. 2 with x0 := x si , xG := x si+1

if x (t) 	= x si+1 then
break and resume with outer while loop

end if
end for

end while

5 Simulation Results

In this section, the procedure is illustrated by means of a 2-DOF robot arm.
Similar to the previously introduced example, the task is specified as a trans-
portation problem, in which the robot arm has to move to position p0, grab the
ball, move it to position p1, and release it there (see Fig. 4). To illustrate the
proposed approach, the behavior of the robot arm is fixed to separated linear
and rotational motion. The resulting hybrid automaton consists of 4 locations,
representing linear motion without ball, linear motion with ball, rotational motion



Multiscale Anticipatory Behavior by Hierarchical Reinforcement Learning 315

p0

p1

ϕ

l

Fig. 4. The robot arm aims to move the ball from position p0 to position p1 by using
its revolute and prismatic joints

without ball, and rotational motion with ball. The dynamics for the locations is
given as:

z1 : ẋ =

⎛⎜⎜⎝
u1
0
0
0

⎞⎟⎟⎠ z2 : ẋ =

⎛⎜⎜⎝
u1
0
u1
0

⎞⎟⎟⎠

z3 : ẋ =

⎛⎜⎜⎝
0
u2
0
0

⎞⎟⎟⎠ z4 : ẋ =

⎛⎜⎜⎝
0
u2
0
u2

⎞⎟⎟⎠
with x = (l , ϕ, lB , ϕB)T , denoting the translational positions (l , lB) and the
angles (ϕ, ϕB) of the robot’s end-effector, and the ball respectively (index B).
Neglecting the inertial forces, it is assumed that the translational control u1 and
the rotational control u2 are commanded directly. The invariants of all locations
are given by inv(z ) = [0.5, 1.2]× [−π, π] × [0.5, 1.2]× [−π, π].

Fig. 5(a) displays the hybrid automation with the four locations and the
corresponding guard sets and transitions. The transition from location z1 to
z2, i.e. from linear motion without ball to linear motion with ball is bound to
the guard set g12 = {x | |x1 − x3| < 0.01} indicating the state space, where
the end-effector approaches the ball (grabbing the ball is neglected). Since it is
everywhere allowed to release the ball, the guard set g21 for the reverse transition
coincides with the invariant of the location. The guard sets corresponding to the
transitions of the system from linear motion to rotational motion (z1 to z4 and
z2 to z3) also coincide with the invariant, and such that it is always possible
to take the transition. The reverse transition (from rotational to linear motion)
is restricted to the part of the state space in which the angular displacement is
zero: g32 = g41 = {x | x2 = 0}. The task initial state x 0 = (0.5 0 1.1 0)T ∈ inv(z1)
and final position xF = (0.8 0 0.8 π/3)T ∈ inv(z4) are marked in the figure.

The generated SGA is shown in Fig. 5(b). Its state set consists of one state
each for representing the guard sets sij , the initial state s0 and the final state sF .

According to the given task, the algorithm 3 is able to determine the following
solution, which intuitively is the correct one: The end-effector is first moved
from x0 ∈ inv(z1) to the ball position x1 = xB, thus entering the guard set
g12 and triggering the transition to z2. Then the ball is moved to x1 = 0.8 and
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x0 z1 z2

z3z4

g12

g21

g23

g32

g34

g43

g14

g41

gF

(a) The hybrid automation with its
guard sets for the considered robot arm.

s0

s12

s21

s23

s32

s34

s43

s14 s41

sF

(b) The generated transition automa-
ton.

Fig. 5. Dynamic models for the robot example

the transition to rotational motion occurs by which φ is changed to x2 = π/3.
The point (x s34 = (0.8 0 0.8 0)T) is determined iteratively by Eq. (9) within the
algorithm. The ball is then released and the robot arm moved to x2 = 0. The
corresponding state sequence for the SGA is (s0, s12, s23, s34, sF ).

To obtain this result, the continuous control on the lower layer is achieved by
formulating the reward for guiding the end-effector to the desired subgoals x s

within the different locations as:

r(x ,u) = −|x(t) − x s |2 −
∫ ui

0
ν tan

(
π

2
u

umax
i

)
du,

such that the control law using Eq. (7) results in:

μz (x ) =
2
π

umax arctan
(

1
ν

∂f z (x ,u)T

∂u

∂V (x ,w)T

∂x

)
.

The constant ν is chosen to 0.01, and the underlying approximating function
consists of linearly weighted Gaussian bell-shaped functions, also known as radial
basis functions (RBF).

For the iterative computation on the higher layer, the transition rewards for
SGA are initialized with −0.1, and the weights of the RBF-network are initialized
to 0. The first value iteration results in the shortest path sequence since all
transitions are initialized with the same reward, i.e. the sequence is:

(s0, s14, sF ).

As a result, the guard set g14 on the lower layer is the subgoal in the first step. Af-
ter the calculation of the particular state x s14 in g14 by evaluating argmaxx VsF ,
(see Eq. (9)) algorithm 2 is evoked with N = 10 trials for P = 10 sec. The tra-
jectory within the last trial reaches the guard set g14, thus the transition is
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taken and the algorithm continues within location z4. Alg. 2 is started again,
now with x sF = (0.8 0 0.8 π/3) targeting the final state. Since the last trajectory
within the iteration does not reach the final state (the ball is still at the initial
position), the iteration is interrupted, and the value iteration (Alg. 1) for SGA
is started again. This time, the rewards for the transition (s0, s14) and (s14, sF )
are updated by the values from Vg14 and VgF trained in the previous itera-
tion. While learning VgF , the goal is never reached, thus the reward diminished
to −0.30 (see Tab. 1). Thereafter, the value iteration results in the desired se-
quence (s0, s12, s23, s34, sF ), but it can not be realized on the lower level since the
corresponding value functions for the low level are not yet trained well enough.
Different sequences on the higher level are evaluated until again the desired se-
quence (s0, s12, s23, s34, sF ) is selected in the 5th iteration, which eventually can
be realized on the lower layer.

Table 1. Value function for SGA. Next to each value the index within the state
sequence computed for SGA is listed.

W 0 W 1 W 2 W 4 W 5

s0 -0.20 1 -0.40 1 -2.48 1 -2.50 1 -3.16 1
s12 -0.30 – -0.30 2 -0.50 2 -1.64 – -1.64 2
s23 -0.20 – -0.20 3 -0.20 – -0.20 – -0.20 3
s34 -0.10 – -0.10 4 -0.10 6 -0.10 4 -0.10 4
s41 -0.20 – -0.40 – -0.40 – -0.40 – -1.74 –
s14 -0.10 2 -0.30 – -0.30 4 -0.30 2 -1.84 –
s21 -0.20 – -0.40 – -0.40 3 -0.40 – -1.74 –
s32 -0.30 – -0.30 – -0.30 – -0.30 – -0.30 –
s43 -0.20 – -0.20 – -0.20 5 -0.20 3 -0.20 –
sF 0 3 0 5 0 7 0 5 0 5

The value functions Vg12 ,Vg23 ,Vg34 ,VgF used for the calculation of the con-
tinuous control law for the final sequence are plotted in Fig. 6(a-d). The black
solid lines show the trajectory of the end-effector within the last iteration. The
value functions have their maxima where the corresponding highest rewards are
observed. For example, Vs12 is the value function driving the system from the
linear motion without ball to linear motion with ball. The transition occurs when
the end effector reaches the ball position at x1 = 1.1. It can be seen that Vg12

has its maximum at this value, and thus the end effector is driven to the ball
position.

The subgoal state x s23 ∈ [0.5 1.2] × 0 × [0.5 1.2] × 0 triggering the transition
from linear motion to rotational motion with ball is determined by evaluating
argmaxx Vs34 . The guard set g34 represents the transition from the rotational
motion with ball to the rotational motion without ball. It is triggered at x s34 =
(0.8 π/3 0.8 π/3)T . The value function Vs34 is plotted over the guard set g23 in
Fig. 6(e). It can be observed that the maximum is at x1 = 0.8, hence x s23 =
(0.8 0 0.8 0)T . The trajectory of the end-effector for completing the task is plotted
over time in Fig. 6(f).
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(f) Goal leading trajectory of the end-
effector over time.

Fig. 6. Numerical results for the hierarchical reinforcement learning algorithm

6 Summary and Conclusion

A hierarchical algorithm is proposed by which a technical system can estab-
lish autonomous goal-attaining behavior for new tasks. To select between (se-
quences of) possible actions to accomplish the task, model-based anticipation of
the outcome of actions is used. The starting point, a hybrid automaton model,
represents the different capabilities of the system, but is often to complex for
finding control trajectories that solve the given task. Thus, the suggestion is
to generate the subgoal automaton (SGA), for which value iteration leads to a
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coarse and potentially goal-attaining sequence of subtasks. The rewards of the
transitions of SGA are updated iteratively from the lower level execution. The
vertical decomposition of the task solution together with the model-based an-
ticipation contribute to finding plans an control actions for rather complicated
task without the necessity of exploring the complete hybrid state space. On both
layers of the hierarchy an anticipated estimate of the future reward outcome of
possible action are computed – since the complete computation is model-based,
the system does not need to experiences behavior which is not successful (or
possibly harmful) in reality.

The introduced example demonstrates the viability of the proposed approach
for task solving, when different dynamics need to be activated in sequential man-
ner. The benefits of the approach is that the complicated tasks is split into a
(deliberative) planning of abstract action sequences on the higher layer and the
realization (reactive planning) on the low layer. Even if the solution is com-
pletely unclear to the system when the task is posed, the integrated solution
scheme achieves to find a feasible solution after a relatively low number of it-
erations without exploring large parts of the state search space of the original
problem (defined for HA). Thus, the hierarchical approach seems promising to
render reinforcement learning applicable to relative complex problems, by en-
forcing motion constraints and defining simple basic motion primitives, as in the
example where the robot arm is restricted to activate linear motion or rotational
motion sequentially. It is a matter of current work to investigate in detail what
complexity of tasks can be accounted for by the proposed approach.

Future work will focus on a formal convergence proof of the approach as well
as on a reduction of the number of hand tuned parameters, like the duration
and number of trials for the continuous time reinforcement learning.
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Röntgenring 11

97070 Würzburg, Germany
mbutz@psychologie.uni-wuerzburg.de

Abstract. Factored Reinforcement Learning (frl) is a new technique
to solve Factored Markov Decision Problems (fmdps) when the struc-
ture of the problem is not known in advance. Like Anticipatory Learning
Classifier Systems (alcss), it is a model-based Reinforcement Learn-
ing approach that includes generalization mechanisms in the presence
of a structured domain. In general, frl and alcss are explicit, state-
anticipatory approaches that learn generalized state transition models to
improve system behavior based on model-based reinforcement learning
techniques. In this contribution, we highlight the conceptual similarities
and differences between frl and alcss, focusing on the one hand on
spiti, an instance of frl method, and on alcss, macs and xacs, on the
other hand. Though frl systems seem to benefit from a clearer theoret-
ical grounding, an empirical comparison between spiti and xacs on two
benchmark problems reveals that the latter scales much better than the
former when some combination of state variables do not occur. Based on
this finding, we discuss the mechanisms in xacs that result in the better
scalability and propose importing these mechanisms into frl systems.

1 Introduction

This paper is about two classes of explicit state-anticipatory systems [1] that
learn generalized state transition models to improve their behavior based on
model-based reinforcement learning techniques.
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On the one hand, Learning Classifier Systems (lcss) are rule-based systems
where the rules (called classifiers) are learned from experience. Due to genetic
algorithm-based generalization mechanisms, lcss were shown to build compact
representations of Markov Decision Problems (mdps) and learn to behave op-
timally. Anticipatory Learning Classifier Systems (alcss) [2] deviate from this
classical framework on one fundamental point. Instead of [Condition] → [Action]
classifiers, they manipulate [Condition] [Action] → [Effect] classifiers, where the
[Effect] part represents the expected effect of the action in all situations that
match the [Condition] part of the classifier. A set of classifiers constitutes a model
of transitions, as it is called in the Reinforcement Learning (rl) literature Thus,
alcss are an instance of model-based rl architectures—a category of systems
whose prototype is the Dyna architecture [3]. As a result, alcss can be seen as
combining two crucial properties of rl systems: Similar to the Dyna architec-
tures, they learn a model of transitions, which endows them with anticipation
and planning capabilities and can speed up the learning process. Similar to clas-
sical lcss, they benefit from generalization mechanisms, which enable them to
build much more compact models than tabular Dyna architectures [2,4].

On the other hand, in the rl literature, the Factored Markov Decision Pro-
cesses (fmdps) framework was introduced to represent large and structured mdps
compactly [5]. In this approach, a state is implicitly described by an assignment
of values to some set of state variables—a representation that shares strong sim-
ilarities with the one used in lcss where the variables are termed “attributes”.
But the structure of the model of transitions is assumed to be known in fmdps,
which stands in contrast with the alcs framework where this structure is learned
from experience.

sdyna [6,7] is a family of systems that perform rl in the fmdp framework
where the structure of the model of transitions is learned from experience—
an approach that we call Factored Reinforcement Learning (frl). Thus, like
alcss, frl systems are model-based rl systems endowed with a generalization
capability.

In this contribution, we examine the conceptual similarities and differences
between two alcss named macs and xacs on the one hand, and one instance of
sdyna named spiti on the other hand. Then we perform an empirical comparison
between xacs and spiti based on two benchmark problems, namely Maze6 and
Blocks world. The comparison reveals a conceptual problem in the structured
dynamic programming algorithm of spiti, svi, from which xacs does not suffer.
As a consequence, we discuss the possibility of improving frl systems based on
xacs mechanisms.

The paper is organized as follows. In the next section, we give some back-
ground about lcss, alcss, fmdps, frl and, in particular, spiti. Then in Sec-
tion 3, we highlight conceptual similarities and differences between spiti, macs
and xacs. In Section 4, we present the experimental study. This comparison
shows that xacs outperforms spiti when the representation used to describe
states of the problem can give rise to impossible combinations of values, which
is discussed in Section 5 before concluding.



Anticipatory Learning Classifier Systems and FRL 323

2 Background

2.1 Learning Classifier Systems

Learning Classifier Systems (lcss) [8] were invented by Holland [9] in order
to model the emergence of cognition based on adaptive mechanisms. In lcss,
knowledge is represented by a set of rules called population of classifiers, which
is evolved by adaptive, usually evolutionary learning mechanisms. In Holland’s
original work, the cognitive part of the system was implemented by a list of
internal messages that related the perception of an agent to its actions through
an eventually complex message passing process.

Wilson published two radically simplified versions of the initial lcs archi-
tecture, named zcs [10] and xcs [11], in which the list of internal messages was
removed. These (now standard) lcss use condition-action classifiers and combine
rl methods with Genetic Algorithms (gas) to learn a compact rule sets.

The [Condition] part of classifiers is a list of tests. There are as many tests
as attributes in the problem description, each test being applied to a specific
attribute. In the most common case where the test specifies a value that an
attribute must take for the [Condition] to match, the test is represented just by
this value. There exists a particular test, denoted “#” and called “don’t care”,
which means that the [Condition] part of the classifier will match whatever the
value of the corresponding attribute. At a more global level, the [Condition]
matches if all its tests hold in the current situation. In the case of matching, the
classifier may be used to determine current behavior.

2.2 Anticipatory Learning Classifier Systems

Riolo [12] was the first to publish an explicitly anticipatory lcs. His system,
Cfsc2, was directly inspired by the original lcs architecture of Holland [13]
with internal messages.

The first alcs designed after Wilson’s simplifications of the original lcs ar-
chitectures [10] was acs [14,15]. Central to acs, the alp (Anticipatory Learning
Process) algorithm is the formal counterpart of Hoffmann’s psychological theory
of Anticipatory Behavioral Control [16]. acs was later extended by Butz to be-
come acs2 [17,18] and finally xacs [19]. In parallel, Gérard proposed yacs [20]
and macs [21].

The key difference between lcss and alcss lies in the presence of an [Effect]
part in the latter systems. In acs, acs2 and yacs, the [Effect] part of each
classifier tells which attributes do change and which do not given a certain action
is executed in a given situation. To represent this, the [Effect] part can contain a
“=” symbol, which means that the corresponding attribute does not change. For
instance, classifier [#0#1] [0] [=10=] predicts that situation [1031] changes
into situation [1101] given action [0] is executed, while situation [2011] is
predicted to change into [2101]. By contrast, macs uses in the [Effect] part
a “?” symbol, which denotes that the classifier cannot predict the value of the
considered attribute. The addition of this new symbol results in the capacity to
predict the value of each attribute separately at the next time step.
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2.3 Factored Markov Decision Processes

The fmdp framework was invented independently from research on lcss, but it
is based on an equivalent formalism. Indeed, an fmdp is described by a set of
state variables S = {Xi...., Xn}, where each Xi takes value in a finite domain
Dom(Xi). A state s ∈ S assigns a value xi ∈ Dom(Xi) to each state variable Xi.
These variables are the formal counterpart of attributes in the lcs framework.

fmdps utilize dependencies between variables, defined using Dynamic
Bayesian Networks (dbns) [22], to compactly represent the transition and re-
ward functions of structured mdps.

The model of the transition of the fmdp is defined by a separate dbn model
Ta = 〈Ga, {P a

X1
, . . . , P a

Xn
}〉 for each action a. Ga is a two-layer directed acyclic

graph whose nodes are {X1, . . . , Xn, X ′
1, . . . , X

′
n} with Xi a variable at time t and

X ′
i the same variable at time t + 1. The parents of X ′

i are denoted Parentsa(X ′
i)

with Parentsa(X ′
i) ⊆ X . The transition model Ta is quantified by Conditional

Probability Distributions (cpds), denoted P a
Xi

(X ′
i|Parentsa(X ′

i)), associated to
each node X ′

i ∈ Ga. In practice, these cpds can be represented as tables, as rules,
as a set of decision trees, or as decision diagrams. In each case, the representation
gives the probability distribution of each X ′

i given the values of Parentsa(X ′
i). In

the case of rules or tables, the generalization property comes from the fact that
only the variables belonging to Parentsa(X ′

i) are used to represent the distribu-
tion over X ′

i. This corresponds to using a “#” for the attributes that correspond
to all other variables in the lcs representation.

Given this representation of the transition function and a similar compact rep-
resentation of the reward function, different dynamic programming algorithms
such as svi and spi for trees [23] and spudd for decision diagrams [24] were
shown to converge to the optimal policy [23] while using a representation that
is exponentially smaller than the tabular one.

2.4 Factored Reinforcement Learning and spiti

In fmdps, the transition function expressed as a set of cpds is considered known.
But for most complex problems, designing these probability distributions by
hand is difficult, if not impossible. And to represent them compactly makes
things even more difficult.

An alternative consists in learning from experience a model of the transition
function under a compact form. If learning the model and dynamic program-
ming backups are performed simultaneously, then this approach is the structured
counterpart of indirect rl systems, whose prototype is the dyna architecture.

This insight led to the design of sdyna as a structured version of the dyna
architecture where the model of transitions and of the reward are learned from
experience under a compact form [7]. spiti is a particular instance of sdyna. It
uses an incremental version of svi to perform dynamic programming and learns
the model of transitions in the form of a collection of decision trees using the
Incremental Tree Induction (iti) algorithm [25].
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3 Systems and Comparisons

3.1 Comparing SPITI with MACS

Both macs and spiti call upon a model-based rl process and are endowed with
a generalization property that makes them able to address large mdps without
prior knowledge of the structure. Furthermore, their representations of the model
of the transitions have a similar structure. Indeed, consider an agent in a grid
world that perceives whether the eight surrounding cells (starting North and cod-
ing clockwise) contain a wall or not (see Figure 1). The formalism in acs, acs2,
xacs and yacs is able to represent regularities such as“when the agent perceives
a wall to the north, whatever it perceives in any other direction, going north
does not produce any sensory change”, which may be represented by the follow-
ing classifier if the first attribute corresponds to the value of the North sensor:
[1#######] [North] [========]. By contrast, macs can represent regulari-
ties between different attributes with a classifier such as [1########] [Left]
[??1??????], stating “when the agent perceives a wall to the north, and turns
left, it will perceive a wall on its right”.

Thus, on the one hand, macs can represent additional regularities since it can
detect regularities between different attributes. However, on the other hand, it
only predicts one attribute at a time, whereas the predictions of other alcss can
be more compact.

Experimental results on model compactness and convergence speed of macs in
grid worlds have shown that it builds a slightly more compact model than yacs,
which itself was building models four times more compact than an early version
of acs [21]. Furthermore, macs was building this model three times faster than
yacs, and nine times faster than the early version of acs counting the number
of iterations.

Interestingly, its unique representation of the [Effect] part makes macs more
similar to spiti than any other alcs. Indeed, in macs, the value of each at-
tribute is anticipated separately for each action as a function of a [Condition]
part containing variables defining the previous state of the model whereas in
spiti the value of each state variable is anticipated separately for each action as
a function of a tree representing the possible combinations of variables defining
all previous states of the model. Thus, one classifier in macs is similar to one
branch in the decision tree in the model of transitions of spiti.

Moreover, macs is the only alcs that does not call upon a ga. Instead, to
learn the model of transitions it relies on the combination of generalization and
specialization heuristics that collaborate to converge towards a compact and
accurate model of transitions. This mechanism can be compared more easily
with the iti algorithm used in spiti, which relies on the χ2 information metric
to grow a decision tree incrementally.

However, beyond these similarities, macs and spiti differ in several points.
First, macs represents a deterministic transition model whereas spiti models a
stochastic process through a distribution of probabilities of transition. Secondly,
as stated above, building a compact model of the transition function in macs
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relies on a complex combination of heuristics whereas spiti calls upon the well es-
tablished iti algorithm. Thirdly, the model of transitions in macs is represented
as a set of classifiers and the value function is tabular, whereas spiti implements
the model of transitions, the value function and the policy as decision trees. This
results in faster algorithmic information access. Finally, and most importantly,
in macs the dynamic programming component of model-based rl is applied to
a tabular representation of states, whereas spiti calls upon svi to perform this
computation compactly—with guarantees of convergence to optimality as far as
the model of transitions is perfectly accurate. This computation is very efficient
in practice.

All the differences above speak in favor of spiti that seems mathematically
better grounded than macs and benefits from efficient algorithms. Thus an em-
pirical comparison seems to be pointless. As a matter of fact, we did not perform
any experiments comparing spiti against macs, since spiti was shown to per-
form well on problems that are out of reach of macs [6,7].

Among these differences, the most crucial one is the fact that macs does not
generalize the models of the reward and the value functions over states. Instead,
these models are represented by a table giving a value for each encountered
state, which prevents its usage for very large state space problems. Although it
shares less similarities with spiti, xacs is another alcs that does not suffer from
this crucial problem. And, quite interestingly, the experimental comparison that
we perform after presenting xacs below reveals that it is endowed with a key
property that makes it more efficient than spiti in the context of large problems
where a lot of combinations of state variable values cannot occur.

3.2 Presentation of XACS

The xacs system was developed to overcome the deficiency of not generalizing
the value function estimates in macs [19]. xacs combines two lcss—the gen-
eralizing state transition learner acs2 [18] and the generalizing function learner
xcs, which learns generalized value function estimates in xacs. It was shown
that xacs can be robustly applied to blocks world problems, in which previous
overgeneralization issues in acs2 were overcome [19].

Essentially, acs2 learns a generalized representation of the encountered state-
transition function of a problem. It has been shown to reliably learn in various
discrete problem domains, being able to ignore irrelevant perceptual attributes,
handling noisy inputs, or stochastic state transitions. Knowledge is represented in
the aforementioned [Condition], [Action] → [Effect] rules. The rules are learned
by a combination of a heuristic, which specializes the rule structures, and a
genetic rule generalization mechanism.

The xcs system may be the most well-understood and used lcs to-date. It
has been shown to be efficiently applicable in Boolean function problems, real-
valued function problems, reinforcement learning problems, and mixed domains
including datamining classification [11,26]. xcs learns based on a combination of
gradient-based value approximation and genetic algorithm-based rule structure
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learning. In combination with acs2, xcs learns a generalized representation of the
state-value function of the encountered reinforcement learning problem. In this
case, value approximations are updated similar to the dyna architecture [19,3].

During learning, xcs and acs2 create their initial rules by means of a covering
mechanism, which creates rules with matching conditions given no rules currently
match the perceived problem state. For compaction purposes, both systems rep-
resent redundant identical rules in one macro-classifier rule [11]. The rule struc-
turing mechanisms of either system basically assure that the whole perceived
problem space is covered and rules that cover unsampled problem subspaces are
forgotten (deleted) over time. Further details on the involved mechanisms as well
as theoretic learning bounds can be found in the literature [19,26,27].

During goal-directed behavior, xacs predicts possible next problem states
using the model from its acs2 component, estimates the values of these antici-
pated states by means of its xcs component, and finally conducts its behavioral
decision based on these estimates.

4 Experimental Study

4.1 Maze6

The maze environments are classical lcs benchmark problems. They are rep-
resented by a two-dimensional grid. Each cell can be occupied by an obstacle,
denoted as attribute value by the character ’O’, a food item, denoted by ’F’, or
can be empty, denoted by ’.’. The animat perceives its immediate surrounding
starting with the cell to the north and coding clockwise. Thus, the perceptual
space in the maze environment Imaze ⊆ {., O, F}L where L = 8, the eight ad-
jacent cells. Figure 1 shows Maze6, one of such standard mazes. For example,
an animat located one position below the food perceives ’FOOO..OO’ whereas
an animat located at the lower left corner perceives ’.O.OOOOO’. The simulated
animat possesses eight primitive actions, the movements to the eight adjacent
cells (i.e. Amaze = {N, NE, E, SE, S, SW, W, NW}). If a movement leads to a
position that is blocked by an obstacle, the action has no effect. Once the food
position is entered, the environment provides a reinforcement of 1000 and one

Fig. 1. Maze6
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trial ends. In that case, the animat is repositioned to a randomly chosen empty
spot in the maze and tries again. Note that, while the state is observed through
attributes or random variables, giving rise to an fmdp representation, Maze6
still obeys the Markov property, that is, the current state perceptions suffice to
uniquely identify the current state of the agent, and the knowledge of that state
and the action suffice to determine the distribution over next states, by contrast
with what would happen in a Partially Observable mdp.

4.2 Blocks World Problem

Our second benchmark is a blocks world scenario introduced in [2]. In this prob-
lem, b blocks are distributed over a certain number of stacks s. The agent can
manipulate the stacks by the means of a gripper that can either grip or re-
lease a block on a certain stack. It perceives the current block distribution
coding each stack with b attributes. One additional attribute indicates if the
gripper is currently holding a block. Thus, the perceivable situations are a
subset of I ⊂ {∗, b}bs+1. Additionally, the problem is defined by a particular
goal state. We define the goal by putting a particular number y of blocks on
the first stack. Figure 2 (right-hand side) shows the goal in the problem with
b = 4, s = 3, y = 3.

Fig. 2. A blocks world scenario, from a random initial position (left-hand side) to the
goal position (right-hand side)

4.3 Experiments

Our experimental protocol is the following. In all runs, we alternate one episode
of pure exploration with a random policy and one episode of pure exploitation
based on the learned policy. Learning is turned off during exploitation runs.
In both benchmark problems, each episode is limited to 50 steps. All results
presented below are averaged over 10 runs.

We compare the performance and size of the models in xacs and spiti. In
xacs, the size of the model corresponds to the number of macro-classifiers, for
the value function as well as for the model of transitions. In spiti, it corresponds
to the number of branches in the value tree and trees representing the model of
transitions.
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(a) (b)

Fig. 3. (a):Performance in Maze6 (b):Size of the models

(a) (b)

Fig. 4. (a):Performance in Blocks world (b):Size of the models

In the case of Maze6, Figure 3 shows the averaged performance and size of
the models from episode to episode.

In the case of Blocks world, Figure 4 shows the averaged performance and
size of the models in problems with an increasing size, so as to compare the
scaling capabilities of both algorithms. In that case, the performance and size
for each problem is measured after 200 episodes (alternating 100 exploration
episodes and 100 exploitation episodes).

An analysis of Figure 3 shows that, in the case of Maze6, spiti slightly
outperforms xacs while building a much more compact model of transitions
and a model of the value function of similar size after convergence.

By contrast, the analysis of Figure 4 shows that, even if spiti performs com-
parably to xacs for small Blocks world problems, its model size scales much
worse. Thus, xacs can deal with much larger problems than spiti. The explosion
of the size of the model in spiti also resulted in a much slower computation of
the optimal policy.
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5 Discussion

The results show that spiti outperforms xacs on Maze6 and it performs similar
to xacs on small Blocks world problems. This suggests that given their
clearer mathematical background the basic algorithms in spiti are intrinsically
at least as efficient as the combination of heuristics in xacs. However, the fact
that xacs outperforms spiti on larger Blocks world problems and scales
much better on these problems reveals a conceptual problem in spiti that xacs
does not suffer from.

The problem is about the representation of “impossible states”. In the case of
Blocks world with the binary representation we used, many arbitrary combi-
nations of attribute values correspond to states that can be represented by both
formalisms but that do not occur in practice: all states where a block is lying “in
the air” (that is, neither on another block nor on the table) and all states that
denote the presence of more or less than b blocks are impossible. The more empty
cells in the problem, the more such impossible states. In spiti, the model of the
value function ends with representing explicitly a lot of these impossible states.
A closer examination of the algorithms reveals that this undesirable property is
inherited from svi itself, the structured dynamic programming algorithm used
in spiti.

Indeed, in svi the probabilities of transitions over each variables are computed
separately. Thus, the information about the possible or impossible co-occurrences
of values of such variables is lost. In the structured Bellman regression algo-
rithm used in svi, nothing prevents the expression of impossible states in the
value function, although these states do not occur in practice. To our knowledge,
this fact has never been noticed or made explicit in the literature—seeing also
that the benchmark problems used to present structured dynamic programming
algorithms are free of such impossible states.

By contrast, xacs benefits from several generalization biases that restrain a
possible tendency to represent such impossible states:

– the classifier population is limited in size, resulting in a compactness pressure;
– the covering operator favors the creation of classifier that correspond to

actually encountered states rather than impossible ones;
– the genetic-based generalization assures coverage of sufficiently frequently

sampled states but also enforces the deletion of rules that cover unsampled
subspaces.

In this way, xacs tends to cover the encountered subspace manifold of the full
representational space as compactly as possible based on several occurrence and
validity signals that are received by means of (random) problem space sampling.

Moreover, due to its interactive specialization and generalization mechanism,
xacs identifies the action-dependent state transitions with maximally compact
representations. While the specialization mechanism includes seemingly rele-
vant state attributes heuristically, the genetic generalization mechanism deletes
over-specializations. While researches might hesitate to utilize the evolutionary-
inspired mechanisms used in xacs, comparisons to statistical approaches show
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similar functionality and scalability [28,29,30]. Thus, drawing inspiration from
xacs suggests to include state occurrence estimates and state relevance esti-
mates, where the latter are based on prediction accuracy estimates, in order to
approximate the fmdp model more compactly and efficiently while still suffi-
ciently accurately.

Nevertheless, one must not forget that the model of transitions built by xacs
differs from the model in spiti since xacs calls upon the“=”symbol and predicts
several attributes simultaneously whereas macs uses the “?” symbol and antici-
pates one attribute at a time, like spiti. In that respect, on the one hand, a more
straightforward spiti and an alcs should be the comparison of spiti with an
ideal combination of xacs and macs– which does not exist so far. On the other
hand, trying to figure out whether it is possible to anticipate several attributes
at a time within the frl framework might result in interesting insights.

6 Conclusion

The goal of this contribution was to show that, although alcss and frl systems
such as spiti are conceptually very similar and share interesting properties, they
also show some important differences that have major consequences on their algo-
rithmic properties and their performance. By means of an empirical comparison,
we have discovered that the structured dynamic programming algorithm, which
lies at the heart of one of the main frl systems, spiti, suffers from a concep-
tual problem that prevents it from scaling as efficiently as xacs does—the most
efficient alcs currently available. Future work will need to fix this conceptual
problem possibly drawing inspiration from the mechanisms employed in xacs as
discussed above.
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Markelić, Irene 267
Meulenbroek, Ruud G.J. 188
Meyer, Christophe 321
Miglino, Orazio 115
Montebelli, Alberto 132
Morse, Anthony F. 95, 152

Padois, Vincent 229
Parisi, Domenico 115
Pezzulo, Giovanni 1
Ponticorvo, Michela 115

Rungger, Matthias 301

Salaün, Camille 229
Schenck, Wolfram 247
Schmidhuber, Jürgen 48
Sigaud, Olivier 1, 229, 321
Stursberg, Olaf 301
Svensson, Henrik 95

Tamosiunaite, Minija 267

Wagener, Annika 170
Wörgötter, Florentin 267

Ziemke, Tom 95, 132, 152


	Title Page
	Preface
	Organization
	Table of Contents
	Introduction
	From Sensorimotor to Higher-Level Cognitive Processes: An Introduction to Anticipatory Behavior Systems
	Introduction
	Basic Terminology Revisited
	OverviewoftheBook
	Anticipation in Psychology: Focus on the Ideomotor Principle
	Theoretical and Review Contributions
	Anticipation and Dynamical Systems
	Computational Modeling of Psychological Processes in the Individual and Social Domains
	Behavioral and Cognitive Capabilities Based on Anticipation
	Computational Frameworks and Algorithms for Anticipation and Their Evaluation

	Conclusions and Important Open Issues on Anticipation
	References


	Anticipation in Psychology: Focus on the Ideomotor View
	ABC: A Psychological Theory of Anticipative Behavioral Control
	The Limits of the Information Processing Approach
	The Primacy of Action-Effect Learning Over Stimulus-Response Learning
	Anticipations Even of Non-intended Effects are Indispensable in the Determination of Voluntary Behavior
	Anticipative Behavioral Control Becomes Conditioned to the Situational Context
	ABC: An Integrative Framework
	How Sensory Anticipations Might Be Transformed into Appropriate Motor Patterns
	Outlook
	References

	Anticipative Control of Voluntary Action: Towards a Computational Model
	Introduction
	TEC
	HITEC
	HITEC’s Structure and Representations
	Sensory System
	Motor System
	Common Coding System
	Associations
	Event File

	HITEC’s Processes
	Task Context
	Online vs. Offline Processing
	Action Monitoring

	Model Implementation
	Code Dynamics
	Codes
	Action-Effect Learning
	Short Term Associations and Event File Competition
	Related Work

	Examplary Scenario: Responding to Traffic Lights
	Action Effect Acquisition
	Using Action Effect Associations

	Conclusions
	References


	Theoretical and Review Contributions
	Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes
	Store and Compress and Reward Compression Progress
	Outline
	Algorithmic Framework
	Relation to External Reward

	Consequences of the Compression Progress Drive
	Compact Internal Representations or Symbols as by-Products of Efficient History Compression
	Consciousness as a Particular by-Product of Compression
	The Lazy Brain’s Subjective, Time-Dependent Sense of Beauty
	Subjective Interestingness as First Derivative of Subjective Beauty: The Steepness of the Learning Curve
	Pristine Beauty and Interestingness vs. External Rewards
	True Novelty and Surprise vs. Traditional Information Theory
	Attention / Curiosity / Active Experimentation
	Discoveries
	Beyond Standard Unsupervised Learning
	Art and Music as by-Products of the Compression Progress Drive
	Music
	Paintings, Sculpture, Dance, Film etc.
	No Objective “Ideal Ratio” between Expected and Unexpected
	Blurred Boundary between Active Creative Artists and Passive Perceivers of Art
	How Artists and Scientists Are Alike
	Jokes and Other Sources of Fun

	Previous Concrete Implementations of Systems Driven by (Approximations of) Compression Progress
	Reward for Prediction Error (1990)
	Reward for Compression Progress through Predictor Improvements (1991)
	Reward for Relative Entropy between Agent’s Prior and Posterior (1995)
	Zero Sum Reward Games for Compression Progress Revealed by Algorithmic Experiments (1997)
	Improving Real Reward Intake
	Other Implementations

	Visual Illustrations of Subjective Beauty and Its First Derivative Interestingness
	A Pretty Simple Face with a Short Algorithmic Description
	Another Drawing That Can Be Encoded By Very Few Bits

	Conclusion and Outlook
	A Appendix
	A.1 Predictors vs. Compressors
	A.2 Which Predictor or History Compressor?
	A.3 Compressor PerformanceMeasures
	A.4 Compressor PerformanceMeasures Taking Time into Account
	A.5 Measures of Compressor Progress / Learning Progress
	A.6 Asynchronous Framework for Creating Curiosity Reward
	A.7 Optimal Curiosity and Creativity and Focus of Attention
	A.8 Optimal but Incomputable Action Selector
	A.9 A Computable Selector of Provably Optimal Actions
	A.10 Non-universal But Still General and Practical RL Algorithms

	References

	Steps to a Cyber-Physical Model of Networked Embodied Anticipatory Behavior
	Introduction
	The ABC Model
	Networks of Embodied Agents: Possible Models and Metrics
	Example

	A possible Networked Embodied Cognitive System Model
	Discussion
	Conclusions
	References

	Neural Pathways of Embodied Simulation
	Introduction
	Simulation Theories: What Are the Components?
	Reactivation
	Anticipation

	Implicit Anticipation
	Implicit Predictions in Humans and Animals
	Neural Substrate of Implicit Predictions

	Bodily Anticipation
	Environmental Anticipation
	Environmental Predictions in Humans and Animals
	Neural Substrate of Environmental Predictions

	Discussion
	References


	Anticipation and Dynamical Systems
	The Autopoietic Nature of the “Inner World”
	Introduction
	The Agent/Environment Dynamic in the Animat Approach
	Some Seminal Studies

	Method
	Artificial Organisms
	The Task and Training Procedure

	Results
	Fitness Values
	Behaviors
	Output Patterns
	Hidden Units Activation

	Conclusions
	References

	The Cognitive Body: From Dynamic Modulation to Anticipation
	Introduction: A Cognitive Body
	The Dynamic Role of the Cognitive Body: A Minimalist Case Study
	The Dynamics of Anticipation
	The Bodily Path of Anticipation
	The Bodily Path Hypothesis Put to the Test
	Implementation
	Results

	Discussion
	Conclusions and Future Work
	References


	Computational Modelling of Psychological Processes in the Individual and Social Domains
	A Neurocomputational Model of Anticipation and Sustained Inattentional Blindness in Hierarchies
	Anticipation and Prediction; From Neuroscience to Cognition
	Perception and Action; From Cognition to Neuroscience
	Circularity, Regularity, and Time, but Not in That Order…
	Sustained Inattentional Blindness
	Modelling a Cortical Hierarchy
	Experimental Setup
	Results

	Discussion, Whats Going on?
	References

	Anticipation of Time Spans: New Data from the Foreperiod Paradigm and the Adaptation of a Computational Model
	Introduction
	Investigation of Behavior in Time

	Theories of Timing
	Foreperiod Experiment
	Experimental Method
	Experimental Results

	Simulation
	Formal Outline of the Model
	Simulation Method
	Simulation Results

	Discussion
	Experimental Results
	Computational Model
	Outlook

	References

	Collision-Avoidance Characteristics of Grasping Early Signs in Hand and Arm Kinematics
	Introduction
	Obstacle Avoidance in Humans
	Collision Avoidance in Robotics
	Antropomorphic Robotic System (ARoS)

	Method
	Participants
	Procedure
	Design
	Analyses

	Results
	Grip Height
	Arm-Plane Angle and Hand-Plane Angle
	Wrist Rotation and Shoulder Rotation
	Speed Instructions

	Discussion
	Implications for Robotics
	Alternative Approaches to Obstacle Avoidance in Robotics
	General Conclusion

	References

	The Role of Anticipation on Cooperation and Coordination in Simulated Prisoner’s Dilemma Game Playing
	Introduction
	The Prisoner’s Dilemma Game

	Approaches for Modeling Cooperation in IPDG
	Connectionist Model with Anticipation
	Architecture
	Training
	Model Decision-Making

	Game Simulations with Individual Agents: Comparison with Experimental Results
	Comparison of the Model with Experimental Results

	Multi-agent Simulations
	Agent Societies
	Simulation Results and Discussions

	Evolution of Societies
	Settings of the Simulations
	Evolving Cooperative Societies
	Evolving Payoff Maximizing Societies
	Discussion

	Conclusion
	References


	Behavioral and Cognitive Capabilities Based on Anticipation
	A Two-Level Model of Anticipation-Based Motor Learning for Whole Body Motion
	Introduction
	Background
	Forward and Inverse Velocity Kinematics
	Operational Space Control
	Linearisation of the Dynamics Model
	Optimal Control
	Model Learning

	Our Motor Learning Model
	High Level Control
	Low Level Control
	Coupling Both Levels with Anticipation

	Empirical Study
	A Simplified Virtual Humanoid System
	Task and Parameters
	Empirical Results

	Discussion and Perspectives
	Learning the Dynamics Model
	Related Models
	State Estimation

	Conclusion
	References

	Space Perception through Visuokinesthetic Prediction
	Introduction
	Setup and Method
	Sensory Processing
	Visuokinesthetic FM
	Visual Memory
	Iterative Prediction

	Results
	Performance
	Space Perception

	Discussion
	References

	Anticipatory Driving for a Robot-Car Based on Supervised Learning
	Introduction
	Experimental Setup
	Methods
	The Reactive Controller
	Planner
	Combination of Planner and Reactive Controller

	Results
	Discussion
	References


	Computational Frameworks and Algorithms for Anticipation, and Their Evaluation
	Prediction Time in Anticipatory Systems
	Introduction
	A Task with Guards and Thieves
	AARC Architecture
	Anticipatory Learning
	Thief Control
	Delay and Timing

	Simulations
	Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Discussion
	References

	Multiscale Anticipatory Behavior by Hierarchical Reinforcement Learning
	Introduction
	Model and Problem Formulation
	Lower Layer Model: Hybrid Automaton
	Control Synthesis
	Higher Layer Model: Subgoal Automaton
	Example

	Solution Algorithm
	Value Iteration
	Continuous Valued and Time Reinforcement Learning

	The Hierarchical Learning Approach
	Subtask Reward Calculation
	Subgoal State Calculation
	Algorithm

	Simulation Results
	Summary and Conclusion
	References

	Anticipatory Learning Classifier Systems and Factored Reinforcement Learning
	Introduction
	Background
	Learning Classifier Systems
	Anticipatory Learning Classifier Systems
	Factored Markov Decision Processes
	Factored Reinforcement Learning and spiti

	Systems and Comparisons
	Comparing SPITI with MACS

	Experimental Study
	Maze6
	Blocks World Problem
	Experiments

	Discussion
	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




