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Preface

The ninth annual international workshop Engineering Societies in the Agents’ World
was hosted by the École Nationale Supérieure des Mines de Saint-Étienne (ENSM-SE),
France, in September 2008. The workshop was organized as a stand-alone event, run-
ning over three days. ESAW 2008 built upon the success of prior ESAW workshops:
ESAW 2007 held in Athens, ESAW 2006 held in Dublin, and ESAW 2005 held in
Kuşadasi, going back to first edition of the workshop which was held in Berlin in 2000.
ESAW 2007 was attended by 60 participants from 12 different countries. Each presen-
tation was followed by highly interactive discussions, in line with the ESAW spirit of
having open discussions with fellow experts.

The ESAW workshop series started in 2000 to provide a forum for presenting highly
interdisciplinary work on technologies, methodologies, platforms and tools for the en-
gineering of complex artificial agent societies. Such systems have found applications in
many diverse domains such as complex system engineering, P2P, e-business and ambi-
ent intelligence. Despite ESAW traditionally placing emphasis on practical engineering
issues and applications, the workshop did not exclude theoretical and philosophical con-
tributions, provided that they clearly documented their connection to the core applied
issues.

Discussions coalesced around the following themes:

– Electronic institutions
– Models of complex distributed systems with agents and societies
– Interaction in agent societies
– Self-organization and emergence in agent societies
– Engineering social intelligence in multi-agent systems
– Trust and reputation in agent societies
– Collective and coordinated mutli-agent problem solving
– Analysis, design and development of agent societies

Two invited presentations underlined both the engineering aspects and the interdis-
ciplinary nature of research on agent societies. The first invited talk was given by Klaus
Fischer, from the German Reasearch Center for Artificial Intelligence (DFKI). In his
talk, the contents of which appear in this volume as an invited submission, Dr. Fischer
presented a model-driven approach and metamodel, PIM4Agents, for designing multi-
agent and service-oriented applications for industrial purpose, within the Teletruck,
Saarstahl and ATHENA projects. Dr. Fischer also made a demonstration of the used
modeling tool during the demonstration session.

The second invited talk was given by Paul Bourgine, Vice Director of the CREA
(Centre de Recherche en Epistémologie Appliquée) and president of the European
Complex Systems Society. Dr. Bourgine presented several works from European projects
(such as ONCE-CS and PATRES) on distributed problem solving in natural and artifi-
cial complex systems, and more precisely on the use of distributed and self-organizing
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approaches to simulate and understand biological phenomena such as ontogenesis in
computational biology.

We received 29 submissions for the workshop, and each paper was reviewed by
at least three independant reviewers. During the workshop, 19 papers were presented.
After the second reviewing phase, we accepted 13 extended papers and one invited long
paper.

This edition also included an original demonstration session, organized by Jomi
F. Hübner, during which nine agent-based technologies and works were shown. The
session demonstrated concrete applications of agent societies to automatic B2B ex-
change or agent-based simulation, and toolkits for multi-agent engineering, such as
LEIA, PRESAGE, POLAR, OperettA and CARTAGO.

The original contributions, the slides of the presentations and demonstrations, and
more information about the workshop are available on the ESAW 2008 website
(http://www.emse.fr/esaw08/). The present proceedings continue the series published
by Springer (ESAW 2000: LNAI 1972, ESAW 2001: LNAI 2203, ESAW 2002: LNAI
2577, ESAW 2003: LNAI 3071, ESAW 2004: LNAI 3451, ESAW 2005: LNAI 3963,
ESAW 2006: LNAI 4457, ESAW 2007: LNAI 4995). This volume contains extended
and substantially revised versions of selected papers from ESAW 2008, and an invited
contribution by Klaus Fischer.

The organization of ESAW 2008 would have not been possible without the financial
help of:

– École Nationale Supérieure des Mines de Saint-Étienne
– General Council of Loire in Rhône-Alpes
– Saint-Étienne Metropole
– GEM (Groupe des Écoles des Mines) network
– Rhône-Alpes Region
– Loire Numérique cluster
– Upetec company

We would like to thank the Steering Committee for their guidance, the Program
Committee and the additional reviewers for the insightful reviews, and the Local Or-
ganizing Committee for arranging an enjoyable event. We would also like to thank all
the researchers who submitted a paper to the workshop. Finally, we would like to of-
fer our thanks to Alfred Hoffman and the Springer crew for helping us realize these
proceedings.

The next ESAW workshop will be hosted in The Netherlands by Utrecht University,
in November 2009, with Huib Aldewereld, Virginia Dignum, and Gauthier Picard as
organizers. We look forward to even more lively interactions, and a still higher level of
originality and innovation.

February 2009 Alexander Artikis
Gauthier Picard

Laurent Vercouter
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Frédéric Migeon IRIT Université Paul Sabatier, France
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Juan Antonio Rodrı́guez-Aguilar IIIA, Spain
Jaime Simão Sichman University of São Paulo, Brazil
Leon Van der Torre University of Luxembourg, Luxembourg
Wamberto Vasconcelos University of Aberdeeen, UK
Mirko Viroli Università di Bologna, Italy
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Modeling TeleTruck: A Case Study

Klaus Fischer, Christian Hahn, and Stefan Warwas

German Research Center for Artificial Intelligence (DFKI) GmbH, Saarbrücken,
Germany

Abstract. This article presents a use case for a modeling framework for
multiagent systems (MAS) called Dsml4MAS. The modeling framework
uses a metamodel (Pim4Agents) to describe the modeling artefacts and
the relations among them. From this metamodel a tool chain is deduced
that supports the graphical modeling of a MAS according to the speci-
fications in the metamodel. The TeleTruck system, a system that was
developed to support shipping companies to do online fleet management,
is introduced as a use case. For the TeleTruck core functions concrete
models are presented as an illustration of the abstract metamodel.

1 Motivation

Recently, associated with the increasing acceptance of agent-based computing
as a novel software engineering paradigm, a lot of research addresses the iden-
tification and definition of suitable models and techniques to support the de-
velopment of complex software systems with respect to agent-based computing.
Agent-Oriented Software Engineering (AOSE) is a relatively young field - with
its first workshop held in 2000 - that is concerned with how to engineer agent-
based software systems.

The current state-of-the-art in developing multiagent systems (MASs) is to de-
sign the agent systems basing on an AOSE methodology and take the resulting
design artifact as a base to manually code the agent system using agent-oriented
programming languages (AOPLs). The gap between design and code may tend to
the divergence of design and implementation which makes again the design less
useful for further work in maintenance and comprehension of the system [1]. Fur-
thermore, even if existing methodologies and modeling frameworks have different
advantages when applied to particular problems, it seems to be widely accepted
that a unique approach cannot be applied to every problem without some (minor)
level of customization.

The main objective of this article is to present a use case for a modeling
framework for MASs. A metamodel forms the core of this methodology. The
metamodel describes individual concepts that can be introduced as artefacts
into the design of a MAS and it defines the relations among these concepts.
Once the metamodel is defined it can be used to derive a tool chain to get from
usually graphical models, which specify the design of the MAS, to executable
code. We use the TeleTruck system (cf. [2]) as an illustrating example to
demonstrate how concrete models for a concrete MAS would look like. We chose

A. Artikis, G. Picard, and L. Vercouter (Eds.): ESAW 2008, LNAI 5485, pp. 1–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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TeleTruck because on the one hand it is a system that is capable of solving
a complex scheduling problem and on the other hand TeleTruck was actually
evaluated in a practical field study, which proves the practical relevance. The
design of the problem solving core of the TeleTruck according to the presented
modeling framework shows the usefulness of the modeling framework as well as
of the core metamodel Pim4Agents.

2 The Architecture of the TeleTruck System

In this section, the application domain of the TeleTruck system is described
and analyzed. Some of the properties are derived that make dealing with this
domain so difficult. The application domain for the TeleTruck system is the
planning and scheduling of transportation orders as performed by dispatchers in
shipping companies. Many of the problems which must be solved in this area,
such as the Traveling Salesman and related scheduling problems, are known to
be NP-hard. The domain is highly dynamic, and decisions have to be made under
a high degree of uncertainty and incompleteness.

Fig. 1. TeleTruck: The domain of application

Cooperation and coordination are two very important processes that may help
to overcome these problems. Using the TeleTruck system, several cooperation
types such as the announcement of unbooked legs, order brokering, and different
strategies for information exchange have been evaluated (see also [3]).

Corresponding to the physical entities in the domain, there are two basic
types of agents in TeleTruck: transportation companies and trucks. Compa-
nies can communicate with their trucks and among each other. The user may
dynamically allocate transportation orders to specific companies. Looking upon
trucks as agents allows us to delegate problem-solving skills to them (such as
route-planning and local plan optimization).
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The shipping company agent (SCA) has to allocate orders to her1 truck agents
(TAs), while trying to satisfy the constraints provided by the user as well as local
optimality criteria (costs). An SCA also may decide to cooperate with another
company instead of having an order executed by her own trucks.

Each TA is associated with a particular shipping company from which
he receives orders of the form "Load amount s of good g1 at location
l1 and transport it to location l2 while satisfying time constraints
{ct1 , . . . , ctn}".

Interaction of the agents within one shipping company (called vertical cooper-
ation) is totally cooperative. This means that a specific TA will accept deals (i.e.,
results of negotiation processes) with his SCA even if they are not locally prof-
itable for him. We call such a setting an instance of a cooperative task-oriented
domain (cf. [4]).

In the cooperation between SCAs we investigate in both a totally cooperative
and a competitive setting (we call the latter setting an instance of a compet-
itive task-oriented domain). If we assume a cooperative task-oriented domain,
we are purely interested in the quality of the overall schedule which is emerging
from the local problem solving done in the SCAs and TAs. A practical example
for this setting is the cooperation among different, geographically distributed
branches of one shipping company. On the other hand, in a competitive task-
oriented domain among the SCAs, the overall schedule which is computed will be
far from optimal. In this setting we investigate how a single SCA can maximize
her profits and how she can avoid being tricked by other agents.

In the following we describe the multiagent approach underlying the
TeleTruck system. The main idea of this article is to demonstrate the useful-
ness of the presented modeling framework for such a system. Therefore we pro-
vide a simplified description of TeleTruck. We concentrate on the situation
within one shipping company and leave aside the idea of holonic structures that
we introduced in [2]. The presented modeling framework would work for the more
complex structures, too, but the limited space of this article does not allow to
present this complete picture. We introduce the standard Contract Net Protocol
(Section 2.1) and the simulated trading procedure as an iterative optimization
mechanism which when they are combined are able to produce close to optimal
solutions with reasonable computational effort for the complex task of online
scheduling of transportation orders to a fleet of trucks.

2.1 Task Decomposition and Task Allocation

If an order o is announced to an SCA by a customer (which can also be another
SCA), she has to compute a bid for executing the order. In order to determine
the costs, she forwards the order to her TAs. Each TA a computes a bid

(a, cost(Ta ⊕ o) − cost(Ta), w),

1 We use ’she’ to refer to shipping companies and ’he’ to refer to trucks to resolve
ambiguities.
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where Ta is the current tour of a and w is the amount of the order a is able
to transport. cost(Ta ⊕ o) denotes the additional costs for a when executing
o given Ta. Let Oa = {oa

1 , . . . , o
a
n}, n ∈ IN be the current set of orders for a.

Constraints are derived from the information which is specified with the orders.
Each solution to the resulting constraint solving problem is a valid tour which
fulfills all constraints specified by Oa. Then, a tries to find the best tour for Oa

using a constraint solving and constraint optimization procedure.

Fig. 2. Hierarchical organization of the agents in TeleTruck

For each order o announced by an SCA to her TAs, she receives a set of bids

B = {(a1, c1), . . . , (an, cn)}, n ∈ IN

where ci specifies the costs truck ai will produce when executing order o, 1 ≤
i ≤ n. The SCA selects

(amin, cmin) ∈ B with ∀(a, c) ∈ B : cmin ≤ c

and sends a grant to the TA amin
2, notifying him that he will be granted the

amount amin provided that the SCA itself will actually receive a grant for o by
the customer.

The procedure described so far is the well known Contract Net Protocol (CNP)
[5]. Because the CNP provides time-out mechanisms it is easy to turn this commu-
nication protocol into an anytime algorithm (see for instance [6,7]), i.e., the system
will produce a solution (at least with a high probability, only in cases where the

2 If there is more than one truck who sent a bid with cmin the SCA can chose randomly
among them.
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constraints are so hard that only a low number of close to optimal solutions ex-
ist, the CNP might fail to produce these solutions) within a specified time t0. The
quality of the solution may be increased if more time for computation is available.

3 Simulated Trading: An Auction Mechanism for
Dynamic Task Reallocation

Although the CNP presented in the last section is a very powerful and verypopular
task assignmentmechanism, one cannot ignore the fact that the solutions the CNP
provides can be quite far from optimal. The reason for this is that, although each of
the individual task assignments in the CNP is a centralized optimal decision based
on the current situation, a sequence of such decision is as a whole not optimal and
can in some case actually turn out to be rather poor. The reason for this is that
once a decision is done it is never reconsidered even when the situation changes by
newly incoming orders.

To overcome this problem of the CNP we adopted the Simulated Trading (ST)
[8] procedure. ST can be used for two different purposes:

– Dynamic re-planning: If a TA realizes that he cannot satisfy the time
constraints of an order because of an unforeseen traffic jam, he can initiate
an ST process leading to an order reallocation satisfying the time constraints.

– Iterative optimization: Starting from the initial CNP solution (see section
2.1), ST may be initiated to yield a better order allocation.

In the following, the principle of ST and its application in the TeleTruck

system are explained.

3.1 Principles of ST

In [9], Bachem, Hochstättler and Malich present a parallel improvement heuristic
for solving vehicle routing problems with side constraints. Their approach deals
with the problem that n customers order different amounts of goods which are
located at a central depot. The task of the dispatcher is to cluster the orders and
to attach the different clusters to trucks which then in turn determine a tour to
deliver the cluster allocated to them.

The solution to this problem is constructed using the Simulated Trading pro-
cedure. It starts with a set of feasible tours T1, . . . , Tt0 which may e.g. be obtained
by the CNP approach presented in Section 2.1. The tours are represented as an
ordered list of customers that have to be visited. To guide the improvement of
the initial solution, an additional processor, a stock manager is added to the sys-
tem. The task of the stock manager is to coordinate the exchange of costumers
orders between the different processors. To do this, it collects offers for buying
and selling orders coming from the processors in the system.

A price system is introduced providing a quality criterion for order exchanges
to the stock manager: If processor p sells an order i (i.e., an order from the depot
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Fig. 3. The standard vehicle routing problem

to customer i), its cost should decrease. This saving of costs is associated as the
price Pr to i, where

Pr
def= cost(Tp) − cost(Tp � {i}) and Tp

def= Tp � {i}.
Here, the term Tp � {i} denotes the tour that evolves from Tp if customer i

(or order i, respectively) is deleted from processor p’s tour list. Accordingly, the
price Pr for processor p buying a customer i is computed as the difference of
costs for the old tour Tp and the costs for the new tour Tp ⊕ {i}, which evolves
from the insertion of costumer i in Tp, where

Pr
def= cost(Tp ⊕ {i}) − cost(Tp) and Tp

def= Tp ⊕ {i}.
The exchange of orders is synchronized by the stock manager according to

levels of exchange situations. At each level it asks each processor for a selling
or buying order. Having done this, it updates a list of the offers and sends it to
all tour managers. Each offer is associated with a quintuple (processor, Level,
Selling or Buying, Costumer, Price).

The stock manager maintains a data structure, called Trading Graph whose
nodes are the selling and buying offers of the processors. Furthermore, there
exists an edge between vertices vi = (processor1, li, Selling, ci, Pri) and vj =
(processor2, lj , Buying, ci, Prj) (where li < lj with li, lj ∈ IN) if processor2 wants
to buy customer ci from processor1. li and lj indicate the levels of negotiation.
The edge is weighted (or labeled) by the difference of the prices Prj - Pri, giving
the global saving of an exchange of the order between these tours. In this graph
the stock manager now looks for a so-called trading match i.e., a subset M of the
nodes specifying admissible exchanges of orders between tours.

One problem here is, that with offering a selling of an order a processor believes
that this order eventually will be bought by another processor, and it will base
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Fig. 4. Stock exchange for orders in the ST procedure

its future price calculations on its reduced tour. Thus, an admissible exchange
must ensure, that with each node vi ∈ M, all nodes of the processors selling or
buying vi and which have a smaller level than vi have to be also in M.

The gain of the match is obtained by summing up the weights of the edges
between nodes in M. A trading match is then defined to be an admissible match
whose gain is positive.

3.2 Adapting ST for the TeleTruck System

The main idea is to let the SCA simulate a stock exchange where her TA can offer
their current orders at some specific “saving price” and may buy orders at an
“insert price”. While getting sell and buy offers from her TAs the SCA maintains
the trading graph and tries to find an order exchange that optimizes the global
solution. A global interchange of k customers between all of the current tours of
the TA corresponds to a match in the trading graph. The weight of the match
is defined by the profit of this global interchange. Searching for a trading match
is done by a complete enumeration of the trading graph. Though this requires
exponential time in the worst case, it turned out to be feasible in practice since
the trading graph normally does not have too many branches.

Important for the ST procedure are the decision criteria for the TA to decide
which orders to sell or buy. This is done using heuristics like “buy nearest” and
“sell farthest” combined with randomization techniques.
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Note that simulated trading can only be active during a period of time when
no new orders arrive at the SCA. Nevertheless, while the ST process is active
the system maintains a valid solution because ST is done using a copy of the
current plan of a TA and the current plan is replaced by the new one computed
via the simulated trading procedure only if that was successful, i.e., a trading
match was found which led to a new optimum. Thus, reactivity is ensured: when
a new order arrives, the TA always uses the consistent original plan to compute
a bid for the CNP. If a new order occurs while simulated trading is active, the
procedure has to be aborted, unless the order fits into the TA’s plan used for
the ST process.

3.3 Using ST for Dynamic Re-planning

An important feature of the TeleTruck system is that TAs do not only compute
plans: when time is up, they actually start executing the orders. Executing an
order includes the steps of loading, driving, and unloading. Note, that even after
the TA already has started the execution of his local plan, it is possible for him
to participate in the CNP protocol. However, in the ST process the TA is not
allowed to sell orders he has already loaded.

A problem in plan execution is that planning is done on statistical data which
may be too optimistic. For instance, when the plan is actually executed the TA
may get stuck in a traffic jam. Therefore, re-planning might be necessary because
the TA may run into problems with respect to the time constraints which are
specified for the orders. Fortunately, this situation can be nicely handled in our
framework. We distinguish two cases:

Firstly, there are disturbances that can be resolved using local re-planning. In
some cases, the TA can do this by selecting an alternative route to the next city
where he has to deliver orders. This is done by computing the shortest path in
a dynamically changing graph using Dijkstra’s algorithm (this is actually what
modern navigation systems do when they are equipped with TMC3). If this
re-routing results in the violation of time constraints, the TA is forced to
completely recompute his local plan using his local planning procedure. Even
if the TA is able to successfully derive a new plan which satisfies all constraints,
the quality of the plan may drop and thus, some orders may be sold within the
next ST process. Therefore, restricted global rescheduling may occur already in
this case.

Secondly, if the TA cannot fix the problem by local re-planning, the procedure
depends on whether the order is already loaded on the TA or if it is not. In the
latter case, the TA initiates a simulated trading process to sell the orders that
he is no longer able to execute. If a trading match is found, this is a solution to
the problem. If the simulated trading process does not find a valid solution for
the situation, the TA has to report the problem and return the respective orders
to his SCA. In this case the SCA herself can decide whether to sell the order to
another SCA (see below) or to contact the customer, report the problem, and

3 Traffic Message Channel.
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try to negotiate about the violated constraints. In the worst case, the company
has to pay a penalty fee.

If the orders that are causing trouble are already loaded on the TA, it is not
possible to just return the order to the SCA or to sell it in a simulated trading
process. In this case, the only chance for the TA is to report the problem to the
SCA which then has to find a solution by contacting the client, trying to relax
the constraints of the order. If a TA runs into this situation he is paralyzed in
the sense that he cannot participate in the CNP or in the simulated trading
process until he receives instructions from his SCA. Fortunately, the CNP and
the simulated trading procedure can deal with this situation because they do
not require participation of all TAs.

4 Platform Independent Language for Multiagent
Systems

For designing MASs, we developed a platform-independent domain-specific mod-
eling language for MAS called Dsml4MAS [10] in accordance to the language-
driven initiative [11]. Like any language, Dsml4MAS consists of an abstract
syntax, formal semantics and concrete syntax:

– The abstract syntax of Dsml4MAS is defined by a platform independent
metamodel for MAS called Pim4Agents defining the concepts and their
relationships. The details of Pim4Agents are discussed in more detail in
Section 5.

– The formal semantics is expressed using the specification language Object-
Z [12] which is a stated-based and object-oriented specification language.
Object-Z is specialized on formalizing object-oriented specifications and
bases on mathematical concepts (like sets, functions, and first-order predi-
cate logic) that permits rigorous analysis and reasoning about the specifica-
tions. The denotational semantics of Dsml4MAS are defined by introducing
additional variables, which are used to define the semantics and invariants
in Object-Z classes. Operational semantics are specified in terms of class
operations and invariants restricting the operation sequences. For a detail
discussion on the semantics of Dsml4MAS, we refer to [13].

– The concrete syntax is defined as set of notations facilitating the presentation
and construction of Dsml4MAS. It is specified using the Graphical Mod-
eling Framework4 (GMF) that provides the fundamental infrastructure and
components for developing visual design and modeling surfaces in Eclipse.
A detailed overview on the concrete syntax is given in [14].

Dsml4MAS is used to design MASs in a platform independent manner. How-
ever, to close the gap between design and implementation, we provide generic
model transformations from Dsml4MAS on the platform independent level to
two underlying execution platforms (i.e., Jack Intelligent Agents [15] or Jade
[16]) on the platform specific level.
4 http://www.eclipse.org/gmf/
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5 Abstract Syntax: Platform Independent Metamodel for
Agents

For describing the core building blocks of MAS in an adequate manner, we
structured the core of Pim4Agents into different viewpoints briefly discussed
in the remainder of this section.

– Multiagent view contains the core building blocks for describing MASs. In
particular, the agents situated in the MAS, the roles they play within col-
laborations, the kinds of behaviors for acting in a reactive and proactive
manner, and the sorts of interactions needed for coordinating with other
agents.

– Agent view defines how to model single autonomous entities, the capabilities
they have to solve tasks and the roles they play within the MAS. Moreover,
the agent view defines to which resources an agent has access to and which
kind of behaviors it can use to solve tasks.

– Organization view defines how single autonomous agents are arranged to
more complex organizations. Organizations in Pim4Agents can be either
an autonomous acting entity like an agent, or simple groups that are formed
to take advantage of the synergies of its members, resulting in an entity that
enables products and processes that are not possible for any single individual.

– Role view covers the abstract representations of functional positions of au-
tonomous entities within an organization or other social relationships. In
general, a role in Pim4Agents can be considered as set of features defined
over a collection of entities participating in a particular context. The fea-
tures of a role can include (but not be limited to) activities, permissions,
responsibilities, and protocols. A role is a part that is played by an entity
and can as such be specified in interactive contexts like collaborations.

– Interaction view focuses on the exchange of messages between autonomous
entities. Thereby, two opportunities are offered: (i) the exchange of messages
is described from the internal perspective of each entity involved, or (ii) from
a global perspective in terms of agent interaction protocols focusing on the
global exchange of messages between entities.

– Behavior view describes the vocabulary available to describe the internal
behavior of intelligent entities. The vocabulary can be defined in terms of
combining simple actions to more complex control structures or plans that
are used for achieving predefined objectives or goals.

– Environment view contains any kind of Resource (i.e., Object, Ontology,
Service etc.) that is situated in the environment and can be accessed and
used by Agents, Roles or Organizations to meet their objectives.

– Deployment view describes the run-time agent instances involved in the sys-
tem and how these are assigned to the organization’s roles.

To lay the foundation for further discussions on how to use Pim4Agents for
modeling the TeleTruck scenario, we focus on selected viewpoints in the re-
mainder of this section.
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Fig. 5. The metamodel reflecting the agent aspect of Pim4Agents

5.1 Agent Aspect

The agent aspect (cf. Fig. 5) is centered on the concept of Agent, the autonomous
entity capable of acting in the system. An Agent has access to a set of Resources
which may include any kind of Object (e.g. Service) situated in the surrounding
Environment that can be accessed by the Agent. Furthermore, the Agent can
perform particular DomainRoles that define in which specific context the Agent
is acting and Behaviors defining how particular tasks can be achieved by the
Agent. These Behaviors may be grouped together into Capabilities the Agent
may have available. Beside the Capabilities to achieve certain goals, the Agent
may have additional Knowledge about the current state of the world which serve
as input for Behaviors or Capabilities.

5.2 Organization Aspect

The organization aspect (cf. Fig. 6) describes how single autonomous entities
cooperate within the MAS and how complex social structures can be defined.
The Organization is a special kind of Agent (i.e., it is a recursive holonic struc-
ture) and can therefore perform DomainRoles and have Capabilities. In addition
to the Agent properties, an Organization may require certain DomainRoles per-
formed by its members and may have its own internal Protocols specifying (i)
how the Organization communicates with other Agents (i.e., atomic Agents or
complex Organizations) and (ii) how organizational members are coordinated.
Which particular forms of collaboration inside an Organization exists is expressed
by the concept of a Collaboration that defines how specific Interactions are used
in terms of binding Actors—part of the Interaction—to DomainRoles—part of
the Organization. In principle Organizations are statically defined structures.
However, the Organizations/Agents that perform roles in an Organization can
be dynamically assigned to the different roles defined for the Organization.
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Fig. 6. The partial metamodel reflecting the organization aspect of Pim4Agents

5.3 Role Aspect

The role aspect (cf. Fig. 7) mainly deals with the different forms of roles and
which kind of functionalities they should provide or be supported. A Role is an
abstraction of the social behavior of the Agent in a given social context, usually a
Cooperation or Organization. The Role specifies the responsibilities of the Agent
in that social context. It refers to (i) a set of Capabilities that define the set of
Behaviors it can possess and (ii) a set of Resources the Role has access to. An
Actor can be considered as a generic concept as it either binds AgentInstances
or DomainRoles. The Actor inherits from the Role and thus can have access to
particular Capabilities and Resources that are necessary for exchanging messages.
An Actor can be further partitioned in terms of a certain position within an

Fig. 7. The metamodel reflecting the role aspect of Pim4Agents
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Protocol through the subactor reference. Subactors separate the agents that are
grouped together in a given Actor into sub sets.

The reason why to distinguish between subactors will be getting more clear
in Section 6.3 focusing on the graphical design of the Contract Net protocol and
the Simulated Trading protocol.

5.4 Interaction Aspect

The interaction aspect of Pim4Agents (cf. Fig. 8) defines in which manner
agents, organizations or roles interact. A Protocol is considered as a special
form of an Interaction. Accordingly, the main concepts of a Protocol are Ac-
tor, ACLMessage, MessageFlow, MessageScope and TimeOut. In the deployment
view, furthermore, the system designer can specify how Protocols are used within
Organizations. This is done through the concept of a Collaboration that defines
which organizational members (which are of the type AgentInstance) are bound
to which kind of Actor as part of an ActorBinding. Beside a static binding, the
designer may want to bind the AgentInstances at run-time, which can be done
within a Plan using the AssignRole concept.

An interaction protocol as a pattern for conversation within a group of agents
can be more easily described using generic placeholders like ’Initiator’ or ’Partici-
pant’ instead of describing the interaction between the particular agent instances
taking part in the conversation. In Pim4Agents, this kind of interaction roles

Fig. 8. The partial metamodel reflecting the interaction aspect of Pim4Agents
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are called Actors. Actors represent named sets of role fillers at design time. We
use Actors as a way to decouple DomainRoles of organizations from roles in inter-
actions, meaning that the same protocol can be reused in different organizations.
Actors as a specialization of Role can have subactors, where an AgentInstance
bound to the parent actor must be bound to exactly one subactor. The actor
subactor relationship is discussed in more detail in Section 6.3. Furthermore,
Actors require and provide certain Capabilities and Resources defined in the role
view of Pim4Agents.

Messages are an essential means for the communication between agents in
MASs. In Pim4Agents, we distinguish between two sorts of messages, i.e.,
Message and ACLMessage which further includes the idea of Performatives.
Messages have a content and may refer to an Ontology that can be used by the
participating Actors to interpret the Message and its content. A MessageFlow
defines the states of the AIP in which an Actor could be active. The main func-
tion of the MessageFlow is firstly to send and receive Messages which is done
through the concept of a MessageScope and secondly to specify time constraints
(i.e., the latest point in time) in which these Messages need to be sent and re-
ceived through the TimeOut concept. A TimeOut defines the time constraints
for sending and receiving messages and how to continue in the case of a TimeOut
through the messageFlow reference.

A MessageScope defines the Messages and the order how these are sent and
received. In particular this is achieved by connecting Messages to Operations.
Beside Messages sent and received, a MessageScope may also refer to Proto-
cols that are initiated at some specific point in time in the parent Protocol.
This particular feature allows modeling of nested protocols. The order in which
Messages are exchanged is defined by a so-called Operation featuring the fol-
lowing alternatives. A Sequence defines a sequencing of traces timely ordered.
A Parallel denotes that several traces are executed concurrently and a Loop
describes that a particular trace is executed as long as a particular Condition
is satisfied. Finally, the None operation specifies that only a single Message is
exchanged.

A combination of these Operations can easily be achieved by the Mes-
sageScope’s messageSplit reference which allows to nest Operations. Beside
Operations, further branching can be defined by specifying transitions between
MessageFlows using their messageFlow reference. A preCondition and postCon-
dition can be specified in order to define in which case the transition is triggered.

5.5 Behavioral Aspect

The behavioral aspect describes how plans are composed by complex control
structures and simple atomic tasks and how information flows between those
constructs. The core concepts of the behavioral aspect are depicted in Fig. 9.

A Plan can be considered as a specialization of the abstract Behavior to specify
an agent’s internal processes. An Agent can use several Plans which contain a set
of Activities and Flows (i.e., ControlFlow, InformationFlow) that link Activities
to each other. Furthermore, a Plan refers to a set of MessageFlows to ensure that
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Fig. 9. The partial metamodel reflecting the core behavioral aspects of Pim4Agents

Fig. 10. The partial metamodel reflecting complex activities of the behavioral aspects

the message exchange (defined by the Protocol) is implemented by the particular
Plan in an adequate manner.

The body of a Plan is mainly represented by the specializations of an Activ-
ity. A StructuredActivity (see Fig. 10) is an abstract class that introduces more
complex control structures into the behavioral view. It inherits from Activity,
but additionally owns a set of Activities and Flows.

A Sequence as a specialization of a StructuredActivity denotes a list of Activi-
ties to be executed in a sequential manner as defined by contained ControlFlows
through their sink and source attributes. Beside using the concept of Sequence,
a sequence of Activities can additionally be directly described by linking the
particular Activities through ControlFlows. However, the concept of Sequence
allows hiding the concrete trace which might be important when designing com-
plex Plans as scalability is improved. A Split is an abstract class that defines a
point in a Plan where a single thread of control splits into multiple threads
of control. We distinguish between Parallel and Decision as specializations.
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Fig. 11. The partial metamodel reflecting atomic activities of the behavioral aspects

A Parallel is a point in a Plan, where a single thread of control splits into
multiple threads of control which are executed in parallel. Thus a Parallel al-
lows Activities to be executed simultaneously or in any order. How the different
threads are synchronized is defined by a SynchronizationMode. Feasible options
are XOR (i.e., exactly one path is synchronized), AND (i.e., all paths are syn-
chronized) and NofM (i.e., n of m paths are synchronized, where n and m are
both natural numbers and n ≤ m).

In contrast to a Parallel, a Decision in Pim4Agents is a point in a Plan
where, based on a Condition, at least one Activity of a number of branching
Activities must be chosen. A Decision can either be executed in an XOR or OR
manner. In contrast, a Loop is a point in a Plan where a set of Activities are
executed repeatedly until a certain pre-defined Condition evaluates to false. It
allows looping that is block structured, i.e., patterns allow exactly one entry
and exit point. A ParallelLoop as a specialization of Loop and Parallel allows
specifying iterations in the form that each trace is executed in parallel.

Like a StructuredActivity, a Task (depicted in Fig. 11) is an abstract class
that inherits from Activity. Unlike a StructuredActivity, a Task mainly focuses
on atomic activities and thus does not contain any Activities or Flows. Fig. 11
depicts the partial metamodel of Task-related concepts. A Send activity specifies
that the referred Message is sent, whereas the Receive activity denotes that the
particular Message is received and Reply answers this Message. Furthermore,
the AssignRole activity allows to assign AgentInstances to Roles (i.e., Actors
and Wait to wait for a particular time or event. Finally, an InternalTask can be
used to define code.

5.6 Deployment Aspect

The deployment aspect of Pim4Agents (cf. Fig. 12) deals with the kind of
AgentInstances that exist in the running systems and how these instances are
bound to the particular DomainRoles through the concept DomainRoleBinding.
Even if using the deployment aspects is optional, i.e., the instances of agents could
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Fig. 12. The partial metamodel reflecting the deployment aspect of Pim4Agents

also be introduced on the particular agent platform selected to execute the design,
for closed MASs it might already make sense to define the agent instance dur-
ing design time. In this case, AgentInstances can be bound through the concept
of DomainRoleBinding to the particular DomainRoles their Agents can perform.
Through the concept of ActorBinding, these bound AgentInstances can then be
assigned to Actors of an Interaction. An AgentInstance refers to its Agent type,
which is either Agent or Organization. In the case of Organization, the AgentIn-
stance refers to the concept Membership that includes all AgentInstances that are
members.

6 Modeling TeleTruck

In this section, we demonstrate how to use the different aspects of Pim4Agents

for designing the TeleTruck scenario. In particular, we illustrate how to model
the collaborative settings, the interaction protocols to define the exchange of
messages, as well as the agents’ internal behaviors. We do not claim that the
diagrams presented in this section cover really all aspects of the TeleTruck

scenario. For example, there might be additional behaviors, collaborations, etc.
that are not shown in this section. We picked a proper subset of the different as-
pects to give an insight how the Dsml4MAS language can be used for modeling
the TeleTruck scenario.

6.1 Identification of Involved Agents

The agent diagram bases on the agent aspect of Pim4Agents (see Section 5.1)
and is used to specify the different agent types of a system. Fig. 13 depicts how
the two agent types TruckAgent and CompanyAgent can be modeled. The Truck-
Agent represents a company’s trucks and performs the domain role TruckRole.
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Fig. 13. Agent diagram of the TeleTruck scenario

Likewise, the CompanyAgent represents the controlling part of the transportation
company and performs the TransportationCompanyRole.

The plans in Fig. 13 implement the agent’s behaviors for the CNP and ST
protocol (STP). For example, the DistributeJobsPlan implements the company’s
behavior in the CNP, whereas the BidForJobsPlan implements the opposite’s
behavior. Section 6.4 refines the BidForJobsPlan into more detail. Moreover, there
might be additional plans for communicating with the customer and other tasks.

6.2 Modeling Organizations and Collaborations of Agents

After the agent types have been identified, the cooperation between these agents
can be modeled. Pim4Agents provides the concept of Organization to spec-
ify the cooperation of agents (see Section 5.2). Modeling organizations with
Dsml4MAS consists of two steps: (i) creation of the organization itself, its
domain roles, plans, and utilized protocols and (ii) the specification of collabo-
rations between domain roles inside the organization.

Fig. 14 shows how the TeleTruckOrganization can be modeled with the
Dsml4MAS. The TeleTruckOrganization requires the domain roles TruckRole,
TransportationCompanyRole, and Customer.

Moreover, Fig. 14 depicts that the TeleTruckOrganization utilizes the CNP and
STP. The protocols will be refined later into more detail. The internal collabora-
tions of the TeleTruckOrganization are modeled with the concept of Collaboration
(see Section 5.2). Fig. 15 shows the TeleTruckCollaboration which describes the de-
tails of the collaboration between the TruckRole and TransportationCompanyRole.

The TeleTruckCollaboration contains the domain role binding TruckBinding and
CompanyBinding which bind the domain roles to the collaboration and are visu-
alized as ports. Actor bindings are used to specify the binding between a domain
role binding and the actors of the utilized protocols. For example, the Company-
Binding is bound by the STPMarketBinding to the Market actor of the STP and
by the CNPInitBinding to the Initiator actor of the CNP. This specifies that a role
filler who performs the TransportationCompanyRole has to play the Market actor
in the STP and the Initiator actor in the CNP.
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Fig. 14. Organization diagram of the TeleTruck scenario

Fig. 15. Collaboration diagram of the TeleTruck scenario

6.3 Modeling Protocols

In the Dsml4MAS language, protocols are used to specify the message exchange
between actors. The concept of actor allows us to handle named sets of role fillers
at design time. A collaboration is the context in which the actors of the utilized
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Fig. 16. Contract net protocol

protocols are bound to domain roles of an organization. Moreover, bindings are
used at design time to specify the minimum and maximum number of role fillers
that can be assigned to an actor at runtime.

The CNP belongs to the family of the cooperation protocols and is the most
prominent protocol in DAI as it provides a solution for the connection prob-
lem, i.e., to find an appropriate agent to work on a given task. It bases on the
contracting mechanism used by business to govern the exchange of goods and
services and though uses a minimum of messages which makes it very efficient
for task assignment. The protocol defines how an initiator sends out a number of
calls for proposal to a set of participants. Some of these participants will refuse
the call, while others may come up with a proposal. The initiator then evaluates
the proposals and accepts the most adequate(s) and rejects the others. For those
that are accepted, there are three different final results sent back to the initiator.

For designing the CNP using Pim4Agents, firstly, we introduce two actors
called Initiator and Participant. The protocols starts with the first message flow
of the Initiator that is responsible for sending the CallForProposal message of the
performative type cfp. The CallForProposal message specifies the task as well as
the conditions that can be specified within the properties view of the graphical
editor. When receiving the CallForProposal, each agent instance performing the
Participant decides on the base of free resourceswhether to Propose or Refuse. How-
ever, how this selection function is defined cannot be expressed in the protocol de-
scription, as private information are later on manually added to the automatically
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Fig. 17. Simulated trading protocol

generated behavior description. To distinguish between the alternatives, two ad-
ditional actors (i.e., Propose and Refuse) are defined that are subactors of the Par-
ticipant (i.e., any agent instance performing the Participant should either perform
the Propose or Refuse actor). The transitions between the message flow within the
Participant and the message flows of the Refuse or Propose actors through the mes-
sageFlow reference underline the change of state for the agent instance perform-
ing the Participant actor. However, the transitions are only triggered if a certain
criterion is met. In the CNP case, the criterion is that the Initiator got all replies,
independent of its type (i.e., Refuse or Propose). The postConditions of a Message-
Flow can be defined in the properties view of the graphical editor. The message
flows within the Refuse and Propose actors are then responsible for sending the
particular messages (i.e., Refuse and Propose).

After the deadline expired (defined by the TimeOut) or all answers sent by the
agent instances performing the Participant actor are received, the Initiator evalu-
ates the proposals in accordance to a certain selection function, chooses the best
bid(s) and finally assigns the actors BestBidder and RemainingBidder accordingly.
Again, the selection function is not part of the protocol, but can be defined later
on in the corresponding plan. Both, the BestBidder actor as well as the Remain-
ingBidder actor—containing the agent instances that were not selected—are again
subactors of the Propose actor. The Initiator sends an AcceptProposal message to
the BestBidder and a RejectProposal message to the RemainingBidder in parallel.

After completing the work on the assigned task, the BestBidder reports its
status to the Initiator either in the form of an InformResult or InformDone message
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to report the successful completion or in the form of a Failure message in case the
BestBidder fails to complete the task. Therefore, we distinguish again between
InformResult, InformDone and Failure actors which are subactors of BestBidder.

Like the CNP, the STP can be described in a nice manner using Dsml4MAS.
For this purpose, we introduce five Actors, i.e., Market, Participant, Buy, Sell
and NoOp. The latter three are subactors of the Participant Actor. The concrete
message exchange is illustrated in Fig. 17.

6.4 Creation of Plans

Fig. 18 shows the TruckAgent’s BidForJobsPlan which implements the behavior
of the Participant actor of the CNP shown in Fig. 16. The basic behavior of the
TruckAgent has already been described in Section 2.1.

The lower part of Fig. 18 shows the properties view of the ReceiveNewTask
task. We can see that the task refers to the BidRequest message. The BidRequest
message is sent by the CompanyAgent to all of its TruckAgents to offer a new task.
As the TeleTruckOrganization utilizes the CNP to distribute tasks, the BidRequest
message (type Message) refers to the CallForProposal message (type ACLMes-
sage) of the CNP (see Fig. 16).

Pim4Agents distinguishes between ACLMessages that are used to specify
the message sequences of a protocol and the actual Messages that are sent by
plans. As protocols are reusable components, ACLMessages do not specify the
resources that are transmitted by them. If a message shall be sent by a plan

Fig. 18. BidForJobsPlan of the TeleTruck scenario
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(e.g. the BidRequest message from Fig. 18), we have to introduce a new Message
that refers to a ACLMessage of a protocol (here the CallForProposal ACLMes-
sage) and assign some application specific resources to it. In the TeleTruck

example, the CompanyAgent sends information about the new order. Resources
can be modeled in the environment diagram. Due to space restrictions, the re-
sources are not shown here.

The TruckAgent either computes a bid or sends a refuse message to the Com-
panyAgent. A truck refuses new orders if it is currently not able to accept new
ones. In this case the plan terminates. The computation of the bid is covered by
the InternalTask ComputeBid. An InternalTask is like a black box behavior that
is not further refined at the model level. Of course, a suitable algorithm has to
be chosen and plugged into the generated plans.

The TruckAgent sends the computed bid to the CompanyAgent. If the bid
is accepted, the TruckAgent updates its route and sends a notification to the
CompanyAgent when the job is done. Otherwise, the plan terminates.

6.5 Modeling Deployment Aspects

In order to generate an executable multiagent system we have to model the de-
ployment aspects of the TeleTruck system. For this purpose, the Dsml4MAS

development environment offers the deployment diagram which bases on the de-
ployment aspect of Pim4Agents (see Section 5.6). The deployment diagram
allows us to model concrete instances of agents and organizations.

Fig. 19 depicts the organization instance TC1 of type TeleTruckOrganization,
the agent instance CA1 1 of type CompanyAgent, and four agent instances of
type TruckAgent which represent the company’s trucks.

Fig. 19. Deployment diagram of the TeleTruck scenario
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In order to assign the agent instances to the domain roles of the TC1 orga-
nization, we use the Membership concept. The lower part of Fig. 19 shows the
properties view of the selected Membership concept. As we can see, the Member-
ship concept refers to the TruckBinding of the TeleTruckCollaboration from Section
6.2. Therefore, it is exactly specified in which context the four truck agents are
bound to the TC1 organization instance. The Membership concept specifies that
the four trucks are now rolefillers of the TruckRole and play the Participant ac-
tor of the STP and CNP. Likewise, the company agent CA1 1 is bound to the
CompanyBinding (see Fig. 15).

7 Related Work

Logistics management has been investigated in DAI and MAS research in the
early nineties (e.g. [17]). A significant number of articles have been published
till today which demonstrates the relevance of this application domain for DAI
and MAS research. The workshop series on Agents in Traffic and Transporta-
tion shows that the research interest in this application domain is still active.
Interested readers are referred to [18] for a more comprehensive overview of the
work done so far. The work presented in this article builds on the results of [2].

In the MAS community, Agent UML (AUML) is the most prominent modeling
language. AUML is an extension of the Unified Modeling Language (UML) to
overcome the limitations of UML with respect to MAS development. AUML
results from the cooperation between the Object Management Group (OMG)
and the Foundation of Intelligent Physical Agents (FIPA), aiming to increase
acceptance of agent technology in industry. However, even if AUML is the most
cited agent-based modeling language, AUML’s usage is mainly restricted to agent
interaction protocols. Other aspects like agents, organizations or roles part of
AUML are not often used.

Other, more methodology-oriented approaches like for instance Prometheus
[19], Tropos [20] have demonstrated their usefulness in scenarios like the con-
ference management system. However, it is unclear if complex scenarios like the
TeleTruck scenario can be defined in an appropriate manner to generate exe-
cutable code.

8 Conclusion and Future Work

This paper discusses a novel modeling framework for MAS called Dsml4MAS.
It bases on a platform independent metamodel for multiagent systems
(Pim4Agents) that defines the vocabulary for designing MASs in accordance
to Dsml4MAS. We described the different aspects of Pim4Agents and demon-
strated how to use this modeling framework when designing the TeleTruck

scenario. In general, the design of the TeleTruck scenario can be described
by the Pim4Agents in a nice and straightforward manner as Pim4Agents

naturally supports the modeling of collaborative settings and complex interac-
tion protocols like the Simulated Trading protocol or the Contract Net protocol.
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However, the concrete algorithms have to be defined on the particular execution
platform (e.g. Jack or Jade) target of the model transformation.

Our future work will comprise the development of further aspects that will
mainly focus on the internals of an agent. Moreover, we are currently working
on a model-driven methodology approach to develop Dsml4MAS in an iterative
manner.
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Abstract. Electronic markets, dispute resolution and negotiation pro-
tocols are three types of application domain that can be viewed as open
agent systems. Members of such systems are developed by different par-
ties and have conflicting goals. Consequently, they may choose not to,
or simply fail to, conform to the norms governing their interactions. It
has been argued that many practical applications in the future will be
realised in terms of open agent systems of this sort. Not surprisingly,
recently there is a growing interest in open systems. In this paper we
review and compare four approaches for the specification of open sys-
tems, pointing out the extent to which they satisfy a set of requirements
identified in the literature.

1 Introduction

Agents, although required to make decisions and act locally, operate in the con-
text of multi-agent systems (MAS). A particular kind of multi-agent system is
one where the members are developed by different parties and have conflicting
goals. A key characteristic of this kind of MAS, that is due to the globally incon-
sistent sets of goals of the members, is the high probability of non-conformance
to the specifications of the systems. A few examples of this type of MAS are
electronic marketplaces, dispute resolution protocols, Virtual Organisations and
digital media rights management protocols. Multi-agent systems of this type are
often classified as ‘open’. It has been argued that many practical applications in
the future will be realised in terms of ‘open agent systems’ (OAS) of this sort.

For the purposes of this paper, we consider a multi-agent system as open if it
exhibits the following characteristics:

– The internal architectures of the members are not publicly known.
– Members do not necessarily share a notion of global utility [38].
– The behaviour and the interactions of the members cannot be predicted in

advance [24].

The first characteristic implies that an OAS may be composed of agents with
different internal architectures. Therefore, we will treat OAS as heterogeneous
ones. Moreover, there is no direct access to an agent’s mental state and so we
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can only infer things about it. The second characteristic implies that the mem-
bers of an OAS may fail to, or even choose not to, conform to the specifica-
tions (of that system) in order to achieve their individual goals. In addition to
these characteristics, OAS are always subject to unanticipated outcomes in their
interactions [24].

Often in the literature OAS are those where agents may enter or leave the sys-
tem at any time (see, for example, [24,38,55,60]). Usually, agents enter a system
after having successfully executed a role-assignment protocol. The specification
of such a protocol is application-specific. Our definition of an agent system as
open is irrespective of the protocols that specify the ways by which agents enter
or leave the system.

Recently there is a growing interest in the MAS community in OAS. The aim
of this paper is to present a critical survey of approaches for the specification
of OAS. We review the following lines of work: (a) artificial social systems, (b)
enterprise modelling, (c) commitment protocols, and (d) electronic institutions.
We chose to review the aforementioned lines of work because they are well-
known and illustrate different aspects of OAS. Clearly there are other prominent
approaches for specifying OAS, including [3,4,5,6,8,18,22,28,32,40,43,54]. Given
the space limitations, however, it is not possible to present here a review of all
relevant lines of research.

Following [41] the review of each approach is divided into two parts: (i) the
description of the approach, and (ii) our commentary on the approach. Conse-
quently the paper may be read in two ways: its main aim is to describe and
compare the various lines of research, but it can also be read as a catalogue of
abstracts by ignoring the commentary included with each entry.

The commentary of each approach includes a discussion on whether a set
of requirements identified in the literature for the specification of OAS are ad-
dressed. It has been argued, for example, that OAS may be viewed as instances
of normative systems [26]. A feature of this type of system is that actuality, what
is the case, and ideality, what ought to be the case, do not necessarily coincide.
Therefore, it is essential to specify what is permitted, prohibited, and obligatory,
and perhaps other more complex normative relations (such as duty, right, priv-
ilege, authority, . . . ) that may exist between the agents. Among these relations,
considerable emphasis has been placed on the representation of ‘institutional’
(or ‘institutionalised’) power [27,30]. This is a feature of norm-governed systems
whereby designated agents, when acting in specified roles, are empowered by an
institution to create relations or states of affairs of special significance within
that institution — institutional facts [39]. Consider, for example, the case in
which an agent is empowered by an institution to award a contract and thereby
create a bundle of normative relations between the contracting parties. Accord-
ing to the account given by Jones and Sergot [27], institutional power can be
seen as a special case of a more general phenomenon whereby an action, or a
state of affairs, A — because of the rules and conventions of an institution —
counts, in that institution, as an action or state of affairs B [39] (such as when
sending a letter with a particular form of words counts as making an offer).
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It has also been argued that the semantics of the rules of an OAS must be,
among other things, formal, declarative (the semantics should describe what
rather than how), and verifiable (it should be possible to determine whether an
agent is acting according to the rules of an OAS) [50, 52]. In the commentary
of each approach we will point out the extent to which these requirements are
satisfied. Finally, the commentaries include a discussion on the types of compu-
tational task that may be performed on the system specification.

A short survey of interaction protocols for MAS was recently presented in [31].
The criteria against which each protocol was evaluated are different from the ones
we are concerned with. In [31] emphasis was placed on the issue of dynamic protocol
composition.We do not exclude from our surveyprotocols that arenot dynamically
composable; moreover, unlike the survey of [31], we are concerned with the norma-
tive relations that are expressed by each approach for specifying OAS, whether the
approach has a verifiable semantics, and the supported computational tasks.

2 Artificial Social Systems

Moses, Tennenholtz and Shoham [33, 34,47,48, 53] present in various papers an
approach to the design of multi-agent systems, called artificial social systems. An
artificial social system is based on a set of restrictions on the agents’ behaviour,
called social laws. These laws allow the agents to co-exist in a shared environment
and pursue their goals. Social laws are determined at design-time, that is, before
the commencement of the agent activities, and enable the members of a system
to create their own plans at run-time.

Moses and Tennenholtz [34] define artificial social systems first by defining
multi-agent systems in general, and then by defining normative systems and
social systems.

A multi-agent system M is represented as a tuple of the form
M = (N, W, K1, . . . , Kn, A, Able1, . . . , Ablen, I, T ), where:

– N = {1, . . . , n} is a set of agents.
– W is a set of possible worlds (states).
– Ki ⊆ W ×W are accessibility (equivalence) relations that capture the knowl-

edge of each agent i (i ∈ N).
– A is a set of primitive individual actions.
– Ablei : W → 2A are functions that determine the set of actions that each

agent i is physically capable of performing (i ∈ N).
– I is a set of possible external inputs for the agents. The elements of this

set are intended to capture any messages that an agent may receive from
outside the system.

– T : W × (A × I)n → W ∪ {⊥} is a state transition function that determines
the state immediately after the current one as a function of the actions that
each agent performs, and the input each agent receives in the current state.

A normative system is a multi-agent system associated with a set of social laws.
Tennenholtz [53] structures the states of a system in order to define social laws.
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Given disjoint sets of states S1, . . . , Sn, the set of system states W is defined as
the set of all tuples (s1, . . . , sn) where si ∈ Si for each agent i. Given a system
state w ∈ W , wi is the i-th element of w.

Given a set of system states W , a first-order language L (with an entailment
relation |=), and a set of actions A, a social law is a set of constraints of the
form (αj , ϕj) where αj ∈ A and ϕj ∈ L, at most one for each αj ∈ A.

The language L is used to describe what is true and false in different system
states. Intuitively, an action a is prohibited for agent i at state w by the constraint
(a, ϕ) if and only if wi |= ϕ. ϕ ∈ L is the most general condition that prohibits
the performance of action a.

Every physically possible action that is not prohibited by a social law at a
particular state is considered allowed (according to that law) in that state. The
Legali : W → 2A functions represent the set of actions that agent i is allowed to
perform in state w ∈ W , according to the system’s laws. The Legali functions
satisfy the three following properties:

1. Each agent knows what actions it is allowed to perform (epistemological
adequacy).

2. The set of actions that an agent is allowed to perform are physically possible
for that agent (physical adequacy): ∀i ∈ N, ∀w ∈ W, Legali(w) ⊆ Ablei(w).

3. In every state, there is at least one action an agent is allowed to perform
(non-triviality): ∀i ∈ N, ∀w ∈ W, Legali(w) �= ∅.

A normative system N , extending a multi-agent system M, is defined as a pair
N = (M, {Legali}i∈N ).

In a normative system the state transition function takes as an argument not
only the current state and the actions performed by the agents but also the
social laws that are in force (which are associated with the performed actions).
Given such input, the state transition function produces a prediction about the
set of possible next states, provided that all agents comply with the laws.

A social system is regarded as an instance of a normative system. All possible
states in a social system must be ‘socially acceptable’. This will happen if the
initial states are ‘socially acceptable’ and as long as every agent obeys the laws
of the system. Moreover, each agent should always be able to attain a set of
‘socially acceptable’ goals — these are the goals that the social system allows
the agents to achieve.

The set of ‘socially acceptable’ states is represented by the Wsoc set (Wsoc ⊆
W ) whereas the set of ‘socially acceptable’ goals is represented by the Gsoc set.
An agent’s goal g is associated with a set of states Wg ⊆ W ; these are the states
in which the goal has been achieved. The Wsoc set is intended to capture the
‘safety’ and ‘fairness’ of the system while the Gsoc set is intended to capture the
‘liveness’ of the system. The definition of both of these sets is application-specific.

Social systems are defined in terms of the agents’ legal plans. A plan for an
agent i is defined as a function Chi : W → A that satisfies the following property:

– Each chosen action must be physically possible:
∀i ∈ N, ∀w ∈ W, Chi(w) ∈ Ablei(w).
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The above property is strengthened in order to define a legal plan:

– Each chosen action must be allowed according to the system’s laws:
∀i ∈ N, ∀w ∈ W, Chi(w) ∈ Legali(w).

A social system S for a multi-agent system M, consistent with Wsoc and Gsoc,
is a normative system extending M that satisfies the following:

1. A state w ∈ W is legally reachable only if it is ‘socially acceptable’, that is,
w ∈ Wsoc.

2. For every legally reachable state w, if the goal of agent i in w is ‘socially
acceptable’, that is g ∈ Gsoc, then there is a legal plan for i that, starting in
w, will attain g as long as all other agents act according to the laws of the
social system.

Fitoussi and Tennenholtz [16,17] define two properties of social laws. These prop-
erties are called minimality and simplicity. The rationale for defining minimal
social laws is that a minimal law provides agents more freedom in choosing their
behaviour (that is, it prohibits fewer actions) while ensuring that agents conform
to the system specification. The rationale for defining simple social laws is that
a simple law relies less on the agents’ capabilities rather than a non-simple one.
Learning a simple law is likely to be faster and its representation is likely to be
more succinct.

As already mentioned, work on artificial social systems focuses on the design-
time specification of laws that allow agents to achieve their goals at run-time.
Sometimes it is not feasible to design social laws at design-time. For example, it
might be the case that all the characteristics of a system are not known at design
time. In such a case the members of a system will converge to social laws. In
a complementary (to the artificial social systems approach) work, Shoham and
Tennenholtz [46, 49] examine the case in which laws emerge at run-time. The
issue of law emergence is beyond the scope of this paper; therefore, we do not
present here this line of work.

Commentary

The work on artificial social systems has been very influential in the field of multi-
agent system specification. We make the following comments with respect to the
suitability of this approach for OAS specification. First, social laws only refer to
the permissions of the agents, regulating their behaviour. No other normative
relations are considered. This is probably due to the fact that the applications
that have been studied in the context of the artificial social systems approach
(for example, mobile robots moving along a two-dimensional grid [48, Section 2]
or a circular automated assembly line [17, Section 3.1]) can be mainly described
in terms of physical actions rather than communicative actions, and brute facts
rather than institutional facts [39]; being in physical possession of an object, for
example, is a brute fact (it can be observed), whereas being the owner of that
object is an institutional fact.
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Second, in the artificial social systems approach it is assumed that all members
comply with the social laws. However, as Shoham and Tennenholtz [47, p.281]
mention, the members of agent systems (and especially OAS) do not always act
according to the social laws. There is a need, therefore, to consider and develop
mechanisms that deal with non-conformance to the laws.

The semantics of social laws are formal and declarative. Regarding the veri-
fication of compliance to social laws, it is necessary that the laws make no as-
sumptions about the internal architectures of the agents, that is, φ in law (a, φ)
does not refer to the mental states the agents — recall that there is no access
to the agents’ internal states in an OAS. Finally, to the best of our knowledge,
there is no discussion about a software implementation allowing for reasoning
about the social laws of a system (thus, informing the decision-making of the
agents by computing legal plans, allowed actions, and so on).

3 Enterprise Modelling

In this section we review the work of Fox, Grüninger and colleagues [19,23] on
modelling computational enterprises/organisations. In this approach an organ-
isation is viewed as a set of agents playing roles in which they are acting to
achieve specific goals according to various constraints defining the ‘rules of the
game’. More precisely, an organisation consists of: divisions and subdivisions (re-
cursively defined), a set of organisation agents (members of divisions), a set of
roles that members play in the organisation, and an organisation goal tree that
specifies the goal (and the sub-goals) that members are trying to achieve.

A role R is associated with, among other things, a set of: (i) goals that each
agent occupying R is obliged to achieve, (ii) processes, that is, activity networks
defined to facilitate the achievement of the goals, (iii) policies constraining the
performance of R’s processes, and (iv) skills that are required to achieve the
goals of R. An element of a role on which considerable emphasis is placed is that
of authority. Depending on the type of authority agent Ag1 has over agent Ag2,
due to the roles Ag1 and Ag2 occupy:

– Ag1 may assign a set of goals to Ag2, thus making Ag2 obliged to achieve
these goals.

– Ag1 may assign a set of new roles to Ag2.
– Ag1 may empower Ag2 to perform a set of actions. Empowerment — a key

feature of this approach on enterprise modelling — may be necessary in order
to achieve the set of goals associated to the roles one occupies; for instance,
an agent may manipulate/consume a set of resources only if it is empowered
to access these resources.

The constraints on the members of an organisation (‘rules of the game’), such as
the policies of each role, are expressed with the use of a dialect of the Situation
Calculus [36]. Moreover, a logic programming implementation of the Situation
Calculus formalisation has been developed supporting the following computa-
tional tasks:



Specifying Open Agent Systems: A Survey 35

– Planning; what sequence of actions must be performed to achieve a particular
goal? In order to minimise the cycle time for a product, for example, we may
compute a plan maximising the concurrency of actions.

– Narrative assimilation (temporal projection); what are the effects of the oc-
currence of a set of actions? For instance, how are the obligations and powers
of a set of agents affected by the actions performed so far? Or what will hap-
pen if we move one task ahead of schedule and another behind schedule?

Commentary

Fox and colleagues, in their model of computational enterprises/organisations,
identify and represent several normative relations of the member agents, such
as obligation, authority and empowerment. This is in contrast to the artificial
social systems approach in which only permissions are considered. This differ-
ence is not surprising as the modelling of computational organisations, unlike
the applications studied in the context of the artificial social systems approach,
requires the representation of institutional facts and communicative actions. The
representation of ‘empowerment’, however, is not very clear. In some cases ‘em-
powerment’ seems to coincide with the concept of institutional power presented
in the introduction, in the sense that an empowered agent may create a set of
institutional facts, such as the establishment of a contract with a third party,
while in other cases ‘empowerment’ seems to coincide with permission, in the
sense that performing a permitted action will not be penalised.

Like the artificial social systems approach, Fox and colleagues do not consider
mechanisms for dealing with non-compliance to the specifications (for instance,
violating obligations).

The semantics of the organisational constraints, expressed by means of a ver-
sion of the Situation Calculus, are formal, declarative and verifiable. Finally,
there is no discussion on the complexity of the computational tasks supported by
the logic programming implementation of the Situation Calculus formalisation
— for instance, can verification of compliance be performed in computational
systems composed of hundreds of agents?

4 Commitment Protocols

The concept of commitment has been frequently used in the literature for spec-
ifying protocols for OAS. The term ‘commitment’ (or ‘social commitment’) has
been used in the MAS field to refer to a wide variety of different concepts [42].
A common usage of this term is in the sense of an obligation directed from
one agent to another. In this paper we review the work of Singh and col-
leagues [7, 9, 11, 12, 51, 52, 56, 59] on the so-called commitment protocols.

A commitment is viewed as a four-place relation involving a proposition (p)
and three agents (x, y and G). More precisely, c = C(x, y, G, p) denotes a com-
mitment from x toward y in the context of G and for the proposition p. In
this case x is the debtor, y is the creditor, G is the context group and p is the
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discharge condition of commitment c. The context group is viewed as the adju-
dicating authority that resolves disputes between the debtor and the creditor.
Explicit commitments, unlike implicit ones, are explicitly represented by one or
more agents. Implicit commitments are assumed to be common knowledge, or
mutually believed in a multi-agent system. Commitments can also be divided
into base-level commitments and meta-commitments. A commitment c is a meta-
commitment if the proposition p refers to another commitment; c is a base-level
commitment if p does not refer to other commitments. Regarding agent societies,
Singh states that “[m]etacommitments create a society. The metacommitments
are the norms of the society” [51, p.106].

Singh [51] has discussed the relationship between his interpretation of com-
mitment and related concepts from deontic logic. For instance:

– A pledge is an explicit commitment.
– Singh claims that the classical approaches in deontic logic that express ought

are unsuitable because ‘ought’ is inherently contextual. Therefore, he defines
‘ought’ to be relativised to the context group:
Ought(x, G, p) ≡ (∃G : x ∈ G & c = C(x, G, G, p)). Notice that ‘ought’ is
directed to the context group, not to a particular agent.

– Obligation has two main readings: one close to pledge and one close to
‘ought’.

– A convention or a custom is considered to be an implicit meta-commitment
relativised to a debtor and a context group.

– A power refers to the ability of an agent to force (if it desires) the alteration of
a legal relation in which the another agent participates. Power is expressed
as follows: Power(x, y, r) ≡ C(G, x, G, request(x, G, r) ⇒ perform(G, r))
where r is an operation on commitments whose creditor or debtor is an
agent y and the context group is G. ‘⇒’ represents strict implication.

Commitment protocols have been formalised in various ways, giving different
types of semantics to the concept of commitment. Here we will briefly present
three such formalisations.

Yolum and Singh [58,59] have specified commitment protocols with the use of
a subset of Shanahan’s ‘full version’ of Event Calculus (EC) [44]. All the ‘opera-
tions’ on commitments — creating, discharging, cancelling, releasing, delegating,
assigning commitments — are formalised with the use of EC axioms. Consider,
for example, the ‘release’ operation: Release(E (y), c) releases the debtor x from
the commitment c = C(x, y, p) (here, c is a ‘base-level’ commitment — in the
interest of clarity we omit the context group G from the representation of c).
The creditor y performs an action denoted by E(y) that ‘terminates’ the debtor’s
commitment to bring about p [58]:

Release(E (y),C(x, y, p)) ≡
Happens(E (y), t) ∧ Terminates(E (y),C(x, y, p), t) (1)

Yolum and Singh have employed an abductive EC planner [45] in order to com-
pute planning queries regarding the EC specifications of commitment protocols.
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Given an initial state of a commitment protocol, a final state and the specifica-
tion of the protocol, the planner will compute the protocol runs (if any), that
is, the sequences of actions, that will lead from the initial state to the final one.
Consequently, agents may use the EC planner to compute protocol runs that lead
to a ‘desirable’ outcome. In the case where agents are not capable of processing a
commitment protocol specification, however, a subset of a commitment protocol
specification may be compiled to a finite state machine where no commitments
are explicitly mentioned [57].

Singh and colleagues have also used the C+ action language [21] — a for-
malism with explicit transition systems semantics — to express commitment
protocols (see [7, 11, 12] for a few recent papers). Like EC, C+ has been em-
ployed to express all operations on commitments as well as the effects of the
agents’ actions. The Causal Calculator [21], a software implementation using
satisfiability solvers to compute planning and narrative assimilation queries re-
garding C+ formalisations, allows for the execution of the commitment protocol
specifications.

In a line of work primarily aimed at protocol composition [9,10], commitment
protocols have been formalised with the use of the Web Ontology Language
(OWL) [1] and the Semantic Web Rule Language (SWRL) [25]. SWRL has
been used for formalising protocol rules that include instances of OWL-P, an
OWL ontology for protocols expressing, among other things, the concept of
commitment. Protocol composition is beyond the scope of this paper; therefore,
we do not expand our presentation of this line of research.

Commentary

The notion of commitment is very important when specifying OAS, that is, sys-
tems in which the members may have competitive individual goals and there is
no guarantee about their behaviour. It is difficult to see, however, how an in-
teraction protocol for an OAS (such as, for example, a protocol for e-commerce,
negotiation, argumentation or voting) can be specified simply in terms of com-
mitments in this sense. Other normative relations are at least as important when
specifying a protocol and the meaning of protocol actions. For example, when
a contract is established between two parties by means of accepting an offer,
a party may be interested in finding out the circumstances in which it has the
‘legal capacity’ or institutional power to initiate proceedings against the other
party. In an auction house it is important to know the circumstances in which
an agent has the institutional power to place a bid and, consequently, change
the current bidding price. Similarly there are other examples in which more
normative relations than simply commitments need to be considered.

Like the other two reviewed approaches (artificial social systems and enter-
prise modelling), the formalisations of commitment protocols do not cater for
mechanisms dealing with non-compliance with the system specifications (com-
mitments, in this case).

The semantics of the aforementioned formalisations of commitment proto-
cols are formal and declarative. Moreover, no assumptions are made about the
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internal architectures of the agents, allowing for the verification of compliance
in OAS.

A comparison of the Event Calculus (EC) and the C+ language, that were
used for expressing commitment protocols, and a comparison of EC and the
Situation Calculus, employed by Fox and colleagues for enterprise modelling,
may be found in [35], for example. (See [2] for a comparison of EC and C+
with respect to specifying OAS.) To the best of our knowledge, the relationship
between the aforementioned action languages, and SWRL and OWL-P, that have
also been employed for specifying commitment protocols, has not been discussed.

The abductive EC planner and the Causal Calculator can be used, in principle,
for the provision of both design-time services — for instance, proving protocol
properties — and run-time services — for example, calculating the commitments
current at each time for the benefit of the agents or their designers. These imple-
mentations, however, can become inefficient when considering large OAS. More-
over, it is assumed that the domain of each variable is finite and known from the
outset (for instance, we need to know all possible propositions that an argumen-
tation protocol participant may claim). Consequently, due to these issues, the use
of these implementations for the provision of run-time services may be limited.

5 Electronic Institutions

Esteva and colleagues [13, 14, 15, 20] have developed a systematic approach to
the design and development of multi-agent systems which incorporate aspects of
conventional behaviour and organisational structures in a formal specification of
structured interactions. Such a specification of a multi-agent system is called an
Electronic Institution (EI).

The core notions defining an EI are [14]:

– Roles. A named role defines dialogic capabilities, that is, an agent must
occupy a role in order to make a communicative action. Roles also determine
the organizational structure, through the definition of a role hierarchy to
indicate, for example, subsumption and exclusivity between roles.

– Dialogic framework. The dialogic framework of an EI defines the accept-
able message format of communicative actions, by specifying a named list
of illocutions (a name for each type of communicative action), the content
language (the language of propositions embedded in the illocution), and the
ontology (a vocabulary of terms). In the specification of an EI, the dialogic
framework also includes the roles and the organizational structure. The dia-
logic framework determines the space of illocutions that can be exchanged,
the pertinent exchanges are defined by scenes.

– Scenes. A scene is directed graph specifying a structured exchange of mes-
sages between roles. Essentially a scene is a finite state diagram defining a
communication protocol, with each state transition labelled by an illocution
scheme, itself composed from elements of the dialogic framework (an illocu-
tion, two agent/role pairs (the sender/receiver), an expression of the content
language, and a time stamp).
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– Performative structure. A directed graph of scenes defines the performative
structure(s) of the EI. The specification of a performative structure describes
how agents can move between scenes by satisfying certain pre-conditions,
specifically related to roles they occupy and communicative actions they
make.

– Normative rules. Normative rules in an EI are expressions which impose
obligations or prohibitions on communicative actions within scenes, which
constrain or regulate the behaviour of agents which occupy the roles that
are the subject of the rule.

In [20] two ‘sorts’ of normative rule are given. One sort concerns the so-called
‘strict’ obligations to perform communicative actions according to the scene
specification. A second sort are (what is called) ‘less strict’ normative rules
which express other permissions, obligations and prohibitions with a conditional
or temporal constraint.

A ‘strict’ normative rule is of the form:

(
m∧

i=1

{illocutions}i ∧
n∧

j=1

{conditions}j) →
m′∧

k=1

{illocutions}k ∧
n′∧

l=1

{conditions}l

with the intuitive meaning that if the illocutions i, 1≤i≤m have been communi-
cated (‘uttered’) in the appropriate scene states, and the expressions j, 1≤j≤n
are satisfied, then the illocutions k, 1≤k≤m′ satisfying the expressions l, 1≤l≤n′

‘must be’ communicated in the appropriate scene states. If the right-hand side
is ⊥ instead of a conjunction of illocutions and conditions, then uttering the
illocutions i is said to be a violation.

Note that no deontic operators are used in a ‘strict’ normative rule. Such
operators are employed to express the ‘less strict’ normative rules [20]:

OBLIGED illocution PERMITTED illocution
BEFORE illocution BETWEEN ( illocution, illocution )
IF condition

Here, the first expression contains a conditional obligation to perform a certain
action (utter an illocution) prior to a certain other action, subject to certain other
conditions (which might include performance of past actions). For example, in an
auction scene, a buyer might be obliged to pay for an item before the auctioneer
closes the auction, if the buyer performed the action (uttered the illocution) that
was the winning bid. The second expression denotes a permission in an interval
of time: for instance, in a voting scene, a voter might be permitted to vote after
the chair has called for votes, and before the chair closes the ballot.

Two types of mechanism have been devised in order to deal with the possibility
of non-compliance with the normative rules. In [37] devices called ‘interagents’
were employed to enforce the rules of an auction house to the buyer and seller
agents. In this setting, forbidden actions were physically blocked by interagents.
In [20] sanctions were applied in the case of rule violation; failure to comply with
an obligation, for example, could result in a monetary penalty.
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Software tools for computational support of the EI specification languages
have been developed. Islander [13], for instance, is an integrated development
environment for specifying EIs. It offers a graphical user interface which allows
the user to edit performative structures, scenes and illocutions. A verification
module is implemented which, it is claimed, checks for ‘integrity’ (whether all
elements of an EI are defined), protocol correctness (standard properties, such as
liveness, reachability and termination), and ‘norm consistency’. In [13] verifica-
tion of ‘norm consistency’ is performed only over the so-called ‘strict’ normative
rules. Another tool for computational support of the EI specification languages
is presented in [20]; this is a rule-based system for executing a set of normative
rules, including the ‘less strict’ normative rules, with the aim of providing run-
time services, such as the computation of the permissions and obligations of the
agents current at each state.

Commentary

Electronic Institutions (EI) are, in some sense, a result of an almost ethnographic
study of the fishmarket auction extended to other (human) institutions. The five
core notions of EI can be used to give order and structure to MAS intended to
support similar types of activity (e-commerce, negotiation, and so on). As such,
it is a specification formalism whose analytic and formal basis lends itself well
to computational support.

We note though that the normative rules concern only the permissions and
obligations of the agents — this is similar to the work on commitment protocols
where the focus was on directed obligations. It has been argued that other nor-
mative relations are at least as important as those when specifying the meaning
of protocol actions.

The general strategy of designing mechanisms to force compliance and elimi-
nate non-permitted behaviour — regimentation [26] — is rarely desirable (it re-
sults in a rigid system that may discourage agents from entering it), and not always
practical (violations may still occur due to, say, a faulty regimentation device). For
all of these reasons, allowing for sanctioning mechanisms may be a better option
than relying exclusively on regimentation devices (interagents, in this case).

The semantics of the EI specification languages are formal and declarative.
Moreover, verification of compliance has been performed in settings where there
is no access to the internal architectures of the agents. However, the represen-
tation of the agents’ actions and their effects is not as expressive as those of
enterprise modelling, where the Situation Calculus was used, and commitment
protocols, where the Event Calculus and the C+ language were used.

To the best of our knowledge, a precise equivalence between (fragments of) the
formalism used for verification of ‘norm consistency’ with that used for support-
ing run-time activities has not been established. Consequently, it is not possible
to, say, verify a system specification for ‘norm consistency’ and then translate
that specification to an equivalent for the provision of run-time services.

The verification module for ‘norm consistency’ operates under the assumption
that the domain of each variable is finite and known from the outset, while the
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complexity is exponential to the number of variables and their possible values.
Consequently, like the Event Calculus planner and the Causal Calculator that
were employed in the context of commitment protocols, it may not be possible
to use this module in large systems.

6 Discussion

We reviewed four approaches for the specification of multi-agent systems exhibit-
ing the features open systems; no access to the code of the agents, no guarantee
of benevolent behaviour, and no possibility of predicting the agent interactions.
Most reviewed approaches focused on the representation of the permissions and
obligations (or commitments) of the agents. These normative relations may be
adequate for expressing the system rules when a system can be mainly described
in terms of brute facts. When this is not the case, however, it is necessary to ex-
plicitly represent the concept of institutional (or institutionalised) power in order
to express the circumstances in which an agent may create a set of institutional
facts. Jones and Sergot state the following with respect to this issue:

“[W]e need to make it explicit at the outset that ‘empowering’ is not
an exclusively legal phenomenon, but is a standard feature of any norm-
governed organisation where selected agents are assigned specific roles
(in which they are empowered to conduct the business of that organisa-
tion). Thus although it is perhaps legal examples, [..], which come most
immediately to mind, it is clear that illustrations of essentially the same
sort of phenomenon also occur frequently in other than legal contexts:
the Chief Librarian is empowered to waive lending restrictions; the Head
of Department alone is empowered to assign duties to members of the
department; [..]. An adequate account of the mechanisms by means of
which an organisation conducts its affairs will have to incorporate, one
way or another, the phenomenon of institutionalised power, as we shall
here choose to call it.” [27, p.430]

The work on enterprise modelling included a representation of institutional
power, although the distinction between institutional power and permission was
not always clear. The other reviewed approaches did not explicitly represent
institutional power.

Although all reviewed approaches specified rules regulating the behaviour of
agents (in terms of permissions, obligations, commitments), only the work on
Electronic Institutions developed mechanisms for dealing with rule violation.

All reviewed approaches specified rules with a formal, declarative and ver-
ifiable semantics. They all employed different formalisms to express the rules,
though, thus the expressiveness of each formalisation varied. Details about the
relationship between some of the employed formalisms for expressing the rules
of a system can be found in the papers cited in earlier sections.

The support for computational tasks regarding the system specification, offer-
ing design-time and run-time services, is crucial for the realisation of open sys-
tems. All reviewed approaches apart from the work on artificial social systems
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included software implementations executing the system specifications with the
aims of proving properties of the specifications, checking whether agents comply
with the rules, or informing the decision-making of the agents by computing plans
that lead to a desired state, or by computing their current permissions, obligations,
and so on. There was no demonstration of an implementation framework, however,
providing all of the above services at run-time in a large multi-agent system.
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Abstract. Modern software systems share with social organizations the
attributes of being large-scale, distributed and heterogeneous systems of
systems. The organizational metaphor for software engineering has par-
ticularly been adopted in the field of multi-agent systems but not entirely
exploited due to an inherent lack of collective levels of action. We propa-
gate a shift from multi-agent to multi-organization systems that we rest
upon an organization theoretically inspired reference architecture. We fur-
ther suggest to utilize agent-oriented technology as a means for realization.
We draw upon the wide variety of organizational modelling and middle-
ware approaches and establish a best fit between different approaches and
requirements for different architectural levels.

1 Introduction

The characterization of modern software systems as application landscapes [1],
ultra-large-scale (ULS) systems [2] or software cities [3] carries the comprehen-
sion as large-scale, inherently distributed and heterogeneous systems of systems.
Such characteristics are typically not intended but evolve out of necessity or
even ”at random”. The various parts of the overall system are embedded in
complex and dynamic environments, where they co-evolve with various other
systems (software systems, other technical systems, social systems) and con-
sequently have to be appropriately versatile themselves. These co-evolutionary
forces account for continual growth and rising complexity even considering for-
merly small and simple software systems. In this respect, the challenges in deal-
ing with modern software systems resemble the challenges that organizations in
social societies face. Despite being inherently complex, distributed and hetero-
geneous themselves and despite existing in potentially highly complex and dy-
namic environments, organizations have to draw and manage their boundaries
in a way that properly supports their goals and purposes. According to Hannan
and Carrol [4], the main capacities of organizations in comparison to other social
collectivities are precisely their durability, reliability and accountability.1

Thus, it is not surprising that multiple software engineering approaches have
been brought forth in recent years that take an organization-oriented perspective
1 It will not be discussed in this paper that each of these capacities is a double-edged

sword.
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on software systems. Many of these approaches are rooted within the multi-agent
system (MAS) paradigm of software engineering as the underlying metaphors
are already socially inspired and thus provide an ideal breeding context for
organization-oriented ideas. A thorough overview of recent and current work
in this field can be found in [5].

While MAS research has made significant contributions to establishing an
organizational metaphor for software engineering, when relating these contri-
butions to organization theory it becomes obvious that the true potential of
the organizational metaphor is not entirely exploited. Organization theories are
frequently classified along the dimension of analysis level. On the on hand, or-
ganizations can be regarded as systems composed of individuals for whom they
provide technical and social contexts. This conception is what MAS research
has focussed on so far. On the other hand, Scott [6] points out that one cannot
comprehend the importance of organizations in human societies if they are only
regarded as contexts for individual actors. Instead, organizations are collective
actors in themselves. They carry out actions, utilize resources, enter contracts
and own property. Indeed, they are the primary social actors of today’s society.
With respect to ever larger and more complex software systems, it becomes ob-
vious that this conception of organizations as collective actors is equally vital for
software engineering. However, it has only been taken into account tentatively
by MAS research.

One might argue that this was just a matter of extrapolating the concepts
for the individual level (agents as actors) to the collective level (organizations as
actors). Approaches for agentifying multi-agent systems [7] and holonic multi-
agent systems [8] pave the way for this advancement. We realize these possibil-
ities but consider them mainly as technical means to realize collective agency.
To arrive at a conceptual basis, we insist that the transition from individual to
collective agency should more heavily rely on results that organization theory
as a discipline with a long tradition in investigating organizations, their inter-
nals, and their environments already has to offer. The rationale behind this is
to learn from the adaptivity, robustness, scalability and reflexiveness of social
(multi-)organization systems and to translate their building principles in effec-
tive information technology.

Consequently, the aim of this paper is the provision of a software develop-
ment proposal that builds upon and extends the MAS approach in order to
account for the true potential of the organizational metaphor. Central to our
proposal is the advancement from the individual agent to the organization as a
software engineering metaphor of higher granularity. In [9] Ferber advances the
distinction between ACMAS (agent-centred multi-agent systems) and OCMAS
(organization-centred multi-agent systems). We consider our approach as one
further step in this shift of paradigm and term the systems introduced by our
approach MOS (multi-organization systems). We do not claim to supplant MAS
philosophy by introducing an entirely new paradigm. The approach we present
completely rests on an underpinning of MAS. But we do claim to take an entirely
fresh look at the game of organization-oriented software architectures.
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In Section 2 we present the Organ-model (Organizational Architecture
Nets) as a ”thinking model” to comprehend systems of systems under a multi-
organization perspective. We use real-world inspirations to derive guidelines for
building software systems accordingly. In Section 3 we compare three distinct
organizational models for MAS that rely on middleware approaches for deploy-
ment. We investigate the prospects of the middleware philosophy with respect to
the engineering of large-scale systems following Organ. We conclude our results
in Section 4 and provide an outlook on open issues and future work.

2 Engineering Systems of Systems: The ORGAN-Model

In this section, we consider characteristics and problems of large-scale software
systems and present the Organ-model as an organization theoretically inspired
comprehension model.

2.1 Software Systems in the Large

The ever growing size of modern software systems marks the basis for the request
for new software engineering perspectives and paradigms in [2]. However, it is
necessary to go beyond the concept of size alone in order to get a grasp of
the nature and effects of software systems of the category ULS system [2]. Their
parts are most often derived from structures and processes of real-world systems.
These include physical and mechanical systems but above all social systems.2

Social systems of a certain size are inherently distributed and decentralized.
This condition accounts for the fact that the accompanying software systems
are not monolithic (which might also yield an enormous size) but rather systems
of systems as characterized in [10]. The several system parts are typically not
only geographically distributed but also independently acquired, deployed and
useful. The overall system is not intentionally formed and developed but evolves
gradually and exhibits a considerable degree of emergent behaviour.

In [2] an analysis of the problems resulting from these characteristics is car-
ried out. The inherent geographical distribution in combination with managerial
and operational independence inevitably lead to decentralization. Besides data
management and operation this affects the evolution of the overall system, its
control and observability. It is not possible to stop the system or to take out
uniform rollouts and release changes. Instead, the functional range of the sys-
tem is extended, adapted or restricted simultaneously to its operation. Thus, the
evolution of the overall system is continuous rather than following well-defined
phases. Consequently, a perspective is taken on that differs from the traditional
perspective on software engineering relying on a top-down design for the re-
alization of one or a few applications. Governance mechanisms that assume a
comprehensive knowledge of system-wide parameters, the possibility of solving
2 However, the topic of software systems as a dimension of socio-technical systems

and its specific implications will not be addressed thoroughly in this paper. We just
assume that it is a continuous source of reciprocal adaptions.
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conflicts uniformly, and the effective adoption of a central authority become
mostly obsolete. Instead, one has to deal with decentralized control, the im-
possibility of global observability and assessment and difficult estimation of the
effects of perturbations.

Organization-oriented MAS engineering addresses many of the just mentioned
problems. In particular, they deal with autonomous and potentially heteroge-
neous system parts subsumed under joint superstructures. In Section 3 we will
elaborate on some related concepts. Nonetheless, one drawback of MAS ap-
proaches to systems of systems engineering becomes obvious. The sheer size of
the software systems addressed in this paper entails the necessity to distinguish
different levels of abstraction. Degree of abstraction relates to the granularity of
the system units that are studied at each respective level. The core metaphor of
MAS research is the individual agent, which is of rather small granularity. As
mentioned in the introduction, one common distinction regarding organization
theoretical studies is whether an individual or a collective level of analysis is
chosen. Collective level issues like the integration of multiple agents into a joint
system and the governance of this system in a way that allows corporate agency
of the system at higher levels of abstraction are not inherently rooted in the
agent paradigm. Like stated in the introduction, recent comprehensions of MAS
put a stronger focus on the system/organization level and some approaches even
address the topic of multiple agents acting “as a whole” and thus exhibiting
corporate agency. These efforts narrow the gap between the agent paradigm and
the demand for collective level perspectives. However, there remains the risk of a
mismatch between the applied core metaphor and the required conceptual level,
at which application problems have to be addressed.

For this reason, we advocate a temporary departure from the agent paradigm
at this point. Instead, we introduce the Organ reference model for comprehend-
ing systems of systems under an organization-oriented perspective.

2.2 Universal Model of an Open, Controlled System Unit

The underpinning of Organ is the universal model of an open and controlled sys-
tem unit from Figure 1 that is applied at all system levels.3 Three types of internal
system units and system processes are distinguished respectively. Internal system
units are categorized as operational units, integration units and governance units.
It is important to note that operation, integration and governance are in the first
place analytical aspects of systemunits. However, they are carried andbackedupby
certain (individual or collective) actors, hence the classification of internal system
units. Although analytically distinct, the three aspects are intrinsically interwoven

3 This model has an underlying reference net semantics [11]. Reference nets carry some
extensions compared to ordinary coloured Petri nets. They implement the nets-within-
nets concept where a surrounding net can have references to other nets as tokens. Syn-
chronous channels allow for bi-directional synchronous communication between net
instances. In [12], we show how the approach of modelling system units with reference
nets allows for straightforward prototyping and simulation.
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Fig. 1. Universal model of an open, controlled system unit

and interdependent. The three sets of internal system units do not even have to be
disjoint. Instead, particular system units might fulfil multiple analytical roles.

Integration units together with operational units represent the “here and now”
of the system unit in focus. The operational units are so to say the intrinsic
units and carry out the system’s primary activities. They are dependent on the
integration units which offer a technical frame via intermediary, regulation, and
optimisation services in the course of integration processes. The governance units
represent the “there and then” of the system unit in focus. They offer a strategic
frame via goal/strategy setting, boundary management, and transmitting their
decisions to the other internal system units in the course of governance processes.

Integration and governance units embody a two-level control structure. Inte-
gration attenuates oscillationbetween governance and operation of the system and
thus has a “calming effect” on the system as a whole. Governance units are respon-
sible for defining and adapting system rules while integration units are responsible
for applying these very rules to the system’s operation. Goals, strategies and per-
formance standards are transmitted to the operational units via the reroute of the
integration units. These in turn typically carry out a refinement or concretion of
the strategic guidelines in the form of subgoals, operation plans or schedules before
these are filled with life by the operational units.

Each system unit is a Janus-faced entity. It embeds system units as internal
system units and is itself embedded in other system units as one of their internal
system units. Thus, besides the already mentioned internal frames (technical and
strategic) each system unit in focus is externally framed by surrounding system
units to which the system unit in focus (by means of its internal system units)
relates via periphery processes.
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To conclude, we take a recursive, self-similar nesting approach, borrowed from
Koestler’s concept of a holon [13] that we extend with a generic reference model
for control structures at each level. We arrive at a modular approach to compre-
hend systems of systems. Each system part may be regarded under a platform
perspective and under, where it offers technical and strategic guidelines for its
inhabitants. Furthermore the same part may be regarded under a corporate
agency perspective, where it collectively acts as a holistic entity in the context
of a higher-level system part. This provides a conceptual basis to systemati-
cally study and implement different modes of coupling, both horizontally and
vertically.

2.3 Reference Architecture

The universal model of system unit from Figure 1 itself is too abstract and generic
to provide a meaningful guideline for engineering large-scale software systems.
With respect to software architectures, a selective distinction of different system
levels has to be carried out. Here, we advance the Organ reference architecture
for multi-organization systems.

Overview. The core unit now is the organization instead of the agent. This
directly leads to three mandatory architectural levels, the organization itself,
its internals and its environment. As an organization might have different con-
ceptual environments (e.g. different domains within which it operates) and the
architecture targets at the inclusion of multiple organizations we have to deal
with multiple environments. Thus, the need for a fourth architectural level that
acts as a system closure arises.

This distinction of architectural levels resulting from rather technical consid-
erations is confirmed by analysis levels that organizational theories target at
according to Scott’s classification [6]. At the socio-psychological level the inter-
nals of an organization in terms of relationships between its individual members
are studied. The organization structure level introduces the perspective on an
organization as a holistic, identifiable entity. It studies structures and processes
that characterize an organization in terms of its parts (divisions, work groups,
project teams) and its analytical components (specialization, communication
network, hierarchy). The ecological level focuses on characteristics and actions
of organizations as corporate actors operating in an even wider network of re-
lations. For this level, further distinctions are possible. Among them, the level
of an organizational field bears the most comprehensive concept of an organiza-
tion’s environment. It consists of organizations that, in the aggregate, constitute
a recognized area of institutional life (key suppliers, consumers, regulatory agen-
cies, etc.). Finally, the society integrates all fields under a common body of law
and uses the fields as mediators for decrees that actually target at individual
organizations.

Consequently, we distinguish four types of system levels for organization-
oriented architectures and denominate them as departments, organizations,
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Fig. 2. Actors on different levels of action in a healthcare setting

organizational fields and the society. In order to exemplify, what types of actors
operate at each level in a real-world setting, we have assembled the illustration
in Figure 2 for the particular case of healthcare from several sources [6,14,15].

For the remainder of thepaperwewant to regarddepartments, organizations, or-
ganizationalfields and the society as particular incarnations of the universal model
of system units from Figure 1 and specifically term them organizational units. Fig-
ure 3 shows an illustration of this approach. In taking on this perspective, we study
for each of the four types of organizational units what characteristics operation,
integration and governance take on respectively (cf. [16] for further details). The
overarchingpurpose is to investigate what implications this analysis yields for each
type of organizationalunit under a software engineering perspective. We want to let
real-world inspirations guide our approach to build organization-oriented software
systems accordingly. We consider the architectural role of each type of organiza-
tional unit and investigate further implications like network topology or degree of
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autonomy and uniformity of embedded units.4 Of course, none of the implications
that we propose here can be taken as mandatory. The possible variety for each type
of organizational unit is simply too vast. However, we want todefine some archetyp-
ical characteristics for each type.

Society. There exists one organizational unit of the type society (but see the
conclusion). The society represents the upper closure of the system. Each soft-
ware system serves a certain purpose (or certain purposes). This is mirrored
by the architectural role of the society. The society supports a specific extract
of reality from which the purpose of the overall system is derived. The opera-
tional aspect is embodied by different scopes of the overall system (e.g. health-
care, power supply, e-commerce). For each system scope the society embeds
one organizational field. These fields also make up the integrational aspect by

4 To be precise, we would have to distinguish between operational, integration and gov-
ernance units when studying autonomy and uniformity. Governance units are clearly
more unique and exhibit a higher degree of autonomy than integration and especially
operational units. Furthermore, they are one of the main sources for restricting au-
tonomy of and causing uniformity between other units. In our investigation we mainly
look at autonomy of and uniformity between operational units at each level.
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managing transitions and interactions between each other. Governance is taken
care of by specific fields that constitute the society’s government. It specifies
system laws, some of which have a system-wide validation and some of which
only hold for certain fields. For this purpose the society’s government guards
over these laws and utilizes governance structures at the field level as caretakers
at those system levels where the laws actually have impact.

Consequently, in a software system we expect the organizational unit of society
to be a loosely coupled network of fields with the only archetypical characteristic of
being somewhat centralized by means of the fields that constitute the government.
Organizational fields as embedded units have a considerable degree of autonomy.
They have to obey to societal laws but these are quite general in nature, the more
detailed and elaborated legal and regulatory bodies develop at the field level itself.
In this respect, fields are very different from each other and share a low degree of
uniformity as each field embodies a distinct scope of the overall system.

Organizational Field. Each organizational field provides a consistent and
largely self-contained picture of a particular part of the overall system (“living
space”). Fields represent the immediate environments for organizations. Par-
ticipating organizations as the operational part of a specific field have some
functional interest in common and face each other as discrete and co-equal en-
tities (cooperating or competing out of self-interest). However, they are embed-
ded in the common environmental frame of the field. Here we can distinguish
the material-resource features as an integrational aspect from the institutional
features with both integrational and governance aspects. Material-resource fea-
tures capture factors directly related to the demand, supply and exchange of
products and services on the field. Thus, they are to a great part inherently
constituted by the participating organizations themselves, but also encompass
organizations that enable and mediate organizational interchange in the first
place or offer auxiliary services (e.g. industry associations, market organizers,
assurance companies, banks, consultant offices). Material-resource features al-
ways rest on institutional foundations that are made of practices and symbolic
constructions constituting the organizing principles of the field. Thus, we find
organizations for setting (e.g. regulatory agencies, professional associations) and
implementing (e.g. market oversight or facilities for licensing and certification)
the institutional logics of a field. These institutional logics are available for par-
ticipants to elaborate, which fosters a more efficient design of organizations.

In a software system, we expect an organizational field unit to be a network
of organizations that is broadly organized in three layers that quite canonically
correspond to the analytic distinction between operation, integration and gov-
ernance. We find several sets of organizations that share a great degree of uni-
formity (organizational populations) because of operating under very similar and
specific field-wide circumstances. Organizations have a very high degree of auton-
omy. Besides being able to exist on multiple fields and thus dimnishing the depen-
dence from each single field, an organization buffers its internals from direct field
access. Fields can only exert indirect control on their embedded organizations by
means of sanctions and exclusion from field processes.
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Organization. Just like agents in agent-oriented software engineering, orga-
nizations in the context of the Organ-architecture are the central modelling
units that determine, at which level of abstraction the whole system is regarded.
Organizations operate on one or more organizational fields, depending on the
variety of domains, to which they relate. Organizations are composed of depart-
ments, which mirror the complexity that the organizations face in their envi-
ronments. Different needs and functions of the organization with regard to their
environmental embedding are mapped onto different departments. Contrary to
organizational fields that host distinct and co-equal entities, the departments of
an organization are dependent on the unique organization they belong to and
exist on their behalf. They are fused into a joint superstructure under a joint
strategy to pursue and achieve joint goals. Many departments fulfil an oper-
ational as well as an integrational role. One particular department might act
as an integration unit for departments that it groups according to the organi-
zation’s superstructure. At the same time, it might act as an operational part
towards another department to whose grouping it belongs. The superstructure
is typically hierarchical in nature but may be augmented by various vertical ties.
Finally, the governance aspect is taken care of by departments that constitute
the dominant coalition (including at least high-ranked managers, but potentially
encompassing further actors from within and even outside of the organization)
of the organization. It sets the organization’s goals and strategies.

In a software system, we expect an organization to be a department network
that is basically hierarchic in nature with many departments fulfilling multiple
superstructural roles. Of course, such vertical hierarchies are typically augmented
by various horizontal ties and linkages up to the point of fully-fledged matrix
organizations. Nevertheless, the main purpose of an organization’s superstruc-
ture is the successive grouping of its departments (grouping by multiple criteria
like authority, function, market, region, etc.). Departments exhibit a low degree
of autonomy and uniformity. They fully depend on and exist on behalf of their
organization and fulfil specific functions (uniformity may come into being for the
sake of economies of scale however).

Department. The departments are the actuators of the overall system. They rep-
resent the final implementation means for all higher-level system activities. Each
department exists on behalf of an organization and this organization determines
the department’s characteristics concerning structure and processes. Here, a con-
tinuum of possibilities opens up, from rather bureaucratic structures (high degree
of standardization) to rather organic structures (low degree of standardization).
Each department is governed by its management and its operational members are
integrated by their respective positions into the department’s context.5

5 Having an immaterial concept like an organizational position as an integration unit
at the department level may seem odd at first glance. However, formalizing position
characteristics for social organizations is a first step in reifying positions. For software
systems, this may be carried even further as will be shown in Section 3 where we
consider different middleware approaches for organization-oriented MAS engineering.
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In a software system, we expect a department unit to consist of a strongly
coupled network of individual actors (agents) that is highly intermeshed. The
management causes centralization to some degree, but most connections and re-
lationships are inseparably tied to work processes where the distinction between
the analytic aspects of operation, integration and governance shifts from scenario
to scenario. Uniformity between actors highly depends on the specific depart-
ment. Autonomy is very much restricted by position characteristics and thus
mostly depends on whether the department is rather organic or bureaucratic in
nature.

To conclude, the Organ-model for organization-oriented software architec-
tures provides a conceptual thinking model for large-scale software systems.
Contrary to an agent-oriented perspective, collective levels of action are inher-
ent to a truly organization-oriented perspective. Different modes of vertical as
well as horizontal coupling result. However, when it comes to actually realizing
multi-organization systems according to the Organ-model, we are of the opin-
ion that current MAS technology provides an ideal starting point. This opinion
is illustrated in Figure 3 where the organizational units are considered as logi-
cal constructs that have to be incarnated by means of physical executive units,
which is accompanied by a change in paradigm. In the following Section 3 we
elaborate on our proposal to utilize and combine MAS (middleware) approaches
in order to realize multi-organization systems.

3 Utilizing Multi-Agent Middleware Approaches

Organization-oriented approaches to multi-agent system design employ the mech-
anism of formalization borrowed from social organizations. Formalization in this
context refers to the extent, to which expectations on behaviour are explicitly and
precisely specified, and to the extent, to which these specifications are independent
from the particular occupants of social positions [6]. In this respect, rationality
resides in the social structure itself, not in the individual participants. Adopting
this principle for multi-agent system engineering allows for separation of concerns.
Organizational specifications and the agents that fill these specifications with life
may be designed separately. The aim is to combine local agent autonomy with the
assurance of global system characteristics.

Some approaches carry separation of concerns to the implementation level. In-
stead of just resting ”in the heads” of the participating domain agents, organiza-
tional specifications are encapsulated and managed by an explicit middleware and
thus software technically reified. This allows arbitrarily heterogeneous agents to
participate in the organization as the middleware acts as an intermediary. Fur-
thermore, it is extremely useful in open multi-agent environments where agents
belonging to different stakeholders continuously enter and leave and the organiza-
tional specifications have to be buffered against potentially harmful influences.

The specific characteristics of a given middleware approach depend on the
characteristics of the organizational specifications that are to be supported.
Here, we examine three distinct approaches. Afterwards, we analyse how the
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benefit of separation of concerns can even be extended with respect to not only
separating organizations and domain agents but also different system levels of
software systems in the large. We specifically consider the levels introduced by
the Organ-architecture from Section 3.

3.1 Middleware Approaches

To distinguish different modelling approaches we adopt the approach taken
in [17] where distinctions are made based on different organizational dimen-
sions that are supported. A qualitative comparison of the approaches including
their middleware philosophy is delayed until Section 3.3.

MOISE+/S-MOISE+. The MOISE+ modelling language [18] incorporates
a structural, functional and deontic dimension. In the structural dimension, roles
and groups are specified. Roles are related to one another via inheritance re-
lationships. Groups consist of a set of roles where for each role the minimal
and maximal cardinality is specified. In addition to inheritance, additional links
(compatibility, authority, communication, acquaintance) with either an intra-
group or inter-group scope may exists between roles.

The functional dimension consists of a set of social schemes. A scheme is a goal
decomposition tree where the root is the initial organizational goal the scheme
targets at. Groups may be linked to schemes. Roles belonging to the group are
then assigned to coherent sets of the scheme’s goals (so called missions) via
permission or obligation links in the deontic dimension.

S-MOISE+ [19] is the middleware for supporting MOISE+ specifications in
open multi-agent systems. Figure 4 gives an overview of its architecture. Domain
agents connect to the organization via proxies called OrgBoxes that offer an API
representing the agents’ possibilities to act as members of the organization. All
requests for changes in the state of the organization (e.g. role adoption, group
creation, mission commitment) are routed to a central OrgManager. Requests
are only fulfilled if no organizational constraints are violated. The OrgManager
can also act proactively, for example by informing agents (mediated by their

OrgBox 1 OrgBox 2OrgManager OrgBox n... Organizational
        Layer

Communication
        LayerMiddleware Communication

Application
     Layer

Fig. 4. S-MOISE+ middleware approach (adapted from [19])
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OrgBoxes) of missions they are enforced to commit to or goals that have become
ready to pursue. Agents have access to the organizational specification and are
free to interpret it to optimise their organization-aware reasoning.

ISLANDER/AMELIE. Islander [20] introduces a conceptual shift from
organizations to institutions. Instead of being constructive in terms of goal/task
trees (MOISE+/Sonar) to achieve certain organizational objectives in a divide-
and-conquer style, Islander focuses on the regulative character of institutions
by declaratively specifying what agents are permitted or forbidden to do in
certain institutional contexts and what the consequences of their actions are.

Islander supports a structural, dialogical/interactional, and a normative
dimension. The structural dimension differs from the MOISE+ structural di-
mension in that it does not relate roles and groups but so called scenes. Scenes
represent the interactional dimension. A scene is basically a collection of roles
in interaction with each other following a well-defined interaction protocol. Each
scene embodies a largely self-contained collective activity of the overall system.
In the structural dimension, relationships among scenes are established by a so
called performative structure. It specifies the network between scenes and defines
transitions between scenes. Transitions define which agents playing which role
under which circumstances can move from one scene to another and whether
new instances of scenes have to be brought up upon firing transitions.

An additional normative dimension specifies consequences of agent actions.
A norm defines, which obligations hold after certain communicative acts have
(or have not) been uttered in certain scenes and certain side conditions hold.

Amelie [21] is the middleware for supporting Islander specifications.
Figure 5 gives an overview of its architecture. Just like in S-MOISE+, agents do
not interact directly but connect to middleware mediators, in the case of Amelie

these are the governors. Contrary to S-MOISE+ there exist different roles in
managing the institution. An institution manager is in charge of the institution
as a whole. I starts the institution, authorises agents to enter and manages the
creation of new scene executions. Each scene execution is managed by a separate
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Fig. 5. Amelie middleware approach (adapted from [21])
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scene manager overseeing the execution according to the associated scene pro-
tocol. Transition managers are in charge of managing agent transitions between
scenes. The different management parts communicate with each other and with
the governors. Each governor manages multiple conversations with its respective
connected agent, one conversation for each scene and transition participation.
In addition, it keeps track of the norms that concern its associated agent.

SONAR. Sonar [22] is a mathematical model of multi-agent organizations
based on Petri nets. It has a structural, functional, and interactional dimension.
However, structural and functional dimension are inseparable. The functional
part consists of a Petri net, where each place models a task and each transi-
tion models the execution of the task associated with the unique place in the
transition’s preset. Task executions may introduce subtasks, which results in a
multi-tree structure with multiple roots associated with core tasks. This func-
tional specification is enriched with structural information by partitioning the
Petri net by means of so called organizational positions. Consequently, each po-
sition is responsible for the execution of some tasks and possibly permitted to
delegate (sub-)tasks to other positions.

The interactional dimension comes into being by relating each place with a set
of roles and each transition with an interaction protocol. Thus, tasks correspond
to the implementation of roles and task executions to the interactions that have
to be carried out between these roles. Subtasks correspond to the refinement of
roles into subroles whose implementation is further delegated.

The Sonar middleware approach is illustrated in Figure 6. It differs from
the two already presented ones. It does introduce a middleware layer, but this
layer is not physically distinguishable from the application layer. Instead, the

firm B

Prod 1 Prod 2

firm A

Prod

PC2

membership formal
channel

position
agent

member
agent

delegatePC2

initiator
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Fig. 6. Sonar middleware approach (adapted from [23])
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layer logically consists of position agents, one for each organizational position.
Position agents are launched on behalf of the organization. Domain agents have
to connect to them in order to act as members of the organization. Position
agents mediate interactions and take care that the organizational specifications
are honoured. But contrary to S-MOISE+ and Amelie, Sonar advocates com-
plete distribution. Each position agent only knows its local context (“upwards”
and “downwards” delegation partners, own tasks, own task executions, associ-
ated roles and interactions patterns). There is no central facility (or some central
facilities) that keeps a global picture and exploits centralized coordination.

3.2 Multiple Layers of Middleware

The benefit of separation of concerns fostered by middleware approaches basi-
cally aims at separating domain agents and organizational concerns. However,
the “agent neutrality” of middleware layers can be carried forward to separate
the engineering of different system levels in the context of large-scale software
systems. Figure 7 shows an illustration of this idea. To realize it, both organiza-
tional modelling languages and their supporting middleware frameworks would
have to incorporate a Janus-faced character. In the case of “looking downwards”,
not much changes. In case of “looking upwards”, organizational modelling lan-
guages would have to take into consideration processes that are not entirely
enclosed by the modelled system in focus. The accompanying middleware im-
plementations need to be able to connect to other middleware layers themselves
and to mediate activity not only horizontally but also vertically.

The concepts of a Janus-faced character and periphery processes were also
stressed in the context of the Organ model in Section 2.2. Thus, we consider the
approach from Figure 7 as a promising realization strategy to engineer software

middleware

middleware

middleware

Fig. 7. Iterating middleware layers
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systems in the large according to Organ. The whole idea of recursive, self-similar
nesting is by no means new to multi-agent system research and is for example
incorporated by the concept of holonic multi-agent systems [8]. In our opinion,
nested middleware layers foster such an approach in the context of large-scale
systems where there exists a strong need for the modular design, creation, and
maintenance of distinct system parts.6

3.3 Pooling of Competencies

Like stated in Section 2, different levels of a system call for different modes and
paradigms (not only degrees) of coupling and organizing. Here we may avail
ourselves of the broad spectrum of already existing organizational/institutional
multi-agent approaches supported by middleware. We exemplify this potential
by relating the three approaches from Section 3.1 to the different layers of the
Organ-architecture from Section 2.2. A primary distinction was already men-
tioned. While MOISE+ and Sonar are rather constructive in terms of achieving
certain organizational purposes, Islander is rather declarative in focussing on
regulations. For this reason, we consider Islander ideally suited for the level
of organizational fields and the other two approaches best suited for the level of
departments and organizations.

Department Level. For the department level, a high degree of detail is nec-
essary. Ultimately, departments are both source and sink for all activities. It is
not only necessary to model activities but also under which circumstances and
conditions they come into being. MOISE+ is very rich when it comes to model
relationships between actors in terms of role inheritance, various types of ad-
ditional links (compatibility, authority, acquaintance, communication) between
roles and clustering of roles into groups. For this reason, MOISE+ is ideally
suited for the level of departments. Even the lack of an interactional dimension
in some way suits the department level. Social schemes might be considered as
abstract programs but how these programs are actually followed for particular
instances might be open to mutual adjustment (only possible if all participating
roles shared mutual communication links).

In addition, the centralized management of the S-MOISE+ middleware fits
the department level. Departments exhibit the notion of locality in the sense that
the network of interdependencies is quite tight and highly intermeshed. Thus
obtaining a global picture of what is going on is very useful. The drawbacks of
centralized solutions like risk of bottleneck and high response times should pose
no severe problems as number of participants as well as network distances are
typically at small or medium scale for departments.
6 The middleware approaches from Section 3.1 tend to establish anonymity between

domain actors. As the explanations from Section 2.2 should have made clear, this
conception is not adequate for software systems according to the Organ-model
where there may exist a quite high degree of penetration and visibility between
certain organizational units. It is a matter of designing organizational/institutional
processes in an appropriate way to establish the desired degrees of coupling and
acquaintance.
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Organization Level. Sonar models on the other hand are more abstract and
much better suited for the organizational level where not individuals but de-
partments are related to one another. The core unit of abstraction in Sonar

is the position rather than the role. Each position is unique like it is typically
the case for departments in an organization. The level of detail MOISE+ of-
fers for relating roles to one another (e.g. inheritance, compatibility, cardinality)
is not necessary when relating departments instead of individuals. The most
frequently adopted view when regarding organizations nowadays is a business
process perspective. Entities related to those processes are characterized by ab-
stract service interfaces that define which functionality each respective entity
contributes. Sonar exactly offers such a process-centric perspective. Each posi-
tion is responsible for the execution of several tasks and may delegate (sub-)tasks
to other positions. This can be considered as the abstract service description of
each position (“offers”, “uses”) and clearly defines what each position has to
contribute to business processes. An explicit interactional dimension is vital as
business processes may relate entities that are quite depart from one another
(locally as well as conceptually), which mostly prohibits mutual adjustment.
Starting business processes and actually supplying services is a matter of the
underlying MOISE+ departments.

The completely distributed middleware approach taken by Sonar perfectly
matches organizations as large and widely distributed entities. Maintaining a
centralized comprehensive picture of a whole organization would be very costly
and induce an enormous information overhead. It is not even necessary in the
first place. Networks at the organizational level are less intermeshed than it is the
case for members at the department level. Organizations are better characterized
by (partly overlapping) clusters of frequent interaction.

Organizational Field and Society Level. Ascending to the level of organi-
zational fields, there no longer exist explicit notions of joint goals or strategies.
Instead, organizations cooperate and compete as co-equals in order to serve
their respective distinct purposes. At the same time, governance structures en-
force common institutional logics that field participants have to adhere to. Here
lies the core competency of Islander. It specifies an environmental framework
that regulates the behaviour of participants by specifying what one is allowed,
forbidden or obliged to do in certain institutional contexts. The inherent goal is
to let participants pursue their respective goals, but on the basis of well-defined
practices and symbolic constructs. Islander’s performative structure and scene
protocols are open for participants to elaborate in order to fit their individual
behaviour into the institution. With Islander applied to the field level, Sonar

organizations are to adjust their business process specifications in a way to act
in and travel between scenes.

Each organizational field might be represented by one single scene or by a set
of scenes. As Islander’s performative structure provides transitions between
scenes it scales in order to include an arbitrary number of fields and thus also
addresses the level of society.
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Fortunately, Amelie offers a distributed middleware approach that is needed
for the field and society level. However, scene managers might become overloaded
if a field was embodied by one or just a few scenes.

4 Conclusion and Outlook

We have presented a proposal to progress from multi-agent to multi-organization
systems, which we consider a necessary transition in the face of software systems of
ever growing size and complexity.We see onemain contribution in the explicit iden-
tification and differentiation of collective level aspects in our conceptual framework
Organ. It features different modes of collective action that are adequate for differ-
ent contexts. The accompanying concepts and principles are deeply rooted in orga-
nization theory. The rationale behind this approach is to learn from the adaptivity,
robustness, scalability and reflexiveness of social (multi-)organization systems and
to translate their building principles in effective information technology.

In addition, we have made a suggestion of how to utilize agent-oriented tech-
nology as a realization means. One particular point is to take advantage not
only of current middleware implementations but also of the variety of under-
lying modelling approaches in order to establish a most adequate fit between
them and the requirements of different system levels. Of course, this proposal is
somewhat preliminary. The current state-of-the-art of the presented middleware
approaches does not match the requirements of our nested middleware proposal
and it is far from clear how to connect and integrate the quite different modelling
approaches that were proposed for the different system levels on a conceptual
basis. Nonetheless, we consider the proposal as a promising vantage point.

Another issue concerns the limitations of the 4-layer approach taken for Or-

gan. One might argue that there exist system levels above the society and that
there exist further sublevels between the ones presented here. Our idea to soften
the 4-layer restriction of Organ is somewhat different from introducing new
levels. Instead, we aim at keeping the four levels presented in this paper but at
the same time following a multi-perspective approach. An organizational unit
might be able to occupy multiple architectural roles in multiple instances at the
same time. This puts stronger emphasis on the relations between units instead
of the units themselves. Depending on relation, units may take on different man-
ifestations in terms of architectural roles. This allows for example for federations
(organizations embedded in organizations as departments), subfields (fields em-
bedded in fields as organizations) or societies of societies (societies embedded in
societies as fields). The universal basis of all organizational units in form of the
model of a system unit from Figure 1 fosters such a multi-perspective conception.
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Abstract. Role-Based Access Control models are currently considered
as the most effective approach for engineering access control systems. In
this paper we experiment their application in the context of Multi-Agent
Systems (MAS), by discussing the design of an access control system
with an agent-oriented methodology such as SODA. In particular, we
show how a clear separation between mechanisms and policies can be
achieved by organising the access control system along two layered sub-
systems, and discuss the advantages of such an approach.

1 Introduction

According to Anderson, “security engineering is about building systems to remain
dependable in the face of malice, error or mischance” [1]. Security requirements are
often still considered among the non-functional system requirements—something
that can be taken into account at a later point of the software development process.
Yet, fitting security mechanisms into an existing design leads to design problems
and software vulnerabilities: security should rather be considered as a key issue
throughout the whole development process, to be defined and explored in the re-
quirements specification phase—i.e., among the functional requirements [2]. So,
software engineering methodologies should provide developers with models and
processes able to effectively capture the security concerns.

In principle, the agent-oriented paradigm seems a good candidate for captur-
ing security issues in software systems, since the intrinsic agents’ features – such
as autonomy, intentionality and sociality – make it possible to express the secu-
rity requirements at the proper abstraction level at early stages of the engineering
process, mapping them onto suitable security mechanisms in subsequent stages.
A software system can be then conceived as a Multi-Agent System (MAS) where
autonomous entities – the agents – interact with each other in order to achieve
their goals: such an agent “ensemble” is often represented as an agent society
at design time. Thus, software engineering techniques should specifically be in-
spired by – and tailored to – the agent paradigm, so as to fully exploit the agent
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as well as the agent society metaphors: according to that, several agent-oriented
methodologies have been proposed in the last years [3,4,5].

However, most of them still fall short in providing a full-fledged security-
oriented approach for agent-oriented systems, although some recent research
work is opening the way especially with respect to the requirements analysis
[6,7]. Indeed, research on security for MAS has been mainly focused on the
solution of individual security problems, such as attacks from an agent to an-
other, from a platform to an agent, and from an agent to a platform [2]: instead,
adequately integrating security and systems engineering into a coherent agent-
oriented development process is seemingly a more complex task. In particular,
in the engineering of interaction of complex software systems, security is strictly
related to two other dimensions—coordination and organisation [8,9,10]. In fact,
both coordination and security establish laws and rules for constraining the space
of interaction—that is, the system dynamics; organisation is their static coun-
terpart, in that it specifies on the one side the agents and the roles they play, as
well as the agent-role and inter-role relationships between them. The connection
between organisation and security is quite apparent in Role-Based Access Con-
trol (RBAC) models & architectures, currently considered as the most promising
approach in the engineering of security of complex information systems [11].

Generally speaking, access control is aimed at allowing authorised users to
access the system resources they need, while preventing unauthorised users to
do the same. Today, access control is typically designed by clearly separating
the definition of a suitable access policy – i.e., the set norms for granting /
refusing access to resources – from the hardware & software mechanisms used to
implement and enforce it: this separation guarantees independence between the
protection requirements to be applied and the way they are applied. Different
access policies can thus be easily compared independently from their actual
implementation, and changed with no impact over the system; in its turn, the
underlying mechanism can support different, multiple policies over time.

More recently, the RBAC technique has been introduced in the context of
MAS infrastructures, integrating a role-based security approach with agent-
based coordination and organisation, where the role abstraction is already at
play [8]. This choice helps facing the typical MAS heterogeneity and openness,
since the security properties can be specified in terms of RBAC general con-
cepts: for instance, participating agents can adopt heterogeneous computational
models (from purely reactive to cognitive ones), as well as enter/ leave/ change
role in the organisation as needed, according to the system policies.

In this paper we first discuss the application of RBAC models in the MAS
context (Section 2). Then, we focus on the RBAC requirements to be addressed
for engineering an RBAC system (Subsection 2.2), and show how SODA, an
agent-oriented methodology, addresses those requirements (Section 3) Finally,
as a case study, we apply our approach to the control of the accesses to a uni-
versity building (Section 4), and show the benefits of a clear separation between
mechanisms and policies. Discussion and comparison with some relevant related
work are reported in Section 5.
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2 Access Control in Multi-Agent Systems

Access control is aimed at enabling (only) the authorised users to access the
system resources in a controlled and supervised way. A key aspect is the clear
separation between the rules used to decide whether access to a resource should
or not be granted for a given user – the access policy – and the hardware & soft-
ware mechanisms actually enforcing such rules. Such a separation is useful for
two main reasons: first, to uncouple the definition of a policy from its implemen-
tation, so that the latter is not affected by policy changes; then, to more easily
identify the basic properties that any access control system should satisfy—such
as complete mediation, default deny, minimum privilege, etc.

With respect to previous access control models, such as Discretionary Ac-
cess Control (DAC) and Mandatory Access Control (MAC), RBAC – a NIST
standard [12] – specifies security policies in terms of organisational abstractions
(users, roles, objects, operations, permissions, and sessions) and their relation-
ships [13]. Users are assigned to roles, and roles to permissions. A role is un-
derstood as a job function within the context of an organisation with some as-
sociated semantics regarding the authority and responsibilities conferred to the
user that plays the role at a given time. A permission is an approval to perform
an operation on some protected objects : the exact semantics of “operation” and
“object” depends on the specific case. A session is a mapping between a given
user and the subset of its currently active roles: so, each session is associated
with a single user, while a user can be associated to one or more sessions.

Organisation rules are defined in terms of relationships between the above
elements—namely, between roles and permissions, and between roles and users;
inter-role relationships are also introduced to specify separation of duties. More
precisely, static separation of duty (SSD) is obtained by enforcing constraints
on the assignment of users to roles, while dynamic separation of duty (DSD)
is achieved by placing constraints on the roles that can be activated within or
across the given users’ session(s). Accordingly, introducing RBAC in the context
of MAS coordination models and infrastructures essentially amounts at mapping
roles, sessions, and policies onto suitable runtime issues of the MAS organisation,
dynamically manageable via infrastructural services.

2.1 RBAC for Multi-Agent Systems

RBAC-MAS [9,14] is a model for an RBAC-like organisation of MAS, where
RBAC general concepts are tailored to MAS specificities (Fig. 1).

Generally speaking, agent-oriented methodologies often exploit MAS role-
based organisational models just as analysis & design tools [15]: instead, applying
an RBAC-like model into MAS shifts the focus on runtime aspects, making roles,
sessions, and policies the key runtime issues of a MAS organisation. In particular:

– RBAC users are represented in RBAC-MAS by Agent Classes ;
– the behaviour of each role (agent) is defined in RBAC-MAS in terms of

Actions and Perceptions used, respectively, to affect and perceive the com-
putational environment where the agent is situated;
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Fig. 1. RBAC-MAS reference model [9]

– Policies constrain the admissible interaction histories of an agent playing
a specific role, and are used to explicitly model the organisational rules: at
runtime, they are enforced by the underlying MAS infrastructure;

– while RBAC equips agents with a default role-set, in RBAC-MAS the agents’
session starts with no activated roles: roles can be subsequently activated
on a step-by-step basis, according to the specified activation/deactivation
policies. The dynamics of role activation is constrained by the DSD rules.

More generally, RBAC approaches split some security issues which were previ-
ously faced by individual applications between the design and the infrastruc-
ture levels. Analogously, the factorisation in terms of agents of some security
issues that frequently emerge in the engineering of a distributed system involves
both the extension of MAS infrastructures with suitable services, and the im-
provement of the methodological support towards the design of complex secure
systems.

2.2 Requirements for Engineering an RBAC-MAS System

In order to support the analysis and design of an access control system, a method-
ology should properly support the analysis and design of all the abstract entities
adopted by the access control technique of choice.

In the specific case of RBAC-MAS, a methodology should allow engineers to
model and design roles, organisations, objects, policies, operations, as well as
static and dynamic constraints. Although at a first sight this requirement might
seem somehow obvious, and possibly even superficial, a more detailed analysis
leads to highlight some interesting aspects, that we will discuss below. Moreover,
the separation between policy and mechanism introduces further constraints: in
fact, while such two sub-systems can be designed separately, they are indirectly
coupled by the representation language of the access policies, since these are de-
signed by one sub-system, but enforced by the other. So, while it is not necessary
to know the specific policy during the mechanism design phase, knowing how
the policy is represented is relevant to choose the most appropriate storage and
to decide the most adequate enforcing implementation.
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It is important to note that in the original RBAC-MAS formulation opera-
tions and objects collapse to the same entity “action” [14], i.e., an operation over
a given object. However in the following we prefer to characterise both actions
– the operation over the object – and objects, given that, from a software engi-
neering viewpoint, the object entity hides all the environment abstractions and
structures. The knowledge of the environment and of its topological structure is
instead crucial when we deal with the engineering of a new system specially in
the context of MAS engineering where is often necessary to design new environ-
ment abstractions in order to support the achievement of the agent’s tasks/goals.
Obviously, the same distinction is not so crucial in the context of MAS infras-
tructures – where RBAC-MAS was developed – because there environment is
already analysed and designed in terms of the infrastructures themselves. Fi-
nally, the distinction between actions and objects is very important also in the
engineering of the interactions between agents and environment.

In turn, abstract entities add their own requirements, which can be outlined
as follows:

Role — This entity implies that the methodology should support the modelling
and design of both the user roles and the administrative roles which are
required for the system management.

Organisation — This entity implies that the methodology should support the
modelling and design of agent societies and of the rules that govern them.

Object —This entity hides a lot of complexity: in fact, the ability of modelling
the “system’s objects”(i.e., the system “resources”) requires that the method-
ology is able to model the environment of the MAS. In the case of the mech-
anism sub-system, this means that the methodology should be able to both
model and design the environment, since the mechanism has to provide the
physical and logical control to prevent unauthorised access. In addition, the
notion of MAS environment, as suggested in [16], implies both the modelling
of the environment abstractions – entities of the environment encapsulating
some functions – and of the topology abstractions – entities of MAS envi-
ronment that represent the (either logical or physical) spatial structure. In
fact, enabling system requirements to determine the topological structure of
the system is necessary in order to capture the wide range of access control
systems (e.g., from controlling the access to a file, to a room in a building,
etc). Summing up, topology constraints should be considered since the earli-
est requirement analysis phase. So, supporting the object entity requires that
a methodology enables engineers to model and design both the topological
structure of the environment and the resources that populate it.

Action and Perception — These entities imply that the methodology should
support the modelling and design of the actions that roles can perform over
the objects and of the perceptions of the environment—as highlighted in the
Subsection 2.1.

Policy — This entity leads to the design of rules concerning the abstractions.
More precisely, these policies represent rules that involve roles, objects and
actions, and rules over role activations and default roleset.
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Finally, the mechanism sub-system should manage the association between users
and roles, and should do that in a dynamic way: indeed, policies could change
over time and at any time, and the sub-system should be able to support and
implement such changes with no need to be stopped or reset.

3 SODA and RBAC-MAS

3.1 The SODA Methodology

SODA (Societies in Open and Distributed Agent spaces) [17,18] is an agent-
oriented methodology for the analysis and design of agent-based systems, which
adopts the Agents & Artifacts meta-model (A&A) [19], and introduces a layering
principle as an effective tool for scaling with the system complexity, applied
throughout the analysis and design process [20].

The SODA abstractions – explained below – are logically divided in three cat-
egories: i) the abstractions for modelling/designing the system active part (task,
role, agent, etc.); ii) the abstractions for the reactive part (function, resource,
artifact, etc.); and iii) the abstractions for interaction and organisational rules
(relation, dependency, interaction, rule, etc.). In its turn, the SODA process is
organised in two phases, each structured in two sub-phases: the Analysis phase,
which includes the Requirements Analysis and the Analysis steps, and the De-
sign phase, including the Architectural Design and the Detailed Design steps.
Each sub-phase models (designs) the system exploiting a subset of SODA ab-
stractions: in particular, each subset always includes at least one abstraction for
each of the above categories – that is, at least one abstraction for the system
active part, one for the reactive part, and another for interaction and organisa-
tional rules. Fig. 2 shows an overview of the methodology structure: as we will
show in the case study (Section 4), each step is practically described as a set of
relational tables (listed in Fig. 2 for the sake of completeness).

Requirements Analysis. Several abstract entities are introduced for require-
ment modelling. In particular, requirement and actor are used for modelling
the customers’ requirements and the requirement sources, respectively, while the

Transitions

Tables
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Requirements Tables
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Fig. 2. An overview of the SODA process
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external-environment notion is used as a container of the legacy-systems that
represent the legacy resources of the environment. The relationships between
requirements and legacy systems are modelled in terms of a suitable relation.

Analysis. The Analysis step expresses the requirement representation in terms
of more concrete entities such as tasks and functions. Tasks are activities re-
quiring one or more competences, while functions are reactive activities aimed
at supporting tasks. The relations highlighted in the previous step are here the
starting point for the definition of dependencies among such abstract entities.
The structure of the environment is also modelled in terms of topologies, i.e.,
topological constraints over the environment.

Architectural Design. The main goal of this stage is to assign responsibil-
ities of achieving tasks to roles, and responsibilities of providing functions to
resources. In order to attain one or more tasks, a role should be able to per-
form actions ; analogously, the resource should be able to execute operations
providing one or more functions. The dependencies identified in the previous
phase become here interactions and rules. Interactions represent the acts of
the interaction among roles, among resources and between roles and resources,
while rules enable and bound the entities’ behaviour. Finally, the topology con-
straints lead to the definition of spaces, i.e., conceptual places structuring the
environment.

Detailed Design. Detailed Design is expressed in terms of agents, agent so-
cieties, composition, artifacts and aggregates and workspaces for the abstract
entities, while the interactions are expressed by means of uses, manifests, speaks
to and links to concepts. More precisely, agents are intended here autonomous
entities able to play several roles, while a society can be seen as a group of
interacting agents and artifacts when its overall behaviour is essentially an au-
tonomous, proactive one. The resources identified in the previous step are here
mapped onto suitable artifacts, while aggregates are defined as a group of inter-
acting agents and artifacts when its overall behaviour is essentially a functional,
reactive one. The workspaces take here the form of an open set of artifacts and
agents: artifacts can be dynamically added to or removed from workspaces, and
agents can dynamically enter (join) or exit workspaces.

3.2 RBAC Requirements in SODA

In Subsection 2.2, two major requirement categories were outlined: one about the
representation language of the access policies, the other concerning the RBAC-
MAS abstract entities. With respect to the former issue, SODA is conceptually
orthogonal to any possible representation language, since at the moment no hy-
pothesis is made about the language adopted for compiling its relational tables.
With respect to the latter issue, RBAC-MAS abstract entities are captured by
suitable SODA abstractions as follows:
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Role — this RBAC-MAS entity is directly mapped onto SODA role concept in
the Architectural Design phase, namely in the Entities Tables.1

Organisation — this entity is mapped by SODA societies in the Detailed De-
sign phase (see the homonymous tables); in turn, the rules governing such
societies are embodied in the social artifacts expressed by the Environment
Design Tables.

Object — since this RBAC-MAS entity is used to represent the environment of
the system, and given that topology constraints need to be considered since
the earliest requirement analysis phase, its impact spreads through all SODA
phases. More precisely, since the environment is composed of both environ-
ment abstractions and topological abstractions, in the analysis phase such
aspects are captured via the legacy system and function abstractions, and the
topology abstractions, respectively. Then, in the Design phase (which is par-
ticularly relevant for the mechanism sub-system), environment abstractions
take the form of resources (in the Architectural Design step) and artifacts
(in the Detailed Design step); in the same way, topology abstractions take
the form of spaces (in Architectural Design) and workspaces (in Detailed
Design).

Action and Perception — these entities are natively supported by SODA:
actions and use map action in the Architectural Design and in the Detailed
Design respectively, while manifest maps perception in the Detailed Design.

Policy — this entity finds it specific counterpart in the Rule abstraction (Con-
straints Tables) of SODA’s Architectural Design, since in the Analysis phase
they are simply considered as relations and dependencies; such rules are then
mapped onto suitable (individual or social) artifacts in the Detailed Design
step.

Considering how SODA supports RBAC-MAS requirements with respect to the
three abstractions categories outlined above in this Section, it is worth noting
that in the design of the mechanism sub-system only the reactive abstractions are
involved, while in the design of the policy sub-system only the interactions and
rules abstractions are used: the active abstractions, instead, are just modelled
– not designed –, as in this kind of system the corresponding roles, from the
RBAC design perspective, are just an input of the system, defined in the policy
sub-system requirements. This is no longer true if a new system is being designed
from scratch, where it is unlikely to have such roles as inputs of the whole system:
rather, in such cases these roles should likely be first designed—and only then
used as inputs in the design of the policy sub-system.

Summing up, all the key RBAC-MAS issues discussed above are quite well
captured in SODA: such aspects are naturally taken into account when the

1 The term “Entities” in SODA tables is used with a different, and more specific,
semantics than in RBAC-MAS: Entities Tables, in fact, refer to roles, resources,
actions, and operations, while RBAC-MAS uses that term to refer to a wide range
of abstractions—from roles to organisations, objects, operations, permissions and
constraints.
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methodology is applied, and take the form of suitable requirements and specifi-
cations in the SODA tables, as we will show in the case study below.

4 The Case Study

The case study we consider is the management of the access control to a uni-
versity building: for the sake of brevity, we set the core layer quite at a high
abstraction level, and only a limited set of the SODA tables will be reported.
As highlighted in Section 2, the design of mechanisms (Subsection 4.1) is kept
separate from the design of policies (Subsection 4.2). Here we present the key
system aspect, that is, the topological structure of the environment, leaving the
discussion of the application roles involved to the sub-systems design.

The topological structure, sharedbetween the sub-systems, is establishedduring
the requirements analysis, since it derives from the physical structure of the build-
ing. More precisely, following the hierarchial view in Figure 3, layera represents the
whole building, layer b represents the spatial organisation of the building in terms
of classrooms,administration,departments, and library, layer c represents the spa-
tial organisation inside each department – composed of administration offices, pro-
fessors’ offices and the library – and administration – made of offices; finally, layer
d represents the spatial organisation inside the administration department, which
is, again, made of offices. Such a hierarchical representation simplifies the design of
both mechanisms and policies, since the same mechanism can be replicated in the
access points of the building, while finer-grained policies can be expressed for each
space.

The general description above summarises the analysis of the topological con-
straints for both the mechanism and policies. As far as the mechanisms are
concerned, this analysis suggests that the designer organises the environment
following the topological structure, nesting spaces and workspaces, and mapping
spaces onto workspaces: this approach simplifies the design of the mechanisms,
which can be structured along different control levels. On the other hand, the
policy designer can express accurate policies, defining whether each role can ei-
ther access or not the building, along with its access privileges, for each access
point—i.e., on a fine-grained basis.

classroom librarydepartment

Faculty building

administration

office dep-administrationdep-library office

office

a)

b)

c)

d)

Fig. 3. The physical structure of the university building
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4.1 Designing the Mechanism

The topological structure of the environment explained above is captured by two
different SODA tables in the Architectural Design phase (Figure 4): the Space ta-
ble ((L)St) describes the logical space of the system, while the Space-Connection
table ((L)SCt) shows the relation between spaces. Then, the workspaces in the
Detailed Design step naturally follow from the spaces defined in the Architec-
tural Design step.

According to this topological structure, the global mechanism can be con-
ceived as composed of two complementary sub-mechanisms, one for the access
to the whole building (Figure 5, top) and another for the access to a single
room/office department—simply “room” in the following (Figure 5, bottom).
Both are based on “Interface Artifacts” that represent the wrappers to the hard-
ware resources capturing the user credentials: in the case of the whole building,
there is an Interface Artifact for each hardware device that monitors a specific
physical access point, while each room has its own Interface Artifact.

We assume that Interface Artifacts generate an event whenever a user en-
ters the building (room); we also assume that such events are perceived by a
suitable “(Room-)Access Manager” agent, whose task is to check whether such
an access can be authorised. For this purpose, the Access Manager exploits the
“User(-room) Artifact” to check if the user can access the building (room) and, if
so, modifies the state of the “Building-State Artifact” accordingly. Room access,
instead, must be granted also to users that are not permanently authorised, pro-
vided that they have an appointment: this is performed via the “Appointment
Artifact”.

The “User(-room) Artifact” stores all the roles permanently qualified to access
the building (room), along with their access privileges. This artifact provides two
different sets of functionalities: those needed to check the access authorisations,
and those required by special users—such as administrators – for management

Space Description
Faculty the whole building

Classroom the student space

Library the faculty library
Department the research centre

Administration the faculty bureaucracy centre

Dep-Library the department library
Dep-Administration the department bureaucracy centre

Office the rooms for employees

Space Connection
Faculty Classroom, Library, Department, Administration

Administration Office

Department Dep-Library, Dep-Administration, Office

Dep-Administration Office

Fig. 4. Topological Structure in top down order: (L)St, (L)SCt
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building

room

User
Artifact

Interface 
Artifact

Building-State
Artifact

User Manager

Access Manager
Admin
Artifact

Interface 
Artifact

R-Access Manager

User-room
Artifact

Appointment
Artifact

Room-Admin
Artifact

Room Manager

event

event

event
event

uses

uses

uses

uses

uses

uses

uses

uses

Fig. 5. The mechanisms for the access control for the whole building (top) and the
single room (bottom)

purposes – such as adding or deleting roles, modifying the users’ privileges, and
so on. The “Building-State Artifact” traces the people inside the building: when
a user exits the building, an event is generated, and the Access Manager modi-
fies the artifact again. The “Appointment Artifact” manages the users’ appoint-
ments, storing the list of the appointments for a given room: so, it is obviously
shared by all the people that work in that room. The stored data include the
time and the people involved in each appointment, enabling the policies designer
to express several different policies—for instance, deciding whether the access
should be denied or authorised if the people involved are not in office.

Users are managed by the “User Manager” agent, while users authorised
to enter a room are managed by the “Room Manager”: both such managers
perceive the events generated by the “Admin Artifact” (respectively, by the

Artifact Usage Interface
Interface Artifact enter role, exit role

Admin Artifact new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

User Artifact check access, new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

Building-State Artifact update in, update exit, get roles
Room-Admin Artifact new role, canc role, update role, get roles, new user,canc user,

update user, can pol, new pol, update pol, insert appointment,
modify appointment, delete appointment, get appointments

User-room Artifact check access, new role, canc role, update role, get roles, new user,
canc user, update user, can pol, new pol, update pol

Appointment Artifact check appointment, insert appointment, modify appointment
delete appointment, get appointments

Fig. 6. Artifact-UsageInterface table
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“Room-Admin Artifact”). In turn, this represents the interface between the hu-
man administrator and the mechanism itself, and is used by the system admin-
istrator to introduce or delete roles and, more generally, to edit the policies over
time (in the case of the building) or to handle appointments (in the case of
rooms).

These functionalities are represented in the Artifact-UsageInterface table
(AUIt) of the Detailed Design (Figure 6): the usage interface represents the
set of operations provided by an artifact. For space reason, only the names of
the artifacts’ operations have been reported, by omitting operations’ parameters.

4.2 Designing RBAC Policies

RBAC policies are designed during SODA’s architectural design phase: more
precisely, the constraints that shape the role interaction spaces drive the design
of the organisational rules.

In our case, the environment needs not – and actually can not – be explicitly
designed, as it is already represented in/by the above mechanism as specified in
Subsection 3.2: all we need is to model it in the analysis phase, so as to identify
the relationships and the interactions between the two sub-systems. Then, the
mechanism’s artifacts will enforce the policies designed here, while, conversely,
the roles (agents) defined here will interact with the mechanism. For the same
reason, also the topological structure is implicit in the mechanism: so, the spaces/
workspaces identified in Subsection 4.1 are the same here, too. As a result, we
now focus only on the design of the interaction and organisational rule entities.

From the viewpoint of sub-system requirements, our scenario, in its simplest
version, involves six different roles: Student, Professor, Technician, Administra-
tive staff, Guide and Visitor. Professors, Technicians, and Administrative staff
can freely access the building at any time. Students, instead, can access the
building – in particular, classrooms and library – only during the regular opening
hours; in addition, to access the Administrative staffs’ and Professors’ offices,
they must have an appointment. Finally, Visitors cannot access the building
without a Guide, who is a member of the University – Professor, Technician,
Administrative staff – that escorts visitors inside the building.

Role Action
Visitor enter, exit, ask appointment
Student enter, exit, ask appointment

Professor enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Administrative staff enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Technician enter, exit, canc appointment, set appointment, change policy
insert role, canc role

Guide enter, exit

System administrator enter, exit, change policy, insert role, canc role

Fig. 7. Role-Action Table ((L)RAt)
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Beyond these roles, the user management activity highlights the need of a new
“service” role – the System administrator – for modifying the access privileges
and managing the users’ credentials. This is not surprising, since during SODA’s
Architectural Design new roles are often identified that complete and support
the activities of the roles directly deducted from the requirements.

So, there are seven different roles in all, each potentially able to perform the
actions depicted in Figure 7—we say “potentially” because the role will actually
be enabled to do such actions only if/when authorised to. Rules derive from the
desired policies, and are listed in Figure 8: the corresponding association to roles
is given in Figure 9.

For the sake of clarity, Figure 8 is organised in different sets of rules. The
first set (Guide-Rule and Visitor-Rule) reports the DSD and SSD constraints
over the corresponding roles (shown in Figure 9) that are enforced by the “User
Artifact”. In particular, the Guide role is dynamically incompatible with any
other role during a session (DSD constraint), since the Guide cannot abandon
visitors, who are not allowed to move alone inside the building. Similarly, the
Visitor role is incompatible with any other because a visitor cannot cover any
position inside the university: this is an SSD constraint, since this incompatibil-
ity holds permanently (it is not related to a temporary status in the session).
The second set of rules represents the constraints over the administrative opera-
tions, enforced by the the “(Room-)Admin Artifact”. The two other sets express,
respectively, the constraints over the access to the building (third set) and to

Rule Description
Guide-Rule Guide cannot be activated together other roles (DSD constraint)

Visitor-Rule Visitor cannot be activated together other roles (SSD constraint)

Admin-Rule The Administrator can modify the access rules for the whole
building but cannot modify the access rules for the offices

Prof-Admin-Rule The Professor can modify the access rules for his/her office

Staff-Admin-Rule The Administrative staff can modify the access rules for their office

Visit-Rule Visitor can access the building only together a Guide
Building-Rule The access to the building is possible only

when the building is open to the public

Uni-Build-Rule Professor, Technician, Administrative staff and
System administrator can always access the building

App-Rule The access to an office is granted only if the Student has an
an appointment and the Professor/Administrative staff is in the office

Administration-Rule The access to the staff office is possible only
when the office is open to the public

ClassRoom-Rule The access to a classroom is not granted during a lecture

Library-Rule The access to the library is possible only
when the library is open to the public

Lab-Rule The access to the laboratory is possible only
when the laboratory is open to the public

Department-Rule The access to the department is possible only
if the destination room grants the access

Fig. 8. Rule table ((L)Rut)
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Role Rule
Visitor Visitor-Rule, Visit-Rule, Building-Rule, Administration-Rule

ClassRoom-Rule, Library-Rule, Department-Rule

Student Building-Rule, App-Rule, Administration-Rule, Lab-Rule
ClassRoom-Rule, Library-Rule, Department-Rule

Professor Uni-Build-Rule, Administration-Rule, Lab-Rule
Library-Rule, Department-Rule, Prof-Admin-Rule

Administrative Uni-Build-Rule, Administration-Rule, Lab-Rule
staff Library-Rule, Department-Rule, Staff-Admin-Rule

Technician Uni-Build-Rule, Administration-Rule,Library-Rule, Department-Rule

Guide Guide-Rule, Uni-Build-Rule, Administration-Rule, Lab-Rule
ClassRoom-Rule, Library-Rule, Department-Rule

System Uni-Build-Rule, Administration-Rule, Admin-Rule
administrator Library-Rule, Department-Rule

Fig. 9. Role/Rule association table (L)RoRut

each room (fourth set), and are enforced, respectively, by the “User Artifact”
and by the “User-room Artifact” & “Appointment Artifact” pair.

5 Conclusions and Related Work

To the best of our knowledge, this is the first attempt to support the design
of an RBAC system via an agent-oriented methodology such as SODA. In fact,
other works in the literature (e.g. [21,22]) exploit MAS for realising an RBAC
system, but in the context of specific domain applications: thus, they lead to
ad-hoc solutions which are not easily reusable in other contexts, due to the lack
of separation between the “static part” of the system – the mechanism – and the
“dynamic part” – the policies. In addition, these works delegate the enforcing
of policies to agents, while our approach is that such an enforcing should more
properly be done by suitable environmental abstractions [9].

Moving from the “university building access” case study, this paper aims at
showing the benefits of a clear separation between mechanism and policies, so
as to split the design of an access control system in two separate aspects: our
SODA-based approach leads to design such aspects as two sub-systems, exploit-
ing the agent paradigm. In particular, the mechanism sub-system is designed as
general as possible, since its structure is basically stable and reusable as is in
other applications: artifacts wrap the physical resources, and a society of agents
reacts to the events occurring in the environment. From this viewpoint, SODA’s
intrinsic support for both environmental abstractions – artifacts – and topol-
ogy abstractions – workspaces – makes it possible to support the whole design
process of the environment, including its spatial structure, in a uniform way.

Policies, on the other hand, are generally tied to the application domain, so
they typically have to be re-designed each time: as highlighted in Subsection 4.2,
the design of this sub-system is focused on the definition of roles and their
access privileges, which are the core of any RBAC system. Again, SODA natively
supports both roles and access privileges, which can be easily expressed in terms
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of rules. So, only one sub-system needs to be redesigned in response to any
application or policy change—the other sub-system remains untouched, unlike
what would happen with a monolithic system.

Future work will be mainly devoted to improve the methodology in several
directions: i) to support the design of secure agent-oriented systems since the ear-
liest Requirement Analysis step; ii) to develop a language for SODA rules which
could be able to capture all the relevant RBAC permissions and constraints, and
iii) to more deeply study the access control issues related to artifacts.

References

1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd edn. Wiley Computer, Chichester (2001)

2. Mouratidis, H., Giorgini, P.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowledge
Engineering 17, 285–309 (2007)

3. Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies. Idea
Group Publishing, Hershey (2005)

4. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Systems: The Agent-Oriented Software Engineering Handbook.
Kluwer Academic Publishers, Dordrecht (2004)

5. Bernon, C., Cossentino, M., Pavón, J.: An overview of current trends in european
AOSE research. Informatica 29, 379–390 (2005)

6. Liu, L., Yu, E., Mylopoulos, J.: Analyzing security requirements as relationships
among strategic actors. In: 2nd Symposium on Requirements Engineering for Infor-
mation Security (SREIS 2002), Electronic Proceedings, Raleigh, NC, USA (2002)

7. Yu, E., Cysneiros, L.M.: Designing for privacy and other competing requirements.
In: 2nd Symposium on Requirements Engineering for Information Security (SREIŚı
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Abstract. The current evolution of Information Technology leads to
the increase of automatic data processing over multiple information sys-
tems. The data we deal with concerns sensitive information about users
or groups of users. A typical problem in this context concerns the disclo-
sure of confidential identity data. To tackle this difficulty, we consider in
this paper the context of Hippocratic Multi-Agent Systems (HiMAS), a
model designed for the privacy management. In this context, we propose
a common content language combining meta-policies and application
context data on one hand and on the other hand an interaction protocol
for the exchange of sensitive data. Based on this proposal, agents pro-
viding sensitive data are able to check the compliance of the consumers
to the HiMAS principles. The protocol that we propose is validated on
a distributed calendar management application.

Keywords: Privacy, Sensitive Data Transaction, Confidentiality, Multi-
Agent Systems, Interaction Protocol.

1 Introduction

With the use of multiagent technologies, the sensitive data transmission prob-
lem in Multi-Agent Systems (MAS) is all the more present since users delegate
their sensitive data to an autonomous agent (the interaction is an essential fea-
ture of Multi-Agent Systems). Spread of sensitive data over the Internet using
autonomous entities becomes an important risk that requires to be considered
nevertheless this problem has not received enough attention by the researchers
in the domain until now.

We have proposed in [1] the model of Hippocratic Multi-Agent Systems
(HiMAS) that takes into account this data sensitivity regarding moral issues and
not legal aspects. This model defines the concept of private sphere for an agent
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or a user to structure and to represent the data involved in the management of
privacy, and the nine principles that should govern the functioning of a HiMAS
so that privacy is preserved in the Multi-Agent Systems. In order to engineer
agents societies according to this conceptual framework we focus in this article
on a precise objective of the design of such a system: sensitive data protection
during sensitive data transaction. Such a transaction represents a sensitive data
transaction between two agents. To tackle this problem, we propose a sensitive
data transaction protocol inspired by [2,3], with an associated content language
in the HiMAS context. This protocol is our first step for the implementation of
a HiMAS. To illustrate this protocol, we have chosen the distributed calendar
management application presented in [4].

The next section briefly presents the model of Hippocratic Multi-Agent Sys-
tems in order to draw the global context in which we place our present work.
Section 3 focuses on the definition of the content language and the associated
semantics used in the protocol that we propose in section 4. We present an ap-
plication of our sensitive data transaction protocol in section 5. Finally we talk
about related work in section 6 and conclude with some perspectives on the
future work.

2 Foundations: Hippocratic Multi-Agent Systems
(HiMAS)

As introduced in the previous section, the HiMAS model proposed in [1] is
composed of two main components: the private sphere representation and some
hippocratic principles that we present in the following sections. The reader in-
terested in more information about this model and the private sphere, may refer
to [1].

2.1 Private Sphere, Consumer and Provider

The private sphere contains information that an agent considers as sensitive,
represented by sensitive data, and all the associated management rules. For
instance, in the context of calendar management [4], sensitive data is the user’s
slots of time or meetings that are delegated to an agent. The agent’s private
sphere represents all this kind of data and all the rules defining the conditions
of its disclosure, its use or its sharing for example.

To define the private sphere dimensions, we are inspired by many researches
in social science [1]. The first one focus on the ownership rights of sensitive
data. They are only assigned to agents concerned by this data [5]. Moreover the
private sphere is also personal [6,7], personalizable (the agent chooses what
its private sphere contains) [8,9,10] and context-dependent [11,12].

To represent the possible positions of an agent with respect to the private
sphere, we define three roles represented in the Figure 1. The consumer role
characterizes the agent which asks for sensitive data and uses it. The provider
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Fig. 1. Agents role in relation with a sensitive data transaction

role characterizes the agent which discloses sensitive data1. The last role, the
subject, describes the agent from whom origined sensitive data.

With this definition of the agent’s private sphere we install a provider-centred
view on the management of sensitive data. This is due to the fact that we mainly
have a user-centred view on privacy preserving: user should be confident in the
management of the sensitive data they delegate to their personal agent.

2.2 Nine Principles for HiMAS

The HiMAS model is inspired by the Hippocratic Databases [14]. In order to
preserve privacy, a HiMAS must respect the nine principles described below.

1. Purpose specification: The provider must know the objectives of the sensi-
tive data transaction. Therefore it can evaluate the transaction consequences.

2. Consent: Each sensitive data transaction requires the provider’s consent
(and the subject’s consent if it is not the same agent).

3. Limited collection: The consumer commits to cutting down to a minimum
the amount of data for realizing its objectives.

4. Limited use: The consumer commits to only use sensitive provider’s data
to satisfy the objectives that it has specified and nothing more.

5. Limited disclosure: The consumer commits to only disclose sensitive data
to reach its objectives. Moreover it must disclose it the least number of times
possible and to the least number of agents.

6. Limited retention: The consumer commits to retain sensitive data only
for the minimum amount of time it takes to realize its objectives.

7. Safety: The system must guarantee sensitive data safety during storage and
transactions.

8. Openness: The transmitted sensitive data must remain accessible to the
subject and/or the provider during the retention time.

1 We can notice that this vision is the opposite of the centered service vision like for
example [13], regarding the consumer and the provider.
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9. Compliance: Each agent should be able to check the obedience to the
previous principles.

3 Content Language for Sensitive Data Transaction

In order to integrate the HiMAS principles in the interaction protocol that we
propose, we have chosen to define the semantics of these principles. This study
also leads us to determine the different links between these principles. The first
step of this work is to group together these principles according to their purpose
into the HiMAS agent’s reasoning: during the sensitive data transaction; during
the other interactions; and in relation to the system implementation. After the
study of this semantics, we propose a representation of the required principles
in a content language. These two steps are the foundations of the sensitive data
transaction protocol that we propose.

3.1 Content Language Semantics

Let us consider the principles that play a part in a sensitive data transaction. In
such a context, the provider defines a policy and the consumer a preference
to define their desires regarding the sensitive data manipulations.

The consumer’s policy and the provider’s preference are similar to the policy
and the preference defined in [2]: these concepts are composed of the transaction
objectives2, the deletion time of collected data, a broadcasting list and the data
format (required references).

In order to map a policy to a preference, a sensitive data transaction groups
together required sensitive data with the consumer’s policy and the provider’s
consent and preference.

Seven of the nine HiMAS principles play a part in sensitive data transactions:

– 1. Purpose specification: The consumer asks for provider’s sensitive data
in order to realize required tasks. Since the consumer must declare his pur-
pose, these tasks should be used to define its objectives. The consumer must
send them to the provider.

– 3. Limited collection: With the definition of its objectives, a consumer
can select the sensitive data that is only required for the realization of its
objectives.

– 4. Limited use: The consumer can then determine the possible uses of the
collected sensitive data by virtue of its objectives.

– 5. Limited disclosure: The objectives enable the consumer to determine
which agents are allowed to receive the collected sensitive data.

– 6. Limited retention: The specification of the objectives defines also the
sensitive data retention time for the consumer.

– 8. Openness: The openness implies that the provider and/or the subject
are in the broadcasting list.

2 The objectives are close to the concept of goal, like for example in BDI model [15]
or [16].



Sensitive Data Transaction in Hippocratic Multi-Agent Systems 89

– 2. Consent: The mapping between a policy and a preference represents the
consent principle that is made after the respect of the principles previously
presented.

Principles must be also considered in the different interactions that could take
place in the system. We should insure that the consumer respect the 9. Com-
pliance principle in these interactions.

The last principle, 7. Safety, has not to be considered in the agents reason-
ing since it relates to the system design and is therefore not included in the
formalization presented in this article.

The semantics of the principles playing a part in the sensitive data transaction.
During sensitive data transaction, the central principle for the agent’s reasoning
is 1. Purpose specification (Figure 2).

Table 1. Concept representing HiMAS principles

Principle Associated Concept

1. Purpose specification Purpose composed by a set of Objective

3. Limited Collection Collection composed by a set of Data

4. Limited Use PossibleUses composed by a set of Use

5. Limited disclosure BroadcastingList composed by a set of Agent

6. Limited retention RetentionTime

7. Openness Subject and Provider included in Agent

2. Consent Consent

For each principle (and for the notion of format3 that is required in our
approach) we define an associated concept in a conceptual graph [17] (refer to
Table 1 and to Figure 2). Each principle and the notion of format is represented
by a concept linked to another according to a semantic relationship. In order
to define these, we use an existential positive conjunctive fragment of the first
order logic that allows us not to obtain contradictory logical information. We
represent each concept by an atomic predicate and each relationship by a binary
predicate. The formal description of the conceptual graph presented in Figure 2
is described in Table 2.

The implementation of this conceptual graph is made by using an OWL file
[18]. Figure 3 presents an example of our implementation. We have chosen to
present the instantiation of the relationship isComposedBy for the concepts Col-
lection and Data. This approach uses an extensible knowledge representation
language, RDF and RDFS. Each associated concept is represented by a RDFS
class and each semantic relationship by an OWL property. RDFS gives a vocabu-
lary to RDF that instantiates RDFS classes and properties. So each instantiation
(application context-dependent) of these concepts and these semantic links is in
a RDF structure in relation to the vocabulary defined by the RDFS.

3 All the required references.
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Fig. 2. Conceptual graph representing the semantics of HiMAS principles
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Table 2. Principles formalization

Principle: 1. Purpose Specification

∀p Purpose(p) → ∃x composedBy(p,x) ∧ Objective(x)
Principle: 3. Limited collection

∀x Objective(x) → ∃y defines(x, y) ∧ Collection(y)
∀y Collection(y) → ∃z composedBy(y, z) ∧ Data(z)

Principle: 4. Limited use

∀x Objective(x) → ∃y composedBy(y,z) ∧ PossibleUses(y)
∀y PossibleUses(y) → ∃z composedBy(y, z) ∧ Use(z)
∀y PossibleUses(y) → ∃z defines(y, z) ∧ Format(z)

Principle: 5. Limited disclosure

∀x Objective(x) → ∃y defines(x, y) ∧ BroadcastingList(y)
∀y BroadcastingList(y) → ∃z composedBy(y, z) ∧ Agent(z)

Principle: 8. Openness

∀z Agent(z) → ∃w includes(z, w) ∧ Subject(w)
∀z Agent(z) → ∃w includes(z, w) ∧ Provider(w)

Principle: 6. Limited retention

∀x Objective(x) → ∃y defines(x, y) ∧ RetentionT ime(y)
Principle: 2. Consent

∀c Consent(c) → ∃x depends(c, p) ∧ Purpose(p)

Fig. 3. Example of the conceptual graph implementation

Taking the context of the application into account. HiMAS principles define
generic constraints that the agency must satisfy to preserve the private sphere.
The previous study semantics that we have just presented, must be linked to the
HIMAS application context because of the context-dependent characteristic of
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the private sphere. An example of the introduction of the context is presented
in more details is section 5.

For this integration, we need to instantiate the defined conceptual graph by
giving all the possible values for each concept according to the application con-
text and by linking these values (see the dotted block in Figure 2). These values
are represented in a RDF structure (see Figure 3).

We have chosen to not instantiate the possible values of two concepts: con-
sent and purpose. Indeed the value of the consent concept can be true or false.
Therefore it can be represented by a boolean and we need only to define the se-
mantic links of this concept for the agents’ reasoning. We indicate just that the
provider must give or not its consent according to the consumer’s purpose. This
last concept is composed by a set of objectives. Therefore, by defining all the
possible values for the objective concept, we define also all the possible values
for the purpose.

3.2 Content Language Syntax

We sum up first all the requirements for sensitive data transaction in a HiMAS
represented in Figure 4. Then we present the syntax of such a transaction.

In [1], we have shown that HiMAS agents have to determine risk-taking for
a sensitive data transaction. During sensitive data transaction, the consumer
(resp. provider) builds its policy (resp. preference) according to its intention.
Before building such a transaction, the HiMAS agents pass a judgement on the
other HiMAS agents regarding their reliability. For example, this function can
be implemented by a processus of trust management like in [19]. If the consumer
and the provider are reliable, then the transaction can begin.

We begin the description of the content language elements according to the
chronological order of a sensitive data transaction: the design of the policy, the
sensitive data transaction and the design of the preference.

Policy. A policy must contain the objectives, the retention date, the broadcast-
ing list and the data format for each asked data (Figure 4 and Table 3).

Fig. 4. Sensitive data transaction representation
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Table 3. Policy formalization

∀y policy(y) → ∃z represents(y,z) ∧ objective(z)
∀y policy(y) → ∃z represents(y,z) ∧ format(z)
∀y policy(y) → ∃z represents(y,z) ∧ broadcastingList(z)
∀y policy(y) → ∃z represents(y,z) ∧ retentionT ime(z)

Once the consumer has determined its objectives and the concepts represent-
ing them, it builds a policy syntactically (using an XSD schema) and semantically
valid (using an OWL file).

Sensitive data transaction. We have defined in [1] such a transaction set up
a policy, a preference, the provider’s consent and the sensitive data requested by
the consumer. Notice that the formalization presented in Figure 4 does not refer
to the provider’s preference. Indeed a preference and a policy are based on the
same concepts and we represent the provider’s preference by the modifications
that the provider induces from the consumer’s policy if there is no agreement on
the constraints defined in the policy.

All values for all elements of the transaction are defined in the content lan-
guage that allows the consumer to build a valid transaction with regard to the
privacy preservation.

Table 4. Sensitive data transaction formalization

∀y transaction(y) → ∃z contains(y, z) ∧ consent(z)
∀y transaction(y) → ∃z contains(y, z) ∧ collection(z)
∀y transaction(y) → ∃z contains(y, z) ∧ policy(z)

In order to build a sensitive data transaction that is syntactically valid, we
use the same approach as for the policy. We formally define such a transaction
in Table 4 and in Figure 4.

4 Sensitive Data Transaction Protocol

In this section, we present a sensitive data transaction protocol based on the
content language previously defined. This approach also allows us to provide a
guideline about the design of the policy and preference for the HiMAS agents.

In our content language, the consumer’s objectives are semantically linked
to the principles playing a part in a sensitive data transaction. This content
language includes all the possible values for each class representing one HiMAS
principle. The consumer can therefore know if it violates the private sphere or
not by verifying that the elements contained in its policy are included in the
content language and by verifying that it respects the semantic links between
these elements.

The sensitive data transactionprotocol that we propose is presented in Figure 5.
The content language implementation must be common to all the HiMAS agents so
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Fig. 5. Sensitive data transaction protocol

that each agent can base its reasoning on the same vocabulary and the same seman-
tics. We have chosen to represent this as external to the agents and available for the
consultationby the agency.With this approach,manyHiMAS can refer to the same
language if their application context is the same. Moreover, this technique allows
us to consider the openness between many HiMAS having the same context. At a
design level, the possible modifications for this language require only one control
entity and there are no propagation problems.

Each consumer and each provider validate their policy and their preference
using the content language previously presented in order to build and to execute
a sensitive data transaction.

4.1 Steps of the Interaction Protocol

We present now the three steps of the interaction protocol that we propose in a
chronological order: the design of the policy, the sensitive data transaction and
the design of the preference. These steps are represented in Figure 6.

Design of the policy. A consumer builds its policy according to its objectives
by using the content language. In this way, it can be understood by the other
agents. Moreover the consumer’s behavior respects the private sphere if its policy
validates the content language.

A first constraint of our protocol imposes that the XSD file validates the XML
file to ensure the syntax of such a transaction.

A second constraint of our protocol imposes that the values of the XML file
must be included in the conceptual graph previously defined (see Figure 2) to
ensure the semantics.

Sensitive data transaction. Once the consumer has defined and validated its
policy, the sensitive data transaction can begin.

To inform the provider about its request, the consumer must build a sensitive
data transaction. This transaction contains its policy and must be validated by
the content language.
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Fig. 6. Sensitive data transaction protocol

Once the sensitive data transaction file built and validated, the consumer can
send it to the provider in order that the provider could know its request. This
step is represented by the first interaction of Figure 6.

Design of the preference. From the management rules of its private sphere,
a provider establishes the conditions of the use, the disclosure, the retention of
its sensitive data. Once it received a sensitive data transaction, these rules allow
it to accept or not the consumer’s policy.

Before analyzing the consumer’s policy, the provider must first verify the
transaction validity at a syntactic and semantic level, using the content lan-
guage. These two validations allow to determine if a consumer has a malicious
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behavior on the limitations imposed by HiMAS principles and on the sensitive
data transaction protocol.

If the sensitive data transaction is validated, then the provider can make a
mapping between its preference and the consumer’s policy. If no mapping is
found, the provider can propose to the consumer some adaptations of its policy.

Once the consumer and the provider have agreed on the policy, the provider
completes the transaction with the values of requested sensitive data. If no agree-
ment is found, the transaction is canceled and the provider can not answer to the
consumer’s request. The second interaction of Figure 6 represents these steps.

4.2 Synthesis

One of the first advantages of this approach is the possibility to verify the con-
straints defined by the principles of the HiMAS thanks to the content language.
The consumer (resp. provider) can design its policy (resp. preference) with re-
spect to the constraints defined by HiMAS principles. This obedience is made
by the semantic links between the concepts representing the HiMAS principles.

Each transaction between the consumer and the provider can be represented
by the ”inform” communicative act of FIPA [20]. Indeed, these two agents ex-
change only one specific data: a sensitive data transaction that will be completed
during such a transaction.

This protocol is provider-centred and is opposite to all the most of transaction
protocols that are in general service-centred. It defines the same principles as the
P3P [2] and sensitive data transaction as an interaction in ISLANDER [21]. In
order to preserve completely the private sphere, this protocol must be integrated
in a secure communication medium (principle 7. Safety) which is not purpose
in this paper.

5 Application

In order to illustrate and to implement the HiMAS model and the sensitive data
transaction, we consider a decentralized calendar management application [4].
In this context, each user is represented by an agent in charge of the scheduling
of events, either tasks or meetings. Timetables can be shared with other agents.
When agents do not share their timetables, a negotiation system is necessary to
fix the meetings.

In this scenario, the private sphere is managed by the user that delegates his
sensitive data to an agent. Users indicate to their agent the basis of the policy
for each sensitive data transaction when the agent is the consumer. In the other
way, when the agent is the provider, it defines its preference for the sensitive
data transaction thanks to rules that are given by the user at the beginning if
the experimentations. This aspect is not developed in this article, we focus only
on the interaction between agents for a sensitive data transaction.

We have chosen a simple example for the illustration of the sensitive data
transaction protocol: a consumer wants to fix a group meeting with a provider



Sensitive Data Transaction in Hippocratic Multi-Agent Systems 97

Fig. 7. Content language in context of calendar management and objective ”to fix a
group meeting”

and other agents (group G) in a given period of time (interval between two slots
of time). We consider as sensitive data the free and occupied slots of time in
users’ calendar. Figure 7 represents this example.

In order to fix such a meeting, we define the following constraints:

– The sensitive data that the consumer can collect is the free slots of time for
a given period.

– The consumer can disclose this sensitive data to the group G and it must
guarantee that the provider is able to access to this data.

– If the sensitive data was disclosed, all the possible references can be disclosed.
– The consumer can not retain collected data after a given time.
– The possible uses of the collected sensitive data are storage, negotiation and

sharing.

The implementation of this HiMAS is made by instantiating the classes of
Figure 3 with the values of Figure 7. For example, the class Objective is in-
stantiated by the value ”ToFixMeetingGroup” and this value defines the value
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”PossibleUseToFixGroupMeeting” (composed by the values ”ToStore, ToNego-
ciate, ToShare” linked to the class Use) for the class PossibleUses.

Once the content language is defined, the consumer and the provider can
build, according to their intentions, a sensitive data transaction, regarding the
privacy preservation. In this scenario, the user gives to his agent the objective of
the sensitive data transaction and the agent guides him for the policy creation in
terms of required data, retention time, broadcasting list end references set with
regards to the privacy preservation.

For this, the consumer agent builds its policy by parsing the content language.
It first finds the objective corresponding to the goal ”to fix a group meeting”.
After it chooses the values of its policy among the values proposed in the content
language for its objective and sends a sensitive data transaction to the provider.
These values are chosen in function of the user’s needs.

The provider check the policy thanks to the content language in order to verify
the consumer intentions. If it agrees with this policy, it informs the consumer of
the required sensitive data. Else it can modify the consumer’s policy by other
values of the content language, according to its preference, and it informs the
consumer of its modification. In this case, the consumer accepts or not this new
policy.

6 Related Work

The principles playing a part in the sensitive data transaction allow HiMAS
agents to define their policy and their preference. This vision can be associated
with the policy about policy that are the metapolicies. We propose in this section
a global vision of this notion in order to present its main aspects.

Metapolicies are a notion introduced by Hosmer in [22,23] that describe this
like a set of policies about policies. These metapolicies are used in order to define
a set of rules and assumptions about the policies of security in a given system
for the policies interaction coordination.

Some other works use this notion like Kühnhauser [24] that uses metapoli-
cies for the interfacing and the cooperation of complex policies, and for conflict
resolution between the security policy. An other kind of work is the PONDER
system [25,26], where metapolicies are used in order to describe the security
policies and to resolve the conflicts.

Generally the main objective of metapolicies is to define and to manage a set
of policies of security for a given system regarding to the resolution of conflicts.

HiMAS principles define guidelines for the agents’ reasoning about their policy
and preference. These principles represent metapolicies for the agents behavior in
relation to the communication and the manipulation of sensitive data. However
the policy in our study case is not the same as in the work about security. HiMAS
principles allow the agents to reason about a set of behavior constraints and do
not allow to manage the set of agents’ policies. We may link these principles to
the notion of metaknowledge introduced by Pitrat [27].
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7 Conclusion and Perspectives

Our sensitive data transaction protocol allows us to apply seven HiMAS prin-
ciples: 1. Purpose specifications, 2. Consent, 3. Limited collection, 4.
Limited use, 5. Limited disclosure, 6. Limited retention and 8. Open-
ness. This protocol is generic and can be personalizable according to the kind
of sensitive information that is exchanged.

The obedience to these principles consists in the consideration of our protocol
at two levels. The first one is the definition of the content language. These
principles are semantically and syntactically defined in a content language. The
second one represents the use of the content language by the agents to build a
sensitive data transaction.

The semantic links between the HiMAS principles allow us to determine in
a content language, the maximal set of the sensitive data processing that a
consumer can do on the collected data. A provider can also verify if a consumer
respects the principles that limit the collection, the use, the disclosure and the
retention, by referring to the content language. To ensure that all the principles
are taken into account, we also formalize the sensitive data transaction that
contributes to the malicious agent detection (agents that do not adhere to this
formalization).

The content language of our protocol solves the main problem of the P3P
[28]. Indeed, the mapping between a policy and a preference based on the same
content language, a provider is able to understand the consumer’s intention
contrary to the P3P where this mapping is not guaranteed. Another advantage
is the possibility to define the limitations imposed by HiMAS principles.

As a perspective, we want to focus on the principle of 9. Compliance which
is related to the problem of the interaction between agents. A first hint would be
to implement a social order [29] in relation to the judgment function of HiMAS
agents. We plan to implement this function using some trust management tech-
nics. The formalization and the implementation of this principle aim us to take
temporal aspects into account. Indeed, the social order that we propose is based
on the protocol presented in this article and allows us to study the interactions
dynamic with regards to the privacy preservation.
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Abstract. The complexity of engineers tasks leads us to provide means to bring
the Adaptive Multi-Agent Systems (AMAS) design to a higher stage of automa-
tion and confidence thanks to Model Driven Development (MDD). This paper
focuses on a practical example and illustrates the modifications that have been
done to the ADELFE methodology. In the Design phase, we propose to use a Do-
main Specific Modeling Language (DSML) for the specification of cooperative
agents. We also, add a Model Diven Implementation phase using model trans-
formation, DSMLs and code generation. These phases carry out a model centric
process to produce and partially generate the system code. We present the use of
our MD process applied to a simple, but very illustrative example: the foraging
ants simulation.

1 Introduction

Our team works both on adaptation and Multi-Agent Systems, the result is that we
propose paradigms to manage adaptation at different conceptual levels. We propose an
approach which introduces adaptation following three independent axes [1]. The first
one differentiates system level adaptation, achieved according to AMAS principles [2],
from agent adaptation, allowed by a flexible agent architecture [3]. The second axis dis-
tinguishes functional adaptation (which concerns the system expected functionality, i.e.
the service performed) and operational adaptation (which concerns execution mecha-
nisms, i.e. means to perform services independently of the functionality itself). Finally,
the third one concerns adaptation time. Adaptation is qualified as dynamic when it oc-
curs at runtime and static when it occurs at design time. As the system is designed to
provide a function for the user and that it is responsible for that, system level adaptation
deals with means to preserve dynamically the adequacy between the function the sys-
tem offers and user requirements. Concerning agent adaptation, it is important to notice
that, as long as agents execute, they may encounter various operating systems config-
urations. Therefore, flexible agent architecture is a way of defining and maintaining
agent skills up-to-date in order to keep it playing its role.

The combined capacities of these approaches, AMAS principles and flexible agent
architecture, enable to deal with systems which can be characterized as complex, due
to the complexity of the domain (coupling with the environment, numerous interact-
ing entities) or the one coming from the execution layer. Our proposal is to ease the

A. Artikis, G. Picard, and L. Vercouter (Eds.): ESAW 2008, LNAI 5485, pp. 105–120, 2009.
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design of such systems by combining different adaptation kinds (system/agent, func-
tional/operational) within a tool that would assist the engineers all along the design.
This assistant would reduce domain complexity by automating the implementation of
the system, letting engineers focus on business concerns. Moreover, complexity of the
execution support would be totally hidden thanks to generative tools.

This is the goal of our research, in which we try to combine several software tech-
nologies such as reflection, aspect orientation, components, software architectures for
implementation issues, as well as AMAS which ease to handle system complexity. In
order to make all these technologies cooperate, we use a model driven approach that
allows us to integrate modelling and implementation tasks in a common environment,
such as Eclipse. All these ”good practices” and principles are specified and gathered
in a methodology called ADELFE, which is a development process based on the RUP
(Rational Unified Process) and specialised for AMAS developing.

In this paper, we present a practical example of the join use of both AMAS and flex-
ible agent principles within the ADELFE Design and Implementation phases applied to
a simple, but very illustrative example: the foraging ants simulation. The following of
the paper is organised as follows. First is presented the context of this paper: section 2
for the ADELFE methodology and its adaptation to a MD approach and section 3 for
the case study. Thereafter, the paper focuses in section 4 on the several phases where
model transformations and code generations are used. In section 5, we analyse the work
presented according to engineers points of view. Finally, we discuss some related works
and lastely we conclude.

2 ADELFE 2.0

ADELFE1 is an agent-oriented methodology for designing Adaptive Multi-Agent Sys-
tem (AMAS) [2]. The MAS developed according to ADELFE provides an emergent
global function [4]. What we call the global function is the function the system is in
charge of, whereas what we call local function is one provided by one agent. The global
function is qualified as emergent because it is not coded inside the agent. The agents
are not aware of this global function. Let’s take the example of the robot transportation
application developed with ADELFE [5] where agents have to transport boxes from
a room to another one by passing through narrow corridors (agents cannot pass each
other). The agents have to move in an environment containing 2 rooms, 2 corridors,
boxes, walls, others robots. Each agent’s local behaviour consist in avoiding collision
and in trying to be cooperative. Being cooperative means for the agent maximising its
utility in the system. Therefore, it tries to avoid situations of concurrency, uselessness,
ambiguity and other kind of conflicts. The global phenomena not coded inside the agent
is that a traffic direction emerges. To obtain this emergent behaviour, the system follows

1 ADELFE is a French acronym for ”Atelier de Développement de Logiciels à Fonction-
nalité Emergente”. It was a French RNTL-funded project (2000-2003) which partners
were: ARTAL Technologies (http://www.artal.fr) and TNI-Valiosys (http://
www.tni-valiosys.com) from industry and IRIT (http://www.irit.fr/SMAC)
and L3I (http://www-l3i.univ-lr.fr) from academia. See http://www.irit.
fr/ADELFE

http://www.artal.fr
http://
www.tni-valiosys.com
http://www.irit.fr/SMAC
http://www-l3i.univ-lr.fr
http://www.irit.
fr/ADELFE
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Fig. 1. The ADELFE 2.0 phases

the AMAS theory [6] in which the agents are endowed with the ability to autonomously
and locally modify their interactions in order to react to changes in their environment.
These alterations transform their collective function i.e. the global function performed
by the MAS they belong to. This system is self-organising and is able to adapt to its en-
vironment. According to the AMAS principles, interactions between agents depend on
their local view and on their ability to ”cooperate” with each other. Every internal part
of the system (agent) pursues an individual objective and interacts with agents it knows
by respecting cooperative techniques which lead to avoid Non Cooperative Situations
(NCS) like conflict, concurrence etc. Facing a NCS, a cooperative agent acts to come
back to a cooperative state and permanently adapts itself to unpredictable situations
while learning on others.

2.1 Adelfe 1.0

The ADELFE agent-oriented methodology aims at guiding AMAS designers through
a development process based on the RUP (Rational Unified Process) [7], a standard
process of object-oriented methodology. ADELFE covers the phases of usual software
design from the requirements to the design; it uses UML notation and extension of
UML already done in AUML, in particular the AIP (Agent Interaction Protocols) nota-
tions [8]. Our aim is not to add one more methodology to existing ones but to work on
some aspects not already taken into account such as complex environment, dynamics,
and adaptation. As this methodology concerns only applications designed following the
AMAS principles, some activities or steps have been added to the RUP in order to be
specific to adaptive multi-agent systems. In the preliminary and final requirements, the
environment modelling and the expression of the situations that can be “unexpected” or
“harmful” for the system have been added. In the analysis phase, two activities are dedi-
cated to the AMAS. First, ADELFE helps the designer to decide if the use of the AMAS
principles is required to implement his application. ADELFE provides also guides to
identify cooperative agents among all the entities defined during the final requirements.
Concerning the design phase, three activities are added. The first concerns the rela-
tionships between agents. The second is about the agent design. In this activity, the
cooperation failures are defined. Then, a fast prototyping activity helps to build and
verify the agent behaviour.

2.2 Extending Adelfe 1.0

Rationale. The design phase of ADELFE was previously carried out using UML1.4
profile, to take into account cooperative agents and their specificity. Moreover, the
AUML AIP has been extended to integrate cooperation failure. However, since its last
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version, UML2.0 [9] has integrated many of the desired features of the FIPA for AUML,
making a step further in the AIP direction (adding the concepts of Combined Fragments
to the sequence diagram, for instance). As a consequence, the profiles based on the pre-
vious UML version was kind of “deprecated notations”. In the purpose of updating the
ADELFE methodology, we begun a metamodeling process to characterise as precisely
as possible the concepts involved in the AMAS principles and mandatory for ADELFE.
With this metamodel, we made the choice of developing our own DSML (Domain Spe-
cific Modeling Language) [10], considering that the AMAS approach constitutes a do-
main on its own. We called this language AMAS-ML (AMAS-Modeling Language).
All along the metamodeling process, we had in focus that this specific language would
be used in the ADELFE methodology for the purpose of specific design. Besides this
fact, the abstraction and the concepts that it brought have been used to initiate a model
driven implementation phase.

It is important to notice what are the advantages of using a DSML (whether it is a
profile of UML or obtained from Model-Driven approach). The main benefit is about
semantics. What can be expressed by designer becomes closer to the concepts of the
domain whereas the use of a general-purpose language (like UML or a OO program-
ming language) introduces a gap between ideas and description. Another advantage of
Model-Driven Engineering lies in automation. By extracting the information the de-
signer has already given in previous diagrams, model transformations allow not only
to speed up development but especially to reduce design complexity, which is inher-
ent to the systems we deal with. For example, we are able to separate behavioural or
functional concerns form operational ones which will be implemented transparently,
keeping designer focused on business concerns (see figure 2).

In the ADELFE V.2, the design phase has been improved and an implementation one
has been added.

Fig. 2. Separation of concerns
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Fig. 3. Phases and diagrams in ADELFE

Design. AMAS-ML is used in several steps of the design phase, from the detailed agent
structure design to the definition of the agent cooperative behaviour. This is done thanks
to specialised diagrams:

– The agent diagram: it is used to model the cooperative agent structure, as well as
its relationship with environmental entities. It defines all the specific features of a
cooperative agents, its Representations, Characteristics, Skills and Aptitudes.

– The behavioural rules diagram: it allows the specification of rules involved in the
decision process of an agent. It is expressed with the cooperative agents features.
Based on their representations and perceptions, agents have to decide next actions
to lead. These actions may be done in the purpose of NCS recovering (Coopera-
tiveRule) or not (StandardBehaviorRule).

– The interaction diagram: for the moment it corresponds to the UML 2.0 sequence
diagram. We have defined a transformation which allows us to integrate the proto-
cols and messages defined in the UML model into our AMAS-ML model. However,
we are studying the interest of developing our own diagram editor.

The next implementation phase takes as input the result of the design, that is the AMAS-
ML model ( see figure 3).

Implementation. As we have presented it in [1], this phase is guided by one main
idea: the separation of concerns. More precisely, we want to separate all that constitutes
the “operating” concerns (basic mechanisms of the agent), from all specific behaviour
concerns (the way agents use their tools to achieve their goals). To do so, we based
this phase on a specific tool which we have developed: MAY (Make Agents Yourself).
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It allows developper to describe agent micro-architecture (operating mechanisms)
thanks to a DSML: μADL (micro-Architecture Description Language). The architec-
tural style of the micro-component assembly and the MAY generation process give a
kind of “abstract agent machine” (we could say a application-dedicated API) which can
be used by the developer as an abstract layer to implement the behaviour of agents.
This phase involves several generation or transformation steps which are illustrated in
figure 4 with SPEM 2.0 (Software and system Process Engineering Metamodel) [11]:

– Micro-Architecture Extraction : this is the first model to model transformation,
from AMAS-ML to μADL, which has been implemented with ATL [12]. It eases
the Agent Architecture Analyst tasks by creating a μADL model from the AMAS-
ML model elements that we consider as “operating mechanisms” (see further sec-
tion 4.3).

– Abstract Micro-Architecture Code Generation : this first step of code generation
gives code skeletons. Once the architecture is sufficiently refined and consistent,
the Java Developer may implement micro-components services.

Fig. 4. The ADELFE 2.0 Implementation phase in SPEM 2.0
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– API generation : at this point, MAY generates the whole API, that is, tools to exe-
cute, create and deploy the specific agent models.

– Behavioural code generation : from the behavioural rules expressed in the design
phase with AMAS-ML, we proposed to generate a code skeleton to ease the task
of the AMAS developer. The aim is to provide some hints to achieve the decision
process of each agent in the system.

3 Case Study: The Foraging Ants

ADELFE has been used to develop a simulation of foraging ants, on one hand, for
providing a tool for ethologists and on the other hand, for testing that cooperative ants
following AMAS approach provide correct results. The application was chosen because
the behaviour of foraging ants is quite simple and allows to focus on development tech-
niques. The environment is composed of the nest, some obstacles, pheromone, patches
of food and ants. The pheromone self-evaporates during time and can be accumulated
when several ants drop pheromone at the same place. The foraging ants have several
characteristics. They have different degrees of perception for obstacles, other ants, food,
and pheromone. They always know where their nest is located. They can carry a given
quantity of food. They go out of the nest for a given duration and at the end of this
duration, they go back to the nest and rest in the nest for an amount of time. The for-
aging ant behaviour consists first in exploring the environment. When it encounters an
obstacle, it avoids it. When it encounters food, it can harvest it. When it is loaded, it
goes back to nest in dropping a given quantity of pheromone on the ground. By conse-
quence, tracks of pheromone appear in the environment. During its exploration, an ant
is attracted by pheromone and leads to follow pheromone track. This behaviour implies
a reinforcement of the existing tracks.

4 Applying Adelfe 2.0

This section depicts the way the application described above can be implemented thanks
to ADELFE and its model driven implementation phase. Thus, we focus mainly on the
last steps of the methodology, the first ones are summarised as they do not constitute a
new proposition.

4.1 Preliminary Steps: Requirements

These steps are devoted to the establishment of requirements and are usual in software
development methodology. They consist in a description of the problem domain as it is
demanded to be solved, as well as a specification of the final user needs. The first phase,
namely the Preliminary requirements phase, has already been completed. Although it
is not formalised, the brief description of the section 3 could be considered as its result.
It constitutes an overview of the requirements (user needs, key-words and limits).

Concerning the next phase, Final requirements, it is involved in the description of the
system environment and in the identification of the different elements which populate
it. From the requirements previously established we determine the following entities:
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– Passive Entities (resources for the system): the pheromone, obstacles, the food and
the nest,

– Active Entities (entities that could act autonomously): foraging ants.

Furthermore, from the requirements already presented we have characterised the envi-
ronment of the system as:

– Accessible: its state is known by the system (simulation purpose);
– Non-deterministic: ants actions could have different results;
– Discret: as a simulated environment it is defined as a grid;
– Dynamic: ants actions modify continuously its state.

From a more common point of view the Use cases identified for the system are all
related to the management of a simulation tool: configuration of the ants parameters
and observation of the results, and so on. Thus they are not extensively exposed in this
paper.

4.2 Analysis

After we have described the requirements, we proposed a first analysis which is in-
tended to allow us to determine whether an AMAS approach is convenient or not. For-
tunately it does! In fact, from global to local point of view and focusing on the ants
activity observation, we can say that:

– There is no obvious way to define the task of the colony;
– The global task (food gathering) is performed by a great number of interacting

entities;
– These entities are conceptually distributed;
– The environment is evolving during time;
– Each ant possesses a limited perception of its environment, as well as a limited range

of actions. Moreover they have to adapt themselves to an ever changing context.

By analysing these few sentences, it seems that the AMAS approach is particularly well
adapted to our problem. It also seems obvious that the agent in the previously identified
entities could be none but the ant, in fact:

– it is the only entity possessing an autonomous activity and trying to reach a personal
goal (harvest food);

– it has a partial vision of its environment, which moreover is evolving;
– it has to deal with other entities and thus with potential cooperation failures.

To sum-up the results obtained at this phase, we have determined that AMAS approach
is appropriate to the problem we want to solve and thanks to the requirements too, we
have identified the agent within the AMAS: the foraging ant. Since this point, and for
the following steps we are focussing on the design and implementation of the coopera-
tive agent. To do so, we have adopted a model driven approach rather than a code-centric
one.
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4.3 Model Driven Design and Implementation

The beginning of the ADELFE methodology is based upon the RUP which is intrin-
sically bound to the UML notation. Information contained by the model resulting of
the preliminary steps of the method is necessary for the following phases. But, we also
assume that UML models aren’t as specific as we want models to be for the design of
cooperative agents. To cope with this lack of specialisation, we have proposed our own
DSML (Domain Specific Modeling Language) based on an AMAS meta-model and
called AMAS-ML (AMAS-Modeling Language) [1]. However, this choice does not
prevent us for bridging UML preliminary models with AMAS-ML, in fact, we gather
their information to feed our AMAS specific model thanks to transformations. Further-
more, we use UML 2.0 sequence diagrams [9] to specify agent protocol [13] as well as
entities interaction, we extract from it the relevant information thanks to model transfor-
mations to. The next section presents the models which have been defined in the scope
of the foraging ants simulation tool design.

Agent Diagram. For the precise design of the agents, we use the AMAS-ML agent
diagram (see figure 5 for details). According to the cooperative agent paradigm, an
agent is made up with several parts and modules. They represent its main abilities or
specificities such as : Representations, Characteristics, Skills and Aptitudes; they also
represent the way it interacts with its environment: action module, perception module,
action, perception and the means it involves actuators and sensors. In our example,
an ant does not use direct communication; it only deposes pheromone which could be
sensed by other ants (stigmergy), that is why no communication action could be noticed
in the figure 5. The perception consists in filling the different representations with fresh
values. For instance, the food array corresponds to the position where food has been
perceived. With these gathered positions and its skills (favour(), etc.), the ant agent
has to determine the better way to go. To do so, it fills the interpretedSurroundings
grid with integer values (the more appealing a position is, bigger is the integer value).
This decision process consists in the choice of the favourite positions. It is expressed
as rules and is described in the next section. As it has been presented in section 3, the
ants have to depose pheromone tracks in order to communicate the place where food
has been discovered. This task involved the use of a specific action dropPheromon()
which is fulfilled thanks to the ExocrynGland actuator. This information is useful for the
“extraction” of the agent architecture, it indicates which part of the agent is responsible
for the performing of an action (see section 4.3). The other specific features of the
ForagingAnt cooperative agent are shown in the figure 5 those features are used in the
next design step.

Behavioural rules diagram. We distinguish two kinds of rules the Standard behaviour
which constitutes the local function or goal assigned to an agent; and the Cooperative
behaviour rules which are intended to manage Non Cooperative Situations. At this
step in the methodology, we are designing these rules as being triggered from an agent
state, which is itself characterized by a logical expression over the Representations,
Characteristics and Skills of the agent. A rule result in a set of actions, or skills that
have to be accomplished in order to reach a local goal or to recover a cooperative state.
The figure 6 shows an example of a graphical representation of those rules. The left
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Fig. 5. AMAS-ML Agent Diagram: foraging ant cooperative agent detailed design

Fig. 6. AMAS-ML Behaviour Rules Diagram: concurrence avoidance cooperative rule and re-
turning

hand side presents states that triggered the actions at the right hand side. The rule binds
a state with actions and is labelled by a rectangle (in the middle of the figure) which
is also used to specify the kind of behaviour it is related to, cooperative or standard.
Actually, the figure 6 presents the avoidance of concurrence that could appear when
ants are lusting for the same food patch and the standard ant behavior that consist in
going back to the nest while deposing a pheromone track when food has been collected
(in fact, destinations are only favoured as a Monte-Carlo algorithm introduces non-
determinism in moves).
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μADL. From the design phase and the AMAS-ML agent diagram, we propose to gen-
erate automatically an abstract agent architecture. This architecture is made up with
micro-components which specification could be edited and modified with the μADL
language. The result of this step is called the “Agent model”; it is used to generate a
specific API which is given to the developer in order to complete the following stages
of this phase. In the figure 7, the ant cooperative agent is shown as the result of a model
to model transformation from the AMAS-ML model of the figure 5. From this point,
another model driven tool is used to proceed the last generation step, which is called
MAY (Make Your Agents Yourself); it is described in the next section.

MAY results. MAY generates an dedicated API providing the agents modelled thanks
to μADL. In our case the agent model has been extracted from the results of the AMAS-
ML design (see 4.3). The abstract agent architecture has to be implemented, by reusing
micro-components or developing new ones. In our case, we choose to re-use micro-
components devoted to the interaction with a grid with a graphical representation which
was developed for a previous project. Once this task is completed, MAY can generate
the agent specific API that will be used for the development of the agent behaviour. Of
course, designer may also combine generation steps and manual modifications. Com-
piler makes uses of Java interfaces to specify architcture while implementation is done
with classes. MAY generates all interfaces features and ask the user to decide which
classes are implementation in order to avoid conflicts.

Fig. 7. μADL diagram of the Ant cooperative Agent
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4.4 Application Code

At this stage, the work that still have to be done by the developer is the implementation
of the ant agent behaviour. We already possess some interesting information concern-
ing this behaviour which is contained by the AMAS-ML model (see section 4.3). There
is another code generation step which allows us to generate code skeletons and hints
for the implementation of the decision module. Concerning our example, the ant deci-
sion module consists in detecting patterns which modify the value of the interpretation
grid. This grid is given to the monteCarlo aptitude, which selects the next position to be,
thanks to a randomised algorithm. Thus the decision of the ant can be summarised as the
ponderation of this grid as well as the positioning of the headingToNestFull boolean,
thereafter the ant moves to the randomly determined position dropping pheromone if
necessary. We implemented the decide and the act methods wich are called by the Life-
Cycle micro-component.

5 Experiments Analysis

From the example presented here, and even if it does not constitute a “real world” or
industrial software development experiment, we can draw some conclusions at different
levels.

5.1 From the Designer Point of View

We have not presented here, for space saving convenience, the detailed design phase
as it has been done for the implementation phase. However, the use of the AMAS-ML
diagram has shown its interest in the cooperative agents design. Actually, the expres-
sion of behaviour as rules over the agent knowledge and characteristics has naturally
induced an incremental and iterative process in the precise design of agents features
and behaviour. Thus these two tasks benefit one from the other. For example, while ex-
pressing the cooperative behaviour of an agent a designer could need some new useful
skills. Conversly the adding of elements to the agent during detailled design could lead
to new states that need to be handled by new behavioural rules.

5.2 From the Developer Point of View

The introduction of a model driven phase has brought a higher level of automation to the
AMAS development. Developers profit from model driven tools which help them in the
production of agent oriented software, domain they are probably not familiar with. In fact,
MAY offers to developers a way to produce their own agent oriented API with a minimum
of effort. In the mean time, this code generation process can still be manually conducted
by a MAS expert who would control every part of his/her code. The implementation
phase is a real model-driven process which keeps models and code consistent.

To give concrete values,we can emphasize the following results. It took 3 days to
develop the entire prototype shown in figure 8 where only half a day was spent for
behavioural part. Ant API is only 53ko weight, with 17 classes and 9 interfaces. For
environment, 29 classes were designed for a total of 69ko. Finally, behaviour and main
are contained in 2 classes (6ko).
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Fig. 8. Ant simulation prototype

5.3 From the Method Engineer Point of View

We advocate that the implementation phase, thanks to its model driven approach, only
depends on the input “domain” model (AMAS-ML model in our case). Consequently,
it could be considered as a method fragment [14], parameterized by the domain model
and of course the associated transformation. One can object that this transformation
could be a problem, but we assume that MDD already offers means to assist its defini-
tion2. Furthermore, the target model, namely μADL, offers a reduced set of concepts
that could be mapped easily. However, transformation generation still constitutes a chal-
lenging issue in the MD world.

6 MAS and MDE Related Works

Currently, some existing agent-based methodologies INGENIAS [15], PASSI [16], and
TROPOS [17] use model transformations in order to design MAS. These methods and
the associated tools coming from MDE are reviewed and briefly analysed in this section.
Few works on MAS engineering have involved the use of tools coming from MDE, and
the most advanced are: MetaDIMA [18], INGENIAS, TROPOS and SODA [19].

2 http://www.eclipse.org/gmt/amw/

http://www.eclipse.org/gmt/amw/
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MetaDIMA helps the designer to implement MAS on the DIMA platform using
MetaGen which is a MDE tool dedicated to the definition of metamodels and models.
DIMA is a development and implementation platform developed in Java where agents
are seen as a set of dedicated modules (perception, communication, etc.). MetaDIMA
provides a set of metamodels and a set of knowledge-based systems on top of DIMA to
ease the design of MAS by providing languages more specific than Java code.

INGENIAS proposes to transform the MAS expressed in the INGENIAS metamodel
in code dedicated to a given platform using the modelling language of INGENIAS and
the implementation model of the platform. Its main originality consists in providing
evolutionary tools. Because tools used for transforming specification in code are based
on metamodels, if the metamodel specifications evolve, the tools can also evolve. More-
over, these transformations are expressed as templates which also can be tuned for spe-
cific purposes.

In TROPOS, all the phases use different models which are described by metamod-
els; it also uses UML notation and automatic transformations. For example, it translates
plan decomposition into a UML 2.0 activity diagram by using a transformation lan-
guage based on the following three concepts: pattern definition, transformation rules
and tracking relationships.

Molesini et al. [19] propose to fill the gap between methodologies and infrastructures
by using metamodelling for mapping the abstractions at the AOSE methodology level
onto the abstractions at the infrastructure level. They provide guides for mapping SODA
concepts onto three different infrastructures: TuCSoN, CArtAgO and TOTA.

Our work pursues the same objective as the works described previously although
it addresses adaptation issue from both system and agent points of view. In fact, we
aim at taking it into account and providing design and generation tools to implement
such adaptive systems. For this purpose, we propose to generate an adapted execution
platform for AMAS, using MDE tools and principles as well as the flexibility provided
by MAY.

7 Conclusion

In this paper, we have presented an example of the practical use of Domain Specific
Languages, model transformations, and code generation in the scope of a dedicated
methodology. That is to say, a whole Model Driven Engineering process devoted to the
implementation of an AMAS. The benefits of such an approach have been analysed
from several points of view, and even if some technical works still have to be done to
integrate this approach in a specific tool, we assume that the results are quite satisfying.
The implementation phase process still needs some adjustments, nevertheless the expe-
rience gained from its further practical application should bring us useful material to
do so. Moreover, the ADELFE v.2 methodology has been applied to other projects (for
example a Manufacturing Control Simulation) from which we already gather interest-
ing information about the implementation phase. Finally, our team is leading works on
the definition of specialised micro-architectures and micro-components that are going
to enrich the MAY library and thus favour reusability.
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Abstract. Cooperative, autonomous and distributed properties of multi-
agent systems deduce the dynamic capabilities of multi-agent system ap-
plications. On the other hand, these suitable features increase the error
proneness of these applications. In this paper, we propose an exception
handling approach to make multi-agent system applications more reliable
and robust. And also we classify multi-agent exceptions and have imple-
mented our approach on SEAGENT goal-oriented multi-agent develop-
ment framework1.

1 Introduction

One of the most important properties that make a software technology appli-
cable to industrial settings is error proneness. Traditional technologies, such as
object oriented paradigm, provide an infrastructure to develop reliable software
applications that have great degree of error proneness maturity. Robust tech-
nologies can detect, diagnose and recover from failures and uncertain situations
[6,11]. To recover failures and uncertain situations, initially it’s clear that there
is a requirement of identifying errors and deciding what should be done to re-
cover. Exception handling approach should be enriched with primitive properties
of robust technologies, exactly recovery. According to the general characteristic
of agents, multi-agent systems are expected to be behaving robustly. But for
the reason of deficient definition of exception handling mechanism, multi-agent
systems (MASs) are far away from robustness behaviour. This problem is an
important obstacle that frustrates MASs to meet the industry.

Nowadays, developed software applications are trying to satisfy the robustness
requirement by extending exception handling mechanisms, which are provided
by programming languages [4]. Exception handling is based on the exception
concept that is defined as an error occurred during execution flow of a program
[4,9,12,20]. Programming languages give chance of recovering exceptions by their
exception handling mechanisms. When an exception occurs, programming lan-
guage manages the deviation from the normal execution flow of the program to
1 These research is supported by The Scientific and Technological Research Council of
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the handler, which is implemented by developer. To make MASs robust, such
an exception handling approach must be redesigned according to the general
characteristics of the agents.

As known, multi-agent systems consist of cooperative, distributed and
autonomous software entities, named agents [19]. These primitive properties
prevent direct usage of classical exception handling approaches in MASs [13].
Distributed but cooperative work of agents mean spreading the program over
agent organization and execution flow of the program is managed by separate
agents at different times. Handling an exception of this distributed execution
flow requires to reconstruct the classical handling approach. Moreover, it must
be considered that how the autonomy of agents is effected by implementation of
such a distributed handling approach.

In this research we aim to develop an exception handling approach for goal-
oriented MASs. In this type of MAS, cooperation and internal intents of agents
are modelled with goals. In other words, goals are used to define distributed ex-
ecution flow, spread over agents, and standalone execution flow of an agent. In
our handling approach, we advocate modelling exception handlers with specific
goals to recover exceptions. In addition, exception of an agent may not be re-
covered by that agent and this exception may hamper whole agent organization
to achieve organizational goals. For handling such an exception, cooperation of
agents may be required. In [18], Lamsweerde and Letier also claim using goals
to model exception handlers at the requirement analysis phase of goal-oriented
MAS development. But at design time and runtime only goals are not enough for
handling exceptions of goal-oriented MASs. Plans are another important artifact
of goal-oriented MASs that is used to define detailed internal execution flow of
agents to achieve agent goals. So, exceptions of plans should be considered. In
this research, an infrastructure for handling plan exceptions is also defined.

This paragraph defines how the rest of this paper is organized. In section 2,
we determined our approach. In sub-sections of section 2, we classify exceptions
of goal-oriented MAS and conveniently, an abstract architecture for handling
these types of exceptions is designed. The next section contains development de-
tails of this architecture which is implemented within SEAGENT Goal-Oriented
Multi-Agent System. Section 4 touches on a case study that shows how efficient
the implemented architecture works. In section 5, we criticize other exception
handling techniques for MASs. Finally we conclude the paper in Section 6.

2 Exception Handling Mechanism for Goal-Oriented
Multi-Agent Systems

To explicate proposed MAS exception handling approach, first we have to classify
multi-agent exceptions then we must define an approach to handle the instances of
these classifications. Exceptions are generally specified as deviations from the reg-
ular execution flow of a program. In MASs, execution flow is expressed in terms of
cooperation and individual. So, to classify MAS exceptions that cause deviations,
entities directly used in different types of execution flows have to be specified.
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In a goal-oriented multi-agent system, execution flow of agents (individual and
cooperation) is designed by system goals, agent goals and plans as directly used
executable entities. System goals are used to define execution flow of MAS from
the cooperation perspective. System goals model the cooperation of participant
agents to achieve organizational aims by defining roles, goals, and communication
protocols between these goals. System goals also composed of agent goals. Agent
goals are used to define internal execution flow of an agent. Although goals are
used to specify agent and MAS execution flow, they are not enough for defining
detailed execution flow on their own inside. At this point, plans are required to
specify execution details of an agent to achieve agent goals.

Our MAS exception handling approach is inspired with the idea of modelling
exception handling mechanism on the simplicity principle [3]. Conveniently to
this principle, we claim that each exception should be handled with the exe-
cutable entities that are same level with the exception occurred in. If it can not
be handled in the same level, it hampers the execution flow of one upper level.
So, it should be handled in the upper level. In other words, if individual execu-
tion flow of an agent crashes, initially it must be tried to fix internally by agent.
If it can not be fixed and causes crash of cooperative execution flow, it has to be
compensated cooperatively by participant agents to provide robustness of MAS.

As adverted previously, an agent’s internal execution flow is designed with
agent goals and plans. In particular, plans define the execution flow more specif-
ically than agent goals and agent goals defines what to do for agent in more
generic perspective. According to our approach, if a plan crashes, it must be
handled by another plan. If a plan level exception is not handled, the goal that
the agent want to achieve by executing this plan also can not be achieved. Sim-
ilarly, exceptions of agent goals may be handled via other agent goal(s).

Through agent organization perspective, execution flow of cooperation that
is designed by system goals can be broken down for the reason of irregular
behaviours of participant agents. In this circumstance agent organization tries
to make new decisions to achieve its organizational goals. These exceptions can
only be handled via cooperative handling.

2.1 Exception Levels

We categorized exceptions of multi-agent systems due to hierarchy of executable
entities defined above. In our approach, according to the executable entities of
MAS, exceptions are classified in three levels; plan level, agent level and MAS
level exceptions. In[13], Platon also defines a classification for MASs. In his
research, there are two classification levels; agent level and code level. This clas-
sification is extended by adding one more upper level of MAS level exceptions.
These entities and our exception levels are shown in Table-1 and following para-
graphs define these levels in detail.

– Plan Level Exceptions: Agent performs plans to achieve designed agent
goals in its life cycle. Along life cycle of an agent, plans can crash for the
reason of the logical, implementation, system, communication or knowledge-
base errors. In detail, a plan may be implemented inadequately according
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Table 1. Classification of MAS Exceptions

Exception Level Entity Standalone Cooperative
MAS Level System Goal - X
Agent Level Agent Goal X X
Plan Level Plan X -

to domain requirements or programming requirements such as unexpected
parameter types or values. System that executes the plans, planner of the
agent in our case, may not work properly and cause exceptions. Additionally
un-reached or improper messages according to the communication protocol
also make a plan crashes. Finally, the knowledge that is used during execu-
tion of a plan can cause an exception for the reason of inconsistent operations
with the knowledge-base. All these types of exceptions are classified in Plan
Level Exceptions for the reason of deviations in the execution flow of plans.

– Agent Level Exceptions: Agents try to achieve agent goals correspond-
ing to their objectives. An agent may not be able to achieve its goals for
several reasons. For example, an agent may decide to achieve an agent goal.
Along life cycle of agent knowledge-base errors, unhandled plan exceptions
and system errors may frustrate the agent to achieve the specified agent
goal. Occurrence of several exceptional situations hampers the execution of
agent goal. For example occurrence of an uncertain situation in agent beliefs,
unreached agent messages, agent system failures generate exceptional situa-
tions. All these type of exceptions are classified in Agent Level Exceptions
for the reason of deviations in the execution flow of agent goals.

– Multi-Agent Level Exceptions: In MAS, agents cooperate to achieve
system goals and these system goals are modelled in a specific order. During
the cooperation for achieving a system goal, an agent goal can be broken
down for the reason of exceptions occurred lower levels. Erroneous execution
of one of the participant agent can prevent the achieving of the organizational
goal. All these type of execution errors are classified in Multi-agent Level
Exceptions and represent upper level exceptions that are occurred during
this cooperation between agents.

2.2 Abstract Exception Handling Architecture of MAS

To determine exception handling mechanism for agents, the autonomy charac-
teristic should be considered. Agents may have choices to recover exceptions
according to their preferences in their knowledge-base. So, the exception han-
dling architecture has to be supported with the decision making mechanism of an
agent. To define an exception handling architecture, how a goal-oriented MAS
works to make decisions should be determined. In goal-oriented MAS, agents
cooperate to achieve a system goal conveniently with their agent goals. So, exe-
cution of a system goal is started soon after one of the participant agents, called
as initiator agent, desires to fulfil it’s agent goal that is also designed as sub-goal
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of the system goal. After deciding which agent goal to take in execution, plans
that can achieve the agent goal should be matched. Concurrently, other partici-
pant agents of the system goal starts to work when the initiator agent’s request
reaches to cooperate. Participant agent also do the same decision making actions
with initiator one.

In the life cycle of the agent, agents’ planner should take place in exception
handling process as well as decision making process. The handling process should
spread over three phase of agent cyclic execution model; perception, reasoning
and action [14]. In perception phase, planner of the agent should observe the
execution of plans and agent goals, which are in execution. After detection of
an exception for an agent goal or plan, it should decide what to do for handling
this exception. It may find proper plans instead of crashed ones by reasoning.
If there are no implemented plans to compensate the execution flow, the agent
planner should select a new agent goal instead of one with crashed plan. All
these actions are related to adjust the internal execution flow of the agent. If an
agent can not succeed to correct the internal execution flow, the cooperation for
achieving organizational (system) goal can be frustrated for the reason of one of
the participant agent’s crash. In this circumstance, the agent with the crashed
plan should take in execution of the other system goal related with crashed one.

To provide robustness of MAS application within above mentioned exception
handling process, developers of the MAS application should define the alterna-
tive goals and plans as well as ordinary goals and plans. Figure 1 illustrates a
partial view of goal-oriented MAS meta-model that focuses on exception han-
dling. As seen in figure, we extend the general meta-model of MAS by adding
special relationships to the semantics of goal and plan concepts. These special
relationships can be listed as sameAs, inverseOf and exceptional. The agent
planner should make decision by watching out these semantic relations when an
unexpected state occurs. At such state, the planner firstly should follow existing
exceptional relations that are defined for recovering agent from exceptional state.
If there is no designed exceptional goal or plan for exceptional state, it should
try to find alternative goals by querying sameAs relations instead of crashed
one. Defined sameAs goal aims the same objective with the crashed one. So the
exceptional state of the agent can be disappeared by trying the same objective

Fig. 1. Executable Entities Meta model
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with another goal. Lastly inverseOf goal should be queried to roll back the unex-
pected state. These inverse goals correspond opposite objective with the crashed
one for rolling back the effects.

3 Implementation of Proposed MAS Exception Handling
Approach

Previously defined abstract exception handling architecture is implemented in
SEAGENT Multi-Agent Development Framework [1]. To clarify how the imple-
mented exception handling architecture works, execution life-cycle of SEAGENT
planner and used artifacts at run-time must be defined in detail. The primi-
tive properties of SEAGENT are semantic web support, goal orientation and
HTN based plan execution. SEAGENT planner [2] supports these features us-
ing semantically defined artifacts (with OWL ontologies) that are stored in the
knowledge-base of agents.

In detail, SEAGENT planner uses semantically described goal and HTN on-
tologies. The HTN ontology resembles to the HTN structure presented in Sycara
et. al [16]. In the HTN formalism, plans, which are composed to achieve a prede-
fined agent goal, consist of two types of tasks: complex tasks called as behaviours
and primitive tasks called as actions. Each plan has a root task, which is a be-
haviour itself consisting of sub-tasks. On the other hand, actions are primitive
tasks, which are directly executable. Next, main concepts of goal ontology are
system goal and agent goal. System goal specify the organizational aims and
agent goals define the intents of agents.

During the decision making process, all SEAGENT planner internal modules
use aforementioned concepts defined in goal and HTN ontology. Life-cycle of
decision making process is shown in Figure 2. The decision making process starts
with an objective that may be sent from outside of the agent or generated by
listening internal events. After an objective is reached, then the planner’s goal
resolution module queries the ontologies in the knowledge-base to decide what to
do. Soon after deciding on a goal, the plan resolution takes place in the planner
and queries the knowledge-base to find proper plan for achieving the found goal.
Nextly, the planner generates a graph that represents the execution flow of goals
and plans in the reduction phase. After the graph generation, it binds the graph
to the current execution process and executes the nodes (represent goals and
plans) of graph.

Exceptions that are occurred during the execution of the graph are directed
to the planner as recover objective. Initially, plan resolution module queries the
knowledge-base to find the proper handling plan to recover exceptional state.
Found plan that is defined exceptional in plan ontology is selected for the han-
dling process. The reduction module generates graph of the recovery plan and
this graph is bound to the execution dynamically. Otherwise, if there is no de-
fined handling plan for recovering exceptional plan (that means the intended
goal by the plan is also crashed), then the goal resolution module seeks an al-
ternative goal for handling the crashed goal, which is aimed to fulfil with the
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Fig. 2. SEAGENT Planner Decision Making Life-cycle

crashed plan. At this time, if the goal resolution module finds an alternative goal
for handling, reduction module converts found goal to graph at reduction cycle
and deviated inner model replaced with the new one to fulfil exception handling
by dynamic binding.

The goal and HTN ontologies are extended to support reasoning ability of
SEAGENT planner for exception handling process. To define handling excep-
tions that are occurred in plans, an exception property is added to HTN ontology.
Figure 3 shows partial view of HTN ontology that focuses on exceptions. Agent
plans consist of tasks, and also tasks consist of sub-tasks. Exceptional property
makes the definition of handling task between possible agent plan’s tasks.

<ow l : c l a s s r d f : abou t="behaviour ">
<r d f s : s u b c l a s s o f r d f : i d=" task "/>

</ ow l : c l a s s>
<ow l : c l a s s r d f : abou t=" act ion ">

<r d f s : s u b c l a s s o f r d f : i d=" task "/>
</ ow l : c l a s s>
<owl : ob j e c t p r op e r t y rd f : abou t=" subtask ">

<rd f s : r a n g e r d f : i d=" task "/>
<rdfs :domain r d f : i d="behaviour "/>

</ ow l : ob j e c t p r op e r t y>
<owl : ob j e c t p r op e r t y rd f : abou t=" ex c ep t i ona l ">

<rd f s : r a n g e r d f : i d=" task "/>
<rdfs :domain r d f : i d=" task "/>

</ ow l : ob j e c t p r op e r t y>

Fig. 3. HTN Ontology

On the other hand, into the SEAGENT goal ontology, exceptional, sameAs
and inverseOf properties are added for defining the exceptional handling goals.
The ontology is illustrated in Figure 4. Exceptional property is used for defining
exception handling goals. The SameAs property is sub-property of owl:sameAs,
and used for defining agent goals that achieves same objective with the corrupted
one. And inverseOf property is sub-property of owl:inverseOf and expresses
agent goals achieving opposite objective to roll back effects of the crashed one.
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<owl :C las s rd f : abou t="Goal">
<rd f s : subC la s sO f rd f : ID="MasEntity"/>

</ owl :C las s>
<owl :C las s rd f : abou t="AgentGoal ">

<rd f s : subC la s sO f rd f : ID="Goal "/>
</ owl :C las s>
<owl :C las s rd f : abou t="SystemGoal">

<rd f s : subC la s sO f rd f : ID="Goal "/>
<rd f : t y p e r d f : r e s o u r c e="owl−Class "/>

</ owl :C las s>
<owl :ObjectProperty rd f : abou t="Except ional ">

<rdfs :domain r d f : r e s o u r c e="Goal "/>
<rd f s : r a n g e r d f : r e s o u r c e="Goal "/>
<rd f : t y p e r d f : r e s o u r c e="owl−ObjectProperty "/>

</owl :ObjectProperty>
<owl :ObjectProperty rd f : ID=" inver seOf ">

<rd f s : subProper tyOf r d f : r e s o u r c e=" inver seOf "/>
</owl :ObjectProperty>
<owl :ObjectProperty rd f : ID="sameAs">

<rd f s : subProper tyOf r d f : r e s o u r c e="sameAs"/>
</owl :ObjectProperty>

Fig. 4. Goal Ontology

Details of exception handling in graph structure are specified on an example
in Figure 5. The example based on a system goal SG1 corresponds to an orga-
nizational objective of Role1 and Role2. SG1 consist of agent goals AG1 and
AG2 related with aforementioned roles. B1 is the root behaviour of the plan
corresponds to the agent goal AG1. The right side of the figure illustrates graph
model of the B1. The model includes the normal and exceptional execution flow
of the B1. The dotted arc between A1 and A3 sub-tasks of B1 emphasize the ex-
ceptional execution flow. This link has specific semantic that shows reduction of
the behaviour on exceptional cases. Although the link relates two HTN actions
in this case, it can be defined on any type of tasks.

When an exception occurs, during the execution of the A1, the execution of
whole model, for B1, is aborted to start the recovery process. Plan resolution
module selects A3 plan for handling the exception. Reduction module converts
A3 to graph and dynamic linking module replace A2’s graph model with A3’s
one. The execution of the recovered graph model for B1 has to be continued
from the deviation point to fulfil the handling task.

The extended planner determines the handling level from lower to higher.
If the exception perception is about for an erroneous plan, the plan resolution
module queries agent knowledge-base to find a proper plan for the recovery of
the aborted one. But, if there is no way to fix the crashed plan, that means
intended goal crashed, then the goal resolution module queries agent knowledge-
base to find a proper agent goal to recover the aborted one. This process is
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Fig. 5. Planner Executable Entities Sample

executed by reasoning exceptional, sameAs and inverseOf in sequence. The goal
resolution module firstly queries agent goals that handle the exception, defined in
goal ontologies with exceptional property. Afterwards the agent goal for the same
objective with crashed one, defined with sameAs property tries to be found. And
lastly the agent goal achieves rolling back the effects of crashed one, defined with
inverseOf, tries to be reasoned. Thereafter, the discovery of finding the proper
agent plan for selected agent goal is started. As a result of goal resolution, a
proper agent plan for the exception handling agent goal, is converted to graph
model. The deviated inner model of the aborted agent goal is replaced with the
new one.

For example agent goals AG1 and AG2 are sub-goals of the SG1 system goal as
shown in Figure 5. When an exception occurs during the execution of the graph
model for AG1, execution of the whole graph is aborted to start recovery process.
If the goal resolution module can not find a proper agent plan, for recovering
B1, tries to find a proper agent goal instead of AG1. As a result of reasoning
process an agent goal that is defined as exceptional, sameAs or inverseOf with
AG1 recovers the AG1 from the corruption. Proper agent plan for handling goal
is converted to the graph and dynamically replaced with the AG1s’ graph model.

At higher level, if the exception perception is about for an exceptional agent
goal, goal resolution module queries agent knowledge-base to find a proper sys-
tem goal for the recovery of the aborted one. System goals related with the
crashed one is queried with the exceptional, sameAs or inverseOf order pre-
viously defined. As a result of reasoning, selected system goal’s sub-goals is
started to handle the occurred exception during cooperation. Figure 5 depicts the
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composition of the system goal SG1. If an exception occurs during the execution
of the SG1 sub-goal AG1, execution of the whole graph for AG1 is aborted to
start recovery process. If goal resolution module can not find a proper agent
goal for AG1, tries to find a proper system goal for SG1. As a result of reasoning
process a system goal that is defined as exceptional, sameAs or inverseOf with
SG1, recovers both the AG1 and AG2 from the corruption. The exception han-
dling sub-goals related with each role of SG1 is about to be started to start the
recovery process of SG1.

4 Case Study

An electronic barter application is implemented with SEAGENT Multi-Agent
Framework as a case study. In this application, base scenario is achieved by
the Customer, Barter and Cargo roles assigned to the agents. Every agent is
named via active role that is playing in the application. Customer agents are
responsible for adding, evaluating barter proposals. The Barter agent manages
all trades in the system. This agent is responsible for collecting barter proposals,
matching proper barter proposals and tracking the bargaining process between
Customer agents. After finalization of bargaining, Customer agents send engage-
ment message to the Barter agent. Then, the Barter agent notifies the Cargo
agent for transporting barter products between Customer agents. This scenario
is completed by the acceptance of all participant agents. The goal model of this
scenario is shown in Figure 6.

As seen in the goal model, main goals of the ExchangeBarterProducts system
goal is illustrated. ExchangeBarterProducts system goal consists of fivemain agent
goals; prepareBarterProposal, evaluateBarterProposal, tradeBarterProposal,
matchBarterProposals and organizeBarterProductTransport goals, which are as-
signed to the Customer, Barter and Cargo roles. To achieve ExchangeBarterProd-
ucts goal, initially Customer role achieve its prepareBarterProposal goal to request
trade from Barter role. Barter role collects these proposals with tradeBarterPro-
posal and tries to find proper trades with matchBarterProposals goals. After find-
ing convenient trades, the Barter agent notifies the related agents that play the

Fig. 6. Case Study Goal Model
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Fig. 7. Plan Level Exception Definition

Customer roles to start bartering. Then agents playing Customer roles commu-
nicates with each other to achieve evaluateBarterProposal goals. Then Barter role
communicateswith Cargo role for the transport of exchangedbarter products. The
transport information is notified by all participants and the execution ofExchange-
BarterProducts system goal is completed by engagement messages of Customer
roles.

During trading process, Barter agentmatches proper barter proposals and start
bargaining between Customer agents. Figure 7 illustrates agent plan that cor-
responds evaluateBarterProposal agent goal. During evaluation process, existing
product database can be unavailable to satisfy the requests. Here we implement
a user-defined java exception, named UnavaibleDatabaseException, that corrupts
the execution of the BHEvaluateBarterProposal plan if database is unavailable.
To cause the UnavaibleDatabaseException, our planner modules do not commit
the changes in the knowledge-base that is performed by the crashed task. After
this operation over knowledge, the recovery task that handles the occurred excep-
tion, ACHandleDatabaseException, is dynamically added to the model to provide
the robustness of the plan. As a result of execution, database becomes available by
opening the connection to the database. At the end of exception handling process,
the plan is recovered from the exceptional situation then agent normally continues
executing the plan and accepts or refuses the barter proposal.

Let us assume that the same exception, UnavaibleDatabaseException, oc-
curred during the execution of evaluateBarterProposal agent goal and not han-
dled at plan level. If the exception is forced to be thrown, Customer agent tries to
handle occurred exception within plan level initially. But it can not find proper
plan for recovery then it seeks exception handling goal definitions related with
evaluateBarterProposal. As a result of reasoning withDrawBarterProposal agent
goal, which is defined as exceptional in the goal ontology, is matched to handle
occurred exception and this goal is dynamically added to the Customer agent to
fulfil exception handling. This agent goal recovers bargaining between customer
agents and starts a new objective corresponding withdraw of the barter proposal.
Consequently bargaining between agents are recovered by withdraw. Customer
roles’ withdraw request triggers cancelProposal goal of Barter role. This agent
goal terminates the bargaining process between customer agents and withdraws
the proposal from the barter system.
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Fig. 8. Agent Goal Level Exception Definition

Lower level exceptions can be handled within the internal life cycle of agents.
But all of the exceptions can not be handled via locally. In our case after the bar-
gaining process between Customer agents, Barter agent determines the transport
of the barter products. The Barter agent requests the transportation information
for the products from the Cargo agent. If an exception occurs during the execu-
tion of organizeProductTransport, the barter process between Customer agents
can not be completed successfully. Transportation of barter products can not be
accomplished due to various reasons such as inconvenient weather condition at
the date of the transportation. This exception can only be handled cooperatively
because the crash of the organizeProductTransport agent goal, make other par-
ticipant agents goals crashed. The reasoning process produces a decision that the
deviation can only be handled via system goal named CancelProductExchange
that is defined as inverseOf in the goal ontology related with the crashed one.
When Cargo agent percepts this recover objective, it cancels the execution of
current goal and starts the execution of proper agent plan related with itself in
the definition of cancelTransport agent goal. The execution of cancelTransport
goal within the Cargo agent triggers cooperation with participant agents. Af-
terwards, the Barter agent starts the execution of cancelBarterMatching goal to
cooperatively cancel the barter between Customer agents’ via cancelBarterPro-
posalEvaluation goal.

Fig. 9. System Goal Level Exception Definition
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5 Related Works

Up to now, agent researchers have worked on different exception handling mech-
anisms for MASs. These approaches can be group in two categories. First group
has an organizational view, which situated the handling mechanism outside the
agent [5,7,17]. So, organizational view approaches bring some organizational en-
tities to MAS and these entities monitor agents by listening their internal events
and messages to detect exceptional situations. The other main category of han-
dling approaches has an agent view. Researches grouped in this category simi-
larly listen to messages and events of the agent, but they propose a mechanism
to handle the exceptions inside the agent [10,15].

5.1 Organizational Views

Approaches subsumed by organizational view can be grouped in two sub-category;
centralized and decentralized views. Centralized organizational view, define an ex-
ception handling entity in the architecture of MAS for handling exceptions. Con-
versely, decentralized sub-category of organizational view spread responsibility of
handling exceptions through more than one organizational entity.

One of the centralized organizational views is Tripathi and Miller’s guardian
agent [17]. They propose an agent, named guardian, in a multi-agent system that
manages exception handling centrally for global exceptions. Guardian agent,
dedicated to exception handling, encapsulates defined rules for general excep-
tions and presents exception handling service to the multi-agent system. When
a global exception occurs in MAS, guardian agent performs user defined excep-
tion handling rules. For handling exceptions the guardian agents create appro-
priate exception handlers. At the end of the execution of handler, agent task can
continue or terminate its execution as user defined.

Another approach for centralized organizational view is Klein and Dellaro-
cas’s Exception Handling Service (EHS) [7]. They propose a shared exception
handling service that can be plugged into existing agent system. This service
is aware of weak points of multi-agent system. EHS follows all the events in
the system for exception detection with specialized agents and performs defined
rules for correction. At first glance, this approach seems to be in decentralized
organizational view but sentinel agents just responsible for exception detection.
These agents intend to prepare a knowledge-base for calling exception handling
service. When an exception occurs, exception is compared with the predefined
candidate exceptions and exception handling policy is determined. To provide
this capability, exception handling service communicates with other agents to
define and handle perceived exceptions.

Klein and Dellarocas improve their approach in [8]. In this version, their ap-
proach becomes more decentralized by assigning the responsibility of exception
handling to sentinel agents. Every agent in the multi-agent system has a sentinel
agent that control agent communication and have ability of using a centralized
reliability database shared by all sentinels.
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We position Haegg’s exception handling approach in decentralized organiza-
tional view. Haegg [5] proposes special agents, named sentinel, in multi-agent
system for exception handling. This approach suggests using a sentinel agent
for each agent in the multi-agent system. A sentinel agent controls agent’s com-
munication for error detection and recovery. When an exception occurs during
the interaction between agents or at the execution cycle, sentinel agent performs
error recovery task.

5.2 Agent Views

Souchon et. al suggest using concerted exception handling mechanism defined
in SaGE framework [15]. This framework handles exceptions in three vertical
category; service, agent and role. They propose a layered handling approach
depending on Java call stack structure. And also defined concerted exception
handling mechanism resolves errors depending on several agents. When an ex-
ception occurs during a shared operation, the operation is terminated to handle
exception and participant agents are notified. They have extended the standard
Java exception mechanism in order to differentiate higher level exceptions from
language levels.

An other approach for agent view is Mallya and Singh’s commitment protocols
[10]. They propose modelling and handling exceptions via commitment proto-
cols. Exception occurs during the interaction when a protocol is not respected
along agent interactions. These exceptions are handled via the definitions of
the recovery plan for the exceptional situation. For example alternate protocol
or the execution flow of the protocol in an exceptional situation is predefined.
They propose an exception handler repository to support handling exceptions
dynamically.

5.3 Comparison

Besides all of the suitable features of aforementioned exception handling ap-
proaches, these approaches have certain shortcomings. Firstly, we criticize weak-
ness of organizational view approaches. When participant agent count reached
huge numbers, it’s clear that the centralized organizational exception handling
techniques requires great resources for specialized agents to handle exceptions of
whole MAS. Although decentralizing of organizational exception handling tech-
niques remove the resource problems of centralization agent, but also don’t solve
problem of expected exception handling performance. Moreover, organizational
exception handling techniques are not efficient since handlers don’t have agent’s
internal knowledge. Without this knowledge, an external handler can not find
the proper solution for recovering from the exceptional situations because of
lacks of the agent’s knowledge.

On the other hand, agent view approaches use resources efficiently by assign-
ing exception handling responsibility to each agent. Most of them propose the
usage of agent knowledge to determine exceptional situations. But these handling
techniques don’t define how autonomy property of agents effects the exception
handling process.
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We purpose an approach, which can be classified in agent view approaches,
by taking care of shortcomings of aforementioned researches. Our approach is
based on goal-oriented MAS and defines an architecture how the exception can
be handled with goal oriented MAS artifacts. Agents are enabling to reason
using agent’s internal knowledge for recovering exceptional situations. Although
our approach is classified in agent view, thanks to the using goal concept, MAS
level exception support makes our approach applicable in organizational level
like other organizational view approaches. This makes our approach unique in
terms of supporting both views using the goal concept. Additionally, proposed
handling mechanism respects to autonomy of agents. The autonomy of the agent
is provided within its planner’s decision making life-cycle, which consists of three
main phases: perception, reasoning and action.

6 Conclusion

In this paper we propose an extended exception handling approach for goal-
oriented MASs. It distinguishes itself from previous works because our approach
is fully integrated to the execution model of agents considering their internal
knowledge and autonomy. Agents are enabling to reason using agent’s inter-
nal knowledge for recovering exceptional situations. We position our work and
other approaches in the literature. In section five, we classify other researches in
two categories; approaches called as organizational view and agent view. Han-
dling techniques of organizational view propose architectural elements. On the
other hand, agent view proposes some mechanism to handle exceptions of agents
internally. We specify our exception handling mechanism with the decision mak-
ing phases and we extend the agency meta-model of MAS by adding exception
semantics. Although our exception handling mechanism is specialized for goal-
oriented MAS, different exception handling patterns can be implemented by
assigning specific exception handling goals to different agents. The variety of
applied exception handing patterns offers different handling perspectives to our
approach.

Our exception classification and exception handling mechanism is implemented
within SEAGENT. To show its ability, we implement a case study on barter do-
main. It is observed with the case study that our approach and implementation
give chance of developing robust applications with respect of agent’s autonomy.
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Abstract. The usual way to design a simulation of a given phenomenon
is to first build a model and then to implement it. The study of the simu-
lation and its outcomes tells if the model is adequate and can explain the
phenomenon. In this paper, we reverse this process by building a browser
in simulations space: we study an automatically built simulation to under-
stand its underlying model and explain the phenomenon we obtain. This
paper deals with automated construction of models and their implemen-
tations from an ontology, consisting of generic interactions that can be
assigned to families of agents. Thanks to the measurement tools that we
define, we can automatically qualify characteristics of our simulations and
their underlyingmodels. Finally, we offer tools for processing and simplify-
ing found or existing models: these allow an iterative construction of new
models by involving the user in their assessment. This simulation space
browser is called LEIA for “LEIA lets you Explore Interactions for your
Agents”.

1 Introduction

Agent-based simulations have taken a preponderant place in life simulation tools,
in domains as different as the movie industry, video games, biology, etc. These
simulations establish a link between experts of their domain and experts in
computer science[12]: this multidisciplinary aspect gave birth to a whole range
of frameworks more or less related to the simulated domains.

Many of these platforms like Swarm[14], Madkit[7] or Magic[16] allow consid-
erable freedom to the designer to create agents, the behaviour of those agents
and the environment. All design refinements are possible: reusability, genericity,
design patterns, components... Other tools like Netlogo[19] are designed to be
used by non computer scientists: they rely on a very simple programming. How-
ever, openness and genericity are chosen to the detriment of a clear framework
for the design of agent behaviour: there is a risk of mixing the framework code
with some specific knowledge to the model in the implementation of agents.
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The IODA1 methodology[13] is based on a clear separation between agents,
their behaviour and the actions selecting process. In this methodology, interac-
tions are independently reified from agents which use them. As a result, we can
establish libraries of interactions for a particular area and adaptable to different
families of agents, increasing the genericity of modelling work.

An implementation achieved through the JEDI engine [12] offers a generic
support of the IODA methodology. This genericity is perfectly illustrated within
the generator called JEDI Builder2: from a model written according to IODA,
we can easily obtain a simulation which is executable with the JEDI engine.

We also offer measurement tools in order to describe the characteristics of
each model designed with IODA:

– simulation activity;
– characteristics of the environment and its population;
– development of populations;
– evolution of the use of interactions during the simulation.

LEIA
simulation browser

JEDI Builder
code generator

JEDI
plateform

IODA
methodology

Fig. 1. Hierarchy in the construction of the browser: LEIA is based on automatically
generated simulations for the JEDI platform, from a model specified in the methodology
IODA

Based on the abstraction provided by IODA and some measurement tools that we
set out, we present here a browser in simulations space, i.e. an application which
allows the simultaneous display and analysis of several simulations running in
parallel. Moreover, to browse the simulations space, we offer tools for processing
and simplifying models. These tools enable the iterative design of new mod-
els in which the user and measurement tools are the evaluation functions. This
browser is called LEIA for “LEIA lets you Explore Interactions for your Agents”.
LEIA reverses the usual way to design multi agents simulations: we generate a
random series of models and their implementation from an already defined on-
tology, consisting of generic interactions that we can assign to families of agents.

1 For : Interaction Oriented Design of Agent simulations.
2 www2.lifl.fr/SMAC/projects/ioda/demonstrations/

www2.lifl.fr/SMAC/projects/ioda/demonstrations/
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Then, by successive refinements and use of tools, the user will be able to create
a model and study its underlying characteristics. The browser lets the user make
a reverse engineering work called “design recovery” by Chikofsky and Cross [2].
The user is able to fully understand the implementations and their underlying
model and then study the relationship between interactions. Moreover, by the
variations of the models, it acts as a “brain stimulator” as Hofstadter explains
in “Metamagical Themas”[8]: “Variations on a thema should be considered as
the fuel of creativity”.

Section 2 presents the IODA methodology and its relevance in the design
of the browser. We describe in section 3 some measurement tools analysing
the complexity of systems designed in accordance with the IODA methodology.
Then, we develop into section 4 the design of LEIA browser. Finally, section 5
presents the opportunities that the browser opens onto the creation of models
by using genetic algorithms.

2 The IODA Methodology

The IODA methodology for simulation design[13] is focused on interactions: they
are independently reified from agents. Agents from A, the set of agents in the
environment, have basic primitives:

– perception primitives on the overall state of the simulation (noted E), the
environment, its internal state and communication with other agents;

– action primitives which can alter the simulation state: its own state, the
state of the environment or the states of other agents.

These primitives are used to define the role of the agent in specific interactions. An
agent a also has a perception halo HF (a) ⊆ E: i.e. the subset of the overall state of
the simulation which the agent a discerns through its perception primitives. The
neighborhood N (a) of an agent a is the set of agents in his perception halo.

In the IODA methodology, the agents have a simple specification and are
homogeneously represented, allowing the integration of any agent in a simulation
model centered on interactions: an agent is an autonomous entity, instantiated
from an agent family F , noted a ≺ F . An agent family F in the set of families
F is the abstraction of a set of agents sharing all or part of their perception or
action primitives.

An interaction is a sequence of action primitives applied to several agents,
which could play the role of source or target (respectively S or T ), and is subject
to conditions of activation. The interactions are totally separated from agents
who use them, increasing their reusability through simulations and are applicable
to different families of agents.

We define the cardinality of an interaction I as the pair composed with the
number of source agents cardS(I) and the number of target agents cardT (I)
that we need to perform the interaction.

The assignations are the set of interactions that a source agent may perform on
target agents. We call assignation aS/T of an interaction set (Ik)k∈[1,n] between
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a source agent family S ∈ F and a set of target agent families T ⊆ F the set of
interactions belonging to agents S that they may perform as sources together
with sets of agents from T as targets. It is defined as a set of tuples (Ik, pk, dk),
k ∈ [1, n], called assignation elements, where :

– Ik : the interaction which could be performed by sources S and undergone
by targets T;

– cardT(Ik) = q the number of targets in T;
– pk : the priority given to an interaction Ik;
– dk : the limit distance below which the interaction can occur.

We define the interaction matrix as the matrix M = (aS/T)S∈F,T⊆FN of each
assignations between sources S and possible targets T (e.g. Fig.3). Building of a
model using the IODA methodology is done through 6 steps:

1. identification of families of agents and interactions, as elements of a matrix
of interaction;

2. writing activation conditions and sequences of actions which are primitives
of each interaction;

3. identification of action and perception primitives of agents;
4. specification of the priority and the limit distance of each interaction;
5. determining the dynamics, i.e. the evolution of the interaction matrix built

at the previous steps;
6. determining the specificities of the model.

During the development of models in the LEIA browser, agent families and in-
teractions are specified a priori. The conditions of action and perception of inter-
actions are also set. Then, the design of the model can be limited to the available
choice of interactions and families of agents without the need to generate code in
order to use them. We can modify in runtime the model of a simulation without
having to stop it.

3 The Measurement Tools

As proposed by Kubera[10], it is possible to characterize part of the complexity of
a computer simulation by quantifying the number of computation cycles between
the beginning and the end of the simulation. The complexity lies in different
aspects of the simulation:

– in the studied phenomenon;
– in the complexity of the cognition of agents;
– in the way to design the simulated phenomenon and the simulation engine;
– in the way to achieve those two models.

We specify in this section some heuristic measures which characterize the com-
plexity of a system designed through the IODA methodology and simulated on
the JEDI engine (Fig.2).
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Fig. 2. Screenshot of the environment of an “Age of Empire”-typed simulation using
the JEDI engine. Some peasants wander in the environment, find some gold or wood
and then bring back them to a forum. They also inform the other peasants where they
have found these ressources, creating a chain of workers starting from the forum to the
common objective.

These tools are implemented in the JEDI engine [12] which is a sequential en-
gine with a discrete representation of time. An interaction I has only one source S
(cardS(I) = 1). At each time step, for each potential source S, it selects a couple
(interaction I, target T ). The interaction I is chosen following the assignation of
highest priority among all feasible assignations for this source S. The target T of
this interaction I must also be in the neigbourhood of the source N (S). For the
selected couple, then, we solve the action of the interaction I between the source
S and target T . This interaction I can be recorded as a “resolved interaction”. At
each time step, we can therefore have a specific and quantified return on all the
events of the simulation from which our tools of measurement are defined.

These tools are designed to reveal the qualities and defects of simulated mod-
els. In what follows, we put ourselves, using the LEIA browser, in a simplified
situation where each cell of the environment can only be occupied by one agent.
The initial distribution of agents and the primitives are accordingly implemented
from this situation.

3.1 Simulation Activity

Agents activity. With the JEDI engine, we can monitor the activity of agents
in a simulation, particularly if an agent is able to perform some interactions.
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This measure called “Agents activity” characterizes the interactivity of the sim-
ulation, i.e. the ability of the simulation to run and therefore evolve.

Definition 1. Activity
With I(t) the set of “resolved interactions” during the time step t and A(t) the
set of agents in a given simulation, the activity of agents is given by:
Activity(t) = card(I(t)) / card(A(t))

The provided score is the ratio between the number of agents which are sources
of interaction and all agents of the simulation. We can underline that in the
JEDI engine, by default, upon being resolved, the source S and target T of an
interaction are disabled [12]: the target T cannot participate in another inter-
action at the same time step, either as target or source. The lower the value
of the activity metric, the greater are the number of passive agents: their state
will evolve through the few interactions that have been resolved (considering
that their internal state does not change by itself through internal lookup by
example). In the interaction point of view, this measure can thus reveal some
very complex models such as the sale or purchase of items which do not generate
changes in the environment and its representation.

3.2 Environment

Environment modifications. The JEDI engine provides an environment similar
to a collection of cells that can be occupied by agents (agents have real coor-
dinates [12]). The environment is graphically represented in the simulation as
a 2-dimensional grid, made from cells in which agents are represented. It has a
set of primitives, such as Put an agent or Remove an agent of the environment,
the use of which requires an update of the associated graphical representation.
Therefore, we propose to measure, at time step t, the number of calls for these
primitives of the environment, noted E(t), compared to the number of agents in
the simulation.

Definition 2. Modifications
At time step t, the number of modifications from agents is defined by:
Modifications(t) = E(t) / card(A(t))

We get an indicator of the visual entropy of the simulation: we mean here the
evolution of the representation of the environment between two time steps. This
measure is open, typically between 0 and 1 if the resolved interactions call to
only one environment primitive requiring an associated graphical update.

Environment stability. This indicator is a measure of stable points of the sim-
ulation. This is done through the evolution of the occupation of environment
cells in relation to each family of agents. A large deviation in some cells shows
that they are occupied repeatedly by the considered family of agents: so we can
conclude that this is a stable point in the simulation.
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Definition 3. Stability
At time step t, with:

– NF(t) = card(AF(t)) the number of agents from family F ;
– p the number of cells in the environment;
– Oc,F(t) the cumulated presence of agents of the family F since the beginning

of the simulation in cell c;
– MF(t) = NF (t)×t

p the average occupancy of cells.

The standard deviation of cells occupancy is:

σF (t) =
√

1
p ×

∑p
c=1(Oc,F (t) −MF(t)2.

Let’s imagine a model in which there is absolutly no movement: since the
start, every agent has a different cell, cannot move into another cell and
the population Nb is absolutly the same in number since the beginning of
the simulation. At time step t, this model gives the worst standard deviation:

σdefF(t) =
√

1
p × (

∑p−Nb
c=0 (0 −MF(t))2 +

∑p
c=p−Nb(t −MF(t))2)

Then, the stability is defined as:
StabilityF (t) = σF (t)/σdefF (t)

If at time step t, the population Nb peaks and, subsequently, cell occupancy stag-
nates, the standard deviation will converge towards the unfavourable metric. A
simple measure of Agents stability would have been to determine the proportion
of agents with unchanged position after two time steps. Our measure takes into
account the cumulative presence of agents since the beginning of the simulation:
it enables us to reveal areas of convergence of agents in the environment.

We also provide two indicators on the environment: the mix and the cohesion.
The mix is the average percentage of agents from other families in the neigh-
borhood of each agent. Similarly, cohesion is the average percentage of agents
from the same family in the neighborhood of each agent. The general idea is the
commonly accepted idea of similarity percentage in the Moore neighborhood,
defined as the eight cells surrounding a cell centered on the given agent.

Definition 4. Mix and Cohesion
At time step t, with:

– N (x) the neighborhood of the agent x;
– F(x) the family from which agent x is instantiated;
– Diff (x) = card({a ∈ N (x)|F(a) �= F(x)}) the number of agents in the

neighborhood of the agent x whose family is different;
– Same(x) = card({a ∈ N (x)|F(a) = F(x)}) the number of agents in the

neighborhood of the agent x whose family is the same;
– CellsP(x) the number of cells in the neighborhood of the agent x;
– Nb = card(A) the number of agents in the environment;
– p the number of cells in the environment.
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The mix is defined as: Mix = (1/p)×
∑Nb

x=1(Diff (x)/CellsP(x));
the cohesion is defined as: Cohesion = (1/p) ×

∑Nb
x=1(Same(x)/CellsP(x)).

We also use a traditional definition of density.

Definition 5. Density
At time step t, with Nb(t) = card(A(t)) the number of agents in the environment
and p the number of cells in the environment, the density of population is defined
as: Density = Nb(t)

p .

3.3 Study of the Evolution of Populations and the Resolution of
Interactions

Usage of interactions. Thanks to the IODA methodology, the separation of
interactions and agents allows us to easily record the “resolved interactions”
from each entity. The analysis of those records can reveal the behaviour of agents
and the overall usage of interactions, especially some cycles in their usage and
order between them, as shown in the next examples.

Let’s take two families of agent: Plant and Grasshopper ; and two interactions:
Graze and Devour. In Fig.3, the Grasshoppers will Graze the Plants by prior-
ity then, when the Plants will have disappeared, the Grasshoppers will Devour
themselves. The interaction Devour will only occur when there are no plants.

Let’s imagine that in this example, new Plants could grow during simulation
in sufficient numbers to feed the Grasshoppers: the interaction Devour can never
happen then, which allows a step of simplification in this model. Although we
do not have a knowledge of the evolution of the simulation, we can detect as a
heuristic measurement the interactions that do nothing to a given model.

Interactions dynamic. In a feedback phenomenon, the result of the phenomenon
in question acts back on itself. In the case of simulations, such feedback can
occur in solving interactions.

Let’s take a simple example (cf. Fig.4): 3 agents are placed around a table.
At the beginning of the simulation, an object Flower is given to one of the Char.
During simulation, if an agent has a Flower, it performs the interaction Give the
Flower to one of his neighboring agent. Considering one of the agents, the interac-
tion Give Flower will be made once every three time steps, waiting for the Flower
object to go around the table: this phenomenon is periodic. Having a record of each
“resolved interaction” for each agent in the JEDI engine allows us to detect cyclic
use of interaction that are part of a possible feedback phenomenon.

�������Source
Target

Envir. Plant Grasshopper

Plant - - -
Grasshopper - Graze 1 Devour 0

Fig. 3. Interactions matrix from a simple model of food search: Graze has an higher
priority than Devour
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Fig. 4. Simple experience of object transmission between 3 characters

Fig. 5. Simple experience of object transmission with thank between 3 characters

Let’s consider the previous example that we modify (cf. Fig.5): after receiv-
ing the object Flower, the agent first performs the interaction Thank with its
neighboring donor as target, then performs at next time step the interaction
Give Flower with his other neighboring agent. If we study the interactions of
one agent, we find that the interactions Thank and Give Flower are performed
every 6 time steps (2 time steps for each charecter). Give Flower can only be
performed after Thank during the cycle of 6 time steps: there will be a phase of
2π
6 between the two interactions. If we follow the interactions in general, the in-

teractions Thank and Give Flower are alternately performed once at each time
step. An order between Thank and Give Flower is viewable, with a periodic
phenomenon of 2 time steps. In the case we have a low-level knowledge of the
scenario being modelled, we propose the use of frequency analysis tools in order
to determine the periodic phenomena in the use (frequency) and order (phase)
of interactions.
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DFT. By seeing the use of interactions as a discrete signal, we can use the
classic definition of the Discrete Fourier Transform (DFT) in order to study
the interactions in the space of frequencies without constraint in the choice of
frequencies and the sampling.

Definition 6. DFT
With sI(n) the evolution of usage of an interaction I and Nts the number of
time steps used by the DFT, the DFT is defined as:
SI(k) =

∑Nts−1
0 sI(n) × e−2ikn/Nts

Remarkable frequencies. We propose finding local maxima in the frequency spec-
trum obtained by Fourier transformation of the evolution of resolved interactions.

Definition 7. Remarkable frequencies
With SI(k) the DFT of sI(n), the set Freq of Remarkable frequencies is:
Freq = {k/SI(k − 1) < SI(k) and SI(k) > SI(k + 1)}
If the sample is correctly selected, we can detect the periodic usage of an inter-
action. The sample is limited in time, so we can only find out periodic usage of
an interaction which repeats within the sample. As we can’t make an infinite run
of a simulation, we approximate a repeated usage of an interaction as a cycle.

We can reach 2 levels of analysis in monitoring the interactions:

– A macroscopic monitoring, i.e. taking into account all the interactions that
reveal the dynamics of the global system. The discovery of remarkable fre-
quencies may highlight the coupling of some interactions.

– A microscopic monitoring, focusing on one agent, where we can follow the
resolution of interactions. This analysis can reveal the dependency between
the behaviour of the agent and his assignations. It faces, however, the life
expectancy of agents in some models (for example, the model prey / pre-
dation). Moreover, some interactions can disable the agent (at the choice of
the developer): an agent may only undergo interactions.

The frequency analysis needs to be counterbalanced because some interactions
may follow a periodicity intrinsic to them (and therefore independent of the
conduct of the simulation itself).

Study of the evolution of populations. Some models, like the prey / predator,
will lead to the periodic variation of populations, revealing feedback phenomena.
The detection of these periodic phenomena is carried out by Fourier analysis, as
described for the analysis of interactions.

4 LEIA: A Browser in Simulations Space

The LEIA browser3 is an application using n instances of the JEDI engine.
It allows the user to instantly make a visual comparison of n simulations by
3 For LEIA lets you Explore Interactions for your Agents. www2.lifl.fr/SMAC/

LEIA/applet.html

www2.lifl.fr/SMAC/
LEIA/applet.html
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Fig. 6. LEIA, the browser in simulations space

seeing all of them working in parallel (Fig.6). These n instances are created
from the same reference model, based on an ontology [6] constituted of already-
built family of agents and interactions. We can also define the beginning number
of agents and their initial distribution. By giving a domain ontology in input,
LEIA is able to build automatically several simulations from the simulations
space associated to this domain.

Model manipulation. The LEIA browser provides to the user a set of transforma-
tions and generation tools for model, and a set of tests to browse the simulations
space. These tools can vary the parameters of the model, either by adding or
deleting assignations, changing priorities or limit distance, the initial number
of agents, or operations on the interactions matrix as to symmetrize or merge
matrices of 2 models. The user can then, by these tools, automatically change
the reference model to generate N sub-models. These models are then loaded
into the N instances of the JEDI engine: the user can view and compare the N
simulations with separate behaviours. LEIA can be run with as many instances
as we want. Of course, LEIA will run slower proportionally to the number of in-
stances chosen. Nevertheless, each instance has its own thread, then we can have
benefit of a multi-core architecture. At this time, with a quad-core architecture,
we are able to run 4 instances at the same time as one.
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Simulation analysis. The browser is assisted by a statistics engine to help the
user to appreciate the qualities and differences between the displayed models.
This statistics engine is based on measurement tools presented in the previous
section. We get a quantified return for each simulation in which we consider:

– all interactions resolved by time step compared with envisaged interactions;
– the number of modifications of the environment;
– the repartition of agents: cohesion and mix;
– the evolution of the occupation of the environment;
– remarkable evolution of populations;
– remarkable evolution of interactions.

These heuristic measures allow the user to access informations about each model
with complete detail of scores and the associated graphics display is updated in
real time.

Model analysis. In addition to the measurement tools that we have already pre-
sented, we can study in the specific context of LEIA browser the construction
of the model, especially its interactions matrix. The so-called circular assigna-
tions are remarkable: i.e. for the same interaction, priority and limit distance,
the sources and targets vary cyclically.

Definition 8. Cyclic assignations
With e = (I, p, d) an assignation element.
we define: Assi(e) = {(S, T ) ∈ F2|e ∈ assiS/T } the set of assignations from the
Assignation Matrix with the same interaction I, priority p and limit distance d.
If assi ∈ assiS/T , then:

– Src(assi) = S is the agent family of the source of assi;
– Tgt(assi) = T is the agent family of the target of assi.

the cyclic assignations is the set of couples (S, T ) taking part in the cycle e:
Assicyliques(e) = {(S, T ) ∈ Assi(e)/∃(assii)i∈[1,n] ⊆ Assi(e)/Src(assi1) =
S ∧ Tgt(assi1) = T ∧ (∀i ∈ [1, n − 1], Src(assii+1) = Tgt(assii)) ∧ Src(assi1) =
Tgt(assin)}.

Definition 9. Cyclic aspect
The cyclic aspect is defined as:
Cyclique = card(Assicyliques)/card(Assi)

The cyclical aspect of a model is the proportion of cyclical assignations among
all assignations. The study helps to highlight cycles in the construction of model
that can possibly result in feedback loops.

More generally, the study model also opens the prospect of automated simplifi-
cation of models, for which we are laying the foundations in LEIA by eliminating
unreachable interactions, e.g. due to their priorities or limit distance.

Scoring models. We provide to the user a total score to bring together the results
of all the tools of measurement.
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Definition 10. Total score
With S = {S1, ..., SN} the set of scores provided by the measurement tools (scores
between 0 and 100), the total score is defined as:
Totalscore = 1/N ×

∑N
i=1(Si − 50)

We made the choice to reduce the total score in a note typically between −50
and 50 not to emphasize a score over another. The score is centered on 0 to give
a simple reference to the user. We don’t use multiplication because there is the
risk of hiding interesting data because of a particular score which would be zero.

By seeing the behaviour of all simulations in parallel, when one of them is
considered as interesting by the user with the help of the measurement tools,
its model can be defined as the new reference model. Then, the user can repeat
the process of replacing the reference model, either manually or by using our
tools of transformation. The LEIA browser therefore allows one to explore the
simulations space generated from the domain ontology board. It should be noted
that the LEIA browser is open to any domain ontology, as the interactions and
agent families are designed according to the IODA methodology.

Results. The tools presented here allow the user to perform reverse-engineering
on simulations. This simulations can be discovered using the browser among the
simulations space.

Like Pachet shows with the “Continuator” [17], which stimulates musical cre-
ativity, LEIA tends to be a “brain stimulator” for the discovery of new models,
and helps the user to identify interesting models. Even with a simple ontology,
with few classical interactions, benefits of the LEIA browser are outstanding, as
you can see with the following “infection model”.

The observation of an experiment displaying a synchronization phenomena
between some agent families pointed out an interesting set of interactions at
its origin. This set of interactions contains two interactions: one that clones the
source on a neighboring position, and the other that kills the target. Thanks to an
analysis of the interaction matrix, this set was simplified to a single interaction.
Briefly, the aim of this new interaction is to destroy a targeted agent found in
the neighborhood and to replace it with a copy of the source agent.

This model, found by LEIA, cyclically affects several families of agent with this
interaction called “Infect” (see Fig.7). At least three families of agent are required
to avoid deadlock in this simulation. From initial positions which are random, this
model led the agents to form spirals per infection (see left figure in Fig.8). LEIA

�������Source
Target

Envir. Red Blue Green

Red - - Infect 0 (1.0) -
Blue - - - Infect 0 (1.0)
Green - Infect 0 (1.0) - -

Fig. 7. Interactions matrix of the infection model. It can be extended to a greater
number of agent families than two. “Infect 0 (1.0)” means that the interaction “Infect”
only occurs under a maximal distance of 1.0.
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Fig. 8. Two screenshots of the environment of JEDI engine using the “infection model”.
At left, formation of a spiral in infection model between 7 colors. The figure on the
right shows the robustness of this model even if obstacles exists in the picture.

points out that the “infection model” can’t work without filling the environment
with a huge and equal amount of agents from each family. Indeed, the greater the
number of agents, the greater the probability for a source agent to find a target.
Moreover, the limit distance is really important: having a higher limit distance for
an interaction allows agents to find further a target for this interaction. Thus, the
higher the limit distance is for “Infect”, the higher is the probablity to fire it. Of
course, raising this limit distance helps to increase the number of family agents.

We point out the robustness of this model by adding some obstacles in our
experiments. Those obstacles are empty agents that don’t interact with any
other agents in simulation: they just occupy a place in the environment. Spirals
can occur though the presence of obstacles. Moreover, these obstacles can make
easier the formation of spiral at their positions, like the right image in Fig.8.

It appears that this dynamic4 is well known in chemistry, e.g. in the Belousov-
Zhabotinsky cyclical reaction [20,1]. Such phenomena are also examined with the
help of cellular automata in the Greenberg-Hastings model [5].

5 Towards a Genetic Evolution

In the LEIA browser, designing a model can be automated by drawing random
assignations. We can also dynamically implement this model with the view to im-
mediately test it in a simulation. The browser also allows the use of multiple sim-
ulations at the same time. We can create and test a model, then help the user to
judge its quality by using our measurement tools. Indeed, they facilitate the search
for some phenomena, for example to identify:

4 www2.lifl.fr/SMAC/LEIA/spirale.html

www2.lifl.fr/SMAC/LEIA/spirale.html
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– phenomena of segregation using the measurement tools about cohesion, mix-
ing and stability;

– cyclical evolution of the population from which we can detect remarkable
frequencies;

– point out some models which converge towards stable positions by observing
the variations of cells occupation;

– models causing a major renewal of the environment by studying its modifi-
cations.

The user can identify an interesting model by specifying precise research crite-
ria and, by successive iterations, refine the model in order to obtain a sought
phenomenon. Like the user can identify Dawkins biomorphs in “The Blind
Watchmaker”[3] whose development meets its desires, he can design models cor-
responding to his needs by viewing them.

We can link the way to design new models in LEIA to the works about Imagine
[15]: designers suggest an original technique for building CSS stylesheets by
using a genetic algorithm and successive evaluations through a user interface.
Here, each stylesheet parameter is a gene that can be crossed or transferred. The
algorithm randomly generates stylesheets, used to the same text. A user can then
choose one or more stylesheets with pleasant characteristics. The algorithm then
generates new stylesheets by taking into account the previous choices in order to
converge, after some iterations, to a stylesheet that the user deems to his liking.

The browser in the simulations space opens the perspective of the generation of
models, written in the IODA methodology, through a genetic algorithm. When a
problem admits a set of solutions, a genetic algorithm solves it by evaluating a set
of solutions parametrized with a fixed number of genes. These genes can evolve
by crossing and mutations of the solution in order to maximize an evaluation
function [9]. The algorithm converges towards a solution which is considered to
be good. The designer also defines a fitness function to fit the sought solution.

In LEIA, the user’s choice of specific measurement tools allows the creation
of fitness functions. All scores are evaluation functions judging the quality of
models. We can see the assignations as genes with which a mutation factor is
involved. Then, the mutation can be applied to parameters of an assignation:
priority, limit distance, source, target, interaction with different probabilities
depending on the supposed impact of the parameter: modifying the distance
limit changes the behavior of a model less than changing the interaction.

6 Conclusions and Perspectives

The browser in simulations space allows the iterative design of multi-agent mod-
els through the IODA methodology, which provides a clear separation between
agents and their interactions allowing thus composition without code generation.
We offer a range of tools for processing and simplifying models that can then
be viewed in parallel. Then, we propose measurement tools designed from the
perspective of IODA. These heuristic measures highlight some features of these
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models: system activity, spatial distribution, stability over time, feedback, etc.
They make easier the understanding of models built in this way.

We can reverse the usual way of model design, by firstly observing the result
(i.e. “what” happens) then the corresponding agent behaviors (i.e. “how” it hap-
pens). Through its tools and ease of model design, the LEIA browser acts as a
“brain stimulator” whose first result was to find a model similar to the dynamic
of Greenberg-Hastings model. Moreover, the browser is open to any ontology
as agents and interactions are being designed following the IODA methodology:
LEIA aims at exploring simulations space of domains as various as physics or bi-
ology. Ultimately, we envisage the construction of models by genetic algorithms,
models in which the matrix of assignation can be seen as a set of genes, our
measurement tools used for evaluating these models and the search for special
features.
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Abstract. A workflow involves the coordinated execution of multiple operations
and can be used to capture business processes. Typical workflow management
systems are centralised and rigid; they cannot cope with the unexpected flexibly.
Multi-agent systems offer the possibility of enacting workflows in a distributed
manner, by agents which are intelligent and autonomous. This should bring flex-
ibility and robustness to the process. When unexpected exceptions occur during
the enactment of a workflow we would like agents to be able to cope with them
intelligently. Agents should be able to autonomously find some alternative se-
quence of steps which can achieve the tasks of the original workflow as well as
possible. This requires that agents have some understanding of the operations of
the workflow and possible alternatives. To facilitate this we propose to represent
knowledge about agents’ capabilities and relationships in an ontology, and to en-
dow agents with the ability to reason about this semantic knowledge. Alternative
ways of achieving workflow tasks may well require an adjustment of the original
agent organisation. To this end we propose a flexible agent organisation where
agents’ roles, powers and normative relationships can be changed during work-
flow enactment if necessary. We use an example to illustrate how this combination
allows certain workflow exceptions to be handled.

1 Introduction

The Workflow Management Coalition (WfMC) defines a workflow as “the automa-
tion of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of pro-
cedural rules” [34]. Workflows can be formalised and expressed in a machine readable
format, and this makes it possible for them to be employed in service-oriented comput-
ing scenarios. In such scenarios we may be dealing with open heterogeneous computing
systems, where errors and exceptions are likely to occur. We would like the computing
systems to cope with these exceptions. Ideally we would like to be able to deal with
the unexpected; while we could write specific exception handling routines to deal with
some common exceptions which we expect to arise, it will be difficult to anticipate all
possible exceptions. Hence it would seem that we need some type of intelligence to
deal with the unexpected. Typical workflow management systems (e.g., Taverna [24],
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Kepler [22]) are centralised and rigid; they cannot cope with the unexpected flexibly.
Moreover, they have not been designed for dynamic environments requiring adaptive
responses [6]. To overcome this we argue that it will be necessary to use agents to con-
trol the enactment of a workflow in a distributed manner; agents can be endowed with
sufficient intelligence to allow them to manage exceptions autonomously. This should
bring flexibility and robustness to the process of enacting workflows.

Different types of exceptions may arise during the enactment of an agent-based
workflow. We can identify different levels of adaptivity, and exceptions can occur at
any level. The following are the levels of adaptivity [1]:

– Organisation level: exceptions due to changes in the environment may mean that
the current organisational structure makes it impossible for a workflow to progress.
The organisation must be changed to adapt to the current situation.

– Coordination level: there are exceptions due to changes in the environment, or the
agents and their organisational position. For example, some roles may be empty so
that the workflow cannot progress. The workflow itself must be altered, possibly to
find alternate pathways on which the tasks may be completed.

– Service level: this is the lowest level at which exceptions occur, and the simplest to
deal with. A web service is unavailable and an alternative must be found. This may
be possible without changing the existing workflows.

It is often the case that exceptions at lower levels can be dealt with by the next higher
level; this is indeed one of the main advantages of using an agent based approach rather
than a typical workflow execution engine. For example, agents can be used to man-
age the invocation of Web services, and then they can manage the Web services in an
intelligent way [4]; such techniques can also be used to cope with exceptions intelli-
gently. A service-level exception could be one in which a required Web service has
gone offline; in this case an agent can use semantic matching [25] or service composi-
tion techniques [32] to search for a replacement. For example, if the equipment supplier
is not available to give a quote for the required robotics equipment, agents can search
for a supplier whose services are described semantically, the replacement supplier can
be either an exact match or more general than the one currently specified. Thus coping
with service-level exceptions can be done to some extent with existing techniques [35].

Higher-level exceptions are more problematic. For example if the powers or prohi-
bitions in the agent system do not allow the agents to complete the workflow and this
leaves the workflow deadlocked at a certain stage. Methods for coping with such ex-
ceptions have not been addressed in the literature so far, to our knowledge. If we are
to cope with these types of exceptions it would seem that we need organisational flexi-
bility, or the ability to change the social relationships among roles as necessary. Again,
higher levels can deal with exceptions at lower levels To facilitate this we make use of
an institutional framework with certain speech acts which can modify the roles, powers
or obligations of agents in the organisation. For example, suppose that there is a single
agent a in the organisation who is empowered to authorise equipment purchases, and
that agent is currently unavailable. If an agent b urgently needs an equipment purchase
to be authorised, a request can be made to a manager to appoint a suitable stand-in for
a, with the appropriate power. This will be further explained in Section 4.
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For agents to cope with the unexpected autonomously they must have some under-
standing of the operations of the workflow and possible alternatives. This means that
the tasks specified in the workflow cannot be meaningless labels, but must be associ-
ated with some semantic information. To satisfy this requirement we provide an OWL
ontology [3] representing the background knowledge for the organisation. This allows
agents to reason about the capabilities of agents in the organisation and find alternative
ways to deal with workflow tasks when exceptions arise.

In Section 2 we give an overview of our approach. In Section 3 we describe how we
model the agent institution, focusing on the powers and normative notions. In
Section 4 we describe our example “Equipment Purchase” workflow, and an exam-
ple of an exception that can happen. In Section 5 we describe our OWL ontology which
captures essential aspects of our example. Section 6 looks at related work and Section 7
concludes.

2 Proposed Approach

We focus on adaptation at the organisational and coordination levels. To make our or-
ganisation flexible we adopt an institutional framework which allows roles, powers and
normative relations to change dynamically, under agents’ control. To endow agents with
the ability to reason intelligently about how to cope with exceptions, we represent back-
ground knowledge about the organisation, and the knowledge and capabilities of its con-
stituent agents, in an OWL ontology. This knowledge enables the agents to recommend
appropriate changes when exceptions arise. Our system has two types of organisational
knowledge: knowledge about the powers and the norms governing agents are repre-
sented as logical rules, as part of the “institutional facts” of the institution; knowledge
about the capabilities of agents and the hierarchy of the organisation, and constraints
among roles, are represented in an OWL ontology. This separation is appropriate be-
cause the former knowledge (norms, powers and roles) may include norms and powers
which apply under certain conditions, where conditional rules could not be represented
in OWL. This knowledge is also dynamic, being frequently changed by the agents. The
latter knowledge (agent capabilities, hierarchy, constraints) is static, and easily repre-
sented in a description logic based ontology (i.e., OWL DL).

We use examples from a University institution. In our examples we use a multi-agent
system to model the activities in the institution; thus it is not the case that agents are
supporting humans in the institution; it is a simulation where the agents are playing the
roles of the humans. This modelling is an exercise to test if our framework is able to
cope with scenarios arising in human institutions.

3 Modelling the Institution

To model our institution we build on previous work [11] where we described an agent
communication framework which allows rules to be defined to describe how events
(such as messages being sent) lead to modifications in the institutional facts. This is
in line with the “social perspective” [30] on communication; i.e., the institution is not
concerned with private mental states of agents. The rules are first-order logic clauses



Coping with Exceptions in Agent-Based Workflow Enactments 157

implemented in Prolog. We describe it here with a Prolog-style notation. In fact our
institutional framework is quite similar to [26] which uses event calculus to represent
the rules, and implements them also using Prolog. We simply use Prolog directly. We
follow the Prolog convention where a string starting with an uppercase case.

We describe the state of an institution by a pair F = 〈R, A〉 where R describes the
current rules in force in the institution and A describes the state of affairs. Collectively
these are called the institutional facts F . Rules describe how the speech acts of agents,
or other events, lead to changes in the institutional facts. An example of an institutional
fact of the state of affairs type is having the title “doctor”; examples of institutional rules
are the rules of a University describing how the title can be awarded and by whom.

Given an institution described by facts F0 at some instant, and a subsequent sequence
of events e1, e2, e3 . . ., we can use the rules to obtain the description of the institutional
facts after each event, obtaining a sequence of facts descriptions: F1, F2, F3 . . .. In our
examples events are either speech acts (i.e., messages being sent) or timer events. Note
that the above description allows for events which change the rules, although this will
not be used in our examples. Thus all events lead to modifications of A; A is simply a
list of predicates (facts which hold) or clauses (where they hold conditionally, as in the
powers below, for example); events add and remove elements from this list. For conve-
nience, A has been divided into a number of sub-lists for: roles, world facts, powers,
obligations, prohibitions, pending acts. We will explain the types of facts which pop-
ulate these sub-lists of A after we introduce our running example below. However, we
will firstly explain how speech acts fit within the framework of the institution.

3.1 Speech Acts

The meaning of speech acts is defined by rules in R. These rules define some manipu-
lation of facts in A. We will briefly describe some illustrative examples because there
is insufficient space to give the rules for our speech acts in full. The speech acts as-
sign role and assign power define a particularly simple manipulation of A: the new
role or power (as specified in the content of the act) is simply added to the appropriate
list. The allocate task speech act causes a new obligation to be added for the agent in
question. An inform speech act simply adds the content of the act to the world facts
within the list A; thus an agent can assert some facts and make them publicly available.
A request speech act adds an obligation for the receiver to reply.

We shall illustrate the notions we introduce below with examples from a University
institution (see figure 4). Later we will define a workflow, and illustrate exception han-
dling, using this same institution. The rules R include speech act rules which can change
agents’ roles. The state of affairs A includes a record of the roles of the institution, and
the agents occupying each role. If agent Ag is currently occupying the role of senior lec-
turer, and the Head of College performs the speech acts “assign role, [Ag, professor ]”
and “remove role, [Ag, senior lecturer ]”, then Ag will be moved into the role of pro-
fessor. In these speech acts we are just stating the performative and content (a sender and
receiver are also needed to complete the speech act). Some speech acts have more elab-
orate rules; the act assign temp role (college staff, [Ag , hod, Duration]) triggers two
acts to be executed: the act assign role (college staff, [Ag, hod]) is executed immedi-
ately, and the act remove role (college staff, [Ag, hod]) is placed on the “pending acts”
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list, for execution at time Duration + Current time. This “pending acts” list holds
actions that need to be taken at a future time. When the time is reached the action is
executed, much like a speech act, however the sender field is blank, meaning that the
act is simply executed without any checks for power or prohibition.

3.2 Normative Notions and Institutional Power

Powers and norms (prohibitions and obligations) can be assigned to roles or to agents
themselves. An agent inherits powers and norms from the roles it takes on. We will not
list all the powers and norms of our example scenario here, but there is a power for each
speech act that a role can effectively perform. The following is an example of some of
the more interesting powers:

(1) power(hod, allocate task (Ag ,[Task ,Time limit ])) if
role (Ag ,cs dept staff)

(2) power (hod, assign temp role (college staff,[Ag,hod,Duration])) if
role (Ag ,cs dept staff) and role (Ag,professor) andDuration≤21:00:00

(3) power (hod, suspend role (college staff,[Ag,Role,Duration])) if
role (Ag ,cs dept staff)

(4) power (hoc, assign role (college staff,[Ag,hod])) if
role (Ag ,cs dept staff) and role (Ag ,professor)

(5) power (hoc, assign power (college staff,[Ag,Power ])) if
role (Ag ,college staff)

(6) power (hod, authorise purchase (secretary,Item))

In these powers the speech acts are written as “performative (receiver,[content])”, the
sender is added when the concrete act is performed. Note that when roles or powers
are changed, the speech act is to be sent to the entire college, so that all staff know
of the new assignment. Line (1) means that the Head of Department (HoD) can allo-
cate a task to anyone who takes on the role cs dept staff. Line (2) means that the HoD
can temporarily assign the HoD role to any other professor in the department; the third
parameter within the assign temp role is for the duration after which the temporary
assignment will expire – this cannot exceed 21 days. Line (3) allows the HoD to tem-
porarily suspend some agent’s membership of a role; it lasts for a time defined by the
third parameter. These two powers (2 and 3) are to be invoked when the HoD goes on
vacation; the HoD agent will temporarily suspend its own occupancy of the HoD role,
and appoint a replacement. Line (4) allows the head of college (HoC) to permanently
assign the HoD role to any professor in the CS department. Line (5) allows the HoC to
assign a power to an individual agent, or a role.

Obligations are a type of norm. Obligations are always defined with a time limit
before which they must be carried out. Some example obligations are

(6) obliged (bob, complete task (“upgrade webserver”),“05-June-12:00”, 103)
(7) obliged (fred,

complete task (“submit paper to conference”),“09-Sept-18:00”, 103)

After the agent completes a task this is reported as completed in the world facts in
A; this means that compliance with the obligation can be checked by looking at the
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facts in A. The final parameter above (103) is the “sanction code” which applies if the
obligation is broken. Following [26] we associate a 3-figure “sanction code” with each
norm violation (similar to the error codes used in the Internet protocol HTTP). The
sanction codes gathered by each agent as it commits offences are merely recorded in a
list. The use of codes is just a convenient way to record sanctions without yet dealing
with them; we would require a separate component to impose some form of punishment.

Obligations do not usually have a condition (as some powers had). If we wish to
model the situation where an agent is obliged to reply if it receives a request, then we
must ensure that the performance of the request creates an obligation to reply; i.e. we
make the request speech act add an obligation. The condition of any norm cannot be
that a speech act is sent because conditions only check facts in A, not events. Thus obli-
gations tend to have a more temporary existence than powers; they are added until they
are fulfilled or expire. Obligations cannot have a negative content; i.e., we cannot state
that an agent is obliged not to do something. To achieve this effect we use prohibitions.
The following is a sample prohibition:

(8) prohibited (hoc, assign power (college staff,[hoc,Power]),103)

Again, the final parameter is a sanction code. Lines (5) and (8) model the situation
where the head of college is prohibited from assigning new powers to him/herself but
is nevertheless empowered to do so (i.e., if the prohibition is violated the assignment of
power is still effective).

3.3 Updating the Institutional Facts

We are now ready to present the algorithm which is used to update the instutional facts
when an event happens (shown in Fig. 1).

It is in this algorithm that roles are consulted to retrieve the names of the agents occu-
pying the roles; e.g., when checking if an agent who has just sent a message is obliged,
the algorithm will consult the facts to see what roles the sending agent occupies.

The main loop of the institution program is executed repeatedly, and invokes the
above update algorithm as well as doing some housekeeping:

– For each obligation check if it has timed out. If so, apply the sanction to the agent
(or all agents occupying the obliged role) and remove the obligation from A.

algorithm UPDATE-INSTITUTIONAL-FACTS

1. Input: a speech act with Sender, Receiver, Performative, Content
2. Check if Sender (or one of the roles he occupies) is empowered to send this speech act: If

not, discard the act and exit this algorithm.
3. Check if there is a prohibition for Sender (or one of the roles he occupies) sending this

speech act: If not, go to the next step; If so, apply the specified sanction.
4. Check if there is an obligation which requires that Sender (or one of the roles he occupies)

send this speech act. If so remove the obligation from A.
5. Process the act as normal (i.e., follow the rules specified for the act).

Fig. 1. Algorithm to Handle Powers and Normative Relations
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– For each pending act check if it is due. If so, execute it and remove it from A.
– If there have been any events, then UPDATE-INSTITUTIONAL-FACTS

Our model of institution is minimal, possessing only those essential features required to
illustrate our approach. There are other more complete and sophisticated proposals for
representing societies of software agents which could have been used instead. Some of
these proposals are, for example, electronic institutions [10], virtual institutions [7] and
organisations for agents [8] – such proposals could have also been used in this paper
instead (requiring more space to introduce them, though). Some of the features of our
approach have very clear counterparts in those proposals. For instance, in our algorithm
to update institutional facts (Fig. 1), the “censoring” of unauthorised utterances which
takes place in step 2 corresponds to the governor agents of electronic institutions [10];
such agents intermediate all communications between external (foreign) agents and
the institution/society. Governor agents check if the messages that the external agents
want to send are indeed pertinent to the current state of the interactions; if this is the
case, the illocution is forwarded to the appropriate receiver, otherwise the message is
discarded.

4 Workflows

We extend the basic framework above with the definition of workflows, allowing us to
define structured interaction patterns for agents. A workflow can be enacted by a work-
flow engine [17] or it can be controlled by individual agents. In our case we are relying
on the intelligence of agents to take appropriate actions if the workflow enactment en-
counters an exception which prevents it from progressing. For this reason we will have
the workflow executing in a distributed fashion, controlled at each stage by the agent
responsible for that stage.

4.1 Workflow Specification Language

We have developed a simple workflow language. The workflow language assumes that
a workflow has a finite number of numbered places, with transitions between them
(Figure 2 shows a workflow, with places depicted as relationships). A workflow which is
currently in progress may occupy one or more places. If the workflow has no branches it
will only occupy one place at any time, but if it branches several places may be occupied
simultaneously. Figure 3 gives a concrete example of a workflow specification, using a
Prolog style notation. A workflow specification has a place predicate for each numbered
place. The first parameter of a place predicate specifies the number identifying this
place in the workflow; this is followed by the role which is responsible for executing
the statements in this place, with an identifier in parenthesis for the agent who is taking
up that role (e.g. “secretary(D)”). The remainder of a place is completed by a sequence
of statements to be executed in order by the agent taking up the role. Statements may
be variable assignments, or actions, or if. . . then . . . else constructs. Actions include any
action the agent can take such as performing a speech act, querying a Web service, etc.;
some actions (e.g. calling a Web service) may return a result. Variable assignments may
include (as their right hand side) actions which return results.
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Fig. 2. Diagram of “Equipment Purchase” Workflow

Speech acts within our framework typically have four parameters: sender, receiver,
performative, content; however, when a speech act is sent as part of a workflow we add
information so that the recipient knows which workflow is being executed and what stage
it is at. Thus every message which passes control to another agent includes the number
of the next stage to be executed. This ensures that an agent receiving a message can look
up the workflow specification and find what is to be done for this stage. It also serves to
disambiguate between potentially confusing states: it is possible that a workflow might
have two different states where the message being sent to the next agent is the same, thus
an agent receiving the message would be unsure about what point had been reached in the
workflow. In our example workflow shown in Figure 3 it can be seen that every speech
act sent includes, as the final parameter, the name of the workflow (“ep”= equipment
purchase) and the state that has been reached within it (e.g. “[ep,2]”). Speech acts are
written in the form speechAct(sender, receiver, performative, content, workflow).

For example in the workflow below (Figure 3) 2:technician(T) means that this
is stage 2 and is to be carried out by some agent occupying the role of technician,
and that T is the variable to be used to hold the name of the actual technician who
is carrying out this stage. For example, when the secretary receives the message from
the technician, she assigns the variable T to be the name of the technician, and can
subsequently send messages to T. On the other hand, if the secretary performs a speech
act with technician as the receiver, then it can be sent to any agent occupying the
role, and not necessarily the same technician identified as T previously.

4.2 Example: The Equipment Purchase Workflow

We consider a simple workflow example – a purchasing equipment workflow in a uni-
versity – to give an idea of how agents do reasoning to deal with unexpected circum-
stances during the enactment of workflows. Figure 2 graphically depicts the example.
Firstly a research staff issues a request of purchasing a Robotics equipment (1), this
request goes to the technician. The technician gets a quote from a supplier via a web
service (2), and then finds the cost C and passes the request to the department secretary.
The secretary checks the equipment budget (3). If the budget is not enough for purchas-
ing, then the purchase request is rejected and the workflow terminates (4). Otherwise,
the purchase request is then passed to the HoD for approval (5). The HoD is responsible
for deciding to authorise this purchase (6) or reject it (4).

Apart from speech acts, there are three other types of actions that can be required at
a stage of the workflow: web service, local service, query expertise. Only speech act



162 J.S.-C. Lam et al.

place(1,research_staff(R),[
speech_act(R, technician, request, [purchase, Equipment, Experiment], [ep,2])

]).

place(2,technician(T),[
web_service(T, supplier_service, request, [quote, Equipment], Result),
select part(Result, cost, C),
speech_act(T, secretary, request, [Equipment, C, Experiment], [ep,3])

]).

place(3,secretary(D),[
local_service(D, dept_data, query, [equipment_budget], Budget),
(if C > Budget
then

speech_act(D, T, inform, [reject, Equipment], [ep,4])),
(if C <= Budget
then

speech_act(D, hod, request, [approve, Equipment, Experiment], [ep,5]))
]).

place(4,secretary(D),[
speech_act(D, T, inform, [reject, Equipment])

]).

place(5,hod(H),[
query_expertise(H, Equipment, is_appropriate_equipment(Equipment, Experiment), Useful),
(if Useful
then

speech_act(H, D, authorise_purchase, [Equipment], [ep,6])
else

speech_act(H, D, reject_purchase, [Equipment], [ep,4]))
]).

place(6,secretary(D),[
web_service(D, supplier_service, request, [place_order, Equipment], _)

]).

Fig. 3. Specification of “Equipment Purchase” Workflow

changes the institutional facts, the other acts give a result which only changes the agent’s
internal mental state. The web service simply invokes an external web service, while
the local service action queries a local computer system, for example the department’s
finance system. The query expertise action is used when an agent needs to query his
own internal knowledge base; in the example below the HoD must execute this action,
to query his own internal expertise in robotics equipment and make a decision about
whether the robotics equipment proposed is in fact useful for the experiment proposed.
This set of actions is known to all agents, although not all agents can carry out all ac-
tions; certain actions require certain expertise. For example, to execute query expertise
actions to answer queries about a particular topic will require that the agent has expert
knowledge in its own knowledge base.

The workflow is a coordination device for agents, in the same way as agent interac-
tion protocols; the powers and prohibitions of agents are not overridden by the workflow
– agents are still bound by them. However, the rule which processes a speech act has
been extended; when the speech act includes the workflow parameter, then the speech
act rule inspects the workflow and adds obligations for the receiving agent to perform
its stage of the workflow.

So far agents have not been given any knowledge about each others’ capabilities, or
about the capabilities required to perform tasks in the workflow. In order for agents to
make intelligent decisions about what action to take when a workflow breaks down, agents
will need to know about tasks and capabilities, so that tasks may be reassigned to others;



Coping with Exceptions in Agent-Based Workflow Enactments 163

without this knowledge they can only blindly follow a workflow. We encode the required
knowledge in an ontology and endow agents with the ability to reason with the knowledge
in this ontology, in order to make intelligent decisions when workflows break down.

5 An OWL Ontology

An ontology [33] formally captures a shared understanding of certain aspects of a do-
main: it provides a common vocabulary, including important concepts, properties and
their definitions, and constraints regarding the intended meaning of the vocabulary,
sometimes referred to as background assumptions.

More formally, An ontology O consists of a set of terminology axioms T (TBox)
and assertional axioms A (ABox), that is, O = 〈T ,A〉. An axiom in T is either of the
form C � D or C

.= D, where C and D are arbitrary concepts; an axiom in A is either
of the form C(a) (where C is a concept and a is an individual name; a belongs to C),
or of the form R(a, b) (where a, b are individual names and R is a role/property name;
b is a filler of the property R for a). The OWL-DL [15] ontology language is a variant
of SHOIN (D) [16] Description Logic, which provides constructs for full negation,
disjunction, a restricted form of existential quantification, and reasoning with concrete
datatypes. OWL DL benefits from many years of DL research, the benefits include well
defined semantics, well-studied reasoning algorithms, highly optimised systems, and
well understood formal properties (such as complexity and decidability) [2].

The organisation in the university is represented by the OWL DL ontology, Univer-
sity.owl1 (part of which is shown in Figure 4). The ontology models persons, the role
hierarchy, constraints (such as mutually exclusive roles, cardinality, prerequisite
roles) [29], and the range and domain of properties. A person can take more than one
role; a role can have many persons. An example of mutually exclusive roles is that the
head of college cannot be the head of department simultaneously (see axiom 1 below); a
course organiser supervising a student’s project cannot mark that student’s project (see
axiom 2 below). Maximum and minimum cardinality constraints are also used. For ex-
ample, only one person can fill the role of the head of department; a student has to take at
least one course (see axiom 3 below). The concept of prerequisite roles means a person
can be assigned to role r1 only if the person already is assigned to role r2. The Role
hierarchy is also modeled in the ontology to reflect authority. More powerful roles are
shown toward the top of the hierarchy and less powerful roles toward the bottom. This
role hierarchy is consulted by the agents when an exception occurs in a workflow and
the agent encountering the problem needs to report to a higher authority. The agent with
higher authority may appoint agents to different roles, or change powers to overcome the
problem; this is why it is important that the agents have knowledge of the relevant con-
straints on such appointments. The following shows some of the axioms of the ontology
and SWRL rule which are pertinent to our example exception, and its resolution.

1. HoD � ¬ HoC
2. ∃ supervises.(∃doesProject.Project) � ¬∃ marksProject.Project
3. Student �≥ 1 takesCourse
4. ∃ teaches.Course � ∃ hasExpertise.Course

1 http://www.csd.abdn.ac.uk/∼jlam/University.owl
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Fig. 4. Parts of the University.owl ontology

5. Professor(dave) // dave is a professor
6. teaches(dave,Robotics) // dave teaches Robotics
7. 	 � ∀ teaches.Course // range(teaches) = Course
8. query expertise � ∃doneBy.(Person 
∃hasExpertise.Expertise)
9. Equipment(?q) ∧ Expertiment(?x) ∧ isNeededBy(?q,?x) → is appropriate equipment(?q,?x)

5.1 Exception in Equipment Purchase Workflow

In general, upon the failure of a message delivery, the ontologyO must be queried to get
the manager of the intended recipient, R (i.e., the next higher agent in the hierarchy).
This query in SPARQL [27] can be done as follows:

Prefix uni: 〈http://www.csd.abdn.ac.uk/∼jlam/University.owl〉
SELECT ?manager
WHERE { “R” uni:managedBy ?manager }

This manager agent then inspects the tasks in the workflow at this place, in order to
find a suitable agent who can perform them. As mentioned above, there are only four
types of task: querying expertise, a local service query, a web service, or the sending
of a speech act. Local services and Web services could be done by any agent, however
querying expertise can only be done by an agent with the required expertise, and per-
forming a speech act can only be done by an agent with the required institutional power.
Therefore when the manager agent inspects the tasks which need to be delegated to a
new agent, for each “query expertise” task’ the manager must find an agent that has
the required expertise. This can be found by the following query, if the expertise is
robotics:

Prefix uni: 〈http://www.csd.abdn.ac.uk/∼jlam/University.owl〉
SELECT ?person
WHERE { ?person uni:hasExpertise “Robotics” }

For speech acts that need to be delegated to a new agent, the manager may search the
institutional facts to find a suitably empowered agent. However, the manager of a group
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of agents may typically be empowered to grant new powers to the team he manages,
and this is an alternative which can be used to ensure that a nominated agent can fulfill
all the tasks required at a place in the workflow.

We now consider a scenario where an exception arises during the enactment of the
Equipment Purchase (EP) workflow. As described above, when the HoD goes on vaca-
tion he/she is supposed to appoint another member of the department to temporarily act
as HoD to cover the vacation period. We consider a scenario where the HoD has failed
to do this. The EP workflow then gets stuck at stage 5. The exception is picked up by
the secretary who is notified (by the agent platform) of a delivery failure on her mes-
sage (which should pass control to the HoD and enter stage 5). The exception handling
routine is invoked, and this requires that the secretary propagate the problem to the next
higher authority of the HoD, the HoC.

The secretary sends the undelivered message to the HoC, and this allows the HoC
to know the relevant variable bindings; in this case the HoC will know that the “Equip-
ment” is robotics equipment. By inspecting the protocol an agent can see what needs
to be done next, however no agent is empowered to authorise an equipment purchase,
except the HoD (see line (6) in Section 3.2). The HoC must rectify this situation by nom-
inating a suitable agent who could authorise the purchase. The query expertise action is
one which requires special capabilities; the second parameter of query expertise indi-
cates the type of expertise required (the variable “Equipment” is bound to “robotics”).
Thus when the HoC inspects this part of the workflow by querying the ontology (see
axiom 8 above), she knows that in order to execute this it is required that the agent must
have expertise in robotics. The HoC will perform an ontology query to find an agent
with the appropriate expertise. Axioms 4 to 7 implicitly encode the knowledge that
“dave” has expertise in robotics. Furthermore, the agent must have power to authorise
or reject equipment purchase requests. The HoC can grant the appropriate power to any
agent according to power (6) above.

6 Related Work

Many research efforts have been undertaken on distributed workflow enactment
mechanisms based on the agent paradigm, their aim is to support flexible and adaptive
workflows in open and dynamic environments. In this section, we focus on exception
handling in multi-agent systems and workflow management systems.

6.1 Multi-Agent Systems

Exception handling in the agent community has been researched in order to build more
reliable multi-agent systems. Klein and Dellarocas [19] proposed the use of specialised
agents that handle exceptions. Their approach focuses on observing agent behaviour,
diagnosing the possible fault and taking appropriate remedial action. The exception
handling service is a centralised approach; the service is characterised as a kind of
coordination doctor which actively diagnoses agents’ illnesses and prescribes specific
treatment procedures. The aim is to simplify agent development and have the agent in-
frastructure provide the fault-tolerance. Klein and Dellarocas [21] constructed a semi-
formal Web-accessible repository of exception handling expertise for learning purposes.
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They firstly identified an exception taxonomy which is a hierarchy of exception types,
and then described the exception management meta-process. The meta-process speci-
fies which handlers should be used when for what exceptions. Klein et al. [20] describe
a domain-independent exception handling services approach to increasing robustness
in open agent systems. A directory of agents is used to keep track of the “death” of
agents, so that exception which arise due to “agent death” problems can be handled
with minimal resource wastage. All of these works use some device which is added
into the system to deal with exceptions, for example: specialised agents, an exception
repository, or a directory to keep track of agents. In contrast, our approach aims to en-
dow the agents of the system themselves with the ability to deal with exceptions by
querying ontologies and changing the organsational structure.

6.2 Workflow Management Systems

The standard approach to representing workflows in business is the Business Process
Execution Language (BPEL) [18]. Buhler and Vidal [5] proposed the use of the Busi-
ness Process Execution Language for web Services (BPEL4WS) as a specification lan-
guage for expressing the initial social order of a multi-agent system, which can then
intelligently adapt to changing environmental conditions. Since BPEL4WS describes
the relationship between Web services in the workflow, agents representing the Web
service would know their relationships a priori. Buhler and Vidal [4] further proposed
to integrate agent services into BPEL4WS-defined workflows. The strategy is to use the
Web Service Agent Gateway to slide agents between a workflow engine. The workflow
engine calls the target agent instead of the Web service directly; the agent can be config-
ured to respond flexibly. From the above mentioned papers, Buhler and Vidal describe
approaches to create adaptive workflow capability through decentralised workflow en-
actment mechanisms that combine Web services and agent technologies; they claim
that that agents representing semantic Web services can organise themselves to enact
workflows flexibly.

Similarly, Guo et al. [12, 13, 14] address the downside of current workflow engines
which are centralised and suffer from single point-of-failure weakness; they describe
the development of a distributed multi-agent workflow enactment mechanism from
a BPEL4WS specification. They proposed a syntax-based mapping between some of
main BPEL4WS constructs to the Lightweight Coordination Calculus (LCC). The au-
thors claim that with their approach, a BPEL4WS specification can be used directly for
constructing a multi-agent system using Web services composition; therefore, its ben-
efit is that existing workflow development methodologies and business process models
can be used as much as possible for MAS development. The papers do not cover how
their approach deals with unexpected circumstances during the enactment of workflows
at runtime.

In [9, 28] the authors address the same problems of workflow management systems
which have rigid, centralised architectures that do not offer sufficient flexibility for dis-
tributed organisations. In their system, Coloured Petri Nets (CPNs) are used to represent
the workflow. A process agent executes a workflow instance by assigning tasks to re-
source agents which can be seen as representing Web services and can be dynamically
discovered. Their aim is to assign suitable resource dynamically to a task. However
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the resulting solution is still centralised to some extent, as an agent is managing the
enactment of the workflow and calling on resources to do the individual tasks; a truly
agent-based enactment should allow each agent to control their part of the workflow
(as in the other related works above). In our work, the workflow tasks are dealt by au-
tonomous agents without a central control from a manager agent, resulting in systems
that exhibit decentralised flow control.

Similar to our approach, the above mentioned works aim to enable the flexibility
of decentralised multi-agent workflow-enactment to deal with dynamic Web services;
agents are able to intelligently diverge from prescribed workflows when needed. Al-
though the above works sometimes do not give the details of how they would deal with
exceptional circumstances, their techniques can be extended to deal with exceptions.
We further include organisational knowledge, such as agents’ capabilities represented
in OWL ontologies; agents are then able to modify the roles, powers, obligations in the
organisation. We believe that the use of ontologies to describe aspects of the organisa-
tion and domain can be valuable here, as agents are part of an organisation and will be
unable to deal with exceptions entirely on their own.

6.3 The Commitment Approach

Singh and Huhns [31] propose interaction-oriented programming (IOP) as a technique
for engineering multi-agent systems to flexibly enact workflows. With the emphasis
on facilitating agent autonomy and flexibility in interactions, IOP describes interac-
tions using high-level primitives. The high-level primitive which Singh and Huhns fo-
cus on is the “commitment”. By making this a first class object agents are able to reason
about their commitments to others and vice versa, and can make autonomous decisions
about how to act. With commitments capturing the high level meaning of an interaction,
agents have the opportunity to intelligently reason about alternative ways of satisfying
the high-level goals of an interaction. This approach potentially allows a much greater
flexibility than our approach above, however the challenge is to develop an appropriate
agent reasoning mechanism to enable such adaptive behaviour. This is an interesting
area for future investigation.

Mallya and Singh [23], building on the commitment approach, have proposed novel
methods to deal with exceptions in a protocol. They distinguish between expected and
unexpected exceptions. Unexpected exceptions are closest to the types of exceptions
we tackle here. Mallya and Singh’s solution makes use of a library of sets of runs
(sequences of states of an interaction) which could be spliced into the workflow at the
point where the exception happens. Mallya and Singh do not describe how these sets of
runs can be created, but it is likely that one would need access to observed sequences
from enactments of similar workflows. The aim of the commitment approach is in line
with our work, as it endows the agents with some understanding of the meaning of the
workflow they are executing, by giving them knowledge of the commitments at each
stage. This would make it possible for agents to find intelligent solutions when excep-
tions arise. Similarly, in our approach, agents are endowed with semantic knowledge
(represented in an ontology) about the capabilities and hierarchy of the other agents
so that they can find suitable candidates to execute tasks in the case of exceptions. In
the future work, we would like to merge our approach with the commitment protocols
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approach to model business processes, in which commitments among roles and business
policies can be described.

7 Summary, Discussion and Conclusion

We have shown how workflow exceptions at the coordination or organisational level
could be handled by agents. Our solution has two components: (1) a flexible agent in-
stitution, so that when an impasse arises in a workflow, the agents can reorganise to find
an alternative path to circumvent the problem; by “flexible” we mean that the institu-
tion must include speech acts which allow agent roles, powers and normative relations
to be altered at run-time; and (2) agents endowed with semantic knowledge about the
capabilities and hierarchy of the other agents so that they can find suitable candidates
to execute tasks that are preventing the workflow from progressing; we provided this
knowledge via an OWL ontology. We illustrated our approach with a University insti-
tution example to illustrate how exceptions can be dealt with by agents via ontology
reasoning, a decentralised collection of agents in an organisation cooperate to main-
taing the workflow’s integrity. In general the type of exception we can handle is one
where a task which needs to be done cannot be done because an agent is unavailable, or
available agents are lacking some attribute. In this case agents perform ontological rea-
soning or querying to find alternatives. In our example we simply adjusted the powers
of an agent so that he could fulfil the task. More generally we may allow agents in an or-
ganisation to decide to outsource a task, or to hire a consultant, or send a member of the
organisation for training. To tackle more varied and more complex types of exceptions
we foresee that agents will need to be given more knowledge about their domain and
the tasks and capabilities available. This will require a combination of more ontological
knowledge, and also appropriate reasoning mechanisms so that agents can exploit the
knowledge.

Our solution has split the knowledge of the system in two parts: the institutional facts
(powers, roles, speech act processing rules, etc.) are implemented with Prolog rules,
while the knowledge about the tasks the agents will be able to undertake (knowledge
of capabilities of the agents, constraints on roles, and the hierarchy of the organisa-
tion) are represented with an OWL ontology. In fact some knowledge is represented
twice; the knowledge about membership of roles is included in both the ontology and
the institutional facts. This information is important both for deciding the institutional
updates, and for finding suitable candidates when coping with exceptions; however, this
duplication is not optimal.
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Abstract. Reactive multi-agent systems present global behaviours uneasily 
linked to their local dynamics. When it comes to controlling such a system, 
usual analytical tools are difficult to use so specific techniques have to be engi-
neered. We propose an experimental dynamical approach to enhance the control 
of the global behaviour of a reactive multi-agent system. We use reinforcement 
learning tools to link global information of the system to control actions. We 
propose to use the behaviour of the system as this global information. The be-
haviour of the whole system is controlled thanks to actions at different levels 
instead of building the behaviours of the agents, so that the complexity of the 
approach does not directly depend on the number of agents. The controllability 
is evaluated in terms of rate of convergence towards a target behaviour. We 
compare the results obtained on a toy example with the usual approach of pa-
rameter setting. 

Keywords: Control, MAS, experimental approach, emergence, global behav-
iour, reinforcement learning. 

1   Introduction 

The goal of this study is to control the behaviour of a multi-agent system (MAS) or of 
a complex system modeled by a MAS. It takes place in the context of reactive MAS 
[1]. A reactive agent only owns reflex reactions to external stimuli, without a repre-
sentation of its environment or itself, and has a limited memory. In such a system, 
interactions are essential and trigger a collective behaviour which is not directly 
linked to the individual behaviours. 

The behaviour of the MAS is unpredictable without simulation, because of its 
strongly non-linear nature due to the numerous interactions that occur. However, 
global complex phenomena can be observed. These phenomena emerge from the local 
interactions between the agents despite of their limited abilities. So there are two 
levels of description in a MAS: the local level, where the agents evolve and their 
behavioural rules are set, and the global one, where a particular behaviour of the 
whole system can be observed. 

An emergent structure or property is characterized by a phenomenon involving sev-
eral agents, whose observation is done at a higher time scale than the local evolution of 
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the system and makes it appear stable. We define the global behaviour of the MAS as a 
description of its emergent phenomena. Several behaviours can be observed in a given 
MAS, but it is uneasy to predict which one will occur when the system is running, for 
any local perturbation can trigger a dramatically different one.  

Our purpose is to control the global behaviour of the system, although it is uneasily 
linked to the local dynamics of the MAS. Namely, we wish to make the system show 
a target global behaviour thanks to actions correctly chosen and performed at the right 
time. The actions can be local modifications of the state of the system, or global quan-
titative changes like the modification of a parameter value. They depend on what the 
controller is allowed to do, particularly if the MAS models a real-world system. The 
goal is to give a pragmatic control method, applicable to many reactive MAS. Focus-
ing on reactive MAS allows us to put the stress on its particular properties, without 
challenging the intelligence of the agents to achieve the control of the system. 

In this contribution, an original solution of dynamical control of an agent-based 
model is proposed, but we keep in sight the control of a concrete distributed system 
modelled by a MAS. 

We first expose the issues brought on by the control problem and the specificities a 
control solution of a MAS should meet. Then we discuss different solutions to solve 
this problem, especially the one of parameter setting, and their limitations. We differ-
entiate the static and the dynamic approaches. This leads to our proposition of a dy-
namical method that takes more information on the system into account. We explain 
how we implemented it on an toy example, and we compare the control performances 
of our method and the parameter setting solution through different criteria. 

2   Control of a Reactive Multi-Agent System 

If there is only one possible global behaviour that the system always shows, there is 
no control problem, otherwise, we consider the different reachable behaviours as 
global states. So our problem is to lead the system into one particular state. Two kinds 
of difficulties come up to solve this problem: the ones due to the nature of the MAS, 
and the ones due to the control problem itself. They are discussed in this section. 

Because of the complexity of the interactions in a MAS, the local and global levels 
are not directly linked. If there are known local rules, and even simple rules in a reac-
tive MAS, they do not give rise to a global view upon the behaviour of the system 
itself. For this reason, in multi-agent field of research, it is generally admitted (cf. 
Wegner [2], Edmonds [3,4], DeWolf [5], Amblard [6]) that an analytical model of a 
MAS is infeasible. These authors recommend then to study MAS through an experi-
mental approach. 

This limits the possible ways to solve the control problem: a solution is necessarily 
experimental, and we cannot use powerful tools as differential equations to predict the 
global behaviour triggered by an action.  

Hence we assume that the studied MAS is totally observable and that we can act on 
it at will. If it is an already deployed system, like a peer-to-peer network, we can al-
ways model it thanks to another MAS and perform our proposition on the model. 
Before to handle the concrete system, the study of a MAS model is useful since it 
involves less experimental costs and since it allows to know if the original system can 
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be controlled. Therefore, in the following, the discussion is restricted to the control of 
a model. 

An experimental study implies a considerable number of simulations. In order to 
provide realistic tools to control the MAS in a reasonable time, we have to avoid the 
simulation time soaring by any means. We can consider to reduce the simulation time 
by reducing either the time of each simulation or the number of simulations. Many 
solutions have been proposed to handle this issue, we discuss them in §3.1. 

Beyond these difficulties linked to the nature of the MAS, since we intent to con-
trol the MAS, three questions have to be answered: how to characterise and measure 
the global behaviour, what are the possible actions, and how to determine the action 
to perform at any time (see Fig. 1) ? 

 

Fig. 1. Principle of control of a MAS. A control method chooses the actions to reach the 
target, and can take into account features of the system. 

Considering the high number of simulations, the study has to be automated – and 
in particular the evaluation of the influence of each tested action within an experimen-
tal study. We do not want a human observer to check each simulation to identify the 
global behaviour. Thus we have to engineer an automatic measure to detect the global 
behaviour of the MAS from its local state at any time, at least to verify if the target 
behaviour is reached. 

The actions are instant modifications of the system that have an influence on its 
behaviour. They can be modifications of the environment – by changing its attributes 
like its size or by introducing local perturbations like adding obstacles – or modifica-
tions of the agents – by modifying their number, adding luring agents or changing 
their characteristics: size, local behavioural rules, etc. The details of the actions de-
pend on the system itself. Still, the actions that are made available to the control sys-
tem must be chosen. 

Once the behaviour and the actions have been defined, the question of the control it-
self remains: an action to perform has to be chosen in order to reach the target behav-
iour. The controller must decide which features of the system to take into account in that 
choice, and engineer a method to learn the good action to perform given these features. 

3   Approaches of Control in Multi-Agent Systems 

We expose in this section different approaches found in other works to the problems of 
controlling a MAS or guaranteeing a global behaviour. We discuss the proposed answers 
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to the difficulties raised in the former section. We can split these approaches into two 
classes: static and dynamic ones. Static solutions do not take the evolution of the system 
into consideration while they control it (no loop in Fig. 1), whereas dynamic solutions 
perform an on-line control depending on the current state of the system. 

3.1   Static Solutions 

One way to make the system converge to the target is to set its parameters so as to 
optimise a convergence criterion. The principle of parameter setting is so to find op-
timal constant values for the controlled parameters of the system, typically with the 
use of a metaheuristic performed on the parameter space [7, 8]. We have to emphasise 
that the only possible actions when using parameter setting are the modification of 
parameter values, which restricts our definition of controlling a MAS. 

A metaheuristic [9] is an algorithm that rules the exploration of a space by testing 
values of the space. The rules determine the values to choose and try to focus on the 
relevant areas in spite of a part of random decision, striving to balance the exploration 
of the space and the exploitation of promising results. So the parameter setting is 
essentially simulation-based and respects the experimental necessity specified in §2.1. 

Parameter setting in the domain of MAS is not necessarily used to control the 
global behaviour, but any feature of the system (for instance [10]), so the question of 
characterising the global behaviour is not handled by this approach. 

However, much work has been done for the question of reducing the simulation 
time: [10] proposes to use equation-free tools to partially predict the result of a simu-
lation and then speed up each simulation, [11] proposes to reduce the actions space by 
limiting its dimensionality in a divide and conquer way, and many works [12-16] 
reduce the number of simulations thanks to a principle called dynamical design of 
experiments [6]. The principle consists in exploring the actions space in a non-
homogeneous way, focusing on its relevant parts, by contrasting the exploration of the 
space and the exploitation of the best results found. The distinction can be made with 
regard to the space areas (this is the point of metaheuristic approaches [12, 13] and of 
some other works in MAS domain [14, 15]), but also to the quality of the estimation 
of the results in each point of the space [16]. 

Eventually, the main limitation of this approach is its static, off-line nature. It gives 
an optimised solution, but when the parameter values are set, there is no way to de-
cide how to change them, whether the system reaches the target or not. If the MAS 
undergoes perturbations, that is if the control frame is different from the learning 
frame, the accurately optimised solution is not relevant anymore. 

3.2   Dynamical Approaches 

A dynamical control involves the use of information on the system to choose on-line 
the action to perform. 

A dynamical approach is proposed in [17] and [18]. A morphological description 
of the global behaviour is proposed to characterise it. A control solution is given 
which takes into account the current state to correct it. Still, the solution of control is 
purely heuristic: the controller has to explain the system what action to perform in 
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each state, but no method is proposed to determine the actions in a general case, espe-
cially if the link between the actions and the global behaviour is hard to determine. 

The same remark can be applied to the AMAS theory [19] and the works based on 
it [20]: this method asks a human to determine the non-cooperative situations and 
decides what is to correct in order to make the MAS show a wanted behaviour. There 
is no notion of optimality and no automatism of the process. 

Another dynamical approach, more usual, consists in considering the system as a 
decentralised Markov decision process (DEC-MDP) [21] and to apply reinforcement 
learning tools. But in that case, the only possible actions are at the agent level: each 
agent chooses what local action to perform. Thus actions as adding an obstacle or 
changing a global parameter are not handled. Furthermore, the complexity of a DEC-
MDP problem soars with the number of agents and actions [22].  

4   Proposition of a Dynamical Solution 

We propose an on-line method to control a MAS using reinforcement learning. First 
the actions to perform are learned thanks to an experimental approach, then the best 
actions are chosen during the control phase.  It must be noticed that if the MAS mod-
els another deployed system, only the learning phase is applied on the first one, and 
the resulting knowledge can be used to control the “real” system. 

The drawback of the dynamicity is that it involves an observation of the controlled 
system to choose an action. Therefore, the observability of the controlled system must 
be discussed: if it is observable enough to compute the states described below then the 
proposition can be used, otherwise an approximation of the states must be computed. 

The actions decision is dynamically taken, depending on features of the system: a 
distinction is made between different states of the MAS, letting us learn what to do in 
each of them to reach the desired behaviour. In this section, we explain which states 
to choose and then how to determine the actions to perform, thanks to reinforcement 
learning tools. 

4.1   States Description 

In order to choose a states description, the level of these states must be decided first. 
The local states can easily be defined by describing the exact disposition of the ele-
ments of the system – typically the position, speed and internal state of each agent and 
each object in the environment. The global states represent the behaviour of the whole 
system. 

Since this paper shows a first step in a larger study, we choose the simplest states 
description to show the utility of the method, that is, global states. Only the behaviour 
of the MAS is considered in the actions decision, as represented in Fig. 2, which can 
be compared to Fig. 1. Indeed, there are few possible behaviours compared to the 
number of sharp local states, so a global states space is easier to explore exhaustively. 

The utility of each action in each state will be estimated thanks to many experi-
ments for this couple {state, action}. The decrease of the number of states leads to a 
lower complexity of an algorithm based on this exploration. 
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Fig. 2. Dynamical control using global information. We propose to consider the global be-
haviour in the action decision.  

Furthermore, the dynamics of the MAS is observed at the global level, so the 
choice of states describing the global stable structures of the system is likely to give a 
good representation of this dynamics. That justifies the use of global states. 

4.2   Short Presentation of Reinforcement Learning 

All the following refers to [23]. A Markov decision process (MDP) is defined by a 
quadruple <S, A, T, R> where S is a set of states, A a set of actions, T a transition 
function that gives the probability to reach a state s’∈S from a state s∈S when a∈A is 
performed (such as T(s,a,s’) = Pr{st+1=s’ | st=s, at=a} at any time t), and R a reward 
function of each transition (such as R(s,a,s’) = E{rt+1 | st=s, at=a, st+1=s’} where E 
denotes the expected value). 

The transition function T verifies the Markov property that establishes that the 
probability to reach a given state for a given action only depends on the current state, 
not on previous states of the system. 

The goal of reinforcement learning (RL) is to find a near-optimal policy that de-
fines which action to perform in each state so as to maximize the return (a function 
that gives the expected reward, parameterised by a value γ, called the discount rate). 
The policy can be stochastic when it gives probabilities over the actions to perform in 
each state. 

The base of RL is dynamic programming: in order to evaluate the return of an ac-
tion a performed in a state S, we try this action, which sends the system in a new state 
S’, and we use the current evaluation of the policy on S’ to modify the evaluation of a 
in state S. Very efficient algorithms exist when T and R are known. 

Otherwise, the functions T and R are experimentally estimated, that is the goal of 
Monte Carlo methods for instance. The combination of dynamic programming and 
Monte Carlo methods leads to temporal-difference (TD) learning which allows esti-
mating T and R while the optimal policy is learned. 

There are two classical algorithms of TD learning: Sarsa and Q-learning [23]. The 
difference is that Sarsa is an on-policy algorithm which evaluates the policy used to 
explore the action space in each state, while Q-learning is off-policy and learns an 
optimal policy different from the one used to explore the action space. Typically, the 
Q-learning can be used to find a deterministic policy and Sarsa a stochastic one. 
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4.3   Application to MAS Control 

We formulate the hypothesis that our global state model verifies the Markov property, 
so as to apply these tools on it, even if we know this is just an approximation. Since 
the evolution of the system is unpredictable, the past global states are insignificant.  
We presume that in two different situations identified as the same state, the evolution 
is likely to be the same whatever action is performed. 

The probability to reach a state S’ by doing the action a in the state S is denoted 
P(S, a, S’). It can be approximated by the proportion of local states in the global be-
haviour S that stabilise in the global behaviour S’ when an action a is performed  
(cf Fig. 3). This is our transition function. We define the rewards as follow: when the 
MAS reach the target global behaviour, the MDP receives a positive reward (namely 
1), and 0 otherwise. So we have a MDP equivalent to our control problem. 

 

Fig. 3. Transition function. Transitions from a state S, for an action a, in a 3-states graph. 

We would rather learn a stochastic policy to always allow an exit from a global 
state, since there is a risk that a deemed good action in a global state S keeps the sys-
tem in S in particular situations. Although the Markov property is a correct approxi-
mation, it is likely to be wrong, and the aggregation of local states in a same global 
behaviour could be a too big approximation. 

If we analyse the solution of reinforcement learning with regard to the specifici-
ties of MAS control problem, we notice that it is an effective experimental solution 
and a first step to the reduction of simulation time. RL implements a dynamical 
design of experiment on the estimation of the results triggered by the actions. In a 
given state, an action a is tested according to the exploration policy which takes 
into account the estimated reward associated to a. Therefore, the better an action is, 
the higher the probability to test it is. In other words, the actions that seem the most 
promising have the best estimation, and we do not lose time with the estimation of 
irrelevant actions. 

We wish to underline that in such a representation, an action is not necessarily a 
quantitative modification of a parameter value like in parameter setting, but can also 
be any qualitative change of the system, like adding an obstacle. 
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5   Implementation on a Pedestrians Model 

We expose in this section an application of our proposition on a toy example that 
models pedestrians. The goal of this part is to illustrate how our approach can be 
applied and to demonstrate its feasibility. The three steps of our method are devel-
oped. The first step gives a solution to the global behaviour characterisation issue (for 
this system only), in the second step we choose the action means, and in the last step 
we present how to use RL tools to learn a control policy. 

5.1   Application Example 

Our application example is a MAS that roughly models pedestrians walking in a cir-
cular corridor. Realism of the model is not relevant here, we just need a system com-
plete enough to apply the proposition. Agents are leaded by a sum of forces (like 
boids [24]), which come from their own goals and from the repulsion with other 
agents and with the walls. This is a reactive multi-agent system, with many parame-
ters to study, already seen in other works [25]. 

 

Fig. 4. Forces in the pedestrians system. Computing of the new speed of an agent A, that has 
a single agent B in its visual field. We assimilate the sum of forces to the acceleration because 
the mass of the agent can be considered in the coefficients Cm, Cs and Ca without adding a 
new parameter. 

Specifically, agents have a dimension (they cannot overlap) and a visual field di-
rected by their current speed. Each agent has a predilection direction in the corridor 
and undergoes a force in that direction proportional to a coefficient of movement Cm. 
When an agent has an obstacle (other agent or wall of the corridor) in his visual field, 
it undergoes an opposite force proportional to a coefficient of separation Cs. If the 
agent in the visual field goes in the opposite direction, a third force occurs, propor-
tional to a coefficient of avoidance Ca. The sum of these forces modifies the agent 
speed according to its inertia. The speed norm is bounded by a maximum speed Ms 
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(Fig 4). Finally, the agent moves as far as possible in the direction of its new speed: 
until it reaches an obstacle or the speed norm. 

When simulated, the system shows up emergent groups of agents: lines of same di-
rection agents and blocks of opposite agents (see Figure 5). 

 

Fig. 5. Emergent structures. Three lines of agents emerging in the pedestrians system. Red 
(dark) agents go to the right and green (light-colored) agents to the left. 

5.2   Global Behaviour Characterisation 

The lines and blocks of agents are emergent structures of the system. Their arrange-
ments define a global behaviour. But the description of the arrangements which char-
acterise the global behaviour must be decided. 

The global behaviour must be specified with regard to the goal of the controller. 
Even for such a simple system, several descriptions can be chosen for the global be-
haviour. If the controller’s goal is to avoid blocks in the system, the global behaviour 
may be the presence or absence of blocks as structures involving agents, or the mean 
speed of each agent on a given time. 

For our study, we consider that the target is to obtain a certain number of lines and 
a certain number of blocks: the behaviour is the number of each kind of group (lines 
and blocks), for instance one block and two lines. 

Now, we have to find an automatic characterisation to determine the behaviour. 
Whatever the description, the point is to identify the emergent structures. In our case, 
this is a clustering problem, with an unknown number of clusters. We tried two solu-
tions, the first using classical clustering tools and the second based on a decentralised 
clustering. 

Many algorithms exist [26], which give a repartition of entities into clusters for a 
given number of clusters to find and a distance defined between these entities. For the 
pedestrians, the distance can be a combination of the difference between the positions 
and between the speeds of two agents. The difficulty is to determine the number of 
clusters, so we implemented a solution proposed in [27]: we used a hierarchical clus-
tering algorithm to create clustering solutions for any number of clusters, and we 
compared them with regard to the dispersion inside each cluster and between the 
clusters to find the optimal number of clusters. The solution gives good results but 
lacks generalisation if the system is slightly modified: the distance could have to be 
redefined to match the new emergent structures. 
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Thus we propose a simple and partially decentralised method which can be gener-
alised to some other systems. Here is the principle: we ask each agent A to remember 
which other agents are often in its visual field (often is to be defined, we took 70% of 
the 100 last steps of simulation), and we consider that these agents belong to the same 
cluster as A does. In a graphic representation, if the agents are vertices connected by 
an edge when they belong to the same cluster, the clusters are the strongly connected 
components of the graph. This allows us to determine the clusters in the system and 
gave empirically as good results as the former solution: when a global behaviour is 
unambiguously observed, the measure identifies the same behaviour. 

5.3   Control Actions 

Control actions can be distinguished between environmental and behavioural actions. 
The first ones consist in modifying the environment, like its size or its structure (ob-
stacles), in order to make the agents that interact with these changes react. Even if 
they are centralised, these actions do not counteract the distribution of the system. The 
second kind of actions are modifications of the behaviour of an agent or a group of 
agents. In our study, we restricted the possible actions to these modifications of indi-
vidual behaviours. 

Since we wish to compare in a first time our proposition to parameter setting solu-
tion, we have to define a problem solvable by the latter: the only actions we take into 
consideration are modifications of parameter values (an action is the decision of the 
value of each controllable parameter). The parameters we choose to use are the coef-
ficients Cm, Cs and Ca, and the maximum speed Ms (instead of, for instance, the 
number of agents or the environment size). 

The modification of the value of an individual parameter is equivalent to change 
the behaviour of the agent. In that way, the proposition is close to the notion of ad-
justable autonomy [28], except that each agent has only one level of autonomy: it 
applies a policy chosen by the control system. The agent is not aware of the behaviour 
of the whole system, especially the target behaviour.  

5.4   Model of the Dynamics of the MAS 

Given the states and the control actions discussed before, the dynamics of the MAS 
could be represented by the Figure 6. But this is just a formal model, which shows the 
hypothesis that the Markov property stands at this level. The only useful information 
to control the MAS is to know which action to perform in each state. This is the goal 
of the RL algorithm presented in the next section. 

5.5   Implementation and Algorithmic Choices 

We summarise here the decisions we made in the implementation of our control solu-
tion. In a MDP view, the transition function of our system is unknown, so we chose to 
use a TD-learning algorithm to evaluate the influence of the actions and achieve the 
control of the system. 

We saw in §4.3 why to choose a stochastic policy that could avoid the MAS to be 
in an absorbing state different from the target by repeating a wrong action. Many  
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Fig. 6. Representation of the model of the global dynamics. The states are the global behav-
iours. There is a different graph for each possible action. The probability to escape from a state 
to another by performing an action is equal to the proportion of observed transitions between 
the two same states when this action is performed. 

stochastic policies can be imagined, from the simple ε-greedy to Boltzmann policy for 
the most classical ones [23]. They differ on the choice of under-optimal actions, de-
pending or not on how these actions are close to the optimal one. As our intent is just 
to achieve a better control than parameter setting allows (cf §6.2), not to create an 
optimal control model, we limit this study to ε-greedy policies. 

Since the chosen policy is a stochastic one, we use an on-policy algorithm, namely 
the Sarsa algorithm, to learn this policy. Finally, to compute the return of an action in 
a given state, we use the classical value γ=0,9 for the discount rate. 

The sarsa algorithm only stores the expected reward value for each action in each 
states Q(s,a), without explicitly computing the model. The complexity of this algo-
rithm mainly depends on the number of values Q(s,a) to estimate. Since it gives a 
better estimation of the best actions, the number of actions is less relevant than the 
number of states for the complexity. 

We give below the algorithms used to learn the policy and to control the MAS, 
without the details of the sarsa algorithm. Two limits are used in order to avoid to 
indefinitely wait for a simulation to stop: a maximum number of actions denoted k, 
and a maximum number of steps of simulation before a new state is identified. 

A particular state s0 is added, where no behaviour is observable. In a simulation, if 
the number of steps is too high before a stabilised behaviour is identified, we consider 
that s0 is reached. The initial situation of a simulation is a random distribution of the 
agents in the environment, and the initial state is s0. 
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Learning algorithm 

∀ state, ∀ action 
  Q(state, action)  0 
Repeat (nbSimulations) 
  MAS.initialise() // random positions for instance 
  S1  MAS.getCurrentState() 
  // try to reach the target in less than k actions 
  nbActions  0 
  While (nbActions<k & S1 • target) target) 
    // choice of an action 
    action  -greedy(Q(S1, a)) 
    MAS.apply(action) 
    nbActions++ 
    nbSteps  0 
    // let the MAS stabilise in less than a maximum number of steps 
    repeat 
      MAS.simulate() 
      nbSteps++ 
    until (MAS.isCurrentStateIdentified()  
           OR nbSteps = limit) // the current state is then s0 
    // update Q-values with sarsa 
    S2  MAS.getCurrentState() 
    sarsa(Q(S1,action), S2) 
    S1  S2 

Control algorithm 

MAS.initialise() 
// try to reach the target 
Repeat forever  
  currentState  MAS.getCurrentState() 
  // choice of an action 
  action  -greedy(Q(currentState, a)) 
  MAS.apply(action) 
  nbSteps  0 
  // search for a stable state 
  repeat 
    MAS.simulate() 
    nbSteps++ 
  until (MAS.isCurrentStateIdentified()  
         OR nbSteps = limit) 

6   Experimental Comparison of Control Solutions 

The goal of this section is to evaluate and compare the performances of three different 
control solutions: a parameter setting based method, our reinforcement learning proposi-
tion and a reference control method based on random actions. We first present two 
scenarios corresponding to the control problems on which the methods are applied. 
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Then we present the performance measures used to evaluate them. The control methods 
and their implementation are clarified in a third sub-section. Finally we expose the ex-
perimental results and compare them. 

6.1   Scenarios 

Two control problems – or scenarios – have been tested, each one involving a target 
behaviour and possible actions. In the first problem, the target behaviour to reach is 
one block and two lines of agents. We control the agents thanks to two parameters: 
the coefficients of movement Cm and separation Cs (§5.1). These two parameters can 
take five values each, so that we have only 25 possible actions. 

In the second problem, the target behaviour presents two lines and no block, and 
the controlled parameters are Cm, Cs, and the maximum speed of the agents Ms. The 
last parameter can take 5 values too, bringing the number of different actions to 125.  

The parameters are discrete because it is simpler to solve in a first study, and it is 
enough to prove the utility of reinforcement learning tools. RL algorithms exist in 
continuous spaces (of states and especially of actions [29]) and could be used if nec-
essary for continuous parameters. 

6.2   Performance Measures 

A control method is evaluated with regard to the adequacy between the target and the 
behaviour of the system obtained using it. The evaluation is statistical and involves 
two aspects: the ability to reach the reference and the difficulty or the time necessary 
to reach it. The first aspect can be approximated by the proportion π of simulations 
that reach the reference when the method is used to control the system, and the second 
by the average number ν of actions needed before to reach the reference. 

A simulation begins by setting the MAS in a random local state. The controller 
then decides what action to realise, and the MAS is let run with the specified parame-
ters until a global behaviour is identified by the measure. This step is repeated until a 
stop criterion: either the target behaviour is reached or a maximum number of steps k 
has been performed and we consider that the MAS will never reach the target. 

We took k=50, what can be experimentally justified by plotting the repartition of 
the simulations by their number of steps. For instance, the figure 7 represents the 
plotting of 300 simulations following the policy computed with the RL method on the 
first problem. We can see that a great majority of simulations that reach the reference 
do it after the first few actions. Hence there is no use to consider too many simulation 
steps after the 30th: k=50 seems a good balance between a good approximation and 
the limitation of the simulation time. 

A total of n simulations are realised, so as the proportion of convergence π is ap-
proximated by the number m of simulations that reached the reference divided by n. 
The greater n, the smaller the approximation and we give the radius of the statistical 
confidence interval at 90%: π=80%±5 means that there are 90% chances that π is in 
[75, 85]. 

In order to estimate the average number of actions ν we only consider the number 
of steps of the m simulations that actually reached the reference, otherwise the simu-
lations artificially stopped after k steps would bias the estimation. 
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Fig. 7. Number of steps. Repartition in % of the simulations among the number of steps neces-
sary before to reach the target: for instance, 3% of the simulations reached the reference after 
10 steps. 

6.3   Evaluated Control Methods 

We compare three different methods to choose the actions to perform: a reference 
random choice, a parameter setting based method and our RL proposition. 

The last one involves a learning phase where the Sarsa algorithm is used, and a 
control phase where the resulting policy is evaluated. In the learning algorithm, simu-
lations are performed as in the control phase. We limited these simulations to k steps 
in order to learn the policy in the same conditions than its evaluation. The following 
results are given for 3000 learning simulations and n=300 evaluation simulations. 

The parameter setting solution presents the two same phases of learning and con-
trol, but with its static nature the simulations are of only one step long. We learn the 
best parameter setting action by computing 500 simulations for each action. In order 
to get performance measures comparable to those of our proposition we slightly im-
prove the evaluation simulations. Instead of using a static policy we alternate the 
optimal found action and a random action: first we apply the optimal parameter values 
recommended by the parameter setting, then we set random values, and so on, until 
the target is reached or k actions have been performed. Hence we can compute esti-
mations of π and ν comparable to those found with the proposed method. 

Finally, we evaluate a reference random method that needs no learning phase since 
it chooses a random action at each step of the evaluation simulations. It is used to 
verify that both the other methods get better performances than if there was no learn-
ing at all. 

6.4   Experimental Results and Discussion 

In the proposed method, we use a stochastic, ε-greedy policy, but the value of ε is to 
determine so as to optimise the performances. In this study, the optimisation is 
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secondary, our goal is essentially to make sure that a dynamical control is applica-
ble. Thus we do not try to find the best value of ε, but we give the results found for 
different values of ε. 

Table 1. Evaluation of the control performances of the three methods (with different values of ε 
for our proposition) on two problems. The performance measures are the proportion of target 
reaching simulations π, the radius of its confidence interval at 90%, and the average number of 
actions ν needed before reaching the target. 

First problem Second problem Method 

п (%) radius ν п (%) radius ν 

Random method 68,7 4,4 15 23 3,1 15,5 

Parameter setting 89 3 11,8 48 3,7 7,1 

ε = 10% 89,6 2,9 10,6 66,6 3,5 11,4 
ε = 20% 91,3 2,7 7,4    
ε = 30% 93,2 2,4 7,8 60,8 3,6 12,8 
ε = 40% 94,2 2,2 8,2    

 
Proposed 
method 

(RL) ε = 50% 93,3 2,4 9,7    

 
All the control performances of the three methods of each scenario are  summa-

rised in Table 1. In the first problem, our proposition improves the reference perform-
ances, with a raise of 25 points for π (69% to 94%), and twice less necessary actions 
(8 instead of 15). We observe an optimum close to ε = 40% whereas the classical 
value used for ε is 10%. Our solution is just slightly better than the parameter setting 
based method. 

In the second problem, the improvement of the proportion π is even greater, from 
23% to more than 60%, and the parameter setting method only reaches the target in 
48% of the situations. Still, this method gives the best improvement for the number of 
actions needed. We see that the parameter setting makes it possible to reach quickly 
the target in simple situations, but our method has the target reached in more situa-
tions. Here, a less stochastic policy (with the classical value of ε = 10%) gives better 
performances. 

The second problem has more possible actions, hence possibly more actions which 
lead the system away from the target. We can see here that a random policy gives 
performances dramatically lower than in the first problem. Thus a policy that chooses 
“good” actions triggers an improvement even better than it would do on a simpler 
problem. The difference between parameter setting and our proposition is explained 
by the fact that no action is “good” in every situations (states), but different best ac-
tions can be found for each state. 

Finally, the proposed method proves to give a pragmatic and usable way to control 
MAS. An optimisation of the method can be done depending on the studied system 
and scenario, for instance by setting an optimal value for the parameter ε. 

A difficulty has been ignored in the paper: the states of the MDP and the actions 
have been chosen a priori, but the main improvement of the proposition remains in 
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this choice and its experimental evaluation. An experimental approach imposes to 
repeat this step with different choices and to compare the results. For this reason, in 
particular, the chosen discretisation of the actions is to question just as the parameters 
and the use of the global behaviour itself. 

7   Conclusion 

In this paper we propose a first step in an approach to create a pragmatic and experi-
mental control method for a multi-agent system, especially a reactive one, and to 
evaluate the control performances. The method involves three main steps: the charac-
terisation of the global behaviour and its automatic measurement, the selection of the 
possible control actions, and the determination of a policy that indicates the actions to 
perform in order to reach a target. 

The originality of our proposition is to control the system on-line, by considering its 
current state, so that if it undergoes perturbations we can counteract them. Further-
more, the complexity of the approach does not directly depend on the number of 
agents since the states description is global and involves all the agents, and since the 
actions can be described at a global level – instead of building the behaviours of each 
agent. So the complexity does not suffer the scalability of the MAS. 

The proposition can be pragmatically applied thanks to the limitation of the number 
of necessary simulations, by focusing on the relevant actions with RL tools and by 
reducing the size of the exploration space with the use of global information instead 
of local one. We show that the use of global information and actions improve the 
controllability – in terms of rate of convergence to the target – compared to classical 
parameter setting solution, and allows to build a dynamic control method. 

As it is presented, the proposition can be applied to a simulated MAS. The use of 
the computed model to control of a concrete, distributed system is feasible under two 
conditions: the control actions can be applied to this system, and the observation is 
sufficient to measure the global states. 

The actions chosen in our application system are just an example of what can be 
done. Tuning identical parameters of all the agents can seem quite centralised, but the 
actions space can be changed without challenging the proposition. For instance, envi-
ronmental actions can be considered, or the model computed in this paper can be 
applied only to a part of the agents. In this last case, a further study is needed to check 
the robustness of the model if a part of the agents is not controlled. 

Another interesting further development would be to estimate global states thanks 
to local information when the controlled system is not fully observable. Anyway the 
automatic measure is already an estimation of the behaviour, and uses few global 
knowledge. But a study is necessary to know how the control behaves when the states 
used during the control are less reliable than the states used to learn the policy. 

We also think that the states description could be optimised and that local or semi-
local information available in a distributed system could be enough to control the 
system in a decentralised way. 

Eventually, as a future technical improvement of the approach we could optimise 
the learning phase and the tools used. For instance other policies (Boltzmann) and 
algorithms (Sarsa(λ), [23]) could improve the control performances and the learning 
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speed. A constraint of the RL algorithms used is that they learn a policy for a single 
target and they do not allow to change the target without learning a new policy from 
the beginning. Other learning methods could be researched and applied to avoid this. 
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Abstract. We consider a resource access control scenario in an open
multi-agent system. We specify a mutable set of rules to determine how
resource allocation is decided, and minimally assume agent behaviour
with respect to these rules is either selfish or responsible. We then study
how a combination of learning, reputation, and voting can be used, in
the absence of any centralised enforcement mechanism, to ensure that it
is more preferable to conform to a system norm than defect against it.
This result indicates how it is possible to leverage local adaptation with
respect to the Rules of Social-Exchange, Choice, and Order to promote
a ‘global’ system property.

1 Introduction

We are interested in engineering multi-agent systems for applications which re-
quire that the system be:

– open: in the sense of Artikis et al. [1] where agents are opaque, heterogeneous,
may be competing, and may have conflicting goals;

– fault-tolerant: agents may not conform to the system specification, but the
system should maintain operation, and demonstrate autonomic recovery;

– volatile-tolerant: agents may join and leave the system, but the ‘system’ itself
remains recognisably the same even if all the components change;

– accountable: who performed which action, and to what effect, is significant,
so social relations like trust, reputation, responsibility, liability and sanction
are all significant;

– decentralised: there is no central mechanism for either knowledge or control,
no agent is guaranteed to have full knowledge of the entire system or control
over the behaviour of all other components;

– ruled by law: there is a theoretical limit on those making decisions affecting
the constraints and/or requirements of behaviour of other components;

– mutable: there is a mechanism by which the specification itself can be changed
by the expressed consent of the participants.

Our approach to satisfying these requirements is based on organised adaptation
of agent societies. By an agent society we mean a formal specification of:
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– A set of social constraints (physical capabilities, institutional powers, norms
(permissions, obligations, and prohibitions), sanctions, and enforcement poli-
cies)

– A communication language
– A social structure (roles and the relationships between roles)
– Other socio-cognitive relations between agents (e.g., in particular, trust).

By organised adaptation we mean the intentional modification of such a spec-
ification to achieve a commonly-understood goal. This requires understanding
what can be adapted (for example, the set of social constraints, or individual
behaviour wrt. to that set); when to adapt; how to adapt (e.g. by voting); and
evaluating the outcomes of adaptation.

This is a wide-ranging programme of research, but within this paper we focus
attention primarily on the adaptation of social constraints and relations with
respect to the agent population to address the issue of fault tolerance (as here
understood). We define these constraints in terms of the Rules of Social-* :

– Rules of Social Exchange - The rules pertaining to the communication and
interaction of individual agents with one another in the society (eg. gossiping)
[2, 3]

– Rules of Social Choice - The rules defining how agents’ preferences and beliefs
can be aggregated (eg. elections and voting protocols) [4, 5]

– Rules of Social Order - Where the system characterises the permissions,
obligations and (institutional) powers of each agent (eg. rights to system
resources) [1, 6, 5]

We start from a scenario with multiple agents providing/consuming resources
to/from a central repository. However, the set of resources requested is more
than those available for distribution, so we define a set of social constraints
which determine which agent is allocated resources. Depending on how ‘sociably’
the agents act during this negotiation, the system may be destroyed, either by
agents becoming dissatisfied and leaving the system, or by the over-consumption
of resources.

In this scenario, the allocation of resources is decided by a vote. However,
Arrow’s Impossibility Theorem [7] states that any non-dictatorial voting method
can be manipulated by agents expressing a false set of preferences. Voters are
therefore capable of either responsible or selfish behaviour, and have the option
to choose between the two. But in a system with no social constraints, it is likely
that they will objectively find that selfish behaviour yields a higher short-term
return.

This suppression of collaboration has been widely studied in game theory as
the Prisoner’s Dilemma, but can be avoided if agents’ reputations affect their
global social standing [8]. As such, we present in this paper an agent endowed
with a reputation monitor based on voting histories, a learning algorithm, and
gossiping protocol. With these tools, we show that by adapting the Rules of
Social-*, it is possible to ensure that, in the absence of any central enforcement
mechanism, it is more preferable (in the long run) to comply with a set of norms
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than it is to violate them. For an open system, which any agent should be able
to participate in, this is an important requirement for long term stability.

In the next section, we describe the basic scenario and multi-agent system in
more detail. In Section 3 we describe the three primary mechanisms used in this
paper: the exploration/learning method, the reputation mechanism, and election
protocol. Section 4 describes experimental results from a ‘society’ of fifty agents
implemented in the PreSAGE platform [9]. We discuss some related work and
draw some conclusions in Section 5. In particular, we note that just by making
the assumption of responsible or selfish behaviour (i.e. without compromising the
assumption of heterogeneity), individual learning algorithms can be employed -
and improved with gossiping - to facilitate the successful induction of a newcomer
into an open agent society.

2 Background

2.1 Scenario and Multi-Agent System

The scenario is based on a ‘tragedy of the commons’ situation based on the
scenario presented in [10]. We also present the animation/simulation platform
which we have used to implement the system: further details of the platform can
be found in [9].

There is a set of agents U , interacting during an infinite sequence of time
slices t0, t1, . . . , tn, . . .; with each agent requiring, at each time slice, access to
resources stored in a bank B.

At each time slice, an agent may be present or absent: the set of agents present
at any t is denoted by At, At ⊆ U . To satisfy each of their individual goals, each
agent a ∈ At offers, at each time slice, an allocation of resources Oa

t for B, and
requests, at each time, an allocation of resources Ra

t from B. We stipulate that,
for all a ∈ At, Ra

t > Oa
t : in other words, the agents can only satisfy each of their

individual goals by mutual sharing their collective resources.
Clearly, not all of the requests can be satisfied without ‘bankrupting’ the

system. Therefore, at each t, the set of present agents At take a vote on who
should have their resource request satisfied. If an agent a receives a number of
votes greater than or equal to a threshold τt then its request is granted. The
problem then is that:

– If τ is too low, too many resources will be distributed, which this will result
in the “Tragedy of the Commons” as the system is bankrupted;

– If τ is too high, too few resources will be distributed, which this will result
in “voting with their feet” as dissatisfied agents leave the system.

The challenge then is for the agents to agree – again by a vote – a new value
for τ in time slice t + 1 based on their prediction of how many agents will be
present, available resources, and so on. In other words, they are adapting the
Rules of Social Choice, specifically:

the resource controller is obliged to grant access to the resource to a requester,
if the number of votes for the requester is greater than or equal to τ
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by manipulating the value of τ . We define responsible behaviour to be recognised
as voting for an a value of next-τ which will not bankrupt the system or under
distribute resources.

Formally, the external state of the multi-agent system M is specified, at a
time-slice t, by:

Mt = 〈U, 〈A, ρ, B, f , τ〉t〉

where:

U = the set of agents
At ⊆ U, the set of present agents at t

ρt : U → {0, 1}, the presence function s.t. ρt(a) = 1 ↔ a ∈ At

Bt : Z, the ‘bank’, indicating the overall system resources available
τt : N, the threshold number of votes to be allocated resources
ft : At → N0

The resource allocation function ft is constructed by:

ft(a) = Ra
t , card({b|b ∈ At ∧ vb

t (. . .) = a}) ≥ τt

= 0, otherwise

where vb
t : (. . .) → At is the expressed preference (vote) of agent b in time-slice t,

whose inputs are local parameters (in particular agents’ reputations) and whose
output is a preference array of agents in At. This second vote is the mechanism
which agents use to decide on who is empowered and permitted to receive and
use resources this round, and is therefore an adaptation of the Rules of Social
Order.

2.2 Simulation/Animation Platform

To animate this system and experiment with different agent behaviours, we have
used the agent society animation/simulation platform PreSAGE [9]. PreSAGE
is a rapid prototyping tool whose emphasis is on the simulation of agent societies
and the social relationships between agents, intended to facilitate the study of
the social behaviour of components, the evolution of network structures, and
the adaptation of conventional rules. To develop a prototype, it is necessary to
define agent participant types: this can be done by extending the abstract class
supplied with PreSAGE (to guarantee compatibility with the simulation calls
and provide core functionality like message handling etc.) or by defining a new
class.

To define the participant class for our purposes, we extend the PreSAGE ab-
stract participant with the following data and functions (we drop the superscript
a since it is implicit from context):
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〈 Name a,
Presence p : t → {0, 1},
Resources offered O : t → N,
Resources required R : t → N,
π a set of predictor functions which compute |At+1|
A set of Norms ν
Norm Utility N : ν → [0, 1]
Reputation Monitor r : U → {0, 1}
Satisfaction σ ∈ [0..1],
Satisfaction Increase Rate α ∈ [0..1],
Satisfaction Decrease Rate β ∈ [0..1],
v voting function which maps a list of agents’

historical actions, to an ordered list of agents Ap

representing a preference array 〉
The combination of the reputation tracking, norm evaluation and voting are
defined in section 3 as the tools we use to show how we can harness peer pressure
in the system.

Each time slice sees each active agent follow the system cycle:

Phase 1: set threshold
At = {a|a ∈ U ∧ ρt(a) = 1}
each agent a ∈ At uses πa to propose and vote on a value for τt

Phase 2: resource request
each agent a ∈ At offers resources Oa

t , and requests resources Ra
t

each agent a ∈ At computes reputation values for each agent b ∈ At

Phase 3: resource assignment
each agent a ∈ At uses va to vote for a vector of agents comprised of a ∈ At

ft is computed from the votes cast and τt

Phase 4: update
Bt is updated according to the resources allocated
each agent updates its satisfaction rating (see below)
each agent updates its utility histories for each Norm for reinforcement learning

Phase 4 is where an agent evaluates its personal success and potentially changes
its behaviour to try to improve its standing. In section 3, we elaborate in more
detail how our participants use the norm evaluation and reputation monitors
towards this goal.

2.3 Related Research

Although the use of learning techniques to change system parameters is addressed
in [12, 13], the scenario described here defines an institution to be the sum of its
participants rather than a separate entity. If we define this system as a set of agents
forming an institution, it should be emphasised that the only ‘universal’1 truth in
1 i.e. A brute fact not constructed relative to the agents’ beliefs (like for example A, ρ)

or a matter of conventional significance (B,f , τ ).
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Mt is the existence of an agent. All other social constructions exist as projections
of a composite of the beliefs of the population.

Normally we would begin by defining the existence of an agent in propositional
logic, and construct the institutional facts from this basis.

First Order Logic Set Theory
agent(a) ≡ a

member(a) ≡ a ∈ U

present(a, t) ≡ a ∈ At

In this formalisation however, we have considered the concept of membership
of the institution (a ∈ U) and the propositional fact agent(a) to be equivalent.
This should not be confused with membership of the temporal sub group of U ,
i.e. a ∈ At which is an institutional fact rather than a brute fact. This can be
illustrated if we assume all participants believe a to be active in time slice t.
If a did not share this belief, relative to the institution it would still be true,
including all the implicit sanctions regarding unfulfilled obligations.

Therefore if an agent is empowered by an institution norm to perform a speech
act in the sense of Jones et al. [11] we should not infer the institution is tangible,
the institution exists only as a marker to supply context. If agents believe these
norms to be true, then relative to their perception they are. In another exam-
ple, although we have referred to ‘the bank’ as an external agency, a physical
exchange of resources never takes place, the fact that agents believe the resource
has changed hands is sufficient. Whether the resource itself takes physical form
and is centralised is a separate problem, as it is only entities that hold beliefs
about the institution which make up a society.

The research most closely aligned with the current work is the foundational
work of Axelrod [14] on the evolution of norms2. In this work, he posited a norms
game, in which an individual has an opportunity to defect against a norm, as
determined by its propensity to boldness. If it defects, then it gets a positive
payoff, and all the others get a negative one. A defecting agent may or may not
be seen (to defect); if it is seen by another agent then the agent may choose to
punish or not, as determined by its propensity to vengefulness. If it chooses to
punish then the punished agent (the defector) gets a large negative outcome,
and the punishing agent a small negative outcome (i.e. there is a cost associated
with enforcing a norm).

Axelrod ran computer simulationswhere thepopulation changesover a sequence
of generations, whereby those agents with more successful boldness/vengefulness
strategies producemore descendants than less successful ones (keeping a fixed pop-
ulation size). The outcome was, starting from an average level of boldness and

2 N.B. An Axelrod norm refers to a general social norm, which can arguably be decon-
structed in terms of the norms defined by Pitt et al [5]. As an example, a guest at
a dinner party is generally obliged to request permission to smoke from an empow-
ered entity; which by convention is the host. We do not make a distinction between
defecting against an Axelrod norm, or a norm as defined here.



Peer Pressure as a Driver of Adaptation in Agent Societies 197

vengefulness: first boldness fell, because it was costly to be bold when vengeance
was (relatively high); then vengefulness fell, as was is costly to be vengeful without
direct benefit; then boldness rose sharply, destroying the restraint originally shown
– as Axelrod notes: “a sad but stable state” ( [14]:p1100).

To redress this situation, Axelrod introduced a variant of the game with a
metanorm, in this case the punishment of defection may or may not be seen, and
not punishing itself may be punished. So there is some incentive to be vengeful.
Axelrod simulations now showed that if a population started with ‘sufficient’
vengefulness the restraint could be maintained, but if not, then the metanorms
game collapsed just like the norms game.

To some extent, the scenario in this paper is a partial reconstruction of
Axelrod’s norms game, with some important variations. The four phases of each
time slice are comparable to one path in the norms game, where (Phase 1) the
agents vote either selfishly or responsibly (defect or do not defect); (Phase 2)
every agent sees what each other agent has done; (Phase 3) agents punish defec-
tors through the reputation mechanism; and (Phase 4) agents update behaviour
based on the reinforcement learning (notionally equivalent to the production of
the next generation).

However, in our scenario, there are pre-established conventional rules, with a
meta-norm enforcing a ‘sociable’ adaptation of these rules. Therefore we do not
deal with generations of agents and the evolution of norms, but with one gener-
ation (whose numbers may change, e.g. when a new selfish agent is introduced)
and the robustness of its norms wrt. maintaining a stable state in face of poten-
tially disruptive components (i.e. when a new selfish agent is introduced). Our
agents do not perform game-theoretic decision making along boldness vs. venge-
fulness dimensions, but instead express a preference (a vote) based on a larger
number of local parameters, thus the internal complexity of our agents, while
hidden from general view, is greater than the individual players of Axelrod’s
game.

Furthermore, the two votes required, one for the value of τ and one for the can-
didate order, require each agent to express preferences. This signalling introduces
an element of communication which side-effects the game, and in combination
with the reputation system and learning (individual adaptation) provides the
robustness to resist the disruption of selfish agents.

3 Mechanisms for Peer Pressure

3.1 Overview of Mechanisms

Figure 1 illustrates the cycle through which we can maintain a stable system
with self-enforcing behaviour using peer pressure. The voting functions and pat-
terns of each agent are public, and will feed into the reputation monitors of each
participant. The reputation monitor then generates a list of preferred agents
derived from how socially each agent is perceived to be acting. This vote gener-
ates a result which depending on a win or loss of resources, drives the learning
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Reinforcement Learning Voting Functions Reputation Monitor

Phase 1: Set Threshold
Phase 2: Request Resources

Phase 3: Resource Assignment
Phase 4: Learning Update

Voting Behaviour

Candidate information

Fig. 1. The mechanisms and dataflow for each timecyle

algorithm of an agent. An agent will then choose a voting behaviour (social or
antisocial) which the learning algorithm calculates to give the highest return.

3.2 Voting Functions

As defined in section 2.1, τ will symbolise the threshold number of votes an agent
requires from the population to receive resources, and is the metric the agents
use to adapt the Rules of Social Choice. In order to select an appropriate value
we must ensure that the electorate is not split. To avoid this we select τ using
a two round election system where round one consists of suggestions for τ , and
round two a vote between the two most popular suggestions. This way even if
the responsible voters are split on their suggestions, it is probable that at least
one of the popular choices is closer to theirs than a selfish one.

Once τ has been decided we can move on to resource requests, offers, and the
main vote for who will receive resources this time slice. For simplicity we have
fixed the resource requests and offers as we believe the significance of the intro-
duction of a normal distribution would not justify the increase in complexity3.
We have found a plurality vote in this round to be ineffective for discouraging
antisocial behaviour, as the ideal value of τ for a system cycle, tends to be less
than or equal to the number of votes that an agent is granted to use. For example
if each agent is allowed to vote for two candidates to receive resources, the value
of τ which will ensure a stable resource stockpile for a responsible population,
tends to oscillate around two. Therefore if we allow agents to use these votes for
themselves, selfish behaviour will almost always be rewarded. We need to force
agents to be less introspective, as the solution to this problem lies in the opinion
an agent has of its neighbours.

To this end we have changed the system’s main voting protocol to Borda which
requires agents to vote in the form of an ordered preference list4. Repetitions in
the list will be ignored and incomplete lists will be penalised. Agents behaving

3 It is the deficit which is important rather than how it is distributed. Although
reputations could be influenced by greed ie. disparate offers and request, this would
just reinforce existing mechanisms and not demonstrate anything extra.

4 τ in this case, represents the minimum number of Borda points required to receive
resources.
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Table 1. Borda preference array interpretation used when aggregating the votes

Preference Array Vote weight
p1 x
p2 x-1
. .
. .

px+1 2
px 1

px−1 0
. .
. .

pm 0

selfishly are loyal to no one and will rank themselves before anyone else. Respon-
sible agents however, will conscientiously rank the voters, leaving selfish agents
with no extra Borda points. It will therefore be the agents behaving responsibly
who will receive on average a larger number of Borda points. The interpretation
of a Borda preference array can be viewed in table 1 in which x = the number
of agents receiving points; we define this to be approximately half of the total
population (ie. |At|).

3.3 Reputations and Behaviours

In order to implement a Borda election, agents must diligently rank their neigh-
bours in a preference relation. This requires the use of a reputation monitor
which can distinguish between selfish and social behaviour. Then depending on
individual reputation values the preference relation can be constructed. Due to
their activity profiles agents do not have perfect knowledge of the system. They
may rejoin with no reputation information on a number of new agents. It is im-
portant that we carefully define how to recognise antisocial behaviour as quickly
as possible.

The system has therefore been specified in terms of two poles of behaviour, re-
sponsible and selfish. Agents behaving responsibly are defined to be altruistic cap-
italists, putting the needs of the system before their own, but expecting some sort
of return for their efforts. The priority lies in avoiding the tragedy of the com-
mons and bankrupting the system. For agents which are attributed the same rep-
utation we make sure to randomise their positions between one another. This can
be achieved by basing a preference relation on a random variable which takes the
reputation as an input rather than a strict ordering based on historical behaviour.

Agents behaving selfishly are simpler than their responsible counterparts as
their duty is only to themselves. They will always vote so that they are first
on their preference list and vote for a low value of τ ; increasing the likelihood
of receiving resources. These actions cannot be hidden from their neighbours
so the gamble is that the ‘pro’ of voting for oneself will offset the ‘con’ of a
poor social standing. Needless to say, a system comprised solely of selfish agents
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would bankrupt, so our aim is to create a set of norms that rewards responsible
behaviour while punishing selfish.

We define a set of prediction functions randomly initialised and attribute a
set to each agent. These predictors are used by the responsible population to
calculate the expected optimal τ for the coming time cycle. As the simulation
progresses, agents gather historical information on what a good value of τ would
have been in the previous timecycles. Agents can evaluate how successful their
predictors are and rank functions returning a good estimate of τopt over less
accurate ones.

We employ a set of predictors, each constructed using a randomly weighted
average of historical values. We take xi to be a random value between zero and
one adhering to a uniform distribution.

wi =
xi∑
∀j xj

pred =
∑
∀i

wi.ai

where ai refers to the historical values.
The historical information is selected by collating all the votes and ranking

the most popular agents. We then hypothetically give each agent resources until
all the offered resources have been exhausted. The last agent to receive resources
then becomes the benchmark for τ , and we enter the number of votes that it
received as the historical τ threshold.

An important duty of the responsible population is to exclude agents which
behave selfishly. This meta-norm is key to the peer pressure mechanism, and
the sole sanction which we need in order to make it clear to newcomers which
behaviours are acceptable. If a sanction for selfish behaviour didn’t exist, the re-
sponsible agents would observe a higher return for selfish behaviour and consider
defecting.

The way in which agents can recognise selfish behaviour lies in the voting
for τ . An agent’s reputation monitor will consider any neighbour to be selfish if
their vote differs by the ratio threshold defined below. For these experiments, we
have defined the assumption of selfish behaviour to be when γ > 0.4, but this
will vary for different implementations.

γ =

{ |voteneigbour−votemy |
voteneigbour

if voteneigbour > votemy

|voteneigbour−votemy |
votemy

if voteneigbour < votemy

Note that an agent will immediately be relabelled as ‘responsible’ if it changes
it’s voting patterns accordingly, and vice versa. This is in keeping with Axelrod’s
work on promoting co-operation by immediately punishing and rewarding un-
desirable and desirable behaviour. Using this dynamic, agents can intelligently
adapt the Rules of Social Order to maintain their a ‘moral’ context of acceptable
and non-sanctionable behaviour.
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3.4 Reinforcement Learning

Reinforcement learning demonstrates how an agent can test and evaluate sys-
tem norms. With limited prior knowledge of the system an agent can ascertain
through trial and error what are the globally acceptable norms. We use a basic
exploration learning algorithm, which treats the dialogic framework as a finite
state machine. An agent will maintain a history of previous actions and their re-
spective payoffs. Using this information, depending on a random variable linked
to an exploration metric, agents will either try to maximise their utility by choos-
ing either by what it believes will been the most lucrative action, or ‘explore’ by
choosing an arbitrary action.

We link the system norms to a set actions x ∈ X in states s ∈ S using the
function g(s), with buffers of size m saving reward information rk at time k. The
Norm evaluation function can be defined using:

Nt+1(g(s, x)) =
1
m

m∑
i=1

(rki)

where

rk ∈ [0, 1]

Learning takes place during the declaration of the election result. The behaviour
currently being used will interpret the list of winners as r ∈ {0, 1}, and will
update the history for this action accordingly. In our system we have only two
histories to update as we have only one state and two ‘actions’ representing
responsible and selfish behaviour.

Behaviour for the next timecycle depends on the exploration metric ε which
we have fixed in these experiments to 0.95t

y ∼ U(0, 1)

x′ =

{
argmaxx∈XNt (g(s, x)) , if y < ε

Random Action, if y > ε

This allows a participant to try all possibilities, before eventually settling into
what it considers to be a locally optimal behaviour.

4 Experimental Results

In this section we describe how an agent is animated in the system, followed by
the experiments which have been run. We include several illustrative examples
to underline the effects which peer pressure has on the system, and talk through
the social forces that brought it about.
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4.1 Agent Animation

Agents begin their life cycle with a role assignment we assume to have been
established in advance. This can be done through a role assignment protocol as
outlined in [5]. The chair of the session then calls for participation in the system,
and the voters send confirmation messages. A voter has an activity profile which
is linked to a Markov chain, resulting in a stable population, but as mentioned
in previous sections they may refuse to participate if they no longer consider
the system to be viable. A confirmation of participation is tantamount to a
commitment to provide resources in this time slice, regardless of the result.

During the τ selection vote, agents’ votes are kept public so they can update
their reputation monitors accordingly. The main vote follows from the τ selection
by opening a ballot for the agents who voted in the first round. It is at this point
that agents need to form their preference arrays and send them to the chair
for collation. After a defined time-out the chair will accept no more votes and
calculate how many resources are left in the system post distribution. For brevity
the optimal value of τ , for use in the prediction functions, is calculated by the
chair and circulated with the election results. This reduces the complexity of the
system significantly.

Once agents know whether they have received resources this timeslice, they
are able to update how successful their state-action pair was this time slice, and
adjust their satisfaction rating. Satisfaction is representative of an agent’s overall
success in the system and is maintained parallel to individual action histories.
We define satisfaction to lie between zero and one, and to be governed by the
equations:

σt+1 = σt + (1 − σt)α

σt+1 = σt − σtβ

where the former is used to improve an agent’s satisfaction in a society, and the
latter to regress it. α and β represent the satisfaction increase and decrease rates
respectively.

We have included a gossiping routine, for some preliminary work on adapting
the Rules of Social Exchange. This takes the form of sharing election results with
one another. Agents can evaluate norms based on personal experience, and the
experience of others, resulting in faster learning. These results are however at a
preliminary stage, and agents to do not yet vote to change these rules.

4.2 Experiments

We have shown in [10] that this experiment is stable amongst a group of these
agents who have a pre-established a responsible moral context. We plan to intro-
duce several new populations of agents in an attempt to destabilise the system.
These populations will take the form of a control group of responsible agents, a
set of purely selfish agents, and finally two sets of learning agents as described
in section 3, one which incorporates gossiping and another which doesn’t. We
will examine how and whether the learning/exploration algorithm works in con-
junction with the reputation monitor.
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4.3 Results

We include here an example of a simulation of 55 agents. We start with a com-
munity of 50 responsible and stable agents, and introduce a set of 5 new ones. We
have chosen to illustrate the three possible convergences of the system. Either
an agent is accepted, excluded permanently, or excluded until they conform to
the system norms. The following figures are typical examples of simulation test
runs as convergence analyses will take several weeks to compile. Figure 2 shows a
control group of responsible agents being added to the system at timecycle 3000.
This is to establish a benchmark on how quickly a set of agents will be accepted
into the institution when then know in advance which norms to adhere to. It
is clear from the graph that for any new population the exclusion mechanisms
initially work against them, and that joining this society is a matter of ‘speculate
to accumulate’.

Figure 3 shows another control group of selfish agents being added to the sys-
tem at timecycle 3000. This demonstrates the efficiency of the exclusion sanctions
and the agents’ ability to recognise selfishbehaviour. We note that around time
cycle 4500 the satisfaction for the selfish agents greatly increases. This is due to
a surplus of resources, and a low value of τopt. Selfish agents who always vote
for a low τ become difficult to distinguish from responsible agents. An inter-
esting side note we see that in Figure 3 the average satisfaction goes slightly
up for the responsible agents when the selfish agents enter the system. This is
because the selfish agents are being excluded from distribution of resources, and
are effectively forfeiting their contribution.

Figures 4 and 5 are typical examples of a group of learning agents converging
towards responsible behaviour. Figure 4 demonstrates how an agent which only
learns based on personal experience of the system will eventually join the re-
sponsible population. We see from this typical run that the newcomers become
indistinguishable from the original population around timecycle 5000. This is
in contrast to Figure 5, where the convergence is much faster. This is because
agents in Figure 5 use gossiping to share information on past successes and fail-
ures. This greatly improves the accuracy of the action histories in each agent,
and appears to yield a similar convergence rate to the control group.

4.4 Summary of Results

The experiments reported here offer additional supporting evidence for Axel-
rod’s original claims, make their own contribution, and serve as a basis for a
successively richer set of experiments in further work. The experiments confirm,
as stated by Axelrod, that norms and conventions are a powerful mechanism
for resolving conflicts of interest in disputes between multiple parties even in
the absence of a central authority. In addition, social norms (e.g. the ‘norm’ is
to vote for a ‘reasonable’ value of τ) and social constraints (i.e. the reputation
mechanism) work well in preventing minor defections given that the cost of en-
forcement is low. In their own right, the experiments show how effective it is
to give control over the adaptation of rules to those whose outcomes are most
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Fig. 2. Graph of the average satisfaction of an initially responsible population admit-
ting a group of new responsible members at time cycle 3000
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Fig. 3. Graph of the average satisfaction of an initially responsible population admit-
ting a group of new selfish members at time cycle 3000

directly affected by the adaptation (cf. [15]), and how it is possible to leverage
local adaptation with respect to a set of rules to achieve an intended ‘global’
system property.
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Fig. 4. Graph of the average satisfaction of an initially responsible population admit-
ting a group of new learning members at time cycle 3000
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Fig. 5. Graph of the average satisfaction of an initially responsible population admit-
ting a group of new learning members at time cycle 3000

There are several lines of further investigation opened up by this work. One is a
more fine-grained behaviour rather than responsible or selfish. Rather, we would
have a propensity to selfish behaviour, and correspondingly allow a propensity
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to punish. This would necessitate a more subtle implementation of forgiveness
which is an important element of autonomic systems for self-repair [16]. A second
line of investigation concerns a peer to peer system allowing a more advanced
form of ‘gossiping’ between agents, allowing groups to converge their opinions.
For this, we could use the models of opinion formation formalised by [3].

5 Summary and Conclusion

In this paper we have outlined an agent society which maintains fault toler-
ance through peer pressure. We chose three mechanisms to create this dynamic:
The reputation monitor, the reinforcement learning, and the voting functions.
The agents used these tools to adapt the Rules of Social-*, out of which emerged
emerged a system comprised of responsible agents which when pitted against an
unsure population effectively pressurised the latter into their preferred way of
behaving (i.e conforming to a norm, in the sense of Axelrod).

Through the platform PreSage, we have shown that a social norm can be en-
forced in a system with a strong moral pretext without the use of a centralised
enforcement agency, given that the cost of enforcement is lowornon-existent. How-
ever, it would be interesting to investigate the effects of scale (size of population)
and the corresponding increased cost of a more centralised enforcement mecha-
nism. For example, in a relatively small society, enforcement could be based on
peer-pressure, word-of-mouth or other reputation mechanism (as here) with low
or no cost. In a relatively large society where neighbours are governed by a geo-
location function, central reputation registers could be provided, with punishment
provided by the equivalent of a ‘police force’, but at a much higher cost.

On a closing note, we also agree with Axelrod [14] when he observes that the
probabilistic effects and complexities of population diversity make it difficult (if
not impossible) to determine the consequences of a given behavioural model.
However, computer simulation techniques offer a viable alternative which can
reveal the system dynamics and stable states, as well as specific influence of
identified agent behaviour profiles.
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Abstract. The multi-agent resource allocation problem is the negoti-
ation of m resources among the n agents of a population, in order to
maximize a social welfare function. Contrary to some former studies, the
purpose is here neither to simply determine a socially optimal resource
allocation nor to prove the existence of a transaction sequence leading
to this optimum. The objective is to define the individual behavior of
the agents which leads to an optimal resource allocation as an emergent
phenomenon, based on any kind of contact network and on any utility
value. With this intention, we study various agent behaviors in order to
identify which one leads to an optimal resource allocation.

After a study of different transaction types, we show that, among the
set of studied transactions, the so called “social gift” transaction, is the
most efficient one for solving the utilitarian resource allocation problem.

1 Introduction

The resource allocation problem can be defined as the allocation of a set of
resources among a set of entities, that have preferences over this resource set,
in order to maximize an objective function. Centralized approaches tackle the
multi-agent resource allocation problem as an optimization problem. Such cen-
tralized approaches require perfect information to determine an optimal alloca-
tion, whereas nowadays, people accept less and less to reveal their information.
The agents have to report their preferences on the resources to an auction-
eer, which then determines the final resource allocation. Different transaction
models have been suggested for given types of auction [4,15]. These approaches
make strong assumptions on the communication possibilities of each agent and
the provided resource allocation may not be reachable in practice. The lack of
adaptability of these centralized approaches constitute another important draw-
back. Indeed, a small variation in the data leads most of the time to a restart of
the whole solving process. Thus, centralized approaches are not well-adapted to
agent communities, especially when dynamic systems are considered.

Alternative approaches have been then studied in order to fulfil these re-
quirements. These approaches are based on a population of autonomous agents
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who negotiate among them according to their own preferences. Then, the ini-
tial resource allocation evolves by means of local negotiations among the agents.
Mathematical studies have been done along theorems on the existence or not of
a transaction sequence leading to an optimal allocation [14]. Classes of utility
and payment functions have also been studied [8] in order to design negotiation
processes which end after a finite number of iterations. Some authors focus the
acceptability criterion and the transaction properties [9]. They describe the im-
pact of classes of deals on the efficiency of the resource allocation process. Other
authors have defined agent behaviors, and identify conditions favoring equitable
deals [10] or the envy-freeness in the resource allocation process [5,7]. However,
these studies does not consider the agent network: they assume that an agent is
able to talk with all other agents inside the community.

Most of these studies cannot be directly applied in real world application, due
to assumptions made. In contrast, our multi-agent approach can be used in prac-
tice to solve problems like the selfish routing with incomplete information [11],
some issues in peer-to-peer networks [16], or to provide an electronic commerce
system in a social network. In this paper, we introduce the notion of contact net-
work. Such a graph represents the relationship among agents. We consider that the
contact network can be any connected graph, ranging from complete graphs, to
small worlds [1]. We seek to find out the simplest and most efficient transactions,
which lead negotiation processes to an optimal resource allocation as an emergent
phenomenon, or when the need arises, to a socially close resource allocation.

Section 2 describes the resource allocation problem and the assumptions of
this study. Section 3 details the centralized solution, whereas Section 4 describes
the negotiation process and discusses its convergence issues. Section 5 details
the experiment protocol and the evaluation criteria of the negotiation processes.
Finally, Section 6 investigates further the social gift transaction, and the impact
of the agent behavior in a negotiation process based on such transactions.

2 Multi-agent Resource Allocation Problem

2.1 Definitions and Notations

The multi-agent resource allocation problem is based on a population P , P =
{a1, . . . , an}, and on a set R of available resources, R = {r1, . . . , rm}.

This set of resources R is initially distributed over the population of agents
P . Each agent a owns a bundle of resources, Ra which contains ma resources. A
resource allocation A is a distribution of all the resources over the agents, which
can be expressed using the resource bundle of each agent: A = {R1, . . . ,Rn}.
Let A = {A1, . . . , Ap} be the set of all the possible allocations.

The preferences of the agents are here expressed by means of a modular utility
function [18], also called 1-additive function in [6,12]. They are defined using
the following functions: ua : Rma → IR and u′

a : R → IR with the following
relationship:

ua(Ra) =
∑

r∈Ra

u′
a(r).
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Even if their mathematical definitions are different, since they are used in the
same purpose, ua will be used equally in order to simplify the notations.

The usual definition of a transaction is the following one: A transaction, which
is initiated by the agent a, δa(A, A′), is a pair of resource allocations, where A
and A′ define the state of the multi-agent system respectively before and after a
given negotiation involving a given subset of agents. In practice, an agent does
not have a global view of the system. This is the reason why, in our study, we
consider that initially, agents only know their preferences and their neighbor list.
This implies that transactions are based on local information only. Let Ra↔a′

be the set of involved resources during a transaction between agents a and a′.

Definition 1 (Transaction). A transaction, initiated by an agent a and in
which agents a′, a′′, . . . are involved, is a list of resource sets that are exchanged
between the agent-initiator and the involved agents.

δa = [Ra↔a′ ,Ra↔a′′ , . . . ]. (1)

In our study, we focus on a homogeneous agent society, in which resources are
assumed discrete, not sharable, not divisible, not consumable and unique. Hence,
the resources cannot be modified by the agents, but only transacted during the
negotiation process.

2.2 Contact Network

In real life, nobody knows everybody ! Thus, the relationships among the agents
can be represented by means of a graph: the contact network. Each agent has
a list of neighbors with whom he is able to talk. Most of the studies rely on
the hypothesis of a complete and symmetric contact network. Symmetric means
that if agent a knows agent a′, then a′ knows a. Complete implies that any agent
is able to talk with any other agent in the multi-agent system: This has a strong
impact on the resource traffic, and then on the negotiation process.

However, this hypothesis is not realistic as soon as real world applications are
considered. For instance, in the case of social networks, a person only knows a
subset of the overall set of actors in the network. In this study, we consider that
the contact network can be any connected graph, ranging from a complete graph
to a small-world [17].

According to the allowed transaction types, a negotiation process which con-
verges towards an optimal resource allocation in the case of a complete contact
network, may only converge toward a sub-optimal resource allocation in the
case of a restricted contact network. The mean connectivity degree of a contact
network is defined in this study as the average number of neighbors of an agent.

2.3 Social Welfare

Social welfare functions [2,3,13] are used in order to evaluate a multi-agent sys-
tem like a whole, through a welfare evaluation of each agent in the system.
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Definition 2 (Utilitarian welfare). The utilitarian social welfare, denoted
by swu, is defined as the summation of all agent welfare. For a given resource
allocation A:

swu(A) =
∑
a∈P

ua(Ra) =
∑
a∈P

∑
r∈Ra

ua(r). (2)

The purpose of our study is to design the individual agent behavior which leads to
an optimal resource allocation, as an emergent phenomenon, after a finite number
of negotiations, based on any kind of contact network and on any utility value.
This emergent resource allocation should be as close as possible to a socially
optimal resource allocation, for any arbitrary connected contact network.

3 Centralized Approach

Of course, this resource allocation problem can be solved using a centralized
framework. It can be simply solved by allocating each resource to the agent
who estimates it the most, as described in Algorithm 1. This algorithm is quite

Algorithm 1. Centralized Solving
begin

forall r ∈ R do
bestAgent ← a ;
bestV alue ← ua(r) ;
forall a′ ∈ P do

if ua′(r) > bestV alue then
bestV alue ← ua′(r) ;
bestAgent ← a′ ;

end

end

end
allocate r to bestAgent

end

simple, and gives an optimal resource allocation, for any utility values. However,
such an algorithm does not consider the contact network and thus makes the
implicit assumption that an agent is able to talk with any other agent. It may
lead to a solution which is not reachable in practice. Moreover, there is no notion
of private information, and a complete knowledge is then required, which is not
realistic.

The social value, which is obtained with such a method, corresponds to a
global optimum.

Definition 3 (Global optimum). A resource allocation is a global optimum
if there does not exist any other resource allocation with a better social value.
A global optimum is independent of the kinds of transactions that are allowed
among the agents. Moreover, the social value is unique but several resource al-
locations can correspond to it.
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Table 1. Agent preferences

Agents
Resources

r1 r2 r3 r4 r5 r6

a1 10 7 10 9 2 1
a2 6 10 3 4 8 3
a3 1 2 1 2 1 6

Example 1. Let an example illustrate this centralized approach. Let us con-
sider a multi-agent system which is constituted by a population of 3 agents,
P = {a1, a2, a3}, and a set of 6 available resources, R = {r1, r2, r3, r4, r5, r6}.
Their preferences are expressed by means of a utility function, as described
in Table 1. For instance, for the agent a1, resources r1 and r3 are more valu-
able than r4, which is itself more valuable than r2, then r5 and finally r6. The
centralized algorithm then returns an optimal allocation A = [R1,R2,R3] =
[{r1, r3, r4}{r2, r5}{r6}] which is associated with the social welfare swu(A) =
29 + 18 + 6 = 53.

4 A Distributed Approach

The purpose of our distributed approach is to define the individual behavior of
the agents which leads to an optimal resource allocation as an emergent phe-
nomenon, at the end of the negotiation process. At the opposite of centralized
approaches, the distributed approach presented in this section can be based on
any type of contact network, as discussed in Section 2.2. The social value, which
is obtained with the emergent allocation, corresponds to a T -global optimum.

Definition 4 (T -global optimum). A resource allocation is a T -global opti-
mum if there does not exist any sequence of transactions, belonging to the set of
allowed transactions T , that leads to a resource allocation with a greater social
welfare value. Such an allocation is most of the time suboptimal. If a T -optimum
has a social value as great as a global optimum, then the distributed algorithm is
efficient. However, depending on the initial allocation or on the allowed trans-
action types, this global optimum may not be reachable.

In a multi-agent resource allocation problem, compensatory payments are usually
allowed during a negotiation process. Allowing the compensatory payments, from
an agent’s point of view, corresponds to an extension of the acceptable transaction
set. However, even if the use of money is constrained (no money creation during
a transaction), there is often no limit on agent budgets in order to perform the
transactions in most published studies. Questions related to compensatory pay-
ments are beyond the scope of our study and, hence, are not studied in the sequel.
Our study is restricted to a specific transaction family: Bilateral transactions in
which only two agents at a time can be involved. We next discuss the cases where
transactions are rational or more generally subject to some acceptability criteria.
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4.1 Acceptability Criteria

Such criteria have a strong impact on the negotiation process. In [14], it has been
proved that there always exists a sequence of non rational original contracts lead-
ing, from any initial resource allocation, to an optimal resource allocation. An
original contracts corresponds to the purchase of a resource. The existence of
such a sequence does not mean the end of the negotiation process with the op-
timum. Indeed, if an agent can accept any kind of deal, then the negotiation
process will not be able to stop. Since the agents are not rational, they are not
able to distinguish a profitable deal from another one. Thus, without a proper de-
sign, no resource allocation will emerge from the negotiation process. It is really
important to be sure that the process stops in a finite number of negotiations, in
order to obtain an optimal resource allocation, without centralized management.
Otherwise, even if the resource allocation process reaches an optimal state, the
agents will continue to negotiate among them. Acceptability criteria help the
agent to determine the profitability of a transaction, with respect to his behav-
ior. Such criteria restrict a lot the set of possible transactions among the agents.
A negotiation process ends when no agent in the population is able to find an
acceptable deal.

Let two agents, a and a′, illustrate the considered criteria. The agent a initiates
a transaction δa(A, A′) with an agent a′: the initial resource allocation A =
[. . . ,Ra, . . . ,Ra′ , . . . ] evolves towards a new one A′ = [. . . ,R′

a, . . . ,R′
a′ , . . . ].

Definition 5 (Rational agent). A rational agent is an agent who only accepts
transactions that increase his utility. If the agent a is rational, he accepts a
transaction only if:

ua(R′
a) > ua(Ra).

The rationality criterion is the most widely used in the literature, especially in
the case of non cooperative selfish agents.

Definition 6 (Rational transaction). A rational transaction is a transaction
in which all involved agents are rational. If a transaction is rational, involved
agents accept it if:

ua(R′
a) > ua(Ra) and ua′(R′

a′) > ua′(Ra′ ).

Proposition 1. A multi-agent resource allocation process that uses rational
transactions ends after a finite number of transactions.

However, this criterion restricts a lot the set of possible transactions, and may
lead the negotiation process to a sub-optimal resource allocation.

Another criterion that ensures the end of the negotiation process after a fi-
nite number of transactions is the sociality. This criterion is based on a local
evaluation of the social welfare evolution.

Definition 7 (Social agent). A social agent is an agent who can only accept
transactions that increase the social welfare function of the multi-agent system.
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Definition 8 (Social transaction). A transaction is social if the value of the
social welfare function considered increases. Such a transaction can only be ac-
cepted by the involved agents if:

sw(A′) > sw(A), A, A′ ∈ A such that A
δ−→ A′.

In order to determine the value associated with the social welfare function, it is
essential to have a global knowledge of the multi-agent system state: The utility
of each agent is used to compute the social value. However, it is possible to
determine the variation of this value based on local information only: It is then
not necessary to determine its value:

swu(A′) > swu(A)

⇒
∑
a∈P

ua(R′
a) >

∑
a∈P

ua(Ra)

⇒ ua(R′
a) + ua′(R′

a′) > ua(Ra) + ua′(Ra′).

Indeed, since only two agents are involved in the current transaction, only their
resource bundle changes. Then, the utility of the agents that are not involved in
the transaction can be considered as a constant value. Let us note that a rational
transaction is always social, whereas the opposite is not true.

4.2 Transaction Kinds

Our study is restricted to bilateral transactions, i.e., transactions involving si-
multaneously two agents. Indeed, our aim is to define the simplest agent behavior
which lead the negotiation process to an optimal resource allocation, in order to
favor the scalability of the algorithm. Three types of bilateral transactions can
be distinguished. Others are combinations of these basic transaction kinds. In
each case, the agent a initiates the deal and negotiates with a neighbor a′. They
respectively own ma and ma′ .

First, the gift transaction. During such a transaction, the initiator gives one
of his resources to the selected neighbor.

Then, the swap transaction. Each agent provides a unique resource. This
transaction is symmetric, and the number of resources per agents cannot vary: an
agent that initially owns ma resources, will have the same number of resources
at the end of a swap sequence. Hence, an optimal resource allocation can be
reached only if the initial resource allocation has the same resource distribution
as one of the optimal resource allocations. The total number of swaps between
a and a′ is ma × ma′ .

Finally, the cluster-swap (CS) is a transaction during which the agents can
involve a subset of their resources. This transaction can be asymmetric. The
swap is a particular case where both agents involve only one resource each.
The number of possible cluster-swaps between a and a′ is 2ma+ma′ . The cluster-
swap is not only a generalization of the previous transactions. Indeed, depending
on the considered acceptability criterion, a cluster-swap transaction can not be
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decomposed into a sequence of swaps and gifts where each transaction satisfies
the same criterion.

When combining these three kinds of transactions with the acceptability cri-
teria which are defined in Section 4.1, an exhaustive set of negotiation process
can be defined.

1. the social gift,
2. the social swap,
3. the rational swap,
4. the social cluster-swap,
5. the rational cluster-swap.

A gift can be rational if the associated utility is negative. However, this transac-
tion is not considered since it only allows agents to deal resources with a negative
utility, which is too restrictive to obtain a significant welfare. Indeed, with such
an allowed transaction kind, the negotiation process ends as soon as every agents
have in their bundle only resources with a non-negative utility.

4.3 Negotiation Policies

The agent behavior is rooted and flexible, as described in Algorithm 2. An agent,
who initiates a negotiation, randomly selects one of his neighbor. During this
negotiation, he cannot change the selected neighbor. However, he can offer dif-
ferent resources. First, the agent-initiator sorts his resource bundle according to
his preferences. Even if agents are not rational, they always try to give their
cheapest resources first. Then, he offers his cheapest resource, and if the deal
is not acceptable, he changes the offered resource by a gradual increase of its
utility. If no acceptable deal has been found and the agent-initiator has no more
resource to offer, the negotiation thus ends.

Algorithm 2. Behavior of the agent-initiator a

begin
Sorts the resource bundle Ra ;
Selects randomly a neighbor a′ ;
for r ∈ Ra do

if the transaction δa is acceptable then
Performs the transaction δa ;
Ends the negotiation ;

end

end

end

Example 2. Let us consider the same multi-agent system as defined in Example 1,
with3 agents, 6 available resources and thepreferences described inTable1.Thene-
gotiation process starts from a random initial resource allocation A = [{r3, r5, r6}
{r1}{r2, r4}], associated with the utilitarian value swu(A) = 13 + 6 + 4 = 23.
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Table 2. Example of a negotiation process: a gift sequence

Initiator Participant Given Resource Current Allocation Welfare Value
a a′ r A swu(A)

- - - [{r3, r5, r6}{r1}{r2, r4}] 13+6+4 = 23
a3 a1 r2 [{r2, r3, r5, r6}{r1}{r4}] 20+6+2 = 28
a2 a1 r1 [{r1, r2, r3, r5, r6}{}{r4}] 30+0+2 = 32
a1 a3 r6 [{r1, r2, r3, r5}{}{r4, r6}] 29+0+8 = 37
a1 a2 r5 [{r1, r2, r3}{r5}{r4, r6}] 27+8+8 = 43
a1 a2 r2 [{r1, r3}{r2, r5}{r4, r6}] 20+18+8 = 46
a3 a1 r4 [{r1, r3, r4}{r2, r5}{r6}] 29+18+6 = 53

Table 2 described a sequence of social gifts, initiated by the agent a who involves
the agent a′ in a negotiation. Each line of the table describes the resource alloca-
tion and its utilitarian value for each step of the negotiation process. During the
first gift, the agent-initiator a3 gives the resource r2 to the agent-participant a1.
The example can also be done with negative utility values.

4.4 Communication Protocol

In order to compare and evaluate the different types of transactions, we develop a
multi-agent system with sequential negotiations: Only one agent at a time is able
to negotiate. Note that if parallel transactions were performed, except maybe for
very specific synchronization rules, it would only affect the convergence speed
but not the quality of the final allocation.

Fig. 1. Communication protocol
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The agent-initiator is randomly chosen in the multi-agent system. Agents ac-
ceptor refuse transactions according to their own criterion.Thenegotiationprocess
ends when no agent is able to find an acceptable transaction in his neighborhood.

The communication protocol is described in Fig.1. In the specific case of
gift transactions, during which only the agent-initiator gives a resource without
counterpart, the dashed part of the figure should be omitted. When the agent-
initiator a selects and offers a resource r, the involved agent a′ has to report
the utility that he associates with a resource r and offers a resource r′. Then,
the agent-initiator determines whether or not the transaction is acceptable. He
decides to perform the transaction if the acceptability criterion are satisfied for
both agents, or he has to determine who has to change his offer and then suggests
another resource. For instance, with a utilitarian social welfare function, the
test can be done on the comparison of what agents give and what they receive:
ua(r′) − ua(r) >? ua′(r) − ua′(r′). If no agent is able to suggest a different
resource, the negotiation then ends.

5 Experiments

The experiments have been done on multi-agent systems of various sizes. For
each of them, different types of contact network have been created, either with
a complete connectivity or with a random one with a mean connectivity of
25% (i.e., n

4 ). For each setting, a large number of multi-agent systems has been
generated, and in each case, 100 instances have been run using different initial
resource allocations. The agent-initiator is randomly chosen, and the speech turn
is uniformly distributed: no agent is able to talk twice if others did not talk at
least once. When no one is able to find an acceptable deal, the negotiation process
ends. Each resource can take an integer utility value between 0 and 100: The
utility value range has to be great enough in order to avoid too many optimal
resource allocations.

5.1 Evaluation Criteria

The evaluation of a negotiation process is not an obvious issue: Indeed, depending
on the considered negotiation process, it is always possible to find a metric that
makes it better than others. In order to avoid such biases, several metrics have
been considered:

Number of performed transactions. It is the overall number of transactions
that are performed during the negotiation process. Negotiations using restrictive
transactions, such as rational transactions, stop faster than negotiations using
more permissive transactions, such as social transactions.

Number of exchanged resources. Some transactions, such as the cluster-
swap, tolerate that an agent involves more than one resource at a time whereas
others prohibit this, such as the gift. One cluster-swap is equivalent to a sequence
of, at least, two gifts.
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Number of speech turns. It corresponds to the number of negotiation that are
initialized. A rooted behavior, in which the initiator cannot change the selected
neighbor, means a higher number of speech turns during the negotiation process.
If associated with the number of performed transactions, the rate of aborted
negotiations can be deducted.

Number of attempted transactions. Depending on the agent behavior, it
could be more or less difficult to find an acceptable deal: a flexible agent behavior,
in which the agent can change the involved resource, means a higher number
of attempted transaction during a single negotiation. This measure gives an
estimation of the negotiation length.

In addition to these criteria, we evaluate the gap between the optimal social
value that is obtained by means of the centralized approach, and the social value
associated with the emergent resource allocation. We also evaluate the relative
standard deviation, which corresponds to the deviation among the social value as-
sociated with the emergent allocation. A large value means that the considered
negotiation process is very sensitive to the initial resource allocation, and thus the
quality of the emergent allocation quite vary.

5.2 Utilitarian Efficiency of the Transactions

A summary of all the experiments are presented in this section. First, the results
related to a complete contact network are presented, then the results related to
a random contact network with a mean connectivity degree of n

4 . The size of the
instances are characterized by n, the number of agents and m, the total number
of resources that are distributed randomly at the outset.

The results obtained with a complete contact network are summarized in Table
3. For instance, the process involving a population of 50 agents who negotiate by
means of social gifts leads to a resource allocation which corresponds to 95.27% of
the optimal social value. The quality of the emergent allocation can vary of 0.74%.

The social gift and the social cluster-swap obtain almost similar results, which
are better than the ones obtained with other transactions. Even if, in these
experiments, a global optimum is seldom reached, the social efficiency of these
two transaction kinds is high: more than 94% of the optimal value. It is thus
possible to reach a resource allocation that is socially close to the optimal social
value. The swap transaction, either social or rational, leads to the emergence
of an allocation which is far from the optimal. This is due to the property of
the swap, which preserves the initial resource distribution. Negotiation processes
that use rational transactions stop further of the optimal social value than the
ones that use social transactions, as a consequence of a more restrictive criterion.
The size of the instances does not seem to have not a strong impact on the quality
of the final allocation.

Figure 2 (a) shows the number of performed transactions, depending on the
kind of contact network and on the kind of allowed transactions. The social
criterion is more flexible, thus more transactions can be performed by social
agents. The number of exchanged resources is greater in the case of social agents
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Table 3. Social Efficiency(%) and relative standard deviation of the behaviors on a
complete contact network

n m
Social Rational

Gift Swap CS Swap CS

10 60
94.25 79.01 95.01 64.08 90.44
1.52 8.54 1.51 9.35 2.27

20 120
94.50 77.13 94.60 59.48 90.44
1.24 7.78 1.12 8.33 1.79

50 300
95.27 73.58 95.82 54.79 90.31
0.74 11.41 0.67 6.10 1.10

Table 4. Social Efficiency(%) and relative standard deviation of the behaviors on a
random contact network

n m
Social Rational

Gift Swap CS Swap CS

10 60
86.54 78.21 84.94 65.70 83.03
2.50 4.80 2.84 6.66 2.85

20 120
88.51 76.37 87.90 63.85 84.04
2.01 3.99 1.46 4.95 1.91

50 300
90.10 75.57 91.83 61.20 86.69
1.5 3.24 0.93 3.64 1.18

than with rational agents, however the difference is not significant as shown
in Fig.2 (b). Figure 2 (c) describes the number of speech turns: the social gift
requires a higher number of speech turns, due to the fact that only one resource
can be exchanged at a time. Finally, Fig.2 (d) shows the number of attempted
transactions. One can notice that using cluster-swap transactions leads to a very
large number of attempted transactions, which means a greater communicational
cost and a more time-consuming negotiation process.

Results based on a random contact network are shown in Table 4. The contact
network itself has a large impact on the quality of the final allocation. Depending
on the used transactions, the network limits more or less the resource traffic.
During the experiments, the global optimum is never reached. The smallest gap
is always obtained by the social gift. The negotiation process ends on socially
weaker allocations if restrictive transactions are used. However, the weaker the
connectivity of the contact network is, the larger the gap is.

Even if the social cluster-swap provides flexibility and good results, since its
cost is exponential, its usage it not so interesting. Thus, the social gift is the
best transaction and leads to resource allocations that are close to the optimal
social value, as an emergent phenomenon. Since we identified the most efficient
transaction, we next study different behaviors using the social gift in order to
determine whether it is possible to improve the results or not.
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(a) Number of performed transactions (b) Number of exchanged resources

(c) Number of speech turns (d) Number of attempted transactions

Fig. 2. Parameter comparisons for various transaction types

6 Social Gift

6.1 Behavior Variants

The behavior of the agents has an important impact on the quality of the resource
allocation that is finally reached. In order to study further the influence of the
agent behavior, the social gift is used on a complete contact network. If the agent-
initiator and the selected neighbor find an acceptable transaction, they perform
this transaction. In a case of a refusal, three different options are possible for
the agent-initiator:

1. Aborts the negotiation,
2. Chooses another resource with the same neighbor,
3. Chooses another neighbor with the same resource.

Based on this option set, four different behaviors can be defined. For each be-
havior, the initiator a gives a unique resource according to the definition of the
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gift in Section 4.2. After the identification of an acceptable deal or the end of
the negotiation, a new initiator is randomly chosen.

First, behavior A is described in Algorithm 3. The agent-initiator a selects
randomly a neighbor and tries to give his cheapest resource. If this is not an
acceptable transaction, then the agent-initiator aborts the negotiation.

Algorithm 3. Behavior A - rooted and stubborn agent-initiator a

begin
Sorts the resource bundle Ra ;
Selects the cheapest resource r ;
Selects randomly a neighbor a′ ;
if the transaction δa is acceptable then

Performs the transaction δa ;
Ends the negotiation ;

end

end

If the agent-initiator a adopts behavior B described in Algorithm 4, then he
selects randomly a neighbor and negotiates, starting with his cheapest resource
and increasing its value gradually. If, no resource can be use to define an accept-
able transaction, then the negotiation stops.

Algorithm 4. Behavior B - rooted and flexible agent-initiator a

begin
Sorts the resource bundle Ra ;
Selects randomly a neighbor a′ ;
for r ∈ Ra do

if the transaction δa is acceptable then
Performs the transaction δa ;
Ends the negotiation ;

end

end

end

Behavior C in Algorithm 5 is defined as follows. The agent initiator a negoti-
ates only his cheapest resource with all the agents of his neighborhood. In order
to avoid a bias due to the sequential selection of the selected neighbor, a random
permutation is applied on the neighbor list of the initiator. If no agent assigns a
greater utility to the resource than the initiator, then the negotiation aborts.

Last, behavior D in Algorithm 6 is such that the agent initiator a negotiates
every resource as for agent behavior C one after the other, with all his neighbors
for each of them. The same technique is used in order to avoid the bias due to
a sequential selection of the neighbor. After the negotiation of all his resources
with all his neighbors, the agent initiator aborts the negotiation.
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Algorithm 5. Behavior C - volatile and stubborn agent-initiator a

begin
Sorts the resource bundle Ra ;
Selects the cheapest resource r ;
for a′ ∈ P do

if the transaction δa is acceptable then
Performs the transaction δa ;
Ends the negotiation ;

end

end

end

Algorithm 6. Behavior D - volatile and flexible agent-initiator a

begin
Sorts the resource bundle Ra ;
for r ∈ Ra do

for a′ ∈ P do
if the transaction δa is acceptable then

Performs the transaction δa ;
Ends the negotiation ;

end

end

end

end

6.2 Behavior Efficiency

These four behaviors have been evaluated using the criterion defined in Section
5.1. Experiments have been conducted on both kind of contact network: complete
and random with a connectivity degree of 25%. The experiment protocol is
similar as the one described in Section 5: The initial resource allocation is done
randomly, and the speech turn distribution is uniform.

On a complete contact network, behavior D is the only one who always leads
to an optimal resource allocation. The proof is described in the next section.
Behaviors B and C are not able to reach an optimal resource allocation, but
they still lead to socially close resource allocation with a social gap less than
10%. Behavior A obtains the worst results by leading to resource allocations
which correspond to 77% of the optimal value.

On a random contact network, none of these behaviors can reach an optimal
allocation. However, behavior D still obtains the best result by leading to the
closest resource allocation, and with the smallest relative standard. Generally,
negotiation processes based on gifts obtain small relative standard deviation,
which means that the social value of the emergent resource allocation does not
almost vary.



A Multi-Agent Resource Negotiation for the Utilitarian Welfare 223

Table 5. Social Efficiency(%) and relative standard deviation of the behaviors on a
complete network(left) and on random network(right)

n m A B C D

10 60
77.92 92.25 95.55 100
5.40 2.43 0.82 0

20 120
77.77 92.50 98.66 100
3.78 1.84 0.23 0

50 300
77.89 92.27 99.19 100
3.14 1.34 0.08 0

n m A B C D

10 60
74.13 84.56 80.87 96.94
5.13 2.90 3.77 2.18

20 120
75.07 86.51 84.54 89.33
3.83 2.01 2.24 1.28

50 300
76.13 90.10 90.43 93.63
2.85 1.35 0.92 0.48

(a) Number of performed transactions (b) Number of speech turns

(c) Number of attempted transactions (d) Computation time

Fig. 3. Comparison of behaviors based on social gift transaction

The best results that are obtained by the behavior D have a cost in terms of
performed transactions (Fig.3) (a), speech turns (Fig.3) (b), attempted transac-
tions (Fig.3) (c), and computation time (Fig.3) (d): The greater is the number
of neighbor per agent, the greater will be the difference.

As shown on Fig.3 (a), the number of performed transactions is higher with
the behavior D, however, the difference with behaviors B and C is not so large.
Fig.3 (b) shows that the number of speech turns does not vary appreciably from
one behavior to the next. This is due to the uniform distribution of that speech
turn. Once every agents fail one time to find an acceptable deal, the negotiation
process stops. However, rooted behaviors like behaviors A and B might perform
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a new transaction by selecting another neighbor. A random distribution of the
speech turn should increase a lot the corresponding metric for these behaviors.
Since behaviors C and D can change the involved neighbor and therefore benefit
from the neighbor list, a random distribution of the speech turn should not
impact the results. Let us note, on Fig.3 (c), that behavior D is more expensive
in terms of attempted transactions. Negotiation processes among agents that use
behavior D take more time than others as shown on Fig.3 (d).

6.3 Proof of Convergence

We now focus on behavior D, the lone behavior for which it is possible to guarantee
the end of the negotiation process on a resource allocation that corresponds to a
global optimum. Recall that, in the context of the study of this paper, we only
consider set of resources which are discrete, not sharable, static and unique.

Let us introduce the allocation graph G: Each node of G represents a resource
allocation, and a directed link δ(o, o′) between two nodes o and o′ exists if an ac-
ceptable transaction δ which changes o in o′ exists. Assume that G is a connected
graph (i.e., no isolated node).

An outgoing link δ of a node o corresponds to an acceptable transaction that
changes the resource allocation o into another one, say o′. An incoming link δ to
a node o corresponds to an acceptable transaction that changes a given initial
resource allocation o′ into o.

Proposition 2 (Global Optimum). Assume G is connected and all possible
allowed transactions have been translated throughout the arcs of G. Assume fur-
ther that the contact network is complete. Any resource allocation corresponding
to a node with only incoming links is a global optimum.

Proof. A resource allocation, which corresponds to a utilitarian global optimum
is such that each resource is distributed to an agent who assigns the greatest
utility to it. Indeed, if the current resource allocation is a local or global social
optimum, no single acceptable transaction allows the improvement of the social
welfare value, meaning no outgoing link exists. In addition, since the contact
graph is complete, all optimum have the same value, hence any local optimum
is global. ��

Theorem 1. The negotiation process of a multi-agent resource allocation in-
stance based on such resources and on a complete contact network converge to-
ward the global optimum using social gifts.

Proof. Since the contact network is complete, an agent can always initiate a
social gift with any other agent, which associates a greater utility to the involved
resource, unless the resource allocation is already a global optimum. Moreover,
the allocation graph G is connected: It is always possible from any initial node to
find a sequence of social gifts leading to an optimum. Hence, the current resource
allocation is a global optimum. ��
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7 Conclusion

In this study, we have designed an individual behavior for all agents of a com-
plete contact network, which always leads to the emergence of a socially optimal
resource allocation. Then we have shown that on a partial contact network,
this behavior leads to the emergence of a socially close resource allocation. This
agent-based approach can be used efficiently on any kind of contact network, and
with any utility value range (positive and negative). Moreover, it is an adaptive
process: the addition of new agents is possible during the negotiation process
without decreasing the quality of the emergent resource allocation. It is also
an ”anytime algorithm”: the quality of the solution increases gradually and the
negotiation process can be interrupted anytime.

This negotiation process is not well-adapted to all kind of social welfare, how-
ever it improves efficiently the solution of the multi-agent resource allocation
problem with an utilitarian social welfare. It provides a transaction sequence
leading to an optimal allocation, in a limited amount of time, even for large
instances.

References

1. Albert, R., Barabási, A.L.: Statistical Mechanics of Complex Networks. Reviews
of Modern Physics 74(1), 47–97 (2002)

2. Arrow, K.J.: Social Choice and Individual Values. Yale University Press (1963)
3. Arrow, K.J., Sen, A.K., Suzumura, K.: Handbook of Social Choice and Welfare.

Elsevier, Amsterdam (2002)
4. Bellosta, M.-J., Kornman, S., Vanderpooten, D.: An agent-based mechanism for

autonomous multiple criteria auctions. In: IAT 2006, China, Hong-Kong, December
2006, pp. 587–594 (2006)

5. Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisible
goods: logical representation and complexity. In: IJCAI 2005, UK, Scotland, Ed-
inburgh, July 2005, pp. 935–940 (2005)

6. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource alloca-
tion with k-additive utility functions. In: Proc. DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory, Annales du LAMSADE, vol. 3, pp. 83–100
(2004)

7. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Reaching envy-free states in
distributed negotiation settings. In: IJCAI 2007, India, Hyderabad, January 6-12,
2007, pp. 1239–1244. AAAI Press, Menlo Park (2007)

8. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles
of resources. In: AAMAS 2005, EU, The Netherlands, Utrecht, July 25-29, 2005,
pp. 296–302. ACM Press, New York (2005)

9. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal allocations
of resources. Journal of Artificial Intelligence Research 25, 315–348 (2006)

10. Estivie, S., Chevaleyre, Y., Endriss, U., Maudet, N.: How equitable is rational
negotiation? In: AAMAS 2006, Japan, Hakodate, May 8-12, 2006, pp. 866–873.
ACM Press, New York (2006)

11. Gairing, M., Monien, B., Tiemann, K.: Selfish Routing with Incomplete Informa-
tion. Theory of Computing Systems 42(1), 91–130 (2008)



226 A. Nongaillard, P. Mathieu, and B. Jaumard

12. Miranda, P., Grabisch, M., Gil, P.: Axiomatic structure of k-additive capacities.
Mathematical Social Sciences 49, 153–178 (2005)

13. Moulin, H.: Axioms of cooperative decision making. Cambridge University Press,
Cambridge (1988)

14. Sandholm, T.W.: Contract types for satisficing task allocation: I theoretical re-
sults. In: AAAI Spring Symposium: Satisficing Models, USA, California, Stanford
University, March 23-25 (1998)

15. Sandholm, T.W.: eMediator: A Next Generation Electronic Commerce Server.
Computational Intelligence 18(4), 656–676 (2002)

16. Shneidman, J., Parkes, D.C.: Rationality and Self-Interest in Peer to Peer Net-
works. LNCS pp. 139–148 (2003)

17. Travers, J., Milgram, S.: An experimental study of the small world problem. So-
ciometry 32(4), 425–443 (1969)

18. Wellman, M.P., Doyle, J.: Modular Utility Representation for Decision-Theoretic
Planning. In: AIPS 1992 - Artificial Intelligence Planning Systems, USA, Maryland,
College Park, June 15-17, 1992, pp. 236–242. Morgan Kaufmann, San Francisco
(1992)



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part V 

Simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 



Interaction Biases in Multi-Agent Simulations:
An Experimental Study

Yoann Kubera, Philippe Mathieu, and Sébastien Picault
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Abstract. How to ensure that two different implementations of a sim-
ulation will produce the same results ? In order to assure simulation
reproducibility, some domain-independent functional unit must be pre-
cisely described. We show in this paper that the management unit that
rules the participation of an agent in simultaneous interactions is one of
them. Usually, many choices concerning this unit are made implicitly,
even if they might lead to many simulation biases. We illustrate this
issue through a study of biases that appear even in simple cases, due
to a specification lack, and we propose as a solution a classification of
interactions that makes those choices explicit.

1 Introduction

Multi-Agent Based Simulations (MABS) – and more generally computer simula-
tions – are a tool used to reinforce, invalidate or compare hypothesis on the origin
of a particular emergent phenomenon. The model of a simulation needs these
hypothesis become concrete, and has to provide all the information required to
perform experiments. Consequently, implementations of this model made by dif-
ferent persons have to produce results with similar nature – i.e. results of such
a model have to be reproducible.

Building a simulation is a process leading from a domain-specific model to an
operational model – through knowledge representation formalisms – and then
from the operational model to its implementation in a given programming lan-
guage, on a given simulation platform [1]. Sadly, there is no consensus about what
information each model should contain, since the separation between domain-
specific model, operational model and implementation – i.e. computer science-
specific model – is ambiguous itself [2,3]. Thence, each step of the simulation
design process involves choices – both explicit or implicit – regarding ambiguous
parts of the previous step model. Those choices have a more or less dramatic
influence on the execution and outcomes of the simulation. Since simulations
have to be reproducible, the biases these choices may introduce must be studied,
and issues about how and to what extent each choice may change simulations
outcomes have to be handled.

A. Artikis, G. Picard, and L. Vercouter (Eds.): ESAW 2008, LNAI 5485, pp. 229–247, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We uphold that the modeler has to be aware of – and to understand – each
possible choice, and has to specify the ones he chooses for its model. Without
this specification, the ambiguity of the models leads to implementations that do
not behave as it was initially expected and thus produce unexploitable results.

The spectrum of implicit choices is wide, and concerns very different parts
of agent’s and simulation’s architecture. To make their study easier, the ar-
chitecture of a multi-agent simulation is considered here through three almost
independent functional units that underlie any kind of simulation. These units
are the Activation Unit that manages time related elements of the simulation
like when agents trigger their behavior, or in which interactions an agent may
participate simultaneously, the Definition Unit that specifies all the interac-
tions the agents are able to initiate, and the Selection Unit that corresponds
to interaction selection. In this paper the Activation Unit is studied.

Interactions between agents – i.e. actions involving simultaneously two or
more agents – are the source of simulation’s emergent properties. Thus, they
have a major role in MABS. But, because current MABS design methodologies
focus only on the behavior of independent agents, many design choices concern-
ing interactions are not explicit. In particular, the participation of an agent in
interactions occurring at the same time is almost never tackled, because of not
adapted knowledge representation.

This paper aims at studying implementation choices concerning the Activa-

tion Unit, and more precisely on how simultaneous interactions are handled.
In order to make the study of this issue possible, we use the knowledge rep-
resentation provided by the IODA methodology [4], which is fit to model such
problems. Thanks to a study of some experiments, we present the two main
patterns – called interaction classes – used to handle simultaneous interactions
in any kind of simulation. This study also illustrates the consequences of wrong
implementation choices – i.e. the misuse of interaction classes or wrong time rep-
resentations. We uphold that defining what simultaneously means in the model,
and providing a class for every interaction in the model determines precisely how
the Activation Unit is supposed to manage simultaneous interactions without
ambiguities. Thus, it makes sure that the model is implemented without biases.

This paper is organized as following. First, related work concerning the studied
functional unit, the Activation Unit, are presented in section 2. Then, the
functional decomposition that underlies any multi-agent based simulation, on
which this paper’s studies are based, and the knowledge representation of the
IODA methodology are presented in section 3. Section 4 describes the protocol
followed by the experiments of the study. Section 5 to 6 describe two experiments
, which results are interpreted to identify interaction classes, and to illustrate the
consequences of erroneous implementation choices. Then, section 7 summarizes
the results of experiments, and proposes a classification of interactions in order
to avoid implementation biases of the Activation Unit. Eventually, section
8 discusses about these results, and emphasizes the need to understand what
”simultaneous interactions” means in the Activation Unit.
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2 Related Works

In many simulation platforms, design is centered on agents and the actions they
initiate, rather than on the interactions that may occur between them. Conse-
quently, the definition of which interaction an agent may initiate at a particular
time does :

– neither take into account in which interaction it already participates as a
target (see section 3.1);

– nor take into account in which interaction the other agents already partici-
pate in.

This leads to many biases in the simulation and its outcomes.
For instance, Epstein and Axtell [5] presented an ecosystem simulation where

an agent may reproduce more than twice at the same time (once as a the initiator
of the interaction, and one or more times as a target). This bias was identified
by Lawson [6], and corrected with a modification of the model through the
addition of a gestation period.

Yet, this issue is not restricted to ecosystem simulation. Indeed, it applies to
every simulation where agents have to perform particular interactions at most
once at a time (for instance agents that trade goods). Thus, it has to be dealt
with in the domain-independent architecture of the simulation rather
than in the models.

This problem leads Michel [3] to manage interactions depending on their
Strong or Weak nature. This solution is adequate if agents are the only par-
ticipants in interactions. Thus, it does not solve the problem for interactions
between an agent and an object. Indeed, interactions like Withdraw cash from
an automated teller machine may be performed simultaneously by two different
agents with the same machine.

Weyns [7] proposes a more refined solution through the qualification of the
relationship between two actions1. Two actions may be Independent, Joint, Con-
current or Influencing. This solution manages interactions by getting from each
agent “intend to perform the I interaction with the A agent as target” like mes-
sages. A mastering unit then gathers these messages, finds out the relationship
between them and executes compatible ones.

In spite of its undeniable advantage of concurrent and influencing interaction
handling, this solution has a major issue. Indeed, because interactions not com-
patible with already occurring interactions are not considered during decision
making, an agent may try to perform an impossible interaction. Thus, the agent
performs nothing at that time, even if another interaction is possible.

To fill this gap, simultaneous interactions have to be considered at decision
making. This requires an interaction-oriented design of decision making, like the
one shortly presented in the next section.

1 Although the author uses the term “action”, it keeps the same meaning than our
“interaction” (see section 3.1).
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3 Multi-Agent Simulations

Even if the application domains of multi-agent simulations are heterogeneous,
they can be split into different and weakly dependent functional units [8,9], like
agents scheduling, communications, modification conflicts solving, etc.

We consider here a particular decomposition of a simulation (see Fig. 2) in
three main units, called Activation Unit, Definition Unit and Selection

Unit, which respectively drive time related elements in the simulation, declara-
tion of what agents are able to perform, and finally how interaction selection is
made. This decomposition underlies any kind of simulation.

Activation Unit Definition Unit

Selection Unit

Fig. 1. The three main functional units of a multi-agent simulation

This kind of separation in different software units is usual in cognitive agent ar-
chitectures with plans like the Act-R [10] or Soar [11] language, where knowledge
representation is at the center of the simulation, but does not exist in reactive
simulation platforms. Moreover the notion of interaction – i.e. semantic block of
actions involving simultaneously a fixed number of agents (see Sect. 3.1) – is gen-
erally hard-coded in the behavior of agents. Because the design of simulations
implies crucial choices about those three units, we claim that it is important
to make this separation clear, even in reactive simulations, in order to make
modeling choices explicit.

3.1 An Interaction-Oriented Design of Simulations

The definition of interactions, and how they are integrated in the knowledge
of agents, are based on IODA concepts [4]. Please note that IODA provides
advanced methodological and software engineering tools to design interactions
in MABS. Since we do not need all refinements it provides, we use a simplified
version of its definitions.

To make the difference between the abstract concept of agent (for instance
Wolves), and agent instances (a particular Wolf), we use the notion of agent
families as abstract concept of agent. Thus, the word agent refers to an agent
instance.

Definition 1. An agent family is an abstract set of agent instances, which
share all or part of their properties and behavior.
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Definition 2. An interaction is a structured set of actions involving simulta-
neously a fixed number of agents instances that can occur only if some conditions
are met.

An interaction is represented as a couple (conditions, actions), where condition
is a boolean function and action is a procedure. Both have agent instances as
parameters. Agents that are involved in an interaction play different roles. We
make a difference between Source agents that may initiate the interaction (in
general the one selected by the Activation Unit) and Target agents that may
undergo it.

Definition 3. Let F be the set of all agent families. Let S ∈ F and T ∈ F be
agent families.

We note aS/T the set of all interactions that an instance of the S agent
family is able to initiate with an instance of the T agent family as a target.

Thanks to these definitions, we can specify the knowledge of an agent family
S ∈ F as the set

⋃
T ∈F

aS/T , which contains every interactions it is able to initiate

as source with any agent family as target.
To unify knowledge, actions (for instance Wander or Die) are considered

as interactions, which target is implicit (either the environment, or the agent
itself). This kind of interactions is called degenerate interaction. We do not
add this to our notations, please see [4] for more information.

The definition of perceived affordances uses the notion of realizable interac-
tion, in order to determine if two agents can participate in an interaction.

Definition 4. Let I be an interaction, and x ≺ S, y ≺ T two agents. The tuple
(I, x, y) is realizable (written r(I, x, y)) if and only if :

– I ∈ aS/T , i.e. agents of S family are able to perform I with agents of T
family;

– the conditions of I hold true with x as source and y as target.

A realizable tuple represents one interaction that an agent can initiate with a
particular target agent. Moreover, the agent’s perceived affordances are the set of
all interactions it can initiate in a given context. Thus, at a time t, the perceived
affordances of the x agent are the set of all realizable tuples that x may perform.

Definition 5. Let At be the set of all agents in the simulation at a time t, and
x ∈ At.
Then, the perceived affordances Rt(x) that x may perform at time t is the
set :

Rt(x) =
⋃

y∈At

⋃
I∈ax/y

{(I, x, y)|r(I, x, y)}

3.2 Discussion about This Knowledge Representation

In some cases, the distinction between source and target agents might appear
as a restriction. This implies that the knowledge representation of IODA cannot
be used to model any kind of simulation.
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For instance the Handshaking interaction does not seem to make the differ-
ence between the source and the target agent – i.e. source and target roles are
symmetric.

The IODA methodology upholds that, even if the roles in the interaction are
symmetric, the two agents do not spontaneously choose to perform the Hand-

shaking together. One agent is at the origin of the Handshake, and requests
the other agent if it wants to perform that interaction.

Consequently, interactions have always an initiator – i.e. a source. Thus, the
knowledge representation provided by IODA can be used to model any kind of
simulation.

3.3 Time Representation and Simultaneous Interactions

The model of a simulation has to define how time is represented in the simulation.
Indeed, this representation has a deep influence on how the Activation Unit

is supposed to work. Moreover, the representation of time defines directly the
meaning of simultaneous interactions.

Mainly, two different time representation are used2 in MABS. Both are based
on the discrete event paradigm, where time is considered as a number that
increases during simulation, given a particular evolution process. Time can :

– either evolve by steps of fixed length. Usually, these kind of simulation are
called Discrete, because time can be considered as a finite set of integers
called time steps. At each time step, the Activation Unit will ask one or
more agents to perform their Selection Unit. The choice of asked agents is
up to the policy used in the Activation Unit. For instance, ask all agents
sequentially in random order, or ask one agent chosen randomly, etc;

– or evolve event by event. Usually, these kind of simulation are called Contin-
uous, or at least Pseudo-Continuous, because the time elapsed between two
event is not fixed. At each event, an agent performs its Selection Unit,
and schedules an event for its next activation, depending on the interaction
it initiated.

For each time representation, interactions have a duration – i.e. a time interval
during which the interaction is considered as being performed. The side-effects
of the interaction are considered consistent only at the end of this interval.

In the case of continuous time, the duration has to be defined by the modeler,
because the scheduling of events depends on the date agents finish their current
interaction. Thus, duration is explicit in the model.

For discrete time, this notion of duration is not as obvious. Implicitly, the
duration of actions and interactions is the length of a time step. Sadly, the lack
of specification concerning this point causes critical issues in simulation (see
section 8).

Thanks to this definition, simultaneous interactions can be defined :

2 these two are used for illustration purposes, in order to elicit the notion of interaction
duration. Other time representation might exist.
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Activation Unit

selects the next agent a that will behave.

Definition Unit

provides the information required to build a’s perceived
affordances.

Selection Unit

selects from perceived affordances of a what action or
interaction a initiates.

Fig. 2. How the three main functional units of a multi-agent simulation are used to
run a simulation

Definition 6. Two interactions are considered as simultaneous iff their du-
ration time interval are intersecting.

We uphold that the meaning of simultaneous interactions has to be
explicitly defined in the model, in order to assure simulation repro-
ducibility.

3.4 Functional Decomposition of a Multi-Agent Simulation

Each functional unit is in charge of a specific feature of a multi-agent simulation.

The Activation Unit tells when agents may act, the time elapsed between
their actions/interactions, what to do if an agent tries to interact with an already
acting agent, etc. It describes all time-related elements in the simulation.

The Definition Unit lists all interactions in the simulation, under what con-
ditions and between what kind of agents they are possible, and what actions
they launch. It is the set of all possible behaviors, defined independently from
agents specificities. This unit provides information required to build the space
of all possible interactions the selected agent may initiate as a source – i.e. all
realizable tuples (Interaction, Selected Agent, Target agents), also corresponding
to the perceived affordances of the source, as defined in [12].

The Selection Unit describes the cognitive or reactive process an agent uses
to select which interaction it initiates, and, if many are possible, decides among
them the one to initiate.

A simulation is a repetition of 3-steps sequences, where each step exploits a
different functional unit (see Fig. 2).

We already argued in [4] for the advantage of agent-independent defined in-
teractions and proposed a formal definition for it, thus creating a software sepa-
ration between the Definition Unit – which is domain dependent – and both
Selection Unit and Activation Unit.
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4 Experimental Frame

The goal of this paper is to measure to what extent modifications of the Ac-

tivation Unit may change simulation outcomes, and how an adequate one
may avoid simulation biases. This point is illustrated through two experiments,
each confronting two different implementations of the Activation Unit. Thus,
the only variating parameter in an experiment is the Activation Unit :
its Definition Unit and Selection Unit remain the same.

This section presents the Definition Unit, Selection Unit, the protocol
used in our experiments, and preliminary discussions concerning the Activation

Unit.

4.1 The Definition Unit

The Definition Unit, which defines all domain-dependent information, will
change from one experiment to the other. In order to make the comprehension
of our examples easier, every experiment deals with the same overall simulation
problem : the evolution of an ecosystem containing predators and preys. Please
note that experiments provide only an illustration of the general issue we deal
with. The solutions presented in this paper are obviously not restricted to that
particular simulation, and do not avoid only the biases emphasized in this paper.

4.2 The Selection Unit

The Selection Unit, which corresponds to agent’s decision making process,
will keep the same architecture in all our experiments.

The architecture we use is the most used one for reactive agents : a
subsumption-like architecture [13] that tries every interaction sequentially until
a realizable one is found. Every source agent gives to every interaction it can initi-
ate a priority value, which denotes the order it tries the interactions (see Fig. 1.).

4.3 The Activation Unit

The model of a simulation has to define how time is represented in the simulation.
In the experiments of this paper, we consider that :

– time is Discrete (see Sect. 3.3);
– during every time step, the agents trigger their Selection Unit in sequence.

The order of this sequence is defined at random for each time step, in order
to keep equity between agents.

– the duration of interactions is the length of a time step. Thus, two interac-
tions occurring at the same time step are considered simultaneous.

These choices are the most usual ones in classical reactive simulations. Moreover,
we make the assumption that an agent may initiate at most one interaction at a
time – i.e. it cannot be simultaneously the source of two or more interactions.
This issue will be discussed in section 8.
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Algorithm 1. Selection Unit used in the experiments of this paper. It defines
how an agent a chooses what interaction it initiates at a time z.

Rz(a) ⇐ the set of all realizable interactions a may initiate
P ⇐ the decreasing set of all priorities a gives to the interactions it can initiate
L ⇐ ∅
for p in P do

for (I, a, t) in Rz(a) do
if I has p priority for a then

L ⇐ L ∪ {(I, a, t)}
end if

end for
if L �= ∅ then

a initiates the interaction of a tuple of L chosen at random
stop

end if
end for
a initiates nothing

4.4 Experimental Protocol

The experimental protocol used in this paper is :

1. first, the aim of the experiment is outlined;
2. then, the Definition Unit and Selection Unit used by both implemen-

tations of this experiment are defined;
3. next, the two Activation Unit used in the experiment, and experiment’s

initial conditions, are described;
4. eventually, the results of the execution of both implementation of the exper-

iment are presented and discussed. From this discussion, an interaction class
is emphasized to avoid a possible simulation bias.

Please note that all experiments presented below are voluntary basic to stress out
where the problems lie : they obviously do exist in more complex situations as well.

5 First Experiment: Multiple Participation to
Interactions Bias

This experiment studies the limits of the usual naive algorithm and introduces
as a solution a first interaction class called exclusive interaction.

Model used. This simulation studies an ecosystem composed by grass and sheep.
Because sheep can move, classical analytical models cannot be used to model
the population of species : this simulation requires multi-agent systems.

The environment is a two dimensions toroidal continuous space split into
unitary square parcels. Every parcel P has an attribute q(P) that increases of
one unit at every simulation step. P is said containing grass when q(P) > 0. If P
is emptied by an agent, then q(P) = 1−rgrass (i.e. rgrass is the time grass needs
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to grow) . A sheep S is an agent with an energy attribute e(S) representing its
health, which can initiate the interactions :

1. To Die if e(S) ≤ 0. Then :
– S is removed from the environment.

2. To Reproduce with another sheep S ′ at a maximal distance of 1 from S if
e(S) > 0 and e(S′) > 0. Then :
– A new sheep S′′ is created at S’s location, and e(S′′) =

Min(e(S), erepr) + Min(e(S′), erepr), where erepr stands for the energy
consumed by reproduction.

– e(S) and e(S′) are decreased by erepr.
– S, S′ and S′′ execute the Wander interaction (see below).

3. To Eat grass on S’s parcel if it contains some. Then :
– e(S) increases from eeat, where eeat is the energy gained by eating.
– S empties the parcel he is onto.

4. To Wander with no conditions. Then :
– S turns itself from an angle in [−π, π[ and moves forward from 1 unit.
– e(S) decreases from ewan, where ewan is the energy consumed by moving.

Sheep behave by using the order 1 > 2 > 3 > 4 in their Selection Unit, thus
they first have to Die, if they don’t, they try to Reproduce, if they don’t, they
try to Eat, . . .

Experimental design. We used this model in a 33 × 33 environment containing
1089 parcels, where 30% have q(P) = 0 and 70% q(P) ∈] − rgrass,−1], and 70
sheep such that e(S) = 2 × erepr. We also set rgrass = 10, erepr = 15, ewan = 2
and eeat = 7.

Algorithm 2. “Naive Activation Unit”. In this implementation, an agent
does not take into account simultaneous interactions. MAX is the duration of
the simulation, in time steps.

for i = 1 to MAX do
Update the environment
for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) �= null then
Execute I with a as source and t as target.

end if
end for

end for

Figure 3 compares the evolution of the sheep population of this model imple-
mented with respectively the naive (single interaction) Activation Unit, from
Algorithm. 2. (from Algorithm. 3.).
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Algorithm 3. “Single Interaction Activation Unit” In this implementation,
an agent participates only in one interaction at a time, either as the source or
as the target. MAX is the duration of the simulation, in time steps.

for i = 1 to MAX do
Update the environment
for a in agents in the environment at time z do

Tag a as operative
end for
for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
for (I, a, t) in Rz(a) do

if a is not operative or t is not operative then
Remove (I, a, t) from Rz(a)

end if
end for
(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) �= null then
Execute I with a as source and t as target.
Tag a and t as not operative

end if
end for

end for
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Fig. 3. Sheep population evolution against time (in simulation steps) respectively dis-
played in dots (in line), for the model presented in Sect. 5 implemented with the naive
(single interaction) algorithm of Algorithm. 2. (Algorithm. 3.)

Results and Discussion. With exactly the same initial environment, the experi-
ment using the naive algorithm (see Algorithm 2.) produces in overall 68 more
sheep than the one using the single interaction algorithm (see Algorithm 3.).

This difference lies in the number of interactions an agent may participate in
during a simulation step. In the naive algorithm, a sheep targeted by a Repro-

duce interaction can be the source of another interaction. On the opposite, in
the single interaction algorithm an agent participates at maximum in one inter-
action, either as a source or as a target. This difference has a great impact on
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the sheep energy dynamics, their reproduction and death rate, and their density,
and, as a consequence, on the sheep population dynamics.

In this simple experience, this difference may be considered as the result of
different interpretations of the model, thus it cannot be considered as a bias.
Nevertheless, it corresponds to a bias in other experiences, as shown in [3] : if a
sheep participates in more than one reproduction per time step, then the sheep
reproduction probability is different from the one designed in the model.

We outlined with this experience that the number of interactions an agent can
simultaneously participate in has to be restricted. To cope with this problem, we
identified a first interaction class called exclusive interactions. An agent can par-
ticipate in such an interaction only once at a time, either as source or as target.

6 Second Experiment: Single Participation to Interactions
as Target Bias

This section illustrates a simulation problem concerning the target of an inter-
action that exclusive interactions alone are too restrictive to solve.

Model used. This model adds to the one of experiment 5 a new agent named
wolf, and a new interaction to a sheep S :

5. To Flee from a wolf W at a maximal distance of 10 from S. Then :
– S turns its back towards where W is and moves forward from 1 unit.
– e(S) decreases from ewan.

Sheep behave using the order 1 > 5 > 2 > 3 > 4 in their Selection Unit, and
wolves only Wander in the environment.

In this simulation, sheep Flee systematically wolves. As a consequence,
wolves are supposed to be at the center of an empty area.

Experimental design. They are the same as in the experiment of Sect. 5, except
that there is a wolf at a random position, and that the simulation is implemented
with :

– firstly with the single interaction Activation Unit (from Algorithm. 3.);
– then with the parallel interactions Activation Unit (from Algorithm. 4.)

where
• Flee is from I2 interaction class;
• other interactions are from I1 class.

The outcomes of such implementations of this model are displayed in Fig. 4.

Results and Discussion. The parallel interactions Activation Unit produces the
expected result (right on Fig. 4), and the single interaction ActivationUnit (left
on Fig. 4) is obviously biased : there is no empty halo around the wolf.

The difference lies in the number of interactions a wolf can undergo simulta-
neously. When a wolf is the target of a Flee interaction, it is set not operative,
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Algorithm 4. “Parallel Interaction Activation Unit”. In this implementa-
tion, an agent participates only in one interaction of I1 at a time, either as the
source or as the target. An agent can be the target of as many interaction of I2
as necessary. MAX is the duration of the simulation, in time steps.

for i = 1 to MAX do
Update the environment
for a in agents in the environment at time z do

Tag a as operative
end for
for a in agents in the environment at time z do

Rz(a) ⇐ all realizable tuples that a may initiate
for (I, a, t) in Rz(a) do

if I is from I1 class and (a is not operative or t is not operative) then
Remove (I, a, t) from Rz(a)

else if I is from I2 class and a is not operative then
Remove (I, a, t) from Rz(a)

end if
end for
(I, a, t) ⇐ a tuple of Rz(a) selected with a particular Selection Unit

if (I, a, t) �= null then
Execute I with a as source and t as target.
if I is from I1 class then

Tag a and t as not operative
else if I is from I2 class then

Tag a as not operative
end if

end if
end for

end for

Fig. 4. Outcomes screenshot of the experiment presented in Sect. 6. This model was re-
spectively implemented with the single interaction (parallel interactions) Activation

Unit from Algorithm. 3. (from Algorithm. 4.), displayed to the left (right), where re-
spectively light (dark) arrows are sheep (wolves), and light (dark) squares are empty
(full) parcels.

thus it cannot be the target of another Flee interaction. Consequently, a wolf
is fled once per simulation step, and other sheep behave as if there was no wolf.
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We outlined with this experiment that all interactions do not put the same
restrictions onto their target agent. Interaction classes have to reflect this dif-
ference, thus, in addition to exclusive interactions, we introduce parallel inter-
actions, where agents may simultaneously be targeted as many times as needed.

7 Experiments Summary: A Classification of Interactions

Through two experiments, we have shown that the model has to answer the
question ”is the source (or target) agent of an interaction allowed to be simul-
taneously the source (or target) of another interaction ?”. Otherwise the lack of
specifications leads to ambiguities from which many biases may result.

7.1 Interaction Classes

As a solution, we identified two interaction classes, each answering differently
to the question above. Considering our modeling experience, these classes corre-
spond to the two main recurrent patterns used to handle simultaneous interac-
tions. The association of a class to each interaction in a model describes explicitly
how they are managed, and thus avoids many biases at implementation.

The two interaction classes are :

exclusive interaction. An agent is allowed to participate only to one exclusive
interaction at a time, whether as source or as target. In the experiments and in
the Algorithm. 3. and Algorithm. 4., it corresponds to I1 interaction class. It is
the case of the Reproduce interaction.

parallel interaction. An agent is allowed to be simultaneously the target of as
many parallel interaction as needed. In the experiments and in the Algorithm. 4.,
it corresponds to I2 interaction class. It is the case of the Flee interaction.

Moreover, we consider that an agent can initiate only one interaction at a time.
Thus an agent cannot simultaneously be the source of a parallel interaction, and
participate to an exclusive interaction (either as source or target).

Table. 1 provides a summary of what interaction classes allow and forbid.

Table 1. Summary of what interactions an agent may participate in simultaneously,
depending on its role in them. The cross at the intersection of the line (Exclusive, S)
and column (Parallel, T) is read “An agent can simultaneously be the source (S) of an
exclusive interaction and the target (T) of a parallel interaction”. The empty cell at
the intersection of the line (Exclusive, T) and column (Exclusive, T) is read “An agent
cannot simultaneously be the target (T) of an exclusive interaction and the target (T)
of another exclusive interaction”.

Exclusive Parallel
S T S T

Exclusive S ×
T ×

Parallel
S ×
T × × × ×
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7.2 Use of Interaction Classes

In practice, interaction classes are exploited before the Selection Unit exe-
cutes. The agent that performs the Selection Unit cannot initiate all the af-
fordances – i.e. all realizable tuples – it listed. Indeed, this agent might already
be involved in some interactions. Thus, it has to remove from its affordances
all interactions that cannot be initiated simultaneously with the interactions al-
ready occurring. This removal is based on the table 1 that summarizes what
interactions are allowed simultaneously. For instance, an agent cannot initiate
an exclusive interaction with an agent that is already the target of an exclu-
sive interaction (see the intersection of the line (Exclusive, S) and the column
(Exclusive, T ) in Fig. 1).

Thus, the 3-steps sequence of Fig. 2 in section 3.4 becomes as displayed in
Fig. 5. The algorithm 4. provides an implementation of such an Activation

Unit, where :

– time is Discrete (see Sect. 3.3);
– during every time step, the agents trigger their Selection Unit in sequence.

The order of this sequence is defined at random for each time step, in order
to keep equity between agents.

– the duration of interactions is the length of a time step. Thus, two interac-
tions occurring at the same time step are considered simultaneous.

– an agent may initiate at most one interaction at a time, i.e. it cannot be
simultaneously the source of two or more interactions.

Activation Unit

selects the next agent a that will behave.

Definition Unit

provides the information required to build a’s perceived
affordances.

Activation Unit

removes from perceived affordances of a all tuples incom-
patible with already occurring interactions.

Selection Unit

selects from perceived affordances of a what action or
interaction a initiates.

Fig. 5. How the three main functional units of a multi-agent simulation are used to
run a simulation, This takes into account simultaneous interactions

7.3 Why Defining Interaction Classes in the Model ?

Interaction classes answer the question ”is the source (or target) agent of an
interaction allowed to be simultaneously the source (or target) of another inter-
action ?”.



244 Y. Kubera, P. Mathieu, and S. Picault

These interaction classes are deeply bound with the algorithms used to process
interactions at implementation. Thus, knowledge on which interaction classes are
present in an operational model :

– removes ambiguities found during implementation.
– determines if a simulation platform is fit to implement the model. For in-

stance, a simulation platform like Netlogo[14] is no fit by default to imple-
ment models containing exclusive interactions : the user has to develop his
own Activation Unit;

The implementation of such specifications is made easier by a software sepa-
ration between Activation Unit, Definition Unit and Selection Unit.
Indeed, it forces the user to choose interaction classes explicitly, and thus forces
to understand the underlying algorithms. It is the case of the IODA methodol-
ogy and the JEDI simulation platform [4] where this separation is made by the
reification of interactions through the whole simulation process.

Note that even if these classes are defined in the context of discrete simula-
tions – i.e. with simulation steps of fixed length – they remain valid for other
simulations.

8 Discussion about Our Solution

Our solution makes the assumption that an agent can simultaneously be the
source of at most one interaction. This seems to be an hindrance for some sim-
ulations. We illustrate this point on an example.

8.1 Issues about Simultaneous Initiation of Many Interactions

Many reactive simulations, such as the Wolf Sheep Predation of Netlogo (see
Algorithm. 5.) seem to make the assumption that the Selection Unit can
select and initiate more than one interaction during a time step.

For instance, in the Wolf Sheep Predation :

– the Activation Unit is defined by the ”go” block. This block ends with a
”tick” command, which tells that the Activation Unit uses discrete time.
The code ”ask sheep” tells that for each simulation time step, sheep agents
are asked in a random sequence to perform once the content of the ”ask
sheep” block.

– the Definition Unit and Selection Unit are mixed, and defined in the
content of the ”ask sheep” block. In this block sheep may initiate a move

interaction, then a eat-grass interaction, then a reproduce-sheep inter-
action and finally a death interaction.

Sheep seem to be able to initiate up to four interactions during a time step.
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Algorithm 5. Part of the implementation in Netlogo of a Wolf Sheep predation
simulation
to go

(...)

ask sheep [

move

if grass? [

set energy energy - 1

eat-grass

]

reproduce-sheep

death

]

(...)

tick

(...)

end

to move ;; turtle procedure

rt random 50

lt random 50

fd 1

end

to eat-grass

if pcolor = green [

set pcolor brown

set energy energy + sheep-gain-from-food

]

end

to reproduce-sheep

if random-float 100 < sheep-reproduce [

set energy (energy / 2)

hatch 1 [ rt random-float 360 fd 1 ]

]

end

to death

if energy < 0 [ die ]

end

8.2 Discussion about This Simulation

Time steps are the most easiest way to build an Activation Unit. In simulation
using this kind of Activation Unit, the most atomic representation of time is
the time step. Thus, interactions are considered as simultaneous if they occur
during the same time step.

In the simulation presented above, this means that an agent is able to initiate
up to four interactions simultaneously. This seems to invalidate our hypothesis
that an agent is able to initiate at most one interaction at a time, and conse-
quently seems to invalidate our solution.

In fact, there is no such thing like initiating simultaneously more than one
interaction. The issue is rather related to the wrong use of discrete time, and its
underlying definition of simultaneous interactions. Indeed, it makes no sense to
uphold that a sheep can initiate Die and Reproduce-Sheep simultaneously.
The same holds for any other combination containing two interactions among
Die, Reproduce-Sheep, Eat-Grass and Move. These interactions are meant
to be executed separately, in sequence. Thus, they are not simultaneous, and have
to occur during different time steps. In this case, the implementation does not
reflect what the model means.

We uphold that simulations that let agents initiate more than one interaction
during the same time step are misusing discrete time Activation Unit, and do
not implement the model as it was meant. Thus, initiating at most one interaction
at a time is sufficient to model all kinds of simulations.
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9 Conclusion

Most simulations assume and compare hypothesis on a given phenomenon. The
model is the mirror of such hypothesis. Thus, it has to contain enough infor-
mation to assure simulations reproducibility – i.e. two implementations of the
same model have to produce outcomes with similar natures. Sadly, many model-
ing and implementation choices are left implicit. This can lead to biases, and thus
to non-reproducible simulations. Thus the biases that may result from modeling
and implementation choices must be identified and quantified.

In this paper we have shown that the reproducibility of a simulation is not
possible without specifying a particular domain-independent functional unit that
underlies any simulation, called Activation Unit.

This unit specifies all time related elements in the simulation. In particular,
it indicates to what interactions an agent can participate simultaneously. Ex-
periments showed that the lack of specifications concerning the particularities of
these interactions may introduce biases in simulation outcomes. Indeed, as an
example, the target of a reproduction behavior cannot initiate simultaneously
another interaction, otherwise an agent may reproduce twice at the same time.

To solve this kind of problem, we uphold that the model must specify :

– what simultaneous interaction means. For discrete simulations, where time
is divided in time steps of the same length, interactions are simultaneous if
they occur during the same time step;

– the interaction class of each interaction of the simulation, among exclusive
and parallel. Thanks to these classes, an agent can determine which interac-
tions it can initiate – i.e. be the source – at a particular time, according to
all the interactions already occurring at that time.

We illustrated on an experiment that the lack of knowledge on what simultaneous
interactions means may lead to implementations that do not correspond what the
model meant. Thus, the specification of what interactions agents may participate
in simultaneously have meaning only if the notion of simultaneous interactions
is known and understood.

Taking into consideration time representation and these classes while conceiv-
ing the model removes ambiguities that would have led to biases. Without the
specification of these two points, two different developers will likely obtain very
different outcomes for the same model.
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Abstract. Complexity of today’s systems prevents designers from knowing 
everything about them and makes engineering them a difficult task for which 
classical engineering approaches are no longer valid. Such a challenge is espe-
cially encountered in actual complex systems simulation in which underlying 
computational model is very tough to design. A prospective solution is to un-
burden designers as much as possible by letting this computational model self-
build. Adaptive multi-agent systems are the foundation of the four-layer agent 
model proposed here for endowing systems with the ability to self-tune, self-
organize and self-assemble. This agent model has been applied to an application 
(MicroMega) related to computational biology which aim is to model the func-
tional behavior of unicellular yeast Saccharomyces Cerevisiae. 

Keywords: complex system, self-organization, cooperation, biological modeling. 

1   Introduction 

Nowadays systems are becoming more and more complex due to, on the one hand, 
the huge number of heterogeneous, autonomous and evolving components and, on the 
other hand, their required features of openness and scalability. A few years ago, refer-
ring to information technology systems, IBM underlined that “Even if we could 
somehow come up with enough skilled people, the complexity is growing beyond 
human ability to manage it…” and brought out the need of new approaches for deal-
ing with complexity. Namely building “autonomic systems” capable of “running 
themselves and adjusting to various circumstances…” [21]. This vision may be en-
forced to every complex system surrounding us, especially biological ones on which 
this paper focuses, since natural complexity prevents designers from knowing every-
thing about such systems, let alone controlling them.  

For example, in computational biology, complexity comes from the huge amount 
of constantly increasing heterogeneous data that have to be gathered, visualized, ex-
ploited or processed. In systems biology, complexity arises from the need of modeling 
large-scale biological interaction networks for which interactions are not always 
known; moreover experimental data are not always available or homogeneous [23]. 
Furthermore integrative biology adds a level of complexity by aiming at reconstruct-
ing “the whole by putting the parts together (once enough parts have been collected 
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and understood)” [29]. In other words, the aim is to assemble several different yet 
coupled models in order to obtain an upper level one that explains a higher level of 
functioning. For instance, at the level of a unicellular organism, integrative biology is 
expected to determine how all genes and their products interact to produce the func-
tioning organism [1].  

Due to the lack of satisfactory theories for explaining biological systems, biologists 
usually rely on modeling and simulations to understand their behavior and different 
approaches exist to build these models, from mathematical ones to neural networks-
based ones. The latter ones offer some interesting results in finding correlations and 
extracting some explaining variables but like black boxes they prevent any knowledge 
on the real structure and functioning of the system [14]. Moreover they hardly take 
into account contingency of phenomena that are a bit delayed. 

Many approaches of computational modeling are concerned with biological net-
works [7]: Boolean networks emphase causal and temporal relationships between 
activation of different molecules; Petri nets extend Boolean networks with stochastic 
and non deterministic properties, but both approaches are hard to compose in larger 
models [24]. Interacting State Machines focus on state and produce models of transi-
tion of states. Process Calculi focus on events and enable modeling causality relation-
ships between events. Both offer composition and may work in parallel or be given 
with hierarchical structures (with microlevels of functioning combined in a more 
abstract view of the system) [11][14].  

To combine any of those approaches in a single (rather not simple) model some 
hybridization is possible through discrete event techniques. But all those approaches 
are not able to help scientists to construct models especially when formalism adds 
constraints in discrepancy with biological reality. 

Ideally, biologists would like to understand underlying mechanisms of biological 
systems without requiring very costly in vivo experimentations, or at least would like 
to have means for focusing on really interesting ones. Most of the time the models 
they are provided with are static ones; influencing or modifying them in a dynamic 
way for trying to understand or discover new virtual experiments is usually impossi-
ble. Models have then to constantly reflect experimental data and user’s desiderata in 
order to be useful and thus need adaptation capabilities to stay functional in evolving 
environments.  

This feature adds some more complexity when designing this kind of systems and 
classical top-down approaches are no longer helpful. New ways of engineering them 
are therefore mandatory for enabling them to self-build, self-tune and self-assemble.  

Adopting a bottom-up approach to enable a model to build itself by giving the ba-
sic components and letting them interact in the right way is an imaginable solution. 
Multi-agent systems (MAS) are suited for this.  

For some years now, agent technology is considered as a possible answer to bio-
logical domain problems [27][2]. Agent-based models are primarily used to deal with 
huge quantities of data [27] or for simulating in virtuo experiments: protein docking 
or folding [3][4], modeling signaling pathways [15][22], modeling unicellular organ-
isms alone [25][33] or within a population [12][16]. For example, in CellAK [33] 
complexity is dealt with software engineering principles: a UML class diagram ex-
presses inheritance relationships between the different components of a eukaryotic 
cell (membrane, cytoplasm and nucleus) that are decomposed in turn until a certain 
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level of complexity is reached. If in this case, agents are a way to obtain more easily 
understandable models compared to models based on differential equations like 
Gepasi [26], such a top-down approach does not make the model flexible and able to 
self-build.  

Simulating biological systems using actual multi-agent systems is still in an early 
stage of study. MAS are very promising for helping understanding underlying  
self-organization mechanisms in populations of biological organisms. [31] considers 
interactions between agents representing cells for modeling tissues and focuses on 
self-organization phenomena within these tissues. [30] studies a self-organization 
phenomenon at the molecular level. [10] models the behavior of stem cells within a 
niche to study the emergent global organization of this population. [5] and [20] are 
more focusing on modeling intracellular phenomena. An AGR [13] approach is  
extended in [5] for describing the internal organization of a unicellular organism  
(E. Coli) and proposing a software environment that enables formulation of dynamic 
properties within this organization. In [20] internal states of agents are described us-
ing representations and motivations on a BDI basis. The aim is to model dynamics at 
the agent level and at the level of its externally observable behavior with the intent to 
study whether internal dynamics generates the external behavior. Although this ap-
proach may help to understand relations between the two levels of a cell, it does not 
provide biologists with a tool that enables them to discover new phenomena within a 
cell. Actually, to our knowledge, most of MAS aiming at modeling biological systems 
consider that laws governing components of these systems are known, or can be in-
ferred. The organization between agents is therefore predefined and static in these 
models which are unable to evolve and dynamically respond to disruptions. Further-
more these laws are generally not completely known for all the levels that need to be 
modeled in a unicellular organism (genome, proteome, metabolome) and letting the 
model learn these rules in order to reflect experimental data would alleviate complex-
ity and then modelers’ workload. 

Outlining how complex systems modeling can be engineered in order to make the 
obtained model self-build is the objective of this paper. This is illustrated with an 
application, MicroMega, related to systems biology which aims at modeling the func-
tional behavior of the unicellular yeast Saccharomyces Cerevisiae.  

This article is organized as follows. Concepts adopted for making a model build it-
self are described in Section 2. These concepts are applied in section 3 for setting up 
the architecture implementing the MAS related to MicroMega. Some preliminary 
results obtained by simulating the glycolysis metabolic pathway in Saccharomyces 
Cerevisiae are discussed in Section 4 before concluding. 

2   Towards Self-building Systems 

Few approaches exist for engineering systems with self-organizing or emergent proper-
ties. For instance, [8] merges an analysis algorithm with simulation runs in order to 
tune variables reflecting chosen macroscopic properties. This approach does not com-
pletely unburden engineers because the analyzed macroscopic variables have still to be 
identified and the feedback has to be used in the engineering process. Engineers’ role 
has to be reduced by initially providing the system with existing expertise and letting it 
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build itself while giving it, if possible and required, some minimal feedback from time 
to time. Under these conditions, making a complex system build itself is done by let-
ting it autonomously change the organization between its components but also by ena-
bling these latter parts change as well their behavior in an autonomous way. Principles 
of self-organization are an answer to the former point [18][9]. The second point can be 
fulfilled by endowing components with abilities of learning what is unknown or in-
completely known from experts designing the system. This learning concerns their 
features (for instance, chemical or physical laws they apply) as well as they ability to 
appear into or disappear from the system depending on whether they are useful or not. 
Self-building requires then properties of self-organization at the system level, and self-
tuning, self-reorganization and evolution at the component level. 

A four-layer model for engineering systems having those properties is detailed in 
this section and applied in the following sections on an example coming from the 
biological domain. 

2.1   Self-organization by Cooperation 

The approach proposed here rests on the Adaptive Multi-Agent Systems (AMAS) 
theory in which self-organization is led by cooperation which embodies the local 
criterion that makes agents self-reorganize [6]. When an agent locally detects, at any 
time during its lifecycle, a situation that may be harmful for its cooperative state, it 
changes its relationships with others to stay or come back to a cooperative state. 
Situations that are against the cooperative social attitude of an agent are called Non 
Cooperative Situations (NCS). Furthermore processing these NCS enables an agent to 
constantly adapt to changes coming from its environment and therefore provides it 
with learning abilities. 

Since the objective is to simulate the functional activity of a given system, agents 
of the self-building model represent either elementary domain-related objects or func-
tions which manipulate these objects. Usually, elementary objects are easy to identify 
by answering the simple question « What elements are making up my targeted sys-
tem? ». Such a naive approach is usually (and historically) set aside because of the 
tremendous implied computation load of the simulation and the huge complexity of 
the required model design and control. In order to deal with these two aspects, we 
chose to totally rely on the emergence property of Adaptive MAS: 

− Simulation computation load is reduced by the fact that MAS are only composed 
of agents with very light computational capabilities. There is no need of any non 
local control to ensure consistency of the whole system activity. Moreover, as 
agents behave according to purely local and limited information, they are more 
readily to be computed in a distributed way. 

− Model design complexity is greatly reduced by locally cooperation-driven self-
adaptation. The adaptation process is not based on any global feedback from the 
system environment toward the whole MAS; no fitness function neither perform-
ance measures of the whole MAS are used. On the contrary, this adaptation process 
fully relies on emergence to ensure consistency and keep advantage of low compu-
tation load, readily distribution etc. 
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2.2   A Four-Layer Model of Agent 

Within the model, agents are all designed alike and consist of three main modules: 
− RepresentationModule: this module contains all information an agent deals with: 

internal parameters, characteristics, knowledge about other agents etc. All other 
modules have to use the representation module to obtain and store all relevant data; 

− InteractionModule: it manages all kinds of interaction between an agent and its 
environment (including other agents). Since communication between agents is of-
ten based on message exchange, the default interaction module manages a peer-to-
peer communication system; 

− BehaviorModule: this module defines the agent behavior which consists of two 
parts: the nominal behavior and the cooperative one which is subdivided into tun-
ing, reorganization and evolution. Figure 1 shows how these behaviors interact 
with one another and the agent environment (other agents, user, external data). 
 

 
Fig. 1. Four-layer model of a self-adaptive agent 

Nominal Behavior. The nominal behavior of an agent is based on the perceive-
decide-act lifecycle. Basically, this behavior corresponds to whatever this agent does 
unless the action performed is a learning action. Learning actions modify the agent 
itself or its relation to its environment in such a way that, from now on, it will act in a 
different way than before for at least one situation. In stochastic-driven behaviors 
(like Monte-Carlo), the action of randomly selecting an action according to a set of 
parameters is not a learning action. In that context, the randomized selection IS the 
nominal behavior while the parameters do not change: the fact that the agent acts 
randomly is neither unpredictable nor random... even if the resulting actions are. 

However, nominal behavior can sometimes be so complex (specification of a wide 
range of situations associated with smart actions) that an agent may appear to be 
adaptive whereas it only behaves contextually. The limit between nominal adaptation 
and actual adaptation is often problematic. 

In Fig. 1, one can notice nominal behavior obviously interacts with the agent envi-
ronment (two-sided empty arrow) or a user (dotted arrows) and sometimes it may 
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directly trigger tuning or reorganization behaviors (solid arrows) if it is unable to 
execute because of a bad parameter value or a missing link with other agents.  

 
Tuning Behavior. This behavior is the first cooperative layer of adaptive agents: it 
manages parameters values tweaking for an agent. Basically, agent tuning consists in 
analyzing the nominal behavior computation to find cooperation failures. These Non 
Cooperative Situations (NCS) can be either endogenous (exception or error while 
executing the nominal behavior) or exogenous (messages from other agents, conflict 
or concurrence of actions etc.). Tuning behavior tries to solve these NCS by modify-
ing the parameters that take an active part in nominal behavior. 

Figure 1 shows tuning behavior may modify the nominal one (dotted arrow on the 
left), trigger reorganization if it fails to solve a problem and send messages into the 
environment (toward other agents) in order to delegate/propagate non cooperative 
situations. Tuning activation usually comes from messages sent by tuning behavior of 
other agents, nominal behavior failure or reorganization behavior modifications. User 
is free to suspend or resume tuning activity as well as modifying the parameters of the 
tuning algorithm. 

 
Reorganization Behavior. It consists in modifying the way in which an agent inter-
acts with its environment and other agents. Cooperation failures that require reorgani-
zation can occur either during nominal or tuning behavior. Usual NCS that lead to 
agents reorganization are: 

− partial or total uselessness: an agent needs to establish a link with a new partner 
because it is currently not able to execute its nominal behavior; 

− incompetence: an agent is unable to perform a satisfying behavior (other agents al-
ways send requests) and the tuning behavior seems unable to cope with the problem. 

As illustrated in Fig. 1, reorganization behavior is caused by tuning failure, new agent 
appearance (evolution) or messages reception (other agents are looking for some 
help). Sometimes, a nominal critical failure can directly lead to reorganization-related 
actions: for example an agent whose main behavior consists in adding two numbers 
provided by two other agents cannot execute this if it is only connected with zero or 
one agent. 

 
Evolution Behavior. It is the last kind of modification an agent can perform to solve 
any problem coming from the previous layers and, more precisely, coming from reor-
ganization failures (see Fig. 1). Evolution1 actions concerns system openness and 
consist in creating new agents or removing itself. New agents are generally created 
when the reorganization process is unable to find new agents to solve uselessness. 
Agent self-removal can only be performed when agents are in total uselessness. 

As a matter of fact, the model is continuously evolving according to the data it is 
perceiving while the cooperative behavior is enabled and non cooperative situations 
are detected. Nevertheless this adaptation is not transient (purely instantaneous) be-
cause cooperative behaviors must remain consistent with past learnt states. So, the 

                                                           
1  Evolution here is not related to Darwin’s theory of evolution (species evolution) but only 

refers to the dynamics of the system from an openness point of view (add/remove agents). 
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model is supposed, according to the AMAS theory2, to converge towards a stationary 
state. Once this state is reached cooperative behaviors can be disabled or even re-
moved, the only remaining behavior being the nominal one. 

The next section details how this framework has been applied for modeling a bio-
logical complex system. 

3   System Architecture in MicroMega 

MicroMega3 application aims at simulating the functional behavior of a yeast cell. 
The computational model has to integrate phenomena from genomic level (e.g. genes 
activity) to macroscopic data (e.g. quantity of consumed/produced O2, CO2, glucose 
etc.). Since chemical elements involved into cellular activity are hugely numerous as 
well as their transformations/interactions, MicroMega has to be designed taking into 
account the need of autonomous building and tuning of the yeast model according to 
experimental data and user wishes as well as adaptive capabilities toward user interac-
tion to help or drive this highly complex process. 

MicroMega is based on a unified model with a multi-agent system that simulates 
chemical reactions from RNA production at genomic level to exchanges of substrates 
with extracellular environment. The system is made up of two main classes of agents: 
functional agents (elements or reactions) or viewer agents. These different types of 
agent and the way the simulation is handled to control their computations are pre-
sented hereafter. 

3.1   Functional Agents  

In MicroMega, functional agents represent either physical elements or chemical reac-
tions. Elements and reactions interact: reactions produce or consume elements and 
elements may act as regulators for reactions. 

 

Element Agents. These agents are representative of physical items that constitute the 
cell: RNA, substrates, proteins, protons (H+), water etc. Their core function is to 
manage the quantity of the element they represent during the simulation. As this 
quantity is generally not uniformly distributed in the cell, each physical element is 
actually represented by a group of element agents in which each agent manages the 
quantity into a given compartment (extracellular, cytoplasm etc.). 

However, element agents are quite passive from a functional point of view: they do 
not actually modify or compute their quantities by themselves because these modifi-
cations are computed by reaction agents (see below). Some information like unitary 
mass or internal energy of an element can also be managed by element agents. 

Element agent tuning behavior is able to handle incompetence: the agent receives a 
message from either a viewer agent or a reaction agent it regulates. This message 
requests a different quantity value. The agent modifies its current quantity value ac-
cording to the requested one and sends requests to the reaction agents it is linked with 

                                                           
2  If our implementation actually fits the AMAS theory i.e. if all NCS are properly identified 

and processed. 
3  Project funded by ANR (National Agency for Research) under the number BLAN-05-0202. 
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to increase or decrease their reaction speed (and therefore be more or less consumed 
or produced for tuning their quantity). 

Reorganization behavior handles: 

− uselessness: an element agent with no reaction agent is useless: it has to broadcast 
messages to inform reaction agents that it is available; 

− incompetence: an element agent receives messages related to its quantity value 
from either viewers (value not matching experimental data) or reactions whose this 
element is a regulator (the reaction agent wants to change its context – see below). 
This element agent has tried to change its quantity during its tuning behavior and 
this is not sufficient. Therefore the confidence it may have toward its current part-
ners is going to decrease and it may search for new partners in order to regulate 
other reactions.  
 

1 Fructose1,6DP + 2 ADP + 2 NAD+ → 2 Pyruvates + 2 ATP + 2 NADH,H+ (1) 
 

 

Fig. 2. Agentification of the complex reaction (1) catalyzed by one protein. Names of elements 
are prefixed by MI_ because this reaction takes place in the mitochondrial compartment. 

Reaction Agents. They manage all transformation and transportation of elements 
within the cell. Chemical reactions are reduced to two elementary subtypes of reaction:  

− Synthesis: a given element is broken down into two parts. An example of basic 
synthesis reaction is the electrolysis of water to give hydrogen and oxygen: 2 H2O 
→ 2 H2 + O2. 
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− Catalysis: two elements are docked together to build a new one. Hydrogen com-
bustion (2 H2+ O2 → 2 H2O) is a well-known example of such a reaction. 

Each synthesis or catalysis agent is also characterized by its stoichiometry, that is to 
say the quantitative relationship between the reactants and products of the chemical 
reaction, or -from a practical point of view- the weights of inputs and outputs of reac-
tion agents. By combining these two subtypes of reaction and using intermediate 
elements, more complex reactions can be built. Figure 2 shows a combination of 2 
synthesis (stars), 2 catalysis (octagons) and 3 intermediate elements (E20, E21, E22 –
squares) to achieve transformation of 1,6 DP to pyruvate with one protein (PE3) as 
the reaction speed regulator (dotted lines represent regulation influence). 

Two types of reaction agents manage transport: 

− Passive carriers which produce/consume ambient energy (temperature, pressure). 
This energy is usually dissipated or absorbed around the reactive site; 

− Active carriers which need to consume high energy (from ATP for instance) to 
achieve transportation. 

Carrier agents are only used for intercompartment transport because we assume ele-
ments are uniformly distributed in each compartment. 

Moreover genes are modeled as reaction agents: they consume several metabolites 
and produce one RNA and one protein. Genes design is peculiar because they must be 
paired with an RNA element. This RNA is produced by a gene but can also be con-
sumed by this gene and is involved as a regulator of its activity. 

During the simulation, each reaction agent consumes and produces elements this 
agent is linked with according to its stoichiometry and a contextual reaction speed. 
This speed determines how fast the reaction is running and as a consequence how 
much of the quantities of elements the reaction consumes and produces. Speed is 
contextual because reactions are regulated by their environment: some elements can 
speed up the reaction rate or slow it down. These elements define the reaction context 
as the vector of their current quantities. Thus one speed is associated with each possi-
ble vector in order to define the discrete function which enables speed computation.  

Reaction agent tuning behavior handles the following NCS: 

− Unproductiveness: the current context is unknown so the agent has to use a default 
context (with a speed value of 0). The agent tries to solve this NCS by adding a 
new context which corresponds to the current situation. 

− Incompetence: the agent receives requests from neighbor element agents to change 
a previous consumption or production. The agent tries to adjust either its 
stoichiometry values or the speed. Speed adjustment can be performed by modify-
ing the speed associated with the context used or by influencing the selection of 
contexts. The selection can be changed either by adjusting the ranges of regulators 
of the existing contexts or by requesting different values from the regulators them-
selves to switch situation for one that will allow to select a better context. 

Reorganization behavior handles uselessness (missing consumption/production link) 
and incompetence. For instance, if a reaction agent is unable to tweak the speed of a 
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given context (because two different speed values are alternately requested in the 
same context); it may find a new regulator to help distinguishing the two situations. 

3.2   Viewer Agents 

Viewer agents enable interactions between functional agents and the system user by 
extracting comprehensible data (for analysis and display purposes) and injecting ex-
perimental data and constraints specified by this user. This is a way to inject experts’ 
knowledge into the model. Two types of viewers are currently used in MicroMega: 

− ElementViewerAgent: this basic type of viewer agent is dedicated to gather quantities 
of a given list of element agents. It is possible to specify experimental values associ-
ated with these quantities to dynamically compare them with simulation results; 

− ElementSetterAgent: this is a viewer agent which remotely controls the quantity 
value of a given list of element agents. Whatever the computed quantity value of 
the element an ElementSetterAgent will nominally set the quantity value according 
to its database. These viewer agents are used to control the activity of specific ele-
ments during simulation (some regulators, genes etc.). 
However, other kinds of viewer agents could be defined: 

− BioMassCheckerAgent: this viewer agent evaluates the whole mass of the cell by 
summing the mass of all elements of the system; 

− CompartmentsAgent: this viewer agent analyses the system focusing on carrier 
agents to identify different compartments within the cell. This information could be 
useful if the system is able to self-reconfigure and the user might wish to control 
such a critical parameter in order to limit changes at the global cell structure level. 

The nominal behavior of viewer agents consists in accessing data of functional agents 
and storing the gathered values. Viewer agents which compare the gathered data to 
experimental ones can also compute errors. These errors will be used during the tun-
ing part which usually deals with conflicts. If the error computed during nominal 
behavior equals 0, the viewer agent sends a positive reinforcement message to the 
involved element agents; otherwise it sends them quantity error messages.  

3.3   Simulation Control and Computation 

MicroMega simulation process is handled by a single thread and decomposed into 
elementary time steps. Each step represents an arbitrary discrete item of time and is 
decomposed into two phases (each one is handled by a scheduler): the nominal com-
putation and the cooperative computation which is itself broken down into tuning, 
reorganization and evolution (according to the model given in section 2.2). 

Nominal computation corresponds to simulation computation. Within each step, 
the nominal scheduler notifies each agent of the system to execute its nominal behav-
ior. These behaviors actually manage yeast simulation through chemical elements 
quantity updates and trigger data gathering and injection in the case of viewer agents. 
As a matter of fact, nominal scheduling is decomposed as follows for each step t: 

1. Activation of each reaction agent to compute quantity variations of elements; 
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2. Activation of each element agent to update its quantity according to the quantity 
variations computed by reaction agents; 

3. Activation of all viewer agents to update data from agents and/or check whether MAS 
organization and parameters fit with the user data (experimental data, for example). 

Cooperative computation corresponds to yeast model adaptation according to both 
internal problems (for example, if model state becomes inconsistent by computing 
negative element quantities) and external data (for example, if collected data no 
longer fit experimentally probed quantities or well-known properties of the cell). Each 
agent sequentially executes parameters tuning (adjustments of quantities, of reaction 
speed etc.), reorganization (addition/removal of reaction regulations or pro-
ducer/consumer link between reactions and elements etc.) and evolution (addi-
tion/removal of new elements or reaction agents). During each step t, the cooperative 
scheduler activates agents following the reverse order of the nominal phase: 

1. Activation of each viewer agent to notify functional agents if they detect any prob-
lem for the parameters computed during step t of nominal computation; 

2. Activation of each reaction agent to check if they have received any message (un-
der- or overestimated speed) or have detected any computation problem (like an 
unknown contextual value or speed, missing element agents) while performing 
their production/consumption during step t-1; 

3. Activation of each element agent to check inconsistent parameters (negative val-
ues) or bad/good quantity values (from step t-1) notified by quantity-related mes-
sages from either viewer agents or reaction ones. 

As one can acknowledge, all the agents of each group (element, reaction, and viewer) 
can be readily triggered simultaneously because no direct interaction occurs between 
agents that belong to the same type. 

4   Simulation Results 

To test MicroMega we have first addressed glycolysis modeling as an example of 
biochemical pathway. Glycolysis allows cells to transform absorbed glucose into 
energy or smaller metabolites like pyruvate that roughly are used in biomass produc-
tion. Mathematical models in cell biology are overcome by the complexity of de-
scribed systems and are limited to linear dynamic systems in steady state. Model 
reduction is of major use to produce more simple and stable models that balance be-
tween approximation accuracy and numerical efficiency [19]. 

Biochemical network models transpose metabolic systems into differential equation 
systems like: s(t) = Nv(s(t); p) where s is the vector of metabolite concentrations and v 
is the vector of reaction velocities. The vector p contains the kinetic parameters, and the 
stoichiometric matrix N contains coefficients for corresponding reactions [17].  

When MicroMega is provided with a set of reactions (see left part of Fig. 3) under 
the shape of a stoichiometric matrix, it will produce a multi-agent system (see right 
part of Fig. 3), containing quantitative elements (including reaction intermediates) and 
functional elements. A second matrix containing data of regulation can be loaded to 
help the system during the learning of interactions. 
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Fig. 3. Simplified yeast glycolysis metabolic pathway (on left) and MicroMega graph visuali-
zation associated (on right, legend is the same as in Fig. 2) 

For a case study, a simpler model of glycolysis has been produced and imple-
mented in MicroMega. This toy model has no biological validity, since it has been 
given with arbitrary kinetic values, but shows MicroMega platform about context 
selection functioning. Figure 4 presents some curves of this virtual experiment with 2 
pulses of glucose. 

It is of interest to notice that curve profiles are different after first and second pulse. 
Differences of kinetics are based on different intracellular concentrations of some me-
tabolites. Therefore previous states of the system influence its current behavior.  

Another interesting consequence of MicroMega simulation process is visible on 
Fig. 4 (zoomed area) and concerns emergence of combined kinetics based on oscilla-
tion between different states. As it can be seen in A and B, a mean speed results of 
quick oscillation between two or more very different speeds.  

Behavior of the system is the result of given or learned kinetic parameters and of 
previous states of the system; under these conditions MicroMega goes beyond classi-
cal steady state description of metabolic reactions. Each reaction agent locally  
observes its context of functioning and consequently determines a kinetic. By this 
way any reaction agent can become aware of transient states triggered by some fluc-
tuating values of element agents. A consequence is visible in Fig. 4 (zoomed box), the 
appearance of high frequency oscillations in A and B enlightens us of at least two 
underlying concomitant states. Steady state models could only express such a phe-
nomenon with a mean kinetic.  

As it can be seen on the curves related to products of glycolysis CO2 and acetate 
(red and yellow ones, Fig. 4) after the second pulse of glucose, the glycolytic activity 
of the model is more important than after the first glucose pulse. This difference is 
due to specific repartition of intracellular metabolites that sets up during the first part 
of the simulation. 
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Fig. 4. Simulation results of a simplified model of glycolysis with two glucose pulses (1500 
units), first at t=0 and second at t=1750. Extra-cellular glucose is consumed, in a first stage 
turned into intra-cellular glucose, then metabolized into acetate and CO2 that are stored up in 
this closed model. Emergence of some quick kinetic oscillations in A (glucose consumption) 
and B (mi_pyruvate) after a second pulse of substrate can be seen in the zoomed area. 

These results show that the simulated system even though in strict nominal func-
tioning, has a contextual nominal adaptive behavior. We could qualified this observed 
adaptation as “weak” in the sense that neither the system nor one of its part does actu-
ally learn something but just acts contextually and according to its changing internal 
states. Concentrations of many intracellular metabolites and enzyme cofactors provide 
the model with a kind of memory of previous states that will modify future behavior 
related to environmental changes. 

5   Conclusion 

Due to the complexity of nowadays systems, engineers are no longer able to know 
everything in order to implement them or to fully control them. Although multi-agent 
systems are a recognized paradigm for implementing complex systems, engineering 
them is also a complex task. New ways of engineering complexity are thus required 
and the aim of this paper was to present a model for making such nonlinear complex 
systems self-build in order to lighten engineers’ workload. Self-organization driven 
by cooperation was chosen to enable not only an autonomous evolution of the system 
organization but also an autonomous adjustment of the behavior of its agents. The 
four-layer agent model proposed separates the “basic” behavior of agents composing 
an adaptive MAS from the behavior that enables them to self-tune, self-reorganize 
and evolve. Application of this agent model to an application related to biology is 
then detailed and some preliminary results are given. 
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Focusing on a specific domain such as biology, biologists rely on models to under-
stand natural phenomena or to discover new laws through less expensive in silico 
experiments. Openness and adaptation are two required features in the modeling 
process and with their inherent potential MAS are becoming a promising answer 
toward automatic modeling. In this sense, we applied the proposed framework for 
modeling the intracellular functioning of S. Cerevisiae yeast. Although the model 
obtained is still incomplete, preliminary results show that it exhibits adaptation abili-
ties when disrupted. Among the few multi-agent approaches that exist for modeling 
biological problems, fewer try to deal with dynamical phenomena and disruptions. 
For example, [28] uses features of oRis, a dynamic language, for disturbing the model 
of the MAPK while the simulation is running. Adding, removing of modifying agents 
can be done without restarting the simulation and this brings the user closer to in vivo 
or in vitro experiments. Dynamic aspects are then handled however the model does 
not self-build. In [32], a combination of top-down and bottom-up approaches for 
modeling biological networks rests on holonic MAS. Reactions (transformation, 
transport or binding process) are viewed as interactions between two holons and sev-
eral rules. Each holon can manage its rate and stoichiometry by inferring from the rule 
engine. However dynamic configuration is possible at run-time to get closer to real 
situations: user can add or remove substrates or products, change rules or regulate the 
best rate for a reaction and this latter can also be learnt using neural networks or ge-
netic algorithms. So, dynamic changes in the model are endured, however concluding 
that the model self-builds is difficult due to the lack of details about how learning is 
done at the level of holons.  

From a pure modeling point of view, MicroMega approach of pathway modeling is 
generic and not restricted to glycolysis: any cellular process that can be described as 
regulated production/consumption mechanisms is potentially transposable into a set of 
element and reaction agents. Nevertheless, offering multi-state and transient possibili-
ties using contextual functioning has an important drawback: the list of contexts a 
reaction agent deals with is rather more difficult to visualize and analyze than global 
differential equations.  

Finally this article wants to claim that this self-building ability is the only answer 
for dealing with complexity, notably in biological modeling, and MicroMega aims at 
sustaining this argument. It has been designed in such a way that building and refining 
complex models will be greatly facilitated by a cooperative behavior. Even if some 
phases of the model are still under development (such as the evolution behaviors of 
agents), this approach supports the claim that only an emergent approach has chances 
to permit complex systems to self-build. 
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Abstract. The concept of cyclical influence between individuals and society is 
widely accepted, but hard to understand in all details. This paper proposes the 
use of three processes of social influence as a way to study the link between so-
cial and individual levels of abstraction. These processes are used to design an 
agent architecture which tries to provide explicit links to its social context. In 
order to detail the impact of the social influence, the architecture also includes 
personality and emotional aspects. 

Keywords: Social influence, BDI agents, personality, emotional agents. 

1   Introduction 

The study of social dynamics based on individual behaviors is not recent 
([1] apud [2]). However, in the last years, this approach has been deeply boosted by 
the capacity of current models to represent in a more precise way the structures, 
norms, culture, and resources available in a society, as well as by the capacity to 
model in more detail the complexity of the human behavior. This includes the results 
from the interactions between emotions, personality traits, cognitive reasoning and, 
certainly, how the individuals relate to their social context. 

These two levels of complexity (society and human behavior) are extremely inter-
dependent to each other. Several works have already being conducted to study their 
relationships. However, those works normally address one of the two research direc-
tions, either: 1) by studying the emergence of collective patterns and structures from 
the individuals, or 2) by studying the influence of social elements (norms, policies 
etc.) over the individuals. Some researchers have also conducted analyses to evaluate 
the two pathways, composing the cycle macro-micro-macro. Nevertheless, for the 
sake of simplicity, these studies normally address only specific relations (e.g. norms 
and emotions [3]) and do not involves many aspects of the human being. 

In order to facilitate the model translation between micro and macro levels of ab-
straction some authors (e.g. Dignum et. al [4]) propose the use of a mediation  layer, 
named meso-layer. The latter connects the two other levels of abstraction by gathering 
information from the macro level elements (like global behavioral patterns) and includ-
ing new ones (like norms and organizational structures) that “influence” individual 
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behavior. The meso-layer presented in Dignum et. al [4] aims to study the influence of 
policies over the individuals. These policies are defined by policy makers at the macro 
and meso levels in an agent-based simulation, and the resulting behavior is analyzed. 
Briefly, it is used in a top-down approach, which means that there is no change in the 
meso level arising from the bottom-up (the agents). 

Although this is enough for studying policy making, it is not adequate to study the 
emergence of elements present in the meso level. An example is the dynamics of 
existing groups or the creation of new ones. Groups, as elementary social structures, 
are part of the meso layer. However, they should not necessarily be formed or im-
posed as part of a social or organizational policy. Individuals can spontaneously leave 
or take part of a group according to their interests, needs, preferences and objectives, 
following a bottom-up approach. 

In order to make changes in the meso level that reflects human societies, it is nec-
essary to use coherent theories linking psychological foundations with social behav-
ior. This paper proposes an agent architecture addressing this need, based on the 
model of social influence proposed by Kelman [5]. The architecture also incorporates 
other theories in order to detail several human characteristics, more precisely: emo-
tions, personality, personal and social values. 

The following two sections introduce the elements of social influence proposed by 
Kelman and how they related to different levels of abstraction, respectively. The  
Section 4 presents other elements of human behavior that we consider important to 
configure the link between micro and meso, as well as the reasons for choosing spe-
cific models. After, the components and the cognitive process of the architecture of 
the social agent are described. Then, some final remarks are made, pointing out poten-
tial applications and the next steps of the work. 

2   Social Influences 

The behavior of a society can be seen as a consequence of the choices and actions 
performed by their members, but their choices are also influenced by the whole sys-
tem. This recurrence generates a highly dynamic behavior cycle that may explain the 
resistance and/or desire for changes within a society. 

In order to examine this cycle, it is necessary to study the mechanism that influ-
ences individual behavior from a social point of view. Kelman investigation on social 
influence, proposes a linking model between the individual and social systems. Al-
though his studies were initially used as a mean to understand the mechanisms which 
allow a person to influence a target audience [6], the original model proved to be also 
useful in different contexts: from group psychotherapy to large social systems, involv-
ing organizations and very large social contexts, involving nations and its links to 
individual values (e.g. national identity) in the context of peacemaking (these works 
are summarized in [5]). 

For Kelman, individual beliefs are not necessarily (fully) integrated into the per-
son’s own value system. The latter is highly dependent on external influence. His 
investigation on this dependency led him to distinguish three processes of social in-
fluence: compliance, identification and internalization [7]. 
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These three processes address the issue of “when” an individual accepts the influ-
ence of other person. The first one, Compliance, occurs when the individual wants to 
attain a favorable reaction from the other (like a child who adopts a behavior to be 
rewarded or to not be punished). The second one, Identification, occurs when the 
individual wants to establish or maintain a satisfying relationship to the other (like a 
husband who changes his attitudes to satisfy his wife expectations). The last one, 
Internalization, occurs in order to maintain the equivalent correspondence of actions 
and beliefs with his or her own value system (like a teenager who imitates other’s 
attitudes for maximizing or confirming his or her own values). 

Along with these processes, there is also a dimension orthogonal to the aspects of 
social influence, which is the distinction between two types of personal concerns. 
These concerns drive how an individual will react to social influence: either by in-
strumental concerns (e.g. assuring rewards or avoiding punishments) or by self-
maintenance concerns (e.g. managing one’s public image). 

In large social systems, these elements of social influence are related to three dis-
tinct concepts: interests, relationships and identities [5]. These concepts are captured 
from tasks that all social elements (individuals, groups, organizations, societies) must 
perform as they negotiate their social environment: 

• Protecting and promoting their interests: This task is related to the compliance 
process, where individuals and groups may influence each other to attain their 
own interests (or goals); 

• Establishing and maintaining their relationships: This tasks is related to the 
identification process, where individuals and groups may establish the set of 
roles for their expectations; 

• Affirming and expressing their identities: This tasks is related to the internaliza-
tion, where individuals and groups share and exchange their values (or identities). 

According to Kelman, “In managing their interests, relationships and identities, indi-
viduals and groups must attend to the requirements of both social order and self-
maintenance, and of ensuring the proper balance between them” [5]. In the following 
section, we present how this is applied to the meso and individual layers by introduc-
ing the appropriate links between these two levels of abstraction. 

3   Elements of the Meso Layer in the Social Influence 

The meso level of abstraction, as described in Dignum et. al [4], refers to a intermedi-
ate level connecting and translating the elements found on the macro level to the mi-
cro level. It is composed of three types of components. The first one comes from the 
descriptive elements that was empirically validated in the domain, but are not in the 
focus of the simulation. They are regarded in the meso level as “law of nature”, which 
the agents abide. The second component comes also from the macro level, but is in 
the focus of the simulation. This component is treated as a benchmark to which the 
agent behavior is compared. The third type of component tries to influence individual 
behaviors, through mechanisms that regulate their joint activities [8]. They include 
elements like norms, organizational structures and cultural backgrounds. 
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The next paragraphs present a correspondence between these elements (norms, 
structures, and cultural backgrounds) and the elements discussed in the previous  
section (interests, relationships, and identities). It establishes a means to express the 
social influence in a bi-directional way through a link between the micro and meso 
levels of abstraction. 

3.1   From Interests, Relationships, and Identities to Rules, Roles, and Values 

It is easy to identify that interests, relationships, and identities are inherent properties 
of both social and individual entities, as long as they refer to the link between them. 
As argued by Kelman, “Individuals have interests, relationship and identities, which 
they pursue and express through the various groups and organizations with which 
they are affiliated. The groups and organizations – formed, essentially, to serve their 
members – in turn develop their own interests, relationships, and identities, which 
become personally important to the members and which the members are expected to 
support” [9]. 

Interests reflect the goals that both individuals and groups have. In this aspect, 
groups establish a set of rules necessary to assure their member to attain the group’s 
goals. Members are then influenced by these norms and rules through a mechanism of 
rewarding or punishment. For instance, the existence of a rule like “One should not 
drive faster than 100 km/h” reflects a specific goal of a social system, which tries to 
assure the behavior of their members in order to achieve it. On the other hand, indi-
viduals, when they cannot (or do not want to) leave a social system, may also influ-
ence it through their own internal rules and their respective rewarding or punishment 
strategies. Strikes are good examples of such strategies.  

Rules, also described as norms in the meso level, are then a key concept which is 
present in both levels of abstraction. The social influence through norms is related to a 
compliance process, which represents adherence to them. In accepting influence via 
this process, members (and sometimes groups) assure themselves to have continu-
ously rewards and approval (or also to avoid punishments). 

Relationships reflect the roles assigned to members of a group and their respective 
expectations from them, as well as the role of the group itself to their members. 
Members are then influenced by the expectation from the others according to the role 
they are playing in the group. A teacher would, for instance, try to behave according 
to the expectation of the students (e.g. to give a good lecture). Groups have also their 
roles for their members. This means that individuals belong to a group only when 
there is a gain for them, i.e. when the group is playing its role as expected. Following 
the same example, a student may leave a college if the lectures are not given as ex-
pected by him or her. 

Roles are then another key concept from the meso level that it is present at the in-
dividual level, and reflect the structure of the group, organization or society. The 
social influence through roles is related to an identification process. In accepting the 
influence via this process members and groups are meeting the expectations of their 
roles, thus maintaining their desired relationship to the group or to the members, as 
well as their wish to fully accomplish their roles. It is important to notice that the 
influence here is not about changing the role of a member or a group, but to change 
their settings in order to better accomplish that role. 
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Finally, identities reflects the system of values that everyone possesses, from their 
past experiences or cultural backgrounds. Members are then influenced by values 
shared in their social contexts as a way to maximize or maintain their own value sys-
tem. A foreigner may, for instance, incorporate a behavior present in a host country 
according to what he or she considers important (its own values), and the feeling of 
belonging to such a society would be manifested by the set of values that s/he share 
with the society. Group identity is also a product from the values shared by their 
members, even if it can be considered as being almost independent from the individu-
als. This notion of collective identity is intrinsically related to the culture of the social 
system.  

Value system is another key concept present in both meso and individual levels. 
The social influence through value system is related to an internalization process. In 
accepting the influence via this process members assure the maintenance or maximi-
zation of the equivalence of actions and beliefs with his or her own value system. 

3.2   Linking the Meso and Micro Layers 

The three processes of social influence proposed by Kelman suggest three different 
ways in which individuals and social systems are integrated: by adherence to its rules 
(or norms), by the involvement in its roles, and by the sharing of its values. The way 
in which rules and roles are exchanged between groups and individuals are, however, 
different. But in both cases, values serve as guides for the other elements. 

For the groups, the rules for the individuals are a way to constraint individual  
behavior, while for the individuals, their rules are a way to assure that their roles  
(established by the group) does not deviate them from their values. For instance, let us 
consider a working environment where a rule forbidding couples to work together 
exists, and that there is couple whose group roles imply in working together. What 
should the couple do? Their personal values (to lie or to not lie, how much they are 
attached to each other, how much they are committed to the work etc.) will drive their 
standard action patterns (i.e. personal rules) toward the group, saying if they obey the 
rules (breaking the relationship), do not follow the rules (lying about the relationship), 
leave the group, or decide to try to change the rules of the group. Indeed, one can see 
the individual rules as his/her principles, ethic code or moral, which set what one 
should or should not do. They are based on the personal values. 

For groups, the roles of the individuals are a way to structure and coordinate ac-
tions of their members, while for the individuals, the role of a group is to help them to 
maximize their personal values. Thus, the same kind of decision may happen when a 
role is assigned to an individual who does not see the role related to anything s/he 
considers important. Even worst, the role may be against some personal values. Let us 
consider, for instance, the obligation of an individual against a specific war to serve in 
the Army (it is an obligatory role in some societies). Although the process of Identifi-
cation in a higher level of abstraction (National identity), if the role in such a group 
(Army) does not contribute to the personal values of the individual, why s/he would 
want to belong to the group (Army)? Some enforcement rules (punishments) may try 
to change this picture, but it is the values which guide the link between group and 
individual. 
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The relationship between the goal of rules, roles, and values for groups or indi-
viduals is them enriched through the existence of different types of social attitudes. 
For instance, Dastani et. al [10] distinguish three basic types of role enactment: selfish 
enactment (the individual gives priority to its own goals), social enactment (the indi-
vidual gives priority to its role’s goals), and maximally social enactment (the individ-
ual ignores its own goals for the duration of the role enactment). Following this line, 
V. Dignum introduces another type: maximally selfish enactment (the individual 
ignores the role’s goals) [11]. 

Figure 1 illustrates the links previously described showing an individual belonging 
to two different groups and the three processes of social influence between them. 
Rules, roles, and values connect the individual to the groups s/he belongs to. 

 

 

Fig. 1. Rules, roles, and values are the elements which interface the meso and micro levels of 
abstraction. Rules enforce the achievements of goals, roles define expected behaviors, and 
values constitute their identities. They reflect the three processes of social influence: compli-
ance, identification and internalization. 

Figure 2 illustrates (next page) how such a dynamics occurs explaining the vision 
of rules, roles and values from the perspectives of individuals and groups. This dy-
namics points out the social influence from the meso to the micro level, and 
vice-versa. 

It is easy to observe that, although presented as three different concepts, rules, 
roles, and values are highly interdependent (as expressed in the legend of Figure 2). 
In order to structure how those dependencies should be treated internally by the 
individuals it is necessary to go deep on other aspects of human behavior. The fol-
lowing section explores some concepts of the individual behavior that we consider 
essential for configuring the whole picture of social influence: rationality, emotions, 
and personality. 
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Fig. 2. The direction of social influence according to the elements involved. One can read the 
left-side block of the diagram as the group saying “These are my rules that you must follow 
when playing your roles to me in order to bring or maximize our shared values”. The right-side 
block can be read as the individual saying “These are my rules that I will follow as a member of 
group playing these roles to me in order to bring or maximize some shared values”. 

4   The Behavior of Individuals 

In the last years, several studies have been conducted in order to model human behav-
ior..This includes physiological aspects (stress, fatigue,…), emotions (happiness, 
disappointment, …), behavioral preferences (personality) and socials (reputation, 
trust,…). Each of these domains regards human being from a particular perspective. 
Taken independently, they help to understand some specific aspects of human behav-
ior. Taken in an integrative way, the aforementioned studies help to construct the 
whole panorama of the human being. 

However, to integrate many different theories and/or models into a coherent archi-
tecture is a hard task with several potential validation issues (that is, to join the pieces 
of a puzzle does not mean to solve it). As any complex system, the resulting behavior 
from the interaction of its elements is very sensible to the way in which each element 
and the respective interactions are modeled. The complexity, already present in the 
individuals, still increases when they interact together. Indeed, the increasing number 
of agents in a simulation makes difficult to validate the model, assuring the expected 
macro behavior from an adequate internal representation. 

Although such a difficulty as well as the practical issue of integrating different 
theories, we understand that to simulate real human social behavior it is necessary to 
incorporate different aspects of the human being, i.e. it is important to integrate the 
concepts from different areas and also to study the relationship between them. Fol-
lowing this line, prior to addressing the potential validation issues outlined here, it is 
firstly necessary to address how to integrate the several facets of human behavior, as 
well as to conceive the required links between them and the social framework pre-
sented in the previous sections. The elements that can be clearly identified as playing 
part in the social dimension are: the decision making process, the emotional compo-
nent and the individual personality. The following paragraphs present rationales be-
hind the choices made for modeling each of those dimensions. 

4.1   Decision Making 

Agents representing individuals within a social simulation should be able to reason 
about their surrounding environment, which encloses the social context where they 
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are embedded. Several cognition architectures have already been proposed for such a 
purpose. Each one has its own strengths and weaknesses, according to where they are 
applied. 

Cognitive models, such as ACT-R [12] and SOAR [13] aim at understanding how 
people organize knowledge and produce intelligent behavior based on numerous facts 
derived from psychology experiments, employing quantitative measures. However, 
these models lack realism since they do not incorporate demographics, personality 
differences, cognitive style, situational and emotive variables, group dynamics and 
culture. On the other hand, neurological oriented models that mimic the brain, such as 
neural networks, lack transparency to link observed behavior to the implementation. 
Realistic agent models should combine the characteristics of the different types. 

The model of the human mind CLARION [14] aims to explore the interaction of 
implicit and explicit cognition, emphasizing bottom-up learning (i.e., learning that 
involves acquiring first implicit knowledge and then acquiring explicit knowledge on 
its basis). CLARION’s goal is to form a (generic) cognitive architecture that captures 
a variety of cognitive processes in a unified way and thus to provide unified explana-
tions of a wide range of data. The BDI model is also a generic cognitive architecture 
[15]. It has formal logic-grounded semantics and introduces well established concepts 
from the theory of intentionality [16]. 

The CLARION model and the BDI model are both excellent candidates for the ex-
tension as aimed for in this paper. However, although the fact that BDI requires ex-
tensive computational resources, it provides clear clues where the concepts presented 
in the previous sections can be applied. The intentional paradigm behind the BDI 
model fits well for modeling the agent interests, represented by its desires, and their 
matching with the group interests, represented as a commitment to the goals estab-
lished by the agent’s roles. 

4.2   Emotions 

Emotions can indeed deeply influence the interactions among the members of a 
group, by stimulating or inhibiting behavior and, as consequence, influencing in the 
behavior of the whole system. The inclusion of the emotional component in the agent 
architecture helps to set up the internal consequences of individual choices regarding 
the rules, roles and values. For instance, the emotional reaction when people find 
themselves deviating from standards in the domain of responsibility may be: 1) social 
fear, when they deviate from external social rules or norms; 2) guilt, when they devi-
ate from role expectations; or 3) regret, when they deviated from social values [7]. 

Emotion is, however, a subjective concept, which means that several authors have 
already presented their own vision. It is not our purpose to explore all existing work 
in the area, but to focus on those approaches that integrate emotions into a cognitive 
cycle of perception – action – perception. The model of emotions proposed in [17], 
also known as OCC model, addresses such a need. They support the idea that emo-
tions are a product resulting exclusively from our cognition, generated from our per-
ception and our expectations. As a cognitive outcome, emotions have their origins in 
our perception and involve some sort of positive or negative reaction to what was 
perceived. Following this line, they consider emotions as valenced reactions to events 
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(e.g. pleased, displeased,…), agents (e.g. approving, disapproving,…), and objects 
(e.g. liking, disliking,…). 

Some authors criticize such a theory for not including physiological aspects of 
emotions, like other theories (e.g [18]). However, the exclusively-cognitive approach 
proposed in the OCC model is enough for our purposes. Although we recognize the 
influence of physiological aspects to the emotions, the level of granularity for the 
model we want to address in this paper does not deal with issues ranging from social 
system to hormonal specificities at the individual level. 

4.3   Personality 

The use of personality models in agents in order to study the micro-meso relationship 
becomes essential as it facilitates the creation of realistic complex scenarios. It im-
proves and reproduces in a more realistic way the autonomy of the agents. Indeed, 
autonomy is related to how the individuals behave and what make them to behave 
differently from each other, even when they face the same situation. Psychologists 
have tackled this issue for several decades through what they named Personality [19]. 

It is personality which enables individuals with the same roles, following the same 
constraints (rules), sharing the same values, and having (virtually) the same beliefs, to 
behave differently. It provides a clear mechanism of preferences for specific behav-
ioral patterns which are independent from any other aspect (beliefs, values, etc.). 
More precisely, personality represents the structured and dynamic set of characteris-
tics of an individual, normally acquired from the environment and personal experi-
ences [20]. These theories can be divided into two categories: personality types and 
personality traits [21]. Personality traits theories express the human characteristics 
through quantification values (for instance, 0.9 represents a strong characteristic). 
Examples of this category are the Big Five model (also known as OCEAN or Five 
Factor model) [22] and the model proposed by Theodore Millon [23]. Personality type 
theories do not express characteristics through values, but rather through a set of cate-
gory (or types) in which the individual belongs. An example is the MBTI model [24], 
proposed as an extension of the theory of personality preferences developed by Jung. 

For our concerns, we are interested in representing personality in social simulations 
independently from the context where the simulation is running. Following this line, we 
need a model that can be more easily focused on the process rather than the contents. A 
personality type model fits well this requirement since it is not expressed as a continu-
ous (like the personality traits). Thus, according to an individual’s type, a different cog-
nitive process, involving his/her emotions and decision making, can be performed. The 
MBTI model fits well the needs of our approach. Besides that, it has a solid background 
through the several decades of use in organizational behavior studies [21]. 

5   The Architecture of the Social Agent 

The approach used to present the agent architecture is to show the overall picture of 
the agent cognition taking into account the different aspects mentioned in the previous 
sections. The architecture is then presented in a high-level of abstraction rather than 
concentrating in a particular and focused problem. 
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Our approach to support the micro-meso interaction as a process of social influence 
uses: 1) a decision making process, based on the BDI model; 2) an emotional compo-
nent, based on the OCC model; and 3) a personality-based mechanism, based on  
the MBTI model. These elements must connect to a social component which set up 
the individual standards (rules), the roles that the agent plays (as well as the groups 
where it plays), and its personal values. 

The Figure 3 provides a general overview about the different components in  
the proposed architecture. The personality component is introduced over the others, 
since it does not save or process information, but rather it establishes the way in 
which the other components do that. The following subsections explain how the dy-
namics of the architecture. 

 

 

Fig. 3. The architecture of the proposed social agent. It incorporates four main components: 
The Decision Making, the Emotional, the Social and the Personality. 

5.1   Components of the Architecture 

The decision making component is responsible for defining the social action plan 
which the agent will be committed to, as well as for deciding when the agent should 
reevaluate its goals and, consequently, its plan. The desires (BDI element) in this 
model come from different components in the architecture: from its rules (not the 
group rules, since they represent constraints and not desires), from the objectives of 
the roles the agent in playing, from its personal values, from the plan it is committed 
to, and from the emotions. Those set of desires can be inconsistent and/or unachiev-
able. Following a BDI mode of reasoning, the Deliberation element is responsible for 
filtering them into consistent and achievable goals, according to the agent beliefs. It 
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will then choose the goal (or goals) to commit, defining the agent intention, and a plan 
for it is setup. 

An approach used in this model that differs from existing BDI architectures is the 
separation of the inference mechanism from the deliberation process. In other words, 
in the Deliberation element, there is no reasoning about the possible worlds. No con-
clusion about which world state can be achieved is drawn. The inference about possi-
ble worlds are made in advance by the Inference element and put available into the 
agent beliefs. The reason for such a separation is to make the possible worlds struc-
ture not only dependent on the rational deliberation (goals), but also dependent and 
based on the agent emotional focus, the processes of social influence and its personal-
ity type (they are explained further on). The structure representing the possible worlds 
(for instance, a tree) is then not based only on rational choices. Instead, the rational 
choice will search for the best option according to only what it possible to foresee 
(what is present in the tree). An agent representing an individual in a panic state 
(emotional state), for instance, will not develop further its possible worlds’ analysis. 
Its behavior would be almost reactive. This approach fits several studies involving 
cognition and emotions pointing up that emotions set boundaries for our decision-
making process (otherwise, we could think about the best option of an issue forever). 
It also fits to the Damasio concept of “somatic markers” [25]. 

The Figure 4 (next page) illustrates the inference process taking into account not 
only a rational choice but the emotions which can be triggered by possible world 
states. The figure shows the current world state (as the agent believes) as W0 and a set 
of possible worlds deriving from it. In the example, the agent believes that a desired 
state can be achieved (W1.2), but an undesired state can also occurs (W2). It is worth to 
explain here that desired and undesired states are derived from the agent values and  
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Fig. 4. An example of how the agent infers the possible worlds, taking into account the desired 
and undesired world states. States can trigger agent emotions which also drive the inference 
mechanism. 
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its social influence (rules and roles). As an undesired state, W2 can produce emotions 
(explained in the next paragraph) and define the agent emotional focus. The emotional 
focus is then explored in a next iteration in order to develop new possible worlds 
deriving from it. In other words, the agent will not infer in any possible direction, but 
in virtue of its goals and affective states. 

The emotional component is responsible for managing how the represented emo-
tions in the agent affect the other components. As mentioned in the previous para-
graph, emotions can influence the decision making by restraining or expanding the 
vision of possible worlds. The latter can also influence the current emotional state of 
the agent. For instance, if a not desired world can be foresee in the possible worlds 
(W2), the emotion “fear” is produced by the emotional component. 

Following the OCC cognitive structure of emotions [17], agent emotions are repre-
sented as a tree of valences. In our model, each tree node has an intensity value, 
which represents how deeply the agent is affected by the perceived current world or 
by the possible future worlds. The emotion intensity of a world state is based on the 
elements from the social component, i.e. the agent values related to such a state, the 
roles the agent is playing, and its personal rules. The self-evaluation box presented in 
Figure 3 represents this process of updating the intensity values of the agent’s emo-
tions. The element which has produced the most intensive emotion in the agent be-
comes its emotional focus, which will in return influence the possible worlds’ vision 
(as mentioned in the previous paragraph).  

The social component is responsible for interacting with the outer social world 
through the three processes of social influence proposed by Kelman. Its interaction 
with the other components has already been briefly outlined. Although the three proc-
esses of social influence can be defined into the decision making component (they are 
part of a decision mechanism), we choose to define them as separated processes in 
order to explicitly identify them, being easier to adapt to different social contexts 
without having to redefine the deliberation mechanism. This separation also helps the 
management of the possible worlds’ structure, since the compliance, the identifica-
tion, and the internalization would alter it only when there are perceived changes in 
the rules, roles and values of the groups, respectively. 

Finally, the role of the personality in this architecture is to define how some 
processes are performed. The configuration should reflect the four dichotomies 
presented in the MBTI model. For instance, according to the type of the agent in the 
Sensing-Intuition dimension, the way in which the possible world’s structure is 
expanded should be different. A sensing agent would expand the tree in depth, try-
ing to figure out the real and concrete consequences of its actions (they tend to be 
pragmatic), while an intuition agent would expand the tree in breadth, trying to 
figure out all the possible outcomes (they tend to want a whole overview of possi-
bilities). Another example is how the deliberation valuates a world state in the tree 
in order to choose the best option. Thinking agents would give more importance to 
world states that achieve the goals of its roles without deviating from its principles 
(rules), while Feeling agents would valorize the world states which satisfy its per-
sonal and its groups’ values. 
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5.2   The Cognitive Process 

This subsection provides an overview about how information is transformed from a 
perception stimulus to an action to be performed. Although there is no flux of infor-
mation in Figure 3, there are several data dependencies between the components of 
the architecture. The choice of not explicitly represent them in the figure is to avoid 
surcharge of information, which could make it harder to understand. The following 
paragraphs present the process in a descriptive way, and after as an algorithm. 

In short, the perception component receives stimuli from the outer world and up-
dates the beliefs according to the agent personality. Indeed, the personality provides 
different ways to interpret a stimulus, which means that different agents facing the 
same situation may generate different beliefs. For instance, individuals with a Think-
ing personality type “are direct to the extent of seeming insensitive to others” (with 
Feeling type) [21]. 

After the beliefs have been update, the social component, through the processes of 
compliance, identification, and internalization, evaluates how this perceived world 
affects the agent’s rules, roles, and values, respectively. This is, in fact, an evaluation 
about how the changes in the outer world impacts on the inner world, and it can be 
made by comparing the rules, roles, and values from both. Let us consider, for in-
stance, the previously mentioned example of the individual against a war who has just 
invited to serve the Army. It is in this cognitive step that an agent representing this 
individual will contrast its values, roles, and rules to the society ones, and elaborate 
the impact of this new perceived outer world in its inner world. This impact can be 
considered as the individual level of deviation from social standards. 

If the inner world is affected, for instance some personal values are infringed, emo-
tions are raised from the current world state (W0). The self-evaluation process updates 
then the emotions, following the OCC-based type of reactions (to events, agents, or 
objects), and an emotional focus is defined. In the previous example, dissatisfaction 
and disappointment emotions might arise from the impact caused by the invitation to 
serve the Army. If such emotions are those which contribute the most for the current 
emotional state of the agent (the sum of all its emotions), this event becomes then the 
agent’s emotional focus.  

The next step is performed by the decision making component, which expands or 
restraints the possible worlds’ structure base on the plan the agent is currently com-
mitted (intention), the emotional focus, the level of deviation from social standards, as 
well as its personality type (as previously described) and its beliefs. Following the 
same example, the agent will expand the possible world’s reasoning about the conse-
quences and possibilities related to the Army invitation, which is its emotional focus. 
After a fixed number of expansions in the structure, the emotions are reevaluated. 
Emotions like fear or anxiety may then appear as consequence of new possible 
worlds, and new inferences are made based on the new emotional focus. 

The cycle may continue according to the personality type (Sensing persons will ex-
pand the possible worlds searching for concrete actions, while Intuition persons will 
expand to get an overview of all possibilities involved) and level of emotions raised 
(e.g. panic). After this, the deliberation process will filter the desires (spread in the 
other components) into consistent and achievable goals, reevaluate the current plan, 
and may trace a new plan to commit with. This plan can express a way of accepting 
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the social influence (through compliance, identification, or internalization), as well as 
a way to not accept the social influence, trying so to change the social environment. In 
both cases, if there is a new plan, it is send to the action component, which will  
replace the last one. The following code specifies in a high-level of abstraction the 
description above. 

Pseudo-code of the reasoning process of the social agent (in a high-level of abstraction), where: 
T is the personality type, Ru, Ro, and Va are the rules, roles, and values, P is the plan the agent 
is currently committed and A is the set of possible actions. 

01: while alive 
02:   S = get stimuli (outer world) 
03:   B = update beliefs (S, T) 
04:   Q = evaluate impact (B, Ru, Ro, Va) 
05:   E = update emotions (B, Q, T) 
06:   repeat 
07:     W = review possible worlds (B, P, E, Q, T, A) 
08:     E = update emotions (B, Q, T) 
09:   until not(panic(E)) or has to react (B, T) 
10:   if empty(P) or not(achievable(P,W)) or reconsider(P) 
10:     D = gather desires (Ru, Ro, Va, E, P, T) 
11:     I = define intention (B, D, I, T) 
12:     P = generate plan (W, I, A, T) 
13:   execute action (P, A) 

6   Final Remarks 

In this paper we propose the use of three processes of social influence, namely  
Compliance, Identification, and Internalization, into an agent-based social simulation. 
Those processes are presented into an organizational approach (rules, roles, and  
values) where explicit links between individuals and the society are provided. In order 
to compose the general framework where rules, roles, and values influence and are 
influenced by individuals, other concepts related to human behavior were introduced 
and an agent architecture was conceived. We presented the main components of such 
an architecture and described its cognitive reasoning process. 

The work described here is still in its early phase. The general concepts and  
abstractions were proposed and an architecture in a high-level of abstraction was 
designed. Connections from meso layer toward the micro were stressed and some 
hooks for the opposite direction were also stated. The latter is currently being devel-
oped based on the idea that, for instance, norms emerge through their immergence in 
the agents’ minds [26]. The present work includes norms in the agent cognition proc-
ess, which can facilitate such a process. 

Since the presented work employs an unusual approach (it embraces several aspects 
of social and individual at once), few works could be related in depth. Some agent archi-
tectures addressing the social component within the agent cognition do not address 
emotions and personality (e.g. B-DOING [27] and EMIL-A [26]). Others, which link 
social aspects of the emotions, do not integrate an organizational or normative approach 
(e.g. [28]). The PMFServ architecture [29] uses however the same approach, embracing 
a large number of concepts. PMFServ exploits however a quantitative way of modeling, 
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where the agent decision-making is based on weighted sum of values and do not look 
further then the next world state. The architecture presented here is target to qualitative 
models and is the agent is able to reason about plans. 

Although the lack of simulation results showing the impact of social influence over 
the individuals and vice-versa, the architecture was grounded in well established con-
cepts. We foresee that the proposed model can be applied in several social contexts, 
ranging from the study of group formation to the study of emergence of insurgent 
movements, including its respective causes and consequences from and to the society. 

 The next steps are to provide formal specifications regarding the dependencies be-
tween meso and micro elements, as well as the dependencies inside the agent archi-
tecture, and to implement them in a simulation platform. We envisage implementing 
the agents in an extension of the 2APL language [30], since both are founded on the 
BDI model of reasoning. 
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