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Foreword

This book belongs on the shelf of anyone interested in carrying out experimental

research on algorithms and heuristics for optimization problems.

The editors have brought together expertise from diverse sources to address

methodological issues arising in this field. The presentation is wide-ranging, con-

taining “big picture” discussions as well as more focused treatment of specific sta-

tistical techniques and their application. The emphasis throughout is on careful pro-

cess and scientific rigor; the discussion is illuminated with many case studies, small

tutorials, and references to the literature on optimization.

Don’t keep this book on the shelf: read it, and apply the techniques and tools

contained herein to your own algorithmic research project. Your experiments will

become more efficient and more trustworthy, and your experimental data will lead

to clearer and deeper insights about performance.

Amherst, Massachusetts, February 2010 Catherine C. McGeoch
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Foreword

Once upon a time, more exactly nearly half a century ago, when the first cybernetic

machines, henceforth called computers, became available to academic institutions,

a few people seemed to have waited for their iterative power to perform otherwise

boring procedures like solving sets of linear equations, etc. Among other ideas to

make use of their tireless working through loops of instructions was the simulation

of organic evolution, the main subroutines of which are mutation, recombination,

and natural selection. It was only a small step to imagine that by means of the same

principles the design of technical devices, managerial tasks and other systems could

be stepwise improved, if not even optimized. Competing methods from numerical

mathematics were known, of course, but also their limitations to linear and quadratic

dependencies between decision variables and objectives. In so-called black box sit-

uations where much more complex dependencies prevail and nonlinear constraints,

stochastic disturbances, and the like hamper the search for optima, using evolu-

tionary variation and evaluation processes showed up their capacities. Evolutionary

algorithms thus were born during the 1960s, and they have matured ever since to

a powerful and broadly accepted tool within many disciplines. Together with two

other modern streams, artificial neural networks (NN) and fuzzy systems (FS), they
have been subsumed into the so-called computational intelligence (CI) field, at least
since 1994, when the first world congress on CI took place with its three subbranches

NN, FS, and EC (evolutionary computation).

In the beginning of EC one had to be happy if one could rerun a numerical exper-

iment a few times, for example with different seeds of the pseudo random generator

or different start positions in the search space. Gathering a whole set of statistical

data was unimaginable then, so that many open questions remained about the per-

formance of the algorithms. What are those questions? It’s not only an average value

and its variance and skewness, or the best result out of a few runs that are interest-

ing. One wants to know whether the ultimate result, i.e. using the algorithm specific

stopping criterion, is always the same, whether and how it depends on the random

numbers and starting points used. Further it may happen or not that fatal execution

errors occur, like division by zero or extracting the square root of a negative num-

ber, or that the stopping criterion does not work properly – even if the optimum was
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Foreword

found exactly. And what exactly does it mean to talk of four or eight precise dig-

its or even more (which may depend on the hardware and on the system software

handling real numbers, their mantissae and exponents)? Introducing common stop-

ping criteria to compare different methods can easily deliver controversial results

depending on the slopes of best (or average) intermediate results over the number of

objective function values. Such slopes can not only have one crossing, but even two

or more. Then the result depends heavily upon the number of admitted iterations,

one method being quicker at the beginning while finally delivering mediocre final

results, or the other way round, or even more complicated.

If you are interested in such questions, THIS is the book to look into. Here you

will find even more aspects that are treated scientifically by the experts in that excit-

ing domain offering their up-to-date know-how and even leading into philosophical

domains.

Dortmund, February 2010 Hans-Paul Schwefel
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Preface

Optimization algorithms are used to solve problems that arise in relevant research

and application areas such as operations research, computer science, and engineer-

ing. During recent decades the experimental approach has been recognized and

accepted in the analysis of these algorithms and a considerable body of research

has been devoted to the development and establishment of an adequate scientific

methodology for pursuing this kind of analysis. Statistical tools have become more

and more popular. This book is written for researchers and practitioners of opera-

tions research and computer science who wish to improve the experimental assess-

ment of their optimization algorithms with the final goal of improving their design.

It collects prominent methodological works on different scenarios of experimental

analysis.

The book consists of an introduction and 4 chapters written by the editors plus

11 chapters (including an appendix) written by invited contributors. All together the

project involved 30 authors of 16 world-wide academic institutions.

The first part of the book lays the basis giving an all-round view of the issues

involved in the experimental analysis of algorithms. The second part treats the char-

acterization by means of statistical distributions of the algorithm performance in

terms of solution quality, run-time, and other measures. The third part collects ad-

vanced methods from experimental design for configuring and tuning algorithms

on a specific class of instances with the goal of using the least amount of experi-

mentation and attaining sound conclusions. Several chapters are enriched with case

studies.

Acknowledgments
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Chapter 1
Introduction

Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss

Abstract Theory and experiments are complementary ways to analyze optimiza-

tion algorithms. Experiments can also live a life of their own and produce learning

without need to follow or test a theory. Yet, in order to make conclusions based

on experiments trustworthy, reliable, and objective a systematic methodology is

needed. In the natural sciences, this methodology relies on the mathematical frame-

work of statistics. This book collects the results of recent research that focused on

the application of statistical principles to the specific task of analyzing optimization

algorithms.

1.1 Optimization Algorithms

Optimization problems arise in many contexts of operations research, computer sci-

ence, engineering and other research and application areas. Designing constructive

mathematical abstractions, called algorithms, is a common approach to solve these

problems. Algorithms that are used to solve optimization problems can be essen-

tially divided into two different types: (i) exact algorithms and (ii) heuristic algo-

rithms.
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Exact algorithms compute provably optimal solutions. They can be general-

purpose algorithms, such as simplex and interior-point methods for mathematical

programming formulations, and complete search algorithms, such as backtracking

and graph-search algorithms. They may also be more problem specific, such as the

Dijkstra’s algorithm for finding the shortest path in a graph, the Ford–Fulkerson’s al-

gorithm to maximize the flow in a network, or the dynamic programming algorithm

for knapsack problems.

Heuristic algorithms (here shortened to heuristics) are algorithms for which it

is not possible to prove that the optimum will be reached in finite time. The term

heuristic is of Greek origin, meaning “serving to find out or discover.” Hence, a

heuristic can be considered as a useful shortcut, an approximation, or a rule of

thumb for guiding search. In practice, heuristics can achieve good performance both

in terms of runtimes and in terms of solution quality. They are frequently applied

when time constraints are too tight for exact algorithms. Their use is predominant

in relevant application areas of combinatorial optimization, such as routing (Golden

et al. 2008), scheduling (Van Hentenryck and Michel 2005), and timetabling Burke

et al. (2008). Typical examples of heuristics are greedy algorithms that construct a

solution by series of choices with the best local return. A particular class of heuris-

tics is made by approximation algorithms. They are understood as polynomial time

routines with a guaranteed level of performance in terms of solution quality. Ap-

proximation algorithms are designed for many hard optimization problems, such as

for the set covering, the bin packing and several machine scheduling problems.

Finally, there is the well-known class of metaheuristics. Metaheuristics are gen-

eral algorithmic frameworks that can be applied to a wide spectrum of problems for

producing heuristics. Typically, applying a metaheuristic is a rather simple process

that requires us only the design of problem specific components to be used within

the framework. Often, the guiding principle of a metaheuristic is inspired by some

natural phenomena, such as in the case of simulated annealing (Kirkpatrick et al.

1983), evolutionary algorithms (Schwefel 1995), and ant algorithms (Dorigo and

Stützle 2004). In continuous optimization, it sometimes sufficient to define a quality

function that, for two possible solutions, states whether they are equally good or

indicates which one is better, a situation known as black-box optimization.
Optimization algorithms are most commonly randomized. The reasons for ran-

domization are various: possibility of gains from reruns, the adversary argument,

structural simplicity for comparable average performance, speed up, avoiding loops

in the search, and so on (Motwani and Raghavan 1995). Exact algorithms, when

randomized, still return an optimal solution but have random runtime. Randomized

heuristics have instead both solution quality and runtime random.
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1.2 Analysis of Algorithms

1.2.1 Theoretical Analysis

In computer science, algorithms and machines to run them are formally described.

In particular, the Turing machine is the formal model within which any computable

algorithm can be analyzed. This led to the idea that there is no need to understand

details of the hardware, because the high-level description of the algorithms will

work the same on any physical system, provided that it is stable enough to carry

out the programs. This is true if algorithms can be investigated formally and if a

general and, to a certain extent, incomplete description of the algorithm behavior is

sufficient.

The themes of theoretical work on algorithms, here intended as well-substantiated

explanations derived by mathematical logic, are broad. Solving problems in the first

place can be seen as theoretical work comprising intuition, deduction and proof.

Examples are finding algorithms that solve complicated problems without using

bruteforce and complete enumeration, or reductions between problems arising in

NP -completeness theory. Restricting ourselves to the analysis of randomized algo-

rithms we can distinguish different kinds of theoretical analysis, without aiming at

being exhaustive. Worst-case and average-case are the classical analyses that can

be carried out both on solution quality approximation and on runtime. These in-

clude probabilistic analysis for the expected runtime. Domination analysis counts

the number of solutions that are dominated by the solutions returned by an algo-

rithm on the instance where it performs worst. Convergence analysis studies the

behavior of the algorithm when runtime increases to infinite. Other analyses may

focus on proving the usefulness of some algorithmic components or the invariance

of the algorithm with respect to some trivial transformation of the input data.

1.2.2 Experimental Analysis

Computers are human artifacts constructed to execute algorithms and solve practi-

cal problems. They make it possible to study computation as a natural occurrence,

not only by formal analysis, but also by experimentation. Algorithms that would be

too complex to study analytically become accessible via empirical inquiry. In addi-

tion, experimentation can provide more accurate predictions of the behavior of an

algorithm in practice.

In experiments, the object of analysis are not abstract algorithms but application

and simulation programs running in a particular computing environment and solv-

ing problems for real input instances (McGeoch 1996). Simulation programs differ

from application programs that are used in practice only in that they provide the sci-

entist with complete control of the experimental environment. Implementation de-

tails may have a certain impact on the performance of the programs that are derived
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from the algorithms under study. These details are omitted for simplicity in a math-

ematical analysis and unfortunately, they are often omitted also in descriptions of

experimental work. McGeoch (1996) distinguishes different levels of description for

the algorithms analyzed. For instance, a metaheuristic is “a minimally instantiated

algorithm” that contains few implementation details and that is probably better de-

fined as an algorithm template. A more instantiated algorithm may incorporate basic

implementation strategies (such as whether to use stacks or queues for a given data

structure); an even more instantiated algorithm may specify programming tricks that

give constant-factor speeds. A highly instantiated algorithm might describe specific

details for a particular programming language or computer architecture. We deem

it important being aware of these distinctions. Accordingly, a certain degree of ex-

pertise in the field is required to know the level of description of an algorithm to

which the results of a program can be abstracted. In other words, the exploration

of the conditions that influence the study of an algorithm at the intended level of

description is part of the work of the experimenter. His skills and ingenuity enable

him to remove unwanted factors and to make experiments relatively easy to realize

and to reproduce.

Theoretical analyses provide asymptotic results or assume special types of input

data that are different from those in which the problem usually occurs in a real-life

context. Moreover, results from theory rely on a standard machine model for com-

putation that is far from modern computers. Hence, they lead to predictions that

are too vague for practical purposes. Additionally, theoretical analyses have to fix

concrete problems or at least assume that the problems, treated strictly, adhere to

some requirements, such as, for example, the objective function being convex. As

the algorithms applied in practice are often quite complex, these also have to be

simplified to be theoretically tractable. The insight gained by a theoretical analy-

sis is still valuable but may not be applicable to any practical use case. Using an

experimental approach, we are no longer bound to design simple algorithms that

are amenable to mathematical analysis. We can focus on complex algorithms whose

theoretical analysis would be beyond human ability, but whose performance better

satisfies practical needs. Similarly, this freedom can be extended to problems that

are more complex and closer to real-life situations. Experiments can inspire theo-

reticians and be used by them to disprove conjectures, gain new insights for their

work, or suggest new directions for theoretical analysis.

Hence, experimentation on algorithm implementations on up-to-date computers

is relevant in practice and definitely needed if we wish to achieve more accurate

predictions about their performance and robustness. The following section details

how experiments can benefit from theory and vice versa.
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1.3 Bridging the Gap Between Theoretical and Empirical
Analysis

As is widely understood, science is a systematic search for knowledge about the

world, resulting in a prescriptive practice and prediction of a type of outcome. In

many scientific disciplines, e.g., physics or chemistry, there is nowadays agree-

ment that theories and experiments are equally relevant. Researchers in theoreti-

cal physics collaborate with experimentalists to submit their theses to experimental

testing and, viceversa, experiments inspire new approaches.

The situation in the field of computing is much less well understood. Since al-

gorithms are mathematical abstractions there is a considerable area in the field of

computing that maintains a purely formal approach, quite similar to in mathematics

and the formal sciences. Some researchers in this area hold that a theoretical proof

of the behavior of an (often simplified) algorithm is of primary interest. However,

as mentioned above, to be of any use algorithms must be written into a program-

ming language and run on a computer. This necessarily transforms a mathematical

abstraction into a real-world matter that calls for a natural-science approach. Un-

fortunately, in the field of computing, contrary to in physics, theoretical results are

seldom subjected to empirical test or, as would be often more correctly stated in this

context, they are seldom submitted to refinement.
We observe instead a different approach to experimentation that is widespread in

other areas of computing, such as heuristics and evolutionary computation. In this

approach there is only a weak link with theory, in the sense that there is not a de-

ductively inferred theory to put to test but rather intuitive ideas on what would make

easier to solve a certain problem. In fact, a considerable number of scientists in this

area of computing implement these ideas in algorithms and try them on empirical

data without any prior analytical analysis. They observe the results and refine their

design. They proceed inductively, from experimental data. What we observe is a

learning process from experimentation rather than a theoretical development.

Our impression is then that, in the field of computing, theorists and experimen-

talists still live in two separate worlds. A serious attempt to bridge the gap between

these worlds is known under the name of algorithm engineering; see also the con-

tribution of Chimani and Klein in Chap. 6 of this book. The view of its proponents

is to test empirically theories about algorithms. The idea put forward is that theo-

retical and experimental work can inspire each other (as was already envisioned by

Galileo) in an iterative process, which they call the engineering cycle, and which

has the final goal of improving the design of the algorithms.

A peculiarity of computer science, with respect to other natural sciences, is that

theories are always true because they concern mathematical abstractions and are ob-

tained by mathematical reasoning. Nevertheless, they are often imprecise because

implementation aspects such as programming language and computer architecture

are not taken into consideration. Theories are therefore insufficient for good pre-

diction. Hence, well-conducted experiments enable us to refine theories, when any
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are available, and to learn. Experiments can positively identify previously unknown

effects and are complementary to theories.

The description of the previous paragraphs is clearly specific of the field of com-

puting. However, we can find in the contemporary philosophy of natural sciences

a more general debate on the role of experiments and their importance (Chalmers

1999). In particular, two prominent philosophers, Hacking (2001) and Mayo (1996),

give a sustained treatment of experiments as independent of theory, interacting with

it, as well as with invention and technology, in numerous ways and with differ-

ent relationships in different sciences at different stages of development. Experi-

ments acquire a new stance and can be used as a starting point from which evi-

dence emerges. This new way of looking at experiments is known under the term

new experimentalism (Ackermann 1989). Mayo proposes learning about the world

by actively probing, manipulating, and simulating patterns of error in experiments.

Central to Mayo’s approach is the concept of severity that is directly connected to

learning from error. The experimenter learns that an error is absent when a proce-

dure of inquiry (which may be based on several tests) that has a very high proba-

bility of detecting an error if it exists nevertheless detects no error. A key goal of

the new experimentalism is to reinterpret classical statistical tests as tools for ob-

taining knowledge. Mayo (1983) presents the formal statistical framework. Bartz-

Beielstein (2008) transfers this framework to experimental approaches in computer

science (see also Chap. 2 of this book).

Summarizing, there are at least two interesting ongoing processes in the field

of computing that try to bridge the gap between theory and experiment: (i) algo-

rithm engineering, that starts with theories and refines them and (ii) the new ex-

perimentalism, that starts from experiments without any high-level theory and lets

evidence arise as a matter of fact. The former can be classified as a deductive ap-

proach, whereas the latter is related to inductive approaches and reliabilism. Note,

and this is a relevant observation, statistics plays a central role in both approaches.

With respect to the situation presented, our intention in this book is threefold.

First, we wish to give importance to experiments and qualify them as complemen-

tary to theories, as ways to test and refine them, improve them, and make them more

meaningful and useful in practice. Second, we intend to recognize the existence of a

scientific process in the field of computing that consists of applying statistical testing

and learning from error. This approach is interpreted within the position of Hacking

and Mayo. Accordingly, we regard the learning that we achieve from experiments

as valuable and trustworthy. Finally, because it is a common premise for achieving

the two previous aims, we wish to contribute to make the analysis of experiments

in the field of computing more rigorous, objective and reproducible, hence similar

to what is seen in other natural sciences such as physics, biology, and chemistry.

As we explain in the next section, this goes necessarily through the adoption of the

statistical framework.
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1.4 The Need for Statistics

So far we have argued for the relevance of experimentation in computing. But how

should experimentation be carried out in order to gain a scientific stance? What

are the pitfalls we would like to avoid? Prominent authors, like Hooker (1996) and

Johnson (2002), have already replied to this question, discussing extensively issues

related to the experimental study of algorithms. These articles are good starting

points for any experimenter in the field.

In this book, we further advocate the use of statistics as a systematic way of anal-

ysis. Statistics offers a well-developed and accepted mathematical framework to the

analysis of experimental data. It suggests ways to look at data to discover relevant

patterns and techniques to plan experiments intelligently and separate effects. It also

provides quantitative assessment of the inference in which the scientist is interested.

In the case of randomized algorithms, we need to protect the researcher from

falsely concluding about the presence of an effect caused by the algorithm when

there is none. The direction of the observed differences might be simply due to

chance and explained by sampling variance. Nevertheless, if algorithms differ in

even the smallest component then they should, ultimately, lead to different results.

Thus, it is important to consider the entity of the true differences: they might be

so small that we are in fact scientifically indifferent to them. On the other side, we

might want to be protected against erroneously concluding that no such difference

exists when one does. These concepts are made formal and quantitative in statistics

by fixing the level of significance and the statistical power of the chosen test proce-

dure. In this way, we bound within an agreed limit the chances of making a certain

kind of mistake if the test procedure were to be repeated a large number of times.

In computing we may distinguish different scenarios where statistics is needed.

On the one side, we may wish to draw conclusions on the basis of small samples

because it is computationally costly to run experiments. This situation occurs in

many real-world optimization scenarios, e.g., in engineering design where one sin-

gle function evaluation might be the result of a complex simulation. In this case

statistics helps us to avoid premature conclusions that are not evident from the data

and to design the experiments in the most effective way. On the other side, computa-

tional cost might not be a problem, in which case we could run as many experiments

as we wish but might want to have a unique decision at the end. This situation might

occur while optimizing artificial test functions that were defined to understand the

behavior of algorithms. Still here, statistics helps us to maximize the space of tested

algorithmic configurations, telling us when the data collected are sufficient to deter-

mine a difference and suggesting the direction for new experiments. Alternatively,

it can provide confidence intervals around the estimated effects, thus increasing the

level and precision of the information collected. It is possible, of course, to find sit-

uations that stay half-way between the two described here. For example, it might be

possible to decide to stop the experiments before a unique answer has been found.

This may be done when a time deadline is reached or when enough statistical power

has been collected to detect a minimal effect of scientific interest and this has not

yet become evident in the data collected.
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One of the criticisms of experimental research in computing is that the results

produced are less trustworthy than theoretical ones because they are contextual, ar-

chitecture dependent and hence less general and unreproducible. Indeed, we agree,

often computational experiments found in the literature are not severe enough and

many claims remain invalidated. But our point of view is that this criticism should

not hinder experimentation, rather, through its awareness, it should rise its quality

and lead to a more sophisticated methodology. In our vision computational experi-

ments are more complex than it is believed and require field expertise to deal with

the various sources of variance. They go beyond running a few experiments on a sin-

gle machine and collecting results in a table. They entail summarizing, visualizing,

and testing data with principled methods of analysis taken from statistics to distin-

guish the effects of different sources. The ultimate goal is a useful and generalizable

description of algorithm behavior. We will achieve these goals by borrowing from

well-established rules on experimentation from other fields and developing new spe-

cific tools. The final goal is the establishment of standards for experimental research

in computing. The methods arising from considerations of this kind may then be of

advantage not only to the scientist but also to the practitioner and designer, provid-

ing them with the tools for correct and fast decision making.

1.5 Book Contents

The analysis of optimization algorithms focuses primarily on two measures of per-

formance solution cost and runtime. From a statistical point of view these are ran-

dom variables and in experimentation we base our description on finite-sized sam-

pled data.

In statistics we distinguish three areas of data analysis: descriptive statistics, de-

sign of experiments, and inferential statistics. Descriptive statistics deals with the

summary and graphical representation of results. Design of experiments provides a
systematic framework for the collection and evaluation of data. Finally, inferential
statistics supplies a probabilistic measure of events on the basis of mathematical

derivations from the empirical data.

In this book we collect important techniques from all these areas that may con-

tribute to attaining an empirical assessment in different scenarios of analysis. Given

our aim of a book oriented to practice, every chapter contains both an explanation

of the techniques and their example application to case studies.

We have organized the chapters into three parts, where similar questions are ad-

dressed. In Part I, the focus is on the object of analysis, the algorithms, and the

problem instances. In Part II, the focus is on the characterization of the probability

distribution of the random variable chosen to measure algorithm performance. In

Part III, we group all applications of experimental design techniques for modeling

the relationships between algorithm parameters, instance features, and algorithm

performance. The goal of all these methods is the separation of effects and the com-
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parison of average performance. The differences in size of these parts reflects the

attention devoted to the different scenarios in the literature.

Most of the chapters have a more or less involved statistical content. The reader

who is not very confident with this subject can find in the Appendix a very precise

introduction to the theory of inferential statistics by Dario Basso.

The first part starts with “The Future of Experimental Research” by Thomas

Bartz-Beielstein and Mike Preuss, who examine the scientific method and its use in

computer science. They discuss philosophical foundations, the goal of experimen-

tation, the use of statistics, and the interpretation of results. While recognizing the

need for statistics, the authors warn the reader that statistics is not all. Other issues

such as the scientific meaning of a result must also be taken into consideration. The

view put forth is that experiments can be used to discover “theories” rather than only

to test theory. This view is consistent with the current of new experimentalism in the

contemporary philosophy of science.

The following chapter, “Design and Analysis of Computational Experiments:

Overview” by Jack P.C. Kleijnen, introduces the reader to experimental design and

modeling by means of classical and modern regression techniques. It includes both

methods that were successfully applied to the tuning of algorithms and that we will

encounter in the third part of the book as well as methods that have not yet been

applied and that represent interesting potential for future research.

The next chapter, “The Generation of Experimental Data for Computational Test-

ing in Optimization” by Nicholas G. Hall and Marc E. Posner, considers issues

that arise when generating random instances for testing algorithms on optimization

problems. A protocol for a generation scheme is proposed and a set of generation

principles is analyzed through a review of the literature of generation schemes for

testing optimization algorithms in different application areas. A wealth of pointers

for details on problem-specific issues is provided.

The chapter “The Attainment-Function Approach to Stochastic Multiobjective

Optimizer Assessment and Comparison” by Viviane Grunert da Fonseca and Carlos

M. Fonseca enlarges the object of study to multiobjective optimization. In this case,

solution quality is no longer expressed by a scalar value that becomes a random

variable when algorithms are randomized, but by a vector of values that becomes

a random set of points in the objective space in the case of randomization. The

attainment-function proposed to characterize a set of Pareto (approximate) optimal

solutions is derived from random set theory.

In the last chapter of this first part, “Algorithm Engineering: Concepts and Prac-

tice,” Markus Chimani and Karsten Klein give a wide introduction to experimental

algorithmics and algorithm engineering. They review several issues related to the

objects of the experiments of this book and provide many interesting links to fol-

low. The chapter has the intent to bridge a gap between two communities, the algo-

rithmic and the metaheuristic, that continue to have different venues but that could

profit from more interaction.

The second part describes the characterization in terms of statistical distributions

of algorithm performance, represented by solution quality or runtime.
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In “Algorithm Survival Analysis,” the authors, Matteo Gagliolo and Catherine

Legrand, illustrate the theoretical background of survival analysis methods applied

to model runtime distributions of algorithms for solving decision problems. The

method presented has a potential impact not only on the analysis but also on the im-

provement of the algorithms themselves, as it provides indications for restart strate-

gies and for algorithm portfolio selection.

Jürg Hüsler, in his chapter “On Applications of Extreme Value Theory in Op-

timization,” models the tails of the distributions of solution quality returned by a

randomized algorithm for continuous optimization. He uses distributions from ex-

treme value theory and reports a formal proof that support their use with algorithms.

Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle look at the character-

ization of algorithm performance in terms of Pareto-optimality in multiobjective

optimization. Their chapter “Exploratory Analysis of Stochastic Local Search Al-

gorithms in Biobjective Optimization” builds on the work of Viviane Grunert da

Fonseca and C.M. Fonseca and presents a graphical representation of the empirical

attainment function. This is a novel tool for exploratory data analysis in the con-

text of biobjective optimization that makes it possible to investigate and compare by

visual inspection different algorithm behaviors.

The third part collects advanced methods, mainly from experimental design, for

the problem of configuring and tuning algorithms on a specific class of instances.

The chapter “Mixed Models for the Analysis of Optimization Algorithms” by

Marco Chiarandini and Yuri Goegebeur gives a detailed introduction to linear sta-

tistical models for the typical scenarios of optimization algorithm studies. The goal

is separating the effects of different factors in an aggregate analysis. It differentiates

algorithmic components and instance features, while maintaining them under the

same framework of analysis.

Enda Ridge and Daniel Kudenko in “Tuning an Algorithm Using Design of Ex-

periments” suggest the use of more advanced experimental designs for the goal of

screening the relevance of parameters with the least amount of experimentation.

Successively, the determination of the best setting for the parameters left is solved

by the use of response surface methods in which a response surface is modeled in

the space of parameters.

“Using Entropy for Parameter Analysis of Evolutionary Algorithms,” by Selmar

K. Smit and Agoston E. Eiben, proposes an alternative method to estimate the rele-

vance of parameters with respect to screening methods from statistics. The method

consists of an evolutionary algorithm (REVAC) that samples the space of parame-

ters and collects the values of entropy, a measure of information, at different levels

of performance measure. A detailed and well-explained case study is conducted,

showing the application of this method to the analysis of evolutionary algorithms

obtained by the combination of different choices for their parameters.

Selecting the best configuration out of a set of candidates is the topic of the next

three chapters.

In “F-Race and Iterated F-Race: an Overview,” Mauro Birattari, Zhi Yuan,

Prasanna Balaprakash, and Thomas Stützle present a simple but very effective ap-

proach with roots in machine learning. F-Race implements a sequential testing
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method in which candidates are discarded as soon as statistical evidence arises

against them. The procedure presented is an extension of the original F-race in

which new candidates can be sampled from the space of parameters on the basis of

current results. The focus is on different methods for generating new design points

on the basis of current results.

The last two chapters look also at sequential testing methods but they focus on

the statistical models used for fitting the results and thus obtain information about

where to move in the design space. The chapter “The Sequential Parameter Opti-

mization Toolbox,” written by Thomas Bartz-Beielstein, Christian Lasarczyk and

Mike Preuss, exemplifies the SPO framework introduced in Chap. 2. The sequen-

tial parameter optimization toolbox SPOT is introduced as a freely available tool

to improve algorithm performance. It is the result of a combination of principles

from design of experiments applied to the problem of tuning the parameters of al-

gorithms. However, the main benefit of SPOT is prevention from worse algorithm

parameter configurations—and not to determine the overall-best parameter set. The

example is explained using the free statistical environment R.

Finally, Frank Hutter, Thomas Bartz-Beielstein, Holger H. Hoos, Kevin Leyton-

Brown, and Kevin P. Murphy in “Sequential Model-Based Parameter Optimization:

An Experimental Investigation of Automated and Interactive Approaches” study

two modeling methods from the literature based on Gaussian process models. These

are sequential parameter optimization (SPO), which is also discussed in Chap. 14,

and sequential Kriging optimization (SKO). Key design decisions within the SPO

paradigm are considered. Results from these experimental studies lead to a new

version of SPO, dubbed SPO+. The authors compare automated parameter tuning

approaches to an interactive, manual process that makes use of classical regression

techniques. This interactive approach is particularly useful when only a relatively

small number of parameter configurations can be evaluated. It can help human ex-

perts to gain insights into the parameter response of a given algorithm and to identify

reasonable parameter settings.

The scenarios outlined above are just some of the experimental studies that can

be conducted in the study of algorithms for optimization. The description centered

necessarily on the content of the book. Performance measures are by no means re-

stricted to runtime and solution quality. Other indicators may be relevant in different

contexts, see, for example, McGeoch (1996), Chap. 6 in Birattari (2005) or Bartz-

Beielstein (2006).

Moreover, several chapters in this book, rather than being conclusive and giving

standards, outline the need for further research in this area. Correct experimental

analysis of algorithms is apparently a less easy task than it may seem. The contribu-

tion of this book in this sense is to bring the reader to the cutting edge of what the

available methods can do and where they might fall short.

These and other issues deserve attention and will certainly continue to attract in-

terdisciplinary research. We are grateful to the authors of the chapters for their out-

standing contributions. We hope that this book will be pleasant read and that it will
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contribute to improve the assessment of optimization algorithms and consequently

the solution of problems arising in practice.
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Chapter 2
The Future of Experimental Research

Thomas Bartz-Beielstein and Mike Preuss

Abstract In the experimental analysis of metaheuristic methods, two issues are

still not sufficiently treated. Firstly, the performance of algorithms depends on their

parametrizations—and of the parametrizations of the problem instances. However,

these dependencies can be seen as means for understanding an algorithm’s behav-

ior. Secondly, the nondeterminism of evolutionary and other metaheuristic methods

renders result distributions, not numbers.

Based on the experience of several tutorials on the matter, we provide a compre-

hensive, effective, and very efficient methodology for the design and experimen-

tal analysis of metaheuristics such as evolutionary algorithms. We rely on modern

statistical techniques for tuning and understanding algorithms from an experimen-

tal perspective. Therefore, we make use of the sequential parameter optimization

(SPO) method that has been successfully applied as a tuning procedure to numerous

heuristics for practical and theoretical optimization problems.

2.1 Introduction

Contrary to intuition, applying and assessing randomized optimization algorithms

efficiently and effectively is usually not trivial. Due to their flexibility, they fail only

gradually, e.g., by using wrong parametrizations, as long as the main principle of

moving towards better solutions remains intact. Statements of practitioners such as

“I tried that once, it did not work” thus appear to be somewhat naïve to scientists but

Thomas Bartz-Beielstein
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simply reflect how the difficulties of a proper experimental evaluation are usually

underestimated.

Despite these difficulties, computer scientists have all the information at hand to

perform experiments. Computer experiments can be planned and randomness can

be controlled, e.g., by using random seeds. This situation differs completely from

the situation in field studies, e.g., in agriculture. The difficulties in the experimental

analysis of randomized optimization algorithms are much more in posing the right

questions than in generating empirical data. Setting up and interpreting experiments

in a meaningful way is especially difficult as the methods under test are “general-

purpose” optimization methods by design.

This chapter concentrates on new approaches, omitting the discussion of the

“good old times” when reporting the mean best fitness value from ten runs of an

algorithm was sufficient for the acceptance of an article in a journal. Looking at the

history of experimentation in computer science, especially in the field of simulation

and optimization, we can see that in former times simple statistics such as mean val-

ues dominated the presentations and discussions. Today, more sophisticated statis-

tics gain more and more importance, and some journals do not accept articles which

lack a sound statistical basis. State-of-the-art publications report statistically mean-

ingful conclusions, e.g., results are based on p-values—which has been a standard

in other disciplines such as medicine for many years.1 The next step, which will be

discussed in this chapter, is related to conclusions which are statistically and scien-

tifically meaningful.

There are also some myths, e.g., statements like “Genetic algorithms are better

than other algorithms (on average)”, that were quoted in the 1980s, and are not heard

any more. Other myths that have become extinct read: “Everything is normal”, “10

is a nice number (to specify the number of runs in a repeated experiment)”, and

“performing good experiments is a lot easier than developing good theories.”

In the meantime, approaches such as algorithm engineering which offer method-

ologies for the design, implementation, and performance analysis of computer pro-

grams, were developed (Demetrescu and Italiano 2000). Although the pen-and-

paper era has been overcome in algorithm engineering (see also the discussion on

p. 132 of this book), our approach differs substantially from algorithm engineering

in several aspects, of which we mention only three (Bartz-Beielstein (2006) presents

a comprehensive comparison):

1. The approach presented in this chapter has its origin in design of experiments
(DOE). Ideas from Fisher (1935) have been refined and extended over recent

decades. Ideas that were successfully applied in agricultural and industrial simu-

lation and optimizations have been applied to problems from computer science.

DOE has an important impact on experimentation in computer science. Most

influential is Kleijnen’s work. His first works go back to the 1960s. Books such

as Statistical Tools for Simulation Practitioners (Kleijnen 1987) provide useful

hints for simulation and optimization practitioners; see also his work on Design
and Analysis of Computational Experiments, Chap. 3 of this book.

1 A formal definition of the p-value is given in the Appendix, see p. 435.
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2. The concept of active experimentation is fundamental to our approach. First, a

very simple model is chosen—a process related to pulling oneself up by one’s

own bootstraps. Since the model induces a design, design points can be chosen

to perform experiments. In the next step, model refinement is applied (or, if the

model does not fit at all, a new model is chosen). This rather simple sequential

approach is a very powerful tool for the analysis of heuristics.

3. Whereas algorithm engineering builds on the existence of theory, this is not a

necessary precondition for our approach. However, obtaining general principles

from experimentation may later on lead to theory. Nevertheless, this is not the

primary goal. Instead, one is striving for “best-case” performance in the sense

that, for a given problem and algorithm, the best possible algorithm configura-

tion is sought.

This chapter is organized as follows: Sect. 2.2 describes specific features of ex-

periments in computer science, especially for the analysis of computer algorithms.

Two major goals are considered, namely, improving the performance of algorithms

and understanding their behavior. Section 2.3 discusses three fundamental problems

of experimental research: problems related (i) to the experimental setup, (ii) the

interpretation of the results, and (iii) developing theories from experiments. Sec-

tion 2.4 introduces the framework of the new experimentalism. Since models are

central for our approach, Sect. 2.5 introduces a hierarchy of models. This section

concludes with a description of sequential parameter optimization (SPO). 2 Pitfalls

that can occur during experimentation are described in Sect. 2.6. Section 2.7 de-

scribes tools to measure and report results. This chapter concludes with a summary

in Sect. 2.9.

2.2 Experimental Goals in Computer Science

Theoreticians sometimes claim that experimentation is a “nice to have” feature, but

not “necessary” in computer science. As discussed in Sect. 1.2.2, there are practical

problems which make experimentation necessary. There are several good reasons to

further develop the methodology for experimental work:

• For many practical problems, including but not limited to black box real-valued

problems, theory is far behind to nonexistent, so that there is no other means to

investigate efficiency other than experiment.

• Metaheuristic optimization algorithms consist of basic working principles: Any

interfaced problem can be solved “in principle.” However, to attain considerable

efficiency in real-world problems, it is generally needed to adapt the metaheuris-

tic towards the problem, using any available specific knowledge about the appli-

2 An implementation of SPO has been developed over the last years. The corresponding software
package will be referred to as SPOT, an acronym which stands for sequential parameter optimiza-
tion toolbox. SPOT is discussed in detail in Chap. 14 of this book.
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cation domain. This process of adaptation is crucial but often ignored in favor

of the final quality. It shall not be undertaken without a guiding methodology.

In order to justify the need for a methodology for the experimental analysis we will

discuss important goals of the experimental approach.

2.2.1 Improving the Performance

Many studies use experiments to show improved algorithm performance. There are

many reasons why we are interested in showing improved algorithm performance.

One reason may be that the algorithm does not find any feasible solution. This task

is related to effectivity. Another reason may be that we want to demonstrate that our

heuristic is competitive to the best known algorithm. This task is related to efficiency.
If our focus of the experimental analysis lies in efficiency, then we are considering

tuning problems.

Effectivity and efficiency require different experimental setups. To analyze effec-
tivity, we consider several problem instances, e.g., different starting points, dimen-

sions, or objective functions. To study efficiency, we are seeking an improved param-

eter set for the algorithm, while keeping the problem instance constant. This leads

to a generic classification of the experimental parameters: the first class comprises

parameters related to the algorithm, whereas the second class consists of parameters

related to the problem.

a) Algorithm parameters are related to the algorithm, which should be improved.

A set of algorithm parameters will be considered as an algorithm design. Note
that an algorithm design is a set, which can be empty or contain infinitely many

algorithm parameters.

b) Problem parameters describe the problem (instance) to be solved by the algo-

rithm. A problem design consists of none, one or several problem parameters.

Example 2.1. An algorithm design includes parameters such as population size or

selection strength. A problem design comprises search space dimensions, starting

points, or objective functions. �

Regarding the problem design and its associated budget, at least two different situ-

ations can be distinguished:

a) Real–world settings: In these situations, complex objective functions, e.g., from

simulation, occur. Generally, only a small number of function evaluations is

possible.

b) Theoretical settings: In these situations, simple objective functions are used.

These, partially artificial, functions should provide some insight into the algo-

rithms’s behavior. Generally, many function evaluations are possible.
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2.2.2 Understanding

Until now, we have investigated ways to improve algorithm performance, i.e., im-

proving efficiency (tuning) or effectivity (robustness). In several situations, we are

interested in why an algorithm performs poorly or well. Methods for understanding

its elements, e.g., procedures, which can be modified by parameters, are presented

next.

Screening, e.g., in order to detect the most influential parameters or factors,
is useful in real-world and in theoretical situations. Statistically speaking, we are

interested in the effects of the parameters on the outcome. This is related to im-

portant questions: “Does a parameter influence the algorithm’s performance?” or

“How to measure these effects?” Consider a first model: Y = f(X), where
X = (X1, X2, . . . , Xr) denotes r parameters from the algorithm design, and Y
denotes some output (i.e., the best function value from 1000 evaluations). If the

problem design remains unchanged, we can perform:

1. Uncertainty analysis, i.e., we compute the average output, standard deviation,

and outliers. Therefore, uncertainty analysis is related to the outcome Y .

2. Sensitivity analysis, i.e, we analyze which of the factors are most important in

influencing the variance in the model output Y . Therefore, sensitivity analysis

is related to the input values, i.e., the relationship between Xi, Xj , and Y .

To measure parameter effects, mathematics and statistics provide different ap-

proaches, namely derivation, analysis of variance, and regression. Although these

approaches look different at first sight, they have very much in common as will be

seen later on. SPOT’s screening phase comprises short runtimes, sparse designs, ex-

treme values, and outliers that destroy the SPOT metamodel; see also the discussion

and examples in Chap. 14.

There is no general answer to the question “How many factors are important?”

However, the following rule is observed by many practitioners: The input factor

importance is distributed as the wealth in nations—a few factors produce nearly all

the variance.

2.3 Problems

Now that we have discussed relevant tasks for the experimental analysis of com-

puter algorithms, we consider severe problems related to experimentation. Obvi-

ously, performing an experimental study requires more than reporting results from

a few algorithm runs. Generating scientifically meaningful results is a very complex

task. We will present three fundamental problems that give experimenters a hard

time, namely problems related to:

1. The experimental setup

2. Interpreting the significance of the results
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3. High-level theory

2.3.1 Problems Related to the Experimental Setup

An analysis of recent publications makes evident that there is still space for im-

provement of up-to-date approaches in experimentation. Example 2.2 illustrates our

considerations.

Example 2.2. Can the following be considered good practice? The authors of a jour-
nal article used 200,000 function evaluations as the termination criterion and per-

formed 50 runs for each algorithm. The test suite contained 10 objective functions.

For the comparison of two algorithms, population sizes were set to 20 and 200. They

used a crossover rate of 0.1 in algorithm A, and 1.0 in B. The final conclusion from

their experimental study reads: “Algorithm A outperforms B significantly on test

problem f6 to f10.” �
Problems related to this experimental study may not be obvious at first sight, but

consider the following:

1. Why did the authors use 200,000 function evaluations to generate their results?

Would results differ if only 100,000 function evaluations were used?

2. Why did they use 50 runs for each algorithm? Again, would 10 or 100 repeats

result in different conclusions?

Solutions for the first question are discussed in some publications. Cohen (1995)

presents a comprehensive discussion of so-called floor and ceiling effects, and Hoos

and Stützle (2005) develop statistical tools, so called run-length distributions. Prob-
lems such as mentioned in the second question, the number of repeats, will be

detailed in Sect. 2.3.2. They are related to p-values, or more abstractly, signifi-

cance (Morrison and Henkel 1970). Example 2.2 demonstrates that we need tools to

determine:

1. Adequate number of function evaluations, especially to avoid floor or ceiling

effects

2. Thoughtfully chosen number of repeats

3. Suitable parameter settings for comparison

4. Suitable parameter settings to get working algorithms

2.3.2 Problems Related to the Significance of Experimental Results

In the following, we will focus on comparisons of results from experimental studies.

High-quality tools from statistics are used in recent publications. Nowadays, it is no

problem to generate experimental data and to produce statistics. However, there are

nearly no tools to interpret the scientific significance of these statistical results. The
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reader may claim that more and more authors use statistical tests to validate the

significance of their results. However, results based on tests can be misleading.

We will consider hypotheses testing first. A hypothesis is a statement made about

a population, e.g., with respect to its mean. Acceptance or rejection of the hypothesis

is based on a test statistic T on a sample taken X from the population. Hypothesis

testing is a rule of inductive behavior: Accept/reject are identified with deciding to

take specific actions (Mayo and Spanos 2006a). The process of hypothesis testing

consists on taking a random sample from the population and making a statistical

hypothesis about the population. If the observations do not support the claim pos-

tulated, the hypothesis is rejected. Associated with the decision is the significance

level α. Assuming normal distributed random variables, the procedure for hypothe-

sis testing involves the following five steps:

1. State a null hypothesis,H0. For example,H0: μA−μB = 0, i.e., we hypothesize
that the mean function value μA of algorithm A and the mean function value

μB of algorithmB are the same. IfH0 is true, any observed difference in means

is attributed to errors in random sampling.

2. Declare an alternate hypothesis, H1. For the example under consideration, it

could be H1: μA − μB > 0, i.e., we are considering a one-sided test. Since

smaller function values are preferred (minimization), this indicates that algo-

rithms B performs better than A.
3. Specify a test statistic, T . For claims about a population mean from a population

with a normal distribution, if the standard deviation σ is known, the appropriate

significance test is known as the z-test. The test statistic is defined as

z0 =
x− μ0

σx
, (2.1)

where σx = σ/
√
n is the standard error. In the example under consideration,

T will be based on the difference of observed means, XA −XB . Using (2.1),

the test statistic follows the standard normal distribution (with mean = 0 and

standard deviation = 1).

4. Define a rejection region (the critical region, R) for T based on a pre-assigned

significance level α.
5. Use observed data, e.g., x, to determine whether the computed value of the test

statistic lies within or outside the critical region. The quantity we are testing

is statistically significant at the α% level, if the the test statistic is within the

critical region, see also (A.1) on p. 433. The significance level α indicates how

much we are willing to risk (in terms of probability) an incorrect rejection of

the null hypothesis when the latter is true. Figure 2.1 illustrates this procedure.

In hypothesis testing we use the terms errors of Type I (α) and Type II (β) to
define the cases in which a true hypothesis is rejected or a false hypothesis is ac-

cepted (not rejected), respectively. The complement of β is called the power of the

test of the null hypothesis H0 versus the alternative H1. Using a sample of size n
with mean x and standard deviation σ, the z-statistic, cf. (2.1), can be calculated.

The p-value for a one-sided test is defined as: p-value= Pr(Z > z0). The p-value
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Fig. 2.1: Hypothesis testing. Consider n = 100, σ = 1, μ0 = 0, and α = 0.05. The critical region
is [1.645,∞[, and z0 = x × 10, cf. (2.1). For instance, the testing rule leads to a rejection of the
null hypothesis if the difference of observed means is larger than 0.1645

associated with z0 is compared to α to decide whether or not to reject the null hy-

pothesis. The criteria to use for hypothesis testing is: Reject H0 if the p-value is

smaller than α, otherwise do not reject H0.

Next, we consider two typical problems related to the p-value.

2.3.2.1 Misinterpretation

First, we consider a typical problem related to the definition of the p-value. Since
the null hypothesis is either false or true, the p-value is not the probability that H0

is true. The p-value is defined as3

p = Pr{result from test-statistic, or greater | null model is true }. (2.2)

A typical misinterpretation of the p-value reads as follows:

p = Pr{ null model is true | test-statistic }.

However, the p-value has “no information to impart about the verity of the null

model itself” (Gregoire 2001). To illustrate this difference, the reader may compare

Pr{A|B} and Pr{B|A}, where A denotes the event “born on 1st January, 1980”

and B represents “gender female.”

3 See also the description on p. 435 in the Appendix of this book.
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2.3.2.2 The Large n Problem

Second, we will exemplify one typical problem that has direct consequences for the

experimental analysis of optimization algorithms. It is fundamental to all compari-

sons—even to high-level procedures. To perform experiments in computer science,

the following steps are to be done:

1. Select test problem (instance).

2. Run algorithm A, say n times, which results in n function values.

3. Run algorithm B, say n times, which gives n function values.

4. Calculate the difference of the observed means, say X = XA −XB .

This sounds trivial, but there are many implications which arise from the specifica-

tion of n, the number of repeats. Recall, that n was set to 50 in Example 2.2.

Example 2.3 (Hypotheses testing). We perform a comparison of two algorithms A
and B. The null hypothesis H0 : μ = 0 (= μ0), is tested against the alternative

hypothesis, H1 : μ > 0 at a level of confidence of 95%, i.e., α = 0.05, using
a sample of size n = 5 with a difference of the observed means x = 0.1 and

a (known) standard deviation σ = 1.0. Based on this setup, the experimenter is

interested in demonstrating that algorithm B outperforms A. Performing n = 5
runs, the p-value reads p = 0.4115, which is not very convincing. Maybe additional

experiments are helpful? Increasing the number of repeats from n = 5 to 10 gives

p = 0.3759, which is better, but not convincing. However, the direction for further

experimentation is clear: n = 100 gives p = 0.1587, and n = 1000 produces the

desired result: p = 0.0008. The experimenter concludes his article with the words:

“My newly developed algorithm B clearly outperforms the known-best algorithm

A.”
This situation is illustrated in Fig. 2.2, where the p-value is plotted versus the

number of runs. This result is not surprising, since (2.1) depends on n, i.e., the
number of samples. �

We may ask the reader if the result from Example 2.3, i.e., “B clearly outper-

forms A” is:

a) Statistically correct

b) Scientifically meaningful

After introducing the new experimentalism in Sect. 2.4, this problem will be recon-

sidered.

2.3.3 Problems Related to High-Level Theory

In computer science, the Popperian view based on falsification is an, if not the, es-
tablished definition of science (Popper 1959). Once proposed, speculative claims (or

theories) are to be rigorously tested by experiment and observation. If they fail these
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Fig. 2.2: Increasing the number of experiments can reduce the p-value. This figure illustrates the
situation described in Example 2.3. The number of repeats is varied from n = 10 to 5000. For each
setting, n realizations of the random variables YA and YB are generated and the corresponding
p-value is determined

tests, theories must be eliminated and can be replaced by new theories or speculative

conjectures. However, the philosophy of science, i.e., the discipline in which Pop-

per’s ideas were established, has made some progress over the last decades. New

approaches, which strengthen the role of experiments, have gained importance.

Since these discussions have relevant impact on the meaning of experimentation

and its relation to theory in computer science, we will sketch out significant aspects

of this debate. Chalmers (1999) notes, that it “is ironic, . . . , that Popper, who at

times characterized his own approach with the slogan ‘we learn from our mistakes’,

failed precisely because his negative, falsificationist account did not capture an ade-

quate, positive account of how science learns from mistakes (falsifications).” Popper

states that theory formulates hypotheses which we accept as knowledge insofar as

they can withstand severe experiments set up to falsify them (Popper 1959). How-

ever, an important dilemma that arises from the Popperian view can be formulated

as follows:

It is impossible to decide whether an hypothesis itself or its supporting assumption is wrong.
Moreover, meaningful assumptions require additional assumptions, which leads to an infi-
nite regress.

Since we cannot discuss all problems related to the Popperian view, the interested

reader “who wants to obtain a firmer grasp of one of the most important yet simul-

taneously least understood developments of all time” (Champion 2009) is referred
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to Chalmers (1999). However, we can present alternatives and recent approaches.

Therefore, we will clarify the role of experiments in computer science and present

relevant tasks which can be treated by experiments.

2.4 The New Experimentalism

In the previous section, problems related to the experimental setup, significance of

the results, and high-level theory were presented. A debate devoted to these central

questions has not yet started in computer science. The reader may answer the ques-

tion: Obviously, astronomy is considered scientific, and astrology not—but, what

about experimental research? Fortunately, this debate is going on in other scientific

disciplines, e.g., in the philosophy of science. We claim, that in computer science

a similar debate is necessary to provide a scientific foundation for experimental re-

search. Therefore, we will introduce the new experimentalism, which is the most

influential trend in recent philosophy of science (Ackermann 1989). The new exper-

imentalists are seeking a relatively secure basis for science, not in theory or passive

observation, but in active experimentation.

When free from error, experimental results may confirm scientific claims. How-

ever, more than validations of scientific claims can be obtained from experiments.

An experiment which serves to detect an error in some previously stated assertion

serves as a positive as well as a negative function. Experiments do not only serve as

falsifications of certain assertions, they also positively identify previously unknown

effects.

The key idea in this concept, which can be seen as an extension of the Popperian

view, is that a claim can only be said to be supported by experiment if the various

ways in which the claim could be false have been analyzed and eliminated. The new

experimentalists will ask whether the confirmations would have been likely to occur

if the theory were false. Mayo (1996) describes a detailed account of how experi-

mental results can be reliably established using error statistics and error-eliminating

techniques. Many of the ideas presented in this book describe how statistics can be

used to obtain valid experimental results. Considering ideas from the current discus-

sion in the philosophy of science may be inspiring for further research in computer

science and may be helpful to bridge the gap between theory and experiment, hope-

fully leading to—as stated by Chalmers (1999)—a “happy meeting of theory and

experiment.” Since models are the key elements of a scientific framework for exper-

imental research, they will be discussed in the following section.
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2.5 Experimental Models

2.5.1 The Role of Models in Science

The standard interpretation of models is derived from mathematical logic. Scien-

tific reasoning is to a large extent model-based reasoning. Forty years ago, Suppes

(1969) published his much cited paper “A Comparison of the Meaning and Uses of

Models in Mathematics and the Empirical Science.” He claims that the meaning and

the use of models can be interpreted as being the same in the empirical sciences as

it is in mathematics, and, more particularly, in mathematical logic. This view can

be considered as the standard view within science. Giere (1999) claims that this

standard interpretational (or instantial) view of models is not adequate for empirical

science. He proposes a representational view of models which is more suited for

the needs of empirical investigations. To understand why instantial models are not

adequate, we consider Suppes’ definition of models, which is based on the defini-

tion of theories: “A theory is a linguistic entity consisting of a set of sentences and

models are non-linguistic entities in which the theory is satisfied.” A model A is a

set-theoretical structure consisting of a set of objects together with properties, rela-

tions, and functions defined over A. A model enables the interpretation of a set of

uninterpreted axioms.

Example 2.4. As an example we consider models used for non-Euclidean geometry,

especially for hyperbolic geometry. Non-Euclidean geometry systems differ from

Euclidean geometry in that they modify the parallel postulate (Euclid’s fifth postu-

late). In general, there are two forms of (homogeneous) non-Euclidean geometry:

Hyperbolic geometry and elliptic geometry.

There are four models commonly used for hyperbolic geometry: the Klein model,

the Poincaré disc model, the Poincaré half-plane model, and the Lorentz model.

These models define a real hyperbolic space which satisfies the axioms of a hyper-

bolic geometry. We will illustrate two of these models in the following, see Fig. 2.3.

1. The Klein model uses the interior of a circle for the hyperbolic plane. Hyper-

bolic lines are chords of this circle.

2. The hyperbolic plane in the Poincaré half-plane model is defined as one-half of

the Euclidean plane, as determined by a Euclidean line h. The line h itself is

not included. Either rays perpendicular to h or half-circles orthogonal to h are

hyperbolic lines.

�

As in this example, logicians consider mainly models that consist of abstract entities,

e.g., lines or circles. In principle, these objects could be physical objects. As shown

in Example 2.4, uninterpreted logic formula may be interpreted using many different

instantial models which are isomorphic. This isomorphism is called an analogy. So,

we can consider many analogue models for one theory, see Fig. 2.4.
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h

Fig. 2.3: Two models for hyperbolic geometry. Left: The Klein model. Right: The Poincaré half-
plane model. Hyperbolic lines are chords of the circle in the Klein model; they are rays or half-
circles in the Poincaré half-plane model

theory

model 1

model 2

analogy

map 1

map 2

similaritytown

Fig. 2.4: Left: Analogy interpreted as isomorphism. Right: Similarity as a concept for real-world
(representational) models. Maps, which represent the same geographical area, are similar, not nec-
essarily isomorphic. Consider, e.g., a map which illustrates railway lines and a map which illus-
trates the climate

2.5.2 Representational Models

Computer programs consist of several hundred or thousand lines of code. Several

programs use special features of the operating system, which depends on the under-

lying hardware. Hence, modeling computer programs requires more complex mod-

els than models from logic. Following Giere (1999), we consider representational
models for real-world scenarios. Maps are good examples of representational mod-

els. One object (map) represents another real-world object (geographical region). In

contrast to models in theory, representational objects are similar, not isomorphic.

These similarities are context dependent. At first sight, similarity seems to be a

much weaker property than analogy. This is only relative, because in any particular
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context, we can specify what is said to be similar to what, in what ways, and to what

extent.

Next, we will consider mathematical models which describe properties of com-

puter algorithms. For example, the equation

T (n) =
1

2
(n2 + n) (2.3)

is a linguistic object which describes the (worst-case) time complexity function T
of an algorithm, e.g., quick sort, as a function of the problem dimension n. Nobody
would claim that Eq. 2.3 is the true running time (wall time) of quicksort as nobody

would claim that the equation y(t) = y0 + vt describes the exact position of a

real object, e.g., a car, because no real object can maintain a constant velocity in a

perfect straight line. One possible way to resolve this problem is to introduce error

into Eq. 2.3. Although technically correct, it is not common practice and in many

situations not necessary to use error terms. Error equations are useful to compare the

abstract model with reality. This comparison can be performed at the beginning and

at the end of an experimental study. Then, the error terms can be used to determine

the degree of similarity between the abstract model and the real algorithm.

Mathematical models can provide information about the degree of similarity with

real systems by interpreting error equations as hypotheses about particular algo-

rithms or systems in the real world. These hypotheses may be judged true or false

based on active experimentation. Statistical testing plays a central role in establish-

ing this scientific approach to experimentation.

After considering suitable models for the experimental analysis of algorithms,

we have to bridge the gap between the data obtained by experimentation and the

theory. Obviously, experimental data can constitute only a finite sample of outputs

from the experimental system, whereas scientific hypotheses consider an infinite

number of cases. This leads to the problem of how to link the problem-specific

experimental data to the primary theoretical hypotheses. Introducing a hierarchy of

models can provide a solution to this problem. Testing the fit of a model to the real

object or system, we do not compare the model with data but with a model of data.

Experiments are used to judge the similarity between the higher level and the real

system. These experiments require the specification of models, too. We describe this

framework of models in the following.

2.5.3 A Framework of Models

We obtain a series of conceptual representations or models ranging from the pri-

mary scientific hypotheses to the details of generating data. Mayo (1996, p.129)

introduces:

1. Models of primary scientific hypotheses

2. Models of experiment
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Procedure 2.1: (1+1)-ES ()
t := 0;
initialize(x, σ);
yp := f(xp);
repeat

xo := xp + σ(N (0, 1),N (0, 1), . . . ,N (0, 1))T ;
yo := f(xo);
if yo ≤ yp then

xp := xo;
yp = yo;

end
modify σ according to 1/5th rule;
t := t+ 1;

until TerminationCriterion() ;
return (xp, yp)

3. Models of data

Primary models are means to break down a substantive inquiry into one or more

local questions that can be probed reliably. Experimental models are used to relate

primary questions to canonical questions about the particular type of experiment at

hand. They can be used to relate the data to the experimental questions. Finally, data
models are applied to generate and model raw data so as to put them in canonical

form and to check if the actual data generation satisfies various assumptions of the

experimental models. An adequate account of experimental testing must not begin

at the point where data and hypotheses are given, but must explicitly incorporate

the intermediate theories of data, instruments, and experiment that are necessary

to obtain experimental evidence in the first place. We will present an example to

illustrate these different models.

Example 2.5. We consider a simple evolution strategy (ES), the so-called (1+1)-ES,
see Procedure 2.1. The 1/5th rule states that σ should be modified according to the

rule

σ(t+ 1) :=

⎧⎨⎩σ(t)a, if Ps > 1/5
σ(t)/a, if Ps < 1/5
σ(t), if Ps = 1/5

(2.4)

where the factor a is usually between 1.1 and 1.5 and Ps denotes the success

rate (Beyer 2001). The factor a depends particularly on the measurement period

g, which is used to estimate the success rate Ps. During the measurement period,

g remains constant. For g = n, where n denotes the problem dimension, Schwefel

(1995) calculated 1/a ≈ 0.817. Beyer (2001) states that the “choice of a is rel-

atively uncritical” and that the 1/5th rule has a “remarkable validity domain.” He

also mentions limits of this rule.

Based on these theoretical results, we can derive certain scientific hypotheses.

One might be formulated as follows: Given a spherical fitness landscape, the (1+1)-
ES performs optimally, if the step-sizes σ is modified according to the 1/5th rule as
stated in Eq. 2.4. This statement is related to the primary model.
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In the experimental model, we relate primary questions or statements to questions

about a particular type of experiment. At this level, we define an objective function,

a starting point, a quality measure, and parameters used by the algorithm. These

parameters are summarized in Table 2.1.

Table 2.1: (1+1)-ES parameters. The first three parameters belong to the algorithm design, whereas
the remaining parameters are from the problem design (see Sect. 2.2.1)

Name Symbol Factor name in the algorithm design

Initial stepsize σ(0) S0
Stepsize multiplier a A
History g = n G

Starting point xp

Problem dimension n
Objective function f(x) =

∑
x2
i

Quality measure Expected performance, e.g., E(y)
Initial seed s
Budget tmax

Data from these experiments are related to an experimental question, which can

be stated as follows: Determine a value for the factor a, such that the (1+1)-ES
performs best with respect to the quality measure specified in Table 2.1. And, is
this result independent of the other parameters presented in Table 2.1? Note that

Table 2.1 contains all factors that are used in this experiment.

Finally, we consider the data model. A common practice in statistics is to seek

data models that use similar features and quantities of the primary hypothesis. For

example, if the primary model includes questions related to the mean value μ of

some random variable X , then the data model might use the sample mean x. Here,
we are interested in the expected performance of the (1+1)-ES. Thus, we can use

the average from, say fifty, repeats, yi, to estimate the expected performance. In

addition, standard errors or confidence intervals can be reported. So, in the data

model, raw data are put into a canonical form to apply analytical methods and to

perform hypothesis tests. How one scientific claim, which is related to the primary

model, can be broken down into local claims, is illustrated in Fig. 2.5. �

Based on these models, we can apply statistics to draw conclusions and learn from

experimental results. The refined relationship between theory and model is shown

in Fig. 2.6.

2.5.4 Mayo’s Learning Model

The classical approach in statistical inference can be interpreted as a means of de-

ciding how to behave. To contrast her formulation testing with this behavioristic
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Scientific Claim:
Given the 10 dimensional  

objective function y=x^2, the 
(1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given a spherical fitness 
landscape, the (1+1)-ES 

performs optimal, if
the step-size  is modified 

according to the 1/5th rule

Statistical 
Hypothesis:

A value of a=1.1 for 
the multiplier gives 

optimal 
performance

Experiment 1:
result independent of starting 

point

Experiment 2:
result independent of memory 

vector length

Experiment k:
result independent of the k-th 

factor

...

Statistical 
Hypothesis:
Difference in 

means is 
significant

Severity

Scientific Claim:
The (1+1)-ES performs optimal, 

if the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given a non-spherical fitness 

landscape, the  1/5th rule    does 
not lead to an optimal 

performance of the (1+1)-ES

Experiment:

m runs of each configuration

Scientific Claim:
Given the n dimensional  

objective function y=x^2, the 
(1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

Scientific Claim:
Given the n dimensional  

objective function y=ax^2+bx+c, 
the (1+1)-ES performs optimal, if

the step-size  is modified 
according to the 1/5th rule

...further claims ...further claims ...further claims

Fig. 2.5: Primary scientific hypothesis broken into local hypotheses. Rectangles denote elements
from the primary model, elements from the experimental model use parallelograms, and ellipses
are used to represent elements from the data model
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algorithm
theory

implementation 1

implementation 2

similarity

primary
model

experimental
model

data
model

Fig. 2.6: Refining the theory–model relation from Fig. 2.4 by introducing a model hierarchy

model, Mayo (1983) introduces the term learning model. The distribution of the test
statistic is used to control error probabilities. Statistical tests are seen as “means of

learning about variable phenomena on the basis of limited empirical data.”

Consider a statistical model with some unknown parameter θ. Mayo (1983) in-

troduces tools for specifying tests that “will very infrequently classify an observed

difference as significant (and hence rejectH) when no discrepancy of scientific im-

portance is detected, and very infrequently fail to do so (and so acceptH) when θ is
importantly very discrepant from θ0.” A discussion of the severity interpretation of

acceptance and rejection can be found in Mayo and Spanos (2006b). They demon-

strate how error-statistical tools can extend commonly used pre-data error probabili-

ties (significance level and power) by using post-data interpretations (severity) of the

resulting rejection or acceptance. Regarding the (1+1)-ES described in Example 2.5,

we have to ensure that the recommended value for the factor a is independent of the

initial stepsize, problem dimension, seed, etc.

Figure 2.7 gives an overview of effects which should be considered in the exper-

imental approach. It represents factors which are a) expected to have an effect, b)

should have no effect with a high probability, and c) which should have no effect at

all.

2.5.5 Sequential Parameter Optimization

2.5.5.1 Definition

Now that we have introduced primary, experimental, and data models, we are ready

to introduce the SPO framework, which is built on these elements.
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Java version

hardware

color of experimenter's socks

weather

EXPECTED

algorithm design

POSSIBLE, UNWANTED

UNEXPECTED

problem design

operating system

room temperature

Fig. 2.7: Classification of factors in the experimental approach. a) Factors which belong to the
algorithm and problem design should have an effect on the experimental outcome. b) Sometimes,
side-effects or unwanted effects occur during experimentation. The experimenter should eliminate
the influence of these factors. If this is not possible, these factors should be included in the set
of factors used for active experimentation (algorithm or problem design). The experimenter can
determine their (error) probabilities. c) Finally, there are infinitely many factors that “obviously”
have no effect on the result, e.g., the color of the experimenter’s socks. Since these are infinitely
many factors, it is impossible to test all of them. However, sometimes it may be interesting to
include one factor into the experimental design—or, as the physicist George Darwin used to say,
“every once in a while one should do a completely crazy experiment, like blowing the trumpet to
the tulips every morning for a month. Probably nothing would happen, but what if it did?”

Definition 2.1 (Sequential Parameter Optimization). Sequential parameter opti-
mization (SPO) is a framework for tuning and understanding of algorithms by active

experimentation. SPO employs methods from error statistics to obtain reliable re-

sults. It comprises the following elements:

SPO-1: Scientific questions

SPO-2: Statistical hypotheses

SPO-3: Experiments

SPO-4: Scientific meaning

�

These elements can be explained as follows.

2.5.5.2 Scientific Questions

Starting point of the investigation is a scientific question which is related to the

primary model. This question often deals with assumptions about algorithms, e.g.,

influence of parameter values or new operators.
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2.5.5.3 Statistical Hypotheses

This (complex) question is broken down into (simple) statistical hypotheses for test-

ing. Mayo (1996, p. 190) writes:

Our approach to experimental learning recommends proceeding in the way one ordinarily
proceeds with a complex problem: break it into smaller pieces, some of which, at least, can
be tackled. One is led to break things down if one wants to learn [. . . ] Setting out all possible
answers to this one question becomes manageable, and that is all that has to be “caught” by
our not-H.

2.5.5.4 Experiments

Using the experimental model, the following steps are performed. For each hypoth-

esis:

a) Select a model (e.g., regression trees) to describe a functional relationship.

b) Select an experimental design.

c) Generate data. This step is related to the data model.

d) Refine the model until the hypothesis can be accepted/rejected.

In Chap. 14 we will present an implementation of steps a) to d), which can be per-

formed sequentially. The corresponding software programs will be referred to as

SPOT.

2.5.5.5 Scientific Meaning

To assess the scientific meaning of the results from this experiment conclusions

are drawn from the hypotheses. Here, the concept of severity suggested in Mayo

(1996) comes into play: “Stated simply, a passing result is a severe test of hypothesis
H just to the extent that it is very improbable for such a passing result to occur,
were H false.” Severity provides a meta-statistical principle for evaluating proposed

statistical inferences. It tells us how ’well probed’ (not ’how probable’) hypotheses

are and is an attribute of the test procedure as a whole. Once the data x0 of the test

T are available, they enable us to evaluate the severity of the test and the resulting

inference.

Consider μ1 = μ0 + δ, where δ is the discrepancy that is warranted. The experi-

mental result is denoted as x. Mayo and Spanos (2006a) present an explicit formula

for determining the severity with which test T passes μ1 > μ in case of a statisti-

cally significant result, i.e., reject H0 with data x0. The severity can be determined

as

SEV (μ > μ1) = Pr(T (X) ≤ T (x0);μ > μ1 false)

= Pr(T (X) ≤ T (x0);μ ≤ μ1).

It follows:
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SEV (μ > μ1) = Pr

(
Z ≤ x− μ1

σx

)
(2.5)

= 1− Pr

(
Z >

x− μ1

σx

)
with Z ∼ N (0, 1).

2.5.5.6 Example

Typical SPO steps are shown in Example 2.6.

Example 2.6. SPO-1: Scientific question: The (1+1)-ES performs optimal, if the

step-size is modified according to the 1/5th rule. This scientific claim can

be divided into subclaims, e.g., the general term “spherical functions” is

replaced by one instance, say “sphere function.” This is done until a clearly

specified experiment is defined and statistical hypotheses can be formu-

lated.

SPO-2: Statistical hypotheses can be formulated as follows:

H1: Consider the (1+1)-ES on the 10-dimensional sphere function with pa-

rameters from Table 2.1. A value of a = 1.1 for the multiplier gives op-

timal performance. Note that each hypothesis requires the specification

of the related algorithm and problem designs to enable reproducibility.

The full specification includes also the selection of an appropriate per-

formance measure. We have chosen the average function value from

n = 50 repeats, but other measures are possible. The corresponding

null hypothesis (H0) reads: There is no such effect (optimal perfor-

mance) for a = 1.1.

SPO-3: For hypothesis H1:

a) A regression model is chosen.

b) Since experimentation is not expensive, a space-filling design with two

repeats of each design point is selected as the initial design in this case.

c) Algorithm runs are performed with parameter settings from the initial

design.

d) Sequential runs are performed until the model allows statements about

the effects of parameters (of the algorithm design in Table 2.1) on the

function value predictions.

SPO-4: Similar results from different hypotheses, etc. indicate the scientific rel-

evance of the results. The reader is also referred to Mayo and Spanos

(2006b) and Bartz-Beielstein (2008).

�
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2.5.6 The Large n Problem Revisited

Based on (2.5), the large n problem, which was introduced in Sect. 2.3.2.2, can be

reconsidered. In the following, a difference in means of δ = 0.25 is considered

scientifically meaningful. The same setting as in Example 2.3 is analyzed.

Example 2.7 (Hypotheses testing and severity). We test the null hypothesis H0 :
μ = 0 (= μ0), against the alternative hypothesis,H1 : μ > 0 at a level of confidence
of 95%, i.e., α = 0.05, using a sample of size n = 5 with a mean x = 0.1 and

a (known) standard deviation σ = 1.0. Based on this setup, the experimenter is

interested in demonstrating that B outperforms A. Performing n = 1000 runs, the

p-value reads p = 0.0008. How severely does test T pass μ > 0.25 with this result?
The answer is SEV (μ ≥ μ1) = 0.0. �

Note, SEV (μ ≥ μ1) = 0.0668 for n = 100, i.e., severity increases for smaller val-

ues of n. An α-significant difference with large n passes μ1 > μ less severely than

with a small n. Mayo and Spanos (2010) conclude: “ With this simple interpretive

tool, all of the variations on ’large n criticisms’ are immediately scotched.”

We have presented the SPO as one possible framework for an experimental anal-

ysis of computer algorithms. Next, we will discuss problems that are not restricted

to SPO, but also relevant to other experimental approaches for the analysis of algo-

rithms. The issues treated are related to data generation, namely tasks and setups of

experiments, and to organizational aspects of meaningful experimentation.

2.6 Pitfalls of Experimentation with Randomized Algorithms

Experimentation in algorithm engineering deals mostly with deterministic methods.

It seems reasonable to argue that this type of experiment has fewer “degrees of free-

dom” than is usual in randomized optimization algorithms, namely metaheuristics.

However, one can still make many different types of mistakes, leading to explicit

guidelines for experimentation such as the one provided by Johnson (2002).

When using randomized optimization techniques as evolutionary algorithms,

several more problems emerge which do not exist for deterministic methods. First

of all, the metaheuristic perspective is somewhat reversed compared with the per-

spective used in algorithm engineering:

• In algorithm engineering, the focus is on solving a specific problem or problem

class. For this purpose, existing algorithms are modified or new ones designed.

The performance is experimentally compared with the predictions made by the-

ory. Where necessary, the algorithms are modified, the theory adapted, and the

algorithm engineering cycle is started anew. In any case, one is usually most

interested in provable algorithm properties, namely convergence speed. The es-

tablished algorithms are not designed to perform well on different problems.
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• In metaheuristics, one designs algorithms for very general (often black-box)

problems and then investigates for which problem classes the algorithms per-

form well. Modifications may be in order for any specific application, but the

main algorithmic frame remains unchanged. One may also start with a concrete

problem to solve, take a metaheuristic “off the shelf,” and improve its perfor-

mance by means of intuition and iterated experimentation, using available or

experimentally obtained problem knowledge. Theory is not available in many

cases, as the problems treated and algorithms employed are often too compli-

cated and the stochastic algorithm behavior makes it very difficult to grasp it

theoretically. Where not possible, one may however try to develop theory on a

reasonable simplification of the original algorithm—this could be termed “algo-

rithm reengineering” (Jägersküpper and Preuss 2008). The main focus however

is on the ability of the algorithms to approximate concrete real-world or bench-

mark problems well enough in reasonable time, not on provable algorithm prop-

erties.

In the following, we mainly deal with the specific pitfalls experienced in ran-

domized optimization algorithms and neglect the ones already described by John-

son (2002). Experimentation on heuristics and metaheuristics got a wakeup-call by

Hooker (1996), who criticized purely competitive testing as it was—and often still

is—fairly common in metaheuristics papers. Instead, one should do scientific test-

ing and investigate the effects which lead to high or low performance. These factors

may be hidden in the algorithms, the problems, or the overall experimental setup. It

is therefore most important for any experimental analysis on randomized optimiza-

tion algorithms to set up a proper goal for the investigation (Sect. 14.3). This done,

there are still several possibilities to fail. In the following, we list the most popular

ones.

2.6.1 Floor and Ceiling Effects

In a paper known as the Rosenberg study (Gregory et al. 1996), the consequences

of a floor effect on the outcome of an experimental work was impressively demon-

strated. Two algorithms, a very simple one and a more sophisticated one, were com-

pared concerning their ability to balance the load on a ring of processing elements.

A large number of incoming jobs had to be distributed in order to maximize the

throughput of the whole system. The expectation was that the more sophisticated

scheme would obtain a clear advantage, but the results indicated that this was not

the case. Both algorithms performed almost equally well. Further analysis revealed

that the test case had been too hard: The number of incoming jobs was so high that

neither algorithm could do very well. All processing elements were busy all the

time, so that no improvement was possible. Thus, the test case was too hard to mea-

sure the expected effect. Depending on the perspective, this may also be interpreted

as a ceiling effect. The trivial task of putting all processing elements to work was

too easy to show any performance differences between the algorithms.
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Both effects render an experimental study worthless and should be avoided. If

observed in the results of a first experiment, the task has to be adjusted and the

experiment repeated. In the context of optimization algorithms, a floor effect means

that the contestants largely fail to attain the required task. A ceiling effect happens

if they nearly always hit the required task, again with not much difference between

the compared algorithms. A result table with all success rates near 100% would be

a frequently observed example case.

2.6.2 Confounded Effects

When adapting flexible algorithms such as metaheuristics towards a problem or

benchmark set, one is often tempted to change many operators or parameters at

once because they are appealing to intuition after the first results are in. However, it

is important to experimentally analyze not only the combination of new components

but also the single effects of every change. Otherwise many unnecessary modifica-

tions may enter the algorithm despite the lack of evidence of their positive effect.

In the worst case, it may happen that one of two newly incorporated operators is

advantageous, while the second is disadvantageous, and the overall result is only

slightly improved. Thus we recommend to do the following in the case of multiple

algorithm modifications:

• Compare each change on its own with the default and the combined method. In

case of more than two new additions, a factorial design (Chap. 3) may be useful.

• Document all the results at least in short whenever another researcher could

possibly learn from this, even for cases which are not successful.

2.6.3 Fairness in Parameter Settings

When comparing different parametrizable algorithms, the employed parameter set-

tings are extremely important as they largely define the obtained performance. De-

pending on the availability of code for the algorithms under scope and time for

parameter searches, there are different possibilities to make a fair comparison:

• In the best case, the code for all methods is available. It is then possible to

perform a parameter search for each problem and each algorithm via a tuning

method (e.g., SPOT). Taking the best parameter sets for each method for each

problem ensures comparing the algorithms at their peak performance.

• If algorithm runs on the chosen problems take too long for a full tuning pro-

cess, one may however perform a simple space-filling design on the parameter

space, e.g. a Latin hypercube design (LHD) with only a few design points and

repeats. This prevents misconfigurations of algorithms as one probably easily

gets into the “ball park” (De Jong 2007) of relatively good parameter settings.
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Most likely, neither algorithm works at its peak performance level, but the com-

parison is still fair.

• If no code other than for one’s own algorithm is available, one has to resort

to comparing with default parameter values. For a new algorithm, these could

be determined by a common tuning process over the whole problem set. Note

however, that such comparison deliberately abstains from setting good param-

eters for specific problems, even if this would be attempted for any real-world

application.

It goes without saying that comparisons of tuned versus untuned algorithms are

not fair and should be avoided. This also applies to manual (one factor at a time)

tuning. However, several tuning methods are available, including but not limited to

REVAC (Chap. 12), the F-Race (Chap. 13), and SPOT (Chap. 14), all documented

in this book. As the tuning (parameter optimization) problem poses a nondetermin-

istic objective function without even approximate knowledge of global optimal per-

formance, the question of the effort necessary (in algorithm runs) to “solve” it is

difficult to answer. However, we advocate the use of fair conditions for the tuning as

for the algorithm runs themselves and suggest an affordable medium-sized budget

(for benchmark problems, 103 is an often used value)—the same for all algorithms.

2.6.4 Failure Reasons and Prevention

There are certainly many ways to fail when performing an experimentally supported

investigation. One of these occurs when the original scientific goal—not the specific

task in a derived experimental setup—cannot be reached because the experiments

reveal that it is much harder to attain than expected, or not possible at all. This

resembles a large-scale floor effect without the possibility to be cured easily as re-

fining the overall task gradually can be very difficult. Another type of failure would

happen if the assumptions about how things work or how components of algorithms

combine are actually fundamentally wrong. The overall goal may be reachable, but

not with the approach or techniques chosen.

Failures are surely unavoidable in experimental research, as it is the heart of

scientific investigations that previously unexplored areas are tackled. However, it is

specific to metaheuristics or other randomized algorithms that one has to cope with

a lack of theory for many questions of practical importance. This puts an additional

weight on the choice of the original research question that one tries to answer with

an investigation. With the obtained negative results at hand, one may either try to

refine the research question into one that is still interesting but easier to answer, or

decide to learn as much as possible from the experiments and publish a well-founded

negative paper. The following hints may be useful for avoiding failures:

• Experimentation should start as early as possible, even if not all features of the

desired software are available yet. This reduces the danger of a complete failure

and is well in line with recommendations in other sciences that strongly rely on
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experiments, such as those given by Thomke (2003) for innovation research in

economics.

• Avoid watching a running experiment, and especially iterated manual parameter

tuning or algorithm refinements. The impression obtained from seeing a few

runs only can be highly misleading. It is therefore advisable to start interpreting

the data only after the experiment is finished.

• Instead of only looking at the final summarizing performance values, it is highly

recommendable to visualize what happens during the runs as well as to review

the final results from different perspectives (e.g., multiple performance mea-

sures, several single runs, deviations from normal behavior, result distributions)

to obtain as much insight as possible into the algorithm behavior.

• It is neither feasible nor desirable to beat the state-of-the-art algorithms on their

own terrain by inventing a new algorithm in every publication, as is often at-

tempted in metaheuristics. Instead, it may be much more rewarding to deter-

mine which algorithm is good on what kind of problem and to establish some

guidelines for generalizing existing performance results to unknown problems

or at least problem instances.

• Even for established algorithms, many interesting questions remain open which

can be tackled only experimentally. Finding out more about the inner mecha-

nisms of these algorithms may later help to refine them.

2.7 Tools: Measures and Reports

In the previous sections, we assumed that the experiment is done and may be in-

vestigated by means of various statistical techniques. However, given that we want

to compare different algorithms or detect, e.g., the meaning of different parameter

settings, several decisions have to be taken. The first is what to measure, and the

others relate to the means of visually and textually displaying the results so that

experimenter and audience benefit most from it.

2.7.1 Measures

When trying to outperform another algorithm which has been tested and docu-

mented on some benchmark functions, one often “inherits” the measure employed

by other authors. However, considering the measure itself inevitably leads to the in-

sight that much of the measuring process as exercised in stochastic optimization is

fairly arbitrary.

A few measures are omnipresent in the stochastic optimization literature, pos-

sibly under different names, but with the same meaning. These are the mean best
fitness (MBF), the average evaluations to solution (AES), the success rate (SR),

and the best-of-n or best ever.
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While the MBF is easy to apply, it has two shortcomings. Firstly, by taking the

mean one loses all information about the result distribution, rendering a stable algo-

rithm with mediocre performance similar to an unstable one coming up with very

good solutions often, but also failing sometimes. Secondly, especially in situations

where the global optimum is unknown, interpreting the obtained differences is dif-

ficult. Does an improvement of, e.g., 1% mean much, or not? In benchmarking, one

usually observes a progression of the best solution on a logarithmic scale, evoked

by the more and more exact approximation of the achieved optimum in later phases.

In many practical settings, attaining a good local optimum itself is the hardest step

and one would not be interested in infinitesimal improvements.

The latter situation may be better served by success rates or the AES as a per-

formance measure. However, one has to set up meaningful quality values to avoid

floor and ceiling effects. The AES holds more information as it measures the “time

factor,” whereas the SR may be easier to understand. However, the AES is ambigu-

ous if the desired quality is not always reached. Auger and Hansen (2005) suggest

the success performance measures SP1 and SP2, which deal with the unsuccessful

runs in different ways depending on how they are stopped. The measures resemble a

multistart extension of the AES and yield the number of function evaluations needed

until the quality is finally reached, even if multiple runs are needed to get there.

The best-of-n value is most interesting in a design problem, as only the final best

solution will be implemented, regardless of the number of runs n to get there. How-

ever, this measure strongly depends on n, rendering it unfeasible for comparisons

on a benchmark level.

Whatever measure is used, one should be aware that it establishes only one spe-

cific cut through the algorithm output space. Bartz-Beielstein (2006) and Hansen

et al. (2009) discuss this as the horizontal (fixed quality) and vertical (fixed time / eval-

uations) view. Every single measure can be misleading, e.g., if algorithmA1 is good

for short runs but algorithmA2 usually overtakes it on long runs. Another set of con-

flicting criteria may be the performance on large problem instances against on small

ones, see also (Eiben and Smith 2003). For the experimental analysis, the single

measurement problem may be rectified by measuring several times on a horizontal

scale, as suggested by Hansen et al. (2009). The obtained result is more accurate,

but also more difficult to interpret. Nevertheless, rating algorithm performance with

a single measured value needlessly oversimplifies the situation, at least in a bench-

mark environment where no external pressure enforces a specific measure.

However, if parameter tuning is considered, deriving an ordering of the tested

algorithm designs cannot be avoided so that one has to select a specific performance

measure. The tuning process should improve the algorithm performance according

to the given measure, thus a strong influence of this measure on the resulting best

algorithm design is highly likely. Whenever the standard measures do not deliver

what is desired, one may be creative and design a measure that does, as suggested

by Rardin and Uzsoy (2001).
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2.7.2 Reporting Experiments

As indicated by the problems connected to experimental research we enumerated in

the previous sections, setting up a good experiment is obviously not trivial. How-

ever, after conducting it, reporting on it constitutes another challenge. Article length

requirements impose a limit on the level of possible detail. However, stating only

results is useless; the description should rather deliver on three issues:

Replicability: One must be able to repeat the experiment, at least to a high degree

of similarity.

Results: What is the outcome? Does it correspond to expectation? Are estab-

lished differences statistically significant and scientifically meaningful?

Interpretation: Can the original research question be answered? What do the

results mean regarding the algorithms, and the problems? Is it possible to gener-

alize? Where do the observed effects originate from?

In contrast to in the natural sciences, there is no generally accepted scheme of

how an experimental log should look in computer science. This may be partly due

to the volatility of results. In a benchmark setting, it is technically easy and fast to

run an experiment, and thinking about what to compare and how can take much

longer. Additionally, there is no long tradition of empiricism in computer science.

Many important works date from the 1980s and 1990s, e.g., McGeoch (1986), Sacks

et al. (1989), and Barr et al. (1995).

However, for scientific readers as well as for the experimenters, a well-defined

report structure could be beneficial: It provides standard guidelines for readers, what

to expect, and where. Experimenters are regularly reminded to describe the impor-

tant details needed to understand and possibly replicate their experiments. They are

also urged to separate the outcome of fairly objective observing from subjective

reasoning. Therefore, we propose organizing the presentation of experiments into

seven parts, as follows:

ER-1: Research question
Briefly names the matter dealt with, the (possibly very general) objective,

preferably in one sentence. This is used as the report’s “headline” and related

to the primary model.

ER-2: Pre-experimental planning
Summarizes the first—possibly explorative—program runs, leading to task

and setup (ER-3 and ER-4). Decisions on employed benchmark problems

or performance measures should be taken according to the data collected

in preliminary runs. The report on pre-experimental planning should also

include negative results, e.g., modifications to an algorithm that did not work

or a test problem that turned out to be too hard, if they provide new insight.

ER-3: Task
Concretizes the question in focus and states scientific claims and derived

statistical hypotheses to test. Note that one scientific claim may require sev-

eral, sometimes hundreds, of statistical hypotheses. In case of a purely ex-
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plorative study, as with the first test of a new algorithm, statistical tests may

not be applicable. Still, the task should be formulated as precisely as possi-

ble. This step is related to the experimental model.

ER-4: Setup
Specifies problem design and algorithm design, including the investigated

algorithm, the controllable and the fixed parameters, and the chosen perfor-

mance measuring. The information provided in this part should be sufficient

to replicate an experiment.

ER-5: Results/Visualization
Gives raw or produced (filtered) data on the experimental outcome and ad-

ditionally provides basic visualizations where meaningful. This is related to

the data model.

ER-6: Observations
Describes exceptions from the expected, or unusual patterns noticed, with-

out subjective assessment or explanation. As an example, it may be worth-

while to look at parameter interactions. Additional visualizations may help

to clarify what happens.

ER-7: Discussion
Decides about the hypotheses specified in ER-3, and provides necessarily

subjective interpretations of the recorded observations. Also places the re-

sults in a wider context. The leading question here is: What did we learn?

In our view, it is especially important to divide parts ER-6 and ER-7, to facilitate

different conclusions drawn by others, based on the same results/observations. This

distinction into parts of increasing subjectiveness is similar to the suggestions of

Barr et al. (1995), who distinguish between results, their analysis, and the conclu-

sions drawn by the experimenter.

Note that all of these parts are already included in current good experimental

reports. However, they are usually not separated but wildly mixed. Thus we only

suggest to insert labels into the text to make the structure more obvious.

We also recommend to keep a journal of experiments with single reports accord-

ing to the above scheme to enable referring to previous experiments later on. This

is useful even if single experiments do not find their way into a publication, as it

improves the overview of subsequent experiments and helps to avoid repeated tests.

2.8 Methodology, Open Issues, and Development

As detailed in this chapter, we can consider SPO as a methodological step forward

for experimenting with parameterizable algorithms. Model building and tuning un-

doubtedly plays an important role here. However, there are some issues which cur-

rently remain less clear and should be tackled in the future. One of these is how to

tune if runs take a very long time, so that only a few of them are affordable? This

especially applies to many real-world applications, where tuning would probably
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greatly help but is rather difficult with the currently available methods. Another im-

portant issue concerns the amount of tuning to use: Where do we compare: After

500 algorithm runs, after 1000, or even more? Does this make a big difference at

all? And in which cases? This is related to the adaptability of algorithms (Preuss

2009). Some algorithms may have a large tuning potential as they react sensitively

to parameter changes, others largely stay at the default parameter performance. Both

behaviors can be advantageous in different situations. The cited paper lays out only

a first step in this direction by defining a measure for the empirical tuning poten-
tial (ETP). However, many methodological questions have to remain unresolved for

now and invite further research.

2.9 Summary

Goals for the experimental analysis of computer algorithms were introduced in the

first part of this chapter. Of great practical relevance is the improvement of an al-

gorithm’s performance and its robustness. Parameters of the algorithm were distin-

guished from problem parameters. This classification goes in line with the classi-

fication of the reasons why experiments are performed: Variation of the algorithm

design can be applied in experimentation to improve, compare, or understand algo-

rithm efficiency (tuning), whereas variation of the problem design might be helpful

to analyze the effectivity (robustness) of an algorithm. Understanding of its working

mechanism is another important task.

However, while performing experimental studies to accomplish these tasks, many

problems can occur. We have considered problems related to the experimental setup,

significance of the results, and building high-level theories. Models were considered

as useful components for building a framework for experimentation. Starting from

a discussion of model definitions in science, we claim that the representational view

of models can be useful to bridge the gap between theory (linguistic objects, formu-

las) and experiment (computer programs, real-world optimization problems). These

considerations are based on ideas presented by Giere (1999). A hierarchy consisting

of primary, experimental, and data models was introduced. This hierarchy was de-

veloped in the framework of the new experimentalism, especially by Mayo (1996),

who also developed tools for evaluating the scientific meaning of experimental re-

sults based on error statistics. SPO, as one possible framework to establish these

goals, was introduced in this chapter.

In the later parts of the chapter, we discussed several practical issues of experi-

mentation with randomized algorithms. Common pitfalls such as floor and ceiling

effects and confounded effects were taken into account as well as fairness issues

if applying tuning methods for comparing algorithms. We have highlighted some

of the reasons why an experimental investigation can fail and then reviewed some

important problem design issues: How do we measure, and how do we write up the

results? Concerning the latter issue, we have introduced a seven-part result scheme

that helps experimenters to structure their reports and also hinted at the use of an ex-
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perimental journal. Additionally, we have named some still open problems, holes in

the current methodology, which should be filled by future research. Concluding, we

have shed some light on how experimentation might look in the future. Hopefully,

correct statistics will be employed and correct conclusions drawn.
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Chapter 3
Design and Analysis of Computational
Experiments: Overview

Jack P.C. Kleijnen

Abstract This chapter presents an overview of the design and analysis of com-

putational experiments with optimization algorithms. It covers classic designs and

their corresponding (meta)models; namely, Resolution-III designs including frac-

tional factorial two-level designs for first-order polynomial models, Resolution-IV

and Resolution-V designs for two-factor interactions, and designs including central

composite designs for second-degree polynomials. It also reviews factor screen-

ing in experiments with very many factors, focusing on the sequential bifurcation

method. Furthermore, it reviews Kriging models and their designs. Finally, it dis-

cusses experiments aimed at the optimization of the parameters of a given optimiza-

tion algorithm, allowing multiple random experimental outputs. This optimization

may use either generalized response surface methodology or Kriging combined with

mathematical programming; the discussion also covers Taguchian robust optimiza-

tion.

3.1 Introduction

There are many different optimization algorithms; e.g., there are several meta-

heuristics including evolutionary algorithms and the related genetic algorithms,

response surface methodology (or RSM; see Section 3.5.1), simulated annealing,

and tabu search; see the recent overviews by Adenso-Diaz and Laguna (2006),

Bartz-Beielstein (2006), Kleijnen (2008), Myers and Montgomery (1995) and Ra-

jagopalan et al. (2007).

Before users can apply such an algorithm, they must quantify specific param-

eters; e.g., for a particular evolutionary algorithm they must specify the number

Jack P.C. Kleijnen
Department of Information Management / CentER
Tilburg University, Postbox 90153, 5000 LE Tilburg, Netherlands.
http://center.uvt.nl/staff/kleijnen

51T. Bartz-Beielstein et al. (eds.), Experimental Methods for the Analysis of Optimization 
Algorithms, DOI 10.1007/978-3-642-02538-9_3, © Springer-Verlag Berlin Heidelberg 2010 



52 J.P.C. Kleijnen

of parent individuals and the recombination operator. To recommend optimal values

for these parameters, optimization experts may try different combinations of param-

eter values. To select these combinations, they should use statistical techniques that

have been developed for the design and analysis of experiments. These techniques

are the focus of this chapter.

These techniques have been developed for the design and analysis of two types

of experiments:

• general experiments

• computational experiments

These techniques are known in the literature as design of experiments (DOE) for

the first type of experiments; see, e.g., Montgomery (2009), and as design and anal-
ysis of computer experiments (DACE) for the second type. DACE assumes that these

computer codes are deterministic simulation models, as used in computer aided en-

gineering and physics; see Santner et al. (2003). Kleijnen (2008) proposes the term

design and analysis of simulation experiments (DASE) for experiments with either

deterministic or random simulation. Deterministic simulation models give the same

output whenever the combination of input values is the same. Random simulation

models, however, use (pseudo)random numbers as input besides other inputs, so

these models give outputs that vary with the random numbers used. These random

models are used to study supply chains, telecommunication networks, etc.; see Law

(2007). Real-life experiments also give random outputs because these outputs de-

pend not only on the inputs that are controlled by the experimenters but also on un-

controllable environmental factors; also see the Taguchian worldview in Sect. 3.5.3.

Note that all experimental designs treat the experiment as a black box; i.e., only in-
put/output (I/O) data are observed. Bartz-Beielstein (2006) presents examples of the

use of these statistical techniques for experiments with evolutionary computation;

more references to such experiments follow below.

Whereas in real-life experimentation it is not practical to investigate many factors

(inputs), experiments with optimization algorithms may have hundreds of factors—

a factor may be a parameter of the optimization algorithm or the particular op-

timization problem (e.g., the traveling salesperson problem) to be solved by that

optimization algorithm; examples of such parameters are the problem’s size and

structure. Moreover, whereas in real-life experiments it is hard to vary a factor over

many values, in optimization algorithms this restriction does not apply, e.g., Latin
hypercube sampling (LHS) is a design that has as many values per factor as it has

combinations; see Sect. 3.4. Consequently, a multitude of scenarios—combinations

of factor values—may be observed. Moreover, these experiments are well-suited

to the application of sequential designs instead of one-shot designs (ignoring par-

allel computers); see the chapters in this book by Ridge and Kudenko (2010) and

Bartz-Beielstein and Preuss (2010). So a change of mindset of the experimenter is

necessary, as Kleijnen et al. (2005) pointed out.

Design and analysis of experiments are intertwined (chicken and egg). The anal-

ysis uses—implicitly or explicitly—a metamodel (also called response surface, sur-
rogate, emulator, etc.), which is an approximation of the I/O function of the exper-
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iment; i.e., the experiment yields I/O data that are used to estimate this function.

There are different types of metamodels. The most popular type are polynomials of

first or second order (degree); see Sect. 3.2. Another metamodel type that is becom-

ing popular is Kriging (also called the Gaussian Process model); see Sect. 3.4. A less

popular type is the generalized linear model (GLM); see the discussion by Bartz-

Beielstein (2006). References to many other types are given by Kleijnen (2008,

p. 8).

Each type of metamodel requires a different design type; e.g., a first-order poly-

nomial may be estimated (fitted) through a Resolution-III design, as we shall see in

Sect. 3.2, whereas a Kriging model may be estimated through a space-filling design

such as provided by LHS. The adequacy of the design and metamodel combination

depends on the goal of the experiment. For example, if the goal is to estimate gradi-

ents (or derivatives), then a first-order polynomial may be adequate. However, if the

goal is global approximation, then Kriging may be better. The role of different goals

is further discussed by Kleijnen and Sargent (2000). Experiments with optimization

algorithms have two main goals:

• Sensitivity analysis

• Optimization

Sensitivity analysis may serve factor screening—or briefly screening—which de-

notes the search for the most important factors among the many factors that are

varied in an experiment; also see Ridge and Kudenko (2010). Optimization tries to

find the optimal combination of the optimization algorithm parameters (optimiza-

tion may follow after sensitivity analysis). Robust optimization allows for uncertain
environmental factors, which depend on the problems to be solved and the particular

optimization algorithm.

We now present a detailed overview of the remainder of this chapter, so readers

can decide whether they wish to skip specific sections.

Section 3.2 covers classic designs and their corresponding metamodels. Reso-

lution-III (R-III) designs assume first-order polynomial metamodels; these design

include so-called Plackett–Burman and 2k−p designs. Resolution-IV (R-IV) and

Resolution-V (R-V) designs assume important two-factor interactions. Designs for

second-degree polynomials include central composite designs (CCDs). Note that,

compared with these designs, the traditional approach of changing only one factor

at a time is inferior; the latter approach is called the finite difference method in

gradient estimation; see Kleijnen (2008, pp. 8, 29, 32-34, 107, 118), and also Fu

(2008).

Section 3.3 reviews screening, focusing on sequential bifurcation. Traditionally,

experimenters use prior knowledge to select a few factors, simply assuming that

these factors are the most important ones. In a recent case study with 92 factors,

Kleijnen et al. (2006a) applied sequential bifurcation and identified a shortlist with

10 factors after investigating only 19 combinations.

Section 3.4 reviews Kriging and its designs. Kriging models are fitted to data that

are obtained for larger experimental areas than the areas used in low-order polyno-
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mial regression; i.e., Kriging models are global rather than local. Kriging is used for
prediction; its final goals are sensitivity analysis and optimization.

Section 3.5 discusses experiments aimed at optimization, focusing on experi-

ments with multiple random outputs and assuming that one output is selected as

the goal (objective) output while the other random outputs must satisfy prespeci-

fied target values (thresholds). This section covers two methods, namely general-
ized response surface methodology (GRSM) which fits a series of local low-order

polynomials, and Kriging combined with mathematical programming. This section

also considers robust optimization in the sense of Taguchi. Note that the methods

in Sect. 3.5 are specific types of optimization algorithms; other types have already

been mentioned at the very beginning of this section.

3.2 Classic Designs and Metamodels

Classic designs and their corresponding metamodels are detailed in many DOE text-

books such as Montgomery (2009) and Myers and Montgomery (1995); DOE for

simulation experiments is detailed by Kleijnen (2008).

Let us assume a first-order polynomial metamodel for an experiment with k fac-

tors:

E(y) = β0 + β1x1 + . . .+ βkxk, (3.1)

where E(y) denotes the expected value (mean) of the metamodel’s output y; β0 is

called the intercept, and βj (j = 1, . . . , k) is called the main effect or first-order

effect of input xj . To estimate the effects β = (β0, β1, . . . , βk)
′ we obviously need

at least k + 1 combinations. Table 3.1 presents a 27−4
III design, which is to be read

as follows. The columns with the symbols 1 through 7 give the values of the corre-

sponding factor in the experiment; 4 = 1.2 means that the value of factor 4 equals

the product of the values of the factors 1 and 2 in the corresponding combination;

the symbol − means that the factor has the standardized value −1 (which corre-

sponds with the lowest value in the original scale) and + means that the factor has

the standardized value +1 (highest original value). This design has Resolution III,

which means that it enables unbiased estimation of the coefficients of the first-order

polynomial—assuming such a polynomial is an adequate approximation of the I/O

function. This particular design investigates only 27−4 = 8 combinations; i.e., it in-

vestigates only a fraction 2−4 = 1/16 of all 27 = 128 combinations of a full two-level

factorial design. Note that each column in Table 3.1 is balanced; i.e., it has an equal
number of + and − signs; moreover, all columns are orthogonal.

A R-III design enables ordinary least squares (OLS) estimation of the first-order

effects βj and the intercept β0 in (3.1). The OLS estimator is

β̂ = (X′X)
−1
X′w, (3.2)

whereX is the n× q matrix with the explanatory variables in the regression model

where the intercept corresponds with a column that has only the value +1 (e.g.,
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Table 3.1: A 1/16 fractional two-level factorial design for seven factors

Combi. 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3

1 − − − + + + −
2 + − − − − + +

3 − + − − + − +

4 + + − + − − −
5 − − + + − − +

6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

in the 27−4 example n = 8 and q = 1 + 7 = 8) and w is the vector with the

n experimental outputs. Because Table 3.1 gives an orthogonal design, the OLS

estimator simplifies to

β̂j =
8∑

i=1

xi;jwi/8 (j = 0, 1, . . . , 7).

OLS is the classic estimation method in linear regression analysis, assuming

white noise; i.e., the regression residuals are normally (Gaussian), independently,
and identically distributed (NIID) with zero mean (we shall return to this assump-

tion at the end of this section).

Using standardized values of −1 and +1 implies that the estimated main effects

quantify the relative importance of the k inputs; e.g., the most important input is the

one that givesmax1≤j≤k |β̂j |. So sensitivity analysis should use coded input values.
Optimization, however, should use the original values (unfortunately, an optimiza-

tion method such as RSM that uses steepest descent gives scale-dependent results;

also see Sect. 3.5.1). Anyhow, each input combination (specified by the row of a

design matrix such as Table 3.1) must be translated into the original values before

the experiment can start. Standardization is further discussed by Kleijnen (2008,

pp. 30–31).

Table 3.1 displays a design with only 27−4 = 8 combinations, which is an at-

tractive design if the first-order polynomial is an adequate approximation and the

white-noise assumption holds. However, if higher-order effects are important, then

this reduction in the number of combinations makes the estimated effects biased.

Therefore we present several other types of design.

A R-IV design ensures that the estimated first-order effects β̂ are not biased (con-

founded, aliased) by the two-factor interactions βj;j′ (j < j′ = 2, . . . k); these in-
teractions imply that the k(k − 1)/2 terms βj;j′xjxj′ are added to (3.1). A R-IV

design is easily constructed from a R-III design: ifD denotes the R-III design, then

add −D (the negative or foldover ofD) toD (so the R-IV design doubles the num-

ber of combinations). For example, the R-IV design that is based on Table 3.1 has

only minuses in its last row (row 16), because this row is the negative of row 8 in

Table 3.1.
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To estimate the k(k − 1)/2 individual interactions, a R-V design is needed. An

example of such a R-V design for k = 7 factors is a 27−1 design; however, its 64

combinations take too much computer time if the experiment with the optimization

algorithm is computationally expensive. In that case, it is better to use a saturated
design, which by definition has a number of combinations n equal to the number of

metamodel parameters q (e.g., q = 1 + 7 + 21 = 29). Such saturated R-V designs are

Rechtschaffner’s designs, which are reproduced by Kleijnen (2008, p. 49).

If the experimenter assumes a second-degree polynomial, then a CCD also en-

ables the estimation of the k purely quadratic effects βj;j (j = 1, . . . , k). Such a

CCD augments the R-V design with the central point of the experimental area and

2k axial points, which change each factor one-at-a-time by −c and c units where c
> 0. Obviously the CCD is rather wasteful in case of expensive experiments, be-

cause it has five values per factor if c 	= 1 (instead of the minimum, three) and it is

not saturated. Alternatives for the CCD are discussed by Kleijnen (2008) and Myers

and Montgomery (1995).

The various classic designs can be used sequentially. So, we may start with a R-

III design and test its adequacy. There are various tests; e.g., cross-validation deletes

I/O combination i (i = 1, . . . , n), and computes the corresponding estimator from

the analogue of (3.2):

β̂−i = (X′−iX−i)
−1
X′−iw−i, (3.3)

where we assume that the inverse does exist (a necessary condition is n > q). If
the re-estimated effects β̂−i and the original effects β̂ differ greatly, then the first-

order polynomial is not an adequate approximation. We can then proceed to a R-

IV design, adding the negative of the R-III design. If the R-IV design gives very

different estimated first-order effects, then two-factor interactions may be important

so we proceed to a R-V design (unfortunately, the R-IV design is not always a proper

subset of the R-V design). If the model with two-factor interactions turns out not to

be adequate, then we may proceed to a CCD (which does have the R-V design as a

subset).

To select a specific design, users may learn how to construct experimental de-

signs. An alternative is to use software or websites. Textbooks, software, and web-

sites are given by Kleijnen (2008, pp. 51, 105, 130).

An application of these classic designs is provided by Bartz-Beielstein (2006).

He starts with k = 9 inputs. The output variable w is the quality of the best solution

found by the search strategy. He uses a 29−5
III design, to find the important factors;

he transforms the output w into log(w). He then finds that only five of these nine

factors are significant. Next, for the four significant quantitative factors, he uses a

full factorial two-level design (or 24 design). The resulting I/O data give only two

important factors. He explores these two factors in a CCD design.

The assumptions of these classic designs and metamodels stipulate univariate

output (responses) and white noise. Kleijnen (2008) discusses multivariate (multi-

ple) outputs, nonnormality of the output (solved through the statistical techniques

called jackknifing and bootstrapping), variance heterogeneity (different input com-
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binations give different output variances), and common random numbers (CRN)

(solved through either adapted OLS or generalized least squares), and testing the

validity of low-order polynomial metamodels (through either cross-validation or the

F lack-of-fit statistic). Note that the goal of CRN is to reduce the variance of the

estimated factor effects; i.e., CRN uses the same pseudorandom numbers to ob-

tain one observation (or replicate) for each of the n scenarios so the n simulation

outputs are positively correlated (not independent; if each of the n scenarios is sim-

ulated m > 1 times using different pseudorandom numbers in different replicates,

then thesem replicates are independent); see Law (2007, pp. 578–594).

3.3 Screening: Sequential Bifurcation

R-III designs (discussed in Sect. 3.2) are called screening designs by some authors

(e.g., Ridge and Kudenko (2007), Yu (2007)), but we reserve the term screening for

experiments with so many factors that a R-III design with its n > k combinations

takes too much computer time. Screening is related to phenomena such as sparse

effects, parsimony, Pareto’s principle, Occam’s razor, 20–80 rule, and curse of di-

mensionality. Practitioners do not yet apply screening methods; instead, they exper-

iment with a few intuitively selected factors only. The following two case studies

illustrate the need for screening.

Bettonvil and Kleijnen (1996) present a greenhouse deterministic simulation

model with 281 factors. Politicians wanted to take measures to reduce the release of

CO2 gasses; they recognized that they should start with legislation for a few factors

only. The authors managed to find the 15 most important factors after simulating

154 combinations of the 281 factors, accounting for two-factor interactions.

Another case study is presented by Kleijnen et al. (2006a). This case concerns

a random simulation of a supply chain centered around the Ericsson company in

Sweden. This simulation has 92 factors. The authors use sequential bifurcation to

identify a shortlist with 10 factors, after simulating only 19 combinations.

There are several types of screening designs; see the references in Kleijnen

(2008, p. 158–159). Sequential bifurcation is the most efficient and effective de-

sign if its assumptions are indeed satisfied; also see Xu et al. (2007). For its design,

sequential bifurcation uses the following metamodel assumptions:

1. A first-order polynomial augmented with two-factor interactions is an adequate

metamodel (approximation).

2. All first-order effects have known signs and are nonnegative.

3. There is strong heredity; i.e., if a factor has no important main effect, then this

factor does not interact with any other factor; also see Wu and Hamada (2000).

The role of these assumptions becomes clearer when we consider the sequential

bifurcation procedure in some more detail. The first step aggregates all factors into

a single group, and changes the value of that group of factors from −1—that is, all

individual factors within that group have the value −1—to +1—so all individual



58 J.P.C. Kleijnen

factors within that group have the value +1. No cancellation of individual effects

occurs, given the assumptions 1 and 2. If that group indeed has a significant effect—

which is most likely in the first step—then the second step splits the group into two

subgroups—it bifurcates—and tests each of these subgroups for importance. In the

next steps, sequential bifurcation splits important subgroups into smaller subgroups,

and keeps unimportant subgroups unchanged. In the final step, all individual factors

that are not in subgroups identified as nonsignificant are estimated and tested.

This procedure may be interpreted through the following metaphor. Imagine a

lake that is controlled by a dam. The goal of the experiment is to identify the high-

est (most important) rocks; actually, sequential bifurcation not only identifies but

also measures the height of these rocks. The dam is controlled in such a way that

the level of the murky water slowly drops. Obviously, the highest rock emerges

from the water first! The most-important-but-one rock turns up next, etc. Sequential

bifurcation stops when the analysts feel that all the important factors are identified;

once sequential bifurcation stops, the analysts know that all remaining (unidentified)

factors have smaller effects than the effects of the factors that have been identified.

Obviously, this property is important for practice.

There is a need for more research in the following areas:

• It is a challenge to derive the number of replicates that control the overall proba-

bility of correctly classifying the individual factors as important or unimportant

(currently, sequential bifurcation applies a statistical test to each subgroup indi-

vidually).

• After sequential bifurcation stops, the resulting shortlist of important factors

should be validated (never trust a metamodel).

• Multiple performance measures (instead of single one) of the optimization al-

gorithm may require different bifurcation patterns; this complication deserves

more research.

• There is a need to develop software that implements sequential bifurcation.

• A contest may be organized to challenge different screening methods to find the

important parameters of different optimization algorithms (e.g., evolutionary

algorithms) for problems (e.g., traveling salesperson). Testbeds with different

optimization problems are popular in mathematical programming.

3.4 Kriging

Kriging was originally developed in geostatistics—also known as spatial statistics—

by the South African mining engineer Danie Krige. A classic geostatistics textbook

is that by Cressie (1993). Later on, Kriging was applied to the I/O data of determin-

istic simulation models; see Sacks et al. (1989) and also Santner et al. (2003). Only

recently Van Beers and Kleijnen (2003) applied Kriging to random simulation mod-

els; Kriging in random simulation is also investigated by Ankenman et al. (2009)

and Yin et al. (2008). The track record of Kriging in deterministic simulation holds

great promise for Kriging in other domains including optimization algorithms.
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The simplest type of Kriging is called ordinary Kriging, and assumes

w(d) = μ+ δ(d), (3.4)

wherew(d) denotes the experimental output for input combination d, μ is the output

averaged over the whole experimental area, and δ(d) is the additive noise that forms

a stationary covariance process (instead of the white noise in regression analysis,

which implies zero covariances). This Kriging uses the following linear predictor:

y(d) = λ′w, (3.5)

where the weights λ are not constants—whereas the regression parameters β are—

but decrease with the distance between the new input d to be predicted and the old

points collected in the n× k design matrixD where n denotes the number of input

combinations and k the number of inputs (like in Sect. 3.2). The optimal weights
can be proven to be

λo= Γ−1[γ + 1
1− 1′Γ−1γ

1′Γ−11
], (3.6)

where Γ = (cov(wi, wi′)) with i, i′ = 1, . . . , n is the n × n matrix of the covari-

ances between the old outputs; γ =(cov(wi, w0)) is the n-dimensional vector of the

covariances between the n old outputs wi and w0, the output of the combination to

be predicted, which may be either new or old. Actually, (3.4), (3.5), and (3.6) imply

that the predictor may be written as

y(d) = μ̂+ γ(d)′Γ−1(w−μ̂1), (3.7)

where

μ̂ = (1′Γ−11)
−1
1′Γ−1w.

The gradient follows from (3.7); an example is given in Kleijnen (2008, pp. 143,

145).

The covariances in Γ and γ are often based on the correlation function

ρ = exp[−
k∑

j=1

θjh
pj

j ] =
∏k

j=1
exp[−θjh

pj

j ], (3.8)

where hj denotes the distance between the input dj of the new and the old combi-

nations, θj denotes the importance of input j (the higher θj is, the less effect input j
has), and pj denotes the smoothness of the correlation function (e.g., pj = 2 implies

an infinitely differentiable function). So-called exponential and Gaussian correlation

functions have p = 1 and p = 2, respectively. Obviously, the correlation function

(3.8) implies that the weights are relatively high for inputs close to the input to be

predicted. Furthermore, we found experimentally that some of the optimal weights

in (3.6) may be negative; see Table 3.2. Finally, the weights imply that for an old

input the predictor equals the observed output at that input:
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Table 3.2: A Kriging example

Combi. x w λ(0.57)

1 0.3 0.429 0.024

2 0.4 0.667 −0.127

3 0.5 1.000 0.433

4 0.6 1.500 0.720

5 0.7 2.333 −0.051

y(di) = w(di) if di ∈ D, (3.9)

so all weights are zero except the weight of the observed output; i.e., the Kriging

predictor is an exact interpolator (the OLS regression predictor minimizes the sum

of squared residuals, so it is not an exact interpolator, unless n = q).
The interpolation property (3.9) is attractive in deterministic simulation, because

the observed simulation output is unambiguous. In experiments with random out-
puts, however, the observed output is only one of the many possible values. For

random simulations, Van Beers and Kleijnen (2003) replace w(di) by the average

observed output wi. Those authors give examples for which the Kriging predictions

are more accurate than the regression predictions (regression metamodels may be

useful for other goals, e.g., understanding, screening, and validation).

We present a Kriging example in Table 3.2. The true I/O function of this one-

dimensional (k = 1) experiment is w = x/(1− x) (which resembles the I/O func-

tion of a single-server queueing model). We select n = 5 equidistant input values in
the experimental area [0.3, 0.7]. Note that these values are given by either a space-

filling design or a CCD with c = 0.1. Suppose we wish to predict the output for the
input x = 0.57. We display the Kriging weights λ of the five old input values for

this new input value, which imply that higher weights are given to output values of

input values nearby (the sum is 1, ignoring rounding errors). The resulting predic-

tion error is w− ŷ = 1.326− 1.321 = 0.005. Fitting a second-order polynomial (see

Sect. 3.2) would have given β̂ = (1.094,−5.051, 9.694)′, so the regression predic-

tor for x = 0.57 would have been (1.094,−5.051,′ 9.694)′(1, 0.57, 0.572) = 1.364

and the resulting prediction error would have been 1.326− 1.364 = −0.038, which
exceeds the Kriging prediction error (0.005).

3.4.1 The Kriging Predictor Variance

A major problem in Kriging is that the correlation function is unknown. Therefore
both the type and the parameter values must be estimated. To estimate the param-

eters, the standard Kriging literature and software uses maximum likelihood esti-
mators(MLEs). The estimation of the correlation functions and the corresponding

optimal weights in (3.6) can be done through the Matlab toolbox called DACE,
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which is software that is well documented and free of charge; see Lophaven et al.

(2002).

The Kriging literature virtually ignores problems caused by replacing the optimal

weights λ in (3.5) by the estimated optimal weights (say) λ̂0—using the estimated

correlation parameters θ̂j ; see (3.8) and the references to the Kriging literature given
above. Actually, this replacement makes the Kriging predictor a nonlinear estimator.

The literature uses the predictor variance—given the Kriging weights λ. This im-

plies a zero variance in case the new point w0 equals an old point wi; also see (3.9).

Furthermore this tends to underestimate the true variance. Finally, this variance and

the true variance do not reach their maxima for the same input combination, which

is important in sequential designs; see Sect. 3.4.2 below. More details are given

by Den Hertog et al. (2006), assuming the simulation models are deterministic (so

those authors apply parametric bootstrapping).

In random simulation, each input combination is replicated a number of times

so a simple method for estimating the true predictor variance and the true gradi-

ent is distribution-free bootstrapping. The basics of bootstrapping are explained

in Efron and Tibshirani (1993) and Kleijnen (2008). To estimate the predictor vari-

ance, Van Beers and Kleijnen (2008) resample—with replacement—the (say) mi

replicates for combination i (i = 1, . . . , n). This sampling results in the boot-

strapped average w∗i where the superscript asterisk is the usual symbol to denote

a bootstrapped observation. These n bootstrapped averages w∗i give estimated cor-

relation coefficients θ̂j
∗
, estimated optimal weights λ̂∗0, and the Kriging predictor

y∗. To decrease sampling effects, this whole procedure is repeated B times (e.g., B
= 100), which gives y∗b with b = 1, . . . , B. The variance of the Kriging predictor is

estimated from these B values.

3.4.2 Designs for Kriging

To get the I/O data to which the Kriging model is fitted, experimenters often use

LHS. This design assumes that a valid metamodel is more complicated than a low-

order polynomial (assumed by classic designs). LHS does not assume a specific

metamodel; instead, LHS focuses on the design space formed by the k-dimensional

cube defined by the k standardized inputs. LHS is one of the space-filling types of

design; another space-filling design type is a max–min design, which maximizes

the minimum distance between the n input combinations. Space-filling designs and

software for obtaining these designs are discussed by Kleijnen (2008).

Instead of a one-shot space-filling design such as a LHS design, a sequential-
ized design may be used. In general, sequential statistical procedures are known to

require fewer observations than fixed-sample (one-shot) procedures; also see Park

et al. (2002). Sequential designs imply that observations are analyzed—so the data

generating process is better understood—before the next input combination is se-

lected. This property implies that the design depends on the specific underlying

process (the optimization algorithm and the problem to be solved by the optimiza-



62 J.P.C. Kleijnen

tion algorithm); i.e., the design is customized (tailored or application driven, not

generic). Moreover, computational experiments (unlike real-life experiments) pro-

ceed sequentially. The following sequential design for Kriging in sensitivity analysis

is developed by Van Beers and Kleijnen (2008):

1. Start with a pilot experiment, using some small generic space-filling design;

e.g., a LHS or a max–min design.

2. Fit a Kriging model to the I/O data that are available at this step (in the first pass

of this procedure, these I/O data are the data resulting from Step 1).

3. Consider (but do not yet simulate) a set of candidate input combinations that

have not yet been observed and that are selected through some space-filling

design; select as the next combination to be actually run, the candidate combi-

nation that has the highest predictor variance (this variance may be estimated

through bootstrapping, as we saw above).

4. Use the combination selected in Step 3 as the input combination to be run (ex-

pensive!), and obtain the corresponding output data.

5. Re-fit a Kriging model to the I/O data that is augmented with the I/O data re-

sulting from Step 4.

6. Return to Step 3, until the Kriging metamodel is acceptable for its goal (sensi-

tivity analysis) and stop.

The resulting design is indeed customized; i.e., which combination has the high-

est predictor variance is determined by the underlying problem and optimization

algorithm; e.g., if the true (unknown) I/O function is a simple hyperplane within a

subspace of the total experimental area, then this design selects relatively few points

in that part of the input space. A sequential design for constrained optimization (in-

stead of sensitivity analysis) will be presented in Sect. 3.5.2.

There is a need for more research on Kriging, in the following areas:

• Kriging software needs further improvement; e.g., Kriging should allow random

outputs with variance heterogeneity and correlation created by CRN.

• Sequential designs may benefit from asymptotic proofs of their performance;

e.g., does the design approximate the optimal design?

• More experimentation and analyses may be done to derive rules of thumb for

the sequential design’s parameters, such as the size of the pilot design and the

initial number of replicates.

• Stopping rules for sequential designs based on a measure of accuracy may be

investigated.

• Nearly all Kriging publications assume univariate output, whereas in practice

computational experiments have multivariate output.
• Often the analysts know that the experiment’s I/O function has certain proper-

ties, e.g., monotonicity. Most metamodels (such as Kriging and regression) do

not preserve these properties. A new property-preserving Kriging method has

been developed by Kleijnen and Van Beers (2009).
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3.5 Optimization

As we have already mentioned in the very first sentence of Sect. 3.1, there are many

optimization algorithms. In the present section we shall discuss optimization algo-

rithms that use designs and metamodels that we have also presented in the preceding

sections. In Sect. 3.5.1 we review RSM, which uses classic designs and low-order

polynomials discussed in Sect. 3.2. In Sect. 3.5.2 we survey Kriging (see Sect. 3.4)

combined with mathematical programming. In Sect. 3.5.3 we survey robust opti-

mization in the sense of Taguchi (1987), using either RSM or Kriging.

3.5.1 Response Surface Methodology (RSM)

Originally, Box and Wilson (1951) developed RSM for the optimization of real-life

systems; also see Myers and Montgomery (1995). Later on, Angün et al. (2009)

developed generalized RSM (GRSM), which allows multiple (multivariate) random

responses; GRSM assumes that one response is the goal (objective) response and

the other responses are constrained variables that must satisfy prespecified target

values. Both GRSM and RSM estimate gradients to search for the optimum. These

gradients are based on local first-order polynomial approximations; also see (3.1).

GRSM combines these gradients with mathematical programming findings to es-

timate a better search direction than the steepest descent direction used by RSM.

Moreover, GRSM uses these gradients in a bootstrap procedure for testing whether

the estimated solution satisfies the Karush–Kuhn–Tucker (KKT) optimality condi-

tions. Some details now follow.

Classic RSM has the following characteristics:

• RSM is an optimization heuristic that tries to estimate the input combination

that minimizes a given univariate black-box goal function.

• RSM is a stepwise (multi stage) method.

• In these steps, RSM uses local first-order and second-order polynomial meta-

models (response surfaces). RSM assumes that these models have white noise
in the local experimental area; when moving to a new local area in a next step,

the variance may change.

• To fit these first-order polynomials, RSM uses classic R-III designs; for second-
order polynomials, RSM usually applies a classic CCD.

• To determine in which direction the inputs will be changed in a next step, RSM

uses steepest descent based on the gradient implied by the first-order polyno-

mial fitted in the current step: equation (3.1) implies the estimated gradient

β̂−0 = (β̂1, . . . , β̂k)
′,

where the subscript −0 means that the estimated intercept β̂0 is deleted from β̂
defined in (3.2).
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• In the final step, RSM takes the gradient of the locally fitted second-order poly-
nomial to estimate the optimum input combination. RSMmay also apply canon-
ical analysis to examine the shape of the optimal (sub)region: unique minimum,

saddle point, ridge?

Kleijnen et al. (2006b) derive a variant of steepest descent—called adapted steep-
est descent—[cov(β̂−0)]

−1β̂−0, where cov(β̂−0) is the matrix of the covariances

between the components of the estimated gradient β̂−0. Their variant gives a scale-

independent search direction and in general performs better than steepest descent.

In practice, experiments have multiple responses so GRSM is more relevant than

RSM. GRSM generalizes steepest descent (applied in RSM) through ideas from

interior-point methods in mathematical programming. This search direction moves

faster to the optimum than steepest descent, since the GRSM avoids creeping along

the boundary of the feasible area determined by the constraints on the random out-

puts and the deterministic inputs. GRSM’s search direction is scale independent.

More specifically, this search direction is

d = −
(
B

′
S−2B+R−2 +V−2

)−1

β̂0;−0, (3.10)

where B is the matrix with the gradients of the constrained outputs, S, R, and V
are diagonal matrixes with the current estimated slack values for the constrained

outputs, and the lower and upper limits for the deterministic inputs, and β̂0;−0 is the

classic estimated steepest descent direction for the goal variable with index 0; the
remaining responses have indexes 1, . . . , r − 1.

Analogously to RSM, GRSM proceeds stepwise; i.e., after each step along the

search path (3.10), the following hypotheses are tested:

1. The observed goal output of the new combination is suboptimal; i.e. it gives no
improvement compared with the old combination (pessimistic null hypothesis).

2. This new combination is feasible; i.e., the other random outputs satisfy the con-

straints (optimistic null hypothesis).

To test these hypotheses, the classic Student t statistic may be applied (a paired

t statistic if CRN are used; see Law (2007, p. 553). Because multiple hypotheses

are tested, Bonferroni’s inequality may be used; i.e., divide the classic α value (e.g.,

α = 0.10) by the number of tests.

Actually, a better combination may lie in between the old combination and the

new combination. Therefore GRSM uses binary search; i.e., it observes a combi-

nation that lies halfway between these two combinations (and is still on the search

path defined by (3.10)). This halving of the stepsize may be applied a number of

times.

Next, GRSM proceeds analogously to RSM. So, around the best combination

found so far, it selects a new local area. It uses a R-III design to select new input

combinations to be observed. It fits first-order polynomials for each of the r outputs,
which gives a new search direction (3.10). And so GRSM goes on.
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In experiments with random outputs it is necessary to estimate the gradients and

the slacks of the constraints; see (3.10). This estimation turns the KKT first-order

optimality conditions (which are classic in nonlinear mathematical programming)

into a problem of nonlinear statistics. Angün and Kleijnen (2009) derive an asymp-

totic test; Bettonvil et al. (2009) derive a small-sample bootstrap test. GRSM has

been applied to an (s, S) inventory system and a toy problem consisting of second-

order polynomials augmented with additive multivariate normal noise. Kleijnen and

Wan (2007) compare GRSM with OptQuest—a popular commercial simulation-

optimization heuristic that combines the metaheuristics of tabu search, neural net-

works, and scatter search; also see the references to these metaheuristics in Sect. 3.1.

3.5.2 Kriging and Mathematical Programming

Kleijnen et al. (2010) present a novel heuristic for constrained optimization in black-

box experimentation (an alternative approach is GRSM, discussed in Sect. 3.5.1).

Moreover, they assume that the inputs must be integers. Their heuristic combines

(i) sequential designs to specify the inputs, (ii) Kriging metamodels to analyze the

global I/O (whereas GRSM uses local metamodels), and (iii) integer nonlinear pro-

gramming (INLP) to estimate the optimal solution from the Kriging metamodels.

They call this heuristic DOE-Kri-MP and apply it to a toy problem and an (s, S) in-
ventory system (similar to the the GRSM examples) and a realistic call-center sim-

ulation; they also compare this heuristic with OptQuest and find that their heuristic

requires fewer input combinations.

As Fig. 3.1 shows, their heuristic starts with the selection of an initial—or pilot—

space-filling design, and observes the corresponding outputs. Because the outputs

are random, enough replicates are observed to realize a prespecified relative preci-

sion, following Law (2007, pp. 500–503). For each combination of this design, the

heuristic obtains (say) r average outputs wh (h = 0, .., r − 1) where the subscript
“0” denotes the goal output and the other subscripts the constrained outputs. Next,

the heuristic fits r univariate Kriging metamodels to this I/O. These metamodels

are validated; as long as one or more metamodels are proclaimed not to be valid,

the current design is augmented, observing a new combination in the global search

area, to fine-tune the metamodels. The heuristic then refits the Kriging metamodels

using the augmented I/O. When all r Kriging metamodels are accepted, the heuris-

tic applies an INLP program (namely, Matlab’s free program called bnb20) to the

r Kriging metamodels to estimate the optimum. The heuristic checks whether the

estimated optimum has already been observed before; if it has, then the heuristic

reruns the INLP to estimate a new next best point, i.e., all points already observed

are excluded from the optimization. Anyhow, the new point is observed and its I/O

data are added to the current design. Next, the heuristic stops if the output data of

the new point compared with the output of the best point found so far shows that

the last (say) 30 times INLP solutions do not give a combination with a signifi-

cant improvement in the objective function. Otherwise, the Kriging metamodels are
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Fig. 3.1: Overview of DOE-Kri-MP

updated using old and new I/O data, and the heuristic continues its search. Some

details are as follows:

1. The pilot design uses a type of LHS, which accounts for box constraints for the
inputs. Moreover, the design is adapted to account for non-box input constraints;

e.g., the sum of some inputs must meet a budget constraint.

2. To validate the Kriging metamodels, the heuristic applies cross-validation. To
estimate the variance of the Kriging predictor, the heuristic applies distribution-

free bootstrapping to the replicates (accounting for a variable number of repli-

cates per input combination, and CRN).

3. Whereas some combinations are selected to improve the global Kriging meta-

model (global search), some other combinations are added because they seem

to be close to the local optimum (local search).
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3.5.3 Taguchian Robust Optimization

Originally, Taguchi developed his approach to help Toyota design robust cars; i.e.,

cars that perform reasonably well in many environments (from the snows in Alaska

to the sands in the Sahara); see Taguchi (1987) and Wu and Hamada (2000). He

distinguishes between two types of variables:

• Decision (or control) factors (say) dj (j = 1, . . . , k).
• Environmental (or noise) factors, eg (g = 1, . . . , c).

Most optimization methods assume a known environment; i.e., the problem for

which an optimal solution should be found is given and fixed. Robust optimization

algorithms, however, account for the uncertainty of the environment; e.g., the op-

timization algorithm should be applicable to new, unknown problems. Related (but

different) is robust mathematical programming: whereas classic mathematical pro-

gramming assumes that all coefficients are known, robust mathematical program-

ming assumes that the coefficients may vary over a specific area, and tries to find

solutions that give nearly optimal output even when the coefficients vary within that

area; see Ben-Tal and Nemirovski (2002).

We advocate a methodology that uses Taguchi’s view of the uncertain world, but

replaces his statistical techniques by either RSM or Kriging combined with math-

ematical programming. Myers and Montgomery (1995) extend RSM to robust op-

timization of real-life systems. Dellino et al. (2009) adapt this robust RSM to sim-

ulated systems; instead of RSM they also apply Kriging. They apply their methods

to an economic order quantity (EOQ) inventory model, which is a classic model in

operations research.

Taguchi uses a scalar output such as the signal-to-noise or mean-to-variance

ratio, whereas Dellino et al. allow each output to have a statistical distribution

characterized through its mean and standard deviation; also see Myers and Mont-

gomery (1995, p. 491). Dellino et al. minimize the mean while the standard devi-

ation remains below a given threshold value; they solve this constrained optimiza-

tion problem using some nonlinear programming (NLP) code (namely Matlab’s free

fmincon). Next they change the threshold value for the standard deviation, which

gives the estimated Pareto frontier.
Now we present some mathematical details. Inspired by RSM (see Sect. 3.5.1),

Myers and Montgomery (1995, p. 218, 492) assume:

• a second-order polynomial for the decision factors dj ,
• a first-order polynomial for the environmental factors eg ,
• control-by-noise two-factor interactions (say) δj;g ,

resulting in the response surface (metamodel)
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y = β0 +

k∑
j=1

βjdj +

k∑
j=1

k∑
j′≥j

βj;j′djdj′+

+
c∑

g=1

γjej +
k∑

j=1

c∑
g=1

δj;gdjeg + ε

= β0 + β′d+ d′Bd+ γ′e+ d′Δe+ ε,

(3.11)

where y denotes the regression predictor of the experiment’s output w, ε the re-

gression residual, β = (β1, . . . , βk)
′, d = (d1, . . . , dk)

′, B the k × k symmet-

ric matrix with main-diagonal elements βj;j and off-diagonal elements βj;j′/2,
γ = (γ1, . . . , γc)

′, e = (e1, . . . , ec)
′, andΔ = (δj;g).

Myers and Montgomery (1995, p. 493–494) assume that the environmental vari-

ables e have zero mean and constant variance; moreover they are not correlated:

E(e) = 0 and cov(e) = σ2
eI. Dellino et al. replace these assumptions by a more

general assumption: E(e) = μe and cov(e) = Ωe. Next they derive from (3.11)

E(y) = β0 + β′d+ d′Bd+ γ′μe + d′Δμe (3.12)

and

var(y) = (γ′ + d′Δ)Ωe(γ +Δ′d)+σ2
ε = l′Ωel+σ2

ε . (3.13)

where l = (γ +Δ′d)= (∂y/∂e1, . . . , ∂y/∂ec)
′; i.e., l is the gradient with respect to

the environmental factors. So, the larger the gradient’s components are, the larger

the variance of the predicted output is. Furthermore, ifΔ = 0 (no control-by-noise

interactions), then var(y) cannot be controlled through the control variables d.
To estimate the parameters in (3.12) and (3.13), Dellino et al. use OLS; see (3.2).

Myers and Montgomery (1995, pp. 463–534) use only two values per environmental

factor, which suffices to estimate its main effect and its interactions with the decision

factors in (3.11). Dellino et al., however, use LHS to select values for the environ-

mental factors. These values are crossed with the values for the decision variables;

such crossing is usual in Taguchian designs. Designs more efficient than crossed

designs are discussed by Dellino et al. (2009) and Myers and Montgomery (1995,

p. 487).

The goal of Dellino et al.’s robust optimization is to minimize the resulting es-

timated mean ŷ, while keeping the estimated standard deviation σ̂y below a given

threshold. This constrained minimization problem they solve through mathemati-

cal programming. This gives the values of the estimated robust decision variables

(say) d̂+ and its corresponding estimated optimal mean ŷ and standard deviation

σ̂y . Next, they vary the threshold value for the standard deviation (say) 100 times,

which may give up to 100 different solutions d̂+ with their corresponding ŷ and

σ̂y . These pairs (ŷ, σ̂y) give the estimated Pareto frontier. To estimate the variability

of this frontier, they use parametric bootstrapping; i.e., they assume that the type

of distribution of the relevant random variable is known (in their EOQ example,

the distribution is Gaussian)—the parameters of that distribution are estimated from
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the I/O data resulting from the experiment. Note that Dellino et al. (2009) also use

Kriging instead of RSM.

Future research may address the following issues:

• Instead of deterministic simulation experiments, we may investigate experi-

ments with random output—either a scalar or a vector.

• Integer constraints on some inputs may apply so INLP may be used (as in

Sect. 3.5.2).

3.6 Conclusions

In this chapter we have presented an overview of the design and analysis of compu-

tational experiments with optimization algorithms. We covered classic designs and

their corresponding metamodels; namely, R-III designs (such as 2k−p
III designs) for

first-order polynomials, R-IV and R-V designs for two-factor interactions, and CCD

for second-degree polynomials. These designs may be applied when the experimen-

tal area is relatively small, so a low-order polynomial is an adequate approximation

of the I/O function in the experiment (Taylor series argument).

We also reviewed factor screening in experiments with very many factors, assum-

ing that only a few factors are really important. We focused on the sequential bifur-

cation method, which assumes a first-order polynomial, possibly augmented with

two-factor interactions. For didactic reasons we presented screening after classic

designs and analyses; in practice, however, we recommend to start with a screening

experiment rather than using intuition and experience to select a small set of factors.

Furthermore, we reviewed Kriging and space-filling designs (e.g., LHS). A Krig-

ing model may give a better approximation when the experimental area is relatively

large. Finally, we discussed experiments aimed at optimization, allowing for ex-

periments that give multiple random outputs. This optimization may use General-

ized RSM or Kriging combined with mathematical programming. We ended with

Taguchian robust optimization.

So, which designs to use depends on the metamodel to be used. The metamodel

choice depends on the goal of the experiment; e.g., optimization based on RSM uses

a sequence of first-order polynomials that give the steepest descent search direction

(so R-III designs suffice). If the goal is sensitivity analysis and the experimental

area is considered to be large, then Kriging may be useful; Kriging may start with a

space-filling design (e.g., LHS). We gave selected references for further study; Klei-

jnen (2008) lists more than 400 references and gives website addresses for software.

We also listed topics for future research, in various sections.

What remains is the application of these various designs and analysis methods

to computational experiments (applications to other types of experiments are sum-

marized by Kleijnen (2008)). Some guidelines are given by Kleijnen et al. (2005),

but there are no cookbook recipes: learning by doing is the only route to skillful

experimentation.
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Chapter 4
The Generation of Experimental Data for
Computational Testing in Optimization

Nicholas G. Hall and Marc E. Posner

Abstract This chapter discusses approaches to generating synthetic data for use in

scientific experiments. In many diverse scientific fields, the lack of availability, high

cost or inconvenience of the collection of real-world data motivates the generation

of synthetic data. In many experiments, the method chosen to generate synthetic

data can significantly affect the results of an experiment. Unfortunately, the scien-

tific literature does not contain general protocols for how synthetic data should be

generated. The purpose of this chapter is to rectify that deficiency. The protocol

we propose is based on several generation principles. These principles motivate and

organize the data generation process. The principles are operationalized by genera-

tion properties. Then, together with information about the features of the application

and of the experiment, the properties are used to construct a data generation scheme.

Finally, we suggest procedures for validating the synthetic data generated. The use-

fulness of our protocol is illustrated by a discussion of numerous applications of data

generation from the optimization literature. This discussion identifies examples of

both good and bad data generation practice as it relates to our protocol.

4.1 Introduction

Most scientific models require the use of data for evaluation and validation. The

three major sources that researchers use to obtain this data are the real world, library

databanks, and random generation procedures. A natural choice is to use real-world

data. One advantage of using this type of data is its relevance, which enables esti-
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mation of the eventual practical usefulness of the results of an experiment. A second

advantage of using real-world data is that it enhances the credibility of the experi-

ment. Moreover, this type of data is usually unbiased. However, there can be serious

difficulties with using real-world data. First, it may not be available, or not available

in quantities sufficient for the purposes of the experiment. This situation typically

arises when a research area is new, or when the phenomenon being examined is

fragile. An example of the latter situation is data collected from destructive testing.

Further, most real-world data for a given application are generated by the same phys-

ical process. This may limit the size and variety of the data sets. For example, the

amount of inventory data for a given product typically does not exceed the number

of working days in a year. Moreover, each point is generated by the same underlying

production and demand processes. There are also cases where very large and varied

data sets are needed for testing (Wei et al. 2003). Further, there are situations where

the collection of real-world data is costly, slow or inconvenient. Another concern is

that, even when real-world data is available, it may be preferable to use data that is

free from the stochastic vagaries of the real environment (Kadlec 2000). A further

issue with real world data is that it can impose a very special, restricted structure on

the problem (Fischetti et al. 2001).

There are many applications for which library data is available. Examples occur

in the testing of computer systems and algorithms. Among the advantages of library

data sets are that some properties of the problem, such as an optimal solution and

the performance of other procedures on the data set, are known. Also, there is a

recent literature on determining which data from an existing data set should be sam-

pled to meet the objectives of a particular experiment (Koehler and Owen 1996).

However, there are many applications where an adequate data library does not exist

(McGeoch 1996). Another concern is that library data sets are sometimes biased

by the inclusion of problems for which a particular previous experiment gives good

results (Hooker 1995). A final problem is that “you get what you measure.” A com-

parison of procedures based on a set of library data leads to selection of procedures

that work efficiently for that set. The selected procedures may work poorly for more

typical types of data.

When it is not possible or desirable to use real-world or library data, an alterna-

tive is to generate random data. This type of data is also known as synthetic data.

Generally, synthetic data is generated by a computer program using a pseudorandom

number generator. Sometimes synthetic data is generated by perturbing real-world

or library data. This protects confidentiality (Reiter 2002), introduces uncertainty

into a deterministic problem (Bertsimas et al. 2006), and generates additional test

data (Bienstock et al. 2006, Linderoth et al. 2006, Pan and Shi 2007). Some au-

thors view synthetic data generation as a last resort (Degraeve and Schrage 1997).

However, the substantial advantages of synthetic data include the speed and ease of

generation, and the quantity, variety, and relevance of data that can be obtained. As

an example of the latter, extreme problem instances that are needed to study robust

performance can be generated efficiently using synthetic data (Yaman et al. 2007).

Applications of synthetic data generation can be found in many diverse scien-

tific fields. Examples include: acoustics (Hooshyar et al. 2000), astrophysics (McIn-
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tosh et al. 2000), analytical chemistry (Grate et al. 1999), cluster analysis (Krieger

and Green 1999), computer imaging (Wilson and Hancock 2000), crystallogra-

phy (Roversi et al. 1998), database design (Beyer et al. 1999), data mining (Shen

et al. 1999), environmental engineering (Hooker 1995), evolutionary trees (Pearson

et al. 1999), fuzzy systems (Ray and Ghoshal 2000), hydrology (Aksoy and Bayazit

2000), marketing (Bijmolt and Wedel 1999), medicine (Freed 2000), meteorology

(Yuval 2000), mineral processing (Schena and Chiaruttini 2000), neural networks

(Bauer et al. 1999), pattern recognition (Ho and Baird 1997), physics (Ruchala

et al. 1999), radio science (Herique 1999), robotics (Gonzalez and Gutierrez 1999),

seismology (Lu et al. 1997), statistical inference (Qin and Jing 2000), time series

(Goutte 2000) and transportation planning (Munizaga et al. 2000). The frequency

with which synthetic data is generated, the impressive variety of applications, and

the considerable impact of the data generation process on experimental results all

emphasize the importance of proper data generation methods. In spite of this, there

are no general protocols for the generation of synthetic data.

Because of the lack of general guidelines, the scientific literature contains many

examples where difficulties arise in synthetic data generation. For instance, in clus-

ter analysis, standard random sampling techniques frequently miss small clusters

(Palmer and Faloutsos 2000). Also, there is evidence that synthetic surface seis-

mic data show a poor qualitative match with real data (Frenje and Juhlin 1998).

As another example, most noise components generated in synthetic data are similar

to Gaussian white noise, whereas the noise that occurs in real data typically fol-

lows a more complex and varied pattern (Gelius and Westerdahl 1997). Finally, as

discussed in Hall and Posner (2001), there are experiments that test computer algo-

rithms where the synthetic data contains instances for which the optimal values of

most variables can be found trivially (Potts and Van Wassenhove 1988). Additional

examples of difficulties with data generation schemes are discussed in Sect. 4.3.

A frequent goal of synthetic data generation is to generate a “typical” class of

problems. However, for most optimization applications, such a class is hard to char-

acterize. For many experiments, this goal may even be inappropriate. A better ap-

proach is to generate classes of problems with different characteristics and investi-

gate how the performance of a procedure depends on these characteristics (Hooker

1994, Hall and Posner 2007). Moreover, the generation of synthetic data sets in a

controlled way represents an important step towards a more scientific approach to

testing optimization procedures. This approach to data generation is supported by

the literature on “no free lunch theorems” (Schaffer 1994, Wolpert and Macready

1997). Such theorems show that, if a procedure achieves superior results on some

types of instances, it must compensate with inferior performance on other types of

instances. This suggests that matching procedures to types of instance results in bet-

ter performance than applying a common method across all instances. This idea is

demonstrated by Hall and Posner (2007), Smith-Miles (2008), Smith-Miles et al.

(2009). It further suggests that an arbitrary synthetic data generation procedure pro-

vides little useful information about the relative performance of optimization proce-

dures.
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Synthetic data is needed for a variety of purposes that include hypothesis testing,

evaluation, design improvement, optimization, and software testing. In hypothesis
testing, we may wish to investigate which of several alternative hypotheses best ex-

plains a natural phenomenon, which of several competing drugs is most effective

at fighting a specific disease, or which computer algorithm runs fastest. A second

purpose is evaluation. For example, we may wish to observe the cooling pattern

of a metal in an injection mold, the spread of environmental pollution, or the be-

havior of a meteorological phenomenon. In these situations, synthetic data may be

needed to perform a simulation study. Another purpose is design improvement. For
example, we may test components or prototype versions of a system, product or

algorithm at intermediate design stages. The objective is to gain information that

improves the final design. Such testing is often classified as a pilot study. For ex-

ample, we may wish to test an algorithm to ensure that it is robust for a variety

of types of data. Random data is often needed because the uniqueness of the de-

sign process results in a lack of real-world data. Examples of systems and products

where this may occur include designing a manufacturing system, increasing the sen-

sitivity of a medical diagnostic procedure, and improving the performance of a laser

weld. Synthetic data is also useful for solving optimization problems. For example,

one standard approach for solving stochastic programming problems is to generate

scenario trees using synthetic data. These trees discretize the continuous space of

probabilistic problem scenarios. The scenario trees define stochastic programming

problem instances that are solved in order to provide an approximate optimal solu-

tion. Software testing, which is closely related to optimization, is another purpose of

synthetic data. This type of testing ensures the correctness of a software program.

For this application, synthetic data must be generated so that the correctness of each

line of software code is tested.

This chapter focuses on the generation of synthetic data to test the performance

of optimization heuristics and algorithms. The scope includes hypothesis testing,

evaluation, design improvement, and optimization. While testing software programs

that implement optimization procedures is of practical importance, it imposes very

different requirements on the data that is generated. As a result, we do not consider

this type of synthetic data generation.

The chapter is organized as follows. In Sect. 4.2, we propose a general protocol

for synthetic data generation. Sect. 4.3 discusses numerous applications of synthetic

data generation for the testing of optimization algorithms. These applications illus-

trate both good and bad practices of synthetic data generation as it relates to our

protocol. Sect. 4.4 provides a conclusion and some suggestions for future research.

4.2 A Protocol

A data generation scheme is a complete step-by-step specification of the procedure

by which data is generated, including the parameter ranges and the random number

generation method. Our protocol for synthetic data generation is a multilevel struc-
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ture that consists of generation principles, features of the application, features of the
experiment, generation scheme, and validation. The generation principles provide

high-level perspectives on the data generation process and are independent of the

details of a particular application or experiment. To provide more detailed guide-

lines that ensure the principles are satisfied, we develop generation properties to

operationalize each generation principle. With the properties as guidelines for good

practice, the features of the application and the features of the experiment determine

the actual generation scheme. After the data is generated, we examine the attributes
of the data to determine whether the data is suitable. To accomplish this, we must

be able to quantify and measure these attributes. An overview of the protocol we

propose appears in Fig. 4.1. The structure that we develop is used to discuss and

evaluate generation schemes in Sect. 4.3.

Fig. 4.1: A protocol for synthetic data generation
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4.2.1 Generation Principles and Properties

Generation principles are high-level policies that should be followed when generat-

ing synthetic data. To operationalize these principles, we provide generation prop-
erties. These are more specific requirements that can be incorporated into any data

generation scheme.

Three principles that should be present in a data generation scheme are:

1. Correctness: The data sets generated are free from defects.

2. Applicability: The generation scheme generates the types of data sets that are

needed.

3. Reproducibility: The generation scheme and its data sets are reproducible.

It is important that the data is constructed in a way that is logical and free of dis-

tortions. Otherwise, the results of the analysis are not valid. Two generation proper-

ties that operationalize the principle of Correctness are:

i. Consistency: Identical types of data are generated in the same way.

ii. Unbiasedness: All biases in the data are controlled.

The Consistency property requires that all elements of the same type of data are

generated in a similar way. Thus, the generation scheme should not provide different

treatment for particular elements of the data. For example, assume that the mean of

a particular element has a desired value. Consider a scheme that randomly generates

data for all but the last element and then sets the value of the last element to achieve

the desired mean. This procedure treats the last element differently from the others.

Consequently, it is inconsistent and may have unpredictable and biased effects on

the results of an experiment. A more consistent way to generate the values of the

elements is to set an expected mean for the elements and allow some variance around

that value (Hall and Posner 2001).

The Unbiasedness property requires that the data is generated in a way that does

not promote some experimental results over others. In testing the relative perfor-

mance of two or more algorithms, for example, certain characteristics of the data

may favor a particular algorithm. Similarly, when evaluating a heuristic, the use of

biased data may lead to erroneous conclusions. To formalize Unbiasedness, it is

helpful to regard all possible data sets that can be generated by a particular synthetic

data generation scheme as members of a population. The generation of a particular

data set is analogous to the selection of a sample from this population. Then, Unbi-

asedness can be seen as a requirement that the sample is a fair representation of the

scenarios being modeled. When constructing synthetic data, it is important not to in-

troduce inadvertent biases into the generation scheme. However, this is not always

possible. For example, as mentioned by Hadjar et al. (2006), the special structure of

some real-world vehicle routing problems is hard to reproduce synthetically. Hence,

the generated data may be biased.

The second generation principle is Applicability. The purpose of the experiment,

such as hypothesis testing, evaluation, design improvement or optimization, may
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greatly affect the way in which the data is generated. The Applicability criterion

requires that the data is generated to satisfy this purpose. For example, suppose an

experiment involves testing an algorithm over specific data sets that are likely to

occur in practice. Then, the data generation scheme should produce data sets that

are representative of these particular situations. Another example is a comparison

between two algorithms. This experiment needs a varied set of data that represents

all possible data sets to which these algorithms could be applied. As another exam-

ple, complex interactions between components in the design of a heuristic procedure

may generate issues that a designer needs to address. The generation of customized

synthetic data that models these interactions may aid in the resolution of those is-

sues. A final example occurs in generating a scenario tree for stochastic program-

ming. To find solutions that are close to optimal, the scenario tree should discretize

the solution space to a reasonable degree of accuracy, but be of a tractable size.

Three generation properties that operationalize the principle of Applicability are:

i. Completeness: All data sets that are important to the experiment can be gener-

ated.

ii. Parsimony: The variations in the data sets are important to the experiment.

iii. Comparability: The experiments are comparable within and between studies.

It is important that a generation scheme has the property of Completeness. A

good generation scheme can generate all data sets that are relevant to the specific

scientific experiment. The amount of variety needed in the data is normally deter-

mined by the objectives of the experiment. If the objective is to obtain good results

for specific types of data, then little variety is necessary. However, if the objec-

tive is to design an algorithm that is robust, i.e., is expected to perform well for a

wide range of scenarios, then much greater variety is necessary. Also, a generation

scheme that fails to vary important causative variables appropriately may lead to

the statistical phenomenon called autocorrelation (Hays 1973). In this case, the real

relationships between the variables, as well as the significance of randomness in

those relationships, may become impossible to estimate. To test the specific behav-

ior of a procedure, different types of data sets are sometimes needed. In this case,

the generation scheme should be sufficiently robust to generate all of the various

types. However, if different generation schemes are used, then there may be issues

with Comparability, as discussed below. If a goal is to use a procedure in a specific

real-world setting, then the synthetic data should be similar to the real-world data.

Therefore, the generation process should, if possible, emulate the way in which data

is generated in the relevant real-world application.

Parsimony is a property that eliminates spurious variation within synthetic data.

In general, the variety that occurs in a synthetic data set arises from only two

sources: systematic variation of parameters as part of the experimental design, and

randomness. Parameter variation that can have no effect on the experiment may

distort the perceived effects of experimental variation. This can falsify the results.

The Parsimony property is frequently important when a hypothesis is being tested

through parametric changes to causative variables. An example is the testing of a

branch-and-bound algorithm for integer programming. Doubling the size of all pa-
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rameters in the problem leaves the problem unchanged. A generation procedure that

considers parameter ranges which grow proportionately for all parameters simulta-

neously creates additional sets with the same type of data.

It is frequently important to be able to compare experiments. A lack of Compa-

rability within a study may lead to erroneous or questionable conclusions. For ex-

ample, due to problems in converting real-world data into homogeneous synthetic

data, Lu et al. (1997) uses different procedures to construct data for small and large

earthquakes. While this does not create difficulties when analyzing either the small

or the large earthquakes separately, comparative statements about the two types of

earthquakes become more problematic. Achieving Comparability with earlier stud-

ies is also important for the soundness of the experimental conclusions. An earlier

study may be based on real-world data that is either no longer available, is already

studied exhaustively, or is too small for current purposes. In this case, we may want

to emulate the generation process of the earlier real-world data. Particular care is

also needed when testing alternative hypotheses. A conclusion that one algorithm is

preferred over another for a particular set of data should not be extrapolated to con-

clude that this preference holds over all possible data sets (Schaffer 1994, Wolpert

and Macready 1997).

The principle of Reproducibility has long been recognized as important for sci-

entific verification. When researchers want to validate results by reproducing ex-

periments, they must be able to generate the same types of data that were origi-

nally generated. Usually, synthetic data is not described by a full specification of

the data sets generated. Instead, a description of the underlying generation scheme

is provided that is sufficiently detailed to permit reproduction. The conciseness of

such descriptions is a valuable advantage of synthetic data (Hall and Posner 2001).

Of course, the same synthetic data generation scheme can randomly generate sets

of test problems with very different characteristics, particularly if sample sizes are

small. Therefore, Reproducibility requires that the pseudorandom number genera-

tion scheme and random number seeds be part of the documentation.

Two generation properties that operationalize the principle of Reproducibility

are:

i. Describability: The generation scheme is easy to describe.

ii. Efficiency: The generation scheme is easy and efficient to implement, use, and

replicate.

For a data generation scheme to be describable, the description of the data gener-

ation scheme should be complete and comprehensible. If it is not, then researchers

are unable to replicate the study. This property is typically more important when

the experiment is not unique and when the results will be published. This is be-

cause uniqueness or confidentiality implies that it is less likely that there will be

subsequent comparisons or evaluations of the experiment.

Efficiency can be measured either quantitatively or qualitatively and tends to

have many possible levels of success. The goal of Efficiency is to develop a gen-

eration scheme that is as easy as possible to implement, use, and replicate. This is

particularly important when large data sets are needed. For large data sets, a useful
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characteristic of synthetic data generation is the ability to link the data generation

and experimentation stages so that it is necessary to store only one data set at a

time. Ease of replication is also important for experiments that require large num-

bers of trials. For example, consider an experiment where randomly generated data

sets from the same scheme have widely differing results. Then, many data sets may

be needed to ensure the statistical significance of the conclusions. To validate these

conclusions, statistical methods that determine the necessary sample size may be

needed.

4.2.2 Features of the Model

Two important factors that determine which properties are important in a particular

generation scheme are the features of the application and the features of the exper-
iment. The features of the application are naturally occurring characteristics of the

problem. These include the size of the data requirements, functional relationships

between different parts of the data, and any bounds on the data. The features of the

experiment are selected by the experimenter. These include the number and variety

of tests, as well as intentions about implementation and publication. The features

of the experiment may interact with the generation properties in various ways. For

example, if only a single design is being evaluated, then Unbiasedness needs to be

interpreted more narrowly. As another example, an algorithm may be designed for

use in an application that is newly emerging and not yet well specified. For this ap-

plication, the property of Completeness has less value, because it is unclear which

data sets might be important to the experiment. As a final example, if the study is

intended for commercial use and is not to be published, then Describability is less

important.

Consequently, each generation property is relevant to a greater or lesser degree

for a given experiment. As a result, we use the features of the model and experiment

to select and modify the properties in order to guide the creation of the synthetic

data generation scheme.

4.2.3 Validating the Data

A critical step in the data generation process is the validation of the synthetic data.

One approach is to run a small preliminary study and check the reasonableness of

the results. This approach is common when Monte Carlo simulation is used for ex-

perimental evaluation (Law and Kelton 1991). The main problem with this approach

is that assessing reasonableness requires a prejudgment about the results of the ex-

periment. An alternative is to compare the synthetic data against real-world data.

However, as discussed above, a frequent reason for generating synthetic data is that
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no real-world data is available. Also, if only a small amount of real-world data is

available, then the results may not be statistically reliable.

Consequently, a better approach is to validate the synthetic data outside the struc-

ture of the experiment. To do so requires identifying the key attributes of the data
that may influence the results of the experiment. For example, among the relevant

attributes of homogeneous numerical data are its average value and its dispersion.

These attributes need to be evaluated and controlled in order to conduct a meaning-

ful and efficient experiment. The existence of particular attributes in the synthetic

data is often important. Where relevant, the values of these attributes should be sim-

ilar to those in the real-world data, and should also match the experimental design.

Some attributes of the data may be hard to specify and measure. An example is

where the relationship between the attributes and the experimental results is unclear

or complex (for example, highly nonlinear). Another example is where the attributes

are not easily quantifiable, for instance the degree of clustering.

An attribute may be evaluated for one or more of the following reasons:

1. To control a causative variable in order to perform a hypothesis test

2. To ensure that the data varies so as not to bias an experiment

3. To document data variation that occurs naturally in practice

4. As a proxy for another attribute that is harder to define or measure

Each of these reasons implies the need for a measure to evaluate the attribute. For
example, the measures of mean and variance evaluate the attributes of average value

and dispersion, respectively. These measures can be computed using standard sta-

tistical methods. In experiments that study a cause-and-effect relationship between

one or more causative variables and a dependent variable, measures are needed to

control the values of the causative variables. Furthermore, a measure is needed to

ensure that a level of variety consistent with the objectives of the experiment is intro-

duced into the synthetic data. Also, when there is an attempt to reproduce real-world

variation in the data, a measure of that variation is needed.

Sometimes, the direct measurement of an attribute is computationally difficult.

For example, computing the number of feasible solutions in an intractable opti-

mization problem may itself be an intractable problem (Garey and Johnson 1979).

Consequently, rather than measure the exact amount of computation required by

an enumerative algorithm for the 0-1 knapsack problem, Hall and Posner (2007)

develop a heuristic procedure for estimating the number of nodes in the search tree.

Currently, there is no literature on the identification of suitable measures of the

attributes. Therefore, an ad hoc approach is usually necessary. Some characteristics

that a measure should have include:

1. Relevance to the experiment

2. Change in an appropriate way

3. Tractability

First, the measure should quantify the attributes of a data set in a way that is

relevant to the outcome of the experiment. For example, in the testing of production

planning algorithms, a simple heuristic performs best on many kinds of synthetic
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data. However, there are specific classes of data for which this is not true (Uma and

Wein 1998). Thus, it would be valuable to determine and measure the important

attributes of the data that could predict the performance of such a heuristic on a

given data set. Second, the measure should not change spuriously with respect to the

problem. For example, changing all costs proportionately in experimental testing

of optimization software may leave the relative costs of all solutions unchanged.

Consequently, the experimental results are unchanged also, and the measure should

reflect this. Finally, since the purpose of a measure is to provide information about

a data set, the evaluation of a measure should generally take significantly less time

than it takes to perform the experiment itself.

As a result, for each important attribute, the data validation process should define

one or more measures that can be used to determine to what extent the data contains

that attribute. Comparisons between the synthetic data and any available real-world

data are also valuable. For example, one relevant method is to test the hypothesis

that the mean values of some attribute in the real data and the synthetic data are

equal (Hays 1973). Finally, some experiments require several measures and these

may be of different types. For example, if both computation time and accuracy are

important to an experiment that tests the performance of a heuristic procedure then

both attributes should be measured.

4.3 Applications to Optimization

In this section, we consider data generation issues that arise in various optimization

applications. We identify several examples of good and bad data generation practice

relative to the properties in our general protocol described in Sect. 4.2. Many of the

data generation schemes we discuss are carefully designed, satisfy all of our criteria,

and serve as excellent examples for future researchers to follow.

Unfortunately, in most synthetic data generation schemes, the generation proper-

ties are not all easy to satisfy. The Comparability property is usually easy to satisfy,

except when both real-world and synthetic data are being used. Also, Describa-

bility is easy to satisfy in generation schemes for most optimization applications.

An exception occurs in stochastic programming (see Sect. 4.3.7), where the un-

derlying optimization problem formulations at each stage may need to be shown

explicitly. Further, Efficiency is easy to satisfy for most optimization applications,

except where large volumes of data are required. Stochastic programming is again

an exception, due to the need to generate large scenario trees. Consequently, the

four properties that require the most discussion in this section are Consistency, Un-

biasedness, Completeness, and Parsimony.

A given generation property is easier to satisfy in some applications than in oth-

ers. For example, data generation is easier when the required data has a simple

structure that does not contain linking constraints or correlations. A second example

occurs where real-world data has limited variation. This may imply that limited vari-

ation is also required in the synthetic data. A third example occurs where previous
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experiments have already documented a well-designed data generation scheme that

satisfies all of the properties. However, trade-offs may arise between two or more

properties. For example, a data generation scheme that is designed for Efficiency

may have difficulty satisfying the Unbiasedness property (Sherali and Smith 2006).

As another example, the random network generator in Demeulemeester et al. (2003)

represents a trade-off between generating the data sets efficiently and generating all

possible graphs with equal probability. The latter is required for Completeness. Fail-

ure to achieve Completeness may introduce biases into the data. In such situations,

the features of the experiment should be used to determine a suitable compromise

between the generation properties.

In view of the comments in the previous paragraph, we recognize that, in some

applications, designing a data generation scheme that satisfies all of the properties

may be difficult or even impossible. Consequently, our critical comments that ap-

pear with respect to some of the data generation schemes discussed below should

be interpreted as comparisons with an ideal data generation scheme that may be

very hard to develop. Moreover, failure to satisfy one or more of the properties we

propose does not, by itself, suggest that the results of a research study are invalid.

Rather, it suggests that additional testing is needed to determine whether the short-

comings of the data generation scheme have influenced the results.

Sections 4.3.1–4.3.7 are organized by application types. However, Sect. 4.3.8

contains a discussion of data generation issues that arise from the intractability of

optimization problems across various application types.

4.3.1 Generalized Assignment and Knapsack

Solution procedures for the generalized assignment problem are proposed and tested

computationally by Ross and Soland (1975), Chalmet and Gelders (1976), Ross

and Soland (1977), Martello and Toth (1981), Trick (1992), and Racer and Amini

(1994). A stochastic model for this problem is developed by Romeijn and Morales

(2001a). This model analyzes the data generation schemes proposed by the earlier

authors. The analysis reveals that, in all of these prior works, the generation schemes

produce data sets where the capacity constraints become less tight as the number of

machines increases. Such behavior makes the resulting problem instances easier to

solve. Consequently, using the generation schemes used by Ross and Soland (1975,

1977), it is possible to conclude that a proposed greedy heuristic almost always

finds the optimal solution. However, the use of a data generation scheme that sat-

isfies Consistency shows that increases in the number of machines result in small

increases in the relative error of the heuristic (Romeijn and Morales 2001a).

The issue of correlation between subsets of the data requires discussion. For

the 0-1 linear knapsack problem (Balas and Zemel 1980, Martello and Toth 1988,

1997), and some one-machine scheduling problems (Potts and Van Wassenhove

1988, 1992), the authors report significantly longer computation times when the

objective and constraint coefficients are positively correlated. Also, Guignard and
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Rosenwein (1989), Trick (1992), and Amini and Racer (1994) report the same phe-

nomenon when the objective function coefficients and the capacity constraint coef-

ficients in the generalized assignment problem are negatively correlated. However,

several of these research studies use data generation schemes that do not control the

amount of correlation between the parameters. For example, the generation scheme

used by Martello and Toth (1979) for the knapsack problem considers only data

that is uncorrelated and data that has a correlation coefficient above +0.97. For the
generalized assignment problem, the study of Martello and Toth (1981) considers

only correlation coefficients of 0 and below −0.97. An issue with this type of data

is that there is no information about how problem difficulty varies with correlation.

An important question, which cannot be answered using the experimental designs

in Martello and Toth (1979, 1981), is whether problem difficulty increases linearly

with correlation or whether the increase occurs more quickly around some spe-

cific values of correlation. Other research studies that fail to control the correlation

coefficient explicitly include those by Balas and Zemel (1980), Balas and Martin

(1980), Potts and Van Wassenhove (1988), Guignard and Rosenwein (1989), John

(1989), Rushmeier and Nemhauser (1993), and Amini and Racer (1994). Since the

correlation coefficient strongly affects algorithmic performance, the computational

studies in these works fail to satisfy the Completeness property. A procedure for

approximately inducing prespecified Spearman rank correlation levels is proposed

by Iman and Conover (1982). Also, a procedure for generating data with a pre-

specified Pearson correlation level between different subsets of data is developed

by Hill and Reilly (1994). Both of these procedures are tested computationally on

two-dimensional knapsack problems by Hill and Reilly (2000). They also find that

correlation significantly affects the performance of both an optimal algorithm and a

heuristic solution procedure. Because of the complexity of the procedure required

to induce prespecified correlation levels, the Describability property is not easy to

meet (Cario et al. 2002).

A study of a robust formulation of the 0-1 linear knapsack problem is considered

by Atamtürk (2007). This study exclusively uses a knapsack size equal to half the

item sizes. However, a study of the factors that affect computational difficulty in this

problem shows that the knapsack capacity is one of the most important factors (Hall

and Posner 2007). For this reason, it seems unlikely that the Completeness property

can be satisfied without permitting the knapsack capacity to vary.

4.3.2 Supply Chains

A multiperiod single sourcing problem is considered by Romeijn and Morales

(2001b). The authors derive a necessary and sufficient condition on the excess ca-

pacity such that the problem is feasible with probability one when the number of

customers goes to infinity. This condition permits precise control of the tightness

of the constraints in experimental data sets through the excess capacity parameter.

Controlling the tightness of constraints as part of a generation scheme helps to sat-
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isfy the Completeness property by generating a wide variety of data sets. It also

helps to satisfy the Unbiasedness property because uniform tightness of constraints

may favor particular types of procedures. Similar comments can be made about a

combined sourcing and scheduling problem (Chen and Pundoor 2006).

A subgradient search algorithm for multi-item, multifacility supply chain plan-

ning is tested computationally by Wu and Golbasi (2004). The large variety of com-

binations of parameters tested clearly satisfies the Completeness property. The fol-

lowing procedure is used to generate random capacity values. In the first period, the

total demand for the period is multiplied by a constant larger than one to generate

a value for capacity. In later time periods, total capacity assigned for the previ-

ous time periods is subtracted from total cumulative demand, and the result is then

multiplied by a constant to generate capacity. This procedure has the advantage of

generating test problems with tight capacity constraints, which are the most useful

problem instances for the computational experiment. However, since the capacity in

one period depends on the demand for all previous periods, it is possible that the

data generation scheme introduces unintended correlations. This can compromise

the Unbiasedness property. Moreover, the random capacity is generated in the first

period using a different procedure than is used in all subsequent periods. As a result,

the generation scheme fails to satisfy the Consistency property.

In many practical situations, the times at which raw materials become available

define time windows for production, as discussed in the context of a multiperiod

lot-sizing problem (Brahimi et al. 2006). The testing of Lagrangian heuristics is

performed using various parameter specifications for time window density, number

of products, demand lumpiness, demand distributions, setup and holding costs, ca-

pacity tightness, and minimum and maximum time window lengths. The complex

generation scheme satisfies the Consistency, Unbiasedness, Parsimony, and Com-

parability properties. However, clustering of the time windows is likely to affect

problem difficulty and heuristic performance, since it results in resource bottlenecks.

This raises concerns about whether the Completeness property can be satisfied with-

out also varying this parameter. Further, for each period, the synthetic data genera-

tion procedure ensures that the cumulative aggregate demand is no larger than the

cumulative total demand. Unfortunately, the details about how this is accomplished

are not given. Thus, the data generation procedure lacks Describability. If the ag-

gregate demand data is generated to fit the cumulative total demand, then this may

fail to satisfy the Unbiasedness property. Moreover, if later aggregate demand is

treated differently than earlier aggregate demand, then the Consistency property is

not satisfied. A data generation process is more consistent if unacceptable aggre-

gate demand streams are discarded and then new streams are generated to replace

them. By varying only one parameter at a time, the authors simplify their experi-

ment. However, this also eliminates potentially significant interaction effects (Hall

and Posner 2007), which may compromise the Completeness property.



4 Computational Testing 87

4.3.3 Scheduling

A procedure for the generation of random activity-on-node networks with resource

constraints for project scheduling problems is proposed by Demeulemeester et al.

(2003). A highly desirable but difficult to achieve feature of such networks is that

they are strongly random, i.e., they can be generated at random from the space of

all possible networks with specified numbers of nodes and arcs. The proposed pro-

cedure, RanGen, is the first random network generator that is able to control for two

important predictors of project scheduling problem difficulty. It therefore provides

an advantage with respect to the Completeness property over previous generators

(Patterson 1984). A more specific advantage with respect to the same property is

that networks with small densities can be generated, unlike with the previous gen-

erators by Kolisch et al. (1995) and Schwindt (1995). Furthermore, to speed up

the generation process, some previously published network generators restrict the

values of certain parameters that do not affect performance. Unfortunately, these

restrictions compromise the randomness of the resulting networks, and violate the

Parsimony property. However, RanGen satisfies the Parsimony property by avoiding

these restrictions. Moreover, this procedure generates project networks that are “as

strongly random as possible,” given a computation time constraint.

A methodology for data generation for scheduling problems is described by Hall

and Posner (2001). The authors observe that release dates become clustered if many

release dates are generated within a fixed interval that is independent of the total

job processing time. In this situation, the jobs that arrive later do not have active

due date restrictions, which fails to satisfy the Consistency property. Regarding due

dates, generation schemes in which the earliest due date depends on all the pro-

cessing times (Hariri and Potts 1983) fail to satisfy the Unbiasedness property. A

further concern is that most of the variables may be trivially determined (Potts and

Van Wassenhove 1988), in which case the Completeness property is not satisfied.

Problems may also arise in the generation of precedence constraint graphs, where

as the number of nodes increases, the expected density increases and becomes more

varied over different parts of the graph (Potts and Van Wassenhove 1985, van de

Velde 1995). This fails to satisfy the Consistency property. Another problem is that

the generation of machine speeds from a uniform distribution (Ow 1985) may lead

to many machines having similar speeds, which also fails to satisfy the Complete-

ness property. For example, if ten machines have speeds 1, 2, . . . , 10, respectively,
then the ratio of the speeds of any pair of the last six machines is no larger than

two. Improved data generation schemes that resolve these issues are described by

Hall and Posner (2001). This work also satisfies all of the generation properties. In

particular, the work proposes a precedence constraint generation scheme that both

controls the expected density of the precedence constraint graph and also ensures

that the expected density is equal across all nodes.
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4.3.4 Graphs and Networks

The graph and network problem environment is simpler than many other optimiza-

tion problems. This makes synthetic data generation easier, and reduces conflicts be-

tween the properties. One example of a justifiable data generation scheme is given

by Laguna and Rafael (2001). The optimization problem studied involves color-

ing sparse graphs. Random test graphs are drawn from the class of random graphs

with n vertices and edge probability p. Hence, each edge appears in the graph with

probability p, independent of whether the other edges appear, which satisfies the

Consistency property. The simple generation scheme proposed also satisfies the Un-

biasedness, Parsimony, Comparability, Describability and Efficiency properties.

An interesting geometric optimization problem, finding the smallest circle that

encloses a set of given circles, is studied by Xu et al. (2003). The centers of the

circles in the data set are generated as normally distributed random points, and then

the radii are generated as uniformly distributed random numbers. This generation

scheme satisfies the Consistency, Unbiasedness, and Parsimony properties. The per-

formance of four fundamentally different algorithms is compared in the computa-

tional experiment. These methods are second-order cone optimization, subgradient

optimization, quadratic programming, and randomized incremental construction.

Given these widely differing solution approaches, it may be appropriate to sup-

port the Completeness property by introducing additional variety into the generation

scheme. For example, there could be clustering of the given circles, or correlation of

the location and size of those circles. It seems likely that including such parameter

variations would strengthen the results of the experiment.

A multiperiod capacity expansion problem on networks is considered by Bien-

stock et al. (2006). The authors use a carefully designed generation scheme that

starts with five real-world networks, but varies several parameters randomly, result-

ing in the generation of 7,750 problem instances. The generation scheme incorpo-

rates several features motivated by real-world considerations, including decreasing

capacity investment costs and increasing maintenance costs, over time. As a result,

the Unbiasedness and Completeness properties are satisfied.

The study of the vertex packing problem by Sherali and Smith (2006) makes use

of a formulation in which all rows have to be covered at least once. This is achieved

by generating a matrix A = {aij} of random coefficients, where aij ∈ [−1, 1].
These coefficients are then multiplied by a factor which ensures that

∑n
j=1 aij ≥ 1,

for i = 1, . . . ,m, and that at least one of these inequalities is tight. This ensures

feasibility because x = (1, . . . , 1) satisfies all constraints. However, the genera-

tion scheme fails to satisfy the Unbiasedness and Completeness properties because

x = (1, . . . , 1) is always feasible and because
∑n

j=1 aij = 1 for at least one

i ∈ {1, . . . ,m}. A less efficient but also less biased approach would be to gen-

erate both feasible and infeasible instances, and then discard the latter. This is an

example of a tradeoff between the Efficiency property and the Unbiasedness and

Completeness properties.
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4.3.5 Routing

One of the most extensively studied optimization problems for which synthetic data

is needed is the traveling salesman problem (Arthur and Frendewey 1988). The in-

tractability of this problem (Karp 1972) makes it difficult to find optimal solutions to

be used as benchmarks for comparison with heuristic solution procedures. Several

possible solutions to this problem are discussed by McGeoch (1996). One possible

approach is to generate test problems for which the optimal solution and its value

are known by construction. In Arthur and Frendewey (1988), this is achieved by

relaxing the subtour elimination constraints in the problem. An optimal solution to

the resulting assignment model is used to construct both an optimal solution to the

traveling salesman problem and a randomized data set for which that solution is

optimal. The authors compare the solution difficulty of their problems with purely

random problems, based on their solvability using a standard optimization routine.

They conclude that their problems are as hard as purely random ones. However,

the proposed procedure fails to satisfy the Completeness property, since the sub-

tour elimination constraints are redundant in all of the data sets they generate. This

may lead to unrealistically good performance by some solution procedures, and

unrealistically poor performance by others, thus violating the Unbiasedness prop-

erty. Hence, a detailed computational study would be needed to reveal whether the

bias has influenced the results. Moreover, conducting such a study would be ap-

proximately as computationally burdensome as solving the intractable optimization

problem itself.

An interesting variant known as the black and white traveling salesman prob-

lem is studied by Ghiani et al. (2006). For this problem, a tour is feasible only if

the number of consecutive white nodes it visits and the tour length between any

pair of black nodes both meet prespecified upper bound constraints. Applications

of this problem arise in aircraft maintenance. The data generation scheme used by

Ghiani et al. (2006) generates the black nodes uniformly among all of the white

nodes. It seems unlikely that this is representative of most practical situations. Sim-

ilar comments can be made about the uniformly generated locations of the pick-up

and drop-off locations in a study of the dial-a-ride problem (Cordeau 2006). Conse-

quently, in both research studies, failure to satisfy the Completeness property may

be an issue.

Interesting data generation issues arise when sampling from library test data. Re-

call from the Sect. 4.1 that the library data itself may be flawed. Nonetheless, using

this approach, sampling needs to be representative, in order to satisfy the Compara-

bility property. This approach is illustrated by Verweij et al. (2003) to test a sample

average approximation method for stochastic routing problems. For each data set,

a preliminary graph is chosen from a test bank of graphs. Then, each time a node

of the graph is chosen, it is connected to a given number of nodes to which it has

not previously been connected. Finally, a source and sink are randomly chosen from

among the pairs of nodes that have the maximum value of the minimum number

of arcs on any path between them. This approach introduces no additional bias be-
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yond that which may already exist in the library data. It also ensures Completeness

through parametric variation of the number of new nodes connected each time.

A computational study of an algorithm for routing in large-scale multicommodity

telecommunications networks, discussed by Larsson and Yuan (2004), involves both

library and synthetic data. Since different types of data are being used, an important

requirement of the generation scheme is to satisfy the Comparability property. The

authors address this requirement by generating their random planar networks with a

topology that emulates the typical structure of a telecommunications network. The

nodes are randomly generated as points in the plane. The arcs are then created in

increasing order of Euclidean distance, so that the resulting network is planar. The

commodities are defined by randomly chosen node pairs. The arc cost between a

pair of nodes is defined by the Euclidean distance between them. This is a reasonable

simplification considering the context of the authors’ application and experiment.

An important issue in designing a synthetic data generation scheme for vehicle

routing problems is integrality of the arc costs. Various procedures for identifying

upper and lower bound solutions use truncation, as discussed by Toth and Vigo

(2002). Hence, the extent to which the initial data is truncated influences the results.

Consequently, the Comparability property may not be satisfied. An example occurs

in comparing the results obtained by Fisher (1994) for real-valued Euclidean cost

matrices with those obtained by Miller (1995) for Euclidean costs rounded to the

nearest integer.

4.3.6 Data Mining

An empirical comparison of the performance of four widely used clustering algo-

rithms, with applications to data mining and knowledge discovery, is considered by

Wei et al. (2003). The four algorithms are CLARA (Kaufman and Rousseeuw 1990),

CLARANS (Ng and Han 1994), and GAC-R3 and GAC-RARw (Estivill-Castro and

Murray 1997). The synthetic data generation scheme by Wei et al. (2003) allows for

variations in data size, number of clusters, cluster distributions, cluster asymmetry,

and data randomness. Several constraints are imposed on the generation process.

First, all clusters are assumed to have the same radius. Also, clusters are assumed

to be randomly and evenly divided into two groups, with all clusters in the same

group having the same cluster size. Finally, the number of objects in both smaller

and larger clusters is specified by a formula. The introduction of these constraints

into the data generation process raises several concerns. First, it is unclear whether

biases have been introduced, thereby violating the Unbiasedness property. Second,

it is unclear whether the constraints introduce variations in the data that are not

present in real-world data, thereby violating the Parsimony property. Third, it may

be difficult to satisfy the Completeness property because of the restrictions on data

variety imposed by the constraints.

An alternative data generation scheme for clustering and outlier analysis is de-

scribed by Pei and Zaïane (2006). The objective is to generate clustered data points
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in two or higher dimensional space. One important benefit of this work, relative to

the generation scheme by Karyapis et al. (1999), is the detailed explanation of the

steps, which documents Describability and promotes replication. The scheme starts

with one of several simple probability distributions for the data in each cluster. Next,

clusters with different shapes and densities are created using linear transformations,

as well as linear equations to control line-based clusters and circle equations to

control curve-shaped clusters. The flexibility of this data generation scheme pro-

vides Completeness. The generation scheme explicitly generates data sets with five

different levels of clustering difficulty and three different levels of outliers, which

again satisfies the Completeness property. The Efficiency property is demonstrated

through the generation of all data sets with one million points in less than three

seconds. The properties of Unbiasedness and Comparability are also satisfied by

the generation scheme. It should be noted that the absence of formal constraints

creates a data generation environment that is more flexible than many others in the

optimization area.

4.3.7 Stochastic Programming

There are two issues in test problem generation for stochastic programming: how

to generate the problem data, and how to generate the scenario tree. A popular test

problem generator for stochastic programming data is SLP-IOR (Kall and Mayer

1993). This generator includes many options for generating univariate and multi-

variate, and discrete and continuous distributions. Also, the generator provides the

facility to transform between a recourse model, a chance-constrained model, and

a deterministic equivalent model, using the same data set. The high level of flex-

ibility provided by SLP-IOR allows for many options in test problem design, and

thereby supports the Completeness property. However, there is a lack of published

guidelines for choosing from among the many possible problem instances. Perhaps

as a consequence, many research studies in stochastic programming use library data

instead of generating synthetic data. This avoids some of the problems in satisfying

the Describability and Efficiency properties for this application.

There is a more substantial literature on scenario tree generation in multistage

stochastic programming. As discussed by Heitsch and Römisch (2005), the main

challenge of scenario tree generation is finding a suitable compromise between a

good approximation of the underlying probability distribution and the dimension of

the stochastic model. The generation approach recommended by the authors mini-

mizes a metric defined on the space of probability distributions. As a result, it satis-

fies the Unbiasedness property. Conditions are developed by Pennanen (2005) to de-

termine when solutions to a sequence of finer discretizations converge to an optimal

solution. This result provides conditions that can be used to satisfy the Unbiasedness

property.

Two minimal criteria for scenario tree generation are established by Kaut and

Wallace (2003). The first, stability, requires that the same optimal value arises from
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different scenario trees. The second is that the scenario tree should not introduce

any bias relative to the true solution. Further, an approach is proposed for test-

ing scenario generation methods. Several techniques for generating scenario trees

that allow interstage dependencies are discussed by Dupačová et al. (2000). These

techniques include cluster analysis and importance sampling. A scenario generation

heuristic that satisfies the Unbiasedness and Efficiency properties is given by Høy-

land et al. (2003). The application of nonlinear programming techniques to generate

a limited number of discrete outcomes that satisfy prespecified statistical properties

is studied by Høyland andWallace (2001). Also, Dupačová et al. (2003) discuss how

a given scenario tree can be reduced to a scenario subset of prespecified cardinality

and a probability measure based on this set. Hence, test instances can be generated

based on the size of the reduced scenario tree, rather than the original tree. Since

many more of the reduced scenario trees can be generated, this supports the Com-

pleteness and Efficiency properties. The issue of correlation within the random data

(see Sect. 4.3.1) is shown to be potentially significant in an application discussed by

Lium et al. (2007). However, no guidelines are provided for incorporating correla-

tion into a data generation scheme for stochastic programming.

Finally, we mention a decomposition-based branch-and-bound algorithm for

two-stage stochastic programs that is described by Sherali and Zhu (2007). A com-

putational study is conducted using specific formulations for both the first-stage and

the second-stage problems. This raises concerns about whether the Completeness

property is being satisfied. In this experiment, there is a trade-off between Com-

pleteness and Describability. If the first-stage and the second-stage problem formu-

lations are varied, as the Completeness property suggests, then a description of the

data, i.e., the full details of each formulation, is not concise.

4.3.8 Intractable Problems

Knowledge of an optimal solution is frequently required to satisfy the purposes

of a given experiment. For many intractable problems, obtaining this information

for a set of instances can be very time consuming or even impossible. As a result,

some researchers have developed data generation approaches that avoid this diffi-

culty. One approach is to use library data for which optimal solutions are known.

Another approach is to generate problem instances with known optimal solutions

(Pilcher and Rardin 1992). The proposed procedure is based on obtaining a partial

description of the polytope of solutions and then generating random cuts. Once the

problem has been generated, both the optimal solution and the form of valid inequal-

ities that is required to solve the problem using cutting planes are known. Starting

from a purely random problem and a randomly selected feasible solution, a random

sample of tight valid inequalities is selected. This sample, along with dual variable

information, is used to compute a cost vector that ensures optimality of the selected

solution. This approach is illustrated by generating instances of the asymmetric trav-

eling salesman problem. An extension to the time-dependent traveling salesman
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problem is described by Vander Wiel and Sahinidis (1995). As observed by Rardin

and Uzsoy (2001), the polyhedral approach by Pilcher and Rardin (1992) relies on

the availability of problem-specific information, in particular detailed knowledge of

the polyhedral structure of the problem. There is empirical evidence that problems

generated by this approach are not particularly easy to solve using most heuristics.

The potential concerns about failure to satisfy the Unbiasedness and Completeness

properties are similar to those in Arthur and Frendewey (1988), as discussed in

Sect. 4.3.5. However, the data generation scheme proposed by Pilcher and Rardin

(1992) introduces greater randomness into the test problems generated, which miti-

gates concerns about failure to satisfy the Completeness property.

An important issue with respect to the Completeness property is the generation of

data sets with a variety of levels of solution difficulty. This is particularly challeng-

ing for an optimization problem that is NP-hard (Garey and Johnson 1979). This

is because, for many such problems, typical problem instances are easy to solve;

however, difficult problem instances occur at critical values of certain problem pa-

rameters (Cheeseman et al. 1991). The parameter values where such instances occur

are known as phase transitions. On one side of the phase transition, there is an un-

derconstrained region where a high density of solutions makes them easy to find.

On the other side of the phase transition, there is an overconstrained region with

fewer solutions, but where the few solutions that do exist are easy to find (Bai-

ley et al. 2007). Consequently, the hardest problem instances occur between these

two regions. Knowledge of where phase transitions occur facilitates the design of

a data generation scheme that satisfies the Completeness property. This issue is ex-

plored for graph coloring problems in Culberson et al. (1995). The authors identify

classes of k-colorable graphs for which various parameters accurately characterize

the location of the phase transition. This issue is further explored for the graph bi-

partitioning problem by Angel and Zissimopoulos (1998). The authors show that

the performance of a local search procedure can be predicted from a measure called

the autocorrelation coefficient, the maximum distance between any two solutions,

and the size of the neighborhood. Angel and Zissimopoulos (2000) extend this idea

to describe a hierarchy of NP-hard combinatorial optimization problems, based on

their autocorrelation coefficients. This hierarchy can be used to evaluate and support

the property of Comparability between research studies.

A computational study of a single-phase interior-point algorithm for the mono-

tone complementarity problem is described by Andersen and Ye (1998). One of the

features that is tested is how efficiently the algorithm detects an infeasible solution.

This raises the issue of how to generate infeasible problem instances. The approach

used in Andersen and Ye (1998) sets the right-hand-side value of one of the con-

straints to be one less than the minimum possible amount attainable if all variables

are set to their lower bounds. Instances generated in this way are clearly infeasible.

A disadvantage of this scheme, however, is that it makes the right-hand-side value

dependent on all of the variable lower bounds, many of which may be redundant

in the solution. This fails to satisfy the Parsimony property. Because only one con-

straint is violated, it also fails to satisfy the Consistency property. A further concern

is that the right-hand-side value is always set by using a difference of one. Since
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the resulting instances are “only just infeasible”, this approach generates problem

instances for which feasibility may be hardest to detect. However, if the experiment

is indeed to estimate how efficiently the algorithm detects an infeasible solution,

then the Completeness property suggests that a variety of values for this difference

should be used. Moreover, the data generation scheme favors those procedures that

efficiently detect minimally infeasible problems, and therefore fails to satisfy the

Unbiasedness property.

4.4 Concluding Remarks

We recommend the following general protocol for the generation of synthetic data.

First, determine the features of the application and the features of the experiment.

Then, use the features of the application and the experiment, along with the genera-

tion properties, to develop a data generation scheme. Next, determine the attributes

that the data should possess. After the data is generated, measure these attributes

to validate the data. We believe that this protocol can be applied quite generally.

Possible applications include the various applications of synthetic data generation

discussed in the “Introduction”.

There are several opportunities for further research related to synthetic data gen-

eration in optimization. First, the general protocol which we describe can be spec-

ified in greater detail for many classes of optimization problems, following the ex-

ample by Hall and Posner (2001) for scheduling problems. This will provide a valu-

able service to researchers, both by standardizing data generation procedures and

by eliminating the more problematic practices that currently exist. Also, there are

several data generation issues which arise in optimization that pose unusual chal-

lenges. Examples include the generation of infeasible problems (Andersen and Ye

1998) and the generation of data for assessing solution quality in stochastic pro-

grams (Bayraksan and Morton 2007). These applications of data generation have

not been extensively discussed in the literature, and standard procedures need to be

developed for them.
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Chapter 5
The Attainment-Function Approach to
Stochastic Multiobjective Optimizer Assessment
and Comparison

Viviane Grunert da Fonseca and Carlos M. Fonseca

Abstract This chapter presents the attainment-function approach to the assessment

and comparison of stochastic multiobjective optimizer (MO) performance. Since

the random outcomes of stochastic MOs, such as multiobjective evolutionary algo-

rithms, are sets of nondominated solutions, analyzing their performance is challeng-

ing in that it involves studying the distribution of those sets. The attainment function,

so named because it indicates the probability of an MO attaining an arbitrary goal,

is related to results from random closed-set theory which cast it as a kind of mean

for the distribution of the optimizer outcomes in objective space. Higher-order ver-

sions of the attainment function can also address other aspects of this distribution,

and may even lead to a full distributional characterization. This approach to the ex-

perimental assessment and comparison of MO performance is based on statistical

inference methodology, in particular, estimation and hypothesis testing.

5.1 Introduction

The importance of stochastic optimizers, such as evolutionary algorithms, simulated

annealing, and particle-swarm optimization algorithms, is well recognized in many

practical applications arising in a broad range of scientific and engineering domains.

Solving an optimization problem consists of determining element(s) of a “decision

space” which are optimal under a scalar or vector-valued objective function, mean-

ing that the corresponding images in the space of objective function values (the
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“objective space”) are minimal or maximal elements (Taylor 1999, p. 131) of the

objective function image set.

In single-objective optimization problems, the objective space is usually con-

sidered to be the real line, IR, and optimizers typically produce single solutions

whose one-point images in this space try to approximate the unknown optimal value

(minimum or maximum) of the objective function. Most real-world problems, how-

ever, involve several, possibly conflicting, objectives to be optimized simultane-

ously. Considering d objectives, the objective space is now IRd, and the optimizer

needs to approximate the unknown set of Pareto-optima of a vector-valued func-

tion, the image of which in objective space is known as the Pareto-optimal front
(see, for example, Ben-Tal 1980 for a formal definition of Pareto optimum). Thus,

rather than a single point, the outcome of a multiobjective optimizer is typically a

set of nondominated solutions whose images in the objective space IRd approximate

the unknown Pareto-optimal front of the problem.

A vast number of different optimizers have been developed to date, and it be-

comes more and more challenging to identify, among so many alternative, com-

peting algorithms, which one performs “best” on a given (class of) optimization

problem(s). In general, optimizer performance implies a trade-off between the qual-

ity of the solutions produced and the computational effort needed to produce them

(Grunert da Fonseca et al. 2001). When optimizers are stochastic, both the solutions

and the computational effort are random, and the study of optimizer performance

requires the description of the corresponding probability distributions in objective

space. In other words, given a particular MO and a d-objective problem, one needs

to consider the distribution of a set of nondominated points in IRd, when focusing

on solution quality only, or in IRd+1, if the computational effort is also of interest.

Note that, from an optimizer performance point of view, the computational effort

can be seen as just another objective (to be minimized).

In the literature, many attempts have been made to describe these set distributions

through summary measures, or quality indicators, which assign a real value to the

realized outcome of a single run of an optimizer (Zitzler et al. 2003). To acknowl-

edge the stochastic nature of such outcomes, these values are usually averaged over

several optimization runs. The attainment-function approach, on the other hand, is

formulated on a functional basis, and recognizes the set distribution of optimizer

outcomes as a whole. Partial aspects of this distribution are then selected to be con-

sidered, following criteria from statistical inference theory.

After explaining the important role of statistics in MO performance assessment

(Sect. 5.2), the attainment-function approach will be presented from the ground up,

i.e., from the identification of the MO outcomes as random nondominated point sets

with a particular type of probability distribution (Sect. 5.3), through the theoretical

description of (aspects of) this distribution involving probability theory (Sects. 5.4

and 5.5), to the empirical description and comparison of (aspects of) this distribu-

tion using statistical inference based on multiple and independent optimization runs

(Sects. 5.6 and 5.7). The chapter concludes with a discussion of the current status

of the approach and some perspectives for future work (Sect. 5.8). Without loss of

generality, minimization problems will be considered throughout.
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5.2 Statistics and the Attainment-Function Approach

The attainment-function approach to the performance assessment and comparison

of stochastic multiobjective optimizers rigorously follows concepts and ideas from

statistical inference theory and methodology.

In general, statistical inference is concerned with three different kinds of infer-
ence procedures: (point) estimators, confidence intervals, and hypothesis tests. Only

two of them will be considered in this chapter: estimators for the assessment of MO

performance (Sect. 5.6) and hypothesis tests for the comparison of MO performance

(Sect. 5.7). While the general methodology of both types of inference procedures is

explained in Appendix A, the discussion in the present section will focus on the log-

ical link between stochastic optimizers and statistics, as provided by the attainment-

function approach.

5.2.1 Stochastic Optimizers as Statistical Estimators

Stochastic multiobjective optimizers can be seen as statistical estimators for
the unknown, true Pareto-optimal front of a vector function in objective space

IRd, d ≥ 1 (Grunert da Fonseca et al. 2001).

Like all statistical inference procedures, estimators are generally aimed at describing

(an aspect of) the unknown probability distribution of some population with respect

to a random variable/vector of interest. For example, one might be interested in

estimating the mean consumption of fuel in a certain brand of vehicles registered in

a given European country. Then, the collection of all such vehicles constitutes the

population, and its univariate distribution with respect to the random variable “fuel

consumption” is considered. The aspect of this distribution to be described through

estimation is the unknown mean.

Statistical estimators use information from (the variable/vector values of) a set of

population elements, which are usually selected randomly and independently from

each other, and are identically distributed like the unknown population distribution.

In other words, statistical estimators are statistics, in the sense that they are functions
of a random sample from the population, and they possess a particular random (sam-

pling) distribution. Thus, given a simple (i.e., independently drawn) random sample

of n vehicles of the (much) larger vehicle population, an estimator for the mean

fuel consumption could be the arithmetic mean of all fuel consumption values of

that sample (at a certain time of study). This particular estimator is the well-known

sample average, and a classical result in statistics is the “Central Limit Theorem,”

stating that the sampling distribution of the sample average, based on a simple ran-

dom sample from a population with existing mean and variance, converges to a

normal distribution as n increases (Mood et al. 1974, p. 195 and Appendix A).
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The simple fuel-consumption example given above could be modified in several

ways. For instance, two or more random variables might be of interest simultane-

ously, such as “fuel consumption,” “production price,” etc., in which case the (joint)
population distribution would be multivariate. The aspect to be estimated from such

a population distribution might still be the mean vector, but it could also be any

other aspect of interest, leading to different estimators. Moreover, it is not uncom-

mon in statistical inference to consider random samples of dependent elements. For

example, Markov Chain Monte Carlo methods are often preferred to conventional

(independent) Monte Carlo simulation in the estimation of multidimensional inte-

grals (Gilks et al. 1996).

In a stochastic multiobjective optimization context, the set of all possible so-

lutions in decision space may be seen as the population, with the (multivariate)

population distribution being taken with respect to the vector of the corresponding

objective-function values. The set of solutions actually evaluated in an optimization

run may be understood as a random, though generally not independently drawn,

sample. In fact, independent random sampling corresponds to the simplest stochas-

tic optimizer of all, i.e., pure random search, whereas most practical optimizers

perform sampling by means of a stochastic process (typically, a Markov chain).

The optimizer aims to approximate the unknown (true) Pareto-optimal front of

a multiobjective optimization problem. Therefore, when considering minimization,

the aspect of the population distribution to be estimated is its lower boundary of sup-

port. The estimate is obtained by determining the set of non-dominated solutions in

the sample of solutions evaluated in one optimization run, and returning the corre-

sponding image in objective space. Thus, a stochastic MO holds a random sampling

distribution which depends both on the random sampling mechanism it implements

and on the distribution of the solutions in objective space (the population distribu-

tion), through a specific set-valued function of the sample.

Unlike the asymptotic distribution of the sample average, optimizer sampling

distributions (exact or asymptotic) are generally not known. In the following, these

set distributions will be referred to as optimizer outcome distributions, and will be

the focus of the subsequent considerations.

5.2.2 Optimizer Performance as Statistical Estimator Performance

The performance of stochastic multiobjective optimizers can be studied

using criteria usually considered for frequency-based statistical estimators

(Grunert da Fonseca et al. 2001).

The classical, frequency-based school of inference postulates that the process of

sampling from the population and subsequent estimation can be repeated arbitrarily

often. Thus, performance criteria which reflect the “statistical error” of an estimator
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can be defined by referring to the estimator’s random (sampling) distribution. Good

performance of point estimators, for example, implies that repeated estimation re-

sults tend to be close to the unknown estimand (i.e., the aspect to be estimated from

the population distribution) both in terms of location and spread of the sampling

distribution (Mood et al. 1974, p. 289). A second performance criterion for point

estimators may relate to the overall sampling distribution, in the sense that its form

is (approximately) known and easy to deal with, as it happens, for example, with the

sample average and the normal distribution (see page 105).

The classical idea of considering repeated estimation results for the purpose of

estimator performance assessment is particularly suitable for stochastic optimizers,

as repeated optimization results (outcomes) may be easily obtained through multiple
runs of the optimizer. Hence, it is perfectly justified to express the randomness of

optimizer outcomes in terms of the optimizer’s sampling distribution, and to refer

precisely to this optimizer outcome distribution when discussing optimizer perfor-

mance.

Nevertheless, several difficulties arise in the context of multiobjective optimiza-

tion. Rather than single values in IR, as produced by point estimators, MO outcomes

are sets of points in IRd with a certain nondominance restriction. In other words, in-

stead of studying univariate sampling distributions which can be defined in terms of

(univariate) cumulative distribution functions, one needs to consider particular set

distributions, the full characterization of which is less obvious, and requires the use

of random closed-set theory. Furthermore, the question of how to define a suitable

notion of “closeness” to the estimand of a multiobjective optimizer arises. Rather

than evaluating proximity to a single point in IR, as in the case of point estimators,

one needs to agree about a certain “distance” to some Pareto-optimal front (the es-

timand), which may go from a single point to a hypersurface in IRd. Finally, since

the set distribution of optimization outcomes is bounded below, and the unknown

estimand is its lower boundary of support, some degree of skewness is desired. How-

ever, this problem is not trivial to address, since skewness measures for univariate

distributions are certainly not appropriate. The following sections will try to give

answers to the above questions.

In Sect. 5.3, the stochastic outcomes of single MO runs will be formally iden-

tified as so-called random nondominated point (RNP) sets, which also possess an

alternative representation as attained sets. Their complete distributional characteri-

zation, as a generalization of the cumulative distribution function, will be explained

in Sect. 5.4 through the definition of the k-th-order attainment function. Univari-

ate ideas of closeness to the estimand will be extended to (multivariate) RNP sets

in Sect. 5.5, by considering the first-order attainment function for the purpose of

location, by defining the variance function to explain spread (accounting for vari-

ability across multiple optimization runs), and, finally, by considering higher-order

attainment functions to assess inter-point dependence structures. This last aspect

becomes important due to the particular set-character of MO outcomes.
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5.2.3 Performance Assessment via Estimation and Hypothesis
Testing

For a particular optimization problem, multiobjective optimizer performance

can be assessed and compared empirically through statistical estimation and

hypothesis testing using empirical (higher-order) attainment functions (Fon-

seca et al. 2005).

The study and comparison of estimator performance on a purely theoretical basis is
usually satisfactory only when certain parametric assumptions (sometimes includ-

ing actual parameter values) can be made about the population distribution and,

therefore, about the estimator’s sampling distribution. Obviously, the less informa-

tion about this distribution is available, the more general and vague any theoretical

knowledge about the corresponding estimator performance becomes. Especially in

nonparametric situations, where very little is assumed, the empirical study of esti-

mator performance becomes important.

Hüsler et al. (2003) justified a Weibull distribution for the sampling distribu-

tion of single-objective random search, and determined the corresponding parameter

values for some given optimization problems. The authors suggested that this para-

metric assumption could be used in describing optimizer performance. However,

this has been one of the few attempts to find theoretical (semi)parametric models

for single-objective optimizer outcome distributions, and extensions to the multi-

objective case are not straightforward. Hence, to describe MO performance, the

easiest workaround is to assume a less informative nonparametric situation, and to

determine (higher-order) attainment functions and related measures completely in

an empirical way. In other words, the (higher-order) theoretical attainment function

is entirely unknown, and needs to be estimated as a whole using a random sample

of independent and identically distributed MO solution sets obtained through multi-

ple optimization runs.1 Additionally, hypothesis tests based on empirical attainment

functions can be used to (eventually) infer that two or more optimizers are different

in performance, or that a given optimizer does not perform better than, or as well

as, another, while maintaining control over the statistical error associated with these

conclusions.

Sections 5.6 and 5.7 are devoted to statistical estimation and testing with (higher-

order) attainment functions.

1 The quality (i.e., performance) of the empirical (higher-order) attainment function, again seen
as a statistical estimator, can be assessed according to the general frequency-based performance
criteria mentioned above (this time through repeated samples of multiple MO solution sets).
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5.3 Multiobjective Optimizer Outcomes

The outcome of a stochastic multiobjective optimizer is considered to be the im-

age in objective space of the set of solutions generated in one optimization run in a

given amount of time, where time may be measured in terms of number of iterations,

number of function evaluations, CPU time, elapsed time, etc. A precise mathemat-

ical definition of an MO outcome as a particular type of random point set is given

next.

5.3.1 Random Nondominated Point Sets

For a d-objective optimization problem, the elements of an optimizer outcome set

are objective vectors, defined as points in the objective space IRd, which are non-
dominated in the sense that no member of that set is considered to be better (i.e.,

smaller, without loss of generality) than any other member.

Definition 5.1. (Nondominance) The points p1, p2, . . . ∈ IRd are said to be non-

dominated under the Pareto-order relation if there does not exist any pair (i, j) ∈
IN2, i 	= j, for which pi ≤ pj .

The outcome sets of stochastic d-objective optimizers are random because their

elements are random vectors in IRd and because their cardinality is random, though

finite with probability one. Statistically, MO outcomes are random nondominated
point sets (RNP sets):

Definition 5.2. (Random nondominated point set, RNP set) A random point set

X = {X1, . . . , XM ∈ IRd : Pr{Xi ≤ Xj} = 0, i 	= j},

where both the cardinality M and the elements Xi are random, i = 1, . . . ,M , and

where Pr{0 ≤ M < ∞} = 1, is called a random nondominated point set (Fonseca

et al. 2005).

Note that the nondominance condition introduces dependence among the ele-

ments of an RNP set, and that the empty set ∅ may be a realization of X when a

given optimization run produces no solution at all.

5.3.2 Alternative View: The Attained Set

As an optimizer outcome distribution, the distribution of an RNP set is of interest for

the description of multiobjective optimizer performance (Sects. 5.2.1 and 5.2.2). In

principle, this distribution could be characterized with theory for finite multidimen-

sional stochastic point processes (Daley and Vere-Jones 1988, Chap. 5). However,
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Yx1

x2
x3

Fig. 5.1: RNP set X with nondominated realizations x1, x2, and x3 and the attained set Y , here as
a realization with M = 3 (from Grunert da Fonseca et al. 2001)

in terms of the mathematics involved, it seems to be preferable to pursue an alter-

native approach by taking advantage of the particular nondominance condition. The

so-called attained set, or “dominated space” (Zitzler 1999, p. 43), has a distribution

which is equivalent to that of the corresponding RNP set.

Definition 5.3. (Attained set) The random set

Y = {y ∈ IRd | X1 ≤ y ∨ X2 ≤ y ∨ . . . ∨ XM ≤ y}
= {y ∈ IRd | X � y}

is the set of all goals y ∈ IRd attained by the RNP set X (Fonseca et al. 2005).

Unless it is the empty set, a realization of the attained set Y , obtained after one

optimization run, is composed of all, infinitely many, points in objective space which

are greater (i.e., worse) than or equal to the points of the corresponding realization

of X, as illustrated in Fig. 5.1. Thus, a realization of the attained set Y is a closed

and unbounded subset in IRd, whereas Y itself is called a random closed set. The

distribution of Y can be described using random closed-set theory (Harding and

Kendall 1974, Matheron 1975, Goutsias 1998).

5.4 Multiobjective Optimizer Performance

The performance of a multiobjective optimizer can be discussed by referring to the

distribution of its outcome RNP set or, equivalently, by studying the distribution of

the corresponding attained set. A complete distributional description of the latter, as

a particular type of random closed set, automatically leads to a total (distributional)

characterization of the former, and vice versa.
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5.4.1 Distribution of a General Random Closed Set: The Capacity
Functional

A characterization of the distribution of a general random closed set W ⊂ IRd is

provided by the capacity functional (or hitting function), which is based on so-called

“hit-or-miss events” indicating the nonempty intersection of the random closed set

with some compact (closed and bounded) test set K. In mathematical terminology,

the capacity functional ofW is defined as

TW(K) = Pr{W ∩K 	= ∅},

whereK is a compact subset of IRd (Goutsias 1998, p. 5). In other words, the value

of the capacity functional TW(·) on a given deterministic test set K indicates the

probability of the random closed setW hitting the setK. The knowledge ofPr{W∩
K 	= ∅} for all compact subsets K uniquely identifies the distribution of W (the

Choquet-Kendall-Matheron Theorem, see Goutsias 1998, p. 7).

In the context of multiobjective optimization, this rather demanding characteri-

zation with the collection of all possible compact test sets K of IRd is not actually

needed. On the one hand, the knowledge of TY(·) for some test set K∗ immedi-

ately leads to the knowledge of TY(·) for all other test sets which share withK∗ the
same upper boundary. On the other hand, the discrete nature ofX implies a step-like

lower boundary of the attained set Y (as in Fig. 5.1), which allows a full distribu-

tional characterization with TY(·) based on a much smaller class of compact test

sets (Grunert da Fonseca and Fonseca 2004).

5.4.2 Distribution of a Random Nondominated Point Set: The
k-th-Order Attainment Function

The distribution of an RNP set X holding a random cardinality M with support on

{0, 1, . . . ,m∗} (i.e., the corresponding optimizer produces up to m∗ nondominated

solutions per run), and that of the corresponding attained set Y , can be uniquely

characterized through the capacity functional of Y defined over the collection of all

deterministic point test-sets {z1, . . . , zm∗} ⊂ IRd.2 That is, the performance of such

a multiobjective optimizer can be characterized by

TY({z1, . . . , zm∗}) = Pr{Y ∩ {z1, . . . , zm∗} 	= ∅}
= Pr

{(Y ∩ {z1} 	= ∅) ∨ . . . ∨ (Y ∩ {zm∗} 	= ∅)}
2 Strictly speaking, the collection of compact test sets to be considered for characterization could
even be smaller, i.e., only contain every set of the kind {z1, . . . , z�}, where � = 1, . . . ,m∗ and all
zi ∈ IRd are nondominated, i = 1, . . . , � (Grunert da Fonseca and Fonseca 2004, Theorem 1). This
characterization, however, is less practical in the present context.
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for all zi in objective space IR
d, i = 1, . . . ,m∗ (see Grunert da Fonseca and Fonseca

2004, Lemma 1, for the general case m∗ ≥ 1, and Grunert da Fonseca and Fonseca

2002, for the casem∗ = 1). As a consequence, it can be shown that the distribution
of X and Y can also be completely described by the probabilities

Pr
{(Y∩{z1} 	= ∅) ∧ . . . ∧ (Y∩{zm∗} 	= ∅)} = Pr

{
X � z1 ∧ . . . ∧ X � zm∗

}
for all zi ∈ IRd, i = 1, . . . ,m∗ (Grunert da Fonseca and Fonseca 2004, Lemma

2). This is of particular relevance for the interpretation of MO performance, as it

is associated with the notion of simultaneously attaining the m∗ objective vectors

(goals) z1, . . . , zm∗ in objective space IRd. In general, it motivates the definition of

the k-th-order attainment function:

Definition 5.4. (k-th-order attainment function) The function defined as α
(k)
X :

IRd×k −→ [0, 1] with

α
(k)
X (z1, . . . , zk) = Pr

{
X � z1 ∧ . . . ∧ X � zk

}
is called the k-th-order attainment function of X (Grunert da Fonseca and Fonseca

2004).

Hence, MO performance can be completely described by the attainment func-

tion of order k = m∗. The higher the order of the attainment function, i.e., the

more goals are considered with respect to their probability of being attained simul-

taneously, the more complete the performance description should be. However, no
further gain of information will be obtained when the number k of goals consid-

ered exceeds m∗, because any higher-than-m∗-th-order attainment function could

be theoretically derived from the attainment function of order m∗; see Task 1.1 in

the proof of Theorem 1 in Grunert da Fonseca and Fonseca (2004).

When m∗ is large, the full assessment of MO performance via the k-th-order at-
tainment function with k = m∗ is rather impractical, although it remains of much

theoretical interest. In fact, the information conveyed by the k-th-order attainment

function is too rich for large k, as much from a computational as from a conceptual

point of view. Since it is essentially a function of d × k variables, both computa-

tion and graphical visualization of the k-th-order attainment function are generally

difficult.

For the purpose of optimizer comparison, which is the ultimate objective in any

empirical study of optimizer performance, it is more advantageous to develop sim-

pler, if only partially informative, performance criteria. This is also how statistical

estimator performance is assessed in the context of the frequency school of infer-

ence (as has been discussed in Sect. 5.2.2).
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5.5 Partial Aspects of Multiobjective Optimizer Performance

The closeness of the sampling distribution of statistical point estimators to the un-

known estimand in IR, both in terms of location and spread (Sect. 5.2.2), is perhaps

the most important aspect of estimator performance. Therefore, typical performance

measures for point estimators include the mean-bias (location) and the variance or

the standard deviation3 (spread), with respect to the estimator sampling distribution.

Other measures, such as the mean squared error, may also be considered, to account

simultaneously for location and spread. For skewed sampling distributions, the pre-

ferred measures are often the median-bias for location and the inter-quartile range

for spread (Hoaglin et al. 2000).

The mean and the variance of a univariate (sampling) distribution with support on

IR are, respectively, the first-order moment and the second-order centered moment
of that distribution (Mood et al. 1974, p. 73). Accordingly, corresponding notions

of moments in the context of random closed sets should lead to suitable partial

performance measures for multiobjective optimizers (Sects. 5.5.1 and 5.5.2). Due

to the complexity of the RNP set distributions, it is important to consider also other

higher-order moments, as they are able to reflect some of the inter-point dependence

structures within an RNP set (Sect. 5.5.3).

5.5.1 Distribution Location: The First-Order Attainment Function

It should be recognized that there is no unique definition of a mean (first-order mo-

ment) for a general random closed set. Instead, various mean definitions have been

formulated depending on specific properties of the random sets, e.g. convexity, sta-

tionarity or compactness (Stoyan et al. 1995, Molchanov 2005). The first two classes

of sets are not of interest in the context of multiobjective optimization, because nei-

ther the RNP set X nor its associated attained set Y are convex or stationary. A

popular mean definition for compact random closed sets is the Aumann-mean, or se-
lection expectation, which produces a convex set-valued mean (Molchanov 2005).

However, even though the RNP set X is compact, it is generally nonconvex, as
pointed out above. Hence, this mean definition is not suitable for MO performance

description, either (Grunert da Fonseca et al. 2001).

The First-Order Attainment Function as a Covering Function

A function-valued mean definition which turns out to be applicable to the study

of MOs is the so-called covering function or coverage function (Molchanov 2005,

p. 23). Let I{·}(z) = I{z ∈ ·} denote the indicator function defined over z ∈ IRd.

Then, a general random closed set W ⊂ IRd with indicator function IW(z) =

3 The standard deviation of an estimator’s sampling distribution is the estimator’s standard error.
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I{z ∈ W} defines a binary random field
{
I{z ∈ W}, z ∈ IRd

}
, as described by

Sivakumar and Goutsias (1996) and Goutsias (1998, p. 14). The first-order moment
of such a binary random field is the expectation of the indicator function, that is,

E
[
I{z ∈ W}] = Pr{z ∈ W}, for all z ∈ IRd (5.1)

(Sivakumar and Goutsias 1996, p. 901). This expectation is known as the covering

function of the random closed set W (Molchanov 2005, p. 176). It is interesting to

note that the covering function may also be interpreted as the “membership func-

tion” of a fuzzy set (Nuñez-Garcia and Wolkenhauer 2002).

In the context of multiobjective optimization, it can now be easily concluded that

the first-order attainment function of the corresponding RNP set X (Definition 5.4

with k = 1) is in fact the covering function of the attained set Y , since

Pr{z ∈ Y} = Pr
{
z ∈ {y ∈ IRd | X1 ≤ y ∨ X2 ≤ y ∨ . . . ∨ XM ≤ y}}

= Pr{X1 ≤ z ∨ X2 ≤ z ∨ . . . ∨ XM ≤ z}
= Pr{X � z} = α

(1)
X (z) = αX (z).

Hence, the first-order attainment function of the RNP set X is the first-order mo-

ment of the binary random field
{
I{z ∈ Y}, z ∈ IRd

}
derived from Y . For every

goal z ∈ IRd, it represents the expected value of the random attainment indicator
I{z ∈ Y} = I{X � z}. Thus, as a mean-like measure, αX (·) can be used to de-

scribe the location of the MO outcome distribution which, in general, conveys par-
tial, but relevant, information about the overall optimizer performance. Only when

M = 1 = m∗ (with probability one), in which case the optimizer under study al-

ways produces one-point outcome sets X = {X}, is the corresponding first-order

attainment function identical to the fully characterizing multivariate cumulative dis-

tribution function FX(z) = Pr{X ≤ z} (Grunert da Fonseca and Fonseca 2002).

The first-order attainment function has a very useful interpretation from an op-

timization point of view: for every goal z in objective space IRd, it provides the

probability of attaining z in a single optimization run. The larger this probability

turns out to be over all z ∈ IRd, the better the performance of the corresponding

optimizer should be. In other words, to imply “good” optimizer performance on

a given optimization problem, the first-order attainment function should show an

early and steep increase in each dimension of the objective space, starting from its

lower boundary of support, which should be identical to the true Pareto-optimal

front4. Note that, in this sense, the attainment function can also provide some kind

of skewness description for the optimizer outcome distribution.

When the true Pareto-optimal front X ∗ is known, a notion of bias may be con-

structed in terms of the difference between the first-order attainment function and

the ideal (first-order) attainment function αI(z) = I{X ∗ � z}. Note that αI(·)
4 If the optimizer is not technically able to reach (the whole of) the true Pareto-optimal front,
the lower boundary of support of the first-order attainment function turns out to be (partially)
greater than the true Pareto-optimal front. This situation may be termed “data contamination”
(Grunert da Fonseca and Fieller 2006).
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is zero below X ∗ and one otherwise. In this sense, the bias is a function of a

goal z ∈ IRd, and indicates how far from ideally the optimizer performs regard-

ing the attainment of that goal, where “ideally” corresponds to a difference of zero

(Grunert da Fonseca et al. 2001).

The First-Order Attainment Function and the Vorob’ev Median

The location of a random, not necessarily bounded, closed set W ⊂ IRd may also

be described by the set-valued Vorob’ev median (Molchanov 2005, p. 176ff) which

is defined as

V0.5(W) =
{
z ∈ IRd | Pr{z ∈ W} ≥ 0.5

}
,

where Pr{z ∈ W} is the covering function of W as given in (5.1). The Vorob’ev

median of W is a closed, deterministic subset of IRd whose indicator function

IV0.5(W)(·) approximates the covering function ofW in the sense that it minimizes

sup
z∈IRd

∣∣Pr{z ∈ W} − IVt(W)(z)
∣∣

over all covering function (upper) excursion sets defined as

Vt(W) =
{
z ∈ IRd | Pr{z ∈ W} ≥ t

}
, t ∈ (0, 1]. (5.2)

A set Vt(W) is also called the t-th (Vorob’ev) quantile ofW , and its lower boundary

is the level-t isoline of the covering function ofW (Molchanov 2005, p. 175ff).

In the context of multiobjective optimization, where the covering function of the

attained set Y is identical to the (first-order) attainment function of the RNP set X ,

a level-t isoline of αX (·) has been referred to as the “t× 100%-attainment surface”

(Fonseca and Fleming 1996). An excursion set of αX (·), as defined in (5.2), now

results in the t-th (Vorob’ev) quantile of the attained set Y . A particular way of

describing the (central) location of an MO outcome distribution is therefore given

by the definition of the Vorob’ev median of the attained set (Definition 5.5), which

is a deterministic, closed, and unbounded set in objective space IRd.

Definition 5.5. (Vorob’ev median of the attained set) The set in IRd denoted as

V0.5(Y) =
{
z ∈ IRd | αX (z) ≥ 0.5

}
is the Vorob’ev median of the set of all goals z ∈ IRd attained by the RNP set X .

At this stage, it is important to clarify that the so-called Vorob’ev expectation of

a random closed set (Molchanov 2005, p. 177) is not suitable for the performance

description of MOs, even though its definition is very similar to that of the Vorob’ev

median. In fact, the definition of the Vorob’ev expectation of a set W is based on

the minimization of
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IRd

Pr{z ∈ W} − IVt(W)(z) dz

∣∣∣∣ , (5.3)

which only makes sense for finite integrals, as when the random closed set W , as

opposed to Y , is compact. The problem may be overcome by considering integrals

in (5.3) which are defined over some compact subset K of IRd. Such a “restricted”

Vorob’ev expectation could then be defined also for unbounded random closed sets,

like the attained set Y . Note that the Vorob’ev expectation is generally useless for

random sets with zero volume, such as the random nondominated point-set X .

Finally, given the knowledge of the true Pareto-optimal front X ∗, an upper excur-
sion set of the (first-order) attainment function may be used to define some notion

of bias with set character. For example, the difference

{z ∈ IRd | X ∗ � z} − V0.5(Y)

between the set of all goals “attained” by X ∗ and the Vorob’ev median of Y may

define such a bias-set. Its finite area within some compact reference set K could be

associated with the level of optimizer performance.

5.5.2 Distribution Spread: The Variance Function

In contrast with the availability of several mean definitions, there are only a few

discussions in the literature about how to formulate a “variance” of a random closed

set. Furthermore, from the two location approaches presented in Sect. 5.5.1, only the

first one seems to allow for a suitable variance extension. Consider again a general

random closed set W ⊂ IRd and the corresponding binary random field
{
I{z ∈

W}, z ∈ IRd
}
. Since the expression I{z ∈ W} is a Bernoulli random variable with

parameter value pz = Pr{z ∈ W} for all z ∈ IRd, the variance of such a binary

random field at any point z ∈ IRd may be given by Pr{z ∈ W} · (1−Pr{z ∈ W}).
Further, recall that in the context of multiobjective optimization the equality

αX (z) = Pr{z ∈ Y},

holds for all z ∈ IRd. Hence, the spread of an optimizer outcome distribution may

be described by the variance function which, once again, is based on the first-order

attainment function (Definition 5.6).

Definition 5.6. (Variance function) The function defined as VarX : IRd −→ [0, 0.25]
with

VarX (z) = αX (z)− [αX (z)]2

is called the variance function of X (Fonseca et al. 2005).

For every goal z ∈ IRd, the variance function indicates the variability of the MO

outcomes, across multiple runs, with respect to the expected attainment of that goal.
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Fig. 5.2: First-order attainment function values versus variance function values

Smaller function values imply that, for the given point z ∈ IRd, 0-1 outcomes of

the attainment indicator I{z ∈ Y} vary less around αX (z). The variance function
cannot show values beyond 0.25 as its maximum is reached for all z ∈ IRd for which

αX (z) = 0.5. As illustrated in Fig. 5.2, the variance function is fully determined

by the (first-order) attainment function. Hence, it does not convey any information

about MO performance beyond that already transmitted by αX (·).
The variance function, as defined, is a restricted version of the second-order cen-

tered moment of the binary random field
{
I{z ∈ Y}, z ∈ IRd

}
, as explained below.

5.5.3 Inter-Point Dependence Structures: Second and
Higher-Order Attainment Functions

Due to the complexity of the RNP set X (and the corresponding attained set Y), it
is generally not enough to describe its distribution in terms of location and spread.
The random vectors X1, X2, . . . , XM of the RNP set X (see Definition 5.2) are

mutually dependent due to the imposed nondominance condition. As a consequence,
the set distributions of X and Y are also determined by the kind and strength of the

relationships within each of the possible pairs, triples, quadruples, etc., of random
vectors Xi in X .

For example, the second-order attainment function α
(2)
X (·, ·) (see Definition 5.4

with k = 2) illustrates the second-order dependencies between all pairs of random
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vectors (Xi, Xj), i 	= j, originated in X , since

α
(2)
X (z1, z2) = Pr

{
X � z1 ∧ X � z2

}
= Pr

{
(X1 ≤ z1 ∨ . . . ∨ XM ≤ z1) ∧ (X1 ≤ z2 ∨ . . . ∨ XM ≤ z2)

}
= Pr

{
(X1 ≤ z1 ∧ X1 ≤ z2) ∨ (X1 ≤ z1 ∧ X2 ≤ z2) ∨ . . .

. . . ∨ (XM ≤ z1 ∧ XM−1 ≤ z2) ∨ (XM ≤ z1 ∧ XM ≤ z2)
}
.

Hence, the probability of simultaneously attaining two goals z1 and z2 in IRd, as

described by α
(2)
X (z1, z2) = α

(2)
X (z2, z1), corresponds to the probability of these

two goals being attained by at least one pair (Xi, Xj) of random vectors in X . It is

evident that the information of the first-order attainment function αX (z) is contained
in that of the second-order attainment function when considering either z1 ≤ z2 or

z1 ≥ z2.
The second-order attainment function is the second-order moment of the binary

random field
{
I{z ∈ Y}, z ∈ IRd

}
for points z1 and z2 in IRd, as defined by

Sivakumar and Goutsias (1996, p. 901). In combination with the first-order attain-

ment function, the corresponding second-order centered moment may then be de-

fined as the covariance function of X .

Definition 5.7. (Covariance function) The function CovX : IRd×2 −→ [−0.25, 0.25]
with

CovX (z1, z2) = α
(2)
X (z1, z2)− αX (z1) · αX (z2)

is called the covariance function of X (Fonseca et al. 2005).

The covariance function is of special interest for MO performance characteriza-

tion, as it reflects the dependence between any two random attainment indicators

I{X � z1} and I{X � z2}. For instance, if the attainment of goal z1 is indepen-

dent from the attainment of goal z2, then CovX (z1, z2) is zero. On the other hand,

a positive covariance function value indicates a positive dependence between the

two attainment indicators, in the sense that the attainment of goal z1 tends to coin-
cide with the attainment of goal z2, while negative function values indicate that the

attainment of goals z1 and z2 tends to be mutually exclusive.

Considering pairs of nondominated goals far apart from each other, negative co-

variance values may occur, for example, if the optimizer tends to converge to a

different (small) region of the Pareto-optimal front in each run, instead of covering

the whole front. On the other hand, positive covariance values between distant goals

would be consistent with an optimizer which tends to approximate the whole front

equally well, but to a different degree, in each run. In this case, some runs would

be fully successful, whereas others would be consistently less successful across the

whole front. These two situations suggest that the ideal case, where the MO out-

come sets exhibit a “good uniform distribution” and a “large spread” along the true

Pareto front (Zitzler 1999), may well correspond to intermediate covariance values,
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i.e., around zero. Note, however, that the covariance will always become nonnega-

tive as one goal approaches the other, and will coincide with the variance when the

two goals are equal.

The covariance function reaches its maximum value of 0.25 for all z1 = z2 =
z where αX (z) = 0.5. The minimum value of −0.25 is possible for two goals

which cannot be attained together, but where each one can be individually attained

with probability 0.5. However, as a rule, the covariance function cannot quantify the
strength of dependence between I{X � z1} and I{X � z2}, since the possible

range of its values for a pair of goals (z1, z2) depends on both αX (z1) and αX (z2).
In other words, a perfect positive dependence between two attainment indicators

might result in a covariance function value of 0.25, but, depending on αX (z1) and
αX (z2), it could also result in some lower positive value. Unfortunately, the range

of possible values of a (normalized) correlation function for such a pair of Bernoulli

variables would still depend on αX (z1) and αX (z2), as noted by Hamrick (2009).

Higher-order dependencies between triples, quadruples, etc., of random vectors

Xi in X and, correspondingly, of random attainment indicators, can be investigated

by the k-th-order attainment function, k ≥ 3, which is the k-th-order moment of
the binary random field

{
I{z ∈ Y}, z ∈ IRd

}
for the points z1, . . . , zk in IRd

(Sivakumar and Goutsias 1996, p. 901). Obviously, the information contained in

α
(k)
X (·, . . . , ·) covers the information given by all other lower-than-k-th-order at-

tainment functions. If k is the maximum possible number of nondominated random

vectors Xi in X , then α
(k)
X (·, . . . , ·) ultimately presents the full information about

the optimizer outcome distribution, as already pointed out in Sect. 5.4.2.

5.6 Multiobjective Optimizer Performance Assessment:
Estimation

So far, MO performance descriptions with the attainment-function approach have

been discussed in this chapter solely from a theoretical point of view. For a given

optimization problem and a chosen MO, however, attainment functions of any order

k are entirely unknown, since no (model) assumptions have been made about the

underlying optimizer outcome distribution (see Sect. 5.2.3). Therefore, the corre-

sponding attainment functions should be estimated using a realized random sample

of independent and identically distributed MO outcome sets, obtained through mul-
tiple optimization runs.

In the nonparametric context, the multivariate cumulative distribution function

FX(z) = Pr{X ≤ x} of a random vector X ∈ IRd may be estimated via the

multivariate empirical distribution function

Fn(z) =
1

n
·

n∑
i=1

I{Xi ≤ z},
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where X1, X2, . . . , Xn is a random sample of random vectors which are indepen-

dent and identically distributed like the random vector X .

This simple idea of averaging over the n sample elements obtained can also be

used to formulate a nonparametric empirical estimator for the first-order attainment

function and, more generally, for the k-th-order attainment function:

Definition 5.8. (Empirical k-th-order attainment function) Let X1,X2, . . . ,Xn be a

random sample of RNP sets which are independent and identically distributed like

the RNP set X ⊂ IRd. Then, the discrete function defined as α
(k)
n : IRd×k −→ [0, 1]

with

α(k)
n (z1, . . . , zk) = α(k)

n (X1, . . . ,Xn; z1, . . . , zk)

=
1

n

n∑
i=1

I{Xi � z1 ∧ . . . ∧ Xi � zk}

=
1

n

n∑
i=1

I{Xi � z1} · . . . · I{Xi � zk},

is called the empirical k-th-order attainment function of X .

The idea of the empirical first-order attainment function of X can be traced back

to the early paper of Fonseca and Fleming (1996), while its mathematical formula-

tion

αn(z) = αn(X1, . . . ,Xn; z)

=
1

n

n∑
i=1

I{Xi � z},

was proposed by Grunert da Fonseca et al. (2001). The fact that the above empiri-

cal functions are defined as finite sums of indicator functions easily explains their

discrete nature. For increasing sample size n (number of optimization runs), it is ex-

pected that these step-functions converge to their unknown theoretical counterpart,

like the multivariate empirical distribution function Fn(·) does.
The visualization of such discrete functions turns out to be a challenge in all

but the simplest cases, where k = 1 and d ≤ 2. Clearly, the single-objective case

(d = 1) corresponds to the visualization of a univariate empirical cumulative dis-

tribution function, which offers no difficulty. In the biobjective case (d = 2), the
empirical first-order attainment function αn(·) can be visualized quite effectively

by determining its isolines at various levels t ∈ (0, 1) and plotting them on the

objective plane, as illustrated in Fig. 5.3 (see also Chapter 9).

Finally, for the case k = 2 and d = 2, a projection technique has been suggested
in Fonseca et al. (2005), which consists of fixing one goal z∗ and depicting the

isolines of the marginal function α
(2)
n (·, z∗) = α

(2)
n (z∗, ·) at several levels t, as

before. Obviously, there are infinitely many possible positions for z∗ in IRd, and one

can only hope that α
(2)
n (z∗, ·) exhibits similar behavior in the vicinity of the current
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Fig. 5.3: Graphical representation of an empirical first-order attainment function based on n = 21
biobjective optimization runs, with isolines at levels ε, 0.25, 0.5, 0.75, and 1− ε, where ε is some
arbitrarily small positive value, and f1(x) and f2(x) denote the two objective functions to be min-
imized (from Fonseca and Fleming 1996)

choice of z∗ in objective space. A better perception of α
(2)
n (·, ·) may be acquired

through an interactive session, where the position of the goal z∗ is continuously

changed.

The intrinsic importance of the empirical k-th-order attainment function lies,

nevertheless, in its potential to provide a tool for the performance comparison of

two or more MOs, as discussed in the next section.

5.7 Multiobjective Optimizer Performance Comparison:
Hypothesis Testing

Ultimately, assessing the performance of estimators, each on its own, is not suffi-

cient. In order to choose among competing alternative estimators for the same un-

known estimand, one needs to compare them with each other with respect to their

performance. The preferred estimator is then the one that shows, for example, min-

imum (zero) bias and uniform minimum variance over all potential values of the

estimand (Lehmann and Casella 1998, p. 85).

Most point estimators have the potential to either underestimate or overestimate

the unknown estimand, the actual value of which must be considered when deter-

mining the bias. MOs, on the other hand, can only overestimate the unknown, true

Pareto-optimal front (in a minimization context). Therefore, the corresponding first-

order moments can be compared directly without reference to the true front, and

explicit knowledge of the bias is not required.

Nevertheless, comparing MO performance is not easier than comparing the per-

formance of ordinary point estimators! Whereas most properties of statistical point



122 Viviane Grunert da Fonseca and Carlos M. Fonseca

estimators are expressed in terms of single numbers (e.g. the bias, the variance, etc.),
and can be easily compared, the first and higher-order moments associated with the

attained set Y are unknown functions defined over IRd×k, d > 1, k ≥ 1.

5.7.1 Two-Sided Test Problem

The simplest kind of performance comparison between two optimizers is concerned

with whether or not they perform differently. In statistical practice, this leads to

the formulation of a two-sided, two-sample test problem involving the two MOs, A
and B, which are executed independently from each other. Taking the k-th-order
attainment function, the corresponding test problem may be stated as:

H0 : α
(k)
XA

(z1, . . . , zk) = α
(k)
XB

(z1, . . . , zk) for all (z1, . . . , zk) ∈ IRd×k

versus

H1 : α
(k)
XA

(z1, . . . , zk) 	= α
(k)
XB

(z1, . . . , zk) for at least one (z1, . . . , zk) ∈ IRd×k,

(5.4)

where XA and XB denote the (random) outcome sets of optimizers A and B, re-

spectively (see Fonseca et al. 2005, for the cases k = 1 and k = 2).
In general, the null hypothesis H0 does not imply that the entire set distribu-

tions of XA and of XB are the same. This is only true when both α
(k)
XA

(·, . . . , ·)
and α

(k)
XB

(·, . . . , ·) can fully characterize the distributions of XA and of XB , that is,

when k is (at least) the maximum possible number of nondominated solutions per

outcome of A and of B. Still, the two optimizers A and B may be said to be equiv-
alent5 in performance under H0 with respect to the k-th-order attainment function

considered.

Such a definition of equivalence for the two MOs becomes more restrictive with

larger k, since

H
(1)
0 ⊃ H

(2)
0 ⊃ . . . ⊃ H

(k)
0 , (5.5)

where H
(i)
0 is the null hypothesis of the test problem based on the i-th-order attain-

ment function. In other words, the size of H0 in test problem (5.4) decreases as the

order of the attainment function increases, and the following implications hold for

i = 1, . . . , k − 1:

H
(i+1)
0 is true =⇒ H

(i)
0 , H

(i−1)
0 , . . . , H

(1)
0 are true. (5.6)

H
(i)
0 is not true =⇒ H

(i+1)
0 , H

(i+2)
0 , . . . , H

(k)
0 are not true. (5.7)

5 By analogy to the so-called “equivalence tests” commonly applied in environmental statistics,
see for example Manly (2001, p. 184f).
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The application of a statistical hypothesis test to the general problemH0 v.s.H1

for a given significance level α ∈ (0, 1), allows one of two decisions to be made:

“reject H0” or “do not reject H0”. In contrast to a merely visual comparison of

the two corresponding empirical attainment functions (if this is, at all, possible),

the advantage of this approach is that any rejection of H0 would imply statistically
significant evidence of a difference in performance between the two MOs A and B.

In other words, the probability of committing a Type I error, i.e., concluding that the

performances of A and B are not equivalent when they are, in fact, equivalent, is

controlled to be less than or equal to the significance level α.

5.7.2 Permutation Test Procedure

The Kolmogorov-Smirnov (KS) two-sample test (Conover 1999, p. 456ff) is a well-

known hypothesis test for the comparison of two unknown univariate cumulative

distribution functions F1 and F2. Its test statistic Dn,m is based on the maximum

(vertical) absolute difference between the corresponding empirical distribution func-

tions, F 1
n and F 2

m, from two independently drawn random samples of size n andm,

respectively. According to the KS-decision rule, the null hypothesis H0 (claiming

the equality of F1 and F2) is rejected for a given significance level α, if

Dn,m = sup
z∈IR

∣∣F 1
n(z)− F 2

m(z)
∣∣ > dn;m;1−α,

where the critical value dn;m;1−α is the (1−α)-quantile of the sampling distribution

of Dn,m under H0. The univariate two-sample KS test is “distribution-free,” which

means that this sampling distribution (underH0) is invariant with respect to the un-

derlying population distribution, and its quantiles may be determined and tabulated

for different values of n andm. In addition, a p-value, defined as the smallest signif-

icance level for whichH0 could still be rejected for the given data, can be calculated

(Conover 1999, p. 101, 458). In other words, reject H0 if p ≤ α.
Attainment functions of any order k can be seen as generalizations of the (uni-

variate) cumulative distribution function, so that the KS two-sample test motivates

the formulation of KS-like two-sample tests for the comparison of two attainment

functions (Fonseca et al. 2005). Thus, for the test problem given in (5.4) and signif-

icance level α, reject H0 if

D(k)
n,m = sup

(z1,...,zk)∈IRd×k

∣∣αA
n (z1, . . . , zk)− αB

m(z1, . . . , zk)
∣∣ > d

(k)
n;m;1−α, (5.8)

where αA
n (·, . . . , ·) and αB

m(·, . . . , ·) are, respectively, the empirical k-th-order at-
tainment functions determined from n runs of optimizer A and from m runs of op-

timizer B. Note that, for simplicity, the upper index “(k)” has been removed from

the notation of these functions.
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In contrast to the univariate two-sample KS test, and similarly to the multivariate

two-sample KS test, which is not distribution free (Bickel 1969), the critical value

d
(k)
n;m;1−α in (5.8) is no longer invariant for given α, k, n and m. This problem may

be side-stepped by conditioning on the given sample data and using the so-called

“permutation argument” (Efron and Tibshirani 1993, Good 2000) to avoid referring

to the unknown population distribution(s) under the null hypothesis.

The permutation argument states that all possible orderings of the elements in a

sample are equally likely if the sample elements are exchangeable, which happens,

for example, if they are independently drawn from the same distribution. Strictly

speaking, this exchangeability condition is satisfied only when the two MOs have

identical outcome distributions under H0, i.e., when H0 is simple, but it is often

acceptable to relax this condition to accommodate suitable composite null hypothe-

ses (Efron and Tibshirani 1993, p. 217) at the expense of the test becoming approx-

imate rather than exact. Note that H
(k)
0 approaches the simple null hypothesis as k

increases.

Given two samples of outcome sets generated, respectively, by n and m runs of

optimizers A and B, the sampling distribution of the test statisticD
(k)
n,m underH

(k)
0

may then be replaced by its “permutation distribution,” which can be determined as

follows:

1. Enumerate all possible permutations of the pooled sample data.

2. For each permutation, associate the first n outcome sets with optimizer A and

the remaining m outcome sets with optimizer B.

3. Compute the test statistic for each permutation.

The required critical value is the (1 − α)-quantile of the frequency distribution of

the test-statistic values thus obtained.

In practice, permutation distributions are usually approximated using a (large)

number of permutations generated at random with equal probability, except when

n and m are sufficiently small for exhaustive enumeration to be feasible. Such a

randomization approach has been implemented for the two-sided KS-like tests based

on the first and second-order attainment functions, and illustrative results from the

comparison of two MOs in a simulation study are presented in Fonseca et al. (2005).

5.7.3 Multistage Testing

The above permutation test procedure has been presented for arbitrary values of k,
and it may not be clear which value of k should be used in a particular, concrete

comparative study. Recall that, by selecting some value k = k∗, one is establishing
a notion of equivalence in performance between two MOs, based on the equality of

the corresponding k∗-th-order attainment functions, and that, according to (5.5), the

higher the value of k∗, the stricter this notion of equivalence becomes. Therefore,

one needs to agree upon an order k∗ such that any practically-relevant performance

differences between the two MOs may be detected through the rejection of H
(k∗)
0 .
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As an example, if k∗ = 1, only differences in location will be detectable, whereas

a large k∗ value, such as k∗ = 5, may lead to the detection of performance differ-

ences difficult to interpret from an optimization point of view, even if statistically

significant. In fact, very high-order moments are seldom considered in statistical

practice.

Depending on the sample sizes n andm, and on the size of the outcome sets ob-

tained, the determination of critical values for the hypothesis tests based on higher-

order attainment functions can be computationally very demanding, even for k = 2
(Fonseca et al. 2005). Although the ever increasing availability of computing power

should contribute to alleviate this difficulty, a multistage approach, allowing lower-

order hypotheses to be tested before higher-order ones, would have the additional

benefit of detecting more fundamental performance differences, such as differences

in location, before more subtle ones, whenever possible.

Having selected k∗ and a global significance level α, such a multistage testing

procedure may begin by applying the test based on the first-order attainment func-

tion (Test 1). IfH
(1)
0 can be rejected at the individual significance level α∗ = α/k∗,

statistically-significant evidence of a difference in performance between the two op-

timizers with respect to the k∗-th-order attainment function has been found. IfH
(1)
0

cannot be rejected and k∗ = 1, no such statistical evidence could be found. If H
(1)
0

cannot be rejected and k∗ > 1, testing should continue for increasing values of

k and the same significance level α∗ until, either H
(k)
0 is rejected for some order

k < k∗, or the result of the test based on the k∗-th-order attainment function (Test

k∗) is obtained, as illustrated in Fig. 5.4.
The above multistage methodology is justified by the implications given in (5.6)

and (5.7). In order to guarantee that the equivalence in performance null hypothesis
of order k∗ is incorrectly rejected with a probability not exceeding the given global

significance level α, the significance levels of the individual tests have been adjusted
by the well-known simple Bonferroni method (Shaffer 1995, p. 569). As a result,

the global Pr{type I error} is bounded above by the prespecified global significance
level α, as required. Formally:

Pr {type I error}
= Pr

{
reject H

(1)
0 ∨ (not reject H

(1)
0 ∧ reject H

(2)
0 )

∨ (not reject H
(1)
0 ∧ not reject H

(2)
0 ∧ reject H

(3)
0 )

. . .
∨ (not reject H

(1)
0 ∧ . . . ∧ not reject H

(k∗−1)
0 ∧ reject H

(k∗)
0 )

∣∣∣ H(k∗)
0 true

}
= Pr

{
reject H

(1)
0 ∨ reject H

(2)
0 ∨ . . . ∨ reject H

(k∗)
0

∣∣∣ H(k∗)
0 true

}
≈ Pr

{
reject H

(1)
0 ∨ reject H

(2)
0 ∨ . . . ∨ reject H

(k∗)
0

∣∣∣ Cper

}
≤

k∗∑
i=1

Pr
{
reject H

(i)
0

∣∣∣ Cper

}
≤

k∗∑
i=1

α∗ = α,
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no statistically significant difference in performance

yes

no statistically significant difference in performance

reject H0

do not reject H0

yes

Test 1

statistically significant difference in performance
reject H0

do not reject H0

Test k∗

no statistically significant difference in performance

statistically significant difference in performance

statistically significant difference in performance
reject H0

do not reject H0

Test 2

no

no

k∗ > 1

k∗ > 2

Fig. 5.4: Multistage testing procedure. Individual test decisions are made at significance level α∗ =
α/k∗

where Cper denotes the collection of random permutations generated from the ob-

served outcome sets of optimizers A and B.

In addition to being very simple, the Bonferroni method is also known to be quite

conservative, leading to an unnecessary tendency not to reject the null hypothesis.

More elaborate and less conservative adjustments should be possible, and are the

subject of future work.

5.7.4 One-Sided Tests

When comparing a newly-developed MO (optimizer A) with an existing one (op-

timizer B), it may be more interesting to ask whether, at least in some sense, the

new optimizer exhibits better performance than the existing one (the “control”).

Still considering minimization, this leads to the formulation of the one-sided test

problem:



5 The Attainment-Function Approach to Stochastic MO Assessment and Comparison 127

H0 : α
(k)
XA

(z1, . . . , zk) ≤ α
(k)
XB

(z1, . . . , zk) for all (z1, . . . , zk) ∈ IRd×k

versus

H1 : α
(k)
XA

(z1, . . . , zk) > α
(k)
XB

(z1, . . . , zk) for at least one (z1, . . . , zk) ∈ IRd×k,

with the test statistic:

sup
(z1,...,zk)∈IRd×k

[
αA
n (z1, . . . , zk)− αB

m(z1, . . . , zk)
]
.

Critical values, in terms of (1−α)-quantiles, as well as p-values, can be determined

from the permutation distribution of this test statistic, which can be generated in

exactly the same way as for the two-sided test. In addition, since the implications

(5.6) and (5.7) also hold for the one-sided null hypotheses, the multistage testing

procedure described earlier may also be legitimately applied.

5.8 Discussion and Future Perspectives

The attainment-function approach has been motivated by ideas from classical statis-

tical inference theory (Sect. 5.2). It acknowledges that the solution sets produced by

stochastic multiobjective optimizers are random entities which, in objective space,

correspond to what can be defined as random nondominated point sets (Sect. 5.3).

As a consequence, optimizer performance is studied through a description of the

probability distribution of those random sets, both theoretically, with the support of

probability theory (Sect. 5.4 and Sect. 5.5), and empirically, by means of statisti-

cal estimation and hypothesis testing using the results of multiple and independent

optimization runs (Sect. 5.6 and Sect. 5.7). In all of these considerations, a central

role has been given to the notion of attainment function, which can be seen as a

hierarchy of different functions of increasing order. While the first-order attainment

function provides partially-informative performance descriptions with respect to lo-
cation and spread of the optimizer outcome distribution, second and higher-order

versions of the attainment function are able to address the inter-point dependence
structures of the optimization outcomes up to a full description of their distribution.

Despite its theoretical foundations, and although it continues to attract some level

of interest from the scientific community, the attainment-function approach is still

far from seeing widespread adoption in the experimental evaluation of multiobjec-

tive optimizer performance. Unary quality indicators, which describe the quality of

given solution sets in terms of single values, and, eventually, binary quality indi-

cators, which describe the difference in quality between two solution sets also as a

single value, are currently much more popular (see Zitzler et al. 2003, for a review).

The reasons for this would seem to range from the fact that single values, possibly

averaged over a number of runs, are generally easier to interpret than functions de-
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fined over the whole objective space, to the fact that the computation of the empirical

attainment function for more than two objectives has remained a challenge, despite

continued efforts in that direction. In contrast, much more is known about the com-

putation of the hypervolume indicator, for example (Bringmann and Friedrich 2008,

Beume et al. 2009).

One important link between the two approaches can be established by relating

the full distribution of indicator values for a given optimizer on a given problem

to a corresponding attainment function of sufficiently high order. Preliminary re-

sults suggest that this should indeed be possible, at least for some quality indicators

known to possess good properties. This will also contribute to a better understand-

ing of what aspects of the distribution of RNP sets quality indicators really measure,

and to what extent different indicators may complement each other.

Finally, an in-depth analysis of the statistical properties of the empirical k-th-
order attainment function as an estimator, and of the hypothesis tests based on it, is

still needed, as are generalizations of the methodology to encompass more than two

optimizers and/or multiple problem instances. The development of suitable para-

metric or semiparametric models of MO outcome distributions, even if they only

correspond to some ideal combination of problem and optimizer, is another possi-

ble direction for future research.
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Chapter 6
Algorithm Engineering: Concepts and Practice

Markus Chimani and Karsten Klein

Abstract Over the last years the term algorithm engineering has become wide

spread synonym for experimental evaluation in the context of algorithm develop-

ment. Yet it implies even more. We discuss the major weaknesses of traditional

“pen and paper” algorithmics and the ever-growing gap between theory and prac-

tice in the context of modern computer hardware and real-world problem instances.

We present the key ideas and concepts of the central algorithm engineering cycle
that is based on a full feedback loop: It starts with the design of the algorithm, fol-

lowed by the analysis, implementation, and experimental evaluation. The results of

the latter can then be reused for modifications to the algorithmic design, stronger

or input-specific theoretic performance guarantees, etc. We describe the individual

steps of the cycle, explaining the rationale behind them and giving examples of

how to conduct these steps thoughtfully. Thereby we give an introduction to cur-

rent algorithmic key issues like I/O-efficient or parallel algorithms, succinct data

structures, hardware-aware implementations, and others. We conclude with two es-

pecially insightful success stories—shortest path problems and text search—where

the application of algorithm engineering techniques led to tremendous performance

improvements compared with previous state-of-the-art approaches.

6.1 Why Algorithm Engineering?

“Efforts must be made to ensure that promising algorithms discovered by the theory com-
munity are implemented, tested and refined to the point where they can be usefully applied
in practice. [...] to increase the impact of theory on key application areas.”
. [Aho et al. (1997), Emerging Opportunities for Theoretical Computer Science]
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For a long time in classical algorithmics, the analysis of algorithms for combinato-

rial problems focused on the theoretical analysis of asymptotic worst-case runtimes.

As a consequence, the development of asymptotically faster algorithms—or the im-

provement of existing ones—was a major aim. Sophisticated algorithms and data

structures have been developed and new theoretical results were achieved for many

problems.

However, asymptotically fast algorithms need not be efficient in practice: The

asymptotic analysis may hide huge constants, the algorithm may perform poorly on

typical real-world instances, where alternative methods may be much faster, or the

algorithm may be too complex to be implemented for a specific task. Furthermore,

modern computer hardware differs significantly from the von Neumannmodel (1993

republication) that often forms the basis of theoretical analyses. For use in real-

world applications we therefore need robust algorithms that do not only offer good

asymptotic performance but are also designed and experimentally evaluated to meet

practical demands.

The research field of algorithm engineering copes with these problems and in-

tends to bridge the gap between the efficient algorithms developed in algorithmic

theory and the algorithms used by practitioners. In the best case, this may lead to

algorithms that are asymptotically optimal and at the same time have excellent prac-

tical behavior.

An important goal of algorithm engineering is also to speed up the transfer of

algorithmic knowledge into applications. This may be achieved by developing al-

gorithms and data structures that have competitive performance but are still simple

enough to be understood and implemented by practitioners. Additionally, free avail-

ability of such implementations in well-documented algorithm libraries can foster

the use of state-of-the-art methods in real-world applications.

6.1.1 Early Days and the Pen-and-Paper Era

In the early days of computer algorithms, during the 1950s and 1960s, many pio-

neers also provided corresponding code for new algorithms. The classic and timeless

pioneering work by Donald Knuth (1997), first published in 1968, gives a systematic

approach to the analysis of algorithms and covers the aspect of algorithm implemen-

tation issues in detail without the restriction to a specific high-level language. Knuth

once condensed the problems that arise due to the gap between theory and practice

in the famous phrase

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
[D. E. Knuth]

During the following two decades, which are often referred to as the “pen-and-paper

era” of algorithmics, the focus shifted more towards abstract high-level description

of new algorithms. The algorithmic field saw many advances regarding new and

improved algorithms and sophisticated underlying data structures. However, imple-
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mentation issues were only rarely discussed; no implementations were provided or

evaluated.

This led to a situation where on the one hand algorithms that may have been

successful in practice were not published, as they did not improve on existing ones

in terms of asymptotic runtime while on the other hand, the theoretically best algo-

rithms were not used in practice as they were too complex to be implemented.

6.1.2 Errors

This situation had another side-effect: When algorithms are theoretically complex

and never get implemented, errors in their design may remain undetected. However,

the appearance of errors is inevitable in scientific research, as stated in the well-

known quote

“If you don’t make mistakes, you’re not working on hard enough problems.” [F. Wikzek]

Indeed are were a number of prominent examples: In 1973, Hopcroft and Tar-

jan (1973) presented the first linear-time algorithm to decompose a graph into

its triconnected components, an algorithmic step crucial for graph-theoretic prob-

lems that build upon it. However, their description was flawed and it was not until

2001 (Gutwenger and Mutzel 2001)—when the highly complex algorithm was first

implemented—that this was detected and fixed.

Another prominent example that we will revisit later in a different context is pla-
narity testing, i.e., given a graph, we ask if it can be drawn in the plane without any
crossings. Already the first algorithm (Auslander and Parter 1961) (requiring cubic

time) was flawed and fixed 2 years later (Goldstein 1963). It was open for a long time

whether a linear-time algorithm exists, before again Hopcroft and Tarjan (1974) pre-

sented their seminal algorithm. If we indeed have a planar graph, we are usually—

in particular in most practical applications—interested in an embedding realizing a

planar drawing. Hopcroft and Tarjan only sketched how to extract such an embed-

ding from the data structures after the execution of the test, which Mehlhorn (1984)

tried to clarify this with a more detailed description. Overall, it took 22 years for a

crucial flaw—that becomes apparent when one tries to implement the algorithm—to

be detected (and fixed) in this scheme (Mehlhorn and Mutzel 1996).

Runtime complexity versus runtime

The running time is the most commonly used criterion when evaluating algorithms

and data structure operations. Here, asymptotically better algorithms are typically

preferred over asymptotically inferior ones. However, usual performance guaran-

tees are valid for all possible input instances, including pathological cases that do

not appear in real-world applications. A classic example that shows how theoreti-

cally inferior algorithms may outperform their asymptotically stronger competitors
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in practice can be found in the field of mathematical programming: The most pop-

ular algorithm for solving linear programming problems—the simplex algorithm

introduced by Dantzig in 1947—has been shown to exhibit exponential worst-case

time complexity (Klee and Minty 1972), but provides very good performance for

most input instances that occur in practice. In the 1970s, the polynomial-time solv-

ability of linear programs was shown using the ellipsoid method (Khachiyan 1979),

and promising polynomial alternatives have been developed since then. However,

the simplex method and its variants dominated for decades due to their superior

performance and are still the ones most widely used.

In practice, the involved constants—that are ignored in asymptotic analyses—

play an important role. Consider again the history of planarity testing algorithms: the

first linear time algorithm was presented in the 1970s (Hopcroft and Tarjan 1974);

since this is the best possible asymptotical runtime, one could assume that the topic

is therefore closed for further research. However, still nowadays new algorithms

are developed for this problem. While the first algorithms were highly complex

and required special sophisticated data structures and subalgorithms, the state-of-

the-art algorithms (de Fraysseix and Ossona de Mendez 2003, Boyer and Myrvold

2004) are surprisingly simple and require nothing more than depth first search (DFS)
traversals and ordered adjacency lists. Additionally, and also since they are compa-

rably easy to implement, these new algorithms are orders of magnitude faster than

the first approaches (Boyer et al. 2004).

An even more extreme example can be found in algorithms based upon the sem-

inal graph minor theorem by Robertson and Seymour, discussed at length in the se-

ries Graph Minors I–XX. The theorem states that any minor-closed family of graphs

is characterized by a finite obstruction set, i.e., a set of forbidden graph minors. In

particular, the nonconstructive proof tells us that we can decide whether a given

graph contains a fixed minor in cubic time. There are several graph problems, in

particular many fixed parameter tractable (FPT) problems, that can be formulated

adequately to use this machinery and obtain a polynomial algorithm. However, ob-

serve that the obstruction set, even when considered fixed, may in fact be very large

and nontrivial to obtain. This leads to conceptual algorithms that, although formally

polynomial, are of little to no use in practice.

An example is the FPT algorithm for the graph genus—i.e., to decide whether a

given graph can be embedded on a surface of fixed genus g. The theorem tells us

that this can be tested in polynomial time. However, even for the case g = 1—i.e.

whether a graph can be drawn on the torus without crossings—the exact obstruction

set is still unknown and has at least 16,629 elements, probably many more (Gagarin

et al. 2005).

Generally, even though better asymptotic running time will typically pay off with

growing input size, there are certain thresholds up to which a simpler algorithm may

outperform a more complicated one with better asymptotic behavior. The selection

of the best algorithm has to be made with respect to the characteristics of the input

instances in the considered practical applications.

Traditionally, algorithmic analysis focuses on the required running times, while

space consumption plays a second-order role. With the advent of mass data analysis,
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Fig. 6.1: The algorithm engineering cycle

e.g., whole genome sequencing, the latter concept gains importance. This is further

aggravated by the fact that the increasing number of levels in the memory hierarchy

leads to drastically different running times compared with what would be assumed

based on the von Neumann model, see Sect. 6.3.2.

6.2 The Algorithm Engineering Cycle

There are multiple competing models that describe how software should be designed

and analyzed. The most traditional one is the waterfall model, which describes the

succession of design, implementation, verification, and maintenance as a sequential

process. The algorithm engineering cycle—originally proposed by Sanders et al.

(2005)—diverges from this view as it proposes multiple iterations over its substeps,

cf. Fig. 6.1. It focuses not so much on software engineering aspects but rather on

algorithmic development.

We usually start with some specific application (1) in mind and try to find a re-
alistic model (2) for it such that the solutions we will obtain match the requirements

as well as possible. The main cycle starts with an initial algorithmic design (3) on

how to solve this model. Based on this design we analyze (4) the algorithm from the

theoretical point of view, e.g., to obtain performance guarantees (5) such as asymp-

totic runtime, approximation ratios, etc. These latter two steps—to find and analyze

an algorithm for a given model—are essentially the steps traditionally performed by

algorithmic theoreticians in the pen-and-paper era.

We proceed with our algorithmic development by implementing (6) the pro-

posed algorithm. We should never underestimate the usefulness of this often time-

consuming process. It forms probably the most important step of algorithm engi-
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neering. First of all, we can only succeed in this step if the algorithm is reasonable in

its implementation complexity. As noted before, often purely theoretical algorithms

have been developed in the past, where it is unclear how to actually transform the

theoretical ideas into actual code. Secondly, and in stark contrast to the assump-

tion that theoretical proofs for algorithms are sufficient, it has often been the case

that during this step certain flaws and omissions became obvious. As noted before,

there have been papers which take theoretical algorithms and show that the runtime

analysis is either wrong, because of some oversight in estimating the complexity of

look-ups, or that the algorithmic description has to be extended in order to achieve

the suggested running time.

Furthermore, algorithms may assume some static, probably preprocessed, data

structure as its input, where certain queries can be performed asymptotically fast.

However, in many real-world scenarios such input has to be stored in a more flexi-

ble format, e.g., in a linked list instead of an array. When thinking about graphs, this

is even more common, as we will often store them as a dynamic graph with adja-

cency lists, or as compressed or packed adjacency matrices. In such data structures

edge look-ups cannot be easily performed in constant time, as for a full adjacency

matrix. However, the full unpacked matrix, which may be required by an algorithm

to achieve optimal runtime performance, may simply be too large to be stored in

practice. In such cases, alternative algorithms, which may be asymptotically slower

under the assumption of constant-time edge look-ups but require fewer look-ups,

may in fact be beneficial.

Such observations can also be made by corresponding experiments (7), which are
the final major piece in our cycle. In particular, we are not interested in toy experi-

ments, but in ones considering real-world data (8). Such input instances have to be

at least similar to the problems the algorithm is originally designed for. The benefit

of this step is manifold. It allows us to compare different algorithms on a testing

ground that is relevant for the practice. We can better estimate the involved con-

stants that have been hidden in the asymptotic runtime analysis, and thereby answer

the question of which algorithm—even if asymptotically equivalent—is beneficial

in practice. We may also find that certain algorithms may behave counter intuitively

to the theoretical investigation: analytically slower algorithms may be faster than

expected, either due to too crudely estimated runtime bounds or because the worst

cases virtually never happen in practice. Such situations may not only occur in the

context of running time, but are also very common for approximation algorithms,

where seemingly weaker algorithms—probably even without any formal approx-

imation guarantee—may find better solutions than more sophisticated algorithms

with tight approximation bounds.

It remains to close the main algorithm engineering cycle. Our aim is to use the

knowledge obtained during the steps of analysis, implementation, and experimenta-

tion to find improved algorithmic designs. E.g., when our experiments show a linear

runtime curve for an algorithm with a theoretically quadratic runtime, this may give

a hint for improving the theoretical analysis or that it is worthwhile to theoretically

investigate the algorithm’s average running time. Another approach is to identify

bottlenecks of the algorithm during the experimentation, probably by profiling. We
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can then try to improve its real-world applicability by modifying our implementa-

tion or—even better—the algorithmic design.

Generally, during the whole cycle of design, analysis, implementation, and ex-

perimentation, we should allow ourself to also work on the basis of hypotheses,

which can later be falsified in the subsequent steps.

A final by-product of the algorithm engineering cycle should be some kind of

algorithm library (9), i.e., the code should be written in a reusable manner such that

the results can be later used for further algorithmic development that builds upon

the obtained results. A (freely available) library allows simpler verification of the

academic findings and allows other research groups to compare their new results

against preceding algorithms. Finally, such a library facilitates one of the main as-

pects of algorithm engineering, i.e., to bridge the gap between academic theory and

practitioners in the nonacademic field. New algorithmic developments are much

more likely to be used by the latter, if there exists a well-structured, documented

reference implementation.

During the steps of this cycle, there are several issues that come up regularly, in

particular because modern computers are only very roughly equivalent to the von

Neumann machine. In the following section we will discuss some of these most

common issues, which by now have often formed their own research fields.

6.3 Current Topics and Issues

When we move away from simple, cleanly defined problems and step into the realm

of real-world problems, we are faced with certain inconsistencies and surprises com-

pared with what theoretic analysis has predicted. This does not mean that the the-

ory itself is flawed but rather that the considered underlying models do not exactly

reflect the problem instances and the actual computer architecture. The inherent ab-

straction of the models may lead to inaccuracies that can only be detected using

experimentation.

Generally, there are multiple issues that arise, rather independent of the specific

problem or algorithm under investigation. In this section we try to group these into

general categories and topics (cf. Fig. 6.2), which have by now defined worthwhile

research fields of their own. Clearly, this categorization is not meant to be exhaustive

but only representative. In the field of algorithm engineering we are always looking

out for further interesting issues being revealed that influence algorithmic behavior

in practice and are worth systematic investigation.

In the following we will concentrate on the algorithmic aspects that are involved

when developing theoretical algorithms for real-world problems. Due to the algo-

rithmic focus of this chapter, we will not discuss other modeling issues based on the

fact that our underlying algorithmic problem might be too crude a simplification of

the actual real-world problem. We will also not discuss the issues arising from noisy

or partially faulty input data with which our algorithms may have to deal. However,

bear in mind that these are in fact also critical steps in the overall algorithmic de-
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Fig. 6.2: Major topics and issues in current algorithm engineering

velopment. They may even influence the most fundamental algorithmic decisions,

e.g., it will usually not be reasonable to concentrate on finding provably optimal

solutions if the given input is too noisy.

6.3.1 Properties of and Structures in the Input

Often certain considerations regarding the expected input data are not regarded

highly enough in purely theoretic analysis and evaluation of algorithms. Most analy-

ses focus on worst-case scenarios, considering all inputs possible within the model’s

bounds. Average-case analyses are relatively rare, not only because they are mathe-

matically much harder. It is hard to grasp what the “average case” should look like.

Often—e.g., for the quicksort algorithm in the probably best known average-case

analysis in algorithmics—it is assumed that all possible inputs are equally likely.

However, in most real-world scenarios the span of different inputs usually turns

out to be only a fraction of all the possible inputs. In particular, the input data often

has certain properties that are not problem but application specific. Failure to take

these into account can lead to selecting inadequate algorithms for the problem at

hand.

Consider problems on graphs. Many such problems become easier for graphs

that are, e.g., planar or sparse, or have fixed tree width, fixed maximum degree,

etc. Sometimes such properties even change the problem’s complexity from NP-
completeness to polynomially solvable. Alternatively, an algorithm may, e.g., find

an optimal solution in such a restricted case, but only have a weak approximation

ratio (if any) for the general case.

Clearly, when we know that our real-world data consists only of graphs of such

a simplifying type, we ought to use algorithms specifically tuned for these kind of

instances. However, algorithm engineering goes one step further: we ask the ques-
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tion of which algorithm will perform best, if we consider only graphs that are “close

to,” e.g., being planar. Due to the origin of the problem instances, such “close to”

properties are often hard to grasp formally. Following the algorithm engineering

cycle above we can either try to generalize special-purpose algorithms to be able

to deal with such graphs, or to specialize general-purpose algorithms to deal with

these graphs more efficiently. Often hybridization of these two approaches gives the

best results in practice. After finding such efficient algorithms and demonstrating

their performance experimentally, we can of course go back to theory and try to

find some formal metric to describe this “close to” property and perhaps show some

performance guarantees with respect to it.

In Sect. 6.4.1 we will showcase an example of such a development, regarding

finding shortest paths in street maps. Even though the considered map graphs are not

necessarily planar, we can still embed them in the plane with few crossings; although

the edge weights do not satisfy the triangle inequality, the graphs are somehow

close to being Euclidean graphs. This background knowledge allows for much more

efficient algorithms in practice.

Interestingly, moving from the theoretical model to the practical one with respect

to input instances does not always simplify or speed up the considered algorithms.

In algorithmic geometry, there are many algorithms which assume that the given

points are in general position, i.e., no three points may lie on a common line. It is

often argued that, given there are some points which do not satisfy this property, one

can slightly perturb their positions to achieve it. The other possibility is to consider

such situations as special cases which can be taken care of by a careful implemen-

tation. The main algorithmic description will then ignore such situations and the

implementer has to take care of them himself. Even though these additional cases

may not influence the asymptotic runtime, they do affect the implementability and

practical performance of the algorithm.

If we choose to perturb the points first—even disregarding any numerical prob-

lems that may arise from this step—we may lose certain important results which are

in fact based on the collinearity of certain points. This is further amplified by the

observation that real-world geometric data is often obtained by measuring points on

some regular grid. Such input data can in fact exhibit the worst case for algorithms

assuming general positions, but may on the other hand allow very simple alternative

approaches. This shows that knowing the source and property of the input data can

play a very important role in practice. However, no general rules can be applied or

suggested, as the best approach is highly application specific.

6.3.2 Large Datasets

Huge data sets arise in many different research fields and are challenging not only

because of the mere storage requirements, but more importantly because it is usually

nontrivial to efficiently access, analyze, and process them.
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Fig. 6.3: Typical memory hierarchy in current PCs. Each component is orders of magnitude larger
but also slower than the one on the previous layer

“One of the few resources increasing faster than the speed of computer hardware is the
amount of data to be processed.”
. [IEEE InfoVis 2003 Call-For-Papers]

In bioinformatics, a single high-through put experiment can result in thousands

of datapoints; since thousands of these experiments can be conducted per day, data

sets with millions of entries can be quickly accumulated for further analysis. For

example, the Stanford Microarray Database contains around 2.5 billion spot data

from about 75,000 experiments (Demeter et al. 2007). Other fields of increasing im-

portance are, among others, the analysis of the dynamics in telecommunication or

computer networks, social statistics and criminalistics, and geographical informa-

tion systems (GIS). The latter can, e.g., be used for computationally highly com-

plex algorithms that analyze flooding or predict weather phenomena due to climate

change.

The sheer size of such data sets can render traditional methods for data pro-

cessing infeasible. New methodologies are therefore needed for developing faster

algorithms when, e.g., even a simple look-up of the full data set is already inaccept-

ably slow. This ranges from clever overall strategies to special-purpose heuristics, if

the amount of data does not allow exact algorithms. When the data set is stable for

a number of queries, such problems can often be tackled by preprocessing strate-

gies whose computation costs are amortized over a number of optimization tasks.

Also careless access to external memory storage such as hard disks may render the

task at hand infeasible. For a realistic performance analysis in these cases, memory

models that consider these costs have to be applied and algorithms have to be tuned

to optimize their behavior respectively.

In the following, we will discuss some of these aspects in more detail.

6.3.3 Memory Efficiency

For a long time the von Neumann model was the dominant design model for com-

puter architecture in the theoretical analysis of algorithms. An important aspect of

this model—in contrast to current real-world computer hardware—is the assump-

tion of a single structure storing both data and programs, allowing uniform constant

memory access costs. In modern hardware architectures, the memory is organized

in a hierarchy instead (cf. Fig. 6.3), where the access costs may differ between dif-
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ferent levels by several orders of magnitude. Such memory hierarchies are mainly

the result of a trade-off between speed and cost of available hardware.

Processors usually have a small number of internal registers that allow fast and

parallel access but are expensive in terms of chip area. The next hierarchy layer is

then made up of several (typically 2–3) levels of cache memory, currently multiple

kilobytes to some megabytes in size. The main idea behind the use of cache mem-

ory is based on the assumption that memory access shows some temporal or spatial

locality, i.e., objects are fetched from the same memory location within a short pe-

riod of time or from locations that are close together. This allows copies of the data

to be stored in fast memory for subsequent access, resulting in a cache hit if the
data requested is stored in cache memory, and in a cache miss otherwise. The cache
management, including which memory locations to store, where to store them, and

which data to remove again, is controlled by the cache hardware and is usually

outside the programmer’s influence. When a cache miss occurs, the data has to be

retrieved from the next memory level, the internal (main) memory, which is typi-

cally made up of relatively fast integrated circuits that are volatile, i.e., they lose the
data information when powered off. The expensive access costs of lower memory

levels are typically amortized by fetching a block of consecutive memory locations

including the addressed one. The lowest level in the hierarchy, the external mem-
ory, provides large capacities, currently with gigabytes to terabytes of storage, and

consists of nonvolatile memory that is much cheaper per byte than main memory.

Current techniques include hard disks and more recently also so-called solid-state

memory typically based on flash memory. The access to the external memory is

called input/output (I/O) operation and may require blockwise or even sequential

access. The type of access allowed and the access speed is often limited by the ar-

chitecture of the memory hardware, e.g., hard disks require moving a mechanical

read–write head, slowing down data retrieval significantly. In contrast the internal

memory allows direct access to any memory locations in arbitrary order and is there-

fore also called random access memory (RAM).
Performance guarantees built on the uniform access cost assumption therefore

may not reflect the practical performance of the analyzed algorithms as the memory

hierarchy may have a large impact. In order to approach a realistic performance

rating, the analysis consequently needs to take the real memory organization into

account. Clearly, it would not only be a very difficult task to analyze algorithms

with respect to the exact architecture of existing systems, but also a futile attempt

due to the constant change in this architecture. Hence, an abstraction of the existing

memory hierarchies needs to be the basis of our memory model. This model should

represent the main characteristics of real-world architectures and therefore allow the

analysis to be close to the real behavior, but still be simple enough to be used with

acceptable effort. The same argument can be used when designing algorithms: From

an algorithm engineering perspective, a memory hierarchy model should already be

applied in the algorithm design phase so that the real memory access costs can be

minimized.

Several models have been proposed to allow performance analysis without hav-

ing to consider particular hardware parameters. The conceptually most simple one
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is the external memory model (EMM) (Aggarwal and Vitter 1988), which extends

the von Neumann model by adding a second, external, memory level. The M inter-

nal memory locations are used for the computation, whereas the external memory

has to be accessed over expensive I/O operations that move a block of B contigu-

ous words. Goals for the development of efficient external memory algorithms are

to keep the number of internal memory operations comparable to the best internal

memory algorithms while limiting the number of I/O operations. This can be done

by implementing specific data replacement strategies to process as much data as

possible in internal memory before writing them back and to maximize the amount

of processable data in blocks that are read.

The field of external memory algorithms attracted growing attention in the late

1980s and the beginning of the 1990s, when increasingly large data sets had to be

processed. A main contribution to the field was the work by Aggarwal and Vitter

(1988) and Vitter and Shriver (1994a,b); an overview on external memory algo-

rithms can be found in (Vitter 2001). Even though the external memory model is

a strong abstraction of the real situation, it is a very successful model both in the

amount of scientific research concerned with it as well as in the successful appli-

cation of external memory algorithms in practice due to satisfactory performance

estimation.

One could argue that the best way to consider, e.g., a cache memory level, would

be to know exactly the hardware characteristics such as memory level size, block

transfer size, and access cost, and then to consider these values during the algo-

rithm’s execution. Algorithms and data structures that are tuned in this way are

called cache-aware. This approach not only needs permanent adaption and hin-

ders an implementation on different hardware, but also complicates the analysis.

In the late 1990s the theoretical concept of cache-oblivious algorithms was intro-

duced (Frigo et al. 1999); it proposes better portable algorithms without having to

tune them to specific memory parameters. Within this model, the parametersM and

B are unknown to the algorithm, and in contrast to the EMM, block fetching is

managed automatically by the hardware and the operating system.

It should be noted that, even though the term cache is used as a synonym for

a specific level of the memory hierarchy, every level of the memory hierarchy can

take the role of the cache for a slower level, and it is therefore sufficient to analyze

cache-oblivious algorithms using a two-level hierarchy without compromising their

performance on a deeper hierarchy. For multiple problems, including sorting, fast

Fourier transformation, and priority queues, asymptotically optimal cache-oblivious

algorithms have been found (Frigo et al. 1999).

Regarding effects on the performance induced by real hardware memory archi-

tecture, the actual picture is even more complicated than the discussion in this sec-

tion. Not only is cache memory organized in multiple levels, but in multicore archi-

tectures that are mainstream today, caches on some of the levels might be shared

between multiple cores whereas there are dedicated caches for each core on other

levels. Also the internal cache design, the way the cache is operated, and hard-disk

internal caches can have an impact on the resulting performance. Other influencing

factors that we do not discuss here are effects related to physical organization and
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properties of the hardware, and to software such as the operating system and the

compiler used.

A thorough discussion of memory hierarchies and the corresponding topics with

respect to algorithm development is given by Meyer et al. (2003). The standard
template library for extra large data sets (STXXL) provides an implementation of

the C++ standard template library for external memory computations (Dementiev

et al. 2008b).

6.3.4 Distributed Systems and Parallelism

Over the past few years we have seen remarkable advances regarding the availability

of computing power. The main reason was not new advanced processor technology

or increased clock speeds, but rather the availability of relatively cheap computers

and the introduction of multicore processors that combine multiple processor cores

on a single chip. Large numbers of computers can be clustered in farms at relatively

low financial expense to tackle computational problems too complex to be solved

with a single high-performance computer. Typical examples are render farms for

computer-generated imagery (CGI), server farms for web searches, or computer

clusters used for weather prediction.

In order to take advantage of the processing power these hardware environments

provide, algorithm and data structure implementations need to be adapted. Programs

have to be distributed over multiple processing units such that tasks, threads or in-

structions can be executed simultaneously to speed up computation. These process-

ing units may be virtual processors allowing multithreading on a single processor,

multiple cores on a chip, or multiple computers connected over a network, also in

heterogeneous environments.

Parallelism can be exploited by data decomposition (i.e., distributing the compu-

tation amongmultiple threads processing different parts of data), task decomposition
(i.e., operating on a set of tasks that can run in parallel), or a combination of both.

Typical issues regarding the performance of parallel processing are load balanc-

ing, i.e., distributing the workload to keep all processing units busy, data decompo-

sition, task synchronization, and shared resource access, e.g., how to effectively use

the shared bus bandwidth in multicore systems. When modeling parallel algorithms,

also the communication costs between processors for synchronization etc. have to

be taken into account. Considering distributed computing, we also have to cope

with reliability issues, both of the hardware and the connection. This includes pos-

sible outages of processing units and consequently the tasks assigned to them, and

connection management regarding latency times, information loss, etc. Together, all

these factors comprise the parallelization overhead that limits the speed-up achieved

by adding processing units, compared with the speed-up obtained for example by

an increase of the clock rate.
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A number of libraries exist that allow to exploit parallelism with low computa-

tional and programming overhead. The Open Multi Processing interface1 supports

multiplatform shared-memory parallel programming in C, C++, and Fortran and im-

plements multithreading, where multiple sequential parts of a process, the threads,

may share resources and are distributed among the processing units. Recently, a par-

allel implementation of the standard C++ library, the Multi-Core Standard Template

Library (MCSTL), has been integrated into the GNU Compiler Collection (GCC) as

the libstdc++ parallel mode. Internally, it uses OpenMP for multithreading and does

not require specific source code changes to profit from parallelism. The open cross-

platform parallel programming standard Open Computing Language2 provides an

API for the coordination of parallel computation and a C-based programming lan-

guage with extensions to support parallelism to specify these computations.

Due to recent advances in the performance and programmability of modern

graphics processing units (GPUs), the use of these for general-purpose computation

is gaining increasing importance. Even when employed for graphics acceleration

in standard PCs, their computational power is typically used only to a small extent

most of the time. The availability of new interfaces, standardized instruction sets,

and programming platforms such as OpenCL or the Compute Unified Device Ar-

chitecture3 to address graphics hardware allows to exploit this computational power

and has led to a new field focused on the adaption of algorithm implementations in

order to optimize their performance when processed on GPUs.

6.3.5 Approximations and Heuristic Algorithms

In traditional algorithmics, we tend to use the complexity classes of P and NP to

decide what kind of algorithms to develop: if a problem is polynomially solvable, we

try to find the (asymptotically or practically) fastest algorithm to solve the problem.

If the problem is NP-hard, there cannot exist such algorithms (unless P = NP ),

and hence our efforts are divided into exact and inexact approaches. For the former,

we allow that our runtime may become exponential in certain cases, but try to find

algorithms which are “usually” much faster. For inexact approaches, we require a

polynomial running time (probably also depending on parameters such as number of

iterations etc.) but allow the solutions to be suboptimal. Approximation algorithms

form a special subclass of such algorithms, as they guarantee that their solutions are

mathematically close to the optimal (e.g., at most by a factor of 2 larger).

Recently, progress in computer hardware, modeling, and mathematical methods

has allowed exact algorithms, based on integer linear programs, to run fast enough

for practical applications (Polzin and Daneshmand 2001). In particular, there are

even problem areas of combinatorial optimization where such approaches outper-

1 Open Multi Processing API, http://openmp.org/
2 Open Computing Language standard, http://www.khronos.org/opencl/
3 Compute Unified Device Architecture, http://www.nvidia.com/CUDA
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form state-of-the-art metaheuristics in terms of running time; see, e.g., (Chimani

et al. 2009). Generally, such approaches typically are strong when the problem al-

lows to include sophisticated problem-specific knowledge in the program formula-

tion.

Identifying the best approach that fits the specific task at hand is clearly a critical

decision and highly application dependent. Recent research advances show that tra-

ditional rules of thumb—e.g., “The problem is NP-hard, hence we have to resort to

heuristics”—for this decision are often outdated.

Concerning the problem field of large datasets, we can even see a reverse situa-

tion than the one described above. Even though certain problems are polynomially

solvable, the required runtime may be too large, regarding the amount of data to con-

sider. Hence, we may need to develop heuristics or approximation algorithms with

smaller runtime requirements, simply to be able to cope with the data in reasonable

time at all.

A well-known example of such an approach is a method often used for se-
quence alignment in bioinformatics. Generally, we can compute the similarity of

two sequences—textstrings representing, e.g., parts of genomes—inO(n ·m) time,

whereby n and m are the lengths of the sequences. When investigating some un-

known (usually short) sequence S of length n, the researcher wants to check it

against a database of k (usually long) sequences, say of length m. Although we

could find sequences similar to S in O(n · m · k) time, this becomes impractical

when considering multigigabyte databases. Hence, usually only heuristic methods

such as the well-known FASTA (Lipman and Pearson 1985, Pearson and Lipman

1988) or the basic local alignment search tool (BLAST) family (Korf et al. 2003)

are used. Thereby the aim is to quickly discard sequences which have only a low

chance of being similar to S (e.g., by requiring that at least a certain number of

characters in the strings have to be perfect matches). The alignment itself can then

also be approximated by only considering promising areas of the long sequences in

the database.

6.3.6 Succinct Data Structures

In recent years, exact analysis of space requirements for data structures is gaining

increasing attention due to the importance of processing large data sets. There is a

strong need for space-efficient data structures in application areas that have to query

huge data sets with very short response time, such as text indexing or storage of

semistructured data.

This leads to the natural question how much space is needed not only to store

the data but also to support the operations needed. In order to emphasize the focus

on space efficiency, the term succinct data structures was coined for structures that

represent the data with a space requirement close to the information-theoretic lower

bound. Succinct data structures were introduced by Jacobson (1989) to encode bit

vectors, trees, and planar graphs yet support queries efficiently. There has been a
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growing interest in this topic since then, leading to a wealth of publications that

deal with both the practical and theoretical aspects of succinct data representations,

see for example (Jansson et al. 2007, Geary et al. 2004, Golynski et al. 2007, Gupta

2007).

6.3.7 Time-Critical Settings

Above, we used the grand topic of large data sets to motivate the research topics

regarding parallelism and also inexact approaches with approximate or heuristic

solutions. Similar to this topic there is the large area of time-critical applications.
There are often cases where, although the amount of considered data is not too

large to cause side-effects w.r.t. the memory hierarchy, it is impracticable to run tra-

ditional, probably optimal, algorithms on the full data set. E.g., a quadratic asymp-

totic runtime, even though not distressing on first sight, might turn out to be too

much to solve a problem within tight time bounds. Such cases often arise when al-

gorithms are used as subroutines within grander computing schemes, such that they

are called a large number of times and even small performance benefits can add up

to large speed-ups.

In other situations—in particular in real-time environments such as car systems,

power-plant control systems, etc.—the situation may be even more critical: A real-

time system sends a request to an algorithm and requires an answer within a certain

timeframe. It can be a much larger problem if the algorithm misses this deadline,

than if it would give a suboptimal—i.e., heuristic or approximative—answer.

We can view the research topics of parallelism (Sect. 6.3.4) and approximations

(Sect. 6.3.5) also in the light of this problem field. While the overall concepts are

similar, the developed algorithms have to cope with very different input data and ex-

ternal scenarios. In practice, this can lead to different algorithmic decisions, as cer-

tain aspects may become more relevant than others. In particular with parallelism,

we have to keep a close look on the overhead introduced by many state-of-the-art

techniques. E.g., on modern computer architectures, parallelization of sorting only

becomes beneficial for a large number of elements (multiple millions); for fewer

elements, traditional sorting is more efficient.

6.3.8 Robustness

As a final topic we want to touch on the area of algorithmic robustness, i.e., we aim
for algorithms that behave stably in real-world scenarios. We differentiate between

the two orthogonal problem fields regarding robustness: hardware failures and ro-

bustness with respect to input-data.

For the first category, we concentrate on the robust executability of algorithms.

Even if our hardware exhibits failures—be it connection failures in distributed al-
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gorithms or random flips of bits in RAM modules—we would like to be able to

detect and possibly recover from them. Especially the latter problem, though sound-

ing fictitious at first, becomes a statistically important problem when considering

large server farms, e.g., for web search (Henzinger 2004). It lead to the develop-

ment of resilient algorithms where the aim is to find algorithms that are as efficient

as the traditional ones, but can cope with up to k random bit flips (for some fixed k).
Therefore we are not allowed to increase the memory requirement by the order of

k, but only by at most ω(k); i.e., it is not an option to simply duplicate the memory

sufficiently. See Finocchi and Italiano (2004) for a more detailed introduction to this

topic, and first algorithms achieving this aim, e.g., for sorting data.

The second category of robustness deals with errors or slight modifications of

the input data. Often, such input data will be a measured value with certain intrinsic

inaccuracy. When we find a solution to our modeled problem, it is important to be

able to apply it to the real-world scenario. Furthermore we would like that the found

solution still resembles a good solution in this latter case, even if it turns out to

be slightly different to the input used for the computation. Consider a shortest path

problem where each edge length is only known within a certain margin of error. As-

sume there are two shortest paths with virtually the same lengths, one of which uses

an edge with a high probability of being underestimated. Clearly, we would like our

algorithm to find the other path that promises a shorter path with higher probabil-

ity. For such scenarios, there are only a few results regarding purely combinatorial

algorithms. However the problem of finding robust solutions with respect to small

modifications to the input has been considered under the term sensitivity analysis
in mathematical programming. Within mathematical programming, there are even

dedicated research fields of stochastic programming and robust optimization, the
first of which optimizes the average over the error distributions (or, in most cases,

multiple scenarios), whereas the second optimizes the worst case. See for example

Birge and Louveaux (2000) for an introduction to this topic.

6.4 Success Stories

Algorithm engineering has led to an improvement of algorithm and data structure

performance in many different fields of application. We give two exemplary descrip-

tions of the development of advanced approaches using algorithm engineering.

6.4.1 Shortest Path Computation

The history and still ongoing research on shortest path algorithms is probably the

most prominent showcase of the successes of algorithm engineering. Interest in it
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has also been fueled by the 9th DIMACS implementation challenge4 that asked for

the currently best shortest path algorithms. We consider the traditional problem of

finding a point-to-point (P2P) shortest path, i.e., given a graph with specified edge

lengths, find the shortest edge sequence to connect two given nodes s and t of the
graph. The problem is well known for decades, and often occurs as a subproblem

within other complex problems. The presumably best-known application is in route-

finding on street maps, railroad networks, etc.

In this realm, we can assume that all edge lengths are nonnegative, in which case

we can use the famous algorithm Dijkstra presented already in (1959). Given a start

node s, the algorithm in fact computes the shortest paths to all other nodes, but can

be terminated early when the given target node t is scanned for the first time. The

conceptual idea of the algorithm is as follows: during the course of the algorithm,

we will label the nodes with upper bounds on their distances to s. Initially, all nodes
except for s, which has distance 0, are labeled with +∞. We hold all the nodes in

a priority queue, using these labels as keys. We iteratively perform a scanning step,

i.e., we extract the node v with smallest bound b. This bound then in fact gives the

minimum distance from s to v. Now we update the bounds on the neighbors of v
via edge relaxation: We decrease a label of a neighbor u to b+ d(v, u)—where the

latter term gives the length of the edge between v and u—if this value is less than

the current label on u. Thereby we move u up in the priority queue correspondingly.

Hence the choice of the data structure realizing the priority queue becomes a

major issue when bounding the algorithm’s overall running time. Using a k-ary heap
we can achieve O(m log n), where n and m are the numbers of nodes and edges,

respectively. By using a Fibonacci heap we can even guaranteeO(m+n log n) time.

Most interestingly, theoretic analysis suggests that the binary heap would consti-

tute a bottleneck for sparse graphs. Since the considered graphs (street maps, rail-

road networks) often have this property, research has long concentrated on finding

more efficient heap data structures. However, in practice, the really essential bottle-

neck is in fact not so much the complexity of the queue operations but the number

of edge relaxations.

This insight and the investigation of the properties of the considered real-world

networks led to algorithms far superior to Dijkstra’s algorithm, although their the-

oretic runtime bounds are at best identical if not inferior. State-of-the-art P2P al-

gorithms are tens of thousands of times faster than the standard Dijkstra approach.

They usually require some seemingly expensive preprocessing before the first query,

but these costs can be amortized over multiple fast queries. We can differentiate be-

tween a number of different conceptual acceleration ideas. Mostly, these concepts

can be seen as orthogonal, such that we can combine acceleration techniques of

different categories to obtain an even faster overall speed-up.

4 DIMACS: Center for Discrete Mathematics and Theoretical Computer Science, http://
dimacs.rutgers.edu/, Shortest Path Challenge: http://www.dis.uniroma1.it/
~challenge9/
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6.4.1.1 Bi- and Goal-Directed Algorithms

Dijkstra’s algorithm scans all nodes that are closer to s than t. Although this property
can come in handy in certain applications, it is the main reason why the algorithm is

slow for P2P queries. The first improvements thereto were already proposed in the

1960s (bidirectional search) and the 1970s (goal-directed search). The former vari-

ant starts two Dijkstra algorithms from the start and the end node simultaneously.

The search terminates when the two search frontiers touch, and we therefore have

to scan fewer nodes, except for pathological cases.

The goal-directed (called A∗) search reduces the number of scanned nodes by

modifying the keys in the priority queue: instead of only considering the distance

between s and some node v for the key of v, it also takes estimates (in fact lower

bounds) for the remaining distance between v and t into account. This allows us

to extract nodes that are closer to t earlier in the algorithm and overall scan fewer

nodes.

For graphs embedded in the Euclidean plane, we can simply obtain such lower

bounds on the remaining distance geometrically. For general graphs, the concept of

landmarks turned out to be useful (Goldberg and Harrelson 2005, Goldberg et al.

2005): for each node  of some fixed subset of nodes, we compute the shortest

distances to all other nodes in the preprocessing. These distances can then be used

to obtain bounds for any other node pair.

6.4.1.2 Pruning

This acceleration technique tries to identify nodes that will not lie on the shortest

paths and prune them early during the algorithm. This pruning may be performed

either when scanning or when labeling a node. Multiple different concepts were de-

veloped, e.g., geometric containers (Wagner and Willhalm 2003), arc flags (Köhler

et al. 2004), and reach-based pruning (Gutman 2004, Goldberg et al. 2005). Al-

though they are all different, they use the common idea of preprocessing the graph

such that, when considering a node or edge, we can—based on supplementing data

structures—quickly decide whether to prune the (target) node and not consider it in

the remaining algorithm.

6.4.1.3 Multilevel Approaches

The newest and in conjunction with the above techniques, most successful acceler-

ation technique is based on extracting a series of graph layers from the input graph.

The initial idea is to mimic how we manually would try to find an optimal route:

when traveling between two cities, we will usually use city roads only in the be-

ginning and at the end of our route, and use highways in between. The aim is to

automatically extract such a hierarchy from the input graph, use it to accelerate the

query times—by mainly using the smallest graph only considering the “fast” streets
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or subroutes—but still guarantee an overall optimal route. Multiple techniques arose

to achieve this goal. While they are all beneficial to the more traditional approaches,

the highway hierarchies as presented in Sanders and Schultes (2005) currently offer
the best speed-ups.

6.4.1.4 State-of-the-Art and Outlook

Overall, for each such acceleration technique we can construct instances were they

are not beneficial. However when applied to real-world instances such as the full

road-networks of the USA or Europe, which contain multiple millions of nodes and

edges, these techniques allow us to compute provable optimal shortest paths in a

couple of microseconds (μs, a millionth part of a second). See, e.g., the repository

of Schulz5 for a comprehensive compilation of current algorithms and results.

Based on the successes for static route finding, current research now also focuses

on adapting these algorithms for dynamic settings, taking into account situations

where travel times on certain streets are dependent on the current time (e.g., rush

hour versus 3 am) or on certain traffic conditions due to road blocks, accidents, etc.

6.4.2 Full-Text Indexes

Full-text indexes are data structures that store a (potentially long) text T and allow to

search for a short substring, called the pattern p, within it. Finding all occurrences

of p in T is an important task in many applications, e.g., for text search in large

document collections or the Internet, data compression, and sequence matching in

biological sequence databases.

The naive way to perform this task is to scan through the text, trying to match

the pattern at each starting position, leading to a worst-case running time of O(nk),
where n = |T | and k = |p|. There are a number of direct search algorithms, such as

those by Knuth–Morris–Pratt and Boyer–Moore, that try to decrease the necessary

effort by skipping parts of the text, typically by preprocessing the pattern. Using

this preprocessed information, these algorithms manage to achieve a search time of

O(n + k), i.e., linear in the size of the text and the pattern. However, with today’s

huge data sets arising from high-throughput methods in biology or web indexing,

even search time linear in the text size is inacceptably slow. Additionally, when

the text is used for several searches of different patterns—e.g., when searching for

peptide sequences in a protein database—it can pay off to build a data structure that

uses information derived from the text instead, such that the construction time can be

amortized over the number of searches. Suffix trees and suffix arrays are prominent

examples of such data structures; after construction for a given input text they allow

5 Frank Schulz, website collecting shortest path research, http://i11www.iti.
uni-karlsruhe.de/~fschulz/shortest-paths/



6 Algorithm Engineering: Concepts and Practice 151

to answer queries in time linear in the length of the pattern. Their concept is based

on the fact that each substring of a text is also the prefix of a suffix of the text.

Depending on the task at hand and the available hard- and software environment,

the time and space requirements for the construction of such a data structure may

be critical. For many decades now, there has been an ongoing research into time-

and space-efficient construction algorithms and implementations for suffix trees and

arrays, especially motivated by the increasing needs in application areas such as

bioinformatics.

In the 1970s, Weiner (1973) proposed a data structure to allow fast string

searching—the suffix tree—that can be constructed in linear time and space in the

length of the text string. The data is organized as a tree where paths from the root

to the leaves are in a one-to-one correspondence to the suffixes of T . The suffix tree
became a widely used string-matching data structure for decades. McCreight later

improved the space consumption of the tree construction (1976), using about 25 %

less than Weiner’s original algorithm. Ukkonen (1995) improved on the existing al-

gorithms by giving an online algorithm that allows the data structure to be easily

updated.

With today’s huge data collections, the memory consumption of suffix trees be-

came a major drawback. Even though there have been many advances in reducing

the memory requirements by developing space-efficient representations, see, e.g.,

Kurtz (1999), the use of 10–15 bytes on average per input character is still too

high for many practical applications. The human genome, for example, contains

about 3× 109 base pairs, leading to a string representation of about 750 megabytes,

whereas a suffix tree implementation would need around 45 gigabytes of internal

memory. The performance of suffix trees is also dependent on the size of the alpha-

betΣ. When searching for DNA sequences, where |Σ| = 4, this is not a problematic

restriction, but already for protein sequence searches with |Σ| = 20—and certainly

when processing large alphabet texts such as, e.g., Chinese texts using an alphabet

with several thousand characters—they are less efficient.

In the 1990s, Manber and Myers proposed a space-efficient data structure that

is independent of the alphabet size—the suffix array (Manber and Myers 1993).

It is constructed by sorting all suffixes of the text in lexicographic order and then

storing the starting indices of the suffixes in this order in an array. This means that

the look-up operation that returns a pointer to the i-th suffix in lexicographical order
can be performed in constant time. The search for a pattern then can be done by

using binary search in the array, leading toO(k log n) runtime for a straight-forward

implementation where a character-by-character comparison is done for each new

search interval boundary. Using an additional array of longest common prefixes, the

search can be sped up to O(k + log n). Abouelhoda et al. showed how to use suffix

arrays as a replacement for suffix trees in algorithms that rely on the tree structure

and also discussed their application for genome analysis (Abouelhoda et al. 2002,

2004).

In recent years, there was a rally for the development of better, i.e., faster and

more space-efficient, construction algorithms (Ko and Aluru 2005, Kim et al. 2005,

Manzini and Ferragina 2004, Kärkkäinen et al. 2006). Today’s best algorithms are



152 M. Chimani and K. Klein

fast in practice, some but not all of them have asymptotically optimal linear running

time, they have low space consumption, and often can be easily implemented with

only a small amount of code; see also Puglisi et al. (2007) for a classification and

comparison of numerous construction algorithms.

6.4.2.1 Compressed and External Memory Indexes

Looking at the simplicity of the data structure and the great improvement in space

consumption, the suffix array may appear to be the endpoint of the development.

However, even the small space requirements of an integer array may be too large for

practical purposes, e.g., when indexing biological databases, the data structure may

not fit into main memory and in particular the construction algorithm may need far

more space than is accessible. This motivated further research in two different direc-

tions: a further decrease in memory consumption and the development of external

memory index construction algorithms. The first path led to so-called compressed
data structures, whereas the second one led to algorithms with decreased I/O com-

plexity.

Compressed data structures typically exhibit a trade-off between decreased space

consumption for the representation and increased running time for the operations.

When the compression leads to a size that allows to keep the whole data structure

in internal memory, the increase in running time does not necessarily need to lead

to slower performance in practice. Compressed indexes are especially well suited to

reduce space complexity when small alphabet sizes, such as in genomic information,

allow good compression rates. Compressed indexes that also allow to reproduce

any substring without separate storage of the text, so-called self-indexes, can lead to
additional space savings and are gaining increasing attention in theory and practice.

The first compressed suffix array, proposed by Grossi and Vitter (2005), reduced

the space requirement of suffix arrays from O(n log n) to O(n log |Σ|). Sadakane
extended its functionality to self-indexing (2003) and also introduced compressed
suffix trees (2007), using onlyO(n log |Σ|) bits but still providing the full function-
ality of suffix tree operations with a slowdown factor of polylog(n). Independently
of the development of compressed suffix arrays, Mäkinen proposed the so-called

compact suffix array (2002), which uses a conceptually different approach and is

significantly larger than compressed suffix arrays, but is much faster to report pat-

tern occurrences and text contexts.

In recent years, a number of improvements have been proposed that either de-

crease memory consumption or try to find a good practical setting regarding the

space and time trade-off, e.g., the FM index (Ferragina and Manzini 2002, Ferrag-

ina et al. 2007), and compressed compact suffix arrays (Mäkinen and Navarro 2004,

Navarro and Mäkinen 2007). Compressed indexes for the human genome can be

constructed with a space requirement of less than 2 gigabytes of memory.

Arge et al. (1997) were the first to address the I/O complexity of the string sort-

ing problem, showing that it is dependent on the relative lengths of the strings com-

pared with the block size. Farach-Colton et al. (2000) presented the first I/O opti-
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mal construction algorithm, which is rather complex and hides large factors in the

O notation. Crauser and Ferragina (2002) gave an experimental study on external

memory construction algorithms, where they also described a discrepancy between

worst-case complexity and practical performance of one of the algorithms and used

their findings to develop a new algorithm that combines good practical and efficient

worst-case performance. Dementiev et al. (2008a) engineered an external version of

the algorithm by Kärkkäinen et al. (2006) that is theoretically optimal and outper-

forms all other algorithms in practice.

6.4.2.2 State-of-the-Art and Outlook

The research on text indexes led to many publicly available implementations, and

the Pizza&Chili Corpus 6 provides a multitude of implementations of different in-

dexes together with a collection of texts that represent a variety of applications. The

available implementations support a common API and additional information. Soft-

ware is provided to support easy experimentation and comparison of different index

types and implementations.

Further improvements on the practical time and space consumption of the con-

struction as well as the implementations of index structures can be expected, even-

tually for specific alphabets. Regarding the size of the texts and the availability of

cheap medium-performance hardware, also the aspects of efficient use of external

memory and of parallelization have to be further considered in the future. In order

to speed up construction of text indexes for huge inputs, a number of parallel algo-

rithms have been given (Kulla and Sanders 2007, Futamura et al. 2001). There are

also parallel algorithms that convert suffix arrays into suffix trees (Iliopoulos and

Rytter 2004).

6.5 Summary and Outlook

Algorithm engineering has come a long way from its first beginnings via simple ex-

perimental evaluations to become an independent research field. It is concerned with

the process of designing, analyzing, implementing, and experimentally evaluating

algorithms. In this chapter we have given an overview of some of the fundamental

topics in algorithm engineering to present the main underlying principles. We did

not touch too much on the topic of designing experiments, where the goal is to make

them most expressive and significant. Though beyond the scope of this chapter, this

is a critical part of the full algorithm engineering cycle; see, e.g., Johnson (2002) for

a comprehensive discussion of this topic. More in-depth treatment of various other

issues can be found in works by Mehlhorn and Sanders (2008), Dementiev (2006),

and Meyer et al. (2003).

6 Pizza&Chili Corpus, http://pizzachili.dcc.uchile.cl/
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An increasing number of conferences and workshops are concerned with the

different aspects of algorithm engineering, e.g., the International Symposium on

Experimental Algorithms (SEA), the Workshop on Algorithm Engineering and Ex-

periments (ALENEX), and the European Symposium on Algorithms (ESA). There

are many libraries publicly available that provide efficient implementations of state-

of-the-art algorithms and data structures in a variety of fields, amongst others the

Computational Geometry Algorithms Library,7 the Open Graph Drawing Frame-

work,8 and the STXXL for external memory computations. The Stony Brook Algo-

rithm Repository9 is a collection of algorithm implementations for over 70 of the

most fundamental problems in combinatorial algorithmics.

Due to increasingly large and complex data sets and the ongoing trend towards

sophisticated new hardware solutions, efficient algorithms and data structures will

play an important role in the future. Experience in recent years, e.g., in the sequenc-

ing of the human genome, show that improvements along the lines of algorithm

engineering—i.e., coupling theoretical and practical research—can lead to break-

throughs in application areas.

Furthermore, as demonstrated in the above sections, algorithm engineering is not

a one-way street. By applying the according concepts, new and interesting questions

and research directions for theoretical research arise.
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Chapter 7
Algorithm Survival Analysis

Matteo Gagliolo and Catherine Legrand

Abstract Algorithm selection is typically based on models of algorithm perfor-

mance, learned during a separate offline training sequence, which can be pro-

hibitively expensive. In recent work, we adopted an online approach, in which mod-

els of the runtime distributions of the available algorithms are iteratively updated and

used to guide the allocation of computational resources, while solving a sequence

of problem instances. The models are estimated using survival analysis techniques,

which allow us to reduce computation time, censoring the runtimes of the slower

algorithms. Here, we review the statistical aspects of our online selection method,

discussing the bias induced in the runtime distributions (RTD) models by the com-

petition of different algorithms on the same problem instances.

7.1 Introduction

This chapter is focused on modeling the performance of algorithms for solving

search or decision problems (Hoos and Stützle 2004). In this broad category of

problems, which includes satisfiability (Gent and Walsh 1999) and constraint sat-

isfaction in general (Tsang 1993), there is no quality measure associated with a

solution candidate, but only a binary criterion for distinguishing a solution: each

problem instance may be characterized by zero, one or more solutions.

In the more general optimization problem, each solution is characterized by one

or more scalar values, indicating its quality. While we do not explicitly consider
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this category here, note that an optimization problem can be mapped to a decision

problem if a target solution quality can be set in advance: in such cases, the cor-

responding decision problem consists of finding a solution with the desired quality

level.

From a computer scientist’s point of view, an algorithm is nothing but a piece of

software, being executed on a particular machine. In this sense, its performance may

be related to the use of various resources (memory, bandwidth, etc.), but the most

widely used is definitely the CPU time spent, or runtime, and performance modeling

is usually aimed at describing and predicting this value.

Consider then a randomized algorithm solving a given problem instance, and

halting as soon as a feasible solution is found, or the instance is proved unsolv-

able. The runtime of the algorithm can be viewed as a random variable, which is

fully described by its distribution, commonly referred to as the runtime distribu-
tion (RTD) in literature about algorithm performance modeling (see, e.g., Hoos and

Stützle 2004).

Fortunately for us, we do not have to solve this performance modeling task from

scratch. There is already a large corpus of research devoted to modeling the ran-

dom occurrence of events in time: survival analysis (Klein and Moeschberger 2003,

Collet 2003, Machin et al. 2006) is an important field of statistics, with applica-

tions in many areas such as medicine, biology, finance, technology, etc. Researchers

in medicine will typically be interested in time to death (hence the name), but the

analysis of time-to-event data in general occurs in other fields, and other terms may

be used to describe the same thing. For example, engineers modeling the duration

of a device speak of failure analysis or reliability theory (Nelson 1982). Actuaries

setting premiums for insurance companies use the term actuarial science.
The rest of the chapter is organized as follows. Section 7.2 introduces the no-

tions of survival analysis that can be of use when modeling runtime distributions.

Section 7.3 describes the statistical aspects of our approach to algorithm selection

(GAMBLETA) (Gagliolo and Schmidhuber 2006b, 2008a), focusing on the bias in-

troduced in the models by the use of algorithm portfolios to sample the runtime

distributions. Section 7.4 illustrates the presented concepts in a simple experimen-

tal setting. Section 7.5 references related work, and Sect. 7.6 concludes the chapter

discussing ongoing research.

7.2 Modeling Runtime Distributions

In this section, we briefly review the basic concepts from survival analysis, and

discuss their application to algorithm performance modeling.
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7.2.1 Basic Quantities and Concepts

Let T ∈ [0,∞) be a random variable representing the time from a well-defined

origin to the occurrence of a specific event: in our case, the runtime of an algorithm,

defined as the interval between its starting time and its halting time, regardless of

whether the algorithm halts because it found a solution or because it proved that

there are none.

An important distinction has to be made between the RTD of a randomized al-

gorithm on a given problem instance, which can be sampled by solving the instance

repeatedly, each time initializing the algorithm with a different random seed, and the

RTD of a randomized (or deterministic) algorithm on a set of instances, which can

be sampled by running the algorithm repeatedly, each time solving a randomly cho-

sen instance. In the first case, the random aspects are inherent to the algorithm. In

the second, an additional random aspect is involved when picking the instance; an-

other random process may be responsible for generating the instances in the set. In

the following we will refer to these two distributions as the RTD of the instance and
the RTD of the set, respectively; when no distinction is made, the concept exposed

are valid in both cases.

A runtime distribution, as any other distribution, can be described by its cumula-
tive distribution function (CDF),

F (t) = Pr{T ≤ t}, F : [0,∞) → [0, 1], (7.1)

which is an increasing function of time, representing the probability that the algo-

rithm halts within a time t. Another commonly used representation is the probability
density function (pdf), defined as the derivative of the CDF:

f(t) =
dF (t)

dt
. (7.2)

Integrating the pdf obviously gives us back the CDF:

F (t) =

∫ t

0

f(τ)dτ. (7.3)

Time-to-event distributions are often described in terms of the survival function

S(t) = 1− F (t), (7.4)

which owes its name to the medical application of this branch of statistics, and

represents, in our case, the probability that the algorithm will still be running at

time t.
Another important concept in survival analysis is the hazard function h(t), quan-

tifying the instantaneous probability of the event of interest occurring at time t, given
that it was not observed earlier:
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h(t) = lim
Δt→0

Pr{t ≤ T < t+Δt | T ≥ t}
Δt

= lim
Δt→0

Pr{t ≤ T < t+Δt}
ΔtPr{T ≥ t} =

f(t)

S(t)
,

(7.5)

where f(t)/S(t) = f(t | T ≥ t) is the pdf conditioned on the fact that the algorithm
is still running at time t.

The integral of (7.5) is termed the cumulative hazard, and has the following rela-
tionship with the survival function:

H(t) =

∫ t

0

h(τ)dτ =

∫ t

0

dF (τ)

S(τ)
= − lnS(t), (7.6)

or conversely

S(t) = exp(−H(t)). (7.7)

The expected value of runtime, or expected runtime, can be evaluated as

E{T} =

∫ ∞

0

tf(t)dt =

∫ 1

0

tdF (t). (7.8)

A quantile tα of the RTD is defined as the time at which the probability F (t) of
the event reaches a value α ∈ [0, 1], and can be evaluated by solving the equation

tα = F−1(α). (7.9)

A difference between the typical event of interest in survival analysis, death, and

problem solution, is that the latter does not necessarily have to happen, as in general

there is no guarantee that an algorithm will halt, whether by finding a solution or

proving unsolvability of the instance at hand. This situation can characterize the

behavior of an algorithm either on a single instance, if not all the runs halt, or on

a set of instances, if the algorithm does not always halt for at least one of them. In

both cases, the performance of the algorithm can be described by an improper RTD,
where F (∞) is strictly smaller than unity, and represents the probability of halting.

The integral of an improper pdf over [0,∞) does not sum to one:

Pr{T < ∞} = F (∞) =

∫ ∞

0

f(t)dt < 1 (7.10)

the pdf for a successful run is

f(t | T < ∞) =
f(t)

F (∞)
, (7.11)

and the expected runtime is∞, as:

E{T} = Pr{T < ∞}E{T | T < ∞}+ Pr{T = ∞}E{T | T = ∞} (7.12)
= F (∞)

∫ ∞

0

tf(t | T < ∞)dt+ [1− F (∞)]∞ = ∞, (7.13)
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while quantiles tα are finite if α < F (∞) infinite otherwise.

7.2.2 Censoring

The specific feature that makes survival analysis different from classical statistical

analysis is data censoring, which refers to a situation in which the exact time of the

event of interest is not known, but is known to lie in some (possibly open) interval.

For example, in medical research analyzing survival of patients with a particular

disease, some patient may still be alive at the time of performing the analysis of

the data. The only information available about one of these subjects is that she has

survived up to a certain time, which constitutes a lower bound on her survival time.

Such incomplete observation of the event time is called censoring.1

Different types of censoring exist. In type I censoring, the event is observed only
if it occurs before a prespecified censoring time, which can be different for each ob-

servation. Type II censoring occurs when we keep collecting data until a prespecified
number of events has been observed. Quite often, these two types of censoring will

result from experimenter’s decisions aimed at reducing the duration of an experi-

ment. Coming back to our medical example, one could decide to follow the patients

for a predetermined period of time: all patients still alive at the end of this prede-

termined period will have a censored survival time. In this case, the duration of the

experiment is fixed, while the number of observed deaths is a random variable. As

an alternative, one could decide to end the experiment as soon as a predetermined

number of deaths have been observed, the other patients’ lifetimes being censored

at the time the experiment ends. In this case, the number of observed events is fixed,

while the duration of the experiment is a random variable. In other situations, the

censoring mechanism is not controlled by the experimenter. This occurs quite fre-

quently in medical applications, for example, when patients are “lost to follow-up”

in the course of the study (i.e., they stop participating in it).

In any case, one has to be very careful with discarding incomplete data as this

can result in an extremely biased model. Appropriate techniques have therefore been

developed to take these censored observations into account, as we will see in the next

subsection.

1 More precisely, right censoring. One also speaks about interval censoring (we only know that
the event occurred in between two time points without knowing when) and left censoring (we only
know that the event occurred before a certain time). Right censoring is the most common, and is
the only one we will consider here.
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7.2.3 Estimation in Survival Analysis

In this section we consider the problem of estimating the survival distribution of an

event, and modeling the impact of covariates on survival time, based on experimen-

tal data.

A sample of censored survival data is usually represented as a set of realizations

D = {(t1, c1), . . . , (tn, cn)} of a pair of random variables (T,C), generated from

another pair of latent random variables, the time to the actual event Te and the time

to censoring Tc. For each realization in the sample, only the minimum of these two

variables T = min{Te, Tc} is observed, along with the event indicator C = I(Te ≤
Tc), which is 1 if the event of interest was observed and 0 if it was censored. Most

estimation techniques require the time to event Te and the time to censoring Tc to

be statistically independent (uninformative censoring).
Methods for estimating a distribution can be broadly classified as parametric or

nonparametric. In parametric methods, a parametric function is assumed to represent

the time-to-event distribution. In nonparametric methods, no assumption is made on

the distribution, and estimates are based solely on the observed data.

7.2.3.1 Parametric Methods

In this class of methods, a function f(t;θ) is assumed to represent the pdf of the

runtime t. Several distributions are used to model survival times data, e.g., expo-

nential, Weibull, log-normal, etc. The choice of a particular distribution is clearly

a delicate issue, and should be based on empirical evidence: graphical diagnostic

tests are available to evaluate a parametric model (Klein and Moeschberger 2003,

Chap. 12).

The parameter θ is estimated based on the data. Various approaches can be fol-

lowed in this sense, usually based on the concept of the likelihood of the param-

eter in light of the data, that is, L(θ;D) = Pr{D | θ}. In a frequentist context,
maximum-likelihood methods estimate the parameter to be the one that maximizes

the likelihood. In Bayesian approaches, the parameter value is assumed to be drawn

from a prior distribution Pr{θ}, and inference is based on the posterior probability
Pr{θ | D} ∝ Pr{D | θ}Pr{θ}, either considering its mode as a point estimate

of θ, or evaluating credible intervals based on the posterior (Bishop 1995, Mackay

2002). As both approaches require computing the likelihood, in the following we

illustrate how this can be done in the case of censored survival data (Klein and

Moeschberger 2003).

If g(.) andG(.) are, respectively, the pdf and the CDF of the censoring times, the

contribution of a noncensored observation (ti, ci = 1) to the likelihood is

L(θ; ti, ci = 1) = (1−G(ti))f(ti;θ), (7.14)

while the contribution of a censored observation (ti, ci = 0) is
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L(θ; ti, ci = 0) = (1− F (ti;θ))g(ti). (7.15)

A sample of size n will be a combination of censored and noncensored observa-

tions, and assuming independence among the n realizations of (T,C), the likelihood
will be given by

L(θ;D) =
n∏

i=1

[(1−G(ti))f(ti;θ)]
ci [(1− F (ti;θ))g(ti)]

1−ci . (7.16)

If we assume independent censoring (Liang et al. 1995, Fleming and Harrington

1991), the factors (1−G(ti)) and g(ti) are not informative for the inference on the

parameters and can be removed from the likelihood, which can then be written

L(θ;D) ∝
n∏

i=1

f(ti;θ)
ci(1− F (ti;θ))

1−ci . (7.17)

When the proposed parametric distribution for runtimes is appropriate, paramet-

ric is more efficient than nonparametric inference (Pintilie 2006), meaning that the

resulting model will converge faster to the underlying distribution as the sample in-

creases. Conversely, the use of a parametric function which does not fit the data well

can produce an inefficient model.

7.2.3.2 Nonparametric Methods

If there is no censored data, a simple nonparametric estimate of the survival function

can be obtained based on the empirical estimate of the CDF

F̂ (t) =
∑
i:ti≤t

1

n
, (7.18)

where t1 < t2 < ... < tr are the ordered survival times observed.

In the presence of censoring, the most commonly used nonparametric estimator

of the survival function is the product-limit estimate proposed by Kaplan and Meyer

(1958). This method is based on the idea of estimating the hazard at each time ti
in the sample as the portion of patients still alive, or “at risk” (in our case: the

algorithms still running), experiencing an event at this time point:

ĥ(ti) =

∑
i:tj=ti,cj=1 1∑

i:tj≥ti
1

=
di
ni

, (7.19)

where ci is the event indicator, di is then the number of events observed at time

ti, and ni is the number of observations still at risk at time ti. An estimate of the

survival function based on (7.19) is given by the product limit estimator, also known

as the Kaplan-Meier (KM) estimator:
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Ŝ(t) =
∏

i:ti≤t

(1− ĥ(ti)) =
∏

i:ti≤t

(
1− di

ni

)
, (7.20)

from which one can estimate the CDF as

F̂ (t) = 1− Ŝ(t). (7.21)

The cumulative hazard can be obtained from (7.20) using the following relation:

Ĥ(t) = − log(Ŝ(t)), (7.22)

or based directly on (7.19), as proposed by Nelson (1972), Aalen (1978):

Ĥ(t) =
∑
i:ti<t

di
ni

. (7.23)

The two estimators are similar for large sample sizes.

In this and other nonparametric methods, F̂ (t), Ŝ(t) and Ĥ(t) are stepwise func-
tions that change their value only at uncensored observations {ti | ci = 1} and are

defined until the largest one; if the largest observation tn is censored, the resulting

estimate F̂ (tn)will be< 1. The hazard estimate ĥ(t) (7.19) is discrete, defined only
at the event times {ti} in the sample D. In order to obtain meaningful predictions

also for t /∈ {ti}, hazard estimates can be smoothed (Wang 2005).

A review of nonparametric estimation for censored survival data in a Bayesian

framework can be found in (Ibrahim et al. 2001).

7.2.3.3 Regression Models

If additional information is available about each observation, in the form of some

covariates or features x ∈ IRd, it may be of interest to investigate its relationship

with the time to event. This can be done estimating a conditional model, or regres-
sion model, of the survival distribution S(t | x) or, as is quite often done, of the

baseline hazard h(t | x). In our case, consider again the RTD of a set of instances,

and the RTDs of each instance in the set, which will in general be different from

the RTD of the set. When performing algorithm selection, with the aim of reduc-

ing runtime, it is clearly not advisable to model the RTD of each instance, as this

would require obtaining multiple runtimes for each instance. As we expect similar

instances to have similar RTDs, we could instead identify features of the problem

instance that can be related to the runtime of the algorithm, in order to recover es-

timates that are closer to the actual RTD of each instance. In another situation, one

might want to study the impact of the various parameters of an algorithm on its run-

time distribution: in this case a sample could be formed using different values of the

parameters, and the parameters could be used as covariates.

A parametric regression model can be based on a pdf f(t | θ) in which the

parameter is itself a parametric function of the covariate θ(x;β) (see, e.g., Bishop
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1995, par. 6.4): for example, an exponential distribution f(t; θ) = θ exp(−θt) can
be cascaded with a linear model θ(x;β) = β ·x, obtaining a parametric conditional

model:

f(t | x;β) = θ(x;β) exp(−θ(x;β)t) = (β · x) exp(−β · x). (7.24)

Various other parametric models have been proposed to study the dependency

between covariates and the survival time. Several of themmodel this dependency via

the hazard or the cumulative hazard function, and the most popular one is probably

the proportional hazards model, or Cox model (Cox 1972):

h(t | x) = h0(t) exp(β · x). (7.25)

In this model it is assumed that the covariates act multiplicatively on a baseline

hazard h0(t): if this is left unspecified, (7.25) is termed a semiparametric model.

With such a model, the ratio of hazards of two observations is independent of time,

and is determined by the corresponding covariates. Among other (semi)parametric

models, one can cite the additive risk model (Klein and Moeschberger 2003,

Chap. 10), in which the covariates act additively on the hazard function, and the

accelerated failure time model (Cox and Oakes 1984), in which the covariates are

related to the logarithm of survival times.

Only limited work has been done on fully nonparametric regression models (see

the reviews by Keilegom et al. 2001, Spierdijk 2005). Beran (1981) and later works

(e.g., Akritas 1994, Wichert and Wilke 2005) are based on the idea of estimating a

conditional hazard function, as in (7.19), but with 1 replaced by a kernel function
K(x,y) : IRd× IRd → [0,∞) representing a similarity measure in covariate space:

a prediction of the hazard at time t for an individual with covariate x is given by

ĥ(t | x) =
∑

i:ti=t,ci=1 K(x,xi)∑
j:tj≥t K(x,xj)

. (7.26)

In all these conditional models, the covariates are constant over time. In some

situations, it might be interesting to model the effect of covariates which vary over

time. In our case, dynamic information about the algorithm could be available, for

example, the state of some internal variables. One possibility is to treat it as a time-
varying covariate (Li and Doss 1995, Nielsen and Linton 1995); another possibility

is to consider longitudinal data analysis techniques (Fitzmaurice et al. 2008).

7.2.4 Competing Risks

In some situations, occurrence of another type of event may “compete” with the

event of interest, and prevent the observation of the latter for some individuals. For

example, in a medical setting, one might want to study the distribution of time to
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death TA, due to a particular disease or condition A, and gather a sample of individ-

uals affected by it: at the end of the study, some patients will have died of condition

A, and their lifetime recorded as uncensored, while others will be still alive, and

their time to death censored. However, some of the patients might have died from

a different condition, B. If we want to estimate the distribution of time to death of

A, we may view death of B as a censoring event, as it prevented us from knowing

what TA would have been if the patient did not die of B at a time TB < TA. Death

from B is termed a competing risk (Pintilie 2006, Putter et al. 2006).

As death of B is an event that we are not interested in modeling, one possibility

is to consider it as an additional censoring mechanism. This may pose a problem

when the distribution of the event of interest and that of the competing risk are not

independent, for example, if both conditions A and B become more likely with old

age. This would obviously result in a censoring mechanism that is not independent

from the distribution of time to events, thus not satisfying assumption on which most

estimators rely.

When modeling runtime distributions, this situation can generally be avoided, as

one can always “kill” the same “patient” (i.e., the same problem instance) multiple

times, using different algorithms independently, as different “causes of death”. This

is not the case with our online algorithm selection method (Section 7.3), where

we strive to avoid unnecessary computations, solving each instance only once, and

using the fastest algorithm as a censoring mechanism for sampling runtimes of the

slower ones; so the topic discussed in this subsection is more relevant to our work,

rather than to RTD modeling in general.

Consider K competing risks, represented by K random variables T1, . . . , TK ,

each with its own distribution, sampled with some censoring mechanism with

threshold Tc. For each individual, we only observe a pair of random variables

(T,C), where T = min{T1, . . . , TK , Tc} is the event time, and the event indica-

tor C is 0 if the individual is still alive at Tc and k if the individual died of the k-th
risk, so it is a discrete random variable with value in {0, 1, . . . ,K}.

Consider the joint survival function of the times Tk

Z(t1, . . . , tK) = Pr{T1 > t1, . . . , TK > tk}. (7.27)

The probability of the event {Tk > tk} is the marginal survival function

Pr{Tk > tk} = Zk(tk) = Z(0, . . . , tk, . . . , 0). (7.28)

If the event times {Tk} are independent, the joint probability (7.27) equals the prod-
uct of the probabilities of the single events (7.28):

Z(t1, . . . , tK) =

K∏
j=1

Zj(tj). (7.29)

Unfortunately, if the data is gathered as described above, with at most one un-

censored event time per individual, the independence assumption cannot be tested.
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Neither the joint survival function (7.27) nor the marginals (7.28) can be identified,

and Kaplan-Meier estimates of the marginals for each risk will be biased (Tsiatis

1975, Putter et al. 2006).

One can always estimate the overall survival probability for an individual,

S(t) = Pr{T1 > t, . . . , TK > t} = Z(t1 = t, t2 = t, . . . , tK = t), (7.30)

with a product limit estimate (7.20) from the data, considering all recorded events

as if they were the same event. Other quantities that can be estimated (Pintilie 2006,

Putter et al. 2006) are the cause-specific hazard, which is defined as the hazard of

failing for a specific cause k:

λk(t) = lim
Δt→0

Pr{t ≤ T < t+Δt,C = k | T ≥ t}
Δt

, (7.31)

from which one can obtain the cumulative cause-specific hazard,

Λk(t) =

∫ t

0

λk(τ)dτ, (7.32)

and the subsurvival function

Rk(t) = exp(−Λk(t)), (7.33)

with

S(t) =
∏
k

Rk(t) = exp(−
∑
k

Λk(t)). (7.34)

The cumulative incidence function or subdistribution function for the cause k is

defined as the probability of failing from cause k before time t:

Ik(t) = Pr{T ≤ t, C = k} =

∫ t

0

λk(τ)S(τ)dτ. (7.35)

This is an improper distribution, as I(∞) = Pr{C = k} = Pr{Tj > Tk∀j 	= k},
which can be smaller than 1.

7.3 Model-Based Algorithm Selection

Attempts to automate algorithm selection are not new (Rice 1976) and are motivated

by the fact that alternative algorithms for solving the same problem often display

different performance on different problem instances, such that there is no single

“best” algorithm. Selection is typically based on predictive models of algorithm

performance, which are either assumed to be available, or are learned during an

initial training phase, in which a number of problem instances are solved with each

of the available algorithms, in order to sample their performances.
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As we have seen, the natural performance model for a decision problem solver

is its runtime distribution. The advantage of survival analysis techniques is that they

allow to reduce the time spent of sampling the RTD, as excessively long runs of the

algorithm can be censored, and still contribute to the model. It is of note that there

is an obvious trade-off between the computational cost of the sampling experiment

and the portion of uncensored events observed, which in turn will have an impact

on the precision of the obtained model: a higher portion of uncensored events will

imply a larger time cost, but it will also result in a more precise estimate of model

parameters. In the context of algorithm selection techniques, this trade-off should

rather be measured between training time and the gain in performance resulting

from the use of the learned model: in this sense, the required model precision can be

much lower than expected. An example of such a situation is given by (Gagliolo and

Schmidhuber 2006a) where this trade-off is analyzed in the context of restart strate-

gies,2 reporting the training times, and the resulting performance, of a model-based

restart strategy, where the RTDmodel is learned with different censoring thresholds.

Inspired by this idea, Gagliolo and Schmidhuber (2007) proposed an online method

for learning a restart strategy (GAMBLER), in which a model of the RTD of an al-

gorithm is iteratively updated and used to evaluate an optimal restart strategy for

the algorithm. Gagliolo and Schmidhuber (2006b, 2008a), adopted a similar online

approach (GAMBLETA) to allocate computational resources to a set of alternative

algorithms. In both cases, the trade-off between exploration and exploitation is rep-

resented as a multi-armed bandit problem (Auer et al. 2003). This game consists

of a sequence of trials against a K-armed slot machine: at each trial, the gambler

chooses one of the available arms, whose losses are randomly generated from dif-

ferent unknown distributions, and incurs of the corresponding loss. The aim of the

game is to minimize the regret, defined as the difference between the cumulative

loss of the gambler and that of the best arm.

In GAMBLETA (Gagliolo and Schmidhuber 2006b, 2008a), the different “arms”

of the bandit are represented by different time allocators (TA), that is, different tech-
niques for allocating computation time to the available algorithms. To understand

the rationale for this approach, consider a situation in which we have a way to allo-

cate time based on a model of the RTDs of the algorithms, i.e., a model-based TA.

In an online setting, in which the models are gradually improved as more instances

are solved and a larger runtime sample is available, the performance of this TA will

obviously be very poor at the beginning of the problem sequence. This model-based

TA can be combined with a more exploratory one, such as a parallel portfolio of all

available algorithms, and, at an upper level, the bandit problem solver (BPS) can

be used to pick which TA to use for each subsequent problem instance, based on

the previous performances of each TA. Intuitively, the BPS will initially penalize

the model-based allocator, but only until the model is good enough to outperform

the exploratory allocator. Alternative allocation techniques can be easily added as

additional “arms” of the bandit.

2 A restart strategy consists of executing a sequence of runs of a randomized algorithm in order
to solve a given problem instance, stopping each run j after a time tj if no solution is found and
restarting the algorithm with a different random seed.
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To introduce some notation, consider a portfolio A = {a1, a2, ..., aK} of K al-

gorithms, which can be different algorithms, different parametrization of the same

algorithm, or even copies of the same randomized algorithm differing only in the

random seed, or any combination thereof. The runtime of each ak on the current

problem instance is a random variable, Tk. The algorithms solve the same problem

instance in parallel, and share the computational resources of a single machine ac-

cording to a share s = {s1, .., sK}, sk ≥ 0,
∑K

i=1 sk = 1; i.e., for any amount t
of machine time, a portion tk = skt is allocated to ak. Here and in the following

we assume an “ideal” machine, with no task-switching overhead. Algorithm selec-

tion can be represented in this framework by setting a single sk value to 1, while a
uniform algorithm portfolio would have s = (1/K, ..., 1/K).

A time allocator (TA) can be defined as a device setting the share s for the al-

gorithms in the portfolio, possibly depending on the problem instance being solved.

A model-based TA can be implemented mapping the estimated RTDs of the algo-

rithms on the current instance to a share value s. Gagliolo and Schmidhuber (2006b)

proposed three different analytic approaches, in which time allocation is posed as

a function optimization problem: the RTD of a portfolio is expressed as a function

of the share s, and the value of s is set optimizing some function of this RTD, for

example, the expected runtime. The next sections will illustrate these two steps.

7.3.1 RTD of an Algorithm Portfolio

An ak that can solve the problem in time tk if run alone will spend a time t = tk/sk
if run with a share sk. If the runtime distribution Fk(tk) of ak on the current problem
is available, one can obtain the distribution Fk,sk(t) of the event “ak solved the

problem after a time t, using a share sk”, by simply substituting tk = skt in Fk:

Fk,sk(t) = Fk(skt). (7.36)

If the execution of all the algorithms is stopped as soon as one of them solves

the problem, the resulting duration of the solution process is a random variable,

representing the runtime of the parallel portfolio, whose value is determined by the

share s, and by the random runtimes Tk of the algorithms in the set:

TA = min

{
T1

s1
,
T2

s2
, . . . ,

TK

sK

}
. (7.37)

Its distribution FA,s(t) can be evaluated based on the share s, and the {Fk}. The
evaluation is more intuitive if we reason in terms of the survival distribution: at a

given time t, the probability SA,s(t) of not having obtained a solution is equal to

the joint probability that no single algorithm ak has obtained a solution within its

time share skt. Assuming that the solution events are independent for each ai, this
joint probability can be evaluated as the product of the individual survival functions

Sk(skt)
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SA,s(t) =
K∏

k=1

Sk(skt). (7.38)

Given (7.6), equation (7.38) has an elegant representation in terms of the cu-

mulative hazard function. Apart from the terms sk, (7.39) is the method used by

engineers to evaluate the failure distribution of a series system, which stops work-

ing as soon as one of the components fail, based on the failure distribution for each

single component (Nelson 1982):

HA,s(t) = − ln(SA,s(t)) =

K∑
k=1

− ln(Sk(skt)) =

K∑
k=1

Hk(skt). (7.39)

The above formulas rely on the assumption of independence of the runtime val-

ues among the different algorithms, which allows the joint probability (7.38) to be

expressed as a product. This assumption is met only if the Sk represent the runtime

distributions of the ak on the particular problem instance being solved. If instead

the only Sk available capture the behavior of the algorithms on a set of instances,
which includes the current one, independence cannot be assumed: in this case, the

methods presented should be viewed as heuristics. In a less pessimistic scenario,

one could have access to models of the Sk conditioned on features, or covariates, x
of the current problem. In such a case the conditional independence of the runtime

values would be sufficient, and the resulting joint survival probability could still be

evaluated as a product

SA,s(t | x) =
K∏
i=1

Sk(skt | x). (7.40)

7.3.2 Model-Based Time Allocators

Once the RTD of the portfolio is expressed as a function of the share s, as in (7.38,

7.40), the problem of allocating machine time can be formulated as an optimiza-

tion problem. In (Gagliolo and Schmidhuber 2006b), the following alternatives are

proposed:

Expected time The expected runtime value EA,s(t) =
∫∞
0

tfA,s(t)dt can be ob-
tained, and minimized with respect to s:

s = argmin
s

EA,s(t). (7.41)

Contract If an upper bound, or contract, tu on runtime is imposed, one can in-

stead use (7.38) to pick the s that maximizes the probability of solution within

the contract FA,s(tu) = Pr{TA,s ≤ tu} (or, equivalently, minimizes SA,s(tu)):
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s = argmin
s

SA,s(tu). (7.42)

Quantile In other applications, one might want to solve each problem with

probability at least α, and minimize the time spent. In this case, a quantile

tA,s(α) = F−1
A,s(α) should be minimized:

s = argmin
s

F−1
A,s(α). (7.43)

These three methods can be easily adapted to allocate time on multiple CPUs

(Gagliolo and Schmidhuber 2008b). If the Fk are parametric, a gradient of the

above quantities can be computed analytically, depending on the particular para-

metric form; otherwise, the optimization can be performed numerically.

Note that the shares s resulting from these three optimization processes can dif-

fer: in the last two cases, they can also depend on the values chosen for tu and α
respectively. In no case is there a guarantee of unimodality, and it may be advis-

able to repeat the optimization process multiple times, with different random initial

values for s, in case of extreme multimodality.

7.3.3 Algorithms as Competing Risks

As said, GAMBLETA is a fully online algorithm selection method, in which there is

no distinction between learning and using the RTD models. In order to save compu-

tation time, for each instance, we only wait until the fastest algorithm solves it: at

this point we stop the execution of the remaining algorithms. In medical terms, we

are viewing each instance bj as a patient, with covariates xj , and the K algorithms

as competing risks, one of which should eventually “kill” the patient, and censoring

the runtime values for the other algorithms.

From a statistical point of view, a clear disadvantage of using an algorithm port-

folio to gather runtime data is that, as we saw in Sect. 7.2.4, the resulting models

will be biased. In the next section we will see an illustrative example of this phe-

nomenon.

7.4 Experiments

In this section we present a simple sampling experiment, with a small set of satisfi-

ability problem solvers, in order to illustrate the concepts introduced in this chapter.

Satisfiability (SAT) problems (Gent and Walsh 1999) are standard decision

problems, with many important practical applications. A conjunctive normal form

CNF(k,n,m) problem consists of finding an instantiation of a set of n Boolean vari-

ables that simultaneously satisfies a set of m clauses, each being the logical OR of

k literals, chosen from the set of variables and their negations. A problem instance



176 M. Gagliolo and C. Legrand

is termed satisfiable (SAT) if there exists at least one such instantiation, otherwise

it is unsatisfiable (UNSAT). An algorithm solving an instance will halt as soon as a

single solution is found or unsatisfiability is proved. With k = 3 the problem is NP-

complete. Satisfiability of an instance depends in probability on the ratio of clauses

to variables: a phase transition can be observed atm/n ≈ 4.3 (Mitchell et al. 1992),

at which an instance is satisfiable with probability 0.5. This probability quickly goes
to 0 for m/n above the threshold, and to 1 below.

SAT solvers can be broadly classified in two categories: complete solvers, which
execute a backtracking search on the tree of possible variable instantiations and

are guaranteed to determine the satisfiability of a problem in a finite, but possibly

unfeasibly high, amount of time; and local search (LS) solvers, that cannot prove

unsatisfiability, but are usually faster than complete solvers on satisfiable instances.

In other words, a local search solver can only be applied to satisfiable instances: at

the threshold, there is a 0.5 probability that the instance will be UNSAT, in which

case the solver would run forever. The RTD of a set of instances for a complete

solver will have F (∞) = 1 for any value of the ratio m/n; a local search solver

would have F (∞) = 0.5 on a set of instances at the 4.3 threshold, F (∞) = 1 below
the threshold, and F (t) = 0 ∀t above it.

In the following experiments, we used a set of 200 randomly generated instances

at the phase transition, 100 of which were satisfiable, with n = 250 variables

and m = 1065 clauses: the uf-250-1065 and uuf-250-1065 instances from

SATLIB (Hoos and Stützle 2000). The algorithm portfolio consisted of two SAT

solvers from the two categories above, the same as used by Gagliolo and Schmid-

huber (2006b). As a complete solver we picked Satz-Rand (Gomes et al. 2000),

a randomized version of Satz (Li and Anbulagan 1997) in which random noise

influences the choice of the branching variable. Satz is a modified version of the

complete DPLL procedure, in which the choice of the variable on which to branch

next follows an heuristic ordering, based on first- and second-level unit propagation.

Satz-Rand differs in that, after the list is formed, the next variable to branch on is

randomly picked among the top h fraction of the list. We present results with the

heuristic starting from the most constrained variables, as suggested also by Li and

Anbulagan (1997), and the noise parameter set to 0.4. As a local search solver we

used G2-WSAT (Li and Huang 2005): for this algorithm, we set a high noise param-

eter (0.5), as advisable for problems at the phase threshold, and the diversification

probability at the default value of 0.05.
This algorithm set/problem set combination is quite interesting, as G2-WSAT al-

most always dominates the performance of Satz-Rand on satisfiable instances, while

the latter is obviously the winner on all unsatisfiable ones, for which the runtime of

G2-WSAT is infinite.

This situation is visualized by the continuous lines in Fig. 7.1, which plot the

RTD of the set for the two solvers,3 resulting from a KM estimate of the CDF (7.21)

3 As we needed a common measure of time, and the CPU runtime measures are quite inaccurate
(see also Hoos and Stützle 2004, p. 169), we modified the original code of the two algorithms by
adding a counter that is incremented at every loop in the code. The resulting time measure was
consistent with the number of backtracks, for Satz-Rand, and the number of flips, for G2-WSAT.
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Fig. 7.1: The RTDs (continuous lines) of Satz-Rand (black) and G2WSAT (gray), along with the
RTD of the portfolio (dashed lines) resulting from different values of the share s = (s1, s2), where
s1 is the portion of time allocated to Satz-Rand, and s2 = 1− s1 is the portion used by G2WSAT

based on the runtimes collected from 100 runs with different random seeds for each

of the 200 instances. No censoring was used, except of course for the runtimes of

G2WSAT on the UNSAT instances, which were artificially generated as censored

events with threshold 109. One can clearly notice the advantage of G2-WSAT on

satisfiable instances, represented by the small lower quantiles (below 106). From
quantile 0.5 on, the RTD remains flat, reflecting the fact that half of the instances

are unsatisfiable. Satz-Rand starts solving problems later, and is competitive with

G2-WSAT only on a small number of satisfiable instances, but is able to solve also

all the unsatisfiable ones, as indicated by the fact that the RTD reaches 1.
On the same plot (dashed lines), we display the RTD of the portfolio (7.38) for

different values of the share, obtained simulating a run of the portfolio (7.37) for

each pair of runtime values. For s = (1, 0) only Satz-Rand is run. Giving a small

portion of time to G2-WSAT (s = (0.9, 0.1)) already improves the situation; in-

creasing its share gradually moves the RTD of the portfolio towards the one of

G2-WSAT (s = (0, 1)).

All runtimes reported for this benchmark are expressed in these loop cycles: on a 2.4GHzmachine,
109 cycles take about 1 minute.



178 M. Gagliolo and C. Legrand

0.0e+00 1.0e+08 2.0e+08 3.0e+08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Runtime [loop cycles]

S
ol

ut
io

n 
pr

ob
ab

ili
ty

Satz−Rand: UNSAT
Satz−Rand: SAT
G2WSAT: SAT

(a) RTD of SAT, UNSAT

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Runtime [loop cycles]

S
ol

ut
io

n 
pr

ob
ab

ili
ty

(b) G2WSAT on SAT instances
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(c) Satz-Rand on SAT instances
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Fig. 7.2: (a) RTDs of the two algorithms on the subsets of SAT and UNSAT instances: the line for
G2WSAT on UNSAT instances would be constant at 0, and is omitted. (b) RTDs of G2WSAT on
each of the 100 satisfiable instances. Note the different time scale. The lower line leaving the plot
refers to instance 24, and reaches 1 at time 1.6 × 108. (c,d) RTDs of Satz-Rand on the satisfiable
and unsatisfiable instances, respectively

Let us now look with more detail at the variability of the RTDs within the set.

Figure 7.2(a) displays the RTDs of the two algorithms on the subsets of SAT and

UNSAT instances. Figure 7.2(b,c,d) displays the RTDs of the instances, again esti-

mated based on 100 runs for each instance, grouped based on the algorithm and on

satisfiability. Note that there still is a huge variability of the RTD of the instances

within each subset.

To illustrate the bias induced by a competing risk, in Fig. 7.3(a) we display again

the unbiased RTDs of the two algorithms (dotted lines) on the whole set of in-

stances, compared with the KM estimates (7.20) of the RTDs of the two algorithms,

this time obtained with the portfolio approach, that is, censoring the runtime of

the slowest algorithm for each run and each instance (continuous lines). While the

model for G2WSAT remains accurate, as it mostly gets censored on unsatisfiable

instances on which it would run forever anyway, one can clearly notice the bias of

the product-limit estimator for Satz-Rand: the runtime is overestimated, especially

for the satisfiable instances, on which Satz-Rand is slower, so it gets censored.
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Fig. 7.3: (a) The unbiased RTDs (dotted lines) of Satz-Rand (black) and G2WSAT (gray), com-
pared with the biased estimates (continuous lines) obtained by censoring, for each instance and
each seed, the runtime of the slowest algorithm. Note the bias in the model for Satz-Rand. (b)
The same unbiased RTDs (dotted lines), again compared with the estimates (continuous lines) ob-
tained by censoring the runtime of the slowest algorithm, this time after a random reordering of
the instances, in order to reduce the bias. Note the improvement in the model for Satz-Rand

To reduce the bias, we repeated the sampling, randomly reordering the instances

for Satz-Rand: in this way, the two algorithms run in parallel, but each on a different

instance. This should reduce the statistical dependence among the runtimes of the

two algorithms, allowing to be considered the censoring mechanism uninformative,

thus resulting in a more correct estimate: this can indeed be observed in Fig. 7.3(b),

where we display again the “real” runtime distributions, compared against the esti-

mates obtained after random reordering of the instances. This time the estimator for

Satz-Rand is visibly more accurate on the whole range of runtimes observed.

7.5 Related Work

Literature on RTD modeling aimed at analyzing algorithm performance is relatively

recent. The behavior of complete SAT solvers on solvable and unsolvable instances

near phase transition have been shown to be approximable by Weibull and log-

normal distributions, respectively (Frost et al. 1997). Heavy-tailed4 behavior is ob-

served for backtracking search on structured underconstrained problems by Hogg

and Williams (1994), Gomes et al. (2000). The performance of local search SAT

solvers is analyzed by Hoos (1999), and modeled using a mixture of exponential

distributions by Hoos (2002).

4 A heavy-tailed runtime distribution F (t) is characterized by a Pareto tail, F (t) →t→∞ 1−Ct−α.
In practice, this means that most runs are relatively short, but the remaining few can take a very
long time.
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A seminal paper in the field of algorithm selection is that by Rice (1976), in

which offline, per instance selection is first proposed, for both decision and opti-

mization problems. More recently, similar concepts have been proposed, with dif-

ferent terminology (algorithm recommendation, ranking, model selection), in the

Meta-Learning community (Vilalta and Drissi 2002). Research in this field usually

deals with optimization problems, and is focused on maximizing solution quality,

without taking into account the computational aspect.

Work on Empirical Hardness Models (Leyton-Brown et al. 2002, Nudelman et al.

2004) is instead applied to decision problems, and focuses on obtaining accurate

models of runtime performance, conditioned on numerous features of the problem

instances, as well as on parameters of the solvers. The models are used to perform

algorithm selection on a per instance basis, and are learned offline: censored sam-

pling is also considered (Xu et al. 2008).

The foundation papers about algorithm portfolios (Huberman et al. 1997, Gomes

et al. 1998, Gomes and Selman 2001) describe how to evaluate the runtime distribu-

tion of a portfolio, based on the runtime distributions of the algorithms, which are

assumed to be available. The RTD is used to evaluate mean and variance, and find

the (per set optimal) efficient frontier of the portfolio, i.e., the subset of all possible
allocations in which no element is dominated in both mean and variance.

Another approach based on runtime distributions is given by Finkelstein et al.

(2002, 2003), for parallel independent processes and shared resources, respectively.

The RTDs are assumed to be known, and the expected value of a cost function, ac-

counting for both wall clock time and resources usage, is minimized. A dynamic

schedule is evaluated offline, using a branch-and-bound algorithm to find the opti-

mal one in a tree of possible schedules. Examples of allocation to two processes are

presented with artificially generated runtimes, and a real Latin square solver. Unfor-

tunately, the computational complexity of the tree search grows exponentially in the

number of processes.

Other examples of the application of performance modeling to resource alloca-

tion are provided by the literature on restart strategies (Luby et al. 1993, Gomes et al.

1998), and on anytime algorithms (Boddy and Dean 1994, Hansen and Zilberstein

2001).

7.6 Summary and Outlook

In this chapter we illustrated the application of survival analysis methods to model

the performance of decision problem solvers, focusing on the application of mod-

eling to algorithm selection. We described in deeper detail the statistical aspects of

GAMBLETA (Gagliolo and Schmidhuber 2006b, 2008a), discussing the bias in the

RTD models caused by the competing risks censoring scheme adopted for sampling

the runtime of the algorithms, and illustrating it with a simple sampling experiment.

Ongoing research is aimed at analyzing the actual impact of this bias on the per-

formance of GAMBLETA, and at finding a computationally cheap way of reducing
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this bias, possibly inspired by the random reordering trick described in Sect. 7.4. In

the longer term, we are working on transferring other survival analysis methods to

model the runtime quality trade-off of optimization algorithms in order to devise an

algorithm selection method for this broader class of problems.
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Chapter 8
On Applications of Extreme Value Theory in
Optimization

Jürg Hüsler

Abstract We present a statistical study of the distribution of the objective value

of solutions (outcomes) obtained by stochastic optimizers, applied for continuous

objective functions. We discuss the application of extreme value theory for the op-

timization procedures. A short review of the extreme value theory is presented to

understand the investigations. In this chapter three optimization procedures are com-

pared in this context: the random search and two evolution strategies. The outcomes

of these optimizers applied to three objective functions are discussed in the con-

text of extreme value theory and the performances of the procedures investigated,

analytically and by simulations. In particular, we find that the estimated extreme

value distributions and the fit to the outcomes characterize the performance of the

optimizer in one single instance.

8.1 Introduction

Several possibilities exist to find the optimum point of a continuous objective func-

tion. We consider a stochastic optimizer which is an algorithm based on probabilistic

procedures. We consider single-objective optimizers which produce one scalar out-

come per optimization run, being the best objective value found within the steps

of the run. The quality of an optimizer is a rather important issue, and is discussed

by analyzing the local minima or maxima and the behavior of the solution of the

optimizer based on a number of steps and the initial starting point.

Stochastic optimisers estimate the optimum value of the objective function using

a particular random procedure. Hence the optimization outcomes are random and

can be described by their distribution which allows to assess the performance of the

optimizer. Typically, the usual statistical measures of an estimator can be applied,

Jürg Hüsler
Dept. Mathematical Statistics, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland
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as bias, variance or mean square error (cf. Fonseca and Fleming (1996)). It would

be even better to know approximately the distribution of the estimators. In partic-

ular we are interested in an optimizer which is consistent, i.e., which approaches

the optimum value as the number of internal steps increases to infinity. For such an

optimizer, the lower or upper endpoint of the distribution will be the optimum value.

Statistical methods can be applied to estimate the endpoint of interest. Several sta-

tistical parametric approaches are known. Since in most cases very little is known

about the objective function, and hence about the distribution of the outcomes, such

parametric methods cannot be applied.

In this chapter we will consider the minimization problem since the results are

easily transformed to the maximization problem. We want to analyze the distribu-

tion of outcomes and also the best of the outcomes found after several executions

(runs). We denote the sample of outcomes of k independent algorithm executions by

{Yi, i = 1, . . . , k}. Each Yi denotes the minima of the same number n of internal

steps of the algorithm.

Since we consider minima, it is of main interest to investigate the distribution of

Yi. This can be related to the extreme value theory which investigates the distribution

of the extreme values, as minima or maxima and smallest or largest order statistics.

Therefore the extreme value theory is briefly reviewed in the next section, to discuss

possible applications for optimizers.

Section 8.3 is devoted to random search strategy and the application of the clas-

sical extreme value theory. Section 8.4 contains some theoretical results which sup-

port the empirical study of Sect. 8.3. Section 8.5 contains experiments using the

evolution strategy procedures, together with the application of another, more appro-

priate, method of extreme value theory for the evolution optimizers.

8.2 Extreme Value Theory

If the number of internal steps n is large, the distribution of the minima may be

found by the extreme value theory (EVT), which is based on asymptotic results

as n → ∞. Minima and maxima are related by a simple sign change of the data.

Hence, the outcomes of an optimizer for the maximal value of an objective function

is modeled in the same way.

8.2.1 Extreme Value Theory for Minima

The classical limit theorem for extremes states that minima of iid (independent and

identically distributed) random variables Xj should have an extreme value limiting

distribution as the sample size n tends to ∞, after an appropriate linear normal-

ization; see, e.g., Fisher and Tippett (1928), Leadbetter et al. (1983) or Falk et al.

(2004). This means that the distribution of the minimum Y = minj≤n Xj , linearly
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normalized by an(> 0) and bn, converges in distribution

Pr{Y ≤ anx+ bn} = 1− (1− F (anx+ bn))
n → G(x), x ∈ IR,

where G is a suitable distribution function and F is the underlying distribution of

Xj . This holds under certain quite general conditions, in particular, if the underlying

distribution F is continuous. The theory is usually formulated for maxima, but it is

easily transformed for minima, as mentioned above, by minXj = −max(−Xj).
The theory states that the limit distributions G satisfy the min-stability property.

This property allows to derive all the possible distributions G. They are called the

extreme value distributions for minima. A distribution G is called min-stable if for

every k there exist ck(> 0) and dk such that

Pr{min
i≤k

Ui ≤ ckx+ dk} = 1− (1−G(ckx+ dk))
k = G(x),

where Ui are iid random variables with distribution G. For maxima, the stability

property is called max-stability, i.e.,Pr{maxi≤k Ui ≤ ckx+dk} = Gk(ckx+dk) =
G(x).

Let us mention the extreme value distributions for minima: for μ ∈ IR, σ > 0

Λ(x) = 1− exp
(− exp (x−μ

σ )
)

if x ∈ IR (Gumbel)

Φα(x) = 1− exp
(
− (−x−μ

σ

)−α
)
if x ≤ μ, α > 0 (Fréchet)

Ψα(x) = 1− exp
(
− (x−μ

σ

)−α
)

if x ≥ μ, α < 0 (Weibull)

The extreme value distributions are typically combined into one class of the so-

called generalized extreme value distributions (GEV), by using in addition the shape
parameter γ = 1/α ∈ IR. For minima, we have

Gγ(x) = 1− exp

(
−
(
1− γ

x− μ

σ

)−1/γ
)

for 1− γ
x− μ

σ
> 0, γ 	= 0

If γ → 0, then Gγ(x) → G0(x), writing

G0(x) = 1− exp

(
− exp

(
x− μ

σ

))
, for x ∈ IR.

This class is normalized such that Gγ(0) = 1 − e−1, where the possible finite

endpoints depend now on γ.
Note that the Fréchet distribution (γ > 0) has an infinite left endpoint and its do-

main of attraction (the class of distributions for which the minimum has a limiting

Fréchet distribution) only includes distributions with an infinite left endpoint. On the

other hand the Weibull distribution has a finite left endpoint and its domain of attrac-

tion only includes distributions with a finite left endpoint. Moreover, in the Weibull

family, the shape parameter α determines the rate of growth of the density towards

the endpoint: if α = 1/γ < −1 the density decreases towards zero as it approaches
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Fig. 8.1: Weibull densities and cumulative distributions functions (cdf) for several α’s, −α =
0.5, 0.75, 1.0, 1.5, 2.0, 5.0, from left to right, with μ = 0 and σ = 1

the endpoint, whereas if −1 < α = 1/γ < 0 the density increases monotonically

towards infinity. Figure 8.1 illustrates this behavior. Finally the Gumbel distribution

is between the Fréchet and Weibull distributions, having a rather heterogeneous do-

main of attraction including distributions with either a finite or an infinite endpoint.

Its density looks like a Weibull density with a very negative shape parameter, or

equivalently as a Fréchet density with a very large shape parameter since, as men-

tioned, the Gumbel distribution is the limit as γ = 1/α → 0.
We think that the extreme value distributions can be applied for optimizers if

the assumptions of the extreme value result hold. This is true only for certain op-

timizers, such as for instance the random search one. In such a situation, Yi is the

minimum of n independent and identically distributed values of the algorithm. Since

n is large, as typically is the case for the random search algorithm, we expect that the

Yi are approximately distributed following an extreme value distribution. This will

be observed in Sect. 8.3 and derived analytically in Sect. 8.4. For finite large n, we
expect that the distribution of the Yi will be close to the limiting extreme value dis-

tribution. Hence it is reasonable to fit the distribution of the Yi by an extreme value

distribution and to estimate the parameters of the fitted extreme value distribution.

Several different estimates are known based on different estimation procedures,

as maximum-likelihood estimation, moment estimation, Bayesian estimation, prob-

ability weighted moment estimation, least squares estimation, best linear unbiased

or invariant estimation, and many more; see, e.g., the recent textbooks by Reiss and

Thomas (1997), Beirlant et al. (2004), de Haan and Ferreira (2006), and Resnick

(2007). We will apply maximum-likelihood estimators in the following examples,
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if appropriate. The goodness-of-fit can be assessed, which we will investigate in

Sect. 8.3 in our simulation examples.

8.2.2 Peaks Over Threshold Method (POT) for Minima

When the number of internal steps n is possibly not large, or when these steps

are dependent, the classical extreme value theory cannot be applied for optimizers.

However, the distribution of Mk = mini≤k Yi could still be approximated by an

extreme value distribution if k is large, since the Yi are iid random variables (r.v.’s).

In addition, if the sample size k is large, then the smallest order statistics of the Yi

contain a good amount of information on the tail of the distribution of interest. If we

consider the (negative) excesses below the m-th smallest value of the Yi’s, the con-

ditional distribution of the excesses can be modeled approximately by a generalized
Pareto distribution. This is the second possible approach of extreme value theory

which intends in general to estimate the tail of a distribution. This part of EVT is

called the peaks-over-threshold (POT) method with respect to maxima. In our con-

text it would be the approach based on negative excesses below a low threshold.

However, we keep this expression and also the term exceedances for an outcome

above the threshold, hence for a negative excess in the context of minima.

Mostly one wants to estimate the extreme quantiles or the lower endpoint, as in

the case of optimization. Under the same assumptions as for the limit distribution

of minima, the generalized Pareto distributions are the only possible limits of the

conditional distribution

FY,t(x) = Pr{Y < x|Y < t} for x < t, as t ↓ x0,

where x0 denotes the lower endpoint of FY and of FY,t.

The generalized Pareto distributions (for the lower tail) are defined by the shape

parameter γ ∈ IR, the location parameter μ, and the scale parameter σ > 0:

Wγ(x) =

(
1− γ

x− μ

σ

)−1/γ

for

{
(x− μ)/σ < 0 if γ > 0
1/γ < (x− μ)/σ < 0 if γ < 0

and

W0(x) = exp(x) for x < 0, if γ = 0.

AgainWγ(x) → W0(x) as γ → 0.
The lower tail of the extreme value distribution Gγ for minima is asymptoti-

cally approximated by the generalized Pareto distribution Wγ : Gγ(x) ∼ Wγ(x)
for x → x0. Hence, for the optimizer problem with finite global minimum, only

Pareto distributions Wγ with γ < 0 are of interest. These distributions belong to

the Beta family with parameter α = 1/γ, as the Weibull distributions Ψα in rela-

tion to the extreme value distributions Gγ . We have W ∗
α(x) = [(x − μ)/σ]−α for
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Fig. 8.2: Standard Beta densities and cumulative distributions functions W ∗
α(x) for several α’s,

−α = 0.5, 0.75, 1.0, 1.5, 2.0, 5.0, from left to right, with μ = 0, σ = 1

0 ≤ (x− μ)/σ ≤ 1 with α < 0 (see Fig. 8.2). Since the location parameter μ plays

the role of the lower endpoint of the Weibull or the Beta distributions in the case of

α < 0, we use μ instead of x0 in the following. The parameter μ is the minimum of

the objective function to be estimated with an optimizer.

Having computed k independent values Yi with some optimizers, the lower tail

and lower endpoint can be estimated with the use of the m smallest values of the

Yi’s (with somem < k); see, e.g., Falk et al. (2004), Reiss and Thomas (1997), and

de Haan and Ferreira (2006). Several procedures are also known for the estimation

of the parameters of the generalized Pareto distributions and their quantiles. Some

are applicable only for some γ, e.g., the Hill estimates for γ > 0. We can apply

maximum-likelihood (ml) estimations (for γ > −0.5, sometimes even for γ > −1),
the generalized Hill estimator, the moment estimator of Dekkers-Einmahl-de-Haan,

the Drees-Pickands estimators, the moment estimators, the mixed moment estima-

tor, kernel estimates, and many more; see e.g., Reiss and Thomas (1997), Beir-

lant et al. (2004), de Haan and Ferreira (2006), and Resnick (2007). For estimation

of confidence intervals we can apply asymptotic formulae or the profile likelihood

method.

Typicallym is much smaller than k, to derive good results. Ifm is too small, the

estimates are not reliable, but if m is too large, then the estimates are biased since

information from an intermediate domain of the distribution is used and not from the

lower tail only. So selection ofm is a critical point. Several approaches for selection

and estimation are proposed, which we discuss in the following applications.

We have no analytical results on the behavior of the smallest observations of an

optimizer which has dependent internal steps besides of the given argument on the
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tail of the distribution.We do not knowwhich generalized Pareto distribution or Beta

distribution should be fitted to the outcomes of a particular optimizer in relation to

an objective function. However, the simulation results presented in Sect. 8.5 support

our suggestion of applying the POT approach.

8.2.3 Assessment of an Optimizer

If an optimizer produces accurate solutions, the outcomes should cluster near the

optimum. Thus the limiting distribution of Mk or of Yi (if n is large) is expected to

be Weibull. Moreover, the greater the clustering effect is, the smaller the absolute

value of the shape parameter α = 1/γ is and the better the solutions are. The shape

parameter of the limiting distribution of Mk may depend also on the number n of

internal steps.

If solutions are far from the optimum due to insufficient number of steps, either

a Weibull fit with a very negative α is expected, or even a Fréchet or Gumbel fit

could result, clearly indicating that the optimum is far away (possibly estimated at

infinity).

We perform a set of simulation studies in Sect. 8.3 with the random search op-

timizer in order to investigate the use of extreme value modeling in optimization

problems. We study the relation between the parameters of the distribution and the

performance of the optimizer. As mentioned, some performances are supported by

analytical results (Sect. 8.4).

For each simulation situation considered, the parameters of the extreme value

distribution which fits the outcomes of the optimizer must be estimated. The es-

timation of the extreme value parameters may be done with different procedures,

as mentioned above; for details see Falk et al. (2004), Embrechts et al. (1997) or

de Haan and Ferreira (2006). In the approach based on EVT, the whole sample is

used for estimation by assuming that the data are minima values and have an extreme

value distribution. In the approach based on POT, it is assumed that the whole sam-

ple may not follow an extreme value distribution and only the lower order statistics

of the sample are used for estimation since the limiting extreme value distribution

characteristics are only contained in the left tail of the distribution of the original

variables Yi.

We applied the EVT approach approach with maximum-likelihood (ml) estima-

tors as implemented in Xtremes (software package included in Reiss and Thomas

(1997)). This package allows data to be modeled with the EVT and POT approach,

with different estimation procedures, goodness-of-fit-tests, and graphical devices to

judge the modeling. Also many of the EVT procedures exist as routines in the soft-

ware language R. Note that the modeling in Xtremes and R is written for maxima,

so minima have to be transformed first by sign change, as mentioned.

For those situations where ml estimation fails (typically when −2 < α < 0)
we used an alternative method suggested by Smith (1986). In this case the endpoint

μ is estimated by the sample minimum and the other two parameters by ml. We
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could also apply the moment estimator by Dekkers et al. for the POT approach with

negative γ, see Dietrich et al. (2002), Reiss and Thomas (1997) or de Haan and

Ferreira (2006). This consistent estimator is defined for the lower tail as

γ̂ = m1,m + 1− 1

2(1−m2
1,m/m2,m)

,

where mj,m =
∑m−1

i=0 (log(y(i)/y(m)))
j/m, for j = 1, 2, with the ordered data

y(i).
In order to assess the goodness of fit of the Weibull distribution in the EVT

approach we use the A2 test statistic described by Lockhart and Stephens (2006)

developed for the three parametric Weibull distributions Ψα(x;μ, σ) where the three
parameters are unknown. The three parameters location μ, scale σ, and shape α are

estimated by maximum-likelihood estimation, resulting in μ̂, σ̂, and α̂. Then for the
ordered data set y(i), 1 ≤ i ≤ k, let z(i) = Ψα(y(i); μ̂, σ̂) and define the goodness-

of-fit test statistic

A2 = −k − 1

k

k∑
i=1

(2i− 1)[log z(i) + log(1− z(k−i+1))].

The critical values of this test statistic were derived by Lockhart and Stephens

(2006), based on the asymptotic distribution of A2, and tabulated for applications.

Monte Carlo simulations showed that the critical values can be used even for smaller

samples of size k ≥ 10. This test should not be used to test the goodness-of-fit in

the POT approach.

8.3 Experiments Using Random Search

Random search has been chosen in our investigation since its execution requires

very little time, the algorithm is very simple and can be applied for many different

experiments, and it serves as motivation for further research.

All simulation studies presented by Hüsler et al. (2003) were performed using

Maple, Matlab, and Xtremes. An interface platform was developed to transfer data

automatically between the different software packages used.

In this section we deal with the random search algorithm only. In Sect. 5 we will

investigate two evolutionary algorithms. Several objective functions g : R2 → IR,

are considered:

• Rosenbrock function (1− x)2 + 100(y − x2)2

• Simple quadratic function ax2 + by2, a, b ∈ IR+

• A function with local minima and multiple global minima sin(x2+y2)/(x2+y2)
denoted by sinc.

The minimum values of the Rosenbrock and the quadratic functions are 0 at (x, y) =
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(1, 1) and (x, y) = (0, 0), respectively, whereas the minimum of the sinc function

is -0.2172 at x2 + y2 = 4.4935.

The analytic behavior of g in the neighborhood of the minimum value is dis-

cussed in Sect. 8.4, showing how the underlying distribution of the random search

algorithm and the behavior of g influence the behavior of the outcomes.

The random search algorithm randomly generates a prefixed (large) number n
of iid random vectors (for our examples in IR2) during an execution run and the

value of the objective function is calculated for each one. The outcome will then be

the minimum value of these values. In our investigation, the random vectors were

generated by the bivariate normal distribution with mean ξ ∈ IR2 and diagonal

covariance matrix δ2I (where I is the 2× 2 identity matrix).

By using different values of parameters ξ and δ we may illustrate and interpret

different optimizer behaviors. All simulations are based on the same large number of

internal steps n = 600 and repetitions of the independent algorithm executions with

sample size k = 500. The latter was chosen to reduce sufficiently the simulation

error in the statistical estimation. The behavior of the optimizer may depend on the

starting values, here on the selection of the parameters ξ and δ. In particular, we

may choose ξ at the optimum or near the optimum or further away. This behavior is

investigated in the following paragraphs.

8.3.1 Samples with Simulations Near the Optimum

In order to assure that solutions are near the optimum, random search is performed

mostly with ξ equal to the optimum. If ξ is not the optimum, which is the typical

situation, then δ is chosen large enough to guarantee that the optimum is approached.

Various δ values are chosen to investigate the possibly different behavior. Table 8.1

contains a set of representative cases. It reports for each case the estimation of the

parameters of an extreme value distribution fitting the sample Yi. The last column

refers to the goodness-of-fit test A2 for the Weibull distribution.

Since each outcome is the smallest value among n = 600 simulated iid random

observations, it is expected that the distribution of the outcomes is itself close to

an extreme value distribution. Looking at the p-values of the A2 test listed in the

table, we see that some are rather critical and suggest a poor fit. Figures 8.3 and

8.4 contain QQ-plots for cases 3 and 4 (poor and good fit, respectively). In Fig. 8.3

we observe one rather large value which influence the p-value. This value is not

the starting point of the simulation. It is a result of the rather special behavior of

the Rosenbrock function. These examples are discussed further in the analytical

Sect. 8.4, where the analytic minimum points and minimum value are mentioned.
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Table 8.1: Solutions around the optimum (minimum) for several cases with sample size k = 500,
with p-values of the A2 test. The minimum value of the objective function is estimated by μ̂

Case function ξ δ α̂ μ̂ σ̂ p-value

1 Rosenbrock optimum (1,1) 0.01 −1.01 3.69e−11 3.34e−6 0.037

2 Rosenbrock optimum (1,1) 0.50 −0.98 1.78e−07 0.0082 0.110

3 Rosenbrock optimum (1,1) 1.00 −0.99 1.61e−05 0.034 0.011

4 Rosenbrock (0,0) 2.00 −1.00 4.52e−04 0.172 0.500

5 0.001(x2 + y2) optimum (0,0) 1.00 −1.05 9.03e−09 3.36e−6 0.392

6 (1000x2 + y2) optimum (0,0) 1.00 −0.96 5.04−05 0.103 0.457

7 sinc (0, 0) 2.00 −0.49 −0.2165 1.61e−05 0.044

0

0.1

0.2

0.3

0.05 0.1 0.15 0.2

Fig. 8.3: QQ-plot of random search data of case 3 in Table 8.1, A2-test: p-value = 0.011 (x-
coordinate: Weibull quantiles, y-coordinate: sample quantiles)

8.3.2 Samples with Simulations Away from the Optimum

Table 8.2 contains a set of representative situations where random search is gener-

ated away from the optimum which happens if the center ξ of simulations is away

from the optimum and also the variance component δ is small.

All cases reported in Table 8.2 clearly ended in a transition state (μ̂ is still quite

far from the true minimum) and the estimated α̂ values are very large in magnitude.

The results are much better if δ is selected appropriately large.
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Fig. 8.4: QQ-plot of random search data of case 6 in Table 8.1, A2-test: p-value = 0.457 (x-
coordinate: Weibull quantiles, y-coordinate: sample quantiles)

Table 8.2: Solutions away from the optimum (minimum) for several cases with sample size k =
500, showing transition state solutions, with p-values of the A2 test. The minimum value of the
objective function is estimated by μ̂

Case Function ξ δ α̂ μ̂ σ̂ p-value

1 Rosenbrock (0, 0) 0.01 -5.94 0.908 0.0389 0.50

2 0.001(x2 + y2) (3,3) 0.10 -5.76 0.014 0.0014 0.06

3 1000x2 + y2 (3,3) 0.10 -9.42 5712.2 1612.1 0.05

8.4 Analytical Results

From the experiments described in Sect. 8.3.1 it is clear that, excluding the sinc
case (7) in Table 8.1, the estimated shape parameter α is close to −1 whenever the

solutions are near the optimum and very negative when far from the optimum. For

the sinc case, α̂ is close to −0.5. Also the α̂ values do not seem to be affected by a

change of δ (scale) unless this change modifies the type of solution found.

We mention some analytical results and examples given by Hüsler et al. (2003),

which clearly support the empirical results described above for the random search

algorithm, letting n, the number of steps in an optimization run, grow to infinity.

We consider the general situation with an objective function g : IRd → IR. Let

Xj , j = 1, . . . , n, be iid random vectors in IRd with Xj ∼ F and density f .
These vectors will denote the points generated within an optimization run, which

for random search are the steps of the run. Assume that the objective function g has

a global minimum gmin. If the set of global minimum points is countable we denote

the global minimum points by xl, 1 ≤ l ≤ L, where L is finite or infinite.
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Define the domain Au = {x ∈ IRd : 0 ≤ g(x) − gmin ≤ u} for u small.

The domain Au can be bounded or unbounded depending on the function g. If the
domain is bounded, we consider its d-dimensional volume |Au|. Furthermore, if Au

is concentrated in a lower-dimensional subspace IRr of IRd, then |Au| = 0. It is
more reasonable to define the r-dimensional volume |Au|r and consider also the

marginal density fr of f in this lower-dimensional space related to Au, r ≤ d.
We consider the limiting behavior of the distribution of the outcomes, Yi being the

minimum of n outcomes g(Xj) within one run, when n → ∞.

With the independence of theXj within each run, we get for Y1 = minj≤n g(Xj)

Pr{Y1 > gmin + u} = Pr{min
j≤n

g(Xj) > gmin + u}
= Pr{g(Xj) > gmin + u, j ≤ n}
= (1− Pr{g(X1) ≤ gmin + u})n
= (1− Pr{X1 ∈ Au})n = (1− p(u))n, (8.1)

where p(u) = Pr{X1 ∈ Au}. We note that the asymptotic behavior of the mini-

mum minj g(Xj) depends on the domain Au or more precisely on the probability

p(u) that X hits Au. This probability p(u) tends usually to 0 as u → 0, e.g., if the
set of global minimum points is countable. The case with p(u) → p > 0 is less

interesting for the study of optimizers. If we can normalize this probability p(un)
with un such that n p(un) → τ for some sequence un, then we get immediately that

(1−p(un))
n → exp(−τ) as n → ∞. Hence, we may derive limit laws, e.g., for the

linearly normalized minimum (minj≤n g(Xj)− gmin)/an for some normalization

constants an > 0. The following Theorem 8.1 is a general result which follows im-

mediately from (8.1) and the assumed condition on the normalization un. This result

explains the behavior of the random search optimizer in our examples of objective

functions.

Theorem 8.1. Assume that g has a global minimum value gmin. Assume that Au

and the iid random vectors Xj (j ≥ 1) are such that p(u) = Pr{Xj ∈ Au} → 0
as u → 0. If there exists a normalization u = un(x) → 0 (as n → ∞) such that
np(un) → h(x), for some x ∈ IR, then as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤ gmin + un(x)} → 1− exp(−h(x)).

If the function g has some isolated global minimum points xl, l ≤ L, we can

derive a more explicit statement. Assume that the set Au can be split into disjoint

sets Au(xl) = {x : g(x) − gmin ≤ u and |x − xl| < ε} for some ε > 0 and all

sufficiently small u. The choice of ε has no impact; it is only necessary that the sets

Au(xl) are disjoint for all u sufficiently small. Such cases will be discussed in the

examples below.

Theorem 8.2. Assume that g has a countable number of isolated global minimum
points xl, 1 ≤ l ≤ L ≤ ∞. Assume that each of the disjoint sets Au(xl) is bounded
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and concentrated in IRr with r ≤ d, for all small u and every l ≤ L, and that the
random vector X has a positive, uniformly continuous (marginal) density fr at the
global minimum points xl, l ≤ L, where the marginal density fr corresponds to the
space of Au. If un is such that for l ≤ L uniformly

n|Aun(xl)|r → τl < ∞ with
∑
l≤L

fr(xl)τl < ∞,

then as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤ gmin + un} → 1− exp

⎛⎝−∑
l≤L

fr(xl)τl

⎞⎠ .

Proof. The proof is straightforward using (8.1) and the assumptions on the disjoint

sets and the continuity of fr to approximatePr{X1 ∈ Au(xl)}) ∼ fr(xl)|Aun(xl)|r.
For more details see the proof by Hüsler et al. (2003).

Example 1: Assume that g(x, y) = ax2 + by2 for some a, b > 0. Then the

miminum of g is at the origin 0 = (0, 0) and the bounded domain Au = {(x, y) :
ax2 + by2 ≤ u} is an ellipsoid in IR2 for u > 0. The volume of the ellipsoid Au

is |Au| = cu with constant c = π/
√
ab. Hence, select un = x/(cn), x > 0. Let

X be any bivariate random vector with continuous density f at the origin 0 with

f(0) > 0. Then by Theorem 8.2 as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤ gmin + x/(cn)} → 1− exp(−f(0)x)

for x > 0. Thus α = −1 for the Weibull limit distribution. This example can be

extended simply to one with a finite number of global minimum points. The func-

tion g(x, y) = a(x − c1)
2(x − c2)

2 + by2 has two global minimum points (c1, 0)
and (c2, 0). Similarly, we can generalize further to have four global minimum points

(ck, dl), k, l = 1, 2 by letting g(x, y) = a(x− c1)
2(x− c2)

2+ b(y−d1)
2(y−d2)

2.

The result for minj≤n g(Xj) is obvious in these cases.

Example 2: We consider now the two-dimensional sinc function g(x, y) =
sin(x2+y2)/(x2+y2). The minimum is attained at points (x, y)with x2+y2 = r20 ,
where r0 is the smallest positive solution of r20 cos r

2
0 = sin r20 , i.e., r0 = 2.1198.

Therefore gmin = cos r20 . Hence the domain Au is a ring with center 0 and radii

r0 ±
√
2u/c for some constant c = g̃(r0) + o(1), where g̃(r) = (sin r2)/r2. Then

we need to derive Pr{X ∈ Au} for u → 0, where X is bivariate normal with cen-

ter (ξ1, ξ2) and covariance matrix δ2I . This is approximately the width of the ring

times the integral of the density on the circle with radius r0:

Pr{X ∈ Au} ∼ 2
√
2u/c

∫ 2π

0

r0
2πδ2

exp

(
− (r0 cosφ− ξ1)

2 + (r0 sinφ− ξ2)
2

2δ2

)
dφ

= Du1/2.
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Select now un(x) = x/(Dn)2 for x > 0, to get as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤ cos r20 + x/(Dn)2} → 1− exp(−x1/2) .

Hence α = −0.5 for the Weibull limit distribution which we observed in the simu-

lation results (see Table 8.2).

Example 3: Let us now choose g(x, y) = x2. The set Au in IR2 is unbounded:

Au = {(x, y) : |x| ≤ √
u}. But only the first component is relevant for the min-

imum. If the random vector X is standard bivariate Gaussian with correlation ρ ∈
(−1, 1), then Pr{X ∈ Au} = Pr{|X1| ≤

√
u} = 2Φ(

√
u) − 1 where Φ denotes

the unit normal cumulative distribution function. Thus Pr{X ∈ Au} ∼ 2
√
u/2π

as u → 0. Hence, select un = πx/(2n2) to get by Theorem 8.1

Pr{Y1 = min
j≤n

g(Xj) ≤ πx/(2n2)} → 1− exp(−x1/2)

for x > 0 and α = −0.5 of theWeibull limit distribution. This shows a case which is

not directly included in Theorem 8.2. But if we consider Au ∈ IR being the interval

(−√u,
√
u) since g is only a function of x, then we can apply the result of Theorem

8.2 with the 1-dimensional volume, the length ofAu = 2
√
u, and the corresponding

marginal density f1(0) = 1/
√
2π.

If the function g is rather regular, i.e., twice continuously differentiable at a

unique global minimum point, we can state another general result. If there are

finitely many isolated global minimum points, it is obvious how to extend the fol-

lowing result.

Theorem 8.3. Assume that g is twice continuously differentiable at the unique
global minimum point, say at the origin, and that the random vector X has a posi-
tive continuous (marginal) density f at the origin. If the Hessian matrix H has full
rank d and un(x) = n−2/dx, then as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤ gmin + n−2/dx} → 1− exp

⎛⎝−xd/2f(0)cd
∏
l≤d

λ
−1/2
l

⎞⎠ ,

for any x > 0, with cd = πm/m! for d = 2m even, and cd = 2m+1πm/(1 · 3 · 5 ·
. . . ·d) for d = 2m+1 odd, the volume of the d-dimensional unit sphere, and λl the
positive eigenvalues of H .

Proof. By assumptions g(x) = gmin + xTHx + o(|x|2). Hence Au is (approxi-

mately) an ellipsoid with a finite |Au| for all sufficiently small u, and we can ap-

proximate

Pr{X ∈ Aun
} ∼ f(0)|Aun

| ∼ f(0)cd
∏
l≤d

λ
−1/2
l ud/2

n
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by the continuity of the density f at 0, where cd
∏

l≤d λ
−1/2
l is the volume of the

ellipsoid in IRd with axes λ
−1/2
l . Thus the statement follows by Theorem 8.1 and

the normalization.

Example 4: We consider the generalized Rosenbrock function g(x, y) = (1 −
x)2+a(y−x2)2 for some a > 0. In the simulation we used the standard constant a =
100. The function g has continuous second derivatives; the unique global minimum

point is at 1 = (1, 1). The Hessian matrix is

H =

(
8a+ 2 −4a
−4a 2a

)
and the eigenvalues λl, l = 1, 2 satisfy λ1λ2 = 4a. Finally, for any bivariate

distribution with positive continuous density f at 1 and using the normalization

un(x) =
√
4a/(πf(1)) · (x/n), we have by Theorem 8.3 for any x > 0 as n → ∞

Pr{Y1 = min
j≤n

g(Xj) ≤
√
4a

πf(1)
· x
n
} → 1− exp(−x).

Hence we find α = −1 for the Weibull limit distribution, which confirms the find-

ings of Sect. 8.3.

8.5 Experiments Using Evolution Strategies

In this section we investigate the behavior of two other optimizers, where the appli-

cation of the EVT is not as appropriate as for the random search optimizer discussed

in Sect. 8.3. We consider two evolutionary strategies for g : IR2 → IR.

The first is a simple evolutionary algorithm described by the following scheme:

1. Choose a starting point (a, b) ← (x0, y0) and a positive constant δ.
2. Generate six bivariate normally distributed random points (ai, bi), i = 1, . . . , 6,

with mean (a, b) and covariance matrix δ2I.
3. Let (a, b) ← (x1, y1) such that g(x1, y1) = mini≤6 g(a

i, bi).
4. Repeat (2) and (3) a fixed number n of times (steps) and obtain a set of points

(xj , yj), j = 1, . . . , n.
5. Return the solution (xopt, yopt) such that g(xopt, yopt) = minj≤n g(xj , yj).

The number of “offsprings” (ai, bi) in step 2 can also be larger than six, but in

certain situations six is a good choice (see Bäck et al. (1991)). Often more offspring

points, such as ten, are used, resulting in more stable self-adaption, but also in larger

computing effort.

The second evolution strategy used is denoted by (1, 6) − ES by Bäck et al.

(1991) and differs from the first by the fact that the variance in step 2 is not constant

but rather random and also adaptive in order to approach the optimum faster. In this

case each of the random points in step 2 has its own covariance matrix δ2j−1e
ZI,



200 J. Hüsler

Table 8.3: Evolution strategy 1 with δ = 0.1 for Rosenbrock function, with the p-values of the A2

test

Case start point steps α̂ μ̂ σ̂ p-value

1 (−1,−1) 100 −0.652 4.23e−5 0.011 0.00

2 optimum (1,1) 50 −0.783 3.57e−6 0.0039 0.03

where δ2j−1 is the variance used to generate the previous centre (xj−1, yj−1) and

Z ∼ N(0, δ2).
Obviously, the internal steps and random variables are dependent, thus we do not

expect that Yi = g(xopt, yopt) follows an extreme value distribution for small or

moderate n. However, we may expect that the smallest of the generated Yi can be

modeled by a generalized Pareto distribution using the peaks over threshold (POT)

approach of the extreme value theory.

The application of the goodness-of-fit test A2 is not appropriate here for the POT

approach, as mentioned. Although we tabulate the p-values in Tables 8.3 and 8.4 to

show the inappropriateness of this test. We find values of the testA2 with very small

and large p-values in Table 8.3 and 8.4, but analyzing the QQ-plots in Figs. 8.5 and

8.6 we notice the same good fit for the smallest values and larger deviations for

moderate or large values.

All the cases reported in Tables 8.3 and 8.4 were derived from samples of out-

comes of size k = 500 and different number n of steps for the Rosenbrock function.

It is necessary that the number of internal steps n is not small to obtain good results.

In most cases of Tables 8.3 and 8.4 the quality of the solutions is quite good as

can be seen from the several estimated parameters. Note that the absolute values of
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Fig. 8.5: QQ-plot of data of case 2 in Table 8.3, A2-test: p-value = 0.03, Weibull distribution for
minima with α̂ = −0.783 (x-coordinate: Weibull quantiles, y-coordinate: sample quantiles)
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Fig. 8.6: QQ-plot of random search data of case 4 in Table 8.4, A2-test: p-value = 0.50, Weibull
distribution for minima with α̂ = −0.477 (x-coordinate: Weibull quantiles, y-coordinate: sample
quantiles)

Table 8.4: Evolution strategy 2 with starting standard deviation δ for Rosenbrock function, with
the p-values of the A2 test

Case Start point Steps δ α̂ μ̂ σ̂ p-value

1 optimum (1,1) 10 0.01 −0.507 1.1e−6 0.0608 0.19

2 optimum (1,1) 10 1.00 −0.200 4.5e−12 0.0011 0.00

3 (−1,−1) 10 0.01 −0.530 2.1e−6 0.0985 0.08

4 (−1,−1) 50 0.01 −0.477 5.0e−8 0.0022 0.50

α̂ are smaller than those obtained in Sect. 8.3. However the fit with an extreme value

distribution is neither satisfactory nor adequate when using the whole sample.

It is clear that the second evolution strategy performs better than the first one. We

note that the second algorithm is able to reach the optimum in a smaller number n of

steps (when starting away from the optimum) and that the shape parameter indicates

also a greater clustering effect near the optimum. The different shape parameters

of the evolutionary optimizers from the random search optimizer indicate that the

dependence and the sequential behavior of the evolutionary strategies do not allow

the classical extreme value distributions to be applied to the results.

Figures 8.5 and 8.6 show two samples which indicate our conjecture that the

smallest values of the minima Yi follow the extreme value behavior well. The sim-

ulated points are almost on a straight line near the minimum. This means that the

smallest values Yi can be well approximated by the lower tail of a Weibull distribu-

tion related to the generalized Pareto distribution with a negative shape parameter

α = 1/γ.
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Fig. 8.7: Empirical cdf (left) and quantile function (right) of the 100 (largest) transformed values
−Yi of the (first) evolutionary strategy for the Rosenbrock function, fitted to the cdf and quantile
function of the generalized Pareto distribution (almost straight lines)
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Fig. 8.8: Estimates of the shape parameter γ (left) and of the lower endpoint μ (right) (of the values
Yi) in relation to the number m of exceedances of −Yi for the Rosenbrock function

Figures 8.7 and 8.8 show the performance and the fit to a generalized Pareto

distribution, the estimation of γ, and of the endpoint μ in relation to the number

m of exceedances of −Yi, based on n = 100 internal steps. Note that, since we

use the software Xtremes for this modeling, we have to transform the minima to

maxima values by a sign change. Hence the lower tail of the minima distribution is

transformed to the upper tail of the maxima distribution.

The fit is excellent in the upper tail with γ̂ = −1.1745 for m = 100 for the

outcomes −Yi. The fit of the upper tail is also excellent if we select a larger m, say

200. Usually we should select m/k → 0 as k → ∞, by the POT theory. Typically,

we choose m/k not larger than 5−10% in the POT applications. However, in our

application, where the observed values are already minima or maxima of some opti-
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mizer algorithm, we expect many more values in the neighborhood of the endpoint

than we usually expect in a random sample of the whole distribution. So it is appro-

priate to apply a larger m than in the usual POT approach. This is supported by the

estimates of γ, which are rather stable in a large range of m (for 50 ≤ m ≤ 250),
and also by the stable behavior of the endpoint estimation (for 50 ≤ m ≤ 350). The
estimate of the lower endpoint for the minimum is μ̂ = 0.0013 with m = 100 and

μ̂ = 0.00092 with m = 200. The endpoint could be estimated also by a confidence

interval.

If we select a smaller sample size k, we observe possibly smaller estimates of

α. In the same way, if the number of internal steps n is selected smaller, we expect

fewer values near the lower endpoint, which implies often a different estimate α̂.
However, the estimation of the minimum μ improves by choosing a larger number

of internal steps n, as well as the fit of the smallest observations to a generalized

Pareto distribution.

We applied also the evolution algorithm to the second function and observed the

same excellent behavior of the estimate γ̂ and of the endpoint μ̂, as well as the fit

of the generalized Pareto distribution, comparing the quantile and cumulative distri-

bution functions. The same statements on the behavior of the evolution algorithm in

the case of the Rosenbrock function can be repeated for this function.

Finally we applied the evolution algorithm and the POT approach to the third

function sinc. Using 200 internal steps the global minima was found extremely

accurately. Of the 500 simulated outcomes Yi, only 112 values were larger than

the global minima −0.217234 plus 0.00001. The largest deviation was fewer than

0.0002. So we applied the algorithm with less internal steps, N = 20. Figures 8.9
and 8.10 show again the excellent fit and the estimation of γ, which is stable in a

large range of the number of exceedances m. The same holds also for the estimates

of the upper endpoint, i.e., of the global minimum, which is almost not affected by

the number of exceedancesm if this is chosen between 50 and 250.

In general, evolution strategies are expected to perform better than random

search. The obtained results clearly confirm this and also show that the improvement

is reflected in the shape parameter of the distribution of outcomes. Note that some

of the estimated α values are closer to zero than in the cases reported previously. As

proved in Sect. 8.4, random search imposes a natural bound for the shape parameter

which cannot be overcome by choosing different scales or starting points. Evolution

strategies are able to overcome this bound and produce distributions which cluster

much stronger near the optimum, thus resulting in better solutions.

We finish this section with an application of recently proposed tests which an-

alyze the general assumption of EVT or POT. The tests are not designed to test

the goodness-of-fit of a parametric class of distributions, as the A2 test for the

Weibull distributions. These tests are investigating the more general hypothesis that

F ∈ MDA(Gγ) for some γ, which is also the assumption for the POT approach.

Here F ∈ MDA(Gγ)means that F belongs to the max-domain of attraction ofGγ ,

a common abbreviation of EVT. These tests indicate whether the EVT or POT can

be applied.
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Fig. 8.9: Fit of the generalized Pareto distribution (smooth line) to the largest transformed values
−Yi of the (first) evolutionary strategy for the sinc function with n = 20 internal steps, with
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Number of exceedances

γ

0.0 100 200 300 400 500

-150

-100

-50

0.0

Fig. 8.10: Estimates of the shape parameter γ (of the values −Yi) in relation to the number m of
exceedances of −Yi for the sinc function

Two tests exist for this hypothesis. The test Ek = Ek,m by Dietrich et al. (2002)

is based on the comparison of the empirical quantile function with the estimated

theoretical one G−1
γ̂,μ̂,σ̂ using certain estimates of the parameters: let Xi = −Yi and

Xi,k denote the ordered values Xi, i ≤ k; then

Ek = m

∫ 1

0

(
logXk−[mt],k − logXk−m,k

γ̂+
− t−γ̂− − 1

γ̂−
(1− γ̂−)

)2

tη dt (8.2)

with some η > 0 and γ̂+ = m1,m, an estimate for γ+ = max{γ, 0}, γ̂− =
1−1/(2(1−m2

1,m/m2,m)), an estimate for γ− = min{γ, 0}. The distribution ofEk

converges (as k → ∞) to a distribution which can be determined only by simula-
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tions. The necessary quantiles were derived (Hüsler and Li (2006) for the corrected

tables and more hints for the application and the selection of η). The asymptotic

quantiles depend on η and γ. The parameters have to be estimated. This test applies

the moment estimators γ̂+, γ̂− of Dekkers et al. (1989). The result was stated for

η = 2 by Dietrich et al. (2002), but it was extended for any η > 0 by Hüsler and Li

(2006).

The test Tk = Tk,m by Drees et al. (2006) is based on the comparison of the

empirical cdf with the theoretical one Gγ̂,μ̂,σ̂ , where γ̂, μ̂, and σ̂ are appropriate

estimates:

Tk = m

∫ 1

0

( k

m
F̄k

(
âk/m

x−γ̂ − 1

γ̂
+ b̂k/m

)
− x
)2

xη−2 dx, (8.3)

where η > 0. The test statistic Tk converges (as k → ∞) to a distribution which

can only be derived by simulation and depends on η and γ. Here any
√
k-consistent

estimator (γ̂, â, b̂) of (γ, a, b) could be used. The maximum-likelihood estimates

are the typical appropriate candidates, but only for γ > −1/2.
An extension and the comparison of the two tests are treated by Hüsler and Li

(2006) and Hüsler and Li (2007). They propose to take η = 2 for the test Ek and

η = 1 (or also η = 2) for the test Tk. If γ seems to be positive, then both tests can

be applied equally well to test H0; otherwise the test Ek is preferable. Hence, the

test Ek should be applied in an application for the optimizer.

Note that a significance would mean that “F 	∈ MDA(G)”. Hence, the tests

should give no indication against the null hypothesis, to apply the POT approach for

the optimizer. The tests depend on the chosen numberm of extreme order statistics.

If m is chosen too large, then the tests reject the null hypothesis because interme-

diate order statistics are used for the assessment of the extreme tail. Thus the tests

indicate also an appropriate choice of m for the application and estimation, as is

shown in the following applications.

We apply the test Ek for the two cases discussed above, for the outcome values

Yi of the evolution optimizer for the Rosenbrock function and for the sinc function.

The test statistics do not give a hint against the null hypothesis for m smaller than

150 for Rosenbrock function and 105 for the sinc function. The test seems to be

more sensitive than our simple goodness-of-fit assessment based on the quantile or

the distribution function of Figs. 8.7 and 8.9. So our estimation of the lower endpoint

should be based on such an appropriatem.

8.6 Summary

We considered the behavior of optimizers, the random search optimizer and opti-

mizers based on evolutionary strategies, for finding the minima or optimum of some

continuous objective functions. We showed that the behavior of the outcomes of the

optimizer can be modeled with the extreme value theory. The statistical estimation
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Fig. 8.11: Test Ek for the assessment of the POT approach for the two cases of the evolution
optimizer, for the Rosenbrock function (left) and the sinc function (right). The dashed line indicates
the 95% quantile of the test statistics

procedures of the extreme value theory allow us the estimation of the finite lower

endpoint, the minimum of the objective function. This is demonstrated by some an-

alytical results as well as some simulations for three chosen objective functions. The

outcomes of the random search optimizer can be simply fitted to an generalized ex-

treme value distribution, typically a Weibull distribution, if the internal number of

steps is large. The evolutionary optimizer shows a different behavior because of the

dependence of each internal step on the preceding one. We showed by simulations

that this behavior can be simply described and modeled by a generalized Pareto dis-

tribution using the peaks over threshold (POT) approach. The Beta distribution is

the particular distribution of the POT method to estimate the lower endpoint appro-

priately based on the outcomes of the evolutionary optimizer.
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Chapter 9
Exploratory Analysis of Stochastic Local Search
Algorithms in Biobjective Optimization

Manuel López-Ibáñez, Luís Paquete, and Thomas Stützle

Abstract This chapter introduces two Perl programs that implement graphical tools

for exploring the performance of stochastic local search algorithms for biobjective

optimization problems. These tools are based on the concept of the empirical attain-

ment function (EAF), which describes the probabilistic distribution of the outcomes

obtained by a stochastic algorithm in the objective space. In particular, we consider

the visualization of attainment surfaces and differences between the first-order EAFs

of the outcomes of two algorithms. This visualization allows us to identify certain

algorithmic behaviors in a graphical way. We explain the use of these visualization

tools and illustrate them with examples arising from practice.

9.1 Introduction

Experiments in computer science often produce large amounts of data, mainly be-

cause experiments can be set up, performed, and repeated with relative facility.

Given the amount of data, exploratory data analysis techniques are one of the most

important tools that computer scientists may use to support their findings. In particu-

lar, specialized graphical techniques for representing data are often used to perceive

trends and patterns in the data. For instance, there exist techniques for the extraction

of relevant variables, the discovery of hidden structures, and the detection of out-

liers and other anomalies. Such exploratory techniques are mainly used during the

design of an algorithm and when comparing the performance of various algorithms.
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Even before testing more formal hypotheses, the algorithm designer has to find pat-

terns in experimental data that provide further insights into new ways of improving

performance.

In this chapter, we focus on the graphical interpretation of the quality of the out-

comes returned by stochastic local search (SLS) algorithms (Hoos and Stützle 2005)

for biobjective combinatorial optimization problems in terms of Pareto optimality.

This notion of optimality is tied to the notion of dominance. We say that a solution

dominates another one if it is at least as good as the latter for every objective and

strictly better for at least one objective. For these problems, the goal is to find the

set of nondominated solutions among all feasible solutions. The mapping of these

solutions in the objective space is called the Pareto-optimal front. For the particular
case of multiobjective combinatorial optimization problems (MCOPs), fundamental

results about their properties and complexity are given by Ehrgott (2000).

Usually, each run of an SLS algorithm produces a nondominated set, a random set

of mutually nondominated objective vectors that approximates the Pareto-optimal

front of an MCOP. Currently, there are two widely used techniques for assessing

the performance of these algorithms with respect to the solution quality: graphical

examination of multiple outcomes and scalar quality indicators. Unfortunately, these

two approaches present several drawbacks that have been discussed in the literature

(Knowles and Corne 2002, Zitzler et al. 2003).

The empirical attainment function (EAF), formally described in Chap. 5, is seen

in this chapter as a middle ground between directly plotting the complete output

and the extreme simplification of quality indicators. The EAF is a summary of the

outcomes of multiple runs of an SLS algorithm, and, at the same time, it is suffi-

ciently complex to detect whether and where an algorithm is better than another.

By plotting and comparing the EAFs of different SLS algorithms, we are able to

pinpoint several performance behaviors that otherwise would be hidden when using

other performance assessment approaches.

The chapter is organized as follows. Section 9.2 provides a basic introduction to

SLS algorithms for multiobjective optimization in terms of Pareto optimality, and

their performance assessment. Sections 9.3 and 9.4 introduce plotting techniques

for exploring algorithm performance based on the EAF, and describe two Perl pro-

grams, eafplot.pl and eafdiff.pl. Section 9.5 presents three examples of

applications of these programs. Finally, we present conclusions and further work in

Sect. 9.6.

9.2 Stochastic Local Search for Multiobjective Problems

SLS algorithms iteratively search for good quality solutions using the local knowl-

edge provided by the definition of a neighborhood or a set of partial solutions. Since

they are based on a randomized search process, it is not expected that the same out-

come is returned for different runs with different random seeds of the random num-

ber generator. Metaheuristics are general-purpose SLS methods that can be adapted
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Fig. 9.1: Ten independent outcomes obtained by an SLS algorithm applied to an instance of a biob-
jective optimization problem. In the right plot, the same outcomes are shown but points belonging
to the same run are joined with a line

to various optimization problems. Well known metaheuristics are simulated anneal-

ing, tabu search, iterated local search, variable neighborhood search, ant colony op-

timization, and evolutionary algorithms. An overview of these methods is given by

Hoos and Stützle (2005).

Finding the Pareto-optimal front in MCOPs is known to be a hard challenge in

optimization. Moreover, for many problems, the size of the Pareto-optimal front is

too large to be enumerated (Ehrgott 2000). Therefore, depending on the time con-

straints, it could be preferable to have an approximation to the Pareto-optimal front

in a reasonable amount of time. Such an approximation is always a nondominated
set , that is, a set of objective vectors that are mutually nondominated.

SLS algorithms have been shown to be state-of-the-art methods for generating

very good approximations to the Pareto-optimal front for many MCOPs. As a result,

when comparing two SLS algorithms, we need to compare nondominated sets that

are in most cases incomparable in the Pareto sense. There are mainly two approaches

for summarizing and comparing SLS algorithms with respect to solution quality:

direct examination of multiple nondominated sets and scalar quality indicators.

As an example of direct examination of the outcomes of an SLS algorithm, we

plot in Fig. 9.1 the outcomes obtained by ten runs of the same SLS algorithm ap-

plied to an instance of a biobjective optimization problem. On the left plot, we plot

the objective vectors as points. Points with the same shade of gray and shape were

obtained in the same run. In the right plot, objective vectors from the same run are

joined with staircase lines delimiting the area dominated by them. Even with only

ten runs, it is difficult to visualize the algorithm behavior. With a larger number of

runs, directly plotting the outcomes quickly becomes impractical. A direct compar-

ison of the outcomes of different algorithms is similarly difficult.

On the other extreme are scalar quality indicators, which are scalar values com-

puted for each nondominated set (or pairs of nondominated sets) (Knowles and

Corne 2002, Zitzler et al. 2003). Quality indicators are surrogate measures of par-
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ticular quality aspects of the nondominated sets (e.g., closeness to the best-known

solutions, spread, diversity) that are generally acknowledged as desirable. Hence,

several quality indicators are often examined simultaneously, but this, in turn, com-

plicates the interpretation of results. The values returned by quality indicators often

do not reflect by how much and in which aspects a nondominated set is better than

another. Moreover, recent theoretical work has shown that many quality indicators

may provide an answer that contradicts the most basic and deterministic assertions

of performance. More details are given by Knowles and Corne (2002) and Zitzler

et al. (2003).

A different perspective on performance assessment of SLS algorithms forMCOPs

is given by the attainment function approach (Grunert da Fonseca et al. 2001). Chap-

ter 5 provides a theoretical overview on attainment functions. In this chapter, we

focus on the first-order attainment function, which represents the probability of an

algorithm finding at least a solution whose objective vector dominates or is equal

to an arbitrary vector in the objective space in a single run. In practice, this proba-

bility is unknown, but it can be estimated empirically from the outcomes obtained

in several independent runs of an SLS algorithm, in a way analogous to the esti-

mation of multivariate distribution functions. This statistical estimator is called the

(first-order) empirical attainment function (EAF) (Grunert da Fonseca et al. 2001).1

In the biobjective case, the EAF is both fast to compute and easy to visualize. We

will consider two different visualizations. First, plots of the k%-attainment surfaces

are used to characterize the behavior of a single SLS algorithm. Second, the perfor-

mance of two SLS algorithms is compared by plotting the location of the differences

with respect to their EAFs.

9.3 Examination of the Attainment Surfaces

Fonseca and Fleming (1996) proposed the notion of attainment surface, which cor-

responds to a boundary which separates the objective space into two regions: those

objective vectors that are attained by (that is, dominated by or equal to) the out-

comes returned by the SLS algorithm, and those that are not. This notion is for-

malized in the concept of k%-attainment surface, which is the line separating the

objective space attained by k% of the runs of an SLS algorithm. In other words,

the k%-attainment surface corresponds to the k/100 percentile of the empirical fre-

quency distribution. For example, the median attainment surface delimits the region

attained by 50% of the runs. Similarly, the worst attainment surface delimits the

region attained by all runs (100%-attainment surface), whereas the best attainment

surface corresponds to the limit between the region attained by at least one run and

the objective vectors never attained by any run.

Given m runs, the computation of the EAF is equivalent to the computation of

all k%-attainment surfaces with k = i · 100/m, i = 1, . . . ,m. In fact, the k%-

1 We will always refer to the first-order EAF simply as EAF.
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attainment surface is sufficiently defined by the nondominated objective vectors

from the set of all objective vectors that are attained by k% of the runs.

The attainment surfaces allow to summarize the behavior of an SLS algorithm

in terms of the location of the objective vectors obtained. For example, if we were

interested in the objective vectors that are attained by at least half of the runs, then

we could examine the median attainment surface. Similarly, the worst-case results of

an algorithm are described by the worst attainment surface, whereas the best results

ever achieved are given by the best attainment surface. Sections 9.3.2 and 9.5.1 give

examples.

9.3.1 The eafplot.pl Program

The program eafplot.pl is a Perl program that produces a plot of attainment

surfaces given an input file that contains a number of nondominated sets. Input files

may contain multiple sets of nondominated objective vectors. Each objective vec-

tor is given in a line as two columns of floating-point numbers. Different sets are

separated by at least one blank line. If several input files are given, then one plot is

produced for each input file, all plots having the same range on the axes. The plots

produced are encapsulated postscript (EPS) files.

These programs require a Perl installation, the statistical environment R (R De-

velopment Core Team 2008), and an external program for computing the EAF.2

The attainment surfaces plotted by eafplot.pl can be specified in several

ways:

• By default, eafplot.pl plots the best, median, and worst attainment sur-

faces.

• Option -iqr plots the 25%, 50% (median), and 75% attainment surfaces.

• Option -percentile=INT[,INT] plots the given percentiles of the at-

tainment surface. For example, eafplot.pl -percentile=25,50,75
is equivalent to eafplot.pl -iqr.

• Option -extra=FILE will add objective vectors from FILE to the plot as

points. This may be useful for comparing the outcome of an SLS algorithm

against a reference set.

The program accepts other parameters that are not discussed in this chapter but

are explained by the option -help.

2 The program for computing the EAFs provided by us is based on the original code written by
Carlos M. Fonseca available at http://www.tik.ee.ethz.ch/pisa/.
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Fig. 9.2: Best, median, and worst attainment surfaces for the data described in Fig. 9.1
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Fig. 9.3: Three plots of attainment surfaces for 15 (left), 50 (middle), and 200 (right) independent
runs of the same algorithm on the same problem instance

9.3.2 Example Application of eafplot.pl

Given the input data shown in Fig. 9.1, the corresponding best, median, and worst

attainment surfaces are shown in Fig. 9.2. This plot was generated by the command

eafplot.pl example1_dat

As an alternative to the best and worst attainment surfaces, one may prefer to

plot other percentiles that are more robust with respect to the number of runs. The

dependence of the best and worst attainment surfaces on the number of runs is illus-

trated by Fig. 9.3, where the same algorithm is run 15 (left), 50 (middle), and 200
(right) times with different random seeds. As more runs are performed, the locations

of the best and worst attainment surfaces change strongly, while the locations of the

25% and 75% attainment surfaces are rather stable. It is well known from classical

statistics that the sample best and worst are biased estimators for the population best

and worst. The three plots in Fig. 9.3 were produced by running:

eafplot.pl --best --median --worst \
--percentiles=25,75 r15_dat r50_dat r200_dat
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9.4 Examining the Differences Between EAFs

The EAF is also the basis for a graphical technique that gives visual information on

the pairwise comparison of two SLS algorithms. The main idea is to plot the location

of the differences between the outcomes of two algorithms with respect to their

corresponding EAFs. The EAF of an algorithm estimates the probability of attaining

each point in the objective space. If the difference of the estimated probability values

of two SLS algorithms at a certain point is large, this indicates better performance of

one algorithm over another at that point. The sign of the difference gives information

about which algorithm performed better.

The differences between the EAFs of two algorithms can be computed by first

computing the EAF of the union of the outcomes of both algorithms. Then, for each

point in the objective space where the value of the EAF changes, one needs to com-

pute the value of the EAF of the first algorithm at that point minus the value of the

EAF of the second algorithm. This can be done by counting how many runs of each

algorithm attained that point. Finally, positive and negative differences are plotted

separately, and the magnitudes of the differences between the EAFs are encoded

using different shades of grey: the darker a point, the larger the difference.

Figure 9.4 illustrates this performance assessment method. The two plots in the

top part of Fig. 9.4 give the EAFs associated with two algorithms that were run

several times with different random seeds on the same problem instance. Points in

the EAFs are assigned a gray level according to their probability. In addition, we

plot four different attainment surfaces. The lower line on both plots connects the

best set of points attained over all runs of both algorithms (grand best attainment

surface), and the upper one the set of points attained by any of the runs (grand worst

attainment surface). Any differences between the algorithms are contained within

these two lines. The dashed line corresponds to the median attainment surface of

each algorithm, which is given to facilitate the comparison of the two sides of the

plot.

The bottom plots of Fig. 9.4 show the location of the differences between the

EAFs of the two algorithms.3 On the left are shown points where the EAF of algo-

rithm 1 is larger by at least 20% than that of algorithm 2, and on the right are given

the differences in the opposite direction (positive differences between the EAF of

algorithm 2 over the one of algorithm 1). The amount of the differences is encoded

in a grey scale shown in the legend of the plot. To facilitate comparison, the same

attainment surfaces are plotted as for the top plots. From these plots, we can ob-

serve that algorithm 1 performs better in the center and towards the minimization

of objective 1, whereas algorithm 2 performs better towards high-quality solutions

for the second objective (low values on the y-axis). Note that these differences in

performance would be ignored by most scalar quality indicators.

The program eafdiff.pl is a Perl program that takes two input files, each of

which contains a number of nondominated sets, and produces a plot of the differ-

3 The same information could be provided within one plot by using different colors for positive
and negative differences.
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Fig. 9.4: Visualization of the EAFs associated with the outcomes of two algorithms (top) and
the corresponding differences between the EAFs (bottom left: differences in favor of algorithm 1;
bottom right: differences in favor of algorithm 2). In the top, the gray level encodes the value of
the EAF. In the bottom, the gray level encodes the magnitude of the observed difference

ences between the first-order EAFs of the two input files. It can produce two types

of plots:

• A side-by-side plot of the full EAF of each of the input files. This type of

plot can be requested by using the option -full. For example, the top plot

of Fig. 9.4 was produced by the commandline:

eafdiff.pl --full --left="Algorithm 1" ALG_1_dat \
--right="Algorithm 2" ALG_2_dat

• A side-by-side plot of the differences in the EAFs between the two input files.

This is the default. For example, the bottom plot of Fig. 9.4 was generated by:

eafdiff.pl --left="Algorithm 1" ALG_1_dat \
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Table 9.1: Output files produced by eafdiff.pl given input files file1 and file2

Output plot file1-file2.eps

Grand best attainment surface file1-file2.best

Grand worst attainment surface file1-file2.worst

Differences between EAFs file1-file2.diff

Full EAF of input file fileX fileX.eaf

Median attainment surface of file fileX fileX.med

--right="Algorithm 2" ALG_2_dat

By default, eafdiff.pl plots also the grand best and grand worst attainment

surfaces as solid black lines, and the median attainment surface corresponding to

each input file as dashed lines. The program accepts other parameters that are not

discussed in this chapter but are explained by the option -help.
Apart from the plot file1-file2.eps, the eafdiff.pl program produces

several output files. These are listed in Table 9.1.

As for the computation time required by eafdiff.pl, in the example shown in

Fig. 9.4, each of the two data sets contains 90 runs with an average of 500 objective
vectors per run. The generation of the plot from these data sets required less than

10 seconds of computation time on a Intel Core™ 2 CPU with 1.83GHz. The com-

putation of the EAF in two dimensions is linear with respect to both the number of

runs and the total number of points. Plotting is also linear; however, in practice, the

computation time required by the plotting functions of R and writing out the output

files are the slowest parts of the procedure.

9.5 Examples

In this section, we illustrate the use of the graphical techniques on several examples.

As we will see, these tools allow us to discover particular algorithm behaviors.

9.5.1 Effect of Problem Structure

Problem structure has a clear effect on algorithm performance. In multiobjective

optimization, the correlation between the objectives is often an example of this,

since we expect that a large positive correlation between the objectives may induce

a small Pareto-optimal front, and vice versa.

We reproduce here experiments described by López-Ibáñez et al. (2006). We

consider two instances of the biobjective quadratic assignment problem (BQAP)
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Fig. 9.5: The same algorithm is applied to two BQAP instances with correlation −0.75 (left) and
0.75 (right). The plots show the best, median, and worst attainment surfaces of ten runs

with different correlations between the flow matrices, which translate into different

correlations between the corresponding objectives; see López-Ibáñez et al. (2006)

for a more thorough explanation of this problem.

We plot in Fig. 9.5 the best, median, and worst attainment surfaces of the out-

comes obtained by the same algorithm when applied to two BQAP instances with

correlation −0.75 (left) and 0.75 (right). In each case, ten independent runs of the

algorithm were performed with different random seeds. Even thought both instances

are similar in terms of size and range of values, the range of the nondominated sets

obtained for correlation −0.75 (left) is much wider than for correlation 0.75 (right),
as can be seen in the range of the objective values in each of the plots. The plots

show a strong effect of the correlation on the location of the outcomes obtained by

the algorithm.

The two plots in Fig. 9.5 were produced by running:

eafplot.pl n75_dat

eafplot.pl p75_dat

9.5.2 Differences in Algorithmic Performance

Several approaches to biobjective problems consist of solving several weighted

scalarizations of the objective function vector. Usually, the components of the

weight vectors are real numbers in [0, 1] and sum to one. With a subset of weight

vectors evenly distributed in the full set of possible weight vectors, we may expect

to find a well-spread set of objective vectors.

Two distinct algorithmic behaviors may be expected either by increasing the

number of weights or by running the underlying stochastic algorithm for a longer
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time for each scalarization. Intuitively, by increasing the number of weights, the al-

gorithm should be able to obtain a larger number of nondominated objective vectors

distributed along the Pareto front, which gives a better approximation of the shape

of the Pareto-optimal front. On the other hand, by giving more time to each scalar-

ization, the resulting nondominated objective vector is typically of a higher quality.

Because of limits in computation time, the algorithm designer has to examine the

trade-off between these two settings in order to improve solution quality.

We describe an experiment that examines the trade-off between different param-

eter settings of weighted robust tabu search (WRoTS) for the biobjective QAP, such

as described by López-Ibáñez et al. (2006). In WRoTS, several scalarizations of the

BQAP objective function vector are solved by repeated runs of the (single-objective)

robust tabu search (RoTS) algorithm (Taillard 1991). A single run of the RoTS algo-

rithm is stopped after l ·n iterations, where n is the instance size and l is a parameter.

Each scalarization uses a different weight, taken from a set of maximally dispersed

weights (Steuer 1986). We denote the number of weights by w. Upon termination

of the main search process, all solutions returned are filtered to obtain a set of non-

dominated objective vectors.

Figure 9.6 shows the differences in EAFs between two algorithm configurations

of WRoTS. The left plot shows differences in favor of performing few scalarizations

and long runs of RoTS (l = 100, w = 10), whereas the right plot shows differences
in favor of performing many short runs of RoTS (l = 10, w = 100). Note that the
total number of iterations performed by each algorithm is the same. There are very

strong differences in three particular regions of the right plot (many scalarizations

and short runs of RoTS). These regions are probably difficult to attain with the

coarse set of weights examined by the left configuration. On the other hand, the use

of a larger number of iterations of RoTS (left plot) does not lead to better individual

objective vectors, except for the extreme objective values.

The plots in Fig. 9.6 were generated by the command:

eafdiff.pl --left="WRoTS, l=100, w=10" \
--right="WRoTS, l=10, w=100" \
wrots_l100w10_dat wrots_l10w100_dat

9.5.3 Biased Behavior

An algorithm may be focusing too much on a particular region of the objective

space in detriment to other equally relevant regions, which may be due to some

algorithmic choice. In this example, we present a case in which an algorithm is

more biased towards one objective.

We describe an algorithm that was proposed by Paquete and Stützle (2003),

called two-phase local search (TPLS): the first phase consists of finding a good solu-

tion to one single objective, using an effective single objective algorithm. This phase

provides the starting solution for the second phase, in which a local search algorithm
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Fig. 9.6: EAF differences for two configurations of WRoTS. The left plot shows differences in
favor of long runs of RoTS and few scalarizations (l = 100, w = 10); the right plot shows
differences in favor of short runs of RoTS and many scalarizations (l = 10, w = 100)

is applied to a sequence of different scalarizations of the objectives. The underlying

idea for the second phase is that successive scalarizations are treated as a chain: a

scalarization slightly modifies the emphasis given to the different objectives when

compared with the previous scalarization; the local search for each scalarization is

started from the local optimum solution that was returned by the previous scalariza-

tion. The main question is whether this strategy can have comparable performance

to a restart strategy (restart), which starts from a randomly generated solution at

every scalarization.

The experimental analysis was performed for the biobjective traveling salesman

problem . Both algorithms, TPLS and restart, have the same underlying stochastic

local search, an iterated local search (Stützle and Hoos 2001).

Figure 9.7 shows the EAF differences between TPLS and restart. TPLS is able

to obtain good solutions with respect to the second objective. However, TPLS is not

able to improve the solutions obtained by restart with respect to the first objective.

The plots in Fig. 9.7 were obtained with the command:

eafdiff.pl --left="TPLS" --right="Restart" tpls rest

9.6 Summary and Outlook

We have described in this chapter graphical techniques for summarizing and com-

paring the quality of SLS algorithms for biobjective problems in terms of Pareto

optimality. We have also described two programs that implement these techniques.

In addition, examples of the usage of these programs were provided throughout the
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Fig. 9.7: EAF differences for TPLS versus restart

chapter. These examples can be reproduced by using the programs and data avail-

able at http://iridia.ulb.ac.be/supp/IridiaSupp2009-002/.
These graphical techniques are based on the first-order EAF for biobjective opti-

mization problems. For more than two objectives, the graphical technique of parallel

coordinates (Inselberg 1985) has been used by Paquete and Stützle (2009). However,

the interpretation of the plots is more difficult than in the biobjective case. Therefore,

other ways to present the information given by the first-order EAF may be worth in-

vestigating. Finally, new techniques could be developed based on the information

provided by higher-order EAFs (Fonseca et al. 2005).
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Chapter 10
Mixed Models for the Analysis of Optimization
Algorithms

Marco Chiarandini and Yuri Goegebeur

Abstract We review linear statistical models for the analysis of computational ex-

periments on optimization algorithms. The models offer the mathematical frame-

work to separate the effects of algorithmic components and instance features in-

cluded in the analysis. We regard test instances as drawn from a population and we

focus our interest not on those single instances but on the whole population. Hence,

instances are treated as a random factor. Overall these experimental designs lead

to mixed effects linear models. We present both the theory to justify these models

and a computational example in which we analyze and comment on several possi-

ble experimental designs. The example is a component-wise analysis of local search

algorithms for the 2-edge-connectivity augmentation problem. We use standard sta-

tistical software to perform the analysis and report the R commands. Data sets and

the analysis in SAS are available in an online compendium.

10.1 Introduction

Linear statistical models are well-developed mathematical tools for the separation

of effects in the observed results of an experiment. Among them, there is the clas-

sical analysis of variance (ANOVA). scientific disciplines and also in the field of

optimization. In operations research, application examples to test mathematical pro-

gramming software go back to the late 1970s, see, e.g., Zanakis (1977), Lin and

Rardin (1979), Coffin and Saltzman (2000); while in computer science and in test-
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ing heuristic and evolutionary computation methods their use can be traced back to

the late 1990s. Prominent articles in this case are those by Barr et al. (1995), Mc-

Geoch (1996), Rardin and Uzsoy (2001), and Czarn et al. (2004). However, only

a very small number of articles, relative to those published in these fields, report

use of these statistical methods. This fact might be explained by two factors: the

need for a background in statistics and experimental design techniques in order to

correctly apply and fully understand the results provided; and the presence of un-

derlying assumptions that make the researcher in computer science or operations

research sceptical about the real applicability of these methods in the field of op-

timization. The aim of this chapter is to introduce the reader to the use of linear

statistical models in the cases where they can be applied. We aim to present the

basic theory behind the methods, their practical application by means of publically

available software and the possible outcomes. We go perhaps to a deeper level of

detail compared with previous publications in this field, hoping to facilitate future

applications. However, we do not aim to remove completely the two barriers above:

understanding of statistics and a careful investigation of applicability to each spe-

cific case are necessary preconditions. Knowledge of the material in the appendix

of this book might be required to follow this chapter.

We emphasize that our intention is to present these tools as complementary to

and not substitutes for the current practice of reporting numerical results on bench-

mark instances with appropriate tables. This practice is indeed helpful to guarantee

comparability and verifiability of results. The methods in this chapter are however

desirable for scientific experimental analysis, where the interest is in explaining the

causes of success of a certain optimization approach rather than in mere comparative

studies; see Hooker (1996) for a discussion on these guidelines.

To illustrate the application of the statistical tools we use a case example in which

we study heuristic algorithms for a graph problem: finding the cheapest augmenta-

tion of arcs that make a network 2-edge-connected (Bang-Jensen et al. 2009). The

heuristics are local search algorithms (Michiels et al. 2007) obtained by the combi-

nation of some specific components, which may be qualitative, like for the presence
or not of an algorithmic step or numerical, like for parameters that assume real val-

ues. Our interest is in understanding the contribution of these components.

In statistical terms, these components are called factors. The interest is in the

effects of the specific levels chosen for these factors. Hence, we say that the levels

and consequently the factors are fixed. Moreover, when for two factors, every factor

level of a factor appears with every factor level of another factor we say that the two

factors are crossed. We restrict ourselves to analyze the effect of these factors on

a univariate measure of performance, namely the quality of the solutions returned

by the algorithm at termination. Multivariate analysis are however also possible

by extensions of these methods; we refer to Johnson and Wichern (2007) for an

overview of these.

Typically, the researcher takes a few instances for the problem at hand and col-

lects the results of some runs of the algorithms on these instances. The instances

are treated as blocks and all algorithms are run on each single instance. Results are

therefore grouped per instance. The instances are chosen at random from a large set
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of possible instances of the problem, and the interest of the researcher is not just

on the performance of the algorithms on those specific instances chosen, but rather

on the generalization of the results to the entire population of instances. In statisti-

cal terms, instances are also levels of a factor. However, this factor is of a different

nature from the fixed algorithmic factors described above. Indeed, the levels are

chosen at random and the interest is not in these specific levels but in the population

from which they are sampled. We say that the levels and the factor are random.

Further, it might be possible to stratify the instances according to some character-

istics or features that are easily retrievable. The researcher might then be interested

in studying the influence of these characteristics on the performance of the algo-

rithms. Instance characteristics can be regarded as fixed factors, because we can

control them and the interest is on the specific levels. However, in such a study an-

other issue arises: the instances at different levels of the instance factors are differ-

ent, that is, they are sampled from different populations. In other terms, the random

factor does not cross like all other factors, but it is instead nested within some of

them.

In statistics, the effects described are modeled as linear combinations, and math-

ematical theory has been developed to make inferences about the populations on the

basis of the results observed in the samples. The mixed nature of the factors leads

to so-called nested linear mixed models; see for instance Molenberghs and Verbeke

(1997), Montgomery (2005), and Pinheiro and Bates (2000). These designs, which

are typical of the context of optimization, are nontrivial designs and go beyond the

classical multifactorial ANOVA, where all factors are instead treated as fixed. As we

will see, the mathematical formula involved and the inference derived are different

in the case of mixed-effects models and this may lead to a different inference. In our

practical application we will give an example where this difference clearly arises.

To the best of our knowledge, only Lin and Rardin (1979) make clear reference to

the nesting issue while in all other articles that we reviewed the mixed nature of the

factors is not emphasized or is ignored.

This whole chapter is based on the assumption that additive linear models and

normal distributions are appropriate to describe the experimental data. This is

clearly a strong assumption that is often not met in experiments involving opti-

mization algorithms. In fact, the example that we develop in the second part of the

chapter was selected out of three, where the other two did not pass a diagnostic

analysis on the assumptions. The arguments in defense of these tools also when as-

sumptions are not met are the proven robustness of F -ratio tests in the analysis of

variance method (Montgomery 2005) and that small adjustments of the data, like

increases in the number of observations, removal of outliers, and opportune data

transformations (e.g., log transformation) may contribute to meeting the assump-

tions. Our point of view is that, even when assumptions are not met, these tools can

be very useful exploratory devices to look into the data. Extensions and generaliza-

tions that remove the need for these assumptions exist but for reasons of space we

will not review them here.

The approach that we take to statistical inference is the classical one from statis-

tics in which experiments are fully designed a priori. Even though differences
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among the entities studied always exist, we assume as correct the conservative hy-

pothesis of no differences, and distinguish between statistical differences and prac-
tically meaningful differences. In this sense, we define a minimal effect size that is

relevant in practice and derive the amount of data necessary to achieve a statistical

power of 0.80 at a given level of significance of 0.05. We acknowledge that there are

other ways to address the issue of sample size determination in experimental design.

We refer, for example, to Chap. 13 for a discussion and description of the sequential
testing approach.

The chapter is organized as follows. In Sect. 10.2, we formalize the problem of

inference and the experimental designs, and we provide analytical support for the

use of mixed models. We then review the theoretical background of the analysis. A

reader primarily interested in the practical application of these methods may skip

this part or consider it only when referenced back in Sect. 10.4. In Sect. 10.3, we in-

troduce the application example on the 2-edge-connectivity problem. In Sect. 10.4,

we develop the example producing an extended numerical analysis that reflects the

mathematical background and the organization of Sect. 10.2. With the aim of fa-

cilitating reproduction, we report explicitly, in this section, the commands for the

analysis in R, the free software environment for statistical computing (R Develop-

ment Core Team 2008). We conclude in Sect. 10.5 with a summary and pointers to

further developments that could be helpful in similar studies.

10.2 Experimental Designs and Statistical Modeling

In the most basic design, the researcher wishes to assess the performance of an op-
timization algorithm on a single problem instance π. Since optimization algorithms

are, in many cases, randomized, their performance Y on one instance is a random

variable that might be described by a probability density/mass function p(y|π).
Most commonly, we aim at drawing conclusions about a certain class or popula-

tion of instancesΠ . In this case, the performance Y of the algorithm on the classΠ
is described by the probability function

p(y) =
∑
π∈Π

p(y|π)p(π), (10.1)

with p(π) being the probability of sampling instance π. In other terms, we are in-

terested in the distribution of Y marginalized over the population of instances. This

modeling approach is described also by McGeoch (1996), Wolpert and Macready

(1997), and Birattari (2004).

In experiments, we sample the population of instances and on each sampled in-

stance we collect sample data on the performance of the algorithm. If on an instance

π we run the algorithm r times then we have r replicates of the performance mea-

sure Y , denoted by Y1, . . . , Yr, which are, conditionally on the sampled instance and

given the random nature of the algorithm, independent and identically distributed
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(i.i.d.), i.e.,

p(y1, . . . , yr|π) =
r∏

j=1

p(yj |π). (10.2)

Marginally (over all the instances) the observed performance measures may show

dependence, as is seen from

p(y1, . . . , yr) =
∑
π∈Π

p(y1, . . . , yr|π)p(π). (10.3)

The model (10.3) can be easily extended to the case where several algorithms

are applied to the same instance by incorporating fixed effects in the conditional

structure of (10.2). Next, we illustrate how this leads naturally to a mixed model.

We organize our presentation in different cases according to the number and

type of factors involved. For the sake of conciseness, we identify the cases with the

following notation:〈
algorithm

factors
,
number of

instances

(
instance

factors

)
,
number of

runs

〉
.

For example, 〈N, q(M), r〉 means that we are in the presence of an experimental

design with N algorithmic factors, q instances sampled from each combination of

M instance factors and r runs of the algorithm per instance. We use lower-case

letters when referring to the number of factors and upper-case letters when referring

to the number of levels. We indicate the absence of fixed factors by a dash. The round

parenthesis indicates nesting and its meaning is better explained in Sect. 10.2.3.

10.2.1 Case 〈-, q(-), r〉: Random-Effects Design

We start with the simplest experiment where one algorithm is evaluated on q in-

stances randomly sampled from a classΠ . The experiment is performed as follows.

In a first stage an instance is randomly drawn from a population of instances, where-

after the single algorithm is run r times on the instance. Given the stochastic nature

of the algorithm, this produces, conditionally on the sampled instance, r replications
of the performance measure that are i.i.d. We use Yij to denote the random perfor-

mance measure obtained in the jth replication of the algorithm on the ith instance.

The instances included in the study are randomly drawn from some population

of instances, and the interest is in inferring about this larger population of instances,

not just on those included in the experiment. The above considerations lead us to

propose the following random-effects model:

Yij = μ+ τi + εij , (10.4)
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where

μ is an overall mean,

τi is a random variable representing the effect of instance i, and
εij is a random error term for replication j on instance i.

As such, the stochastic behavior of the response variable originates from both the

instance and the algorithm. Concerning the random elements in the right-hand side

of (10.4) we assume the following:

– τ1, . . . , τq are i.i.d. N(0, σ2
τ ),

– εij , i = 1, . . . , q, j = 1, . . . , r, are i.i.d. N(0, σ2),
– all τi and εij are independent of each other.

Note that the postulated random-effects model satisfies the structure of the condi-

tional and marginal models given by (10.2) and (10.3). In particular, the conditional

distribution of the performance measure given the instance is given by

Yij |τi ∼ N(μ+ τi, σ
2), j = 1, . . . , r.

Furthermore, conditionally on the random effect τi, the random variables Yi1, . . . , Yir

are independent. Integrating out the random effects we obtain the unconditional

model

Yij ∼ N(μ, σ2 + σ2
τ ), i = 1, . . . , q, j = 1, . . . , r.

The use of random instance effects yields dependency between the performance

measurements obtained on a specific instance, while performances are independent

if they pertain to different instances. Hence, the covariance structure of the model

(10.4) is

COV(Yij , Yi′j′) =

⎧⎨⎩σ2 + σ2
τ , if i = i′ and j = j′,

σ2
τ , if i = i′ and j 	= j′,

0, if i 	= i′,
(10.5)

which is the compound symmetric covariance structure. The parameters σ2 and σ2
τ

determine the variance of the individual Yij as well as the covariance between the

Yij , and therefore are called the variance components.
Collecting the performance measurements Yi1, . . . , Yir into the vector Yi, and

denoting by 1 the r-dimensional vector of ones and by Σ the (r × r) covariance
matrix ofYi, i.e.,

Σ =

⎡⎢⎢⎢⎣
σ2 + σ2

τ σ2
τ · · · σ2

τ

σ2
τ σ2 + σ2

τ · · · σ2
τ

...
...

. . .
...

σ2
τ σ2

τ · · · σ2 + σ2
τ

⎤⎥⎥⎥⎦ ,
we can summarize the above as
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Yi ∼ Nr(μ1,Σ), i = 1, . . . , q,

independently.

Note that, in ordinary ANOVA, the instance factor in model (10.4) would be

considered a fixed factor, i.e., nonrandom, yielding

Yij ∼ N(μ+ τi, σ
2), i = 1, . . . , q, j = 1, . . . , r,

with Yij being independent; i.e., unlike model (10.4), this model does not take into

account dependencies arising from applying an algorithm repeatedly to the same

instances.

Given that the instances are here considered as samples from some larger popu-

lation of instances, we are not interested in performing a hypothesis test about the

particular levels included in the study. Instead, the interest is in the whole popula-

tion of instances and hence the hypothesis of interest is one involving the variance

component σ2
τ , in particular

H0 : σ2
τ = 0 versus H1 : σ2

τ > 0. (10.6)

Clearly, if H0 is true then the instance distribution reduces to a point mass at zero,

implying that all possible instance parameters are fixed and equal to zero, which

corresponds to no instance effect.

Intuitively, tests concerning σ2
τ , as specified in (10.6), and tests involving a com-

parison of the algorithmic variance σ2 and the instance variance σ2
τ should be based

on a comparison of the between-instance variability, measured by r
∑q

i=1(Ȳi. −
Ȳ..)

2, and the within-instance variability, measured by
∑q

i=1

∑r
j=1(Yij − Ȳi.)

2 (the

dot and the bar in Ȳi. indicate averages over the index j and in Ȳ.. average over both

indices i and j). Statistical theory motivates the use of the ratio

F =

r
∑q

i=1(Ȳi.−Ȳ..)
2

(q−1)(σ2+rσ2
τ )∑q

i=1

∑r
j=1(Yij−Ȳi.)2

q(r−1)σ2

, (10.7)

as it can be shown that under the above model assumptions F ∼ F (q−1, q(r−1)),
where F (ν1, ν2) is used to denote the F distribution with ν1 and ν2 degrees of

freedom. We distinguish three specific uses of (10.7):

– Test for an instance effect: H0 : σ2
τ = 0 versus H1 : σ2

τ > 0.
Under H0 : σ2

τ = 0 we have

F1 =
MSI

MSE
,

where

MSI =
r
∑q

i=1(Ȳi. − Ȳ..)
2

q − 1
,
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MSE =

∑q
i=1

∑r
j=1(Yij − Ȳi.)

2

q(r − 1)
,

and F1 ∼ F (q − 1, q(r − 1)), leading to the decision rule to reject H0 at the

significance level α if f1 > F (1−α; q−1, q(r−1)), where f1 is the realization
of F1 from the observed data. An intuitive motivation for the form of statistic

F1 can be obtained from the expected mean squares. It can be shown that

E[MSI] = σ2 + rσ2
τ , and (10.8)

E[MSE] = σ2, (10.9)

so underH0 bothMSI andMSE estimate σ2 in an unbiased way, and F1 can be

expected to be close to one. On the other hand, large values of F1 give evidence

againstH0.

– Test involving a comparison of the instance and the algorithmic variance: H0 :
σ2
τ/σ

2 = c versus H1 : σ2
τ/σ

2 	= c.
Under H0 : σ2

τ/σ
2 = c we have

F2 =

r
∑q

i=1(Ȳi.−Ȳ..)
2

(q−1)(1+rc)∑q
i=1

∑r
j=1(Yij−Ȳi.)2

q(r−1)

∼ F (q − 1, q(r − 1)),

leading to the decision rule to reject H0 if f2 < F (α/2; q − 1, q(r − 1)) or
f2 > F (1− α/2; q − 1, q(r − 1)).

– Power calculations. Power calculations can be useful at the design stage of the

experiment when one has to decide on the number of instances q and the number

of replicates r. The power of a statistical test is the probability that the test will

reject the null hypothesis when in fact the alternative hypothesis is true. The

power of the F test for testing H0 : σ2
τ = 0 vs H1 : σ2

τ > 0 can be computed

from

POWER = Pr

{
F >

F (1− α; q − 1, q(r − 1))

1 + rσ̃2
τ/σ

2

}
, (10.10)

where σ̃2
τ is a value for σ2

τ from H1. We refer to Sect. 10.4.1 for an illustration

of the use of power calculations.

It might be also relevant to estimate the overall mean μ. Since we have E[Yij ] =
μ then an unbiased estimator of μ is

μ̂ = Ȳ··.

It can be shown that an unbiased estimator1 of σ2[Ȳ..] is s
2[Ȳ..] = MSI/qr and

1 We adopt the convention of using the same symbol for estimators and estimates, as mentioned in
the appendix, pages 427 and 430.
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Ȳ·· − μ

ŝ[Ȳ··]
∼ t(q − 1).

Hence, we obtain the confidence limits for μ by

ȳ·· ± t(1− α/2; q − 1)s[Ȳ··]. (10.11)

Confidence intervals on the variance components σ2
τ and σ2 can also be derived, see

Kutner et al. (2005).

10.2.2 Case 〈N, q(-), r〉: Mixed-Effects Design

We now consider the case where h algorithms are evaluated on q instances randomly

sampled from a classΠ . The experiment is performed as follows. In a first stage an

instance is sampled from a population of instances. Next, each algorithm is run r
times on the instance. Again, conditionally on the instance and for a given algorithm,

we obtain r i.i.d. replications of the performance measure. We use Yijk to denote the

random performance measure obtained in replication k of algorithm j on instance

i. Note that we are here, for simplicity of exposition, dealing with a special case of

design 〈N, q(-), r〉, namely the case where N = 1, which corresponds to having

one single factor representing the different algorithms.

The algorithms included in the study are the ones in which we are particularly

interested, and hence they can be considered as levels of a fixed factor. As before,
the instances are drawn randomly from some population of instances and the interest

is in inferring about this global population of instances, not just those included in

the study. Hence, we assume that the performance measure can be decomposed

according to the following mixed-effects ANOVA model:

Yijk = μ+ αj + τi + γij + εijk, (10.12)

where

μ is an overall performance level common to all observations,

αj is a fixed effect due to the algorithm j,
τi is a random effect associated with instance i,
γij is a random interaction between instance i and algorithm j,
εijk is a random error for replication k of algorithm j on instance i.

For identification purposes we impose the usual sum constraint on the factor level

effects, i.e.,
∑h

j=1 αj = 0. The assumptions imposed on the random elements are

– τi are i.i.d. N(0, σ2
τ ),

– γij are i.i.d. N(0, σ2
γ),

– εijk are i.i.d. N(0, σ2), and
– τi, γij and εijk are mutually independent random variables.
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Also here the postulated model satisfies the structure of the conditional and marginal

models given by (10.2) and (10.3). In particular, the conditional distribution of the

performance measure given the instance and the instance–algorithm interaction is

given by

Yijk|τi, γij ∼ N(μ+ αj + τi + γij , σ
2), i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r.

Furthermore, conditionally on the random effects τi and γij , i = 1, . . . , q, j =
1, . . . , h, all responses are independent. Integrating out the random effects we obtain

the marginal model for the response variables:

Yijk ∼ N(μ+ αj , σ
2 + σ2

τ + σ2
γ), i = 1, . . . , q, j = 1, . . . , h, k = 1, . . . , r.

The use of random instance effects and random instance–algorithm interactions

yields dependency between the performance measurements obtained on a specific

instance, while observations are independent if they pertain to different instances.

The covariance between any two observations under model (10.12) is

Cov(Yijk, Yi′j′k′) =

⎧⎪⎪⎨⎪⎪⎩
σ2 + σ2

τ + σ2
γ , if i = i′, j = j′, k = k′,

σ2
τ + σ2

γ , if i = i′, j = j′, k 	= k′,
σ2
τ , if i = i′, j 	= j′,

0, if i 	= i′.

(10.13)

The mixed model (10.12) with its assumptions forms the natural basis for testing

hypotheses about both fixed and random factors, and their interactions. Concerning

the fixed factors, the interest is usually in testing whether there is a difference be-

tween the factor level means μ+α1, . . . , μ+αh. Formally, one tests the hypothesis

H0 : α1 = α2 = . . . = αh = 0,

H1 : at least one αj not equal to 0.

Similarly to the random-effects model, for the random effects, tests about the partic-

ular levels included in the study are meaningless. Instead we test hypotheses about

the variance components σ2
τ and σ2

γ , reflecting that the ultimate interest is in the

whole population of instances:

H0 : σ2
τ = 0, and H0 : σ2

γ = 0,
H1 : σ2

τ > 0, H1 : σ2
γ > 0,

respectively. In balanced designs, the test statistics for these hypotheses are ratios of

mean squares that are chosen such that the expected mean squares of the numerator

differs from the expected mean squares of the denominator only by the variance

components of the random factor in which we are interested. We report the resulting

analysis of variance in Table 10.1. Formal procedures that automatize the derivation

of these tables are described by Montgomery (2005, p. 502), Kutner et al. (2005),

and Molenberghs and Verbeke (1997, 2005).
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Mean Expected Test
Effects squares df mean squares statistics

Fixed factor MSF h− 1 σ2 + rσ2
γ + rp

∑h
j=1 α2

j

h−1
MSF/MSFR

Random factor MSR p− 1 σ2 + rσ2
γ + rhσ2

τ MSR/MSFR

Interaction MSFR (h− 1)(p− 1) σ2 + rσ2
γ MSFR/MSE

Error MSE hq(r − 1) σ2

Table 10.1: Expected mean squares and consequent appropriate test statistics for a mixed two-
factor model. For a generalization to multifactorial cases see rules in Montgomery (2005), and
Kutner et al. (2005)

Estimators for the fixed effects of balanced mixed models have also been derived.

Estimators of the fixed effects αj are α̂j = Ȳ·j· − Ȳ···. Perhaps more interesting

for our purposes in the analysis of optimization algorithms is the marginal mean

μ·j = μ + αj whose best estimator is μ̂·j = Ȳ··· + (Ȳ·j· − Ȳ···) = Ȳ·j·. Unbiased
estimators for the variances σ2[α̂j ] and σ

2[μ̂·j ] are

s2[α̂j ] =
1

qr
MSFR and s2[μ̂.j ] =

h− 1

hqr
MSFR+

1

hqr
MSR,

respectively. We can then compute exact confidence limits on pairwise comparisons

of fixed effects, D = μ·j − μ·j′ = αj − αj′ , by the fact that

D̂ −D

s[D̂]
∼ t
(
(h− 1)(p− 1)

)
,

where s2[D̂] = 2s2[α̂j ].
Tukey’s multiple comparison procedure can be used to guarantee a family confi-

dence coefficient 1 − α when multiple comparisons are to be performed. In other

terms, if we perform
(
h
2

)
pairwise comparisons for the fixed factor, we want each of

them to be correct (1− α)100 percent of times. Tukey’s procedure consists of sub-

stituting the t distribution with the Studentized range distribution. More precisely,

we can make explicit the multiple comparisons confidence limits for all pairwise

comparisonsD = μ.j −μ.j′ , or equivalentlyD = αj −αj′ , with family confidence

coefficient of at least 1− α as follows:

D̂ ± Ts[D̂], T =
1√
2
t′(1− α;h, (h− 1)(q − 1)).

where t′(p; ν1, ν2) denotes quantile p of the Studentized range distribution with ν1
and ν2 degrees of freedom.

A paired comparison plot (see Fig. 10.5 in Sect. 10.4.2) can be used to visualize
Tukey’s multiple comparisons when the design is perfectly balanced. It consists of

plotting around each estimated mean, e.g., μ̂.j , an interval whose limits are ȳ.j ±
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Ts[D̂]/2. When intervals overlap in this plot we conclude that there is not significant

difference between the means compared. The advantage of this plot is that it shows

at the same time the significance and the entity of the differences.

10.2.3 Case 〈-, q(M), r〉: Nested-Effects Design

In the previously considered designs the instances were assumed to be sampled from

some (homogeneous) population of instances, whereafter they were solved by all

algorithms. Each instance was combined with all possible levels of the algorithmic

factors and hence the instance factor and the algorithmic factors were crossed. It is

clear that, besides the algorithmic factors, also the characteristics of the instances

may affect the performance measure, and that to study these formally we have to

include them as fixed factors in the experimental design. Assume that the instances

can be characterized by M factors, each of them having a given number of levels.

The combination of the levels of these factors defines an instance class and the

instances are then randomly sampled from it. As such, instances are specific for

the given combination of levels of the instance factors, meaning that they are not

crossed with the instance factors, but nested within them.

We consider the simplest design, where there is only one instance factor with

m possible levels, defining m instance classes. From each instance class (factor

level), q instances are randomly sampled and subsequently solved r times by a single

algorithm. We denote here by Yijk the random performance measure obtained in

the kth replication of the algorithm on the ith instance sampled from the jth class.

Hereafter, we use the subscript i(j) to indicate that the ith factor level of the random
factor is nested within the jth factor level of the fixed factor. A possible model for

this design is

Yijk = μ+ βj + τi(j) + εijk, (10.14)

where

μ is an overall performance level common to all observations,

βj is a fixed effect due to the instance class j,
τi(j) is a random effect associated with instance i sampled from class j, and
εijk is a random error for replication k on instance i in class j.

The assumptions on the random effects are as follows:

– τi(j) are i.i.d. N(0, σ2
τ ),

– εijk are i.i.d. N(0, σ2),
– τi(j) and εijk are independent random variables.

The principle of nesting is illustrated in Fig. 10.1. Under the above model the re-

sponse variables are linear combinations of independent normal random variables

and hence they follow a normal distribution. To be specific
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Class 1 Class 2
Instance Instance

1 2 3 1 2 3

Y111 Y211 Y311 Y121 Y221 Y321

...
...

...
...

...
...

Y11r Y21r Y31r Y12r Y22r Y32r

Fig. 10.1: An illustration of nested factor design with m = 2 and q = 3. The instances within the
two classes are different and should be more appropriately identified by 1, 2, 3 and 4, 5, 6

Square Expected Test
Effects mean df square mean statistics

Fixed factor MSF m− 1 σ2 + rσ2
τ + rp

∑m
j=1 β2

j

m−1
MSF/MSI(F )

Nested factor MSI(F ) m(p− 1) σ2 + rσ2
τ MSI(F )/MSE

Error MSE mq(r − 1) σ2

Table 10.2: Expected mean squares and consequent appropriate test statistics for a two-factor
nested model. For a generalization to multifactorial cases see the rules in Montgomery (2005), and
Kutner et al. (2005)

Yijk ∼ N(μ+ βj , σ
2 + σ2

τ ), i = 1, . . . , q, j = 1, . . . ,m, k = 1, . . . , r.

The above model forms the basis for performing inference about the factor effects

βj . On the other hand the instances are randomly drawn from some larger popula-

tion of instances and we focus on the variability by testing the variance component

σ2
τ of the instances similarly to the previous two cases. The quantities needed for

developing the tests, and the test statistics themselves, are presented in Table 10.2.

10.2.4 Case 〈N, q(M), r〉: General Mixed-Effects Design

In this case, the researcher wishes to assess how the performance measure Y is af-

fected by several parameters of the algorithms and of the instances. Ideally, we fix

those parameters that are most important and that we can control, and randomize

those properties that we do not understand or cannot control. The parameters con-

trolled may be both categorical or numerical. We consider the following setting:

• Factors A1, . . . , AN represent the parameters of the algorithms. Each combina-

tion of these factors gives rise to an instantiated algorithm.

• Factors B1, . . . , BM represent the parameters of the instances (or the stratifica-
tion factors of the whole space of instances). Each combination of these factors

gives rise to a different class of instances Πl.
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• From each class of instancesΠl, q instances are sampled randomly and on each

of them, each instantiated algorithm is run r times.

The factors Ai, i = 1, . . . , N , and Bj , j = 1, . . . ,M , are fixed factors and

the factor instance is a random factor. Since the instances within each class Πl are

different, the design is nested. This yields a linear mixed model that can be written

as

Yi1,...,iN ,j1,...,jM ,k = μ+ αi1 + . . .+ αiN + βj1 + . . .+ βjM+

+ τk(j1,...,jM ) + εi1,...,iN ,j1,...,jM ,k

(10.15)

with

{i1, . . . , iN} an index set for the levels of the algorithmic factors A1, . . . , AM ;

{j1, . . . , jM} an index set for the levels of the instance factors B1, . . . , BN ;

αi1 , . . . , αiN the main effects of the algorithmic factors A1, . . . , AM ;

βj1 , . . . , βjM the main effects of the instance factors B1, . . . , BM ;

τk(j1,...,jM ) the random effect of instance k in setting {j1, . . . , jM} of the in-

stance factors;

εi1,...,iN ,j1,...,jM ,k a random error term.

and where, for brevity, we omitted the interaction terms between all fixed factors.

The analysis of this model is a generalization of those outlined in the previous

cases. However, it is more convenient to cast the current model into the framework

of the linear mixed model (LMM), where (10.15) can be rewritten as

Y = Xβ + Zb+ ε (10.16)

with

Y an n-vector that contains the response variables,
X a known n× k matrix, the design matrix associated with the fixed regression

coefficients,

β a k-vector that contains the fixed regression coefficients,

Z a known n× q matrix, the design matrix associated with the random regres-

sion coefficients,

b an q-vector that contains the random regression coefficients,

ε a n-vector of error terms.

The terms μ+αi1 + . . .+αiN +βj1 + . . .+βjM for all combinations of indices are

now represented by Xβ and the model is more general because it allows the inclu-

sion of both qualitative and quantitative variables while in the models encountered

above variables were limited to be qualitative. Model (10.16) contains two random

components, namely b and ε, for which we make the following distributional as-

sumptions:

b ∼ Nq(0,D) and ε ∼ Nn(0,Σ),
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with b and ε independent random vectors, and where N�(μ,Ψ) denotes the -
variate normal distribution with mean vector μ and covariance matrix Ψ. Clearly,

the LMM satisfies the conditional and marginal structures outlined in the introduc-

tion of Sect. 10.2; in particular, conditionally,

Y|b ∼ Nn(Xβ + Zb,Σ) (10.17)

and, marginally,

Y ∼ Nn(Xβ,V[α]), (10.18)

where V[α] = ZDZ′ + Σ. We use the notation V[α] here in order to indicate

explicitly the dependence of the marginal covariance matrix on an unknown vector

α of parameters in the covariance matrices D and Σ. Although several methods

are available to estimate the LMM, the classical approach is based on maximum

likelihood estimation of the marginal model (10.18). According to the latter, one

maximizes the likelihood function given by

L(θ) =
1

(2π)n/2|V[α]|1/2 exp

[
−1

2
(Y −Xβ)′V−1[α](Y −Xβ)

]
,

with respect to the vector θ = (β,α) of unknown model parameters, leading to the

maximum likelihood estimator (MLE) θ̂ = (β̂, α̂). For a given fixed α, the MLE for

β can be obtained explicitly, and is given by

β̂ = (X′V−1[α]X)−1X′V−1[α]Y,

the well-known generalized least squares estimator for the marginal model (10.18).

However, in practice α is typically unknown and hence it must be replaced by an es-

timate. For this one often uses the restricted maximum likelihood (REML) method,

which allows one to estimate α without having to estimate the parameters of β first.

The basic idea of the REML method is to form linear combinationsK′Y, whereK
is a matrix of full column rank, such that the joint distribution of these transformed

data no longer depends on β. This is achieved by constructing K having columns

orthogonal to the columns of X, i.e.,K′X = 0. Another motivation for the REML

method stems from the fact that it produces estimates that are less biased than the

MLEs.

An appealing feature of the likelihood framework is that it provides a general

procedure for testing hypotheses about model parameters, by simply comparing two

likelihood values: the likelihood of a restricted model, the null model, and that of an

unrestricted model, also referred to as the full model. This approach to hypothesis

testing is especially useful in complex and unbalanced designs, where exact tests

such as the F tests described above are typically unavailable. Formally, consider

the above-introduced parameter vector θ and its associated parameter spaceΘ (the

set of possible values for θ), so θ ∈ Θ, and let θ1 denote the subvector of θ that

is of interest for testing. In other terms, let the vector θ1 contain the parameters of
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the unrestricted model that are not contained in the restricted model. Under the null

hypothesis H0 : θ1 = θ10, the parameter vector θ is restricted to lie in some subset

Θ0 of Θ. To test the hypothesis about θ1 one computes the likelihood ratio test

statistic expressed by the ratio between the maximum likelihood of the sample data

under the restricted model and the one under the unrestricted model, i.e.,

Λ =
maxθ∈Θ0

L(θ)
maxθ∈Θ L(θ)

,

and rejectsH0 if Λ is too small. It can be shown that, under certain regularity condi-

tions and assuming that H0 : θ1 = θ10 holds, −2 lnΛ is approximately distributed

as χ2
ν , provided the sample size is large. The degrees of freedom ν of the approx-

imating chi-squared distribution are given by the difference of the dimensions of

the parameter spaces Θ0 and Θ. One of the assumptions for having a chi-squared

limiting distribution for −2 lnΛ is that the parameters in the null hypothesis are

not on the boundary of the parameter space. In the LMM we are often interested in

testing a hypothesis about a random effect that takes the form H0 : σ2 = 0, which
constitutes a violation of this assumption. If one uses in such a case the chi-squared

approximation with its usual degrees of freedom, then the test will be conservative.

For a detailed description of the asymptotic properties of the maximum likelihood

method and the likelihood ratio test statistic we refer the reader to Lehmann (2003)

and Lehmann and Romano (2008).

10.3 An Application Example in Optimization Heuristic Design

In this section we briefly describe the application example that we will develop

in the next section. The example is extracted from a study on heuristic and exact

algorithms for the so-called E1-2AUG problem (Bang-Jensen et al. 2009). Here, we

focus on an intermediate result of that work concerning local search algorithms. We

first describe the problem and, then, sketch the local search schemes from which the

algorithms are derived; finally we introduce the test instances.

10.3.1 Definitions and Problem Formulation

In graph theory terminology (see, for example, Bondy and Murty 2008), an edge

uv in a connected graph G = (V,E) is a bridge if we can partition V into two sets

S, V − S so that uv is the only edge from E with endpoints in both S and V − S.
A graph is 2-edge-connected if it is connected and has no bridges.

The 2-edge-connectivity augmentation (E1-2AUG) problem asks for a given

undirected 2-edge-connected graph G = (V,E), a fixed spanning connected sub-

graph of G, S = (V, F ), and a nonnegative weight function ω on E′ = E − F ,
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to find a subset X of E′ of minimal total weight so that A(G) = (V, F ∪ X) is
2-edge-connected.

We restrict ourselves to only the cases where the graphG is a simple graph and S
is a tree. An edge uv ∈ E which is not in S is said to cover those edges of S which

correspond to the unique uv-path Puv in S. We assume that every edge uv in F is

covered by at least two edges inE′. We call a subsetX ofE′ a proper augmentation
of S if A(G) = (V, F ∪X) is 2-edge-connected.

Every optimal augmentation X is minimal, that is, no edge can be deleted from

X without leaving at least one edge of S uncovered. If a given augmentation is not

minimal it can be made so by means of a trimming procedure that removes edges

from X without leaving any edge of S uncovered.

It can be shown that the E1-2AUG problem is a special case of the general set

covering problem (Conforti et al. 2004). That is, the minimal weight augmentation

corresponds to the minimal weight selection of edges such that every edge of F is

covered by at least an edge from E′.

10.3.2 Local Search Algorithms

Three construction heuristics named lightest addition (la), shortest path (sp), and
greedy covering (gc) have been designed by Bang-Jensen et al. (2009). To improve

the solution provided by these heuristics, three local search schemes are used. They

are based on a first improvement strategy and on three different neighborhood struc-

tures.

Addition neighborhood (addn) Neighboring augmentations are obtained by

adding k edges from E′ −X and trimming the resulting augmentation.

Destruct–reconstruct neighborhood (gcn) Neighboring augmentations are ob-

tained by removing k edges from the current augmentation and reconstructing the

resulting improper augmentation by means of the greedy set covering heuristic by

Chvatal (Cormen et al. 2001, p. 1035).

Shortest path neighborhood (spn) It consists of deleting k edges and finding

the shortest path between pairs of their ending vertices in a suitable digraph. The

digraph is constructed considering edges available for the augmentation and not

allowing to reinsert deleted edges. After the insertion of the new edges the augmen-

tation is trimmed to make it again minimal.

Our task is to assess empirically the impact of three factors: the construction

heuristic, the local search scheme identified by its neighborhood, and the parameter

k common to all neighborhoods.
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10.3.3 Problem Instances

In the experiments, we sample the space of instances of the E1-2AUG problem by

restricting ourselves to only a portion of it and by stratifying this portion accord-

ing to three instance characteristics: type of graphs, edge density, and distribution of
weights.2 The type distinguishes between uniform graphs (type U), geometric graphs

(type G) and small world graphs (type sm) (see Bang-Jensen et al. 2009 for defini-

tions). In all types of graphs, the spanning tree S is chosen randomly. All graphs

may have random weights on their edges (r) or have uniform weights (1). The edge
density is a measure of the amount of edges present in the graph and we consider

three possibilities: high, medium, and low, {h,m,l}.

10.4 Numerical Examples

Wemeasure the performance of a run of an algorithm on an instance π by the gap or

percent error of the lower bound approximation, i.e., (z(π) − z∗(π))/z∗(π) · 100,
where z(π) is the observed solution cost in that run of the algorithm and z∗(π) is
the lower bound on the solution costs for that instance. This measure is feasible in

our example problem because a good lower bound can be determined for several

instances in relatively short time by integer programming. In fact, for most of the

cases the lower bound used is also proved to be the optimal solution. Other mea-

sures of solution quality are possible. Zemel (1981) points out that a criterion for

judging quality measures is the invariance to simple transformation of the instances.

Another measure of interest, not based on solution quality, might be the computa-

tion time, since the algorithms in the study all have a natural termination condition

(the attainment of a local optimum).3

We now develop the analysis on the local search algorithms for the E1-2AUG

problem proceeding case by case in the same order as in Sect. 10.2. The analy-

sis is conducted with the statistical package R (R Development Core Team 2008)

and in the text we give the main commands to execute this analysis. In the online

compendium http://www.imada.sdu.dk/~marco/Mixed/ we report the

data, the full code in R, and the same analysis in the statistical software package

SAS.

2 Note that the process of sampling should be designed carefully in order to avoid pitfalls such as
bias towards some instances rather than others. For example, the possible nonisomorphic graphs
of size 800 are more than those of size 200, hence they should be given more probability to appear.
This problem is solved if stratification is applied and the stratifying factor, in the example the size
of the graph, is included in the analysis.
3 Often local search algorithms are enhanced by metaheuristics (Glover and Kochenberger 2002)
and no longer have a natural termination condition. In this case, computation time can be seen as
an external parameter and treated as an algorithmic fixed factor in the models discussed here.
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Fig. 10.2: Statistical power for the case 〈−, q(−), r〉. The power is a function of three variables:
σ̃2
τ/σ

2, q, and r. The plot on the left shows a contour plot of the power surface as a function of r
and σ̃2

τ/σ
2 when q = 5. The plot on the right shows the power as a function of q for a total number

of experiments qr = 30, when σ̃2
τ/σ

2 = 1

10.4.1 Case 〈-, q(-), r〉: Random-Effects Design

The goal of this simple case is to illustrate the decomposition of the variance of the

response observations in two components, namely, the variability of the results due

to the stochasticity of the algorithm and the variability due to the instances sampled

from the population. Moreover, we derive an estimation of solution quality with

associated confidence intervals.

We collect the results of one algorithm run a number of times on a set of in-

stances. Precisely, the algorithm is determined by the choices gc, addn, and k3
and the instance class by the choices G, m, and 1.

In the design of the experiment, we decide the number of runs and the number

of instances on the basis of considerations on the level of significance and on the

power. In particular, we fix the level of significance at 0.05 and aim to a statistical

power of 0.8. (These values are maintained throughout the remainder of the chapter.)

We then use (10.10) to compute the value of power as a function of r, q, and σ̃2
τ/σ

2

and we visualize this function in two alternative ways in Fig. 10.2.

The two plots represent different views of POWER(σ̃2
τ/σ

2, q, r). In Fig. 10.2(a)
we show the contour plot of the POWER surface when considered as a function of

σ̃2
τ/σ

2 (called ratio) and r, for a fixed value of q (here q = 5). Each curve in this

plot corresponds to a specific power level and represents the (r, σ̃2
τ/σ

2) combina-

tions for which this power is achieved. For instance, if one wants to detect with a

5% significance test a σ̃2
τ which is of the same magnitude as σ2 (corresponding to

ratio = 1) with a probability of 0.8 in an experiment with five instances, then one

has to collect six replicates to achieve this level. Fig. 10.2(b) contains an alternative

representation of the POWER function. Here we show the power of the test when
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σ̃2
τ/σ

2 = 1 as a function of the number of instances q, when the total number of

experiments is fixed at 30, i.e., when qr = 30. This bound on the number of experi-

ments can be posed by consideration on the computational time available. This plot

has a peak around q = 6, hinting at a POWER-optimal design under the conditions

stated. We use this observation to conclude that, in order to have a power of 0.8

when σ̃2
τ/σ

2 = 1, which we deem a relevant value for practical purposes, then we

need to collect at least r = 30/q = 5 runs on q = 6 instances.4

In a second step, we analyze the results of an experiment in which six instances

were randomly sampled from the class G-m-1, whereafter they were solved five

times with the algorithm gc-addn-k3. We load the data in R stored in a data

frame and check its content by means of the command str. The data frame is

organized in two columns, instance and algorithm, that indicate the factors
of each observation, a column run that reports the replicate number, and a column

gap that gives the response variable:

> load("Data/OPOR.dataR")
> str(OPOR, strict.width = "cut", width = 70)

'data.frame': 30 obs. of 4 variables:
$ instance : Factor w/ 6 levels "G-800-0.5-1-pre.ins",..: 1 1..
$ run : int 5 1 3 2 4 5 3 4 2 1..
$ algorithm: Factor w/ 1 level "gc-addn-3": 1 1 1 1 1 1 1..
$ gap : num 4.07 4.05 4.07 4.07 4.07 ...

Before presenting the results of the analysis and performing hypothesis testing

using the random-effects model described in Sect. 10.2.1, we comment on the va-

lidity of the model assumptions. Under model (10.4) the response variables are nor-

mally distributed with mean μ and variance σ2 + σ2
τ , and we validate this assump-

tion using a normal quantile plot (QQ plot). In such a plot we compare the empirical

quantiles (the ordered data) with the corresponding quantiles of a standard normal

model. In case the normality assumption holds then the points on the QQ plot will

show a straight line pattern (see also the appendix of this book). For the experiment

under consideration we show this plot in Fig. 10.3(a). Clearly, the points are quite

tightly concentrated along a straight line, indicating that a normal model is plausi-

ble for our data. In Fig. 10.3(b) and (c), we report the quantile plots also for two

other cases that we examined. More precisely, the second QQ plot is obtained for

a continuous optimization problem, namely the least median of squares, a robust

way to estimate parameters in linear regression analysis (Rousseeuw 1984). The

problem with this plot is that the tails are very far from being normally distributed,

with the tails of the empirical distribution being lighter than normal tails. The third

plot is based on a study for the graph coloring problem (Chiarandini 2005). In this

case, the major problem is that data, corresponding to the minimal number of colors

used, are discrete and distributed among only a few values. The whole methodology

developed in this chapter works for continuous objective functions. When data are

discrete but, contrary to the case of the third plot, have many possible values, data

can still be reasonably approximated by a continuous distribution.

4 In the next designs we omit the details of power computations. A computer program by Lenth
(2006) for these computations is available online.
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Fig. 10.3: The distribution of data. The leftmost plot shows the quantile distribution of
gc-addn-k3 when run five times on ten instances of the class G-800-0.5. The plot in the
center shows five runs on 500 instances on a different problem where the distribution shows strong
deviance from normality even after data transformation. The rightmost plot shows the distribution
of quantiles from five runs on 60 instances. Here the problem is discreteness of data

We now turn to fitting the random-effects model (10.4) and to the estimates and

inference about its parameters. Random (and mixed) effects models can be fitted

with the function lmer of the package lme4 (Bates et al. 2008).5 Below we show

the resulting R output.

> library(lme4)
> fm1a <- lmer(gap ~ 1 + (1 | instance), data = OPOR)
> print(fm1a, digits = 3, corr = FALSE)

Linear mixed model fit by REML
Formula: gap ~ 1 + (1 | instance)

Data: OPOR
AIC BIC logLik deviance REMLdev

-101 -96.6 53.4 -105 -107
Random effects:
Groups Name Variance Std.Dev.
instance (Intercept) 4.362580 2.0887
Residual 0.000173 0.0131

Number of obs: 30, groups: instance, 6
Fixed effects:

Estimate Std. Error t value
(Intercept) 4.559 0.853 5.35

Since there are no fixed effects, the model (10.4) passed to lmer contains only 1
that represents the intercept μ. The random effect is expressed by (1|instance),
indicating that the data is grouped by instance and that the random effect is con-

stant within each group, 1. By default lmer uses the restricted maximum likelihood

(REML) method to fit the model. The output provides information about some of the

measures of the fitting such as the log-likelihood (53.4), the deviance for the max-

imum likelihood criterion (−105), the deviance for the REML criterion (−107),
Akaike’s information criterion (AIC = −101) and Schwartz’s Bayesian informa-

tion criterion (BIC = −96.6). Under the header Fixed effects, we find the

5 The package nlme (Pinheiro et al. 2008) can also treat mixed-effects models.
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estimate for the intercept μ while under Random effects we find the estimates

for the parameters related to the random effects and the error distributions, here the

standard deviations for τ (instance) and ε (Residuals), respectively. For our
experiment we obtain σ̂τ = 2.0887 and σ̂ = 0.0131, which indicates that the vari-

ability in the response observations can be mainly attributed to the variability of the

instances.

By default the lmer function does not report the test on the hypothesis about

the variance components σ2
τ and σ2. This is because in general for unbalanced data

the computation of the test is not trivial. However, in the cases of perfectly balanced

experiments, such as ours, we can proceed to compute the F statistic and the p-value
on the basis of (10.8) and (10.9), by plugging the estimates into the equations for

the expected mean squares. We get

MSI = σ̂2 + rσ̂2
τ

= 0.01312 + 5(2.0887)2,

MSE = σ̂2

= 0.01312,

and hence f1 = 126283, with p-value ≈ 0 thus the null hypothesis is to be rejected.
In R:

> VC <- VarCorr(fm1a)
> sigma.tau <- as.numeric(attr(VC$instance, "stddev"))
> sigma <- as.numeric(attr(VC, "sc"))
> q <- nlevels(OPOR$instance)
> r <- length(unique(OPOR$run))
> MSI <- sigma^2 + r * sigma.tau^2
> MSE <- sigma^2
> 1 - pf(MSI/MSE, q - 1, q * (r - 1))

[1] 0

We can compute the test on the random effects also by using the likelihood ratio

test. In this case, for the likelihood of the model without fixed effects, we have to

use the function lm

> fm1a <- lmer(gap ~ 1 + (1 | instance), data = OPOR, REML = FALSE)
> fm1a.0 <- lm(gap ~ 1, data = OPOR)
> LRT <- as.numeric(2 * (logLik(fm1a) - logLik(fm1a.0)))
> 1 - pchisq(LRT, 1)

[1] 0

The test confirms the rejection of the null hypothesis. Note that we perform here

a test where the parameter of the null hypothesis is on the boundary of the param-

eter space, and hence, as noted before, the classical chi-squared approximation to

the null distribution of the likelihood ratio test is inappropriate. For this particular

case, where we test the importance of a single variance component, the limiting dis-

tribution of the likelihood ratio statistic is a mixture of a point mass at zero and a

chi-squared distribution with one degree of freedom, where both components of the
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mixture have probability one. This implies that the usual p-value needs to be divided
by two, or, otherwise stated, that the classical test is conservative (Stram and Lee

1994, 1995).

Finally, if we wish to predict the performance of the algorithm on a new instance,

the best we can do is to give μ̂ = 4.559 and to give the 95% confidence interval.

According to (10.11) of Sect. 10.2.1:

> s <- sqrt(MSI/(q * r))
> Y.. <- mean(OPOR$gap)
> qsr <- qt(1 - 0.025, 5)
> Y.. - qsr * s

[1] 2.37

> Y.. + qsr * s

[1] 6.75

hence μ ∈ [2.37; 6.75].

10.4.2 Case 〈N, q(-), r〉: Mixed-Effects Design

We discuss two designs within this case: 〈1, q(−), r〉 and 〈N, q(−), r〉. The focus

is, in the first design, on the visualization of the results and, in the second design, on

the comparison of replicated versus unreplicated designs.

〈1, q(−), r〉 In the first design we aim at comparing the performance of the addi-

tion neighborhood at different values of k, over an instance class. More precisely,

we have the following factors:

– algorithm: three algorithms, starting from the solution produced by greedy

covering (gc) and using the k-addition neighborhood (addn) with k = {1, 3, 5},
hence levels in {gc-addn-1,gc-addn-3,gc-addn-5}

– instance: five instances randomly sampled from the class G-m-1
– replicates: five

> load("Data/YPOR.dataR")
> str(YPOR, strict.width = "cut", width = 70)

'data.frame': 75 obs. of 5 variables:
$ instance : Factor w/ 5 levels "G-800-0.5-1-pre.ins",..: 1 1..
$ k : Factor w/ 3 levels "1","3","5": 3 2 1 3 1 2..
$ algorithm: Factor w/ 3 levels "gc-addn-1","gc-addn-3",..: 3 2..
$ run : int 5 2 4 1 1 1 5 5 4 3 ...
$ gap : num 3.67 4.07 4.07 4.05 4.05 ...

Relevant questions for this design are:

• Is there an instance effect, i.e., do the instances contribute significantly to the

variability of the responses?
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Fig. 10.4: The data in the design 〈1, q(−), r〉. The three algorithms, gc-addn-1, gc-addn-3,
and gc-addn-5, correspond to greedy covering construction (gc) followed by k-addition neigh-
borhood (addn) with k = {1, 3, 5}. A local regression line and a least square linear regression line
(dashed) are superimposed

• Do the mean performances of the algorithms with different k differ? If yes, how

different are they?

• Do the instance–algorithm interactions contribute significantly to the variability

of the responses?

We treat k as if it were a qualitative factor, even though k is a numerical value

with a clear order. Treating discrete numerical factors as qualitative factors gives

more freedom, because in this way we do no assume that the change in the mean

response for k from 1 to 3 has to be the same as for k from 3 to 5.

A way to inspect the data is by plotting the percentage error of the algorithms

within each instance, which is interpreted as a different group of results. This is

shown in Figure 10.4. We observe that there are differences in the slopes and in-

tercepts of the linear regressions within each group. This hints at the presence of

random effects and interaction effects between the random and the fixed factors. We

will therefore test the inclusion of both a random instance intercept and a random

instance–algorithm interaction in the model that describes these data.

The results of the analysis of the mixed model are:

> op <- options(contrasts = c("contr.sum", "contr.poly"))
> fm2a <- lmer(gap ~ k + (1 | instance) + (1 | instance:k),

data = YPOR)
> print(fm2a, digits = 3)
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Linear mixed model fit by REML
Formula: gap ~ k + (1 | instance) + (1 | instance:k)

Data: YPOR
AIC BIC logLik deviance REMLdev
-95 -81.1 53.5 -111 -107

Random effects:
Groups Name Variance Std.Dev.
instance:k (Intercept) 0.15795 0.3974
instance (Intercept) 1.23514 1.1114
Residual 0.00387 0.0622

Number of obs: 75, groups: instance:k, 15; instance, 5
Fixed effects:

Estimate Std. Error t value
(Intercept) 3.8939 0.5075 7.67
k1 -0.1786 0.1455 -1.23
k2 -0.0342 0.1455 -0.23

Correlation of Fixed Effects:
(Intr) k1

k1 0.000
k2 0.000 -0.500

We have specified sum contrasts, here, as a way to identify parameters in the model

instead of the default treatment contrasts for lmer. This will make later results

comparable with lm. The estimated variances for the instance and the instance–

algorithm interaction random effects are σ̂2
τ = 1.23514 and σ̂2

γ = 0.15795, re-
spectively. The section Fixed effects reports the estimates of the fixed effects

model parameters from which we obtain the point estimates for the mean perfor-

mance of the algorithms E[Yijk] = μ + αj . The sum contrasts specified before

implies that
∑

αj = 0. Hence, for αk1 = −0.1786 and αk2 = −0.0342, we have
αk3 = 0.2128, with k1 representing k = 1, k2, k = 3, and k3, k = 5. The last

column in this section gives the t statistics for the hypotheses that the jth level of

the factor is not different from the mean response.

Let us look at the acceptance or rejection of the null hypothesis that the variance

components of the random effects are zero. The exact test is via the F -ratio from

Table 10.1 of Sect. 10.2.2. If we do not want to look up the table the likelihood ratio

test can be computed more easily.

> fm2a.1 <- lmer(gap ~ k + (1 | instance), data = YPOR,
REML = FALSE)

> fm2a.2 <- lmer(gap ~ k + (1 | instance) + (1 | instance:k),
data = YPOR, REML = FALSE)

> anova(fm2a.2, fm2a.1)

Data: YPOR
Models:
fm2a.1: gap ~ k + (1 | instance)
fm2a.2: gap ~ k + (1 | instance) + (1 | instance:k)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2a.1 5 71.0 82.6 -30.5
fm2a.2 6 -99.2 -85.3 55.6 172 1 <2e-16



250 M. Chiarandini and Y. Goegebeur

As is clear, the instance–algorithm interactions contribute significantly to the vari-

ability of the performance measure, and hence, given (10.13), measurements ob-

tained on a particular instance show dependence. A similar test can be performed

for the instance variance, by fitting a model without an instance random effect:

> fm2a.3 <- lmer(gap ~ k + (1 | instance:k), data = YPOR,
REML = FALSE)

> anova(fm2a.2, fm2a.3)

Data: YPOR
Models:
fm2a.3: gap ~ k + (1 | instance:k)
fm2a.2: gap ~ k + (1 | instance) + (1 | instance:k)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2a.3 5 -84.6 -73.0 47.3
fm2a.2 6 -99.2 -85.3 55.6 16.6 1 4.5e-05

Hence also this term is significant and should be included in the model.

Let us now analyze the significance of fixed effects. We use the F -ratio6

> anova(fm2a)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

k 2 0.00956 0.00478 1.23

The lmer function does not return the p-value for the test on fixed-effects terms,

but the F statistic computed by the anova function is the correct one for balanced

designs. Hence, the observed F statistic is 1.23 on 2 (Df) and (h − 1)(q − 1) = 8
degrees of freedom and with a p-value of 0.341,

> p <- nlevels(YPOR$instance)
> h <- nlevels(YPOR$k)
> r <- length(unique(YPOR$run))
> 1 - pf(anova(fm2a)$"F value", h - 1, (h - 1) * (p - 1))

[1] 0.341

We can conclude that there is not a significant effect of k, and hence that the mean

performance measure is not affected by this parameter.

Since we could not reject the global null hypothesis on k, the paired comparison

plot will show overlapping confidence intervals for the three values of k. For the
sake of completeness in our exposition, we produce this plot (Fig. 10.5, left panel)

> VC <- VarCorr(fm2a)
> sigma.gamma <- as.numeric(attr(VC$"instance:k", "stddev"))
> sigma <- as.numeric(attr(VC, "sc"))
> MSIK <- sigma^2 + p * sigma.gamma^2
> Yj. <- with(YPOR, aggregate(gap, list(alg = algorithm),

mean))
> s <- sqrt(2) * sqrt(MSIK/(p * r))
> T <- qtukey(1 - 0.05, h, (h - 1) * (p - 1))/sqrt(2)

6 Due to implementation issues in R and SAS the likelihood ratio test cannot be used for testing
some of the fixed effects, as they remain unidentified (SAS Institute Inc. 2007).
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Fig. 10.5: Paired comparison plots. On the left the one obtained by the mixed-effects model, on
the right the one obtained by ordinary ANOVA

> Yj.$lower <- Yj.$x - 0.5 * T * s
> Yj.$upper <- Yj.$x + 0.5 * T * s
> intervals(alg ~ x, Yj.)

The function intervals is a wrapper of dotplot available from the online

compendium at http://www.imada.sdu.dk/~marco/Mixed/.

We check the diagnostic plots. We consider the conditional and marginal struc-

ture of the model, given in equations (10.17) and (10.18) of Sect. 10.2.4, respec-

tively. In the standard diagnostic plots of residuals against fitted values we check

the assumption of homoscedasticity of observations, whereas, in the QQplot we

check if residuals meet the assumption of normality. Conditional residuals pertain

to each instance individually taken and refer to the distances of observed points from

the fitted conditional models. Aggregating these data for the five instances available

we see that there might be some deviation from the assumptions, mainly due to the

small variability of the responses within an instance. It might then be worth indicat-

ing the instances that cause the largest deviation from the assumptions. Things are

instead much better for the marginal structure, which is the one of most interest in

our study. The plots seem to support quite well the assumptions of homoscedasticity

and normality.

> plot(fitted(fm2a, type = "response"), residuals(fm2a,
type = "response"), main = "Conditional residuals",
xlab = "Predicted", ylab = "Residuals")

> res <- residuals(fm2a, type = "response")
> qqnorm(res, main = "Conditional residuals, QQplot")
> qqline(res)
> fm2a.0 <- lm(gap ~ k, data = YPOR)
> x <- model.matrix(fm2a.0)
> pred <- x %*% fixef(fm2a)
> res <- YPOR$gap - pred
> plot(pred, res, main = "Marginal residuals", xlab = "Predicted",

ylab = "Residuals")
> qqnorm(res, main = "Marginal residuals, QQplot")
> qqline(res)
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Fig. 10.6: Diagnostic plots

Finally, it is instructive to compare the results obtained here under a random-

effects model with those obtained by considering instances as fixed factors. In this

latter case, the test for algorithmic differences is performed relative to the mean

squared error, and not relative to the instance–algorithm interaction mean squares

(Table 10.1, Sect. 10.2.2). Moreover the F test has 60 degrees of freedom at the

denominator, compared with 8 under a mixed model, and hence, for the same sig-

nificance level it would reject sooner.

> fm2a.lm <- lm(gap ~ k * instance, data = YPOR)
> anova(fm2a.lm)

Analysis of Variance Table
Response: gap

Df Sum Sq Mean Sq F value Pr(>F)
k 2 2.0 1.0 253 <2e-16
instance 4 77.3 19.3 4986 <2e-16
k:instance 8 6.3 0.8 205 <2e-16
Residuals 60 0.2 0.0039
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This would have led us to reject the hypothesis on k and conclude, mistakenly, that

k is significant! The different conclusion is also shown in Fig. 10.5, where on the

right we report the paired comparison plot that would arise from a Tukey pairwise

analysis based on the fixed-effect model of lm.

〈N,q(−), r〉 We now discuss the case 〈N, q(−), r〉 and compare replicated and

unreplicated designs. This case differs slightly from the previous in that we study

three fixed factors and this leads us to a multifactorial analysis. All fixed factors are

algorithmic factors and are tested at three levels.

– init.heur: the starting solution generated by three different construction

heuristics. It is a categorical factor in the levels {gc,la,sp};
– neigh: the three local search schemes with the neighborhood structures de-

scribed above. It is a categorical factor in the levels {addn,covn,spn};
– k: the parameter that determines the extension of the neighborhood. It is a cat-

egorical factor in the levels {1,3,5}.

The 27 possible combinations give rise to 27 algorithms to test. If our compu-

tational budget allows us to run 675 experiments then we can choose between a

replicated design with five instances and five runs per instance, or an unreplicated
design with one single run of each algorithm on 25 instances.

Let’s analyze first the replicated design.

> load("Data/NPOR.dataR")
> str(NPOR, strict.width = "cut", width = 70)

'data.frame': 675 obs. of 6 variables:
$ instance : Factor w/ 5 levels "sm-800-h-w1",..: 1 1 1 1 1..
$ init.heur: Factor w/ 3 levels "gc","la","sp": 1 1 2 2 3 3..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 2 1 3 1..
$ k : Factor w/ 3 levels "1","3","5": 3 2 1 2 1 2 3 2..
$ run : int 2 3 1 3 5 5 2 3 3 1 ...
$ gap : num 1.521 1.433 0.397 2.976 2.843 ...

We test the significance of the random effects and their interactions. The expo-

nent of two in the lmer model statement indicates that all interactions of second

order are included.

> fm2bR.0 <- lm(gap ~ (k + init.heur + neigh)^2, data = NPOR)
> fm2bR.1 <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance), data = NPOR, REML = FALSE)
> fm2bR.2 <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |

instance) + (1 | instance:k) + (1 | instance:neigh) +
(1 | instance:init.heur), data = NPOR, REML = FALSE)

> LRT <- as.numeric(2 * (logLik(fm2bR.2) - logLik(fm2bR.0)))
> 1 - pchisq(LRT, 1)

[1] 0

> anova(fm2bR.2, fm2bR.1)
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Data: NPOR
Models:
fm2bR.1: gap ~ (k + init.heur + neigh)^2 + (1 | instance)
fm2bR.2: gap ~ (k + init.heur + neigh)^2 + (1 | instance)

+ (1 | instance:k) + ...
fm2bR.2: (1 | instance:neigh) + (1 | instance:init.heur)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
fm2bR.1 21 1301 1396 -630
fm2bR.2 24 672 780 -312 636 3 <2e-16

The likelihood ratio test indicates again that the random factor instance is significant

and also at least one of the random interaction terms between a fixed factor and the

instance factor. For the fixed effects we have

> fm2bR <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |
instance) + (1 | instance:k) + (1 | instance:neigh) +
(1 | instance:init.heur), data = NPOR)

> anova(fm2bR)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

k 2 0.4 0.2 1.56
init.heur 2 10.5 5.2 41.65
neigh 2 3.6 1.8 14.36
k:init.heur 4 0.3 0.1 0.69
k:neigh 4 39.6 9.9 78.54
init.heur:neigh 4 37.5 9.4 74.43

We omit here the details of the analysis of variance, which is similar to the pre-

vious case. It yields a p-value of 0.2675 for k and of 0.5984 for the interaction

k:init.heur, thus leading us to not reject the null hypothesis of no effect for

these two factors. The latter result was expected, given that k does not alter the con-

struction heuristics. All other effects are instead significant. To gain insight when

interaction terms are significant one can use 2D or 3D interaction plots. In Fig. 10.7

we visualize the interactions neigh:init.heur and k:neigh.

> with(NPOR, {
interaction.plot(neigh, init.heur, gap, fixed = TRUE)
interaction.plot(k, neigh, gap, fixed = TRUE)

})

For later comparisons we report also the estimates of the fixed effects:

> summary(fm2bR)@coefs[1:10, ]

Estimate Std. Error t value
(Intercept) 2.3800 0.2509 9.485
k1 0.0340 0.0375 0.909
k2 -0.0662 0.0375 -1.767
init.heur1 -1.0076 0.1118 -9.016
init.heur2 0.3669 0.1118 3.283
neigh1 -1.1496 0.2180 -5.273
neigh2 0.3952 0.2180 1.813
k1:init.heur1 0.0131 0.0273 0.480
k2:init.heur1 -0.0147 0.0273 -0.538
k1:init.heur2 -0.0421 0.0273 -1.542
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Fig. 10.7: Interaction plots to visualize the impact of neigh:init.heur and k:neigh in the
replicated model fm2bR

We now turn to the unreplicated design, i.e., r = 1.

> load("Data/NPOY.dataR")
> str(NPOY, strict.width = "cut", width = 70)

'data.frame': 675 obs. of 6 variables:
$ instance : Factor w/ 25 levels "1","10","11",..: 1 1 1 1 1 ..
$ init.heur: Factor w/ 3 levels "gc","la","sp": 1 1 2 1 3 1 1..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 3 3 2 1 2..
$ k : Factor w/ 3 levels "1","3","5": 2 1 3 2 1 3..
$ run : int 1 1 1 1 1 1 1 1 1 1 ...
$ gap : num 1.565 1.984 1.521 0.397 1.807 ...

We omit the likelihood ratio test analysis for the random effects, which is en-

coded in R exactly in the same way as for the replicated case and yields the same

highly significant p-values.
The main point we want to make with this design pertains, instead, to the fixed

effects:

> fm2bU <- lmer(gap ~ (k + init.heur + neigh)^2 + (1 |
instance) + (1 | instance:k) + (1 | instance:neigh) +
(1 | instance:init.heur), data = NPOY)

> anova(fm2bU)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

k 2 1.13 0.56 7.62
init.heur 2 10.32 5.16 69.82
neigh 2 10.80 5.40 73.11
k:init.heur 4 0.68 0.17 2.30
k:neigh 4 15.50 3.88 52.47
init.heur:neigh 4 20.07 5.02 67.92
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Again the only p-values larger than 0.05 are those for k and k:init.heur (not

shown). But the relevant observation is about the estimates of fixed effects means

> summary(fm2bU)@coefs[1:10, ]

Estimate Std. Error t value
(Intercept) 1.7642 0.1487 11.864
k1 0.0423 0.0148 2.861
k2 -0.0552 0.0148 -3.731
init.heur1 -0.7503 0.0639 -11.740
init.heur2 0.3007 0.0639 4.706
neigh1 -0.8072 0.0677 -11.929
neigh2 0.2878 0.0677 4.253
k1:init.heur1 0.0197 0.0209 0.941
k2:init.heur1 -0.0213 0.0209 -1.017
k1:init.heur2 -0.0604 0.0209 -2.889

The standard errors of these estimates in the unreplicated case are smaller than those

in the replicated case, an observation which is consistent with Birattari (2004). For

example, for k1 we have s[αk1] = 0.0375 in the replicated case against s[αk1] =
0.0148 in the unreplicated case. As a consequence of this fact, the unreplicated case
yields more powerful tests for differences between the levels of the fixed factors.

Hence, when a limit on the total number of experiments is imposed, maximizing

the number of tested instances should be preferred with respect to maximizing the

number of replicates.

10.4.3 Case 〈-, q(M), r〉: Nested Design

In this case we study the effect of instance parameters which are used to stratify the

population of instances. We consider only one algorithm, as we are only interested

in the instance parameters. Obviously, the conclusions on the instances will be valid

only for the algorithm chosen. We have two instance factors under study:

– type: the type of graph with levels {U,G,sm}
– weights: the distribution of weights with levels {w,1};

> load("Data/OPMR.dataR")
> str(OPMR, strict.width = "cut", width = 70)

'data.frame': 150 obs. of 8 variables:
$ weights : Factor w/ 2 levels "1","w": 1 1 1 1 1 1 1 ...
$ type : Factor w/ 3 levels "G","U","sm": 1 1 1 1 1 1 ...
$ algorithm: Factor w/ 1 level "gc-addn-1": 1 1 1 1 1 1 ...
$ instance : Factor w/ 30 levels "G-800-l-11","G-800-l-12",..: 1..
$ run : int 1 5 2 2 4 3 5 2 1 3 ...
$ gap : num 3.3 3.3 5.5 5.5 3.3 ...
$ class : Factor w/ 6 levels "G-800-l-1","G-800-l-w",...
$ inst.seed: Factor w/ 5 levels "1","2","3","4",..: 1 1 2 2..
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Nesting is automatically handled appropriately in lmer as long as the levels of

the instance factor are distinct (Bates 2007). This might be not the case when the

nesting is implicit, that is, when the labels used for the levels of the variable at

the inner state are incomplete. For example, this is the case if we identify the in-

stances for each combination of the instance factors, type and weights, by the seeds

used to generate them, say, 1, 2, 3, 4, 5. We might have 5 seeds but 3 × 2 × 5
different instances. If so, then we just need to specify the seed as the random

factor by (1|type:weights:seed) or relabel the instances as G-800-w-1,
G-800-w-2, etc. and specify simply (1|type:weights). Our data have both
identifiers described: instance and inst.seed.

We first test the hypothesis on the nested random effects. Again we can choose

between F -ratio and likelihood ratio test. The likelihood ratio test has the advantage

that it does not require to recalculate the expected mean squares for the appropriate

test statistic, so we try that first. In R we have

> fm3.1 <- lmer(gap ~ (type + weights)^2 +
(1 | type:weights:inst.seed), data = OPMR, REML = FALSE)

> fm3.0 <- lm(gap ~ (type + weights)^2 + 1, data = OPMR)
> LRT <- as.numeric(2 * (logLik(fm3.1) - logLik(fm3.0)))
> 1 - pchisq(LRT, 1)

[1] 1.71e-14

We see that we can reject H0 : σ2
τ = 0. As mentioned above, the likelihood ratio

test is more conservative than the F -ratio test hence, since we reject already, there

is no need to check the F -ratio test as well. We therefore include the random effect

in the model.

The next step is considering the fixed factors that determine the instance classes.

Again, since the experiment is balanced the p-values can be determined via the

anova F statistics

> fm3 <- lmer(gap ~ (type + weights)^2 +
(1 | type:weights:inst.seed), data = OPMR)

> fm3.aov <- anova(fm3)
> print(fm3.aov, digits = 3)

Analysis of Variance Table
Df Sum Sq Mean Sq F value

type 2 21.43 10.71 42.43
weights 1 0.10 0.10 0.38
type:weights 2 1.85 0.92 3.66

and manually derive the p-values adding the degrees of freedom of the denominator,

that in this case are (r − 1)b1b2, with b1 and b2 being the number of levels of the

two instance factors

> type <- fm3.aov["type", ]
> 1 - pf(type$"F value", type$Df, (5 - 1) * 3 * 2)

[1] 1.32e-08

> weights <- fm3.aov["weights", ]
> 1 - pf(weights$"F value", weights$Df, (5 - 1) * 3 * 2)
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[1] 0.544

> interaction <- fm3.aov["type:weights", ]
> 1 - pf(interaction$"F value", interaction$Df, (5 - 1) * 3 * 2)

[1] 0.0409

We conclude that the type has a significant effect on the average performance of

the algorithm while the weights not. If relevant to the analysis, one can proceed to

consider the estimated effects of these two fixed factors. They are to be interpreted

as the estimated change in the mean lower bound approximation of the algorithm

caused by different characteristics of the instances.

10.4.4 Case 〈N, q(M), r〉: General Design

In the last case, we aim at a general analysis of the influence on mean performance

of local search components and different instance features. We consider a design

with the following algorithm and instance factors

– init.heur: the construction heuristic with levels {gc,la,sp};
– neigh: the neighborhood with levels {addn,gcn,spn};
– k: the value of k in the neighborhoods with categorical levels {1,3,5};

– type: the type of graphs with levels {U,G,sm};
– dens: the edge density in the graph with levels {l,m,h};
– weights: the distribution of weights with levels {w,1}.

All these factors are fixed factors. Each combination of the three instance fac-

tors gives rise to a class from which we sample 5 instances. The additional factor

instance, or inst.seed, is, therefore, a random factor. The experiment has

3× 3× 2× 5 = 90 experimental units (instances). Moreover we replicate each run

of an algorithm 5 times leading to a total of 12150 runs over all.

> load("Data/NPMR.dataR")
> str(NPMR, strict.width = "cut", width = 70)

'data.frame': 12150 obs. of 12 variables:
$ weights : Factor w/ 2 levels "1","w": 1 1 1 1 1 1 ...
$ type : Factor w/ 3 levels "G","U","sm": 1 1 1 1 1 ...
$ dens : Factor w/ 3 levels "h","l","m": 2 2 2 2 2 2 ...
$ init.heur: Factor w/ 3 levels "gc","la","sp": 3 2 2 1 2..
$ neigh : Factor w/ 3 levels "addn","gcn","spn": 2 1 3 1..
$ k : Factor w/ 3 levels "1","3","5": 1 3 3 2 3 1 2..
$ instance : Factor w/ 90 levels "G-800-h-1-1",..: 11 11 1..
$ run : int 4 4 5 2 3 2 3 3 3 3 ...
$ gap : num 11 3.3 3.3 5.5 6.6 ...
$ class : Factor w/ 18 levels "G-800-h-1","G-800-h-w",..: 3..
$ algorithm: Factor w/ 27 levels "gc-addn-1","gc-addn-3",..:12..
$ inst.seed: Factor w/ 5 levels "1","2","3","4",..: 1 1 1..
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In a full nested factorial design of this kind we could study fixed effects interac-

tions up to the sixth level. However, high order interactions are difficult to interpret

and we, therefore, restrict ourselves to interactions of level three and to no interac-

tion between algorithmic and instance factors.7 Let’s first test the significance of the

instance factor.

> fm4.1 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +
neigh + k)^3 + (1 | type:weights:dens:inst.seed),
data = NPMR, REML = FALSE)

> fm4.0 <- lm(gap ~ (type + weights + dens)^3 + (init.heur +
neigh + k)^3, data = NPMR)

> LRT <- as.numeric(2 * (logLik(fm4.1) - logLik(fm4.0)))
> 1 - pchisq(LRT, 1)

[1] 0.224

In this case the p-value from the likelihood ratio test is not significant and it does

not allow us to reject the null hypothesis that the two models are equal. However, as

we mentioned the likelihood ratio test is rather conservative, hence we check also

the exact F -ratio test. The terms in the F -ratio are the same as those provided in Ta-

ble 10.2 of Section 10.2.3 but the derivation of the degrees of freedom require some

more work. Calling a1, ..., aN and b1, ..., bM the levels of the algorithmic factors and

instance factors, respectively, and using the rules for the degrees of freedom given

by Montgomery (2005, pag. 502) we obtain

> fm4.1 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +
neigh + k)^3 + (1 | instance), data = NPMR)

> VC <- VarCorr(fm4.1)
> sigma.tau <- as.numeric(attr(VC$instance, "stddev"))
> sigma <- as.numeric(attr(VC, "sc"))
> F.ratio <- (sigma^2 + (a1 * a2 * a3 * r) * sigma.tau^2)/sigma^2
> (df1 <- b1 * b2 * b3 * (q - 1))

[1] 72

> (df2 <- as.numeric(fm4.1@dims["n"]) - 1 - sum(anova(fm4.1)["Df"])
- df1)

[1] 12034

> 1 - pf(F.ratio, df1, df2)

[1] 0.00469

The p-value is significant. Since the test is exact we give preference to this result and
proceed to analyze the fixed effects using the mixed model rather than the ordinary

ANOVA. In order to add the p-values to the ANOVA table we use a function written

by ourselves and available from the online compendium. This function is simply a

wrapper that uses the F -ratio from the anova method for lmer and the degrees of

freedom derived by the rules of Montgomery (2005).

7 Note that if high order interactions are not of interest, fractional factorial designs are a better
choice than full factorial designs because they minimize the number of experiments.
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> fm4 <- lmer(gap ~ (type + weights + dens)^3 + (init.heur +
neigh + k)^3 + (1 | type:weights:dens:inst.seed),
data = NPMR)

> anova.4lmer.balanced(fm4, c("type", "weights", "dens"),
instance.id = "inst.seed")

Analysis of Variance Table
Num. Def Sum Sq Mean Sq F value Den. Df Pr(>F)

type 2 82058 41029 951.95 72 <2e-16
weights 1 22441 22441 520.66 72 <2e-16
dens 2 6882 3441 79.84 72 <2e-16
init.heur 2 142577 71288 1654.02 12034 <2e-16
neigh 2 117939 58969 1368.19 12034 <2e-16
k 2 76931 38465 892.47 12034 <2e-16
type:weights 2 90635 45318 1051.45 72 <2e-16
type:dens 4 313 78 1.82 72 0.14
weights:dens 2 9473 4736 109.89 72 <2e-16
init.heur:neigh 4 47798 11949 277.25 12034 <2e-16
init.heur:k 4 46994 11748 272.58 12034 <2e-16
neigh:k 4 75897 18974 440.24 12034 <2e-16
type:weights:dens 4 209 52 1.21 72 0.31
init.heur:neigh:k 8 40766 5096 118.23 12034 <2e-16

The results indicate that all main effects are significant and that among the interac-

tions only type:weight:dens and type:dens are not significant. The omis-

sion of effects that might be significant in the model may result in an overestimation

of the denominator in the F -ratio and consequently in more conservative tests. How-

ever, these results are sufficient for us. They indicate that there is a significant effect

of the nesting factors and this indicates that the analysis must be differentiated for

each class.

Our final step is to split the data and to perform for each class an analysis sim-

ilar to the one of case 2. In Figure 10.8 we report in a dotplot the average results

of each algorithmic configuration on each instance class supported by confidence

intervals (the function intervals to compute the overall plot is available online).

The overall result is that the combination gc-addn is the one yielding the best per-

formance, consitently over the different instance classes, while there does not seem

to be a significant difference for this configuration in the value chosen for k.

10.5 Summary and Outlook

In this chapter, we described linear statistical models and their use in the specific

task of analyzing the results of optimization algorithms. We put our emphasis on

mixed-effects models in which algorithmic components are treated as fixed factors

and the test instances as random factors. We provided evidence that these models

lead to different inferences with respect to ordinary ANOVA models where the in-

stances are treated also as fixed factors. In addition, we argued that when instance

factors are also subject of study then the models become nested or, alternatively,

separate analyses have to be conducted.



10 Mixed Models for the Analysis of Optimization Algorithms 261

Gap

gc−addn−1
gc−addn−3
gc−addn−5
sp−addn−5
sp−addn−3
sp−addn−1

gc−gcn−5
gc−spn−3
gc−gcn−3
gc−spn−5
gc−gcn−1
gc−spn−1
sp−gcn−5

la−addn−5
sp−gcn−3
la−gcn−5

la−addn−3
la−addn−1
sp−spn−3
sp−spn−5
sp−gcn−1
la−gcn−3
la−spn−5
la−spn−3
la−gcn−1
sp−spn−1
la−spn−1

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

G−800−h−1, 5 inst.

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

G−800−h−w, 5 inst.

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

G−800−l−1, 5 inst.

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

G−800−l−w, 5 inst.

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

G−800−m−1, 5 inst.

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

G−800−m−w, 5 inst.
gc−addn−1
gc−addn−3
gc−addn−5
sp−addn−5
sp−addn−3
sp−addn−1

gc−gcn−5
gc−spn−3
gc−gcn−3
gc−spn−5
gc−gcn−1
gc−spn−1
sp−gcn−5

la−addn−5
sp−gcn−3
la−gcn−5

la−addn−3
la−addn−1
sp−spn−3
sp−spn−5
sp−gcn−1
la−gcn−3
la−spn−5
la−spn−3
la−gcn−1
sp−spn−1
la−spn−1

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

U−800−h−1, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

U−800−h−w, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

U−800−l−1, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

U−800−l−w, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

U−800−m−1, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

U−800−m−w, 5 inst.
gc−addn−1
gc−addn−3
gc−addn−5
sp−addn−5
sp−addn−3
sp−addn−1

gc−gcn−5
gc−spn−3
gc−gcn−3
gc−spn−5
gc−gcn−1
gc−spn−1
sp−gcn−5

la−addn−5
sp−gcn−3
la−gcn−5

la−addn−3
la−addn−1
sp−spn−3
sp−spn−5
sp−gcn−1
la−gcn−3
la−spn−5
la−spn−3
la−gcn−1
sp−spn−1
la−spn−1

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

sm−800−h−1, 5 inst.

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

sm−800−h−w, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

sm−800−l−1, 5 inst.

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

sm−800−l−w, 5 inst.

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

sm−800−m−1, 5 inst.

0 5 10 15

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

sm−800−m−w, 5 inst.

Fig. 10.8: Confidence intervals derived as described in Section 10.2.2 for each instance class
indepenedently taken. On the y-axis the labels of the algorithms indicate the composition with
respect to the components described in the text. On the x-axis, the gap represents the percentage
deviation from the lower bound
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We developed a detailed example for didactic purposes and showed how the re-

sults from the analysis of mixed models should be interpreted and how they may

be presented by means of tables and graphics. These might be used in articles in

addition to the common practice of reporting numerical results on a few bench-

mark instances. The inferential analysis becomes more relevant to be reported as

the amount of data decreases.

There are a number of issues that we left out and that may be included in this

framework. Examples are conditional parameters for the algorithms, which can be

modeled similarly to the nesting of the instances, and the permutation of instance

data, a feature that might have a certain impact on the results, which can also be

included, yielding a design with two nested random factors and thus a hierarchical

model (Fox 2002).

There are also further developments that could be pursued. The graphical pre-

sentation of results constitutes one of the possible improvements of this work. Re-

gression trees offer a neat and concise way to attain this. They consist of (binary)

trees obtained by branching the data under analysis, with branching higher in the

tree for the factors responsible for the largest evidence for differences (identified by

the entity of the p-value). However, all available packages of which we are aware

do not include the possibility of treating nesting, and random factors or blocking

factors.

This whole chapter was based on the assumption of additive linear models and

normality of data. A natural extension of this work is the use of nonlinear mixed-

effects models and generalized linear mixed-effects models that seem more appro-

priate in many cases of analysis of optimization algorithms. These models are often

used in the study of repeated measurements over time of a certain response (lon-

gitudinal data). This could disclose a further development, that is, the analysis and

comparison of optimization algorithms not only on the basis of their final response

but also on the way performance changes over runtime.
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Chapter 11
Tuning an Algorithm Using Design of
Experiments

Enda Ridge and Daniel Kudenko

Abstract This chapter is a tutorial on using a design of experiments approach for

tuning the parameters that affect algorithm performance. A case study illustrates the

application of the method and interpretation of its results.

11.1 Introduction

This chapter presents a case study of a methodology for selecting algorithm pa-

rameter values to tune algorithm performance. It efficiently takes the experimenter

from the initial situation of almost no knowledge of the algorithm’s behavior to the

desired situation of an accurately modeled algorithm. This provides recommenda-

tions on tuning parameter settings for given problem characteristics. The method-

ology is based on well-established procedures from design of experiments (DOE)

(Montgomery 2005) that have been modified for their application to algorithm tun-

ing (Ridge 2007). The field of DOE is defined as:

. . . a systematic, rigorous approach to engineering problem-solving that applies principles
and techniques at the data collection stage so as to ensure the generation of valid, defensible,
and supportable engineering conclusions. In addition, all of this is carried out under the
constraint of a minimal expenditure of engineering runs, time, and money. (Croarkin and
Tobias 2006)

DOE is well established theoretically and well supported in terms of software

tools. The traditional areas to which DOE is applied in engineering map almost

directly to the common research questions that one asks in algorithm research so
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DOE’s power and maturity can be transferred directly to algorithm research. DOE

offers efficiency in terms of the amount of data that needs to be gathered. This is

critical when attempting to understand immense algorithm design spaces. All DOE

conclusions are based on statistical analyses and so are supported with mathematical

precision. This allays any concerns regarding subjective interpretation of results.

The case study applies DOE to an ant colony system (ACS) (Dorigo and Stützle

2004) for the traveling salesperson problem (TSP) (Lawler et al. 1995). Further

details on the ACS algorithm are well covered in the literature. For our purposes

here, it is sufficient to understand that ACS is a heuristic (randomized) optimization

algorithm with many tuning parameters and at least two problem characteristics

that affect its performance. Before reporting the case study, we first discuss some

preliminaries that are important for an understanding of DOE.

11.2 Research Questions Addressed with DOE

Modeling algorithm performance is a sensible way to explore the vast design space

of tuning parameter settings and their relationship to problem instances and algo-

rithm performance. A good model can be used to quickly explore algorithm perfor-

mance without resorting to expensive algorithm runs. Models permit addressing the

following research questions:

• Screening. Which tuning parameters and which problem characteristics have

no significant effect on the performance of the algorithm in terms of solution

quality and solution time?

• Ranking. What is the relative importance of the most important tuning param-

eters and problem characteristics?

• Relationship between tuning, problems, and performance. What is the rela-

tionship between tuning parameters, problem characteristics, and the responses

of solution quality and solution time? A tuning study yields a mathematical

equation modeling this relationship for each response.

• Tuned parameter settings. What is a good set of tuning parameter settings

given an instance with certain characteristics? Are these settings better than

what can be achieved with randomly chosen settings? Are these settings better

than alternative settings from the literature?

11.3 Experiment Designs

The design that an experimenter uses will depend on many things, including the

particular research question, whether experiments are in the early stages of research,

and the experimental resources available. This section focuses on the advanced de-

signs that appear in this chapter. It begins with a simpler, more common design as

this provides the necessary background for understanding the subsequent designs.
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11.3.1 Full and 2k Factorial Designs

A full factorial design consists of a crossing of all levels of all factors. A factor

(or independent variable) is a variable that an experimenter varies. The number of

levels of each factor can be two or more and need not be the same for each factor.

The full factorial is an extremely powerful but expensive design. A more useful type

of factorial for DOE uses k factors, each at only 2 levels. The so-called 2k factorial

design provides the smallest number of runs with which k factors can be studied in a

full factorial design. Factorials have some particular advantages and disadvantages

(Ostle 1963). These are worth noting given the importance that factorials play in

DOE experimental design. The advantages are that:

• Greater efficiency is achieved in the use of available experimental resources in

comparison with what could be learned from the same number of experiment

runs in a less structured context such as a one-factor-at-a-time analysis,
• Information is obtained about the interactions, if any, of factors because the

factor levels are all crossed with one another. An interaction is where the ex-

perimental response for a given factor level cannot be understood without also

specifying the level of an interacting factor.

Of course, these advantages come at a price. As the number of factors grows, the

number of combinations of factor levels (treatments) in a 2k design rapidly over-

whelms the experiment resources. Consider the case of 10 continuous factors. A

naïve full factorial design for these ten factors will require a prohibitive 210 = 1024
treatments. A more efficient design is required.

11.3.2 Fractional Factorial Designs

There are benefits to the expense of a full factorial design. A 210 full factorial will

provide data to evaluate all the effects listed in Table 11.1.

If it is assumed that higher-order interactions are insignificant, information on

the main effects and lower-order interactions can be obtained by running a fraction

of the complete factorial design. This assumption is based on the sparsity of effects
principle (Wu and Hamada 2000). This states that a system or process is likely to be

most influenced by some main effects and low-order interactions and less influenced

by higher-order interactions.

A judiciously chosen fraction of the treatments in a full factorial will yield in-

sights into only the lower-order effects. This is termed a fractional factorial. The
price we pay for the fractional factorial’s reduction in number of experimental treat-

ments is that some effects are indistinguishable from one another; they are aliased.
Additional treatments, if necessary, can disentangle these aliased effects should an

alias group be statistically significant. The advantage of the fractional factorial is

that it facilitates sequential experimentation. The additional treatments and asso-

ciated experiment runs need only be performed if aliased effects are statistically
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Effect Number of effects esti-
mated

Main 10

Two-factor 45

Three-factor 120

Four-factor 210

Five-factor 252

Six-factor 210

Seven-factor 120

Eight-factor 45

Nine-factor 10

Ten-factor 1

Table 11.1: Number of each effect estimated by a full factorial design of 10 factors

Fig. 11.1: Fractional factorial designs for 2 to 12 factors. The required number of treatments is
listed on the left. Resolution III designs (do not estimate any terms) are colored darkest followed by
Resolution IV designs (estimate main effects only), followed by Resolution V and higher (estimate
main effects and second-order interactions)

significant. Depending on the number of factors, and consequently the design size,

a range of fractional factorials can be produced from a full factorial.

The amount of higher-order effects that are aliased is described by the design’s

resolution. For Resolution III designs, all effects are aliased. Resolution IV designs

have unaliased main effects but second-order effects are aliased. Resolution V de-

signs estimate main and second-order effects without aliases. The details of how to

choose a fractional factorial’s treatments are beyond the scope of this chapter. It is

an established algorithmic procedure that is well covered in the literature (Mont-

gomery 2005) and is provided in all modern statistical analysis software. The frac-

tional factorials used in this case study are summarized in Fig. 11.1 which shows the
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Fig. 11.2: Effects and alias chains for a 2(9-3) resolution IV design and a 2(9-4) resolution IV
design

relationship between number of factors, design resolution, and associated number

of experiment treatments.

A resolution V design is preferable when resources allow because it tells us what

second-order effects are present without the need for additional treatments and ex-

periment runs. It is informative to consider the two available resolution IV designs

for 9 factors in Fig. 11.2 as examples of the importance of examining alias structure.

The 2(9-4) design requires 32 treatments while the 2(9-3) is more expensive with

64 treatments. The cheaper 2(9-4) design has 8 of its 9 main effects aliased with 3

third-order interactions. The 2(9-3) design has only 4 of its 9 main effects aliased

with a single third-order interaction. The second-order interactions are almost all
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Fig. 11.3: Central composite designs for building response surface models. From left to right these
designs are the circumscribed central composite (CCC), the face-centred composite (FCC) and
the inscribed central composite (ICC). The design space is represented by the shaded area. The
factorial points are black circles and the star points are grey squares

aliased in the more expensive 2(9-3) design but the aliasing is more favorable than

in the cheaper 2(9-4) design.

11.3.3 Response Surface Designs

There are several types of experiment design for building response surface models.

This chapter’s case study uses central composite designs (CCD). A CCD contains

an imbedded factorial (or fractional factorial design). This is augmented with both

center points and a group of so-called star points (or axial points) that allow estima-

tion of curvature in the resulting model. There are three types of central composite

design, illustrated in Fig. 11.3.

The choice of design depends on the nature of the factors to study:

• Circumscribed central composite (CCC). In this design, the star points estab-
lish new extremes for the low and high settings for all factors. These designs

require 5 levels for each factor. Augmenting an existing factorial or resolution

V fractional factorial design with star points can produce this design.

• Inscribed central composite (ICC). For those situations in which the limits

specified for factor settings are truly limits, the ICC design uses the factor set-

tings as the star points and creates a factorial or fractional factorial design within

those limits. This design also requires 5 levels of each factor.
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Table 11.2: Savings in experiment runs. The savings for screening designs are on the left and the
savings for response surface designs are on the right. In both cases, fractional factorial designs offer
enormous savings in number of treatments over the full factorial alternative. “Half” and “quarter”
refer to the fraction of the full design used. “Min Run” is a further extension to this concept per-
mitting even greater run savings

• Face-centred Composite (FCC). In this design, the star points are at the center
of each face of the factorial space. This design requires just 3 levels of each

factor.

An existing factorial or resolution V design from the screening stage can be aug-

mented with appropriate star points to produce the CCC and FCC designs. This is

not the case with the ICC and so it is less useful in a sequential experimentation

scenario.

11.3.4 Efficiency of Fractional Factorial Designs

Table 11.2 makes explicit the huge savings in experiment runs when using a frac-

tional factorial design instead of a full factorial design.

11.4 Error, Significance, Power, and Replicates

Two types of error can be committed when testing hypotheses (Montgomery 2005,

p. 35). If the null hypothesis is rejected when it is actually true, then a type I error
has occurred. If the null hypothesis is not rejected when it is false then a type II
error has occurred. These error probabilities are given special symbols:

• α = Pr {Type I error} = Pr {reject H0|H0 true}
• β = Pr {Type II error} = Pr {fail to reject H0|H0 false}
In the context of type II errors, it is more convenient to use the power of a test,

where

Power = 1− β = Pr {reject H0| H0 false} .
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It is therefore desirable to have a test with a low α and a high power. The proba-

bility of a Type I Error is often called the significance level of a test. The particular
significance level depends on the requirements of the experimenter and, in a research

context, on the conventional acceptable level. Unfortunately, with so little adapta-

tion of statistical methods to the analysis of heuristics, there are few guidelines on

what value to choose. The power of a test is usually set to 80% by convention. The

reason for this choice is due to diminishing returns. It requires an exponentially in-

creasing number of replicates to increase power beyond about 80% and there is little

advantage to the additional power this confers.

Miles1 describes the relationship between significance level, effect size, sample

size, and power using an analogy with searching.

• Significance level: This is the probability of thinking we have found something

when it is not really there. It is a measure of how willing we are to risk a type I

error.

• Effect size: The size of the effect in the population. The bigger it is, the easier

it will be to find. This is a measure of the practical significance of a result, pre-

venting us claiming a statistically significant result that has little consequence

(Rardin and Uzsoy 2001).

• Sample size: A larger sample size leads to a greater ability to find what we were

looking for. The harder we look, the more likely we are to find it.

The critical point regarding this relationship is that what we are looking for is

always going to be there—it might just be there in such small quantities that we are

not bothered about finding it. Conversely, if we look hard enough, we are guaranteed

to find what we are looking for. Power analysis allows us to make sure that we have

looked reasonably hard enough to find it. A typical experiment design approach is to

agree the significance level and choose an effect size based on practical experience

and experiment goals. Given these constraints, the sample size is increased until

sufficient power is reached. If a response has a high variability then a larger sample

size will be required.

Different statistical tests and different experiment designs involve different power

calculations. These calculations can become quite involved and the details of their

calculation are beyond the scope of this chapter. Power calculations are supplied

with most good-quality statistical analysis software.

11.5 Benchmarking the Experimental Testbed

Clearly, all machines for computational experiments can differ widely. There are

differences in processor speeds, memory sizes, chip types, operating systems, oper-

ating system versions, and in the case of Java different versions of different virtual

1 “Getting the sample size right: a brief introduction to power analysis”,
http://www.jeremymiles.co.uk/misc/power
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Table 11.3: Data from the DIMACS benchmarking of the experiment testbed. Running times are
presented for the 7 experimental machines with IDs 116, 253, 111, 156, 188, 136, and 96

machines. Even if machines are identical in terms of all of these aspects, they may

still differ in terms of running background processes such as virus checkers. This

is the unfortunate reality of the majority of computational research environments.

Furthermore, such differences will almost certainly occur in the computational re-

sources of other researchers who attempt to reproduce or extend previous work of

others. These differences necessitate the benchmarking of the experimental testbed.

Reproducibility of results is the motivation for benchmarking. Other researchers

can reproduce the benchmarking process on their own experimental machines. They

can thus better interpret the CPU times reported in this research by scaling them in

relation to their own benchmarking results. This mitigates the decline in relevance

of reported CPU times with inevitable improvements in technology.

The clear and simple benchmarking procedure of the DIMACS (Goldwasser et al.

2002) challenge was applied for this chapter’s case study. The results are presented

in Table 11.3. If other researchers reproduce the DIMACS procedure on their own

machines then their numbers can be compared with Table 11.3 to scale the results.

11.6 Case Study

This section reports the chapter’s case study on tuning the ACS algorithmwith DOE.

It is a template for how such DOE experiments could be reported since standardized

reporting in other fields has greatly helped the interpretation of research results.

11.6.1 Problem Instances

All TSP instances were of the Euclidean symmetric type. In the Euclidean TSP,

cities are points with integer coordinates in the two-dimensional plane. A cost ma-

trix defines the distances between all cities in the problem instance. The TSP prob-

lem instances ranged in size from 300 cities to 500 cities with cost matrix standard

deviation ranging from 10 to 70. All instances had a cost matrix mean of 100. The
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same instances were used for each replicate of a design point. Instances were gener-

ated with a version of the publicly available portmgen problem generator from the

DIMACS challenge (Goldwasser et al. 2002).

11.6.2 Stopping Criterion

The choice of how to halt an experiment affects the results of an algorithm and thus

the conclusions that can be drawn from the experiments. In this case study, exper-

iments were halted after a stagnation stopping criterion. Stagnation was defined as

a fixed number of iterations in which no improvement in solution value had been

obtained. Responses were measured at several levels of stagnation during an ex-

periment run: 50, 100, 150, 200, and 250 iterations. This facilitated examining the

data at alternative stagnation levels to ensure that conclusions were the same re-

gardless of stagnation level. An examination of the descriptive statistics verifies that

the stagnation level did not have a large effect on the response values and therefore

the conclusions after a 250 iteration stagnation should be the same as after lower

iteration stagnations.

11.6.3 Response Variables

For experiments with algorithms, the response variables usually reflect some mea-

sure of solution quality and some measure of solution time. Two response variables

were measured. The time in seconds to the end of an experiment reflects the solu-
tion time. The relative error from a known optimum reflects the solution quality.

Concorde (Applegate et al. 2003) was used to calculate the optima of the gener-

ated instances. One may wonder why one would use a heuristic on a problem where

the optimal solution can be calculated. The intention here is to evaluate a design of

experiments methodology in a controlled manner.

11.6.4 Factors, Levels and Ranges

11.6.4.1 Held-Constant Factors

There are several held-constant factors. Local search, a technique typically used

in combination with ACS, was omitted. All instances had a cost matrix mean of

100. The computation_limit parameter (Dorigo and Stützle 2004) was fixed at being

limited to the candidate list length as this resulted in significantly lower solution

times.
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Factor Name Type Low level High level
A Alpha Numeric 1 13

B Beta Numeric 1 13

C antsFraction Numeric 1.00 110.00

D nnFraction Numeric 2.00 20.00

E q0 Numeric 0.01 0.99

F Rho Numeric 0.01 0.99

G rhoLocal Numeric 0.01 0.99

H solutionConstruction Categoric parallel sequential

J antPlacement Categoric random same

K pheromoneUpdate Categoric bestSoFar bestOfIteration

L problemSize Numeric 300 500

M problemStDev Numeric 10.00 70.00

Table 11.4: Design factors for the tuning case study with ACS. The factor ranges are also given

11.6.4.2 Nuisance Factors

A limitation on the available computational resources necessitated running experi-

ments across a variety of machines with slightly different specifications. Runs were

executed in a randomized order across these machines to counteract any uncontrol-

lable nuisance factors due to the background processes and differences in machine

specification.

11.6.4.3 Design Factors

The design factors are the algorithm tuning parameters and problem characteristics

whose relationship to performance metrics will be modeled by the DOE response

surfaces. This case study examined 12 design factors. These factors and their high

and low levels are listed in Table 11.4. Note that the two problem instance charac-

teristics are included in the experiment design as we are modeling the relationship

between the tuning parameters and various problems.

These parameters are discussed in further detail in the literature (Ridge 2007,

Dorigo and Stützle 2004). For this case study, we are interested in the tuning param-

eters primarily as experiment design factors.

11.6.4.4 Experiment Design, Significance, Power and Replicates

The experiment design was a minimum run resolution V face-centred composite

with six center points. A significance (alpha) level of 5% is used in this case study.2

2 The value 5% is not a universally recommended significance level. The choice of alpha will de-
pend on the statistical confidence required to the results. As discussed earlier, the cost of increased
confidence is an increased number of experiment replicates.
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Table 11.5: Descriptive statistics for the ACS FCC design. The actual detectable effect size of 0.2
standard deviations is shown for each response and for each stagnation point

The number of replicates in the design is increased and further data are gathered

until a power of 80% is reached. The effect size detectable at this combination of

significance and power is then examined. Replicates were introduced into the design

until an appropriate effect size was detectable. This approach of increasing repli-

cates is known as a work-up procedure (Czarn et al. 2004). Note that it is more com-

mon to fix effect size and significance, increasing replicates until sufficient power is

reached. The principle nonetheless remains the same.

The size of effect that could feasibly be detected depended on the particular re-

sponse and the particular experiment design. Table 11.5 gives the descriptive statis-

tics for the collected data and the actual effect size for each response. The design

could achieve sufficient power with 5 replicates while detecting an effect of size 0.2

standard deviations in the response value.

At this stage, we have sufficient data to build a response surface model of each
individual response. This model will be able to detect effects of the given effect

size with a given confidence and power. We will ultimately be combining both the

response models’ recommendations into a simultaneous tuning of all the responses.
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11.6.5 Model Fitting

The highest-order response surface model that can be generated from the FCC de-

sign used in this case study is quadratic. All lower-order models (linear and 2-factor

interaction) are generated. If the model is not significant, it is removed from consid-

eration and the next highest order model is examined for significance.

1. Find important effects. A stepwise linear regression is performed on the cho-

sen model to estimate its coefficients. The stepwise regression identifies the

model terms that can safely be removed, giving the most parsimonious model

possible.

2. Diagnosis. The usual diagnostics of the proposed linear regression model are

performed. This ensures that the model assumptions have not been violated.

3. Normality. A normal plot of studentized residuals should be approximately a

straight line. Deviations from this may indicate that a transformation of the

response is appropriate.

4. Constant variance. A plot of Studentized residuals against predicted response

values should be a random scatter. Patterns such as a “megaphone” may indicate

the need for a transformation of the response.

5. Time-dependent effects. A plot of Studentised residuals against run order

should be a random scatter. Any trend indicates the influence of some time-

dependent nuisance factor that was not countered with randomization.

6. Model fit. A plot of predicted values against actual response values will iden-

tify particular treatment combinations that are not well predicted by the model.

Points should align along the 45◦ axis.
7. Leverage and influence. Leverage measures the influence of an individual de-

sign point on the overall model. A plot of leverage for each treatment indicates

any problem data points.

8. A plot of Cook’s distance against treatment measures how much the regression

changes if a given case is removed from the model.

If the model passes these tests then its proposed coefficients can be accepted. If

the model does not pass its diagnostics, there are two main options:

1. Response transformation. A transformation of the response may be required.

Transformation simply means taking some function of the response variable

such as the log or square root. The appropriate transformation can be identified

using a Box-Cox plot.
2. Outliers. If the transformed response is still failing the diagnostics, it may be

that there are outliers in the data. These should be identified and removed from

the data. In this case study, outliers were deleted and the model building re-

peated until the models passed the diagnostics. Of the total data, 122 data points

(∼5%) were removed when analyzing the models of relative error and time.

It is always good practice to independently confirm the models’ accuracy on

some real data, different from the data used to generate the model.
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As in traditional DOE, confirmation is achieved by running experiments at new

randomly chosen points in the design space and comparing the actual data with the

model’s predictions. Confirmation is not a new rigorous experiment and analysis in

itself but rather a quick informal check. In the case of an algorithm, these randomly

chosen points in the design space equate to new problem instances and new ran-

domly chosen combinations of tuning parameters. The methodology is as follows:

1. Treatments. A number of treatments are chosen where a treatment consists of

a new problem instance and a new set of randomly chosen tuning parameter

values with which the instance will be solved.

2. Generate instances. The required problem instances are generated.

3. Random run order. A random run order is generated for the treatments and a

given number of replicates. Three replicates are often enough to give an estimate

of how variable the response is for a given treatment. We are conducting this

confirmation to ensure that our subjective decisions in the model building were

correct.

4. Prediction intervals. The collected data for each response is compared with

their respective models’ 95% high and low prediction intervals (Montgomery

2005, p. 394-396).3 Two criteria upon which our satisfaction with the models

(and thus confidence in their predictions) can be judged are (Ridge and Kudenko

2007):

• Conservative: we should prefer models that provide consistently higher

predictions of relative error and longer solution time than those actually

observed. We typically wish to minimize these responses and so a conser-

vative model will predict these responses to be higher than their true value.

• Matching trend: we should prefer models that match the trends in heuristic

performance. The model’s predictions of the parameter combinations that

give the best and worst performance should match the combinations that

yield the actual algorithm’s observed best and worst performance.

5. Confirmation. If the models are not a satisfactory predictor of the actual al-

gorithm then the experimenter must return to the model-building phase and at-

tempt to improve the model.

The randomly chosen treatments produced actual algorithm responses with the

descriptives listed in Table 11.6.

The large ranges of each response reinforce the motivation for correct parameter

tuning as there is clearly a high cost in incorrectly tuned parameters. Figure 11.4

illustrates the 95% prediction intervals and actual confirmation data for the response

surface models of relative error and time.
Looking at the predictions in general we see that time was sometimes better

predicted than was the relative error. The solution time model matches all the trends

3 The model’s p% prediction interval is the range in which you can expect any individual value
from the actual algorithm to fall into p% of the time. The prediction interval will be larger (a wider
spread) than a confidence interval about averages since there is more scatter in individual values
than in averages.
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Table 11.6: Descriptive statistics for the confirmation of the ACS tuning. The response data is from
runs of the actual algorithm on the randomly generated confirmation treatments

in the actual data. The relative error model however exhibits some false peaks and

misses some actual peaks.

11.6.6 Results

11.6.6.1 Screening and Relative Importance of Factors

Figures 11.5 and 11.6 give the ranked ANOVAs of the relative error and timemodels

from the analysis. The terms have been rearranged in order of decreasing sum of

squares so that the largest contributor to the models comes first.

Looking first at the relative error rankings of Fig. 11.5, we see that the least im-

portant main effects are L-antPlacement, A-alpha, F-rho, and M-pheromoneUpdate.

By far the most important terms are the main effects of the exploration/exploitation

tuning parameter (E) and the candidate list length tuning parameter (D) as well as

their interaction. This is a very important result because it shows that candidate

list length, a parameter that we have often seen set at a fixed value or not used, is

actually one of the most important parameters to set correctly.

Looking at the time rankings of Fig. 11.6, we see that L-antPlacement was com-

pletely removed from the model. The least important main effects were then F-rho

and A-alpha.

By far the most important tuning parameters are the number of ants and the

lengths of their candidate lists. This is quite intuitive as the number of processing is

directly related to these parameters. The result regarding the cost of the amount of

ants is particularly important because the number of ants does not have a relatively
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Fig. 11.4: The 95% prediction intervals for the ACS response surface model of relative error and
time. The horizontal axis is the randomly generated treatment. The vertical axis is the relative error
or time response

strong effect on solution quality. The extra time cost of using more ants will not re-

sult in gains in solution quality. This is an important result because it methodically

confirms the often recommended parameter setting of setting the number of ants

equal to a small number (usually 10).

11.6.6.2 Tuning

Since the response surface models are mathematical functions of the tuning pa-

rameters, it is possible to numerically optimize the models’ responses by varying

the tuning parameters. This allows us to produce the most efficient process. There

are several possible optimization goals. We may wish to achieve a response with

a given value (target value, maximum or minimum). Alternatively, we may wish

that the response always falls within a given range (relative error less than 10%).

More usually, we may wish to optimize several responses because of the algorithm

compromise of quality and time. In the literature, tuning rarely deals with both so-
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Fig. 11.5: Relative error–time ANOVA of relative error response from the full model. The table lists
the remaining terms in the model after stepwise regression in order of decreasing sum of squares

Fig. 11.6: Relative error–time ANOVA of time response from the full model. The table lists the
remaining terms in the model after stepwise regression in order of decreasing sum of squares
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lution quality and solution time simultaneously and so neglects this compromise. A

technique from DOE allows multiple response models to be simultaneously tuned.

The desirability function approach (Montgomery 2005, Croarkin and Tobias

2006) is a widely used industrial method for optimizing multiple responses. The

basic idea is that a process with many quality characteristics is completely unac-

ceptable if any of those characteristics are outside some desired limits. For each

response Yi, a desirability function di(Yi) assigns a number between 0 and 1 to the

possible values of the response Yi; di(Yi) = 0 is a completely undesirable value,

and di(Yi) = 1 is an ideal response value. These individual k desirabilities are

combined into an overall desirability D using a geometric mean:

D = (d1(Y1)× d2(Y2)× . . .× dk(Yk))
1/k . (11.1)

A particular class of desirability function was proposed by Derringer and Suich

(1980). Let Li and Ui be the lower and upper limits, respectively, of response i. Let
Ti be the target value. If the target value is a maximum then

di =

⎧⎪⎨⎪⎩
0 yi < Li(

yi−Li

Ti−Li

)r
Li ≤ yi ≤ Ti

1 yi > Ti

(11.2)

If the target is a minimum value then

di =

⎧⎪⎨⎪⎩
1 yi < Ti(

Ui−yi

Ui−Ti

)r
Li ≤ yi ≤ Ti

0 yi > Ui

(11.3)

The value r adjusts the shape of the desirability function. A value of r = 1 is

linear. A value of r > 1 increases the emphasis of being close to the target value. A

value of 0 < r < 1 decreases this emphasis.

The multiple responses of solution time and relative error are expressed in terms

of desirability functions. The overall desirability is then the geometric mean of the

individual desirabilities. A numerical optimization is applied to the response surface

models’ equations such that the desirability is maximized. Typically, we specify the

optimization in algorithm research with the dual goals of minimizing both solution

error and solution time, while allowing all algorithm-related factors to vary within

their design ranges.4 Equal priority is given to the dual goals in this tutorial but

these priorities can be varied. Recall that problem characteristics are also factors in

the model since we want to establish the relationship between these problem charac-

4 It is important to note that optimization of desirability does not necessarily lead to parameter
recommendations that yield optimal algorithm performance. Desirability functions are a geometric
mean of the desirability of each individual response. Furthermore, a response surface model is
an interpolation of the responses from various points in the design space. There is therefore no
guarantee that the recommended parameters result in optimal performance; they only result in
tuned performance that is better than performance in most of the design space.
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teristics, the algorithm parameters, and the performance responses. It does not make

sense to include these problem characteristic factors in the optimization. The opti-

mization process would naturally select the easiest problems as part of its solution.

We therefore needed to choose fixed combinations of the problem characteristics

and perform the numerical optimizations for each of these combinations. A sensible

choice of such combinations is a three-level factorial of the characteristics, although

any level factorial is possible depending on available resources. A more detailed

description of these methods follows:

1. Combinations of problem characteristics. A three-level factorial combination

of the problem characteristics is created. In the case of two characteristics, this

creates 9 combinations of problem characteristics.

2. Numerical optimization. For each of these problem characteristic combina-

tions, the Nelder-Mead simplex algorithm (Nelder and Mead 1965) was used

for numerical optimization of overall desirability. The optimization goal is to

minimize both the solution error response and the solution runtime response.

The problem characteristics are fixed at the values corresponding to the 3 level

factorial combinations.

3. Choose the best solution. When the optimization has completed, the solution

of the parameter settings with the highest desirability is kept and the others are

discarded. Note that there may be several solutions of very similar desirability

but with differing factor settings. This is due to the nature of the multiobjective

optimization and the possibility of many regions of interest.

4. Further refine the solution. Engineering judgement and experience may lead

us to further refine the most desirable solution. For example, in this tutorial

we will round off integer-valued parameters that are exponents to the nearest

integer value. This is because exponents are expensive to compute and our pilot

studies showed little gain in solution quality for this price.

This optimization procedure has recommended parameter settings for 9 locations

covering the problem space defined in Table 11.7. Of course, a user requiring more

refined parameter recommendations will have to run this optimization procedure

for the problem characteristics of the scenario to hand. Optimization of desirability

is done on the response surface equations. Other expensive algorithm runs beside

those of the design points do not have to be executed.

The rankings of the ANOVA terms has already highlighted the factors that have

little effect on the responses. For example, beta is always low, except when the prob-

lem standard deviation is high. The exploration/exploitation threshold q0 is always

at a maximum of 0.99, implying that exploitation is always preferred to exploration.

AntsFraction is always low. The remaining unimportant factors take on a variety of

values in the model desirability optimization.
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Table 11.7: Full relative error–time model results of desirability optimization. The table lists the
recommended parameter values for combinations of problem size and problem standard deviation.
The expected time and relative error are listed with the desirability value

11.6.7 Discussion

The following conclusions are drawn from the ACS tuning study:

• Unimportant factors: Ant placement not important. The type of ant place-
ment has no significant effect on ACS performance in terms of solution quality

or solution time. Alpha not important. Alpha has no significant effect on ACS
performance in terms of solution quality or solution time. This confirms the

common recommendation in the literature of setting alpha equal to 1. Rho not
important. Rho has no significant effect on ACS performance in terms of solu-

tion quality or solution time. This is a new result for ACS. Pheromone Update
Ant not important. The ant used for pheromone updates is ranked highly for

solution time.

• Most important tuning parameters. The most important ACS tuning param-

eters are the heuristic exponent B-beta, the number of ants C-antsFraction, the

length of candidate lists D-nnFraction, the exploration/exploitation threshold

E-q0, and rhoLocal.

• Minimum order model. A model that is of at least quadratic order is required

to model ACS solution quality and ACS solution time. This is a new result for

ACS and shows that a one-factor-at-a-time approach is not an appropriate way

to tune the performance of ACS.

• Relationship between tuning, problems, and performance. The model of rel-
ative error–time was a good predictor of ACS performance across the entire

design space.
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11.6.8 Summary

The strengths of this chapter’s methodologies come from the strengths of DOE. The

methodologies are adapted from well established and tested methodologies used in

other fields and are therefore proven on decades of scientific and industrial expe-

rience. The fractional factorial experiment designs provide a vast saving in experi-

ment runs. Because DOE and response surface models build a model of performance

across the whole design space, many research questions can be explored. Numerical

optimization of this surface can quickly recommend tuning parameter settings for

different weightings of the responses of interest. One may obtain settings appropri-

ate for long runtimes and high quality or short runtimes and lower levels of solution

quality. All of these questions are answered on the same model without the need to

rerun experiments.

DOE is not a panacea for the myriad difficulties that arise in the empirical anal-

ysis of algorithms. Despite the efficiency of the DOE designs, running sufficient

experiments to gather sufficient data is still computationally expensive. Of course,

the experiments would have been orders of magnitude more expensive had a less

sophisticated approach been used.

It is hoped that this chapter has convinced the reader of the merits of the DOE

approach. The researcher who embraces these methodologies will have at their dis-

posal an established, efficient, rigorous, reproducible approach for making strong

conclusions about the relationship between algorithm tuning parameters, problem

characteristics, and performance.
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Chapter 12
Using Entropy for Parameter Analysis of
Evolutionary Algorithms

Selmar K. Smit and Agoston E. Eiben

Abstract Evolutionary algorithms (EA) form a rich class of stochastic search meth-

ods that share the basic principles of incrementally improving the quality of a set

of candidate solutions by means of variation and selection (Eiben and Smith 2003,

De Jong 2006). Such variation and selection operators often require parameters to

be specified. Finding a good set of parameter values is a nontrivial problem in itself.

Furthermore, some EA parameters are more relevant than others in the sense that

choosing different values for them affects EA performance more than for the other

parameters. In this chapter we explain the notion of entropy and discuss how en-

tropy can disclose important information about EA parameters, in particular, about

their relevance. We describe an algorithm that is able to estimate the entropy of

EA parameters and we present a case study, based on extensive experimentation, to

demonstrate the usefulness of this approach and some interesting insights that are

gained.

12.1 Introduction and Background

Evolutionary algorithmsform a rich class of stochastic search methods that share the

basic principles of incrementally improving the quality of a set of candidate solu-

tions by means of variation and selection (Eiben and Smith 2003, De Jong 2006).

Algorithms in this class are all based on the same generic framework (explained

in the next section) and to obtain a concrete algorithm one needs to fill in many

details, that is to say, specify the parameters of the algorithm. Over the history of

EAs it has became clear that good parameter values are essential for good perfor-

mance. However, as of today, not much is known about the effect of parameters on

performance. Setting parameter values is commonly done in a very ad hoc manner,
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based on conventions, intuition, and experimental comparisons on a limited scale.

Collective wisdom in evolutionary computing (EC) acknowledges that some pa-

rameters have more impact on performance than others. Obviously, more influential

parameters need more care when setting their values, but at the moment there are no

widely used techniques to establish the (relative) importance of different parameters.

Screeningmethods (Ridge and Kudenko 2007b) are some of the few techniques cur-

rently used to indicate importance. However, the information that can be extracted

is limited and the results of different algorithms cannot be compared.

In this chapter we show how entropycan be used to indicate how influential a

particular parameter is. We use the term parameter relevanceto reflect the level of

influence on EA performance and argue that entropy is a good measure of relevance.

The main contributions of this chapter are as follows:

1. We explain the notion of entropy and discuss how entropy can disclose impor-

tant information on EA parameters, in particular, about their relevance.

2. We describe an algorithm, REVAC, that is able to estimate the entropy of EA

parameters.

3. We present a case study, based on extensive experimentation, to demonstrate

the usefulness of this approach and some interesting insights gained.

The rest of this chapter is organized as follows. In Sect. 12.2 we briefly introduce

evolutionary algorithms, followed by a discussion on their parameters and issues in

parameter tuning in Sect. 12.3. We elaborate on the notion of entropy in Sect. 12.4,

including a discussion on the use of entropy for parameter analysis of EAs. The

REVAC method is described in Sect. 12.5. Section 12.6 contains the case study and

we conclude the paper in Sect. 12.7 by summarizing the main issues.

12.2 Evolutionary Algorithms

Evolutionary algorithms are all based on the same generic framework, inspired by

biological evolution. The fundamental metaphor of evolutionary computing relates

natural evolution to problem solving in a trial-and-error (a.k.a. generate-and-test)

fashion, as illustrated in Table 12.1.

Table 12.1: The basic evolutionary computing metaphor linking natural evolution to problem solv-
ing

Evolution Problem solving

environment ←→ problem

individual ←→ candidate solution

fitness ←→ quality
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In natural evolution, a given environment is filled with a population of indi-

viduals that strive for survival and reproduction. Their fitness—determined by the

environment— tells how well they succeed in achieving these goals, i.e., it reflects

their chances to live and multiply. In the context of problem solving we have a

collection of candidate solutions. Their quality—defined by the given problem—

determines the chance that they will be kept and used as seeds for constructing

further candidate solutions.

Surprisingly enough, this idea of applying Darwinian principles to automated

problem solving dates back to the 1940s, long before the breakthrough of com-

puters (Fogel 1998). As early as in 1948 Turing proposed “genetical or evolution-

ary search” and already in 1962 Bremermann actually executed computer experi-

ments on “optimization through evolution and recombination.” During the 1960s

three different implementations of the basic idea have been developed at three dif-

ferent places. In the USA Fogel et al. introduced evolutionary programming, (Fogel

et al. 1966, Fogel 1995), while Holland called his method a genetic algorithm (Gold-

berg 1989, Holland 1992, Mitchell 1996). In Germany Rechenberg and Schwefel in-

vented evolution strategies (Rechenberg 1973, Schwefel 1995). For about 15 years

these areas developed separately; it is only since the early 1990s that they have been

envisioned as different representatives of one technology that was termed evolution-

ary computing (Bäck 1996, Bäck et al. 2000a,b, Mitchell 1996). It was also in the

early 1990s that a fourth stream following the general ideas has emerged: Koza’s

genetic programming (Banzhaf et al. 1998, Koza 1992). The contemporary termi-

nology denotes the whole field as evolutionary computing and the methods therein

as evolutionary algorithms. The historical versions evolutionary programming, evo-

lution strategies, genetic algorithms, and genetic programming are seen as subtypes

or dialects within the family of EAs.

As the history of the field suggests, there are many different variants of evolu-

tionary algorithms. The common underlying idea behind all these techniques is the

same. Given an objective function to be maximized we can randomly create a set of

candidate solutions, i.e., elements of the objective function’s domain that forms the

search space, and apply the objective function as an abstract fitness measure—the

higher the better. Based on this fitness, some of the better candidates are chosen to

seed the next generation by applying so-called variation operators, recombination

and mutation, to them. Recombination is a binary variation operator applied to two

selected candidates (the so-called parents) and results in one or two new candidates

(the children). Mutation is a unary variation operator, it is applied to one candidate

and results in one new candidate. Executing recombination and mutation leads to a

set of new candidates (the offspring) that compete—based on their fitness—with the

old ones for a place in the next generation. This cycle can be iterated until a solution

is found or a previously set computational limit is reached.

In this process there are two fundamental forces that form the basis of all evolu-

tionary systems:

• Variation (implemented through recombination and mutation operators) creates

the necessary diversity within the population, thus it facilitates novelty.
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• Selection (implemented through parent selection and survivor selection opera-

tors) acts as a force towards increasing the quality of solutions in the population.

The combined application of variation and selectiongenerally leads to improving

fitness values in consecutive populations. It is easy, although somewhat misleading,

to view this process as if evolution is optimizing (or at least “approximizing”) the

fitness function, by approaching the optimal values closer and closer over time.

It should be noted that many components of such an evolutionary process are

stochastic. Thus, although during selection fitter individuals have a higher chance

of being selected than less fit ones, typically even the weak individuals have a chance

of becoming a parent or of surviving. During the recombination process, the choice

of which pieces from the parents will be recombined is made at random. Similarly

for mutation, the choice of which pieces will be changed within a candidate solution,

and of the new pieces to replace them, is made randomly.

It is easy to see that EAs fall into the category of generate-and-test algorithms.

The fitness function represents a heuristic estimation of solution quality, and the

search process is driven by the variation and selection operators. Evolutionary algo-

rithms possess a number of features that can help to position them among generate-

and-test methods:

• EAs are population based, i.e., they process a whole collection of candidate

solutions simultaneously.

• EAs mostly use recombination, mixing information from two or more candidate

solutions to create a new one.

• EAs are stochastic.

The various dialects of evolutionary computing that we have mentioned previ-

ously all follow the general EA outline, differing only in their technical details. In

particular, the representation of a candidate solution is often used to characterize

different streams. Typically the representation (i.e., the data structure encoding a

candidate solution) has the form of strings over a finite alphabet in genetic algo-

rithms (GAs), real-valued vectors in evolution strategies (ESs), finite state machines

in classical evolutionary programming (EP), and trees in genetic programming (GP).

The origin of these differences is mainly historical. Technically, one representa-

tion might be preferable to others if it matches the given problem better, that is, if

it makes the encoding of candidate solutions easier or more natural. For instance,

when solving a satisfiability problem with n logical variables, the straightforward

choice is to use bit-strings of length n, hence the appropriate EA would be a genetic

algorithm. To evolve a computer program that can play checkers, trees are well-

suited (namely, the parse trees of the syntactic expressions forming the programs),

thus a GP approach is likely. It is important to note that the recombination and muta-

tion operators working on candidates must match the given representation. Thus, for

instance, in GP the recombination operator works on trees, while in GAs it operates

on strings. In contrast to variation operators, the selection process only takes fitness

information into account, and so it works independently of the choice of represen-

tation. Therefore differences between the selection mechanisms commonly applied

in each stream are a matter of tradition rather than of technical necessity.
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Fig. 12.1: The general scheme of an evolutionary algorithm as a flowchart

It is worth noting that the borders between the four main EC streams have been

becoming less distint in the last decade. Approaching EAs from a “unionist” per-

spective the distinguishing features of different EAs are the algorithmic compo-

nents, representation, recombination operator, mutation operator, parent selection

operator, and survivor selection operator. Reviewing the details of the commonly

used operators for these components exceeds the scope of this chapter. For these

details we refer to a modern text book, such as Eiben and Smith (2003) or De Jong

(2006), and in the sequel we will use (the names of) such operators without further

explanation. Here we restrict ourselves to providing an illustration in Table 12.2,

showing how particular choices can lead to a typical genetic algorithm or evolution

strategy.

12.3 EA Design, EA Parameters

Given a particular problem, designing an EA for solving it requires filling in the de-

tails of the generic EA framework appropriately. For a solid basis we first elaborate

on suitable naming conventions regarding these details.

One possibility is to call these details EA parameters. In this case, designing

an EA for a given application amounts to selecting good values for these param-

eters. For instance, the definition of an EA might include setting the parameter
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Table 12.2: A typical GA and ES as an instantiation of the generic EA scheme by particular repre-
sentation and operators

GA ES

Representation bit-strings real-valued vectors

Recombination 1-point crossover intermediary

Mutation bit-flip Gaussian noise by N(0, σ)

Parent selection 2-tournament uniform random

Survivor selection generational (μ, λ)

Extra none self-adaptation of σ

crossoveroperator to 1-point, the parameter crossoverrate to 0.5, and the

parameter populationsize to 100. In principle, this is a sound naming conven-

tion, but intuitively, there is a difference between choosing a good crossover oper-

ator from a given list of three operators and choosing a good value for the related

crossover rate pc ∈ [0, 1]. One feels that the parameters crossoveroperator and

crossoverrate are different.

This difference can be formalized if we distinguish parameters by their domains.

The parameter crossoveroperator has a finite domain with no sensible distance

metric, e.g., {1-point, uniform, averaging}, whereas the domain of the param-

eter pc is a subset of IR with the natural metric for real numbers. This difference is

essential for searchability. For parameters with a domain that has a distance met-

ric, one can use heuristic search and optimization methods to find optimal values.

For the first type of parameters this is not possible because the domain has no ex-

ploitable structure. The only option in this case is sampling. For a clear distinction

between these cases we can use the terms symbolic parameter or qualitative param-
eter, e.g., crossoveroperator, and numeric parameter or quantitative parameter,
e.g., crossover rate. For both types of parameters the elements of the parameter’s

domain are called parameter values and we instantiate a parameter by allocating a

value to it.

An alternative naming convention (used in Nannen et al. (2008)), is to call sym-

bolic parameters components and the elements of their domains operators. In the

corresponding terminology a parameter is instantiated by a value, while a compo-

nent is instantiated by allocating an operator to it. Using this naming convention

for the example in the beginning of this section, crossoveroperator is a com-

ponent instantiated by the operator 1-point, while crossoverrate is a parameter

instantiated by the value 0.5.

In this paper we adhere to the second terminology distinguishing components and

parameters. Further to this, we distinguish two levels in designing a particular EA

instance for a given problem by saying that the operators (the high-level, symbolic

details) define the EA, while the parameters (the low-level, numerical details) define

a variant of this EA. Table 12.3 illustrates this matter.

This terminology enables precise formulations, while enforcing care with phras-

ing. From now on the phrase an EA for problem X means a partially specified algo-
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Table 12.3: Three EA instances specified by the components recombination, mutation, parent se-
lection, survivor selection and the parameters mutation rate (pc), mutation step size (σ), crossover
rate (pc), population size (μ), offspring size (λ), and tournament size. The EA instances in columns
A and B are just variants of the same EA. The EA instance in column C belongs to a different EA.

A B C

Recombination 1-point 1-point averaging

Mutation bit-flip bit-flip Gaussian N(0, σ)

Parent selection tournament tournament uniform random

Survivor selection generational generational (μ, λ)

pm 0.01 0.1 0.05

σ n.a. n.a 0.1

pc 0.5 0.7 0.7

μ 100 100 10

λ n.a. n.a 70

Tournament size 2 4 n.a

rithm where the operators to instantiate EA components are defined, but the parame-

ter values are not. After specifying all details, including the values for all parameters,

we obtain an EA instance for problem X.
It has long been noticed that EA parameters have a strong influence on EA perfor-

mance. The problem of setting EA parameters correctly is therefore highly relevant.

Setting EA parameters is commonly divided into two cases; parameter tuning and

parameter control (Eiben et al. 1999). In case of parameter control the parameter

values are changing during an EA run. In this case one needs initial parameter val-

ues and suitable control strategies, which in turn can be deterministic, adaptive, or

self-adaptive. Parameter tuning is easier in the sense that the parameter values are

not changing during a run, hence only a single value per parameter is required. Nev-

ertheless, even the problem of tuning an EA for a given application is hard because

there is a large number of options, but only little knowledge about the effect of EA

parameters on EA performance. EA users mostly rely on conventions (mutation rate

should be low), ad hoc choices (why not use population size 100), and experimental

comparisons on a limited scale (testing combinations of three different crossover

rates and three different mutation rates).

In these terms we can express the primary focus of this chapter as being param-

eter tuning. Entropy is proposed as a generic measure of parameter relevance that

shows how difficult it is to find parameter values that induce good EA performance.

The practical use of this information is obvious. Given an EA (thus, all operators

specified), if the relevance levels of the parameters are known then it is possible

to allocate tuning efforts such that more relevant parameters are tuned more exten-

sively than less relevant ones. It is important to note that relevance information of

EA parameters depends on two other factors: the EA itself (that is, the chosen oper-

ators to instantiate EA components) and the problem at hand. The aspect of problem

dependence belongs to the issue of scoping, that is, establishing the scope of valid-
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ity of experimental work. A thorough treatment of this issue exceeds the limitations

of this chapter; our case study attempts to cope with this problem by using many

problem instances produced by a parameterized random problem instance generator

(see Sect. 12.6 for details). Concerning the dependence on the EA itself, the case

study will illustrate that the approach we advocate here is also helpful for deter-

mining good operators for EA components, and thus for designing EAs in general.

The basis of such aggregation is the hierarchy between EA components and EA pa-

rameters. This hierarchy is visible in Table 12.8, which arranges parameters by the

operators to which they (with population size as the only exception). Relying on this

hierarchy, it is possible to aggregate results concerning parameters to results at the

level of operators and thus at the level of EAs.

12.4 Shannon and Differential Entropy

As we have seen, an EA can be composed of a wide variety of operators, each with

its own numeric parameters that need properly chosen values for satisfactory EA

performance. However, choosing proper values, i.e., tuning, requires effort both in

terms of time and computing facilities, and both resources are limited in practice.

Hence, tuning efforts should be carefully allocated to different parameters such that

the most relevant parameters receive the most attention and little effort is spent on

finding good values for parameter with limited relevance. The problem is how to

quantify the relevance of parameters.

12.4.1 Using Success Ranges for Relevance Estimation

In order to objectively quantify a parameter’s relevance, and thus the amount of tun-

ing it needs, one can look at how accurately its value needs to be specified for achiev-

ing a given performance level. A straightforward approach is to measure which part

of the parameter’s range leads to the desired performance. For example, let us as-

sume that an EA has two parameters, X1 ∈ [0, 1] and X2 ∈ [0, 1], and that the

algorithm reaches some desired performance if X1 is in the range [0, 0.5] and X2

is in the range [0, 0.1]. One can argue that X2 is more relevant, because X1 has a

success range of 50% of its full range [0, 1] and X2 has a success range of 10%.

Furthermore, one can assume that the success range within the full 2D parameter

space [0, 1] × [0, 1] is 50% · 10% = 5%. However, this kind of reasoning can lead

to misleading conclusions if the parameters are not independent. For example, if we

have an algorithm that achieves the desired performance ifX1 is in the range [0, 0.5]
or X2 is in the range of [0, 0.1]. The success range of X1 is in that case equal to

[0, 1], because the EA instances with parameter values of 〈0, 0.05〉 and 〈1, 0.05〉
both terminate with success. Similarly, the success range ofX2 is equal to [0, 1] too.
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12.4.2 Shannon Entropy

Entropy is commonly used to measure the amount of disorder of a system, and

this concept has been extended in information theory to quantify the uncertainty

associated with a random variable. To be precise, the (Shannon) entropy H(X) of
a random variable X with probability mass function p(x) can be used to measure

the average information content that is missing when the value of X is unknown

(Shannon 1948). Shannon defined the entropy for discrete variables as

H(X) = −
∑

x∈DX

p(x) · log2 p(x) (12.1)

where DX is the domain of X , p(x) is equal to the chance of observing value x,
and log2 is the logarithm with base 2.

Notice that a random variable with a large range of different values will have a

higher entropy than a random variable with just a few specific values. For example, a

fair coin has an entropy of 1 bit. A biased coin has an entropy that is lower, because

it will return one side more often than the other. Predicting the next value for a

biased coin is easier, lowering the uncertainty. So, entropy can be seen as a measure

of the extent of bias towards a certain value, or range of values.

12.4.3 Using the Shannon Entropy for Relevance Estimation

Let us consider an evolutionary algorithm with two parameters, population size P ∈
{10, 100} and tournament size T ∈ {5, 10}. We can now execute the EA 100 times

with all possible parameter value combinations and thus experimentally establish

whether a given combination is successful. Success here can mean that the EA finds

the optimal fitness value in all runs, or that the mean best fitness (MBF) over all runs

is above a certain threshold. Table 12.4 shows a possible outcome.

Table 12.4: Success or failure for different parameter value combinations, 1 = success, 0 = failure

Population size

10 100

Tournament size
5 1 1
10 0 1

We can observe that a high population size (100), a low tournament size (5), or

a combination of both, leads to success. The list of population sizes that lead to

success will therefore be {10, 100, 100} with p values of 1
3 and 2

3 . The entropy

of this distribution is therefore 1
3 · log2( 13 ) + 2

3 · log2( 23 ) = 0.92 bits. Unlike the

success range-based measure from Sect. 12.4.1, the entropy identifies correctly that
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there is a bias for one of those two values. Thereby it indicates that it is beneficial

to choose the parameter value from a specific area, rather than selecting an arbitrary

value. The size of the entropy indicates the size of the area: The lower the entropy,

the smaller the area that leads to success.

Furthermore, we can use this approach to show how the desired performance is

related to the required tuning effort. To this end we need a fine-graded overview of

the experimental outcomes that exhibits the mean best fitness over the 100 EA runs

belonging to the parameter values used in those runs. Table 12.5 shows a possible

outcome for five different population sizes and fixed tournament size (not shown in

the table).

Table 12.5: Mean best fitness for different population sizes

Population size Performance (MBF)
10 0.80
20 0.85
30 0.90
40 0.95
50 1.00

Based on these results, we can calculate the entropy not only for single parameter

values, but for a whole range of values. This results in a table containing the desired

performance, and the corresponding entropy (Table 12.6).

Table 12.6: The minimal performance required for success and the corresponding entropy

Performance (MBF) Entropyrequired for success
0.80 2.32
0.85 2.00
0.90 1.59
0.95 1.00
1.00 0.00

We can use such a table or graph to determine the size of the set of all possible

parameter values that lead to the desired performance. Furthermore, this can indicate

how relevant it is to tune a certain parameter with a specific minimal performance

in mind. In this case, each of the five population sizes leads to a performance of at

least 0.8. The entropy, using a minimal performance of 0.8, is therefore the highest.

If we define success as reaching a performance of at least 1.0, then only one setup

(population size = 50) results in success. The corresponding entropy is therefore the

lowest. In terms of (un)certainty, if we observe success in this case, then we know

for sure that the EA used population size 50. While observing success in the first
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case we do not know anything, because all possible population sizes could have

caused it.

12.4.4 Differential Entropy

The differential entropy is an extension of the Shannon entropy to the domain of

continuous probability distributions. This is required for parameters that are real-

valued, for example mutation rate. It is clear that calculating the entropy of such

parameters requires a somewhat different approach than enumerating all possible

combinations of parameter values.

One approach is to divide the continuous domain into a certain number of bins.

Because this makes the domain discrete, we can use the Shannon entropy as de-

scribed in the previous section. However, the number of bins highly influences the

outcomes. One way of dealing with this problem is always using the same number

of bins. This makes the results comparable, but could lead to problems if the number

of bins is too small. The best number of bins would therefore be infinity, which is

exactly the approach that is used with the differential entropy.

In order to calculate the differential entropy, it is required that the probability

distribution of such a parameter is known. Just as with the Shannon entropy, this can

be any distribution. With probability density function f(x), the entropy is defined

as

h(X) = −
∫
X

f(x) log2 f(x) dx (12.2)

Unlike the Shannon entropy, the differential entropy can get negative. For ex-

ample, a uniform distribution over the range [0, 0.1] results in a differential entropy

of:

f(x) =
1

0.1− 0
(12.3)

h(X) =−
∫ 0.1

0

f(x) log2 f(x) dx (12.4)

= log2(0.1) (12.5)

=− 3.3 (12.6)

In order to compare the entropy of distributions that are defined over different

parameter ranges in a meaningful way, we normalize the range of all parameters

to the unit interval [0, 1] before calculating the entropy. In this way the uniform

distribution has a Shannon entropy of zero, and any other distribution has a negative

Shannon entropy.
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12.4.5 Joint Entropy

The notion of entropy as introduced above can be calculated for each specific param-

eter. However, sometimes we are interested in the entropy of constructs that depend

on more then one parameters. For instance, the Gaussian (p, σ) mutation operator is

regulated by the mutation probability p and the mutation stepsize σ. The amount of

tuning required by this mutation operator will thus depend on the amount of tuning

required by two parameters. This idea can also be extended to the level of the al-

gorithm, namely the set of all instantiated operators. For an illustration recall Table

12.3 and observe that the EA with the instances in columns A and B depends on

four parameters and the EA whose instance is shown in column C depends on five.

In such situations we need to handle the combination of more parameters, that is, to

calculate joint entropies. If we assume independence of the parameters in question,

then the joint entropy is equal to the sum of the individual entropies. If the parame-

ters are not independent then one should calculate the combined probability density

function and use this to calculate the entropy. If this is not possible, one can use

lower and upper bounds for the joint entropy that are easy to calculate, because the

sum of the individual entropies forms the lower bound and the maximum individual

entropy is the upper bound of the joint entropy.

h(X ∩ Y ) ≤ h(X) + h(Y ) (12.7)

h(X ∩ Y ) ≥ max(h(X), h(Y )) (12.8)

To illustrate the usage of such bounds assume that we need information on the

relevance of the uniform crossover operator (one parameter, pc) and the Gaus-

sian (pm, σ) mutation operator. Assume furthermore that the entropies belonging

to pc, pm, and σ are known. Then the sum of entropies of the parameters pm and σ
is an upper bound for the entropy of the mutation operator (that would correspond

to the joint entropy of pm and σ). Thus, if the sum of entropies of the parameters

pm and σ is lower than the entropy of pc, then we know that the entropy of this

mutation operator is lower than the entropy of this crossover operator. Application

to complete EAs with more parameters is similar.

12.5 Estimating Entropy

Calculating the entropy as proposed in the previous section is a computationally

intensive task. Even if one performs a full parameter sweep over thousands of dif-

ferent parameters settings, the resulting entropy is still just an estimation. Although

such a sweep can be distributed over multiple machines (Samples et al. 2007), it is

still a very time-consuming task, especially because much time is spent on evaluat-

ing parameter settings that are not interesting, because their performance is far from

optimal.
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There are three different approaches to estimate the entropy more efficiently.

Ranking and selection of parameters can be used to estimate entropy (Branke et al.

2005) with less effort. The principle is not very different from a full parameter

sweep. However, instead of assigning each parameter setting the same computa-

tional effort, ranking and selection focuses on the areas with a high utility. This

results in a better estimated entropy, and expectedly, a higher level of utility with

the same computational effort.

Secondly, one could build models of the utility landscapeand calculate the en-

tropy through the model. There are several approaches to create such models, for

example, sequential parameter optimization (Bartz-Beielstein 2003, 2006) and re-

sponse surface models(Ridge and Kudenko 2007a). Some of those models can di-

rectly be translated into a probability density function, for which the entropy is given

by (12.2). In other cases, a sweep over all possible parameter values can be used to

calculate the entropy of the model. Because utility is estimated by the model, rather

than tested, the entropy can be estimated efficiently.

Finally, one could use heuristic search methods that iteratively generate param-

eter vectors to be tested and used to calculate entropy. The search heuristic should

represent a bias towards better parameter vectors, thus allocating more computa-

tional efforts to interesting areas of the search space. Because of this bias, the es-

timations of entropy will be better in high-utility regions, quite similarly to rank-

ing and selection methods. At this moment we only know of one method in this

category: REVAC (relevance estimation and value calibration) (Nannen and Eiben

2007a,b). REVAC has been developed to aid the design of evolutionary mechanisms

for simulation and optimization in application areas without much knowledge on

successful EA designs (Nannen and Eiben 2006). The main activities of REVAC

can be summarized as follows. Given a problem to be solved and an EA to solve it

with

• REVAC finds parameter vectors with high utility;

• REVAC collects values of entropy for different utility levels;

• REVAC creates a distribution for each parameter that indicates the expected

utility of parameter values.

It is important to note that REVAC does not handle parameter interactions (no joint

distributions for multiple parameters) and that it can be used for tuning numeric

parameters only.

The case study, described in Sect. 12.6, is based on estimating entropy values.

In principle, the experiments could have been conducted using any of the methods

mentioned above, but actually we have used REVAC (Nannen et al. 2008). There-

fore, we describe it in detail in the sequel.
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12.5.1 REVAC: the Algorithm

Technically, REVAC is a heuristic generate-and-test method that is iteratively adapt-

ing a set of parameter vectors of a given EA. Testing a parameter vector is done by

executing the EA with the given parameters and measuring the EA performance. EA

performance can be defined by any appropriate performance measure, or combina-

tion of performance measures, and the results will reflect the utility of the parameter

vector in question. Because of the stochastic nature of EAs, in general a number of

runs is advisable to obtain better statistics.

For a good understanding of the REVAC method it is helpful to distinguish two

views on a given set of parameter vectors as shown in Table 12.7. Taking a hori-

Table 12.7: Two views on a table of parameter vectors

D(x1) · · · D(xi) · · · D(xk) Utility

x1 {x1
1 · · · x1

i · · · x1
k} u1

...
. . .

...
xn {xn

1 · · · xn
i · · · xn

k} un

...
. . .

...
xm {xm

1 · · · xm
i · · · xm

k } um

zontal view on the table, each row shows the name of a vector (first column), the k
parameter values of this vector, and the utility of this vector (last column), defined

through the performance of the EA in question. However, taking a vertical view
on the table, the ith column in the inner box shows m values from the domain of

parameter i and this can be seen as a distribution over the range of that parameter.

To understand how REVAC generates parameter vectors the horizontal view is

more helpful. From this perspective, REVAC can be described as an evolutionary

algorithm, in the style of EDAs (Mühlenbein and Höns 2005), working on a popula-

tion ofm parameter vectors. This population is updated by selecting parent vectors,

which are then recombined and mutated to produce one child vector that is then

inserted into the population. The exact details are as follows:

• Parent selection is deterministic in REVAC as the best n (n<m) vectors of the

population, i.e., those with the highest utility, are selected to become the parents

of the new child vector. For further discussion we denote the set of parents by

{y1, . . . ,yn} ⊂ {x1, . . . ,xm}.
• Recombination is performed by a multiparent crossover operator, uniform

scanning. In general, this operator can be applied to any number of parent vec-

tors and the ith value in the child 〈c1, . . . , ck〉 is selected uniformly random

from the ith values, y1i , . . . , y
n
i , of the parents. Here we create one child from

the selected n parents.

• Mutation, applied to the offspring 〈c1, . . . , ck〉 created by recombination,

works independently on each parameter i ∈ {1, . . . , k} in two steps. First, a
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mutation interval [ai, bi] is calculated, then a random value is chosen uniformly

from this interval. The mutation interval for a given ci is determined by all val-

ues y1i , . . . , y
n
i for this parameter in the selected parents as follows. First, the

parental values are sorted in increasing order such that y1i ≤ · · · ≤ yni . (Note
that, for the sake of readability, we do not introduce new indices correspond-

ing to this ordering.) Recall that the child 〈c1, . . . , ck〉 is created by uniform

scanning crossover, hence the value ci comes from one of the parents. That is,

ci = yji for some j ∈ {1, . . . , n} and we can define the neighbors of ci as

follows. The first neighbors of ci are y
j−1
i and yj+1

i , the second neighbors are

yj−2
i and yj+2

i , the third neighbors are yj−3
i and yj+3

i , etc. Now, the begin point

ai of the mutation interval is defined as the hth lower neighbor of ci, while the
end point of the interval bi is the hth upper neighbor of ci, where h is a pa-

rameter of the REVAC method (as there are no neighbors beyond the upper and

lower limits of the domain, we extend it by mirroring the parent values as well

as the mutated values at the limits). The mutated value c′i is drawn from this

mutation interval [ai, bi] with a uniform distribution and the child 〈c′1, . . . , c′k〉
is composed from these mutated values.

• Survivor selection is also deterministic in REVAC as the newly generated vec-

tor always replaces the oldest vector in the population.

• Evaluation The newly generated vector is tested by running the EA in question

with the values it contains.

The above list describes one REVAC cycle that is iterated until the maximum

number of vectors tested is reached.

12.5.2 REVAC: the Data Generated

In each REVAC cycle several data records are saved to allow analysis after ter-

mination. This happens directly after the n parent vectors are selected from the

population. First, the lowest utility in the set of parents is identified as u =
min{u1, . . . , un}. Then for each parameter i ∈ {1, . . . , k} we calculate the entropy
ei and store the pair 〈ei, u〉. The calculation of ei is based on the set {y1i , · · · , yni }
of parental values for parameter i that we consider to be a representative sample of

good parameter values, “good” defined as leading to a utility higher than u.1

For the calculation of ei we use the formula for differential entropy (Equation

12.2) applied to the probability density function

f i(z) = 1
(n+1)·(b(z)−a(z)) , (12.9)

where a(z) and b(z) are the hth lower and upper neighbor of z, respectively.

1 In a previous study (Nannen et al. 2008) we associated the entropy ei with the expected utility
v = avg{u1, . . . , un} among the parents. In other words, we defined “good” as leading to an
expected utility v.
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For determining the (hth) neighbors of any given z, we use a method similar

to the procedure for defining the neighbors of ci in the description of the mutation

operator. However, in general, there need not be a j ∈ {1, . . . , n} such that z = yji .

Hence, the index j is now defined as the one satisfying yji ≤ z < yj+1
i and we

call yji and yj+1
i the first neighbors of z, yj−1

i and yj+2
i its second neighbors, yj−2

i

and yj+3
i its third neighbors, etc. Now, a(z) and b(z) in (12.9) are the hth lower

neighbor and the hth upper neighbor of z, respectively .

Calculating the entropy ei for all i = 1, . . . , k we get k pairs, 〈e1, u〉 through
〈ek, u〉, one for each parameter. These pairs can be used for making plots of perfor-

mance levels (parameter vector utilities) and entropy values.

12.6 Case Study

Table 12.8: EA components, operators, and parameters used in this study

Component Operator Parameter(s)
population size μ

Parent tournament (parent) tournament size
selection random uniform -

fitness proportional -
best selection number n of best

Survivor generational -
selection tournament (survivor) tournament size

random uniform -
(μ, λ) λ
(μ+ λ) λ

Recombination none -
one-point crossover probability
uniform crossover probability

Mutation reset mutation probability
Gaussian(σ, 1) step size
Gaussian(σ, p) step size, mutation probability

In this section we present a case study, based on data generated by a large ex-

perimental investigation (Nannen April, 2009, Nannen et al. 2008). Our case study

will present entropy data that is inherently produced by every REVAC run. Strictly

speaking, the use of REVAC-generated data implies that we are not showing results

on entropy, but results on the estimation of entropy as done by REVAC. Our discus-

sion, however, will be in general terms since it could be presented along the same

lines with any other similar method for entropy estimation.
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12.6.1 Experimental Setup

For a clear discussion we separate three different levels that can be distinguished in

the context of algorithm design.

1. The problem/application (here: fitness landscapes created by a problem gener-

ator)

2. The problem solver (here: an evolutionary algorithm)

3. The design method for calibrating the problem solver (here: REVAC)

To obtain concrete problem instances to be solved by the EAs we use a param-

eterized random problem instance generator that produces real-valued fitness land-

scapes or objective functions to be maximized. This generator (Gallagher and Yuan

2006) defines a class of landscapes formed by the max-set of Gaussian curves in

high dimensional Cartesian spaces. Where a Gaussian mixture model takes the av-

erage of several Gaussians, a max-set takes their enveloping maximum. In this way,

the complexity of maximizing a Gaussian mixture can be combined with full control

over the location and height of global and local maxima. For this study we selected

problem set 4 from (Gallagher and Yuan 2006) with peaks that get higher the closer

they get to the origin. Using 10 dimensions, 100 Gaussians and the same distribu-

tions over height, location, and rotation of these Gaussians we generated 10 test

landscapes by different random seeds.

For the EA we use the open source Evolutionary Computation toolkit in Java

(ECJ)2 which allows the specification of a full EA through a simple parameter file.

Obviously, we do not use all possibilities ECJ offers, but select a number of opera-

tors for the EA components and run REVAC for all those EAs that can be obtained

by the combinations of these operators. To be specific, we base our study on the

components parent selection, survivor selection, recombination, and mutation, with

three to five commonly used operators for each, as shown in Table 12.8. We follow

the naming convention of ECJ. For any given EA, the population size parameter

is always present; other parameters depend on the actual chosen operators. Due

to technical details in ECJ, only 10 different combinations of parent and survivor

selection operators are possible.3 Together with 3 choices for the recombination op-

erator and 3 choices for the mutation operator, this yields 90 different EAs to be

tuned, of which 6 EAs with 2, 27 with 3, 38 with 4, 17 with 5, and 2 with 6 free

parameters. Most operators have one or no parameter to calibrate. One operator has

2 parameters: Gaussian(σ, p) with free parameters σ for step size and p for mutation

probability, the latter set to one in the case of Gaussian(σ, 1).
The basic data nuggets in this case study are produced by REVAC runs with a

given EA on one of the 10 test landscapes. In one run REVAC is allowed to generate

and test 1,000 parameter vectors. Generating parameter vectors is done through the

2 A Java based Evolutionary Computation Research System, http://www.cs.gmu.edu/
~eclab/projects/ecj/
3 Arguably, (μ, λ) and (μ + λ) define both parent and survivor selection. Here we classify them
under survivor selection because that is what the parameter λ influences.
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Fig. 12.2: Parameter entropy plot for EA-1: {Tournament Parent Selection, Generational Survivor
Selection, No Crossover and Gaussian(σ)}

main REVAC loop using m = 100 vectors to form the population and selecting

the best n = 50 of them as parents to create one child vector by uniform scanning

crossover. REVAC’s smoothing parameter used in the mutation operator is set at

h = 5. Testing parameter vectors happens by executing 10 independent runs of

the given EA using the given vector. The utility of a vector is measured by the

performance of the EA using that vector, which is in turn measured by the mean best

fitness, that is, the best fitness value after each run, averaged over the 10 independent

runs.

The experimental data used in this section are generated by carrying out 10 RE-

VAC runs with all of the 90 EAs on all of the 10 test landscapes. The basic data

points are pairs of estimated entropy values and corresponding performance levels,

as explained in Sect. 12.5.2. All together we have 901 of such pairs per REVAC

run (because, after initialization, 900 generations have passed before REVAC termi-

nates), hence the plots shown in the sequel are based on 10× 901 = 9010 pairs.

12.6.2 Entropy of Parameters

Each of the 90 EAs can be individually analyzed to gain insight into the relevance

of its parameters. For example, let EA-1 be the evolutionary algorithm defined by

the operators {Tournament Parent Selection, Generational Survivor Selection, No

Crossover and Gaussian(σ)} for its components. EA-1 has three parameters, namely

population size, tournament size, and mutation stepsize (σ). For each of these pa-

rameters we can plot the entropy for reaching a specific performance using our

REVAC-generated data.

Figure 12.2 shows the mean and standard deviation of the estimated entropy for

a given performance. From this figure it is clear that mutation stepsize is the most

relevant parameter, and the other two parameters do not differ significantly w.r.t.

their relevance. For example, if the desired performance is equal to 0.75, the entropy

of stepsize is equal to −2, while the population size and tournament size have an
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entropy higher than−1. This means that the mutation stepsize has the smallest range

of values that lead to a performance of at least 0.75. Thus, for this EA it is advisable

to dedicate the most tuning effort to the stepsize parameter.

Furthermore, we can observe a rather straight line of the average entropy of step-

size between approximately 0.7 and 0.78. This indicates that the size of the area that

leads to values of at least 0.7 is equal to the size of the area that leads to a perfor-

mance of 0.78 or higher. Therefore, we can conclude that it is equally hard to tune

the EA to reach a performance of 0.7 or of 0.78. However, for a higher performance,

not only stepsize, but also the other parameters need to be carefully set.

12.6.3 Entropy of Operators

Fig. 12.3: Parameter entropy plot for EA-
2: {Tournament Parent Selection, Genera-
tional Survivor Selection, No Crossover and
Gaussian(p, σ)}

Fig. 12.4: Operator entropy plot for EA-
2: {Tournament Parent Selection, Genera-
tional Survivor Selection, No Crossover and
Gaussian(p, σ)} (different scale w.r.t. Fig. 12.3)

In general, operators can have zero, one, or more parameters. For the following

example we use an EA that has an operator with two parameters, EA-2, defined

by {Tournament Parent Selection, Generational Survivor Selection, No Crossover

and Gaussian(p, σ)}. The Gaussian(p, σ) mutation operator is an extension of the

Gaussian(σ) operator, where the probability p of applying the mutation operator is

a parameter. (The usual option of always applying mutation is now a special case

belonging to p = 1.) As we will show, a parameter entropy plot similar to Fig. 12.2

could lead to incorrect conclusions in this case.

Looking at Fig. 12.3 we can observe that the entropy levels of the parameters do

not differ very much, all being somewhere between −1.5 and −2.5 for a range of

performance levels between 0.7 and 0.8. This implies that these parameters require
roughly equal tuning effort. However, one can not infer from this figure that the

mutation operator requires roughly the same tuning effort as the other details of the

algorithm. Because the Gaussian(p,σ) operator has two parameters, both parameters

have to be taken into account. As explained in Sect. 12.4.5, the joint entropy of two

parameters can be estimated by the sum of both entropies. This leads to Fig. 12.4,



306 S. K. Smit and A. E. Eiben

where entropy data is elevated from parameter level to operator level, except for

population size, of course.4 Note that for tournament selection (and in general for

all operators with just one parameter) the parameter-level and the operator-level

plots are identical. This figure clearly shows that Gaussian(p,σ) is by far the most

relevant operator for EA-2, requiring the most tuning effort.

12.6.4 Entropy of EAs

The previous examples illustrated matters within one given EA. In particular, we

showed that comparison of entropies can provide valuable information about which

design detail (parameter or operator) is the most relevant and thus requires the most

tuning effort. Because this all happened in the context of one EA, the operators

were only meant to instantiate different EA components (within the given EA). In

this section we consider information about different operators for the same com-

ponent (thus leading to different EAs). We can distinguish these two cases by the

main question that can be answered by looking at the data plots. In the previous sub-

sections the question was: Given an EA, which parameter, respectively operator, of

this EA needs to be tuned most carefully for a given level of desired performance?,

whereas here we address the following question: Given all operators for instantiat-

ing an EA component, which of these operators implies the most effort for tuning?

Fig. 12.5: Algorithm entropy plot for EA-1 (with the Gaussian(σ) mutation operator) and EA-2
(with the Gaussian(p,σ) mutation operator)

Posing this question concerning mutation operators, we might try to get an an-

swer from the previous figures on the average entropies of the Gaussian(σ) and
Gaussian(p,σ) operators. The entropy levels are around −3 and −5 for reaching

a performance of 0.8, respectively. This indicates that the Gaussian(p,σ) muta-

tion operator requires more tuning effort to reach the same performance than the

4 Recall that EA-2 does not use an operator for the crossover component and that the Survivor
selection component is instantiated through “generational,” which has no parameters.
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Gaussian(σ) operator. However, this would be too hasty a conclusion because it ig-

nores the influence of other operators and parameters. It is therefore important to

compare the total entropy of an algorithm design.

Figure 12.5 shows these algorithm entropies for EA-1 and EA-2. The curves

show that the Gaussian(σ) operator indeed causes a higher algorithm entropy, and

therefore probably requires less tuning. The difference at the algorithm level is even

larger than we observed in Fig. 12.4 and Fig. 12.2 at the operator level.

A similar comparison can be done for the crossover component. To this end,

we define EA-3 as {Tournament Parent Selection, Generational Survivor Selection,

One Point Crossover, and Gaussian(σ) Mutation} and compare it with EA-1, wchich

used no crossover at all. The plots are shown in Fig. 12.7. Obviously, EA-1 has a

crossover operator entropy of 0 at all performance levels, while the crossover op-

erator entropy of EA-3 is most likely lower than 0. Therefore, one would expect

that the algorithm entropy of EA-3 is lower than that of EA-1. However, the ab-

sence of crossover makes that variation is only regulated by a single parameter. This

causes the range of possible σ values that lead to success strongly decreases if the

required performance increases. In this case, the entropy of σ decreases significantly

(Fig. 12.7). The total algorithm entropy of the algorithm without crossover is there-

fore lower than the algorithm entropy of the algorithm with one-point crossover

(Fig. 12.6). This indicates that adding crossover to the algorithm decreases tuning

effort.

Fig. 12.6: Algorithm entropy plot for EA-1
(without crossover) and EA-3 (with crossover)

Fig. 12.7: Mutation stepsize entropy plot for
EA-1 (without crossover) and EA-3 (with
crossover)

12.7 Conclusions

In this chapter we illustrated how entropy can be used to obtain useful information

on evolutionary algorithm parameters. The main problem we consider here is the

tuning of EA parameters, that is, the process of searching for good parameter values

in the space of all possibilities. The related challenges are rooted in the facts that 1)

EA parameters need to be instantiated with good values for good EA performance,
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2) some EA parameters are more relevant than others in the sense that choosing

different values for them affects EA performance more than for those other param-

eters, and 3) to maximize the effectivity of parameter tuning, tuning efforts should

be allocated such that more relevant parameters are given more time/capacity to find

good values than less relevant parameters.

As we explained, entropy (two versions discussed) is a good indicator of parame-

ter relevance. Furthermore, we described the REVAC method (Nannen April, 2009)

that can be used to collect data on specific performance levels and corresponding

entropy values. Using a large data set generated by many REVAC runs we created

plots concerning the (estimated) entropy of EA parameters, EA operators, and com-

plete EAs as well. For the sake of correctness, let us recall that the entropy values

in the source data set are calculated from a pool of parameter vectors as known to

REVAC at a given moment, that the performance level associated with an entropy

value is the utility of the worst vector in the pool, that the combined entropies in our

plots are estimated by the sum of the underlying entropies, and that our data were

based on just one problem (albeit more random instances of it). With these caveats in

mind we presented a number of case studies to illustrate the kind of knowledge that

can be gained through the entropy-based approach. These case studies showed that

it is indeed possible to distinguish parameters and operators that need more tuning

than others and that differences in relevance can be quantified. Our entropy-based

analysis also disclosed a formerly unknown advantage of using crossover in an EA:

It reduces the tuning effort associated with mutation. This kind of knowledge has

immediate practical relevance in guiding users when tuning their EAs and more the-

oretical advantages as it can disclose relationships between parameters in general.

The scope of validity of such insights can be small (the set of problem instances

used in the experiments), medium range (more problems of a certain type), or rather

generic (“all” EAs and “all” problems). Although the case studies here serve mainly

as illustrations, not as crisp claims, we do believe that many of our findings hold in

more cases than just the 10 landscapes and the 90 EAs we used here and that more

such findings are possible. This, however, requires more experimental research in

the future.
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Chapter 13
F-Race and Iterated F-Race: An Overview

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle

Abstract Algorithms for solving hard optimization problems typically have several

parameters that need to be set appropriately such that some aspect of performance

is optimized. In this chapter, we review F-Race, a racing algorithm for the task

of automatic algorithm configuration. F-Race is based on a statistical approach

for selecting the best configuration out of a set of candidate configurations under

stochastic evaluations. We review the ideas underlying this technique and discuss

an extension of the initial F-Race algorithm, which leads to a family of algo-

rithms that we call iterated F-Race. Experimental results comparing one specific

implementation of iterated F-Race to the original F-Race algorithm confirm the

potential of this family of algorithms.

13.1 Introduction

Many state-of-the-art algorithms for tackling computationally hard problems have a

number of parameters that influence their search behavior. Such algorithms include

exact algorithms such as branch-and-bound algorithms, algorithm packages for inte-

ger programming, and approximate algorithms such as stochastic local search (SLS)

algorithms. The parameters can roughly be classified into numerical and categorical

parameters. Examples of numerical parameters are the tabu tenure in tabu search

algorithms or the pheromone evaporation rate in ant colony optmization (ACO) al-

gorithms. Additionally, many algorithms can be seen as being composed of a set of

specific components that are often interchangeable. Examples are different branch-

ing strategies in branch-and-bound algorithms, different types of crossover opera-

tors in evolutionary algorithms, and different types of local search algorithms in
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iterated local search. These interchangable components are often well described as

categorical parameters of the underlying search method.

Research has clearly shown that the performance of parameterized algorithms

depends strongly on the particular values of the parameters, and the choice of an

appropriate setting of these parameters is itself a difficult optimization problem

(Adenso-Diaz and Laguna 2006, Birattari 2009, Birattari et al. 2002). Given that

typically not only the setting of numerical parameters but also that of categorical

parameters needs to be determined, we call this problem also the algorithm configu-
ration problem. An important aspect of this problem is that it is typically a stochastic

problem. In fact, there are two main sources of stochasticity. The first is that often

the algorithm itself is stochastic because it uses some randomized decisions dur-

ing the search. In fact, this stochasticity is typical for SLS algorithms (Hoos and

Stützle 2004). However, even if an algorithm is deterministic, its performance and

search behavior depend on the particular instance to which it is applied. In fact,

the particular instance being tackled can be seen as having been drawn according

to some underlying, possibly unknown probability distribution, introducing in this

way a second stochastic factor.

In our research, we have developed a method, called F-Race, which is particu-

larly well suited for dealing with this stochastic aspect. It is a method that is inspired

from racing algorithms in machine learning, in particular Hoeffding races (Maron

1994, Maron and Moore 1994, 1997). The essential idea of racing methods, in gen-

eral, and ours in particular, is to evaluate a given set of candidate configurations iter-

atively on a stream of instances. As soon as enough statistical evidence is gathered

against some candidate configurations, these are eliminated and the race continues

only with the surviving ones. In our case, this method uses after each evaluation

round of the candidate configurations the nonparametric Friedman test as a family-

wise test: it checks whether there is evidence that at least one of the configurations

is significantly different from others. If the null hypothesis of no differences is re-

jected, Friedman post-tests are applied to eliminate those candidate configurations

that are significantly worse than the best one.

In this chapter, we first formally describe the algorithm configuration problem,

following Birattari et al. (2002) and Birattari (2009). Next, in Sect. 13.3, we give

details on F-Race. Section 13.4 discusses considerations on the sampling of can-

didate configurations, proposes a family of iterated F-Race algorithms, and defines

one specific iterated F-Race algorithm, which extends over an earlier version pub-

lished by Balaprakash et al. (2007). Computational results with this new variant,

which are presented in Sect. 13.5, confirm its advantage over other ways of generat-

ing the candidate configurations for F-Race. We end the chapter with an overview

of available F-Race applications and outline ideas for further research.



13 F-Race and Iterated F-Race: An Overview 313

13.2 The Algorithm Configuration Problem

F-Race is a method for offline configuration of parameterized algorithms. In the

training phase of offline tuning, an algorithm configuration is to be determined in

a limited amount of time that optimizes some measure of algorithm performance.

The final algorithm configuration is then deployed in a production phase where the

algorithm is used to solve previously unseen instances.

A crucial aspect of this algorithm configuration problem is that it is a problem of

generalization, as occurs in other fields such as machine learning. Based on a given

set of training instances, the goal is to find high-perfoming algorithm configura-

tions that perform well on (a potentially infinite set of) unseen instances that are not

available when deciding on the algorithm’s parameters. Hence, one assumption that

is tacitly made is that the set of training instances is representative of the instances

the algorithm faces once it is employed in the production phase. The notions of best

performance, generalization, etc. are made explicit in the formal definition of the

algorithm configuration problem.

13.2.1 The Algorithm Configuration Problem

The problem of configuring a parameterized algorithm can be formally defined as a

7-tuple 〈Θ, I, pI , pC , t, C, T 〉, where:
• Θ is the possibly infinite set of candidate configurations.

• I is the possibly infinite set of instances.

• pI is a probability measure over the set I .
• t : I → is a function associating to every instance the computation time that

is allocated to it.

• c(θ, i, t(i)) is a random variable representing the cost measure of a configura-

tion θ ∈ Θ on instance i ∈ I when run for computation time t(i).1

• C ⊂ is the range of c, that is, the possible values for the cost measure of the

configuration θ ∈ Θ on an instance i ∈ I .
• pC is a probability measure over the set C: With the notation pC(c|θ, i) we

indicate the probability that c is the cost of running configuration θ on instance

i.
• C(θ) = C(θ|Θ, I, pI , pC , t) is the criterion that needs to be optimized with

respect to θ. In the most general case it measures in some sense the desirability

of θ.

1 To make the notation lighter, in the following we often will not mention the dependence of the
cost measure on t(i). We use the term cost to refer, without loss of generality, to the minimization
of some performance measure such as the objective function value in a minimization problem or
the computation time taken for a decision problem instance.
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• T is the total amount of time available for experimenting with the given can-

didate configurations on the available instances before delivering the selected

configuration.2

On the basis of these concepts, solving the problem of configuring a parameterized

algorithm is to find the configuration θ̄ such that

θ̄ = argmin
θ∈Θ

C(θ). (13.1)

Throughout the whole chapter, we consider for C the expected value of the cost

measure c

C(θ) = EI,C [c] =

∫
c dpC(c|θ, i) dpI(i), (13.2)

where the expectation is considered with respect to both pI and pC , and the integra-
tion is taken in the Lebesgue sense (Billingsley 1986). However, other options for

defining the cost measure to be minimized such as the median cost or a percentile

of the cost distribution are easily conceivable.

The measures pI and pC are usually not explicitly available and the analytical

solution of the integrals in (13.2) is not possible. In order to overcome this limitation,

the expected cost can be estimated in a Monte Carlo fashion on the basis of running

the particular algorithm configuration on a training set of instances.

The cost measure c in (13.2) can be defined in various ways. For example, the

cost of a configuration θ on an instance i can be measured by the objective function

value of the best solution found in a given computation time t(i). In such a case, the
task is to tune algorithms for an optimization problem and the goal is to optimize

the solution quality reached within a given computation time. In the case of decision

problems, the goal is rather to choose parameter settings such that the computation

time to arrive at a decision is minimized. In this case, the cost measure would be

the computation time taken by an algorithm configuration to decide on an instance

i. Since arriving at a decision may take infeasibly long computation times, the role

played by the function t is to give a maximum computation time budget for the

execution of the algorithm configuration. If after a cutoff time of t(i) the algorithm
has not finished, the cost measure may use additional penalties (Hutter et al. 2007).

Finally, let us remark that the definition of the algorithm configuration problem

applies not only to the configuration of stochastic algorithms, but it extends also to

deterministic, parameterized algorithm: in this case, c(θ, i, t(i)) is strictly speaking

no longer a random variable but a deterministic function; the stochasticity is then

due to the instance distribution pI .
One basic question concerns how many times a configuration should be evalu-

ated on each of the available problem instances for estimating the expected cost.

Assuming that the performance of a stochastic algorithm is evaluated by a total of

N runs, it has been proved by Birattari (2004a, 2009) that sampling N instances

2 In the following, we refer to T also as computational budget; often it will be measured as the
number of algorithm runs instead of a total amount of computation time.
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with one run on each instance results in the lowest variance of the estimator. Hence,

it is always preferable to have a large set of training instances available. If, how-

ever, only a few training instances are provided, one needs to go back to evaluating

algorithm configurations on the instances more than once.

13.2.2 Types of Parameters

As said in the introduction, algorithms can have different types of parameters. There

we distinguished between categorical and numerical parameters. Categorical pa-

rameters typically refer to different procedures or discrete choices that can be taken

by an algorithm (or, more generally, an algorithm framework such as a metaheuris-

tic). In SLS algorithms examples are the type of perturbations and the particular lo-

cal search algorithm used in iterated local search (ILS) or the type of neighborhood

structure to be used in iterative improvement algorithms. Sometimes it is possible

to order the categories of these categorical parameter according to some surrogate

measure. For example, neighborhoods may be ordered according to their size, or

crossover operators in genetic algorithms according to the disruption they intro-

duce. Hence, sometimes categorical parameters can be converted into ordinal ones.

(We are, however, not aware of configuration methods that exploited this possibility

so far.) Categorical parameters that may be ordered based on secondary criteria, we

call pseudo-ordinal parameters.3

Besides categorical parameters, numerical parameters are common in many al-

gorithms. Continuous numerical parameters take as values some subset of the

real numbers. Examples of these are the pheromone evaporation rate in ACO, or the

cooling rate in simulated annealing. Often, numerical parameters take integer val-

ues; an example is the strength of a perturbation that is measured by the number of

solution components that change. If such parameters have a relatively large domain,

they may be treated in the configuration task as continuous parameters, which are

then rounded to the next integer. In the following we call such integer parameters

quasi-continuous parameters.

Furthermore, it is often the case that some parameter is only in effect when an-

other parameter, usually a categorical one, takes certain values. This is the case of a

conditional parameter. An example can be given in ILS, where as one option a

tabu search may be used as the local search; in this case, the tabu list length parame-

ter is a conditional parameter that depends on whether a categorical parameter “type

of local search” indicates that tabu search is used.4 The F-Race-based configura-

3 Note that, strictly speaking, binary parameters are also ordinal ones, although they are usually
handled without considering an ordering.
4 It is worth noticing that sometimes it may make sense to replace a numerical parameter by a
categorical parameter plus a conditional parameter, if changing the numerical parameter may lead
to drastic changes in design choices of an algorithm. Consider as an example the probability of
applying a crossover operator. This parameter may take a value of zero, which indicates actually
that no crossover is applied. In such cases it may be useful to introduce a binary parameter, which
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tion algorithms described in this chapter are able to handle all the aforementioned

types of parameters, including conditional parameters.

13.3 F-Race

The conceptually simplest approach for estimating the expected cost of an algorithm

configuration θ, as defined by (13.2), is to run the algorithm using a sufficiently

large number of instances. This estimation can be repeated for a number of can-

didate configurations and, once the overall computational budget allocated for the

selection process is consumed, the candidate configuration with the lowest estimate

is chosen as the best performing configuration. This is an example of what can be

characterized as the brute-force approach to algorithm configuration.

There are two main problems associated with this brute-force approach. The first

is that one needs to determine a priori how often a candidate configuration is evalu-

ated. The second is that also poor performing candidate configurations are evaluated

with the same amount of computational resources as the good ones.

13.3.1 The Racing Approach

As one possibility to avoid the disadvantages of the brute-force approach we have

used a racing approach. The racing approach originated from the machine learn-

ing community (Maron and Moore 1994), where it was first proposed for solving

the model selection problem (Burnham and Anderson 2002). We adapted this ap-

proach to make it suitable for the algorithm configuration task. The racing approach

performs the evaluation of a finite set of candidate configurations using a system-

atic way to allocate the computational resources among them. The racing algorithm

evaluates a given finite set of candidate configurations step by step. At each
step, all the remaining candidate configurations are evaluated in parallel,5 and the

poor candidate configurations are discarded as soon as sufficient statistical evidence

is gathered against them. The elimination of the poor candidates allows to focus

the computations on the most promising ones to obtain lower variance estimates

for these. In this way, the racing approach overcomes the two major drawbacks of

the brute-force approach. First, it does not require a fixed number of steps for each

candidate configuration but it determines it adaptively based on statistical evidence.

Second, poor performing candidates will not be evaluated as soon as enough evi-

indicates whether crossover is used or not, together with a conditional parameter on the crossover
probability, which is only used if the binary parameter indicates that crossover is used.
5 A round of function evaluations of surviving candidate configurations on a certain instance is
called an evaluation step, or simply a step. By function evaluation, we refer to
one run of the candidate configuration on one instance.
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dence is gathered against them. A graphical illustration of the racing algorithm and

the brute-force approach is shown in Fig. 13.1.
To describe the racing approach formally, suppose a sequence of training in-

stances ik, with k = 1, 2, . . ., is randomly generated from the target class of in-

stances I following the probability model pI . Denote by cθk the cost of a single

run of a candidate configuration θ on instance ik. The evaluation of the candidate

configurations is performed incrementally such that at the kth step, the array of

observations for evaluating θ,

ck(θ) =
(
cθ1, c

θ
2, . . . , c

θ
k

)
,

is obtained by appending cθk to the end of the array ck−1(θ). A racing algorithm

then generates a sequence of nested sets of candidate configurations

Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . . ,

where Θk is the set of the surviving candidate configurations after step k. The
sets of surviving candidate configurations start from a finite set Θ0 ⊆ Θ, which

is typically obtained by sampling |Θ0| candidate configurations from Θ. How the

initial set of candidate configurations can be generated is the topic of Sect. 13.4. The

step from a set Θk−1 to Θk is obtained by possibly discarding some configurations

that appear to be suboptimal on the basis of information that becomes available at

step k.
At step k, when the set of the surviving candidates isΘk−1, a new instance ik is

considered. Each candidate θ ∈ Θk−1 is tested on ik and each observed cost c
θ
k is ap-

pended to the respective array ck−1(θ) to form the arrays ck(θ) for each θ ∈ Θk−1.

Step k terminates, defining set Θk by dropping from Θk−1 the candidate configu-

rations that appear to be suboptimal based on some statistical test that compares the

arrays ck(θ) for all θ ∈ Θk−1.

The above described procedure is iterated and stops either when all candidate

configurations but one are discarded, a given maximum number of instances have

been sampled, or when the predefined computational budgetB has been exhausted.6

13.3.2 The Peculiarity of F-Race

F-Race is a racing algorithm based on the nonparametric Friedman’s two-way

analysis of variance by ranks (Conover 1999), for short, Friedman test. This algo-

rithm was first proposed by Birattari et al. (2002) and studied in detail in Birattari’s

PhD thesis (Birattari 2004b).

6 The computational budget may be measured as a total available computation time T (see the
definition of the configuration problem on page 313). It is, however, often more convenient to
define the maximum number of function evaluations, if each function evaluation is limited to the
same amount of computation time.



318 M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle

Fig. 13.1: Graphical representation of the allocation of configuration evaluations by the racing
approach and the brute-force approach. In the racing approach, as soon as sufficient evidence is
gathered that a candidate is suboptimal, such a candidate is discarded from further evaluation. As
the evaluation proceeds, the racing approach thus focuses more and more on the most promising
candidates. On the other hand, the brute-force approach tests all given candidates on the same
number of instances. The shadowed figure represents the computation performed by the racing
approach, while the dashed rectangle the one of the brute-force approach. The two figures cover
the same surface, that is, the two approaches are allowed to perform the same total number of
experiments

To describe F-Race, assume it has reached step k, andm = |Θk−1| candidate
configurations are still in the race. The Friedman test assumes that the observed costs

are k mutually independentm-variate random variables

b1 =
(
c
θv1
1 , c

θv2
1 , . . . , c

θvm
1

)
b2 =

(
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θv1
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θvm
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)
...

...
...

. . .
...

bk =
(
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θv1
k , c

θv2
k , . . . , c

θvm
k

)
called blocks, where each block bl corresponds to the computational results obtained

on instance il by each surviving configuration at step k.
Within each block, the costs cθl are ranked in nondecreasing order; average ranks

are used in case of ties. For each configuration θvj ∈ Θk−1, Rlj is the rank of θvj
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in block bl, and Rj =
∑k

l=1 Rlj is the sum of ranks for configuration θvj , over
all instances il, with 1 ≤ l ≤ k. The test statistic used by the Friedman test is the

following (Conover 1999):

T =

(m− 1)

m∑
j=1

(
Rj − k(m+ 1)

2

)2

k∑
l=1

m∑
j=1

R2
lj −

km(m+ 1)2

4

.

Under the null hypothesis that all candidates are equivalent, T is approximately χ2

distributed withm− 1 degrees of freedom (Papoulis 1991). If the observed value of

T is larger than the 1−α quantile of this distribution, the null hypothesis is rejected.

This indicates that at least one candidate configuration gives better performance than

at least one of the others.

If the null hypothesis is rejected in this family-wise test, it is justified to do pair-

wise comparisons between individual candidates. There are various ways of con-

ducting these Friedman post hoc tests. For F-Race, we have chosen one particular
one that is presented in the book of Conover (1999): candidates θj and θh are con-

sidered to be statistically significantly different if

|Rj −Rh|√
2k(1− T

k(m−1) )
(∑k

l=1

∑m
j=1R

2
lj− km(m+1)2

4

)

(k−1)(m−1)

> t1−α/2,

where t1−α/2 is the 1− α/2 quantile of the Student’s t distribution.
If F-Race does not reject at step k the null hypothesis of the family-wise com-

parison, all candidate configurations in Θk−1 pass to Θk; if the null hypothesis is

rejected, pairwise comparisons are performed between the best candidate configura-

tion and each other one. The best candidate configuration is selected as the one that

has the lowest expected rank. All candidate configurations that result significantly

worse than the best one are discarded and will not appear in Θk.

When only two candidates remain in the race, the Friedman test reduces to

the binomial sign test for two dependent samples (Sheskin 2000). However, in the

F-Race algorithm, the Wilcoxon matched-pairs signed-ranks test (Conover 1999)
is adopted, for the reason that the Wilcoxon test is more powerful and data efficient

than the binomial sign test in such a case (Siegel and Castellan 1988).

In F-Race, the test statistic is based on the ranking of the candidates. Ranking

plays an important twofold role. The first one is due to the nonparametric nature of a

test based on ranking. A second role played by ranking in F-Race is to implement

in a natural way a blocking design (Dean and Voss 1999, Montgomery 2000). By

focusing only on the ranking of the different configurations within each instance,

this blocking design becomes an effective way of normalizing the costs observed on

different instances.
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13.4 The Sampling Strategy for F-Race

In the previous section, the question of how the set of candidate configurations Θ0

is defined was left open. This is the question we address in this section; in fact, it

should be clear that this question is rather independent of the definition of F-Race:
any reasonable sampling method may be considered.

13.4.1 Full Factorial Design

When F-Race was first proposed by Birattari et al. (2002), the candidate configu-

rations were collected by a full factorial design (FFD) on the parameter space. The

reason for adopting a full factorial design at that time was that it made more conve-

nient the focus on the evaluation of F-Race and its comparison with other ways of

defining races.

A full factorial design can be done by determining for each parameter a num-

ber of levels either manually, randomly or in some other way. Then, each possible

combination of these levels represents a unique configuration, and Θ0 comprises all

possible combinations. One main drawback of a full factorial design is that it re-

quires expertise to select the levels of each parameter. Maybe more importantly, the

set of candidate configurations grows exponentially with the number of parameters.

Suppose that d is the dimension of the parameter space and that each dimension has

l levels; then the total number of candidate configurations would be ld. It therefore
quickly becomes impractical and computationally prohibitive to test all possible

combinations, even for a reasonable number of levels at each dimension. We denote

the version of F-Race using a full factorial design by F-Race(FFD).

13.4.2 Random Sampling Design

The drawbacks of the full factorial design were described also by Balaprakash et al.

(2007). They showed that F-Race with initial candidates generated by a random

sampling design significantly outperforms the full factorial design for a number

of applications. In the random sampling design, the initial elements are sampled

according to some probability model pX defined over the parameter space X .7 If

a priori information is available, such as the effects of certain parameters or their

interactions, the probability model pX can be defined accordingly. However, this

is rarely the case, and the default way of defining the probability model pX is to

7 Note that the space of possible parameter value combinations X is different from the one-
dimensional vector of candidate algorithm configurationsΘ, and there exists a one-to-one mapping
from X to Θ.
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Algorithm 13.1 : Iterated F-Race
Require : parameter space X, a noisy objective function black-box f .
initialize probability model pX for sampling from X;
set iteration counter l = 1;
repeat

sample the initial set of configurations Θl
0 based on pX ;

evaluate set Θl
0 by f using F-Race;

collect elite configurations from F-Race to update pX ;
l = l + 1;

until termination criterion is met ;
identify the best parameter configuration x∗;
return x∗

assume a uniform distribution over X . We denote the random sampling version of

F-Race based on uniform distributions by F-Race(RSD).
Two main advantages of the random sampling design are that of numerical pa-

rameters, no a priori definition of the levels needs to be done and that an arbitrary

number of candidate configurations can be sampled while still covering the param-

eter space, on average, uniformly.

13.4.3 Iterated F-Race

As a next step, Balaprakash et al. (2007) proposed the iterative application of

F-Race, where at each iteration a number of surviving candidate configurations

of the previous iteration bias the sampling of new candidate configurations. It is

hoped in this way to focus the sampling of candidate configurations around the

most promising ones. In this sense, iterated F-Race follows directly the frame-

work of model-based search (Zlochin et al. 2004), which is usually implemented in

three steps: first, construct a candidate solution based on some probability model;

second, evaluate all candidates; third, update the probability model of biasing the

next sampling towards the better candidate solutions. These three steps are iterated,

until some termination criterion is satisfied.

Iterated F-Race proceeds in a number of iterations. In each iteration, first
a set of candidate configurations is sampled; this is followed by one run of F-Race
applied to the sampled candidate configurations. An outline of the general frame-

work of iterated F-Race is given in Alg. 13.1.

There are many possible ways in which iterated F-Race can be implemented.

In fact, one possibility would be to use some algorithms for black-box mixed

discrete–continuous optimization problems. However, a difficulty here may be that,

for F-Race to be effective, the number of candidate configurations should be rea-

sonably large, while due to the necessarily strongly limited number of function
evaluations, few iterations should be run. Therefore, Balaprakash et al. (2007)

followed a different approach and an ad hoc method was proposed for biasing the
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sampling. Unfortunately, there the ad hoc iterated F-Race was only defined and

tested on numerical parameters. Nevertheless, it is relatively straightforward to gen-

eralize the ideas presented there to categorical parameters. In what follows, we

first give a general discussion of the issues that arise in the definition of an it-

erated F-Race algorithm and then we present one particular implementation in

Sect. 13.4.4. For the following discussion, we assume that the total computational

budget B for the configuration process, which is measured by the number of func-

tion evaluations, is given a priori.

How many iterations? Iterated F-Race is an iterative process and therefore one

needs to define the number of iterations. For a given computational budget, us-

ing few iterations will allow to sample at each iteration more candidate config-

urations and, hence, lead to more exploration at the cost of less possibilities of

refining the model. In the extreme case of using only one iteration, this amounts

to an execution of F-Race(RSD). Intuitively, the number of iterations should

depend on the number of parameters: if only few parameters are present, we ex-

pect, others things being equal, the problem to be less difficult to optimize and,

hence, fewer iterations to be required.

Which computational budget at each iteration? Another issue concerns the distri-

bution of the computational budget B among the iterations. The simplest idea is

to divide the computational budget equally among all iterations. However, other

possibilities are certainly reasonable; for example, one may decrease the num-

ber of function evaluations available with an increase of the iteration counter to

increase exploration in the first iterations.

How many candidate configurations at each iteration? For F-Race, the number

of candidate configurations to be sampled needs to be defined. A good idea is

to make the number of candidate configurations dependent on the status of the

race, in other words, the iteration counter. Typically, in the first iteration(s), the

sampled candidate configurations are very different from each other, resulting

in large performance differences. As a side-effect, poor candidate configurations

usually can be quickly eliminated. In later iterations, the sampled candidate con-

figurations become more similar and it becomes more difficult to determine the

winner, that is, more instances are needed to detect significant differences among

the configurations. Hence, for a same budget of function evaluations for one ap-

plication of F-Race, in early iterations more configurations can be sampled,

while in later iterations fewer candidate configurations should be generated to

identify with a low variance a winning configuration.

When to terminate F-Race at each iteration? At each iteration l, F-Race termi-

nates if one of the following two conditions is satisfied: (i) if the computational

budget for the lth iteration, Bl, is spent; (ii) when a minimum number of can-

didate configurations, denoted by Nmin, remains. Another question concerns the

value of Nmin. F-Race terminates by default if a unique survivor is identified.

However, to maintain sufficient exploration of the parameter space, in iterated

F-Race it may be better to keep a number of survivors at each iteration and to

sample around these survivors the candidate configurations for the next iteration.

Additionally, for setting Nmin, it may be a good idea to take into account the
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number of dimensions in the parameter space X: the larger the parameter space,

the more survivors should remain to ensure sufficient exploration.

How should the candidate configurations be generated? As said, all candidate con-

figurations are randomly sampled in the parameter space according to some prob-

ability distribution. For continuous and quasicontinuous parameters, continuous

probability distributions are appropriate; for categorical and ordinal parameters,

however, discrete probability distributions will be more useful. A first question

related to the probability distributions is of which type they should be. For exam-

ple, in the first paper on iterated F-Race (Balaprakash et al. 2007), normal dis-

tributions were chosen as models, but this choice need not be optimal. Another

question related to the probability distributions is how they should be updated

and, especially, how strong the bias towards the surviving configurations of the

current iteration should be. Again, here the trade-off between exploration and

exploitation needs to be taken into account.

13.4.4 An Example Iterated F-Race Algorithm

Here we describe one example implementation of iterated F-Race, which we refer
to as I/F-Race in the following. This example implementation is based on the

previous one published by Balaprakash et al. (2007). However, it differs in some

parameter choices and extends the earlier version by defining a way to handle cat-

egorical parameters. Note that the proposed parameter settings are chosen in an ad

hoc version; tuning the parameter settings of I/F-Race is beyond the scope of this

chapter.

Number of iterations. We denote by L the number of iterations of I/F-Race,
and increase L with d, the number of parameters, using a setting of L =
2 + round(log2 d).

Computational budget at each iteration. The computational budget is distributed as
equally as possible across the iterations.Bl, the computational budget in iteration

l, where l = 1, ..., L, is set to Bl = (B−Bused)/(L− l + 1); Bused denotes the

total computational budget used until iteration l − 1.
The number of candidate configurations. We introduce a parameter μl, and set the

number of candidate configurations sampled at iteration l to be Nl = �Bl/μl�.
We let μl increase with the number of iterations, using a setting of μl = 5 + l.
This allows more evaluation steps to identify the winners when the configurations

are deemed to become more similar.

Termination of F-Race at each iteration. In addition to the usual termination cri-

teria of F-Race, we stop it if at most Nmin = 2 + round(log2 d) candidate
configurations remain.

Generation of candidate configurations. In the first iteration, all candidate config-

urations are sampled uniformly at random. Once F-Race terminates, the best

Ns candidate configurations are selected for the update of the probability model.
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We use Ns = min(Nsurvive, Nmin), where Nsurvive denotes the number of can-

didates that survive the race. These Ns elite configurations are then weighted

according to their ranks, where the weight of an elite configuration with rank rz
(z = 1, . . . , Ns) is given by

wz =
Ns − rz + 1

Ns · (Ns + 1)/2
. (13.3)

In other words, the weight of an elite configuration is inversely proportional to

its rank. Since the instances for configuration are sampled randomly from the

training set, theNs elite configurations of the lth iteration will be re-evaluated in
the (l + 1)st iteration, together with the Nl+1 − Ns candidate configurations to

be sampled anew. (Alternatively, it is possible to evaluate the configurations on

fixed instances, so that the results of the elite configurations from the last iteration

could be reused.) The Nl+1 − Ns new candidate configurations are iteratively

sampled around one of the elite configurations. To do so, for sampling each new

candidate configuration, first one elite solution Ez (z ∈ {1, . . . , Ns}) is chosen
with a probability proportional to its weight wz and next a value is sampled for

each parameter. The sampling distribution of each parameter depends on whether

it is a numerical one (the set of such parameters being denoted by Xnum) or a

categorical one (the set of such parameters being denoted byXcat). We have that

the parameter space X = Xnum ∪Xcat.

First suppose that Xi is a numerical parameter, i.e. Xi ∈ Xnum, with boundary

Xi ∈ [Xi, Xi]. Denote by vi = Xi − Xi the range of the parameter Xi. The

sampling distribution of Xi follows a normal distribution N(xz
i , σ

l
i), with xz

i

being the mean and σl
i being the standard deviation ofXi in the lth iteration. The

standard deviation is reduced in a geometric fashion from iteration to iteration

using a setting of

σl+1
i = vi ·

(
1

Nl+1

) l
d

for l = 1, . . . , L− 1. (13.4)

In other words, the standard deviation for the normal distribution is reduced by a

factor of
(

1
Nl+1

) 1
d

as the iteration counter increments. Hence, the more parame-

ters, the smaller the update factor becomes, resulting in a stronger bias of the elite

configuration on the sampling. Furthermore, the larger the number of candidate

configurations to be sampled, the stronger the bias of the sampling distribution.

Now, suppose that Xi ∈ Xcat with ni levels Fi = f1, . . . , fni
. Then we use a

discrete probability distribution pl(Fi) with iteration l = 1, . . . , L, and initialize

p1 to be uniformly distributed over Fi. Suppose further that after the lth iteration
(l > 1), the ith parameter of the selected elite configuration Ez takes level fz

i .

Then, the discrete distribution of parameter Xi is updated as
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pl+1(fj) = pl(fj)·(1− l

L
)+Ij=fz

i
· l
L

for l = 1, . . . , L− 1 and j = 1, . . . , ni

(13.5)

where I is an indicator function; the bias of the elite configuration on the sam-

pling distribution is getting stronger as the iteration counter increments.

The conditional parameters are sampled only when they are activated by their as-

sociated upper-level categorical parameter, and their sampling model is updated

only when they appear in elite configurations.

13.5 Case Studies

In this section, we experimentally evaluate the presented variant of I/F-Race and

we compare it in three case studies to F-Race(RSD) and F-Race(FFD).
All three case studies concern the configuration of ant colony optimization

(ACO) algorithms applied to the traveling salesman problem (TSP). They are or-

dered according to the number of parameters to be tuned. In particular, they involve

configuring MAX–MIN Ant System (MMAS), a particularly successful ACO

algorithm (Stützle and Hoos 2000), using four categorical parameters and configur-

ingMMAS using seven categorical parameters. Both case studies use theMMAS

implementation available in the ACOTSP software package.8 The ACOTSP pack-

age implements several ACO algorithms for the TSP. The third case study uses the

ACOTSP package as a black-box software and involves setting 12 mixed parame-

ters. Among others, one of these parameters is the choice of which ACO algorithm

should be used.

In all experiments we used Euclidean TSP instances with 750 nodes, where the

nodes are uniformly distributed in a square of side length 10, 000. We generated

1, 000 instances for training and 300 for evaluating the winning configurations using
the DIMACS instance generator (Johnson et al. 2001). The experiments were carried

out on cluster computing nodes, each equipped with two quad-core XEON E5410

CPUs running at 2.33 GHz with 2 × 6 MB second-level cache and 8 GB RAM.

The cluster was running under Cluster Rocks Linux version 4.2.1/CentOS 4. The

programme was compiled with gcc-3.4.6-3, and only one CPU core was used for

each run due to the sequential implementation of the ACOTSP software.

For each case study we have run a total of six experiments, which result from

all six combinations of two different computation time limits allocated for each

function evaluation to the ACOTSP software (5 and 20 CPU seconds) and

three values for the computational budget. The different levels of the computational

budget have been chosen to examine the dependence of the possible advantage of

I/F-Race as a function of the corresponding computational budget.

In each of the six experiments, ten trials were run. Each trial is the ex-

ecution of the configuration process, in our case, either F-Race(FFD),

8 The ACOTSP package is available at http://www.aco-metaheuristic.org/
aco-code/.
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Parameter Range No. of levels

α [0.01, 5.00] 11
β [0.01, 10.00] 11
ρ [0.00, 1.00] 10
m [5, 100] 10

Table 13.1: The parameters, the original range considered before discretization, and the number
of levels considered after discretization for the first case study. The number of candidate parameter
settings is 12, 100

F-Race(RSD), or I/F-Race, together with a subsequent testing procedure.
In the testing procedure, the final parameter setting returned by configuration pro-

cess is evaluated on 300 test instances.

13.5.1 Case Study 1: MMAS under Four Parameters

In this case study, we tune four parameters of MMAS: the relative influence of

pheromone trails α, the relative influence of heuristic information β, the pheromone

evaporation rate ρ, and the number of antsm.

In this first and the second case study, we discretize these numerical parameters

and treat them as categorical ones. Each parameter is discretized by regular grids,

resulting in a relatively large number of levels. Their ranges and number of levels as

listed in Table 13.1.9 The motivation for discretizing numerical parameters is to test

whether I/F-Race is able to improve over F-Race(RSD) and F-Race(FFD)
for categorical parameters; previously, it was already shown that I/F-Race gives

advantages for numerical parameters (Balaprakash et al. 2007).

The three levels of the computational budget chosen are 6 · 34 = 486, 6 · 44 =
1, 536, and 6 · 54 = 3, 750. In this way the candidate generation of F-Race(FFD)
can be done by selecting the same number of levels for each parameter, in our case

three, four, and five. Without a priori knowledge, the level of each parameter is

selected randomly in F-Race(FFD).
The experimental results are given in Table 13.2. The table shows the average

percentage deviation of each algorithm from the reference cost, which for each

instance is defined by the average cost across all candidate algorithms on that in-

stance. The results of the algorithms tuned by F-Race(FFD), F-Race(RSD),
and I/F-Race, are compared using the nonparametric pairwiseWilcoxon test with

Holm adjustment, using blocking on the instances; the significance level chosen is

0.05. Results in boldface indicate that the corresponding configurations are statisti-

cally better than the ones of the two competitors.

9 For the other parameters, we use default values and we opted for an ACO version that does not
use local search.
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5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(FFD) +0.85 +0.79 486
F-Race(RSD) −0.58 −0.44 486
I/F-Race −0.26 −0.34 486

F-Race(FFD) +0.51 +1.27 1 536
F-Race(RSD) −0.08 −0.66 1 536
I/F-Race −0.42 −0.61 1 536

F-Race(FFD) +0.40 +0.71 3 750
F-Race(RSD) −0.12 −0.27 3 750
I/F-Race −0.28 −0.45 3 750

Table 13.2: Computational results for configuring MMAS for the TSP with four discretized
parameters for a computation time bound of 5 and 20 s, respectively. The column entries with the
label per.dev show the mean percentage deviation of each algorithm from the reference cost.
+x (−x) means that the solution cost of the algorithm is x% more (less) than the reference cost.
The column with the label max.bud gives the maximum number of evaluations given to each
algorithm

In all experiments, I/F-Race and F-Race(RSD) significantly outperform

F-Race(FFD). Overall, I/F-Race has a slight advantage over F-Race(RSD):
in three of six experiments I/F-Race returns configurations that are significantly

better than those found by F-Race(RSD), while the opposite is true in only one

experiment. The trend appears to be that, with larger total budget, the advantage

of I/F-Race over F-Race(RSD) increases. The reason for the relatively good

performance of F-Race(RSD) could be due to the fact that the parameter space is

rather small (12, 100 candidate configurations) and that the number of levels (10 or

11) for each parameter is large.

13.5.2 Case Study 2: MMAS under Seven Parameters

In this case study we have chosen seven parameters. These are the same as in

the first case study plus three additional parameters: γ, a parameter that controls

the gap between the minimum and maximum pheromone trail value in MMAS,

γ = τmax/(τmin · instance_size); nn, the number of nearest neighbors used in the

solution construction phase; and q0, the probability of selecting the best neighbor de-
terministically in the pseudorandom proportional action choice rule; for a detailed

definition see Dorigo and Stützle (2004).

The parameters are discretized using the ranges and number of levels given in

Table 13.3. Note that, in comparison with the previous experiment, the parameter

space is more than one order of magnitude larger (259, 200 � 12, 100). Besides,
there is a smaller number of levels for each parameter, usually between four to

nine. We use the same experimental setup as in the previous section, except that

for the computational budget, we choose 6 · 27 = 768 such that each parameter in
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Parameter Range No. of levels

α [0.01, 5.00] 5
β [0.01, 10.00] 6
ρ [0.00, 1.00] 8
γ [0.01, 5.00] 6
m [5, 100] 5
nn [5, 50] 4
q0 [0.0, 1.0] 9

Table 13.3: The parameters, the original range considered before discretization, and the number
of levels considered after discretization for the first case study. The number of candidate parameter
settings is 259, 200

5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(FFD) +9.33 +4.61 768
F-Race(RSD) −4.49 −1.35 768
I/F-Race −4.84 −3.25 768

F-Race(FFD) +1.58 +2.11 1 728
F-Race(RSD) −0.49 −0.78 1 728
I/F-Race −1.10 −1.33 1 728

F-Race(FFD) +0.90 +2.38 3 888
F-Race(RSD) −0.27 −0.33 3 888
I/F-Race −0.63 −2.05 3 888

Table 13.4: Computational results for configuringMMAS for TSP with seven categorical param-
eters in 5 and 20 CPU s. For an explanation of the table entries see the caption of Table 13.2

F-Race(FFD) has two levels, 6·25 ·32 = 1728, such that in F-Race(FFD), five
parameters will have two levels and the other two three levels, and 6·23 ·34 = 3, 888,
such that in F-Race(FFD), three parameters will have two levels, and the other

four parameters have three levels.

The experimental results are listed in Table 13.4 and the results are analyzed in

a way analogous to case study 1. The results clearly show that I/F-Race signif-

icantly outperforms F-Race(FFD) and F-Race(RSD) in each experiment. As

expected, also F-Race(RSD) outperforms F-Race(FFD) significantly.

13.5.3 Case Study 3: ACOTSP under 12 Parameters

In a final experiment, 12 parameters of the ACOTSP software are examined. This

configuration task is the most complex and it requires the setting of categorical as

well as numerical parameters.

Among these parameters, firstly two categorical parameters have to be deter-

mined: (i) the choice of the ACO algorithm, among the five variants MMAS, ant

colony system (ACS), rank-based ant system (RAS), elitist ant system (EAS), and
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5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(RSD) +0.06 +0.005 1 500
I/F-Race −0.06 −0.005 1 500

F-Race(RSD) +0.04 +0.009 3 000
I/F-Race −0.04 −0.009 3 000

F-Race(RSD) +0.07 −0.001 6 000
I/F-Race −0.07 +0.001 6 000

Table 13.5: Computational results for configuring MMAS for TSP with 12 parameters in 5 and
20 CPU s. For an explanation of the table entries see the caption of Table 13.2

ant system (AS); (ii) the local search type l, including four levels: no local search, 2-
opt, 2.5-opt, and 3-opt. All the ACO construction algorithms share the three contin-

uous parameter α, β, and ρ, and two quasicontinuous parameters m and nn, which
have been introduced before. Moreover, five conditional parameters are considered:

(i) the continuous parameter q0 (introduced in Sect. 13.5.2) is only in effect when

ACS is deployed; (ii) the quasi-continuous rasrank is only in effect when RAS

is chosen; (iii) the quasi-continuous eants is only in effect when EAS is applied;

(iv) the quasi-continuous parameter nnls is only in effect when local search is used,
namely either 2-opt, 2.5-opt or 3-opt; (v) the categorical parameter dlb is only in

effect when local search is used. Here, only F-Race(RSD) and I/F-Race are

tested because F-Race(FFD) has so far already been outperformed by the other

two variants, and due to the large number of parameters, running F-Race(FFD)
becomes infeasible. As computational budgets we adopted 1, 500, 3, 000, and 6, 000
function evaluations. The experimental results are given in Table 13.5. The two al-

gorithms F-Race(RSD) and I/F-Race are compared using the nonparametric

pairwise Wilcoxon test using a 0.05 significance level. The statistical comparisons

show that I/F-Race is again dominating. It is significantly better performing in

five out of six experiments; only in one case can no statistically significant differ-

ence be identified. However, the quality differences in this set of experiments are

quite small, usually below 0.1% in the 5 CPU seconds case, while in the 20 CPU

seconds case the difference is below 0.01%. This shows that the solution quality is

not very sensitive to the parameter settings. This is usually the case when a strong

local search such as 3-opt is used.

13.6 A Review of F-Race Applications

F-Race has received significant attention, as witnessed by the 99 citations to the

first article on F-Race (Birattari et al. 2002) in the Google Scholar database as of

June 2009. In what follows, we give an overview of research that applied F-Race
in various contexts.
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Fine-tuning algorithms The by far most common use of F-Race is to use it as

a method to fine-tune an existing or a recently developed algorithm. Often, tuning

through F-Race is also done before comparing the performance of various algo-

rithms. In fact, this latter usage is important to make reasonably sure that perfor-

mance differences between algorithms are not simply due to uneven tuning.

A significant fraction of the usages of F-Race is due to researchers either in-

volved in the development of the F-Race method or by their collaborators. In fact,

F-Race has been developed in the research for the Metaheuristics Network, an EU-

funded research and training network on the study of metaheuristics. Various appli-

cations there have been for configuring different metaheuristics for the university-

course timetabling problem (Chiarandini and Stützle 2002, Manfrin 2003, Rossi-

Doria et al. 2003) and also for various other problems (Chiarandini 2005, Chiaran-

dini and Stützle 2007, den Besten 2004, Risler et al. 2004, Schiavinotto and Stützle

2004).

Soon after these initial applications, F-Race was also adopted by a number of

other researchers. Most applications focus on configuring SLS methods for combi-

natorial optimization problems (Bin Hussin et al. 2007, Balaprakash et al. 2009a,

Di Gaspero and Roli 2008, Di Gaspero et al. 2007, Lenne et al. 2007, Pellegrini

2005, Philemotte and Bersini 2008). However, also other applications have been

considered, including the tuning of algorithms for training neural networks (Blum

and Socha 2005, Socha and Blum 2007) or the tuning of parameters of a control

system for simple robots (Nouyan 2008, Nouyan et al. 2008).

Industrial applications Few researches have evaluated F-Race in pilot studies

for industrial applications. The first has been a feasibility study, where F-Race
was used to configure a commercial solver for vehicle routing and scheduling prob-

lems, which has been developed by the software company SAP. In this research,

six configuration tasks have been considered that ranged from the study of specific

parameters, which determined the frequency of the application of some important

operators of the program, to the configuration of the SLS method that was used

in the software package. F-Race was compared with a strategy that after each

fixed number of instances discarded a fixed percentage of the worst candidate con-

figurations, showing, as expected, advantages for F-Race when the performance

differences between configurations were stronger. Some results of this study have

been published by Becker et al. (2005); more details are available in a master thesis

(Becker 2004).

Yuan et al. (2008) have adopted F-Race to configure several algorithms for a

highly constrained train scheduling problem arising at Deutsche Bahn AG. A com-

parison of various tuned algorithms identified an iterated greedy algorithm as the

most promising one.

Algorithm development F-Race has occasionally also been used to explicitly sup-

port the algorithm development process. A first example is described by Chiarandini

et al. (2006) who used F-Race to design a hybrid metaheuristic for the university-

course timetabling problem. In their work they have adopted F-Race in a semi-

automatic way. They observed the algorithm candidates that were maintained in a
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race and based on this information they generated new algorithm candidates that

were then manually added to the ongoing race. In fact, one of these newly in-

jected candidate algorithms was finally the best performing algorithm in an inter-

national timetabling competition (see also http://www.idsia.ch/Files/
ttcomp2002).

The PhD work of den Besten (2004) provides an empirical investigation into the

application of ILS to solve a range of deterministic scheduling problems with tardi-

ness penalties. Racing in general, and F-Race in particular, is a very important in-

gredient throughout the algorithm development and calibration. The ILS algorithms

are built in a modular way and F-Race is applied to assess each combination of

modular components of the algorithm.

Comparison of F-Race with other methods There have been some compar-

isons of F-Race with other racing algorithms. Some preliminary results compar-

ing F-Race and t-test-based racing techniques are presented by Birattari (2004b,

2009), showing that F-Race typically performs best.

Yuan and Gallagher (2004) discuss the use of F-Race for the empirical evalua-

tion of evolutionary algorithms. They also use an algorithm called A-Race, where
the family-wise test is based on the analysis of variance (ANOVA) method. From

the experiments they conduct, they conclude that their version of F-Race obtains

better results than A-Race.
In their work Caelen and Bontempi (2005) compare five techniques from various

communities on a model selection task. The techniques compared are (i) a two-stage

selection technique proposed in the stochastic simulation community, (ii) a stochas-

tic dynamic programming approach conceived to address the multi-armed bandit

problem, (iii) a racing method, (iv) a greedy approach, and (v) a round-search tech-

nique. F-Race is mentioned and applied for comparison purposes. The comparison

results shows that the bandit strategy yields the most promising performance when

the sample size is small, but F-Race outperforms other techniques when the sam-

ple size is sufficiently large.

Extensions and hybrids of F-Race The F-Race algorithm has been adopted as

a module integrated into an ACO algorithm framework for tackling combinatorial

optimization problems under uncertainty (Birattari et al. 2007). The resulting algo-

rithm is called ACO/F-Race and it uses F-Race to determine the best of a set of

candidate solutions generated by the ACO algorithm. In later work by Balaprakash

et al. (2009b) on the application of estimation-based ACO algorithms to the proba-

bilistic traveling salesman problem the Friedman test is replaced by an ANOVA.

Yuan and Gallagher (2005, 2007) propose an approach to tune evolutionary al-

gorithms by hybridizing Meta-EA and F-Race. Meta-EA is an approach that uses

various genetic operators to tune the parameters of EAs. It is reported that one ma-

jor difficulty in Meta-EA is that it cannot effectively handle categorical parame-

ters. These categorical parameters are usually handled in Meta-EA by pure random

search. The proposed hybridization uses Meta-EA to evolve part of the numerical

parameters and leave the categorical parameters for F-Race. Experiment show that
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Meta-EA plus F-Race required only around 12% of the computational effort taken

by Meta-EA plus random search.

13.7 Summary and Outlook

In this chapter, we have presented the algorithm configuration problem that F-Race
tackles and have given a detailed review of the method. F-Race is essentially a

method for selecting the best algorithm configuration under stochastic evaluations.

As such, it is a method that is independent of the way the candidate configurations

are sampled. In a next step, we have introduced the family of iterated F-Race
algorithms, where the sampling of new candidate configurations is done through

probability models that are iteratively refined.

There is a significant number of possible extensions and adaptations of the

F-Race method. In fact, any mixed-integer (stochastic) optimization techniques

could, at least in principle, provide the sampling method for iterated F-Race. A
part of our current research is actually devoted to this observation. We are currently

studying the usage of F-Race on top of continuous optimization methods, and first

results show statistically significant advantages over strategies using a fixed sample

size. Combinations of F-Race with other methods for parameter tuning such as

SPO (Bartz-Beielstein 2006) and local search approaches (Hutter et al. 2007) may

be also useful. Finally, we believe that the ideas on which F-Race is based can be

also fruitful for tasks other than algorithm tuning. In fact, we envision that especially

applications to stochastic optimization problems may benefit greatly, ACO/F-Race
(Birattari et al. 2007) being a first such successful example.
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Chapter 14
The Sequential Parameter Optimization Toolbox

Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss

Abstract The sequential parameter optimization toolbox (SPOT) is one possible

implementation of the SPO framework introduced in Chap. 2. It has been suc-

cessfully applied to numerous heuristics for practical and theoretical optimization

problems. We describe the mechanics and interfaces employed by SPOT to enable

users to plug in their own algorithms. Furthermore, two case studies are presented

to demonstrate how SPOT can be applied in practice, followed by a discussion of

alternative metamodels to be plugged into it. We conclude with some general guide-

lines.

14.1 Introduction

The sequential parameter optimization approach discussed in Chap. 2 is a flexible

and general framework which can be applied in many situations. Here, we introduce

the sequential parameter optimization toolbox (SPOT) as one possible implementa-

tion of this framework. The basic ideas of this approach can be described as follows:

1. Use the available budget sequentially, i.e., use information from the exploration

of the search space to guide the search by building one or several meta models.

Choose new design points based on predictions from the meta model(s). Refine

the meta model(s) stepwise to improve knowledge about the search space.
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2. Try to cope with noise by improving confidence. Guarantee comparable confi-

dence for search points.

3. Collect information to learn from this tuning process, e.g., apply explorative

data analysis (Tukey 1991).

4. Provide mechanisms both for interactive and automated tuning.

We consider SPOT as one of the most effective and efficient tuning procedures

that enables learning from experiments. It was developed over recent years by

Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss (Bartz-Beielstein

et al. 2005). The main purpose of SPOT is to determine improved parameter settings

for optimization algorithms to analyze and understand their performance. SPOT

was successfully applied to numerous optimization algorithms, especially in the

field of evolutionary computation.

The remainder of this chapter is organized as follows. Section 14.2 presents some

typical examples. Section 14.3 describes goals of the SPOT approach. In Sect. 14.4,

elements of SPOT are explained. Since SPOT requires some statistical considera-

tions, these will be discussed in Sect. 14.5. A case study that performs a regression

analysis of the (1+1)-ES from Chap. 2 is presented in Sect. 14.6. Besides classical

regression, SPOT allows the use of modern models such as tree-based regressions;

pros and cons of these models are discussed in Sect. 14.7. The sequential approach

is reconsidered in Sect. 14.8. Results from this chapter are summarized in Sect. 14.9.

14.2 Applications

This section presents typical applications of the sequential parameter optimiza-

tion toolbox from bioinformatics, water-resource management, mechanical engi-

neering, biogas plant simulation, shipbuilding, and quality control. Bartz-Beielstein

(2010a) lists more than one hundred publications which mention how SPOT can be

applied to evolution strategies, particle swarm optimization, genetic programming,

and many more algorithms.

14.2.1 Bioinformatics

Volkert (2006) discusses results from a sequential parameter optimization approach

for investigating the effectiveness of using EAs for training hidden Markov mod-
els (HMM). She concludes that “this approach not only offers the possibility for

improving the effectiveness of the EA but will also provide much needed insight

into directions for future improvements in the design of EAs for the construction of

HMMs in general.”
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Fober et al. (2009) adjusted seven exogenous parameters of an EA using the se-

quential parameter optimization toolbox. The EA was used for a structural analysis

of biomolecules.

14.2.2 Water-Resource Management

The aim of a paper by Konen et al. (2009) is the prediction of fill levels in stormwater

tanks based on rain measurements and soil conditions. Different prediction methods

are compared. The sequential parameter optimization is used to find in a comparable

manner the best parameters for each method. Main results of this work are: (i) SPOT

is applicable to diverse forecasting methods and automates the time-consuming pa-

rameter tuning, (ii) the best manual result achieved before was improved with SPOT

by 30% and (iii) SPOT analyses in a consistent manner the parameter influence and

allows a purposeful simplification and/or refinement of the model design.

14.2.3 Mechanical Engineering

Mehnen et al. (2007) apply SPOT in mechanical engineering for the design of mold
temperature control strategies (MTCS), which is a challenging multi-objective op-

timization task. In this paper an EA is applied to a multi-objective problem using

aggregation. The DACE technique is used to find good multi-objective evolutionary
algorithm (MOEA) parameter settings to get improved solutions of the MTCS prob-

lem. An automatic and integrated software package, which is based on the DACE

approach, is applied to find the statistically significant and most promising EA pa-

rameters using SPOT.

14.2.4 Biogas

Ziegenhirt et al. (2010) use SPOT to optimize the simulation of biogas plants. There

is a high demand from industry to run these plants efficiently, which leads to a highly

complex simulation and optimization problem. A comparison of several algorithms

from computational intelligence to solve this problem is presented in their study.

The sequential parameter optimization was used to determine improved parameter

settings for these algorithms in an automated manner. They demonstrate that genetic

algorithm and particle swarm optimization based approaches were outperformed

by differential evolution and covariance matrix adaptation evolution strategy. Com-

pared to previously presented results, their approach required only one tenth of the

number of function evaluations.
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14.2.5 Shipbuilding

Rudolph et al. (2009) discuss the optimization of a relatively new ship propulsion

system (a linear jet) which possesses 15 design variables. It consists of a tube with a

rotor and a stator, and several lengths, angles, and thicknesses that can be variated.

The objective function is a very basic fluid dynamic simulation of a linear jet that

takes about 3 minutes to compute, and the task is to reduce cavitation at a predefined

efficiency. A full simulation would take about 8 hours, which is by far too much

to serve as test problem. A surrogate model is used to detect good design points

that can afterwards be validated by the full simulation. The authors conclude: “The

validation experiment is successful, as the SPO-tuned parameter values lead to a

significant performance increase. The tuned MAES resembles a model-enhanced

(4,11)-ES with κ = 20 and so may profit from a more globally oriented behavior

than the standard parameter setting with a population size of one.”

14.2.6 Fuzzy Operator Trees

Yi (2008) proposes a method for modeling utility (rating) functions based on a novel

concept called fuzzy operator tree (FOT). As the notion suggests, this method makes

use of techniques from fuzzy set theory and implements a fuzzy rating function,

that is, a utility function that maps to the unit interval, where 0 corresponds to the

lowest and 1 to the highest evaluation. Even though the original motivation comes

from quality control, FOTs are completely general and widely applicable. Yi (2008)

reports that “several works have shown that SPO outperforms other alternatives,

especially for evolution strategies, we shall apply SPO to determine the parameters

of ES in this section. Sequential sampling approaches with adaptation have been

proposed for DACE, here let us review the basic idea of Thomas Bartz-Beielstein,

which is also used in this section to determine the parameters of ES.”

14.3 Objectives

During the first stage of experimentation, SPOT treats the algorithm A as a black

box. A set of input variables, say x, is passed to A. Each run of the algorithm pro-

duces some output, y. SPOT tries to determine a functional relationship F between

x and y for a given problem formulated by an objective function f : u→ v. Since
experiments are run on computers, pseudorandom numbers are taken into consider-

ation if:

(i) The underlying objective function f is stochastically disturbed, e.g., measure-

ment errors or noise occur, and/or
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(ii) The algorithm A uses some stochastic elements, e.g., mutation in evolution

strategies.

This situation can be described as follows:

Objective function: u
f−→ v, (14.1)

Algorithm: x
F−→ y. (14.2)

We will classify elements from (14.1) and (14.2) in the following manner, see also

Sect. 2.2.1:

1. Variables that are necessary for the algorithm belong to the algorithm design,

whereas

2. variables that are needed to specify the optimization problem f belong to the

problem design.

SPOT employs a sequentially improved model to estimate the relationship be-

tween algorithm input variables and its output. This serves two primary goals. One

is to enable determining good parameter settings, thus SPOT may be used as a

tuner. Secondly, variable interactions can be revealed that help to understand how

the tested algorithm works when confronted with a specific problem or how changes

in the problem influence the algorithm’s performance. Concerning the model, SPOT

allows for insertion of virtually every available model. However, regression and

Kriging models or a combination thereof are most frequently used.

14.4 Elements of the SPOT Framework

In this section, we describe SPOT as one possible implementation of steps 3a)-d)

from the general SPO scheme (see Sect. 2.5.5.4) and discuss the different tools of

the framework that may be employed separately or in automated mode. We conclude

by giving a definition and a short introduction to starting and using SPOT.

14.4.1 The General SPOT Scheme

Definition 14.1 (Sequential Parameter Optimization Toolbox). The sequential

parameter optimization toolbox implements the following features:

SPOT-1: Use the available budget (e.g., simulator runs, number of function evalua-

tions) sequentially, i.e., use information from the exploration of the search

space to guide the search by building one or several meta models. Choose

new design points based on predictions from the meta model(s). Refine the

meta model(s)) stepwise to improve knowledge about the search space.

SPOT-2: Try to cope with noise by improving confidence. Guarantee comparable

confidence for search points.
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SPOT-3: Collect information to learn from this tuning process, e.g., apply explo-

rative data analysis.

SPOT-4: Provide mechanisms both for interactive and automated tuning.

�

Algorithm 14.1 presents a formal description of the SPOT scheme. This scheme

consists of two phases, namely the first construction of the model and its sequential

improvement. Phase 1 determines a population of initial designs in algorithm pa-

rameter space and runs the algorithm k times for each design. Phase 2 consists of

a loop with the following components: By means of the obtained data, the model

is built or updated, respectively. Then, a possibly large set of design points is gen-

erated and their predicted utility computed by sampling the model. A small set of

the seemingly best design points is selected and the algorithm is run k + 1 times

for each of these. The algorithm is also run once for the current best design point

and k is increased by one. Note, other update rules for the number of repeats, k, are
possible. The new design points are added to the population and the loop starts over

if the termination criterion is not reached (usually a preset budget is granted to the

process). In consequence, this means that the number of repeats is always increased

by one if the current best design point stays at the top of the list or a newly generated

one gets there. Due to nondeterministic responses of the algorithm, it may however

happen that neither of these is found at the top of the list after finishing the loop. In

this case, k may effectively shrink as performance comparisons have to be fair and

thus shall be based on the same number of repeats.

Sequential approaches are generally more efficient, i.e., require fewer function

evaluations, than approaches that evaluate the information in one step only. Chap-

ter 15 of this book discusses an extension of this sequential framework. Further

extensions were proposed by other authors, e.g., Lasarczyk (2007) integrated an op-
timal computational budget allocation (OCBA) procedure, which is based on ideas

by Chen et al. (2003).

14.4.2 SPOT Tasks

If used for tuning an algorithm, SPOT is not per se envisioned as a meta-algorithm.

We are interested in the resulting algorithm designs, not in the solutions to the pri-

mordial problem. However, it is of course possible to model a problem directly,

without employing an algorithm. SPOT provides tools to perform the following

tasks:

1. Initialize. An initial design is generated and written to a design file. This is usu-
ally the first step during experimentation. The employed parameter region and

the constant algorithm parameters have to be provided by the user. A clean start

can be performed. This is necessary if the user wants to run a new experiment

or delete results from previous steps.



14 The Sequential Parameter Optimization Toolbox 343

Algorithm 14.1 : Sequential parameter optimization toolbox (SPOT)

// phase 1, building the model:
let A be the tuned algorithm;
generate an initial population X = {x̄1, . . . , x̄m} of m parameter vectors;
let k = k0 be the initial number of tests for determining estimated utilities;
foreach x̄ ∈ X do

run A with x̄ k times to determine the estimated utility y of x̄;
end
// phase 2, using and improving the model:
while termination criterion not true do

let ā denote the parameter vector from X with best estimated utility;
let k the number of repeats already computed for ā;
build prediction model f based on X and {y1, . . . , y|X|};
generate a set X′ of l new parameter vectors by random sampling;
foreach x̄ ∈ X′ do

calculate f(x̄) to determine the predicted utility f(x̄) of x̄;
end
select set X′′ of d parameter vectors from X′ with best predicted utility (d 	 l);
run A with ā once and recalculate its estimated utility using all k + 1 test results;

// (improve confidence)
let k = k + 1;
run A k times with each x̄ ∈ X′′ to determine the estimated utility x̄;
extend the population by X = X ∪X′′;

end

2. Run. This is usually the second step. The optimization algorithm is started with

configurations from the design file. The algorithm writes results to the result

file. Information from the design and algorithm problem design files are used in

this step.

3. Sequential step. A new design, based on information from the result file, is

generated. This new design is written to the design file. A prediction model

is used in this step. Several generic prediction models are available in SPOT

already. To perform an efficient analysis, especially in situations when only

few algorithms runs are possible, user-specified prediction models can easily be

integrated into SPOT.

4. Report. An analysis, based on information from the result file, is generated.

Since the report uses information from the result file, new report facilities can

be added very easily. SPOT contains some scripts to perform a basic regression

analysis and plots such as histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential are per-
formed after the initialization a certain number of times.

6. Meta mode. In the meta mode, several problem instances can be used for tuning.
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14.4.3 Running SPOT

Previous versions of the SPOT relied on functions provided by the MATLAB

Kriging toolbox DACE developed by Lophaven et al. (2002). Starting with ver-

sion 0.5, an R (Ihaka and Gentleman 1996) version is available, too. The fol-

lowing description refers to this R implementation (Bartz-Beielstein 2010b). Of

course, an R-system must be available on your computer. The SPOT package

can be obtained via CRAN, the Comprehensive R Archive Network, see http:
//cran.r-project.org. Therefore, the simplest way to install the package is

to enter

install.packages("SPOT")

into your R session. SPOT can be loaded via

library("SPOT")

The formal command to start SPOT tasks reads:

spot( <configurationfile>, <task>)

where task can be one of the tasks described in Sect. 14.4.2, i.e., init, seq, run, rep,

auto, or meta, and configurationfile is the name of the SPOT configuration
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Fig. 14.1: SPOT interfaces. The SPOT loop can be described as follows: Configuration (CONF)
and region-of-interest (ROI) files are read by SPOT (a). SPOT generates a design (DES) file (b).
The algorithm reads the design file and (c) extra information, e.g., about the problem dimension
from the algorithm-problem design (APD) file (d). Output from the optimization algorithm are
written to the result (RES) file (e). The result file is used by SPOT to build the prediction model
(f). Data can be used by exploratory data analysis (EDA) tools to generate reports, statistics, visu-
alizations, etc. (g)
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file. SPOT uses simple text files as interfaces to the algorithm to the statistical tools.

A JAVA-based GUI, which simplifies parameter input, is available, too.

1. Files provided by the user:

(a) Region of interest (ROI) files specify the region over which the algorithm

parameters are tuned. Categorical variables such as the recombination op-

erator in ES, are encoded as numerical values, e.g., “1” represents “no re-

combination” and “2” stands for “discrete recombination.”

(b) Algorithm design (APD) files are used to specify parameters used by the al-

gorithm, e.g., problem dimension, objective function, starting point or ini-

tial seed.

(c) Configuration files (CONF) specify SPOT specific parameters, such as the

prediction model or the initial design size.

2. Files generated by SPOT:

(a) Design files (DES) specify algorithm designs. They are generated automat-

ically by SPOT and will be read by the optimization algorithms.

(b) After the algorithm has been started with a parametrization from the algo-

rithm design, the algorithm writes its results to the result file (RES). Re-

sult files provide the basis for many statistical evaluations/visualizations.

They are read by SPOT to generate prediction models. Additional predic-

tion models can easily be integrated into SPOT.

Figure 14.1 illustrates SPOT interfaces and the data flow. Note, that the problem

design can be modified too. This can be done to analyze the robustness (effectivity)

of algorithms.

SPOT can be run in an automated and an interactive mode. Similarities and

differences of the automated and the interactive process are shown in Fig. 14.2.

14.5 Statistical Considerations

14.5.1 Sequential Models

To introduce SPOT’s functionality, we describe a case study that analyzes the evolu-

tion strategy introduced in Chap. 2. Starting from scratch, we do not know anything

about the functional relationship F from (14.1). This situation can be characterized

as a chicken-and-egg problem: The experimenter has to decide which comes first: a

design for the data x or the specification of a model, i.e., by defining a functional

relationship F ? For example, assuming a linear relationship F , we should use facto-

rial designs to specify x. However, in order to validate linearity, we need some data

x.
We prefer the following approach: Select a simple model (functional relation-

ship) F0 and a related design x0, generate some data y0, fit the (simple) model F0,
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Fig. 14.2: The sequential parameter optimization process. White font color indicates elements that
are used in the interactive process only. A typewriter font indicates the corresponding SPOT com-
mands. To start the automated mode, simply use the task auto. Note that the interaction points
are optional, so SPOT can be run without any user interaction
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predict a few new design points x1 based on F0, generate further data y1, refine

the model (F1), and continue. The chicken-and-egg problem defines a sequential

approach in a natural manner, which improves F and y at the same time. This ap-

proach motivated the term sequential parameter optimization. In many situations, it

can be shown that sequential approaches are much more efficient than one-at-a-time

approaches (Armitage 1975).

We will discuss the basic output from the R analysis during the sequential ap-

proach. The analysis is not complicated and requires only basic knowledge of statis-

tics. The reader will get interesting insights into the working mechanism of his al-

gorithms by executing a few lines of R code. SPOT comes with some elementary R

scripts which can be easily extended.

First, we will focus on fitting a linear regression model. The model

y = β0 +
k∑

j=1

βjxj + ε (14.3)

is called a multiple linear regression model with k regression variables and response
y. The regression variables represent algorithm parameters, e.g., initial step size s0,
multiplier for step sizes a, and size of the memory g. A variable that can be used to

predict the value of another variable is also called an “input variable,” “prediction

variable,” or “regressor.” Response variables are also called “output variables.” The

corresponding predictive equation reads

ŷ = bX. (14.4)

The small roman letter b denotes a vector of the estimates of the parameters

β0, . . . , βk.

R uses Wilkinson–Rogers notation to describe models, e.g.,

y ~ x1,

where y denotes the response, “∼” can be read as “is modeled by,” and x1 is the

explanatory variable. Two or more explanatory variables can be incorporated into

the model as shown in

y ~ x1 + x2.

There are more advanced ways of generating models, e.g., A:B for interactions,

where A:B is a shorthand notation for A+B+A*B, etc.
Equation (14.3) describes a hyperplane in the k-dimensional space of the regres-

sor variables xj (j = 1, . . . , k). Assuming that all remaining independent variables

xi were held constant, the parameter βj describes the expected change in y (re-

sponse) per unit change in xj (i 	= j).1 We will discuss some considerations which

are useful in the SPOT framework. The approach presented in this chapter relies on

standard regression techniques only. Other models can be integrated into SPOT as

well, e.g., tree-based regression or Kriging.

1 A comprehensive introduction to regression is given in the appendix of this book.



348 T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss

Until now, no statistical assumptions that involve probability distributions have

been made at all. In many situations, the following assumptions, which can be used

to examine the regression coefficients, are made:

(a) the residual εi is a random variable with mean zero and unknown variance σ2,

i.e., E(εi) = 0 and V (εi) = σ2,

(b) the ε’s are uncorrelated, i.e., Cov(εi, εj) = 0.
(c) εi ∼ N(0, σ2), i.e., εi is a normally distributed random variable, with mean

zero and variance σ2.

Assuming that the errors εi are all from the same normal distribution, the following

test can be performed: The null hypothesis, i.e., β1 equals β10, especially β10 = 0,
can be tested against the alternative that β1 is different from β10 by calculating

t = b1−β10

se(b1)
(where se(b1) denotes the standard error of the estimate of the parameter

β1) and comparing |t| with t(n− 2, 1− α/2), where t(n, 1− α) is the 100(1− α)
percentage point of a t-distribution with n degrees of freedom.

14.5.2 Residuals and Variance

The considerations in this section are not restricted to linear models only; they apply

to any situation when a model is fitted. Residuals are, per definition, differences

between values from actual observations and predictions by the regression equation.

They describe the amount that the regression equation has not been able to explain.

The residuals can be interpreted as the observed errors if the model is correct. We

discuss graphical methods to examine residuals, especially plots of residuals versus

fitted values, which could indicate that there should be a curve rather than a line,

and normal probability plots of the residuals.

The mean square about the regression, s2, will provide an estimate of the vari-

ance about the regression. If the regression equation (14.3) were estimated from an

infinitely large number of experiments, the variance about the regression would pro-

vide a measure of the error with which any observed value of Y could be predicted

from a given value of X using (14.3).

14.5.3 Standardized Variables and Transformations

The magnitude of the regression coefficients can be used to measure the effect of a

variable. Problems can occur, because the regression coefficients depend on the un-

derlying scale of measurements. For example, the coefficient for timemeasures the

expected difference in response for each hour of difference in time. If time were

measured in seconds instead of hours, the regression coefficient would be multiplied

by 3,600, although the change in units does not change a variable’s importance.

To solve the problem of units of measurement, standardized regression coefficients
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can be used. We consider regression models with parameters β and standardized

variables, i.e., each xi ranges between −1 and +1. Although standardization ap-

pears appealing at the first sight, its usage is controversial; see, e.g., the discussion

in Kleijnen (1987).

We have applied transformations on the function values, especially log-transfor-
mations, to improve the model fit. In general, we recommend using the raw data,

e.g., to improve the interpretability of the results. In some situations, lack of fit was

determined, to determine the most adequate model (linear versus quadratic etc.).

14.5.4 Design Considerations and the Region of Interest

Several designs can be used to generate initial data. Principally, two design types

can be distinguished:

• Factorial designs, which are commonly used in classical regression to fit linear

models, place design points at the border of the region of interest (Kleijnen

1987).

• Modern approaches such as Kriging use space-filling designs, e.g., Latin hyper-

cube designs, which place design points in the interior of the region of inter-

est (Santner et al. 2003).

The selection of an optimal design depends on the model which will be used for

prediction. The pre-experimental planning phase includes test runs in a situation

where no information about the model is available and no optimality conditions from

DOE, e.g., as described in Pukelsheim (1993), are applicable. The main goal of this

phase is to detect intervals for experimentation, i.e., the region of interest (ROI). As

a rule of thumb, we can state that these intervals should be chosen courageously,

because SPOT should be able to guide the search into promising regions of the

search space. For some settings, the experimenter has to set up rules for the treatment

of infeasible factor settings, e.g., by defining a penalty function or by introducing

rounding mechanisms to ensure integer values.

Draper and Smith (1998, p. 86) discuss practical design-of-experiment implica-

tions of regression. They describe the influence of experimental arrangements for

obtaining data for fitting a simple linear model. The question reads: At what values

(sites) should how many experimental runs be performed? The relationship between

lack of fit, pure error, sd(b1)/σ, and the number of sites is presented. They consider

a situation in which n experiments can be performed and σ2 is unknown. Performing

n experiments at n different sites is a poor choice, because σ2 cannot be estimated.

On the other hand, performing �n/2� repeats at only two design sites results in no

degrees of freedom left for estimating the lack of fit. On the basis of the sd(b1)/σ
values, configurations with many repeats are preferable. The best choice lies in ar-

rangements that allow testing for lack of fit and minimization of the sd(b1)/σ values.

Example 14.1. Suppose 14 runs are possible to fit a straight line. The range is the

interval [−1,+1] of the coded predictor. Variance σ2 is unknown. Choosing 14 de-
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Table 14.1: Regions of interest used in the pre-experimental planning phase. S0 and A denote real
variables, whereas G is an integer value

Factor Low High Type

S0 0.1 5 FLOAT
A 0 2 FLOAT
G 1 100 INT

sign points with only one repeat at each point is a poor choice, because σ2 cannot

be estimated. However, also the use of seven repeats at two design points is not rec-

ommended, because lack of fit (to test the adequacy of a linear model) cannot be

checked (Draper and Smith 1998). �

14.6 A Case Study: Simple Regression Applied to Evolution
Strategies

Classical response surface methods (RSM) use three steps: screening, modeling, and

optimization (Kleijnen 1987, Montgomery 2001). Design complexity is increased

during the RSM process, so complex models can be fitted in the last phase of the

RSM process. SPOT is closely related to RSM. Because SPOT includes rules to

analyze the scientific relevance (severity) of results from the statistical analysis and

specifies rules for learning from error, it can be seen as an extension of the classical

RSM framework.

14.6.1 Pre-experimental Planning

This section describes how basic ideas from regression analysis can be applied to

analyze evolution strategies. SPOT allows the specification of:

a) upper and lower limits of the region of interest (experimental region),

b) the number of repeats for the initial design, and

c) the type of design to be generated, e.g., LHD.

We have chosen a Latin hypercube design for the first experiments, see Table 14.1.

This design consists of three factors with different types. Although factorial designs

are recommended for DOE (see also the discussion in Sect. 14.5.4), a space-filling

design was chosen for the pre-experimental planning phase. This design was cho-

sen because we expect interesting model features in the center of the experimental

region, and we are interested in using other models, e.g., tree-based regression mod-

els, or Kriging, in parallel. These models require space-filling designs. So, choosing
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Fig. 14.3: Scatter plots from the pre-experimental planning phase to determine the region of in-
terest. Left: A range from 0 to 2 for the multiplier a was chosen. Values smaller than 1 invert the
1/5th rule (2.4). As can be seen from the figures, values smaller than 1 worsen the performance of
the (1+1)-ES. Right: If a is chosen from the interval between 1 and 2, the (1+1)-ES performs quite
reasonably. These results support the recommendations given in (2.4)

an LHD can be seen as a good compromise, especially if we do not know whether

linear regression models are adequate.

A scatter plot was used to analyze results from the first design. It is based on

ten design points, where each design point represents one algorithm configuration.

Each run was performed once. Figure 14.3 clearly illustrates that the multiplier for

the step length should be larger than 1.0. This supports the assumption that step sizes

should be increased if the success rate is larger than 1/5. Values smaller than 1.0
are excluded from the following investigations. By repeating the same configuration

as in the first study, but with values for A chosen from the interval [1, 2], significant
improvements can be observed. The algorithm performs quite well with parameters

chosen from these ROI. Therefore, we decided to start the analysis with a multiplier

of the step width chosen from the interval [1, 2].

14.6.2 Performing the First Regression Analysis

To regress fitness, y, on the these quantitative predictors, we obtain the output in R

as shown in Fig. 14.4.

The R output gives a numerical summary of the residuals and a table of the re-

gression parameters. For example, the coefficient b1 is the change in the response y
when x1 is changed by one unit. Besides estimated regression coefficients and their

standard errors, t-statistics and p-values for the individual tests of the hypotheses

are included. Here, we see that the intercept of the fitted line is b0 = −28.0456
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Call:
lm(formula = log(Y) ~ log(S0) + log(A) + log(G), data = df0002)
Residuals:

Min 1Q Median 3Q Max
-3.6093 -1.7175 0.7059 1.4426 3.0768
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.0456 5.6820 -4.936 0.00261 **
log(S0) 0.4115 0.9836 0.418 0.69022
log(A) 27.2698 4.8056 5.675 0.00129 **
log(G) -0.9124 1.2219 -0.747 0.48346
---
Residual standard error: 2.791 on 6 degrees of freedom
Multiple R-squared: 0.8671,Adjusted R-squared: 0.8006
F-statistic: 13.05 on 3 and 6 DF, p-value: 0.004872

Fig. 14.4: Output from the first regression model in R.

with se(b0) = 5.6820, and the estimated regression coefficient b1 is 0.4115 with

se(b1) = 0.9836. The multiplier A has the largest effect, because its value reads

27.2698. The memory G has only minor impact on the performance of the ES.

The table reports also t-statistics and p-values for individual tests of the hypothe-

ses that the true intercept is zero and that the true slope is zero. The Residual
standard error is an expression of the variation of the observations around the

fitted line. It can be used to estimate σ. Multiple R-Squared and Adjusted
R-Squared are reported as well. The values related to the F-statistic de-

scribe an F -test for the hypothesis that the regression coefficients are zero.

In addition, an analysis of variance (ANOVA) table can be generated. Based on

an ANOVA table we can compare two models:

(a) ModelM1, which includes S0, A, and G
(b) ModelM2, which includes the parameter with the highest significance, namely

A

As expected, this indicates that there is no significant improvement of the model

once S0 and G are included. Removing the parameters S0 and G from the model is

recommended. R has a built-in function which adds parameters one at a time to the

current model. The add1 function adds parameters one after another from a list and

shows the resulting statistics. The default output table reports the Akaike informa-
tion criterion (AIC), defined as minus twice the log likelihood plus 2p, where p is

the rank of the model (the number of effective parameters). For performing model

searches by AIC, R provides the stepAIC function. Since selection and adjustment

of information criteria is a difficult task (and beyond the scope of this introduction),

we simply show the output from stepAIC applied to our example in Fig. 14.5.

The final model, suggested by stepAIC, includes the parameter A only.

Residual plots can be used to check model assumptions. Common checks in-

clude:
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Call:
lm(formula = Y ~ A, data = df0002normlogy)
Residuals:

Min 1Q Median 3Q Max
-3.7071 -2.6383 0.2352 2.4411 3.8783
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.6070 0.9672 -21.305 2.48e-08 ***
A 8.1253 1.4940 5.439 0.000617 ***
---
Residual standard error: 3.059 on 8 degrees of freedom
Multiple R-squared: 0.7871,Adjusted R-squared: 0.7605
F-statistic: 29.58 on 1 and 8 DF, p-value: 0.000617

Fig. 14.5: Output from the model based on R’s stepAIC function

a) A plot of residuals versus fitted values

b) Normal probability plots of residuals

In addition, visual inspections, e.g., on the basis of added-variable plots (Fig. 14.6)
can be performed. Added-variable plots focus on one variable at a time and take into

account the influence of the other predictors (Draper and Smith 1998, Fox 2002).

To determine the influence of predictor xj on the response y, added-variable plots
are generated as follows. Let x−i denote the set of regressors

{x1, x2, . . . , xi−1, xi+1, . . . , xn}.

1. Regress y on x−j , obtaining residuals e(j).
2. Regress xj on predictors x−j , obtaining residuals x(j).
3. Plot e(j) versus x(j).

All ES runs were performed using the same number of function evaluations.

The results clearly indicate that A should be reduced. Smaller values improve the

algorithms performance. The linear model was able to detect this trend. This was

the first step of the analysis. The experimental setup shown in Table 14.1 includes a

systematic variation of three parameters.

Summarizing Results from the Regression Model Analysis

The regression models used in this study illustrate thatA should be decreased. Step-

wise regression results in the simplified model

ŷ = −20.61 + 8.12a,

which indicates that the multiplier for the step sizes should be decreased. A similar

result was obtained from a tree-based regression. The result occurs independently

from the chosen model.
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Fig. 14.6: Added-variable plot based on ten runs from the initial design of ES on the ten-
dimensional sphere function. Smaller y values represent better solutions

How should one proceed if interactions that play an important role in the regres-

sion model might be of interest? We recommend not to apply the method of steepest

descent based on the main factor model if there are significant interactions in the

model. Instead, the optimum predicted by the reduced regression model including

the main effects and the interactions can be used (Mehnen et al. 2004).

14.6.3 Steepest Descent

Results from the regression analysis provide information about the steepest descent

in a natural manner. We proceed with the steepest descent based on the model Y ∼
S0 + A + G. The procedure of steepest descent is performed as follows: Start-

ing from the design center, we move sequentially in the direction of the maximum

decrease in the response. This direction is parallel to the normal of the fitted re-

sponse surface. Usually in RSM, the path of the steepest descent is taken as the line

through the center of the ROI and normal to the fitted surface, i.e., the steps are pro-

portional to the βi’s (regression coefficients). In general, the following procedure
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Table 14.2: Steepest descent. S0 and A denote real variables, whereas G is an integer value, so its
values are rounded to the next integer

S0 A G

1 2.54 1.50 52.50
2 2.52 1.45 53.05
3 2.50 1.41 53.60
4 2.49 1.37 54.15
5 2.47 1.32 54.70
6 2.45 1.28 55.25
7 2.44 1.23 55.80
8 2.42 1.19 56.35
9 2.40 1.14 56.90
10 2.39 1.10 57.45
11 2.37 1.05 58.01

for determining the coordinates of the points on the path of the steepest descent can

be applied (Montgomery 2001):

1. Select the variable we know most about or the variable that has the largest ab-

solute regression coefficient |bi|.
2. Determine the step size in the other variables as

Δxi =
bi
bj
Δxj i = 1, 2, . . . , k; i 	= j.

3. Convert the Δxi stepwidths from the coded to the δxi in the natural variables.

As the largest step size we recommend the value that leads to the border of the ROI.

Data from the steepest descent experiments are shown in Table 14.2. Note that the

steepest-descent experiments do not have to be performed in sequence. For example,

run 10 can be performed before run 2, or a simple interval search can be performed.

We recommend generating a graph of these results to determine the new region of

interest following the direction of the steepest descent, cf. Fig. 14.7. The region of

interest is moved down the response surface.

These settings are used for additional runs of ES. Figure 14.7 plots the yield at

each step along the path of the steepest descent.

Based on visual inspection of the yields in Fig. 14.7, the new central point was

determined to be the tenth point of the steepest descent. This new central point

leaves some space for variation of theA values, say in the interval [1.01, 1.2]. Based
on the best value obtained with the steepest descent, we build a new model with

center point

xc = [S0, A,G] = [2.5, 1.125, 40].

The specification of the new region of interest requires user knowledge. The new

center point was determined by interpreting graphical results which were based on

the steepest descent. Next, we have to determine a new region around xc. Some-

times, especially when a classical factorial design is used during the first step, it can



356 T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss

2 4 6 8 10

−3
0

−2
8

−2
6

−2
4

−2
2

−2
0

step

lo
g(

y)

Fig. 14.7: Function values f(x) (sphere) versus steps along the path of the steepest descent. Indices
denote the ten steps from the steepest descent. Note, that these values are based on one repeat only,
so variation in the data, e.g., the peak (index 5), is not surprising

be useful to increase the region of interest at this stage. However, we have chosen a

space-filling design for the first step. Therefore, we have to decrease the region of

interest. As a rule of thumb, which is to be reconsidered in any situation, we use at

least ± 1/5th of the values at the new central point. For example, if the value of the

new initial step size S0 is 5, we define a new region of interest for this values as the

interval [4, 6]. Here, the new region of interest reads as follows:

S0 ∈ [2, 3], A ∈ [1.05, 2], G ∈ [20, 80].

Latin hypercube sampling with 100 points and three repeats each is used for a

graphical exploration of the ROI. Figure 14.8 displays a fit of the response surface

which is based on the complete data set (320 runs of the target algorithm). A local

regression model based on R’s loess() function is fitted to the data.

Summarizing Results from the RSM

Results from this case study support results presented by Beyer (2001). The factor

a should be chosen in the range from 1.1 to 1.5. Further experiments show that this
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Fig. 14.8: Contour plot based on the complete data set (ES-Sphere with 320 function evaluations).
Smaller values are better. Better configurations are placed in the lower-left corner of the panels. A
is plotted versus S0, while values of the factor with the last but one effect, namely G, are varied
with the slider on top of each panel

result is independent of the starting point and problem dimension. The correspond-

ing contour plots indicate that runs of the (1+1)-ES with values for a chosen in the

recommended interval result in good function values. The structure of the contour

plots does not change if starting point or problem dimension are modified.

14.7 Additional Model Considerations

The analysis of optimization algorithms requires the investigation of categorical

variables; e.g., in evolution strategies, several variants of the recombination operator

can be used (Beyer and Schwefel 2002). SPOT allows the coding of nonnumerical

variables as factors. Dummy regressors or contrasts can be used to represent levels

of a factor. SPOT can handle the following variables:

1. real values,

2. integers, and
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|A< 1.215

A< 1.16

A< 1.125 G>=72.5

A< 1.474

−30.14651
n=158

−29.17894
n=72

−29.64873
n=15

−27.46434
n=69

−23.53842
n=20

−17.58658
n=9

Fig. 14.9: Tree-based regression. The same data as in Fig. 14.8 were used. The factor A has the
largest effect. log(y) values were used to grow the tree

3. categorical variables.

SPOT’s ROI file is used to specify this typing. Maindonald and Braun (2003) illus-

trate the treatment of dummy variables for classical regression in R.

Classical regression is only one technique that can be used in the SPOT frame-

work to predict interesting design points. Alternatively, tree-based models can be

used to cope with categorical variables; see also Fig. 14.9. Tree-based methods can

be used for regression as well as for classification (Breiman et al. 1984). Maindonald

and Braun (2003) recommend to use tree-based methods in tandem with paramet-

ric approaches, because tree-based regression may suggest interaction terms that

ought to appear in a parametric model. However, tree-based methods require more

data than classical regression techniques. That is, if only a few runs of the algo-

rithms are possible, it may be necessary to use parametric models. On the other

hand, tree-based methods may be helpful to explore new data sets very quickly: the

experimenter gets on overview of which variables have the greatest effects on the

algorithm’s performance.
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Fig. 14.10: Comparison of two SPOT prediction models with randomly generated configurations
(from top to bottom). First, the results from randomly generated algorithm designs are shown. We
have chosen the initial design (LHD), which is generated randomly. Next, results from 50 repeats
of the best algorithm design determined with the linear and the tree-based regression model are
displayed

We have mentioned only two prediction models: parametrized regression and

regression trees. Further models, e.g., local regression, Kriging or mixed models as

introduced in Sect. 10.1, are also available.

Example 14.2. To analyze the choice of the prediction model on the prediction qual-

ity and SPOT’s ability to improve optimization algorithms (tuning), we performed

the following study: Results from two different SPOT runs are compared. The first

run uses a tree-based regression model, whereas in the second run the dummy-

variable regression model was used. Both models used exactly the same setting, i.e.,

five SPOT iterations, initial design size of 50 points, and two repeats. An ES, which

optimizes the ten-dimensional sphere function with 1,000 function evaluations was

analyzed. Distributions of the results from these two SPOT runs are compared with

the distribution of the randomly generated initial design in Fig. 14.10. Both mod-
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els were able to find better results than the randomized design. These results are in

line with observations from other studies: Tree-based models can be applied very

easily to unknown explanatory variables. They can cope with categorical and nu-

merical data. Parametrized models perform better than tree-based models; however,

the costs for modeling are higher. �

14.8 The Automated Mode

In the case study in Sect. 14.6 we discussed the initial setup for the SPOT loop

(initial design) and the analysis of one step. SPOT can proceed as follows: Based

on the prediction model, e.g., linear regression or tree-based regression, interesting

algorithm design points are generated. These design points are evaluated, i.e., the al-

gorithm is run with the corresponding parameters. Then, an analysis as described in

Sect. 14.6.2 can be performed. This analysis provides an improved predictor, which

can be used to propose new design points, and so forth. As depicted in Fig. 14.2, this

procedure can be performed in an automated manner. The result from the automated

approach reads

s0 = 4.99, a = 1.10, g = 71.

Obviously, the result from the automated approach supports the findings from the

manual approach, i.e., similar values for the parametrization of the (1+1)-ES are

determined.

14.9 Summary

In this chapter, basic elements of the SPOT framework were introduced and dis-

cussed. SPOT is an open-source implementation of the sequential parameter opti-

mization presented in Chap.2. It requires the specification of the region of interest,

the algorithm design, and SPOT-related configuration parameters.

SPOT provides tools to perform the following four elementary tasks: (i) generate

an initial design, (ii) run the algorithm, (iii) generate a new design based on results

from previous runs, and (iv) generate a report. Additionally, these tasks can be run

in an automated mode.

We demonstrated how a simple analysis of the (1+1)-ES can be performed. This

analysis requires the specification of the following elements:

1. Region of interest, i.e., the range of parameter settings of the algorithm.

2. Algorithm- and problem-related parameters.

3. Metaparameters used by SPOT.

A simple regression model, well known in DOE and RSM (Montgomery 2001),

was used to analyze the influence (importance) of three parameters of the (1+1)-ES,

namely, initial stepsize, multiplier for the stepsize, and the length of the memory
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vector. The experimental results support a result which was derived theoretically

by Beyer (2001).

SPOT is being developed, applied, and improved at several research institutes

around the world. By providing an open-source implementation and a graphical

user interface, we hope that SPOT can be a useful tool for the research community.
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Chapter 15
Sequential Model-Based Parameter
Optimization: an Experimental Investigation of
Automated and Interactive Approaches

Frank Hutter, Thomas Bartz-Beielstein, Holger H. Hoos, Kevin Leyton-Brown, and

Kevin P. Murphy

Abstract This work experimentally investigates model-based approaches for opti-

mizing the performance of parameterized randomized algorithms. Such approaches

build a response surface model and use this model for finding good parameter set-

tings of the given algorithm. We evaluated two methods from the literature that

are based on Gaussian process models: sequential parameter optimization (SPO)

(Bartz-Beielstein et al. 2005) and sequential Kriging optimization (SKO) (Huang

et al. 2006). SPO performed better “out-of-the-box,” whereas SKO was competitive

when response values were log transformed. We then investigated key design de-

cisions within the SPO paradigm, characterizing the performance consequences of

each. Based on these findings, we propose a new version of SPO, dubbed SPO+,

which extends SPO with a novel intensification procedure and a log-transformed

objective function. In a domain for which performance results for other (model-

free) parameter optimization approaches are available, we demonstrate that SPO+

achieves state-of-the-art performance. Finally, we compare this automated param-

eter tuning approach to an interactive, manual process that makes use of classical
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regression techniques. This interactive approach is particularly useful when only

a relatively small number of parameter configurations can be evaluated. Because

it can relatively quickly draw attention to important parameters and parameter in-

teractions, it can help experts gain insights into the parameter response of a given

algorithm and identify reasonable parameter settings.

15.1 Introduction

Many high-performance algorithms—and, in particular, many heuristic solvers for

computationally challenging problems—expose parameters to allow end users to

adapt the algorithm to target applications. Optimizing parameter settings is thus

an important task in the context of developing, evaluating and applying such al-

gorithms. Recently, a substantial amount of research has been aimed at defining

effective, automated procedures for parameter optimization (also called algorithm
configuration or parameter tuning). More specifically, the goal is to find parameter

settings of a given target algorithm that optimize a given performance metric on a

given set (or distribution) of problem instances. The performance metric is usually

based on the runtime required to solve a problem instance or—in the case of opti-

mization problems—on the solution quality achieved within a given time budget.

Several variations of this problem have been investigated in the literature. These

formulations vary in the number and type of target algorithm parameters allowed.

Much existing work deals with relatively small numbers of numerical (often contin-

uous) parameters; see, e.g., Coy et al. (2001), Audet and Orban (2006), Adenso-Diaz

and Laguna (2006). Some relatively recent approaches permit both larger numbers

of parameters and categorical domains; see, e.g., Birattari et al. (2002), Beielstein

(2003), Bartz-Beielstein and Markon (2004), Bartz-Beielstein et al. (2004c), Hut-

ter et al. (2007, 2009b). A different problem formulation also permits parameter

adaptation on a per-instance basis; see, e.g., Hutter et al. (2006).

Approaches also differ in whether or not explicit models (so-called response
surfaces) are used to describe the dependence of target algorithm performance on

parameter settings. There has been a substantial amount of work on both model-

free and model-based approaches. Some notable model-free approaches include

F-Race by Birattari et al. (2002), Balaprakash et al. (2007), CALIBRA by Adenso-

Diaz and Laguna (2006), and ParamILS by Hutter et al. (2007). State-of-the-art

model-based approaches use Gaussian stochastic processes (also known as Krig-

ing models) to fit a response surface model. These models aim to minimize the

mean squared error between predicted and actual responses, using a nonparamet-

ric function to represent the mean response. One particularly popular and widely

studied version of Gaussian stochastic process models in the statistics literature is

known under the acronym DACE, for design and analysis of computer experiments
(Sacks et al. 1989). Combining such a predictive model with sequential decisions

about the most promising next design point (often based on a so-called expected im-
provement criterion) gives rise to a sequential optimization approach. An influential
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contribution in this field was the efficient global optimization (EGO) procedure by

Jones et al. (1998), which addressed the optimization of deterministic black-box

functions. In the context of parameter optimization, EGO could be used to optimize

deterministic algorithms with continuous parameters on a single problem instance.

Two independent lines of work extended EGO to noisy functions, which in the con-

text of parameter optimization, allow the consideration of randomized algorithms:

the sequential Kriging optimization (SKO) algorithm by Huang et al. (2006), and

the sequential parameter optimization (SPO) procedure by Bartz-Beielstein et al.

(2004b, 2005).

In the first part of this chapter, we maintain this focus on Gaussian process (GP)
models; while in the second part, we consider the use of classical models in an

interactive approach. Throughout, we limit ourselves to the simple case of only

one problem instance. Such an instance may be chosen as representative of a set

or distribution of similar instances. This restriction allows us to sidestep problems

arising from performance variation across a set or distribution of problem instances

and to focus on other core conceptual issues, while retaining significant practical

relevance. (The management of such variation is an interesting and important topic

of study; indeed, we have already begun to investigate it in our ongoing work. We

note that this problem can be addressed by the algorithm of Williams et al. (2000),

though only in the case of deterministic target algorithms.)

This chapter leverages our own previous work in a number of ways. In partic-

ular, a short version of Sects. 15.1–15.5 was published by Hutter et al. (2009a).

Here, we formalize mathematical and algorithmic concepts from that paper much

more thoroughly and provide more details throughout. The general sequential opti-

mization approach using Kriging models has a long tradition in the statistics liter-

ature (Mockus et al. 1978, Jones et al. 1998) and was adapted to the optimization

of algorithm parameters by Bartz-Beielstein et al. (2004a,b). Bartz-Beielstein et al.

(2005) summarized results from SPO applications in various problem domains and

Bartz-Beielstein (2006) described SPO’s methodology in detail. Bartz-Beielstein

and Preuss (2006) and Bartz-Beielstein et al. (2008b) studied the allocation of a

fixed computational budget to SPO’s initial design and to the evaluation of each

parameter setting. The interactive approach used in Sect. 15.6 was first presented

by Beielstein (2003), Bartz-Beielstein (2003), and Bartz-Beielstein and Markon

(2004).

In the following, we use the term sequential parameter optimization (SPO) to

refer to the methodological framework, i.e., a sequential approach to improve and

understand an algorithm’s performance by optimizing its parameters. The sequential
parameter optimization toolbox (SPOT) is a software framework supporting both

automated and interactive applications of this approach. Further discussion of SPOT

is offered in Chap. 14, while the general SPO framework is presented in Chap. 2.

Finally, we study three fully-automatic SPO procedures, which we refer to as SPO

0.3, SPO 0.4, and SPO+. In the first part of the chapter, where we study these

procedures in detail, we sometimes also use the term SPO to refer to the algorithmic

framework of which SPO 0.3, SPO 0.4, and SPO+ are instantiations.
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The first part of our study thoroughly investigates the two fundamental compo-

nents of any model-based optimization approach in this setting: the procedure for

building the predictive model and the sequential procedure that uses this model to

find performance-optimizing parameter settings of the target algorithm. We begin

in Sect. 15.2 by describing our experimental setup, focusing especially on the two

target algorithms we consider: CMA-ES (Hansen and Ostermeier 1996, Hansen and

Kern 2004), a prominent gradient-free numerical optimization algorithm, and SAPS

(Hutter et al. 2002), a high-performance local search algorithm for the propositional

satisfiability problem. In Sect. 15.3, we compare the model-based optimization pro-

cedures SKO and SPO. Overall, we found that SPO produced more robust results

than SKO in terms of the final target algorithm performance achieved. Consequently,

the remainder of our study focuses on the mechanisms that underly SPO.

In Sect. 15.4, we investigate the effectiveness of various methods for determining

the set of parameter settings used for building the initial parameter response model.

Here we found that using more complex initial designs did not consistently lead

to improvements over more naïve methods. More importantly, we also found that

parameter response models built from log-transformed performance measurements

tended to be substantially more accurate than those built from raw data (as used

by SPO). In Sect. 15.5, we turn to the sequential experimental design procedure.

We introduce a simple variation in SPO’s intensification mechanism which led to

significant and substantial performance improvements. Next, we consider two pre-

vious expected improvement criteria for selecting the next parameter setting to eval-

uate, and derive a new expected improvement criterion specifically for optimization

based on predictive models trained on log-transformed data. These theoretical im-

provements, however, did not consistently correspond to improvements in observed

algorithm performance. Nevertheless, we demonstrate that overall, our novel variant

of SPO—dubbed SPO+—achieved an improvement over the best previously known

results on the SAPS parameter optimization benchmark.

Section 15.6 presents the second part of our study, in which we investigate a dif-

ferent perspective on optimizing the parameters of an algorithm. Specifically, we

explore the interactive use of statistical tools in parameter optimization, which (like

automated tuning) is also supported by the SPOT. Our approach is based on re-
sponse surface methodology (RSM), which can be characterized as a collection of

mathematical and statistical techniques that are useful for the modeling and analysis

of problems in which a response of interest is influenced by several variables and the

objective is to maximize or minimize this response (Montgomery 2001, Beielstein

2003). We show how to assess the relative importance of each parameter as well as

interactions between parameters, and to manually refine the region of interest based

on this knowledge. While the automated tuning option requires nearly no statistical

knowledge, it can be computationally expensive. In contrast, the interactive option

requires some knowledge about statistics (especially classical regression analysis),

but can reduce computational costs and help the algorithm designer to learn which

parameters deserve attention. This is particularly useful in cases where target algo-

rithm evaluations are costly compared to the overall computational resources and

time available for the parameter optimization process.
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Finally, Sect. 15.7 concludes the chapter with a discussion of advantages and

drawbacks of automated and interactive approaches and the identification of inter-

esting directions for future work.

15.2 Target Algorithms and Experimental Setup

Our first target algorithm was the covariance matrix adaptation evolution strategy
(CMA-ES). CMA-ES is a prominent gradient-free global optimization algorithm for

continuous functions (Hansen and Ostermeier 1996, Hansen and Kern 2004). It is

based on an evolutionary strategy that uses a covariance matrix adaptation scheme.

We used the Matlab implementation CMA-ES 2.54,1 which is integrated into the

SPO toolbox version 0.4 and was used as an example application for parameter op-

timization in the SPOT manual (Bartz-Beielstein et al. 2008a). CMA-ES has two

obvious parameters: the number of parents, NPARENTS, and a factor NU ≥ 1 re-

lating the number of parents to the population size. (The population size is defined as

�NPARENTS × NU + 0.5�.) Bartz-Beielstein et al. (2008a) modified CMA-ES’s

interface to expose two additional parameters: the “learning rate for the cumulation

for the step size control,” CS, and the damping parameter, DAMPS (for details,

see Hansen (2006), where NPARENTS, NU, CS, and DAMPS are called N , ν,
cσ , and dσ , respectively). We used exactly the same region of interest (ROI; also

called experimental region) considered in Bartz-Beielstein et al. (2008a)’s SPOT

example based on CMA-ES. Table 15.1 provides a summary of the target algo-

rithms, parameters, and regions of interest we used.

Table 15.1: Target algorithms, parameters, and the regions of interest (parameter domains) consid-
ered

Target algorithm Parameter Domain Type

NPARENTS [1, 50] integer
CMA-ES NU [2, 10] continuous

CS (0, 1] continuous
DAMPS [0.25, 0.99] continuous

α (1, 1.4] continuous
SAPS ρ [0, 1] continuous

Psmooth [0, 0.2] continuous
wp [0, 0.06] continuous

For each run of CMA-ES, we allowed a limited number of function evaluations

and used the resulting solution quality (i.e., the minimal function value found) as the

response variable to be optimized. We considered four canonical 10-dimensional

1 The newest CMA-ES version, 3.0, differs mostly in its interface and its support of “separable”
CMA (see the change log at http://www.lri.fr/~hansen/cmaes_inmatlab.html).
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test functions with a global minimum function value of zero that were previ-

ously used in published evaluations of CMA-ES. Specifically, we considered the

Sphere function (used in the SPOT example mentioned above) and the Ackley,

Griewangk, and Rastrigin functions (used by Hansen and Kern (2004)). Follow-

ing Bartz-Beielstein et al. (2008a), for the Sphere function we initialized CMA-ES

at the point [10, ..., 10]T ∈ R10. To test global search performance, in the other

test functions we initialized CMA-ES further away from the optima, at the point

[20, ..., 20]T ∈ R10. For the first two functions, we optimized mean solution quality

reached by CMA-ES within 1, 000 function evaluations. For the latter two func-

tions, which are more challenging, we set a limit of 10, 000 function evaluations.

This setup is summarized in Table 15.2.

Table 15.2: Experimental setup for the CMA-ES test cases

Test function Dimensionality Initial point [·1 ∈ R10] # Function evaluations allowed

Sphere 10 10 1, 000
Ackley 10 20 1, 000

Griewangk 10 20 10, 000
Rastrigin 10 20 10, 000

The second target algorithmwe considered was Scaling And Probabilistic Smooth-
ing (SAPS) (Hutter et al. 2002), a high-performance dynamic local search algorithm

for the propositional satisfiability problem. We used the standard UBCSAT imple-

mentation (Tompkins and Hoos 2004) of SAPS and defined the region of interest

(Table 15.1) to closely follow an earlier parameter optimization study of SAPS

by Hutter et al. (2007), with the difference that we did not discretize parameter

values. (Hutter et al. did so because the parameter optimization procedure used in

that work required it.) For SAPS, our goal was to minimize median runtime (mea-

sured in local search steps) for solving the “quasigroups with holes” (QWH) SAT

instance used by Hutter et al. (2007). This instance belongs to a family of distribu-

tions that has received considerable interest in the SAT community. We chose this

particular instance to facilitate direct comparison of the performance achieved by

the parameter optimization procedures considered here and by Hutter et al. (2007).

To evaluate the qualityQ(θ) of a proposed parameter setting θ in an offline eval-

uation stage of the algorithm, we always performed additional test runs of the target

algorithm with setting θ. In particular, for the CMA-ES test cases, we computed

Q(θ) as the mean solution cost achieved by CMA-ES using θ across 100 test runs.

For the higher-variance SAPS domain, we computed Q(θ) as the median runtime

achieved by SAPS with setting θ across 1, 000 test runs. We define the solution cost
ck of a parameter optimization run after k runs of the target algorithm as the qual-

ity Q(θ) of the parameter setting θ the method would output if terminated at that

point. The final performance of a parameter optimization run is the performance at

the end of the run. In order to measure the performance of a parameter optimization

method, we performed 25 runs of the method with different random seeds, report-

ing mean and standard deviation of the final performance across these 25 repetitions.
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Table 15.3: Summary of notation. The upper part of the table contains symbols used in the pseu-
docode, the middle part contains SPO parameters, and the lower part general notation

Symbol Meaning

Θ Space of allowable parameter settings (region of interest)
θ Parameter setting, element of Θ

θi:j Vector of parameter settings, [θi,θi+1, . . . , θj ]
D Dimensionality of Θ (number of parameters to be tuned)
y Response variable (performance of target algorithm)

history Structure keeping track of target runs executed and responses, as well as incumbents
N(θ) Number of previous target algorithm runs with setting θ; depends on history
ĉ(θ) Empirical cost statistic over the N(θ) runs with θ (e.g., mean runtime); depends on history
M Predictive model

r Number of repeats in SPO (increases over time). Initial value: SPO parameter
maxR Maximal number of repeats in SPO

d Size of initial design in SPO
m Number of parameter settings to evaluate in each iteration in SPO
p Number of previous parameter setting to evaluate in each iteration of SPO+

Q(θ) Test quality (cost) of parameter setting θ
ck Solution cost Q(θ) of incumbent parameter setting θ at step k

We also performed paired Max-Wilcoxon signed rank tests for differences in final

performance. We chose a paired test because, using identical random seeds, the ith
repetition of every parameter optimization method used the same initial design and

response values. For the experiments in Sect. 15.5.3 this pairing did not apply, and

consequently, we used the (unpaired) Mann–Whitney U test instead.

15.3 Existing Methods for Sequential Model-Based Optimization
of Noisy Functions

In this section, we review two existing model-based optimization methods for

noisy responses: the sequential Kriging optimization (SKO) algorithm by Huang

et al. (2006), and the sequential parameter optimization (SPO) procedure by Bartz-

Beielstein et al. (2004b, 2005).

15.3.1 General Gaussian Process Regression

In order to model the dependence of a response variable (in our case, the perfor-

mance of a given target algorithm) on parameter settings, both SKO and SPO use

a form of Gaussian stochastic process, a nonparametric regression method that pre-

dicts both the mean and variance of a response variable. We first give the basic
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equations for Gaussian process regression and then describe the differences in the

ways this approach is used by SKO and SPO.

To apply Gaussian process regression, first we need to select a parameterized ker-

nel function kλ : Θ×Θ → R+ that quantifies the similarity between two parameter

settings. We also need to set the variance σ2 of Gaussian-distributed measurement

noise. The predictive distribution of a zero-mean Gaussian stochastic process for

response yn+1 at input θn+1 given training data D = {(θ1, y1), . . . , (θn, yn)},
measurement noise with variance σ2, and kernel function k is then

p(yn+1|θn+1,θ1:n,y1:n) = N (yn+1|k∗T[K+σ2I]−1y1:n), k∗∗−k∗T(K+σ2I)−1,
(15.1)

where

K =

⎛⎜⎝k(θ1,θ1) . . . k(θ1,θn)
. . .

k(θn,θ1) . . . k(θn,θn)

⎞⎟⎠ (15.2)

k∗ = (k(θ1,θn+1), . . . , k(θn,θn+1)) (15.3)

k∗∗ = k(θn+1,θn+1) + σ2, (15.4)

I is the n-dimensional identity matrix, and p(a|b) = N (a|c, d) denotes that the

conditional distribution of a given b is a Gaussian with mean b and variance c; see,
e.g., Rasmussen and Williams (2006) for a derivation. A variety of kernel functions

can be used, the most common of which is of the form

K(θi,θj) =
d∑

k=1

exp(−λk(θik − θjk)
2), (15.5)

where λ1, . . . , λd are the kernel parameters. This kernel is most appropriate if the

response is expected to vary smoothly in the input parameters θ. The kernel parame-

ters and the observation noise variance σ2 constitute the hyper-parameters φ, which
are typically set by maximizing the marginal likelihood p(y1:N ) with a gradient-

based optimizer. Using the chain rule, the gradient is

∂ log p(y1:N )

∂φj
=

∂ log p(y1:N )

∂(K + σ2I)

∂(K + σ2I)

∂φj
.

In noise-free Gaussian process models, the observation noise variance is fixed to

σ2 = 0.
Learning a Gaussian stochastic process model from data can be computationally

expensive. Inverting the n×nmatrix [K+σ2I] takes timeO(n3), and has to be done
in every step of the hyper-parameter optimization. Various approximations can be

used to reduce this toO(n2); see, e.g., Quinonero-Candela et al. (2007). We refer to

the process of optimizing hyper-parameters and computing the inverse as fitting the

model. Subsequent predictions are cheaper than fitting the model, requiring matrix-

vector multiplications and thus time O(n2). This is still substantially slower than
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Algorithm Framework 15.1: Sequential model-based Optimization
Input : Target algorithm A
Output : Incumbent parameter setting θinc

[history, θinc] ← Initialize();
M ← ∅;
repeat

[M,θinc] ← FitModel(M, history, θinc);
Θnew ← SelectNewParameterSettings(M, θinc, history);
[history,θinc] ← Intensify(Θnew , θinc, M, history);

until TerminationCriterion() ;
return θinc;

Procedure 15.2: ExecuteRuns(history, θ, numRuns)

for i = 1, . . . , numRuns do
Execute target algorithm A with parameter setting θ, store response in y;
Append θ to history.θ;
Append y to history.y;

end
return history

prediction with a parametric model, the time complexity of which is independent of

n.

15.3.2 A Common Framework for Sequential Model-Based
Optimization

In this section, we describe SKO and SPO in a unified framework, which is outlined

in the form of pseudocode in Algorithm Framework 15.1. One common building

block of all parameter-optimization algorithms is a procedure that executes the tar-

get algorithm with a given parameter setting and stores the response. This build-

ing block is described in our Procedure 15.2, ExecuteRuns. On the first invocation,

history.θ and history.y are initialized to be empty lists.

Table 15.3 summarizes our notation and defines some global variables used in

SKO and SPO. Note in particularN(θ) and ĉ(θ);N(θ) denotes the number of runs

we have so far executed with a parameter setting θ, and ĉ(θ) denotes the empirical

performance across the N(θ) runs that have been performed for θ.

15.3.2.1 Initialization

We outline the initialization of SKO and SPO in Procedures 15.3 and 15.4, respec-

tively. Procedure Initialize() is called as
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Procedure 15.3: Initialize() in SKO
Θ denotes the space of allowable parameter settings (the region of interest); D denotes
the number of parameters to be tuned.

k ← 10D;
θ1:k ← LatinHypercubeDesign(Θ, k);
for i = 1, . . . , k do

history ← ExecuteRuns(history, θi, 1);
end
θk+1:k+D ← the D settings θj out of θ1:k with smallest ĉ(θj);
for i = 1, . . . , D do

history ← ExecuteRuns(history, θk+i, 1);
end
θinc ← random element of argminθ∈{θ1,...,θd} ĉ(θ);
return [history, θinc];

Procedure 15.4: Initialize() in SPO
Θ denotes the space of allowable parameter settings (the region of interest). The number
of LHD parameter settings, d, and the number of repetitions, r, are parameters of SPO

θ1:d ← LatinHypercubeDesign(Θ, d);
for i = 1, . . . , d do

history ← ExecuteRuns(history, θi, r);
end
θinc ← random element of argminθ∈{θ1,...,θd} ĉ(θ);
history.Θhist ← {θinc};
return [history, θinc]

[history,θinc] = Initialize().

SKO starts with a Latin hypercube design of 10 × D parameter settings, where

D is the number of parameters to be optimized. It executes the target algorithm at

these settings and then performs an additional run for theD settings with the lowest

response. The incumbent θinc is chosen as the setting with the lowest empirical cost

ĉ(θ) out of these D settings. In SPO, d parameter settings are chosen with a Latin

hypercube design, and the target algorithm is executed r times for each of them; d
and r are algorithm parameters. In practice, the initial design size d is chosen as

the minimum number of points required to fit a reasonably accurate model. (Here,

we used d = 250 and r = 2 as discussed in Sect. 15.4.1; however, in the direct

comparison to SKO, we used the initial design of SKO within SPO to limit the

number of confounding factors in the comparison.) The incumbent θinc is chosen

as the parameter setting with the lowest empirical cost ĉ(θ).

15.3.2.2 Fit of Response Surface Model

Both SKO and SPO base their predictions on a combination of a linear model and

a Gaussian process (GP) model fit on the residual errors of the linear model. How-
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Procedure 15.5: FitModel(M, history, θinc) in SKO
SKO sets its incumbent θinc based on the learnt model

if M == ∅ or last hyper-parameter optimization occurred more than n steps ago then
Fit GP modelM and hyper-parameters for data {(history.θi, history.yi)}i∈{1,...,n};

else
Fit GP model M for data {(history.θi, history.yi)}i∈{1,...,n}, re-using
hyper-parameters saved in previous M;

end
Θseen ← ⋃n

i=1{history.θi};
for all θ ∈ Θseen do

[μθ , σ
2
θ
] ← Predict(M, θ);

end
θinc ← random element of argminθ∈Θ(μθ + σθ);
return [M,θinc];

Procedure 15.6: FitModel(M, history, θinc) in SPO
Recall that ĉ(θ) is the cost statistic across all runs with setting θ. SPO does not update its
incumbent θinc in this procedure

Θseen ← ⋃n
i=1{history.θi};

Fit GP model M and hyper-parameters for data {θ, ĉ(θ)}θ∈Θseen
, using fixed σ2 = 0;

return [M,θinc];

ever, both of them default to using only a single constant basis function in the linear

model, thus reducing the linear model component to a constant offset term, the mean

response value. Throughout this chapter, we use these defaults; the model we use is

thus an offset term plus a zero-mean GP model. Our implementation of SPO uses

the DACE Matlab toolbox to construct this predictive model, while SKO imple-

ments the respective equations itself. The exact equations used in both SKO and the

DACE toolbox implement methods to deal with ill-conditioning; we refer the reader

to the original publications for details (Huang et al. 2006, Bartz-Beielstein 2006,

Lophaven et al. 2002).

Procedure FitModel is called as

[M,θinc] = FitModel(M, history,θinc). (15.6)

When it is first called, M = ∅. Note that FitModel may update the incumbent

configuration, θinc. SKO makes use of this, while SPO does not. (Instead, SPO

updates θinc in Procedure Intensify.)
SKO uses Gaussian process regression in the conventional manner to fit noisy re-

sponse data directly; we describe this in Procedure 15.5. Note that when a GP model

is trained directly on noisy response data, measurement noise is assumed to be nor-

mally distributed, an assumption that is violated in many applications of parameter

optimization. While distributions of solution qualities across multiple runs of a ran-

domized heuristic algorithm can often be approximated quite well with a Gaussian

distribution, it is well known that the distributions of runtimes of randomized heuris-

tic algorithms for solving hard combinatorial problems tend to exhibit substantially
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fatter tails; see, e.g., Chap. 4 of Hoos and Stützle (2005). Also note that Gaussian

process regression assumes symmetric noise and fits the arithmetic mean of the re-

sponse that is used as input. Thus, if the inputs are raw response values, Gaussian

processes model mean response. Commonly, the response value is transformed in

order to yield a better model fit (see Sect. 15.4.2 for a more detailed discussion

of transformations). In particular, a log transformation appears to be reasonable in

many circumstances. However, note that under a log transformation, Gaussian pro-

cess regression fits the mean of the transformed response, which corresponds to the

geometric mean rather than the arithmetic mean of the true response.

As also described in Procedure 15.9, after fitting its model, SKO updates the

new configuration, θinc, based on the new model. The parameter setting that min-

imizes a GP model’s mean prediction is not necessarily the best choice for the in-

cumbent, because it may be based on dramatically fewer function evaluations than

other, similar-scoring configurations. Recognizing this fact, SKO implements a risk-

averse strategy: it picks the previously evaluated parameter setting that minimizes

predicted mean plus one predicted standard deviation.

SPO uses Gaussian process regression in a very different, nonstandard way, de-

scribed in Procedure 15.6. It first computes the user-defined empirical performance

metric ĉ(θ) for each parameter setting θ evaluated so far, and then fits a noise-free
GP model to learn a mapping from parameter settings to the performance metric.

This approach has several benefits and drawbacks. If we have executed a single

run with parameter setting θ1 and many runs with setting θ2, naturally our confi-

dence in performance estimate ĉ(θ1) will be lower than our confidence in ĉ(θ2).
SPO ignores this fact and collapses all information for a parameter setting θ to a

single value ĉ(θ), discarding all information on variance. On the other hand, fitting

the GP model to the performance metric directly enables SPO to optimize almost

arbitrary user-defined performance metrics, which could not be done with standard

GP models. Examples include median performance, variance across runs, and trade-

offs between mean and variance. To our best knowledge, SPO is the only existing

model-based method with such flexibility in the objective function being optimized.

Another benefit is that the assumption of normally-distributed response values is

dropped. The final benefit of collapsing the data to a single point per parameter set-

ting lies in the reduction in computational complexity thus achieved. While SKO

has cubic scaling behavior in the number of target algorithm runs performed, SPO

only takes time cubic in the number of disjoint parameter settings evaluated.

15.3.2.3 Selection of New Parameter Settings to Evaluate

Following Jones et al. (1998), both SKO and SPO use an expected improvement

criterion (EIC) to determine which parameter settings to investigate next, thereby

drawing on both the mean and variance predictions of the GP model. This criterion

trades off learning about new, unknown parts of the parameter space and intensifying

the search locally in the best known region (a so-called exploration/exploitation

trade-off).
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Procedure 15.7: SelectNewParameterSettings(M,θinc, history) in SKO
Θnew ← the single parameter setting found by optimizing the augmented expected
improvement criterion from (Huang et al. 2006) using the Nelder–Mead simplex method.
return Θnew

Procedure 15.8: SelectNewParameterSettings(M,θinc, history) in SPO
Note that m is a parameter of SPO

// ===== Select m parameter settings with expected improvement
Θrand ← set of 10, 000 elements drawn uniformly at random from Θ;
for all θ ∈ Θrand do

[μθ , σ
2
θ
] ← Predict(M, θ);

EI(θ) ← Compute expected improvement criterion E[I2(θ)] (see Sect. 15.5.2)
given μθ and σ2

θ
;

end
Θnew ← the m elements of Θrand with highest EI(θ);
return Θnew;

Procedure SelectNewParameterSettings is called as

Θnew = SelectNewParameterSettings(M,θinc, history). (15.7)

SKO selects a single new parameter setting by maximizing an augmented expected

improvement criterion using the Nelder-Mead simplex method. The augmentation

adds a bias away from parameter settings for which predictive variance is low; see

Huang et al. (2006). SPO, on the other hand, evaluates the E[I2] expected improve-

ment criterion (Schonlau et al. 1998) at 10, 000 randomly-selected parameter set-

tings, and chooses the m with the highest expected improvement; see Sect. 15.5.2

for more details. In this work, we use the defaultm = 1. For completeness, we give

the simple pseudocode for these methods in Procedures 15.8 and 15.7.

15.3.2.4 Intensification

Any parameter optimization method must make decisions about which parameter

setting θinc to return to the user as its incumbent solution, both if interrupted during

the search progress and (especially) upon completion. Candidate parameter settings

are suggested by Procedure SelectNewParameterSettings, and in order to decide

whether they, the current incumbent, or even another parameter setting should be-

come the new incumbent, we need to perform additional runs of the target algorithm.

Which parameter settings to use, how many runs to execute with each of them, and

how to determine the new incumbent based on those runs is specified in Procedure

Intensify, which is called as

[history,θinc] = Intensify(Θnew,θinc,M, history). (15.8)
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Procedure 15.9: Intensify(Θnew , θinc, M, history) in SKO
SKO does not update its incumbent in this procedure

θ ← the single element of Θnew;
history ← ExecuteRuns(history, θ, 1);
return [history,θinc];

Procedure 15.10: Intensify(Θnew , θinc, M, history) in SPO 0.3
After performing runs for the incumbent and the new parameter settings, SPO updates the
incumbent. Side effect: may increase the global number of repeats, r

for all θ ∈ Θnew do
history ← ExecuteRuns(history, θ, r);

end
history ← ExecuteRuns(history, θinc, r/2);
Θseen ← ⋃n

i=1{history.θi};
θinc ← random element of argminθ∈Θseen

ĉ(θ);
if θinc ∈ history.Θhist then r ← min{2r,maxR};
history.Θhist ← history.Θhist ∪ {θinc};
return [history,θinc];

Note that this procedure allows an update of the incumbent, θinc. SPO makes use of

this option, while SKO updates its incumbent in Procedure FitModel (see Procedure

15.5).

In order to provide more confident estimates for its incumbent, SPO implements

an explicit intensification strategy. In SPO, predictive uncertainty cannot be used

in the context of updating the incumbent parameter setting, because the underly-

ing noise-free GP model predicts uncertainty to be exactly zero at all previously

evaluated parameter settings. Instead, the number of evaluations performed for a

parameter setting is used as a measure of confidence. SPO performs additional runs

for its incumbent parameter setting θinc in order to challenge that configuration.

This is done to make sure that θinc did not merely happen to yield low response

values in the limited number of target algorithm runs previously performed with

θinc. The number of evaluations used in this context differs between SPO versions

0.3 and 0.4; Procedures 15.10 and 15.11 reflect the differences between these two

versions. In contrast, SKO does not implement an explicit intensification strategy; it

only performs a single run with each parameter setting considered.

15.3.3 Empirical Comparison of SKO and SPO

We empirically compared SKO and SPO on the CMA-ES test cases, based on the

same initial design (the one used by SKO) and with a limit of 200 runs of the target

algorithm.

We chose this low limit on the number of runs because the original SKO imple-

mentation was very slow: even limited to as few as 200 runs of the target algorithm,
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Procedure 15.11: Intensify(Θnew , θinc, M, history) in SPO 0.4
After performing runs for the incumbent and the new parameter settings, SPO updates the
incumbent. Side effect: may increase the global number of repeats, r

for all θ ∈ Θnew do
history ← ExecuteRuns(history, θ, r);

end
history ← ExecuteRuns(history, θinc, r −N(θinc));
Θseen ← ⋃n

i=1{history.θi};
θinc ← random element of argminθ∈Θseen

ĉ(θ);
if θinc ∈ history.Θhist then r ← min{r + 1,maxR};
history.Θhist ← history.Θhist ∪ {θinc};
return [history,θinc];

SKO runs took about one hour.2 SKO spent most of its time performing numerical

optimization of the expected improvement criterion. The iterations of SKO became

slower as a run progressed, and therefore we could only afford to perform tuning

runs for 200 runs of the target algorithm. For this reason and because SKO can

only optimize mean performance, we did not perform experiments with SKO for

the SAPS scenario, which features quite high observation noise and in which the

objective is to minimize median runtime.

We reimplemented SPO 0.3 and 0.4, as well as a new version, SPO+ (defined

in Sect. 15.5.1). We verified that the performance of our reimplemented SPO 0.4

matched that of the original SPO 0.4 implementation. The SPO runs were substan-

tially faster than those of SKO. They took about 2 minutes per repetition,3 85% of

which was spent running the target algorithm.

Our first set of experiments used original, untransformed CMA-ES solution qual-

ity as the objective function to be minimized; we show the results in Fig. 15.1. On

the Sphere function, the LHD already contained very good parameter settings, and

the challenge was mostly to select the best of these and stick with it. From the fig-

ure, we observe that SPO largely succeeded in doing this, while SKO did not. On

the Ackley function, SKO’s performance was quite good, except for a drastic spike

close to 200 runs of the target algorithm. On the Griewangk and Rastrigin functions,

the variation of performance across multiple runs of CMA-ES was very high. Cor-

2 We ran SKO on a 3 GHz Pentium 4 with 4 GB RAM running Windows XP Professional, Service
Pack 3. We report wall clock time on an otherwise idle system. (We did not use Linux machines for
these experiments because SKO only compiled for Windows.) In order to ascertain that the target
algorithm has exactly the same behavior as for other methods running under Linux, we gathered
the function values SKO requested by means of a wrapper script that connected to the machines
the SPO experiments were carried out on, performed a requested run of the target algorithm there,
and returned the result of the run. This incurred very little overhead. Finally, some SKO runs failed
due to problems in the numerical optimization of the expected improvement criterion. We repeated
those runs until they completed. These repetitions were nondeterministic due to measurement noise
in the objective function.
3 These experiments were carried out on a cluster of 55 dual 3.2 GHz Intel Xeon CPUs with 2 GB
RAM each and 2 MB cache per CPU, running OpenSuSE Linux 10.1. Each run only used one
CPU and we report CPU time.
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Fig. 15.1: Comparison of SKO and three variants of SPO for optimizing CMA-ES on the Sphere
function. We plot the solution cost ck of each method (mean solution quality CMA-ES achieved
in 100 test runs on each of the 4 test functions using the method’s chosen parameter settings) as
a function of the number of algorithm runs, k, it was allowed to perform. These values are aver-
aged across 25 runs of each method. All models were based on SKO’s initial design and original
untransformed data

respondingly, all approaches showed large variation in the quality of the parameter

settings they selected over time. (Intuitively, the parameter optimization procedure

detects a new region, which seems promising based on a few runs of the target al-

gorithm. Then, after additional target algorithm runs, that region is discovered to be

worse than initially thought, and the optimizer moves on. During the period it takes

to discover the true, poor nature of the region, the search returns a poor incumbent.)

SPO+ showed the most robust performance of the four parameter optimization pro-

cedures.

Secondly, we experimented with log-transformed qualities (see Sect. 15.4.2 for a

more detailed discussion of log-transformations). Figure 15.2 shows that this trans-

formation improved SKO performance quite substantially and did not affect the SPO

variants much. We attribute this to the fact that the quality of the model is much

more important in SKO. While SPO “only” uses the model in order to make deci-

sions about the next parameter setting to evaluate, SKO also uses it in order to select

its incumbent. After the log transformation, SKO and SPO+ performed comparably.
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Fig. 15.2: Comparison of SKO and three variants of SPO for optimizing CMA-ES on the Sphere
function. We plot the solution cost ck of each method (mean solution quality CMA-ES achieved
in 100 test runs on each of the 4 test functions using the method’s chosen parameter settings) as a
function of the number of algorithm runs, k, it was allowed to perform. These values are averaged
across 25 runs of each method. All models were based on SKO’s initial design and log-transformed
data (for SPO as discussed in Sect. 15.4.2)

For three main reasons, we decided to focus the remainder of this study on various

aspects of the SPO framework. Firstly, our main interest is in complex scenarios, in

which the predictive model might not actually perform very well. In such scenar-

ios, we believe it is important to employ an explicit intensification criterion instead

of relying on the model alone to select incumbents. Secondly, SPO has the advan-

tage of being able to optimize a variety of user-defined objective functions, while

the Gaussian process model underlying SKO can only fit the mean of the data. In

practice, users might be more interested in statistics other than mean performance,

such as the best out of ten algorithm runs. SPO implements this performance metric

and also allows for many other options. Finally, the SKO implementation we used

was simply too slow to perform the type of experiments with tens of the thousands

of target algorithm runs that interested us. Nevertheless, a worthwhile direction for

future work would be to experiment with explicit intensification mechanisms in the

SKO framework.
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15.4 Model Quality

It is not obvious that a model-based parameter optimization procedure needs models

that accurately predict target algorithm performance across all parameter settings,

particularly including very bad ones. Nevertheless, all else being equal, models with

good overall accuracy are generally helpful to such methods, and are furthermore

essential to more general tasks such as performance robustness analysis. In this

section, we investigate the effects of two key model-design choices on the accuracy

of the GP models used by SPO.

15.4.1 Choosing the Initial Design

In the overall approach described in Algorithm Framework 15.1, an initial parameter

response model is determined by constructing a GP model based on the target al-

gorithm’s performance on a given set of parameter settings (the initial design). This
initial model is then subsequently updated based on runs of the target algorithm ith

additional parameter settings. The decision about which additional parameter set-

tings to select is based on the current model.

It is reasonable to expect that the quality of the final model (and the performance-

optimizing parameter setting determined from it) would depend on the quality of

the initial model. Therefore, we studied the overall accuracy of the initial parame-

ter response models constructed based on various initial designs. The effect of the

number of parameter settings in the initial design, d, as well as the number of rep-

etitions for each parameter setting, r, has been studied before (Bartz-Beielstein and

Preuss 2006), and we thus fixed them in this study.4 Specifically, we used r = 2 and
d = 250, such that when methods were allowed 1, 000 runs of the target algorithm,

half of them were chosen with the initial design.

Here, we study the effect of the method for choosing which 250 parameter set-

tings to include in the initial design, considering four methods: (1) a uniform random

sample from the region of interest; (2) a random Latin hypercube design (LHD); (3)

the LHD used in SPO; and (4) a more complex LHD based on iterated distributed
hypercube sampling (IHS) (Beachkofski and Grandhi 2002).

We evaluated the parameter response models obtained using these initialisation

strategies by assessing how closely model predictions at previously unseen parame-

ter settings matched the true performance achieved using these settings. In particu-

lar, we were interested in how useful the predictions were for determining whether

a given parameter setting performed better or worse than others. In order to an-

swer this question, we evaluated the Spearman correlation coefficient between true

and predicted performance for 250 randomly-sampled test parameter settings. This

4 We do note, however, that this previous work has not conclusively answered the question of how
best to set the initial design size, and thus that this question continues to present an open research
problem.
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Fig. 15.3: Performance of models based on different initial designs and raw, untransformed data.
We computed the Spearman correlation coefficient (CC) between actual and predicted performance
for 250 randomly selected test parameter settings and show boxplots across 25 independent repe-
titions. Each repetition used the same test parameter settings
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Fig. 15.4: Performance of models based on different initial designs and log-transformed data. We
compute the Spearman correlation coefficient (CC) between actual and predicted performance for
250 randomly selected test parameter settings and show boxplots across 25 independent repetitions.
Each repetition used the same test parameter settings
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value lies on the interval [-1,1], with 1 indicating perfect correlation of the predicted
and the true ranks, 0 indicating no correlation, and −1 perfect anti-correlation.

The results of this analysis for our five test cases are summarized in Fig. 15.3.

Overall, for the original untransformed data we observed little variation in predictive

quality due to the procedure used for constructing the initial design. This observation

is consistent with others that have been made in the literature; for example, Santner

et al. (2003, p.149) state: “It has not been demonstrated that LHDs are superior

to any designs other than simple random sampling (and they are only superior to

simple random sampling in some cases).”

15.4.2 Transforming Performance Data

The second issue we investigated was whether more accurate models could be ob-

tained by using log-transformed performance data for building and updating the

model. Our consideration of this transformation was motivated by the fact that our

main interest is in minimizing positive functions with spreads of several orders of

magnitude that arise in the optimization of runtimes. Indeed, we have used log-

transformations for predicting runtimes of algorithms in different contexts before

(see., e.g., Leyton-Brown et al. (2002)). All of the test functions we consider for

CMA-ES are also positive functions; in general, non-positive functions can be trans-

formed to positive functions by subtracting a lower bound. In the context of model-

based optimization, log transformations were previously advocated by Jones et al.

(1998). The problem studied in that work was slightly different in that the functions

considered were noise free. We adapt Jones et al. ’s approach by first computing per-

formance metrics (such as median runtime) and then fitting a GP model to the log-

transformed metrics. Note that this is different from fitting a GP model to the log-

transformed noisy data as done by Williams et al. (2000) and Huang et al. (2006).

As discussed earlier, the performance metric that is implicitly optimized under this

latter approach is geometric mean performance, which is a poor choice in situations

where performance variations change considerably depending on the parameter set-

ting. In contrast, when first computing performance metrics and then applying a

transformation, any performance metric can be optimized, and we do not need to

assume a Gaussian noise model. Finally, Bartz-Beielstein et al. (2008b) and Konen

et al. (2009) report similar results based on square-root or cube-root transformations

as indeed does Leyton-Brown (2003); see also the discussion of transformations in

Chap. 2 of this book.

We experimentally evaluated the impact of log transformations. For the same

data as in the previous section (initial designs with 250 parameter settings, 2 repe-

titions each), we fit noise-free GP models based on log-transformed cost statistics.

That is, for each of the 250 parameter settings, θ1, . . . ,θ250, we first computed

the mean of the two responses, ĉ(θi), and then constructed a model using the data

{(θ1, ĉ(θ1)), . . . , (θ250, ĉ(θ250))}. We then computed predictions for the same 250

test parameters settings used in the previous section and evaluated the Spearman
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Fig. 15.5: Performance of noise-free GP models for CMA-ES-sphere based on an initial design
using a random LHD; in (a) and (c) we plot mean ± one standard deviation of the prediction.
For better visual comparison to (c), (b) shows exactly the same mean predictions as (a), but on a
log–log scale, restricted to the 228/250 data points whose predicted response values were positive

correlations between predicted and true responses. As can be seen from the results

reported in Fig. 15.4, the use of log-transformed performance data tended to re-

sult in much better model accuracy than the use of raw performance data. In some

cases, the improvements were quite drastic. For example, for CMA-ES-sphere, the

Spearman correlation coefficient improved from below 0.4 to above 0.9 when us-

ing models based on log-transformed performance data. Figure 15.5 illustrates the

predictive accuracy and predictive uncertainty of these two models.

15.5 Sequential Experimental Design

Having studied the initial design, we now turn our attention to the sequential search

for performance-optimizing parameters. Since log transformations consistently led
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to improved performance, and since random LHDs yielded performance comparable

to that of more complex designs, we fixed these two design choices.

15.5.1 Intensification Mechanism

In order to achieve good results when optimizing parameters based on a noisy per-

formance metric such as runtime or solution quality achieved by a randomized al-

gorithm, it is important to perform a sufficient number of runs for the parameter set-

tings considered. However, runs of a given target algorithm on interesting problem

instances are typically computationally expensive. There is thus a delicate trade-off

between the number of algorithm runs performed on each parameter setting and the

number of parameter settings considered over the course of the optimization pro-

cess.

Realizing the importance of this trade-off, SPO implements a mechanism for

gradually increasing the number of runs to be performed for each parameter setting

during the parameter optimization process. In particular, SPO increases the number

of runs to be performed for each subsequent parameter setting whenever the incum-

bent θinc selected in an iteration was already the incumbent in some previous itera-

tion. SPO 0.3 (Bartz-Beielstein et al. 2005, Bartz-Beielstein 2006, Bartz-Beielstein

and Preuss 2006) doubles the number of subsequent target algorithm runs whenever

this happens; SPO 0.4 only increments the number of runs by one each time; see

Procedures 15.10 and 15.11 in Sect. 15.3.2.4. Both versions perform additional runs

for the current incumbent, θinc, to make sure it is used in as many runs of the target

algorithm as any new parameter setting. 5

While the intensification mechanisms of SPO 0.3 and SPO 0.4 work well in most

cases, we have encountered runs of SPO in high-noise scenarios in which there are

many parameter settings with few, “lucky” target algorithm runs that allow them to

become incumbents. In those runs of SPO, a new incumbent was picked in almost

every iteration, because the previous incumbent had been found to be poor after

additional runs were performed on it. This situation continued throughout the entire

parameter optimization process, leading to a final choice of parameter settings that

had only been evaluated using very few (“lucky”) target algorithm runs and that

performed poorly in independent test runs.6

5 Another approach for allocating an appropriate number of target algorithm runs to each param-
eter setting is Chen et al. (2003)’s optimal computational budget allocation (OCBA). Lasarczyk
(2007) implemented OCBA as an explicit intensification method to improve SPO’s selection pro-
cedure, especially in high-noise scenarios. This implementation was done in R (Ihaka and Gen-
tleman 1996), and forthcoming versions of SPOT, which will also be based on R, will include
OCBA.
6 One possible explanation of this scenario is that SPO has problems when the number of LHD
points is large (e.g., d = 250 in our experiments) in high-noise scenarios. SPO selects its incumbent
as the previously visited parameter setting with the best empirical performance across the runs
performed with it. All parameter settings in the LHD count as “previously visited”. Thus, the
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Procedure 15.12: Intensify(Θnew , θinc, M, history) in SPO+

Recall that N(θ) denotes the number of algorithm runs which have been performed for
θ; it depends on the history

for all θ ∈ Θnew do
r ← 1;
history ← ExecuteRuns(history, θ, 1);
numBonus ← 1;
if N(θ) > N(θinc) then

history ← ExecuteRuns(history, θinc, 1);
numBonus ← 0;

end
while true do

if ĉ(θ) > ĉ(θinc) then

// ===== Reject challenger, perform bonus runs for θinc

history ← ExecuteRuns(history, θinc,
min(numBonus,maxN−N(θinc)));
break;

end
if N(θ) ≥ N(θinc) then

// ===== Challenger becomes incumbent
θinc ← θ;
break;

end
if TerminationCriterion() then

return [θinc, history];
end
r ← min(2r,N(θinc)−N(θ));
history ← ExecuteRuns(history, θ, r);
numBonus ← numBonus +r;

end
end
return [history,θinc];

This observation motivated us to introduce a different intensification mechanism

that guarantees increasing confidence about the performance of the parameter set-

tings we select as incumbents. In particular, inspired by the mechanism used in

FocusedILS (Hutter et al. 2007), we maintain the invariant that we never choose

an incumbent unless it is the parameter setting with the most function evaluations.

Promising parameter settings are given additional function evaluations until either

they cease to appear promising or they receive enough function evaluations to be-

come the new incumbent. We provide pseudocode for this new intensification mech-

anism in Procedure 15.12.

In detail, our new intensification mechanism works as follows. In the first iter-

ation, the incumbent is chosen exactly as in SPO, because all parameter settings

receive the same number of function evaluations. From then on, in each iteration

we select a set of parameter settings and compare them to the incumbent θinc. We

larger the LHD, the more runs need to be performed in order for decisions about the incumbent to
be based on a minimum number of runs.
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Procedure 15.13: SelectNewParameterSettings(M,θinc, history) in SPO+

Recall that p andm are parameters of SPO+. We usem = 1 and p = 5 in our experiments

// ===== Select m parameter settings with expected improvement
Θrand ← set of 10, 000 elements drawn uniformly at random from Θ;
for all θ ∈ Θrand do

[μθ , σ
2
θ
] ← Predict(M, θ);

EI(θ) ← Compute expected improvement criterion given μθ and σ2
θ
;

end
Θnew ← the m elements θ of Θrand with highest EI(θ);

// ===== Select p previously used parameter settings
Θ ← ⋃n

i=1{history.θi};
Θprevious ← p elements θ ∈ Θ, drawn without repetitions with prob. proportional to
1/ĉ(θ);
return Θnew ∪Θprevious;

denote the number of runs that have so far been executed with parameter setting θ as

N(θ), and the corresponding empirical performance as ĉ(θ). For each selected set-

ting θ, we iteratively perform runs until N(θ) ≥ N(θinc) and/or ĉ(θ) > ĉ(θinc).
7

Whenever we reach a point where N(θ) ≥ N(θinc) and ĉ(θ) ≤ ĉ(θinc), we select
θ as the new incumbent. On the other hand, if we ever observe ĉ(θ) > ĉ(θinc),
we reject θ. Note this criterion for rejection is very aggressive. Indeed, rejection

frequently occurs after a single run, at a point where a statistical test would not be

able to conclude that θ is worse than θinc. Upon rejecting a configuration θ, we also
perform as many additional runs for θinc as were just performed for evaluating θ.
This ensures that the number of runs used for intensification is comparable to that

used for exploration of new parameter settings.

The parameter settings we evaluate against θinc at each iteration include one new

parameter setting selected based on an expected improvement criterion (here E[I2],
see Sect. 15.5.2). They also include p previously evaluated parameter settings θ1:p,

where p is an algorithm parameter and in this work always set to 5. This set is con-

structed by selecting p previously evaluated settings θ with probability proportional

to 1/ĉ(θ), without replacement. Procedure 15.13 provides pseudocode for this se-

lection of parameter settings to evaluate against θinc.

This mechanism guarantees that at each step there will be a positive probabil-

ity of reevaluating a potentially optimal parameter setting after it has been rejected.

It allows us to be aggressive in rejecting new candidates, since we can always get

back to the most promising ones. Note that if the other SPO variants (0.3 and 0.4)

discover the true optimal parameter setting θbest but observe one or more very “un-

lucky” runs on it, θbest will never be revisited, because the underlying noise-free GP

model attributes a high mean and zero uncertainty to any previously visited parame-

ter setting for which poor empirical performance has been observed across the target

7 We batch runs to reduce overhead, starting with a single new run for each θ and doubling the
number of new runs iteratively up to a maximum of N(θinc)−N(θ) runs.



15 Sequential Model-Based Parameter Optimization: An Experimental Investigation 387

algorithm runs performed for it. Therefore, no expected improvement criterion will

select such a parameter setting again in later iterations.
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Fig. 15.6: Comparison of different intensification mechanisms for optimizing CMA-ES perfor-
mance. We show boxplots of solution cost c1,000 achieved in the 25 runs of each parameter opti-
mizer for each test case

Table 15.4: The p-values for pairwise comparisons of different intensification mechanisms for
optimizing the performance of CMA-ES on our standard benchmarks. These p-values correspond
to the data in Fig. 15.6 and are based on a pairwise Max-Wilcoxon test as described in Sect. 15.2

Sphere Ackley Griewangk Rastrigin

SPO 0.3 versus SPO 0.4 0.07 0.015 0.95 1

SPO 0.3 versus SPO+ 0.20 0.020 0.00006 0.0005
SPO 0.4 versus SPO+ 0.56 0.97 0.00009 0.0014

We denote as SPO+ the variant of SPO that uses a random LHD, log-transformed

data (for positive functions only; otherwise untransformed data), expected im-

provement criterion E[I2], and the new intensification criterion just described.

We compared SPO 0.3, SPO 0.4, and SPO+—all based on a random LHD and

log-transformed data—for our CMA-ES test cases and summarize the results in

Fig. 15.6 and Table 15.4. For the Ackley function, SPO 0.4 performed best on aver-

age, but only insignificantly better than SPO+, one of whose runs performed quite

poorly. For the Sphere function, on average SPO+ performed insignificantly bet-
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ter than the other SPO variants, showing better median performance and no poor

outliers among its 25 runs. For the other two functions, SPO+ performed both sig-

nificantly and substantially better than either SPO 0.3 or SPO 0.4, finding parameter

settings that led to CMA-ES performance orders of magnitude better than those

obtained from SPO 0.3.
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Fig. 15.7: Solution cost ck (mean solution quality CMA-ES achieved in 100 test runs using the
method’s chosen parameter settings) of SPO 0.3, SPO 0.4, and SPO+, as a function of the number
of target algorithm runs, k, the method is allowed. We plot means of ck across 25 repetitions of
each parameter optimization procedure

More importantly, as can be seen in Fig. 15.7, over the course of the optimization

process, SPO+ showed much less variation in the quality of the incumbent param-

eter setting than the other SPO variants did. This was the case even for the Ackley

function, where SPO+ did not perform best on average at the very end of its trajec-

tory, and can also be seen on the Griewangk and Rastrigin functions, where SPO+

clearly produced the best results.

We now take a more in-depth look at how the mean solution costs ck come about.

To do this, for each of the four test cases, we extracted the finally-chosen parameter

settings from nine automated parameter optimization runs: the best, median, and

worst settings of each of SPO 0.3, SPO 0.4, and SPO+, all with respect to test
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Fig. 15.8: Boxplots comparing automatically-identified parameter settings to those found with the
interactive procedure. In the axis labels, “b” stands for the parameter setting of the best run of that
parameter optimizer (with respect to “original” test performance), “m” stands for the median-best
one, and “w” for the worst. IA stands for the interactively found setting. Each run of the interactive
process used fewer than 200 function evaluations, whereas the automated optimization procedures
were allowed 1,000 evaluations per run. In order to avoid clutter in subfigure (c), we plot data
points below 0.1 as 0.1 (-1 after log10 transformation); note the poor performance of SPO 0.3’s
worst run
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Fig. 15.9: Same as Fig. 8(d), but using 1,000 instead of 100 runs of CMA-ES to evaluate each
parameter setting. Note the very poor performance of some CMA-ES runs with the parameter
setting from the worst run of SPO 0.4. For this parameter setting, the cloud of points with much
higher solution cost than any of the other runs contains 14 points

set performance. Recall that this test set performance is the mean solution quality

across 100 test runs of CMA-ES. To obtain an independent estimate of a parameter

setting’s true performance, we performed an additional 100 test runs of CMA-ES

for each of these nine parameter settings, with a set of random number seeds disjoint

from those used in the original test set.

In Fig. 15.8, we plot the performance of these nine parameter settings for the 100

new seeds. (The figure also shows a parameter setting IA, found by our interactive

approach. We defer its discussion until Sect. 15.6.) For test case CMA-ES-Sphere,

all selected parameter settings performed very similarly. In test case CMA-ES-

Ackley, SPO+ seemed to perform slightly better than SPO 0.3 and 0.4, especially

in their respective worst runs.

In test case CMA-ES-Rastrigin, note that most selected parameter settings

yielded comparable performance, with the exception of the one identified in the

worst repetition of SPO 0.3. With several runs whose performance was about five

orders of magnitude worse than the remaining runs, this parameter setting was re-

sponsible for the poor mean performance across the 25 runs indicated in Fig. 7(d).

Note that the SPO 0.3 run returning this poor parameter setting selected it just be-

fore running out of its budget of 1,000 calls to CMA-ES. Likewise, one mostly poor

SPO 0.4 run selected a good setting just before reaching the limit on target algorithm

runs. As we can see in Fig. 7(d), SPO+ performed much more robustly.

In test case CMA-ES-Griewangk, the situation is somewhat more complicated.

While Fig. 7(c) shows very sensitive behavior of SPO 0.3 and SPO 0.4, we do not

see any evidence for this in Fig. 8(d). Since the evaluation in Fig. 8(d) used 100

different random seeds (different from both the initial random seeds used during

parameter optimization and from the “test” random seeds used to produce Fig. 8(d))

there was no guarantee of obtaining similar performance. Indeed, the measured per-

formances for the parameter settings from the worst run of SPO 0.3 and 0.4 were

quite different than previously observed; while they yielded poor mean performance
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before, they did quite well based on the new set of 100 test seeds. We repeated the

evaluation with a larger set of 1,000 random seeds and show the result in Fig. 15.9.

In this experiment, 14 of the 1,000 CMA-ES runs for the worst repetition of SPO

0.4 showed extremely poor performance. For the setting from the worst run of SPO

0.3, even these 1,000 test runs did not explain the poor performance in Fig. 7(c).

To study this further, we performed 100, 000 additional test runs for this setting and
found that nine of them yielded similarly poor performance as the 14/1000 poor

CMA-ES for the setting above (best function values around 102). Another roughly
8500 runs yielded results around 10−2 and the rest (about 91, 500 runs) yielded re-

sults < 10−10. The optimization of target algorithms with such multimodal result

distributions requires a large number of target algorithm runs: in the case above, a

very sensitive setting performed just as well as a robust one based on as many as

1,000 runs of the target algorithm.

15.5.2 Expected Improvement Criterion
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Fig. 15.10: Comparison of different expected improvement criteria for optimizing the performance
of CMA-ES on our standard benchmarks. We show boxplots of performance c1000 achieved in the
25 runs of each optimizer for each test case

In sequential model-based optimization, parameter settings to be investigated are

selected based on an expected improvement criterion (EIC). This aims to address

the exploration/exploitation trade-off between learning about new, unknown parts
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Table 15.5: The p-values for pairwise comparisons of different expected improvement criteria for
optimizing the performance of CMA-ES on our standard benchmarks. These p-values correspond
to the data in Fig. 15.10 and are based on a pairwise Max-Wilcoxon test as described in Sect. 15.2

Sphere Ackley Griewangk Rastrigin

E[I] vs E[I2] 0.29 0.55 0.016 0.90
E[I] vs E[Iexp] 0.63 0.25 0.11 0.030
E[I2] vs E[Iexp] 0.54 0.32 0.77 0.38

of the parameter space and intensifying the search locally in the best known region.

We briefly summarize two common versions of the EIC, and then describe a novel

variation that we also investigated.

The classic expected improvement criterion used by Jones et al. (1998) is defined

as follows. Given a deterministic function f and the minimal value fmin seen so far,

the improvement at a new parameter setting θ is defined as

I(θ) := max{0, fmin − f(θ)}. (15.9)

Of course, this quantity cannot be computed, since f(θ) is unknown. We therefore

compute the expected improvement, E[I(θ)]. To do so, we require a probabilistic

model of f , in our case the GP model. Let μθ := E[f(θ)] be the mean and σ2
θ be

the variance predicted by our model, and define u := (fmin − μθ)/σθ . Then one

can show that E[I(θ)] has the following closed-form expression:

E[I(θ)] = σθ × [u× Φ(u) + ϕ(u)], (15.10)

where ϕ and Φ denote the probability density function and cumulative distribution

function of a standard normal distribution, respectively.

A generalized expected improvement criterion was introduced by Schonlau et al.

(1998), who considered the quantity

Ig(θ) := max{0, [fmin − f(θ)]g} (15.11)

for g ∈ {0, 1, 2, 3, . . .}, with larger g encouraging more global search behavior. The

value g = 1 corresponds to the classic EIC. SPO uses g = 2, which takes into

account the uncertainty in our estimate of I(θ), since E[I2(θ)] = (E[I(θ)])2 +
Var(I(θ)) and can be computed by the closed-form formula

E[I2(θ)] = σ2
θ × [(u2 + 1)× Φ(u) + u× ϕ(u)]. (15.12)

One issue that seems to have been overlooked in previous work is the interaction

between log-transformations of the data and the EIC. When we use a log trans-

formation, we do so in order to increase predictive accuracy, yet our loss function

continues to be defined in terms of the untransformed data (e.g., actual runtimes).

Hence we should optimize the criterion
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Iexp(θ) := max{0, fmin − eh(θ)}, (15.13)

where h(·) predicts log performance and fmin is the untransformed best known

function value.

Let v := (ln(fmin)−μθ)/σθ . Then, we have the following closed-form expres-

sion (see the appendix for the proof):

E[Iexp(θ)] = fminΦ(v)− e
1
2σ

2

θ
+μθ × Φ(v − σθ). (15.14)

In Fig. 15.10 and Table 15.5, we experimentally compare SPO+ with these

three expected improvement criteria on the CMA-ES test cases, based on a ran-

dom LHD and log-transformed data. Overall, the differences are small. On average,

E[I2] yielded the best results for test case CMA-ES-sphere, and our new crite-

rion E[Iexp] performed best in the remaining cases. Even though not visually obvi-

ous from the boxplots, 2 of the 12 pairwise differences were statistically significant

based on a Max-Wilcoxon test.

15.5.3 Overall Evaluation

Table 15.6: Comparison of final performance of various parameter optimization procedures for
optimizing SAPS on instance QWH. We report mean ± standard deviation of performance c20000
(median search steps SAPS required on instance QWH in 1,000 test runs using the parameter
settings the method chose after 20, 000 algorithm runs), across 25 repetitions of each method.
Based on a Mann-Whitney U test, SPO+ performed significantly better than CALIBRA, BasicILS,
FocusedILS, and SPO 0.3 with p-values 0.015, 0.0002, 0.0009, and 4 × 10−9, respectively. The
p-value for a comparison against SPO 0.4 was 0.06

Procedure SAPS median runtime [search steps]

SAPS default from Hutter et al. (2002) 85.5× 103

CALIBRA(100) from Hutter et al. (2007) 10.7× 103 ± 1.1× 103

BasicILS(100) from Hutter et al. (2007) 10.9× 103 ± 0.6× 103

FocusedILS from Hutter et al. (2007) 10.6× 103 ± 0.5× 103

SPO 0.3 18.3× 103 ± 13.7× 103

SPO 0.4 10.4× 103 ± 0.7× 103

SPO+ 10.0× 103 ± 0.4× 103

In Sects. 15.5.1 and 15.5.2, we fixed the design choices of using log transfor-

mations and initial designs based on random LHDs. Now, we revisit these choices.

Using our new SPO+ intensification criterion and expected improvement criterion

E[I2], we studied how much the final performance of SPO+ changed when not

using a log-transformation and when using different methods to create the initial

design. Not surprisingly, none of the initial designs led to significantly better fi-

nal performance than any of the others. The result for the log transformation was
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Fig. 15.11: Comparison of SKO and two variants of SPO (discussed in Sect. 15.5.1) for optimiz-
ing CMA-ES on the Sphere function. Comparison of SPO variants (all based on a random LHD
and log-transformed data) for minimizing SAPS median runtime on instance QWH. We plot the
solution cost ck of each method (median search steps SAPS required on instance QWH in 1,000
test runs using the parameter settings the method chose after k algorithm runs), as a function of the
number of algorithm runs, k, it was allowed to perform. These values are averaged across 25 runs
of each method

more surprising. Although we saw in Sect. 15.4 that the log transformation consis-

tently improved predictive model performance, based on a Mann-Whitney U test it

turned out to significantly improve final parameter optimization performance only

for CMA-ES-sphere.

Finally, we compared the performance of SPO 0.3, 0.4, and SPO+ (all based on

random LHDs and using log-transformed data) to the parameter optimization meth-

ods studied by Hutter et al. (2007). We summarize the results in Table 15.6. While

SPO 0.3 performed worse than the other methods, SPO 0.4 performed comparably,

and SPO+ outperformed all methods with the exception of SPO 0.4 significantly.

Figure 15.11 illustrates the difference between SPO 0.3, SPO 0.4, and SPO+ for

this SAPS benchmark. Similar to what we observed for CMA-ES (Fig. 15.7), SPO

0.3 and 0.4 changed their incumbents very frequently, with SPO 0.4 showing more

robust behavior than SPO 0.3, and SPO+ in turn much more robust behavior than

SPO 0.4.

15.6 Interactive Exploration of Parameter Space

The automated methods discussed so far in this chapter can be very effective when

it is possible to perform a relatively large number of evaluations of the given tar-

get algorithm to be optimized. However, there are cases in which target algorithm

evaluations are overwhelmingly costly compared to the overall computational re-

sources and time available for the parameter optimization process. Real-world ap-

plications of this nature can be found in the optimization of engineering designs

in the aerospace and automotive industry (Alexandrov et al. 2001), in hydrological
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applications (Mayer et al. 2002), and in climate modeling. In those examples, the

algorithms to be optimized control or model the behavior of complex systems, and

evaluating their performance for a single parameter configuration can take hundreds

of CPU hours. In such cases, the number of parameter configurations that can be

evaluated is severely limited, and approaches that achieve good results based on a

small number of evaluations are required. In the following, we explore an interactive

approach for model-based parameter optimization that utilizes human judgment and

insight in conjunction with statistical methods.

15.6.1 Using SPOT Interactively

The sequential parameter optimization toolbox (SPOT) was developed to improve

the performance of algorithms and to gain insight into their working mechanisms

(Beielstein 2003). When using SPOT interactively, the experimenter makes use of

the statistical analysis techniques supported by the toolbox to sequentially select

new settings for the given target algorithm. The general flow of the interactive se-

quential parameter optimization process is illustrated in Fig. 14.2 on page 346. We

will illustrate this interactive approach by means of a case study, in which we focus

primarily on the performance of CMA-ES on the Rastrigin function. This function

was chosen because the previously studied, fully-automated SPO procedures SPO

0.3 and SPO 0.4 performed relatively poorly compared to SPO+(see, e.g., Fig. 15.1).

The interactive approach might shed some light on this poor performance, since it

provides tools for understanding the structure of the search space (ROI) and the

determination of factor effects. Later, we also report results for CMA-ES on the

other three classical test problems from global optimization introduced in Sect. 15.2

(Sphere, Griewangk, and Ackley). We note that, while in principle, the interactive

approach can be applied to the optimization of any objective function, the linear

regression models used in the following fit arithmetic mean performance. Further,

although experimenters working in the context of real-world performance optimiza-

tion tasks often rely upon prior knowledge about the target algorithm, here we as-

sume, for the sake of generality, that no prior knowledge is available regarding im-

portant parameters, optimal experimental designs or regression models (predictors)

for the target algorithm. We do, however, assume some general knowledge about

reasonable ranges for parameters of evolutionary strategies, such as CMA-ES.

15.6.1.1 Pre-experimental Planning

In the pre-experimental planning phase, we have to select an initial design, a pre-

dictor, and a quality measure. Our goal is to improve CMA-ES, which requires the

specification of the four parameters NPARENTS, NU, CS, and DAMPS. As a

rule of thumb, we assert that the experimenter should not invest more than about

a quarter of the available budget (here the number of CMA-ES runs) in the first
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design.8 In most circumstances, it is unwise to plan too comprehensive a design at

this outset (Box et al. 1978).

In light of our goal of keeping the number of configurations to be evaluated rel-

atively small, we have chosen a Box–Behnken design as the initial design (Box and

Behnken 1960, Pukelsheim 1993). Box–Behnken designs are central composite de-

signs that augment 2k designs with center points (see also the discussion of de-

signs in Chap. 3 of this book). Box–Behnken designs can be used to calibrate full

quadratic models; furthermore, they are rotatable and, when the number of factors

is four or fewer, require fewer runs than central composite designs. (Chapts. 2 and 3

in this book discuss further design considerations.) Box–Behnken designs avoid the

corners of the region of interest and allow experimenters to work around extreme

factor combinations. This is especially important for the optimization of CMA-ES,

because large NPARENTS and large NU values at the same time are expected to

produce poor results. The four-factor Box–Behnken design used in the first step of

our analysis requires 27 runs (Pukelsheim 1993).

We now discuss how the region of interest (ROI) was determined for our exper-

iments. We note that this determination of the ROI settings is an integral part of

the interactive approach and more elaborate than in the previously discussed auto-

mated approach. Imagine that a single run of CMA-ES has a budget of t = 10, 000
function evaluations. (Note that here we discuss the number of function evalu-

ations performed by every CMA-ES run, not the number of CMA-ES parame-

ter settings that can be evaluated by the experimenter.) As a rule of thumb, the

smallest number of generations for evolutionary algorithms that use some step-

length adaptation is g = 10. This gives an upper limit for the population size of

NPARENTS × NU = 1, 000, so NPARENTSmax = 100 and NUmax = 10
are reasonable values. The lower bounds of the region of interest for these two vari-

ables was chosen asNPARENTSmin = 2 andNUmin = 2. Since no information

about reasonable settings for CS and DAMPS is known, we have chosen the max-

imum interval length, i.e., CS ∈ [0.1; 1] and DAMPS ∈ [0.25; 0.99]. In general,

we recommend liberally-chosen intervals in the absence of prior knowledge justify-

ing tighter bounds.

15.6.1.2 Prediction Model

First, we consider a linear model without interactions. We apply a logarithmic trans-

formation because it improves the fit. The transformation is motivated by model di-

8 Note, however, that there are exceptions to this rule. For example, Bartz-Beielstein and Preuss
(2006) state:

The experimental analysis clearly demonstrated that the determination of a suitable ini-
tial design is of crucial importance for the second phase, which performs a local tuning.
To play safe, we recommend increasing the number of initial design points. The number
of sequential optimization steps could be reduced in many situations without a significant
performance loss.
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agnostics, e.g., residuals plotted versus predicted values and histogram plots of the

data. Our regression modeling is based on coded variables, i.e., {−1, 0,+1}, rather
than on the natural variables of the target algorithm. For example, consider a re-

gion of interest for some variable in the range from one to ten. The coded variables

{−1, 0,+1} correspond to the natural variables {1, 5.5, 10}. (Transformations and

standardizations are discussed in Chaps. 2 and 3 of this book. See also Kleijnen

(2008, p.30-31).) The linear regression model is given by

yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

where the xi’s are explanatory variables (or predictors) representing NPARENTS,

NU, CS, and DAMPS, and the βi’s can be estimated using the method of least

squares. Further details are presented in the Appendix to this book. Here, y denotes

the function value produced by the run of the target algorithm (CMA-ES). The

fitted least squares equation we obtained based on data from the first 27 runs was

ŷ = 3.8 + 0.93x1 + 1.37x2 − 1.84x3 + 0.39x4.

In addition, we also performed visual inspections, e.g., on the basis of added-

variable plots (see also Chap. 14). Box and Draper (1987) mention some elementary

checks for interaction and curvature. For example, a comparison of the average yc
at the center of the design with the average of the remaining points of the Box–

Behnken design y−c gives a measure of the overall curvature of the response surface.

15.6.1.3 Model Selection

Next, we check whether interaction terms should be included into the model. This

is done by increasing model complexity in a stepwise manner. R’s stepAIC()
function is used for performing model searches by the Akaike information criterion
(AIC) (Venables and Ripley 2002). Here, smaller AIC values are better. The func-

tion stepAIC() can be used for an automated stepwise selection procedure. It re-

quires a fitted model to define the starting process and a list of two formulae defining

the most complex and the simplest models. We have chosen the linear model with

two-factor interactions as the most complex model, and the model which includes

the four main factors only as the simplest model. The automated search leads to

a model which, in addition to the four main factors, includes interactions between

NPARENTS and NU, DAMPS and CS, and NU and CS. Figure 15.12 shows the

output from this analysis. We note that it is easy to be misled by this automated

model search, and experience shows that different variables could be selected if the

stepAIC() procedure were repeated on a new, similar data set (Dalgaard 2002).

In many cases, the decision between models cannot be based on the data alone,

but should take into consideration results from previous investigations or theoretical

considerations. Therefore, it is recommended that users carefully evaluate results

obtained by the stepAIC() procedure.
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Stepwise Model Path
Analysis of Deviance Table
Initial Model:
Y ~ NPARENTS + NU + DAMPS + CS
Final Model:
Y ~ NPARENTS + NU + DAMPS + CS + NPARENTS:NU + DAMPS:CS +

NU:CS
Step Df Deviance Resid. Df Resid. Dev AIC

1 22 57.95982 30.62566
2 + NPARENTS:NU 1 7.082627 21 50.87720 29.10660
3 + CS:DAMPS 1 5.881372 20 44.99582 27.78979
4 + NU:CS 1 4.350343 19 40.64548 27.04437

Fig. 15.12: Output from R’s stepAIC() procedure

In the second step of the model selection process, we analyze the enhanced

model from the point of view of regression-based significance. Here, we apply

R’s dropterm() function to the final model from the stepAIC() procedure.

Venables and Ripley (2002) note that selecting the terms on the basis of the

stepAIC() criterion can be somewhat permissive in its choice of terms. We also

observed this in our own analysis (Fig. 15.13).

Call: lm(formula = Y ~ NPARENTS + NU + DAMPS + CS + NPARENTS:NU,
data = df0012normlogy)

Residuals:
Min 1Q Median 3Q Max

-3.79993 -0.79931 0.02917 1.04553 2.12640
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.8001 0.2996 12.686 2.59e-11 ***
NPARENTS 0.9279 0.4493 2.065 0.051483 .
NU 1.3686 0.4493 3.046 0.006142 **
DAMPS -1.8354 0.4493 -4.085 0.000531 ***
CS 0.3886 0.4493 0.865 0.396912
NPARENTS:NU 1.3307 0.7783 1.710 0.102040
---
Residual standard error: 1.557 on 21 degrees of freedom
Multiple R-squared: 0.6175, Adjusted R-squared: 0.5264
F-statistic: 6.78 on 5 and 21 DF, $p$-value: 0.0006601

Fig. 15.13: Result from R’s dropterm() analysis. Starting point for this analysis is the model
proposed by the stepwise selection method stepAIC()

We observe that the regression coefficients for NPARENTS, NU, and DAMPS

are large relative to their standard errors. Based on the conventional significance

level from the regression analysis, i.e., Pr(> |t|), we conclude that the model Y
∼ NPARENTS + NU + DAMPS should be used for the steepest descent. Predic-
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tions of this model are illustrated in Fig. 15.14. The contour lines can be tentatively

accepted as a rough estimate of the underlying response function over the region

of interest explored so far. (Further details of the model selection based on the t-
statistics are discussed on p. 431 of the Appendix to this book.)
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Fig. 15.14: Data from the first design (27 runs). These data were used to determine the steep-
est descent. These contour plots support the assumption that the values for DAMPS should
be increased, and values for NU should be decreased, whereas the impact of the population
size (NPARENTS) is relatively small. Predicted values are based on the regression equation
ŷ = 3.8+0.93x1+1.37x2−1.84x3. Values for NPARENTS are taken from the interval [2, 100],
which was split into nine subintervals. The slider on top of each panel indicates the value of popu-
lation size

15.6.1.4 Steepest Descent

We proceed with the steepest descent based on the model Y ∼ NPARENTS + NU
+ DAMPS + CS (note that we included factor CS; although this factor was not

judged to have a significant impact by the regression model, including it also did

not require any additional effort). The procedure of steepest descent is performed

as described on p. 354 in Chap. 14. Again, as the largest step width we recommend
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the value that leads to the border of the ROI. Here, we obtained a step width of

δx4 = 0.036 in the natural variables for DAMPS, leading to 11 design points until

we hit the border of the ROI (DAMPS reaches its maximal value 0.99). Data from

the steepest descent experiments are shown in Table 15.7. A graph of these results to

determine the new region of interest following the direction of the steepest descent

is shown in Fig. 15.15.

Table 15.7: Steepest descent experiment

Y NPARENTS NU TCCS DAMPS CONFIG

1 39.29 51 6.00 0.55 0.62 26
2 24.31 49 5.70 0.54 0.66 27
3 18.63 46 5.40 0.53 0.69 28
4 13.49 44 5.11 0.52 0.73 29
5 27.61 41 4.81 0.51 0.77 30
6 2.00 39 4.51 0.50 0.81 31
7 0.01 36 4.21 0.49 0.84 32
8 0.00 34 3.91 0.48 0.88 33
9 1.99 31 3.61 0.47 0.92 34
10 0.99 29 3.32 0.46 0.95 35
11 1.99 26 3.02 0.45 0.99 36
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Fig. 15.15: Left: Function values f(x) (Rastrigin) versus steps along the path of the steepest de-
scent. Indices denote the eleven steps from the steepest descent. Note that these values are based
on one repeat only, so variation in the data, e.g., the peak (index 5), is not surprising. These data
were used during the interactive approach. Right: Boxplots showing the variance of the data used
for the steepest descent. Same situation as on the left, but 100 repeats of each CMA-ES config-
uration. These experiments were performed after the CMA-ES tuning was finished. Information
from these runs was not used to determine the tuned CMA-ES parameter set
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These settings are used for additional runs of CMA-ES. Figure 15.15 plots the

yield at each step along the path of the steepest descent. Based on visual inspection

of the yields in Fig. 15.15, the new central point was determined to be the eighth

point of the steepest descent since no significant decrease occurred during steps nine

through eleven. Furthermore, this new central point leaves some space for variation

of the DAMPS values, say, in the interval [0.8, 0.99].

15.6.1.5 Second Model and Steepest Descent

Based on the best value obtained with the steepest descent, we build a new model

with center point

xc = [NPARENTS,NU,CS,DAMPS] = [34, 3.91, 0.48, 0.88].

The specification of the new region of interest requires user knowledge. The new

center point was determined by interpreting graphical results based on the steep-

est descent. Next, we have to determine a new region around xc. Sometimes, es-

pecially when a classical factorial design is used during the first step, it can be

useful to increase the region of interest at this stage. However, we have chosen

a Box–Behnken design for the first step and therefore have to decrease the re-

gion of interest. As a rule of thumb, to be reconsidered on a case-by-case basis,

we use at least ± 1/5th of the values at the new central point. For example, if

the value of the new population size NPARENTS is 50, we define a new region

of interest for this values as the interval [40, 60]. Here, the new region of interest

reads as follows: NPARENTS ∈ [24, 44], NU ∈ [3, 5], CS ∈ [0.4, 0.6], and
DAMPS ∈ [0.8, 0.99].

Again, a Box–Behnken design with 27 points is used to set up a regression model

to determine the path of the steepest descent. Steps along this path are performed

until no improvement is obtained. Note that five repeats are used now (previous

experiments used only one repeat). The path among the steepest descents consists

of 14 steps. Thus, 70 experiments are performed. The final configuration reads

[NPARENTS,NU,CS,DAMPS] = [34, 3, 0.43, 0.98].

15.6.1.6 Final Exploration

Finally, we use graphical tools to get an overview of the experimental region used in

our experiments. Figure 15.16 displays a fit of the response surface which is based

on the complete data set. A local regression model based on R’s loess() function

is fitted to the data.

Altogether 135 (= 27 + 11 + 27 + 70) runs of CMA-ES were used. The exper-

iments were performed on a 2.3 GHz Pentium 4 with 4 GB RAM running MAT-

LAB Version 7.6 on a Linux system. The SPOT runs for the interactive exploration
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Fig. 15.16: Contour plot based on the complete data set (CMAES-Rastrigin with 135 function
evaluations). Smaller values are better. Better configurations are placed in the lower right corner
of the panels. The factor which has the smallest effect, CS, is held constant. NU is plotted versus
DAMPS, while values of the factor with the second smallest effect, namely NPARENTS (np),
are varied with the slider on top of each panel

required 39 seconds. Writing the reports and setting up the R scripts for the in-

teractive exploration took approximately one hour. Our experience from working

on real-world problems indicates that one working day is necessary to perform the

complete SPOT process if applied to a new simulation or optimization algorithm.

This includes discussions with domain experts to define performance criteria and

the specification and implementation of SPOT interfaces. Substantially more time

might be required in cases where target algorithm runs are very costly.

15.6.2 Further Interactive Tuning Results

We also applied our interactive tuning approach to the other three CMA-ES scenar-

ios introduced in Sect. 15.2. Here we briefly summarize the results.
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15.6.2.1 Interactive Tuning of CMA-ES on the Sphere Function

Our experiments with CMA-ES on the Sphere function used a different setup (i.e.,

different values of starting point, dimension, and number of function evaluations);

see Table 15.2. However, regarding the region of interest, the same initial settings as

reported in Sect. 15.6.1.1 were used. Again, a Box–Behnken design was generated,

and 27 runs of CMA-ES were performed. Based on the results from these runs, the

following regression model was fitted:

ŷ = 2.13 + 9.25x1 + 1.13x2 + 0.003x3 − 0.74x4.

The regression analysis revealed that the value for NPARENTS should be de-

creased. The regression model as described in Sect. 15.6.1.2 and its refinement by

steepest descent produced

[NPARENTS,NU,CS,DAMPS] = [2.0, 3.5, 0.6, 0.9].

Note the drastic change in the NPARENTS values, whereas other predictors are

only slightly modified. Here, following the direction of the steepest descent resulted

in a significant improvement of CMA-ES’s performance. The function value could

be reduced from 7132 to 1.40 × 10−5, and—in a repeat of the steepest descent—

from 5862 to 1.27 × 10−6. Since we reached a region with small function values

and relatively little variation, we decided to stop the procedure at this stage and

perform a visual inspection based on contour plots (see Fig. 15.17). This required

no additional function evaluations.

The final configuration for the sphere function reads

[NPARENTS,NU,CS,DAMPS] = [2.0, 3.5, 0.6, 0.9].

Altogether 49 (= 27 + 2 × 11) runs of CMA-ES were used to produce this result.

15.6.2.2 Interactive Tuning of CMA-ES on the Ackley Function

The same initial settings as reported in Sect. 15.6.1.1 were used for the interactive

tuning of the Ackley function. Again, we generated a Box–Behnken design and

performed 27 runs of CMA-ES. Based on the results from these runs, the following

regression model was obtained (through fitting, as previously described):

ŷ = 1.75 + 0.88x2 + 0.21x3 − 0.61x4.

Compared to the fit of the functions considered so far, where the regression model

showed p-values smaller than 0.01 (e.g., a value of 0.0008 in the first regression

model), the fit of the regression model was relatively poor (p-value 0.2). This be-

havior can be explained as follows. Running CMA-ES on Ackley’s function with

parameters from the initial ROI produces many outliers which disturb the model-
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Fig. 15.17: Top: Contour plot based on the complete data set (CMAES-Sphere, 49 data points).
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descent. Note that these values are based on five repeats
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ing process. CMA-ES generates good (< 5) and bad (> 15) solutions with the

same parameter setting. The SPOT tuning procedure applied in this study is based

on mean values. Figure 15.17 illustrates difficulties arising from this situation. The

RSM is based on mean values and produces unhelpful gradient information. There

is a relatively large gap between good and bad solutions. Note that the mean lies

exactly in this gap, so it represents a value that is never realized. We believe that

in this case tuning mean performance might not yield the most meaningful results.

Instead, one could use the trimmed distribution; this will be subject of forthcoming

studies.

We nevertheless present results from the interactive approach to complete our

study. A contour plot of the predicted function values of the CMA-ES for parameter

values from the region of interest used in the interactive tuning study of the Ackley

function is shown in Fig. 15.18. The final configuration reads

[NPARENTS,NU,CS,DAMPS] = [2, 2, 0.11, 0.55].

As in the case of the Sphere function, 27 initial runs were performed, followed by

the evaluations on the path of the steepest descent (2× 11). To obtain more insight,

we performed three additional runs during the steepest descent (3 × 11). Therefore,

a total of 82 runs (= 27 + 2×11 + 3 × 11) was used in this experiment.

15.6.2.3 Interactive Tuning of CMA-ES on the Griewangk Function

The same initial settings as reported in Sect. 15.6.1.1 was used. Again, a Box–

Behnken design was generated, and 27 runs of CMA-ES were performed. Based

on the results from these runs, the following regression model was fitted:

ŷ = −5.65 + 0.61x1 + 9.07x2 − 1.12x3 − 4.30x4.

A steepest descent (with two repeats) based on this first regression model led directly

to an improved CMA-ES configuration. To validate the improvement following

the path of the steepest descent, we repeated the corresponding runs twice. The

improved configuration reads

[NPARENTS,NU,CS,DAMPS] = [48, 2, 0.61, 0.80].

Since 49 = 27+(11×2) runs of CMA-ES already resulted in an improved config-

uration, we used 20 additional CMA-ES runs to obtain an overview of the region of

interest, scanning this region based on Latin hypercube sampling. The correspond-

ing contour plot is shown in Fig. 15.18. As for the Sphere function, 27 initial runs

were performed, followed by the evaluations on the path of the steepest descent (2×
11). Therefore, a total of 69 runs (27 + 2×11 + 20) was used in this experiment.
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Fig. 15.18: Top: Contour plots based on the complete data set (CMA-ES Ackley based on 82
function evaluations). Smaller values are better. Better configurations are placed in the lower area
of the panels. The factor CS is held constant. NU is plotted versus DAMPS, while values of the
factor NPARENTS (np), are varied with the slider on top of each panel. Bottom: Contour plots
based on the complete data set (CMA-ES Griewangk based on 69 function evaluations). Smaller
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important. The factor which has the smallest effect, CS, is held constant. NU is plotted versus
DAMPS, while values of the factor with the last but one effect, namely NPARENTS (np), are
varied with the slider on top of each panel
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Table 15.8: Performance comparison of the parameter settings found by our automatic and inter-
active approaches. We give median and mean of solution costs c1000 across the 25 repetitions of
SPO+. For each function, we also give the number of target algorithm runs, K, used in the inter-
active approach and the resulting solution cost, cK , as well as the quantile corresponding to this
value in the empirical distribution of SPO+ results (e.g., 56% means that 14 of 25 SPO+ runs
yielded better results)

Test 25 repetitions of SPO+ Interactive approach
case median mean ± stddev K sol. cost quantile of SPO+ dist.

Sphere [×10−7] 4.16 5.55± 5.15 49 4.65 56%
Ackley 7.97 8.48± 2.61 82 12.25 96%

Griewangk [×10−4] 1.73 2.66± 2.53 69 2.22 56%
Rastrigin 2.50 2.62± 0.51 135 2.82 68%

15.6.3 Comparison of Solutions Found Automatically and
Interactively

Next, we evaluate how the interactively found parameter settings compare to the

automatically found ones in terms of CMA-ES performance achieved. Table 15.8

compares the performance of the manually identified parameter settings against the

distribution of performance achieved across 25 runs of SPO+. In all test cases, the

median-best SPO+ run achieved better performance than the manual procedure; be-

tween 56% (14/25) and 96% (24/25) of the automatically found parameter settings

performed better than the one identified manually. However, recall that the manual

process used many function evaluations less than the automatic procedure. Never-

theless, on two test cases, the manually identified parameter settings performed bet-

ter than the automatically found settings do on average. We also provide boxplots for

the performance of the interactively found settings in Fig. 15.8; their performance

is comparable to the one of the automatically found settings.

We conclude that often a manually executed classical regression analysis can

yield well-performing parameter settings using a very limited number of runs of

the target algorithm. The exception in our experiments was test case CMA-ES-

Ackley. For this test case, we observed a pronounced multimodal distribution during

the interactive tuning; we hypothesize that this caused problems for the classical

regression analysis. Although the distributions for test cases CMA-ES-Rastrigin

and CMA-ES-Griewangk were also multimodal, the poor runs were much rarer in

these test cases and rather played the role of outliers. (In the boxplots of Fig. 15.8 on

page 389, the poor runs in test cases CMA-ES-Rastrigin and CMA-ES-Griewangk

were indeed marked as outliers, while the multimodal distributions for CMA-ES-

Ackley were not seen as caused by outliers).
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15.6.4 Discussion of the Interactive Approach

Similar to microscopes in biology, SPOT can be used as a “datascope” to gain in-

sight into algorithm behavior, by revealing factor effects and their importance to the

experimenter. Such insights can not only be used to guide the interactive parameter

optimization process, but also be of intrinsic value to the developer or end user of a

target algorithm.

The classical response surface methodology (as discussed in Chap. 15 of Box

et al. (1978)) underlying our interactive approach was developed not only for finding

parameter settings that achieve improved performance, but also to provide insights

into how the performance of a target algorithm is affected by parameter changes.

This latter question is related to the analysis of the response surface in the region of

interest, and contour plots as shown in Fig. 15.16 are useful tools to answer it.

In particular, from the results reported earlier in this section, we can conclude

that CMA-ES performs robustly on the test functions we studied in the sense that

its mean performance (e.g., as summarized by contour plots) varies only moderately

with changes in the parameters. We furthermore observed that large DAMPS values

and smaller NU values resulted in better CMA-ES performance, while the effect of

CS was rather marginal. Finally, small population sizes improved CMA-ES’s per-

formance on the Sphere function, corresponding nicely with theoretical results for

evolution strategies (Schwefel 1995, Beyer 2001). These statements can be under-

stood as hypotheses derived from our experimental results, and each of them could

be further studied by additional experiments, e.g., as described on p. 34 in Chap. 2

of this book.

In our case study illustrating the interactive approach, we used classical regres-

sion models, because these models can be interpreted quite easily; features of the

response surface can be seen directly from the regression equation Y = Xβ. This
is not the case for more sophisticated prediction models, such as neural networks or

Gaussian process models. Furthermore, as demonstrated here in the case of CMA-

ES, it is possible to obtain competitive results using such simple models. Neverthe-

less, in principle, more complex regression models could be used in the context of

the interactive sequential parameter optimization approach. Furthermore, we note

that observations and hypotheses regarding the dependence of a given target algo-

rithm’s performance on its parameter settings could also be obtained by analyzing

more complex models, including the Gaussian process models constructed by the

previously discussed, automatic sequential parameter optimization procedures.

Clearly, the interactive approach makes it easy to use results from early stages of

the sequential parameter optimization process to effectively guide decisions made

at later stages. For example, looking back at the initial stages of the process, the

experimenter can detect that the set of variables studied at this stage was chosen

poorly, or that inappropriate ranges were chosen for certain variables. Box et al.

(1978) state: “It is rather like looking at an old movie of a swimmer, who can now

do back flips from a high diving board, when he was a young child making his

first feeble attempts to keep his head above water. [. . .] The investigator must learn

from the swimmer, who was prepared to begin by putting his foot in the water and
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was not afraid of getting wet.” We note that the models used in early stages of the

automated procedures discussed earlier in this chapter also provide guidance to later

stages of the process. However, the interactive process leaves room for expert human

judgment, which can often be more effective in terms of the improvement achieved

based on a small number of target algorithm runs.

The human expertise required to use the interactive approach successfully can be

seen as a drawback compared to fully automated approaches. However, by provid-

ing dedicated support for the various operations that need to be carried out in this

context, SPOT eases the burden on the experimenter and lowers the barrier to using

the interactive approach effectively.

15.7 Conclusions and Future Work

In this work, we experimentally investigated model-based approaches for optimiz-

ing the performance of parametrized, randomized algorithms. First, we restricted

our attention to procedures based on GP models, the most popular family of models

for this problem. We evaluated two approaches from the literature, and found that

“out-of-the-box” sequential parameter optimization (SPO) offered more robust per-

formance than the sequential Kriging optimization (SKO) approach. However, when

a log-transformation was used, SKO performed competitively. We then investigated

key design decisions within the SPO paradigm: the initial design; whether to fit

models to raw or log-transformed data; the expected improvement criterion; and the

intensification criterion. Of these four, the log transformation and the intensification

criterion substantially affected performance. Based on our findings, we proposed a

new version of SPO, dubbed SPO+, which yielded substantially better performance

than SPO for optimizing the solution quality of CMA-ES (Hansen and Ostermeier

1996, Hansen and Kern 2004) on a number of test functions, as well as the runtime

of SAPS (Hutter et al. 2002) on a SAT instance. In this latter domain, for which

performance results for other (model-free) parameter optimization approaches are

available, we demonstrated that SPO+ achieved state-of-the-art performance.

We then contrasted this automated tuning approach with an interactive approach

based on classical linear regression models. The interactive approach yielded well-

performing parameter settings based on very few function evaluations, and also

provided the basis for interesting hypotheses about CMA-ES’s performance un-

der different parameter settings. The interactive approach is particularly suitable in

situations where the evaluation of individual configurations is computationally very

expensive and therefore the overall number of parameter configurations evaluated

has to be kept as low as possible.

In the future, we plan to extend our work to deal with optimization of runtime

across a set of instances, along the lines of the approach of Williams et al. (2000).

We also plan to compare other types of models, such as random forests (Breiman

2001), to the Gaussian process approach. SPOT and the interactive approach al-

ready support the optimization of categorical parameters using tree-based regression
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models (Chap. 14). We further plan to develop automated methods for the sequential

optimization of categorical variables.

Acknowledgements We thank Theodore Allen for making the original SKO code available to
us. This work was supported by NSERC Discovery Grant 238788, by the Bundesministerium
für Forschung und Bildung (BMBF) under the grant FIWA (AIF FKZ 17N2309, "Ingenieurnach-
wuchs"), and by the Cologne University of Applied Sciences under the grant COSA.

Appendix

We show that for a random variable X distributed according to a Gaussian distri-

bution N (μ, σ2), it is the case that E[max(fmin − exp(X), 0)] = fminΦ(v) −
e

1
2σ

2+μ×Φ(v−σ), where v = ln(fmin)−μ
σ . We denote the probability density func-

tion and cumulative distribution function of a standard normal distribution as ϕ and

Φ, respectively.

E[max(fmin − exp(X), 0)]

=

∫ ∞

−∞
max(fmin − exp(x), 0)p(x)dx

=

∫ ln(fmin)

−∞
(fmin − exp(x))

1

σ
ϕ(

x− μ

σ
)dx

= fminΦ(
ln(fmin)− μ

σ
)−
∫ ln(fmin)−μ

σ

−∞
exp[xσ + μ]

1√
2π

exp

[
−1

2
x2

]
dx

= fminΦ(
ln(fmin)− μ

σ
)−
∫ ln(fmin)−μ

σ

−∞
exp[

1

2
σ2 + μ]

1√
2π

exp

[
−1

2
(x− σ)2

]
dx

= fminΦ(
ln(fmin)− μ

σ
)− exp[

1

2
σ2 + μ]Φ(

ln(fmin)− μ

σ
− σ).
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Appendix A
A Brief Introduction to Inferential Statistics

Dario Basso

Abstract This appendix introduces the elements of statistical theory that are used

throughout the book. It starts by defining random variables and the theoretical mod-

els to describe them. It then briefly outlines the concepts underlying point estima-

tion. The central part is dedicated to hypothesis testing and confidence intervals by

means of which inference from sample statistics to population parameters is carried

out. Subsequently, the treatment focuses on regression and modeling, which play

a fundamental role in several chapters of this book. The presentation is necessar-

ily limited to linear regression and to basic model fitting. For a broader treatment

of statistical theory the reader is referred to any textbook of statistics and to Mood

et al. (1974) and Davison (2008).

A.1 Introduction

Inferential statistics is a collection of techniques that allow us to deduce information

from a set of observed data about a phenomenon under investigation in a population
of interest.

The motivation for such techniques is the fact that surveying the phenomenon

on the entire population (census) in order to gain complete knowledge of it is often

unrealistic or too expensive. An alternative is then to extract a set of statistical units
(i.e., a the phenomenon on this restricted set of units. We may do this because we

expect the units in the sample to reproduce the phenomenon as it is in the population

(with a certain degree of variability depending on the size of the sample).

A “well-chosen” sample should be representative of the population, therefore the

statistical units to be included in the sample should be chosen independently of the

Dario Basso
Department of Statistics, University of Padua, Italy
e-mail: dario@stat.unipd.it
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characteristics of the phenomenon in the population. This is usually known as a

random sampling from a population.

There are several ways of sampling units from a population (e.g., with replace-

ment or without replacement), and we may consider finite populations (e.g., the non-

isomorphic graphs of a certain size for which we wish to determine the chromatic

number) or nonfinite populations (such as the runtime of an optimization algorithm).

In inferential statistics, the observed data are usually considered as n independent

realizations of a random experiment, whose possible outcomes are described by a

random variable (r.v.).1 The distribution of the random variable depends on some

unknown parameters of the population and on how the sample has been extracted.

We can also say that the random variable is a model of the phenomenon in the popu-

lation, and that each datum is a realization of the same random variable. According

to this model, the sample data are then considered as n realizations of independent
and identically distributed (i.i.d.) random variables.

In parametric inference, the random variable describing the experiment is defined

by a probabilistic model, which is usually a mathematical formula determining the

probability of an event (or a set of events). The probabilistic model is identified

by a parameter θ (or sometimes by a vector of parameters) that takes values in a

parameter space Θ. The collection of probabilistic models identified by all possible

values of θ in Θ is called a parametric statistical model. Here the inference on

the phenomenon in the population is translated into an inference on the unknown

parameter θ that identifies a specific distribution among those that belong to the

statistical model. In the likelihood function approach, we seek the value for θ that

is most in agreement (likely) with the observed data. There are other approaches to

inference, such as nonparametric and Bayesian inference.

This probabilistic approach serves two purposes: (i) describing the variability of

the sample outcomes and (ii) evaluating the uncertainty of the inference, e.g., by

providing an interval of possible values for the true parameter θ, or by evaluating

the risk of incorrectly answering the question “does the true parameter θ belong to

a certain subset Θ0 ∈ Θ?”.

Let us end this paragraph with an explanatory example: suppose that we have a

deterministic program, for example, a mixed integer programming solver, and that

we want to determine its ability to solve a specific class of instances of a certain

optimization problem, say the set covering problem.2 Let θ be the true, unknown

proportion of instances that can be solved within a runtime of, say t0 = 1, 000 s,

that is, the amount of time we are prepared to accept before giving up. Suppose that

a random sample of n instances is taken from the class of instances, and that the

application of the solver to each instance of the sample is coded into two possible

1 A random variable is a function assigning a real number to each element of a probability space.
2 In the optimization version of the set covering problem, we are given a universe U and a family
S of subsets of U , and we want to find a cover, that is, a subfamily C ⊆ S of sets whose union is U ,
that minimizes the number of selected sets. A class of instances can be determined, for example, by
specifying a range for the number of objects in U and for the number of subsets in S and a certain
structure in the elements covered by the subsets. Then, the class of instances, although large, is a
finite set.
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outcomes: 0 meaning “not solved within t0”, and 1 meaning “solved.” We can thus

describe each outcome with a random variable Xi assuming the values 0 and 1
with probability θ and 1 − θ, i = 1, . . . , n. We know from probability calculus

that the random variable S, the sum of n independent and identically distributed

dichotomous variables (such as Xi), has a binomial distribution whose probability

function is

Pr{S = s} = pS(s; θ) =

(
n

s

)
θs(1−θ)(n−s) s ∈ {0, 1, . . . , n}, θ ∈ (0, 1).

Then the binomial distribution is the probabilistic model describing the outcome

(sum) of the sample data, whereas the statistical model is the set P = {pS(s; θ), θ ∈
(0, 1)}. The initial goal evaluating the proportion of solvable instances, is then trans-
lated into estimating the unknown parameter θ.

Once an estimate of θ has been obtained, it will be possible, through a specified

probabilistic model, to answer questions such as: “is θ > 90%?” “Given that, if we

change sample (i.e., if we repeat the experiment) we will have a different result, can

we say something about the uncertainty of θ (i.e., can we give a set of reasonable

values for θ)?” Of course, each of the previous questions cannot be answered with

certainty. Inferential statistics can answer the previous questions while determining

the probability of “incorrect” conclusions on θ.

A.1.1 Random Variables

A univariate quantitative random variable (r.v.)X is a variable taking values in a do-

main DX with prespecified probabilities. There are two kinds of quantitative r.v.s:

discrete and continuous (or absolutely continuous). In the former case the cardinal-

ity of the support is at most numerable (i.e., it has almost the same cardinality of

N), in the latter DX ⊆ R.

An r.v. X is therefore defined by the specification of the domain DX and the

probability associated with each possible outcome of X . Two very intuitive ex-

amples are the following. The outcome of a fair die is characterized by an r.v. X
withDX = {1, 2, 3, 4, 5, 6} and the probability associated with each outcome (also

called the realization ofX) is 1/6. The launch of a fair coin can be described by the

r.v.X assuming two values (or modalities): “head” and “tail”, each with probability
1/2. This last example actually refers to a categorical variable (i.e., an r.v. whose

possible outcomes are categories or adjectives), that can be recoded in order to ob-

tain a discrete one (e.g., taking values in DX = {0, 1}, with 0 being “head” and 1

being “tail”).

As far as discrete r.v.s are concerned, the probability of the event {X = x}, x ∈
DX , is given by the probability function pX(x) is summarized by a mathematical

formula. For instance, if X is dichotomous and the probability of the event {X =
1} is denoted by the parameter θ ∈ (0, 1), then pX(x) = θx(1 − θ)(1−x). This

distribution is known as the Bernoulli distribution. The probability function satisfies
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0 ≤ pX(x) ≤ 1 for all x ∈ DX , where 0 denotes the probability of an impossible

event, and 1 that of an (almost) sure event.

Another important function that is related to the r.v.s is the cumulative distribu-
tion function (cdf), or distribution function, which is defined as

FX(x) = Pr{X ≤ x}, x ∈ R.

Note that FX(x) is a continuous, nonnegative, nondecreasing function that satisfies
lim

x→−∞FX(x) = 0 and lim
x→+∞FX(x) = 1. The probability of the eventX ∈ [a, b]

can be computed as FX(b)− FX(a).
In the continuous case, the event {X = x} has zero probability for all x ∈ DX ,

so the probability function does not apply here. The r.v. is then described by the

density function fX(x), which is defined as

fX(x) = lim
δ→0

Pr{X ≤ x+ δ} − Pr{X ≤ x}
δ

=
∂FX(x)

∂x
, δ > 0.

Therefore the relationship between FX(x) and fX(x) can be defined as

FX(x) =

x∫
−∞

fX(t)dt x ∈ R.

Of course, a similar definition can be applied to the discrete case by letting

FX(x) =
∑
t≤x

Pr{X = t}, x ∈ R.

Note that, when X is discrete, its cdf is typically a stepfunction.

The functions pX(x) and fX(x) are nonnegative and must, respectively, satisfy∑
x∈DX

pX(x) = 1,

∫
x∈DX

fX(x)dx = 1.

Usually, the cdf can also be specified by a closed mathematical formula.

The distribution of an r.v. is characterized by some indexes. One of them is the

expected value, which is defined as

E[X] =
∑

x∈DX

xpX(x) if X is discrete

E[X] =

∫
x∈DX

xfX(x)dx if X is continuous.

The expected value (some aliases are expectation, mean of the distribution, first
moment) is a linear operator, i.e., E[a+bX] = a+bE[X]. For instance, the expected
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value of a fair die is equal to 3.5; the expected value of a Bernoulli variable X with

P{X = 1} = θ is equal to E[X] = 1 · θ+0 · (1− θ) = θ. Note that E[X] is not an
r.v., and it can sometimes be one of the parameters of the distribution.

Another possible parameter of a probability distribution is the variance, which is
defined as

V[X] = E[X − E[X]]2 = E[X2 − 2XE[X] + E[X]2]

= E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2.

Thus, the variance of X , when X is the outcome of a fair die is equal to 91/6 −
3.52 = 2.917. If X is a Bernoulli variable with P{X = 1} = θ, then E[X2] =
12 · θ + 02 · (1 − θ) = θ, and therefore V[X] = θ − θ2 = θ · (1 − θ). Note that
V[X] > 0 (since V[X] = 0 implies that X is actually a constant). The variance is

also known as the second central moment. The expected value and variance may be

nonfinite. For instance, the Cauchy distribution, whose (standard) density function

is fX(x) = (1+x2)−1, does not admit finite moments. There are other distributions

that do not admit finite moments for some values of their parameters. One of them

is the Pareto distribution, whose density function is

fX(x;x0, θ) =
θxθ

0

xθ+1
x ≥ x0 > 0; θ > 0.

For the Pareto distribution E[X] = θx0/(1 − θ), which exists when θ > 1, and
E[X2] = x2

0θ/(2− θ), which exists when θ > 2. In general, if E[Xr] is finite, then
all the moments of order s with s < r are also finite.

Other useful indicators of an r.v. are the quantiles. A quantile of order α, α ∈
(0, 1) is the modality xα of an r.v. whose cdf satisfies FX(xα) = α. Note that, if X
is continuous, there is a one-to-one relationship between xα ∈ DX and α ∈ (0, 1)
(see uniform distribution). A very special quantile is the median of a distribution,

defined as the quantile of order 1/2. Therefore, the median is the modality x0.5 that

satisfies FX(x0.5) = 1/2. Note the quantiles are always well defined only if X is

continuous.

A.1.2 Examples of Statistical Models

In this section we review a few statistical models that are used in this book. The first

two models are for discrete random variables while all the others are for continuous

random variables. The description is necessarily concise; for extensive treatment see

Johnson and Kotz (1970).
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Fig. A.1: The binomial distribution for n = 20 and θ = 0.5 (dashed line) or θ = 0.7 (full line)

Binomial Random Variable

In the previous pages we encountered already the Bernoulli r.v.s. A Binomial r.v. is
the sum of n i.i.d. Bernoulli r.v.s. We may indicate a random variable X with

Bernoulli distribution using the notation X ∼ Bi(1, θ). Then, the notation for the

Binomial is X ∼ Bi(n, θ). Its probability and distribution functions are, respec-

tively,

pX(x) =

(
n

x

)
θx(1−θ)n−x, FX(x) = Pr{X ≤ x} =

x∑
i=0

(
n

i

)
θi(1−θ)n−i,

and are shown in Fig. A.1. The mean of the binomial distribution is E[X] = nθ.
The variance of the distribution is V[X] = nθ(1− θ) (see next section).

Poisson Random Variable

The Poisson r.v. is used in modeling random arrivals. In this case we can see X as

the number of arrivals in one unit of time and hence DX = N.

The probability function is

pX(x) = e−λλ
x

x!
, λ ∈ R+,

and is identified by the parameter λ > 0, which is the mean of X . Figure A.2

shows an example with λ = 1. We denote this model by X ∼ Po(λ). To see

that
∑

x∈DX
pX(x) = 1, obtain Taylor’s expansion of the function exp{λx} in

x0 = 0, and let x = 1. The sum of n independent Poisson r.v.s with parameters

λ1, λ2, . . . , λn is still a Poisson r.v. with parameter
∑n

i=1 λi.
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Fig. A.2: The Poisson distribution for λ = 1

Uniform Random Variable

This variable is defined in the interval [a, b]. We write it as X ∼ U [a, b]. Its density
and cumulative distribution functions are, respectively,

fX(x) =
I[a,b](x)

b− a
, FX(x) =

1

b− a

x∫
−∞

I[a,b](t)dt =
x− a

b− a
,

where I[a,b](·) is the indicator function of the interval [a, b]. See Fig. A.3. Note that,
if we set a = 0 and b = 1, we obtain FX(x) = x, x ∈ [0, 1]. A typical example

is the following: the cdf of a continuous r.v. is uniformly distributed in [0, 1]. The
proof of this statement is as follows: For u ∈ [0, 1], we have

Pr{FX(X) ≤ u} = Pr{F−1
X (FX(X)) ≤ F−1

X (u)} = Pr{X ≤ F−1
X (u)}

= FX(F−1
X (u)) = u.

This means that, whenX is continuous, there is a one-to-one relationship (given by

the cdf) between x ∈ DX and u ∈ [0, 1].

Normal (or Gaussian) Random Variable

This variable is defined on the supportDX = R and its density function is given by

fX(x) =
1√
2πσ2

exp

{
− 1

2σ2
(x− μ)2

}
.

The density function is identified by the pair of parameters (μ, σ2), where μ ∈ R is

the mean (or location parameter) and σ2 > 0 is the variance (or dispersion param-



424 D. Basso

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

Uniform distribution: min=0, max=1

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Uniform distribution: min=0, max=1

x

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Fig. A.3: The uniform distribution in the interval [0, 1]

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Normal distribution: μ = 0, σ = {0.5; 1; 2}

x

D
en

si
ty

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Normal distribution: μ = 0, σ = {0.5; 1; 2}

x

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Fig. A.4: The normal distribution for σ2 = {0.5; 1; 2} (dotted, full, dashed line, respectively)

eter) of X . The density function is symmetric around μ. Some example of normal

densities are given in Figure A.4 for different values of σ2.

The normal distribution belongs to the location-scale family distributions. This

means that, if Z ∼ N(0, 1) (read, Z has a standard normal distribution; i.e., with

μ = 0 and σ2 = 1), and we consider the linear transformation X = μ + σZ,

then X ∼ N(μ, σ2) (read, X has a normal distribution with mean μ and variance

σ2). This means that one can obtain the probability of any interval (−∞, x], x ∈ R

for any normal distribution (i.e., for any pair of the parameters μ and σ) once the

quantiles of the standard normal distribution are known. Indeed
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Fig. A.5: The exponential distribution for λ = {0.5, 1, 2} (dashed, full, dotted line, respectively)

FX(x) = Pr {X ≤ x} = Pr

{
X − μ

σ
≤ x− μ

σ

}
= Pr

{
Z ≤ x− μ

σ

}
= FZ

(
x− μ

σ

)
x ∈ R.

The quantiles of the standard normal distribution are available in any statistical pro-

gram. The density and cumulative distribution function of the standard normal r.v. at

point x are usually denoted by the symbols φ(x) and Φ(x).

Exponential Random Variable

This is defined on the support (0,+∞). We write it as X ∼ Exp(λ). The density
and distribution functions are:

fX(x) = λe−λx, FX(x) = 1− e−λx λ > 0

and are shown in Fig. A.5. The mean of this distribution is equal to 1/λ; the variance
is equal to 1/λ2. There is a useful reparameterization of this density function which

is called reparameterization with the mean and can be obtained by letting λ = 1/θ;
we write this X ∼ Exp(1/θ). It is easy to prove that the mean and variance of the

distribution, according to this reparameterization, are E[X] = θ and V[X] = θ2.
The exponential distribution is used to describe the times at which random arrivals

occur. Relevant in this context is the memoryless property, that is, Pr{X > s +
x | X > s} = Pr{X > x} for all s, x ≥ 0. Hence, for exponentially distributed

arrivals, the probability that we have to wait x seconds for a new arrival, after we

had waited s seconds, is not different from the probability that we wait x seconds.

The similarity between random arrivals and runtime of stochastic algorithms led to

attempts to use this model and its theoretical consequences also in this latter field.
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Gamma Random Variable

The exponential distribution is a special case of the Gamma distribution. Random

variables with this distribution have density function:

fX(x) =
λνxν−1e−λx

Γ (ν)
ν, λ > 0, Γ (ν) =

+∞∫
0

λνtν−1e−λtdt.

Here λ is the scale parameter and ν the shape parameter. We write it as X ∼
Ga(ν, λ). The Gamma function Γ (ν) is a standardizing constant, as it satisfies

lim
x→+∞FX(x) = 1. Moreover, it satisfies the property Γ (ν+1) = νΓ (ν), therefore

if ν is integer, Γ (ν) = (ν − 1)!.
It can be shown that the mean of the Gamma r.v. is ν/λ and the variance is

ν/λ2. Another important property of the Gamma distribution is that the sum of n
independent Gamma r.v.s with the same scale parameter λ and shape parameters νi,
i = 1, . . . , n is still distributed as a Gamma r.v. with scale parameter λ and shape

parameter
∑n

i=1 νi

Weibull Random Variable

This is defined on (0,+∞); its density and distribution functions are

fX(x) = λν(λx)ν−1 exp{−(λx)ν}, FX(x) = 1− exp{−(λx)ν}.

and are shown in Fig. A.6. We write it as X ∼ We(ν, λ) and it can be shown that

E[X] = 1/λΓ (1 + 1/ν) and V[X] = λ−2[Γ (1 + 2/ν)− Γ (1 + 1/ν)2].
The exponential distribution can be seen as a special case of the Weibull distri-

bution when ν = 1.

Note that it is always possible to translate the distribution of a r.v. by applying

the transformation Y = X−μ. This transformation does not affect the variance and

the shape parameters, but affects the support DY . By applying this transformation

to the examples of Gamma and Weibull r.v.s the support becomes DY = (μ,+∞).

A.2 Point Estimation

In the previous section, we have seen that the core point of the inferential process

is the choice of an adequate statistical model, which is identified by some param-

eters. In order to model the observed data, the estimation of the parameters of the

probability distribution is required. There are several ways to obtain the estimate of

the parameters of interest. For instance, moment estimation consists of estimating

the parameter(s) of interest with the equivalent sample quantity. Let us assume that

the phenomenon under study can be modeled with an r.v. X with unknown param-
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Fig. A.6: The Weibull distribution for λ = 1 and ν = {0.5; 1.5; 5} (dashed, full, dotted line,
respectively)

eters μ and σ2, where μ and σ2 are, respectively, the mean and the variance of the

population. From the previous sections, we know that the following relationships

hold:

μ = E[X], σ2 = E[X2]− E[X]2.

Now the sample estimators of E[X] and E[X2] are, respectively,

1

n

n∑
i=1

Xi = X̄ and
1

n

n∑
i=1

X2
i ;

therefore the moment estimators of μ and σ2 are

μ̂ = X̄ and σ̂2 =
1

n

n∑
i=1

X2
i − X̄2.

Now suppose we extract an i.i.d. sample of size n from a population to investigate

the phenomenon, say the vector x = [x1, x2, . . . , xn]. Then, the (point) estimates of
μ and σ2 obtained with the moment estimation are:

μ̂ =
1

n
xi and σ̂2 =

1

n

n∑
i=1

x2
i − x̄2.

Note that the estimator is itself an r.v., whereas the estimate is a realization of an

r.v., although we will use the same symbols, the context being sufficiently clear.

Other useful sample indicators are the minimum and the maximum, respectively

denoted by the symbols X(1) = mini Xi and X(n) = maxi Xi.
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There are other ways to obtain a point estimate, to cite but two, the maximum
likelihood and the least squares estimation, which will be discussed later in this

appendix.

Distribution of the Most Common Sample Estimators When Observations Are i.i.d.

The estimator of the parameter of interest is an r.v. because its realization depends

on the sample given. The estimator of the mean of the distribution is usually the

sample mean. This estimator often has the same distribution as the observations in

the sample. If the sample is made of independent and identically distributed (i.i.d.)

observations, it is easy to obtain the expected value and variance of X̄ . For instance,

if [X1, . . . , Xn] is a vector of i.i.d. r.v.s from a distribution with mean μ and variance

σ2, then

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

μ = μ;

V[X̄] = V

[
1

n

n∑
i=1

Xi

]
=

1

n2

⎡⎣ n∑
i=1

V[Xi] + 2

n∑
i=1

∑
j 
=i

COV(Xi, Xj)

⎤⎦
=

1

n2

n∑
i=1

σ2 =
σ2

n
,

where COV(Xi, Xj) is the covariance between Xi and Xj . Note that the last re-

sult is due to the assumption of independence among observations, which implies

COV(Xi, Xj) = 0, i 	= j.
The above results are valid whenever the sample is made of i.i.d. observations and

when the common distribution admits finite expected value and variance. As regards

the distribution of X̄ , it really depends on the distribution of Xi. For instance, if

[X1, . . . , Xn] is a vector of independent r.v.s and Xi ∼ N(μi, σ
2
i ), i = 1, . . . , n,

then

n∑
i=1

(ai + biXi) ∼ N

(
n∑

i=1

(ai + biμi),

n∑
i=1

b2iσ
2
i

)
ai, bi ∈ IR.

As a consequence, if we let μi = μ, σ2
i = σ2 (hence theXi’s are i.i.d.), ai = 0, and

bi = n−1 for all i, then:

X̄ ∼ N

(
μ,

σ2

n

)
.

Another common example is given by considering a sample of i.i.d. observations

from a Bernoulli distribution; that is, when Xi = 1 has a Bernoulli distribution

with parameter θ. Recall from Sect. A.1.2 that S =
∑n

i=1 Xi ∼ Bi(n, θ); since
X̄ = S/n, X̄ has the same probability function of S, but a different domain. In
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particular DX̄ = {0, 1/n, 2/n, . . . , 1} and Pr{X̄ = s/n} = Pr{S = s}. This
means that, in this case, it is possible to obtain exact inference on the parameter θ
(see Sect. A.3).

Given that E[Xi] = θ and V[Xi] = θ(1 − θ), we have that, from the general

results on X̄ when observations are i.i.d.,

E[X̄] = θ and V[X̄] =
θ(1− θ)

n
.

The distribution ofX(n), the maximum of n i.i.d. random variables distributed as

FX(x), is obtained by realizing that the event {X(n) ≤ x}, x ∈ DX implies the

event ∩n
i=1{Xi ≤ x}, and by the definition of independent r.v.s. Thus

FX(n)
(x) = Pr{X(n) ≤ x} =

n∏
i=1

Pr{Xi ≤ x} = FX(x)n.

The distribution of X(1), the minimum of n i.i.d. random variables distributed as

FX(x), is obtained by realizing that the event {X(1) > x} implies the event

∩n
i=1{Xi > x}, and by the definition of independent r.v.s. Thus

FX(1)
(x) = 1− Pr{X(1) > x} = 1−

n∏
i=1

Pr{Xi > x} = 1− [1− FX(x)]
n
.

The density functions of X(1) and X(n) are, respectively,

fX(1)
(x) = nfX(x)[1−FX(x)](n−1) and fX(n)

(x) = nfX(x)FX(x)(n−1).

Their distributions can be written explicitly only in some cases, for instance, when

X ∼ U [a, b] or when X ∼ Exp(λ).

Properties of “Good” Estimators

Since an estimator is an r.v., it is possible to obtain the expected value and vari-

ance. These quantities are very useful when comparing different estimators. A first

requirement of an estimator is that, on average, it yields the true value of the param-

eter of interest. This property is called unbiasedness. Formally, if θ̂ is an estimator

of the parameter θ, the requirement can be written as

E[θ̂] = θ ∀ θ ∈ Θ.

This computation can usually be done because of the assumption that the sample ob-

servations are i.i.d. from a specified statistical model. For instance, let X1, . . . , Xn

be a random sample from a normal distribution with parameters μ and σ2. Then,

because the r.v.s are identically distributed, we have E[Xi] = μ and V[Xi] = σ2 for

all i. For instance, the expected value of the moment estimator of μ is
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E[μ̂] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

μ = μ,

and therefore μ̂ is an unbiased estimator of μ. This is not true for the moment esti-

mator of the variance, since

E[σ̂2] = E

[
1

n

n∑
i=1

X2
i − X̄2

]
=

1

n

n∑
i=1

E[X2
i ]− E[X̄2]

=
1

n

n∑
i=1

(μ2 + σ2)−
(
μ2 +

σ2

n

)
= σ2

(
n− 1

n

)
.

In the last equation, we have used the relationships

V[Xi] = E[X2
i ]− E[Xi]

2 ⇒ E[X2
i ] = V[Xi] + E[Xi]

2 = σ2 + μ2;

V[X̄] = E[X̄2]− E[X̄]2 ⇒ E[X̄2] = V[X̄] + E[X̄]2 =
σ2

n
+ μ2.

The expectation of σ̂2 tells us that, on average, the estimator σ̂2 underestimates

the true value of the parameter σ2, and therefore σ̂2 is said to be biased. However,
note that

lim
n→+∞E[σ̂2] = σ2,

and σ̂2 is then asymptotically unbiased. Usually, statisticians prefer to consider the

following unbiased estimator of σ2:

s2 =

(
n

n− 1

)
σ̂2 =

1

n− 1

n∑
i=1

[Xi − X̄]2.

Another important property of an estimator is consistency. Formally, the (weak)

consistency of an estimator requires that the estimator converges in probability to the

true value of the parameter of interest. That is, given an estimator θ̂n (that depends

on the sample size n),

lim
n→+∞Pr

{ |θ̂n − θ| > ε
}
= 0 ∀ ε > 0.

Roughly speaking, if the amount of information increases, then we expect the es-

timator to be distributed around the true value of the parameter, and the accuracy

should increase with n (i.e., the variance of the distribution of θ̂ should decrease

with n). Two sufficient conditions to ensure that an estimator is (weakly) consistent

are

E[θ̂] = θ and lim
n→+∞V[θ̂] = 0.

For instance, the estimator of the mean of an i.i.d. sample Xi ∼ N(μ, σ2), i =
1, . . . , n is weakly consistent since E[μ̂] = μ, and V[μ̂] = σ2/n.
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Central Limit Theorem

A sequence Z1, . . . , Zn of r.v.s with distribution functions FZ1(t), . . . , FZn(t)
converges in distribution to an r.v. Y with distribution function FY (y), written

Zn
d−→ Y , if

lim
n→+∞FZn(t) = FY (t) t ∈ IR.

We can then state the central limit theorem as follows.

Let [X1, X2, . . . , Xn] be n i.i.d. r.v.s from a common distribution FX(x), with
finite first and second moment, and let X̄n = n−1

∑n
i=1 Xi. Then, as n increases,

we have

Zn =

√
n(X̄n − E[Xi])√

V(Xi)

d−→ N(0, 1).

This theorem is important because it allows us to obtain the distribution of some

test statistics depending on the mean of n i.i.d. r.v.s.

A.3 Hypothesis Testing

Let us go back to the explanatory example of Sect. A.1. Suppose that we are inter-

ested in evaluating whether the probability of an algorithm to find a solution within

a certain time limit t0 is more than or equal to 90%. To do that, suppose that we run

the algorithm 1, 000 times, and find out that the runtime is less than t0 874 times.

A point estimation of the parameter θ gives θ̂ = 0.874. This value is less than 0.9,

but is it sufficiently far from 0.9 to be sure enough that our conjecture cannot be

realistic? What would change if we had run the algorithm n = 100 times and found

that the runtime is less than t0 87 times? Would our conclusion be the same?

Null and Alternative Hypotheses

The question “is the probability of the algorithm to have a runtime less than t0
more than or equal to 90%?” is called the null hypothesis. There is an alternative
hypothesis which can be true, i.e., that the probability of the algorithm having a

runtime less than t0 is less than 90%.

Since our decision must be made on the available information (that of the sam-

ple), it is impossible to answer the question with no margin of error. The theory

of hypothesis testing was born in order to answer these questions, bounding and

quantifying the probability of incorrectly rejecting the null hypothesis.

In the previous paragraphs we saw that the estimator of a parameter is an r.v.

and that its distribution is described by a probability law that depends on some

parameters of the population. How would this probability distribution look if the

null hypothesis were true? Is the probability of observing the estimate of θ given by
the sample “too small” to trust that the null hypothesis is true? Or in our previous

example, is θ̂ “too far” from 0.9 to decide that the null hypothesis should be rejected?
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The null and alternative hypotheses can be formulated as follows:{
H0 : θ ∈ Θ0

H1 : θ ∈ Θ1
,

where Θ0 ∪ Θ1 = Θ and Θ0 ∩ Θ1 = ∅. The subset Θ0 specifies the values of the

parameter which are in agreement with the null hypothesis. In our previous example

Θ0 = [0.9, 1], and Θ1 = [0, 0.9). Note that in the null hypothesis there is always a

well-specified value of the parameter θ (e.g., the value 0.9 belongs to Θ0; this will

be clearer in what follows).

Statistical Test and Acceptance/Rejection Region in the Sample Space

A statistical test is a partition of the sample space X , where the sample space is the

set of all possible values of the random vector of sample data X. In other words,

there are some points of the sample space x ∈ X0 ⊂ X which are in agreement with

the null hypothesis, and others x ∈ X1 ⊂ X which are too unlikely to assume that

the null hypothesis holds. Thus, the observed data may lead to the rejection of the

null hypothesis or not. The information of the data is summarized by the test statistic
T = T (X), which is a function of the random vector of data X whose probability

distribution is known if the null hypothesis is true. Given that the distribution of the

test statistic is known under the null hypothesis, we may take a decision based on

T (x), the value of the test statistic computed with the vector of observed data x.
The domain of T (X) can be partitioned into an acceptance region A(X) and a

rejection region R(X) of the null hypothesis.
Once the sample data x have been observed, we may conclude that{

we cannot reject H0 if T (x) ∈ A(X)
we reject H0 if T (x) ∈ R(X).

Type I and Type II Errors

The acceptance or rejection ofH0 is therefore induced by the sample data x through

the test statistic T . Hence, there are two kinds of errors that may arise, which are

known as type I (α) and type II (β) errors:

α = Pr
θ∈Θ0

{T (X) ∈ R(X)}
β = Pr

θ∈Θ1

{T (X) ∈ A(X)}

That is, α is the probability of incorrectly rejecting H0 when H0 is true; β is the

probability of not rejecting H0 when the alternative hypothesis H1 is true. A the-

oretical “perfect” test should satisfy α = β = 0. In practice, the variability of the

sample data vector X cannot ensure this ideal condition. Operatively, it is impossi-
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ble to control both kinds of error, because the true value of θ is unknown (especially
under the alternative hypothesis).

The role of inferential statistics is thus to try to control at least one of these errors.

The error that we can control is α, as there is always a well-specified value of θ in

Θ0. Indeed, the well-specified value of θ in Θ0 typically maximizes the probability

of a type I error. Thus, the rejection regionR(X) is determined for an a priori chosen

α that satisfies the condition

α = sup
θ∈Θ0

Pr
θ
{T (X) ∈ R(X)}, (A.1)

which is also known as the significance level of the test.3 We will better explain this

last sentence by referring to the introductory example of this section.

In Sect. A.2, we have seen that nθ̂ =
∑n

i=1 Xi ∼ Bi(n, θ) when the Xi’s are

i.i.d. r.v.s with a Bernoulli distribution and Pr{Xi = 1} = θ. Now recall the null

hypothesis H0 : θ ≥ 0.9 of the example. This means that, if H0 is true, θ belongs

to the (closed) interval [0.9, 1]. There are infinitely many points in this interval,

each specifying a probability distribution of the r.v. nθ̂ under H0. Thus, in order to

compute the probability of making a type I error, we have to specify the rejection

region of the test R(X) first. This region will be made of the points x ∈ X for

which θ̂ is “too small” with respect to the border value θ = 0.9 of Θ0; that is, R(X)
will be an interval that satisfies

R(X) = {x ∈ X : nθ̂ ≤ c(α)},

for a constant c(α) to be specified, known as the critical value of the test. Now

let T (X) = nθ̂ be the test statistic, whose distribution is Bi(n, θ), θ ∈ Θ0, when

the null hypothesis is true. For any value of θ ∈ Θ0 we can obtain a constant c(α)
satisfying the above condition onR(X). Given that the rejection region has the form
[0, c(α)], and given that if θ1 ≤ θ2 are two points of Θ0

Pr
θ1
{nθ̂ ≤ c} ≥ Pr

θ2
{nθ̂ ≤ c},

the value of θ ∈ Θ0 that maximizes the type I error is the boundary point θ = 0.9;
that is

α = sup
θ∈Θ0

Pr
θ
{T (X) ∈ R(X)} = Pr

θ
{T (X) ∈ R(X)}|θ=0.9.

The above probability is known as the significance level of the test, and the rejection

region R(X) will then be specified by choosing a desired α-level ∈ (0, 1) and by

focusing attention on the case when nθ̂∼Bi(n, 0.9) and n = 1, 000. In other words,
we will base the inference on θ on the Binomial model with parameters n = 1, 000

3 Note that we have used the same symbol α to specify both the type I error and the significance
level of the test. This is because, when the null hypothesis is of the kind H0 : θ = θ0 (i.e., the null
parameter space consists in only one point), the two definitions coincide.
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and θ = 0.9, because the other elements of Θ0 would lead to a smaller type I error.

The probabilistic model maximizing the type I error is known as the null distribution
of the test statistic.

The significance level α indicates how much we are willing to risk (in terms

of probability) an incorrect rejection of H0 when the latter is true. Some typical

choices of α are 1%, 5%, and 10%, although the significance level of the test is a

subjective choice (and the p-value approach described in next paragraph will reduce
the role of α). To fix the ideas, suppose that we choose α = 5%: The discrete nature

of the binomial distribution does not allows us to find a quantile which satisfies

Prθ=0.9{nθ̂ < c(α)} = α exactly. We can thus choose the quantile of the null

distribution whose cdf is closest to the chosen α-level of the test (or not bigger

than α). By looking at the quantiles of the binomial distribution with parameters

n = 1, 000 and θ = 0.9, we find that

Pr
θ=0.9

{1000 · θ̂ ≤ 883} = 0.0433, and Pr
θ=0.9

{1000 · θ̂ ≤ 884} = 0.0534.

Thus, we can set the critical value equal to c(α′) = 883, and perform the test with

a significance level which is actually equal to α′ = 4.33%. Therefore, the rejection

and acceptance regions of the test will be

R(X) = {x ∈ X : 1000·θ̂ ≤ 883} and A(X) = {x ∈ X : 1000·θ̂ ≥ 884}.

In our example, 1, 000 · θ̂ = 874, which belongs to R(X); then, we will reject the
null hypothesis at a significance level α′ = 4.33%.4

Note that the null sample space X0 is identified by the points of A(X) and vice

versa; that is:

x ∈ X0 ⇐⇒ T (x) ∈ A(X).

There is another way to solve the testing problem above. Given that in our ex-

ample n is very large, we could have applied the central limit theorem in order to

specify the null distribution of a different test statistic Tn(X). IfXi i = 1, . . . , n are

i.i.d. dichotomous variables with θ = Pr{Xi = 1}, then we known that E[Xi] = θ
and V[Xi] = θ(1− θ). Thus, if we let

Tn(X; θ) =
√
n

(θ̂ − θ)√
θ(1− θ)

,

we know by the central limit theorem that Tn(X; θ) is approximately distributed as

a standard normal r.v., if θ is the true value of the parameter. Now under the null

hypothesis, θ ≥ 0.9 and note that {Tn(X; θ) ≥ 0} implies {θ̂ ≥ θ}. This means

that, if we set θ = 0.9, positive values of Tn(X; θ) are in accordance with the null

4 It is worth noting that, if the observed value of the test statistic belongs to A(X), this does not
mean that we have a further knowledge about the true value of the parameter θ in the population.
We can only conclude that the observed data do not disagree “enough” with H0 to reject it at the
specified significance level.



A A Brief Introduction to Inferential Statistics 435

hypothesis, whereas negative values of Tn(X; θ) are in disagreement with the null

hypothesis. Hence, the rejection region R(X) will be of the form (−∞, c(α)], with
c(α) being the critical value of the test. It is easy to see that, given two points of

Θ0, say θ1 ≤ θ2, Prθ1{Tn(X; θ1) ≤ c(α)} ≥ Prθ2{Tn(X; θ1) ≤ c(α)}, again the

boundary point θ = 0.9 maximizes the type I error for any given c(α). Therefore
we have that

T1000(x; θ = 0.9) =
√
1000

.874− 0.9√
0.9 · 0.1 = −2.740641

is now the observed value of the test statistic, and that this value can be compared

with the quantiles of the limiting distribution of Tn(X) (that is, the standard normal)

in order to determine whether T (x; θ = 0.9) falls into the rejection region of the null
hypothesis or not. Let α = 5%; the quantile z0.05 of the standard normal distribution

is equal to −1.6448, therefore

R(X) = {x ∈ X : T (x; θ = 0.9) ≤ −1.6448},
A(X) = {x ∈ X : T (x; θ = 0.9) > −1.6448}.

Since the observed value of the test statistic falls into the rejection region, we will

reject the null hypothesis at a 5% significance level.

The two testing approaches introduced in this paragraph lead to the same conclu-

sion. It is worth noting that they are indeed slightly different: in the first approach

we have compared the observed value of the test statistics nθ̂ with the quantiles of

its theoretical distribution evaluated the boundary point θ = 0.9, whereas in the sec-
ond approach we have compared the value Tn(x) with its asymptotic distribution,

which is a standard normal as the sample size n tends to infinity. The first test is

said to be an exact test, whereas the second is said to be asymptotic. The difference
between the two approaches tends to vanish as n tends to infinity, but may not be

negligible for small n, as we will show in the next paragraph.

As a final remark, the conclusions of hypothesis testing are conditioned by the

amount of information available. To see this, suppose n = 100 and θ̂ = 0.87; by
applying both the exact and asymptotic tests one would not reject the null hypoth-

esis H0 : θ ≥ 0.9 at a significance level of α = 5%. This happens because, when

the available amount of information increases, a “good” test should better discrim-

inate between the null and alternative hypotheses. This property is known as the

consistency of a test, and it may not hold for some tests.

The p-Value Approach

The acceptance–rejection method of testing hypotheses that we have just introduced

is unable to capture all the latent information in the data. For instance, if we had

repeated the experiment and found that in 870 cases the runtime did not exceed t0,
we would have rejected the null hypothesis H0 : θ ≥ 0.9 as well. However, clearly

an estimate of θ equal to 0.870 is slightly smaller than the previous one, which was
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θ̂ = 0.874. It would be better to have an idea of how far the observed data are

from the boundary point of the null parameter space Θ0, for instance. This can be

done by computing the observed significance level (or p-value), which is defined

as the minimum significance level for which the null hypothesis would be rejected.
Formally, the p-value is defined as

p-value = min
α

sup
θ∈Θ0

Pr
θ
{X ∈ R(X;α)},

where the emphasis is on the fact that the rejection region is specified by α. Going
back to our previous example (the exact testing approach), we have that

Pr
θ=.9

{T (X) ≤ 874} = 0.0045,

so, with the observed data, we should have chosen a significance level α = 0.45%
in order to reject the null hypothesis.

The p-value is much more informative about the rejection of the null hypothe-

sis than the acceptance–rejection approach because, ceteris paribus, we could have

chosen a significance level about ten times smaller than 4.33% and rejected the null

hypothesis as well.

According to the asymptotic approach, the p-value is equal to Φ(−2.740641) =
0.0031, so now the difference between the exact and asymptotic approaches be-

comes more evident. In both cases there is strong evidence against the null hypoth-

esis. Of course, for fixed α, there is the equivalence

p-value < α ⇐⇒ T (X) ∈ R(X;α).

The example above is a test with one-sided alternative (i.e., when H1 is of the

form θ < θ0 or θ > θ0). There are also tests with two-sided alternatives, when

H0 : θ = θ0 and H1 : θ 	= θ0. In this kind of testing problem, the null hypothesis

should be rejected whenever |θ̂ − θ0| is “too big.” In this case, the acceptance and

rejection regions are of the form

A(X) = {x ∈ X : c1(α) ≤ T (X) ≤ c2(α)},
R(X) = {x ∈ X : T (X) < c1(α) ∪ T (X) > c2(α)};

with α being the significance level of the test. Usually, c1(α) and c2(α) are deter-
mined in order to be α/2 = Prθ0{T (X) < c1(α)} = Prθ0{T (X) > c2(α)}.

The p-value computation, in this case, is

p-value = 2min

{
Pr
θ0
{T (X) ≤ T (x)},Pr

θ0
{T (X) ≥ T (x))}

}
.

For instance, if we apply an exact test assessing H0 : θ = 0.9, then Prθ0{T (X) ≤
874) = 0.0045, Prθ0{T (X) ≥ 874) = 0.9966, therefore the p-value is equal to

2× 0.0045 = 0.009.
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Brief Introduction to Permutation Tests

In the previous paragraphs, we have introduced two examples of parametric statisti-
cal tests. The parametric approach requires that the statistical model generating the

observed data be known; moreover, the null distribution of the test statistic is of-

ten approximated, and there are several examples where the conditions (regularity
conditions) that ensure the properties of the likelihood ratio test are not met. Per-

mutation tests are a further approach that removes some of these issues. It has been

becoming more popular in the recent years thanks to the advent of fast computers,

although the theory behind it can be traced back to Fisher in the 1930s.

Permutation tests are exact testing procedures that do not require assumptions

on the probability distribution of data. They are based on the notion of exchange-
ability of data. The r.v.s X1, X2, . . . , Xn are said to be exchangeable if their joint

distribution is equal to the joint distribution of a permutation of X1, X2, . . . , Xn.

For instance, n i.i.d. r.v.s are always exchangeable, because their joint distribution

can be written as the product of their densities/probability functions (because of the

commutative property of the product operator). Let X = [X1, X2, . . . , Xn] be an

n-dimensional vector, then X1, X2, . . . , Xn are exchangeable if

Pr{X} = Pr{X1, X2, . . . , Xn} = Pr{Xπ1
, Xπ2

, . . . , Xπn
} = Pr{X∗},

where π1, π2, . . . , πn is a random permutation of the first n integers.

Suppose that we want to compare two algorithms on n instances. At each run we

record the dichotomous variable Xi i = 1, . . . , n, where Xi = 1 means “algorithm

A has smaller runtime than algorithm B,” and Xi = 0 meaning the opposite. We

want to test the null hypothesis that the two algorithms have the same performance

against the alternative that algorithm A is better. This can be translated into H0 :
θ = 0.5 versus H1 : θ > 0.5. The sample space of the experiment is made of 2n

points. Since the test is a partition of the sample space X , one can obtain the exact

distribution of the test statistics by computing the value of a test statistic at all points

ofX . This is equivalent to the exact parametric testing approach to this problem, i.e.,

if the test statistic is nθ̂ =
∑n

i=1 Xi, the resulting probability distribution is again

binomial with parameters n and θ = 0.5.
To see this note that, if n = 5 and x = [0, 0, 1, 1, 0], there are

(
5
2

)
= 10 per-

mutations of the vector x that lead to the same estimate of θ̂ = 0.2 over 25 = 32
possible permutations of x. Therefore, the probability of observing θ̂ = 0.2 in the

sample space is 10/32 = 0.3125. The binomial model introduced in the previous

paragraphs would give us the same result: the probability of the eventX = 2, when
X ∼ Bi(5, 0.5) is(

5

2

)
0.52(1− 0.5)3 = 10 · 0.03125 = 0.3125.

If, in addition, the runtimes of algorithms A and B are also recorded (see Ta-

ble A.1), then we are dealing with a continuous variable which can be modeled as
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1 2 3 4 5

XA 0.591 1.587 0.210 0.158 0.797
XB 0.490 0.315 0.641 1.413 0.401

X 0 0 1 1 0

Table A.1: Runtime results (in seconds) of algorithms A (XA) and B (XB) in n = 5 instances.
The event X = 1 means “A is faster than B”

XiA = μ + δ + εiA and XiB = μ + εiB . Let us assume that the r.v.s εiA and

εiB are i.i.d. Under this assumption, the random variable XiA satisfies XiA

d
< XiB

(i.e., algorithm A is faster than B) only if δ < 0. Note that we have only assumed

the r.v.s εiA and εiB to be i.i.d. (it would be sufficient that they are exchangeable,

not necessarily i.i.d.). The null hypothesis of equal runtime performances can be

expressed byH0 : δ = 0; note that underH0 we haveXiA
d
= XiB , i.e., the random

variables XiA and XiB have identical distribution. This means that, if H0 is true,

the observed data x = [x1A, . . . , xnA, x1B , . . . , xnB ] are independent realizations
of the same r.v. If this is true, the probability of observing x is the same as that of

observing x∗, where x∗ is a random permutation of x. In other words, the data of

algorithm A could have been generated from XiB and vice versa. Thus, in order to

perform a permutation test to assess H0 : δ = 0 against H1 : δ < 0 we consider all(
2n
n

)
possible permutations of x, choose a suitable test statistics (for instance, the

difference of the means T ∗ = T (x∗) = x̄∗A− x̄∗B , and obtain its null distribution by
computing the value of T ∗ for any (distinct) random permutation of x. The observed
value of the test statistic T = T (x) = x̄A − x̄B (i.e., the value of the test statistic

obtained from the observed data) will then be compared with the null (permutation)

distribution of T ∗ in order to compute a p-value. Note that, in this example, small

(negative) values of T are significant against the null hypothesis.

Formally, let T ∗(1) ≤ T ∗(2) ≤ . . . ,≤ T ∗(M) be the values of T
∗ computed at each

point x∗ : x∗ = π(x), π ∈ Π , where Π is the set of all permutations of the

first 2n natural integers and N is its cardinality. Let T ∗[Nα] be the α-quantile of the
permutation distribution. ThenH0 : δ = 0 will be rejected in favor of the alternative
H1 : δ < 0 at a significance level α if T ≤ T ∗[Nα]. Note that this is equivalent to

obtaining a p-value from the null distribution and comparing it with the nominal

significance level α. We can define the p-value of this example as

p = F̂T∗(T ) =
1

N

N∑
b=1

I(T ∗(b) ≤ T ).

Thus, the exact p-value in case that the runtime results are recorded as Bernoulli

variables (last row of Table A.1), will be equal to: p = Prθ=0.5{5 · θ̂ ≤ 2} = 0.5.

If the observed runtimes are as in the first two rows of Table A.1, the observed

value of the test statistic is T = 0.0166; Now there are N ′ = 10! possible distinct
permutations of the whole vector of data. If we compute the test statistics for each
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permutation, we will realize that there are many repetitions. For instance, if we

separately permute the elements of xA and xB in all possible ways, we will obtain

the same value of the test statistic (5!)2 times. Thus the number of really informative

permutations is in fact N =
(
10
5

)
, i.e., all the possible distinct combinations of ten

elements in groups of five. The null distribution of T ∗ can be obtained as follows.

Let x∗ be a random permutation of x, consider the first nA = 5 elements of x∗

to be the results of algorithm A, and the last nB = 5 elements of x∗ to be the

results of algorithm B, and compute the value of the test statistic T ∗ = x̄∗A − x̄∗B ,
where x̄∗A =

∑n
i=1 x

∗
iA/nA and x̄∗B =

∑n
i=1 x

∗
iB/nB . Repeat this procedure for

all, N informative permutations. From the null distribution we can then obtain the

p-value, which is equal to 0.5238. Note that this p-value is not necessarily equal

to the previous one (obtained with data coded as 0/1), since the support of the test

statistic now is made ofN = 252 points instead of 32. Nevertheless, the conclusion
is the same: there is no evidence in the observed data that the null hypothesis should

be rejected. What has changed is the amount of information available (the runtimes).

Permutation tests are conditional procedures, where conditioning is with respect
to the permutation sample space X ∗ = {x∗ : x∗ = π(x), π ∈ Π}. That is, the
sample space is built on the observed vector of data x and it is induced by the

null hypothesis. The distribution function F̂T∗(t), t ∈ R, is the exact conditional

distribution of T ∗ on X ∗. When n is large, it might be impossible to perform all

possible N informative permutations: in such a case F̂T∗(t) can be approximated

by considering a large number B < N of random permutations of x.

Note that the test statistic we have applied is permutationally equivalent to T ∗′ =
x̄∗A, in the sense that T ∗′ leads to the same inferential conclusions (i.e., to the same

p-value). This is because, conditionally on x, the mean of the whole vector of data is

a constant and, for any permutation π ∈Π , there is the relationship 2nx̄ = (nAx̄
∗
A+

nBx̄
∗
B), so T (x

∗) = x̄∗A(1+nA/nB)−nx̄/nB . Since nA, nB , and x̄ are constants,

T ∗ π∼ T ∗′, where the symbol
π∼ means “is permutationally equivalent to”. It can

also be shown that there is no need to standardize the test statistic as we usually do

in the parametric framework.

Finally, given the data collected, the minimum possible significance level is the

inverse of the cardinality of informative permutations, i.e., minx∗∈X∗(p-value) =
1/N . In our example, with the Bernoulli variable X , minx∗∈X∗(p-value) = 1/32,
and if we consider the runtimes, minx∗∈X∗(p-value) = 1/252.

Finally, the p-value of the parametric two-sample t-test is 0.5197. However, the
t-test assumes that data are normally distributed, and this is not the case here since

there cannot be negative runtimes.
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A.4 Confidence Intervals

The result of point estimation, discussed in Sect. A.2, depends on the observed sam-

ple. If we repeat the experiment, the resulting estimate of the parameter will differ,

because the data will be different (if X is continuous, the probability of observing

the same data set is zero). Therefore, it is better to provide an interval of possi-

ble values for the unknown parameter θ, rather than a single value of the estimate.

The construction of the confidence intervals is based on the pivotal quantity, i.e.,
a statistic that depends on the observed data and on the unknown parameter, and

whose probability distribution does not depend on θ. For instance, recall that, by the
central limit theorem,

T (X; θ) =
√
n

θ̂ − θ√
θ(1− θ)

d−→ N(0, 1),

where θ is the true value of the parameter as n increases. Then T (X; θ) is a pivotal
quantity since its (asymptotic) distribution is standard normal, not depending on θ.
Thus, we can define a random interval C(X) = [c1(α), c2(α)] such that

Pr {T (X; θ) ∈ C(X)} = 1− α,

which only depends on α and not on θ. Now, by the applying the inverse function

T−1(·) with respect to θ, we may write the probability above as

Pr {B(X) � θ} = 1− α,

where B(X) is equal to T−1(C(X)). The probability 1−α is called the confidence
level, and it represents how much we trust that the true value of the parameter is

contained in the interval B(X) before the experiment takes place. Note that this is

an a priori probability, concerning the random interval C(X). Once the data have

been collected we obtain the realization of the r.v. C(x) = [c1(x;α), c2(x;α)].
Now C(x) is no longer a random interval, so it does not make sense to write “the

probability of θ being included in B(x) is 1 − α.” But if we could repeat the same

experiment (i.e., sampling data from the same population) a large number of times,

then we would find that (1 − α)% of the times the interval B(x) contains the true
value of the parameter θ. Thus B(x) will contain or not the true value of θ with

probability 1 (and we do not know whether this is happening or not), but we have a

confidence of (1− α)% that θ is included in B(X).
From the formulas above we derive that

Pr

{
c1(α) ≤

√
n

θ̂ − θ√
θ(1− θ)

≤ c2(α)

}
= 1− α.

This means that, a priori (and if n is large enough for the CLT to take effect)
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Pr

{
θ̂ − c2(α)

√
θ(1− θ)

n
≤ θ ≤ θ̂ − c1(α)

√
θ(1− θ)

n

}
= 1− α.

Since B(x) must not depend on the unknown parameter θ, it will be evaluated by

plugging in the estimate of θ. Thus

B(x) =

⎡⎣θ̂ − c2(α)

√
θ̂(1− θ̂)

n
, θ̂ − c1(α)

√
θ̂(1− θ̂)

n

⎤⎦
is an approximate (i.e., asymptotic) confidence interval of level 1−α. We only need

to fix the constants c1(α) and c2(α) in order to obtain the confidence interval for θ.
In practice, they are determined by letting

Pr{T (X; θ) ≤ c1(α)} = Pr{T (X; θ) ≥ c2(α)} = α/2.

For instance, if we choose a confidence level of 95%, then c2(X;α) = −c1(X;α) =
1.96.

Going back to our example in the previous section, where we were trying to

establish the probability θ for an algorithm to solve an instance within a time limit

of t0, the (approximate) confidence interval for θ with confidence level equal to 95%
is given by:[

0.874− 1.96

√
0.874 · (1− 0.874)

1000
, 0.874 + 1.96

√
0.874 · (1− 0.874)

1000

]
= [0.853, 0.894]

Note that the confidence intervals are always “centered” on the estimate of the pa-

rameter of interest.

It can be shown that there is a one-to-one correspondence between (two-sided)

statistical tests and confidence intervals.

Therefore, a quick way to test for two-sided alternative hypotheses at a signifi-

cance level α is choosing the desired confidence level 1 − α, obtaining the corre-

sponding confidence interval, and checking whether the null value of the parameter

θ0 is included in the interval or not. Of course, one can construct “one-sided” inter-

vals, in order to perform a one-sided test.

Returning to our example, we could build a confidence interval on the parameter

θ in order to test for H0 : θ ≥ 0.9 in the following form:

1− α = Pr{T (X; θ) ≥ c(α)}.

where c(α) should be the α-quantile of a standard normal distribution. Then
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1− α = Pr

{
√
n

θ̂ − θ√
θ(1− θ)

≥ c(α)

}
= Pr

{
θ ≤ θ̂ − c(α)

√
θ(1− θ)

n

}
,

If we choose 1−α = 95%, then c(α) = −1.6448. As before, we plug in the estimate

of θ and obtain the confidence interval

C.I. =

⎡⎣0, θ̂ − c(α)

√
θ̂(1− θ̂)

n

⎤⎦ .
An approximate C.I. for θ of this kind with a confidence level of 95% is [0, 0.8912].
Since θ0 = 0.9 does not belong to the interval, the null hypothesis H0 : θ ≥ 0.9 is

rejected at a significance level of 5%.

A.5 Regression and Modeling

In statistics, wide use is made of linear regression and model fitting. The linear (re-
gression) model is the simplest model trying to describe the (linear) linkage between

one response variable Y and (one or) some explicative variables Xj , j = 1, . . . , p,
p ≥ 1. We talk about model fitting when we are trying to investigate the probabilistic

model beneath the r.v. X generating the data.

Let us consider again the algorithmic example introduced in Sect. A.1: an algo-

rithm solving a set of instances of an optimization problem within a certain time

limit. Let us assume now that the time limit is large enough that the algorithm al-

ways terminates with a solution found. Linear models can then be used to find a re-

lationship between some parameters of the algorithm and its run time performance,

while model fitting can be used to determine that the runtimes are, for example,

exponentially distributed.

A.5.1 Linear Regression

The simplest model is the one linking two variables. The goal is to describe how

Y varies on average as a function of X . To do that, we collect n independent ob-

servations of the bivariate variable [Xi, Yi], i = 1, . . . , n and fit a linear model that

models the observed data “better.” Once the linear model has been fitted, we can use

it to determine whether there is a significant correlation between the response and

the explicative variable(s), or try to predict the (average) value of E[Y ] correspond-
ing to a given a new observation x0.

Thus, the model assumes that there is a linear relationship of the kind

Yi = β0 + β1xi + εi,
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where β0 and β1 are, respectively, the intercept and the slope of the line fitting the

response data as a linear function of the explicative data, and εi is an r.v. (often

known as experimental error) describing the variability of Y that does not depend

on X . Note here that xi is assumed to be the realization of the r.v. Xi. The errors

are assumed to be an i.i.d. r.v. satisfying:

E[εi] = 0, V[εi] = σ2, i = 1, . . . , n.

These are the (minimal) assumptions on the εi’s, i.e., we still have not specified the

probability distribution of εi. An equivalent way to write the model is E[Y ] = β0 +
β1X , where the emphasis is on the fact that the fitting line models the expected value

of Y as a function of X , rather than Y itself. In order to determine the model we

require the estimates of β0 and β1. There are several ways to obtain these estimates,

and here we will only refer to the least squares error estimation. Let ŷi = β̂0+ β̂1xi

be the prediction of E[Y ] corresponding to the point xi, i = 1, . . . , n. The least

squares estimates minimize the objective function

SSR(β̂0, β̂1) =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂0 − β̂1xi)
2.

In other words, β̂0 and β̂1 minimize the squared (Euclidean) distance among the ob-

served and the predicted sets of points, so the fitted line “goes through” the observed

data, which are points in R2. By differentiating SSR(β̂0, β̂1) with respect to β̂0 we

obtain

∂SSR(β̂0, β̂1)

β̂0

= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0, β̂0 = ȳ − β̂1x̄,

where x̄ and ȳ are the sample means of, respectively, X and Y . By plugging in the

estimate of β0 and differentiating with respect to β̂1 we obtain

∂SSR(β̂1)

β̂1

= −2

n∑
i=1

[(yi − ȳ)− β̂1(xi − x̄)](xi − x̄) = 0,

and therefore

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)/n∑n

i=1(xi − x̄)2/n
=

Cov(X,Y )

V(X)
,

where V(X) is the sample variance of X and Cov(X,Y ) is the sample covariance
betweenX and Y . The equation ŷi = ȳ+ β̂1(xi − x̄) gives the line fitting E(Y ) as
a function of X .

The estimators of the parameters are unbiased:

E[β̂1] = E

[∑n
i=1(Yi − Ȳ )(xi − x̄)∑n

i=1(xi − x̄)2

]
=

∑n
i=1(xi − x̄)E[Yi − Ȳ ]∑n

i=1(xi − x̄)2
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=

∑n
i=1(xi − x̄)(β0 + β1xi − β0 − β1x̄)∑n

i=1(xi − x̄)2
= β1;

E[β̂0] = E[Ȳ − β̂1x̄] = E[Ȳ ]− E[β̂1]x̄ = β0 + β1x̄− β1x̄ = β0.

Note that in the above equations we have stressed that X is not an r.v. (whereas Y
is an r.v. since it depends on ε), and applied one property of the expected value for

i.i.d. observation: E[Ȳ ] = E[Ȳi]/n = β0 + β1x̄. It can be proved that the variance

of β̂1 is

V[β̂1] =
σ2∑n

i=1(xi − x̄)2
.

Accuracy of the Regression Model

Once the linear model has been fitted, we may ask something about the goodness

of the fit. Clearly, a perfect fit should satisfy the condition yi = ŷi for all i; on the

other hand, the worst model ever is such that the predicted values do not depend

on X (hence there is no relationship between X and Y ), e.g., ŷi = k for all i,
with k being a constant. The accuracy of the model is then evaluated by looking

at the proportion of the variability of Y that is “explained” by X . The total sample

deviance (the deviance of an r.v. is its variance multiplied by a constant) of Y can

be decomposed as follows:

SST =

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(yi ± ŷi − ȳ)2

=

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ŷi)
2 − 2

n∑
i=1

(ŷi − ȳ)(yi − ȳ),

where the double product is equal to zero because it is equivalent to ∂SSR(β̂1)/∂β̂1.

The total deviance can thus be written

SST =

n∑
i=1

(ŷi − ȳ)2 +

n∑
i=1

(yi − ŷi)
2 = SSE + SSR,

where SSE is the explained deviance (i.e., the variability of Y due to the model) and

SSR is the residual deviance (i.e. the variability of Y not depending on X).

We have SST = SSE when the observed points are already on a line (i.e., there

is a perfect linear relationship between Y and X), and SST = SSR when β̂1 = 0,
so the fitted model is actually of the kind ŷi = ȳ. Thus, an index of the accuracy of

the model is given by the ratio

R2 = ρ(X,Y )2 =
SSE

SST
=

β̂2
1

∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)2
=

COV(X,Y )2

V[X]V[Y ]
.
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Clearly, 0 ≤ ρ(X,Y )2 ≤ 1, and high values of ρ(X,Y )2 indicate the presence of

a strong linear relationship between X and Y . The index ρ(X,Y )2 is the square

of the correlation coefficient, which is a standardized measure of the covariance

between X and Y and satisfies −1 ≤ ρ(X,Y ) ≤ 1. The index R2 is also known as

the coefficient of determination.

Testing the Slope Coefficient

We have just seen that when β̂1 = 0 there is no (observed) linear relationship be-

tween Y and X , i.e., the variables are uncorrelated, but β̂1 is an estimate of the

true parameter determining the (true) linear relationship β1. Therefore it is impor-

tant to evaluate whether β1 is significantly different from 0 or not. That is, we want

to perform a statistical test assessing the null hypothesis H0 : β1 = 0 against the

alternative H1 : β1 	= 0.
We require some further assumptions on the error distribution in order to per-

form a parametric test. Thus, the errors εi are assumed to be i.i.d. r.v.s with normal

distributions. If εi ∼ N(0, σ2), then also Y is normally distributed, specifically

Yi ∼ N(β0 + β1xi, σ
2). Being a linear combination of normal r.v.s, we have that

β̂1 ∼ N(β1, σ
2[
∑n

i=1(xi − x̄)2]−1). If σ2 is known, then the r.v.

T (β̂1, β1) =

√√√√ n∑
i=1

(xi − x̄)2
β̂1 − β1

σ
∼ N(0, 1)

is a pivotal quantity, and therefore we can specify the acceptance/rejection regions of

the test or obtain a two-sided p-value by considering the standard normal distribution

as the null distribution of the test statistic. In practice, σ2 is unknown and needs to be

estimated from the data. A natural estimate of σ2 is given by the (unbiased) variance

estimator of the residuals

σ̂2 = V(ε̂) =
1

n− 2

n∑
i=1

ε̂2i ,

which is equal to the residual deviance divided by its degrees of freedom.5

Then if we replace σ2 by its estimate, we have that the test statistic

T (β̂, β1) =

√√√√ n∑
i=1

(xi − x̄)2
β̂ − β1

σ̂
∼ t2,

that is, T (β̂, β1) has a Student t distribution with n − 2 degrees of freedom (the

Student t distribution with k degrees of freedom is defined as the ratio between

5 It can be shown that the expected value of SSR is equal to σ2(n− 2). It can also be proved that
SSR ∼ σ2χ2

n−2, i.e., SSR has a χ2 distribution with n− 2 degrees of freedom.
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Z and
√
χ2
k/k, where Z ∼ N(0, 1) and χ2

k is a chi-square r.v. with k degrees of

freedom).

Thus we will reject the null hypothesis on β1 for large values of |T (β̂, β1)|β1=0|.

Multiple Regression

The theory of simple linear regression can be easily extended to the more general

case where E[Y ] is modeled as a linear function of p explicative variables Xj , j =
1, . . . , p. That is, if we consider the linear model

Yi = β0 +

p∑
j=1

βjxij + εi.

With multiple linear regression we want to describe the variability of Y as a linear

function of p explicative variables that may jointly influence the response. The as-

sumptions on errors are as in the simple linear regression model, and it is possible

to perform a statistical test on each slope coefficient βj , j = 1, . . . , p. What changes

here is that the estimates of the parameters are now functions of the partial corre-
lations between Y and Xj , i.e., the correlation between Y and Xj computed after

removing the correlations between the other explicative variables and Y . The de-

composition of the total deviance still holds, but now the degrees of freedom of the

residual deviance are n−p−1 (in simple linear regression p = 1). The adequacy of
the model can be evaluated with an index of determination which accounts for the

presence of p explicative variables. Indeed, if the number of variables increases the

residual deviance decreases, even if none of the explicative variables is correlated

with the response. This fact can be explained, for instance, by considering that the

estimation of the parameters requires the solution of a system of p + 1 equations.

Therefore if n = p + 1 there is only one solution that jointly satisfies all p + 1
equations. Another intuitive example is given by the polynomial regression that has

the form

Yi = a+ bxi + cx2
i + dx3

i + · · ·+ εi,

where the data (points of R2) are modeled by a polynomial function of X . It is

known that there is only one line passing through two points, only one parabola

passing through three points, etc. Thus, we must modify the simple coefficient of

determination in order to take into account this geometric property. Define the ad-
justed coefficient of determination

R2
adj = 1− (1−R2)

n− 1

n− p− 1
.

An R2
adj equal to 1 indicates perfect matching between the set of the responses and

the set of predicted values (this happens when the nonadjusted R2 is equal to 1).

Note that, in some cases, R2
adj could also be negative (e.g., when R

2 = 0): a similar

result does not make sense in terms of the proportion of the variability explained

by the model, and it must simply be interpreted as an index of a “terrible” model,
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i.e., a model where there is absolutely no correlation between the response and the

explicative variables. The first thing to do when fitting a multiple regression model

is to evaluate if at least one of the explicative variables has a significant correlation

with the response. If this does not happens, the model is completely useless. We can

express this situation with the null hypothesis H0 : β1 = β2 = . . . , βp = 0 against

the alternative H1 : ∃βi 	= 0. Note that, if the null hypothesis is true, then we are

considering a model with intercept only (such a model always satisfies SST = SSR
and R2 = 0). We can evaluate if our model is not significantly different from the

intercept-only model by looking at their related explicative deviances (or residual

deviances). Thus let SSR0 and SSRp be the residual deviances of respectively the

null model and the model with p explicative variables that we are considering. From
what we have said about the relationship between residual deviance and number

of explicative variables considered, we can understand that SSR0 ≥ SSRp. The

difference SSR0−SSRp measures the increase of explained deviance that we obtain

by adding p explicative variables to the null model. It can be shown that the r.v.

SSR0 − SSRp has a χ2 distribution with p degrees of freedom. Moreover, it is

independent of SSRp and that the test statistic

F =
(SSR0 − SSRp)/p

SSRp/(n− p− 1)
∼ Fp ; n−p−1,

has a Snedecor F distribution with p and n − p − 1 degrees of freedom. Small

values of the test statistic are in agreement with the null hypothesis. The rejection

region of the test has the form [c(α),+∞), where c(α) is the (1 − α)-quantile of

the Fp ; n−p−1 distribution. If the null hypothesis is not rejected, then none of the

variables has a linear influence on the response.

The null hypothesis involving all parameters is not rejected, it is possible to test

for the significance of each slope parameter βj by applying the test statistic

T (β̂j , βj) =
β̂j − βj√
V(β̂j)

∼ tn−p−1,

where V(β̂j) is the variance of the estimator of βj , which in the general case is not

easy to write in a closed form. As before, small values of |T (β̂j , βj)|βj=0| are not
significant against the null hypothesis βj = 0.

A.5.2 Model Fitting

There are some situations where one wants to know if the probabilistic model that

has been assumed to generate the data is the correct one or not. For instance, one of

the assumptions in linear regression is the normality of errors. It is usual to check

whether the errors can be considered as normally distributed or not because, in the
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latter case, the inferential results (e.g., tests on coefficients) may not be completely

reliable.

One descriptive method to check the normality of error is the QQ plot, which
is a graphical representation of points whose coordinates are theoretical and em-

pirical (observed) quantiles. By theoretical quantiles we mean the quantiles of

the distribution that is assumed to hold for errors. Here the null hypothesis is

H0 : εi ∼ N(0, σ2) against the alternative that the errors follow a nonspecified

distribution Fε. Clearly, the evaluation of the null hypothesis will be based on the

empirical distribution function of the residuals ε̂i = yi − ŷi, i = 1, . . . , n, which
are realizations (or can be assumed as estimates) of the errors.

To obtain a QQ plot, order the residuals in increasing order; the jth ordered

residual ε̂(j) has an empirical distribution function

F̂n(ε̂(j)) =
1

n

n∑
i=1

I(ε̂i ≤ ε̂(j)),

and F̂n(ε̂(j)) = j/n if there are no ties in the residuals (we assume that this happens

with zero probability). Note that F̂n(x) is defined for all x in R and that it is a

step function. Then the theoretical quantiles, if errors are assumed to be normally

distributed, are

z(j/n) = Φ−1(j/n) j = 1, . . . , n.

The QQ plot represents the points whose coordinates are [z(j/n), ε̂(j)]. Since one of
the properties of the normal distribution is that a linear combination of a normal r.v.

is still normally distributed, if H0 holds then the plotted points should lie along a

line whose coefficients are approximately the coefficient of the linear combination

linking the standard normal r.v. Z and the r.v. ε under testing. Thus, if one considers
the standardized quantiles instead of the observed quantiles, what changes is just the

equation of the theoretical line representing perfect agreement between the observed

residuals and their theoretical quantiles.

The QQ plot is easy to interpret, but it lacks objectivity since the decision is

made by visual inspection. There is a more scientific approach: the Kolmogorov–
Smirnov test. hypothesis H0 : FX(x) = F0(x) against a nonspecified alternative

H1 : FX(x) 	= F0(x), where F0(x) is a known distribution. The idea behind the test
is that, if X is really distributed as F0(x), the theoretical and empirical distribution

functions should be “close” to each other, and therefore the Kolmogorov–Smirnov

test statistic

KS = max
x∈IR

|F̂n(x)− F0(x)|

should be “small.” Thus, this test has an acceptance region of the kind [0, c(α)],
where c(α) is the 1− α quantile of the distribution of KS.

Recalling our starting example in Sect. A.1, we wish now to give a more precise

indication of the runtime that the algorithm needs to solve an instance. To do this,

we record the runtime of the algorithm on each specific instance (assuming it always
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finishes with a solution found). After the experiments we have a sample of run times,

y1, y2, . . . yn, one for each of n instances. We saw that the sample mean and the

sample variance are some indicators of the distribution of runtimes; nevertheless, if

we could find a theoretical distribution that fit the data well, the description would be

more complete and, depending on the context, would allow us to exploit properties

of the theoretical distribution. Moreover, for some distributions, such as heavy-tailed

distributions, not all the moments are finite, implying that the sample mean and

sample variance are erratic and not reliable descriptors. Hence, a more complete

insight is definitely needed in these cases.

The typical procedure is the following: select a theoretical model, estimate its

parameters, and then test the goodness of fit. Two models that we encountered in

Section A.1.2, the exponential and the Weibull distribution, are used to describe life

data are therefore also appealing to describe runtime distributions of algorithms. In

particular, the Weibull distribution exhibits large flexibility due to the presence of

three parameters in its model. Parameters in this kind of application are conveniently

estimated by the maximum likelihood method.
The likelihood function L(·) is basically a density/probability function which is

considered as a function of the parameter(s) rather than a function of the data. This

is why L(·) is not a probability/density function. This choice is due to the fact that

usually we try to choose a (parametric) probabilistic model once the data have been

observed. Thus it is reasonable to choose the probabilistic model that, a posteriori,

maximizes the probability of observing the data.

Suppose that we have the runtime results y1, y2, . . . yn, and that we want to fit

the distribution with an exponential model. The density of the exponential r.v. is

fY (y) = λ exp{−λy}, DY = (0,+∞), λ > 0.

The density of a vector of i.i.d.6 random variables Y = [Y1, . . . , Yn] is the product
of their densities. Therefore

fY(y) =

n∏
i=1

fYi
(yi) y ∈ DY

n, fYi
(yi) = fY (yi) ∀ i

where DY
n is the n-dimensional Cartesian product of DY . The joint density of the

vector in y1, y2, . . . yn (the observed data), viewed as a function of the parameter λ,
is equal to the likelihood function

L(μ, λ|y) =
n∏

i=1

λe−λyi = λn exp

{
−λ

n∑
i=1

yi

}
.

According to the maximum likelihood method, the estimate of λ is the value that

maximizesL(λ). It is equivalent (and easier) to maximize the log-likelihood, i.e., the
logarithmic transformation of L(λ) (the logarithm function is monotone increasing)

6 The requirement of identical distribution is not necessary in this definition. We have considered
this case since the domain of Y is easier to describe and because it is part of the example.
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(λ|y) = log[L(λ|y)] = n log(λ)− λ

n∑
i=1

yi.

By differentiating (λ|y) with respect to λ:

∂(λ|y)
∂λ

=
n

λ
−

n∑
i=1

yi = 0 ⇒ λ̂ =
n∑n
i=1 yi

.

The likelihood method sometimes gives biased estimators (e.g., the estimator of

the variance of a normal random variable). Therefore it is advisable to check whether

the estimators of the parameters are biased or not (and, if so, modify the estimators

ad hoc).

We know that the sum of n i.i.d. Gamma variables with parameters λ and ν = 1
(recall that the exponential distribution is a Gamma with ν = 1) has a Gamma

distribution with parameters λ and n . Thus we may write the estimator as λ̂ =
n/W , whereW ∼ Ga(λ, n). Therefore

E[λ̂] = E[nW−1] =
n

Γ (n)

+∞∫
0

w−1λnwn−1e−λwdw

=
nλ

Γ (n)

+∞∫
0

λn−1wn−2e−λwdw = nλ
Γ (n− 1)

Γ (n)
= λ

n

n− 1
.

In this case the maximum likelihood estimator of λ is biased, therefore an unbiased

estimator of λ is λ̂ = (n − 1)/
∑

i yi. Unfortunately, if one wants to apply the

Kolmogorov–Smirnov test, the null distributionF0(x)must be completely specified.

That is, we cannot estimate the parameter(s) of the distribution F0(x) from data,

otherwise the KS test becomes conservative.

The KS test can also be applied in a two-sample problem: let x1 and x2 be two

vectors of realizations of the r.v.s X1 and X2, respectively. The KS test can then be

applied to assess the null hypothesis X1
d
= X2 against the alternative X1

d

	= X2.

In this case the test statistic is equal toKS = maxx∈IR |F̂n1(x)− F̂n2(x)|, where
F̂nj

(x) is the empirical cdf of the jth sample at point x, j = 1, 2. Figure A.7 shows
an example of the KS statistic when x1 are ten realizations fromX1 ∼ Exp(1) and
x2 are 20 realizations from X2 ∼ Exp(2). In this case the value of the test statistic

is KS = 0.35 and the related p-value is equal to 0.3686, so we do not reject the null
hypothesis.
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quantitative, 288

quasi-continuous, 311

relevance, 284

symbolic, 288

tuning, 41, 289, 360

types, 311

parametric test, 433

ParamILS, 360

Pareto

generalized, 185

generalized, fitting, 197

Pareto distribution, 417

Pareto optimality, 206

Pareto-optimal front, 206

peaks over threshold (POT), 185

performance

final, 364

permutation test, 433

pitfalls of experimentation, 36

pivotal quantity, 436

planarity testing, 129

point estimation, 422

Poisson distribution, 418

POT for minima, see peaks over threshold
(POT)

practical differences, 223

pre-experimental planning phase, 391

predictive equation, 343

probability function, 415

probability model, 414

problem design, 18, 337

problem instance generator, 270

QQ plot, 444

quadratic assignment problem

biobjective, 213

quantile, 417

r.v., see random variable

racing, 312–313

racing approach, 312

random nondominated point set (RNP set), 105

random search, 188

random variable, 414, 415

categorical, 415

continuous, 415

discrete, 415

random-effects model, 225

region of interest, 340, 345, 363

regression variable, 343

reparameterization, 421

reporting experiments, 42

residuals, 344, see model fitting

resilent algorithm, 142

response, 343

response surface methodology, 60, 266, 346,
360, 362

response variable, 270

restricted maximum likelihood, 235

REVAC, 295

robust optimization, 143

robustness, 19, 44, 142

Rosenbrock function, 188

run-length distributions, 20

runtime distribution, 158

cumulative distribution function, 159

probability density function, 159

sample, 413

sample size, 268

satisfiability problems, 171

scalar quality indicators, 207

scale parameter, see gamma distribution

scaling and probabilistic smoothing, 363

scatter plot, 346

screening, 19, 262, 284

second central moment, see variance
selection, 285

sensitivity analysis, 19, 51, 143

sequence alignment, 141

sequential Kriging optimization, 361

sequential parameter optimization, 17, 32, 361

interactive, 390
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open issues, 43
sequential parameter optimization toolbox, 17,

333, 361
automated, 341
interactive, 341

severity, 32
shannon entropy, 291
shape parameter, see gamma distribution
shipbuilding, 335
significance level, 429
similarity, 27
simulation

away from optimum, 191
near the optimum, 189

software package
Xtremes, 187

software testing, 74
SPO, see sequential parameter optimization
SPO+, 382
SPOT, see sequential parameter optimization

toolbox
standard normal distribution, 420
standard template library for extra large data

sets, 138
standardized variables, 344
statistical differences, 223
statistical power, 228, 267
statistical test, 428
steepest descent, 61, 350, 394

adapted, 61
stochastic programming, 143
stopping criterion, 270
succinct data structures, 141
survival analysis, 158
survival function, 159

joint survival function, 166
marginal survival function, 166
subsurvival function, 167

Taguchian robust optimization, 64
task decomposition, 139
test statistics, 428

testing the slope coefficient, 441

time-critical applications, 141

transformation, 378

traveling salesman problem, 321

biobjective, 216

tree-based regression, 354, 355

SPOT, 343

Tukey’s multiple comparison procedure, 231

tuning, 18, 19, 38, 44, 360, 362

algorithm, 18

amount of, 44

automated, 342

automated versus interactive, 362

example, 354

interactive, 342, 398

local, 391

manual, 39, 40

problem, 18

sequential parameter optimization, 339

understanding, 19

two-phase local search, 215

type I and type II errors, 428

unbiasedness of an estimator, 425

uncertainty analysis, 19

uniform distribution, 418

utility, 295

variance, 417

variance function, 112

variation, 286

von Neumann model, 128

Vorob’ev median, 111

waterfall model, 131

Weibull distribution, 183, 422

weighted robust tabu search, 215

Wilcoxon matched-pairs signed-ranks test, 315

Wilkinson-Rogers notation, 343

Xtremes software package, 187
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