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Abstract. The paper presents a novel statistical framework for cortical
folding pattern analysis that relies on a rich multivariate descriptor of
folding patterns in a region of interest (ROI). The ROI-based approach
avoids problems faced by spatial-normalization-based approaches stem-
ming from the severe deficiency of homologous features between typical
human cerebral cortices. Unlike typical ROI-based methods that sum-
marize folding complexity or shape by a single number, the proposed de-
scriptor unifies complexity and shape of the surface in a high-dimensional
space. In this way, the proposed framework couples the reliability of ROI-
based analysis with the richness of the novel cortical folding pattern de-
scriptor. Furthermore, the descriptor can easily incorporate additional
variables, e.g. cortical thickness. The paper proposes a novel applica-
tion of a nonparametric permutation-based approach for statistical hy-
pothesis testing for any multivariate high-dimensional descriptor. While
the proposed framework has a rigorous theoretical underpinning, it is
straightforward to implement. The framework is validated via simulated
and clinical data. The paper is the first to quantitatively evaluate cortical
folding in neonates with complex congenital heart disease.

1 Introduction

Cerebral cortical folding forms an underpinning for the cognitive skills and be-
havioral traits in humans. It is one of the major maturational processes of the
human brain that occurs rapidly throughout fetal and early postnatal life. For
the last few decades, the use of magnetic resonance (MR) imaging has enabled in
vivo studies of human cortical folding patterns. Several studies relate abnormal-
ities in the complexity of folding patterns to neurodevelopmental disorders [1,2].
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While several pioneering studies track the progress of normal cortical folding
in foetuses and neonates [3,4,5], others study cortical-folding abnormalities in
neonates [6,7] based on subjective clinical protocols.

This paper studies cortical folding in the operculum in neonates with com-
plex congenital heart disease (CHD). The operculum includes language areas
and the sensory motor cortex for the mouth, tongue, and throat. There is grow-
ing evidence of immature features or frankly delayed maturation of the brains
of full-term infants with complex CHD [8,9]. This immaturity likely gives rise to
unexpected vulnerability to a white matter injury termed periventricular leuko-
malacia (PVL), an injury previously seen only in premature infants. Abnormally
low fetal blood oxygenation and blood flow and the brain are likely the cause of
this maturational delay. While direct evidence is lacking, there are differences in
the circulatory patterns in fetuses with different forms of complex CHD. This
paper quantitatively evaluates cortical folding in the operculum in two key sub-
types of CHD, namely hypoplastic left heart syndrome (HLHS) and transposi-
tion of the great arteries (TGA). The paper reports differences in not only the
complexity of opercular folding patterns, but also their shape.

One class of approaches to folding analysis rely on spatial normalization, either
volumetric [10,4] or surface-based [2], and subsequently perform statistical hy-
pothesis testing at every voxel or surface-element in the normalized space. Such
methods can employ folding descriptors that are curvature-based [10], wavelet-
based, etc. In typical cortical studies, however, “dramatic individual differences
in the specific pattern of convolutions” [11] make it extremely difficult to find
sufficiently-many homologous features [12] that could guarantee a consistent pa-
rameterization between cortical surfaces [12,13,11] (see [11] for brain images).
Essen and Dierker [11] observe that “no registration that respects the topology
of the cortical sheet can successfully match every major and minor fold”. While
lack of homologies are indeed observed for minor folds, they may occur for some
major folds as well [13,11]. The reliability of normalization, because of this natu-
ral variability, may directly affect the reliability of findings in the clinical study.
Furthermore, because the phenomenon of cortical folding has an inherent large-
scale or non-local character, the rationale for point-by-point analysis of folding
differences seems unclear.

A second class of approaches propose region-based folding descriptors to quan-
tify folding complexity [14,15,3,5]. Such approaches avoid the problems associ-
ated with normalization by reducing spatial sensitivity from a voxel to a region
of interest (ROI). ROIs considered in such folding studies can indeed be reliably
defined in each individual based on observed homologous features. Such ROIs
can be specific structures (e.g. hippocampus), regions around sulci/gyri that are
always observable (e.g. operculum), lobes (e.g. frontal), etc.

Most studies in literature based on both aforementioned classes of approaches
measure only the complexity of folding patterns, ignoring information related to
shape, orientation, etc. Although some very recent ROI-based approaches propose
descriptors incorporating shape information [16], they fail to integrate all the in-
formation on shape and complexity in a single descriptor. Furthermore, typical
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ROI-based approaches produce scalar or low-dimensional summary statistics for
the entire ROI, risking serious information loss.

This paper makes several contributions. First, the paper presents a novel
ROI-based statistical framework for folding pattern analysis relying on a rich
multivariate non-local descriptor that captures the spectrum of complexity and
shape. Specifically, the descriptor is a joint probability density function (PDF)
of two variables, one capturing surface complexity and the other capturing sur-
face shape. Second, the paper proposes a novel application of a nonparametric
permutation-based approach for statistical hypothesis testing for the proposed
descriptor. In these ways, the proposed framework couples the reliability of ROI-
based analysis with the richness of the proposed descriptor. This paper shows
that the proposed framework has a rigorous theoretical underpinning and it is
straightforward to implement. Third, the proposed hypothesis-testing approach
can be easily applied to any multivariate descriptor, e.g. one that augments
the proposed cortical-folding descriptor to include cortical-thickness informa-
tion. Fourth, to the best of our knowledge, this paper is the first to report the
affects of HLHS and TGA on opercular folding.

2 Background

2.1 Univariate Low-Dimensional Complexity Descriptors

It is generally important to design folding descriptors that (i) are invariant to
translation and rotation of the cortical surface representation (changes in the
location or orientation of the slice planes during MR imaging), and (ii) capture
all aspects of folding including complexity as well as shape.

Some of the earliest folding descriptors were intended to capture only the com-
plexity of the cortical surface. Fractal dimension [17,14] captures the increases
in surface area over multiscale representations of the surface. Gyrification in-
dex [18] is the ratio of the length of a planar curve to the length of the curve’s
envelope. Convexity ratio [3] is the ratio of the area of the surface to the area
of the convex hull/envelope of the surface. Isoperimetric ratio [3] is the ratio of
the surface area to the two-third power of the volume enclosed by the surface.
Average curvedness (AC) [16] measure the deviation of the surface from a plane.
[5] proposes the 2D centroid of the histogram of a curvature.

Some folding descriptors were designed to inform about specific aspects (not
all) of surface shape. Intrinsic curvature index (ICI) [15] sums up degrees of
hemisphericity of all surface patches, but ignores cylindrical or saddle-shaped
patches. Mean curvature norm (MCN) [3] sums up degrees of hemisphericity and
cylindricity of all surface patches, but ignores saddle-shaped patches. Gaussian
curvature norm (GCN) [3] sums up degrees of hemisphericity and saddle-likeness
of all surface patches, but ignores cylindrical patches.

While some aforementioned descriptors ignore the shape of surface patches,
all aforementioned descriptors ignore the orientation of surface patches. For
instance, they fail to distinguish pimples from dimples or ridges from valleys;
these might be compared to cortical gyri and sulci, respectively. Indeed, for
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every surface patch, ICI, MCN, GCN, and AC project the space of principal
curvatures, having two degrees of freedom, to derive a single scalar descriptor.
[5] condense the histogram of a curvature measure to 2 numbers.

2.2 Univariate Low-Dimensional Shape Descriptors

Recent works incorporate information regarding local surface-patch orientation
and shape for cortical surface analysis [10,16]. These approaches rely on Koen-
derink and van Doorn’s orthogonal reparameterization of the 2D space of princi-
pal curvatures into shape index and curvedness [19]. Consider a surface M. Let
dM represent the area measure of a small surface patch at point m ∈ M. At
point m, the minimum and maximum principal curvatures of a local patch are
denoted by Kmin(m) and Kmax(m), respectively. Shape index S : M → [−1, 1]
for a patch at point m is S(m) = [2/π] arctan{[Kmax(m)+Kmin(m)]/[Kmax(m)−
Kmin(m)]}. Shape index values for some standard shapes are: −1 ≡ hemispher-
ical concave, −0.5 ≡ hemicylindrical valley, 0 ≡ saddle, 0.5 ≡ hemicylindrical
ridge, and 1 ≡ hemispherical convex. Curvedness C : M → [0,∞) for a patch at
point m is C(m) = {0.5[K2

max(m) + K2
min(m)]}0.5.

Tosun et al. [10] employ the shape index in a voxel-based cortical morphome-
try scheme. For ROI-based analyses, Awate et al. [16] propose an average shape
index, AS(M) =

∫
m∈M S(m) dM, that averages shape indices of all patches in

the ROI. In computer vision, a descriptor corresponding to values of the shape-
index histogram at 9 predetermined locations, was proposed recently [20].

All aforementioned approaches in this section ignore cortical complexity in
the description of folding patterns. Furthermore, they reduce the information in
the shape-index histogram to at most a few numbers (low dimensional).

3 New Multivariate High-Dimensional Folding Descriptor

This section presents a high-dimensional multivariate surface descriptor that
captures the spectrum of complexity and shape.

At every point m of a cortical surface M, the principal curvatures completely
describe the geometry of the local surface patch. The orthogonal parameteri-
zation of principal curvatures < Kmin, Kmax > is, however, unintuitive. This
probably motivated reparameterizing < Kmin, Kmax > into < C, S > [19] to
cleanly separate notions of bending and shape, while retaining the orthogonal-
ity. Figure 1 shows values of C and S at all points on a typical cortical surface.

We propose the following generative statistical model of cortical surfaces.
Let us consider C : M → [0,∞] and S : M → [−1, 1] as random fields [21].
Let us also consider the joint PDF that captures the dependencies between
C(m) and S(m) for a specific class of surfaces. Consider a finite collection O =
{dM1, . . . , dMT } of T surface patches, located at points {m1, . . . , mT } ∈ M
uniformly distributed over the surface M, which form a cover for M. Then,
the set {(C(m1), S(m1)), . . . , (C(mT ), S(mT ))} is an instantiation of the field
of random vectors at locations {m1, . . . , mT }. We assume that the random
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(a) (b) (c) (d) (e)

Fig. 1. (a) MR image overlapped with the extracted cortical gray-white interface
parcellated by lobe. (b)-(c) Curvedness C(m) ≥ 0 values (red→blue ≡ low→high cur-
vature) at each point m on the extracted surface M and its smoothed version Msmooth,
respectively. Note that M has many more high-curvedness regions than Msmooth. (d)-
(e) Shape-index S(m) ∈ [−1, 1] values painted on M and Msmooth, respectively. Unlike
C, S exhibits little change between M and Msmooth.

field is stationary [21], i.e. each observation (C(mt), S(mt)), is randomly drawn
from a single PDF PM(C, S). The tremendous complexity and inter-individual
variability in cortical folding suggests that dependencies between random vari-
ables (C(mt), S(mt)) and (C(ms), S(ms)) decrease at a fast rate with increasing
geodesic distance between the locations mt and ms. Thus, we assume that the
random field is mixing [21].

We propose the joint PDF PM(C, S) as the multivariate high-dimensional
descriptor of cerebral cortical folding patterns for surface M. It is clear that
many of the aforementioned univariate descriptors (e.g. ICI, MCN, GCN, AC,
AS, histogram centroid, and [20]) are subsumed by the proposed descriptor.

For a given surface M, we propose to estimate PM(C, S) as follows. Us-
ing the sample {(C(m1), S(m1)), . . . , (C(mT ), S(mT ))} drawn from a stationary
mixing random field, a consistent [22] nonparametric kernel density estimate
for the folding descriptor is PM(C, S) ≈ 1

T

∑T
t=1 G((C(mt), S(mt)), Σt), where

G((μ1, μs), Σ) is a 2D Gaussian kernel with mean (μ1, μ2) and covariance Σ.
Consistency requires an optimal choice of Σt, dependent on the sample size T ,
and we employ a cross-validation-based penalized maximum likelihood scheme
to estimate Σt [23]; the literature provides a variety of schemes.

It is crucial that the sample {m1, . . . , mT } is uniformly distributed over the
surface M, eliminating any bias in over/undersampling specific surface features.
Nonuniform sampling can undesirably bias PM(C, S). For instance, adaptively
refined meshes will generate more surface patches in areas with larger C and
artificially boost the PDF for larger C. Thus, we propose to obtain uniformly-
distributed points/patches by representing the surface as a level set of a distance
transform on a Cartesian grid [24] sampled at a resolution much higher than the
highest C values (see next paragraph). Figure 1 shows a level-set surface colored
by the values of C and S, respectively.

This paper represents the level set in a grid of isotropic voxels of size v3 mm3

with v = 0.4 mm (Figures 1). To reduce effects of noise, level-set fitting in-
corporates smoothing. Empirically, we find that values C(m) virtually never
exceed cmax = (15v)−1 mm−1 equivalent to a minimum radius of curvature of



Multivariate High-Dimensional Cortical Folding Analysis 557

(a) (b) (c) (d)

Fig. 2. Validation : a cross sectional study between the group of gray-white interfaces
of 20 BrainWeb [26] images and a second group of smoothed versions of the same sur-
faces. For all plots in this paper, horizontal axis ≡ S, vertical axis ≡ C, coordinates for
the bottom left corner : (C, S) = (cmin,−1); bottom right corner : (C, S) = (cmin, 1);
top left corner : (C, S) = (cmax,−1). (a)-(b) Mean of the multivariate surface de-
scriptors PMn(C, S) for the n = 1, . . . , 20 original and smoothed surfaces, respectively,
as proposed in Section 3; red≡high and blue≡low values. (c) The t-statistic map for
the original and smoothed surfaces; t > 0 ⇒ Poriginal > Psmoothed. (d) The significant
locations (p < 0.05) produced via SnPM [25]. For all plots in this paper, p values
for significant locations/clusters are indicated by coloring them by the associated z
score [21], e.g. z(p = 0.05) = 1.65, z(p = 0.005) = 2.58.

15v = 6 mm. Figures 1 suggests that this degree of smoothing continues to cap-
ture essential folding pattern information in typical pediatric cortical surfaces.
The lower limit of 6 mm is more conservative than the limit of 3 mm in [5].
Imaging limitations on voxel sizes and signal-to-noise ratios risk less fidelity in
capturing sharper surface features.

Figure 2(a) shows a typical PM(C, S), which is multimodal and far from
standard parametric PDFs, thus justifying nonparametric PDF estimation for
reliability. In practice, typical ROIs yield sample sizes T in the range of thousands
or tens of thousands, producing (i) very small kernel bandwidth estimates such
that PM(c < 0, s /∈ [−1, 1]) is desirably close to zero and (ii) robust estimations.
Moreover, the PDF mass very close to the c = 0 axis (shape index is undefined
for a plane) is also negligible: PM(c < cmin, s ∈ [−1, 1]) < δ for sufficiently small
cmin, δ. This paper sets cmin = 0.001.

4 New Approach to Multivariate Histogram Testing

Having estimated the folding pattern descriptors for a group of N surfaces in a
clinical study, namely PM1(C, S), . . . , PMN (C, S), this section proposes a novel
application of a known nonparametric permutation-based approach for statistical
hypothesis testing for multivariate histograms.

Typical hypothesis tests (cross-sectional, longitudinal, regression) are sub-
sumed in the framework of general linear models (GLM). The GLM framework
has been applied extensively for voxel-based neuroimaging studies of brain func-
tion and structure, which entail running parametric GLM tests at each voxel in
the image followed by corrections for multiple comparisons via, for instance, ran-
dom field theory. However, this parametric approach makes strong assumptions
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on the data concerning the parametric distributions of the values at each point
in the domain and the dependencies between the neighborhoods. Such strategies
can be prone to spurious results when these assumptions become invalid. Permu-
tation tests, on the other hand, are nonparametric and rely on the less inclusive
assumption that the observations are exchangeable, thereby making the tests
more stringent. Under the permutation-test null hypothesis, i.e. both groups of
surfaces being generated by one distribution, the independent and identically-
distributed observations are exchangeable. A rigorous hypothesis testing scheme
based on nonparametric permutation testing for voxel-based studies is statistical
nonparametric mapping (SnPM) [25].

We propose a novel application of SnPM for multivariate high-dimensional
histogram analysis. This scheme differs from (i) conventional use of SnPM for
studies in the image domain [25] or surface domain [27] domain, and (ii) typical
parametric tests (e.g. Hotelling T2) for histogram analysis which fail to inform
the location, in the histogram domain, for a significant difference/effect. The
algorithm is as follows:

1. Empirically select thresholds cmin > 0 and cmax for curvedness values and a
very small ε such that, ∀n = 1, . . . , N ; PMn(c /∈ [cmin, cmax], s /∈ [−1, 1]) < ε.

2. For the domain [cmin, cmax] × [−1, 1], construct a regular rectangular tes-
sellation of the desired resolution. Denote the resulting IJ rectangular bins
by {bij :: i = 1, . . . , I; j = 1, . . . , J}. This paper sets I = J = 64; finer
resolutions increase computation time.

3. For all surfaces n = 1, . . . , N and all bins {bij}, compute the probabilities
PMn((c, s) ∈ bij) denoted in short by Pn(i, j). Note that 0 ≤ Pn(i, j) ≤ 1
justifying a nonparametric testing approach for accuracy and reliability.

4. Use the N 2D images of probability values, P1, . . . , PN , as input for SnPM
[25]. SnPM will produce (i) a set of locations ij and (ii) a set of clusters ex-
hibiting statistical significance for the underlying GLM experiment. Figure 2
shows an example study which is explained in detail later in Section 5.2.

5 Validation and Results

5.1 Cortical Folding Pattern Analysis Pipeline

The clinical study in this paper employed the following processing sequence:
(i) brain extraction, ROI parcellation [28], denoising, inhomogeneity correction,
and contrast enhancement via adaptive histogram equalization (ii) automatic
intensity-based probabilistic tissue segmentation [29]; (iii) resample the segmen-
tation to an isotropic voxel size of 0.4 mm3; (iv) define M to be the cortical gray-
white interface corresponding to a cortical-white-matter membership of 0.5 (gray-
white interface estimated much more reliably than gray-fluid interface, especially
in neonatal/pediatric populations); (v) represent cortical surface M in the ROI,
to subvoxel accuracy, as a level set [24] (vi) compute curvedness C(m) and shape-
index S(m) values at every voxel m on the level setM, (vii) estimate the proposed
multivariate folding pattern descriptor PM(C, S) in the operculum as described in
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Section 3, (viii) perform multivariate statistical hypothesis testing as described in
Section 4. The implementation and visualization in this paper relied on the Insight
Toolkit (ITK), Matlab, ITK-SNAP, and the Visualization Toolkit (VTK).

5.2 Validation via Clinical and Simulated Adult Data

Cortical Shape Asymmetry in Normal Adults: The first validation exper-
iment used 50 MR images of normal adults and measured the average fraction
of cortical surface area embedded in sulci. The left halves, i.e. S < 0, of the
plots concern concave patches (associated with sulci), while the right halves, i.e.
S > 0, concerns convex patches (associated with gyri). The mass in the left half
of the mean PDF of all images, i.e. Pmean(S < 0; C ≥ 0) is a robust estimate
of the fraction of the surface area of the cortical surface buried in sulci. We
estimated this fraction to be 0.58 for the frontal, parietal, and temporal lobes
in adults, which comes very close to the published value of 0.61 for gray-white
interfaces of entire brains [18,15]. For the occipital lobes, however, our estimate
of this fraction was lower, equal to 0.54. Figure 3 shows this phenomenon clearly,
i.e. the PDF in Figure 3(d) has more mass (red) on the right (convex gyral re-
gions) relative to the PDFs in Figure 3(a)-(c). These experiments demonstrate
that the proposed descriptor is sensitive to changes in cortical shape.

Simulated Complexity Differences using BrainWeb Data: We validated
the proposed framework for folding pattern analysis using 20 simulated images
from the BrainWeb [26] repository having ground-truth segmentations. We con-
ducted a cross sectional study between (i) the group of gray-white surfaces in
the BrainWeb images and (ii) another group of surfaces obtained after slightly
smoothing the surfaces in the first group (mean curvature flow, time step 0.24,
iterations 4). Figure 1(d)-(g) show values of C and S painted on a cortical surface
and its smoothed version. Figure 2(a) and (b) show the means of the surface de-
scriptors PMn(C, S) in the two groups. As expected, the smoothed surfaces have
a mean PDF (Figure 2(b)) shifted slightly downwards, i.e. regions of low curva-
ture, relative to Figure 2(a). The t-statistic map (Figure 2(c)) clearly reveals the

(a) (b) (c) (d)

Fig. 3. Validation : measuring the fraction of surface area of the cortical gray-white sur-
face embedded in sulci (concave surface patches) in 50 normal adults. (a)-(d) Proposed
surface descriptors for the frontal, parietal, temporal, and occipital lobes, respectively.
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difference between the two groups. The blue (or red) significant locations (Fig-
ure 2(d)), at level of significance α = 0.05, correspond to those locations whose
t statistics were less than (or greater than) the lowest (or greatest) 100α-th per-
centile of the permutation distribution of the smallest (or largest) t statistic over
the < C, S > domain. Similarly, significant clusters (in all figures in this paper)
are shown in blue (or red) when the sizes of the clusters formed by thresholding
the negative (or positive) t statistics are larger than the 100α-th percentile of the
permutation distribution of the maximum cluster size obtained after threshold-
ing the negative (or positive) t statistics. Figure 2(d) shows that the proposed
framework correctly indicates that the differences between the groups are in
cortical complexity alone, not in cortical shape.

5.3 Neonatal CHD Cohort, Imaging, and Image Analysis

The clinical cohort comprised 42 neonates with complex CHD (29 with HLHS, 13
with TGA) between 1−2 weeks of age, before undergoing corrective heart surgery.
MR images were acquired on a 3T scanner (Siemens Trio) with voxel sizes around
0.88x0.88x1.5 mm3 using T1-weighted, T2-weighted, and FLAIR schemes. The
HLHS and TGA groups were well matched by age and brain volume. The left and
right opercula in every image were parcellated semi-automatically with expert
supervision. Brain tissue segmentation was performed via [29].

5.4 Folding Differences between Normal and Abnormal Opercula

Before studying opercular differences in HLHS and TGA, we first study the dif-
ferences between normal and abnormal opercular folding complexity and shape.
Figure 4 shows the differences in the surface descriptors of two neonates selected
by a pediatric neurologist from the clinical cohort, one with the closest-to-normal
operculum (mature, “closed”, folded) and another with the farthest-from-normal

(a) (b) (c) (d) (e)

Fig. 4. (a)-(b) Example MR images of the normal (mature, “closed”, more folded)
and farthest-from-normal (immature, “open”, less folded) opercula, respectively, over-
lapped with the extracted cortical surfaces. (c)-(d) Average cortical folding de-
scriptors Paverage normal(C, S) and Paverage abnormal(C, S) for 2 closest-to-normal and
4 significantly-abnormal opercula, respectively, chosen by a medical expert based on a
subjective clinical scoring protocol [9]. (e) Paverage normal(C, S)−Paverage abnormal(C,S);
blue ≡ negative and red ≡ positive values.
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operculum (immature, “open”, less folded). Figure 4(e) indicates that normal op-
ercula have (i) a larger fraction of surface patches that have higher curvature
(implying more complex folding) and (ii) a larger fraction of surface patches
that are concave (implying more “closed” shape). We compared these findings
to qualitative studies of immature opercula in neonates [6,7] that provide draw-
ings of immature opercular cortical surfaces. The analysis in this paper shows
that, relative to normal opercula, abnormal opercula in CHD may exhibit lesser
folding complexity and may be more “open”. This also indicates that brain mat-
uration concerns not only cortical complexity, but cortical shape as well.

5.5 Folding Differences between HLHS and TGA Opercula

Figure 5 shows the differences in folding complexity and shape between HLHS and
TGA. Establishing analogies between Figure 5 and Figure 4, we find that while
TGA neonates have a larger fraction of high-curvature patches, HLHS neonates
have a large fraction of concave low-curvature surface patches. Since it is known
via subjective clinical-scoring-based studies that the opercula are immature inboth
HLHS and TGA [9], the analysis in this paper suggests that HLHS and TGA might
affect opercular development in differentways, i.e. while HLHS might cause greater
reductions in opercular folding complexity, TGA might cause more “open” oper-
cula. A cross-sectional study between CHD neonates and normal neonates would
be very interesting and probably yield much more significant differences, but such
datahasbeen elusive so far.Nevertheless, this is an importantaspect of futurework.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (a)-(b) Average of cortical folding descriptors P (C,S) in right and left oper-
cula, respectively, for 29 neonates with HLHS. (c)-(d) Average of the descriptors in
right and left opercula, respectively, for 12 neonates with TGA. (e)-(f) t-statistic maps;
t > 0 ⇒ PHLHS > PTGA. for right and left opercula, respectively. (g)-(h) Significant
clusters found via SnPM [25] for right and left opercula, respectively.
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6 Conclusion

The paper proposes a novel multivariate statistical descriptor of folding pat-
terns in a high-dimensional space. PDF-based shape descriptors in the literature
that come closest to the proposed method analyze histograms of either shape-
indices or curvatures (not both) and produce low-dimensional descriptors: [5]
and [20] propose 2-valued and 9-valued descriptors, respectively. On the other
hand, the proposed descriptor is a continuous function informing about both
surface shape and complexity. Unlike [20] which shows concern about the di-
mensionality of their descriptor, the proposed framework effectively deals with
dimensionality by a novel application of a rigorous hypothesis-testing framework.
The experiments establish a link between the proposed descriptor and published
qualitative studies of normal/abnormal opercular folding [6,7] to demonstrate
how the proposed descriptor can be interpreted for opercular studies. The pro-
posed framework can be easily extended to (i) include other cortical information,
e.g. thickness, and (ii) study other specific anatomical structures or ROIs. The
rigorous theoretical underpinning coupled with the ease of implementation can
facilitate sophisticated studies of surfaces with relatively less effort.
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