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Abstract. Although of important medical implications, simultaneous
dual–tracer positron emission tomography reconstruction remains a chal-
lenging problem, primarily because the photon measurements from dual
tracers are overlapped. In this paper, we propose a simultaneous dynamic
dual–tracer reconstruction of tissue activity maps based on guidance
from tracer kinetics. The dual–tracer reconstruction problem is formu-
lated in a state–space representation, where parallel compartment models
serve as continuous–time system equation describing the tracer kinetic
processes of dual tracers, and the imaging data is expressed as discrete
sampling of the system states in measurement equation. The image re-
construction problem has therefore become a state estimation problem
in a continuous–discrete hybrid paradigm, and H∞ filtering is adopted
as the estimation strategy. As H∞ filtering makes no assumptions on the
system and measurement statistics, robust reconstruction results can be
obtained for the dual-tracer PET imaging system where the statistical
properties of measurement data and system uncertainty are not available
a priori, even when there are disturbances in the kinetic parameters.
Experimental results on digital phantoms, Monte Carlo simulations and
physical phantoms have demonstrated the superior performance.

1 Introduction

Positron emission tomography (PET) is a functional molecular imaging tech-
nology which uses compounds labelled with positron emitting radioisotopes as
molecular probes to image and measure biochemical processes of mammalian
biology in vivo. Molecular probes for PET are developed by first identifying a
target process to be studied and then synthesizing a positron labelled molecule,
injected intravenously, through which an assay can be performed. With the in-
creasingly wider availability of radiotracers, i.e. 18F–2-fluoro-2deoxy-D-glucose
(FDG), 13N-ammonia, 11C–dihydrotetrabenazine(DTBZ) and 11C–WIN35,428,
there have been many clinical and biomedical research applications in imaging
various molecular interactions of biological processes.

Because of the complicatednature of the disease, the importance ofmulti–tracer
PET imaging is well recognized yet seldom addressed because of paramount tech-
nical difficulties. Typically, multi–tracer imaging are treated as sequential prob-
lems, which are not well qualified for real time comparison in neuropharmcologic
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measurements anddynamic imaging between tracers.More crucially, the increased
scanning time and suffering of patients hinder its practical applications. Hence, si-
multaneous multi–tracer imaging is of great recent interest.

Several attempts do try to tackle the dual-tracer imaging problem based on
double–injection single–scan strategy[1,2,3,4,5]. However, all these works have
been based upon the activity images are reconstructed asa priori using FBP or
EM algorithm, and the aim is to use these maps to perform kinetic parameters
estimation in some optimal sense. It is recognized that the recovery of activity
maps of individual radio tracer is not a completely solved problem yet, and the
great challenge here is that there is no direct way of separating signals from two
different tracers as the modality based on measuring the 511 keV emitted by
positron annihilations[1,2,6].

In this paper, we focus on simultaneous dynamic PET reconstruction of dual–
tracer activity maps. The state–space representation is used to formulate the
double–injection, single–scan protocol, where parallel compartment models for
dual–tracer are coupled into state equations, while the mixed photon acquisition
is integrated into measurement equations. The reconstruction problem therefore
becomes a state estimation problem, and H∞ filtering is applied to achieve
robust estimation. Finally, respective dynamic reconstructed images for each
tracer from digital Zubal phantom, Monte Carlo simulations and real phantom
scan are presented as validations.

2 Methodology

2.1 Modeling of PET Measurement

In PET imaging, once radiopharmaceutical is injected or inhaled, it is trans-
ported and absorbed by the tissue of interests. An emitted positron meets a
free electron and their annihilation produces two gamma ray photons traveling
in opposite directions. If two photons are detected within the coincidence time
window, an event is recorded along the line of response (LOR), and summing
many of such events results in quantities that approximate line integrals (or
equivalently projections and sinograms) through the radioisotope distribution.

Dynamic PET imaging involves a sequence of contiguous acquisition with
different temporal resolutions, and a time series of activity images need to be
reconstructed from the measurement data. The procedure can be formulated as
a projection transform from image to data:

Y (t) = DX(t) + e(t) (1)

X(t) = Λϕ(t) (2)

here Y (t) is the projection sinogram acquired from time frame 0 to time frame
t, system probability matrix D is constructed from the physical and geometrical
structure of PET acquisition system, e(t) is the overall measurement errors in
system, ϕ(t) is a n × 1 matrix representing the activity concentration in one
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Fig. 1. Parallel dual–tracer two–tissue compartment model

tissue and Λ is a block 4n × n diagonal matrix with blocks [1 1 1 1] that
help to extend to dual–tracer reconstruction simultaneously. To be in accordance
with time configuration in dynamic PET imaging, The measurement equation
is expressed as:

Y (tk) = DX(tk) + e(tk) (3)

here tk (k = 1, 2, · · · ,M . M is the total number of the time frames) is the time
point at the end of the kth time frame.

2.2 Modeling of Tracer Kinetics

Due to their simple implementation and biological plausibility, compartment
models have been widely employed to quantitatively describe regional tracer
kinetics in PET imaging. Model–driven tracer kinetics use a particular com-
partmental structure to describe the behavior of the tracer and allow for an
estimation of either micro or macro system parameters [9]. The discrete nature
of a compartment is what allow one to reduce the complex biological system into
a finite number of discrete compartments and pathways [10].

In this paper, a parallel dual–tracer two–tissue compartment model is used
to model the dual–tracer kinetic processes, with the structure shown in Fig. 1.
The superscripts 1 and 2 correspond to parameters for the 1st tracer and the
2nd tracer respectively. C1

P /C
2
P (pmol/ml) is arterial concentration of radio-
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F /C

2
F (pmol/ml) is the concentration of non–specific binding tracer
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1/2 in tissue. The parameters k1
1/k
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2 , k
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3 and k1
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4 are first-order

rate constants specifying the tracer exchange rates between compartments for
tracer 1/2. The two tissue compartment model satisfies many radioligand tracers
well. Those include tracers such as 18F–FDG for the quantitative measurement
of glucose metabolism, 11C–acetate for measurement of myocardial oxidative
metabolism and monitor of tumor growth, and 62Cu–pyruvaldehyde bis[N4–
methyl–thiosemicarbazone] (PTSM) for imaging blood flow. Note that two arte-
rial input functions C1

P and C2
P are introduced into the tracers delivery process,

Table 1. Kinetic parameters for different tissue regions in Zubal thorax phantom

kF DG
1 kF DG

2 kF DG
3 kF DG

4 kacetate
1 kacetate

2 kacetate
3 kacetate

4

ROI a 0.55951 2.75288 0.44793 0.01101 0.65188 0.22766 0.05311 0.03882

ROI b 0.37811 1.04746 0.13483 0.00857 0.45044 0.22871 0.07253 0.01417

ROI c 0.78364 1.15641 0.11200 0.02706 0.70372 0.53690 0.17755 0.01425
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and each compartment model performs independently without interfering with
the other. Using the model in Fig. 1, the time variation of kinetic model in an in-
dividual voxel can be denoted by the following first–order differential equations:

dC1
Fi

dt
= k1

1iC
1
P (t) + k1

4iC
1
Bi(t) − (k1

2i + k1
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1
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3iC
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with subscript i representing a single voxel in reconstructed images. Equa-
tion( 4)–Equation( 7) can also be expressed in vector–space denotation as:
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The above equation can be expressed in a compact form as

ẋi(t) = aixi(t) + biC̃P (t) (9)

where
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The standard state transition equation for all the voxels can be constructed from
Equation( 9):

Ẋ(t) = AX(t) +BC̃P (t) + v(t) (10)

where state vector X(t) = [x1(t)T , x2(t)T , · · · , xn(t)T ]T (n is the total number
of voxels), A is a 4n× 4n block diagonal matrix with block ai, B is a 4n× 2 row
block matrix with block bi and v(t) is a 4n× 1 vector describing model errors.
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2.3 State Space Representation of PET Imaging

The state–space representation is introduced into the dynamic dual–tracer PET
reconstruction problem, Equation( 3) and Equation( 10) form the state–space
representation of dynamic dual–tracer PET reconstruction, in which parallel
compartment models serve as a continuous time state equation to describe the
tracer kinetic processes, and the projection data is expressed as discrete sam-
pling of observation in a measurement equation. With given measurement Y (tk),
the target of our dynamic dual–tracer reconstruction is to obtain the separate
distribution of activity concentration for each tracer :

X1
k = Λ1[X(tk+1) −X(tk)] (11)

X2
k = Λ2[X(tk+1) −X(tk)] (12)

here Λ1 and Λ2 are 4n × n block diagonal matrices with respective blocks
[1 1 0 0] and [0 0 1 1]. A robust H∞ filtering algorithm described in
the following section will be used for estimation in this state–space framework.

2.4 Robust Estimation of Dual Tracer Activity Maps

Since PET data after attenuation correction is not Poisson distributed, and
have even more complicated statistics due to scatter events, scanner sensitivity
and dead time correction. Instead of imposing certain distribution (Poisson or
Shifted Poisson) on the data, the mini-max H∞ estimation criterion is adopted
in our filtering framework, which minimizes the worst possible effects of the
disturbances on the state estimation errors, and requires no priori knowledge of
noise statistics, making it an appropriate choice for PET reconstruction where
the noise statistics is complicated. The H∞ filtering strategy has been applied
to static PET reconstruction [7] and dynamic single–tracer reconstruction [8]
in previous efforts. Following this spirit, similar procedure is used in our work,
while more sophisticated setting on parameters must be considered in dual–
tracer situation. The state Equation( 10) contains the separate components of
each tracer, and thus the state noise and estimation error in respective kinetic
process need to be estimated simultaneously during parallel calculation. Besides,
the measurement equation( 3) describes overlap sinogram data in dynamic time
frames, so the mixed measurement noises should be incorporated into filtering
strategy.

The objective function of H∞ filtering is given by

sup
||X(t) − X̃(t)||2Q(t)

||v(t)||2V (t)−1 + ||e(t)||2W (t)−1 + ||X0 − X̃0||2H−1
0

� γ2 (13)

where X̃(t) is the estimation of X(t) at time t, the subscripts Q(t), V (t)−1,
W (t)−1 and H−1

0 denote the weighting matrices for the estimation error, the
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state error, the measurement error and the initial value error, and γ2 is a con-
stant describing the disturbance level. Equation( 13) defines the supremum of
estimation error over all possible disturbances of noise energy. H∞ criterion is a
robust strategy to deal with the noise uncertainty in real situation. It is a game
theory where the internal estimator plays against the external disturbances [11].
The complicated statistics of noises are not a required priori in this framework,
and instead, we have only to maintain the small estimation errors with small dis-
turbances, and vice versa. The minimum disturbance γ∗ ≤ γ2 in equation( 13)
can also be expressed as a min-max problem:

min
X

max
V (t),W (t),X0

γ∗ = ||X(t)−X̃(t)||2Q(t)−γ2(||v(t)||V (t)−1+||e(t)||2W (t)−1+||X0−X̃0||2H−1
0

)

(14)
A complete solution to the H∞ estimation problem for state–space model was
present in [11], and the iterative equation is given as:

X̃(tk) = AX̃(t−k ) +H(tk)[Y (tk) −DX̃(t−k )] (15)

H(tk) = H(t−k )[I + CTV (t)−1CH(t−k )]−1CTV (t)−1 (16)

where H(tk) is the filtering gain which satisfies the Riccati equation:

Ḣ(t) = AH(t) +H(t)AT +
H(t)Q(t)H(t)

γ2
+N(t) with H(0) = H0 (17)

There are many numerical algorithms that solve this Riccati equation by suc-
cessive integration. We adopt the scheme proposed in [12] to avoid the singularity
during the process of iteration and obtain the stable solution.

3 Experiments

3.1 Experiments on Digital Phantoms

Simulation experiments are used to evaluate the accuracy and robustness of
the simultaneous dual–tracer activity map reconstruction framework. Fig. 2 left
shows a schematic representation of the Zubal thorax phantom, which has three
distinctive tissue regions and a background region. The phantom is digitized
at 32 × 32 pixels . Two regular tracers are used to simulate the injection and
metabolic process: 18F-FDG for glucose metabolism and 11C-acetate for tumor
growth monitor. The kinetic parameters of different regions are set from some
known values in tracer kinetic research on FDG and acetate, as presented in
Table 1. The plasma input function for 18F-FDG is simulated as:

CFDG
P (t) = (A1t−A2 −A3)e−λ1t +A2e

−λ2t +A3e
−λ3t (18)

the parameters λi and Ai were selected for each tracer to match blood curves
appearing in the literatures, here the value chosen were A1 = 851.1225μCi/mL/
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Fig. 2. Left: Zubal thorax phantom with multiple tissue regions indicated by different
colors. Right: The APE of reconstructed images in the first group of experiments with
different counting levels: 104, 105, 106, 107 and 108. For every pair, the left one is 18F,
the right one is 11C.

min,A2 = 20.8113μCi/mL,A3 = 21.8798μCi/mL ,λ1 = 4.133859min−1 ,λ2 =
0.01043449min−1 and λ3 = 0.1190996min−1. The plasma input function for
11C-acetate is obtained by correcting the whole-blood for circulating metabolites
as [3]:

Cacetate
P (t) = [1 − 0.88(1 − e−( 2 ln 2

15 t))]CFDG
P (t) (19)

With both input functions coupled into state equation( 10), 18 frames of activ-
ity images were obtained from above compartment model simulations, sampled
as 4× 0.5min, 4× 2min and 10× 5min. The system probability matrix in equa-
tion( 1) was computed by using MATLAB toolbox developed by Prof. J.Fessler

Fig. 3. The original and reconstructed activity images of 18F-FDG and 11C-acetate
with perfect kinetic parameters and total 106 counts for time frame 2nd (top), 5th
(middle) and 8th (bottom). 1st column: original 18F-FDG activity images; 2nd: orig-
inal 18C-acetate activity images; 3rd: reconstructed 18F-FDG activity images; 4th:
reconstructed 18C-acetate activity images.
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Fig. 4. The APE of reconstructed images with 18F and 11C of different count level.
Left: the total counts of 18F-FDG were set to 106, and the counts of 11C-acetate varied
from 105 to 107. Right: the total counts of 11C-acetate were set to 106, and the counts
for 18F-FDG varied 105 to 107.

et al.. Then the activity images were projected into sinograms using a poisson
model to generate raw data. Poisson-distributed random events were simulated
and online subtracted. Two groups of simulation data were generated to evaluate
the reconstruction performance. In every simulation, noise photons in simulated
data was set to be about 30%. To analysis the reconstruction accuracy, we define
a average percentage error(APE) for each tracer as:

APE =
1
N

∑
i

|ψik − ψ̃ik|/ψik (20)

here N is the total number of pixels, ψik is the reconstructed activity values,
ψ̃ik is the true values. In the first group of simulation data, We generated sino-
grams with the count levels of 18F and 11C being similar. 5 different count
levels: 104, 105, 106, 107 and 108 were used in the data generation, which rep-
resent the total counts of the simulated data. The purpose here is to see the
different reconstruction results at different count levels. Fig. 2 right presents
the APE of reconstructed results in these five groups of experiments, the APE
of reconstructed images for each pair of tracers increased with the overall counts
increasing. The comparison between the original images and reconstructed im-
ages of count level 106 is shown in Fig. 3, where the APE for simulated 18F-FDG
reconstruction is 0.360%, and the APE for simulated 11C-acetate reconstruction
is 0.037%. The second group of simulations was performed with 18F and 11C
of different count level. The purpose here is to see the interaction between the

Fig. 5. The transverse view of phantoms. Left: the phantom used for Monte Carlo
simulation; Right: the 6-sphere phantom used for real PET scan.
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Fig. 6. The EM reconstruction of simulation data and real phantom scan data. Left:
Monte Carlo simulation data; Right: real phantom scan data.

two tracers. As shown in Fig. 4 left, the total counts of 18F-FDG were set to
106, and the counts for 11C-acetate varied from 105 to 107 with an interval of
5 × 105. The APE of 11C-acetate reconstructed images increased from 0.022%
to 0.085%, and the APE of 18F-FDG images decreased from 0.400% to 0.161%.
Fig. 4 right gives an analogous result by setting the total counts of 11C-acetate
as 106 and that for 18F-FDG varied from 105 to 107. In this experiment, the
APE for 18F-FDG images increased from 0.075% to 0.850%, and the APE for
11C-acetate images decreased from 0.045% to 0.021%.

3.2 Experiments with Data from Monte Carlo Simulations

The second data set used for validation in this study was acquired by Monte
Carlo simulations [13]. The simulated scanner is Concord microPET R4, and a
6cm diameter cylindrical phantom with 2 hot regions was used. The transverse
view of the phantom is shown in Fig. 5 left, the phantom was filled with pure
water, two hot regions were filled with 18F–FDG solutions and 11C–acetate so-
lutions respectively, the initial activity concentration was set to 2.315kBq/ml.
A simulation of a dynamic sequence of 10 frames over 160 minutes(10× 16min)
from the mixed effect of dual tracers was performed, the final generated sino-
gram data set has 128 × 128 projections for every slice. First several static
reconstruction were performed, then the kinetic parameters k1

1/k
2
1 , k

1
2/k

2
2 , k

1
3/k

2
3

and k1
4/k

2
4 in the parallel compartment models used here were calculated using

these static reconstruction results by COMKAT [14]. Since this is a Monte Carlo
simulation, we can get the true activity concentration at every time frame. The
reconstructed images at time frame 1 by traditional EM algorithm is shown in
Fig. 6 left, the activity concentrations of 18F and 11C can not be separated.
The respective images of 18F–FDG and 11C–acetate were reconstructed by our
framework simultaneously, Fig. 7 shows the true images and the reconstructed
images at time frame 1, 2, 5 and 8.

Table 2. Statistical studies of estimated 18F activity distribution

Frame1 Frame2 Frame5 Frame8

bias -0.0343 -0.0313 -0.0812 0.2432

std 0.2378 0.3664 0.2878 0.4461
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Fig. 7. The true and reconstructed activity images of 18F-FDG and 11C-acetate with
data set from Monte Carlo simulations, from top to bottom, 4 rows correspond to
the 1st, 2nd, 5th and 8th time frame. The 1st column is the true 18F-FDG activity
images; the 2nd column is reconstructed 18F-FDG activity images; the 3rd column
is the true 11C-acetate activity images; the 4th column is reconstructed 11C-acetate
activity images.

A statistical analysis on reconstructed images against true values in the hot
regions is performed. Let Np be the total number of pixels and XRi be the final
reconstruction result of pixel i respectively, and XTi be true value of correspond-
ing pixel i, then we have the following error definitions:

bias = (1/Np)
∑

i

(XRi −XTi)/XTi (21)

std = (1/(Np − 1))
∑

i

((XRi −XTi)/XTi)2)0.5 (22)

The calculated bias and standard derivation values of the reconstruction images
from different time frames are summarized in Table 2 and Table 3, Table 2 is
bias and standard derivation values for 18F–FDG reconstruction and Table 3

Table 3. Statistical studies of estimated 11C activity distribution

Frame1 Frame2 Frame5 Frame8

bias -0.2983 0.1979 -0.7256 -0.7894

std 0.3445 0.4016 0.9053 0.8930
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Fig. 8. The reconstructed activity images of 18F-FDG and 11C-acetate with data set
from real phantom scan. The 1st row is the reconstructed 18F-FDG images, the 2nd
row is the reconstructed 11C-acetate images. From left to right, 4 columns correspond
to time frame 1, 2, 5 and 8 respectively.

is bias and standard derivation values for 11C–acetate reconstruction. Since the
half–life of 18F–FDG is 110 minutes and that of 11C-acetate is only about 20
minutes, 11C–acetate decayed faster than 18F–FDG, so the standard derivation
values of 18F–FDG first decrease at frame 5 due to the faster decay of 11C–
acetate, and then increase at frame 8 due to its self-decay, the standard derivation
values of 11C-acetate increase continuously though all former frames due to its
fast decay, after frame 5, the standard derivation values keep high because the
low concentration of 11C–acetate in the phantom.

3.3 Experiments with Physical Phantom Scanning Data

The real data set used in this study was acquired on the Hamamatsu SHR-22000
scanner using a 6 – spheres phantom, which is usually used to measure the recov-
ery coefficient. The SHR-22000 is designed as a whole body imaging system. It
has a 838mm detector ring diameter with a patient aperture of 600mm, an axial
field of view (FOV) of 224mm, can operate in 2D or 3D mode. For the phantom,
there are six circular regions of different diameters. These sphere objects have
diameters of 37mm, 28mm, 22mm, 17mm, 13mm, 10mm and are inserted in a
circular cylinder with diameter of 200mm corresponding to a volume of 9300ml,
as shown in Fig. 5 right. The phantom filled with pure water was located at the
center of both transaxial and axial FOV in the scanner using the patient bed.
We injected 22mCi 11C–acetate solution into the 28mm diameter sphere and 5
minutes later injected 8mCi 18F–FDG solution into the 37mm diameter sphere.
Acquirement of a dynamic sequence of 10 frames over 20 minutes(10 × 2min)
from the mixed effect of dual tracers was performed, the final generated sino-
gram data has 192 × 192 projections for every slice. The kinetic parameters
used were also calculated by COMKAT like above section. The reconstructed
image at time frame 1 by EM algorithm is shown in Fig. 6 right for comparison.
The respective images of 18F–FDG and 11C–acetate were reconstructed by our
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framework simultaneously, Fig. 8 shows the reconstructed images at frame 1, 2, 5
and 8. The two tracers are correctly reconstructed respectively, it is evident that
this framework is effective for double–injection single–scan PET reconstruction
of dual–tracer activity maps.
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