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Abstract. We present an exploratory method for simultaneous par-
cellation of multisubject fMRI data into functionally coherent areas.
The method is based on a solely functional representation of the fMRI
data and a hierarchical probabilistic model that accounts for both inter-
subject and intra-subject forms of variability in fMRI response. We em-
ploy a Variational Bayes approximation to fit the model to the data. The
resulting algorithm finds a functional parcellation of the individual brains
along with a set of population-level clusters, establishing correspondence
between these two levels. The model eliminates the need for spatial nor-
malization while still enabling us to fuse data from several subjects. We
demonstrate the application of our method on a visual fMRI study.

1 Introduction

Analyzing data from multisubject neuroimaging studies is one of the challenging
aspects of functional brain imaging. Presence of multiple sources of variability
significantly complicates inference from the evidence provided by a group of in-
dividual fMRI scans [1]. First, the fMRI response in each subject varies from
experiment to experiment giving rise to intra-subject variability. Moreover, two
distinct sources contribute to inter-subject variability of fMRI signals. Since the
brain structure is highly variable across subjects, establishing accurate corre-
spondence among anatomical images of different subjects is intrinsically diffi-
cult. In addition to this anatomical variability, functional properties of the same
anatomical structures are likely to vary somewhat across subjects.

The conventional localization approach to fMRI analysis constructs statisti-
cal parametric maps (SPM) [2] that indicate the significance of activation based
on the hypotheses specified a priori. In order to perform group analysis, the
method assumes all subjects are normalized into a common anatomical space
where we can average the response across subjects. The performance of this ap-
proach is thus constrained by the limitations of spatial normalization techniques
and the unknown relationship between function and anatomy. These issues are
extensively discussed and studied in the literature, and different ways have been
suggested to tackle them in the traditional localization framework [3,4,5,6].

The alternative approach employs unsupervised learning techniques to an-
alyze fMRI data in an exploratory fashion. Most methods consider raw fMRI
time courses and use clustering [7] or Independent Component Analysis (ICA)
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[8,9] to estimate a decomposition of the data into a set of distinct time courses
and their corresponding spatial maps. Some variants use information from the
experimental setup to define a measure of similarity between voxels, effectively
projecting the original high-dimensional time courses to a low dimensional fea-
ture space, and then perform clustering in the new space [10,11]. Application of
these exploratory methods to multisubject data has mainly relied on the same
spatial mapping paradigm which requires spatial normalization [7]. More re-
cently, a technique for exploratory group analysis was proposed that represents
a voxel time course by a normalized profile of response to different experimental
conditions [12]. The method clusters voxels from all the subjects together in the
common functional space defined by these vectors. Although the results demon-
strate the success of this approach in a multisubject experiment, such a model
does not take any form of inter-subject variability into account.

Here, we present an exploratory method for simultaneous functional brain
parcellation based on fMRI response in a cohort of subjects. The method also
constructs cross-subject parcel correspondence through common functional la-
bels. The parcellation procedure follows directly from a hierarchical probabilistic
model that explicitly accounts for both intra-subject and inter-subject forms of
variability in fMRI response. Similar to [12], our method takes advantage of a
common functional space, rather than spatial normalization, to fuse data from
different subjects. In effect, our results yield a parcel-level functional normaliza-
tion of the data by associating groups of voxels from different subjects with the
same population-level functional pattern.

Our method operates on vectors that represent the response of voxels to the
experimental conditions. At the subject-level, we model the set of these response
vectors as a mixture of several, distinct, functionally-defined parcels, each with
a representative response vector. We assume that these subject-level represen-
tative vectors can be further clustered into a smaller set of population-level
groups. The representative vector for each population-level cluster defines a cer-
tain pattern of functionality. In the framework of hypothesis-based localization
methods, a similar hierarchical structure is employed in random effects analysis
(RFX) to model the two distinct types of variability [13]. In addition to offering
the advantage of generating hypotheses from data, our method also eliminates
the need for spatial normalization due to its fully functional representation of
fMRI signals.

2 Method

We represent the group data by a set of response vectors ys
v ∈ IRN where s ∈

{1, · · · , S} indexes the subject and v ∈ {1, · · · , V } denotes different voxels of the
corresponding subject. These response vectors can be constructed from raw fMRI
time courses based on the details of the experimental protocol [10]. In our work,
we use the estimated GLM regression coefficients [2] for different experimental
conditions as the vector components.
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2.1 Model

Our hierarchical model is comprised of two clustering layers, each accounting
for one type of variability in the data. We call the subject-level groupings of
voxels in each subject parcels and refer to the population-level groupings of such
parcels as clusters. In what follows, we use lower case Latin letters for random
variables and Greek letters for distribution parameters. To facilitate notation,
we sometimes define meta-variables composed of a group of vector variables, in
which case we denote them with bold font.

Subject-Level Model. We assume that each response vector belongs to one of
K parcels. We let the hidden variable cs

v = [cs
v,1, · · · , cs

v,K] be a binary indicator
vector such that cs

v,k = 1 if ys
v belongs to parcel k, and cs

v,k = 0 otherwise. In
our generative model, we assume a likelihood model for the response vectors

f(y; m, λ) = e−λ D(y,m)+Z(λ) (1)

parameterized by the mean parameter m and the variance-related parameter λ.
Here, D(·, ·) defines a distance between y and m, and Z(·) is the log-partition
function. For the subject s, we assume a common parameter λs for all parcels
and allow K possible mean parameters m = [ms

k] defining the functional centers
(representative response vectors) of the parcels. Given parcel centers m and
memberships c = [cs

v], different response vectors are independent:

py|cm(y|c, m; λ) =
∏

s,v

[∏

k

(
f(ys

v; m
s
k, λs)

)cs
v,k

]
, (2)

where y = [ys
v] is the set of combined response vectors. We do not put any prior

on the assignment variables c, which is equivalent to assuming that all voxels
within a subject are equally likely a priori to be from any parcel.

To eliminate irrelevant effects of the response magnitude and normalize re-
sponse vectors across subjects, we scale the response vectors to have unit length,
i.e., ‖y‖ =

√〈y, y〉 = 1 where 〈·, ·〉 is the inner product in IRN . Since these
normalized vectors lie on the unit hyper-sphere SN−1, an appropriate likelihood
model is the directional von Mises-Fisher distribution [14]

fV(y; m, λ) = ( λ
2π )N/2 1

λ IN/2−1(λ)e
λ〈y,m〉, (3)

where Iγ(·) is the γ-th order modified Bessel function of the first kind. The
parameter λ controls the concentration of the distribution around the mean
direction m in a way similar to the precision (reciprocal of variance) parameter
of a Gaussian distribution. The model could be expressed based on (1) as:

DV(y, m) = 1 − 〈y, m〉, ZV(λ) = N
2 log λ

2π − log λ − λ − log IN/2−1(λ). (4)

In Appendix B, we provide another instantiation of our derivations for a Gaus-
sian likelihood.
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Population-Level Model. Conventional mixture-model approach to cluster-
ing fMRI data uses model (2), where m is a set of parameters estimated sepa-
rately for different subjects. In our hierarchical model, we treat the parcel centers
as random variables generated from a higher-level distribution that characterizes
the functional patterns shared among all subjects. More specifically, we assume
that the vectors ms

k in each subject are generated from a mixture of L com-
ponents. The mixture components are centered around representative vectors
μ = [μl]Ll=1 and have subject-specific mixture weights ws = [ws

l ]
L
l=1. We let zs

k

be the L-dimensional binary vector that indicates the cluster membership of ms
k

(similar to cs
v in the subject-level model). Weights ws serve as the parameters of

the multinomial distribution that generates cluster membership vectors zs
k:

pz|w(z|w) =
∏

s,k

[ ∏

l

(ws
l )

zs
k,l

]
. (5)

We can now form the likelihood model for the parcel centers

pm|z(m|z; μ, σ) =
∏

s,k

[∏

l

(
f(ms

k; μl, σl)
)zs

k,l
]
, (6)

where f is consistent with the likelihood model for response vector y. Finally,
we set the common prior over the set of weights ws to be a Dirichlet distribution
over an (L − 1)-simplex of multinomial probability weights, parameterized by
positive-valued vector α ∈ IRL:

pw(w; α) =
∏

s

Dir(ws; α) =
∏

s

[
Γ (αo)∏

L
l′=l

Γ (αl′ )

L∏

l=1

(ws
l )

αl−1

]
, (7)

where αo = ∑
l′αl′ and Γ (·) is the Gamma function. Concentration of the dis-

tribution around the expected value Ews
l = αl

αo
is controlled by αo.

Joint Model. Fig. 1(a) illustrates our model. We denote the set of all hidden
variables by h = {c, m, z, w} and the set of all model parameters by θ =
{μ, σ, α, λ}. We can now form the joint model:

log p(y, h; θ) = −
∑

s,v,k

cs
v,k

[
λsD(ys

v, ms
k) − Z(λs)

]
+

∑

s,k,l

zs
k,l log ws

l (8)

−
∑

s,k,l

zs
k,l

[
σlD(ms

k, μl) − Z(σl)
]

+
∑

s

[∑

l

αl log ws
l + B(α)

]
,

where B(α) = log Γ (αo)−
∑

l′ log Γ (αl′) and the constant prior over c is dropped.
Fitting this model to the data could be cast as the maximum likelihood (ML)

parameter estimation for the observed data:

θ∗ = argmax
θ

log py(y; θ) = argmax
θ

log
∫

h

p(y, h; θ). (9)

Solving this problem requires integrating the joint distribution over all possible
states of the hidden variables h. Because of the first three terms in (8) that
involve interaction between hidden variables, the integration in (9) is hard.
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Fig. 1. Graphical model showing the structure of (a) the model p(y, h; θ), and (b)
distribution q(h; θ̃) that approximates the posterior p(h|y; θ) over the hidden variables.
Parameters and random variables are illustrated by squares and circles, respectively.

Variational Bayes. We employ a Variational Bayes approach to solve the
problem [15]. Accordingly, we define a parameterized distribution q(h; θ̃) on the
hidden variables to approximate the posterior p(h|y; θ). As illustrated in Fig.
1(b), we assume a fully factorable model q whose components are compatible
with the original model, that is, multinomial for parcel/cluster memberships c
and z, f for parcel centers m, and Dirichlet for the weights w:

q(h; θ̃) = qc(c; γ̃) qm(m; μ̃, σ̃) qz(z; β̃) qw(w; α̃)

=
∏

s,v

( ∏

k

(γ̃s
v,k)cs

v,k

)
·
∏

s,k

f(ms
k; μ̃s

k, σ̃s
k) ·

∏

s,k

( ∏

l

(β̃s
k,l)

zs
k,l

)
·
∏

s

Dir(ws; α̃s),

(10)

where θ̃ = {γ̃, μ̃, σ̃, β̃, α̃} is the combined set of parameters. With our choice
of von Mises model fV, we find the expression for the Variational Bayes cost
function, also called the free energy:

F(θ̃; θ) Δ= Eq log q(h) − Eq log p(y, h; θ)

=
∑

s,k

Z(σ̃s
k) +

∑

s,v,k

γ̃s
v,k

[
log γ̃s

v,k + λsDV(ys
v, μ̃

s
k) − Z(λs)

]

+
∑

s,k,l

β̃s
k,l

[
log β̃s

k,l − (Ψ(α̃s
l ) − Ψ(α̃s

o)) + σlDV(μ̃s
k, μl) − Z(σl)

]

+
∑

s

[∑

l

(α̃s
l − 1) (Ψ(α̃s

l ) − Ψ(α̃s
o)) + B(α̃s)

]

−S

[∑

l

(αl − 1)
(

1
S

∑

s

(Ψ(α̃s
l ) − Ψ(α̃s

o))
)

+ B(α)
]
, (11)

where Ψ(x) = d
dx log Γ (x) and α̃s

o =
∑

l α̃
s
l . Appendix A provides the details of

the derivation.
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2.2 Algorithm

We alternate between minimizing the free energy over posterior and model pa-
rameters θ̃ and θ similar to the basic Expectation-Maximization algorithm. For
a fixed θ, minimizing F over θ̃ corresponds to finding the approximate poste-
rior distribution, i.e., making inference using the given set of model parameters.
Minimization of the free energy with respect to θ corresponds to learning the
model parameters for a particular posterior distribution.

Inference. We can split the posterior parameters in (11) into two sets of non-
interacting parameters, (γ̃, β̃) and (μ̃, σ̃, α̃). Fixing the values of either set, the
optimization problem leads to a closed form solution for the parameters in the
other set. Hence, we choose to use a coordinate descent approach which simplifies
the update rules and significantly improves the overall speed of the algorithm.
The efficiency of this approximation allows us to repeat the algorithm with
numerous different initializations to better search the space of solutions.

For fixed (μ̃, σ̃, α̃), the cost function for γ̃ involves only the second term
of (11); the third term is only relevant for β̃. We find

γ̃s
v,k ∝ e−λsDV(ys

v,μ̃s
k) , β̃s

k,l ∝ eΨ(α̃s
l ) e−σlDV(μ̃s

k,μl)+ZV(σl). (12)

The update rules for the parcel/cluster assignments are quite similar to the
standard cluster assignment update rules. The term eΨ(α̃s

l ) acts as a prior weight
for cluster l in subject s.

For fixed parameters (γ̃, β̃), the parameter α̃ becomes fully decoupled from
(μ̃, σ̃). The solution takes the form:

α̃s
l = αl +

∑

k

β̃s
k,l , μ̃s

k ∝
∑

l

β̃s
k,lσlμl + λs

∑

v

γ̃s
v,kys

v . (13)

The update for α̃s
l combines current values of cluster weight αl with the sum

of multinomial weights β̃ assigned to cluster l. The update for μ̃s
k, which is

further normalized to unit length, linearly combines the cluster centers and the
response vectors, each with corresponding weights β̃s

k,l and γ̃s
v,k. We note that σ̃

only appears in the first term of (11); the minimum is achieved when σ̃s
k → ∞.

However, since σ̃ does not appear in the learning stage, this does not affect the
rest of the derivations.

Learning. The von Mises parameters are found as

μl ∝
∑

s,k

β̃s
k,lμ̃

s
k , σl = A−1

N

(
‖∑

s,k β̃s
k,lμ̃

s
k‖∑

s,k β̃s
k,l

)
,

λs = A−1
N

(
1
Vs

∑
v,kγ̃s

v,k〈μ̃s
k, ys

v〉
)

, (14)

where AN (λ) = IN/2(λ)/IN/2−1(λ), and μl vectors are normalized to unit length.
The update rules are similar to the parameter estimation steps of the ordinary
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single level clustering models. The last term of (11) is simply the Dirichlet log-
likelihood function with the observed statistics 1

S

∑
s (Ψ(α̃s

l ) − Ψ(α̃s
o)). Estima-

tion of the Dirichlet parameters α and computing the inverse of AN (·) involve
solving nonlinear equations. We employ standard zero-finding algorithms to solve
both problems [16,17].

Implementation. It is not hard to show that our algorithm always converges
to a local minimum of the free energy function. This implies that, similar to
most clustering algorithms, the solution depends on the initialization and select-
ing reasonable initializations can substantially improve the results. To initialize
the values of parameters (θ̃, θ), we first run a simple mixture model cluster-
ing into L components on a group data pooled from all subjects. We use the
resulting cluster centers and weights as initial values for cluster centers μ and
weights α. Then we cluster individual data sets separately to find K clusters for
each subject. We use the corresponding centers and assignment probabilities as
the initialization of posterior parcel center and weight parameters μ̃ and γ̃. The
rest of the parameters are initialized to one or appropriate random numbers. For
the results presented in the next section, we used between 40 to 70 initializations
depending on the number of cluster/parcels.

We empirically observed that the following order of update rules, in each
iteration, yields better results: (γ̃, β̃), (μ, σ), (μ̃, α̃), and (μ, σ, λ, α), respectively.
We terminate the algorithm for each initialization when the relative change in
the free energy between successive iterations falls bellow 10−9.

Similar to all other exploratory methods, we face the challenge of determin-
ing the right number of components. In our method, the question becomes more
important due to the hierarchical structure of the model where we need to de-
termine both L and K. We use a heuristic method to select these numbers but,
as we will see, the results show robustness to changing cluster and parcel num-
bers. When we incrementally increase the number of clusters L, the value of
the cost function monotonically decreases. If we interpret the value of the drop
ΔF = FL−1 − FL in the free energy as the gain achieved by reaching L from
L−1, a good number of clusters is the one for which this gain is locally optimal.
We use the same heuristic in selecting the parcel number K as well.

3 Experimental Results

We demonstrate application of our method in an fMRI study of category selec-
tivity in the visual cortex. Prior hypothesis-based studies have localized selective
regions in the ventral visual pathway for a few categories of visual stimuli such
as bodies, faces, and places [18]. Here, we aim to employ our method to dis-
cover modules shared across all subjects that show distinct profiles of response
to the variety of images presented during an fMRI experiment [12]. In our anal-
ysis, a cluster center μl represents the selectivity profile of a shared module and
the corresponding cluster assignments β̃s

k,l establish functional correspondence
among the parcels μ̃s

k found with a similar type of selectivity in different sub-
jects. Agreement of the discovered selectivity profiles with the prior results in the
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ΔF

L
(a)

ΔF

K
(b)

An Bo Ca Fa Sc Sh Tr Va

(c)

An Bo Ca Fa Sc Sh Tr Va

(d)

An Bo Ca Fa Sc Sh Tr Va

(e)

Fig. 2. Improvement in the final value of free energy achieved by incrementally increas-
ing (a) L for K = 15, and (b) K for L = 8. Each data point in these plots shows the
change in F between the two neighboring numbers of clusters or parcels. (c)-(e) Compo-
nents of the individual and population-level cluster centers for (K, L) = (9, 15), (8, 16),
and (7, 15), respectively. For each cluster center μl (thick red line), the parcel centers
μ̃s

k assigned to this cluster based on weights β̃s
k,l are shown for all the 6 subjects (thin

lines). The labels denote the baseline (BL) and the four coefficients for each category
of images: Animals, Bodies, Cars, Faces, Scenes, Shoes, Trees, Vases.
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literature and their consistency across representations of different images from
the same category serves as a validations of our method.

In our experiment, six subjects viewed stimuli from eight categories (faces,
places, bodies, trees, cars, animals, shoes, tools, vases) in a block-design fMRI
experiment. Each block lasted 16 seconds and contained 20 images from one cat-
egory. Sets of eight blocks (one for each category) were separated by an interval
of fixation. Each subject viewed between 16 and 29 blocks for each category. The
images were acquired using a Siemens 3T scanner and a custom 32-channel coil
(EPI, flip angle = 90o, TR = 2s, 28 axial slices, voxel size = 1.5× 1.5× 2mm3).
We performed motion correction, spike detection, intensity normalization, and
Gaussian smoothing with a 3 mm kernel using FsFast [19].

As another way to validate our results, we split blocks of images from each
original category into four groups and labeled them as four new categories,
creating a total of 32 categories. Since the resulting cluster response vectors
represent profiles of selectivity, we expect the four components that correspond
to the same category to be close to each other. We considered the voxels that
passed a stimulus-versus-fixation contrast at a significance level of 10−2 in order
to constrain the analysis to the visually active cortex. To form the space of
response vectors, we estimated the regression coefficients for each category based
on the General Linear Model [2]. We then normalized the resulting vectors of the
regression coefficients to unit length to construct vectors ys

v ∈ SN−1 for N = 32.
First, we ran the analysis for fixed K = 15 and varied L. The plot of the

change in the free energy between two successive values of L, Fig 2(a), suggests
the choice of 7 or 9 population-level clusters. Fig. 2(c) shows the resulting cluster
centers for K = 15 and L = 9 sorted based on their cluster weights α. Parcel
centers μ̃s

k assigned to each μl, such that l = argmax l′ β̃s
k,l′ , are also presented

along with corresponding cluster centers. The first four large clusters do not
show specific category selectivity. This is in agreement with the fact that a large
part of the visual cortex, including the early V1 and V2 areas, is exclusively
devoted to low level processing of the visual field. Next, we observe clusters
with body selectivity (clusters 5 and 7), face selectivity (cluster 6), and scene
selectivity (clusters 8 and 9), which correspond to the well-known body, face,
and place selective areas in the visual cortex [18]. As we expect, most discovered
response vectors show consistency across different blocks corresponding to the
same category.

It can be seen that there are very few outlier parcels, such as the animal-
selective parcel in cluster 7 denoted by a dashed black line. Since there is not
enough evidence for the presence of such a pattern across subjects, the algorithm
assigns the parcel to the closest cluster. All other subject parcels closely follow
the selectivity profile of their population clusters. We can interpret the deviations
of parcel centers μ̃s

k around each cluster center μl as the inter-subject variability.
For instance, as we expect, parcels assigned to the non-selective clusters show
highly variable patterns while the variability is lower for the highly selective
clusters. Fig. 2(e) shows the estimated clusters for K = 15 and L = 7. These
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Fig. 3. Spatial maps of the parcels assigned to the scene selective cluster 7 in Fig. 2(d)
in two different subjects

results are similar and confirm our observations above. We conclude that the
algorithm successfully matched functionally similar parcels across subjects.

To investigate the effect of changing the number of subject parcels, we let
L = 8 and change K. Fig 2(b) shows the incremental difference ΔF for K
which behaves much more smoothly compared to the one of L. Selecting K =
16, a value which is slightly higher than its local trend, the results are shown
in Fig. 2(d). Most clusters are almost the same as those of L = 7 and K =
15, except cluster 8 that is comprised solely of parcels from a single subject
and does not represent a trend shared across all subjects. This explains why
the improvement achieved by changing the number of clusters from 7 to 8 is
much smaller than that of 6 to 7, or 8 to 9 in Fig. 2(a). Overall, these results
demonstrate a relative robustness in the estimation of cluster centers to changes
in the number of population and subject-level clusters and parcels.

We also examine the spatial maps of voxels assigned to the identified parcels.
Based on our model, the posterior probability that voxel v in subject s belongs
to cluster l equals

∑
k γ̃s

v,kβ̃s
k,l. In our results, most of these probabilities are very

close to 0 or 1 yielding almost binary spatial maps for the clusters. Fig. 3 shows
the spatial map for the scene-selective cluster 7 in Fig. 2(d) in two different
subjects. The maps clearly exhibit similarities in several regions in spite of their
sparsity. We emphasize that the algorithm uses no spatial information other than
the Gaussian smoothing performed in the pre-processing stage.

4 Discussion and Conclusions

In this paper, we presented a probabilistic model for unsupervised parcellation of
the brain based on multisubject fMRI data. Applying this method to data from a
vision experiment on a cohort of 6 subjects, we were able to discover several types
of category selectivity in the visual cortex that have been previously reported
using hypothesis-driven methods. The discovered profiles show consistency across
different image representations from the same category.
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Our experimental results show relative robustness to changes in the number of
parcels and clusters. However, it is hard to analyze all possible settings in order
to find the best combination of component numbers. It is therefore interesting
to set for discovery of the natural number of parcels as suggested by the data.
We plan to study possible generalizations of the current model to include the
number of components as an unknown using nonparametric approaches.

Another direction for extending the current model is the choice of a prior
for parcel memberships c. The current model assumes uniform prior on the as-
signment variables. Since we expect the subject-level parcels to be also spatially
clustered, we can assume a prior for c with spatial smoothness properties as a rig-
orous modeling replacement for the Gaussian smoothing in the pre-processing.
Furthermore, we can employ spatial normalization to parameterize and learn
a specific inter-subject spatial prior for c, merging our method with the con-
ventional approach to the population analysis. We aim to investigate ways for
designing such models.
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A Variational Inference

For a distribution q on the hidden variables h, the free energy functional

F [q, p(θ)] Δ= Eq log q(h) − Eq log p(y, h; θ) = Eq log
q(h)

p(h|y; θ)
− log p(y; θ)

serves as a lower bound for − log p(y; θ) since the first term is DKL(q||ph|y) ≥ 0.
With the distribution q(h; θ̃) defined in (10), the free energy F(θ̃; θ) is now

a function of both sets of posterior and model parameters. Using the expansion
of log p(y, h; θ) in (8), we obtain

F =
∑

s,v,k

Eq[cs
v,k] log γ̃s

v,k −
∑

s,k

[
σ̃s

kEq [D(ms
k, μ̃s

k)] − Z(σ̃s
k)

]

+
∑

s,k,l

Eq[zs
k,l] log β̃s

k,l +
∑

s

[∑

l

(α̃s
l − 1)Eq[log ws

l ] + B(α̃s)
]

(15)

+
∑

s,v,k

Eq[cs
v,k]

[
λsEq[D(ys

v, ms
k)] − Z(λs)

]
−

∑

s,k,l

Eq[zs
k,l] Eq[log ws

l ]

+
∑

s,k,l

Eq[zs
k,l]

[
σlEq[D(ms

k, μl)] − Z(σl)
]
−

∑

s,l

(αl − 1)Eq[log ws
l ] − S B(α).

The factored structure of q and properties of the Dirichlet distribution imply

Eq[cs
v,k] = γ̃s

v,k , Eq[zs
k,l] = β̃s

k,l , Eqw [log ws
l ] = Ψ(α̃s

l ) − Ψ(α̃s
o), (16)

where Ψ(x) = d
dx log Γ (x) and α̃s

o =
∑

l α̃
s
l . From (4), the distance DV is linear in

the case of von Mises distribution. Thus, the value of a term Eq[DV(m, η)] under
the distribution q(m) = fV(m; μ̃s

k, σ̃s
k) is simply equal to DV(η, μ̃s

k). Substituting
these expressions in (15) completes the computation of the free energy cost
function in (11).

http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast


410 D. Lashkari and P. Golland

B Gaussian Model

We show the derivation for the case when the likelihood model f is the commonly
used Gaussian distribution. Based on the general expression (1), fG(y; m, λ)
is defined by DG(y, m) = 1

2‖y − m‖2 and ZG(λ) = N
2 log λ

2π . The interesting
technical distinction between Gaussian and von Mises distributions appears in
the computation of the free energy (15). The quadratic expression Eq[DG(m, η)]
under the distribution q(m) = fG(m; μ̃s

k, σ̃s
k) is equal to DG(η, μ̃s

k) + N
2σ̃s

k
.

In the inference stage, we find the cluster and parcel assignment update rules:

γ̃s
v,k ∝ e

−λsDG(ys
v ,μ̃s

k)−Nλs

2σ̃s
k , β̃s

k,l ∝ eΨ(α̃s
l ) e

−σlDG(μ̃s
k,μl)+ZG(σl)−Nσl

2σ̃s
k . (17)

Comparing these rules with (12), we interpret the last terms in the exponents
of (17) as a correction that accounts for the uncertainty in cluster center esti-
mates μ̃, reflected by the values of σ̃. While the update for α̃ remains the same,
the mean and precision of parcel centers are updated as

μ̃s
k =

∑
l β̃

s
k,lσlμl + λs

∑
v γ̃s

v,kys
v∑

l β̃
s
k,lσl + λs

∑
v γ̃s

v,k

, σ̃s
k = Vsλ

s +
∑

l

β̃s
k,lσl. (18)

Here, in contrast to the von Mises case, the finite values of σ̃s
k propagate the

effects of our posterior uncertainty about m to the estimates of the other vari-
ables. In the learning stage, the Gaussian parameters are computed according
to the update rules

μl = 1∑
s,k β̃s

k,l

∑

s,k

β̃s
k,lμ̃

s
k , (σl)−1 = 1∑

s,k β̃s
k,l

∑

s,k

β̃s
k,l

[
(σ̃s

k)−1 + 1
N ‖μ̃s

k − μl‖2

]
,

(λs)−1 =
1
Vs

∑

v,k

γ̃s
v,k

[
(σ̃s

k)−1 + 1
N ‖ys

v − μ̃s
k‖2

]
, (19)

that again look quite similar to the conventional clustering update rules
accompanied with the correction terms involving σ̃.
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