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Abstract. We present an image driven approach to the reconstruction
of 3-D volumes from stacks of 2-D post-mortem sections (histology, cry-
oimaging, autoradiography or immunohistochemistry) in the absence of
any external information. We note that a desirable quality of the re-
constructed volume is the smoothness of its notable structures (e.g. the
gray/white matter surfaces in brain images). Here we propose to use
smoothness as a means to drive the reconstruction process itself.

From an initial rigid pair-wise reconstruction of the input 2-D sec-
tions, we extract the boundaries of structures of interest. Those are
then evolved under a mean curvature flow modified to constrain the
flow within 2-D planes. Sparse displacement fields are then computed,
independently for each slice, from the resulting flow. A variety of trans-
formations, from globally rigid to arbitrarily flexible ones, can then be
estimated from those fields and applied to the individual input 2-D
sections to form a smooth volume.

We detail our method and discuss preliminary results on both real
histological data and synthetic examples.

1 Introduction

In spite of rapid advances in 3-D imaging technologies (high-field magnetic res-
onance scanners, micro-CT, etc.), the spatial resolution, contrast and specificity
of the acquired volumes still fall short of the level of anatomical or functional
details afforded by post-mortem 2-D imaging technologies such as histology,
cryoimaging, autoradiography or immunohistochemistry (hereafter referred to
as ”histology”).

By fusing 2-D post-mortem sections with 3-D in vivo or post-mortem volumes,
we can establish a one-to-one correspondence between the various modalities,
with the 3-D volumes acting as an adequate anatomical framework. This enables
researchers to view the complex anatomy of the organs or structures of interest
in three dimensions (regardless of the modality), at multiple scale (anatomical,
cellular, molecular) and multiple explanatory levels (structural or functional).

Due to the nature and high incidence of the distortions and artefacts that
occur during the 2-D imaging process (shape changes during perfusion, fixa-
tion and tissue extraction; holes and tears during cutting; nonlinear shrinking
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of tissues during preparation or dying; etc.) an accurate and robust fusion is
difficult to achieve. The typical approach to fusion consists of (1) reconstruct-
ing a geometrically coherent 3-D volume by registering together the consecutive
2-D histological slices and (2) co-registering the reconstructed volume to the
available 3-D modality (MR or CT for instance).

Often this first reconstruction involves registering successive pairs of 2-D slices
with respect to a reference slice, generally taken as the middle one in the stack
[1,2]. The available 2-D registration methods range from time-consuming manual
techniques [3] or fiducial markers based ones [4], to more advanced geometrical
approaches where features such as points [5], edges [6] or contours [7] are auto-
matically extracted from the input slices. Iconic (i.e. intensity based) methods
also proved very popular. For instance, Ourselin et al. [1] used a robust block-
matching approach to linearly register histological sections of the rat brain with
the correlation coefficient as similarity measure.

However, as argued at length in [2], restricting the reconstruction problem
to a 2-D/2-D registration process is not likely to yield anatomically satisfac-
tory results. Indeed, the 3-D conformation of a curved object is lost during the
cutting process and cannot be accurately recovered in the absence of external
information (the humorously nicknamed ”banana problem”). Furthermore, con-
sidering slices only two at a time naturally gives rise to an aperture problem
whose consequences are a general lack of robustness and a tendency to create
wave patterns in the direction across slices.

Those issues can be alleviated in several ways. For instance, an external ref-
erence volume (e.g. MRI [8,2,9]) or the block-face images acquired during the
histological process [10,11,12,13] can be used to guide the reconstruction. Re-
cent approaches conjointly manipulate all the slices in the stack. In [14] for
instance, the set of independent elastic transformations is globally optimized
within a variational scheme, with the global sum of squared differences across
all slices serving as fitness function. In [2], the linear transformations computed
between each pairs of slices are filtered along the cutting axis. Yushkevitch et al.
[15] use a graph-based approach to pick in the neighbourhood of each slice the
registration path that will minimize the overall reconstruction error. In Guest
et al.[16], springs are attached between corresponding points across consecu-
tive slices, which are themselves modeled as thin elastic plates, and a finite
element method evolves the system until equilibrium. In Tan et al. [17], three
high-curvature points, extracted from tissue contours after an initial global re-
construction, are matched across slices and serve as surrogate fiducial markers.
New affine transformations are estimated for each slice from the three displace-
ment vectors computed between these feature points and the closest point in the
same slice on an interpolating inter-slice cubic NURBS.

In this article, we focus on the reconstruction of a 3-D volume from 2-D slices,
in the absence of an external reference. Indeed, the latter is not always avail-
able, or its resolution or contrast may not be sufficient to provide much help with
the reconstruction. We note that a desirable quality for a reconstructed histo-
logical volume is the smoothness of its notable structures (e.g. the gray/white
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matter surface in a brain). In fact, it is common practice to qualitatively evalu-
ate a reconstruction method by considering the smoothness, in the reconstructed
volume, of some structures of interest in views orthogonal to the original 2-D
histological sections. For instance, in [14] the quality of reconstructed histological
volumes of rat brains was assessed by an expert who visually evaluated both the
smoothness of the borders delimiting anatomical structures and the amount of
recognizable small structures, such as the subcortical nuclei and the ventricles.
In [16,18], the distance between corresponding points identified across slices was
used to quantify the smoothness of the reconstruction: since histological slices
are thin, the closer the corresponding points, the smoother the volume. In a
recent work [19], Laissue et al. use the smoothness of crest-lines defined by high
curvature points of the lateral ventricle in a reconstructed histological brain to
assess the co-registration errors between MRI and the reconstructed volume.

Here we propose to use smoothness as a means to drive the reconstruction
itself. The boundaries of structures of interest are automatically extracted from
an initial rigid reconstruction of the input 2-D sections and smoothed by a
constrained mean curvature flow. Arbitrarily flexible transformations can then
be estimated, independently for each slice, from the computed flow and applied to
the original sections to form a smooth volume. We build our method around the
hypothesis that the histological sections are sufficiently thin to enable a smooth
visual aspect of the reconstructed structures in the direction across slices.

Note that our approach bears some resemblance to the work of Tan et al.
[17], in the sense that we also use smoothness to correct slice transformations.
However, instead of focusing on an arbitrarily small number of feature points
which have to be extracted and matched across slices (an error-prone process
highly sensitive to segmentation errors), we use actual surfaces. This enables
us to estimate a displacement field instead of just three displacement vectors,
so arbitrarily flexible slice transformations can be accommodated. In turn, this
gives us control over the desired smoothness of the reconstructed volume.

We first detail our method in the following section, before presenting some
preliminary results on synthetic and real datasets in section 3. Finally, we con-
clude with some elements of validation regarding the robustness of the proposed
approach.

2 Method

Our method consists of five steps. (1) We first reconstruct an estimate of the
3-D histological volume by rigidly registering consecutive 2-D sections, using a
classic pair-wise approach. (2) Structures of interest (e.g. the gray/white matter
boundary) are automatically extracted from the reconstructed volume. (3) The
extracted surfaces are smoothed by evolving them under a modified version of
the mean curvature flow restricted to 2-D planes. (4) A 3-D displacement field
is estimated from the 3-D flow. A variety of transformations, from globally rigid
to arbitrarily flexible ones, can then be estimated from the field. (5) Finally, a
smooth reconstructed volume is obtained by applying the transformations to the
original 2-D slices.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Smooth reconstruction applied to a 2-D toy example: (a) source 2-D image: the
structure of interest is a textured square; (b) source image after application of random
translations to individual lines (gray) and extracted structure of interest (blue line); (c)
signed distance map (gray), front before (blue line) and after (yellow line) application
of flow, computed sparse displacement field (red); (d) magnified view of the trajectory
of two points taken within the white square in (c) during the flow; (e) dense displace-
ment field interpolated from the global rigid transformation (translations) estimated
on sparse field of (c); (f) globally smoothed image

We illustrate on Fig. 1 the steps that will be described throughout this sec-
tion. To facilitate visualization, we use a 2-D toy example rather than a 3-D one.
The structure of interest is a textured square. In this example, the analogous of
a 2-D histological slice is a horizontal line. We simulate the misalignments in-
duced by the histological process by translating those lines horizontally by a ran-
dom amount drawn from a zero-mean normal distribution (Fig. 1(b)). The goal
of our approach is then to recover a smooth square, similar in shape to that of
Fig. 1(a).

2.1 Approximating a 3-D Volume

We first need to estimate a globally coherent 3-D volume from the input stack
of 2-D slices. We use the standard pair-wise reconstruction approach of Ourselin
et al. [20], owing to its robustness to artifacts and noise. In this framework, con-
secutive pairs of 2-D slices are globally rigidly registered with a block-matching
algorithm. We chose the middle slice as reference.
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Note that any other global reconstruction approach could be used here (for
instance, the robust approach of Yushkevich et al. [15] which would likely perform
better if severe artifacts were to affect some sections).

As mentioned above, Fig. 1(b) simulates the 2-D image reconstructed from
individual 1-D lines.

2.2 Extracting Structures of Interest

The roughness (as opposed to smoothness) of a reconstructed volume is usually
best appreciated at the boundaries between visually homogeneous regions, which
typically coincide with anatomical structures or sub-structures. Therefore, we
propose to use the smoothness of a selection of boundaries as a proxy for the
smoothness of the reconstructed volume. Note that because of the tessellated
nature of histological slices, structures of interest can be found at a variety of
scales. The decision as to which structure should be extracted is then informed
by the overall goal of the application for which histological volume reconstruction
is required.

An issue that interferes with the extraction of the boundaries is that of in-
tensity inhomogeneities between sections. Those are mostly due to differences
in staining densities, variations in slice thickness or the digitization stage of
the image acquisition process. A number of solutions are available in the liter-
ature [21,22]. We picked the affine histogram matching approach of Malandain
et al. [21] as it copes adequately with the anatomical differences and intensity
variations across the stack of histological slices .

Once the intensities have been homogenized, we can extract the boundaries
of the structures of interest. For the data presented in this paper, a simple
intensity thresholding approach proved sufficient. Should the histological sec-
tions be more heavily textured, or if the noise level were higher, more so-
phisticated methods may become necessary. Note that the segmentation was
done in 2-D, independently for each slice, which makes it independent from
the quality of the initial 3-D reconstruction (although we may equally envi-
sion a 3-D segmentation approach). A completely accurate segmentation step is
not mandatory here, since the extracted surfaces act as surrogates. Our method
only requires approximately delineated boundaries of interest as long as
their smoothness is representative for the smoothness of the initial volume
reconstruction.

The blue line in Fig. 1(b) follows the boundary of the structure of interest in
our toy example.

2.3 3-D Mean Curvature Flow Constrained to 2-D Planes

Because the initial rigid reconstruction is unlikely to generate a smooth volume,
the extracted surfaces will be ”jagged” in the direction of the cutting axis (i.e.
across slices). We propose to smooth those surfaces by evolving them under a
mean curvature flow.

Mean curvature flow is a popular interface motion method, extensively used
as an image smoothing and noise filtering technique (see [23] for a review). At
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a glance, it consists in moving each point on the extracted surfaces (or fronts)
along their normal direction, with speed proportional to their curvature. This
helps smoothing away their various kinks and bumps. An attractive formulation
to the mean curvature flow was proposed by Osher et al. where the front was
modelled implicitly as the zero level set of an higher dimensional function, a
signed distance map [24]. Formally, if Γ (t = 0) denotes the extracted front, then
the level set function is φ(x, t = 0) = ±distance(x, Γ (t = 0)). If we further
constrain the gradient of the signed distance function to be one, the general
equation of motion [25] for speed function F is:

φt + F � φ = 0 (1)

When the speed is proportional to the curvature κ at each point, the equation
becomes: φt + F (κ) | �φ |= 0.

For the purpose of our histological reconstruction application, we modified
this classical formulation to take into account the fact that the cutting axis (the
axis going across slices) plays a different role from the other two, as argued in
[2]. Indeed, we do not want the flow to go across the planes in which the slices
reside since we need to compute from it the independent transformations to be
applied to the original sections.

Restricting the flow to the planes can be simply obtained by setting the com-
ponent of the velocity along the z-axis to zero. The speed function then becomes:

F (κ) = −bκ · (1, 1, 0) · ( �φ

| �φ | ) (2)

where b is a positive constant. Plugging the new speed into the level set equation

(1), the motion under the mean curvature flow constrained to the 2-D planes is
given by:

φt = [(bκ, bκ, 0) · ( �φ

| �φ | )] · �φ (3)

Note that this formulation of the flow still allows for the curvature and gradient
to be computed in 3-D. It also somewhat mitigates the tendency for classi-
cal mean curvature flows to shrink volumes, even though we cannot guarantee
surface shrinkage within slices. In our study we used the Euclidean distance ap-
proximation for the signed distance map [26] and the derivatives in equation 3
are computed by means of second order centred differences1.

2.4 Estimating Individual Slice Transformations

Finally, we need to compute the transformations corresponding to each indi-
vidual slice. Once the equation of motion has been discretized, we can track,
within each slice, the trajectory of the points on the evolving front and generate

1 The described scheme was implemented on top of the LS Toolbox for matlab
http://www.cs.ubc.ca/ mitchell/ToolboxLS/
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a sparse displacement field. The transformation corresponding to each slice can
then be estimated from this field.

However, since the original signed distance map does not remain a distance
map throughout the entire time-period of the motion, finding an accurate set
of displacement vectors from the points on initial front to the points on the fi-
nal front is a difficult task. In [27] Gomes et al. recall that the characteristics
of the level set function (the integral curves of its gradient) are straight lines
since the embedding function is a distance map. They use a tracking approach
to find the position of the front at each iteration. Inspired by this scheme, we
too track the position of the front at each iteration by looking for zero-crossing
of the distance map in the normal direction, starting at previous position of
the front. The final displacement is obtained by composing the small displace-
ment vectors at intermediary points between the old and new position of the
front.

Fig. 1(c) shows the evolution of the front under our constrained mean cur-
vature flow formulation and the computed sparse displacement field. Note how
the displacement vectors are indeed aligned horizontally (i.e. the flow was re-
stricted to the horizontal direction). Fig. 1(d) displays a magnified view of
the trajectory, during the flow, of two points taken within the white square
in (c).

Once a displacement field has been computed, we can estimate a variety of
transformations, from globally rigid or affine ones to arbitrarily flexible ones.
Following [1,28], we estimate global transformations with a robust least square
regression algorithm (Least Trimmed Squares, [29]). This approach differs from
standard least square methods in that it minimizes the sum of a certain percent of
the smallest squared residuals in an iterative fashion, which reduces the influence
of outliers. It proved particularly amenable to our application where only a sparse
displacement field is computed. When more flexible transformations are desired,
we use the rigidity adaptable approach of Pitiot et al. [28]. In this approach, both
the geometry and topology of the individual slices are taken into account (in
particular, image components on either side of a gap are treated independently).
The flexibility of the regularized field is controlled by setting a single parameter,
the rigidity radius, which determines the amount of local rigidity (the larger the
radius, the more rigid the transformation). Finally, for maximal flexibility, we
can extrapolate the sparse field to the entire image, where the extrapolation is
done independently for each slice, and apply the displacement directly to the
original slices.

Fig. 1(e) shows the dense displacement field interpolated along each line from
the global rigid translation estimated from the sparse field shown in Fig. 1(c).
Note that for this 2-D toy example, the global rigid translation of each line was
obtained by averaging the displacement vectors computed on the line rather than
by LTS since there were only two vectors. Fig. 1(f) shows the final 2-D image
once the estimated translations were applied to the individual lines of Fig.1(b):
the reconstructed image is visibly much smoother.
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3 Results

3.1 Reconstructing a NISSL-Stained Volume of the C57BL/6
Mouse Brain

We applied our smooth reconstruction approach to a set of 350 Nissl-stained
sections of the C57BL/6 mouse brain obtained from the LONI database2. The
mouse brain was cut serially along the anterior/posterior axis in 50μm thick
coronal sections.

Fig. 3(a) displays a sagittal (left) and transverse (right) view of the initial rigidly
reconstructed volume (step 1 of our method). As mentioned above, we picked the
middle section in the stack as reference for this pair-wise reconstruction. After the
intensity homogenization step, we extracted the gray/white matter boundary as
our surface of interest and subjected it to the modified mean curvature flow.

We show on Fig. 3(b to e) the reconstruction results obtained with increasingly
more flexible transformation models. For all results, we used the same parameters
for our mean curvature flow implementation: b = 0.05, 153 time steps in total.

The reconstruction obtained when global rigid transformations were estimated
from our modified flow is shown in (b). Note how even though the transforma-
tions applied to the original sections were global rigid for both (a) and (b), the
reconstructed volume appears much smoother with our approach. Without sur-
prise, estimating a global affine transformation instead of a rigid one yielded a
smoother volume (Fig. 3(c)).

Fig. 3(d) shows the reconstruction results obtained with the adaptive rigidity
approach[28]. We chose a radius of the order of the cortical thickness in this area
of the brain. The resulting volume compares favourably against that obtained
when directly applying the displacement field computed from the flow (Fig. 3(e)).
In both case we obtain a visually very smooth volume, but the regularization
approach prevented the cortical ribbon from collapsing in the bottom left and
top right corners of the image.

3.2 Elements of Robustness

In an attempt to evaluate the robustness of our smooth reconstruction method
while circumventing the lack of ground truth associated with actual histological
data, we propose to reconstruct a volume from the artificially perturbed slices of
an initially smooth volume and compare the former with the latter. As surrogate
for smooth histological volume, we use a high resolution 0.65mm isotropic in-vivo
T1-weighted MR scan of the human brain of a volunteer. In a similar fashion
to our toy 2-D example, we apply to each individual axial slice a rigid or affine
transformation whose parameters are drawn from zero mean normal distributions
of specifiable standard deviation σ.

Fig. 2 shows both coronal and sagittal views of the original, perturbed and
smoothly reconstructed volumes for rotation drawn at random from a zero
mean normal distribution of standard deviation σrotation = 1 degree (b) and

2 http://map.loni.ucla.edu



358 A. Cifor, T. Pridmore, and A. Pitiot

(a) (b) (c) (d) (e) (f)

Fig. 2. Reconstructing a randomly perturbed MR image of the human brain: (a) coro-
nal view of the original MRI; (b) coronal view of the perturbed MRI whose axial slices
were randomly rotated (σrotation = 1 degree); (c) smooth reconstruction from slices
rotated in (b); (d) sagittal view of the original MRI; (e) sagittal view of the perturbed
MRI whose axial slices were randomly translated (σtranslation = 2 voxels); (f) smooth
reconstruction from slices translated in (e).

translations drawn at random from a zero mean normal distribution of standard
deviation σtranslation = 2 voxels (e). The reconstructed volumes (c and f) are
indeed much smoother than the perturbed volumes and visually close to the orig-
inal MRI. Note that because our reconstruction approach does not know about
brain anatomy, there is no guarantee that the ”smooth alignment” corresponds
to the anatomically correct one. In particular, it could be smoother.

4 Conclusions

We have presented a reference-free image driven approach to volume reconstruc-
tion where smoothness is used as a means to drive the reconstruction process
itself. A variant of the mean curvature flow constrained to 2-D planes is used to
smooth the boundaries of structures of interest extracted from an initial recon-
struction of the input histological sections. A displacement field is then computed
from the resulting flow and arbitrarily flexible transformations are estimated and
applied to the individual slices.

Preliminary results indicate that the reconstructed volumes are indeed visu-
ally smooth, even when the selected slice transformation model is globally rigid.

Note that our method is best suited for histological slices in which the dis-
crepancy between boundaries of interest and texture is high enough to extract
and smooth these boundaries. We are currently investigating the influence of
noise and lack of contrast on the quality of the reconstruction and quantifying
the robustness of our approach to random rotations and translations. We are
evaluating volume preserving flows to further improve the quality of the recon-
struction. Of particular interest are scale-dependent flows which would smooth
out only those features artificially induced by the reconstruction, while leaving
the overall shape of the structure intact.

Acknowledgements

This research is funded by the European Commission Fp6 Marie Curie Action
Programme (MEST-CT-2005-021170).



Smooth 3-D Reconstruction for 2-D Histological Images 359

References

1. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D
structure from serial histological sections. Image and Vision Computing 19(1-2),
25–31 (2001)

2. Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs
with an MR volume using 2-D and 3-D linear transformations. NeuroImage 23(1),
111–127 (2004)

3. Deverell, M., Salisbury, J., Cookson, M., Holman, J., Dykes, E., Whimster, F.:
Three-dimensional reconstruction: methods of improving image registration and
interpretation. In: Analytical Cellular Pathology, vol. 5, pp. 253–263 (1993)

4. Toga, A., Goldkorn, A., Ambach, K., Chao, K., Quinn, B., Yao, P.: Postmortem
cryosectioning as an anatomic reference for human brain mapping. Computerized
Medical Imaging and Graphics 21(11), 131–141 (1997)

5. Guest, E., Berry, E., Baldock, R.A., Fidrich, M., Smith, M.A.: Robust point corre-
spondence applied to two-and three-dimensional image registration. IEEE Trans.
Pattern Anal. Mach. Intell. 23(2), 165–179 (2001)

6. Kim, B., Frey, K.A., Mukhopadhayay, S., Ross, B.D., Meyer, C.R.: Co-registration
of MRI and autoradiography of rat brain in three-dimensions following automatic
reconstruction of 2D data set. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905,
pp. 262–266. Springer, Heidelberg (1995)

7. Cohen, F., Yang, Z., Huang, Z., Nissanov, J.: Automatic matching of homologous
histological sections. IEEE Transactions on Bio-medical Engineering 445(5), 642–
649 (1998)

8. Ourselin, S., Bardinet, E., Dormont, D., Malandain, G., Roche, A., Ayache, N.,
Tande, D., Parain, K., Yelnik, J.: Fusion of histological sections and MR images:
towards the construction of an atlas of the human basal ganglia. In: Niessen, W.J.,
Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 743–751. Springer,
Heidelberg (2001)

9. Chakravarty, M.M., Bedell, B.J., Zehntner, S.P., Evans, A.C., Collins, D.L.: Three-
dimensional reconstruction of serial histological mouse brain sections. In: ISBI, pp.
987–990 (2008)
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Fig. 3. Sagittal (left) and transversal (right) views of the LONI C57BL/6 mouse brain re-
constructed from 2-D Nissl-stained sections using: (a) pair-wise globally rigid reconstruc-
tion; (b) smooth reconstruction approach with globally rigid transformations estimated
at each slice. (c) same with globally affine transformations estimated at each slice. (d)
same with rigidity adaptable regularization of the displacement field extracted from the
flow; (e) same with direct application of the displacement field extracted from the flow.
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