
A Case Study in Distributing a SystemC Model

V. Galiano1, M. Mart́ınez2, H. Migallón1, D. Pérez-Caparrós1,
and C. Quesada1

1 Miguel Hernández University, Av. de la Universidad, s/n, 03202 Elche
{vgaliano,hmigallon}@umh.es, davidperez@ieee.org,

carlos.quesada@graduado.umh.es
2 Design of Systems on Silicon (DS2), C.R. Darwin, 2, 46980 Paterna, Valencia

marcos.martinez@ds2.es

Abstract. SystemC is a library that facilitates the development of
Transaction Level Models (TLM). These models are composed of both
hardware and software components. This library allows designing and
verifying hardware system components at a high level of abstraction.
This supports the development of complex systems. A real industry Sys-
temC model usually contains a high number of functional blocks which
increase its simulation run time. SystemC executes only one process at
any time, even if the hardware supports execution of concurrent pro-
cesses. In this paper we present a new methodology for distribution of
the simulation of complex models in a parallel computing system. We
apply our own approach in a real industry SystemC model of a Power
Line Communication (PLC) network.

Keywords: SystemC, TLM, Distributed Systems, PDES, PLC, MPI,
Serialization.

1 Introduction

Built on top of C/C++, SystemC[1] allows the full object-oriented power of
the language, while providing constructs to easily describe concurrent hardware
behavior. The major benefits of SystemC include architectural exploration and
performance modeling of complex SoC designs, and the ability to run software
on a virtual model of the hardware platform prior to the availability of Register
Transfer Level (RTL) code. These benefits are enabled by the use of Transaction
Level Modeling (TLM) add-on library.

As the complexity of SystemC models increases, more computational resources
are required by their simulation, which means higher simulation run times. To
speed the simulation run times of complex SystemC models, we propose to ap-
ply principles of Parallel Discrete Event Simulation (PDES)[2]. In this paper
we present a solution to the problem of distributing the simulation of SystemC
models in a parallel computing system. We demonstrate this solution by imple-
menting it on a real industry SystemC model of a PLC network.

The rest of this paper is summarized as follows: Section 2 presents some
background information on distributed SystemC simulation. We briefly discuss

S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 99–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 V. Galiano et al.

related work in Section 3. Section 4 describes the SystemC model that will be
distributed in Section 5. Finally, this paper is concluded in Section 6.

2 Background

2.1 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES), also known as Distributed Simu-
lation, refers to execution of a single discrete event simulation program on a
parallel or distributed computing system. In a discrete event simulation, model
being simulated only changes its state at discrete points in simulated time. Model
jumps from state to state upon the occurrence of events. Concurrent events in the
simulated model are executed in a sequential manner. Subsequently, simulation
of complex systems with a substantial amount of parallelism is an extremely time
consuming task [3]. PDES aroused as a solution to this problem. In a PDES, sim-
ulated model is decomposed into a set of concurrent processes which are executed
in a parallel computer. These processes are known as Logical Processes (LPs).
LPs are essentially autonomous and independent DESs logically connected by
channels, with part of the simulated system state, queues of pending events, and
a local clock. All interactions between processes are modeled as time stamped
event messages between LPs[2].

There are two types of algorithms that deal with the problem of synchroniza-
tion between LPs in PDES systems, conservative and optimistic [2]. Conservative
algorithms process in parallel only those events with the same time stamp. Par-
allel executions must resynchronize before any event with a greater time stamp
can be processed. Optimistic algorithms execute events regardless of their time
stamps, and implement mechanisms to detect and recover from any resulting
causality violation [4].

2.2 System Level Communication Modeling with SystemC

SystemC library provides the implementation of many types of hardware-specific
objects, such as concurrent and hierarchical modules, ports, channels, and clocks.
Structural decomposition of the simulated model is specified with modules, which
are the basic building blocks. The functionality of system is described in pro-
cesses. Interaction between modules can be modeled using channels, interfaces
and ports. Thus, a SystemC description consists of a set of interconnected mod-
ules, which are composed of processes, ports, channels and instances of other
modules.

A channel implements one or more interfaces. An interface consists of a set
of method declarations, but does not implement these methods. A port enables
a module, and hence its processes, to access a channel interface. The interface
method, which is implemented in the channel, is executed in the context of
the process. A port is defined in terms of an interface type, which means that
the port can be used only with channels that implement that interface type [5]

A Case Study in Distributing a SystemC Model 101

[6]. Processes usually communicate with other processes through ports bound
to channels by way of interfaces, or through ports bound to another type of
port known as sc_export. sc_export is similar to standard ports in that the
declaration syntax is defined on an interface, but this port differs in connectivity.
It allows to move the channel inside the defining module, and use the port
externally as though it were a channel [7].

3 Related Work

There have been several attempts to distribute SystemC simulations, but it
seems that no one is definitive or used as standard. All of them, to the best of
our knowledge, use conservative algorithms to maintain the consistency of the
simulated model. Optimistic algorithms are harder to implement and require too
many resources [2].

There are basically two strategies to distribute SystemC simulations. Some
authors have tried to parallelize/distribute SystemC by directly modifying its
simulation engine. The other strategy is based on wrapping communications
between LPs using a self-developed communication library that extends system
level modeling capabilities of SystemC. A major drawback of modifying the
SystemC simulation engine is the need to provide a continuous support to follow
future implementations of the SystemC standard. On the other hand, it is a
more customizable approach.

[8] and [9] follow first strategy and propose to customize SystemC simulation
engine. Both proposals use the Message Passing Interface (MPI)[10] standard for
communication between LPs, which are wrapped in a top-level SystemC module.
This strategy obtains reasonable performance results for well-balanced coarse-
grained system models. LPs must be manually defined and mapped into different
processes by the modeler of the simulated system. [8] avoids explicit lookahead
by choosing a robust synchronization algorithm [11][12].

Other approaches, following the previously mentioned second strategy, include
their own communication library that bridges LPs and synchronizes shared sig-
nals between them using explicit lookahead. [13][14][15] and [16] present solutions
that avoid modifying SystemC library source code. [16] uses MPI for communi-
cation and synchronization between LPs, while [13] propose the use of TCP/IP
socket communication. In [13] each LP is mapped into independent executable
pieces due to its communication technique.

There are other authors working on geographically distributed SystemC sim-
ulations [17]. Communications are made over Internet protocols and middleware
such as SOAP, RMI or CORBA. However, their goal is not to obtain a better
performance as well as our work aims [18].

We propose a solution which is based on [13] and [16] proposals. We use a
wrapper SystemC module to communicate and synchronize manually distributed
LPs using the MPI standard. The following sections focus on the distribution of
a real industry SystemC model by using our approach.

102 V. Galiano et al.

4 SystemC Model of a Power Line Communication
Network

SystemC model that will be distributed in Section 5 is a real industry model of
a PLC network. An overall view of this model is given in Figure 1. The system
comprises a PLC Channel (PLCC), three traffic Flow Generators (FG), and four
Endpoint PLC Nodes (EN). These modules are wrapped in a top-level module
which is used as a test bench for validating the model through simulation. This
module includes instantiation of all other modules that have been defined and
used in the design. Each component is modeled using a complex combination of
high and low levels of abstraction. The main components of the model and the
communication process between them are described next.

FG1 FG2 FG3

EN1 EN2 EN3 EN4

PLC Channel

Fig. 1. SystemC model of a PLC network

4.1 Components

Flow Generators. The FG modules generate configurable network traffic ac-
cording to several parameters which are set in a configuration file. The network
traffic is injected into a particular EP module in the form of Ethernet frames.

Endpoint Nodes. EN modules communicate with other EN modules by send-
ing and/or receiving Packet Data Units (PDUs) through the PLC Channel. Each
EN module implements a protocol stack (see Figure 2), which divides the net-
work architecture into five layers. These protocol layers are from top to bottom:
Bridge, Convergence, Logical Link Control (LLC), Media Access Control (MAC),
and Physical Layer (Phy).

In the sending process, Bridge Layer of the EN module receives through
an external interface the Ethernet frames generated by the FG module. Nodes
encapsulate these frames downwards to lower layer protocols. The resulting Pro-
tocol Packet Data Units (PPDUs) are broadcast over the PLC channel. The ac-
tion of receiving comprises the opposite operation of reversing the encapsulating
process.

A Case Study in Distributing a SystemC Model 103

Bridge Layer

Convergence Layer

LLC Layer

MAC Layer

Physical Layer

Ethernet frames
from the FG module

PDUs to/from the
PLC Channel

Fig. 2. Protocol stack implemented in EN module

PLC Channel. The physical link is modeled in a separate module. This module
acts as a communication channel amongst the EN modules. It is modeled like
a First-In First-Out (FIFO) queue of Physical Layer PDUs, which is a common
data structure to manage data flows.

4.2 Communication between Endpoint Nodes and PLC Channel

Depending on the network traffic source-destination, PLC network model uses
two different implementations of SystemC communication.

– Endpoint nodes send PPDUs to PLC Channel through a sc_export bound
to a port of the PLC Channel. This type of communication allows to move
the implementation of interfaces inside the PLCC module (see Section 2.1).

– Network traffic from PPLC module to EN modules is done through a Sys-
temC channel. A PLCC module port is bound to the same SystemC channel
as the EN module port. In this case, interfaces are implemented by the Sys-
temC channel.

5 Distributed Model

Following the principles of PDES, we have manually split the PLC network model
described in the previous section into two LPs (see Figure 3). The proposed
partition separates the EN and FG modules from the PLC Channel.

We propose two solutions to deal with the distribution of the two types of
SystemC communication implementations that are used in the sequential model
(see Section 4.2).

As mentioned in Section 4.2, if one module is connected to another one through
a sc_export, interfaces are implemented only in the second module. Both mod-
ules, sender and receiver, need to use these interfaces. In the distributed model,

104 V. Galiano et al.

PLC Channel

MPI-Rx MPI-Rx MPI-Rx MPI-Rx

FG1 FG2 FG3

EN1 EN2 EN3 EN4

MPI-Tx MPI-Tx MPI-Tx MPI-Tx

Logical Process 2

Logical Process 1

Fig. 3. Distributed model of a PLC network

sender and receiver are mapped into different LPs. To communicate these mod-
ules we have developed two new SystemC modules, MPITx and MPIRx. MPITx
receives PPDUs from EN module and send them to MPIRx using the MPI stan-
dard, which is located in Logical Process 2 as it can be seen in Figure 3. MPIRx
is connected to the PLCC module through a sc_export (see Figure 4). We have
used Boost.MPI and Boost.Serialization libraries[19] for MPI communication
and serialization of PPDUs.

In the second case, communication between two modules is implemented by
binding sender and receiver ports to the same SystemC channel. In the dis-
tributed model, sender and receiver ports are bound to two instances of the
same type of SystemC channel. We have implemented MPI primitives in the
interfaces used by these ports to send and receive data to/from the channel (see

Process

EN Module

Process

sc_export

PortPLCC Module

EN Module

MPITx Module

Process

Process

Port

Port

MPIRx Module

Process

sc_export
PLCC Module

Process

Channel

Interfaces:
write()
read()

Interfaces:
write()
read()

Channel

Interfaces:
write()
read()

Non-Distributed Distributed

Fig. 4. Distribution of sc export based communication between modules

A Case Study in Distributing a SystemC Model 105

PLCC Module

Process

EN Module

Process

Port

Port

PLCC Module

Process

Port

EN Module

Process

Port

Non-Distributed Distributed

Interfaces:
write()
read()

Channel

Interfaces:
write()
read()

Channel Interfaces:
write()
read()

Channel

Fig. 5. Distribution of channel based communication between modules

Figure 5). This solution can be applied only if the channel does not implement
any data buffer that should be shared for the communication to work.

6 Conclusion

In this paper, we present a new approach to distribute the simulation of com-
plex systems modeled with SystemC in a parallel computing system. We use this
approach to distribute a real industry SystemC model of a Power Line Commu-
nication (PLC) network.

The previously mentioned PLC network model is composed by several nodes
which communicate with each other through a PLC channel. To distribute this
model, we split the system into Logical Processes (LPs) which exchange complex
Packet Data Units (PDUs). These PDUs are built following a set of network
protocols (Ethernet, MAC, etc.). To implement the communication of structured
data types amongst LPs we used the MPI standard and serialization techniques.

Not many researchers have dealt with the simulation of distributed SystemC
models since the Open SystemC Initiative was announced in 1999. There have
been several SystemC parallelization attempts, but it seems there is no one
definitive or used as standard. We propose a novel solution to the problem of
distributing the simulation of real industry SystemC models. The distribution
of a SystemC realistic model encourages us to continue working on this solution.
Our future work will be focused on implementing a communication library that
could be used in a wider range of distributed SystemC models.

Acknowledgements

This work has been partially funded by the Ministry of Industry, Tourism and
Trade of Spain under project number TSI-020100-2008-215.

106 V. Galiano et al.

References

1. IEEE Computer Society: IEEE Standard SystemC Language Reference Manual
(2006), http://standards.ieee.org/getieee/1666/index.html

2. Fujimoto, R.: Parallel and Distribution Simulation Systems. John Wiley & Sons,
Inc., New York (1999)

3. Livny, M.: A study of parallelism in distributed simulation. In: Proceedings of the
SCS Multiconference on Distributed Simulation, pp. 94–98 (1985)

4. Bhargava, B., Lian, S.R.: Independent checkpointing and concurrent rollback for
recovery in distributed systems-an optimistic approach. In: Seventh Symposium on
Reliable Distributed Systems, 1988. Proceedings, pp. 3–12 (October 1988)

5. Pasricha, S.: Transaction level modeling of soc with systemc 2.0. In: Synopsys Users
Group Conference (2002)

6. Panda, P.: Systemc: a modeling platform supporting multiple design abstractions.
In: ISSS 2001: Proceedings of the 14th international symposium on Systems syn-
thesis, pp. 75–80. ACM, New York (2001)

7. Black, D.C., Donovan, J.: SystemC: From the ground up. Eklectic Ally (2005)
8. Cox, D.: Ritsim: Distributed systemc simulation. Master’s thesis, Rochester Insti-

tute of Technology (2005), http://hdl.handle.net/1850/1014
9. Chopard, B., Combes, P., Zory, J.: A parallel version of the osci systemc kernel.

In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2006. LNCS, vol. 3994, pp. 653–660. Springer, Heidelberg (2006)

10. Dongarra, J., Huss-Lederman, S., Otto, S., Snir, M., Walkel, D.: The message
passing interface (mpi) standard (1998), http://www-unix.mcs.anl.gov/mpi

11. Bagrodia, R., Takai, M.: Performance evaluation of conservative algorithms in par-
allel simulation languages. IEEE Trans. Parallel Distrib. Systems 11(4), 395–411
(2000)

12. Chandy, K., Sherman, R.: The conditional-event approach to distributed simula-
tion. In: Proceedings of the SCS Multiconference on Distributed Simulation. Soci-
ety for Computer Simulation International, vol. 21, pp. 93–99 (1998)

13. Trams, M.: Conservative distributed discrete event simulation with systemc using
explicit lookahead. Technical report, Digital Force (2004),
http://www.digital-force.net

14. Trams, M.: A first mature revision of a synchronization library for distributed rtl
simulation in systemc. Technical report, Digital Force (2004)

15. Trams, M.: User manual for distributed systemc synchronization library rev. 1.1.1.
Technical report, Digital Force (2005)

16. Hamabe, M.: Systemc with mpi for clustering simulation,
www5a.biglobe.ne.jp/~hamabe/SystemC

17. Meftali, S., Dziri, A., Charest, L., Marquet, P., Dekeyser, J.: Soap based distributed
simulation environment for system-on-chip (soc) design. In: Forum on Specification
and Design Languages, FDL 2005 (2005)

18. Galiano, V., Pérez-Caparrós, D., Palomino, J.A., Migallón, H., Mart́ınez, M.:
Speeding up in distributed systemc simulations. Advances in Soft Comput-
ing 50/2009(4), 24–28 (2008)

19. Dawes, B., Rivera, R.: Boost c++ libraries, http://www.boost.org/

http://standards.ieee.org/getieee/1666/index.html
http://hdl.handle.net/1850/1014
http://www-unix.mcs.anl.gov/mpi
http://www.digital-force.net
www5a.biglobe.ne.jp/~hamabe/SystemC
http://www.boost.org/

	A Case Study in Distributing a SystemC Model
	Introduction
	Background
	Parallel Discrete Event Simulation
	System Level Communication Modeling with SystemC

	Related Work
	SystemC Model of a Power Line Communication Network
	Components
	Communication between Endpoint Nodes and PLC Channel

	Distributed Model
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

