
S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 83–90, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Adding an Ontology to a Standardized QoS-Based MAS
Middleware

José L. Poza, Juan L. Posadas, and José E. Simó

Institute of Industrial Control Systems
Polytechnic University of Valencia

Camino de Vera s/n, 46022, Valencia, Spain
jopolu@ai2.upv.es, jposadas@ai2.upv.es, jsimo@ai2.upv.es

Abstract. In a Multi-Agent system, middleware is one of the components used
to isolate control and communications. The use of standards in the implementa-
tion of an intelligent distributed system is always advantageous. This paper pre-
sents a middleware that provides support to a multi-agent system. Middleware
is based on the standard Data Distribution Services (DDS), proposed by Object
Management Group (OGM). Middleware organizes information by tree based
ontology and provides a set of quality of service policies that agents can use to
increase efficiency. DDS provides a set of quality of service policy. Joining
quality of service policy and the ontology allows getting many advantages,
among others the possibility of to conceal some details of the communications
system to agents, the correct location of the agents in the distributed system, or
the monitoring agents in terms of quality of service. For modeling the middle-
ware architecture it has used UML class diagrams. As an example it has pre-
sented the implementation of a mobile robot navigation system through agents
that model behaviors.

1 Introduction

One of the biggest problems in the distributed systems is the efficient location of
information. Most times, the view that the agents have of the system is rather strict,
and depends entirely on communications system. Abstract details of the system to the
agents, provides greater flexibility, adaptability and scalability of the system. Also,
one of the most significant technological challenges is the management of peer-to-
peer quality of service (QoS) for component-based distributed intelligent control
systems.

These aspects of the distributed systems, go beyond the real time requirement, and
involve considerations such as: availability of computational resources, security, co-
operative control algorithms, stability, task control performance and management of
redundant information. Nowadays, the design of communication systems does not
offer an abstract view of the system and a complex QoS, just very simple features of
QoS like message sequencing, traffic congestion relieving, and so on. The union of
ontology and quality of services policies provides by the middleware, offers to agents
a meta-information attractive to optimize their processes.

84 J.L. Poza, J.L. Posadas, and J.E. Simó

The rest of the paper has been organized as follows: Second section presents essen-
tial concepts about middleware, quality of services and ontology. Third section
explains the standard of communications DDS proposed by OMG. Next section de-
scribes the architecture modelled in UML. This model unifies concepts of message
queues, quality of service policies and the ontology. Fifth section shows an example
of the use of ontology in robot navigation architecture. Finally presents concluding
remarks and future of the project.

2 Middleware, Quality of Service and Ontology

Most of the communications systems that provide support to the distributed control
architectures need a module that hides some details of the communications compo-
nents. Usually, when this module is separated from control components, is known as
“middleware”. To provide to control components, the services needed to increase
efficiency of communication is the main responsibility of middleware. Among the
required services are: identification of components, authentication, authorization,
hierarchical structuring or components mobility.

Above all, technology underlying programming like objected-oriented program-
ming, component-based programming or service-based programming, partly deter-
mine control architecture and its ability to provides more QoS [1]. There are a lot of
interfaces and tools for developing a middleware. Some of the tools like JMS [2] and
MSMQ [3] are generic protocols, and widely used on distributed systems.

In distributed multi-agent systems some components need to be adapted to the
communication interfaces For example, if communications are based on CORBA [4],
the multi-agent system must be implemented with the object-oriented programming
technology. To avoid the use of a particular technology is common to use standard-
ized protocols like FIPA [5].

QoS defines a set of parameters for evaluation of a service offered. In the field of
control architectures there are many definitions of quality of service. From the view-
point of processing, QoS represents quantitative and qualitative characteristics of a
distributed system. These characteristics are needed to achieve the functionality re-
quired by an application.

From the viewpoint of communications, QoS is defined as all the features that a
network has to meet for message flow [6]. The term ontology has its origin in phi-
losophy, and has been applied in computer science research [7]. The core meaning
within computer science is a model for describing the world that consists of a set of
types, properties, and relationship types [8].

3 Data Distribution Service

Data Distribution Service (DDS) provides a platform independent model that is aimed
to real-time distributed systems. DDS is based on publish-subscribe communications
paradigm. Publish-subscribe components connect information producers (publishers)

 Adding an Ontology to a Standardized QoS-Based MAS Middleware 85

Fig. 1. Overview DCPS components from the DDS model

and consumers (subscribers) and isolate publishers and subscribers in time, space and
message flow [9]. To configure the communications, DDS uses QoS policies. A QoS
policy describes the services behavior according to a set of parameters defined by the
system features or by the administrator. Consequently, service-oriented architectures
are recommended to implement QoS in its communications modules.

DDS specifies two areas: Data-Centric Publish-Subscribe (DCPS) which is respon-
sible for data distribution and DLRL which is responsible for adjusting the data to
local level of applications. DLRL area is optional due to the DCPS components can
work directly with the control objects without data translations. DCPS has a large
number of component and some of them are required in any implementation. This is
presented in figure 1.

When a producer (component, agent or application) wants to publish some infor-
mation, should write it in a “Topic” by means of a component called “DataWriter”
which is managed by another component called “Publisher”. Both components,
DataWriter and Publisher, are included in another component called “DomainPartici-
pant”. On the other hand, a Topic cans delivery messages to both components: “Da-
taReaders” and “Listeners” by means of a “Subscriber”. When the application
requires it, DataReader provides the messages instead of a “Listened”. Messages are
sent without waiting for the application requires.

4 Formal Model

Among formal specifications, Unified Modelling Langage (UML) is the language of
modelling and formal software systems descriptions best-known [10].UML is sup-
ported by the Object Management Group (OMG). Consequently, is appropriate use
UML to describe the Middleware internal architecture.

Figure 2 shows a formal description of the middleware architecture by means of a
UML class diagram. “Entity” is class base for all components, except for the QoS
policy. Each component can have associated several QoS policies.

86 J.L. Poza, J.L. Posadas, and J.E. Simó

Fig. 2. UML class diagram of the middleware with the ontology support

The role of a “LogicalData” is the same that “Topic” in DCPS. When a “Logical
Sensor” does not have an associated “Adapter”, then is a control component, and can
be associated with others control components.

The ontology is implemented from the abstract class "LogicalData". This class
provides the logical datas to agents. Through a logical data, agents have access to
information. The root node contains the sequence of logical nodes that make up the

Fig. 3. Example of mobile robot system ontology

 Adding an Ontology to a Standardized QoS-Based MAS Middleware 87

ontology and each logical node has a property that relates it to other. Initially only
have been defined relations "is a" and "part of", through these relations, an agent can
learn the system structure and act accordingly to their interests.

The use of ontology, as a method of information access, is useful to agents because
it provides two important functions. The first of these functions is the system access-
ing interface, either to receive data from the sensors, to send control actions. The
second of these functions, is to get a representation of the system that allows to agents
to learn. An agent can learn about the information to communicate with other agents
and the system structure that provides such information.

The structure of the system is interesting because agents can ask to the communi-
cations system about questions like “what kind of sensors are installed on the robot”.
In addition, an agent can be connected to a specific data set like “warn only when
proximity sensors above a certain value”. Moreover, the structure allows an agent to
write to the data belonging only to a specific category like “stop all the wheels”.

Joining ontology with the quality of service policies provides other benefits. An
agent can search process nodes based on both criteria. For example, is possible to
search a sensor that provides data with a deadline less than a specific value or a motor
driver with a message queue with of a specific buffer size. Based on the previous
model, simple robot navigation architecture has been developed. The architecture has
two distinct parts: control and communications. Quality of service joints both levels
[11]. Communications layer manages the ontology and offers its services through the
DDS interface [12].

Fig. 4. Robot navigation architecture implemented with the FSA-Ctrl architecture

88 J.L. Poza, J.L. Posadas, and J.E. Simó

5 Case of Use: Mobile Robot Architecture

Usually, robot navigation architectures are organized in two layers: deliberative and
adaptive or three layers with an intermediate layer. No such differentiation in the
FSA-Ctrl architecture due to agents can be auto-organized. Logical data of the ontol-
ogy differentiates deliberative agents from reactive. Usually deliberative agents are
connected to logical data near the root node, and reactive agents are connected to
logical data away from the root.

Figure 5, shows an example of ontology used to describe the distributed system of
sensors for a mobile robot and in figure 4, shows an example of the use of basics
behaviours of navigation architecture. One of them, like the obstacle avoidance or
obstacle tracking, can be considered as reactive, since the decision doesn’t imply the
query to a pre-established plan, and has high temporal restrictions of data.

Other behaviours, such as route path planning, may be considered as deliberative
because they have more time limits. When determining behaviour in the robot naviga-
tion system, they are associated with logical data. The depth in the ontology of an

Fig. 5. Example of ontology to provide information to a obstacle avoidance behaviour

 Adding an Ontology to a Standardized QoS-Based MAS Middleware 89

agent connection to a logical data of the middleware provides information about if the
agent prefers the reactive or the deliberative layer.

This organization may change depending on the system needs. Sensors have been
organized according to the type. Obstacle avoidance agent uses the infrared ring. In
this case, actuators are the motors of the robot and agents can write the desired speed.
Through the writing on each logical data logical, left or right motor, agent can provide
a turn in either direction.

A reactive agent writes data to motors to avoid an obstacle and a deliberative agent
writes data to maintain a previously planned path. Quality of service policies differen-
tiates the priority of the reactive agent in front of the deliberative agent.

The "n" infrared sensors that make up the infrared ring are grouped into a logical
node called “infrared ring”, as an infrared sensor value exceeds a threshold the logical
data is activated, and notifies this change to a “listener”. If some obstacle avoidance
agent is connected to this logical data, automatically decreases the speed, without
know what specific sensor has sent the alarm.

Moreover, a small-distance path planner agent receives the same message, but this
agent request the specific distance to every infrared sensor and calculates the new
path to avoid the obstacle. The frequency that messages are sent to agents is not the
same to the “Listener” that to de “DataReaders”, the quality of service defined by the
designer will determine this aspects.

6 Conclusions

This article has presented the internal architecture of a middleware with QoS support
and ontology to organize the information, in order to facilitate the work of agents.
Figure 6, shows an application in Visual C that has been developed to design the
ontology and create the specified service to the robot. Currently, system is in stage of
simulation to determine what set of quality of services parameters are more appropri-
ate to optimize the performance of a home automation system. Results will be pre-
sented in future publications.

The architecture is based on the DDS standard model proposed by OMG. Use QoS
policies provided by the DDS model, and ontology to hide system details, allowing
the system to increase its performance. The middleware can be used to implement
various systems. Agents can be reactive or deliberative, only the logical data connec-
tions, determine the layer in which the agent works. The hierarchy provided by the
ontology, in addition to the quality of service can be used to self-organize agents by
means the middleware.

The advantages of the system lie in the possibility to organize information hierar-
chically by means the ontology. Quality of service provides a mechanism for agents,
that allows a self-organized distributed system. Weakness lies in the loss of efficiency
typical of a middleware. The use of the standardized DDS interface to communicate
agents can be considered a disadvantage if the multi-agent system uses another com-
munication standards, like CORBA or FIPA, but the use of a standard it is always
desirable.

90 J.L. Poza, J.L. Posadas, and J.E. Simó

Acknowledgements. The MAS architecture described in this article is a part of the
coordinated project SIDIRELI: Distributed Systems with Limited Resources. Control
Kernel and Coordination. Education and Science Department, Spanish Government.
CICYT: MICINN: DPI2008-06737-C02-01/02.

References

1. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed systems, concepts and design, 3rd
edn. Addison Wesley, Reading (2001)

2. Hapner, M., Sharma, R., Fialli, J., Stout, K.: JMS specification, vol. 1.1. Sun Microsys-
tems Inc., Santa Clara (2002)

3. Lewis, R.: Advanced Messaging Applications with MSMQ and MQ Series. Que Publish-
ing (1999)

4. OMG. Real-Time Corba Specification version 1.1. Document formal /02-08-02 (2002)
5. FIPA. Specfication. Part 2, Agent Communication Language. Foundation for Intelligent

Physical Agents (1997)
6. Vogel, A., Kerherve, B., von Bochmann, G., Gecsei, J.: Distributed Multimedia and QoS:

A Survey. IEEE Multimedia 2(2), 10–19 (1995)
7. Smith, B.: Beyond concepts, or: Ontology as reality representation. In: Formal Ontology in

Information Systems (FOIS 2004), pp. 73–84 (2004)
8. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Shar-

ing. International Journal Human-Computer Studies 43(5-6), 907–928 (1995)
9. Pardo-Castellote, G.: OMG Data-Distribution Service: architectural overview. In: Proceed-

ings of 23rd International Conference on Distributed Computing Systems Workshops,
Providence, USA, vols. 19-22, pp. 200–206 (2003)

10. Object Management Group (OMG). Unified Modeling Language Specification, v1.4.2,
ISO/IEC 19501 (2001)

11. Poza, J.L., Posadas, J.I., Simó, J.E.: Distributed agent specification to an Intelligent Con-
trol Architecture. In: 6th International Workshop on Practical Applications of Agents and
Multiagent Systems, Salamanca (2007)

12. Poza, J.L., Posadas, J.l., Simó, J.E.: QoS-based middleware archi-tecture for distributed
control systems. In: International Symposium on Distributed Computing and Artificial In-
telligence, Salamanca (2008)

	Adding an Ontology to a Standardized QoS-Based MAS Middleware
	Introduction
	Middleware, Quality of Service and Ontology
	Data Distribution Service
	Formal Model
	Case of Use: Mobile Robot Architecture
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

