
Creation of Semantic Overlay Networks Based

on Personal Information

Alberto Garćıa-Sola and Juan A. Botia

University of Murcia
{agarciasola,juanbot}@um.es

Abstract. In P2P systems, nodes typically connect to a small set of ran-
dom peers to query them, and they propagate those queries along their
own connections. To improve that mechanism, Semantic Overlay Net-
works influence those connections depending on the content of the peers,
clustering peers in overlapped groups (Semantic Overlay Networks). On-
tologies are used for describing semantic information of shared items and
user profile. Once the peers are grouped by their semantic information,
we can take advantage of that distribution to add some new functional-
ities as recommendation. In this paper we focus on the description and
evaluation of SONAtA, a SON classifier algorithm to globally organize
peers into semantic groups, executed locally in each peer.

Keywords: SON, Semantic Web, Web 2.0, P2P.

1 Introduction

In the recent few years, P2P activity has vastly increased. Semantic Overlay Net-
works (SON) [1] organize peers from P2P networks into semantic groups in or-
der to improve their efficiency. The main idea behind SON consists on creation
and management of a flexible network organization, improving query performance
based on the semantic relations among peers. In order to do that, the notion of
cluster of peers is used. Peers arrange into clusters according to the content they
share. Clusters may overlap, because peers can contain different content and be-
long to several clusters. In this context, queries are distributed to relevant clusters
only and flooded among relevant peers at a cluster, reducing unnecessary traffic
while making queries more efficient. In this paper, we introduce SONAtA, the SON
classifier algorithm used to gather peers of such networks into semantic groups, so
that they can interact with each other, enhancing their social capabilities. That
gathering is the key-step to create and maintain SONs. A full description about
the P2P system where SONAtA is placed can be found at [2].

The following requirements are key to be satisfied by a SON. SONs must
have small population of peers. The smaller the number of peers we need
to search, the better the query performance. A classification should not be too
much specific, since too few peers would be in the SON, neither too general, in
order to avoid a SON hosting the majority of peers in the system. In a good
classification peers must have connections with small number of SONs, the

S. Omatu et al. (Eds.): IWANN 2009, Part II, LNCS 5518, pp. 75–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 A. Garćıa-Sola and J.A. Botia

greater the number of SONs, the greater the cost for a peer to keep track of
all of them. Systems compound by SONs must be tolerant to classification
errors. There are many sources of errors in items classification, like user wrong
classification, fakes and other. A peer may be correctly classified even if some of
its items are misclassified.

A lot of work related with Overlay Networks has been done. Crespo and
Garcia-Molina [1,3] introduced the concept of Semantic Overlay Networks. We
can find there the notion of classification hierarchy but it is not designed in the
sense of a modern ontology based on RDF or OWL-DL languages. Tang and Xu
use SONs to develop pSearch [4], a decentralized non-flooding P2P information
retrieval system. Aberer and Cudre-Mauroux [5] address the problem of building
scalable SONs proposing GridVine [6], a semantic overlay infrastructure based
on a decentralized access structure. They use RDF/RDFS to encode meta-data
and vocabulary definition. A similar approach is followed by INGA [7]. In all
these works, semantic information is used for query routing and some for peer
classification. Most of them do not describe how the SONs are actually created.
And none of them uses personal information for, through the use of an ontology,
create SONs in an autonomous and decentralized way.

The rest of the paper is structured as follows. Section 2 introduces SONAtA
as a SON classifier. In 3 we test it performance to discover its strong points and
drawbacks, to finally, in section 4 draw the final conclusions.

2 SONAtA. A SON Classifier

The SON Classifier function in carried out by SONAtA (SON AuToorganization
Algorithm). SONAtA classifies users automatically into semantic groups from a
populated ontology. It must be noticed that SONAtA is executed locally in each
user, once the user first enters the system (i.e. bootstrapping) and then periodi-
cally. Processing locally the information, a global and decentralized organization
of the existent users of the P2P network into SONs is achieved naturally. Users
must share the same domain ontology, or, at least, a part of it.

The algorithm is based on the idea that some distinguished elements (concepts
and individuals of such concepts) may form a SON. Which distinguished elements
form a SON depends on the number of individuals related with that concrete
distinguished element (we will discuss on this later).

For each distinguished element of a given ontology, the number of individuals
from such distinguished element would be the number of items the user has
about that content. However, in certain occasions, an individual as such does not
contain all information about the user’s content. We need to navigate through
the ontology (i.e. follow relations) to find that information. If so, what makes
sense is to guess how many times that individual has been used. It is also possible
that this individual is not used directly, but from indirect relations. On the other
hand, not everything related directly or indirectly with an individual makes sense
to be used. To solve this, SONAtA only uses relations that denote abstraction.

As we have seen above, a crucial element of its way of working is the idea of
relation. Through a relation, a distinguished element is linked to another in the

Creation of Semantic Overlay Networks Based on Personal Information 77

ontology. Sonata will be interested only in those links that denote abstraction.
In our system a relation denotes abstraction (e.g. partOf) if its domain is more
specific than its range, which is more general. These abstraction relations will
be useful to detect the referencing level of an item.

An ontology can be viewed as a graph where nodes are the distinguished
elements and arcs are the properties. SONAtA will need to walk through the
graph. To do this, it will manage two types of relations in terms of distance
between the distinguished elements that links to.

Definition 1 (Direct relation between distinguished elements). Let a
and b be two distinguished elements from an ontology O. Then, a is directly
related to b if such relation has a as domain and b as range.

But we are interested as well in relations through more than one property. What
the algorithm tries to determine are interests of the user using the content the
user owns, and may be insufficient to use just direct ramifications. Hence the
following definition.

Definition 2 (Indirect relation between distinguished elements). Let a
and b be two distinguished elements from an ontology O. Then, a is indirectly
related to b if there is a path to reach b from a through two or more direct
relations.

There will be particular properties (e.g. subclass relation, such as in OWL)
denoting abstraction. And therefore, they could be automatically recognized by
SONAtA. However, an ontology modeler can define new properties ontologies
that use as abstraction relations, without specifying. It will be required to label
as such those properties, so that SONAtA can be applied. A preprocessing of the
ontology as a prior step to the application of SONAtA is needed. If an ontology
is well labeled, it will have no cycles. This assumption does not detract genericity
to the algorithm as it simplifies it, because if any cycle exists, there should be a
distinguished element more abstract and concrete at the same time than other.
Now, we can define a reference by abstraction.

Definition 3 (Reference by abstraction). Let a and b be two distinguished
elements from an ontology O. Then, a references by abstraction b if a is related
directly or indirectly with b.

Actually, for every distinguished element of the ontology, SONATA is interested
in knowing if it is enough important for the user to create/join a SON from it. To
this end, we analyze how much a user uses (instances it) a distinguished element
or how much content owns about this distinguished element (references to the
distinguished element), which corresponds exactly with its extended cardinality.
This is calculated from the extended cardinality set.

Definition 4 ECS (Extended Cardinality Set) of a distinguished element
c from the ontology O is defined recursively as the union of the Extended Cardi-
nality Sets of all distinguished elements that directly reference it by abstraction.

78 A. Garćıa-Sola and J.A. Botia

If c has no abstraction references, its ECS is equal to c only if it is an individual.
Otherwise, it is equal to the empty set.

Every individual in the ECS can be labeled as used, not used or active. Individ-
uals are labeled as not used by default. When a distinguished element becomes
an active SON, individuals from its ECS are labeled as active. As ECS is cal-
culated as the union of other ECS, if an individual is available in more than
one ECS, it is labeled as not used if it is labeled as not used in any of the ECS,
otherwise, is labeled as used. From all these considerations we can define the
extended cardinality.

Definition 5 (Extended Cardinality of a distinguished element). Let
a be a distinguished element of an ontology O. The extended cardinality of a
is calculated with the number of individuals from the ECS of a, and with the
number of individuals instancing the concept (if it is a concept), being the higher
value its extended cardinality.

The extended cardinality is useful to know the interest of a concrete user about
any distinguished element, since it reflects to what extent it has been used it has
been used in the ontology, directly as instantiation or by individual’s references.
SONAtA classifies the user in semantic groups taking into account mainly the
extended cardinality of the user’s dintinguished elements. Depending on certain
features the peer can assume two roles in a SON. A peer p is Active Peer in
a SON s if p is actively involved in s: perform searches within s, looking for
similar content and users in s, or any operation that requires interaction with
other peers. Otherwise, it will be Passive Peer, and will only be participate in
s by request of other peers. Active peer is the role to assume in the concepts that
best define the user based on its content. The other role, passive peer, completes
the user profile. The user is interested in joining the SONs more concrete as
possible, regarding its profile, since they will achieve a higher affinity with the
peers in the SON. However, users of a more general SON will be interested in
users of specific SONs, thus are part of the overall by hierarchical inclusion.
Therefore, a user from a more concrete SON should be part of the more general
SONs passively responding requests from active users of those SONs.

2.1 Algorithm

An algorithm capable of classifying each peer in different SONs depending on
their content is proposed here. This classification is done locally and indepen-
dently at each peer, allowing the peer to be clustered in groups with other se-
mantically similar peers, without having prior knowledge of the network. They
just need a common ontology, or at least, a common base ontology, that may
be extended. Every distinguished element within the ontology is a potential
SON named as that distinguished element (e.g. Rock music SON, 80s SON, ...).
Besides, any combination of distinguished elements with enough content in com-
mon from the ontology could represent a SON (e.g. Rock music from the 80s
SON). There are two types of SONs. Basic SONs and combined SONs. Basic

Creation of Semantic Overlay Networks Based on Personal Information 79

SONs correspond to basic individuals or concepts in the ontology. A combination
of basic SONs is a SON which holds individual which would be in all the basics
SONs composing the combined SON. Thus, a combined SON is the intersection
of any combination of basic SONs. We now define when a distinguished element
from an ontology become a feasible SON:

Definition 6. Given a distinguished element c from an input ontology O, already
populated, we say that c is valid as a feasible SON if:

(θ(c) ≥ l) ∨
(

θ(c)
t ≥ p

)
(1)

where t is the total number of individuals in the ontology O (its cardinality). p
is the minimum ratio out of t of distinguished elements needed to join a SON,
from 0 to 1. l is the minimum number of distinguished elements needed to join a
SON. And θ(c) (Extended Cardinality) defines the number of valid individuals or
references from other individuals for the distinguished element c. The algorithm
works as follows:

For every distinguished element in the ontology, the algorithm calculate its ECS
(Algorithm 1), finding all feasible basic SONs after that, using its extended
cardinality as described above. If it occurs that only individuals labeled as not
used are found in the ECS of the distinguished element, and it is still a feasible
SON, that distinguished element is an Active SON. Otherwise it is a Passive
SON. The next step is determining all the combined SONs. For each pair of
not related Active SONs (not accessible by abstraction relations), the algorithm
checks if there are enough active individuals that fit in both SONs at the same
time. That is, intersection between the two SONs. If the intersection between

Algorithm 1. ecs
1: Let c be the input concept or individual
2: ecs← ∅ //ecs will store the Extended Cardinality Set of c
3: rc← referringConcepts(c) // returns all concepts that reference c by abstraction
4: if rc ≡ ∅ AND c isIndividual then
5: ecs← c
6: return ecs
7: end if
8: for all e in rc do
9: ecsAux← ecs(e)

10: for all i in ecsAux do
11: If (i /∈ ecs) OR (i is NOT USED)
12: ecs← ecs + i
13: end for
14: end for
15: if countNotUsed(ecs) > fi then
16: setActiveToNotUsed(ecs) // All individuals set as NOT USED are changed

into ACTIVE
17: return ecs

80 A. Garćıa-Sola and J.A. Botia

the SONs has enough individuals to create a new SON (i.e. is a feasible SON as
defined before), a SON as a combination of the two SONs is created. This step
is done iteratively with the new formed SONs until no new SONs are formed.

Once all the combined SONs are selected, the algorithm must set as used all
the individuals used to create the combined SONs from the basic SONs to which
they are part of. After that, SONs which remain as active SONs are also set.
For each SON (combined or not), we must check if there is any combined SON
that includes that SON (i.e. that SON is actually combined with other). If so,
all the individuals common in both SONs are marked as used in the simplest
SON, because the combined SON is more concrete than the other, thus, that is
the one which must remain as active. The other SON will still remain as active
if it has enough not common active individuals.

Once the algorithm is presented, the following are the most important ideas
behind it. Feasible SONs are SONs that the user is interested on, they can be
either active or passive, depending if the individuals have been already used to
create other active SONs or not. If there are just a few bad classified individ-
uals, it does not affect the algorithm, since a minimum quantity of individuals
are needed to fulfill a SON. There are two main requisites to form a feasible
SON, minimum number of individuals and minimum percentage of individuals.
Percentage is useful when the peer does not have so many individuals. We just
look for the most used. On the other hand, the minimum umber of individuals
is used to avoid an overwhelming use of some concept with respect to the rest.

3 Evaluation

In this section the algorithm is evaluated in order to test its performance. We
created some initial experiments distributing individuals among different con-
cepts, varying the number of concepts and individuals, up to 2,500 concepts and
40,000 individuals, with no abstraction relation between distinguished elements.
Execution time was quite low (below one second) and linear with respect to the
sum of concepts and individuals. If there are no relations of abstraction, the
algorithm has no charge. Next step was testing how abstraction relations affect
the algorithm execution. We created the following experiments, each one with
different ways of relating individuals through abstraction references. They all
have in common the disposition of concepts. Each concept is referenced by a
more specific concept than it, except the most concrete, which is not referenced
by any. These are the different experiments:

1. C1. Random distribution of individuals, references only to next dis-
tinguished element (Figure 1 (a)). In this experiment individuals are
distributed among concepts randomly by using a uniform distribution prob-
ability. Each individual only references one individual, randomly chosen from
all individuals from the immediately following concept more abstract than the
concept it belongs to. The average reference length will remain low. This ex-
periment aims to observe how the algorithm behaves when the distinguished
elements of ontologyareweakly linked (not everything is related to everything).

Creation of Semantic Overlay Networks Based on Personal Information 81

2. C2. Individual distribution on the edge, references only to the next
distinguished element (Figure 1 (b)). In this experiment, each concept
is instantiated only once, except for the first concept (the most concrete),
where are all other individuals. All individuals in that concept reference by
abstraction the only from the concept that is referenced by the instantiated
concept. The purpose of this test is evaluating how the algorithm behaves
with a case fairly common in an ontology: the most specific concept instances
most of the individuals (i.e. the rest concepts instance a single individual,
as shown in Figure). In turn, all individuals of the most concrete concept
are related with the individual instanced by the immediately more abstract
concept. This, in turn, is related also with the next more abstract, until
reaching the superconcept of all of them.

3. C3. Individual distribution on the edge, total reference between
distinguished elements (Figure 1 (c)). The difference between this exper-
iment and the previous one is that in this one, each concept and individual
references, not only the following more abstract concept, but all concepts and
individuals more abstract directly. It corresponds with the maximum refer-
entiation level, with a number of references equal to Tn = n(n+1)

2 , where n is
the number of concepts. With this experiment we aim to discover how does
the fact of performing the union of all ECS of distinguished elements refer-
encing affects the algorithm, and the empirical time complexity evolution it
offers when comparing with the previous ones.

Results can be seen in Figure 1 (d, e, f), corresponding experiments C1, C2 and C3
respectively. Time is expressed in seconds, varying the number of concepts and in-
stances. From all of them, the one requiring less processing time is C1, C3 requires
the most time, with C2 as a medium case. In C1, we can observe an almost linear
behavior with respect to input, with slight variations due to the random nature
of the test. This is because not all individuals will walk through all concepts, but
only a part of them depending on where they are located and who they reference
to. As we can see in C2, there is a slightly exponential growth respect the number

(a) (b) (c)

(d) (e) (f)

Fig. 1. Experiment structures and results

82 A. Garćıa-Sola and J.A. Botia

of concepts and individuals. This is mainly because all individuals from the most
concrete concept have to reach the most abstract concept, following references,
crossing each concept, due to the shape of the ontology. In C3, since all are refer-
encing each other, we can see how time complexity grows not linearly but a higher
rate. In addition to move individuals through all concepts, since all are referenced,
all of them must be processed in each distinguished element of the ontology, cal-
culating the union of all the distinguished elements which reference it, requiring
more memory and processing time for execution.

From this data we can highlight that what really contributes to increase ex-
ecution time of the algorithm are two parameters. On the one hand, the length
of references by abstraction. When a distinguished element of the ontology is
referenced, the algorithm should check all distinguished elements from the ECS
of each distinguished element referencing it. On the other hand we have the ref-
erencing index. The more referenced a distinguished element is, the more ECS
must combine to create its own ECS.

4 Conclusions

In this paper, we have presented SONAtA, an algorithm to organize peers into
semantic groups from an ontology. Even though it has been designed to classify
peers into Semantic Overlay Networks, SONAtA can be used for other tasks
such as automatic clustering of users semantically similar. The only requisite
needed to use SONAtA is the existence of an ontology describing the contents
from the users, shared, at least partially, by the users in the system we want to
cluster. We have evaluated SONAtA, showing that results are acceptable within
conventional and even large ontologies as input.

References

1. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: 22nd
International Conference on Distributed Computing Systems, pp. 23–32 (2002)

2. Garcıa-Sola, A., Botıa, J.A.: Semantic Overlay Networks for Social Recommenda-
tion in P2P. In: International Symposium on Distributed Computing and Artificial
Intelligence 2008 (DCAI 2008), pp. 274–283 (2008)

3. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems.
Springer, Heidelberg (2004) (submitted for publication)

4. Tang, C., Xu, Z.: Peer-to-peer information retrieval using self-organizing semantic
overlay networks, pp. 175–186. ACM Press, New York (2003)

5. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: GridVine: Building Internet-Scale
Semantic Overlay Networks, pp. 107–121. Springer, Heidelberg (2004)

6. Cudre-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An Infrastructure for Peer
Information Management 11, 36–44 (2007)

7. Loser, A., Staab, S.: Semantic Social Overlay Networks. IEEE Institute of electrical
and electronics 25, 1 (2007)

	Creation of Semantic Overlay Networks Based on Personal Information
	Introduction
	SONAtA. A SON Classifier
	Algorithm

	Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

