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Abstract. Neuro-control which adopts neural network architectures to
synthesis of control has been summarized and its application to electric
vehicle control is developed in this paper. The neuro-control methods
adopted here is based on proportional-plus-integral-plus-derivative (PID)
control, which has been adopted to solve process control or intelligent
control. In Japan about eighty four per cent of the process industries
have used the PID control. Using the learning ability of the neural net-
work, we will show the self- tuning PID control scheme (neuro-PID) and
the real application to an electric vehicle control. environment.
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1 Introduction

In applying conventional control theory to practical problems, we have to model
the plant or system. The modelling is done by using a set of linear differential or
difference equations, in which unknown parameters are included. But the range
of applicability is not so wide to cover real control problems. In real world,
the plant and its environment are very complex and difficult to be described
by such linear models. For example, in a robotic control system, it may have
many sensors providing inputs that cannot necessarily be interpreted as state
variables. Furthermore, the models of the system may be unknown and interact
with unknown changing environments.

Therefore, it is beneficial to consider new methods of control. They may not
be so rigorous mathematically so that it can work in a wide range of domains and
under more dynamic and more realistic conditions. One of the powerful methods
is neuro-control based on the neural networks since the neural networks have
preferable properties to overcome the difficult problems stated above. Some of
them are 1) learning by experience (training), i.e., human-like learning behavior,
2) generalization ability, i.e., mapping ability of similar inputs to similar outputs,
3) nonlinear mapping ability, 4) parallel distributed processing, allowing fast
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computation for large scale systems, 5) robustness for noise and environmental
change, 6) self-organizing property, etc. These properties make neuro-control
suitable for applications to real control problems.

In this paper, we will survey the neuro-control architectures developed until
now. Then we describe the self-tuning PID control based on neural networks
which has been proposed by the authors. After that, we will show the real
application to electrical vehicle torque control and speed control problems.

2 Historical Review of Neuro-control

The first neuro-control was discussed by Widrow and Smith [I] who used ADA-
LINE to stabilize and control the pole balancing act. Other early research on
neur0-control could also found in Waltz and Fu [2], Michie and Chambers [3],
and Barto et al. [4].

Neuro-control research has begun sharp increase around 1987 when the first
IEEE Conference on Neural Networks has held in San Diego. These papers have
demonstrated that neuro-control methods can be applied successfully to con-
trol unknown nonlinear systems while conventional control approaches based on
linear dynamical system theory could not solve such control problems. Many
neuro-control structures were also proposed. Typical neuro-control methods are
1) feedback error learning by Kawato et al. [5], 2) neuro-internal model control
by Hunt and Sbarbaro [6], 3) neuro-predictive control by Willia et al. [7], 4) For-
ward and inverse modelling by Jordan et al. [§]), 5) generalized and specialized
learning by Psaltis et al. [9], 6) Self-tuning neuro-control by Omatu [10]). More
information on neuro-control could be obtained by the books by D.A. White and
D.A. Sofge [11], W. T. Miller III et al. [I2], S. Omatu et al. [13], P.M. Mills et
al. [14], and N.W. NG [I5].

3 Error Back-Propagation Algorithm

The error back-propagation (BP) algorithm has been well-known since it was
proposed by Rumerhart et al. [20] in 1985. The self-tuning PID being described
in detail later is based on the derivation of this algorithm. First, we will explain
the derivation of the BP algorithm in compact way. The form of a neural network
described by Fig. reflayerednn is called a layered neural network since they have
more than three layers which are called input layer, hidden layer, and output
layer. Outputs of neurons in the input layer are the input data which should be
processed. We assume that numbers of neurons in the input, hidden, and output
layers are I, J, and K, respectively. In Fig. [ large circles denote neurons and
each neuron, for example, neuron j can be described by the following nonlinear
input-output relation:

1

=15 exp(—) = sigmoid(x).

(1)

I
oy :f(netj), net,; :ijiOi — 0y, f(z)
i=1
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Fig. 1. Structure of a layered neural network
where O; denotes the output of neuron j, wj; denotes the connection weight

from a neuron ¢ to a neuron j, 6; is a threshold value of neuron j.
Note that the output of a neuron is limited within 0 to 1 since f(z) € [0, 1].

If we assume that Op = —1 and wjg = 6;, then we can rewrite net; as follows:
! 1
Oj = f(netj)7 netj = ;wji0i7 f($) = 1 + exp(—x)' (2)

From now on, we assume that threshold 6; has been included in the weighting
function and use the expression Eq.(2)) instead of Eq. ().

When the input data {O;,i = 0,1,..., I}, connection weights w;; from a neu-
ron 4 in the input layer to a neuron j in the hidden layer where {j = 1,2,...,J,i =
0,1,...,I}, and connection weights wy; from a neuron j in the hidden layer to a
neuron k in the output layer where {k =1,2,...,K,j =0,1,...,J}, we can get
the output values of the neural network by the following equation:

1
1+ exp(-z)

J
Or = f(nety), nety = Zwk]@p f(x) (3)
=0

Then we will compare the output {Oy} with the desired value {d}} for each k, k =
1,2,..., K and if there are large discrepances, we will correct the weighting
functions, wj;andwy; such that the following error function £ will be decreased.

K
1
E=2;6i7 6k=dk—0k. (4)

Using the gradient search, the minimizing cost of E is given by the following
relation(the error back-propagation algorithm):

Awy; = wyj(new) — wy; (old) = né,0; (5)
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0k = exOk(1 — Og). (6)

Awﬁ = wy; (HQW) — Wy (old) = 775]'01‘ (7)
K

6= 0kwr0;(1-0;) k=12 K, j=01,..,N (8)
k=1

Since the output Oy, is limited within [0,1], we should modify the form when we
need the value of (-00,00), for example, f(z) = z, f(z) = A(} — sigmoid(z)),
etc. Furthermore, to speed up the convergence of the gradient algorithm, we use
an additional term as follows:

Awgj(new) = 06,05 + aAwy;(old) , j=0,1,....,N, k=1,2,...,. K (9)
Awji(new) = nd;0; + aAw;;(old) , i=0,1,...,M, j=1,2,...,N (10)

where the first term and second term of (@) and (I{) are called the learning term
and the momentum terms, respectively and n and « are called learning rate and
momentum rate, respectively.

4 Feedback Control System Algorithm

We show the neuro-control scheme. The general control system can be described
in Fig. @ where FFC and FFB stand for feed-forward controller and feedback
controller, respectively and FB is feedback. The aim of the controller is to find
the suitable plant input u in order to follow the plant output y to the plant
specification by adjusting the FFB and FFD.

The neuro-control is to determine the control input by using neural networks.
Three types of neuro-controllers were proposed [10],[16],[13]. They are 1) series
type, 2) parallel type, and 3) self-tuning type as shown in Fig.[Bl We will consider
those types in what follows.

— |

d Error
* FB
Specification —}§ € |_C,

Input ,—| Output
G Plant

FB element

Fig. 2. General structure of control system

4.1 Series Type Neuro-control

This is to use the neural network directly such that the plant output will ap-
proach to reference signals as much as possible. The basic configuration is shown
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Fig. 3. Three types of neuro-control system

in Fig. @l where (a) is the original structure, (b) is the series neuro-controller with
an emulator, and (c) is the inverse dynamical structure. More detail algorithms
have been explained in [I7], [I8], [19].

This approach is direct application of the layered neural network to find the
control input and it is powerful for process control without so many fluctuations.
But we need the emulator of the plant and it takes much time to find a stable
parameter set of the neural network.

4.2 Parallel Type Neuro-control

A parallel neuro-control architecture is shown in Fig. B[(b). For any conventional
control scheme, we can use this type and the neural network works as the com-
pensator of the adopted control scheme. If we take a feedback controller, this
control becomes to the feedback error learning structure proposed by Kawato et
al. [5].

Control engineers design an excellent controller at the laboratory or factory
which is given by u; but when it is set at the real working place in an industrial
factory, the control engineers must adjust the control input level such that it is
suitable for real production under several environments. The adjustment is wuo
given by neuro-control in Fig. Bl(b). This means that a well-trained cook at the
restaurant could provide a delicious dinner for customers but on each table there
are pepper and salt to be added to suit the taste of each individual dish. For
detail algorithms see [13].
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Fig. 4. Series type neuro-control structure

4.3 Self-Tuning Type Neuro-control

The self-tuning neuro-control scheme is illustrated in Fig. Bl(c) where a neural
network is used to tune the parameters of a conventional control method like a
human operator in the factory. The transfer function of PID controller is given

by Eq.(I).

E(s) i
where U(s)and E(s) are input and error between the desired value and output.
Here, k., T;, and Ty are called as proportional gain, integral time, and derivative
time, respectively. In time domain, it can be written as follows:

Go(s) = 018 [1 + Tls +Tds} (11)

u(t) = ke {e(t) + 71,2 [ e(T)dr + Tdie(t)} (12)
e(t) = d(t) —y(t) (13)

Therefore, in the PID control it is essential to find a suitable PID gains. Many
researchers have tried to determine them as precise as possible. The most famous
method was proposed by Ziegler-Nichols and to determine them by the following
relations(Ziegler-Nichols method).

1.2 L

T,=2L, Ty= 14
RL’ d (14)

ke 5
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where R and L are maximum slope of the step response and the equivalent delay
of the step response, respectively.

By rapid progress of computer, digital control has become common approach
in control method and discrete PID control is also discussed. By descritizing
Eq.(I2) using trapezoidal rule for numerical integration, we obtain the following
relation.

u(n) =u(n—1) + ((e(n) —e(n 1)) + Kie(n)
+ Ko (e(n) — 26(n — 1) + e(n — 2)) (15)
1 T T,
Ky =he = ) Koy K= ke Kd:kcjfl (16)

As in the continuous-time case, Ziegler-Nichols method in the discrete-time case
has become as follows:

K; 1.2 T 0.6 0.6
K, = kc - ) Kz = - = 5
Pl RL2L ~ (L)2(RT) ~ GoL3
Ty 0.6 L
Kq :kCT = ay Go = max (y(n) —y(n—1)), Lo = T (17)

Ziegler-Nichols method is helpful to find the rough estimation of PID gains,
it is not so good in any case. Therefore, in the process control the operators
are adjusting these gains based on their experience and knowledge in trial and
erTor.

We have developed a self-tuning PID controller. The control structure is shown
in Fig.

Using the learning ability of the neural networks, we have developed a self-
tuning method of the PID control gains, automatically although we have stared
the PID gains given by Ziegler-Nichols. From our experience, the power of the
tuning and the improvement of cost function are excellent compared with the
results by the Ziegler-Nichols method. The detail derivation will omit here,
the following papers or books will be helpful to construct the self-tuning PID
controller, [16], [I7], [18], [19], [13], [15], [14], etc.
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5 Appplication to Electric Vehicle Control

Due to environmental problems the automobile industry is currently venturing
into producing electric vehicles. At the Shikoku Electric Power Company, Japan,
a new type of electric car which is called PIVOT has been developed in 1993. The
specification is shown in Table [Il and the overview and specific characteristics
are illustrated in Fig.

This PIVOT has equipped four wheels and each wheel has been made with
in-wheel motor. Therefore, the wheels can be steered more than 90 degrees op-
posed to the body. This newly developed function accounts for universal drive
performance such as lateral drive and rotation at a point. Another advantage
is high-accuracy residual battery capacity indicator based on neural networks.
A small and high accurate indicator has been developed. The residual battery
capacity is calculated by a computer using voltage and current while driving.

The third one is an automatic battery exchange system. By the development
of an automatic battery exchange system, the battery, having little residual
capacity, is removed and a charged battery is installed within approximately
five minutes, making refueling as easy as a gasoline-engine vehicle.

The fourth one is an energy-saving technology. Development of a regenerative
braking system to convert kinetic energy to electrical energy and charge the
battery during deceleration. Adoption of a lightweight frame/body and low air
resistance body configuration and development of a lightweight heat-pump type
air conditioning system are also equipped.

In 1993 when PIVOT was completed in Japan, there was no permission to
drive any electric vehicle on the road in raw and it is difficult to do the real
driving experiment under various load change or load conditions, we have made
experimental simulator as shown in Fig. [ This can be written in Fig. [§ where
DDC is direct digital controller which has been equipped with PID controllers,
ACM is an alternative current motor which produces torque of OIVOT, DC is
a direct current motor which produces any load with various specifications, T is
a torque meter, and UFAS denoted a universal factory automation system.

Table 1. Specification of PIVOT

Specification Performance

length 4,126 mm

width 1,671 mm

height 1,603 mm

dry weight 2,200 Kg

passengers 4 persons

maximum speed 100 Km/h

range 200 Km(at a constant cruiing spped of 40km/h
acceleration Approximate 20 secs. from 0 m to 400 m
grand climb ability 30%

battery type lead battery

equipment power steering, heat-pump type sir conditioning
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Fig. 6. PIVOT system

For training the neural networks for various loads and various speeds, we have
obtained the input and output data using the physical simulator illustrated in
Fig. [0l This simulator can be modelled as shown in Fig.[§ where DCM produces
any kinds of loads and ACM outputs the corresponding control inputs by an ac
motor. From our many experiences, we have used the neuro-control structure as
shown in Fig. @ where NNC means neuro-controller to adjust the PID gains and
NNM was used to model the system emulator which is necessary to find the PID
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Fig. 7. Experimental simurator Fig. 8. PIVOT system
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Fig. 9. Experimental simurator where TD1 and Td2 are time-delay elements with one

and two steps

gains in NNC. Here, we use the parallel type emulator with regression model in
order to speed up the modelling convergence and also used rotation number of
motors. The notation y(t) means the estimated value of y(t), y.(¢) and y, (t) are
estimated value of y(t) by regression method and neural networks, respectively,
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Figs. [0 and [Tl are simulation results where (a) denotes control results when
we used the parameters by the experts who designed the electric vehicle simulator
starting from parameters obtained by the Ziegler-Nichols method and (b) shows
the results obtained by our approach after training. In these simulations were
developed underthe following situations that learning parameter is n = 0.001 ~
0.05 and the momentum coefficient is a = 0.9.

From these results, the neuro-control methods could be applied to several real
control problems.
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