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Abstract. The study of economic behavior of service providers in a
competition environment is an important and interesting research issue.
A two-server queueing model has been proposed in Kalai et al. [11] for
this purpose. Their model aims at studying the role and impact of ser-
vice capacity in capturing larger market share so as to maximize the
long-run expected profit. They formulate the problem as a two-person
strategic game and analyze the equilibrium solutions. The main aim of
this paper is to extend the results of the two-server queueing model in
[11] to the case of multiple servers. We will only focus on the case when
the queueing system is stable.

Keywords: Markovian Queueing Systems, n-server Queue, Nash Equi-
librium, Competition.

1 Introduction

The problem of finding the optimal strategy and control policy of a queueing
system is a traditional mathematical problem and has been well studied in the
literature, see for instance [2,9,10,11,12,17]. In an optimal control problem, it
usually involves making decisions on system parameters such as the system ser-
vice capacity and number of servers in the system under a specified cost struc-
ture (convex or concave). Here service capacity is an important competitive
factor in the design of a service system, for example, in the areas of telecom-
munication networks [6] data transmission systems [11] and Vendor-Managed
Inventory (VMI) system [3,16]. In particular, the current development in sup-
ply chain management emphasizes the coordination and integration of inventory
and transportation logistics [4,18]. VMI is a supply chain initiative where the
distributor is responsible for all decisions regarding the selection of retailers or
agents. This creates a competitive environment for the agents and retailers to
compete in the market [14].
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Kalai et al. [11] studied a strategic game of two servers competing for their
market shares through determining their service capacities. A Markovian queue-
ing system of two servers is used in their model and analysis. Markovian queueing
systems are popular tools for modeling servicing systems as they are mathemat-
ically tractable [6,7] when compared to the non-Markovian queueing systems.
The problem is then analyzed using game theory [15]. Game theory is a popu-
lar and promising approach [1,5] for the captured problem. They classified the
Nash equilibria into three different cases concerning the cost function and the
revenue per customer. The waiting time is finite in one of these cases and there
is a unique symmetric equilibrium. Although their model is simple, it brings
in two important concepts. The first one is the “competitive game of servers”
and the second one is “the market share of a server in a multi-server facility”.
Furthermore, they also report that when the marginal cost of providing service
is “high”, there is a unique symmetric equilibrium and the total service capacity
is less than the mean demand rate. In such a case, each server actually behaves
as if it were a monopolist. Competition therefore has no effect and this leads to
an undesirable situation. On the other hand, when the marginal cost of provid-
ing service is “low”, a unique symmetric equilibrium exists and the total service
capacity is greater than the mean demand rate. In this paper, we will extend
the model in [11] by allowing the number of servers to be more than two. In par-
ticular, we are interested in the case when the total service capacity is greater
than the mean demand rate.

The remainder of the paper is structured as follows. In Section 2, we will give a
brief review on the two-server queueing system discussed in [11] and the analytic
results therein. We then present our multiple-server queueing system and also our
analysis on the system performance in Section 3. A numerical demonstration is
given in Section 4 for the case of a 3-server queueing systems. Finally concluding
remarks are given to address further research issues in Section 5.

2 A Review on the Two-Server Queueing System

The service system studied in Kalai et al [11] consists of two independently
operated servers. Customers arrive according to a Poisson process of rate λ and
the service times are assumed to follow the exponential distribution. Each of the
server i operates independently and determines its own service capacity μi so as
to maximize its own profits. The cost to operate at service capacity μ is c(μ).
Here the operating cost function c(.) is assumed to an increasing and strictly
convex function, i.e., both c′(μ) and c′′(μ) are both positive and an example of
such a function is c(μ) = μ2.

The servers earn a fixed amount R for each unit of service rendered. The
queueing system consists of a single First-In-First-Out queue. If a customer
arrives when both servers are idle, the customer will be assigned to either server
with equal likelihood. No server is allowed to be idle when at least one customer
in the system. If a customer arrives when one server is idle and the other is
busy, he/she will be assigned to the idle server. In the following subsections, we
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will present briefly the main results obtained in [11] concerning the two-server
queueing system.

2.1 The System Steady-State Probability Distribution

If Server i (i = 1, 2) chooses service capacity μi and such that

μ1 + μ2 > λ (1)

the system has a steady-state probability distribution. We remark that condition
(1) is a necessary and sufficient condition for the Markovian queueing system
to be stable or to have steady-state probability distribution. Let Pn be the
probability that there are n customers in the system; P10 be the probability
that server 1 is busy and server 2 is idle; P01 be the probability that server 2 is
busy and server 1 is idle. By studying the balanced equations of the queueing
system, we have the following results:

P0 =
1 − ρ

1 − ρ + λ(μ1+μ2)
2μ1μ2

and P10 =
λP0

2μ1
and P01 =

λP0

2μ2
(2)

where
ρ =

λ

(μ1 + μ2)
(3)

is the system load. Moreover, we also have

P1 = P10 + P01 and Pn = ρn−1P1 n = 2, 3, . . . (4)

2.2 The Market Share

Computing the market share of Server i is equivalent to computing the mean
number of customers per time unit that enter service with Server i. Using the
results in Section 2.1, if μ1 + μ2 > λ, the mean number of customers per time
unit that enter service with Server 1 is

P0
λ

2
+ P01λ + P3μ1 + P4μ1 + . . . (5)

and that with Server 2 is

P0
λ

2
+ P10λ + P3μ2 + P4μ2 + . . . . (6)

We then divide by the mean number of customers per time unit that enter
service, i.e., λ, to obtain the market share of Server i. Thus the fraction of all
customers served by Server i(i = 1, 2), is given by
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αi(μ1, μ2) =
λμ2

i + μ1μ2(μ1 + μ2)
λ(μ1 + μ2)2 + 2μ1μ2(μ1 + μ2 − λ)

. (7)

2.3 The Profit Function

Given the market shares of the servers in Section 2.2, the profit function
πi(μ1, μ2) for Server i ∈ {1, 2}, the expected profit per time unit earned by
Server i, is then given by

πi(μ1, μ2) =
{

Rλαi(μ1, μ2) − c(μi) if μ1 + μ2 > λ
Rμi − c(μi) if μ1 + μ2 ≤ λ.

(8)

Here c(μ) is the cost of providing service at capacity μ and R is the revenue per
customer served.

2.4 The Nash Equilibrium of the Queueing System

Kalai et al. [11] considered the situation as a two-person strategic game and they
found that finite waiting times exist at equilibrium if and only if

c′(
λ

2
) <

R

2
. (9)

Moreover, if this condition is satisfied, then a unique equilibrium exists in which
both servers select the same service capacity μc = μ1 = μ2 such that

c′(μc) =
Rλ2

2μc(2μc + λ)
. (10)

3 The General Multiple-Server Queueing System

In this section, we extend the two-server queueing system studied in [11] to a
general n-server queueing system. The arrival process of customers is assumed to
be a Poisson process. In this queueing system, arriving customers wait in a single
First-In-First-Out (FIFO) queue if all servers are busy. No server is allowed to be
idle when there is at least one customer in the queueing system. If a customer
arrives when more than one server is idle, the customer is assigned to any of
the idle servers with equal likelihood. Once a server completes the service of a
customer, the first customer in the queue, if any, is assigned to the server. Each
server i may choose its own service capacity μi, and its service time follows the
exponential distribution with mean 1/μi. The servers earn a revenue of R per
customer served, and each of them incurs a cost of c(μ) to operate at service
capacity μ, where c(.) is an increasing and strictly convex function, i.e., both
c′(.) and c′′(.) are both positive.

In the following subsections, we present some important properties of the
multiple-server queueing system through the propositions. The proofs of the
propositions are omitted but can be found in [8].
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3.1 The Steady-State Distribution of the Queueing System

Given the service capacities μ1, . . . , μn and the mean demand rate λ, suppose∑n
i=1 μi > λ. This condition is to guarantee that the queueing system is stable

and the system steady-state probability distribution exists. We would like to
obtain the steady-state probability distribution of the number of customers in
the system. Let us give the following definitions. Let Pi be the steady-state
probability of having i customers in the system, where i = 0, 1, 2, . . .. Also let
Ps, where s = (s1, s2, . . . , sn) and si = 0 or 1, be the steady-state probability of
having si customers at Server i. We note that by definition

Pk =
∑

{s|s1+...+sn=k}
Ps for k = 0, 1, . . . , n. (11)

We establish the equations governing the steady-state probabilities. The equa-
tions can be obtained by equating the incoming rate and outgoing rate at each
of the state. For si = 0, 1 and

∑n
i=1 si �= n, we have

(
∑

{i|si=1}
μi + λ)P(s1,s2,...,sn) =

∑
{i|si=0}

μiP(s−i,si=1) +
∑

{i|si=1}

λP(s−i,si=0)

|{j|sj = 0}|+ 1
.

(12)
where (s−i, s

′
i) denotes (s1, . . . , si−1, s

′
i, si+1, . . . , sn). When si = 0 for all i this

gives

λP(0,0,...,0) = μ1P(1,0,...,0) + μ2P(0,1,0,...,0) + · · · + μnP(0,...,0,1). (13)

For the states with at least n customers we have

(
n∑

i=1

μi + λ)P(1,1,...,1) =
n∑

i=1

μiPn+1 +
n∑

i=1

λP(s−i=1,si=0) (14)

and

(
n∑

i=1

μi + λ)Pk = (
n∑

i=1

μi)Pk+1 + λPk−1 for k = n + 1, n + 2, . . . . (15)

We note that these two equations together are equivalent to

(
n∑

i=1

μi + λ)Pk = (
n∑

i=1

μi)Pk+1 + λPk−1 for k = n, n + 1, . . . . (16)

We also have the normalization equation

∞∑
i=0

Pi = 1. (17)

It can be shown by direct verification that the solution is given by the following
proposition.
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Proposition 1. We have

P(s1,s2,...,sn) =
(n − k)!λkP0

n!
∏

{i|si=1} μi
where k = s1 + s2 + . . . + sn > 0 (18)

and
Pk = ρk−nPn for k > n (19)

and

P0 =

(
1 +

n−1∑
k=1

(n − k)!λk(
∑

i1<i2<...<in−k
μi1μi2 . . . μin−k)

n!μ1μ2 . . . μn
+(

1

1 − ρ
)

λn

n!μ1μ2 . . . μn

)−1

.

(20)

The steady-state probability distribution describes the long-run behavior of the
system. Each of these probabilities Pk represents the long-run proportion of
time that there are k customers in the system. They are essential in studying
how each server determines its strategy to maximize its long-run profit. In the
next subsection, we will write the market share of each server in terms of these
probabilities and obtain an expression for the market share.

3.2 The Market Share of Each Server

We derive the market share of each server from the steady-state distribution. We
note that when

∑n
j=1 μj ≤ λ, i.e., customers arrive at least as fast as the servers

can serve them, the steady-state probability distribution does not exist and the
queue is infinite. In this case, each server receives customers at its service capacity
in the long run. Otherwise,

∑n
j=1 μj > λ and all customers will be served. Each

server only receives a fraction of the arriving customers, at a rate lower than its
service capacity. The server’s profit thus depends on the fraction of all customers
it serves, i.e. its market share.

When k(1 ≤ k ≤ n) servers are idle, customers arrive at a rate of λ and an
arriving customer is served by any one of the k idle servers with equal likelihood.
Each of these idle servers therefore receives customers at a rate of λ/k. On the
other hand, when all servers are busy with at least one customer waiting in the
system, each of the busy servers i receives a new customer when it completes
the service for a customer, i.e. at a rate of its service capacity μi.

To obtain the market share, we find the expected value of the server’s rate of
receiving customers in different states of the systems, taking expectation over the
steady-state probabilities. In the following, we give the formula for the market
share for an individual server.

Proposition 2. If
∑n

j=1 μj >λ, the market share of Server i, αi(μ1, μ2, . . . , μn)
is given by

μi

⎡
⎣n−1∑

k=0

k!λn−k−1

⎛
⎝ ∑

j1<j2<...<jk,jp �=i ∀p

μj1μj2 . . . μjk

⎞
⎠+ λn−1

(
ρ

1 − ρ

)⎤
⎦

n∑
k=1

k!λn−k(
∑

j1<j2<...<jk

μj1μj2 . . . μjk
) +

λn

1 − ρ

.(21)
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As we focus on the case when the mean demand rate is less than the total service
rate, the market share is directly tied to the profit of a server. Before formulating
the profit function of a server, we state the following two propositions related to
the partial derivatives of the market share αi with respect to μi. These will be
useful in determining the Nash equilibrium of the system when we considered
the system as a n-player strategic game.

Proposition 3. Suppose that
∑n

j=1 μj > λ then ∂αi(μ1,μ2,...,μn)
∂μi

> 0. Further-

more, when μi → ∞, we have ∂αi(μ1,...,μn)
∂μi

→ 0.

Proposition 4. Suppose that
∑n

j=1 μj > λ, then ∂2αi(μ1,μ2,...,μn)
∂μ2

i
< 0.

Propositions 3 and 4 together mean that the market share αi is increasing and
concave with respect to μi (i = 1, 2, . . . , n).

3.3 The Profit Function

Here we proceed to find out the profit function of an individual server, which
represents the server’s profit per time unit in the long run. There are two cases
to be considered. Suppose that

∑n
j=1 μj > λ, Server i receives customers at a

rate of λαi(μ1, μ2, . . . , μn). When
∑n

j=1 μj ≤ λ, Server i receives customer at a
rate of μi. In both cases, Server i incurs a cost of c(μi). Therefore similar to [11],
the profit function of Server i is given by

πi(μ1, μ2, . . . , μn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rλαi(μ1, μ2, . . . , μn) − c(μi) if
n∑

j=1

μj > λ

Rμi − c(μi) if
n∑

j=1

μj ≤ λ

(22)

Each of the servers aims to maximize its long-run profit when determining its
service capacity. Therefore, how a server’s profit changes with its service capacity
(when other servers’ capacities remain unchanged) is important in characterizing
the server’s decision. By proposition 3 and 4, we readily obtain the following
proposition describing the properties of the profit function πi with respect to μi.

Proposition 5. For i = 1, 2, . . . , n, for each fixed λ > 0 and μj > 0 where
j �= i, the function πi(μ1, μ2, . . . , μn) is continuous and strictly concave in μi.

The continuity and concavity of the profit function ensure that the first-order
condition is a sufficient condition for a value of μi to maximize the profit function.

3.4 The Nash Equilibrium of the Queueing System

Since servers’ decisions of their service capacities would affect the profit of each
other, we model the situation as an n-player strategic game, in which each server i
chooses its service capacity μi to maximize its profit πi. Here we discuss the Nash
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equilibrium of the system. In the two-server model in [11], a unique symmetric
equilibrium is found in the case when the total demand rate is less than the total
service rate. In our analysis, we will show that, similar to the two-server case,
when the marginal cost is low enough, there is a unique equilibrium, in which
all servers choose the same service capacities. In the following, we will first look
at how the profit of Server i changes with its service capacity when all other
servers choose the same service capacities.

Proposition 6. For μc > λ/n,

∂

∂μi
αi(μ1, μ2, . . . , μn)

∣∣∣∣
μ1=μ2=...=μn=μc

=
λ

n2μ2
c

⎡
⎢⎢⎢⎢⎣1 − λn−1

n−1∑
k=0

(k + 1)!

(
n − 1

k

)
λn−k−1μk

c

⎤
⎥⎥⎥⎥⎦

which is decreasing in μc. Also, we have

lim
μc→(λ/n)+

∂

∂μi
αi(μ1, μ2, . . . , μn)

∣∣∣∣
μ1=μ2=...=μn=μc

=
n − 1
nλ

and

lim
μc→∞

∂

∂μi
αi(μ1, μ2, . . . , μn)

∣∣∣∣
μ1=μ2=...=μn=μc

= 0.

It should be noted that proposition 6 implies that for μc > λ/n, we have

∂

∂μi
αi(μ1, μ2, . . . , μn)

∣∣∣∣
μ1=μ2=...=μn=μc

<
n − 1
nλ

.

We also note that the partial derivative in proposition 6 gives the marginal
benefit Server i gets by unilaterally deviating from a service capacity μc com-
monly chosen by all servers.

The following proposition gives the Nash equilibrium of the game, which rep-
resents the decision of the servers on their service capacities in the long run.

Proposition 7. If (n − 1)R/n > c′(λ/n) then there is a unique equilibrium
where μ1 = μ2 = . . . = μn = μc and μc is the unique solution that satisfies
μc > λ/n and

Rλ
∂

∂μi
αi(μ1, μ2, . . . , μn)

∣∣∣∣
μ1=μ2=...=μn=μc

= c′(μc). (23)

i.e.,

R

(
λ

nμc

)2

⎡
⎢⎢⎢⎢⎣1 − λn−1

n−1∑
k=0

(k + 1)!
(

n − 1
k

)
λn−k−1μk

c

⎤
⎥⎥⎥⎥⎦ = c′(μc). (24)

If (n−1)R/n ≤ c′(λ/n) then the system has no equilibrium in which the expected
waiting time is finite.
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We note that from the proposition, we have μc > λ/n and so the expected
waiting times are finite. This means that we know that if the marginal cost of
serving 1/n of all customers is less than (n − 1)/n of the revenue received per
customer, there is a unique symmetric equilibrium with finite waiting times.

For equation (23) to hold, it means that the marginal benefit Server i gets
by unilaterally deviating from a service capacity μc commonly chosen by all
servers must be equal to the marginal cost to do so. In this case, Server i does
not benefit from changing its service capacity. Mathematically, the first-order
condition for πi holds. From the concavity of πi obtained in proposition 5, we
know that choosing μc as the service capacity maximizes the profit for Server i.

Since the servers share the same cost function and the same profit function
with respect to their own service capacities, the condition for which the marginal
benefit equals the marginal cost is identical for all servers when they choose the
same service capacities. The proposition asserts that there is only one value of μc

which satisfies the condition, and that this symmetric equilibrium is the unique
equilibrium of the system.

This proposition shows that, given the arrival rate of customer λ, the number
of servers n and the revenue per customer R, all servers will choose the same
service capacity given by equation (24) in the long run if the condition

(n − 1)R
n

> c′(
λ

n
) (25)

is satisfied. The proposition is useful for determining the minimum value of
revenue per customer R for which the system will have a finite-waiting time
equilibrium.

When n = 2, Propositions 6 and 7 reduce to the results in [11]. It is worth
noting that as n increases, (n − 1)R/n increases and c′(λ/n) decreases. There-
fore, the minimum value of R required for the existence of a finite waiting-time
equilibrium decreases as n increases. An increase in the number of servers causes
competition to become more intense. Thus the minimum revenue per customer
needed to achieve an equilibrium with finite waiting times becomes lower.

4 A Numerical Example on Three-Server Queueing
System

In this section, we present a numerical example for the case of a three-server
queueing system, i.e., n = 3. Here we assume the cost function takes the following
form:

c(μ) = μ2 (26)

and the condition for the queueing system to be stable

μ1 + μ2 + μ3 > λ. (27)

We note that c′(μ) > 0 and c′′(μ) > 0 for μ > 0. Thus c(μ) is strictly increasing
and strictly convex.
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We first give the steady-state probability distribution of the system. The
following result comes from Proposition 1 in Section 3.1. We have

P0 =
1 − ρ

(1 − ρ)
(
1 + λ(μ1μ2+μ1μ3+μ2μ3)

2μ1μ2μ3

)
+ λ2(μ1+μ2+μ3)

6μ1μ2μ3

,

P(0,0,1) =
λP0

3μ3
, P(0,1,0) =

λP0

3μ2
, P(1,0,0) =

λP0

3μ1
,

P(0,1,1) =
λ2P0

6μ2μ3
, P(1,0,1) =

λ2P0

6μ1μ3
, P(1,1,0) =

λ2P0

6μ1μ2
,

and
Pk = ρk−2P2 for k > 2

where
P2 = P(0,1,1) + P(1,0,1) + P(1,1,0).

Moreover, we have

αi(μ1, μ2, μ3) =
μi

[
λ2 + λ(μj + μl) + 2μjμl + λ3

μi+μj+μl−λ

]

λ2(μi + μj + μl) + 2λ(μiμj + μiμl + μjμl) + 6μiμjμl +
λ3(μi+μj+μl)

μi+μj+μl−λ

.

where j, l ∈ {1, 2, 3} and i, j, l are distinct. Now we have

∂

∂μi
αi(μ1, μ2, μ3)

∣∣∣∣
μ1=μ2=μ3=μc

=
2λ(2λ + 3μc)

9μc(λ2 + 4μcλ + 6μ2
c)

.

If 2R/3 > c′(λ/n) = 2λ/3, i.e., R > λ then there is a unique symmetric equi-
librium where μ1 = μ2 = μ3 = μc and μc is the unique solution that satisfies
μc > λ/3 and [

2λ2(2λ + 3μc)
9μc(λ2 + 4μcλ + 6μ2

c)

]
R = c′(μc) = 2μc

i.e.,
54μ4

c + 36λμ3
c + 9λ2μ2

c − 3Rλ2μc − 2Rλ3 = 0.

5 Concluding Remarks

In this paper, we extend the analytic results of the two-server queueing system
discussed in [11] to an n-server queueing system. To extend our study to the
incentive aspect of the queueing system is our future work.

In fact, a service system of two servers coordinated by one central agency was
studied by Gilbert and Weng [12]. The principal-agent relationship [13] between
the central agency and the servers was studied, from the principal’s perspective.
It is of interest whether the allocation policy with a separate queue or that with
a common queue would allow the coordinator to control waiting times at a lower
cost. The service system studied in [12] consists of two independently operated
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servers coordinated by one central agency. Again customers arrive according
to a Poisson process and the service times are assumed to follow an exponen-
tial distribution. Each of the server operates independently and determines its
own service capacity so as to maximize its individual profits. The coordinating
agency determines a fixed amount R, the compensation to the servers for each
unit of service rendered, to induce a desirable service capacity. The coordinating
agency’s goal is to minimize its cost to maintain expected sojourn time below
a given level. It was found that the servers have a weaker incentives to increase
their service capacities in common queue systems than in separate queue sys-
tems. In many cases, the competition incentive effects can more than offset the
risk-pooling benefits of a common queue. In particular, cases with small permis-
sible waiting times or not severe diseconomies on increasing capacity favor the
separate queue system.

The queueing system discussed in this paper corresponds to the common
queue with n servers. Therefore the results obtained here are ready to apply to
generalize the models and conclusions addressed in [12].
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