
Web Service Composition via the Customization
of Golog Programs with User Preferences�

Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada
{shirin,nataliya,sheila}@cs.toronto.edu

Abstract. We claim that user preferences are a key component of effec-
tive Web service composition, and one that has largely been ignored. In
this paper we propose a means of specifying and intergrating user prefer-
ences into Web service composition. To this end, we propose a means of
performing automated Web service composition by exploiting a flexible
template of the composition in the form of a generic procedure. This tem-
plate is augmented by a rich specification of user preferences that guide
the instantiation of the template. We exploit the agent programming
language Golog to represent our templates as Golog generic procedures
and we exploit a first-order preference language to represent rich qualita-
tive temporally-extended user preferences. From these we generate Web
service compositions that realize a given generic procedure, satisfying
the user’s hard constraints and optimizing for the user’s preferences. We
prove our approach is sound and optimal. Our system, GologPref, is im-
plemented and interacting with services on the Web. The language and
techniques proposed in this paper can be integrated into a variety of
approaches to Web or Grid service composition.

Preamble

We were inspired to include the research that follows in this volume in honour
of John Mylopoulos because it touches upon at least two different themes that
John has addressed in his research in recent years. In particular, John’s work
on Tropos has focused on the specification of information system requirements
in terms of actors, goals, and interdependencies. The Tropos methodology can
be realized in a variety of agent programming environments, including variants
of Golog. John and his colleagues have applied the Tropos methodology to the
design of a variety of software systems, including the design of Web services.
In this context our Golog Web service composition templates can be seen as a
specification of the requirements of our Web service composition, while our user
preferences correspond to a specification of soft requirements to be optimized.

� An earlier version of this paper originally appeared as Web Service Composition
via Generic Procedures and Customizing User Preferences in [1] and is reprinted in
revised form with the permission of the publishers.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 319–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

320 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

1 Introduction

Web services provide a standardized means for diverse, distributed software ap-
plications to be published on the Web and to interoperate seamlessly. Simple Web
accessible programs are described using machine-processable descriptions and
can be loosely composed together to achieve complex behaviour. The weather ser-
vice at www.weather.com and the flight-booking services at www.aircanada.ca,
are examples of Web applications that can be described and composed as Web
services. They might be coupled as part of a travel-booking service, for
example.

Automated Web service composition is one of many interesting challenges fac-
ing the Semantic Web. Given computer-interpretable descriptions of: the task
to be performed, the properties and capabilities of available Web services, and
possibly some information about the client or user’s specific constraints, auto-
mated Web service composition requires a computer program to automatically
select, integrate and invoke multiple Web services in order to achieve the speci-
fied task in accordance with any user-specific constraints. Compositions of Web
or Grid services are necessary for realizing both routine and complex tasks on
the Web (resp. Grid) without the need for time-consuming manual composition
and integration of information. Compositions are also a useful way of enforcing
business rules and policies in both Web and Grid computing.

Fully automated Web service composition has been characterized as akin to
both an artificial intelligence (AI) planning task and to a restricted software
synthesis task (e.g., [2]). A composition can be achieved using classical AI plan-
ning techniques by conceiving services as primitive or complex actions and the
task description specified as a (final state) goal (e.g., [3,4]). This approach has
its drawbacks when dealing with data. In general, the search space for a com-
position (aka plan) is huge because of the large number of available services
(actions), which grow far larger with grounding for data.

A reasonable middle ground which we originally proposed in [5,2] is to specify
a flexible template of the composition in the form of a generic procedure and
to customize such a procedure with user constraints. We argued that many of
the tasks performed on the Web or on intranets are repeated routinely, and the
basic steps to achieving these tasks are well understood, at least at an abstract
level – travel planning is one such example. Nevertheless, the realization of such
tasks varies as it is tailored to individual users. As such, our proposal was to
specify such tasks using a workflow template or generic procedure and to cus-
tomize the procedure with user constraints at run time. Such an approach is
generally of the same complexity as planning but the search space is greatly
reduced, and as such significantly more efficient than planning without such
generic advice.

In [2] we proposed to use an augmented version of the agent programming
language Golog [6] to specify our generic procedures or workflows with sufficient
nondeterminism to allow for customization. (E.g., “book inter-city transporta-
tion, local transportation and accommodations in any order”). User constraints

Web Service Composition via the Customization of Golog Programs 321

(e.g., “I want to fly with Air Canada.”) were limited to hard constraints (as
opposed to “soft”), were specified in first-order logic (FOL), and were applied to
the generic procedure at run-time to generate a user-specific composition of ser-
vices. A similar approach was adopted using hierarchical task networks (HTNs)
to represent generic procedures or templates, and realized using the HTN plan-
ner, SHOP2 (e.g., [7]) without user customization of the HTN template.

In this paper, we extend our Golog framework for Web service composition,
customizing Golog generic procedures not only with hard constraints but with
soft user constraints (henceforth referred to as preferences). These preferences
are defeasible and may not be mutually achievable. We argue that user prefer-
ences are a critical and missing component of most existing approaches to Web
service composition. User preferences are key for at least two reasons. First, the
user’s task (specified as a goal and/or generic procedure with user constraints)
is often under constrained. As such, it induces a family of solutions. User pref-
erences enable a user to specify properties of solutions that make them more
or less desirable. The composition system can use these to generate preferred
solutions.

A second reason why user preferences are critical to Web service composition
is with respect to how the composition is performed. A key component of Web
service composition is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of services) are selected
for composition based on their preconditions and effects, and there is often only
one primitive action that realizes a particular effect. Like actions, services are
selected for composition based on functional properties such as inputs, output,
preconditions and effects, but they are also selected based on domain-specific
nonfunctional properties such as, in the case of airline ticket booking, whether
they book flights with a carrier the user prefers, what credit cards they accept,
how trusted they are, etc. By integrating user preferences into Web service com-
position, preferences over services (the how) can be specified and considered
along side preferences over the solutions (the what).

In this paper we recast the problem of Web service composition as the task
of finding a composition of services that achieves the task description (specified
as a generic procedure in Golog), that achieves the user’s hard constraints, and
that is optimal with respect to the user’s preferences. To specify user preferences,
we exploit a rich qualitative preference language, based on the LPP language
proposed by Bienvenu et al. to specify users’ preferences in a variant of linear
temporal logic (LTL) [8,9]. We prove the soundness of our approach and the
optimality of our compositions with respect to the user’s preferences. Our system
can be used to select the optimal solution from among families of solutions that
achieve the user’s stated objective. Our system is implemented in Prolog and
integrated with a selection of scraped Web services that are appropriate to our
test domain of travel planning.

The work presented here is predicated on the assumption that Web services
have been described in a computer-interpretable form. This is the starting point

322 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

for most work on semantic Web services [5] and a great deal of effort has gone
into the development of ontologies for precisely this purpose. In this paper, Web
service descriptions are presented in FOL, not in one of the typical Semantic
Web languages such as OWL [10] nor more specifically in terms of a semantic
Web service ontology such as OWL-S [11], WSMO [12] or SWSO [13]. Neverthe-
less, it is of direct significance to semantic Web services. As noted in (e.g., [11])
process models, necessary for Web service composition, cannot be expressed in
OWL while preserving all and only the intended interpretations of the process
model. OWL (and thus OWL-S) is not sufficiently expressive. Further OWL
reasoners are not designed for the type of inference necessary for Web service
composition. For both these reasons, Web service composition systems generally
translate the relevant aspects of service ontologies such as OWL-S into inter-
nal representations such as the Planning Domain Definition Language (PDDL)
that are more amenable to AI planning (e.g., [7,14]). Golog served as one of the
inspirations for what is now OWL-S [5] and all the OWL-S constructs have trans-
lations into Golog [15]. Further, the semantics of the OWL-S process model has
been specified in situation calculus [13,16]. Thus, our Golog generic procedures
can be expressed in OWL-S and likewise, OWL-S ontologies can be translated
into our formalism. We do not have a current implementation of this translation,
but it is conceptually straightforward.

2 Situation Calculus and Golog

We use the situation calculus and FOL to describe the functional and nonfunc-
tional properties of our Web services. We use the agent programming language
Golog to specify composite Web services and to specify our generic procedures.
In this section, we review the essentials of situation calculus and Golog.

The situation calculus is a logical language for specifying and reasoning about
dynamical systems [6]. In the situation calculus, the state of the world is ex-
pressed in terms of functions and relations (fluents) relativized to a particular
situation s, e.g., F (x, s). In this paper, we distinguish between the set of fluent
predicates, F , and the set of non-fluent predicates, R, representing properties
that do not change over time. A situation s is a history of the primitive ac-
tions, a ∈ A, performed from a distinguished initial situation S0. The function
do(a, s) maps a situation and an action into a new situation thus inducing a tree
of situations rooted in S0. Poss(a, s) is true if action a is possible in situation s.

Web services such as the Web exposed application at www.weather.com are
viewed as actions in the situation calculus and are described as actions in terms
of a situation calculus basic action theory, D. The details of D are not essential
to this paper but the interested reader is directed to [6,16,2] for further details.

Golog [6] is a high-level logic programming language for the specification and
execution of complex actions in dynamical domains. It builds on top of the situ-
ation calculus by providing Algol-inspired extralogical constructs for assembling
primitive situation calculus actions into complex actions (aka programs) δ. These

Web Service Composition via the Customization of Golog Programs 323

complex actions simply serve as constraints upon the situation tree. Complex
action constructs include the following:

nil – the empty program
a – primitive action
φ? – test action
πx. δ – nondeterministic choice of argument
δ1; δ2 – sequences (δ1 is followed by δ2)
δ1|δ2 – nondeterministic choice between δ1 and δ2
if φ then δ1 else δ2 endif – conditional
while φ do δ endW – loop
proc P (v) δ endProc – procedure

We also include the construct anyorder[δ1, . . . , δn] which is encoded as the non-
deterministic choice of all possible permutaions of the sequencing of δ1, . . . , δn.
The conditional and while-loop constructs are defined in terms of other con-
structs. For the purposes of Web service composition we generally treat iteration
as finitely bounded by a parameter k. Such finitely bounded programs are called
tree programs.

if φ then δ1 else δ2 endIf def= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ endWhile def= if φ then δ endIf 1

whilek(φ) δ endWhile def=
if φ then [δ; while k−1(φ)δ endWhile] endIf

These constructs can be used to write programs in the language of the domain
theory, or more specifically, they can be used to specify both composite Web
services and also generic procedures for Web service composition. E.g.2,

bookAirT icket(x) ; if far then bookRentalCar(y) else bookTaxi(y) endIf
bookRentalCar(x) ; bookHotel(y).

In order to understand how we modify Golog to incorporate user preferences,
the reader must understand the basics of Golog semantics. There are two popular
semantics for Golog programs: the original evaluation semantics [6] and a related
single-step transition semantics that was proposed for on-line execution of con-
current Golog programs [17]. The transition semantics is axiomatized through
two predicates Trans(δ, s, δ′, s′) and Final(δ, s). Given an action theory D, a
program δ and a situation s, Trans defines the set of possible successor configu-
rations (δ′, s′) according to the action theory. Final defines whether a program

1 if-then-endIf is the obvious variant of if-then-else-endIf.
2 Following convention we will generally refer to fluents in situation-suppressed form,

e.g., at(Toronto) rather than at(Toronto, s). Reintroduction of the situation term is
denoted by [s]. Variables are universally quantified unless otherwise noted.

324 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

successfully terminated, in a given situation. Trans and Final are defined for
every complex action. A few examples follow. (See [17] for details):

Trans(nil, s, δ′, s′) ≡ False

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ′, s′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′, s′)

Trans([δ1 | δ2], s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ

′, s′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.T rans(δv
x, s, δ′, s′)

Final(nil, s) ≡ TRUE

Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the program bookCar(x); bookHotel(y), if the action bookCar(x) is
possible in situation s, then

Trans([bookCar(x); bookHotel(y)], s, bookHotel(y), do(bookCar(x), s))

describes the only possible transition according to the action theory.
do(bookCar(x), s) is the transition and bookHotel(y) is the remaining program
to be executed. Using the transitive closure of Trans, denoted Trans∗, one can
define a Do predicate as follows. This Do is equivalent to the original evaluation
semantics Do [17].

Do(δ, s, s′) def= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (1)

Given a domain theory, D and Golog program δ, program execution must
find a sequence of actions a (where a is a vector of actions) such that: D |=
Do(δ, S0, do(a, S0)). Do(δ, S0, do(a, S0)) denotes that the Golog program δ, start-
ing execution in S0 will legally terminate in situation do(a, S0), where do(a, S0)
abbreviates do(an, do(an−1, . . . , do(a1, S0))). Thus, given a generic procedure, de-
scribed as a Golog program δ, and an initial situation S0, we would like to infer
a terminating situation do(a, S0) such that the vector a denotes a sequence of
Web services that can be performed to realize the generic procedure.

3 Specifying User Preferences

In this section, we describe the syntax of the first-order language we use for spec-
ifying user preferences. This description follows the LPP language we proposed
in [8,9] for preference-based planning. The semantics of the language is described
in the situation calculus. We provide an informal description here, directing the
reader to [8,9] for further details. Our language is richly expressive, enabling the
expression of static as well as temporal preferences, and action-centric as well as
state-centric preferences. Unlike many preference languages, it induces a total
order over the compositions, which avoids the high degree of incomparability ex-
perienced by many other non-quantitative preference languages, and simplifies

Web Service Composition via the Customization of Golog Programs 325

computation of preferred compositions. Our language is qualitative, rather than
ordinal or quantitative. Unlike many ordinal preference languages, our language
provides a facility to stipulate the relative strength of preferences. We claim that
its qualitative nature facilitates elicitation.

Illustrative example: To help illustrate our preference language, consider the
task of travel planning. A generic procedure, easily specified in Golog, might say:
In any order, book inter-city transportation, book local accommodations and book
local transportation. With this generic procedure in hand an individual user can
specify their hard constraints (e.g., Lara needs to be in Chicago July 29-Aug 5,
2009.) together with a list of preferences described in the language to follow.

To understand the preference language, consider the composition we are trying
to generate to be a situation – a sequence of actions or Web services executed
from the initial situation. A user specifies his or her preferences in terms of
a single, so-called General Preference Formula. This formula is an aggregation
of preferences over constituent properties of situations (i.e., compositions). The
basic building block of our preference formula is a Trajectory Property Formula
which describes properties of (partial) situations (i.e., compositions).

Definition 1 (Trajectory Property Formula (TPF)).
A trajectory property formula is a sentence drawn from the smallest set B where:

1. F ⊂ B
2. R ⊂ B
3. f ∈ F, then final(f) ∈ B
4. If a ∈ A, then occ(a) ∈ B
5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1,
next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(f) states that fluent f holds in the final situation, occ(a) states that action
a occurs in the present situation, and next(ϕ1), always(ϕ1), eventually(ϕ1), and
until(ϕ1, ϕ2) are basic LTL constructs.

TPFs establish properties of preferred situations (i.e., compositions of ser-
vices). By combining TPFs using boolean connectives we are able to express a
wide variety of properties of situations. E.g.3

final(at(Home)) (P1)

(∃ c).occ′(bookAir(c, Economy, Direct)) ∧ member(c, StarAlliance) (P2)

always(¬((∃ h).hotelBooked(h) ∧ hilton(h))) (P3)

(∃ h, r).(occ′(bookHotel(h, r)) ∧ paymentOption(h, V isa)

∧ starsGE(r, 3) (P4)

P1 states that the user is at home in the final situation. P2 states that at
some point the user books a direct economy flight with a Star Alliance carrier.
Recall there was no stipulation in the generic procedure regarding the mode of
3 To simplify the examples many parameters have been suppressed. For legibility,

variables are bold faced, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), and we
refer to the preference formulae by their labels.

326 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

transportation between cities or locally. P3 states that a Hilton hotel never be
booked while P4 states that at some point the user books a hotel that accept
Visa credit cards and has a rating of 3 or more.

To define a preference ordering over alternative properties of situations, we
define Atomic Preference Formulae (APFs). Each alternative being ordered com-
prises two components: the property of the situation, specified by a TPF, and a
value term which stipulates the relative strength of the preference.

Definition 2 (Atomic Preference Formula (APF)).
Let V be a totally ordered set with minimal element vmin and maximal element vmax.
An atomic preference formula is a formula ϕ0[v0] 	 ϕ1[v1] 	 ... 	 ϕn[vn], where each
ϕi is a TPF, each vi ∈ V, vi < vj for i < j, and v0 = vmin. When n = 0, atomic
preference formulae correspond to TPFs.

An APF expresses a preference over alternatives. Note that vmin is the most
preferred and vmax is the least preferred. In what follows, we let V = [0, 1], but
we could instead choose a strictly qualitative set like {best < good < indifferent <
bad < worst} since the operations on these values are limited to max and min.
The following APFs express an ordering over Lara’s preferences.

P2[0]

	 (∃ c, w).occ′(bookAir(c, Economy, w) ∧ member(c, StarAlliance)[0.2]

	 occ′(bookAir(Delta, Economy,Direct))[0.5] (P5)

(∃ t).occ′(bookCar(National, t))[0] 	 (∃ t).occ′(bookCar(Alamo, t))[0.2]

	 (∃ t).occ′(bookCar(Avis, t))[0.8] (P6)

(∃ c).occ′(bookCar(c, SUV))[0] 	 (∃ c).occ′(bookCar(c, Compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with a Star Alliance car-
rier, followed by economy flights with a Star Alliance carrier, followed by direct
economy flights with Delta airlines. P6 and P7 are preference over cars. Lara
strongly prefers National and then Alamo over Avis, followed by all other car-
rental companies. Finally she slightly prefers an SUV over a compact with any
other type of car a distant third.

To allow the user to specify more complex preferences and to aggregate prefer-
ences, General Preference Formulae (GFPs) extend our language to conditional,
conjunctive, and disjunctive preferences.

Definition 3 (General Preference Formula (GPF)).
A formula Φ is a general preference formula if one of the following holds:

• Φ is an APF
• Φ is γ : Ψ , where γ is a TPF and Ψ is a GPF [Conditional]
• Φ is one of

- Ψ0 &Ψ1 & ... &Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a GPF.

Web Service Composition via the Customization of Golog Programs 327

Continuing our example:

(∀ h, c, e, w).always(¬hotelBooked(h) : ¬occ′(bookAir(c, e, w))) (P8)

far : P5 (P9)

P3& P4& P6& P7& P8&P9 (P10)

P8 states that Lara prefers not to book her air ticket until she has a hotel
booked. P9 conditions Lara’s airline preferences on her destination being far
away. (If it is not far, she will not fly and the preferences are irrelevant.) Finally,
P10 aggregates previous preferences into one formula.

Semantics: Informally, the semantics of our preference language is achieved
through assigning a weight to a situation s with respect to a GPF, Φ, written
ws(Φ). This weight is a composition of its constituents. For TPFs, a situation
s is assigned the value vmin if the TPF is satisfied in s, vmax otherwise. Recall
that in our example above vmin = 0 and vmax = 1, though they could equally
well have been a qualitative e.g., [excellent, abysmal]. Similarly, given an APF,
and a situation s, s is assigned the weight of the best TPF that it satisfies
within the defined APF. Returning to our example above, for P6 if a situation
(composition) booked a car from Alamo rental car, it would get a weight of 0.2.
Finally GPF semantics follow the natural semantics of boolean connectives. As
such General Conjunction yields the maximum of its constituent GPF weights
and General Disjunction yields the minimum of its constituent GPF weights. For
a full explanation of the situation calculus semantics, please see [8]. Here we also
define further aggregations that can be performed. These are mostly syntactic
sugar that are compelling to the user and we omit them for space.

We conclude this section with the following definition which shows us how to
compare two situations (and thus two compositions) with respect to a GPF:

Definition 4 (Preferred Situations). A situation s1 is at least as preferred as
a situation s2 with respect to a GPF Φ, written pref(s1, s2, Φ) if ws1(Φ) ≤ ws2(Φ).

4 Web Service Composition

In this section, we define the notion of Web service composition with generic
procedures and customizing user preferences, present an algorithm for computing
these compositions and prove properties of our algorithm. Our definition relies
on the definition of Do from (1) in Section 2.

Definition 5 (WebServiceCompositionw/UserPreferences (WSCP)).
A Web service composition problem with user preferences is described as a 5-tuple

(D, O, δ, C, Φ) where:
• D is a situation calculus basic action theory describing functional properties of the
Web services,

328 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

• O is a FOL theory describing the non-functional properties of the Web services4,
• δ is a generic procedure described in Golog,
• C is a formula expressing hard user constraints, and
• Φ is a GPF describing user preferences.
A Web Service Composition (WSC) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

A preferred WSC (WSCP) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

∧ � ∃s′.[Do(δ, S0, s
′) ∧ C(s′) ∧ pref(s′, s, Φ)]

A WSC is a sequence of Web services, a, whose execution starting in the ini-
tial situation enforces the generic procedure and hard constraints terminating
successfully in do(a, s). A WSCP yields a most preferred terminating situation.

4.1 Computing Preferred Compositions

A Golog program places constraints on the situation tree that evolves from S0. As
such, any implementation of Golog is effectively doing planning in a constrained
search space, searching for a legal termination of the Golog program. The actions
that define this terminating situation are the plan. In the case of composing web
services, this plan is a web service composition.

To compute a preferred composition, WSCP, we search through this same con-
strained search space to find the most preferred terminating situation. Our ap-
proach, embodied in a system called GologPref, searches for this optimal termi-
nating situation by modifying the PPLAN approach to planning with preferences
proposed in [8]. In particular, GologPref performs best-first search through the
constrained search space resulting from the Golog program, δ; C. The search is
guided by an admissible evaluation function that evaluates partial plans with re-
spect to whether they satisfy the preference formula, Φ. The admissible evaluation
function is the optimistic evaluation of the preference formula, with the pessimistic
evaluation and the plan length used as tie breakers where necessary, in that order.

The preference formula Φ and the constraints C are evaluated over intermedi-
ate situations (partial compositions) by exploiting progression as described in [8].
Informally, progression takes a situation and a temporal logic formula (TLF),
evaluates the TLF with respect to the state of the situation, and generates a
new formula representing those aspects of the TLF that remain to be satisfied
in subsequent situations.

Fig 1 provides a sketch of the basic GologPref algorithm following from PPLAN.
The full GologPref algorithm takes as input a 5-tuple (D, O, δ, C, Φ). For ease of
explication, our algorithm sketch in Fig 1 explictly identifies the initial situation
of D, init, the Golog program, δ; C which we refer to as pgm and Φ, which we re-
fer to as pref. GologPref returns a sequence of Web services, i.e. a plan, and the
weight of that plan. The frontier is a list of nodes of the form [optW, pessW, pgm,
4 The content of D and O would typically come from an OWL-S, SWSO, or other

semantic Web service ontology.

Web Service Composition via the Customization of Golog Programs 329

GologPref(init, pgm, pref)
frontier ← initFrontier(init, pgm, pref)
while frontier �= ∅

current ← removeFirst(frontier)
% establishes current values for progPgm, partialPlan, state, progPref
if progPgm=nil and optW =pessW

return partialPlan, optW
end if
neighbours ← expand(progPgm, partialPlan, state, progPref)
frontier ← sortNmergeByVal(neighbours, frontier)

end while
return [], ∞

expand(progPgm, partialPlan, state, progPref) returns a list of new nodes to add
to the frontier. If partialPlan=nil then expand returns []. Otherwise, expand uses
Golog’s Trans to determine all the executable actions that are legal transitions of
progPgm in state and to compute the remaining program for each.
It returns a list which contains, for each of these executable actions a a node

(optW, pessW,newProgPgm, newPartialPlan, newState, newProgPref)
and for each a leading to a terminating state, a second node

(realW, realW, nil, newPartialPlan, newState, newProgPref).

Fig. 1. A sketch of the GologPref algorithm

partialPlan, state, pref], sorted by optimistic weight, pessimistic weight, and then
by length. The frontier is initialized to the input program and the empty partial
plan, its optW, pessW, and pref corresponding to the progression and evaluation
of the input preference formula in the initial state.

On each iteration of the while loop, GologPref removes the first node from
the frontier and places it in current. If the Golog program of current is nil then
the situation associated with this node is a terminating situation. If it is also
the case that optW =pessW, then GologPref returns current’s partial plan and
weight. Otherwise, it calls the function expand with current’s node as input.

expand returns a new list of nodes to add to the frontier. If progPgm is
nil then no new nodes are added to the frontier. Otherwise, expand generates
a new set of nodes of the form [optW, pessW, prog, partialPlan, state, pref], one
for each action that is a legal Golog transition of pgm in state. For actions leading
to terminating states, expand also generates a second node of the same form
but with optW and pessW replaced by the actual weight achieved by the plan.
The new nodes generated by expand are then sorted by optW, pessW, then
length and merged with the remainder of the frontier. If we reach the empty
frontier, we exit the while loop and return the empty plan.

We now prove the correctness of our algorithm.

Theorem 1 (Soundness and Optimality).
Let P=(D, O, δ,C, Φ) be a Web service composition problem, where δ is a tree pro-
gram. Let a be the plan returned by GologPref from input P. Then a is a WSCP of
(D, O, δ, C, Φ).

330 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

Proof sketch: We prove that the algorithm terminates appealing to the fact that
δ is a tree program. Then we prove that a is a WSC by cases over Trans and
Final. Finally we prove that a is also optimal, by exploiting the correctness of
progression of preference formuale proven in [8], the admissibility of our evalua-
tion function, and the bounded size of the search space generated by the Golog
program δ; C.

4.2 Integrated Optimal Web Service Selection

Most Web service composition systems use AI planning techniques and as such
generally ignore the important problem of Web service selection or discovery,
assuming it will be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for composition based,
not only on their inputs, outputs, preconditions and effects but also based on
other nonfunctional properties. As such, users are able to specify properties of
services that they desire along side other properties of their preferred solution,
and services are selected that optimize for the users preferences in the context
of the overall composition.

To see how selection of services can be encoded in our system, we reintroduce
the service parameter u which was suppressed from the example preferences in
Section 3. Revisiting P2, we see how the selection of a service u is easily realized
within our preference framework with preference P2’.

(∃ c, u).occ′(bookAir(c, Economy, Direct, u)) ∧ member(c, StarAlliance)

∧ serviceType(u, AirT icketV endor) ∧ sellsT ickets(u, c) (P2’)

P2’ causes GologPref to prefer booking air tickets with an air ticket vendor
that sells the tickets of a carrier that is a member of Star Alliance.

5 Implementation and Application

We have implemented the generation of Web Service compositions using generic
procedures and customizing user preferences as described in previous sections.
Our implementation, GologPref, builds on an implementation of PPLAN[8] and
an implementation of IndiGolog [6] both in SWI Prolog5.

GologPref interfaces with Web services through the implementation of
domain-specific scrapers developed using AgentBuilder 3.2, and AgentRunner
3.2, Web agent design applications developed by Fetch Technologies c©. Among
the sites we have scraped are Mapquest, and several air, car and hotel services.
The information gathered is collected in XML and then processed by GologPref.

We tested GologPref in the domain of travel planning. Our tests serve pre-
dominantly as a proof of the concept and to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was very simple, allowing
flexibility in how it could be instantiated. What follows is an example of the
Prolog encoding of a GologPref generic procedure.
5 See [6] for a description of the translation of D to Prolog.

Web Service Composition via the Customization of Golog Programs 331

anyorder[bookAcc, bookCityToCityTranspo, bookLocalTranspo]

proc(bookAcc(Location, Day, Num),
[stayWithFriends(Location) | bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, StartDay, ReturnDay),
[getRide(Location, StartDay, ReturnDay) |

walk(Location) | bookCar(Location, StartDay, ReturnDay)]).

proc(bookCityToCityTranspo(Location, Des, StartDay, ReturnDay),
[getRide(Location, Des, StartDay, ReturnDay) |

bookAir(Location, Des, StartDay, ReturnDay) |
bookCar(Location, Des, StartDay, ReturnDay)]).

We tested our GologPref generic procedure with 3 different user profiles: Jack
the impoverished university student, Lara the picky frequent flyer, and Conrad the
corporate executive who likes timely luxury travel. Each user lived in Toronto and
wanted to be in Chicago for specific days. A set of rich user preferences were defined
for eachuser along the lines of those illustrated in Section 3.These preferences often
required access to different Web information, such as driving distances.

Not surprisingly, in all cases, GologPref found the optimal WSC for the user.
Compositions varied greatly ranging from Jack who arranged accommodations
with friends; checked out the distance to his local destinations and then arranged
his local transportation (walking since his local destination was close to where he
was staying); then once his accommodations were confirmed, booking an econ-
omy air ticket Toronto-Chicago with one stop on US Airways with Expedia. Lara
on the other hand, booked a hotel (not Hilton), booked an intermediate-sized
car with National, and a direct economy air ticket with Star Alliance partner
Air Canada via the Air Canada Web site. The optimality and the diversity of
the compositions, all from the same generic procedure, illustrate the flexibility
afforded by the WSCP approach.

Figure 2 shows the number of nodes expanded relative to the search space size
for 6 test scenarios. The full search space represents all possible combinations
of city-to-city transportation, accommodations and local transportation avail-
able to the users which could have been considered. These results illustrate the
effectiveness of the heuristic used to find optimal compositions.

Case Nodes Nodes Time Nodes in
Number Expanded Considered (sec) Full Search Space

1 104 1700 14.38 28,512
2 102 1647 13.71 28,512
3 27 371 2.06 28,512
4 27 368 2.09 28,512
5 99 1692 14.92 28,512
6 108 1761 14.97 28,512

Fig. 2. Test results for 6 scenarios run under 64bit Ubuntu Linux with 2.66 GHz CPU

332 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

6 Summary and Related Work

In this paper we argued that the integration of user preferences into Web service
composition was a key missing component of Web service composition. Building
on our previous framework for Web service composition via generic procedures
[2] and our work on preference-based planning [8], we proposed a system for
Web service composition with user preferences. Key contributions of this paper
include: characterization of the task of Web service composition with generic
procedures and user preferences, provision of a previously developed language for
specifying user preferences, provision of the GologPref algorithm that integrates
preference-based reasoning into Golog, a proof of the soundness and optimality of
GologPref with respect to the user’s preferences, and a working implementation
of our GologPref algorithm. A notable side effect of our framework is the seamless
integration of Web service selection with the composition process.

We tested GologPref on 6 diverse scenarios applied to the same generic pro-
cedure. Results illustrated the diversity of compositions that could be generated
from the same generic procedure. The number of nodes expanded by the heuris-
tic search was several orders of magnitude smaller than the grounded search
space, illustrating the effectiveness of the heuristic and the Golog program in
guiding search.

A number of researchers have advocated using AI planning techniques to
address the task of Web service composition including using regression-based
planners [3], planners based on model checking (e.g., [4]), highly optimized hi-
erarchical task network (HTN) planners such as SHOP2 (e.g., [18]), and a com-
bination of classical and HTN planning called XPLAN [14]. Like Golog, HTNs
afford the user the ability to define a generic procedure or template of how to
perform a task.

Sirin et al. incorporated simple service preferences into the SHOP2 HTN plan-
ner to achieve dynamic service binding [7]. Their preference language is signifi-
cantly less expressive than the one presented here and is restricted to the task of
service selection rather than solution optimization. Nevertheless, it is a promis-
ing start. Also related is the work by Fritz and the third author in which they
precompiled a subset of the preference language presented here into Golog pro-
grams that were then integrated with a decision-theoretic Golog (DTGolog) pro-
gram [19]. The main objective of this work was to provide a means of integrating
qualitative and quantitative preferences for agent programming. While both used
a form of Golog, the form and processing of preferences was quite different.

Since the original publication of this work, preference-based planning has
been the subject of much interest, spurred on in great part by three tracks on
planning with preferences at the 2006 International Planning Competition (IPC-
5). A number of preference-based planners were developed, including one by a
subset of the authors, all based on the competition’s PDDL3 language [20]. The
most notable new work that is directly related to this paper is that of [21]. In this
paper, the authors propose a prototype HTN preference-based planner, scup,
tailored to the task of Web service composition and that uses PDDL3 as its
preference specification language.

Web Service Composition via the Customization of Golog Programs 333

We also have two follow-up pieces of work [22] and [23] in which we specify
flexible templates in the form of an HTN rather than a Golog generic procedure.
In [22] we proposed a qualitative language very similar to the preference lan-
guage discussed in this paper but tailored to HTN planning. In [23] we extended
PDDL3 with HTN-specific preference constructs. The proposed planners employ
state of the art heuristic guided search and algorithms that exploit HTN-specific
preferences and control. In contrast to the work presented here, optimality is not
guaranteed without exhaustive search. In future work, we would like to improve
the GologPref algorithm with the addition of more informative inadmissible
heuristics coupled with branch and bound search. We would also like to exploit
a recent extension to the LPP preference language to include preferences over
the occurrence of Golog complex actions [9].

Acknowledgements

The authors would like to thank Meghyn Bienvenu for her initial work on
PPLAN which was fundamental to the realization of this work. We also wish
to thank Christian Fritz for subsequent improvements to the PPLAN algorithm
and for much useful discussion. Finally we would like to thank Fetch Technologies
for allowing us to use their AgentBuilder software. We gratefully acknowledge
funding from the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Ontario Ministry of Innovations Early Researcher Award (ERA),
and the CRA’s Canadian Distributed Mentorship Project (CDMP).

References

1. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic
procedures and customizing user preferences. In: Cruz, I., Decker, S., Allemang,
D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 597–611. Springer, Heidelberg (2006)

2. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR), Toulouse, France, pp. 482–493 (2002)

3. McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), pp. 204–211 (2002)

4. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

5. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems
(Special Issue on the Semantic Web) 16 (2001)

6. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

7. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2005)

8. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal prefer-
ences. In: Proceedings of the 10th International Conference on Knowledge Repre-
sentation and Reasoning (KR), pp. 134–144 (2006)

334 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

9. Bienvenu, M., Fritz, C., McIlraith, S.: Specifying and generating preferred plans
(submitted for publication, 2009)

10. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

11. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

12. Bruijn, J.D., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage WSML: An overview. Technical report, DERI (2006)

13. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-
vice ontology (SWSO) first-order logic ontology for web services, FLOWS (2005),
http://www.daml.org/services/swsl/report/

14. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-Xplan. In: AAAI 2005 Fall Symposium (2005)

15. McIlraith, S., Fadel, R.: Planning with complex actions. In: Proceedings of the
9th International Workshop on Non-Monotonic Reasoning NMR-2002, pp. 356–
364 (2002)

16. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proc. of the 11th International World Wide Web Conference,
WWW 2002 (2002)

17. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1–2),
109–169 (2000)

18. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web
services. In: AAAI-2005 Fall Symposium on Agents and the Semantic Web (2005)

19. Fritz, C., McIlraith, S.: Decision-theoretic golog with qualitative preferences. In:
Proceedings of the 10th International Conference on Knowledge Representation
and Reasoning (KR), Lake District, UK, pp. 153–163 (2006)

20. Gerevini, A., Long, D.: Plan constraints and preferences for PDDL3. Technical Re-
port 2005-08-07, Department of Electronics for Automation, University of Brescia,
Brescia, Italy (2005)

21. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 629–643. Springer, Heidelberg (2008)

22. Sohrabi, S., McIlraith, S.A.: On planning with preferences in HTN. In: 12th Inter-
national Workshop on Non-Monotonic Reasoning (NMR-2008), Sydney, Australia,
pp. 241–248 (2008)

23. Sohrabi, S., Baier, J., McIlraith, S.: HTN planning with preferences. In: Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence, IJCAI
(2009)

http://www.daml.org/services/swsl/report/

	Web Service Composition via the Customization of Golog Programs with User Preferences
	Introduction
	Situation Calculus and Golog
	Specifying User Preferences
	Web Service Composition
	Computing Preferred Compositions
	Integrated Optimal Web Service Selection

	Implementation and Application
	Summary and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

