

Lecture Notes in Computer Science 5600
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alexander T. Borgida Vinay K. Chaudhri
Paolo Giorgini Eric S. Yu (Eds.)

Conceptual Modeling:
Foundations and Applications

Essays in Honor of John Mylopoulos

13

Volume Editors

Alexander T. Borgida
Rutgers University, Department of Computer Science
Piscataway, NJ 08855, USA
E-mail: borgida@cs.rutgers.edu

Vinay K. Chaudhri
SRI International, Artificial Intelligence Center
333 Ravenswood Ave, Menlo Park, CA, 94025, USA
E-mail: Vinay.Chaudhri@sri.com

Paolo Giorgini
University of Trento, Dipartimento Ingegneria e Scienza dell’Informazione
Via Sommarive, 14, 38100 Trento, Italy
E-mail: paolo.giorgini@unitn.it

Eric S. Yu
University of Toronto, Faculty of Information
140 St. George Street, Toronto, Ontario, M5S 3G6, Canada
E-mail: eric.yu@utoronto.ca

The cover illustration depicts the owl of Athena on a tetradrachm of Athens.
Permission to reproduce this image has been obtained from Krause Publications.

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.3.5, H.5.3, D.2, D.3, I.2.11, I.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-02462-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02462-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12697083 06/3180 5 4 3 2 1 0

John Mylopoulos

Preface

John Mylopoulos has made ground-breaking contributions to three areas of
computer science: artificial intelligence, information systems and software en-
gineering.

His contributions have been celebrated on multiple occasions. First, Misha
Missikoff organized a one-day symposium on conceptual modeling on June 17,
2003, in Velden, Austria, to celebrate John’s 60th birthday. Second, John Tsotsos
led the organization of a day of celebrations on June 27th, 2009 in Toronto,
Canada, on the occasion of John’s retirement from the Department of Computer
Science of the University of Toronto.

This book grew out of our desire to honor and thank John by presenting him
at the Toronto reunion with a volume that reflects his belief that conceptual
modeling is becoming a fundamental skill that will be a necessary tool for all
future computer scientists. The papers in this book are written by leading figures
in technical areas that intersect with conceptual modeling, as well as by John’s
closest collaborators. We are pleased to present this collection of papers that we
believe are of lasting significance and could also be used to support a course on
conceptual modeling. We are extremely grateful to the eminent authors, who
have contributed such high-quality material.

We have organized the chapters into several sections. Within each section,
the chapters are ordered alphabetically by the surname of the first author. The
section on foundations contains material on ontologies and knowledge represen-
tation, which we see as the technical grounding on which CM research builds –
a pattern that John Mylopoulos himself has repeatedly followed, starting from
semantic networks in the 1970’s, through Reiter’s solution to the frame problem,
to the recent work of McIlraith on preferences in planning. The four sections on
software and requirements engineering, information systems, information inte-
gration, and web and services, represent the chief current application domains for
conceptual modeling1. Finally, the section on implementations discusses projects
that build tools to support conceptual modeling. We note that the above divi-
sions are by no means perfect, and several chapters could easily have been placed
in more than one section.

Once again, we wish to express our gratitude to the authors, who have found
time in their busy schedules to write these valuable chapters. We also wish to
thank the referees, both authors and non-authors, who offered useful comments
towards improving the material. We are grateful to the members of our Se-
nior Advisory Committee, composed of Norm Badler, Sol Greenspan, Hector

1 We point to the article by Roussopoulos and Karagianis for a history of some of the
high points of the field.

VIII Preface

Levesque, Nick Roussopoulos, John Tsotsos and Matthias Jarke, who provided
us with sage advice and useful guidance at several crucial stages of this endeavor.

April 2009 Alex Borgida
Vinay Chaudhri

Paolo Giorgini
Eric Yu

Enkomion2

John Mylopoulos was born in Greece in 1943, and went to the United States to
complete his B.Eng and M.Eng in Electrical Engineering at Brown University,
and then do his PhD studies at Princeton University, under the direction of
Theodosius Pavlidis, finishing in 1970.

John then joined the Department of Computer Science at the University of
Toronto as an Assistant Professor, and he remained on the faculty there until his
retirement in June 2009. In 2001, John joined as a visiting professor, and then
in 2005 as Distinguished Professor, the University of Trento, in Trento, Italy.

Throughout his career John has had the unwavering support of his wife,
Chryss, and they have raised two wonderful children, Maria and Myrto, who
have followed their parents’ footsteps into academia.

John is widely recognized as a visionary thinker. His insights, which cover the
breadth of computer science, are much sought after. His keynotes are prescient
and much-anticipated for a glimpse at the next big idea.

With great generosity, John has helped numerous young researchers get es-
tablished, mentoring students and postdoctoral fellows. He has helped new de-
partments and research groups gain prominence on the world stage.

He is a builder of communities and has worked tirelessly to bring people from
diverse areas together in joint projects, creating much-needed synergy.

On a personal level, he is a role model: he is approachable, gentle, amiable
and an eternal optimist, in other words, exactly the kind of person one would
like to work with. His productivity is legendary. His leadership style is low-key
but extremely effective.

Rather than provide a complete bibliography of all his publications and hon-
ors (which can be found online), or list all the many scientific contributions of
John, we have chosen to offer three representative glimpses of his opus.

First, the following is a list of some of the projects that John undertook with
his students and collaborators, and which were deemed sufficiently worthy for a
Greek name (always starting with a “T”) – John is very proud of his heritage:

– TORUS: Natural-language access to databases, which required the repre-
sentation of the semantics of the data, and hence first led us to conceptual
models of relational tables using semantic networks.

– TAXIS: Programming language for data-intensive applications which sup-
ported classes of objects, transactions, constraints, exceptions and workflows,
all orthogonally organized in sub-class hierarchies with property inheritance.

2 This is the original Greek source of the English word “encomium”, meaning “cele-
bration”.

X Preface

– TELOS: Representation language for knowledge of many different kinds of
software engineering stakeholders, including application domain and devel-
opment domain, which exploited meta-classes, and treated properties as ob-
jects.

– TROPOS: Applying the ideas of early requirements (goal orientation, agent
dependence) to the entire range of software development, and expanding its
scope to many topics, including security and evolution.

Second, in order to show that John not only worked in multiple areas but was
in fact recognized in each of them as a leading figure, we mention three honors:

– Artificial Intelligence: Fellow of the American Association for Artificial In-
telligence (1993).

– Databases: Elected President of the Very Large Databases Endowment (1998-
01,2002-05), which oversees the VLDB conference and journal.

– Software and Requirements Engineering: Co-Editor-in-Chief of the Require-
ments Engineering Journal (2000-2008).

In addition, John was elected in 2007 a Fellow of the Royal Society of Canada,
Academy of Sciences, Division of Applied Sciences and Engineering.

Finally, we provide the following genealogic tree of John’s PhD students, and
their “descendants”, as of April 2009, as a testimony to both his skills as an
advisor and in selecting some outstandig PhD students.

April 2009 Alex Borgida
Vinay Chaudhri

Paolo Giorgini
John Tsotsos

Eric Yu

The Academic Tree of John Mylopoulos

John P. Mylopoulos

Tourlakis George
Ph.D. 1973, University of Toronto

Norman I. Badler
Ph.D. 1975, University of Toronto

Bulent Ozguc
Ph.D. 1978, University of Pennsylvania

Ugur Gudakbay
Ph.D. 1994, Bilkent University

Mehmet Emin Donderler
Ph.D. 2002, Bilkent University

Turker Yilmaz
Ph.D. 2007, Bilkent University

Veysi Isler
Ph.D. 1995, Bilkent University

Leyla Ozcivelek Durlu
Ph.D. 1996, Bilkent University

Burcu Senyapili
Ph.D. 1998, Bilkent University

Benal Tanrisever
Ph.D. 2001, Bilkent University

Dilek Kaya Mutlu
Ph.D. 2002, Bilkent University

Kaya Ozkaracalar
Ph.D. 2004, Bilkent University

Larry Grim
Ph.D. 1980, University of Pennsylvania

Joseph O’Rourke
Ph.D. 1980, University of Pennsylvania

Alok Aggarwal
Ph.D. 1984, Johns Hopkins University

Adlai DePano
Ph.D. 1987, Johns Hopkins University

Subhash Suri
Ph.D. 1987, Johns Hopkins University

Yunhong Zhou
Ph.D. 2000, Washington University, St. Loius

Anshul Kothari
Ph.D. 2005, University of California, Santa Barbara

Nisheeth Shrivastava
Ph.D. 2006, University of California, Santa Barbara

Chiranjeeb Buragohain
Ph.D. 2006, University of California, Santa Barbara

M
y
lo

p
o
u
lo

s

B
a
d
le

r

O
z
g
u
c

Ph.D. 1970, Princeton University

O
'R

ou
rk

e

S
ur

i
G

ud
ak

ba
y

XII The Academic Tree of John Mylopoulos

Michael McKenna
Ph.D. 1988, Johns Hopkins University

Yan Ke
Ph.D. 1989, Johns Hopkins University

Catherine Schevon
Ph.D. 1989, Johns Hopkins University

Harold Conn
Ph.D. 1990, Johns Hopkins University

Matthew Diaz
Ph.D. 1991, Johns Hopkins University

Chaim Broit
Ph.D. 1981, University of Pennsylvania

Sakunthala Gnanamgari
Ph.D. 1981, University of Pennsylvania

Dan Olsen
Ph.D. 1981, University of Pennsylvania

Thomas McNeil
Ph.D. 1993, Brigham Young University

Douglas Kohlert
Ph.D. 1995, Brigham Young University

Ken Rodham
Ph.D. 1995, Brigham Young University

James Korein
Ph.D. 1984, University of Pennsylvania

Gerald Radack
Ph.D. 1984, University of Pennsylvania

Stephen Platt
Ph.D. 1985, University of Pennsylvania

Paul Fishwick
Ph.D. 1986, University of Pennsylvania

Steven Walczak
Ph.D. 1990, University of Florida

Victor Todd Miller
Ph.D. 1993, University of Florida

Gyooseok Kim
Ph.D. 1998, University of Florida

Kangsun Lee
Ph.D. 1998, University of Florida

Robert Cubert
Ph.D. 1999, University of Florida

Taewoo Kim
Ph.D. 2002, University of Florida

Jin Joo Lee
Ph.D. 2005, University of Florida

M
yl

op
ou

lo
s

B
ad

le
r

O
ls

en
Fi

sh
w

ic
k

O
'R

ou
rk

e

The Academic Tree of John Mylopoulos XIII

Minho Park
Ph.D. 2005, University of Florida

Hyunju Shim
Ph.D. 2006, University of Florida

Tamar Granor
Ph.D. 1986, University of Pennsylvania

Pearl Pu
Ph.D. 1989, University of Pennsylvania

Diana Dadamo
Ph.D. 1990, University of Pennsylvania

Jugal Kalita
Ph.D. 1990, University of Pennsylvania

 Gerardo Perez Gonzalez
Ph.D. 2003, University of Colorado, Colorado Springs

Lori De Looze
Ph.D. 2005, University of Colorado, Colorado Springs

Utpal Sharma
Ph.D. 2007, University of Colorado, Colorado Springs

Mona Soliman Habib
Ph.D. 2008, University of Colorado, Colorado Springs

Isaac Rudomin
Ph.D. 1990, University of Pennsylvania

Marissa Diaz Pier
Ph.D. 2007, Instituto Technologico y de Estudios Superiores de Monterrey

Erik Millan
Ph.D. 2008, Instituto Technologico y de Estudios Superiores de Monterrey

Susanna Wei
Ph.D. 1990, University of Pennsylvania

Catherine Pelachaud
Ph.D. 1991, University of Pennsylvania

Radoslaw Niewiadomski
Ph.D. 2007, University of Perugia

Magalie Ochs
Ph.D. 2007, University of Paris 8

Maurizio Mancini
Ph.D. 2008, Univeristy of Rome 3

Tarek Alameldin
Ph.D. 1991, University of Pennsylvania

Cary Philips
Ph.D. 1991, University of Pennsylvania

Moon Jung
Ph.D. 1992, University of Pennsylvania

Wallace Ching
Ph.D. 1992, University of Pennsylvania

M
yl

op
ou

lo
s

B
ad

le
r

Fi
sh

w
ic

k
K

al
ita

R
ud

om
in

P
el

ac
ha

ud

XIV The Academic Tree of John Mylopoulos

Eunyoung Koh
Ph.D. 1993, University of Pennsylvania

Philip Lee
Ph.D. 1993, University of Pennsylvania

Jianmin Zhao
Ph.D. 1993, University of Pennsylvania

Hyeongseok Ko
Ph.D. 1994, University of Pennsylvania

Kwang-Jin Choi
Ph.D. 2003, Seoul National University

Byoungwon Choe
Ph.D. 2004, Seoul National University

Oh-young Song
Ph.D. 2004, Seoul National University

Seyoon Tak
Ph.D. 2004, Seoul National University

Welton Becket
Ph.D. 1996, University of Pennsylvania

Francisco Azuola
Ph.D. 1996, University of Pennsylvania

Paul Diefenbach
Ph.D. 1996, University of Pennsylvania

Libby Levison
Ph.D. 1996, University of Pennsylvania

Min-Zhi Shao
Ph.D. 1996, University of Pennsylvania

Xinmin Zhao
Ph.D. 1996, University of Pennsylvania

Barry Reich
Ph.D. 1997, University of Pennsylvania

Pei-Hwa Ho
Ph.D. 1998, University of Pennsylvania

Bond-Jay Ting
Ph.D. 1998, University of Pennsylvania

Deepak Tolani
Ph.D. 1998, University of Pennsylvania

Diane Chi
Ph.D. 1999, University of Pennsylvania

Sonu Chopra
Ph.D. 1999, University of Pennsylvania

Rama Bindiganavale
Ph.D. 2000, University of Pennsylvania

John Granieri
Ph.D. 2000, University of Pennsylvania

M
yl

op
ou

lo
s

B
ad

le
r

K

o

The Academic Tree of John Mylopoulos XV

Jianping Shi
Ph.D. 2000, University of Pennsylvania

Liwei Zhao
Ph.D. 2001, University of Pennsylvania

Charles Erignac
Ph.D. 2001, University of Pennsylvania

Rebecca Mercuri
Ph.D. 2001, University of Pennsylvania

Suejung Huh
Ph.D. 2002, University of Pennsylvania

Sooha Lee
Ph.D. 2002, University of Pennsylvania

Koji Ashida
Ph.D. 2003, University of Pennsylvania

Ying Liu
Ph.D. 2003, University of Pennsylvania

Aaron Bloomfield
Ph.D. 2004, University of Pennsylvania

Erdan Gu
Ph.D. 2006, University of Pennsylvania

Seung-Joo Lee
Ph.D. 2006, University of Pennsylvania

Nuria Pelechano
Ph.D. 2006, University of Pennsylvania

Michael Johns
Ph.D. 2007, University of Pennsylvania

Durell Bouchard
Ph.D. 2008, University of Pennsylvania

Jan Allbeck
Ph.D. 2009, University of Pennsylvania

Liming Zhao
Ph.D. 2009, University of Pennsylvania

Nicholas Roussopoulos
Ph.D. 1976, University of Toronto

Jim Coolahn
Ph.D. 1984, University of Maryland

Leo Mark
Ph.D. 1985, Aarhus University

Hyunchul Kang
Ph.D. 1987, University of Maryland

Chanho Moon
Ph.D. 2003, Chung-Ang University

Youngsung Kim
Ph.D. 2005, Chung-Ang University

Daehyun Hwang
Ph.D. 2007, Chung-Ang University

M
yl

op
ou

lo
s

B
ad

le
r

R
ou

ss
op

ou
lo

s

K
an

g

XVI The Academic Tree of John Mylopoulos

Alex Delis
Ph.D. 1993, University of Maryland

Vinay Kanitkar
Ph.D. 2000, Brooklyn Polytechnic University

George Kollios
Ph.D. 2000, Brooklyn Polytechnic University

Je-Ho Park
Ph.D. 2001, brooklyn Polytechnic University

Richard Regan
Ph.D. 2001, Brooklyn Polytechnic University

Zhongqiang Chen
Ph.D. 2001, Brooklyn Polytechnic University

Vassil Kriakov
Ph.D. 2008, Brooklyn Polytechnic University

Chung-Min Chen
Ph.D. 1994, University of Maryland

Kostas Stathatos
Ph.D. 1998, University of Maryland

Yannis Kotidis
Ph.D. 2000, University of Maryland

Manuel Rodriguez
Ph.D. 2001, University of Maryland

Alexandros Labrinidis
Ph.D. 2002, University of Maryland

Mohamed Sharaf
Ph.D. 2007, University of Pittsburgh

Huiming Qu
Ph.D. 2007, University of Pittsburgh

Zhexuan (Jeff) Song
Ph.D. 2003, University of Maryland

Yannis Sismanis
Ph.D. 2004, University of Maryland

Antonis Deligiannakis
Ph.D. 2005, University of Maryland

Dimitris Tsoumakos
Ph.D. 2006, University of Maryland

Richard David Peacocke
Ph.D. 1978, University of Toronto

Michael Bauer
Ph.D. 1978, University of Toronto

Jinhui Qin
Ph.D. 2008, University of Western Ontario

Elvis Viera
Ph.D. 2007, University of Western Ontario

M
yl

op
ou

lo
s

R
ou

ss
op

ou
lo

s

D
el

is
La

br
in

id
is

B
au

er

The Academic Tree of John Mylopoulos XVII

Keith Edwards
Ph.D. 2004, University of Western Ontario

Mechelle Gittens
Ph.D. 2003, University of Western Ontario

Michael Katchabaw
Ph.D. 2002, University of Western Ontario

Andrew Marshall
Ph.D. 2000, University of Western Ontario

Hasina Abdu
Ph.D. 2000, University of Western Ontario

Stephen Howard
Ph.D. 1999, University of Western Ontario

Douglas Williams
Ph.D. 1999, University of Western Ontario

Crispin Cowan
Ph.D. 1995, University of Western Ontario

Douglas Skuce
Ph.D. 1977, McGill University

Timothy Christian Lethbridge
Ph.D. 1994, University of Ottawa

Iyad Zayour
Ph.D. 2002, University of Ottawa

Jelber Sayyad
Ph.D. 2003, University of Ottawa

Abdelwahab Hamout-Lhadj
Ph.D. 2005, University of Ottawa

Adam Murray
Ph.D. 2006, University of Ottawa

Branka Tauzovich
Ph.D. 1988, University of Ottawa

John K. Tsotsos
Ph.D. 1980, University of Toronto

Testsutaro Shibahara
Ph.D. 1985, University of Toronto

Ron Gershon
Ph.D. 1987, University of Toronto

John Barron
Ph.D. 1988, University of Toronto

Steven Beauchemin
Ph.D. 1997, University of Western Ontario

Baozhong Tian
Ph.D. 2006, University of Western Ontario

B
au

er
Ts

ot
os

B
ar

ro
n

Le
th

br
id

ge

S
ku

ce

 M

yl
op

ou
lo

s

XVIII The Academic Tree of John Mylopoulos

Michael R.M. Jenkin
Ph.D. 1988, University of Toronto

Bill Kapralos
Ph.D. 2006, York University

Daniel C. Zikovitz
Ph.D. 2004, York University

Iraj Mantegh
Ph.D. 1998, University of Toronto

Andrew Hogue
Ph.D. 2008, York University

Gregory Dudek
Ph.D. 1991, University of Toronto

Ioannis Rekleitis
Ph.D. 2003, McGill University

Robert Sim
Ph.D. 2004, McGill University

Saul (Shlomo) Slmhon
Ph.D. 2006, McGill University

Lub-Abril Torres-Mendez
Ph.D. 2005, McGill University

Eric Bourque
Ph.D. 2005, McGill University

Dimitris Marinakis
Ph.D. 2009, McGill University

Tet Yeap
Ph.D. 1991, University of Toronto

Guy Ferland
Ph.D. 2001, University of Ottawa

Jongsoo Choi
Ph.D. 2006, University of Ottawa

Jianping Deng
Ph.D. 2007, University of Ottawa

Bin Hou
Ph.D. 2007, Beijing University of Post and Telecomm

Dafu Lou
Ph.D. 2008, University of Ottawa

Neils da Vitoria Lobo
Ph.D. 1992, University of Toronto

Jim X. Chen
Ph.D. 1995, University of Central Florida

Jingfang Wang
Ph.D. 1998, George Mason University

Kenneth L. Alford
Ph.D. 2000, George Mason University

M
yl

op
ou

lo
s

Ts
ot

os

D
ud

ek
Je

nk
in

Y
ea

p
da

 V
ito

ria
 L

ob
o

C
he

n

The Academic Tree of John Mylopoulos XIX

Ying Zhu
Ph.D. 2000, George Mason University

Anthony S. Aquilo
Ph.D. 2006, Georgia State University

Jason A. Pamplin
Ph.D. 2007, Georgia State University

Jeffrey W. Chastine
Ph.D. 2007, Georgia State University

Xiaodong Fu
Ph.D. 2000, George Mason University

Yonggao Yang
Ph.D. 2002, George Mason University

Xusheng Wang
Ph.D. 2003, George Mason University

Duncan McPherson
Ph.D. 2003, George Mason University

Shuangbao Wang
Ph.D. 2004, George Mason University

Jayfus Doswell
Ph.D. 2005, George Mason University

Fahad Alotaiby
Ph.D. 2005, George Mason University

Tianshu Zhou
Ph.D. 2008, George Mason University

Yanling Liu
Ph.D. 2008, George Mason University

Niels Haering
Ph.D. 1999, University of Central Florida

Zarina Myles
Ph.D. 2004, University of Central Florida

Raymond Paul Smith
Ph.D. 2005, University of Central Florida

David Wilkes
Ph.D. 1994, University of Toronto

Gilbert Verghese
Ph.D. 1995, University of Toronto

Yiming Ye
Ph.D. 1997, University of Toronto

Neil D.B. Bruce
Ph.D. 2008, York University

Hector Levesque
Ph.D. 1981, University of Toronto

Peter Patel-Schneider
Ph.D. 1987, University of Toronto

C
he

n

da
 V

ito
ria

 L
ob

o

Ts
ot

os

M
yl

op
ou

lo
s

Zh
u

Le
ve

sq
ue

XX The Academic Tree of John Mylopoulos

Gerhard Lakemeyer

Henrik Grosskreutz
Ph.D. 2001, RWTH Aachen University

Vazha Amiranashvili
Ph.D. 2007, RWTH Aachen University

Alexander Ferrein
Ph.D. 2007, RWTH Aachen University

Guenter Gans
Ph.D. 2008, RWTH Aachen University

Yves Lesperance
Ph.D. 1991, University of Toronto

Bart Selman

Yi-Cheng Huang
Ph.D. 2002, Cornell University

Wei Wei
Ph.D. 2005, Cornell University

Ioannis Vetsikas
Ph.D. 2005, Cornell University

Yannet Interian
Ph.D. 2006, Cornell University

Dale Eric Schuurmans
Ph.D. 1996, University of Toronto

Daniel Lizotte
Ph.D. 2008, University of Alberta

Qin Iris Wang
Ph.D. 2008, University of Alberta

Adam Milstein
Ph.D. 2008, University of Waterloo

Feng Jiao
Ph.D. 2008, University of Waterloo

Dana Wilkinson
Ph.D. 2007, University of Waterloo

Yuhong Guo
Ph.D. 2007, University of Alberta

Tao Wang
Ph.D. 2007, University of Alberta

Linli Xu
Ph.D. 2007, University of Waterloo

Jiayuan Huang
Ph.D. 2007, University of Waterloo

Ali Ghodsi
Ph.D. 2006, University of Waterloo

Ph.D. 1990, University of Toronto

Ph.D. 1990, University of Toronto

S
el

m
an

Le
ve

sq
ue

M
yl

op
ou

lo
s

La
ke

m
ey

er
S

ch
uu

rm
an

s

The Academic Tree of John Mylopoulos XXI

Relu Patrascu
Ph.D. 2004, University of Waterloo

Finnegan Southey
Ph.D. 2004, University of Waterloo

Fletcher Lu
Ph.D. 2003, University of Waterloo

Fuchun Peng
Ph.D. 2003, University of Waterloo

David Mitchell
Ph.D. 2001, University of Toronto

Iluju Kiringa
Ph.D. 2003, University of Toronto

Steven Shapiro
Ph.D. 2004, University of Toronto

Sebastian Sardina
Ph.D. 2005, University of Toronto

Mikhail Soutchanski
Ph.D. 2005, University of Toronto

Ronald Petrick
Ph.D. 2006, University of Toronto

Yongnei Liu
Ph.D. 2006, University of Toronto

Harry K.T. Wong
Ph.D. 1983, University of Toronto

Michele Pilote
Ph.D. 1983, University of Toronto

Sol Greenspan
Ph.D. 1984, University of Toronto

James Delgrande
Ph.D. 1985, University of Toronto

Diana Cukierman
Ph.D. 2003, Simon Fraser University

Jens Happe
Ph.D. 2005, Simon Fraser University

Aaron Hunter
Ph.D. 2006, Simon Fraser University

Bryan Kramer
Ph.D. 1986, University of Toronto

Lawrence K. Chung
Ph.D. 1993, University of Toronto

Nary Subramia
Ph.D. 2003, University of Texas, Dallas

Seshan Ananthanarayanan
Ph.D. 1992, University of Toronto

M
yl

op
ou

lo
s

Le
ve

sq
ue

S
ch

uu
rm

an
s

D
el

gr
an

de

XXII The Academic Tree of John Mylopoulos

Vinay K. Chaudhri
Ph.D. 1994, University of Toronto

Eric Yu

Dimitris Plexousakis
Ph.D. 1996, University of Toronto

Nikos Papadakis
Ph.D. 2004, University of Crete

George Flouris
Ph.D. 2006, University of Crete

Kiriakos Kritikos
Ph.D. 2008, University of Crete

Thodoros Topaloglou
Ph.D. 1996, University of Toronto

Brian Nixon
Ph.D. 1997, University of Toronto

Igor Jurisica
Ph.D. 1997, University of Toronto

Natasha Przulj
Ph.D. 2005, University of Toronto

Niloofar Arshadi
Ph.D. 2007, University of Toronto

Kevin Brown
Ph.D. 2007, University of Toronto

Edward Xia
Ph.D. 2007, University of Toronto

Paul Boutros
Ph.D. 2008, University of Toronto

Homy Dayani-Fard
Ph.D. 2003, Queen’s University

Anastasios Kementsietsidis
Ph.D. 2004, University of Toronto

Yannis Velegrakis
Ph.D. 2004, University of Toronto

Nadzeya Kiyavitskaya
Ph.D. 2006, University of Trento

Nicola Zannone
Ph.D. 2007, University of Trento

Yuan An
Ph.D. 2007, University of Toronto

Sotirios Liaskos
Ph.D. 2008, University of Toronto

Nicola Zeni
Ph.D. 2008, University of Trento

Yudnis Asnar
Ph.D. 2009, University of Trento

Ph.D. 1995, University of Toronto

M
yl

op
ou

lo
s

Ju
ris

ic
a

P
le

xo
us

ak
is

Table of Contents

John Mylopoulos: Sewing Seeds of Conceptual Modelling 1
Michael L. Brodie

Foundations

Foundations of Temporal Conceptual Data Models 10
Alessandro Artale and Enrico Franconi

Faceted Lightweight Ontologies . 36
Fausto Giunchiglia, Biswanath Dutta, and Vincenzo Maltese

The Ontological Level: Revisiting 30 Years of Knowledge
Representation . 52

Nicola Guarino

Some Notes on Models and Modelling . 68
Michael Jackson

A Semantical Account of Progression in the Presence of Defaults 82
Gerhard Lakemeyer and Hector J. Levesque

Social Modeling and i* . 99
Eric S. Yu

Information Systems

Data Modeling in Dataspace Support Platforms . 122
Anish Das Sarma, Xin (Luna) Dong, and Alon Y. Halevy

Conceptual Modeling: Past, Present and the Continuum of the
Future . 139

Nick Roussopoulos and Dimitris Karagiannis

On Conceptual Content Management: Interdisciplinary Insights beyond
Computational Data . 153

Joachim W. Schmidt

Information Integration

Conceptual Modeling for Data Integration . 173
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, and Riccardo Rosati

XXIV Table of Contents

Clio: Schema Mapping Creation and Data Exchange 198
Ronald Fagin, Laura M. Haas, Mauricio Hernández, Renée J. Miller,
Lucian Popa, and Yannis Velegrakis

Heterogeneity in Model Management: A Meta Modeling Approach 237
Matthias Jarke, Manfred A. Jeusfeld, Hans W. Nissen, and
Christoph Quix

Associativity and Commutativity in Generic Merge 254
Rachel Pottinger and Philip A. Bernstein

Web and Services

The History of WebML: Lessons Learned from 10 Years of Model-Driven
Development of Web Applications . 273

Stefano Ceri, Marco Brambilla, and Piero Fraternali

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based
Applications . 293

Dinh Khoa Nguyen, Willem-Jan van den Heuvel,
Mike P. Papazoglou, Valeria de Castro, and Esperanza Marcos

Web Service Composition via the Customization of Golog Programs
with User Preferences . 319

Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith

Software and Requirements Engineering

Dealing with Complexity Using Conceptual Models Based on
Tropos . 335

Jaelson Castro, Manuel Kolp, Lin Liu, and Anna Perini

On Non-Functional Requirements in Software Engineering 363
Lawrence Chung and Julio Cesar Sampaio do Prado Leite

Reasoning About Alternative Requirements Options 380
Axel van Lamsweerde

Supporting Requirements Elicitation through Goal/Scenario
Coupling . 398

Colette Rolland and Camille Salinesi

Enhancing Tropos with Commitments: A Business Metamodel and
Methodology . 417

Pankaj R. Telang and Munindar P. Singh

Table of Contents XXV

Implementations

“Reducing” CLASSIC to Practice: Knowledge Representation Theory
Meets Reality . 436

Ronald J. Brachman, Alex Borgida, Deborah L. McGuinness, and
Peter F. Patel-Schneider

The KBMS Project and Beyond . 466
Vinay K. Chaudhri, Igor Jurisica, Manolis Koubarakis,
Dimitris Plexousakis, and Thodoros Topaloglou

Using the ConGolog and CASL Formal Agent Specification Languages
for the Analysis, Verification, and Simulation of i* Models 483

Alexei Lapouchnian and Yves Lespérance

Author Index . 505

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 1–9, 2009.
© Springer-Verlag Berlin Heidelberg 2009

John Mylopoulos: Sewing Seeds of Conceptual Modelling

Michael L. Brodie

Verizon Services Operations,
117 West Street,

Waltham, MA 02451-1128, USA
michael.brodie@verizon.com

1 Sewing Seeds of Conceptual Modeling

In the summer of 1980 high in the Colorado Rockies the mountain flowers were
blooming, as were ideas of multi-disciplinary conceptual modelling. The Pingree Park
Workshop on Data Abstraction, Database, and Conceptual Modelling [17] marked a
figurative and literal high point in expectations for the exchange between databases,
programming languages, and artificial intelligence (AI) on conceptual modelling.
Quietly hiking amongst the AI, database, and programming language luminaries such as
Ted Codd, Mike Stonebraker, Mary Shaw, Stephen Zilles, Pat Hayes, Bob Balzer, and
Peter Deutsch was John Mylopoulos, a luminary himself who inspired and guided, for
over three decades, the branch of Conceptual Modelling chronicled in this paper.

John’s thoughtful and insightful path started in AI, reached into databases and
programming languages, and then into its more natural home at the time, software
engineering. In this chapter, I chronicle the leadership provided by John to the field of
conceptual modeling. I argue that the conceptual modeling work started thirty years
ago under John’s guidance has had far reaching impact on the research in software
engineering as well as to its practice in the industry. Conceptual modeling will bloom
within the next decade in the form of higher-level programming across all of
Computer Science.

2 A Golden Age in Computer Science

The 1970’s and 1980’s marked a golden age of innovation and invention in
programming languages, databases, and AI. In programming languages, most of the
fundamental programming paradigms used today were invented in that period,
including structured [4], object-oriented, and logic programming, as well as the C
family. Similarly in databases, the fundamental data models used today were invented
then. The Relational Data Model[3] and the Entity Relationship (ER) model[7]
transformed databases and data modelling from hierarchical and linked data structures
to higher level data abstractions that in turn sparked innovation throughout the 1970’s
and 1980’s in data abstraction and semantic data models. AI was emerging from the
First AI Winter into a spring of innovation. Semantic nets, which had emerged in the
1950’s and 1960’s [1][2] in psychology and language translation, re-emerged as a
focus of AI research in the 1980’s leading to knowledge revolution into expert
systems, knowledge-based systems, and knowledge engineering. At this one
remarkable time the AI, database, and programming language worlds were all in a

2 M.L. Brodie

golden age of innovation and invention. While modelling was already an interest in
each area, this period marked a Golden Age in the emergence of conceptual
modelling due to a confluence of several important developments.

3 The Emergence of Data Modelling

The 1970’s were a period of major growth in automation of business applications that
led to a dramatic growth in data and transaction volumes that has continued ever since
consistently exceeding Moore’s Law. This growth was spurred by both demand – the
need to automate, and supply – the emergence of database technology. This growth
drove the need for data management across an increasingly larger range of business
applications and the requirement to model increasingly complex business entities and
processes. Database technology became one of the most successful technologies and
the bedrock of modern business applications. Yet at the time, the physical and logical
database concepts were just emerging.

Prior to the 1970’s databases managed data stores of data records and focused on
optimizing physical aspects of data storage and retrieval. The emergence of databases
as a core tool of business applications led to the need to model business entities as
real world business entities rather than mere data records. A basic principle of the
emerging database discipline was shared data – a database would manage data for
multiple applications. Not only must business entities be modeled in terms of business
as opposed to storage, the business entities must be understandable by multiple,
possibly unanticipated, applications. Another core database principle was persistence,
namely that databases would represent business entities over long periods of time.
The requirements to represent business entities logically rather than physically so that
they could be shared by multiple applications over long periods of time led to a new
research area called data modelling and the search for more expressive data models.
How should business entities be modeled? How much real world information should
be represented? Where should data modelers turn for inspiration?

In the 1970’s, the database world advanced data modelling from the physical level
to a more logical level. Since the mid1950’s data had been modeled in hierarchically
linked data records that represented logical parent:child or 1:N relationships to take
advantage of the underlying hierarchical data structures used for storage and retrieval.
In 1965 the CODASYL model was introduced to represent more complex data N:M
relationships amongst records. While this model increased the expressive power of
relationships, it retained many physical aspects. In 1969 Ted Codd made a Turing
Award level break-through with the Relational Data Model[3] with which entities and
relationships were represented as values in tables, eliminating most physical details
and raising data modelling to a new, higher logical level. This was rapidly followed
by the ER Model [7] that explicitly permits the modelling of business entities and the
relationships amongst them. The relational data model rapidly became adopted as the
dominant database model used in the vast majority of database in use today and
the ER model became the dominant basis for data modelling, however data modelling
at the ER level is practiced by less than 20% of the industrial database world[30], for
reasons discussed later.

 John Mylopoulos: Sewing Seeds of Conceptual Modelling 3

As the 1970’s ended we had an explosion of demand for data management and data
modelling, a move towards more logical data models, the emergence of data
modelling, and the belief by many data modelers that more expressive models were
required. So began a multi-disciplinary pursuit of modeling that had seeds at the
Department of Computer Science (DCS) at the University of Toronto (UofT).

4 Seeds of Conceptual Modelling at UofT

The Golden Age in Computer Science was well under way at UofT in all areas of
computing including AI, databases, and programming languages. John Mylopoulos
was building an AI group, Dennis Tsichritzis was building a database group, and Jim
Horning led the programming language / software engineering group. All three
research groups were amongst the top five research groups in their respective areas.
The multi-disciplinary direction at the university was already active in DCS across
these groups in sharing courses, students, and ideas, focusing largely on modelling.

This is when John’s passion for modelling, his deep insights, and his quiet
guidance took root first at DCS and then beyond. From 1975 to 1980 John supervised
many PhDs on modelling topics that drew on AI, databases, and programming
languages, or more precisely software engineering. Nick Rossopoulos’s 1975 thesis
defined one of the first semantic data models[5], which was presented at the
International Conference on Very Large Databases in its first session that focused on
data modeling and that introduced the ER model[7] as well as two other approaches to
conceptual modeling [8][9].

Michael Brodie’s 1978 thesis applied programming language data types and AI
logical expressions to enhance database semantic integrity augmented by AI
modelling concepts to enhance the expressiveness of database schemas and databases.
Dennis Tsichritzis, John Mylopoulos, and Jim Horning jointly supervised the work
with additional guidance from Joachim Schmidt, the creator of Pascal-R, one of the
first database programming languages (DB-PL).

Sol Greenspan’s 1980 thesis applied techniques from knowledge representation to
formalize the semantics of the SADT software engineering modelling methodology.
The resulting paper [16] received the 10-year best paper award due to its adoption by
the object-oriented community as a basis for formalizing object-oriented analysis that
lead to UML.

While John made many more such contributions, such as Taxis[19], a model for
information systems design, and others described elsewhere in this book, the seeds
that he sewed in the late 1970’s led to a wave of multi-disciplinary modelling efforts
in the 1980’s beyond UofT.

5 Conceptual Modelling in AI, DB, and PL

The programming language community was first to reach out to the database
community to investigate the applicability programming language data type and data
structures to data modeling in databases[11]. The leading candidate to share with
databases was the programming language notion of data abstraction that came out
of structured programming [4] and manifested in abstract data types[5] and that

4 M.L. Brodie

led to object-orientation. This interaction contributed to the Smith’s aggregation –
generalization data model[12][13] and data modelling methods [14] that were widely
accepted in the database community.

The success of the DB-PL interactions on data abstraction and the AI-DB-PL work
at UofT, inspired by John Mylopoulos, contributed to the belief that AI, database, and
programming languages had mutual interests in data types, data abstraction, and data
modelling. This led John Mylopoulos, Michael Brodie, and Joachim Schmidt to hold
a series of workshops and to initiate a Springer Verlag book series entitled Topics in
Information Systems both dedicated to exploring concepts, tools, and techniques for
modelling data in AI (knowledge representation), databases (data modelling), and
programming languages (data structures/programming).

The Pingree Park Workshop on Data Abstraction, Databases, and Conceptual
Modelling was the highlight of the series. Innovative and influential researchers from
AI, databases, and programming languages came with high expectations of mutually
beneficial results. The workshop provided area overviews focusing on data modelling
aspects and initiated multi-disciplinary debates on challenging issues such as data
types, constraints, consistency, behavior (process) vs data, and reasoning in
information systems. The proceedings were jointly published in SIGART, SIGPLAN,
and SIGMOD[17].

The Intervale workshop on data semantics moved beyond Pingree Park Worshop’s
focus on data types as means of data modelling, data structuring, and knowledge
representation, to comparing AI, database, and programming language models and
methods for addressing data semantics in information systems. The results of the
workshop[18] were more applicable to and had a greater impact in the AI and
databases than they did in programming languages. Logic programming and datalog
were introduced in this discussion and was pursued in a later, related, and similarly
multi-disciplinary workshop[21].

The Islamorada Workshop Large Scale Knowledge Base and Reasoning
Systems[20] extended the Pingree discussion on data types, and the Intervale
discussion on modelling data semantics to conceptual modelling in the large -
comparing AI knowledge base management systems with database systems[23] and
addressed modelling and reasoning in large scale systems.

6 The Contributions of Early Conceptual Modelling

The conceptual modelling workshops and book series contributed to developments in
all three areas: semantic data models in databases; object-orientation and UML in
programming languages; and knowledge representations such as description logics
in AI. Yet, as we will see later, conceptual modelling had a more natural home in
software engineering, where John Mylopoulos had sewn conceptual modelling seeds
that flourished for two decades. But again more on that later.

While attempts were made in the database community to investigate the potential
of abstract data types[15] for modelling and correctness in databases, data types and
abstract data types did not gain a footing in database management systems. The DB-
PL research domain continued with the annual International Workshop on Database
Programming Languages continuing to this day. Similarly databases and database

 John Mylopoulos: Sewing Seeds of Conceptual Modelling 5

abstractions did not gain a foothold in programming languages. One measure of the
successful adoption of a technology is whether the technology is crosses the
chasm[25], i.e., adopted by more than the “innovators” and early adopters who
constitute less than 15% of the relevant market. In fact, to this day even ER modelling
is not widespread in industrial database design [30].

There was a resurgence of interests in abstract data types, and data types in
databases in the late 1980’s that led to object-oriented databases. The debate that
ensued [24] argued the challenges of implementing and using object-orientation in
database systems based on the history of relational database management systems.
Object-oriented databases died as a research area, but some aspects of objects were
incorporated into the object-relational model. IBM made a large investment to
incorporate object-relational characteristics into their flagship DBMS, DB2. The
systems work required to modify DB2 was enormous and few DB2 customers ever
used the object-relational features, just as predicted [24].

A Holy Grail of computing is higher level programming to provide humans with
models that are more relevant to the problem domain at hand and to raise the level of
modelling and interaction so that, to use IBM’s famous motto, people can think and
computers can work; and as Ted Codd said for the relational model, to provide greater
scope for database and systems optimization by the database management system. So
why would conceptual modelling not be adopted by the database world?

My experience with over 1,500 DBAs in a large enterprise and in the broader
world of enterprise databases suggests a clear answer. Database design constitutes
less than 1% of the database life cycle. Databases tend to be designed over a period of
months and then operated for years, sometimes 30, or 40 years. ER modelling is used
by a small percentage of practical database designers largely as a tool for analysis and
documentation. Once the database design is approved it is compiled into relational
tables. Thereafter there is no connection between the ER-based design and the
relational tables. During essentially the full life of the database, DBAs must deal with
the tables. Databases evolve rapidly in industry. Hence, soon after the database is
compiled it is enhanced at the table level and is no longer consistent with the original
ER design, had there been one. If, however, the relational tables were kept exactly in
sync with the higher-level model so that any changes to one was reflect equivalently
in the other, often called “round-trip engineering”, the story would be much different.
There are additional reasons why conceptual models have not been adopted in the
mainstream database industry. The world of Telecommunications billing is extremely
complex with literally thousands of features, regulatory rules, banking and credit
rules, telecommunications services, choices, and packages. Not only do these features
change on a daily basis, the nature of the telecommunications industry and technology
leads to fundamental changes in the billing for services. Billing databases are
enormous, live for decades, and contain a telecommunication organization’s crown
jewels. Large telecommunication organizations have many billing systems (hundreds
is not uncommon) that must be integrated to provide integrated billing. And there are
1,000s of Telcos. A similar story could be told in ten other areas of
telecommunications and in virtually every other industry. ER or conceptual models
simply do not (yet) address these large-scale, industrial modelling issues, and if they
did, their lack of round-trip engineering would significantly limit their utility.

6 M.L. Brodie

A recurring lesson in computer science, that has been reinforced in conceptual
modeling, is one that originated in philosophy and was adopted by psychology
(associative memory), and later language translation[1][2] and reasoning [10] –
namely that knowledge can probably be represented using nodes and links or
semantic nets as they were originally called in AI. The conceptual modelling work
surveyed above has contributed to the development of the node-link model in several
areas. While possibly not motivated by those roots, the database world produced
many node-link-based conceptual and semantic data models, the most predominant
being Chen’s ER model[7]. Chen’s model has been the most widely adopted to date
probably due to its simplicity and tractability. Yet the ER model lacks the expressive
power to address the above modeling challenges of the data in telecommunication
organizations. A far more expressive node-link-based model is description logics
from AI, yet it poses usability issues for industrial database designers. Another area of
resurgence of node-link-based knowledge representation is the semantic web. While
the first stage of the semantic web was dominated by complex ontologies[28], there is
a movement to adopt a far simpler model for augmenting Web resources with meta
data, called the Open Links Data[29], which Tim Berners-Lee, the inventor of the
web and the co-inventor of the Semantic Web, views as the future direction of the
semantic web. The lesson here is not so only the recurrence of the node-link-based
model, but also that “A little semantics goes a long way.”1

7 Conceptual Modelling in Software Engineering and Beyond

The enduring discussion on data and process modelling that started in the 1970’s was
really between the database and the AI communities[22], sparked and nurtured by
John Mylopoulos. John had a deep understanding of the conceptual modeling
challenges and opportunities as well as a catholic knowledge of computer science.
While his background was in AI, he also understood programming languages from his
studies at Princeton, and was present at the birth of relational databases in the 1970’s.
For the decades from 1979 to 2009 John was key to most of the developments in
conceptual modelling either directly as a contributor or indirectly as a mentor and
connector across communities – across AI, database, and software engineering
communities, and across various AI factions, for example, Europe vs. North America
or description logics vs. datalog.

John also realized that it was the software engineering community that focused on
the initial design and modelling stage of the database life cycle. It is also concerned
with logical and physical requirements, specification of integrity and data quality, and
the evolution of data, process and other models. Indeed, data modelling is now
considered a software engineering activity rather than a database activity, as data
modelling is an integral component with process modelling in the information
systems life cycle.

John pursued conceptual modelling as a software engineering activity in the early
1980’s when he supervised PhD theses[16][19] that contributed to mainstream

1 Profound and now famous remark by Jim Hendler, Tetherless World Chair of Computer

Science, Rensselaer Polytechnic Institute.
 http://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html

 John Mylopoulos: Sewing Seeds of Conceptual Modelling 7

software engineering such as the languages and methods surrounding UML. Hence,
the software engineering community became the beneficiary of conceptual modelling
and extended it to address software engineering issues, discussed elsewhere in this
volume.

Now the story gets better as John Mylopoulos probably realized long ago. To
return to the programming Holy Grail, humans should use high-level representations
that permit them to understand the system in logical, human terms as opposed to
machine level terms. Higher-level representations enable better design, analysis,
monitoring, adaptation, and manipulation. Not only are higher-level representations
more understandable by humans, they are also less error prone and lead to
considerably higher productivity.

The challenge in achieving higher-level programming is to map the higher-level
representations onto machine level representations precisely (i.e., the same
semantics), equivalently (modifications in one map to semantically equivalent
changes in the other), and in ways that are optimal and scalable as the system evolves
in capability and grows in data and transaction volumes.

In 2001 OMG launched the Model-driven architecture (MDA) initiative to strive
towards this long sought after Holy Grail. MDA is a software engineering approach
for information systems development that uses models to guide systems architecture
design and implementation with the objective of developing and maintaining a direct
connection between the high-level model and the executable representations, to
achieve the desired round-trip engineering. But you need more than a direct
connection, i.e., equivalence between the high- and low-level models. Information
systems evolve rapidly. Hence, changes to the high-level model, required to meet
changing logical requirements must be reflected in the low-level model and changes
in the low level model for optimization must be reflected equivalently in the high-
level model. This capability is called agile or adaptive software development.

MDA and agile software development objectives are becoming adopted in industry
with projections that initial results will be ready for industrial use in 2012. For
example, Microsoft has announced support of MDA by Oslo[30] that is a forthcoming
model-driven application platform.

Once MDA and agile software development are in industrial use, the entire
systems life cycle can operate simultaneously at two levels – high-level models for
human understanding, analysis, and modification and the executable level. This will
address the lack of round trip engineering that limit the utility of today’s modelling
systems. At that point the modelling concepts that initiated with Conceptual
Modelling, many inspired directly or indirectly by John Mylopoulos, will be directly
usable across the life cycle and computing will move to a higher level – to domain
models such as Telecom billing and airline reservations - and these models will be
constructed with concepts, tools, and techniques that evolved from the seeds sewn in
the Golden Age on computing. This will bring models and modelling to a more
professional level in which models are developed by modelling experts and are
standardized for reuse in the respective industry to address many of today’s
integration and semantic challenges.

8 M.L. Brodie

8 And Beyond That

For three decades John Mylopoulos quietly inspired generations of researchers in the
ways of conceptual modelling from his base at the University of Toronto. His vision,
persistence, and insight quietly directed theses, researchers, and indeed the conceptual
modelling area with contributions to AI, databases, programming languages, and
software engineering. This too will get better. John is continuing his path from a new
base in the mountains of Trento, Italy and soon the results of his efforts – the flowers
from the seeds sewn over the three decades – will be accessible to all of computing
and modelling itself will become a professional domain with John as one of its major
contributors.

I am grateful for John’s friendship, wisdom, and his quiet way of being – open and
willing to talk and inspire us all.

References

[1] Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of verbal
learning and verbal behavior 8(2), 240–248 (1969)

[2] Collins, A.M., Quillian, M.R.: Does category size affect categorization time? Journal of
verbal learning and verbal behavior 9(4), 432–438 (1970)

[3] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun.
ACM 13(6), 377–387 (1970)

[4] Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic Press,
London (1972)

[5] Liskov, B., Zilles, S.N.: Programming with Abstract Data Types. SIGPLAN Notices
(SIGPLAN) 9(4), 50–59 (1974)

[6] Roussopoulos, N., Mylopoulos, J.: Using Semantic Networks for Database Management.
In: VLDB 1975, pp. 144–172 (1975)

[7] Chen, P.P.: The Entity-Relationship Model: Toward a Unified View of Data. In: VLDB
1975, p. 173 (1975)

[8] Navathe, S.B., Fry, J.P.: Restructuring for Large Data Bases: Three Levels of
Abstraction. In: VLDB 1975, p. 174 (1975)

[9] Senko, M.E.: Specification of Stored Data Structures and Desired Output Results in
DIAM II with FORAL. In: VLDB 1975, pp. 557–571 (1975)

[10] Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing.
Psychological Review 82(6), 407–428 (1975)

[11] Organic, E.I.: Proceedings of the 1976 Conference on Data, Abstraction, Definition and
Structure, SIGPLAN Notices, Salt Lake City, Utah, United States, March 22 - 24,
vol. 11(2) (1976)

[12] Smith, J.M., Smith, D.C.P.: Database Abstractions: Aggregation and Generalization.
ACM Trans. Database Syst. (TODS) 2(2), 105–133 (1977)

[13] Smith, J.M., Smith, D.C.P.: Database Abstractions: Aggregation. Commun. ACM
(CACM) 20(6), 405–413 (1977)

[14] Smith, J.M., Smith, D.C.P.: Principles of Database Conceptual Design. Data Base Design
Techniques I, 114–146 (1978)

[15] Brodie, M.L., Schmidt, J.W.: What is the Use of Abstract Data Types? In: VLDB 1978,
pp. 140–141 (1978)

[16] Greenspan, S.J., Mylopoulos, J., Borgida, A.: Capturing More World Knowledge in the
Requirements Specification. In: ICSE 1982, pp. 225–235 (1980)

 John Mylopoulos: Sewing Seeds of Conceptual Modelling 9

[17] Brodie, M.L., Zilles, S.N. (eds.): Proceedings of the Workshop on Data Abstraction,
Databases and Conceptual Modelling, Pingree Park, Colorado, June 23-26 (1980);
SIGART Newsletter 74 (January 1981), SIGMOD Record 11(2) (February 1981),
SIGPLAN Notices 16(1) (January 1981) ISBN 0-89791-031-1

[18] Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.): On Conceptual Modelling,
Perspectives from Artificial Intelligence, Databases, and Programming Languages, Book
resulting from the Intervale Workshop 1982, Topics in Information Systems. Springer,
Heidelberg (1984)

[19] Mylopoulos, J., Borgida, A., Greenspan, S.J., Wong, H.K.T.: Information System Design
at the Conceptual Level - The Taxis Project. IEEE Database Eng. Bull. 7(4), 4–9 (1984)

[20] Brodie, M.L., Mylopoulos, J. (eds.): On Knowledge Base Management Systems:
Integrating Artificial Intelligence and Database Technologies, Book resulting from the
Islamorada Workshop 1985, Topics in Information Systems. Springer, Heidelberg (1986)

[21] Schmidt, J.W., Thanos, C. (eds.): Foundations of Knowledge Base Management:
Contributions from Logic, Databases, and Artificial Intelligence, Book resulting from the
Xania Workshop 1985. Topics in Information Systems. Springer, Heidelberg (1989)

[22] Brodie, M.L., Mylopoulos, J. (eds.): Readings in Artificial Intelligence and Databases.
Morgan Kaufmann, San Mateo (1989)

[23] Brodie, M., Mylopoulos, J.: Knowledge Bases and Databases: Current Trends and Future
Directions. In: Karagiannis, D. (ed.) IS/KI 1990 and KI-WS 1990. LNCS, vol. 474.
Springer, Heidelberg (1991)

[24] Stonebraker, M., Rowe, L.A., Lindsay, B., Gray, J., Carey, M., Brodie, M., Bernstein, P.,
Beech, D.: Third Generation Data Base System Manifesto” (with). ACM SIGMOD
Record 19(3) (September 1990)

[25] Crossing the Chasm: Marketing and Selling High-tech Products to Mainstream
Customers (1991, revised 1999) ISBN 0-06-051712-3

[26] Stonebraker, M., Moore, D.: Object-Relational DBMSs: The Next Great Wave. Morgan
Kaufmann, San Francisco (1996)

[27] The history of conceptual modeling, http://cs-exhibitions.uni-klu.ac.
at/index.php?id=185

[28] OWL Web Ontology Language Reference, W3C Recommendation (February 10, 2004),
http://www.w3.org/TR/owl-ref/

[29] Berners-Lee, T., et al.: Linked Data: Principles and State of the Art, keynote. In: 17th
International World Wide Web Conference, Beijing, China, April 23-24 (2008)

[30] Hammond, J.S., Yuhanna, N., Gilpin, M., D’Silva, D.: Market Overview: Enterprise Data
Modeling: A Steady State Market Prepares to Enter A transformational New Phase. In:
Forrester Research, October 17 (2008)

Foundations of Temporal
Conceptual Data Models

Alessandro Artale and Enrico Franconi

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
{artale,franconi}@inf.unibz.it

Abstract. This chapter considers the different temporal constructs ap-
peared in the literature of temporal conceptual models (timestamping
and evolution constraints), and it provides a coherent model-theoretic
formalisation for them. It then introduces a correct and succinct en-
coding in a subset of first-order temporal logic, namely DLRUS – the
description logic DLR extended with the temporal operators Since and
Until. At the end, results on the complexity of reasoning in temporal
conceptual models are presented.

1 Introduction

Conceptual data models describe an application domain in a declarative and
reusable way while constraining the use of the data by understanding what can
be drawn from it. A number of conceptual modelling languages has emerged
as de facto standards; in particular, we mention entity-relationship (ER) for the
relational data model, UML and ODMG for the object-oriented data model, and
RDF and OWL for the web ontology languages.

We consider here conceptual modelling languages able to represent
dynamic and evolving information in the context of temporal databases
[21, 26, 27, 32, 33, 38–40]. We provide in this chapter a mathematical foun-
dation for them by summarising the various efforts appeared in the literature
[4, 7, 23, 34, 35]. The main temporal modelling constructs we analyse can be
distinguished in two main categories, timestamping and evolution constraints.
To support timestamping, the data model should distinguish between tempo-
ral and atemporal modelling constructors; this is usually realised by a temporal
marking of classes, relationships and attributes that translates into a timestamp-
ing mechanism in the corresponding database. A data model supports evolution
constraints if it is able to keep track of how the domain elements evolve along
time. In particular, status classes describe how elements of classes change their
status from being a potential member till they cease forever to be member of
the class; transitions deal with the fact that an object may migrate from one
class to another one; while generation constraints describe processes that are
responsible for the creation/disappearance of objects from classes.

The formalisation is based on a model-theoretic semantics that captures the
meaning of both timestamping and evolution constraints. The semantics is ob-
tained as a temporal extension of the model-theoretic semantics associated to

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 10–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Foundations of Temporal Conceptual Data Models 11

conceptual models [14, 18]. The advantage of associating a set-theoretic seman-
tics to a language is not only to clarify the meaning of the language constructors
but also to give a semantic definition to relevant modelling notions. In particular,
we are able to give a rigorous definition to the notions of: schema satisfiability
– when a schema admits a non empty interpretation which guarantees that the
constraints expressed by the schema are not contradictory; class and relation-
ships satisfiability – when a class or a relation admits at least an interpretation
in which it is not empty; logical implication when a new (temporal) constraint
is necessarily true in a schema even if not explicitly mentioned; and finally the
special case of logical implication involving subsumption between classes (resp.
relationships) – when the interpretation of a class (resp. relationship) is neces-
sarily a subset of the interpretation of another class (resp. relationship).

Building on the provided model-theoretic semantics we provide a correspon-
dence between temporal conceptual models and logical theories expressed in a
fragment of first order temporal logic, namely as a Description Logics (DLs)
theory. DLs allow for the logical reconstruction and the extension of conceptual
models (see [9, 14, 19]). The advantage of using a DL to formalise a concep-
tual data model lies basically on the fact that complete logical reasoning can
be employed using an underlying DL inference engine to verify a conceptual
specification, to infer implicit facts and stricter constraints, and to manifest
any inconsistencies during the conceptual design phase. In addition, given the
high complexity of the modelling task when complex data are involved, there
is the demand for more sophisticated and expressive languages than for nor-
mal databases. Again, DL research is very active in providing more expressive
languages for conceptual modelling (see [13, 14, 17, 18, 18, 19, 24, 31]).

In this context, we consider the temporal description logic DLRUS [5], a com-
bination of the expressive and decidable description logic DLR [17] (a description
logic with n-ary relationships) with the linear temporal logic with temporal op-
erators Since (S) and Until (U) which can be used in front of both classes and
relations. We use DLRUS both to capture the temporal modelling construc-
tors in a succinct way, and to use reasoning techniques to check satisfiability,
subsumption and logical implication. The mapping towards DLs presented in
this chapter builds on top of a mapping which has been proved correct in [3, 4]
while complexity results and algorithmic techniques can be found in [1, 5, 11].
Even if full DLRUS is undecidable we address interesting modelling scenarios
where subsets of the full DLRUS logic is needed and where reasoning becomes
a decidable problem.

The chapter is organised as follows. Section 2 describes the temporal con-
structs that will be the subject of the formalisation. Section 3 shows the mod-
elling requirements that lead us to elaborate the rigorous definition of the
framework presented here. Section 4 introduces the model-theoretic semantics
and the notions of satisfiability, subsumption and logical implication for temporal
conceptual models. The two Sections 5, 6 are the core sections where we describe
how timestamping and evolution constraints can be formalised. After present-
ing the DLRUS logic in Section 7 we proceed with a DLRUS encoding of the

12 A. Artale and E. Franconi

Department S InterestGroup

OrganizationalUnit

d

Member S

(1,n)

org

mbr
Employee S

Name(String)

S

PaySlipNumber(Integer)

S Salary(Integer)

T

Manager T

TopManagerAreaManager

Works-for T

(3,n)

act

emp

Project

ProjectCode(String)

S

Manages
man

(1,1)

prj

(1,1)

Fig. 1. The Company example

various temporal constructs in Section 8. Section 9 investigates the complexity of
reasoning over temporal conceptual models and presents various scenarios where
sound, complete and terminating procedures can be used. In Section 10 we state
our final remarks.

2 Temporal Modelling Constructors

Temporal constructs are usually added to the classical constructs to capture the
temporal behaviour of the different components of a conceptual schema. In this
chapter we distinguish them in two generic classes: Timestamping and Evolution
constructs.

Timestamping. It is concerned with the discrimination at the schema level
between those elements of the model that change over time and others that are
time invariant. Timestamping applies to classes, relationships and attributes.
Data models should allow for both temporal and atemporal modelling construc-
tors. Timestamping for attributes allows keeping how an attribute of a given
object changes over time. For example (see Figure 1), the salary of an employee
emp-123 has value “2.5K $” for the period from 01/2004 to 12/2005, then “3.0K
$” from 01/2006 to 12/2007, then “3.2K $” from 01/2008 to 12/2009.

Similarly, temporal periods can characterise an object or relationship in-
stance as a whole rather than through its attributes. Membership in a class
(relationship) can be characterised as limited in time or, vice versa, global—
possibly modelling legacy classes (relationships). For example, the company
schema (Figure 1) models the membership of objects in the Employee class
as time-invariant while objects in the Manager class have a limited lifespan
as member of that class. Timestamping is the basis for associating the no-
tion of lifecycle [37] to the object/relationship instances as members of a given
class/relationship (more details are given in Section 6.1). Section 5 shows how
evolution constraints can be formalised.

Foundations of Temporal Conceptual Data Models 13

Evolution Constraints. They control the mechanism that rules dynamic as-
pects, i.e., what are the permissible transitions from one state of the database
to the next one [6, 7, 22, 38]. When applied to classes we talk about Object
Migration, i.e., the evolution of an object from being member of a class to be-
ing member of another class [29]. For example, an object in the Employee class
may migrate to become an object of the Manager class or an object of the
AreaManager class can evolve into a TopManager class. When object migration
combines with timestamping we talk about Status Classes. In this case we spec-
ify constraints on the membership of an object in a class by splitting it into
periods according to a given classification criterion. For example, existence of a
manager object in the Manager class can include periods where the object is an
active member of the class (e.g., the manager is currently on payroll), periods
where its membership is suspended (e.g., the manager is on temporary leave),
and a period where its membership is disabled (e.g., the manager has left the
company) [22]. The notion of status for classes allows also for a fine grained no-
tion of lifecycle which can now depend on the membership to a particular status
of a class.

Evolution-related knowledge may be conveyed also through relationships.
Generation relationships [28] between objects of class A and objects of class
B (possibly equal to A) describe the fact that objects in B are generated by ob-
jects in A. For example, in a company database, the splitting of a department
translates into the fact that the original department generates two (or more) new
departments. Clearly, if A and B are temporal classes, a generation relationship
with source A and target B entails that the lifecycle of a B object cannot start
before the lifecycle of the related A object. This particular temporal framework,
where related objects do not coexist in time, is a form of, so called, across-time
relationships [7, 38]. Section 6 shows how timestamping can be formalised.

In the conceptual modelling literature, different notion of ’time’ have been
considered. Notably, the most relevant distinction is between the so called valid
time—which is the time when a property holds, i.e., it is true in the representa-
tion of the world—and transaction time—which records the history of database
states rather than the world history, i.e., it is the time when a fact is current in
the database and can be retrieved. In the following, we will consider both times-
tamping and evolution constructs as ranging over the valid time dimension.

3 Modelling Requirements

This Section briefly illustrates the requirements that are frequently advocated
in the literature on temporal data models when dealing with temporal con-
straints [34, 38].

– Orthogonality. Temporal constructors should be specified separately and in-
dependently for classes, relationships, and attributes. Depending on appli-
cation requirements, the temporal support must be decided by the designer.

– Upward Compatibility. This term denotes the capability of preserving the
non-temporal semantics of conventional (legacy) conceptual schemas when
embedded into temporal schemas.

14 A. Artale and E. Franconi

– Snapshot Reducibility. Snapshots of the database described by a temporal
schema are the same as the database described by the same schema, where
all temporal constructors are eliminated and the schema is interpreted atem-
porally. Indeed, this property specifies that we should be able to fully rebuild
a temporal database by starting from the single snapshots.

These requirements are not so obvious when dealing with evolving objects. The
formalisation carried out in this chapter provides a data model able to respect
these requirements also in presence of evolving objects. In particular, orthogo-
nality affects mainly timestamping [37] and our formalisation satisfies this prin-
ciple by introducing temporal marks that could be used to specify the temporal
behaviour of classes, relationships, and attributes in an independent way (see
Section 5). Upward compatibility and snapshot reducibility [34] are strictly re-
lated. Considered together, they allow to preserve the meaning of atemporal
constructors. In particular, the meaning of classical constructors must be pre-
served in such a way that a designer could either use them to model classical
databases, or when used in a genuine temporal setting their meaning must be
preserved at each instant of time. We enforce upward compatibility by using
global timestamps over legacy constructors (see Section 5). Snapshot reducibil-
ity is hard to preserve when dealing with generation relationships where involved
object may not coexist. We enforce snapshot reducibility by a particular treat-
ment of relationship typing (see Section 6.3).

4 A Formalisation of Temporal Data Models

To give a formal foundation to temporal conceptual models we briefly describe
here how to associate a textual syntax to a generic EER/UML modelling lan-
guage. Having a textual syntax at hand will facilitate the association of a
model-theoretic semantics. In the next sections we will take advantage of such a
model-theoretic temporal semantics to formally describe the temporal constructs
we are interested in.

We consider a temporal conceptual model over a finite alphabet, L, partitioned
into the sets: C (class symbols), A (attribute symbols), R (relationship symbols),
U (role symbols), and D (domain symbols). We consider n-ary relationships
where roles from the U alphabet are used to distinguish the different components
of a relationship, i.e., an n-ary relationship, R, connecting the (not necessarily
distinct) classes C1, . . . , Cn, is defined as R = 〈U1 : C1, . . . , Un : Cn〉. Standard
EER/UML constructs can also be textually defined, like Attributes for both
classes and relationships (we use the notation att(C) = 〈A1 : D1, . . . , Ah : Dh〉
to denote all the attributes of a class C, and similarly for attributes of relation-
ships); Participation Constraints denoting the cardinality in the participation
of a class into a relationship; Isa for both classes and relationships (denoted as
C1isaC2 or R1isaR2, respectively); Disjointness and Covering constraints over
a class hierarchy. For a complete set of EER/UML constructs and their textual
definition we refer to [3, 4, 19].

Foundations of Temporal Conceptual Data Models 15

In Figure 1 we show our running example of an EER schema for a company
database where classes and relationships are denoted by boxes and diamonds,
respectively; directed arrows stand for isa; double arrows denote a covering con-
straint; a circled ‘d’ denotes a disjoint hierarchy; participation constraints are
indicated with numbers in round brackets; timestamps are denoted with S (snap-
shot) and T (temporary).

The model-theoretic semantics that gives a foundation to temporal mod-
elling languages adopts the so called snapshot1 representation of abstract tem-
poral databases and temporal conceptual models [20]. Following the snapshot
paradigm, relations of a temporal database are interpreted by a mapping func-
tion depending on a specific point in time. The flow of time T = 〈Tp, <〉, where
Tp is a set of time points (or chronons) and < is a binary precedence relation on
Tp, is assumed to be isomorphic to either 〈Z, <〉 or 〈N, <〉. Thus, a standard re-
lational database can be regarded as the result of mapping a temporal database
from a specific time point in T to an atemporal database, with the assumption
that the interpretation of both constants and the domain are invariant over time.

Definition 1 (Temporal Schemas Semantics). Let Σ be a temporal schema.
A temporal database state for the schema Σ is a tuple B = (T , ΔB∪ΔB

D, ·B(t)),
such that: ΔB is a nonempty set of abstract objects disjoint from ΔB

D; ΔB
D =⋃

Di∈D ΔB
Di

is the set of basic domain values used in the schema Σ; and ·B(t) is
a function that for each t ∈ T maps:

– Every basic domain symbol Di into a set D
B(t)
i = ΔB

Di
.

– Every class C to a set CB(t) ⊆ ΔB.
– Every relationship R to a set RB(t) of U-labeled tuples over ΔB—i.e., let

R = 〈U1 : C1, . . . , Un : Cn〉 be an n-ary relationship connecting the classes
C1, . . . , Cn, then, ∀t ∈ T .∀r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈
{1, . . . , n}.oi ∈ C

B(t)
i). We adopt the convention: 〈U1 : o1, . . . , Un : on〉 ≡

〈o1, . . . , on〉, when U-labels are clear from the context.
– Every attribute A to a set AB(t) ⊆ ΔB × ΔB

D, such that, for each C ∈ C,
if att(C) = 〈A1 : D1, . . . , Ah : Dh〉, then, ∀t ∈ T .∀o ∈ CB(t) → (∀i ∈
{1, . . . , h}, ∀ai.〈o, ai〉 ∈ A

B(t)
i → ai ∈ D

B(t)
i).

B is said a legal temporal database state if it satisfies all of the constraints
expressed in the schema2.

Given such a set-theoretic semantics we are able to rigorously define some rele-
vant modelling notions such as satisfiability, subsumption and derivation of new
constraints by means of logical implication.

Definition 2. Let Σ be a schema, C ∈ C a class, and R ∈ R a relationship.
The following modelling notions can be defined:
1 The snapshot model represents the same class of temporal databases as the so called

timestamp model [33, 34] which adds a temporal attribute to each relation [20].
2 We don’t report here the semantics for temporal constraints since they will be dis-

cussed in details in the next Sections. As for the semantics of participation con-
straints, isa, disjointness and covering constraints we refer to [4].

16 A. Artale and E. Franconi

1. C (R) is satisfiable if there exists a legal temporal database state B for Σ
such that CB(t) �= ∅ (RB(t) �= ∅), for some t ∈ T ;

2. Σ is satisfiable if there exists a legal temporal database state B for Σ such
that at least one class of Σ is not empty (B is also said a model for Σ);

3. C1 (R1) is subsumed by C2 (R2) in Σ if every legal temporal database state
for Σ is also a legal temporal database state for C1isaC2 (R1isaR2);

4. A schema Σ′ is logically implied by a schema Σ over the same alphabet if
every legal temporal database state for Σ is also a legal temporal database
state for Σ′.

5 Timestamping

A temporal model supports timestamping if it is able to distinguish between
snapshot constructors—i.e., constructors with a global lifespan associated to
each of their instances—temporary constructors—i.e., each of their instances
has a limited lifespan—or mixed constructors—i.e., their instances can have ei-
ther a global or a temporary existence. In the following, a class, relationship or
attribute is called temporal if it is either temporary or mixed. The two temporal
marks, S (snapshot) and T (temporary), introduced at the conceptual level (see
Figure 1), together with unmarked constructors capture the temporal distinction
between snapshot, temporary and mixed constructors. Notice that, the temporal
behaviour of an attribute can be either globally forced, or locally defined when
associated to single classes. Since the local constraint is more general we assume
that attributes are locally temporally constrained. At the end of this section
we also introduce two notions strictly related to timestamping: that one of a
(temporal) key, and a variant of participation constraints called lifespan partic-
ipation constraints. We now proceed with the semantics of timestamping that
can be defined as follows (not quantified variables are assumed to be universally
quantified):

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class

o∈CB(t) → ∃t′ �= t.o �∈CB(t′) Temporary Class

r∈RB(t) → ∀t′∈T .r∈RB(t′) Snapshot Relationship

r∈RB(t) → ∃t′ �= t.r �∈RB(t′) Temporary Relationship

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∀t′ ∈ T .〈o, ai〉 ∈ A

B(t′)
i Snapshot Attribute

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∃t′ �= t.〈o, ai〉 �∈ A

B(t′)
i Temporary Attribute

The following “classical” desirable features found in the literature of temporal
conceptual modelling come as almost trivial logical implications form the above
formalisation.

Proposition 1. (Timestamps: Logical Implications [4]) In every tempo-
ral schema supporting timestamping, the following temporal properties hold:

Foundations of Temporal Conceptual Data Models 17

1. Subclass of temporary classes are also temporary (similarly for relationships).
2. If exactly one of a whole set of snapshot subclasses partitioning3 a snapshot

superclass is temporary, then, the whole set of classes is unsatisfiable.
3. Participants of snapshot relationships are either snapshot or unmarked classes.
4. Participants of snapshot relationships are snapshot when they participate at

least once in the relationship.
5. A relationship is temporary if one of the participating classes is temporary.

On the other hand, nothing can be said about subclasses of snapshot or un-
marked classes and classes participating to temporary or unmarked relation-
ships: they can be snapshot, temporary, or unmarked classes. Since the domain
of an attribute is not restricted to the classes they are attached to, the temporal
behaviour of a class is independent of that of its attributes.

Example 1. Considering our running example of Figure 1, the following logical
implications hold:

– Because Manager is a temporary class, then both AreaManager and
TopManager are temporary classes; constraining either AreaManager or
TopManager as snapshot classes would lead to a contradiction. On the other
hand, even if Employee is a snapshot class, it is consistent to have Manager—
a temporary class—as a subclass of Employee.

– Because OrganizationalUnit participates at least once in a snapshot rela-
tionship, then, it must be a snapshot class.

– Since InterestGroup participates in a partition of snapshot classes it must
be a snapshot class, too.

– The fact that Manages must be a temporary relationship follows logically
from our theory because the temporary class TopManager participates in the
relationship.

– Since the temporal behaviour of classes is independent from that one of its
attributes, the fact the Salary is a temporary attribute of the snapshot class
Employee is admitted.

Key Constraints. As a byproduct of attribute timestamping we can define
single-attribute keys (visualised in a schema as an underlined attribute, e.g.,
PaySlipNumber is a key for the class Employee) as a mandatory and single-
valued snapshot attribute that uniquely identifies objects of the class. Assuming
that Akey is a key for the class C, then the the following formalisation holds:

(o ∈ CB(t) ∧ 〈o, akey〉 ∈ A
B(t)
key) → ∀t′ ∈ T .〈o, akey〉 ∈ A

B(t′)
key Snapshot Attribute

o ∈ CB(t) → ∃=1akey ∈ ΔB
D.〈o, akey〉 ∈ A

B(t)
key Mandatory &

Single-Valued

akey ∈ ΔB
D → ∃≤1o ∈ CB(t).〈o, akey〉 ∈ A

B(t)
key Uniqueness

3 The partition must be a disjoint covering.

18 A. Artale and E. Franconi

TopManager Manages Project
[1,5]

(1,1)

Fig. 2. Lifespan and “classical” participation constraints

Lifespan Participation Constraints. While classical participations
constraints are evaluated at each point in time lifespan participation constraints
(represented in a schema by a pair of values in square brackets) [26, 37, 39] are
evaluated during the entire existence of the object. Notice that, since the set of
instances of snapshot relationships does not change in time, there is no difference
between “classical” and lifespan participation constraints for snapshot relation-
ships. For example, if we want to state that a top manager should manage at
most five different projects in his entire existence while still being constrained
in managing exactly one project at a time, we can use a combination of the
two participation constraints (see Figure 2). The model-theoretic semantics for
lifespan participation is the following:

o∈CB(t) → k ≤ #
⋃

t′∈T {r∈RB(t′) | r[U]=o} ≤ m Lifespan

Participation Constraint

6 Evolution Constraints

Evolution constraints contribute in modelling the temporal dynamic of an ob-
ject. In this section we propose a formalisation of the basic temporal concepts
that are at the root of advanced conceptual temporal models: status classes, dis-
tinguished in scheduled, active, suspended and disabled; transitions of objects
between different classes; generation relationships asserting evolution constraints
on objects linked by temporal relationships. In this section we aim at present-
ing a formal characterisation of the temporal conceptual modelling constructors
capturing the evolution of objects.

6.1 Status Classes

The Status [7, 22, 37] is a conceptual notion associated to temporal classes to
rule the lifecycle of their objects. It records the evolving state of membership
of each object in the class. Following [37], status modelling includes up to four
different statuses, and the allowed transitions between them:

– Scheduled. An object is scheduled if the planning of its existence within
the class has to be recorded while its membership in the class will only
become effective (active) some time later. For example, if a new project
is approved but will not start until a later date the given project can be
created as a new object in the Project class, with status scheduled for the
valid time interval starting at the date of the approval decision and ending at
the expected launching date. Each scheduled object will eventually become

Foundations of Temporal Conceptual Data Models 19

an active object. Supporting a scheduled status avoids the introduction of a
new time type, the decision time [22].

– Active. The status of an object is active if the object is a full member of the
class (and therefore conforms to its type). For example, a currently ongoing
project is an active member, at time now, of the Project class.

– Suspended. This status qualifies objects that exist as members of the class,
but are to be seen as temporarily inactive members of the class [22]. An
employee taking a temporary leave of absence is an example of what can be
considered as a suspended employee. Only active objects can be suspended.
A suspended object was in the past an active one.

– Disabled. This status is used to specify that the object’s membership in the
class has expired. While logically deleted, disabled objects are kept for some
specific application purposes, e.g., statistical analyses. A disabled object was
in the past an active member of the class (an object cannot be created in
the disabled status). It can never again become a non-disabled member of
that class (e.g., an expired project cannot be reactivated).

Let C be a temporal (i.e., temporary or mixed) class. We capture status
transition of membership in C by associating to C the following status classes:
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are con-
strained by the hierarchy of Figure 3 (where C may also be mixed) that classifies
C instances according to their actual status. To preserve upward compatibility
we do not explicitly introduce an active class, but assume by default that the
name of the class itself denotes the set of active objects, i.e., Active-C ≡ C. Note
that, since membership of objects into snapshot classes is global, i.e., objects are
always active, the notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc con-
straints and then show that such constraints capture the evolving behaviour of
status classes as described in the literature [22, 37]. First of all, disjointness and
isa constraints between statuses of a class C can be described as illustrated in

Top S

Exists-C

Scheduled-C

Disabled-C

C T Suspended-C

d

d

Fig. 3. Status classes

20 A. Artale and E. Franconi

Figure 3, where Top is supposed to be a snapshot class which represents the
universe of abstract objects (i.e., TopB(t) ≡ ΔB). Other than hierarchical con-
straints, the intended semantics of status classes induces the following rules that
are related to their temporal behaviour:

(Exists) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(Disab1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(Disab2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)

(Susp) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(Sch1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(Sch2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o �∈ Scheduled-CB(t′)

As a consequence of the above formalisation the following set of new rules can
be derived.

Proposition 2 (Status Classes: Logical Implications [7]). Given a tem-
poral schema supporting status classes, then, the following logical implications
hold:

1. Disabled classes will never become active anymore.
2. The scheduled status persists until the class become active.
3. A scheduled class cannot evolve directly into a disabled status.

Temporal applications often use concepts that are derived from the notion
of object statuses, e.g., the lifespan of a temporal object or its birth and death
instants. Hereinafter we provide formal definitions for these concepts.

Lifespan and related notions. The lifespan of an object w.r.t. a class describes
the temporal instants where the object can be considered a member of the class.
With the introduction of status classes we can distinguish between the following
notions: ExistenceSpanC , LifeSpanC , ActiveSpanC , BeginC , BirthC and
DeathC . They are functions which depend on the object membership to the
status classes associated to a temporal class C.

The existencespan of an object describes the temporal instants where the
object is either a scheduled, active or suspended member of a given class. More
formally, ExistenceSpanC : ΔB → 2T , such that:

ExistenceSpanC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespan of an object describes the temporal instants where the object
is an active or suspended member of a given class (thus, LifeSpanC(o) ⊆
ExistenceSpanC(o)). More formally, LifeSpanC : ΔB → 2T , such that:

Foundations of Temporal Conceptual Data Models 21

LifeSpanC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

The activespan of an object describes the temporal instants where the object is
an active member of a given class (thus, ActiveSpanC(o) ⊆ LifeSpanC(o)).
More formally, ActiveSpanC : ΔB → 2T , such that:

ActiveSpanC(o) = {t ∈ T | o ∈ CB(t)}

The functions BeginC and DeathC associate to an object the first and the
last appearance, respectively, of the object as a member of a given class, while
BirthC denotes the first appearance as an active object of that class. More
formally, BeginC , BirthC , DeathC : ΔB → T , such that:

BeginC(o) = min(ExistenceSpanC(o))
BirthC(o) = min(ActiveSpanC(o)) ≡ min(LifeSpanC(o))
DeathC(o) = max(LifeSpanC(o))

We could still speak of existencespan, lifespan or activespan for snapshot classes,
but in this case they all collapse to the full time line, T . Furthermore, BeginC(o)
= BirthC(o) = −∞, and DeathC(o) = +∞ either when C is a snapshot class
or in cases of instances existing since ever and/or living forever.

6.2 Transition

Transition constraints [29, 37] have been introduced to model the phenomenon
called object migration. A transition records objects migrating from a source
class to a target class. At the schema level, it expresses that the instances of the
source class may migrate into the target class. Two types of transitions have been
considered: dynamic evolution, when objects cease to be instances of the source
class to become instances of the target class, and dynamic extension, when the
creation of the target instance does not force the removal of the source instance.
For example, considering the company schema (Figure 1), if we want to record
data about the promotion of area managers into top managers we can specify
a dynamic evolution from the class AreaManager to the class TopManager. We
can also record the fact that a mere employee becomes a manager by defin-
ing a dynamic extension from the class Employee to the class Manager (see
Figure 4). Regarding the graphical representation, as illustrated in Figure 4, we
use a dashed arrow pointing to the target class and labeled with either dex or
dev denoting dynamic extension and evolution, respectively.

Specifying a transition between two classes means that: a) We want to keep
track of such migration; b) Not necessarily all the objects in the source or in the
target participate in the migration; c) When the source class is a temporal class,
migration only involves active or suspended objects—thus, neither disabled nor
scheduled objects can take part in a transition.

In the following, we present a formalisation that satisfies the above require-
ments. We represent transitions by introducing a new class denoted by either
dexC1,C2 or devC1,C2 for dynamic extension and evolution, respectively. More

22 A. Artale and E. Franconi

Employee S

Manager T

TopManager TAreaManager T

dev

dex

Fig. 4. Transitions employee-to-manager and area-to-top manager

formally, in case of a dynamic extension between classes C1, C2 the following
semantic equation holds:

o ∈ dex
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧ o ∈ C
B(t+1)
2)

In case of a dynamic evolution between classes C1, C2 the source object cannot
remain active in the source class. Thus, the following semantic equation holds:

o ∈ dev
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1B(t)) ∧ o �∈ C2B(t) ∧
o ∈ C

B(t+1)
2 ∧ o �∈ C

B(t+1)
1)

Finally, we formalise the case where the source (C1) and/or the target (C2)
totally participate in a dynamic extension/evolution (at schema level we add
mandatory cardinality constraints on dex/dev links):

o∈C
B(t)
1 → ∃t′ > t.o∈dex

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈dex

B(t′)
C1,C2

Target Total Transition

o∈C
B(t)
1 → ∃t′ > t.o∈dev

B(t′)
C1,C2

Source Total Evolution

o∈C
B(t)
2 → ∃t′ < t.o∈dev

B(t′)
C1,C2

Target Total Evolution

An interesting set of consequences of the above proposed modelling of dynamic
transitions are shown in the following proposition.

Proposition 3 (Transition: Logical Implications [7]). Given a schema
supporting transitions for objects, then the following logical implications hold:

1. The classes dexC1,C2 and devC1,C2 are temporary classes; actually, they
hold at single time points.

2. Objects in the classes dexC1,C2 and devC1,C2 cannot be disabled as C2.
3. The target class C2 cannot be snapshot (it becomes temporary in case of both

Source Total Transition and Target Total Evolution constraints).
4. As a consequence of dynamic evolution, the source class, C1, cannot be

snapshot (and it becomes temporary in case of Source Total Evolution
constraints).

Foundations of Temporal Conceptual Data Models 23

5. Dynamic evolution cannot be specified between a class and one of its
sub-classes.

6. Dynamic extension between disjoint classes logically implies Dynamic
evolution.

6.3 Generation Relationships

Generation relationships [7, 28, 36, 37] represent processes that lead to the emer-
gence of new objects starting from a set of existing objects. In their most generic
form, a generation relationship can have a collection of objects as source and
a collection of objects as target. For example (see Figure 5), assuming an or-
ganisation remodels its departments, it may be that an existing department is
split into two new departments, while two existing departments are merged into
a single new department and three existing departments are reorganised as two
new departments. Cardinality constraints can be added to specify the cardinality
of sets involved in a generation. For example, if we want to record the fact that
a group of managers proposes at most one new project at a time a generation
relationship from Manager to Project can be defined with the cardinality “at
most one” on the manager side.

Depending whether the source objects are preserved (as member of the source
class) or disabled by the generation process, we distinguish between production
and transformation relationships, respectively. Managers creating projects is an
example of the former, while departmental reorganisation is an example of the
latter. At the conceptual level we introduce two marks for generation relation-
ships: GP for production and GT for transformation relationships, and an arrow
pointing to the target class (see Figure 5).

We model generation as binary relationships connecting a source class to a
target one, with the target being in its scheduled status: rel(R) = 〈source :
C1, target : Scheduled-C2〉. The semantics of production relationships, R, is
described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2)

Department ReOrganize GT

Manager Propose GP Project
(0,1)

Fig. 5. Production and transformation generation relationships

24 A. Artale and E. Franconi

Thus, objects active in the source class produce objects active in the target class
at the next point in time. A production relationship is a case of across-time
relationships [7]—i.e., relationships connecting objects which are active in the
connected classes at different points in time—where the use of status classes
allows us to preserve snapshot reducibility. Indeed, for each pair of objects,
〈o1, o2〉, belonging to a generation relationships o1 is active in the source while
o2 is scheduled in the target.

The case of transformation is captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2)

Thus, objects active in the source generate objects active in the target at the next
point in time while the source objects cease to exist as member of the source.
As for production relationships, transformations are special cases of across-time
relationships.

Proposition 4 (Generation: Logical Implications [7]). The following log-
ical implications hold as a consequence of the generation semantics:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
2. The target class, C2, cannot be snapshot (C2 must be temporary if it partic-

ipates at least once).
3. Objects participating as target cannot be disabled.
4. If R is a transformation relationship, then, C1 cannot be snapshot (C1 must

be temporary if it participates at least once).

Note that the Department class that is both the source and target of a trans-
formation relationship (Figure 5) can no longer be snapshot (as it was in Ex-
ample 1) and must be changed to temporary. Furthermore, as a consequence of
this new timestamp for the Department class, InterestGroup is now a genuine
mixed class.

Starting with the next section we provide a correspondence between temporal
conceptual schemas and theories expressed in temporal description logics.

7 The Temporal Description Logic

As the description logicDLR has been used to reason over conceptual models [14,
17, 18] in this chapter we use a temporal extension of DLR to capture temporal
conceptual models. The temporal description logic DLRUS [5, 25] combines
the propositional temporal logic with Since and Until and the (non-temporal)
description logic DLR [13, 17]. DLRUS can be regarded as a rather expressive
fragment of the first-order temporal logic L{since, until} (cf. [20, 30]).

The basic syntactical types of DLRUS are concepts (unary predicates) and
n-ary relations of arity ≥ 2. Starting from a set of atomic concepts (denoted

Foundations of Temporal Conceptual Data Models 25

C → � | ⊥ | CN | ¬C | C1 C2 | ∃≶k[Uj]R |
�+C | �−C | �+C | �−C |⊕ C | � C | C1UC2 | C1SC2

R → �n | RN | ¬R | R1 R2 | Ui/n : C |
�+R | �−R | �+R | �−R |⊕R | �R | R1UR2 | R1SR2

�I(t) = ΔI

⊥I(t) = ∅
CNI(t) ⊆ �I(t)

(¬C)I(t) = �I(t) \ CI(t)

(C1 C2)I(t) = C
I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj]R)I(t) = { d ∈ �I(t) | �{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}
(C1UC2)I(t) = { d ∈ �I(t) | ∃v > t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ C

I(w)
1)}

(C1SC2)I(t) = { d ∈ �I(t) | ∃v < t.(d ∈ C
I(v)
2 ∧ ∀w ∈ (v, t).d ∈ C

I(w)
1)}

(�n)I(t) ⊆ (ΔI)n

RNI(t) ⊆ (�n)I(t)

(¬R)I(t) = (�n)I(t) \ RI(t)

(R1 R2)I(t) = R
I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) | di ∈ CI(t)}
(R1UR2)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |

∃v > t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(R1SR2)I(t) = { 〈d1, . . . , dn〉 ∈ (�n)I(t) |
∃v < t.(〈d1, . . . , dn〉 ∈ R

I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(�+R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}
(�−R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(�R)I(t) = {〈d1, . . . , dn〉 ∈ (�n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Fig. 6. Syntax and semantics of DLRUS

by CN), a set of atomic relations (denoted by RN), and a set of role symbols
(denoted by U) we hereinafter define inductively (complex) concepts and rela-
tion expressions as is shown in the upper part of Figure 6, where the binary
constructors (�,�,U ,S) are applied to relations of the same arity, i, j, k, n are
natural numbers, i ≤ n, and j does not exceed the arity of R.

The non-temporal fragment of DLRUS coincides with DLR. For both concept
and relation expressions all the Boolean constructors are available. The selec-
tion expression Ui/n : C denotes an n-ary relation whose argument named Ui

(i ≤ n) is of type C; if it is clear from the context, we omit n and write (Ui : C).
The projection expression ∃≶k[Uj]R is a generalisation with cardinalities of the
projection operator over the argument named Uj of the relation R; the plain
classical projection is ∃≥1[Uj]R (we will use ∃[Uj]R as a shortcut). It is also pos-
sible to use the pure argument position version of the language by replacing role
symbols Ui with the corresponding position numbers i. To show the expressive
power of DLRUS we refer to the next sections where DLRUS is used to capture
various forms of temporal constraints.

26 A. Artale and E. Franconi

The model-theoretic semantics of DLRUS assumes a flow of time T = 〈Tp, <〉,
where Tp is a set of time points (or chronons) and < a binary precedence relation
on Tp, is assumed to be isomorphic to 〈Z, <〉. The language of DLRUS is inter-
preted in temporal models over T , which are triples of the form I .= 〈T , ΔI , ·I(t)〉,
where ΔI is non-empty set of objects (the domain of I) and ·I(t) an inter-
pretation function such that, for every t ∈ T (in the following the notation
t ∈ T is used as a shortcut for t ∈ Tp), every concepts C, and every n-ary
relation R, we have CI(t) ⊆ ΔI and RI(t) ⊆ (ΔI)n. The semantics of con-
cept and relation expressions is defined in the lower part of Figure 6, where
(u, v) = {w ∈ T | u < w < v}. For concepts, the temporal operators �+ (some
time in the future), ⊕ (at the next moment), and their past counterparts can be
defined via U and S: �+C ≡ �UC, ⊕C ≡ ⊥UC, etc. The operators �+ (always
in the future) and �− (always in the past) are the duals of �+ (some time in the
future) and �− (some time in the past), respectively, i.e., �+C ≡ ¬�+¬C and
�−C ≡ ¬�−¬C, for both concepts and relations. The operators �∗ (at some
moment) and its dual �∗ (at all moments) can be defined for both concepts and
relations as �∗C ≡ C ��+C ��−C and �∗C ≡ C ��+C ��−C, respectively.

A knowledge base, K, is a finite set of DLRUS axioms of the form C1 � C2
and R1 � R2, with R1 and R2 being relations of the same arity. The notation
C1

.= C2 (R1
.= R2) is a shortcut for C1 � C2, C2 � C1 (R1 � R2, R2 � R1). An

interpretation I satisfies C1 � C2 (R1 � R2) if and only if the interpretation of
C1 (R1) is included in the interpretation of C2 (R2) at all time, i.e., C

I(t)
1 ⊆ C

I(t)
2

(RI(t)
1 ⊆ R

I(t)
2), for all t ∈ T . Various reasoning services can be defined in

DLRUS . A knowledge base, K, is satisfiable if there is an interpretation that
satisfies all the axioms in K (in symbols, I |= K). A knowledge base, K, logically
implies an axiom, C1 � C2 (R1 � R2), and write K |= C1 � C2 (Σ |= R1 � R2),
if we have I |= C1 � C2 (I |= R1 � R2) whenever I |= K. In this latter case, the
concept C1 (relation R1) is said to be subsumed by the concepts C2 (relation R2)
in the knowledge base K. A concepts C is satisfiable, given a knowledge base K, if
there exists a model I of K such that CI(t) �= ∅ for some t ∈ T , i.e., K �|= C � ⊥.
A relation R is satisfiable, given a knowledge base K, if there exists a model I of
K such that RI(t) �= ∅ for some t ∈ T , i.e., K �|= R � ⊥. Finally, knowledge base
satisfiability, concepts subsumption and relation satisfiability can be reduced to
concepts satisfiability in the following way: K �|= � � ⊥, K |= C1 � ¬C2 � ⊥,
K �|= ∃≥1[Uj]R � ⊥ for some j ≤ n where n is the arity of R, respectively.

While DLR knowledge bases are fully able to capture atemporal EER/UML
schemas [14, 17, 18]—i.e., given an EER schema there is an equi-satisfiable DLR
knowledge base—in the following sections we use DLRUS knowledge bases to
capture temporal EER/UML schemas with both timestamping and evolution
constraints.

8 Encoding Temporal Schemas in Description Logics

We start by briefly summarising how knowledge bases in the description logic
DLR can capture conceptual schemas. The correspondence we report here is
based on a mapping introduced by [14, 18, 19] for atemporal EER models.

Foundations of Temporal Conceptual Data Models 27

Informally, the encoding works as follows. Class and relationship symbols in
a conceptual diagram are mapped into DLR concept names and relation names
(with the same arity of the original relationship), respectively. Domain symbols
are mapped into additional concept names, pairwise disjoint. Attributes of classes
are mapped to binary relation names in DLR with number restrictions stating
the cardinality of the attribute to distinguish between single- and multi-valued
attributes. Isa links between classes or between relationships are mapped using
DLR axioms. Generalised hierarchies with disjointness and covering constraints
can be captured using Boolean connectives. Cardinality constraints are mapped
using number restriction in DLR.

Let us consider the class diagram depicted in Figure 1 and representing (a
portion of) a company database. According to the diagram, all managers are
employees and are partitioned into area managers and top managers. This in-
formation can be represented by means of the following DLR axioms:

Manager � Employee

AreaManager � Manager

TopManager � Manager

AreaManager � ¬TopManager
Manager � AreaManager� TopManager

Binary relation names of the form A � From :��To :� capture attributes. Each
employee has three functional attributes (by default, we assume that attributes
are single-valued and mandatory), Salary, PaySlipNumber, with integer values,
and Name, with string values; here we show only the first:

Employee � ∃=1[from]Salary� ∃=1[from](Salary� to/2 : Integer)

The binary relationship Works-for has Employees as domain, while the range is
restricted to Projects:

Works-for � emp/2 : Employee� act/2 : Project

Each top manager manages exactly one project, while a project must involve at
least three employees:

TopManager � ∃=1[man]Manages

Project � ∃≥3[act]Works-For

Temporal properties expressed in the diagram are mapped using temporal
operators in DLRUS . In the following we will show how to extend the above
translation in order to capture both timestamping and evolution constraints.

Encoding Timestamping

Timestamping is the ability to distinguish between snapshot constructors—i.e.,
constructorswith a global lifespan associated to each of their instances—temporary

28 A. Artale and E. Franconi

constructors—i.e., each of their instances has a limited lifespan—or mixed
constructors—i.e., their instances can have either a global or a temporary exis-
tence. Timestamps for both classes and relationships are captured by the following
DLRUS axioms (remember that �∗ is the “at all time” operator while �∗ is the
“at some time” operator, see Section 7):

(SnapC) C � �∗C Snapshot Class
(TempC) C � �∗¬C Temporary Class
(SnapT) R � �∗R Snapshot Relationship
(TempR) R � �∗¬R Temporary Relationship

Considering timestamping for attributes we first recall that attributes are cap-
tured in DLR as binary relations. Thus, the following DLRUS axioms hold4:

(SnapA) C � ¬∃[From](A � �∗¬A) Snapshot Attribute
(TempA) C � ¬∃[From](�∗A) Temporary Attribute

Key Constraints. We now show the DLRUS axioms that capture the notion of
single-attribute keys (see the case of a pay slip number that uniquely identifies
an employee in Figure 1). We need three axioms: the first to specify that a key is
a snapshot attribute, the second to characterise a key as mandatory and single-
valued, and the last axiom to specify uniqueness. Assuming that Akey is a key
for the class C, then its semantics is captured by the following DLRUS axioms:

(Key1) C � ¬∃[From](Akey � �∗¬Akey) Snapshot Attribute
(Key2) C � ∃=1[from]Akey Mandatory & Single-Valued
(Key3) � � ∃≤1[to](Akey � from : C) Uniqueness

Lifespan Participation Constraints. Lifespan participation constraints (see
Figure 2) are formalised in DLRUS using a combination of number restrictions
and temporal operators for relations:

(LPC) C � ∃≥k[U]�∗R � ∃≤m[U]�∗R Lifespan Participation Constraint

The standard logical implications due to timestamping and showed in Propo-
sition 1 can be rephrased in terms of DLRUS logical implications.

Proposition 5 (Timestamps: Logical Implications [4])). In every tempo-
ral schema supporting timestamping, the following temporal properties hold:

1. Subclass of temporary classes are also temporary (similarly for relationships).
{C1 � C, C � �∗¬C} |= C1 � �∗¬C1

2. If exactly one of a whole set of snapshot subclasses partitioning a snapshot
superclass is temporary, then, the whole set of classes is unsatisfiable (we
consider a three class partition).
{C0

.= C1 � C2, C1 � ¬C2, C0 � �∗C0, C1 � �∗C1, C2 � �∗¬C2} |= Ci �
⊥, i = 0, 1, 2

4 The axioms consider a local temporal behaviour for attributes. To associate a global
behaviour to an attribute we consider it as a binary relationship and apply the
axioms for timestamping relationships.

Foundations of Temporal Conceptual Data Models 29

3. Participants of snapshot relationships are either snapshot or unmarked classes.
{R � �∗R, R � Ui : Ci, Ci � �∗¬Ci} |= R � ⊥

4. Participants of snapshot relationships are snapshot when they participate at
least once in the relationship.
{R � �∗R, R � Ui : Ci, Ci � ∃[Ui]R} |= Ci � �∗Ci

5. A relationship is temporary if one of the participating classes is temporary.
{R � Ui : Ci, Ci � �∗¬Ci} |= R � �∗¬R

Encoding Status Classes

Status classes record the evolving state of membership of each object in the
class. We distinguish four status: scheduled, active, suspended and disabled.
DLRUS axioms are able to fully capture the hierarchical constraints of Figure 3.
Moreover, the semantic equations formalising status classes are captured by the
following set of DLRUS axioms:

(Exists) Exists-C � �+(Exists-C � Disabled-C)
(Disab1) Disabled-C � �+Disabled-C
(Disab2) Disabled-C � �−C
(Susp) Suspended-C � �−C
(Sch1) Scheduled-C � �+C
(Sch2) C � �+¬Scheduled-C

We denote with Σst the above set of axioms together with the DLRUS ax-
ioms that capture the hierarchy of Figure 3. We can now rephrase the logical
implications involving status classes showed in Proposition 2 as DLRUS logical
implications.

Proposition 6 (Status Classes: Logical Implications [7]). Given the set of
DLRUS axioms Σst that capture status classes, the following logical implications
hold:

1. Disabled will never become active anymore.
Σst |= Disabled-C � �+¬C

2. Scheduled persists until active.
Σst |= Scheduled-C � Scheduled-CUC

3. Scheduled cannot evolve directly to Disabled.
Σst |= Scheduled-C � ⊕¬Disabled-C

Encoding Transition

Transition constraints model the so called object migration. They are distin-
guished in dynamic evolution—when objects cease to be instances of the source
class to become instances of the target class—and dynamic extension—when
the creation of the target instance does not force the removal of the source in-
stance. We represent transitions by introducing a new class denoted by either
dexC1,C2 or devC1,C2 for dynamic extension and evolution, respectively. The
DLRUS axioms capturing these temporal constraints are:

30 A. Artale and E. Franconi

(Dex) dexC1,C2 � (Suspended-C1 � C1) � ¬C2 �⊕C2
(Dev) devC1,C2 � (Suspended-C1 � C1) � ¬C2 �⊕ (C2 � ¬C1)

The DLRUS axioms capturing the cases where the source (C1) and/or the target
(C2) totally participate in a dynamic extension/evolution are:

(Stt) C1 � �+
dexC1,C2 Source Total Transition

(Ttt) C2 � �−
dexC1,C2 Target Total Transition

(Ste) C1 � �+
devC1,C2 Source Total Evolution

(Tte) C2 � �−
devC1,C2 Target Total Evolution

We can now rephrase the logical implications involving transition constraints
showed in Proposition 3 as DLRUS logical implications.

Proposition 7 (Transition: Logical Implications [7]). Let Σtr = {(Dev),

(Dex)}, then the following logical implications hold:

1. The classes dexC1,C2 and devC1,C2 are temporary classes; actually, they
hold at single time points.
Σst ∪ Σtr |= dexC1,C2 � ⊕¬dexC1,C2 � �¬dexC1,C2

Σst ∪ Σtr |= devC1,C2 � ⊕¬devC1,C2 � �¬devC1,C2

2. Objects in the classes dexC1,C2 and devC1,C2 cannot be disabled as C2.
Σst ∪ Σtr |= dexC1,C2 � ¬Disabled-C2
Σst ∪ Σtr |= devC1,C2 � ¬Disabled-C2

3. The target class C2 cannot be snapshot (it becomes temporary in case of both
(Ttt) and (Tte) constraints).
Σst ∪ Σtr |= dexC1,C2 � �∗[C2 � (�+¬C2 � �−¬C2)]

4. As a consequence of dynamic evolution, the source class, C1, cannot be snap-
shot (and it becomes temporary in case of (Ste) constraints).
Σst ∪ Σtr |= devC1,C2 � �∗[C1 � (�+¬C1 � �−¬C1)]

5. Dynamic evolution cannot be specified between a class and one of its sub-
classes.
Σst ∪ Σtr ∪ {C2 � C1} |= devC1,C2 � ⊥

6. Dynamic extension between disjoint classes logically implies Dynamic
evolution.
Σst ∪ Σtr ∪ {C1 � ¬C2} |= dexC1,C2 � devC1,C2

Encoding Generation Relationships

Generation relationships lead to the emergence of new objects starting from a
set of existing objects. Depending whether the source objects are preserved (as
member of the source class) or disabled, we distinguish between production and
transformation relationships, respectively. The DLRUS axioms capturing the
production and transformation semantics are:

(Prod) R � source : C1 target : (Scheduled-C2 ⊕C2)
(Trans) R � source : (C1 ⊕ Disabled-C1) target : (Scheduled-C2 ⊕ C2)

We can now rephrase the logical implications involving generation relation-
ships showed in Proposition 4 as DLRUS logical implications.

Foundations of Temporal Conceptual Data Models 31

Proposition 8 (Generation: Logical Implications [7]). The following log-
ical implications hold as a consequence of the DLRUS axioms capturing gener-
ation relationships:

1. A generation relationship, R, is temporary; actually, it is instantaneous.
Σst ∪ {(Prod)} |= R � �+¬R � �−¬R

2. The target class, C2, cannot be snapshot (C2 must be temporary if it partic-
ipates at least once).
Σst ∪ {(Prod)} |= R � target:�∗[C2 � (�+¬C2 � �−¬C2)]

3. Objects participating as target cannot be disabled.
Σst ∪ {(Prod)} |= R � target:¬Disabled-C2

4. If R is a transformation relationship, then, C1 cannot be snapshot (C1 must
be temporary if it participates at least once).
Σst ∪ {(Trans)} |= R � source :�∗[C1 � (�+¬C1 � �−¬C1)]

8.1 Correctness of the Encoding

To prove that reasoning on temporal schemas can be done by reasoning on their
DLRUS translation, we need to prove the correctness of the encoding. That
temporal schemas with timestamping and transition constraints can be encoded
as description logic theories has been proven correct in [4, 5] by establishing a
precise correspondence between legal database states of temporal schemas and
models of the corresponding description logic theories. This result can be easily
extended to the full set of temporal constraints presented here.

Theorem 1 (Correctness of the encoding). Let Σ be a temporal schema.
Then, Σ admits a legal database state if and only if the corresponding DLRUS
knowledge base encoding the schema has a model.

This characterisation allows us to support the reasoning on temporal conceptual
models, as in Definition 2, by using the reasoning services of DLRUS . On the
other hand, since reasoning with DLRUS theories is undecidable, in the follow-
ing section we present interesting scenarios where reasoning become decidable
together with their respective complexity results.

9 Complexity of Reasoning on Temporal Models

As this chapter shows, the temporal description logic DLRUS is able to fully
capture temporal schemas with both timestamping and evolution constraints.
On the other hand, reasoning over DLRUS knowledge bases, i.e., checking satis-
fiability, subsumption and logical implications, turns out to be undecidable [5].
The main reason for this is the possibility to couple the evolution of concepts
with the possibility to postulate that a binary relation does not vary in time (i.e.,
global relations). Note that, showing that temporal schemas can be mapped into
DLRUS axioms does not necessarily imply that reasoning over temporal schemas
is an undecidable problem. Unfortunately, [1] shows that the undecidable Halting

32 A. Artale and E. Franconi

Problem can be encoded as the problem of class satisfiability w.r.t. a temporal
schema with, among the others, the following constructs: disjoint and covering
constraints, sub-relationships, timestamping on both classes and relationships,
and evolution constraints.

On the other hand, the fragment, DLR−
US , of DLRUS deprived of the ability to

talk about temporal persistence of n-ary relations, for n ≥ 2, is decidable. Indeed,
reasoning in DLR−

US is an EXPTIME-complete problem [5]. This result gives us
an useful scenario where reasoning over temporal schemas becomes decidable. In
particular, if we forbid timestamping for relationships (i.e., relationships are just
unmarked and interpreted as mixed constructors) reasoning on temporal models
with just class timestamping but full evolution constraints can be reduced to
reasoning over DLR−

US . The problem of reasoning in this setting is complete
for EXPTIME since the EXPTIME-complete problem of reasoning with ALC
knowledge bases can be captured by such schemas [14].

We maintain decidability also by allowing full timestamping (i.e., timestamp-
ing for relationships, attributes and classes) but dropping evolution constraints.
This is the basic temporal conceptual modelling scenario where temporal marks
allow to distinguish between temporary and global constructs (this scenario also
allows for both temporal keys and lifespan participation constraints). This sce-
nario is decidable since it is possible to encode temporal schemas without evo-
lution constraints by using a combination between the description logic DLR
and the epistemic modal logic S5 (see [12] for the exact mapping). Reasoning
over DLRS5 has been proved to be decidable and 2-EXPTIME-complete [11] by
extending a previous result on the logic ALCS5 [25].

Other interesting scenarios currently under investigation are the cases where
the temporal expressivity is maintained in its full capability (i.e., both full times-
tamping and evolution constraints) but some of the constructs used at the con-
ceptual level are dropped. In particular, by dropping isa between relationships
and/or partitioning constraints we could regain decidability in the full tempo-
ral scenario. In this case we can use description logics from the DL-Lite fam-
ily [2, 15, 16] to capture these weaker forms of conceptual schemas (see [8] for
an exhaustive description of the data models that can be captured inside DL-
Lite). A demoralisation of DL-Lite has been proposed in [10] where reasoning
is showed to be EXPSpace-complete. As a future work we plan to study the
mapping of the various temporal constructs presented here in the temporal ex-
tension of DL-Lite and to investigate a tight complexity bound for the resulting
temporal data modelling language.

10 Conclusions

This chapter summarises the various proposals appeared in the literature about
temporal conceptual data models within a formal framework. We presented a
model-theoretic semantics for different temporal constructs grouped along two
generic categories, i.e., timestamping and evolution constraints. The given for-
mal semantics clarifies the meaning of the modelling constructors and also gives

Foundations of Temporal Conceptual Data Models 33

a rigorous definition to relevant design support tasks such as satisfiability of
schemas, classes and relationships; subsumption for both classes and relation-
ships; general logical implication. Furthermore, for each constructor we have
shown how desirable properties can be derived as logical implications from the
proposed formalisation.

We have been able to show how temporal schemas can be equivalently ex-
pressed using a subset of first-order temporal logic, i.e., DLRUS , the description
logic DLR extended with the temporal operators Since and Until. While DLRUS
is an undecidable language, several decidable sub-languages can be used to rea-
son over temporal schemas. Since these sub-languages usually do not mix times-
tamping with evolution constraints, we are currently investigating new scenarios
where, by weakening the atemporal expressiveness of the conceptual model, we
regain decidability of the full temporal setting. We started to work on these en-
couraging scenarios by using DL-Lite as the atemporal DL and extending it to
capture time varying domains.

Acknowledgements

We would like to thank our colleagues Roman Kontchakov, Carsten Lutz, Fed-
erica Mandreoli, Christine Parent, Vladislav Ryzhikov, Stefano Spaccapietra,
David Toman, Frank Wolter, and Michael Zakharyaschev with whom we carried
out most of the work presented in this chapter.

References

1. Artale, A.: Reasoning on temporal conceptual schemas with dynamic constraints.
In: 11th Int. Symposium on Temporal Representation and Reasoning (TIME 2004).
IEEE Computer Society, Los Alamitos (2004); also in Proc. of the 2004 Int. Work-
shop on Description Logics (DL 2004)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light
of first-order logic. In: Proc. of AAAI 2007, pp. 361–366 (2007)

3. Artale, A., Franconi, E.: Temporal ER modeling with description logics. In:
Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS,
vol. 1728, pp. 81–95. Springer, Heidelberg (1999)

4. Artale, A., Franconi, E., Mandreoli, F.: Description logics for modelling dynamic
information. In: Chomicki, J., van der Meyden, R., Saake, G. (eds.) Logics for
Emerging Applications of Databases. LNCS, Springer, Heidelberg (2003)

5. Artale, A., Franconi, E., Wolter, F., Zakharyaschev, M.: A temporal description
logic for reasoning over conceptual schemas and queries. In: Flesca, S., Greco,
S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS(LNAI), vol. 2424, pp. 98–110.
Springer, Heidelberg (2002)

6. Artale, A., Parent, C., Spaccapietra, S.: Modeling the evolution of objects in tem-
poral information systems. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 22–42. Springer, Heidelberg (2006)

7. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information
systems. Annals of Mathematics and Artificial Intelligence 50(1-2), 5–38 (2007)

34 A. Artale and E. Franconi

8. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

9. Artale, A., Cesarini, F., Soda, G.: Describing database objects in a concept lan-
guage environment. IEEE Trans. on Knowledge and Data Engineering 8(2), 345–
351 (1996)

10. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal-
ising tractable description logics. In: 14th International Symposium on Temporal
Representation and Reasoning (TIME 2007). IEEE Computer Society Press, Los
Alamitos (2007)

11. Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Int. Joint Con-
ference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (January 2007)

12. Artale, A., Toman, D.: Decidable reasoning over timestamped conceptual models.
In: Proc. of the 21st Int. Workshop on Description Logics (DL 2008), Dresden,
Germany (May 2008)

13. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2002)

14. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270
(2006)

17. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query contain-
ment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)

18. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data
modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information
Systems. Kluwer, Dordrecht (1998)

19. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research 11, 199–240 (1999)

20. Chomicki, J., Toman, D.: Temporal logic in information systems. In: Chomicki,
J., Saake, G. (eds.) Logics for Databases and Information Systems, ch. 1. Kluwer,
Dordrecht (1998)

21. Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal
ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231. Springer, Heidelberg (2008)

22. Etzion, O., Gal, A., Segev, A.: Extended update functionality in temporal
databases. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997.
LNCS, vol. 1399, pp. 56–95. Springer, Heidelberg (1998)

23. Finger, M., McBrien, P.: Temporal conceptual-level databases. In: Gabbay, D.,
Reynolds, M., Finger, M. (eds.) Temporal Logics – Mathematical Foundations and
Computational Aspects, pp. 409–435. Oxford University Press, Oxford (2000)

24. Franconi, E., Sattler, U.: A data warehouse conceptual data model for multidimen-
sional aggregation. In: Proc. of the Workshop on Design and Management of Data
Warehouses (DMDW 1999) (1999)

Foundations of Temporal Conceptual Data Models 35

25. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal
logics: theory and applications. Studies in Logic. Elsevier, Amsterdam (2003)

26. Gregersen, H., Jensen, J.S.: Conceptual modeling of time-varying information.
Technical Report TimeCenter TR-35, Aalborg University, Denmark (1998)

27. Gregersen, H., Jensen, J.S.: Temporal Entity-Relationship models – a survey. IEEE
Transactions on Knowledge and Data Engineering 11(3), 464–497 (1999)

28. Gupta, R., Hall, G.: An abstraction mechanism for modeling generation. In: Proc.
of ICDE 1992, pp. 650–658 (1992)

29. Hall, G., Gupta, R.: Modeling transition. In: Proc. of ICDE 1991, pp. 540–549
(1991)

30. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order
temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)

31. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

32. Jensen, C.S., Clifford, J., Gadia, S.K., Hayes, P., Jajodia, S., et al.: The Consensus
Glossary of Temporal Database Concepts. In: Etzion, O., Jajodia, S., Sripada, S.
(eds.) Temporal Databases - Research and Practice, pp. 367–405. Springer, Hei-
delberg (1998)

33. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Transactions on
Knowledge and Data Engineering 111(1), 36–44 (1999)

34. Jensen, C.S., Soo, M., Snodgrass, R.T.: Unifying temporal data models via a con-
ceptual model. Information Systems 9(7), 513–547 (1994)

35. McBrien, P., Seltveit, A.H., Wangler, B.: An Entity-Relationship model extended
to describe historical information. In: Proc. of CISMOD 1992, Bangalore, India,
pp. 244–260 (1992)

36. Parent, C., Spaccapietra, S., Zimanyi, E.: The MurMur project: Modeling
and querying multi-representation spatio-temporal databases. Information Sys-
tems 31(8), 733–769 (2006)

37. Spaccapietra, S., Parent, C., Zimanyi, E.: Modeling time from a conceptual per-
spective. In: Int. Conf. on Information and Knowledge Management (CIKM 1998)
(1998)

38. Spaccapietra, S., Parent, C., Zimanyi, E.: Conceptual Modeling for Traditional
and Spatio-Temporal Applications—The MADS Approach. Springer, Heidelberg
(2006)

39. Tauzovich, B.: Towards temporal extensions to the entity-relationship model. In:
Proc. of the Int. Conf. on Conceptual Modeling (ER 1991). Springer, Heidelberg
(1991)

40. Theodoulidis, C., Loucopoulos, P., Wangler, B.: A conceptual modelling formalism
for temporal database applications. Information Systems 16(3), 401–416 (1991)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 36–51, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Faceted Lightweight Ontologies

Fausto Giunchiglia1, Biswanath Dutta2, and Vincenzo Maltese1

1 Dipartimento di Ingegneria e Scienza dell’Informazione (DISI)
Università di Trento, Trento, Italy

2 Documentation Research and Training Centre (DRTC), Indian Statistical Institute (ISI),
8th Mile Mysore Road, Bangalore- 560059, India

Abstract. We concentrate on the use of ontologies for the categorization of ob-
jects, e.g., photos, books, web pages. Lightweight ontologies are ontologies
with a tree structure where each node is associated a natural language label. Fa-
ceted lightweight ontologies are lightweight ontologies where the labels of
nodes are organized according to certain predefined patterns which capture
different aspects of meaning, i.e., facets. We introduce facets based on the Ana-
lytico-Synthetic approach, a well established methodology from Library Sci-
ence which has been successfully used for decades for the classification of
books. Faceted lightweight ontologies have a well defined structure and, as
such, they are easier to create, to share among users, and they also provide more
organized input to semantics based applications, such as semantic search and
navigation.

Keywords: Ontologies, Lightweight ontologies, facets, classifications, formal
classifications.

1 Introduction

Ontologies are being used in different communities, for different purposes and with
different modalities. There are various kinds of ontologies, according to the degree of
formality, complexity of the graph structure, and expressivity of the language used to
describe them [1]. Ontologies have two main applications. They can be used to de-
scribe objects or they can be used to categorize objects. In this paper, we concentrate
on the second use, namely, we are interested in the problem of classifying, e.g., pho-
tos, Web pages, books.

Lightweight ontologies are ontologies with a tree structure where each node is
associated a natural language label. We sometimes speak of formal lightweight on-
tologies meaning ontologies which can be obtained from lightweight ontologies by
translating natural language labels into Description Logics (DL) [12] formulas which
capture their meaning ([3] provides an example of how such translation can be done).
In formal lightweight ontologies, node formulas stand in the subsumption relation,
namely a formula in a node is always more general than the formula in the node be-
low [1, 31]. In the following we talk of lightweight ontologies meaning sometimes
formal lightweight ontologies. The context always makes clear what we mean.

 Faceted Lightweight Ontologies 37

Lightweight ontologies allow for automated document classification [1, 16], query
answering [1, 21] and also for solving the semantic heterogeneity problem among
multiple ontologies [15, 18, 19, 20]. They are definitely a very powerful tool which
can be exploited towards the automation of reasoning in data and knowledge man-
agement. Still, the adoption of (lightweight) ontologies, so far, has not been as wide-
spread as one would have expected when the work on the Semantic Web started.
Among the problems which have been identified are the lack of interest or the
difficulties on the user side in building such ontologies [4, 5], but also the fact that on-
tologies developed for one purpose can hardly being reused for other purposes, or by
other users [5].

The goal of this paper is to introduce faceted lightweight ontologies as a very
promising solution to the problem highlighted above. Faceted lightweight ontologies
are defined in terms of facets. Recently, facets have been adopted with great success
for the design of interfaces to web sites. See, for instance the survey by La Barre [23]
and in particular the work done in Flamenco1 (see for instance [24]), but see also
[7,8,9] as an application to knowledge management which is somewhat related, in
spirit, to our work. We construct facets following the approach which was first de-
vised by Ranganathan at the beginning of the last century [22] 2 and, in particular, the
POPSI Methodology, originally introduced in [26].

Taking the terminology of Library Science, facets are “aspects of meaning”. They
formalize, for any given domain (e.g., medicine, sports, music, science), the main
characteristics of that domain and, in particular, the entities or objects which belong to
that domain (e.g. in medicine, the body parts), the properties of objects (e.g., in
medicine, the various kinds of disease) and the actions which can be taken (e.g., in
medicine, surgery or medication). More precisely, a facet is a hierarchy of homogene-
ous group of terms (nodes), where each term in the hierarchy denotes a primitive
atomic concept. Thus we have hierarchies of entities, properties, actions, and so on.
We call background knowledge [17,14], a faceted representation scheme, namely a
set of facets that represent the system a-priori knowledge about the domains of inter-
est (see also [13] for an early attempt of defining a faceted representation schema not
based on Ranganathan’s theory). A faceted representation scheme allows for
post-coordination, namely, for constructing complex labels (in Library Science termi-
nology, also called subjects) by combining terms from facets at both indexing, classi-
fication and searching time. Faceted lightweight ontologies are lightweight ontologies
where node labels (formulas) contain only atomic concepts which correspond to
primitive concepts taken from the background knowledge.

The rest of the paper is organized as follows. Section 2 introduces and formally de-
fines (classification) lightweight ontologies. Section 3 introduces facets. Section 4
introduces faceted subjects and, then, the notion of faceted lightweight ontology. Fi-
nally, Section 5 shows, via an example, how a faceted subject can be constructed
according to the POPSI subject indexing system. Section 6 concludes the paper.

1 http://flamenco.berkeley.edu
2 This theory is widely recognized as a fundamental methodology that guides in the organiza-

tion of the knowledge in a given domain (see for instance [30]) in terms of basic subjects and
relations between them.

38 F. Giunchiglia, B. Dutta, and V. Maltese

2 Lightweight Classification Ontologies

Ontologies have been used for centuries in different communities, for different pur-
poses and with different modalities. The concept originated more than two thousand
years ago from philosophy and more specifically from Aristotle’s theory of catego-
ries3. The original purpose was to provide a categorization of all existing things in the
world. Ontologies have been lately adopted in several other fields, such as Library
and Information Science (LIS), Artificial Intelligence (AI), and more recently in
Computer Science (CS), as the main means for describing how classes of objects are
correlated, or for categorizing what archivists generically call documents.

Many definitions of ontologies have been provided. According to the most quoted, an
ontology is “an explicit specification of a conceptualization” [10]. Their main purpose is
to favour interoperability by providing a common terminology and understanding of a
given domain of interest, which in turn allows for the assignment of clear meanings to
information items. There are however different kinds of ontologies, or, in other words,
several more specific concepts, according to the degree of formality and expressivity of
the language used to describe them (see [2] for a discussion). They range from informal
representations like user classifications (e.g. the structure of folders in a file system) and
web directories (e.g. DMOZ, Yahoo! and Google4), to progressively more formal
representations like enumerative classification schemes (e.g. the Dewey Decimal Classi-
fication5 (DDC) and the Library of Congress Classification6 (LCC)), Knowledge Or-
ganization Systems (KOS) such as thesauri (e.g. AGROVOC, NALT, AOD, and HBS)
and faceted classification schemes (e.g., the Colon Classification), and, ultimately, for-
mal ontologies which are expressed into a logic formal language and represented using
formal specifications such as DL or OWL.

For the purpose of this work, however, following the terminology provided in [1],
the core distinction is between

1. ontologies which are mainly used to describe objects, also called descriptive on-
tologies, and

2. ontologies which are mainly used to categorize objects, also called classification
ontologies.

This distinction is reflected into the underlying semantics taken as reference, name-
ly the real world semantics and the classification semantics described below. Based
on this distinction then we further refine the notion of classification ontology into the
notion of classification lightweight ontology, which is actually the core notion needed
in this paper. Let us analyze these notions in detail.

2.1 Descriptive Ontologies

In descriptive ontologies, concepts represent real world entities, e.g., the extension of
the concept animal is the set of real world animals, which can be connected via

3 http://plato.stanford.edu/entries/aristotle-categories/
4 http://dmoz.org/; http://dir.yahoo.com/; http://directory.google.com/
5 http://www.oclc.org/dewey/
6 http://www.loc.gov

 Faceted Lightweight Ontologies 39

Fig. 1. (a) An is-a ontology; (b) A part-of ontology

relations of the proper kind. The purpose of descriptive ontologies is to specify the
terms used in their original meaning, according to the nature and the structure of the
domain they model [11]. Two typical relations are used to construct the trees (also
called the taxonomies) which provide the backbone to these ontologies and they are
is-a (Genus-species) and part-of (Whole-part) relations. In Fig. 1 (a), (b) we provide
two examples of descriptive ontologies, based on these two relations, where each
node represents a concept and each arrow represents a relation between them. The di-
rection of the arrows represents the direction of the relations. Mixed situations are
also possible.

It is worth noticing that, when translating these ontologies in DL, the is-a relation
is translated into subsumption (⊑) or, more precisely, it is assumed to imply subsump-
tion, while this is not the case for part-of. Therefore is-a constitutes the basic back-
bone of the subsumption based hierarchical structure of a domain.

2.2 Classification Ontologies

Ontologies in classification semantics are built with the goal of indexing documents.
As a consequence, the extension of each concept (label of a node) is the set of docu-
ments about the entities or individual objects described by the label of the concept
[1,2]. For example, the extension of the concept animal is “the set of documents about
animals” of any kind. This has three main consequences.

The first is that the semantic relation holding between nodes which are one above
the other is always the subset relation. In other words the set of documents which can
be classified in a node is always a subset of the documents which can be classified in
the node above (and this motivates some techniques for minimizing the number of
nodes where a document is classified, for instance the get-specific principle, see [16]
for a formalization of this principle and its use in automatic classification). Fig. 2 (a),
(b) provide the classification semantics version of the two ontologies reported in Fig.
1 (a), (b). As it can be noticed from Fig. 2, the standard relations of descriptive on-
tologies are translated into relations among sets. Thus, is-a, but also to part-of, when
transitive, and instance-of, are translated into subset, while the others correspond to
overlap (⊓). Fig. 2 (b) provides a case where the part-of relations of Fig. 1 (b) are
translated into subset in classification semantics. One example where this is not
possible is the chain of relations: handle part-of door part-of school part-of school
system.

Animals

Vertebrates

Mammals

A

B

D

Invertebrates C

E Birds

is-a is-a

is-a is-a

World

Europe

France

A

B

D

Asia C

E Italy

part-of

part-of

part-of

F Rome

part-of

part-of

(a) (b)

40 F. Giunchiglia, B. Dutta, and V. Maltese

Fig. 2. Two ontologies in classification semantics

The second consequence is that, in the DL translation of classification ontologies,
the subset relation is translated into subsumption between the formulas of nodes
which are one above the other. It is important to observe that the DL translation of the
same ontology, if taken with real world semantics or with classification semantics,
leads to a different DL theory (compare again Fig. 1(b) and Fig. 2(b))).

Notice that the labels in both ontologies in Fig. 2 are such that each of them repre-
sents a proper subset of the label of the node above. Thus, for instance, vertebrates
represents a proper subset of animals. However, and this is the third consequence, in
classification ontologies, the situation above can be generalized to consider labels
which denote sets which are not in the subset relation, but, rather, in the overlap rela-
tion. As a matter of fact, this is what happens in most classification ontologies [2].
Consider for instance the classification ontology in Fig. 3 (a). The intuition is that
node B should contain all documents which are about “the research on Java”. In other
words, the meaning of a node (so-called “concept at a node” in [1,14]) can be con-
structed by taking the DL conjunction of (semantically, the intersection of the sets
denoted by) the concepts of all the labels in the path from the root to the node itself.
The application of this rule to the example in Fig. 3 (a) leads to the ontology in
Fig. 3(b). As it can be noticed, the concept associated to a node is in the subsumption
relation with any node above and this is obtained by applying the conjunction opera-
tor over the path. The numbers after each label are used to denote the concept which

Fig. 3. (a) A classification ontology with no subset-of relation between labels, (b) the corre-
sponding formal ontology

research

Java

Artificial Intelligence

A

B

C

overlap

(a)

overlap

journal#1 ⊓ java#1

A

B

C

⊑

(b) research#1

journal#1 ⊓ java#1 ⊓ artificial_intelligence#1

⊑

Animals

Vertebrates

Mammals

A

B

D

Invertebrates C

E Birds

subset subset

subset

subset

World

Europe

France

A

B

D

Asia C

E Italy

subset

subset subset

F Rome

subset

subset

(a) (b)

 Faceted Lightweight Ontologies 41

is obtained by disambiguating it (each word may correspond to more than one con-
cept, e.g. Java can be an island, a programming language or a kind of coffee beans). It
is easy to notice how the situation in Fig. 3 (a) collapses into the situations in Fig. 2
(a) once we return to the subset relation: all the conjunctions become redundant due to
the fact that if A ⊑ B, then A ⊓ B is equivalent to A.

2.3 Lightweight Classification Ontologies

All the theory on classification of Library Science and, as a consequence, the theory
of facets, as originally devised by Ranganathan and later refined in the POPSI
methodology, is based on classification semantics. And it is correctly so, as these
methodologies were invented in order to classify books and position them in shelves.
In the following of this paper we also concentrate on classification ontologies and
classification semantics. The motivation is quite similar to that in Library Science. It
is a fact that, e.g., on line catalogs, file systems, web directories and library classifica-
tions are used for classifying objects and can be translated, exactly or with a certain
degree of approximation, into classification ontologies.

As a matter of fact, in all applications from Library Science and also in our refer-
ence applications, the classification ontologies which are needed are quite simple and
consists of trees, possibly multi-rooted, where most of the nodes in the father-child
relation do not have labels whose denotation stands in the subset relation. Each node
label can therefore be translated into a logic formula (typically built as a combination
of conjunctions and disjunctions of atomic concepts) representing the meaning of the
node taking into account its context, namely the path from the root to the node [3].
This leads to the definition of classification lightweight ontology, as originally
defined in [25] (the word “classification” did not appear in the original definition):

 A lightweight classification ontology O is a rooted tree <N,E,LF> where:

a) N is a finite set of nodes;
b) E is a set of edges on N;
c) LF is a finite set of labels expressed in a Propositional DL language such that

for any node ni ∈ N, there is one and only one label li
F∈LF;

d) li+1
F ⊑ li

F with ni being the parent of ni+1.

3 Facets

According to the Analytico-Synthetic approach [22,27], facets are defined following
two steps:

1. examine the field (domain) to identify relevant terms. They can be gained by

consulting domain experts and all sorts of information sources over the domain.
This process starts in the so called “idea plane”, the language independent con-
ceptual level, where primitive concepts are identified. Each identified concept, in
turn, is expressed in the “verbal plane” in a given language, for example in Eng-
lish, trying to articulate the idea coextensively, namely identifying a term which
exactly and unambiguously expresses the concept;

42 F. Giunchiglia, B. Dutta, and V. Maltese

2. group the identified terms (also called isolate ideas) according to their common
properties or characteristics, and order them (in hierarchies) in a meaningful se-
quence. The set of homogeneous terms form a facet. For example, Nose, Larynx,
Trachea, Bronchi, Lung, Pleural sac, Mediasinum form a facet called Respira-
tory system (these entities are in the part-of relation with Respiratory system).
Now the terms Outer nose and Nasal, which are again part-of Nose, can form a
facet called Nose which will be treated as sub-facet of the facet Respiratory
system.

These two steps construct a faceted representation scheme and correspond to what

in our previous work we call the definition and construction of the so called back-
ground knowledge [17, 21], namely the a-priori knowledge which must exist in order
to make semantics effective. Notice that the grouping of terms of step 2 have real
world semantics, namely, they are descriptive ontologies which are formed using
part-of, is-a and instance-of . Facets have the following two key properties:

1. They are organized as a set of independent domains which are completely modu-

lar and can be developed independently.
2. For each domain, facets are grouped into specific elementary categories. Origi-

nally, Ranganathan defined five fundamental categories: Personality, Matter, En-
ergy, Space and Time (PMEST). Later on, Bhattacharyya proposed a refinement
which consists of four main categories, called DEPA: Discipline (D) (what we
now call a domain), Entity (E), Property (P) and Action (A), plus another special
category, called Modifier (m).

In our approach we organize facets according to the DEPA categories. Let us describe
them in some detail:

− Discipline (or domain): it includes conventional fields of study (e.g., Library
Science, Mathematics and Physics), applications of the traditional pure disci-
plines (e.g., Engineering and Agriculture), any aggregates of such fields (e.g.,
Physical Sciences and Social sciences), or also, in more modern terms, fields like
music, sports, computer science, and so on.

− Entity: the elementary category Entity is manifested in perceptual correlates or
in conceptual existence. It is distinct from their properties and actions performed
by them or on them. Basically the concepts represent the core idea of a domain
treated as under this elementary category. For example, “Teachers”, “Students”,
“Courses” are the core concepts to a domain “Education”.

− Property: it includes concepts denoting quantitative or qualitative attributes. For
example, Quality, Quantity, Measure, Weight, Taste, etc;

− Action: it includes concepts denoting the notion of “doing”. It includes “proc-
esses” and “steps” of doing. An action can manifest as “Self-action” or “External
action”. A self-action is an action done by some agent (explicit or implicit) on or
in itself. For example, Imagination, Interaction, Reaction, Reasoning, Thinking,
etc. An external action is an action done by some agent (explicit or implicit) on a
concept of any of the elementary categories described above. For example, Or-
ganization, Cooperation, Classification, Cataloguing, Calculation, Design, etc.

 Faceted Lightweight Ontologies 43

− Modifier: it includes concepts used or intended to be used to qualify other con-
cepts. With the help of a modifier, the extension of a concept is decreased and the
intension is increased without disturbing its conceptual wholeness. For example,
“Mining in India”, here India modifies Mining. By implication, any concept from
the elementary categories above or combination of two or more concepts may
serve as the basis of deriving a modifier. There are many kinds of modifiers, in
particular we can distinguish common modifiers (e.g., space-modifier, time-
modifier, environment-modifier, form-modifier, language modifier) and special
modifiers (e.g., Infectious, Bacterial, Fungus, etc. modify the concept “Diseases”
in the Medicine domain). Common modifiers are common to all disciplines used
to modify manifestations of more than one elementary category, occurring singly
or in combination. Special modifiers modify manifestations of one and only one
elementary category. However, following the principle of reusability (described
below), some modifiers can be shared by a set (but not all) domains (for instance
chemical substances are used both in Chemistry and in Agriculture, possibly
under different categories).

The basic rule for formulating subject headings is Discipline (base) first, followed
by Entity (core), which is followed by Property and/or Action. Property and/or Action
may be further followed by Property and/or Action as the case may be, followed by
Common modifiers. The species/types and/or modifiers and/or parts and/or constitu-
ents for each of the elementary categories follow immediately the manifestation to
which they are respectively species/types or modifiers or parts or constituents. In Fig.
4 we provide an example of facets grouped in the DEPA categories in the Medicine
domain. Notice that, even if this is not the case in the example above, in each
category we can potentially have more than one facet.

Facets possess some essential properties as listed below:

− Hospitability: they are easily extensible. New terms representing new knowl-
edge can be accommodated without difficulty in the hierarchical structure. Terms
in the hierarchies are clearly defined, mutually exclusive and collectively
exhaustive.

− Compactness: facet based systems need less space with respect to the other hier-
archical knowledge organization systems to classify the universe of knowledge.
There is no explosion of the possible combinations as the basic elements (facets)
are taken in isolation.

− Flexibility: hierarchical knowledge organization systems are mostly rigid in their
structure, whereas facet based systems are flexible in nature.

− Reusability: a facet based ontology developed for a particular domain could be
partially usable into another related domain.

− Clear, but rigorous, structure: the faceted approach aims at the identification of
the logical relations between concepts and concepts groups. Sibling concepts
must share a common characteristic.

− The methodology: a strong methodology for the analysis and categorization of
concepts along with the existence of reliable rules for synthesis is provided.

− Homogeneity: a facet represents a homogeneous group of concepts, according to
the specified common characteristic(s).

44 F. Giunchiglia, B. Dutta, and V. Maltese

Fig. 4. The set of facets for the Medicine domain

4 Faceted Lightweight Ontologies

Once the background knowledge is constructed, the next step is to see how to use fac-
ets in order to index or classify documents (in our case, inside lightweight ontologies).
As from above, for us this corresponds to associating to each document and node in a
classification a DL formula [1,2]. This step happens inside what Ranganathan called
the “notational plane”. Here an unambiguous notation is used to synthetically attach
meaning and provide order to the managed objects, typically books on the shelves.
Following G. Bhattacharyya [26], the key idea is to associate to a node or document a
subject, namely “a piece of non-discursive information that summarises indicatively
what a book or document (any body of information) is about”. A subject, in our terms,
is the label and corresponding concept associated to a document or a node in a light-
weight ontology. Since in lightweight ontologies we use classification semantics, a
document will be classified in any node whose subject is more general than the
subject of the document [1,16].

Entity (E)

Knee

Tissue

Body and
its organs Circulatory

system

Digestive
system

Cell

Lower extremity

Foot Leg

Toe

Head

Property (P)

Infection

Disease Preliminaries Obstetrics

General

Poison

Virus
Bacteria

Venereal
disease Tuberculosis

Functional
disorder

Pathology

Action (A)

Nursing Symptom
and diagnosis

Clinical

Physical
method Microscope

X-ray

Bacterial

Special modifier (m)
Disease modifier

Infectious

Viral Fungal

Space modifier (m)

India

Asia

World

Europe

Italy France

 Faceted Lightweight Ontologies 45

We define subjects in terms of facets. The key intuitions are three:

1. We associate to each term in the subject a label and corresponding concept taken
from a faceted classification scheme (in POPSI the concept is given by the
preferred term and its context);

2. For each term in a facet, the context is constructed by associating to it all the
terms from the root to the term itself, thus disambiguating the intended concept.
Notice that this means that, in the step from the background knowledge to the
subject concept, we need to translate from real world semantics (used in
the background knowledge) to classification semantics (used in lightweight
ontologies).

3. Each subject contains terms (concepts) from potentially all the DEPA categories,
thus allowing for the complete disambiguation of the subject. However, the user
is supposed to provide, explicitly or implicitly, at least the discipline and the
main entity.

In POPSI, in order to construct the context, each leading heading (also called lead

term or term-of approach) is followed by the context heading, namely the set of auxil-
iary terms which preserves the context (in terms of the discipline and the path from
the root of the facet to the term). For instance, the context of the term Cell is:

Cell (lead term)

Medicine, Body and its organs > Cell (context heading)

In the above example, “,” separates the isolate ideas (i.e. the concepts) belonging
to the different fundamental categories as shown in section 3, while “>” identifies the
increasing intension and decreasing extension of isolate ideas within a facet. Notice
that, from Fig. 4 above, Medicine is the name of the domain while the second part is
the complete path in the entity facet. Consider, furthermore, the subject “Microscopic
diagnosis of bacterial viruses on cells in India”. Its terms are completely contextual-
ized in POPSI as follows (the sequence of concrete steps necessary to identify them is
described in the next section):

(Domain): Medicine,
(Entity): Body and its organs > Cell,
(Property): Disease > Infection > Virus,
(Modifier of P.) Bacterial,
(Action): Symptom and diagnosis > Microscope,
(Space modifier): Asia > India

The main advantage of the faceted approach is that it makes explicit the logical

relations among the concepts and concept groups and removes the limitations of tradi-
tional hierarchies. It allows for viewing a complex entity from a variety of perspec-
tives or from different angles. For example, a cow can be described as an animal, as a
pet, as a food item, as a commodity, as a God for a particular community, and so on,
depending on the domain. Therefore, each time, by providing the context, the faceted
approach allows for the representation of different concepts.

46 F. Giunchiglia, B. Dutta, and V. Maltese

Entity (E)

Knee

Tissue

Body and
its organs Circulatory

system
Digestive

system

Cell

Lower extremity

Foot Leg

Toe

Head

Pathology

Action (A)

Nursing Symptom
and diagnosis

Clinical

Physical
method Microscope

X-ray

Space modifier (m)

India

Asia

World

Europe

Italy France

Diseases

Clinical

Cell A

B

Cdiagnosis in Italy

 viruses

Preliminaries

Property (P)

Infection

Disease
Obstetrics

General

Poison

Bacteria

Venereal
diseaseTuberculosis

Functional
disorder

Virus

MEDICINE BACKGROUND KNOWLEDGE

 CLASSIFICATION ONTOLOGY

Fig. 5. A faceted lightweight ontology

Based on the notion of subject, we can now define a faceted lightweight (classifi-

cation) ontology as follows:

A faceted lightweight (classification) ontology is a lightweight ontology where each
term and corresponding concept occurring in its node labels must correspond to a
term and corresponding concept in the background knowledge, modeled as a faceted
classification scheme.

Fig. 5 provides an example of how this can be done. Notice that in faceted light-
weight ontologies there might be nodes, as in Fig. 5, whose labels contain terms from
multiple DEPA categories, while in other cases we will have one node per DEPA
category. The more terms and corresponding DEPA categories there will be, the more
specific the lightweight classification ontology will be.

 Faceted Lightweight Ontologies 47

5 Subject Indexing

How do we use faceted classifications schemes, in practice? As already mentioned in
the previous section, documents will be classified under those nodes whose subject
is more general than theirs. But, the real challenge is that in most cases the subject
specification is only partial. To this extent, POPSI provides a methodology for pro-
viding the missing contextual information. The solution lies mainly in the appropriate
representation of the extension and intension of the thought content (subject matter)
of the indexed documents. Let us now discuss the steps involved in POPSI in deriving
the subject strings starting from the titles associated to documents to index along with
an example. Let us consider the example of a subject given in the previous section:

“Microscopic diagnosis of bacterial viruses on cells in India”.

The analysis is organized in eight steps, as described below:

Step 1 (Analysis of the subject indicative expression): it concerns the analysis of
the subject indicative expression pertaining to the source of information. It may be the
title of a book, article etc. For the example above, we derive the following terms:

D = Medicine (implicit in the above title)
E = Cells (explicit)
P = Viruses (explicit)
m of P = Bacterial (explicit)
A = Microscopic diagnosis (explicit)
m = India (explicit) (Space modifier)

In our approach this step is performed analogously. Notice that implicit categories
must be provided manually by the user or computed automatically by the system.

Step 2 (Formalization of the Subject Proposition): in this stage the formalization of
the sequence of the terms appearing in the subject derived by Step 1 (Analysis) is
done. According to the principles of sequence, the components are sequenced in the
following way:

Medicine (D), Cells (E), Viruses (P), Bacterial (m of P), Microscopic diagnosis
(A), India (m)

In our approach this step is not needed.

Step 3 (Standardization of the Subject Proposition): It consists in the identification
of the standard terms, when synonyms of the same term are available, denoting the
atomic concepts present in the subject proposition. For our example, this step is not
applicable. So, the subject proposition remains the same:

Medicine, Cells, Viruses, Bacterial, Microscopic diagnosis, India

In our approach this step is performed analogously. This information is codified in the
background knowledge.

48 F. Giunchiglia, B. Dutta, and V. Maltese

Step 4 (Modulation of the Subject Proposition): It consists of augmenting the stan-
dardized subject proposition by interpolating and extrapolating, as the case may be,
the successive super-ordinates of each concept by using standard terms with
indication of their synonyms. In practice, it corresponds to the identification of corre-
sponding contextual terms, namely the correct disambiguation of each concept used,
providing the right amount of hierarchically related concepts:

Medicine, Body and its organs > Cell, Disease > Infection > Virus, Bacterial,
Symptom and diagnosis > Microscope, Asia > India

In our approach this step is performed analogously: we extract from the background
knowledge, the concept of each natural language term occurring in the subject.

Step 5 (Preparation of the Entry for Organizing the Classification): This step
consists of preparing the main entries in the so called associative index in alphabetical
arrangement. This is done by assigning a systematic set of numbers as given in [26] to
indicate the categories and positions of the subject propositions. In our example:

Medicine 8 Body and its organs 8.3 Cell 8.2 Disease 8.2.4 Infection 8.2.4.4 Virus
8.2.4.4.6 Bacterial 8.2.1 Symptom and diagnosis 8.2.1.4 Microscope 4 Asia 4.4
India

In our approach this step is not needed.

Step 6 (Decision about the Terms-of Approach): It consists of deciding the terms-
of approach, namely the lead terms, for generating associative classifications, and of
controlling synonyms. For controlling synonyms, each standard term is to be referred
to from each of its synonyms. For example (this is not part of our running example),

 Chemical treatment (Medicine)
 see
 Chemotherapy

In our approach this step is not needed.

Step 7 (Preparation of the Entries for Associative Classification): It consists of
preparing entries under each term-of-approach by cyclic permutation. For example
(all other entries can be treated similarly):

Body and its organ
Medicine, Body and its organs > Cell, Disease > Infection > Virus, Bacterial,
Symptom and diagnosis > Microscope, Asia > India

Cell
Medicine, Body and its organs > Cell, Disease > Infection > Virus, Bacterial,
Symptom and diagnosis > Microscope, Asia > India

In our approach this step is not needed.

 Faceted Lightweight Ontologies 49

Step 8: Alphabetical Arrangement of Entries
It consists of arranging all the entries including the reference entries in alphabetical
sequence according to a set of standardized rules ignoring the signs and punctuation
marks.

Asia
 Medicine, Body and its organs > Cell, Disease > Infection > Virus, Bacterial,

 Symptom and diagnosis > Microscope, Asia > India
Bacterial
 Medicine … India
 …
 …
Virus
 Medicine … India

In our approach this corresponds to indexing or classifying inside a faceted light-

weight ontology using the concepts of the nodes and the documents.

6 Conclusion

In this paper, we have introduced the notion of faceted lightweight ontology as a
lightweight ontology whose terms are extracted from a background knowledge organ-
ized in terms of facets. Using facets allows us to have much more control on the
language and concepts used to build ontologies and also on their organization, which
in general will exploit the structure and terms of the four basic DEPA categories.

This work has been done as part of the FP7 Living Knowledge FET IP European
Project.

References

1. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding Classifications into Lightweight
On-tologies. Journal of Data Semantics 8, 57–81 (2006); Short version in: Proceedings of
the 3rd European Semantic Web Conference (ESWC) (2006)

2. Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. In: S. (ed.) Encyclopedia of Data-
base Systems (2008)

3. Zaihrayeu, I., Sun, L., Giunchiglia, F., Pan, W., Ju, Q., Chi, M., Huang, X.: From web di-
rectories to ontologies: Natural language processing challenges. In: Aberer, K., Choi, K.-
S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 623–636. Springer, Heidelberg (2007)

4. Mai, J.-E.: Classification in Context: Relativity, Reality, and Representation. Knowledge
Organization 31(1), 39–48 (2004)

5. Duval, E., Hodgins, W., Sutton, S., Weibel, S.L.: Metadata Principles and Practicalities.
DLib Magazine 8(4) (2002),

 http://www.dlib.org/dlib/april02/weibel/04weibel.html

50 F. Giunchiglia, B. Dutta, and V. Maltese

6. Nicholson, D., Neill, S., Currier, S., Will, L., Gilchrist, A., Russell, R., Day, M.: HILT:
High Level Thesaurus Project – Final Report to RSLP & JISC. Centre for Digital Library
Research, Glasgow, UK (2001), http://hilt.cdlr.strath.ac.uk/Reports/
Documents/HILTfinalreport.doc

7. Tzitzikas, Y., Armenatzoglou, N., Papadakos, P.: FleXplorer: A Framework for Providing
Faceted and Dynamic Taxonomy-Based Information Exploration. In: DEXA Workshops,
pp. 392–396 (2008)

8. Tzitzikas, Y., Analyti, A., Spyratos, N., Constantopoulos, P.: An algebra for specifying
valid compound terms in faceted taxonomies. Data Knowl. Eng. (DKE) 62(1), 1–40 (2007)

9. Tzitzikas, Y., Spyratos, N., Constantopoulos, P., Analyti, A.: Extended Faceted Ontolo-
gies. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 778–781. Springer, Heidelberg (2002)

10. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Aquisition 5(2), 199–220 (1993)

11. Guarino, N.: Helping people (and machines) understanding each other: The role of formal
ontology. In: Meersman, R., Tari, Z. (eds.): CoopIS/DOA/ODBASE 2004. LNCS,
vol. 3290, p. 599. Springer, Heidelberg (2004)

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Descrip-
tion Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2002)

13. Soergel, D.: A Universal Source Thesaurus as a Classification Generator. Journal of the
American Society for Information Science 23(5), 299–305 (1972)

14. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic Matching: algorithms and im-
plementation. Journal on Data Semantics IX (2007)

15. Giunchiglia, F., McNeill, F., Yatskevich, M., Pane, J., Besana, P., Shvaiko, P.: Approxi-
mate Structure-Preserving Semantic Matching. In: 7th International Conference on On-
tologies, Databases and Applications of Semantics (ODBASE 2008), Monterrey, Mexico
(November 2008)

16. Giunchiglia, F., Zaihrayeu, I., Kharkevich, U.: Formalizing the get-specific document clas-
sification algorithm. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS,
vol. 4675, pp. 26–37. Springer, Heidelberg (2007)

17. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Discovering Missing Background Knowl-
edge in Ontology Matching. In: Brewka, et al. (eds.) Proceedings: 17th European Confer-
ence on Artificial Intelligance - ECAI 2006, Riva del Garda, Italy, August 29- September
1, 2006, vol. 141, pp. 382–386. Leipzig University, Germany (2006)

18. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: Meersman,
R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 347–365. Springer, Heidelberg (2005)

19. Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 272–289. Springer, Hei-
delberg (2005)

20. Giunchiglia, F., Yatskevich, M.: Element Level Semantic Matching. In: Workshop on
Meaning Coordination and Negotiation. ISWC 2004, Hiroshima, Japan (November 2004)

21. Giunchiglia, F., Kharkevich, U., Zaihrayeu, I.: Concept Search: Semantics Enabled Syn-
tactic Search. In: Semantic Search 2008 workshop (SemSearch 2008) at the 5th European
Semantic Web Conference (ESWC 2008) (2008)

22. Ranganathan, S.R.: The Colon Classification. In: Artandi, S. (ed.) The Rutgers Series on
Systems for the Intellectual Organization of Information, vol. IV. Graduate School of Li-
brary Science, Rutgers University, New Brunswick (1965)

23. La Barre, K.: Adventures in faceted classification: A brave new world or a world of confu-
sion? In: Knowledge organization and the global information society: proceedings 8th
ISKO conference, London, July 13-16 (2004)

 Faceted Lightweight Ontologies 51

24. Hearst, M.: Design Recommendations for Hierarchical Faceted Search Interfaces. In:
ACM SIGIR Workshop on Faceted Search, Seattle, WA (2006)

25. Giunchiglia, F., Maltese, V., Autayeu, A.: Computing minimal mappings. University of
Trento, DISI Technical Report (2008)

26. Bhattacharyya, G.: POPSI: its fundamentals and procedure based on a general theory of
subject indexing languages. Library Science with a Slant to Documentation 16(1), 1–34
(1979)

27. Ranganathan, S.R.: Prolegomena to library classification. Asia Publishing House, London
(1967)

28. Ranganathan, S.R.: Elements of library classification, p. 3. Asia Publishing House, Bom-
bay (1960)

29. Aptagiri, D.V., Gopinath, M.A., Prasad, A.R.D.: A frame-based knowledge representation
paradigm for automating POPSI (1995)

30. Broughton, V.: The need for a faceted classification as the basis of all methods of informa-
tion retrieval. Aslib Proceedings 58(1/2), 49–72 (2006)

31. Zaihrayeu, I., Marchese, M., Giunchiglia, F.: Encoding Classifications into Lightweight
Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 80–94.
Springer, Heidelberg (2006)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 52–67, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The Ontological Level: Revisiting 30 Years of
Knowledge Representation

Nicola Guarino

ISTC-CNR, Laboratory for Applied Ontology, Via alla Cascata 56/C, Trento, Italy
nicola.guarino@cnr.it

Abstract. I revisit here the motivations and the main proposal of paper I
published at the 1994 Wittgenstein Symposium, entitled “The Ontological
Level”, in the light of the main results achieved in the latest 30 years of
Knowledge Representation, since the well known “What’s in a link?” paper by
Bill Woods. I will argue that, despite the explosion of ontologies, many
problems are still there, since there is no general agreement about having
ontological distinctions built in the representation language, so that assumptions
concerning the basic constructs of representation languages remain implicit in
the mind of the knowledge engineer, and difficult to express and to share. I will
recap the recent results concerning formal ontological distinctions among unary
and binary relations, sketching a basic ontology of meta-level categories
representation languages should be aware of, and I will discuss the role of such
distinctions in the current practice of knowledge engineering.

Keywords: ontology, knowledge representation, identity, rigidity, OntoClean.

1 Introduction

About 25 years ago, Ron Brachman, Richard Fikes and Hector Levesque [5]
published a seminal paper describing a hybrid knowledge representation system
(KRYPTON) built around two separate components reflecting the natural distinction
between terms and sentences: the TBox (for terminological knowledge) and the ABox
(for assertional knowledge). Terms were represented in the TBox by a structured
formalism that was an ancestor of modern description logics, allowing the knowledge
engineer to form composite descriptions corresponding to noun phrases like “an
igneous rock”, “a grey rock”, or “a family with no children”. A terminological
knowledge base can be seen as a network of analytic relationships between such
descriptions. If the basic vocabulary and the description-forming rules are rich
enough, such a network can easily become quite complicated, due to the possibility of
forming complex descriptions. For instance, even with a small set of attributes
denoting different properties of rocks, it is easy to come up with a relatively complex
taxonomy, as the authors point out while presenting Fig. 1.

In this context, the authors discussed the effects of a query such as “How many
rock kinds are there?”. They observed that, despite its commonsense simplicity, this is
a “dangerous question to ask”, as it cannot be answered by simply looking at the
nodes subsumed by ‘rock’ in the network, since the language allows them to

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 53

Fig. 1. Kinds of rocks (From [5])

proliferate easily, as soon as new attributes are added to the vocabulary. Hence they
proposed a functional approach to knowledge representation designed to only answer
“safe” queries that are about analytical relationships between terms, and whose
answers are independent of the actual structure of the knowledge base, like “a large
grey igneous rock is a grey rock”.

It is clear that, in this example, Brachman and colleagues understood the term
“rock kind” in a very simple, minimalist way (perhaps as synonymous with “rock
class”), ignoring the fact that, for many people, there are just three kinds of rocks, as
taught at high school: Igneous, Metamorphic, and Sedimentary. On the other hand,
two of the same authors, in an earlier paper on terminological competence in
knowledge representation [6] stressed the importance of distinguishing an
“enhancement mode transistor” (which is “a kind of transistor”) from a “pass
transistor” (which is “a role a transistor plays in a larger circuit”).

So why was this distinction ignored? My own conclusion is that important issues
related to the different ontological assumptions underlying our use of terms have been
simply given up while striving for logical simplification and computational
tractability. As a consequence, most representation languages, including “ontology
languages” like OWL, do not offer constructs able to distinguish among terms having
similar logical structure but different ontological implications. In our example, clearly
“large rock” and “sedimentary rock” have the same logical structure, being both
interpreted as the conjunction of two (primitive) logical properties; yet we tend to
believe that there is something radically different between the two: why? To answer
this question we have to investigate:

• the nature of the primitive properties “being a rock”, “being large”, and “being
sedimentary”;

• the way they combine together in a structured term, while modifying each other.

Unfortunately, while current representation languages offer us powerful tools to build
structured descriptions whose formal semantics is carefully controlled to provide
efficient reasoning services, still no agreement has been reached concerning the need
to adopt proper mechanisms to control the ontological commitments of structured

rock

igneous rock sedimentary rock metamorphic rock

large rock grey rock

large grey igneous rock

grey
 sedimentary

rock

pet metamorphic rock

54 N. Guarino

representation formalisms, as their semantics is completely neutral with respect to the
nature of the primitive components and the structuring relationships.

To see another instance of this unfortunate situation, involving binary relations
instead of unary properties as in the previous case, consider the old example brought
about by Bill Woods’ in its classic “What’s in a Link?” paper [38]:

JOHN
 HEIGHT: 6 FEET
 HIT: MARY

As Woods observed, in this case the two relations ‘Height’ and ‘Hit’ have certainly a
different ontological nature, but nothing excludes, in the semantics of description
logics or similar structured representation formalisms, them from being considered as
“attributes” or “roles” (in the description logic’s sense), since these constructs are
understood as arbitrary binary relations. So, more than 30 years later, Woods’
problem cannot be considered as solved.

Indeed, ontologies have exploded nowadays, but many problems are still there: we
have now ontology languages, but despite a fair amount of results concerning the
formal analysis of ontological distinctions like the ones mentioned before – including
OntoClean [20, 21] and the related work on the ontological characterization of unary
properties [18, 19, 31], as well as extensive analyses of fundamental binary relations
such as parthood, location or dependence [32, 37, 2, 9, 33, 34, 12] – there is still no
general agreement about having such distinctions built in the language, so that
assumptions such as those concerning the basic constructs of representation languages
remain implicit in the mind of the knowledge engineer, however difficult to express
and share. A concrete proposal in this direction has been made in [23], where an
ontologically well-founded profile for UML is proposed, which constrains the
semantics of UML modeling elements in the light of ontological distinctions mainly
inspired to OntoClean. This is still a preliminary work, however, and we are far from
having an ontologically well-founded representation language we can reason with.
Moreover, nobody has explored, as far as I am aware of, the computational impact of
a representation language whose semantics is constrained in the light of ontological
distinctions.

In the following, I will revisit the motivations and the main proposal of my old
1994 paper [17] in the light of the main results achieved so far, arguing for the need
of further work1. This paper is organized as follows. In the next section I will discuss
the very notion of “levels” for knowledge representation languages, based on a classic
paper by Ron Brachman [4], and I will argue in favor of the introduction of a specific
ontological level. Then, in Section 3, I will present examples showing the practical
necessity of an explicit ontological commitment for representation constructs. In
section 4, I will recap the recent results concerning formal ontological distinctions

1 Most of the material presented here has been used in PhD courses on “Foundations of

Conceptual Modeling and Ontological Analysis” John Mylopoulos and I have been giving for
a couple of years (with slight changes in focus) at the ICT International School of the
University of Trento. The idea was to present our own approaches in a complementary way,
being both present throughout the course and making comments on each other’s lectures on
the fly. A lot of fun.

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 55

among unary and binary relations, sketching a basic ontology of meta-level categories
representation languages should be aware of. In section 5, I discuss the role of the
ontological level in current practice of knowledge engineering.

2 Knowledge Representation Levels

In 1979, Ron Brachman discussed a classification of the various primitives used by
KR systems at that time [4]. He argued that they could be grouped in four levels,
ranging from the implementational to the linguistic level (Fig. 2). Each level
corresponds to an explicit set of primitives offered to the knowledge engineer. At the
implementational level, primitives are merely pointers and memory cells, which allow
us to construct data structures with no a priori semantics. At the logical level,
primitives are propositions, predicates, logical functions and operators, which are
given a formal semantics in terms of relations among objects in the real world. No
particular assumption is made however as to the nature of such relations: classical
predicate logic is a general, uniform, neutral formalism, and the user is free to adapt it
to its own representation purposes. At the conceptual level, primitives have a definite
cognitive interpretation, corresponding to language-independent concepts like
elementary actions or thematic roles. Finally, primitives at the linguistic level are
associated directly to nouns and verbs of a specific natural language.

Level Primitives

Implementational Memory cells, pointers

Logical Propositions, predicates, functions, logical operators

Epistemological Concept types, structuring relations

Conceptual Conceptual relations, primitive objects and actions

Linguistic Linguistic terms

Fig. 2. Classification of primitives used in KR formalisms (adapted from [4]). Epistemological
level was “the missing level”.

Brachman’s KL-ONE [4,7] was the first example of a formalism built around these
notions. Its main contribution was to give an epistemological foundation to cognitive
structures like frames and semantic networks, whose formal contradictions had been
revealed in the famous “What’s in a link?” paper [38]. Brachman’s answer to Woods’
question was that conceptual links should be accounted for by epistemological links,
which represent the structural connections in our knowledge needed to justify
conceptual inferences. KL-ONE focused in particular on the inferences related to the
so-called IS-A relationship, offering primitives to describe the (minimal) formal
structure of a concept needed to guarantee “formal inferences about the relationship
(subsumption) between a concept and another”. Such formal structure consisted of the

56 N. Guarino

basic concept’s constituents (primitive concepts and role expressions) and the
constraints among them, independently of any commitment as to:

• the meaning of primitive concepts;
• the meaning of roles themselves;
• the nature of each role’s contribution to the meaning of a specific concept.

The intended meaning of concepts remained therefore totally arbitrary: indeed, the
semantics of current descendants of KL-ONE, description logics, is such that concepts
correspond to arbitrary monadic predicates, while roles are arbitrary binary relations.
In other words, at the epistemological level, emphasis is more on formal reasoning
than on (formal) representation: the very task of representation, i.e. the structuring of
a domain, is left to the user.

Current frame-based languages and object-oriented formalisms suffer from the
same problem, which is common to all epistemological-level languages. On the one
hand, their advantage over purely logical languages is that some predicates, such as
those corresponding to types and attributes, acquire a peculiar, structuring meaning.
Such meaning is the result of a number of ontological commitments, often motivated
by strong cognitive and linguistic reasons and ultimately dependent on the particular
task being considered, which accumulate in layers starting from the very beginning of
the process of developing a knowledge base [11]. On the other hand, such ontological
commitments remain hidden in the knowledge engineer’s mind, since these
knowledge representation languages are in general neutral as concerns ontological
choices. This is also, in a sense, a result of the essential ontological promiscuity
claimed by influential scholars [13, 27] for AI languages: since conceptualizations are
our own inventions, then we need the maximum freedom for interpreting our
representations.

Level Primitive constructs Main feature Interpretation

Logical Predicates Formalisation Arbitrary

Epistemological Structuring relations

(concepts and roles)

Structure Arbitrary

Ontological Structuring relations

satisfying meaning postulates

Meaning Constrained

Conceptual Cognitive primitives Conceptualisation Subjective

Linguistic Linguistic primitives Language Subjective

Fig. 3. Main features of the ontological level

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 57

In my 1994 paper I argued against this neutrality, claiming that a rigorous
ontological foundation for knowledge representation can improve the quality of the
knowledge engineering process, making it easier to build at least understandable (if
not reusable) knowledge bases. After all, even if our representations are ontologically
promiscuous, admitting the existence of whatever is relevant for us, it seems certainly
useful to avoid at least the most serious ontological ambiguities when it comes to
interpretation, by using different constructs for different basic ontological categories.
In this view, as we shall see, “being large” and “being a rock” are represented by
different constructs, whose semantics is constrained to reflect general ontological
distinctions.

Representation languages conforming to this view belong to the ontological level, a
new level I proposed to include in Brachman’s layered classification, in an
intermediate position between the epistemological and the conceptual levels (Fig. 3).
While the epistemological level is the level of structure, the ontological level is the
level of meaning. At the ontological level, knowledge primitives satisfy formal
meaning postulates, which restrict the interpretation of a logical theory on the basis of
formal ontological distinctions.

3 From the Logical Level to the Ontological Level

Suppose we want to state that a red apple exists. At the logical level, it is
straightforward to write down something like

(1) ∃x (Apple(x) ∧ Red(x)).

At the epistemological level, if we want to impose some structure on our domain
(dividing for instance apple from pears), the simplest formalism we may resort to is
many-sorted logic. Yet, we have to decide which predicates correspond to sorts, as we
may write

(2) ∃x:Apple(Red(x))

as well as

(3) ∃x:Red(Apple(x))

or maybe

(4) ∃(x:Apple,y:Red)(x=y).

All these structured formalizations are equivalent to the previous one-sorted axiom,
but each contains an implicit structuring choice. However, (3) sounds intuitively odd:
what are we quantifying over? Do we assume the existence of “instances of redness”
that can have the property of being apples?

Unfortunately, the formalism we are using does not help us in making the right
choice: we have the notion of “sort”, but its semantics is completely neutral, since a
sort may correspond to an arbitrary unary predicate. Using a more structured

58 N. Guarino

formalism allowing for attributes or (so-called) roles, like a description logic or a
frame-based language, does not help, since we still have to make a choice between,
say

(5) (a Apple with Color red)

and

(6) (a Red with Shape apple)

So, at the epistemological level, the structuring choices are up to the user, and there
is no way to exclude the “unnatural” ones.

At the ontological level, on the contrary, what we want is a formal, restricted
semantic account that reflects the ontological commitment underlying each
structuring primitive, so that the association between a logical predicate and a
structuring primitive is not a neutral choice any more: in other words, each structuring
primitive corresponds to properties (or relations) of a certain kind. In our example, the
difference between “being an apple” and “being red” lies in the fact that the former
property supplies a principle for distinguishing and tracing in time its individual
instances, while the latter does not. This distinction is known in the philosophical
literature as the distinction between sortal and non-sortal (or characterising)
properties [14], and is (roughly) reflected in natural language by the fact that the
former are denoted by common nouns, while the latter by adjectives. The bottom line
is that not all properties are the same, and only sortal properties correspond to what
are usually called “concepts”.

In the light of the above criteria, a predicate like Red – under its ordinary meaning
– will not satisfy the conditions for being a concept (or a sort). Notice however that
this may be simply a matter of point of view: at the ontological level, it is still the user
who decides which conditions reflect the intended use of the Red predicate. For
example, consider a different scenario for our example. Suppose there is a painter,
who has a palette where the various colors are labeled with terms evoking natural
things. For her, the various shades of red in the palette are labeled “orange red”,
“cherry red”, “strawberry red”, “apple red”. In this scenario, the formula (3) above
makes perfect sense, meaning that, among the various reds, there is also the apple red.

How can we account for such semantic differences? We shall see in the following
that they are not simply related to the fact that the argument of Red belongs to
different domains, but they reflect different ways of predication, expressed by
predicates belonging to different kinds, in virtue of their different ontological nature.
In part, these differences are also revealed by the way we use the same word in
natural language: for instance, in the first scenario Red is an adjective, while in the
painter’s scenario it is a noun. Unfortunately this basic difference disappears when we
move from linguistic analysis to logic analysis, since we tend to use the same
predicate for the two cases.

In a knowledge representation formalism, we are constantly using natural language
words within our formulas, relying on them to make our statements readable and to
convey meanings we have not explicitly stated: however, since words are ambiguous
in natural language, when these words become predicate symbols it may be important
to “tag” them with an ontological category, endowed with a suitable axiomatization,

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 59

in order to make sure the proper intended meaning is conveyed, and to exclude at
least the most serious misunderstandings. This is basically what Chris Welty and I
have suggested with our OntoClean methodology [21]. However, with my ontological
level proposal, I was aiming at something more: embed some basic ontological
categories in a knowledge representation formalism, constraining its own
representation primitives. In part, this is what has been attempted by Giancarlo
Guizzardi in his PhD work [24]. However, this work only concern semantic
constraints on a conceptual modeling language (UML V2.0), and I am not aware of
similar attempts for constraining the semantics of knowledge representation
formalisms such as description logics.

In the following, I will briefly sum up and revisit the most relevant distinctions
within unary properties and binary relations which have emerged from the research on
formal ontology since the time I published my 1994 paper, and which I believe make
sense from the point of view of knowledge representation. Hopefully, such distinctions
will inspire a future generation of ontological level representation languages.

4 Basic Distinctions among Properties

In [19], Chris Welty and I presented a general ontology of unary properties, resulting
from the combinatorial composition of a small set of formal metaproperties based on

Fig. 4. A general ontology of unary properties. Adapted from [19].

60 N. Guarino

three main notions: identity, rigidity and dependence, reported (in slightly revised
form) in Fig. 4. I will not go here into the details of the technical aspects underlying
these metaproperties, whose formal definitions have been discussed and refined in
various papers since my early proposals [16, 17, 36, 31, 24]. I will just introduce them
in an informal way as needed, pointing to the most recent formalizations.

What I would like to insist on here is the practical relevance of these distinctions:
not all unary properties play the same role in knowledge representation, despite the
fact that all of them can be expressed by the same logical structure (unary predicate).

Before introducing these property kinds, let me stress that they are completely
general, being independent of any commitment concerning the ontological nature of
the property arguments. In other words, the reason why a certain property belongs to
one of these kinds has nothing to do with its arguments, which may belong – for
instance – to any of the DOLCE’s top categories like objects, events, or qualities.

4.1 Sortal vs. Non-sortal Properties

The first basic distinction is the classic one between sortal and non-sortal properties.
In short, a property is a sortal (marked with the meta-property +I) if it carries a
criterion of identity for its instances. Otherwise it is a non-sortal, marked with –I.

I will not enter here in the (still well alive, see [14]) philosophical debate related
to the nature of sortals, simply claiming that, especially for knowledge representation
purposes, it is extremely useful to distinguish between properties for which a certain
principle for distinguishing and tracing their instances can be determined, and
properties for which such principle cannot be determined2. Indeed, besides being
well recognized in philosophy and in linguistics, the role of identity principles is
explicitly defended in conceptual modeling (for instance, in Chen's Entity-
Relationship model [10], entities are explicitly defined as “’things’ which can be
distinctly identified”).

I only note here that, differently from [17] and [23] (but consistently with the
OntoClean literature) I include non-countable properties corresponding to so-called
mass-terms (like “amount of gold”) under sortals. The rationale for this is that
amounts of matter can indeed be distinguished and traced in time, differently from
non-sortal properties like “red” (in the adjectival sense), and can appear in relative
clauses instantiating the pattern “the X that …”, such as “the amount of water that
was in the glass is now on the floor”. Indeed, assuming an atomic view of amounts of
matter, their identity criterion is very simple: two amounts of matter are the same if
and only if they contain the same molecules (similarly to collectives like groups of
people). After all, we need to distinguish and trace amounts of matter if we want to
model flow of liquids, for instance.

So being a sortal does not imply being countable, although the converse is true, at
least for ordinary domains3, and indeed countability is a useful heuristic to conclude
that a property is a sortal, independently whether a particular identity criteria can be
determined.

2 See [20] for a formal account of the notion of identity criteria in knowledge representation.
3 See [29] for an argument against the fact that countability implies identity.

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 61

4.2 Kinds of Rigidity

I introduced the first time the notion of ontological rigidity for a unary property in
[16]4. Since then, Chris Welty and I proposed a more careful definition in our
Ontoclean papers [20, 21], which was further refined by various contributions [28, 8,
1, 36]. The basic intuition is however still the same: a unary property is rigid if it is
essential for all its instances, so that, if x is an instance of a rigid property, it cannot
lose this property without losing its identity. Going back to our example, it seems
plausible to assume that Apple is always rigid (+R), while Red is non-rigid (-R) in the
first scenario, and rigid in the painter’s scenario. We see therefore how clarifying
whether a property is rigid or not helps disambiguating between different ontological
assumptions concerning the use of a certain word.

Since the definition of rigidity involves a universal quantification on all the
instances of a given property, we can isolate two forms of rigidity: in the weaker case
(non-rigidity, -R) there is at least one contingent instance, which does not exhibit the
given property necessarily; in the stronger case (anti-rigidity, ~R), all instances are
contingent. Of course anti-rigidity implies non-rigidity; a property which is non-rigid
but not anti-rigid is called semi-rigid (¬R). As we shall see, Student is a classic
example of an anti-rigid property (since every student is not necessarily such), while
Red can be considered as semi-rigid, if we assume that certain things (say, rubies) are
necessarily red, while others (e.g., red cars) are just contingently so. As shown in
Fig. 4, sortals can be partitioned in rigid, anti-rigid and semi-rigid.

As stressed many times in the OntoClean papers, I would like to remark here that,
in a certain KR theory, the decision as to whether a certain property is rigid or not is
not a fixed one, and ultimately depends on the knowledge engineer: for example, if
one believes in reincarnation, perhaps it makes sense to assume that Person is not
rigid, if the worlds concerning the other lives are part of the modeling context. In a
recent paper addressing again the definition of an ontology [22], I have elaborated this
issue suggesting that a world is defined with respect to a specific observer (the
knowledge engineer) and (forgetting time for the sake of simplicity) coincides with a
maximal “perception state”. So, for the knowledge engineering practice, rigidity only
concerns those worlds that are in the modeler’s radar.

4.3 Rigid Sortals: Types and Quasi-types

Rigid sortals are particularly important in knowledge engineering, since they capture
the essential, invariant aspects of individuals, providing at the same time the criteria
for individuating them in a given world, and tracing them across worlds. It seems very
natural therefore, as introduced in [20] and further elaborated in [24], to impose, as
modeling constraint, that every element of the domain of discourse must be an
instance of a rigid sortal, complying to Quine’s ditto “no entity without identity”.
Assuming this constraint, while analyzing a domain we can concentrate first on such
rigid properties, forgetting the non-rigid ones, being assured that no domain elements
are left out.

4 I was unfortunately unaware of the work by Gupta [25], subsequently cited in [23] who

introduced a very similar notion, called modal constancy.

62 N. Guarino

Since rigid sortals can specialize each other, it is also useful to distinguish, within a
sortals taxonomy, between those which just carry some identity criteria (inherited
from some more general sortal) and those that directly supply the (necessary or
sufficient) conditions that contribute to such criteria. We call the latter types, and the
former quasi-types. According to the OntoClean notation, types are marked with the
metaproperty +O, which stands for “supplies its own identity”, and quasi-types with
the metaproperty –O. For instance, consider the properties Living Being, Person, and
Italian Person. Assuming that all of them are rigid, Living Being supplies some
identity criteria (say, DNA identity), which are further specialized by Person, which
adds, e.g, identity of fingerprints as a sufficient condition. Presumably, Italian Person
does not supply further identity conditions, so the former two properties are types,
while the latter is a quasi-type.

4.4 Anti-rigid Sortals: Material Roles and Phases

Since the early KL-One, the notion of role has been extensively discussed in the KR
literature (see [3] for a recent overview). Various issues are still open, but there is a
substantial agreement on the fact that unary properties denoting roles are anti-rigid.
Anti-rigidity alone is however not enough to capture the relational nature of roles,
which has been called foundation in [16], external dependence in [19], and again
foundation in [31], always with slightly different formalizations. The latter
formalization (which in turn relies on the notion of definitional dependence) is
definitely the most accurate for our purposes, but I prefer to call it again external
dependence, just because I find the term more intuitive. So, according to this revised
definition, a property P is externally dependent (marked with +D) if its definition
involves (at least) another property Q such that, for every instance x of P, there exists
an instance y of Q which is external to x, in the sense that x is not a part of y, and y is
not a part of x5.

In conclusion, roles are anti-rigid, externally dependent unary properties6. Being
anti-rigid, roles do not supply any identity criteria, which in most cases are inherited
by the types they specialize (as in the prototypical example Student, which inherits the
identity criteria of Person). However, there are certain general roles, like Part, or so-
called thematic roles like Patient or Theme, which are not conceivably subsumed by
any sortal, and hence they are not sortal themselves. Within roles, we distinguish
therefore material roles, which (indirectly) carry some identity criteria (+I) from
formal roles, which do not carry identity (-I).

Note that within material roles we also include properties like Pedestrian or By-
pass capacitor, which linguistically behave differently from Student or Son. In [16] I
called the latter relational roles, and the former non-relational roles (see next
section).

As we have seen, roles are externally dependent properties, characterized by the
+D metaproperty. If such metaproperty does not hold, and still we have an anti-rigid

5 See [31] for the formal definition, which is based on a reification on the properties P and Q.

See also [35] for a general discussion on this property reification move.
6 See below for their systematic link to binary properties (so that Student is systematically

linked with Has-Student or Student-of).

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 63

sortal, this is a case of a phasal sortal, whose prototypical example is Baby: if
somebody is a baby, we cannot assume that anything else must necessarily exist, so
Baby is not externally dependent, while clearly being an anti-rigid sortal. Note that
phasal sortals also include states like Tired or Happy, assuming it is a sortal inheriting
identity criteria from, e.g., Animal. The difference between phases and states should
be however further analyzed7.

4.5 Semi-rigid Sortals

Semi-rigid sortals have been called “mixins” in our OntoClean papers, but I prefer to
avoid this term since it is used with different meanings in the object-oriented
literature, as discussed in [23]. I don’t think semi-rigid sortals have a special role in
knowledge representation, although in some cases they may correspond to useful
generalizations. They are reported here just for completeness.

4.6 Non-sortals: Categories, Formal Roles, and Attributions

The bottom part of Fig. 4 describes the remaining three cases in our taxonomy of
unary properties, concerning the relevant distinctions within non-sortals. Note that our
assumption that every individual must be an instance of a sortal implies that non-
sortals correspond to abstract classes in the UML terminology, that is, they cannot
have direct instances.

A first case is that of so-called categories, consisting of general properties like
Entity or Object, which do not exhibit any common criterion of identity for their
instances (for this reason they have been called dispersive in [26]). These are usually
the topmost concepts in an ontology.

Formal roles have already been discussed, they are anti-rigid and externally
dependent, but they carry no identity criteria. Note that also relational properties like
Interesting, Strange or On-the-table fit under this class, although they don’t look like
roles, probably because they are not denoted by a name.

Finally, in OntoClean we called attributions all those non-sortal properties which
are simply non-rigid and not externally dependent. This is a large class, which
includes Red and Big as well as Broken. In DOLCE, I assume that these attributions
reflect qualitative states of entities, resulting from the fact that a specific quality is
classified in a certain region of a quality space [30].

4.7 The Rocks Example Revisited

Going back to our introductory examples, it is easy to conclude, in the light of the
above discussion, that Metamorphic rock, Igneous rock and Sedimentary rock are the
only types in the picture (we might want to call them kinds, terminological
distinctions are a matter of taste, here). Large rock and Grey rock are semi-rigid
sortals or perhaps phasal sortals (depending whether we admit that the same rock can
change size or color), while Pet metamorphic rock is a material role.

7 Perhaps phases – together with material roles – supply local identity criteria, differently from

states.

64 N. Guarino

5 Basic Distinctions among Binary Properties

Analogously to unary properties, useful distinctions can be drawn within binary
properties, with the purpose of developing more “ontology aware” representation
formalisms. Unfortunately, the results in this area, in comparison to what has been
done for unary properties, are much more scattered, and I am not aware of any
attempt to propose a general ontology like the one described above8.

The main practical problem of binary relations, from the KR point of view, is still
the one raised by Bill Woods in the example I mentioned in the introduction: how to
distinguish between the relations which contribute to the internal structure of a
concept and those which do not? Or, in other words, how to decide whether a piece of
information should be modeled in terms of an attribute-value pair or in terms of a
genuine relation?

I discussed this issue in [16], suggesting that attributes should be confined to
relational roles, qualities, and parts. Intuitively, all these cases fit under the linguistic
test suggested by Woods to check whether a binary relation A can be considered as an
attribute for an individual X:

Y is a value of the attribute A of X if we can say that
Y is an A of X (or Y is the A of X)

Retrospectively, in the light of the most recent (yet scattered) work on the ontology
of relations, I believe that the intuition behind the use of the of preposition to capture
the notion of attribute lies in the ontological distinction between internal and external
relations, which is intertwined with the distinction between formal and material
relations9. The picture I have mind for binary relations is sketched in Fig. 5. I assume
first a distinction between formal and material relations [15], where a formal relation
yields just because of the very existence of its relata, while a material relation needs,
so to speak, another “grounding” entity. Suppose, for example that John is older than
Mary and John loves Mary; the Older-than relationship is a formal one, while the
Loves relationship is a material one, since – besides the existence of John and Mary –
it requires an extra entity, namely the event consisting of the love between John and
Mary. I assume that all material relations are grounded on events, in DOLCE’s
sense10.

Within formal relations, I distinguish between the internal and the external ones,
depending whether there is an existential dependence relationship between the relata.
The basic kinds of internal relationships I have in mind (all formalized in DOLCE)
are parthood, constitution, quality inherence, and participation, shown in the figure.
There are however some technical problems concerning parthood and constitution
(which are shown with an asterisk), since, if we take time into account, a specific
parthood or constitution relationship can be understood as an internal relation only if
it holds necessarily (concerning therefore an essential part); otherwise, we cannot
simply say that such relationship holds without specifying the time frame (i.e. the

8 See [15] for a recent philosophical exploration of the ontology of binary relations.
9 I know that for some authors these terminologies are equivalent.
10

 I know that this assumption may be too strong in some cases (e.g., for certain relations
between events), but I believe it is robust enough for knowledge engineering purposes.

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 65

Fig. 5. A sketch of basic distinctions within binary relations

event) where this happens. I don’t think that explicitly modeling events involving
contingent parthood or constitution is a practical choice, however, so probably the
best thing is to introduce suitable time-indexed parthood and constitution relations,
whose formal characterization is still being investigated. However, my suggestion in
the light of this analysis is that, in an ontologically well-founded theory, structuring
relations (i.e., those corresponding to are called attributes or roles in frame-based
formalisms and description logics) should be limited to specializations of such
internal relationships, possibly extended with time indexes. This means that, for
instance, an ownership relationship between a person and her car should be modeled
in terms of the entity that grounds it, namely an event to which the person and the car
participate. Similarly for the Home Address relation, which can be expressed in terms
of the location of a Dwelling event.

In turn, such events can be modeled in terms of their own internal relations,
including the various participation relations (thematic relations) expressing the
various ways an object participates in an event. This systematic introduction of events
in place of material relations may in some cases be excessively cumbersome, but in
my opinion it is the only strategy that guarantees an explicit account of the modeler’s
ontological assumptions. Of course, if needed, more agile relations, such as
ownership, can be defined in terms of this more basic picture.

6 Conclusions

I hope to have shown in this paper that in order to capture the desiderata for
knowledge representation formalisms, as expressed in the old days and never properly
met, it is necessary to formally express the ontological commitments of our
representation constructs. This can be done in two ways:

1. by developing general ontologies built using ontologically neutral
representation constructs,

2. by adopting non-neutral constructs, whose semantics is suitably constrained
in order to guarantee ontologically well-founded models.

66 N. Guarino

I believe that the second option is preferable, since it gives the knowledge engineer
the tools to produce models with certain “guaranteed” properties in terms of
ontological transparency, well-foundedness, and – therefore – reusability. In addition,
I believe that reasoning with such constructs should be somewhat easier than with the
first option, since the expressivity required to account for their ontological
commitment belongs to the meta-language (i.e., the language used to account for the
ontological semantics), and not to the object language. This is however an issue to be
further investigated.

References

1. Andersen, W., Menzel, C.: Modal Rigidity in the OntoClean Methodology. In: Vieu, L.,
Varzi, A. (eds.) Formal Ontology and Information Systems: Collected Papers from the
Fifth International Conference, pp. 119–127. IOS Press, Amsterdam (2004)

2. Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-Whole Relations in Object-Centered
Systems: an Overview. Data & Knowledge Engineering 20(3), 347–383 (1996)

3. Boella, G., van der Torre, L., Verhagen, H.: Roles, an Interdisciplinary Perspective.
Applied Ontology 2(2), 81–88 (2007)

4. Brachman, R.J.: On the Epistemological Status of Semantic Networks. In: Findler, N.V.
(ed.) Associative Networks: Representation and Use of Knowledge by Computers.
Academic Press, London (1979)

5. Brachman, R., Fikes, R., Levesque, H.: Krypton: A Functional Approach to Knowledge
Representation. IEEE Computer 116(10), 67–73 (1983)

6. Brachman, R., Levesque, H.: Competence in Knowledge Representation. In: Proceedings
of National Conference on Artificial Intelligence (AAAI 1982), Pittsburgh, American
Association for Artificial Intelligence, pp. 189–192 (1982)

7. Brachman, R.J., Schmolze, J.G.: An Overview of the KL-ONE Knowledge Representation
System. Cognitive Science 9, 171–216 (1985)

8. Carrara, M., Giaretta, P., Morato, V., Soavi, M., Spolaore, G.: Identity and Modality in
OntoClean. In: Vieu, L., Varzi, A. (eds.) Formal Ontology and Information Systems:
Collected Papers from the Fifth International Conference, pp. 128–139. IOS Press,
Amsterdam (2004)

9. Casati, R., Varzi, A.: Parts and Places. The Structure of Spatial Representation. MIT Press,
Cambridge (1999)

10. Chen, P.: The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database Systems 1(1) (1976)

11. Davis, R., Shrobe, H., et al.: What is in a Knowledge Representation? AI Magazine
(Spring 1993)

12. Fine, K.: Ontological Dependence. Proceedings of the Aristotelian Society 95, 269–290
(1995)

13. Genesereth, M.R., Nilsson, N.J.: Logical Foundation of Artificial Intelligence. Morgan
Kaufmann, Los Altos (1987)

14. Grandy: Sortals. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2007)
15. Grenon, P.: On Relations. PhD Dissertation, Dept. of Philosophy, University of Geneve

(2007)
16. Guarino, N.: Concepts, Attributes and Arbitrary Relations: Some Linguistic and

Ontological Criteria for Structuring Knowledge Bases. Data and Knowledge
Engineering 8, 249–261 (1992)

 The Ontological Level: Revisiting 30 Years of Knowledge Representation 67

17. Guarino, N.: The Ontological Level. In: Casati, R., Smith, B., White, G. (eds.) Philosophy
and the Cognitive Science, pp. 443–456. Hölder-Pichler-Tempsky, Vienna (1994)

18. Guarino, N., Carrara, M., Giaretta, P.: An Ontology of Meta-Level Categories. In:
Sandewall, D.J.E., Torasso, P. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourth International Conference (KR 1994), pp. 270–280.
Morgan Kaufmann, San Mateo (1994)

19. Guarino, N., Welty, C.: A Formal Ontology of Properties. In: Dieng, R., Corby, O. (eds.)
EKAW 2000. LNCS, vol. 1937, pp. 97–112. Springer, Heidelberg (2000)

20. Guarino, N., Welty, C.: Identity and subsumption. In: Green, R., Bean, C., Myaeng, S.
(eds.) The Semantics of Relationships: an Interdisciplinary Perspective, pp. 111–126.
Kluwer, Dordrecht (2002a)

21. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean.
Communications of the ACM 45(2), 61–65 (2002b)

22. Guarino, N., Oberle, D., Staab, S.: What is an Ontology? In: Staab, S., Studer, R. (eds.)
Handbook on Ontologies, 2nd edn., pp. 1–17. Springer, Heidelberg (2009)

23. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-
Founded Profile for UML Conceptual Models. In: Persson, A., Stirna, J. (eds.) CAiSE
2004. LNCS, vol. 3084, pp. 112–126. Springer, Heidelberg (2004)

24. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Telematica
Instituut Fundamental Research Series 15 (2005)

25. Gupta, A.: The Logic of Common Nouns: An Investigation in Quantified Modal Logic.
Yale University Press, New Haven (1980)

26. Hirsch, E.: Dividing Reality. Oxford University Press, New York (1993)
27. Hobbs, J.R.: Ontological Promiscuity. In: Proceedings of 23rd Annual Meeting of the

Association for Computational Linguistics (ACL 1985), Chicago, IL, pp. 61–69 (1985)
28. Kaplan, A.: Towards a Consistent Logical Framework for Ontological Analysis. In: Welty,

C., Smith, B. (eds.) Proceedings of FOIS 2001, pp. 244–255. IOS Press, Amsterdam (2001)
29. Lowe, E.J.: Entity, Identity, and Unity. Erkenntnis 48, 191–208 (1998)
30. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: The

WonderWeb Library of Foundational Ontologies and the DOLCE ontology. WonderWeb
Deliverable, D17 (2002)

31. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social Roles and their Descriptions. In: Proceedings of 9th Intl. Conference on the
Principles of Knowledge Representation and Reasoning (KR 2004), Whistler, Canada, pp.
267–277 (2004)

32. Simons, P.: Parts: a Study in Ontology. Clarendon Press, Oxford (1987)
33. Varzi, A.: A note on the transitivity of parthood. Applied Ontology 1(2), 141–146 (2006)
34. Vieu, L.: On the transitivity of functional parthood. Applied Ontology 1(2), 147–155

(2006)
35. Vieu, L., Borgo, S., Masolo, C.: Artefacts and Roles: Modelling Strategies in a

Multiplicative Ontology. In: Proceedings of FOIS 2008, Saarbruecken, Germany. IOS
Press, Amsterdam (2008)

36. Welty, C., Andersen, W.: Towards OntoClean 2.0: A framework for rigidity. Applied
Ontology 1(1), 107–116 (2005)

37. Winston, M., Chaffin, R., Herrmann, D.: A Taxonomy of Part-Whole Relations. Cognitive
Science 11, 417–444 (1987)

38. Woods, W.A.: What’s in a Link: Foundations for Semantic Networks. In: Bobrow, D.G.,
Collins, A.M. (eds.) Representation and Understanding: Studies in Cognitive Science.
Academic Press, London (1975)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 68–81, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Some Notes on Models and Modelling

Michael Jackson

Department of Computing, The Open University, UK
jacksonma@acm.org

Abstract. Analytical models are a fundamental tool in the development of
computer-based systems of every kind: their essential purpose is to support hu-
man understanding and reasoning in development. To support reasoning, mod-
els must be substantially formal. The relationship between a formal model and
its—typically—non-formal subject demands care: particular attention must be
paid to the model interpretation, which maps its formal terms to the phenomena
of the subject. An analytical model is to be regarded not as an assertion, but as a
predicate within a larger logical structure of reasoning. Analogical models, such
as databases, act as run-time surrogates for some parts of the problem world; in
their design the properties of the model itself must be carefully distinguished
from those of its subject. Some models may be informal: informal models have
many legitimate uses, but cannot serve as a basis for formal reasoning.

1 Modelling and Understanding

The subject of these notes is the use of models and modelling in the development of
computer-based systems. Models are of many kinds, built for many purposes. What-
ever the explicit purpose of a model, a vital implicit purpose is always to achieve,
record and communicate some human understanding of its subject—that is, of what-
ever is being modelled. The subject and its understanding provide the central theme of
these brief notes.

2 Models and Subjects

Richard Feynman, the physicist, described how as a teenager he had thought about
certain elementary problems in Euclidean geometry [1]. He manipulated the diagrams
in his mind: he anchored some points and let others float, imagined some lines as stiff
rods and others as stretchable bands, and let the shapes slide until he could see what
the result must be. He was using a mental model of a physical system to help him to
understand an abstract mathematical system. Teachers of elementary arithmetic do
something similar when they use a real physical model of an abstract mathematical
system—for example, helping children to understand integer multiplication and divi-
sion by playing with rectangular arrays of pennies. In both cases understanding of a
less familiar subject is achieved through the medium of a more familiar, and therefore
more accessible, model.

The word ‘model’ has many meanings and shades of meaning, but in the meanings
that are most interesting in the development of software and information systems it

 Some Notes on Models and Modelling 69

always denotes one role in a binary relationship: the complementary role is ‘subject’.
The essence of this relationship is that in some way the model captures or expresses
some understanding or knowledge of the subject, and can be used to provide further in-
formation or insight about it. As Feynman’s pivoting rods and the arithmetic teacher’s
arrays of pennies show, there is no a priori requirement that the model be more abstract
than the subject. It can be more concrete; but it must be in some way simpler, more ac-
cessible, more familiar, or more tractable than the subject. If it is not, the model
achieves little or nothing: it can be discarded and the subject explored directly.

3 Mental Models and Reasoning

The model’s superior accessibility, familiarity and tractability depend, of course, on
the knowledge and experience of the people who construct and use it. An adult with a
modest knowledge of arithmetic can dispense with the physical arrays of pennies, al-
though they may still occasionally be useful in imagination to furnish a mental model.
A number theorist will expect to think more abstractly, and perhaps more formally.
Whether the number theorist is doing something radically different from forming and
using a mental model appears to be an open question in cognitive science.

In Mental models: a gentle guide for outsiders [2] P N Johnson-Laird writes: “Our
plan in the rest of this paper is to start with how models can be used to reason, and to
contrast them with the orthodox view that reasoning is based on a sort of mental logic.
... On one side, there are those ... who claim that it depends on formal rules of infer-
ence akin to those of a logical calculus. On the other side, there are those, such as
ourselves ..., who claim that it is a semantic process that depends on mental models
akin to the models that logicians invoke in formulating the semantics of their calculi.”
It is, of course, perfectly plausible that human reasoning depends both on formal in-
ference and on the use of mental models, combined according to the problem to be
solved and the innate and learned capabilities, knowledge, and inclinations of the
reasoner.

Johnson-Laird reports a reliable experimental difference between the following
two questions. People find it harder to answer one of them correctly than the other:

“If A then B; A is true; what can be said about B?”
(to which the correct answer is “B is true”) and

“If A then B; B is false; what can be said about A?”

(to which the correct answer is “A is false”). The second is the contrapositive of the
first, and for someone with a little knowledge of elementary logic is of precisely
equivalent difficulty. Yet the first question is answered correctly by nearly everyone,
while a substantial minority of people fail on the second question, and those who do
succeed take reliably longer to answer. Those who claim that reasoning depends on
rules of inference identify a longer chain of deductions for the second question. Those
who claim that it depends on mental models cite a principle of truth:

“Individuals tend to minimise the load on working memory by constructing
mental models that represent what is true, but not what is false.”

Evidently, human capacity for understanding is not itself easy to understand.

70 M. Jackson

4 Overt Models

A mental model is a private possession, held in its owner’s mind and revealed only at
the owner’s choice—and then only indirectly and uncertainly. An overt model, by
contrast, is a public possession, intended to capture, communicate and make more
widely available some understanding or notion of its subject, or some information
about it.

Russell Ackoff distinguishes [3] three kinds of model used in natural science:
iconic, analogue and symbolic. An iconic model looks like its subject. A photograph
is an iconic model of its human subject, and a child’s toy car is an iconic model of its
subject automobile. An analogue model represents its subject by exhibiting different,
but analogous, properties. The classic example is the use of a hydraulic system—
water flowing in a complex of pipes—as an analogue model of an electrical circuit.
The volume of water flowing, the narrowness of the pipes, and the water pressure are
analogues of the electrical current, resistance, and potential difference respectively.
Iconic models are always, to at least some small extent, also analogue models. A sym-
bolic model, as its name implies, represents its subject symbolically, the symbols
occurring as elements in some formalism that allows direct formal reasoning and cal-
culation. Thus a system of equations may be a symbolic model. By solving the equa-
tions for given values of some variables the values of others can be determined. A
symbolic model may be representable as an analogue model: for example, an equation
may be represented by a graph.

In software development, which is a particular kind of engineering rather than a
natural science, a slightly different taxonomy of models is useful. First, because engi-
neering is concerned with specific artifacts and specific cases, we must distinguish
specific from generic models. A commonly familiar example of the distinction is that
between a class model and an instance model in object-oriented development. The
class model is generic: its subject is those properties that are shared by all instances of
the class. The instance model is specific: its subject is one instance only.

Second, the particular power of computers to create and maintain internal data
structures make it both necessary and illuminating to distinguish analytical from ana-
logical models. An analytical model is a description of its subject; in Ackoff’s taxon-
omy it may be iconic or symbolic. For example, a finite state machine model of a
possible behaviour of interest may be represented iconically in a diagram or symboli-
cally in a transition table. Analytical models are most often used in the development
process itself to help the developers to capture, understand and analyse properties of
the problem world, the system requirements, and the software. A curve-fitting pro-
gram, that chooses a curve type and adjusts the parameters of the curve to fit a set of
data points, can be regarded as creating an analytical model at system execution time,
but in most application areas this is exceptional. Because the properties of interest in
software development are most often those that hold—or should hold—for all execu-
tions of the system, analytical models are typically generic. A finite state machine
model, for example, may describe all successful withdrawals of cash from all possible
ATMs in a particular system. Where some part of the problem world is a singleton
and has only static properties—for example, the road layout for a particularly com-
plex junction at which traffic is to be controlled—an appropriate analytical model
may be specific rather than generic; but this is somewhat unusual.

 Some Notes on Models and Modelling 71

An analogical model in software development is always specific. It is not used in
the development process, but in the system operation: the analogical model is built
and maintained by execution of the hardware/software machine. An analogical model
is not a description of its subject, but a concrete thing in its own right. It is a data
structure represented on a substratum of computer storage—most often as a collection
of disk records or an assemblage of programming objects in RAM. The commonest
example of such a specific analogical model is a database held on disk. The system
continually maintains the database, using information directly input during system
operation. The database can then act as an easily accessible surrogate for its subject,
allowing the system to provide needed or requested information by examining the
state of the database.

5 Model Imperfection

An overt analytical model is a description of its subject. The description may be for-
mal or informal. It may be expressed in text, in equations, in diagrams, or in any other
way judged suitable to the content of the description. An analytical model is inher-
ently non-physical. It can be represented in a physical medium—for example, written
on paper or encoded in a computer file; but the physical medium is not the model, just
as the plastic disc of a CD is not the music. In a broad sense, this intangibility makes
the model invulnerable to the vicissitudes of time and physical failure. The model can
describe change over time, but it is not itself subject to change; it can describe physi-
cal decay and failure, but it is not itself subject to decay or failure.

However, this immunity to decay does not guarantee the quality of an analytical
model qua model. For a non-formal subject, such as an engineering artifact, any
analytical model—certainly at the levels of granularity of interest to software devel-
opers—is at best an approximation to its subject’s actual physical behaviour and
properties.

An analogical model, like an analytical model, is necessarily an imperfect ap-
proximation to its subject; but it is also imperfect in an additional way. Not only is the
underlying understanding of the subject’s properties inevitably an approximation, but
the analogical model itself possesses phenomena and properties which have no coun-
terpart in the subject and may distort understanding of the analogy. In the classic ana-
logue model, we observe that a broken pipe leaks water: so we might—quite
wrongly—infer that a broken wire will leak electricity into the air. In the same way,
an analogical model incorporated into a computer-based system possesses phenomena
and properties which have no counterpart in the subject. For example, a relational da-
tabase may have null values in some row-column intersections; the rows may be
ordered and indexed; and rows may be deleted for reasons of managing the database
resources. These phenomena and properties can distort understanding of the analogy
that underpins the relationship between model and subject.

6 Models and Interpretations

The meaning of the information provided by a model about its subject depends on an
interpretation: that is, on an agreed mapping between the elements of the model and

72 M. Jackson

Fig. 1. An analytical model

the elements of the subject that they denote. Figure 1 shows an analytical model in the
form of a state machine diagram having labelled circles for states and labelled arrows
for transitions between states:

The arrow from the small solid circle points to the initial state. The interpretation
must map the model’s state labels to identifiable states of the physical subject, or its
transition labels to identifiable events, or both. There are therefore at least these three
components involved in using an analytical model: the subject matter; the model; and
the interpretation.

The subject of this model may be the controlling switch of an electrical device. The
interpretation may then be:

 Off state: the switch is off
 On state: the switch is on
 down event: the switch is flipped down
 up event: the switch is flipped up

The apparent simplicity of the model and interpretation may conceal some potential
uncertainties. For example:

• The On and Off states may be independently observable phenomena of the subject.
A more informative interpretation might then have been:

 Off state: no current can flow through
 the switch
 On state: current can flow through the
 switch

Alternatively, it may be that the On and Off states are not independently observable
phenomena of the subject, but are defined by the model:

 Off state: either no up or down event has
 yet occurred, or else the most recent
 such event was an up event
 On state: some up or down event has oc-
 curred, and the most recent such
 event was an up event

• The model may describe a switch, like an old-fashioned tumbler switch, in which
two successive up events cannot occur without an intervening down event, and vice
versa. Nothing is said about the effect of an up event in the Off state or a down
event in the On state, because they cannot occur.

Alternatively, the switch may be spring-loaded to return to a central position on
each flip, placing no constraint on the sequence of down and up events. Nothing is

up

down

OnOff

 Some Notes on Models and Modelling 73

said about the effect of an up event in the Off state or a down event in the On state,
because they do not alter the switch state.

• Identifying a formal term with a physical event or state is in itself an abstraction.
For example, treating down and up as atomic events abstracts from the complex
physical processes they involve. In a tumbler switch, moving the knob compresses
a spring as the knob moves towards the centre of its travel; when the knob passes
the centre and moves to the end of its travel, the compressed spring exerts gradu-
ally increasing force on the switch contacts, eventually pulling them open and
swinging them to their other position.

Abstracting this process as an atomic event is a good choice if the switch oper-
ates fast enough and reliably enough for the purposes of the model being built.

• Off—whether defined or independently observable—is identified as the initial
state, but the term initial has been given no interpretation. It may, for example
mean:

 Initial the state in which the newly manu-
 factured switch leaves the factory

or:

 Initial the state of the switch when the
 system begins execution

In a particular use of the model, the meaning of Initial may be given by the context
in which the model is proposed. Whether their meanings are given by the model con-
text, in an interpretation, or—as too often—left implicit, failure to deal properly with
initial states is a rich source of error in software development. The problem of unini-
tialised variables is well-known in programming; but it is more difficult, and more
often neglected, in the development of computer-based systems. The essence of the
difficulty is to ensure compatibility between the initial state of the software to be
executed and the current state of the problem world.

7 Designations

An element of an interpretation that associates a formal term in the model with a class
of observable phenomena of the subject has been called [4] a designation. A designa-
tion must give a clear enough rule for recognising the phenomena to avoid harmful
uncertainty. What is harmful depends on the nature and bounds of the subject, on the
purpose to which the model will be put in the development, and on the opportunities
that the developed system will offer for human common sense to override potential
system failures resulting from modelling errors. In traditional manual systems, based
on written processes and rules, system defects can often be repaired by reasonably re-
sorting to available exception procedures when the system would otherwise deliver
absurd results. To the extent that a computer-based system aims at automation it ex-
cludes such exception procedures. It is therefore important that developers’ analytical
models should correspond very closely to the subjects they describe.

74 M. Jackson

A good correspondence between model and subject requires care in choosing and
distinguishing the different subject phenomena to be designated. Consider, for exam-
ple, a designation of the term mother:

 mother(m,p) m and p are human beings and m
 is the mother of p

For a system concerned with Old Testament genealogy this designation is adequate:
within the scope of the human beings mentioned in the Old Testament the meaning of
“m is the mother of p” is perfectly clear. For a system to manage the administration of
a kindergarten it may perhaps be good enough, provided that no special treatment is
needed for adoptive mothers and stepmothers. In a fertility research clinic this desig-
nation would be useless: it would be necessary to distinguish natural mothers, genetic
mothers, surrogate mothers and, perhaps, others.

If previously existing systems in the application area have a low degree of automa-
tion, the prevailing terminology of the area is not necessarily an adequate guide:
application experts may underestimate the extent to which exceptional procedures are
regularly invoked to compensate for terminological uncertainty. One well-known il-
lustration is the phenomenon of a telephone call. Suppose that A phones B, but B is
busy. A accepts the system’s offer to connect them later, when B is no longer busy,
and A hangs up. Soon, A’s phone rings, and A picks it up and hears the ringback tone.
After a short period of ringing, B answers and A and B talk. Is this one, two, or three
calls? Reliance on the obsolete notion of a ‘call’ caused much difficulty in computer-
based telephone systems in the last quarter of the twentieth century [5]. Similarly
vague terminology is found in many application areas where the prevailing terminol-
ogy includes obsolete relics of an earlier, much simpler, system.

8 Interpretation for Analogical Models

Interpretation for an analogical model is significantly more complex than for an ana-
lytical model. At first sight it may seem that the same notion of interpretation will
serve for analogical as for analytical models: an interpretation maps the terms of the
model to the phenomena of the subject. However, there is an important difference. An
overt analytical model is itself a description, expressed in some chosen language, us-
ing a finite number of terms. An interpretation maps just those terms to the elements
of the subject. Physical phenomena of any tangible representation of the model are to
be ignored. For the state machine shown in Figure 1 we do not seek an interpretation
of the lengths of the arrows or the diameter of the circles: the semantics of a descrip-
tion in the chosen graphical language are unaffected by those graphical phenomena.

An analogical model, by contrast, is a physical—and therefore inevitably non-
formal—thing: it is a concrete structure of phenomena, not an abstract structure of
formal terms. It does not embody any clear distinction between those of its own phe-
nomena that are intended to participate in the analogy and those that are not. In effect,
to understand the analogical model we also need an explicit analytical model.

Figure 2 shows how model, subject, and interpretation are related for a simple
analytical model and for an analogical model.

 Some Notes on Models and Modelling 75

Fig. 2. Interpreting Analytical and Analogical Models

The purpose of the analytical model in the right side of Figure 2 is to bound the
physical properties of interest in the analogical model, by pointing out the analogies
that relate it to the subject. This analytical model therefore has two distinct interpreta-
tions: S interprets it as a model of the subject; the other, M, as a model of the analogi-
cal model. The analogy is in this sense indirect: an exact understanding rests on the
analytical model that the analogical model shares with its own subject.

9 Designing and Understanding an Analogical Model

In developing any model—whether analytical or analogical—the conceptual starting
point must be to consider what questions the model is intended to answer, and what
properties it must therefore capture. In both cases, these are properties of the subject
of the model, not of the model itself.

For an analytical model, the subject properties are directly expressed in the model.
For an analogical model, the development process is conceptually more complex.
First, the subject must be understood, and an appropriate analytical model developed.
Then a type of analogical model—perhaps a database, or an assemblage of objects, or
more generally a data structure in the programming language—is chosen or designed
to offer exact analogues of the properties of the analytical model. Of course, there is a
difficulty here. Because the analogical model is a concrete thing in its own right, and
will inevitably possess properties that have no analogue at all in the subject, or impose
constraints that are not present in the subject, the analogy is inevitably imperfect. So a
part of the design task is to find good a compromise between fidelity to the subject
and efficiency in the representations and accesses that the model affords. This task
demands some clarity of thought: in particular, it demands a clear distinction between
the properties of the model and the properties of the subject.

There is an obvious temptation to save time and effort by abbreviating the devel-
opment task, short-circuiting the two interpretations and developing the analogical
model directly from the subject. This is a common approach in object-oriented model-
ling, in which the developer describes the subject domain as if it were itself an assem-
blage of objects communicating by sending messages to each other. The benefit of the
approach is a certain economy and directness. The disadvantage is an increased risk
of error: the analytical model disappears from view, and is considered only tacitly and
sporadically during the design of the analogical model.

Interpret-
 ation S

 Interpret-
 ation M

Analytical
 Model

Analogical
 Model Subject

Interpret-
ation

Analytical
 Model

Subject

76 M. Jackson

10 The Context of a Model

A model has a purpose, in the sense that it is intended to capture certain properties
that its subject may have, and to answer certain questions about them. But it also has a
context, in a broader sense. For an analogical model in a computer-based system the
context is, essentially, always the same. The computer continually collects informa-
tion about the subject in the problem world, perhaps analyses and summarises it in
some way, and updates the model to reflect it. The analogical model can then serve as
a surrogate for the world: the state of the model is an acceptably accurate analogue of
the state of the world. Its context is implicit: the presence of the model constitutes an
assertion that the analogous properties hold in the subject.

For an analytical model, by contrast, there are many possible contexts. An analyti-
cal model can be thought of a predicate M applied to its subject S: M(S) holds if—and
only if—the model is a true description of the subject. Just as a predicate can appear
in a sentence, so too can an analytical model. For example, in a system to control a
lift, the problem world W consists of the building’s floors and lift shafts, the electro-
mechanical lift equipment, the users, the request buttons and display lights, and so on.
We can imagine three distinct analytical models of the problem world:

• G(W): this model captures the given properties of the problem world. It describes,
for example, the arrangement of the floors, the causal chain between the motor set-
ting and the behaviour of the lift car, the way the lift and lobby doors work, and
so on.

• R(W): this model captures the required properties of the problem world, that the
computer must somehow enforce. It describes, for example, the property that if
the Up button at a floor is pressed, the lift car will eventually arrive at the floor and
the doors will open, and that if a button inside the lift is then pressed that corre-
sponds to a higher floor the lift car will go to that higher floor, and so on.

• C(W): this model captures the behaviour at the computer’s interface with the prob-
lem world. It describes, for example, the property that if the Up button at floor 3 is
pressed when the lift is stationary at the ground floor, then the motor direction is
set to Up and the motor is switched On (by the computer), that when subsequently
the sensor at floor 3 is set On (by the arrival of the lift car) the motor is then
switched Off (by the computer), and so on.

In a successful development, the relationship among these three models is something
like:

(G(W) ∧ C(W)) ⇒ R(W)

That is: the given properties of the problem world, in conjunction with the additional
properties due to its interaction with the computer, ensure that the requirement is sat-
isfied. The truth of each model depends on the changing context. At the outset of the
development, G(W) is true (assuming that the building and the lift equipment are
known and correctly described). At that point in time, however, R(W) nor C(W) is
true. C(W) is not true because the computer has not yet been built and installed; and
R(W) is also not true—in the absence of the computer it is merely what the customer
wishes were true. Later, when the development has been successfully completed, and
the software is executing as intended, all three models will be true.

 Some Notes on Models and Modelling 77

11 The Local Context of a Model

The formula (G(W ∧ C(W)) ⇒ R(W), interpreted for a whole system, expresses a
global context for the three models: it encompasses the whole development, and the
behaviour of the whole system. In the course of the development it will be necessary,
for a realistic system, to decompose all three models in a way that is not necessarily
simple. These decompositions aim to master the complexity of the development prob-
lem and the eventually developed system, reducing one large and unmanageably
complex problem to a structure of simpler problems.

The decompositions that will be most useful will depend on the problem in hand.
Because realistic systems are complex in a heterogeneous way, the most useful
decompositions will be similarly heterogeneous. Some candidate dimensions of
decomposition are:

• Decomposition by function or feature. An e-commerce system for consumer use
has such features as shopping basket, credit card validation and charging, collabo-
rative filtering, shipping management, and so on.

• Decomposition by operational phase. An avionics system must behave differently
in the different phases of a flight: in taxiing, taking off, climbing, cruising and
so on.

• Decomposition by problem world conditions. The behaviour of an air traffic con-
trol system in normal conditions is different from its behaviour in an emergency. A
lift control system providing normal lift service must behave differently when an
equipment fault—such as a failing hoist motor—is detected.

Decomposition can be usefully regarded as decomposition into subproblems, in which
each subproblem defines a local context. Different subproblems have different re-
quirements; they need different software behaviours for their solution; they concern
different parts or domains of the problem world; and they exploit different properties
of those domains. To understand and analyse a subproblem it is necessary to practise
a separation of concerns. The models needed for a subproblem are local models for
local contexts.

The local context of a model puts in place a set of local assumptions, determining
its purpose and the content of the description it embodies of its subject. In a lift sys-
tem, for example, the local context of providing normal lift service assumes that the
equipment functions normally, exhibiting the behaviour that is necessary if the lift car
is to be sent from floor to floor, the doors opened and closed appropriately, and so on.
The relevant model of the lift equipment is therefore a model of healthy lift equip-
ment, describing the normal functioning. By contrast, the local context of fault moni-
toring requires a model of dubious lift equipment, describing equipment that may or
may not function normally, and focusing on the properties that allow faults to be
detected and perhaps diagnosed, when they occur.

12 The Scope and Span of a Model

The scope of a model is the set of all phenomena denoted by its interpreted terms. The
scope of the model of the control switch shown in Figure 1 is {up, down, On, Off} if

78 M. Jackson

they are all designated, independently observable, phenomena; but if On and Off are
defined in terms of up and down, then the scope is only {up, down}. The switch may
have other phenomena—for example, it may have a rotary dimmer knob—but they
are out of scope: the developer of the model has decided that for the purpose of the
model they should be ignored.

The span of a model is how much it describes, measured by time or space or any
other relevant quantifiable dimension. For example, in a lift control system it may be
appropriate to model the required opening and closing of the lift doors in normal op-
eration. One required property may be the opening and closing of the doors when the
lift car serves a floor, including the behaviour when an obstruction is detected: a
model of this property has a span of one visit to one floor by one lift. Another re-
quired property may be that the lift doors are never opened when the car is not posi-
tioned at a floor: a model of this property has a span of one lift over the whole local
context of normal operation. A model whose span is one lift can, of course, be applied
to all the lifts in the system; and a model whose span is one visit to one floor can be
applied to all visits to all floors; the spans of the models themselves, however, are not
affected by their larger application.

To be intelligible, the scope and span of a model must be appropriate to its subject
and content. A notable—and widely practised—way of obfuscating a model is to re-
place it by a loose collection of models of inappropriately small span. For example, a
state machine may be fragmented into a distributed collection of individual transi-
tions. Each transition makes understandable sense only as a part of the whole state
machine: taken alone it can be understood only by a reader who already possesses a
firm and clear mental model of the whole machine, and has this mental model vividly
in mind while reading each fragment. The obvious danger is that neither the writer nor
the readers have such a mental model available, and the fragments are never brought
together to validate their collective meaning. The result is a model prone to many
errors. For example: omitting transitions that should be included; making false as-
sumptions about reachability; and ignoring the disastrous effect of a neglected, but
possible, sequence of transitions.

The appropriate span for a model is not always obvious. Whenever the behaviour
of a system feature or function is arranged in sporadic or cyclic episodes—for exam-
ple, in use cases—it is naturally attractive to construct a model of the function with a
span of one episode. For some aspects of the episode this will be entirely appropriate.
Much of the interaction of a bank customer with an ATM is encapsulated within the
episode, and should be modelled with that span: the card is inserted before the PIN is
entered; the card is withdrawn before the money is delivered; and so on. However, the
episode may include events of a more global import: a certain amount of money is
withdrawn from the account; a new PIN is specified; a new cheque book is requested.
These events belong to behaviours of spans larger than the episode. Depending on the
complexity of these behaviours, it may be necessary to model them also, each in its
appropriate span.

Using an appropriate span for a model is not just a matter of bringing together
enough information in one document. A good model answers its designed questions in
the simplest possible way, laying the smallest possible burden on the reader’s powers
of perception, memory and reasoning, and helping the reader to form a good mental
model of the subject. Because short-term human memory is severely limited, this

 Some Notes on Models and Modelling 79

process of assembling a mental model must not require information to be collated
from many separate places. From a purely formal point of view, a graph may be
equally well represented in a diagram or in a list of nodes and arcs; but from the point
of view of human intelligibility the diagram is hugely superior for almost every pur-
pose. The most important questions to be answered by a graph model are not usually
questions about isolated nodes or arcs: they are questions about traversals of paths in
the graph. The primary significance of a node or arc is its role and position in a set of
possible traversals. The core success of the famous London Underground map is that
it makes traversals—train journeys—very easy to identify. The importance of travers-
als explains also why even those computer scientists who disdain diagrams prefer to
write their programs as structured, indented texts.

13 Vague Models

Almost any overt description—diagrammatic, textual or numerical—can be regarded
as a generic or specific analytical model of its subject. Whether it is a useful model
for its intended purpose will depend on many considerations. The importance of ex-
plicit designation for ensuring that the meanings of the terms used in the model are
clear and exact has been stressed in this essay; but a shopping list can be useful even
if some its entries are vague: “Lots of oranges if they’re sweet”, or even “Something
nice for our dinner”. A more structured checklist can be useful even if it is similarly
vague: “The chief quality measures are high customer satisfaction and a low rate of
operator error”. The shopper and the project manager know that the terms in their
models are very imprecise, and are careful not to lay too much weight on them. It is
sometimes—but not always—worthwhile to establish quantitative empirical criteria
for these imprecise terms.

A model can be vague for other reasons than the absence of designations of its
terms. The descriptive language itself may use fuzzy general notions like “about” and
“some” and “low rate”; some linguistic terms—such as “nice” and “satisfaction” may
have no clear meaning that can be designated; some operators or connectives in the
language—such as the lines or arrows in a graph, or the various node symbols—may
have no clear semantics. This kind of vagueness can be easily tolerated, and can even
be helpful, in contexts in which the model plays the role of a personal reminder, a
sketch for live discussion, or an informal private note between two people; but it is
very damaging if the model’s purpose is to serve as a basis for any kind of reasoning.
Any conclusions reached by reasoning about a model must be encashed by interpret-
ing them in terms of the phenomena and relationships of the subject: if this cannot be
done reliably then the value of the conclusions is diminished accordingly.

14 Building Precision on Vagueness

Formal reasoning cannot be based on an informal model. A faulty map cannot be cor-
rected until two sources of faults have been eliminated. First, the cartographic con-
ventions must be clearly established—for example, whether a road bridge over a
railway is distinguished from a rail bridge over a road, and, if so, how. Second, the

80 M. Jackson

designations must be clarified—for example, does a cross signify only a church or can
it also signify a mosque or synagogue? Then the map can be corrected by comparing
it with the terrain it is intended to describe and modifying the map to correspond to
the terrain. Similarly, the informality of a model in software development cannot be
repaired without repairing the inadequacies both of the modelling language and of the
designations that relate the model to its subject.

Suppose, for example, that a model is concerned with relationships of dependency
among a population of distinct specific things or tasks or goals or documents. Such a
model may be useful in program design, in tracing the relationship of an implementa-
tion to its requirements, and in other contexts too. In program design a relevant
designation might be:

depends(m,n) m and n are program modules and m
 depends on n in the sense that m will
 not function correctly unless n func-
 tions correctly

This designation may seem clear enough. The writer or reader of the model may even
be tempted to infer that depends is transitive:

∀ m,n,o • depends(m,n) ∧ depends(n,o) ⇒ depends(m,o)

However, perhaps the designation is far from clear enough. Suppose that modules in
this context are procedures, that interaction is procedure call, and that a module m has
functioned correctly if the result of ‘m(p1,p2,...)’, including any side effects, satisfies
the specification of m. Then to clarify the meaning of depends(m,n) it may be neces-
sary to consider these and other possibilities:

• When m is called, it may, or may not, call n before returning to its caller.
• When m is called, it always calls n before returning to its caller.
• When m is called, it always calls n before returning to its caller, but m does not use

any result of the call (for example, n simply logs the call).
• For some calls of n, n fails to satisfy its specification, but none of the calls for

which it fails can be a call by m.
• n calls m, and m can satisfy its specification only if n executes an appropriate se-

quence of calls with appropriate arguments (for example, m is an output module
encapsulating a file and requiring the sequence of calls

<m(‘open’); m(‘write’,v)*; m(‘close’)>).

• m and n both call a third module q, and q can satisfy its specification only if it is
called by an appropriate sequence of calls with appropriate arguments, calls by m
and calls by n being interleaved.

It may be possible—or impossible—to provide a clear designation of depends(m,n) in
the particular subject to be modelled. If it is impossible, there is no point is building
an edifice of formal reasoning on such shaky foundations. It is not required that every
useful model be formal and exact; but the writer and reader of a vague or informal
model should avoid the mistake of treating it as a basis for formal reasoning.

 Some Notes on Models and Modelling 81

15 Summary

These notes have briefly discussed several aspects of models and modelling in the
context of software development. Their unifying theme is a pair of relationships in
which any model must participate. One relates the overt model to the human under-
standing—that is, to the mental model—that it seeks to express or evoke. The other
relates the overt model to its subject matter in the physical and human world. In
effect, these two relationships unite to form a bridge between the world and our un-
derstanding of it. An effective practice of modelling must seek to create a bridge that
is strong at both ends: it must find abstractions of reality that are adequate for the pur-
pose in hand and its context; and it must express and convey those abstractions in
ways that serve the goal of human understanding as well as possible.

Because computer programs are, in effect, formal and exact processes, they admit
no vagueness in their execution. We must therefore be doubly confident in the formal
models of the world on which we base our software development. As John von Neu-
mann pointed out [6]:

“There is no point in using exact methods where there is no clarity in the concepts
and issues to which they are to be applied.”

References

1. Gleick, J.: Genius: Richard Feynman and Modern Physics. Little Brown (1999)
2. Johnson-Laird, P.N., Girotto, V., Legrenzi, P.: Mental models: a gentle guide for outsiders.

Sistemi Intelligenti (1998)
3. Ackoff, R.L.: Scientific Method: Optimizing Applied Research Decisions. Wiley, Chiches-

ter (1962)
4. Jackson, M.: Software Requirements & Specifications: A Lexicon of Practice, Principles,

and Prejudices. Addison-Wesley, Reading (1995)
5. Zave, P.: Calls Considered Harmful and Other Observations: A Tutorial on Telephony. In:

Margaria, T., Steffen, B., Rückert, R., Posegga, J. (eds.) ACoS 1998, VISUAL 1998, and
AIN 1997. LNCS, vol. 1385, pp. 8–27. Springer, Heidelberg (1998)

6. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton
University Press, Princeton (1944)

A Semantical Account of Progression
in the Presence of Defaults

Gerhard Lakemeyer1 and Hector J. Levesque2

1 Dept. of Computer Science
RWTH Aachen
52056 Germany

gerhard@cs.rwth-aachen.de
2 Dept. of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 3A6

hector@cs.toronto.edu

Abstract. In previous work, we proposed a modal fragment of the situation
calculus called ES , which fully captures Reiter’s basic action theories. ES also
has epistemic features, including only-knowing, which refers to all that an agent
knows in the sense of having a knowledge base. While our model of only-knowing
has appealing properties in the static case, it appears to be problematic when ac-
tions come into play. First of all, its utility seems to be restricted to an agent’s
initial knowledge base. Second, while it has been shown that only-knowing cor-
rectly captures default inferences, this was only in the static case, and undesirable
properties appear to arise in the presence of actions. In this paper, we remedy both
of these shortcomings and propose a new dynamic semantics of only-knowing,
which is closely related to Lin and Reiter’s notion of progression when actions
are performed and where defaults behave properly.

Preamble

A long time ago, John Mylopoulos’ main area of research was knowledge representa-
tion. His work in this area included the PSN representation system, part of a larger ef-
fort intended to provide a natural-language front-end to databases (Mylopoulos, 1975).
In the late seventies, John suggested that we investigate a small extension to PSN to
allow for knowledge bases with incomplete knowledge. He realized that merely extend-
ing a classical true/false semantics to include a third value for unknown did not do the
job. Among other things, tautologies could come out unknown.1 What sort of semantic
account would assign unknown to just those formulas whose truth values really were
unknown?

Our attempt to answer this question in a satisfactory way has led us to an enormous
amount of research, including both of our doctoral theses at the University of Toronto

1 If a sentence p is unknown, then its negation ¬p is also unknown. Then if, as is typical of
three-valued logics, the disjunction of two unknown sentences is itself unknown, the sentence
(p ∨ ¬p) would be unknown.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 82–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Semantical Account of Progression in the Presence of Defaults 83

and a technical monograph. We investigated languages where you could distinguish
between saying that a formula was true and that a formula was known. In the end,
we came up with the idea of only knowing: saying that a formula (and everything that
followed from it, either logically or through introspection) was all that was known. In
the present paper, we continue this line of research and show how only-knowing should
work in a dynamic setting, in particular, within a fragment of the situation calculus, as
presented by Ray Reiter for reasoning about action and change. A short version of this
chapter appeared in (Lakemeyer and Levesque, 2009).

1 Introduction

In previous work, we proposed a modal fragment of the situation calculus called ES,
which fully captures Reiter’s basic action theories and regression-based reasoning, in-
cluding reasoning about knowledge (Lakemeyer and Levesque, 2004; Lakemeyer and
Levesque, 2005). So, for example, the language allows us to formulate Reiter-style suc-
cessor state axioms such as this one:

∀a, x.�([a]Broken(x) ≡
(a = drop(x) ∧ Fragile(x)) ∨
(Broken(x) ∧ a �= repair(x)))

In English: after any sequence of actions (�), an object x will be broken after doing
action a ([a]Broken(x)) iff a is the dropping of x when x is fragile, or x was already
broken and a is not the action of repairing it. Here we assume that Fragile is a predicate
which is not affected by any action so that its successor state axiom would be

∀a, x.�([a]Fragile(x) ≡ Fragile(x)).

Let us call the conjunction of these two axioms SSABF . In addition to action and
change, the language ES also addresses what an agent knows and only-knows. The
latter is intended to capture all an agent knows in the sense of having a knowledge base.
For illustration, consider the following sentence, which is logically valid in ES:

O(Fragile(o) ∧ ¬Broken(o) ∧ SSABF) ⊃
[drop(o)] (K(Broken(o)) ∧ ¬K(Glass(o))) .

In English: if all the agent knows is that o is fragile and not broken and that the successor
state axioms for Broken and Fragile hold, then after dropping o, the agent knows that o
is broken, but does not know that o is made of glass.

Let us now consider what the agent should only-know after the drop action has oc-
curred. Intuitively, the agent’s knowledge should change in that it now believes that o is
broken, with everything else remaining the same. Formally,

[drop(o)] O(Fragile(o) ∧ Broken(o) ∧ SSABF).

In fact this view corresponds essentially to what Lin and Reiter (LR) [1997] call the
progression of a database wrt an action. It turns out, however, that the semantics of only-
knowing as proposed in (Lakemeyer and Levesque, 2004) differs from this in that the

84 G. Lakemeyer and H.J. Levesque

last formula above is not entailed. The reason is that their version, unlike progression,
does not forget what was true initially (like whether or not o was already broken), and
so more ends up being known.

The LR notion of progression allows for efficient implementations under certain re-
strictions (Lin and Reiter, 1997; Liu and Levesque, 2005; Vassos and Levesque, 2007),
and being able to forget the past seems essential for this. Hence the previous semantics
of only-knowing may not be very useful, except perhaps in the initial state. In this pa-
per, we present a new semantics of only-knowing which avoids this pitfall and is fully
compatible with LR’s idea of progression.

It was shown in (Levesque, 1990) that only-knowing in the static case also accounts
for default reasoning in the sense of autoepistemic logic (Moore, 1985). For example,
the default that objects are fragile unless known otherwise can be written as

∀x¬K¬Fragile(x) ⊃ Fragile(x).

If the agent uses this default instead of the fact that o is fragile then it would still
conclude, this time by default, that o is fragile and hence believe that it is broken after
dropping it. But suppose that o is actually not fragile. What should the agent believe
after sensing the status of o’s fragility? Clearly, it should then believe that o is indeed
not fragile and it should not believe that dropping o will break it. That is, the default
should no longer apply. Unfortunately, the previous definition of only-knowing does
not do this. The problem, roughly, is that the initial default conclusion that o is fragile
cannot be distinguished from a hard fact. Subsequently sensing the opposite then leads
to an inconsistency.

In this paper we will fix this problem by proposing a semantics which separates con-
clusions based on facts from those based on defaults. To this end, we will distinguish
between what is known for sure (using the modality K) and what is believed after
applying defaults (using another modality B). In fact, defaults themselves will be for-
mulated using B instead of K. All this will be integrated with progression in the sense
that defaults will be applied to the progressed knowledge base.

The rest of the paper is organized as follows. In the next section, we introduce the
logic ESO, which is like the old ES except for the new semantics of only-knowing and
defaults. This semantics agrees with the previous one in the static case. After that, we
consider only-knowing in the context of basic action theories. In particular, we show
that what is only-known after an action extends LR’s original idea of progression, and
how reasoning about defaults fits into the picture. We then address related work and
conclude.

2 The Logic ESO

The language is a second-order modal dialect with equality and sorts of type object and
action. Before presenting the formal details, here are the main features:

– rigid terms: The ground terms of the language are taken to be isomorphic to the
domain of discourse. This allows first-order quantification to be understood substi-
tutionally. Equality can also be given a very simple treatment: two ground terms
are equal only if they are identical.

A Semantical Account of Progression in the Presence of Defaults 85

– knowledge and truth: The language includes modal operators K and B for knowl-
edge and belief. The K operator allows us to distinguish between sentences that
are true and sentences that are known (by some implicit agent). The B operator
allows an agent to have false beliefs about its world or how its world changes. For
example, we can model situations where an object is not fragile but the agent does
not know it, yet may believe that it is fragile by default.

– sensing: The connection between knowledge and truth is made with sensing. Every
action is assumed to have a binary sensing result, like whether an object is fragile
or not, and after performing the action, the agent learns that the action was possible
(as indicated by the Poss predicate) and whether the sensing result for the action
was 1 or 0 (as indicated by the SF predicate).2 Just as an action theory may contain
precondition axioms characterizing the conditions under which Poss holds, it can
contain axioms characterizing the conditions under which SF holds.

2.1 The Language

Definition 1. The symbols of ESO are taken from the following vocabulary:

– first-order variables: x1, x2, . . . , y1, y2, . . . , a1, a2, . . .;
– second-order predicate variables of arity k: P k

1 , P k
2 , . . .;

– rigid functions of arity k: Gk = {gk
1 , gk

2 , . . .}; for example, o, drop;
– fluent predicate symbols of arity k: F k

1 , F k
2 , . . .; for example, Broken; we assume

that this list includes the special predicates Poss and SF (for sensing);
– connectives and other symbols: =, ∧, ¬, ∀, K, B, O, Ω, �, round and square

parentheses, period, comma. K, B, O, and Ω are called epistemic operators.

Definition 2. The terms of the language are the least set of expressions such that

1. Every first-order variable is a term;
2. If t1, . . . , tk are terms, then so is gk(t1, . . . , tk).

We let R denote the set of all rigid terms (here, all ground terms). For simplicity, instead
of having variables of the action sort distinct from those of the object sort as in the
situation calculus, we lump both of these together and allow ourselves to use any term
as an action or as an object.3

Definition 3. The well-formed formulas of the language form the least set such that

1. If t1, . . . , tk are terms, and F is a k-ary predicate symbol then F (t1, . . . , tk) is an
(atomic) formula;

2. If t1, . . . , tk are terms, and V is a k-ary second-order variable, then V (t1, . . . , tk)
is an (atomic) formula;

2 For convenience, we assume that every action returns a (perhaps trivial) sensing result. Here,
we restrict ourselves to binary values. See (Scherl and Levesque, 2003) for how to handle
arbitrary sensing results.

3 Equivalently, the version in this paper can be thought of as having action terms but no object
terms.

86 G. Lakemeyer and H.J. Levesque

3. If t1 and t2 are terms, then (t1 = t2) is a formula;
4. If t is a term and α is a formula, then [t]α is a formula;
5. If α and β are formulas, v is a first-order variable, and V is a second-order vari-

able, then the following are also formulas: (α ∧ β), ¬α, ∀v. α, ∀V. α, �α, Kα,
Bα, Oα, and Ωα, where the formulas following O and Ω are restricted further
below.

We read [t]α as “α holds after action t”, and �α as “α holds after any sequence of
actions,” and Kα (Bα) as “the agent knows (believes) α.” Oα may be read as “the
agent only-knows α” and is intended to capture all the agent knows about what the
world is like now and how it evolves as a result of actions. Here no defaults are taken
into account, just facts which, as we will see later, come in the form of a basic action
theory similar to those proposed by Reiter (2001). Therefore, we restrict O to apply to
so-called objective formulas only, which are those mentioning no epistemic operators.
Finally, Ωα is meant to capture all and only the defaults believed by the agent. For that,
α is restricted to what we call static belief formulas, which mention neither � nor [t]
nor any epistemic operator except B.

As usual, we treat (α ∨ β), (α ⊃ β), (α ≡ β), ∃v. α, and ∃V. α as abbreviations.
We use αx

t to mean formula α with all free occurrences of variable x replaced by term
t. We call a formula without free variables a sentence.

We will also sometimes refer to static objective formulas, which are the objective
formulas among the static belief formulas, and fluent formulas, which are formulas
with no K, O, B, Ω, �, [t], Poss, or SF.4

2.2 The Semantics

The main purpose of the semantics we are about to present is to be precise about how
we handle fluents, which may vary as the result of actions and whose values may be
unknown. Intuitively, to determine whether or not a sentence α is true after a sequence
of actions z has been performed, we need to specify two things: a world w and an
epistemic state e. A world determines truth values for the ground atoms after any se-
quence of actions. An epistemic state is defined by a set of worlds, as in possible-world
semantics.

More precisely, let Z be the set of all finite sequences of elements of R including
〈 〉, the empty sequence. Z should be understood as the set of all finite sequences of
actions. Then

– a world w ∈ W is any function from G (the set of ground atoms) and Z to {0, 1}.
– an epistemic state e ⊆ W is any set of worlds.

To interpret formulas with free variables, we proceed as follows. First-order variables
are handled substitutionally using the rigid terms R. To handle the quantification over
second-order variables, we use second-order variable maps defined as follows:

The second-order ground atoms are formulas of the form V (t1, . . . , tk) where
V is a second-order variable and all of the ti are in R. A variable map u is a
function from second-order ground atoms to {0, 1}.

4 In the situation calculus, these correspond to formulas that are uniform in some situation term.

A Semantical Account of Progression in the Presence of Defaults 87

Let u and u′ be variable maps, and let V be a second-order variable; we write u′ ∼V u
to mean that u and u′ agree except perhaps on the assignments involving V .

Finally, to interpret what is known after a sequence of actions has taken place, we
define w′ �z w (read: w′ agrees with w on the sensing throughout action sequence z)
inductively by the following:

1. w′ �〈 〉 w for all w′;
2. w′ �z·t w iff w′ �z w,

w′[Poss(t), z] = 1 and w′[SF(t), z] = w[SF(t), z].

Note that �z is not quite an equivalence relation because of the use of Poss here. This
is because we are insisting that the agent comes to believe that Poss was true after
performing an action, even in those situations where the action was not executable in
reality.5

Putting all these together, we now turn to the semantic definitions for sentences of
ESO. Given an epistemic state e ⊆ W , a world w ∈ W , an action sequence z ∈ Z , and
a second-order variable map u, we have:

1. e, w, z, u |= F (t1, . . . , tk) iff w[F (t1, . . . , tk), z] = 1;
2. e, w, z, u |= V (t1, . . . , tk) iff u[V (t1, . . . , tk)] = 1;
3. e, w, z, u |= (t1 = t2) iff t1 and t2 are identical;
4. e, w, z, u |= [t]α iff e, w, z · t, u |= α;
5. e, w, z, u |= (α ∧ β) iff

e, w, z, u |= α and e, w, z, u |= β;
6. e, w, z, u |= ¬α iff e, w, z, u �|= α;
7. e, w, z, u |= ∀x. α iff e, w, z, u |= αx

t , for all t ∈ R;
8. e, w, z, u |= ∀V. α iff

e, w, z, u′ |= α, for all u′ ∼V u;
9. e, w, z, u |= �α iff e, w, z · z′, u |= α, for all z′ ∈ Z;

To define the meaning of the epistemic operators, we need the following definition:

Definition 4. Let w be a world and e a set of worlds, and z a sequence of actions. Then

1. wz is a world such that wz [p, z′] = w[p, z ·z′] for all ground atoms p and all z′;
2. ew

z = {w′
z |w′ ∈ e and w′ �z w}.

Note that wz is exactly like w after the actions z have occurred. So in a sense, wz can be
thought of as the progression of w wrt z. ew

z then contains all those worlds of e which
are progressed wrt z and which are compatible with (the real) world w in terms of the
sensing results and where all the actions in z are executable. Note that when z is empty,
ew

z = e.

10. e, w, z, u |= Kα iff for all w′ ∈ ew
z , ew

z , w′, 〈〉, u |= α;
11. e, w, z, u |= Oα iff for all w′, w′ ∈ ew

z iff ew
z , w′, 〈〉, u |= α.

5 An alternate account that would state that the agent learns the true value of Poss (analogous to
SF) is a bit more cumbersome, but would allow �z to be a full equivalence relation.

88 G. Lakemeyer and H.J. Levesque

In other words, knowing α in e and w after actions z means that α is true in all the
progressed worlds of e which are compatible with w. Oα is quite similar except for the
“iff,” whose effect is that ew

z must contain every world which satisfies α.
B and Ω are meant to capture what the agent believes in addition by applying de-

faults. Having more beliefs (as a result of defaults) is modeled by considering a subset
of the worlds in ew

z . For that purpose, we introduce a function δ which maps each set
of worlds into a subset. In particular, we require that δ(ew

z) ⊆ ew
z . As δ is now part of

the model (just like w and e) we add it to the L.H.S. of the satisfaction relation with the
understanding that the previous rules are retrofitted with δ as well. Then we have:

12. e, w, z, u, δ |= Bα iff for all w′ ∈ δ(ew
z), ew

z , w′, 〈〉, u, δ |= α;
13. e, w, z, u, δ |= Ωα iff for all w′ ∈ ew

z , w′ ∈ δ(ew
z) iff ew

z , w′, 〈〉, u, δ |= α.

Note that the only difference between K and B is that the latter considers δ(ew
z)

instead of ew
z . Likewise, the definition of Ω is similar to that of O. The role of Ω is

to constrain δ to produce a special subset of ew
z . Roughly, the effect of the definition

of Ωα is that one starts with whatever facts are believed (represented by ew
z) and then

settles on a largest subset of ew
z such that α (representing the defaults) is also believed.

We say that a sentence in ESO is true at a given e, w, and δ (written e, w, δ |= α) if
e, w, 〈 〉, u, δ |= α for any second-order variable map u. If Σ is a set of sentences and α
is a sentence, we write Σ |= α (read: Σ logically entails α) to mean that for every e, w,
and δ, if e, w, δ |= α′ for every α′ ∈ Σ, then e, w, δ |= α. Finally, we write |= α (read:
α is valid) to mean {} |= α.

2.3 Some Properties

We begin with some simple properties relating the various epistemic operators. Note
the leading � operator in all cases, which means that these properties hold after any
number of actions have occurred.

Proposition 1

1. |= �(Kα ⊃ Bα)
2. |= �(Oα ⊃ Kα)
3. |= �(Ωα ⊃ Bα)

Proof:

1. Let e, w, z, u, δ |= Kα. Then for all w′ ∈ ew
z , ew

z , w′, 〈 〉, u, δ |= α. Since δ(ew
z) ⊆

ew
z by the definition of δ, we have that for all w′ ∈ δ(ew

z), ew
z , w′, 〈 〉, u, δ |= α.

Hence e, w, z, u, δ |= Bα.
2. Let e, w, z, u, δ |= Oα. Then for all w′ ∈ ew

z , ew
z , w′, 〈 〉, u, δ |= α by the defini-

tion of O, and hence e, w, z, u, δ |= Kα.
3. The argument is analogous.

It is also not hard to see that K and B satisfy the usual K45 axioms of modal logic
(Hughes and Cresswell, 1968), again, after any number of actions. For example, we get
full introspection for both K and B. Moreover, introspection is mutual.

A Semantical Account of Progression in the Presence of Defaults 89

Proposition 2. Let L, M ∈ {K, B}.

1. |= �(Lα ⊃ MLα)
2. |= �(¬Lα ⊃ M¬Lα)

Proof: As the arguments are all similar, we only prove two cases:

1. |= �(Bα ⊃ KBα).
Let e, w, z, u, δ |= Bα. Then for all w′ ∈ δ(ew

z), ew
z , w′, 〈 〉, u, δ |= α. Now

let w∗ ∈ ew
z . We need to show that ew

z , w∗, 〈 〉, u, δ |= Bα, that is, for all w′′ ∈
δ((ew

z)〈 〉), δ((ew
z)〈 〉), w′′, 〈 〉, u, δ |= α. Since (ew

z)〈 〉 = ew
z , this follows

immediately.
2. |= �(¬Kα ⊃ B¬Kα).

Let e, w, z, u, δ |= ¬Kα, that is, for some w′ ∈ ew
z , ew

z , w′, 〈 〉, u, δ |�= α. Since
(ew

z)〈 〉 = ew
z , we have that for some w′ ∈ (ew

z)〈 〉, (ew
z)〈 〉, w′, 〈 〉, u, δ |�= α. Then

for any w∗ ∈ δ(ew
z), ew

z , w∗, 〈 〉, u, δ |= ¬Kα. Hence e, w, z, u, δ |= B¬Kα.

We end our brief discussion of the properties of ESO with some useful lemmas about the
progression of worlds and epistemic states. The first says that first progressing a world
w by z and then progressing the result wz by z′ is the same as progressing w directly
by z · z′.

Lemma 1. (wz)z′ = wz·z′ .

Proof: Suppose p is any primitive proposition and z∗ a sequence of actions. Then, by
Definition 4, (wz)z′ [p, z∗] = wz [p, z′ · z∗] = w[p, z · z′ · z∗] = wz·z′ [p, z∗].

Lemma 2. w′ �z·z′ w iff w′ �z w and w′
z �z′ wz .

Proof: The proof is by induction on z′. The lemma holds trivially if z′ = 〈 〉, since
z · z′ = z and w′

z �z′ w holds vacuously in this case. Suppose the lemma holds for
some z′ and now consider z′ · t for some action t. Let w′ �z·z′·t w. Since w′ �z·z′ w
holds by assumption and the definition of �z , by induction, w′ �z w and w′

z �z′ wz .
Also w′[Poss(n), z · z′] = 1 and w′[SF(t), z · z′] = w[SF(t), z · z′] and, hence,
w′

z [Poss(t), z′] = 1 and w′
z[SF(t), z′] = wz [SF(t), z′]. Therefore, w′

z �z′·t wz . Con-
versely, let w′ �z w and w′

z �z′·t wz . Then w′ �z·z′ w holds by induction. Also,
w′[Poss(n), z ·z′] = 1 and w′[SF(t), z ·z′] = w[SF(t), z ·z′] follows from w′

z �z′·t wz .
Hence w′ �z·z′·t w.

Lemma 3. (ew
z)wz

z′ = ew
z·z′ .

Proof: By definition, (ew
z)wz

z′ = {w′
z′ |w′ ∈ ew

z and w′ �z′ wz}, which is the same as
{w′

z′ | for some w∗ ∈ e, w′ = w∗
z , w∗ �z w, and w′ �z′ wz}. Substituting w∗

z for w′,
this set is the same as {(w∗

z)z′ |w∗ ∈ e, w∗ �z w, and w′ �z′ wz}, which, using the
previous two lemmas, simplifies to {w∗

z·z′ |w∗ ∈ e, w∗ �z·z′ w}, which is ew
z·z′ .

Lemma 4. If α contains no O and Ω, then e, w, z ·z′, u, δ |= α iff ew
z , wz , z

′, u, δ |= α.

90 G. Lakemeyer and H.J. Levesque

Proof: The proof is by induction on α. The base case holds by the construction of wz .
The cases ¬, ∧, and ∀ clearly hold by induction. e, w, z · z′, u, δ |= [t]α iff e, w, z ·
z′ · t, u, δ |= α iff (by induction) ew

z , wz , z
′ · t, u, δ |= α iff ew

z , wz , z
′, u, δ |= [t]α.

e, w, z ·z′, u, δ |= �α iff e, w, z ·z′ ·z′′, u, δ |= α for all z′′ ∈ Z iff (by ind.) ew
z , wz, z

′ ·
z′′, u, δ |= α for all z′′ ∈ Z iff ew

z , wz , z
′, u, δ |= �α.

e, w, z · z′, u, δ |= Kα iff for all w′ ∈ ew
z·z′ , ew

z·z′ , w′, 〈 〉, u, δ |= α iff (by Lemma 3)
for all w′ ∈ (ew

z)wz

z′ , (ew
z)wz

z′ , w′, 〈 〉, u, δ |= α iff ew
z , wz , z

′, u, δ |= Kα.
e, w, z · z′, u, δ |= Bα iff for all w′ ∈ δ(ew

z·z′), ew
z·z′ , w′, 〈 〉, u, δ |= α iff for all

w′ ∈ δ((ew
z)wz

z′), (ew
z)wz

z′ , w′, 〈 〉, u, δ |= α iff ew
z , wz , z

′, u, δ |= Bα.

3 The Semantics of Progression and Defaults

3.1 Basic Action Theories

Let us now consider the equivalent of basic action theories of the situation calculus.
Since in our logic there is no explicit notion of situations, our basic action theories do
not require foundational axioms like Reiter’s (2001) second-order induction axiom for
situations. The treatment of defaults is deferred to Section 3.4.

Definition 5. Given a set of fluents F , a set Σ ⊆ ESO of sentences is called a basic
action theory over F iff
Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σsense where

1. Σ0 is any set of fluent sentences;
2. Σpre is a singleton sentence of the form �Poss(a) ≡ π, where π is a fluent formula;6

3. Σpost is a set of sentences of the form �[a]F (v) ≡ γF , one for each relational fluent
F in F , respectively, and where the γF are fluent formulas.7

4. Σsense is a sentence exactly parallel to the one for Poss of the form �SF(a) ≡ ϕ,
where ϕ is a fluent formula.

The idea here is that Σ0 expresses what is true initially (in the initial situation), Σpre is
one large precondition axiom, and Σpost is a set of successor state axioms, one per fluent
in F , which incorporate the solution to the frame problem proposed by Reiter (1991).
Σsense characterizes the sensing results of actions. For actions like drop(o), which do
not return any useful sensing information, SF can be defined to be vacuously true (see
below for an example).

We will usually require that Σpre, Σpost, and Σsense be first-order. However, Σ0 may
contain second-order sentences. As we will see, this is inescapable if we want to capture
progression correctly. In the following, we assume that Σ (and hence F) is finite and
we will freely use Σ or its subsets as part of sentences with the understanding that we
mean the conjunction of the sentences contained in the set.

6 We assume that all free variables are implicitly universally quantified and that � has lower syn-
tactic precedence than the logical connectives, so that �Poss(a) ≡ π stands for the sentence
∀a.�(Poss(a) ≡ π).

7 The [t] construct has higher precedence than the logical connectives. So �[a]F (x) ≡ γF

abbreviates the sentence ∀a,x.�([a]F (x) ≡ γF).

A Semantical Account of Progression in the Presence of Defaults 91

3.2 Progression = Only-Knowing After an Action

Let us now turn to the first main result of this paper. The question we want to answer is
this: suppose an agent is given a basic action theory as its initial knowledge base; how
do we characterize the agent’s knowledge after an action is performed? As hinted in the
introduction, only-knowing will give us the answer.

In the following, for a given basic action theory Σ, we sometimes write φ for Σ0
and �β for the rest of the action theory Σpre ∪ Σpost ∪ Σsense. We assume that π and ϕ
refer to the right-hand sides of the definitions of Poss and SF in Σ, and γF is the right-
hand side of the successor state axiom for fluent F . Also, let F consist of all the fluent
predicate symbols in Σ, and let P be corresponding second-order variables, where each
Pi has the same arity as Fi. Then αF

P denotes the formula α with every occurrence of
Fi replaced by Pi.

The following result characterizes in general terms all that is known after performing
an action:

Theorem 1. Let Σ = φ ∧ �β be a basic action theory and t an action term. Then

|= O(φ ∧ �β) ⊃
(SF(t) ⊃ [t]O(Ψ ∧ �β)) ∧
(¬SF(t) ⊃ [t]O(Ψ ′ ∧ �β)),

where Ψ = ∃P [(φ ∧ πa
t ∧ ϕa

t)F
P ∧

∧
∀x.F (x) ≡ γF

a
t

F
P] and

Ψ ′ = ∃P [(φ ∧ πa
t ∧ ¬ϕa

t)F
P ∧

∧
∀x.F (x) ≡ γF

a
t

F
P].

What the theorem says is that if all the agent knows initially is a basic action theory,
then after doing action t all the agent knows is another basic action theory, where the
dynamic part (�β) remains the same and the initial database φ is replaced by Ψ or Ψ ′,
depending on the outcome of the sensing. Note that the two sentences differ only in one
place, ϕa

t vs. ¬ϕa
t . Roughly, Ψ and Ψ ′ specify how the truth value of each fluent F in F

is determined by what was true previously (φ), taking into account that the action was
possible (πa

t) and that the sensing result was either true (ϕa
t) or false (¬ϕa

t). Since after
performing an action, the agent again only-knows a basic action theory, we can take
this as its new initial theory and the process can iterate. We remark that our notion of
progression is very closely related to progression as defined by (Lin and Reiter, 1997),
but extends it to handle sensing actions. Note that, while Lin and Reiter need to include
the unique names axioms for actions in the progression, we do not, as these are built
into the logic.

The proof of the theorem requires two lemmas. When formulas are objective or don’t
mention B and Ω, their satisfaction is independent of any e or δ. Hence we will leave
those out in the following wherever possible.

Lemma 5. Let w′, 〈 〉, u |= φ ∧ �β and w′ �t w. Then w′
t, 〈 〉, u |= Ψ ∧ �β.

Proof: Since w′, 〈 〉, u |= �β, we have w′, 〈 〉, u |= [t]�β and thus w′, t, u |= �β.
By Lemma 4, w′

t, 〈 〉, u |= �β. We are left to show that w′
t, 〈 〉, u |= Ψ . Let u′ be a

variable map such that u′ ∼P u and u′[Pi(t1, . . . , tk)] = w′[Fi(t1, . . . , tk), 〈 〉]. Note
also that w′, 〈 〉, u |= φ and w′, 〈 〉, u |= πa

t ∧ ϕa
t because w′ �t w. It is easy to

92 G. Lakemeyer and H.J. Levesque

show (by induction) that w′, t, u′ |= (φ ∧ πa
t ∧ ϕa

t)F
P and, by Lemma 4, w′

t, 〈 〉, u′ |=
(φ ∧ πa

t ∧ ϕa
t)F

P . Similarly, we can show that w′
t, 〈 〉, u′ |= ∀x.F (x) ≡ γF

a
t

F
P for all

F ∈ F . Hence w′
t, 〈 〉, u |= Ψ .

Lemma 6. Let w∗, 〈 〉, u |= Ψ ∧ �β. Then there exists a w∗∗ such that w∗ = w∗∗
t ,

w∗∗ �t w, and w∗∗, 〈 〉, u |= φ ∧ �β.

Proof: Let w∗, 〈 〉, u |= Ψ ∧�β. Then for some u′∼Pu, w∗, 〈 〉, u′ |= (φ∧πa
t ∧ϕa

t)F
P ∧∧

∀x.F (x) ≡ γF
a
t

F
P . Construct w∗∗ from u′ inductively:

1. w∗∗[Fi(t), 〈 〉] = u′[Pi(t)] for all fluents in φ ∧ �β;
2. w∗∗[Poss(t), 〈 〉] = w∗∗[SF (t), 〈 〉] = 1;
3. w∗∗[F (t), 〈 〉] is arbitrary for all other fluents F .

Now suppose w∗∗[p, z] is defined for z.
4. w∗∗[F (t), z · s] = 1 iff w∗∗, z, u |= γF

x
t

a
s for F ∈ F ;

5. w∗∗[Poss(s′), z · s] = 1 iff w∗∗, z, u |= πa
s′ ;

6. w∗∗[SF (s′), z · s] = 1 iff w∗∗, z, u |= ϕa
s′ ;

For all other fluents F :
7. if z · s = t · z′ then w∗∗[F (t), z · s] = w∗[F (t), z′];
8. if z · s �= t · z′ then w∗∗[F (t), z · s] is arbitrary.

Since w∗, 〈 〉, u′ |= φF
P we obtain, by construction, w∗∗, 〈 〉, u |= φ. Similarly we have

w∗∗, 〈 〉, u |= πa
t ∧ ϕa

t , that is, w∗∗ �t w. Also, by construction, w∗ = w∗∗
t . Finally, it

is not difficult to show that w∗∗, 〈 〉, u |= �β, and we are done.

We are now ready for the proof of the main theorem.

Proof: Here we consider only the case where SF(t) holds. The other is completely
symmetric. Let e, w, 〈 〉, u |= O(φ ∧ �β) ∧ SF(t). We need to show that e, w, t, u |=
O(Ψ ∧ �β), that is, for all w∗, w∗ ∈ ew

t iff w∗, 〈 〉, u |= Ψ ∧ �β.
To show the only-if direction, let w∗ ∈ ew

t , that is, w∗ = w′
t for some w′ ∈ e and

w′ �t w by the definition of ew
t . Since w′ |= Ψ ∧ �β by assumption, w′

t |= α by
Lemma 5.

Conversely, let w∗, 〈 〉, u |= Ψ ∧ �β. (We can ignore the epistemic part because the
sentence is objective.) By Lemma 6, there is a w∗∗ with w∗ = w∗∗

t and w∗∗, 〈 〉, u |=
φ ∧ �β and w∗∗ �t w. Hence, by assumption, w∗∗ ∈ e and thus w∗∗

t ∈ ew
t , that is,

w∗ ∈ ew
t .

We mentioned above that after an action, the resulting knowledge base can be taken as
the new initial knowledge base, and the progression can iterate. The following theorem
shows that this view is justified in that the entailments about the future remain the same
when we substitute what is known about the world initially by its progression. Here we
only consider the case where SF(t) is true.

Theorem 2. |= O(φ ∧ �β) ∧ SF(t) ⊃ [t]K(α) iff |= O(Ψ ∧ �β) ⊃ K(α).

In English (roughly): It follows from your initial knowledge base that you will know α
after doing action t iff knowing α follows from your progressed knowledge base. The
proof uses techniques very similar to the previous theorem and lemmas.

A Semantical Account of Progression in the Presence of Defaults 93

3.3 Comparison with Lin and Reiter

Those familiar with the work by Lin and Reiter on progression in the situation calcu-
lus (Lin and Reiter, 1997) will have noticed that our notion of progression is very close
to theirs. To see the similarities and differences, let us briefly review their definition,
which we call LR-progression.

Lin and Reiter give a model-theoretic definition of progression and show that, when
the initial database is finite, it is always representable using a second-order formula
similar to ours. As the two views are equivalent for finite initial databases, we will
not introduce the model-theoretic definition but simply use Lin and Reiter’s syntactic
representation instead, phrased in the language of ESO (see (Lakemeyer and Levesque,
2005) for how to translate formulas ESO into formulas of the classical situation calculus).

Definition 6 (LR-Progression)
Let Σ be a basic action theory over fluents F , and let t be a ground action term. An
LR-progression is any set of sentences which is logically equivalent to Σuna, the unique
name axioms for actions, conjoined with the following sentence (as usual, let φ be Σ0):

∃P . φF
P ∧ [πa

t
F
P ⊃

∧
∀x(F (x) ≡ γF

a
t

F
P)].

The idea here is that an LR-progression together with the rest of the basic action theory
entails the same sentences about the future after t has been performed as the original
basic action theory, similar to our Theorem 2. Despite the apparent similarities, there
are also differences:

1. Lin and Reiter require the unique name axioms for actions. We do not, essentially
because the unique name assumption is built into the logic.

2. Poss is handled differently. In part, this has to do with an older version of successor
state axioms used by Lin and Reiter. These had the form

�Poss(a) ⊃ [a]F (x) ≡ γF .

Hence it was necessary to replace Poss(a) by its definition in the progression. How-
ever, unlike us, Lin and Reiter do not conclude after executing an action that it was
possible. It is easy to see though that, in case φ logically entails πa

t , our handling
of Poss coincides with Lin and Reiter’s.

3. There is no notion of sensing, which is not surprising as Lin and Reiter do not con-
sider knowledge and their basic action theories do not contain Σsense. Here, we be-
lieve, our proposal provides new insights, both in terms of what progression means
in an epistemic setting and with regards to actions with non-trivial sensing results.

Lin and Reiter gave examples of classes of basic action theories where the result of
progression is first-order representable. By adapting their proofs to ESO, it is not difficult
to show that those results carry over to progression based on only-knowing as well. We
can also show that, in the case of pure sensing actions, which themselves do not change
any fluents, first-order representability is also guaranteed:

Definition 7. Given a basic action theory Σ, a ground action t is called a pure sensing
action if for every fluent in F , Σpost |= �∀x. F (x) ≡ [t]F (x).

Theorem 3. Let t be a pure sensing action. Then
|= O(φ ∧ �β) ∧ SF(t) ⊃ [t]O(φ ∧ πa

t ∧ ϕa
t ∧ �β).

94 G. Lakemeyer and H.J. Levesque

Comparison with the Old Only-Knowing. Before turning to defaults, let us briefly
compare our version of O with the one in (Lakemeyer and Levesque, 2004). For that
we add a new operator O′ to the language with the following semantics:

11′. e, w, z, u |= O′α iff
for all w′ such that w′ �z w, w′ ∈ e iff e, w′, z, u |= α.

Technically there are two main differences between this and our new definition of O.
For one O′ only considers worlds w′ that are compatible with w via �z. For another,
the truth of α is considered wrt the original e and z and not wrt the progressed worlds
in ew

z .
In the initial situation, before any actions, the two definitions actually coincide. In

other words, we have

Proposition 3. |= Oα ≡ O′α.

The proof is trivial because initially z = 〈 〉 and ew
z = e and w∗ �z w holds for all

worlds. Things diverge significantly once an action has been performed, and this is best
illustrated using a basic action theory. Recall that in our example we had

|= Σ ∧ O(φ ∧ �β) ⊃ [drop(x)]O(Ψ ∧ �β),

where φ = Fragile(o) ∧ ¬Broken(o) and Ψ is equivalent to (Fragile(o) ∧ Broken(o)).
Now let e, w, 〈 〉, u |= Σ ∧ O′(φ ∧ �β) and let t = drop(o). It is not hard to show

that there is a world w∗ such that w∗ �t w such that w∗, 〈 〉, u |= Broken(o) and
w∗, t, u |= Ψ ∧�β. Such a world cannot be in e as initially o is known not to be broken.
Therefore, we have that e, w, 〈 〉, u �|= [drop(x)]O′(Ψ ∧ �β). The trouble is, roughly,
that the complete worlds of e are kept around in the definition of O′, which forces the
agent to remember what was true in the past, while the new O allows the agent to forget
the past, as with Lin-Reiter progression.

3.4 Defaults for Basic Action Theories

Here we restrict ourselves to static defaults like “birds normally fly.” In an autoepistemic
setting (Moore, 1985; Levesque, 1990), these have the following form:

∀x.Bα ∧ ¬B¬β ⊃ γ,

which can be read as “if α is believed and β is consistent with what is believed then
assume γ.” Here the assumption is that α, β, and γ are static objective formulas.

Let Σdef be the conjunction of all defaults of the above form held by an agent. For
a given basic action theory Σ, as defined in Section 3.1, the idea is to apply the same
defaults to what is known about the current situation after any number of actions have
occurred, that is, for the purpose of default reasoning, we assume that �ΩΣdef holds.
We will now relate what is believed in the presence of defaults to the stable expansions
of Moore’s autoepistemic logic (Moore, 1985).

Definition 8 (Stable expanion)
Let α, β, γ be first-order static belief sentences and E a set of such sentences.

E is called a stable expansion of α iff for all γ, γ ∈ E iff γ is a first-order conse-
quence of {α} ∪ {Bβ |β ∈ E} ∪ {¬Bβ |β �∈ E}.

A Semantical Account of Progression in the Presence of Defaults 95

In words, a stable expansion of α consists of those sentences which can be obtained
from α by logical reasoning and introspection alone. For example, the default

∀x¬B¬Fragile(x) ⊃ Fragile(x)

has exactly one stable expansion and its objective sentences are precisely those which
follow from ∀x.Fragile(x), that is, the expansion correctly captures the default conclu-
sions sanctioned by the default rule. We remark that, in general, there may be more than
one stable expansion, or none at all.

The following theorem shows the connection between what is believed after an action
has occurred (where SF returns true) and stable expansions.

Theorem 4. Let t be a ground action and Σ = φ ∧ �β a basic action theory such
that |= OΣ ∧ SF(t) ⊃ [t]O(ψ ∧ �β), where ψ is first order. Then for any static belief
sentence γ,

|= OΣ ∧ SF(t) ∧ �ΩΣdef ⊃ [t]Bγ iff γ is in every stable expansion of ψ ∧ Σdef.

We remark that an analogous theorem holds also for ¬SF(t) and that the restriction to a
first-order progression is made only because stable expansions were originally defined
only for first-order theories.

3.5 An Example

To illustrate progression, let us consider the example of the introduction with two fluents
Broken and Fragile, actions drop(x), repair(x), and senseF(x) (for sensing whether x
is fragile). First, we let the basic action theory Σ consist of the following axioms:

– Σ0 = {Fragile(o),¬Broken(o)};
– Σpre = {�Poss(a) ≡ true} (for simplicity);
– Σpost = {SSABF} (from the introduction);
– Σsense = {�SF(a) ≡ ∃x.a = drop(x) ∧ true ∨

a = repair(x) ∧ true ∨ a = senseF(x) ∧ Fragile(x)}.

As before, let �β be Σpre ∪ Σpost ∪ Σsense. Then we have

|= Σ ∧ O(Σ0 ∧ �β) ⊃ [drop(o)]O(Ψ ∧ �β),

where Ψ = ∃P, P ′.[¬P (o) ∧ P ′(o)∧
∃x.drop(o) = drop(x) ∧ true ∨

drop(o) = repair(x) ∧ true ∨
drop(o) = senseF(x) ∧ P ′(x) ∧

∀x. Broken(x) ≡ drop(o) = drop(x) ∧ P ′(x) ∨
P (x) ∧ drop(o) �= repair(x)∧

∀x. Fragile(x) ≡ P ′(x)].

Using the fact that all actions are distinct, it is not difficult to see that Ψ can be simpli-
fied to

(Fragile(o) ∧ Broken(o)).

96 G. Lakemeyer and H.J. Levesque

In other words, after dropping o, the agent’s knowledge base is as before, except that o
is now known to be broken.

To see how defaults work, we now let Σ be as before except that Σ0 = {¬Broken(o)}
and let Σ′ = Σ∪{¬Fragile(o)}. Let Σdef = {∀x.¬B¬Fragile(x) ⊃ Fragile(x)}. Then
the following are logical consequences of

Σ′ ∧ O(Σ0 ∧ �β) ∧ �ΩΣdef :

1. BFragile(o);
2. [drop(o)]BBroken(o);
3. [senseF(o)]K¬Fragile(o);
4. [senseF(o)][drop(o)]K¬Broken(o).

(1) holds because of the default, since o’s non-fragility is not yet known. Similarly, (2)
holds because the default also applies after drop(o). In particular, Theorem 4 applies as
[drop(o)]O(Broken(o) ≡ Fragile(o) ∧ �β) follows as well. Finally, in (3) and (4) the
agent has found out that o is not fragile, blocking the default since |= �(Kα ⊃ Bα).

4 Related Work

While the situation calculus has received a lot of attention in the reasoning about action
community, there are, of course, a number of alternative formalisms, including close
relatives like the fluent calculus (Thielscher, 1999) and more distant cousins described
in (Kowalski and Sergot, 1986; Gelfond and Lifschitz, 1993; Sandewall, 1994).

While ESO is intended to capture a fragment of the situation calculus, it is also related
to the work formalizing action and change in the framework of dynamic logic (Harel,
1984). Examples are (De Giacomo and Lenzerini, 1995) and later (Herzig et al, 2000),
who also deal with belief. While these approaches remain propositional, there are also
first-order treatments such as (Demolombe, 2003; Demolombe, Herzig, and Varzinczak,
2003; Blackburn, et al 2001), which, like ESO, are inspired by the desire to capture frag-
ments of the situation calculus in modal logic. Demolombe (2003) even considers a
form of only-knowing, which is related to the version of only-knowing in (Lakemeyer
and Levesque, 2004), which in turn derives from the logic OL (Levesque and Lake-
meyer, 2001).

The idea of progression is not new and lies at the heart of most planning systems,
starting with STRIPS (Fikes and Nilsson, 1971), but also in implemented agent pro-
gramming languages like 3APL (Hindriks et al, 1999). Lin and Reiter (1997) so far gave
the most general account. Restricted forms of LR-progression, which are first-order de-
finable, are discussed in (Lin and Reiter, 1997; Liu and Levesque, 2005; Claßen et al,
2007; Vassos and Levesque, 2007).

Default reasoning has been applied to actions mostly to solve the frame problem
(Shanahan, 1993). Here, however, we use Reiter’s monotonic solution to the frame
problem (Reiter, 1991) and we are concerned with the static “Tweety-flies” variety of
defaults. Kakas et al. (2008) recently made a proposal that deals with these in the pres-
ence of actions, but only in a propositional setting of a language related to A (Gelfond
and Lifschitz, 1993).

A Semantical Account of Progression in the Presence of Defaults 97

5 Conclusion

The paper introduced a new semantics for the concept of only-knowing within a modal
fragment of the situation calculus. In particular, we showed that, provided an agent
starts with a basic action theory as its initial knowledge base, then all the agent knows
after an action is again a basic action theory. The result is closely related to Lin and Re-
iter’s notion of progression and generalizes it to allow for actions which return sensing
results. We also showed how to handle static defaults in the sense that these are applied
every time after an action has been performed. Because of the way only-knowing is
modelled, defaults behave as in autoepistemic logic. In previous work we showed that
by modifying the semantics of only-knowing in the static case, other forms of default
reasoning like Reiter’s default logic can be captured (Lakemeyer and Levesque, 2006).
We believe that these results will carry over to our dynamic setting as well.

References

Blackburn, P., Kamps, J., Marx, M.: Situation calculus as hybrid logic: First steps. In: Brazdil,
P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS, vol. 2258, pp. 253–260. Springer, Heidelberg
(2001)

Claßen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of Golog and planning.
In: Veloso, M.M. (ed.) Proc. of IJCAI 2007, pp. 1846–1851 (2007)

Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence 2, 189–208 (1971)

De Giacomo, G., Lenzerini, M.: PDL-based framework for reasoning about actions. In: Gori, M.,
Soda, G. (eds.) AI*IA 1995. LNCS, vol. 992, pp. 103–114. Springer, Heidelberg (1995)

Demolombe, R.: Belief change: from Situation Calculus to Modal Logic. In: IJCAI Workshop on
Nonmonotonic Reasoning, Action, and Change (NRAC 2003), Acapulco, Mexico (2003)

Demolombe, R., Herzig, A., Varzinczak, I.J.: Regression in modal logic. J. of Applied Non-
Classical Logics 13(2), 165–185 (2003)

Enderton, H.: A Mathematical Introduction to Logic. Academic Press, New York (1972)
Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic

Programming 17, 301–321 (1993)
Harel, D.: Dynamic Logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical Logic,

vol. 2, pp. 497–604. D. Reidel Publishing Company (1984)
Herzig, A., Lang, J., Longin, D., Polacsek, T.: A logic for planning under partial observability.

In: Proc. AAAI-2000, AAAI Press, Menlo Park (2000)
Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.-J.C.: Agent programming in 3APL.

Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)
Hughes, G., Cresswell, M.: An Introduction to Modal Logic. Methuen and Co., London (1968)
Kakas, A., Michael, L., Miller, R.: Fred meets Tweety. In: Proc. ECAI-2008, pp. 747–748. IOS

Press, Amsterdam (2008)
Kowalski, R., Sergot, M.: A logic based calculus of events. New Generation Computing 4, 67–95

(1986)
Lakemeyer, G., Levesque, H.J.: Situations, si! Situation Terms, no! In: Ninth Conf. on Principles

of Knowledge Representation and Reasoning, AAAI Press, Menlo Park (2004)
Lakemeyer, G., Levesque, H.J.: A useful fragment of the situation calculus. In: Proc. of IJCAI-

2005, pp. 490–496. AAAI Press, Menlo Park (2005)

98 G. Lakemeyer and H.J. Levesque

Lakemeyer, G., Levesque, H.J.: Towards an axiom system for default logic. In: Proc. of AAAI-
2006, AAAI Press, Menlo Park (2006)

Lakemeyer, G., Levesque, H.J.: A semantical account of progression in the presence of defaults.
In: Proc. of IJCAI-2009, AAAI Press, Menlo Park (2009)

Levesque, H.J.: All I Know: A Study in Autoepistemic Logic. Artificial Intelligence 42, 263–309
(1990)

Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cambridge (2001)
Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic programming

language for dynamic domains. Journal of Logic Programming 31, 59–84 (1997)
Lin, F., Reiter, R.: How to progress a database. Artificial Intelligence 92, 131–167 (1997)
Liu, Y., Levesque, H.J.: Tractable reasoning with incomplete first-order knowledge in dynamic

systems with context-dependent actions. In: Proc. of IJCAI-2005 (2005)
McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelli-

gence. Machine Intelligence 4, 463–502 (1969)
Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25, 75–94

(1985)
Mylopoulos, J.: TORUS - A Natural Language Understanding System For Data Management. In:

IJCAI, pp. 414–421 (1975)
Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and a

completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and Math-
ematical Theory of Computation, pp. 359–380. Academic Press, London (1991)

Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dynam-
ical Systems. MIT Press, Cambridge (2001)

Sandewall, E.: Features and Fluents. The Representation of Knowledge about Dynamical Sys-
tems. Oxford University Press, Oxford (1994)

Shanahan, M.: Solving the Frame Problem. MIT Press, Cambridge (1997)
Scherl, R.B., Levesque, H.J.: Knowledge, action, and the frame problem. Artificial Intelli-

gence 144(1-2), 1–39 (2003)
Thielscher, M.: From situation calculus to fluent calculus: State update axioms as a solution to

the inferential frame problem. Artificial Intelligence 111(1–2), 277–299 (1999)
Vassos, S., Levesque, H.J.: Progression of situation calculus action theories with incomplete in-

formation. In: Proc. IJCAI 2007 (2007)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 99–121, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Social Modeling and i*

Eric S. Yu

Faculty of Information, University of Toronto
Toronto, Canada M5S 3G6

Abstract. Many different types of models are used in various scientific and
engineering fields, reflecting the subject matter and the kinds of understanding
that is sought in each field. Conceptual modeling techniques in software and
information systems engineering have in the past focused mainly on describing
and analyzing behaviours and structures that are implementable in software. As
software systems become ever more complex and densely intertwined with the
human social environment, we need models that reflect the social characteristics
of complex systems. This chapter reviews the approach taken by the i*
framework, highlights its application in several areas, and outlines some open
research issues.

1 Why Social Modeling

In many scientific and engineering disciplines, the principles, premises, and
objectives of the field are embedded in and manifested through the models that are the
daily conceptual tools of the profession. The models reflect the kinds of
understanding that is sought by practitioners of the field. In software and information
systems engineering, the dominant modeling constructs have revolved around static
relationships (as in entity-relationships models and class diagrams) and dynamic and
behavioural properties (as in process models and state-based formalisms). This focus
is understandable as conceptual models are ultimately translated into data and
operations for machine execution. For a system to be successful however, it must
function within the context of its environment. As the need to model and characterize
the machine’s environment was increasingly recognized, these same modeling
techniques and formalisms have been extended to cover the world in which the
machine operates, and how the machine interacts with that world. The world was thus
largely seen through the lens of the mechanistic operations of computers.

In a keynote speech in 1997, Professor John Mylopoulos identified four main
classes of modeling ontologies that would be crucial “in the time of the revolution.”
Static and dynamic ontologies were well developed and widely adopted. Two new
kinds of modeling – intentional and social – were needed to respond to the emerging
needs of the information revolution [81].

Few would have predicted the way the revolution has unfolded. In 1997, the
Netscape browser was still a novelty, and the world-wide web was hardly a household
name. XML had not yet been introduced. Computer use, especially in the information
systems area, was dominated by business applications within organizations, with
trained users in a job setting. Today computer use is all but taken for granted. RFID,
GPS, online banking and shopping are everywhere. New generations grow up unable

100 E.S. Yu

to imagine life without Google, Wikipedia, Facebook, instant messaging, or texting.
Back in the work world, organizations are adopting Enterprise 2.0, playing catch up
with the Web 2.0 services that their employees and patrons have already taken for
granted in their personal and social life. The revolution continues, with new
technologies and services emerging all the time – e-book readers, location-based
services, digital paper, and so on. Information technologies and systems are impacting
people’s lives in deeper ways than ever before. Every innovation has the potential to
bring benefits, as well as threats to privacy, livelihoods, and even cherished cultural
values. In principle, the possibilities for good are limitless. The concerns and risks
are also very real. What methods and techniques can software and information
systems professionals use to deal with these questions? Social modeling is more
relevant than ever before.

The i* modeling framework [122][123] was an attempt to introduce some aspects
of social modeling and reasoning into information system engineering methods,
especially at the requirements level. Unlike traditional systems analysis methods
which strive to abstract away from the people aspects of systems, i* recognizes the
primacy of social actors. Actors are viewed as being intentional, i.e., they have goals,
beliefs, abilities, and commitments. The analysis focuses on how well the goals of
various actors are achieved given some configuration of relationships among human
and system actors, and what reconfigurations of those relationships can help actors
advance their strategic interests. The i* framework has stimulated considerable
interest in a socially-motivated approach to systems modeling and design, and has led
to a number of extensions and adaptations.

This chapter aims to present an overview of the ideas behind the i* framework,
some of the main application areas, and discusses some possible future directions.

2 Premises and Features of i* Modeling

From the earliest days, there have been concerns about the pervasive impacts that
computing technology was having on society (e.g., [57]). The concerns included
humanistic, ethical, as well as pragmatic ones – as many technically sound systems
fell into disuse, or met with resistance from users [70]. Studies on the social impact of
computing have raised awareness and sensitivity to the potentially negative as well as
positive impacts of technology on people’s lives. However, it has been difficult to
make social understanding and analysis an integral part of the mainstream system
development process.

The i* modeling approach is an attempt to bring social understanding into the
system engineering process by putting selected social concepts into the core of the
daily activity of system analysts and designers, i.e., by adopting a social ontology for
the main modeling constructs. Social analysis would not be an adjunct to technical
analysis, but would be the basis for driving the entire system development.

To overcome the limitations of the mechanistic worldview, we shift our attention
away from the usual focus on activities and information flows. Instead, we ask: what
does each actor want? How do they achieve what they want? And who do they
depend on to achieve what they want? In the following, we review each of the main
premises of i* [114][115], and discuss how they are manifested through the features
of the modeling framework.

 Social Modeling and i* 101

2.1 Actor Autonomy

We adopt as a premise that the social world is unknowable and uncontrollable to a
large extent. From the viewpoint of conventional modeling, this may seem unintuitive
and prohibiting. What is not knowable can hardly be modeled. Interestingly, this
premise provides a way out of the usual mechanistic conception of the world.

In i*, the central conceptual modeling construct is the actor. It is an abstraction
which is used to refer to an active entity that is capable of independent action. Actors
can be humans, hardware and software, or combinations thereof. Actors are taken to
be inherently autonomous - their behaviours are not fully controllable, nor are they
perfectly knowable.

This notion of autonomy is distinct from the one in artificial intelligence, where it
refers to an advanced capability to be achieved by design and technological
implementation. Autonomous agents in AI are artificial agents implemented in
hardware and software which can act on their own without human intervention. In social
modeling, we take actor autonomy to be a characteristic of the real-world social
phenomena that system designers have to contend with.

2.2 Intentionality

Although the behaviour of actors are not fully knowable or controllable, they are
nevertheless not completely random. To explain and characterize their behaviour, we
attribute motivation and intent to actors. By modeling what actors intend to achieve,
we obtain a higher level characterization without specifying their exact behaviour.

In i* modeling, we focus on intentional properties and relationships rather than
actual behaviour. By not describing behaviour directly, an intentional description
offers a way to characterize actors that respects the autonomy premise. Conventional
system modeling which offers only static and dynamic ontologies leads to an
impoverished and mechanistic view of the world. Intentional modeling provides a
richer expressiveness that is appropriate for a social conception of the world. By
attributing intentionality, we can express why an actor undertakes certain actions, or
prefers one alternative over another. An intentional ontology allows analysis of
means-ends relationships and of the space of alternatives for each actor.

Various notions of actor are included in some non-intentional modeling frameworks
and languages, e.g., in the form of stick figures in UML use case diagrams [85], and
swim lanes in BPMN [5]. These actors are not intentional or autonomous, so are
inadequate for social modeling. Recent work in goal modeling in requirements
engineering (e.g., [108][96]) have developed intentional modeling ontologies, but have
not emphasized the social dimension of intentionality. The name i* stands for
distributed intentionality, which puts intentionality within the context of social networks
of autonomous actors.

2.3 Sociality

Social phenomena are arguably infinitely rich. The treatment that a modeling
framework can provide is necessarily limited. Conceptual modeling frameworks aim to
offer succinct representations of certain aspects of complex realities through a small
number of modeling constructs, with the intent that they can support some kinds of
analysis.

102 E.S. Yu

In i*, we choose to focus on one aspect of being social – that the well-being of an
actor depends on other actors. Actors depend on each other for goals to be achieved,
tasks to be performed, and resources to be furnished. By depending on some other
actor, the depender actor takes advantage of opportunities that are made available
through dependee actors. For example, my life is made easier by mechanics who are
able and willing to repair my car, even if I myself am not capable. At the same time,
as I depend on someone else, I become vulnerable to not receiving what I expect from
them. These dependencies are therefore strategic to the actors concerned because they
can be beneficial or harmful to their well-being. Actors would choose what
dependencies to have according to their judgement on the potential gains and losses
from them.

In i*, the Strategic Dependency (SD) model (Fig. 1) is a network of directed
dependency relationships among actors. A dependency link indicates that one actor
(the depender) depends on another (the dependee) for something (the dependum).
Four types of dependencies are distinguished. If the dependum is stated as an
assertion, it is called a goal dependency. The depender wants the dependee to make
the assertion true, without specifying how it is to be achieved. If the dependum is
stated as an activity, it is called a task dependency. The depender wants the dependee

Fig. 1. A Strategic Dependency (SD) Model (from [114])

 Social Modeling and i* 103

to perform the task as specified by the description of the activity. The dependency
types therefore provide a way to convey the kinds of freedoms allowed in a
relationship. In a goal dependency, the dependee is free to adopt any course of action,
as long as the goal is achieved. The depender does not care how it is achieved. In a
task dependency, the dependee’s actions are confined, as stipulated by the depender.
However, since the task description can seldom be complete and in full detail, the
dependee still has freedom beyond what is specified.

A resource dependency is one in which the dependum is an entity, which can be an
information or material object. The depender wants the dependee to furnish the entity
so that it can be consumed as a resource, but is not concerned about the activity or any
problem solving that may be needed to produce the entity.

A fourth type of dependency, called a softgoal dependency, is one in which the
dependum is a quality, such as fast, cheap, reliable, secure, and so forth. A softgoal
dependency is similar to a goal dependency except that the criteria for achievement of
the quality goal is not sharply defined a priori, but may require elaboration and
clarification. Consultation between depender and dependee may be required. The
softgoal concept was first used to deal with non-functional requirements in software
engineering [11]. It provides a useful mechanism for modeling many concepts in the
social world which require contextual interpretation.

The SD model may be contrasted with process models employing dynamic
ontologies. Unlike typical process models such as dataflow diagrams or activity
diagrams which focus on information flow or control flow, the SD model is a higher
level abstraction which depicts what actors want from each other, and the freedoms
that each actor has. The SD model therefore acknowledges the autonomy of actors in
a social world.

The SD model depicts external relationships among actors, while remaining silent
regarding the internal makeup of the actors. For example, actors may possess
knowledge that enables them to achieve goals and perform tasks, but this knowledge
is not made explicit in the SD model.

Since an actor is autonomous, it may choose not to live up to the expectation from
a depender. By analyzing the network of dependencies, one can infer that some
dependencies are more likely to be viable than others. For example, if A depends on B
for something, while B in turn has some substantive dependencies on A, directly or
indirectly, then A’s dependency is likely to be viable. Dependency failures may
propagate along a chain of dependencies. When an actor (as dependee) is committed
to delivering on a dependum, its efforts may prevent the failure from further
propagating [122].

2.4 Rationality

The kinds of analyses that can be performed with the SD model are limited due to the
strong assumption about actor autonomy. The SD model focuses on external
relationships, while staying mute on internal makeup. In making sense of a social
world, we often attribute motivations and intents to actors. We construct coherent
explanations of their behaviour by relating their actions to attributed goals and
motives.

104 E.S. Yu

In the Strategic Rationale (SR) model (Fig. 2), we attribute goals, tasks, resources,
and softgoals to each actor, this time as internal intentional elements that the actor
wants to achieve. A means-ends link is used to connect a task to a goal, indicating a
specific way to achieve the goal. Typically there is more than one way to achieve a
goal, so a goal in an SR model prompts the question – how else can this goal be
achieved?

A task can be further specified through task decomposition links to indicate the
subtasks, subgoals, resources, and softgoals that need to be performed or satisfied in
order for the task to succeed.

Tasks have contributions links to softgoals indicating how they contribute to
achieving those qualities (positively or negatively, with what strength). High level
softgoals are refined into more specific softgoals through AND, OR combinations as
well as partial contributions. Softgoals help distinguish among alternate tasks that can
achieve the same goal, but differ in how they affect desired quality attributes. For
example, the goal to Keep Well can be achieved through Patient-Centred Care or
Provider-Centred Care, but the two options affect the patient’s Lifestyle and Quality
of Care differently. A qualitative reasoning procedure is used to propagate labels
across the graph to evaluate goal achievement. When goals are not sufficiently met,
actors look for further alternatives that produce more favourable outcomes.

In attributing rationality to actors in an i* model, we are not asserting that these
actors are intrinsically rational. Rather, rationality is externally attributed so that we
as analysts can reason about their behaviour. In accordance with the autonomy
premise, the model is inherently incomplete and may well be inaccurate.

Fig. 2. A Strategic Rationale (SR) Model (from [114])

 Social Modeling and i* 105

A belief is an assertion held to be true by an actor. It is useful for noting
assumptions or justifications which when revoked, should trigger re-evaluation of
affected decisions. Unlike a goal, the actor does not aim to make a belief come true.

2.5 Contingent Boundaries and Identities

Since we take the actor to be a modeling abstraction, its identity and scope are
determined by the modeler. For example, it is up to the modeller to model persons in
a work group individually as actors, or the entire group as an actor, or each person
supported by software tools as an actor. Each of these would offer different
opportunities for analysis. Organizations and communities acting coherently can also
be treated as actors. Actors can have selfish as well as altruistic goals.

In i*, the relationship that an actor has with other actors serves to demarcate the
boundary of the actor at an intentional level. When an actor delegates a responsibility
to another actor, the inter-actor boundaries shift accordingly.

Social modeling needs to deal with physically embodied actors such as humans as
well as abstract “logical” actors such as roles. In i*, the term agent is used to refer to
actors with physical embodiment. An agent may play multiple roles. A set of roles
typically played by one agent is called a position.

2.6 Strategic Reflectivity

In conventional systems analysis, the models typically provide an operational level
description of the system, e.g., the information and control flows. The activities and
reasoning used to improve the operation of the system, e.g., how to improve
efficiency, reliability, cost, security, etc., are typically done outside of the models. An
intentional ontology, such as the use of goal models (e.g., [11][108] would make the
intentional dimension explicit, allowing trade-offs across multiple competing or
synergistic goals.

In a social ontology, such consideration and tradeoffs would be modelled from the
viewpoint of each actor. Each actor reflects upon its relationships with other actors,
and makes judgements about the merits of various configurations with respect to its
own strategic interests.

In i*, each operational configuration is typically expressed through an SD model.
The alternatives that are explored in an SR model refer to the alternative SD
configurations that have different implications for the various strategic interests held
by each actor.

3 Social Modeling for Requirements Engineering

In system development, requirements engineering (RE) serves as the crucial interface
between the world of the application domain and the world of computing technology.

Much effort has been devoted to developing requirements models and languages
that can lead to precise specifications of what the system should do. A major
milestone was the recognition that requirements need to be defined in relation to the
environment [9][48]. Modeling the world was therefore as important as modeling the
machine [38]. The dominant ontologies for requirements modeling were static and

106 E.S. Yu

dynamic ontologies, centring around entities and relationships (what exists), activities
and processes (what occurs), and assertions and constraints (what holds true), e.g.,
[38][85].

When the social environment is complex, social modeling offers a new kind of
analysis that could not be achieved within the mechanistic world view of static and
dynamic ontologies. i* modeling and variants have been used to obtain requirements
in domains as diverse as air traffic control [71], agriculture [90], healthcare [56][3],
environmental sensing [33], e-government [19], submarine systems [89],
telecommunications [2], industrial enterprise [91], and business processes (see next
section).

Each of these environments involves many social actors with disparate interests, a
multiplicity of roles, and complex networks of relationships. Modeling the
relationships at an intentional level offers a higher level of abstraction for analysis.
Intentional modeling can also include stakeholders who have no direct information
flow or activity interaction with the operational system, such as regulators, investors,
or the general public, who may nevertheless have an influence over the system.

By identifying relationships among stakeholders using the SD model, weaknesses
in existing relationships can be revealed. The SR model provides a systematic way for
exploring the space of alternatives for achieving stakeholder goals, including different
ways of using technology systems. This type of analysis is important at the early
stages of system conception, but is not supported by conventional requirements
modeling techniques. We refer to this as “early” requirements engineering.

Intentional social modeling can be complemented with other techniques. In the
RESCUE methodology [72], i* is used in conjunction with scenario techniques, and is
synchronized at several stages to cross-check requirements obtained. Creativity
workshops are also used to complement the model-based techniques. The joint use of
the Goal-oriented Requirements Language (GRL, a variant of i*) and a scenario
mapping approach is also promoted in the User Requirements Notation (URN), a
newly approved ITU-T standard [46][2][63].

The social modeling of i* leverages the techniques developed in goal-oriented RE,
such as systematic refinement and the eventual operationalization of goals, and goal
graph evaluation [11][42]. Both the goal-oriented and social approach fall within the
category of problem-oriented RE as discussed by Wieringa [112], in contrast to
solution-oriented RE techniques which aim to specify the target system, e.g., IEEE
830 [45] and UML [85]. In the intentional ontology of goal-oriented RE, the problem
is characterized by a set of goals, solutions are explored and evaluated as alternative
ways for achieving the goals. In the social perspective taken in i*, there is no single
unified view of “the problem”. Each stakeholder has strategic interests to pursue, and
they have limited knowledge of and control over each other. They seek to advance
their interests by considering different configurations of dependency relationships.

4 Social Modeling for Software Development

Software processes are social too. Software development is a complex social
activity. Despite advances in tools, software work continues to be labour and
knowledge intensive. Large numbers of people with specialized roles and skills

 Social Modeling and i* 107

collaborate in the development and maintenance of software products and services.
Numerous approaches and methodologies have been proposed on how to organize and
guide the software process, ranging from heavily disciplined, tightly controlled
methods to lightweight “people-centred” agile ones [4]. Compared to other more
mature engineering disciplines, software work is still highly variable and difficult to
organize and manage. Schedule and budget overruns are commonplace, and high
quality is hard to achieve.

Various modelling techniques have been used to support software processes (e.g.,
[15][84]), with special emphases on workflow support, tool automation, and method
reuse. Few modeling methods, however, have focused on the social aspects of
software work. Social considerations such as cooperation and conflict, motivation and
rewards, responsibility and control, knowledge sharing and reuse can be critical to the
success of any software project.

i* modeling has been used to bring out the human social dimension of software
processes [120]. [8] and [22] provide examples of applications of social modeling to
the maintenance process in industrial settings. Knowledge management issues are
analyzed using i* in [39] and [105].

Software is social too. Having introduced social models in requirements engineering,
a more radical proposal is to use social modeling in the design and analysis of
software itself. As software is increasingly distributed and network-based, large
software systems are taking on the characteristics of social systems - being composed
of units interacting with each other with relative autonomy and on a peer-to-peer basis
rather than the traditional hierarchical authority and centralized oversight. Indeed, the
agent-oriented approach to software engineering is emerging as a promising new
paradigm for constructing software [41].

In the past, modeling methods have typically followed paradigm shifts that
originated from programming. Thus structured analysis followed structured
programming and structured design [17]. Object-oriented analysis adopted concepts
from object-oriented programming and object-oriented design [12]. In agent-oriented
software, social characteristics are metaphorically attributed to complex software
interactions. However, social modeling as envisioned in [81] and exemplified in i* is
not meant to be metaphorical. Rudimentary and reductionist as it may be, the social
modeling is intended to reflect aspects of social reality, not only of artificial systems.
Complex software systems are social not only because they have characteristics that
resemble human social systems, but because they are actually driven by complex
human social systems. A truly innovative way to reconceptualise software
development is therefore to see software as in fact social. Social modeling can be used
throughout the software lifecycle, not just at the requirements level.

Tropos. The Tropos project, initiated by Professor Mylopoulos, adopts the social
ontology of i* at the early requirements level. As the development process progresses,
features of the social ontology are retained as much as possible during late
requirements and architectural design. Detailed design and implementation are done
on an agent software platform such as Jack or Jadex [7]. Software components are
treated as having social characteristics. Formal Tropos combines formal techniques
such as model checking with the social model analysis of i* [25].

108 E.S. Yu

i* modeling has also been used to guide COTS package selection [24], database
design [49], data warehousing [88] and business intelligence [92]. An empirical
evaluation of the i* framework in a model-based software generation environment
was presented in [23].

5 Social Modeling for Enterprise Engineering

Business processes. A common pitfall in enterprise IT is the adoption of technology
without a clear and detailed understanding of how the technology will contribute to
business goals. The business process reengineering (BPR) movement [40] has been
instrumental in highlighting this pitfall. The conception of a business process served
as a focal point for interaction between business analysts and IT developers. The use
of models to describe and analyze business processes became a centerpiece in
enterprise information systems engineering, so that the business can be understood
and analyzed before considering technology solutions. Most business process
modeling techniques, from flowcharts to the recent BPMN [5], were adapted from
system analysis, and inherit a mechanistic world view, albeit simplified to engage
business participants. Main features include information flows, activity steps,
branching and merging, etc.

Business process models that show concrete flows and behaviour are easy for
business stakeholders to validate, and provide good starting points for technology
implementation. However the static and dynamic ontologies employed only describe
what happens, but cannot be used to explain why, or to explore alternatives. Social
models such as i* can be used not only to relate business processes to business goals,
but to the goals of various stakeholders who would be affected by any change (e.g.,
customers, employees, regulators, investors, etc.) [119][121]. Taking the interests of a
full range of stakeholders into account during the redesign of a business process is
likely to lead to process innovations and technology systems that are more broadly
accepted and viable [56][3]. Social factors such as power and conflict, often the
sources of failures, can be brought in for systematic analysis as part of the system
development process. The Strategic Rationale model in i* supports reasoning about
alternate process designs and social configurations [121].

Compared to other socially motivated modeling techniques (e.g., [75]), i* attempts
a deeper social ontology [116], incorporating concepts such as strategic dependencies
and actor autonomy [16]. While social analysis using narrative text can be much more
nuanced and therefore cannot be replaced by modeling, a model-based approach can
provide more direct and traceable linkages to system development, making such
social analysis more likely to have impact on technical system design and
implementation. Some methods that start from i* models leading to business
processes execution include [62] [59] [53] [111] [29] [60]. An i*-based method for
process reengineering and system specification is developed in [37].

Enterprise architecture. As information systems multiply in organizations,
systematic frameworks and approaches have been proposed to manage systems not
one system at a time, but across the entire enterprise and beyond, dealing with issues
such as interoperability and integration, governance and policy compliance.

 Social Modeling and i* 109

Modelling is considered central in enterprise architecture, especially at the higher
levels of abstraction for sharing systems-related knowledge across the enterprise (e.g.,
Zachman [125], ToGAF [86]). Most of the modeling relies on existing modeling
methods, with static and dynamic ontologies. Some frameworks do emphasize the
need for the modeling of “motivation” (column 6 in Zachman [125]). The Business
Motivation Model, a recent OMG standard [83], has goals and means-ends
relationships, but does not deal with social relationships. The use of i* as intentional
social models for enterprise architecture is suggested in [124]. Policy compliance
using i* based concepts are proposed in [28] [95].

Business model innovations and strategic change. Many business and industry
sectors have been going through fundamental changes triggered by the Internet and
now mobile technologies. eBay, Amazon, and Dell has been leading examples. The
newspaper and publishing industries are seeing more dramatic transformations.

Conceptual modeling techniques have been used to describe and analyze business
models [50], typically by introducing business specific ontologies, including such
concepts as asset, revenue and value flow, channels, etc. Some prominent business
authors have promoted graphical depictions of business goals [52].

Social modeling can complement these models by supporting analysis of strategic
dependencies and analyzing alternative configurations that contribute differently to
strategic business goals. The complementary use of i* and the e3value business
modeling notation is outlined in [35]. An analysis of disruptive strategic change
appears in [100]. Business model analysis leading to service-oriented system design
was described in [66]. Business strategies of a networked value constellation were
modelled using e3value and a simplified version of i* in [34].

6 Social Modeling for Security, Privacy, and Trust

Computer security has long been an active area of research. Many security models
have been proposed. However, few have adopted a social perspective.

Security and privacy are ultimately human concerns. Despite advances in security
and privacy technologies, breaches and failures continue to occur. Perfect security and
privacy are acknowledged to be unattainable in practice [101]. Determined attackers
have been able to overcome or bypass the strongest defensive mechanisms. Often,
users themselves neglect or defeat the defensive measures when they interfere with
work routines, or are too hard to use.

Social models allow the human issues of security, privacy, and trust to be
systematically analyzed and addressed within an engineering process. In i*, security,
privacy, and trust can be modelled initially as high-level softgoals of some actors.
Efforts to achieve them can be modelled in terms of refinement to more specific
goals, such as confidentiality, integrity, availability, unlinkability, and so forth,
eventually operationalizing them through implementable mechanisms such as
encryption, firewalls, intrusion detectors, and anonymizers. The goals are
accomplished via a network of hardware and software as well as human roles
(security officers, network administrators, peer users, etc.) The dependencies among
actors in such networks can be analyzed for viability, such as the adequacy or lack of
reciprocal dependencies.

110 E.S. Yu

A social approach would recognize that security and privacy concerns are not
necessarily high on every actor’s agenda. They can be superseded by competing goals
such as cost, task urgency, or convenience. An actor-based social model can reveal
the trade-offs faced by each actor, this prompting system designers to seek solution
alternatives that respond to the actor’s overall needs and desires, not just those
pertaining to security and privacy.

i* modeling has been used to analyze and guide system design for security,
privacy, and trust [118][117][21][93][99]. Goals and strategies of attackers (including
insiders) can also be modelled and analyzed, to be taken into account during
requirements analysis and design [65][21].

The Secure Tropos [77] approach added security specific constructs and introduced
social ontology to security patterns [78]. Another line of work (also called Secure
Tropos) provided extensions by defining ownership, permission, and delegation [30].
i* has also been used as a starting point for deriving access controls [14]. Social
modeling based on i* were also applied to risk modeling and analysis [74].

In the TCD framework [26], i* is used to model trust in a social network, with
extensions to support quantitative simulation on actor behaviour, and changes over
time in trust, distrust, and confidence in the network. A trust management framework
which extends i* by distinguishing delegation of permission from delegation of
execution is described in [31]. [106] presents a cognitive model of trust expressed in
an adapted i* notation.

Intentional modeling ontologies, particularly goal models, have been developed for
security requirements engineering [11][109]. The goal structures in these frameworks
represent a single consolidated viewpoint, rather than distributed among multiple
autonomous actors as in social models. Social modeling extends goal-based
techniques by treating actors (such as users and attackers) as being autonomous but
interdependent. Instead of finding best solutions in a graph structure from a single
viewpoint, each actor seeks reconfigurations of social relationships that advance its
strategic interests.

7 Research Issues

Social modeling, particularly in the form of i* and variations, has been explored to
some degree in research communities, mostly in the requirements engineering area.
The preceding sections have highlighted selected work that use i* or draw upon its
basic concepts. Many have extended or adapted the basic i* framework [122].
Industry adoption of social modeling remains limited. Most industry projects
reporting experiences using i* or related social modeling had close collaborations
with academic researchers. Much remains to be done to make social modeling as
widespread as static and dynamic modeling.

The i* framework represents only one possible perspective on and approach for
social modeling. It is hoped that many more new frameworks will emerge to allow a
wide selection of modeling and analysis techniques, perhaps reflecting quite different
underlying premises than those presented in section 2. In the following, a sampling of
research issues arising from the i* experience will be discussed. Many of these may
be applicable to social modeling in general.

 Social Modeling and i* 111

7.1 Usage Contexts and Methodologies

Formality. Conceptual models are abstractions which filter an understanding of the
world through the lens of a small number of predefined concepts. Formal definition of
the concepts, for example through an axiomatization in a formal language and logic
will facilitate automated inference and tool support. A high degree of formality,
however, requires specialized training and thus restricts the user population. i*
variants have ranged over a broad spectrum of formal to informal approaches.

Most widely used conceptual modeling notations – from Data Flow Diagrams to
UML, are semi-formal, and rely heavily on graphical visual notations. Formality is more
difficult to attain in social modeling, as there is little agreement on any precise
characterization of social reality, or even its possibility and desirability.

How much formality, of what kind, for use in what context – these are crucial
research questions to pursue in order to create practical social modeling
methodologies. A simplified, fairly informal notation may be necessary to encourage
untrained stakeholder participation and interaction, while a more formal version may
be needed for greater expressive power, better tool support, larger scale projects, and
more automated analysis. A similar approach is taken in BPMN [5].

Domain terms. Aside from the predefined modeling constructs, linguistic terms
chosen by modellers to represent domain concepts can also present difficulties. To
reflect stakeholder perspective and promote active participation and ownership of the
models, faithfulness to the language used by stakeholder is important. On the other
hand, to facilitate analysis and to share knowledge across projects, the analyst may
need to rephrase the domain terms. In any case, where most visual presentations of
conceptual models require concise phrases to embody a concept, the choice of an
appropriate phrase that will accurately convey the intended meaning can be quite
demanding. The adoption of a project lexicon or ontology [6] is worth considering.
Methodologically, one may want to have different sets of models using different
domain vocabularies, e.g., one set for stakeholder participation, another for sharing
and reuse. Coordination among sets of models will be another research issue.
Lightweight natural language processing may also be helpful [102].

Patterns. Creating models from scratch can be quite labour intensive. A common
solution is to build up collections of reusable models or generic patterns. The pattern
approach for i* has been explored in a number of works [89][73][78][58]. Patterns
represent generalized knowledge, so they must be re-contextualized when applied to a
specific situation. There are questions of validity of a pattern, and of applicability to a
specific circumstance. There is risk that reliance on available patterns may distort
analysis of the unique circumstances of a specific situation [104]. i* has also been
used to formalize the representation of problem contexts, forces, and alternate
solutions in design patterns [80].

Visual Presentation and Interaction. Graphical models rely on effective human
interpretation, interactive manipulation, and visual analysis. Their visual and
cognitive properties are emerging research topics [76].

One ongoing challenge in i* modeling is model scalability. i* models are inherently
networks, reflecting its conception of multilateral social relationships. Strategic rationale
models may have dominating tree structures, but softgoals can receive contributions
from all levels in the decomposition hierarchy, resulting in general graph structures. It is

112 E.S. Yu

therefore difficult to take advantage of hierarchical abstraction mechanisms that provide
much of the structural simplification in traditional structured analysis techniques (e.g.,
[17]). These challenges can potentially be overcome by inventive use of view
mechanisms [113][61][13] or aspect orientation [1].

7.2 Conceptual Limitations and Extensions

The reduction of a complex world into a small number of modeling concepts is
necessarily a compromise – one is faced with tough choices on what to include or
exclude. The original i* framework reflected principles described in Section 2. In
practice, some users have found i* too simple and limited in expressiveness, requiring
extensions to make further conceptual distinctions, especially in specialized areas
such as security [30][21]. Others found it too complex, electing to use subsets of the
i* constructs, e.g., [19][34][43]. By comparison, DFDs and ER models have 3 to 4
main conceptual constructs, whereas UML and BPMN have many more. In this
section, we consider some areas for further exploration.

Reasoning. Although the process of constructing a model can in itself contribute
significantly to understanding the issues in a domain [20], a deeper understanding can
be gained by analyzing the reasoning implied by the intentional structure of the
model. The SR model in i* is an explicit representation of means-ends reasoning and
contributions to quality goals, albeit inherently partial and incomplete. The SD model
provides pathways for propagating intentionality across actors.

A number of approaches have been developed for reasoning over goal models. The
NFR framework [11] offers an interactive procedure for propagating labels across the
NFR goal graph. Based on the link types and labels, propagation steps can be
automated if they do not require human judgment, though they can be overridden
manually if desired. Fully automated procedures have been developed [32], some
using assigned weights and numerical values [97].

A combined use of interactive and automated methods is likely desirable.
Interactive method with a high degree of human judgement may be best suited to
early RE due to its participatory, informal nature, when the model is very incomplete
and in the process of being iteratively elaborated [42]. A highly interactive procedure
will engage the modeller more fully and contributes to understanding at every step.
When the models are more stable in later stages, automated evaluation of goal
satisfaction can greatly improve efficiency of the process. The semantics of goal
models is an active research topic. More empirical studies are also warranted.

Beliefs, Assumptions, Justifications. While intentional ontologies have emphasized
goals and goal-based reasoning, beliefs have not been so well investigated. Some goal
modeling frameworks have given prominence to assumptions, justifications, and
context (e.g., [54]). Beliefs appear in the NFR framework in the form of claims, and
are subject to the same evaluation propagation procedure as softgoals. Further
exploration of the semantics and implications for practical reasoning and analysis are
needed in the context of social modeling.

Viewpoints. As outlined in the premises, actor autonomy implies that each actor is
reasoning from its own perspective. Therefore the rationales of each actor are
modeled separately, within its own boundary scope in the i* SR model. This is in

 Social Modeling and i* 113

contrast to goal-oriented RE frameworks (such as KAOS or the NFR framework)
which employ ontologies which are intentional but not social.

In the current formulation of the i* framework, this premise is only partially
supported, as the model admits only one perspective on each actor’s reasoning. This is
an oversimplification, given the premise that each actor has limited access to other
actor’s internal rationales. To fully adhere to the premise, each actor would have its
own model of every other actor’s rationales, i.e., we would need as many SR models
as there are actors, each from one actor’s viewpoint. The SR models could be the
result of modeling from interview data obtained from each actor separately. A more
elaborate methodology would provide guidelines and support for merging models,
and how to manage multiple viewpoints to benefit from inconsistencies and
disagreements in the process [98].

A related topic is the modeling of cross-cutting concerns. Aspect-oriented
techniques have been used to extend the expressiveness of i* [79] and to simplify i*
models [1].

Process dynamics. One fundamental question in the design of a modeling language is
the extent to which various basic ontologies should be incorporated and how tightly
they should be integrated. Under Structured Analysis, DFDs and ERDs addressed
dynamic and static ontologies quite separately. A tighter integration of the two basic
ontologies was one of the objectives of object-oriented frameworks. In i*, the social
ontology is closely tied to an intentional ontology of goals and rationales, but
dynamic and static ontologies are not explicitly incorporated.

Lack of temporal concepts is often felt to be an inhibiting factor in understanding
i* models. When i* is used to model a business process, only the social and
intentional relationships are portrayed. There is no indication of the temporal
progression of the process, no beginning or end. Separate models are needed to
express the static relationships and dynamics.

Concerns with incorporating features from other ontologies into a social modeling
framework include increased complexity, commitment to a single version of the other
ontologies, and not being able to do justice to the other ontologies with a limited set
of features. One approach is to provide a loose coupling with an existing language or
notation that offers rich features based on other ontologies. The User Requirements
Notation (URN) brings together the social and intentional modeling of i* (in the form
of GRL) and the scenario-oriented dynamic ontology of Use Case Maps (UCM).
Mappings and linkages between the two ontologies are provided through a unified
metamodel [46][63]. However, small extensions to a social ontology for a specific
purpose can be effective. For example, [27] and [110] represent two approaches on
temporal extensions to i*, allowing process simulation. The former adds a precedes
operator, while the latter approach adopts a fuller set of procedural operators from the
ConGolog language (sequence, non-deterministic pick, test, repeat, etc.).

Evolution and Change. Most applications of social modeling are concerned about
change – how to improve the social configuration to the benefit of stakeholders. The
representation of change in i* is limited. Alternate social configurations (e.g., “as-is”, “to-
be”, “could-be”, etc.) are typically depicted in separate SD models. An SR model can
show multiple alternatives and how they contribute differently to various stakeholders’
strategic interests, though the representation is limited by visual complexity.

114 E.S. Yu

The change from As-Is to To-Be is an abrupt structural change, with no
representation or reasoning about the steps that may be needed to bring about the
change. Changes in the environment, especially gradual continuous change, are hard
to represent. Complementary use of system dynamics and social intentional modeling
is a topic to be explored. A method for using i* in adaptive system modeling has been
proposed [33]. Modeling strategic change is studied in [100].

Roles. In complex social settings, a role is distinguished from the person who plays
the role. In an organization, position occupied by a person typically covers multiples
roles. For example, a project manager runs a project, but may or may not be the
performance evaluator for employees. The distinctions are useful for separating
intentional dependencies on a role from those on the agent that plays the role, and for
identifying role conflicts. An organization can be modeled as an aggregate position,
i.e., a set of positions related via dependencies, regardless of which individual persons
are occupying those positions. Roles are also useful for analyzing security,
emphasizing a social analysis perspective [64][65][31].

The i* framework offers notations for distinguishing roles, agents, and positions,
and the association links between them (plays, occupies, covers), but the meanings of
these concepts are not well defined and remain open for interpretation [120].

Inheritance. Inheritance along a specialization dimension is an important mechanism
in conceptual models and is heavily used in static and dynamic ontologies, especially
in object-oriented modeling. Due to the premise of actor autonomy, the usual
inheritance concept does not apply straightforwardly to intentional relationships
among actors [64]. Some research issues are identified in [68]. In general, abstraction
mechanisms (such as classification/instantiation, generalization/specialization, part-
whole, etc.) that are well studied in conceptual modeling [81] for static and dynamic
ontologies are not yet well developed for social modeling.

7.3 Model Management and Tools

Conceptual models serve multiple purposes. They may be used to facilitate
communication – between analysts and stakeholders, among analysts, developers and
project managements, within a project or across projects within an enterprise. They
may be used to describe and understand existing situations, to uncover problems and
issues, or to explore hypothetical scenarios and potential solutions. Some models are
used in impromptu settings, such as sketches on a whiteboard. Others are meant to be
records in a repository for later retrieval or reuse.

Social models produced for different purposes may well need different kinds of
tool support and management methods. For many small scale applications of i*,
general purpose drawing tools such as Visio have been found to be adequate and
flexible, with the advantage of broad availability, and not requiring special installation
and learning.

About a dozen software tools have been developed to support i* modeling and
specialized functionalities. Several are open source, some based on the Eclipse
platform (e.g., OpenOME [87], TAOM4E [107], jUCMNav [51], jPRIM [47]). Some
have built on the programmability of general purpose tools, e.g., [67][94]. i*-related
tools and approaches are compared at the i* wiki [44] and in [36][103].

 Social Modeling and i* 115

With many extensions and variations, the diversity of metamodels for i*-related
notations and tools has arisen as a challenge. Proposals have been made to reconcile
differences [69] and to have a common interchange format [10]. Integration with
other modeling frameworks using a metamodeling approach using Telos [82] have
been investigated [91][55]. When a model progresses through a series of versions,
version management issues arise. Merging different versions of a model has been
investigated [98]. View mechanisms have been studied in [113][61][13]. A
commercial requirements management system (Telelogic DOORS) has been used as a
repository to manage change across multiple modeling frameworks in [97] and [28].

8 Conclusions

As computing and information systems interact more intricately with the social world,
social modeling has arisen as a new area for conceptual modeling. Experiences with
the i* framework have revealed encouraging possibilities as well as many research
challenges.

Conceptual modeling is of course only one way to bring understanding of complex
social phenomena into the system design process. Techniques such as participatory
design, ethnography, and others can equally enrich the process of system design.
Conceptual modeling approaches have the potential of a more direct integration into
established system engineering methods, supporting fine-grained analysis and
traceability. As social modeling evolves, much can be gained by further exploring the
synergies between conceptual modeling methods and the rich understanding of the
human social experience from the social sciences and humanities.

Acknowledgements. My sincere thanks goes to everyone who has contributed to the
development of i*, directly or indirectly, by using, adapting, extending, and debating
it, and uncovering its limitations and shortcomings. Most of all, I am deeply indebted
to Professor John Mylopoulos, whose vision and open-mindedness made possible my
forays into social modeling. Funding sources for the research include the Natural
Sciences and Engineering Research Council (NSERC) of Canada and Bell University
Laboratories. I am also grateful to Neil Maiden, Daniel Amyot, and Lin Liu, who
kindly provided feedback on a draft of this paper on very short notice. Figures 1 and 2
are taken from [114], with kind permission of Springer Science+Business Media.

References

1. Alencar, F., Castro, J., Moreira, A., Araújo, J., Silva, C., Ramos, R., Mylopoulos, J.:
Integration of Aspects with i* Models. In: Kolp, M., Henderson-Sellers, B., Mouratidis,
H., Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS, vol. 4898, pp. 183–
201. Springer, Heidelberg (2008)

2. Amyot, D.: Introduction to the User Requirements Notation: Learning by Example.
Computer Networks 42(3), 285–301 (2003)

3. An, Y., Dalrymple, P.W., Rogers, M., Gerrity, P., Horkoff, J., Yu, E.: Collaborative Social
Modeling for Designing a Patient Wellness Tracking System in a Nurse-Managed Health
Care Center. In: 4th Int. Conf. on Design Science Research in Information Systems and
Technology (DESRIST) (2009)

116 E.S. Yu

4. Beck, K., Boehm, B.: Agility Through Discipline. IEEE Computer 44–46 (June 2003)
5. BPMN: Business Process Modeling Notation specification (2009),

 http://www.bpmn.org
6. Breitman, K., Leite, J.C.S.P.: Ontology as a Requirements Engineering Product. In: IEEE

Int. Conf. Requirements Eng. RE 2003, pp. 309–319 (2003)
7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: an agent-

oriented software development methodology. J. Autonomous Agents and Multiagent
Systems 8(3), 203–236 (2004)

8. Briand, L.C., Yong-Mi Kim, Y.M., Melo, W.L., Seaman, C.B., Basili, V.R.: Q-MOPP:
qualitative evaluation of maintenance organizations, processes and products. Journal of
Software Maintenance 10(4), 249–278 (1998)

9. Bubenko, J.A.: Information Modeling in the Context of System Development. IFIP
Congress, 395–411 (1980)

10. Cares, C., Franch, X., Perini, A., Susi, A.: iStarML: An XML-based Model Interchange
Format for i*. In: Castro, J.B., Franch, X., Perini, A., Yu, E. (eds.) Proc. 3rd Int. i*
Workshop, Recife, Brazil, February 11-12, 2008, vol. 322, pp. 13–16. CEUR Workshop
Proceedings, CEUR-WS.org (2008)

11. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (1999)

12. Coad, P., Yourdon, E.: Object-Oriented Analysis, 2nd edn. Prentice-Hall, Englewood
Cliffs (1991)

13. Cocca, C.: Towards Improved Visual Support for i* Modeling. MISt thesis. Faculty of
Information, University of Toronto (2007)

14. Crook, R., Ince, D., Nuseibeh, B.: On modelling access policies: Relating roles to the
organisational context. In: IEEE Int. Requirements Eng. Conf. RE 2005, pp. 157–166
(2005)

15. Curtis, W., Kellner, M.I., Over, J.: Process Modeling. Commun. ACM 35(9), 75–90
(1992)

16. Cysneiros, L.M., Yu, E.: Addressing Agent Autonomy in Business Process Management -
with Case Studies on the Patient Discharge Process. In: Proc. of Information Resources
Management Association Conference, New Orleans, pp. 436–439 (2004)

17. Demarco, T.: Structured Analysis and System Specification. Prentice-Hall, Englewood
Cliffs (1979)

18. DesCARTES Architect. Catholic University of Louvain, Belgium,
 http://www.isys.ucl.ac.be/descartes/

19. Donzelli, P.: A goal-driven and agent-based requirements engineering framework.
Requirements Engineering 9(1), 16–39 (2004)

20. Easterbrook, S.M., Yu, E., Aranda, J., Fan, Y., Horkoff, J., Leica, M., Qadir, R.A.: Do
Viewpoints Lead to Better Conceptual Models? An Exploratory Case Study. In: IEEE Int.
Requirements Eng. Conf., pp. 199–208 (2005)

21. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security Trade-
Offs. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS,
vol. 4801, pp. 375–390. Springer, Heidelberg (2007)

22. Elahi, G., Yu, E., Annosi, M.C.: Modeling Knowledge Transfer in a Software Maintenance
Organization - An Experience Report and Critical Analysis. In: Stirna, J., Persson, A.
(eds.) PoEM 2008. LNBIP, vol. 15, pp. 15–29. Springer, Heidelberg (2008)

23. Estrada, H., Martínez, A., Pastor, O., Mylopoulos, J.: An Empirical Evaluation of the i*
Framework in a Model-based Software Generation Environment. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

24. Franch, X.: On the Lightweight Use of Goal-Oriented Models for Software Package
Selection. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
551–566. Springer, Heidelberg (2005)

 Social Modeling and i* 117

25. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requirements Engineering Journal 9(2), 132–150
(2004)

26. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements management for
organisation networks: a (dis)trust-based approach. Requirements Engineering
Journal 8(1), 4–22 (2003)

27. Gans, G., Jarke, M., Lakemeyer, G., Schmitz, D.: Deliberation in a metadata-based
modeling and simulation environment for inter-organizational networks. Inf. Syst. 30(7),
587–607 (2005)

28. Ghanavati, S., Amyot, D., Peyton, L.: Towards a Framework for Tracking Legal
Compliance in Healthcare. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007
and WES 2007. LNCS, vol. 4495, pp. 218–232. Springer, Heidelberg (2007)

29. Ghose, A., Koliadis, G.: Actor Eco-systems: From High-Level Agent Models to
Executable Processes via Semantic Annotations. IEEE COMPSAC (2), 177–184 (2007)

30. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Requirements
Through Ownership, Permission and Delegation. In: IEEE Int. Requirements Eng. Conf.
RE 2005, France, pp. 167–176 (2005)

31. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering for
trust management: model, methodology, and reasoning. Int. J. of Information
Security 5(4), 25, 274 (2006)

32. Giorgini, P., Nicchiarelli, E., Mylopoulos, J., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. Journal of Data Semantics 1, 1–20 (2003)

33. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Hughes, D.: Goal-based
Modeling of Dynamically Adaptive System Requirements. In: 15th IEEE Int. Conf. on
Engineering of Computer Based Systems, pp. 36–45 (2008)

34. Gordijn, J., Petit, M., Wieringa, R.: Understanding business strategies of networked value
constellations using goal- and value modeling. In: IEEE Int. Conf. on Requirements Eng.
RE 2006, pp. 126–135 (2006)

35. Gordijn, J., Yu, E., Van Der Raadt, B.: E-service design using i* and e3value modeling.
IEEE Software 23(3), 26–33 (2006)

36. Grau, G., Cares, C., Franch, X., Navarrete, F.J.: A Comparative Analysis of i* Agent-
Oriented Modelling Techniques. In: Int. Conf. on Software Eng. and Knowledge Eng., San
Francisco Bay, California, USA, pp. 657–663 (2006)

37. Grau, G., Franch, X., Maiden, N.A.M.: PRiM: An i*-based process reengineering method
for information systems specification. Inf. & Softw. Tech. 50(1-2), 76–100 (2008)

38. Greenspan, S.J., Mylopoulos, J., Borgida, A.: Capturing More World Knowledge in the
Requirements Specification. In: ACM/IEEE Int. Conf. Softw. Eng., pp. 225–235 (1982)

39. Guizzardi, R.S.S.: Agent-oriented Constructivist Knowledge Management. Ph.D. thesis,
Enschede: University of Twente. The Netherlands (2006)

40. Hammer, M.: Reengineering work: Don’t Automate, Obliterate. Harvard Business Review,
pp. 104–112 (July 1990)

41. Henderson-Sellers, B., Giorgini, P. (eds.): Agent-Oriented Methodologies. Idea Group
Inc., Hershey (2005)

42. Horkoff, J.: Using i* Models for Evaluation. M.Sc. Thesis, Dept. of Computer Science,
University of Toronto (2006)

43. Horkoff, J., Elahi, G., Abdulhadi, S., Yu, E.: Reflective Analysis of the Syntax and
Semantics of the i* Framework. In: Song, I.-Y., Piattini, M., Chen, Y.-P.P., Hartmann, S.,
Grandi, F., Trujillo, J., Opdahl, A.L., Ferri, F., Grifoni, P., Caschera, M.C., Rolland, C.,
Woo, C., Salinesi, C., Zimányi, E., Claramunt, C., Frasincar, F., Houben, G.-J., Thiran, P.
(eds.) ER Workshops 2008. LNCS, vol. 5232, pp. 249–260. Springer, Heidelberg (2008)

44. i* wiki, http://istar.rwth-aachen.de
45. IEEE: Guide to Software Requirements Specifications. IEEE Standard 830-1993. In:

Software Engineering Standards. IEEE Computer Society Press, Los Alamitos (1993)

118 E.S. Yu

46. International Telecommunications Union (ITU-T) Recommendation Z.151: User
Requirements Notation (URN) - Language Definition (2008)

47. J-PRiM. A Process Reengineerng i* Modeling Tool,
 http://www.ideaciona.com/PhD/JPRIM/

48. Jackson, M.: System Development. Prentice-Hall, Englewood Cliffs (1983)
49. Jiang, L., Topaloglou, T., Borgida, A., Mylopoulos, J.: Goal-Oriented Conceptual

Database Design. In: IEEE Int. Conf. on Requirements Eng., pp. 195-204 (2007)
50. Johannesson, P.: The Role of Business Models in Enterprise Modelling. In: Krogstie, J., et

al. (eds.) Conceptual Modelling in Info. Systems Eng., pp. 123–140. Springer, Heidelberg
(2007)

51. jUCMNav. University of Ottawa, http://jucmnav.softwareengineering.
ca/jucmnav/

52. Kaplan, R.S., Norton, D.P.: Having trouble with your strategy? Then map it. Harvard
Business Review, 167–176 (September-October 2002)

53. Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating Business
Processes and Business Requirements. In: IEEE Int. Enterprise Distributed Object
Computing Conf., pp. 9–20 (2004)

54. Kelly, T.P., McDermid, J.A.: A Systematic Approach to Safety Case Maintenance. In:
Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 13–
26. Springer, Heidelberg (1999)

55. Kethers, S.: Multi-perspective modelling and analysis of cooperation processes. Doctoral
dissertation, RWTH Aachen University, Germany (2000)

56. Kethers, S., Gans, G., Schmitz, D., Sier, D.: Modelling trust relationships in a healthcare
network: Experiences with the TCD framework. In: Bartmann, D., et al. (eds.) European
Conf. on Information Systems (ECIS), Regensburg, Germany, pp. 1321–1328 (2005)

57. Kling, R. (ed.): Computerization and Controversy: Value Conflicts and Social Choices,
2nd edn. Morgan Kaufmann, San Francisco (1996)

58. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 617–632.
Springer, Heidelberg (2003)

59. Koubarakis, M., Plexousakis, D.: A formal framework for business process modelling and
design. Information Systems 27(5), 299–319 (2002)

60. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-Driven Design and Configuration
Management of Business Processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

61. Leica, M.F.: Scalability concepts for i* modeling and analysis. M.Sc. thesis. Dept. of
Computer Science, University of Toronto (2005)

62. Lespérance, Y., Kelley, T., Mylopoulos, J., Yu, E.: Modeling dynamic domains with
ConGolog. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 365–380.
Springer, Heidelberg (1999)

63. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. Information Systems 29(2), 187–203 (2004)

64. Liu, L., Yu, E., Mylopoulos, J.: Analyzing security requirements as relationships among
strategic actors. In: Proc. 2nd symposium on requirements engineering for information
security (SREIS 2002), Raleigh, North Carolina (2002)

65. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: IEEE Int. Conf. on Requirements Eng. RE 2003, pp. 151–161 (2003)

66. Lo, A., Yu, E.: From Business Models to Service-Oriented Design: A Reference Catalog
Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

67. Lockerbie, J.A., Maiden, N.A.M.: REDEPEND: Extending i* Modelling into
Requirements Processes. In: IEEE Int. Conf. on Requirements Eng., pp. 361–362 (2006)

 Social Modeling and i* 119

68. López, L., Franch, X., Marco, J.: Defining Inheritance in i* at the Level of SR Intentional
Elements. In: Castro, J.B., Franch, X., Perini, A., Yu, E. (eds.) Proc. 3rd Int. i* Workshop,
Recife, Brazil. CEUR Workshop Proceedings, vol. 322, pp. 71–74. CEUR-WS.org (2008)

69. Lucena, M., Santos, E., Silva, C., Alencar, F., Silva, M.J., Castro, J.: Towards a unified
metamodel for i*. In: IEEE Int. Conf. On Research Challenges in Information Science,
RCIS 2008, pp. 237–246 (2008)

70. Lyytinen, K.: Different Perspectives on Information Systems: Problems and Solutions.
ACM Computing Surveys 19(1), 5–46 (1987)

71. Maiden, N.A.M., Jones, S., Manning, S., Greenwood, J., Renou, L.: Model-Driven
Requirements Engineering: Synchronising Models in an Air Traffic Management Case
Study. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383.
Springer, Heidelberg (2004)

72. Maiden, N.A.M., Jones, S.: The RESCUE Requirements Engineering Process: An
Integrated User-Centred Requirements Engineering Process for Eurocontrol, Version 4.1
(2004), http://hcid.soi.city.ac.uk/research/Rescue.html

73. Maiden, N., Manning, S., Jones, S., Greenwood, J.: Generating Requirements from
Systems Models Using Patterns: A Case Study. Requirements Eng. Journal 10(4), 276–288
(2005)

74. Matulevicius, R., Mayer, N., Mouratidis, H., Dubois, E., Heymans, P., Genon, N.:
Adapting Secure Tropos for Security Risk Management during Early Phases of the
Information Systems Development. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 541–555. Springer, Heidelberg (2008)

75. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The action workflow approach to
workflow management technology. In: ACM Conf. on Computer-Supported Cooperative
Work, Toronto, Canada, pp. 281–288 (1992)

76. Moody, D.L.: Cognitive Load Effects on End User Understanding of Conceptual Models:
An Experimental Analysis. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS
2004. LNCS, vol. 3255, pp. 129–143. Springer, Heidelberg (2004)

77. Mouratidis, H., Giorgini, P., Manson, G.: When security meets software engineering: A
case of modelling secure information systems. Information Systems 30(8), 609–629 (2007)

78. Mouratidis, H., Weiss, M., Giorgini, P.: Security patterns meet agent oriented software
engineering: A complementary solution for developing security information systems. In:
Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005.
LNCS, vol. 3716, pp. 225–240. Springer, Heidelberg (2005)

79. Mussbacher, G.: Aspect-Oriented User Requirements Notation: Aspects in Goal and
Scenario Models. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 305–316.
Springer, Heidelberg (2008)

80. Mussbacher, G., Amyot, D., Weiss, M.: Formalizing Patterns with the User Requirements
Notation. In: Taibi, T. (ed.) Design Pattern Formalization Techniques, pp. 304–325. IGI
Publishing (2007)

81. Mylopoulos, J.: Information Modeling in the Time of the Revolution. Inf. Syst. 23(3-4),
127–155 (1998)

82. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge
about Information Systems. ACM Trans. on Information Systems 8(4), 325–362 (1990)

83. OMG. Business Motivation Model (BMM) (2006), http://www.omg.org/
spec/BMM/

84. Object Management Group (OMG): SPEM: Software Process Engineering Metamodel,
Version 2.0 (2008)

85. Object Management Group (OMG), Unified Modeling Language,
http://www.uml.org

86. Open Group. The Open Group Architecture Framework. version 9 (2009),
 http://www.opengroup.org

87. OpenOME. University of Toronto, http://www.cs.toronto.edu/km/openome/

120 E.S. Yu

88. Pardillo, J., Trujillo, J.: Integrated Model-Driven Development of Goal-Oriented Data
Warehouses and Data Marts. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008.
LNCS, vol. 5231, pp. 426–439. Springer, Heidelberg (2008)

89. Pavan, P., Maiden, N.A.M., Zhu, X.: Towards a Systems Engineering Pattern Language:
Applying i* to Model Requirements Architecture Patterns. In: ICSE STRAW 2003: 2nd
Int. Ws. From Software Requirements to Architectures, Portland, Oregon, USA, pp. 134–
141 (2003)

90. Perini, A., Susi, A.: Developing a decision support system for integrated production in
agriculture. Environmental Modelling and Software 19(9), 821–829 (2004)

91. Petit, M.: Formal Requirements Engineering of Manufacturing Systems: A Multi-
Formalism and Component-Based Approach, PhD dissertation. University of Namur,
Belgium (1999)

92. Pourshahid, A., Chen, P., Amyot, D., Forster, A.J., Ghanavati, S., Peyton, L., Weiss, M.:
Toward an integrated User Requirements Notation framework and tool for Business
Process Management. In: 3rd Int. MCeTech Conf. on eTechnologies, Montréal, Canada,
pp. 3–15. IEEE Computer Society, Los Alamitos (2008)

93. Pourshahid, A., Tran, T.: Modeling Trust in E-Commerce: An Approach Based on User
Requirements. In: 9th ACM Int. Conf. on Electronic Commerce (ICEC 2007), pp. 413–421
(2007)

94. REDEPEND-REACT. An Architecture Analysis Tool,
 http://www.ideaciona.com/PhD/REDEPEND-REACT/

95. Rifaut, R., Dubois, E.: Using Goal-Oriented Requirements Engineering for Improving the
Quality of ISO/IEC 15504 based Compliance Assessment Frameworks. In: IEEE Int. Conf.
on Requirements Eng. RE 2008, pp. 33–42 (2008)

96. Rolland, C.: Capturing System Intentionality with Maps. In: Krogstie, J., Opdahl, A.L.,
Brinkkemper, S. (eds.) Conceptual Modelling in Information Systems Engineering, pp.
141–158. Springer, Heidelberg (2007)

97. Roy, J.-F., Kealey, J., Amyot, D.: Towards Integrated Tool Support for the User
Requirements Notation. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp.
198–215. Springer, Heidelberg (2006)

98. Sabetzadeh, M., Easterbrook, S.: View merging in the presence of incompleteness and
inconsistency. Requirements Engineering 11(3), 174–193 (2006)

99. Samavi, R., Topaloglou, T.: Designing Privacy-Aware Personal Health Record Systems.
In: Song, I.-Y., Piattini, M., Chen, Y.-P.P., Hartmann, S., Grandi, F., Trujillo, J., Opdahl,
A.L., Ferri, F., Grifoni, P., Caschera, M.C., Rolland, C., Woo, C., Salinesi, C., Zimányi,
E., Claramunt, C., Frasincar, F., Houben, G.-J., Thiran, P. (eds.) ER Workshops 2008.
LNCS, vol. 5232, pp. 12–21. Springer, Heidelberg (2008)

100. Samavi, R., Yu, E., Topaloglou, T.: Strategic Reasoning about Business Models: A
Conceptual Modeling Approach. Information Systems and e-Business Management 7(2),
171–198 (2009)

101. Sandhu, R.S.: Good-Enough Security: Toward a Pragmatic Business-Driven Discipline.
IEEE Internet Computing 7(1), 66–68 (2003)

102. Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in
early phase requirements engineering. IEEE Trans. on Softw. Eng. 31(11), 969–981 (2005)

103. Schmitz, D., Lakemeyer, G., Jarke, M.: Comparing TCD/SNet with two other formal
analysis approaches based on i*: Formal Tropos and Secure Tropos. In: Latour, T., Petit,
M. (eds.) 8th Workshop on Agent-Oriented Information Systems (AOIS@CAiSE), pp. 29–
40. Presses Universitaires de Namur (2006)

104. Strohmaier, M., Horkoff, J., Yu, E., Aranda, J., Easterbrook, S.M.: Can Patterns Improve
i* Modeling? Two Exploratory Studies. In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 153–167. Springer, Heidelberg (2008)

 Social Modeling and i* 121

105. Strohmaier, M., Yu, E.S., Horkoff, J., Aranda, J., Easterbrook, S.M.: Analyzing Knowledge
Transfer Effectiveness: An Agent-Oriented Modeling Approach. In: 40th Hawaii Int. Conf.
on Sys. Sci. HICSS 2007, p. 188. IEEE Computer Society, Los Alamitos (2007)

106. Sutcliffe, A.G.: Trust: From Cognition to Conceptual Models and Design. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 3–17. Springer, Heidelberg (2006)

107. TOAM4E. Tool for Agent Oriented Modeling. FBK-IRST, Italy,
 http://sra.itc.it/tools/taom4e/

108. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: 5th
IEEE Int. Symp. on Requirements Eng. RE 2001, Toronto, pp. 249–263 (2001)

109. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: 26th Int. Conf. on Software Eng. ICSE 2004, pp. 148–157. ACM/ IEEE,
Edinburgh (2004)

110. Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using ConGolog and
i*. In: Wagner, G., Karlapalem, K., Lespérance, Y., Yu, E. (eds.) Agent-Oriented
Information Systems Workshop (AOIS 2001), Montreal, Canada, pp. 59–78. iCue
Publishing, Berlin (2001)

111. Weiss, M., Amyot, D.: Business process modeling with URN. International Journal of E-
Business Research 1(3), 63–90 (2005)

112. Wieringa, R.: Requirements Engineering: Problem Analysis and Solution Specification. In:
Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 13–16.
Springer, Heidelberg (2004)

113. You, J.Z.: Using meta-schema driven views for scaling i* models. M.Sc. thesis. Dept. of
Computer Science, University of Toronto (2004)

114. Yu, E.: Agent-Oriented Modelling: Software Versus the World. In: Wooldridge, M.J.,
Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 206–225. Springer,
Heidelberg (2002)

115. Yu, E.: Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik 43(2), 123–132
(2001)

116. Yu, E.S.K.: Models for Supporting the Redesign of Organizational Work. In: Conf. on
Organizational Computing Systems (COOCS 1995), pp. 225–236. ACM Press, New York
(1995)

117. Yu, E., Cysneiros, L.M.: Designing for Privacy in the Presence of Other Requirements. In:
Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS, vol. 2631, pp.
209–223. Springer, Heidelberg (2003)

118. Yu, E., Liu, L.: Modelling Trust for System Design Using the i* Strategic Actors
Framework. In: Falcone, R., Singh, M., Tan, Y.-H. (eds.) Trust in Cyber-societies. LNCS,
vol. 2246, pp. 175–194. Springer, Heidelberg (2001)

119. Yu, E.S.K., Mylopoulos, J.: From E-R to A-R: Modelling Strategic Actor Relationships for
Business Process Reengineering. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881, pp.
548–565. Springer, Heidelberg (1994)

120. Yu, E.S.K., Mylopoulos, J.: Understanding ‘Why’ in Software Process Modelling,
Analysis, and Design. In: IEEE Int. Conf. Softw. Eng., pp. 159–168 (1994)

121. Yu, E.S.K., Mylopoulos, J.: Using Goals, Rules and Methods to Support Reasoning in
Business Process Reengineering. Int. J. of Intelligent Systems in Accounting, Finance, and
Management 5(1), 1–13 (1996)

122. Yu, E.S.K.: Modelling Strategic Relationships For Process Reengineering. Ph.D.
dissertation. Dept. of Computer Science, University of Toronto (1995)

123. Yu, E.S.: Towards Modelling And Reasoning Support For Early-Phase Requirements
Engineering. In: 3rd IEEE Int. Symp. on Requirements Eng., pp. 226–235 (1997)

124. Yu, E.S.K., Strohmaier, M., Deng, X.: Exploring Intentional Modeling and Analysis for
Enterprise Architecture. In: Workshop on Trends in Enterprise Architecture Research
(TEAR), 10th IEEE Int. Enterprise Distributed Object Computing Conference, October
2006, pp. 32.1– 32.8. IEEE Comp. Soc., Los Alamitos (2006)

125. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems
Journal 26(3) (1987)

Data Modeling in Dataspace Support Platforms

Anish Das Sarma1, Xin (Luna) Dong2, and Alon Y. Halevy3

1 Stanford University
anish@cs.stanford.edu

2 AT&T Labs-Research, New Jersey, USA
lunadong@research.att.com

3 Google Inc.
halevy@google.com

Abstract. Data integration has been an important area of research for several
years. However, such systems suffer from one of the main drawbacks of database
systems: the need to invest significant modeling effort upfront. Dataspace Support
Platforms (DSSP) envision a system that offers useful services on its data without
any setup effort, and improve with time in a pay-as-you-go fashion. We argue
that in order to support DSSPs, the system needs to model uncertainty at its core.
We describe the concepts of probabilistic mediated schemas and probabilistic
mappings as enabling concepts for DSSPs.

1 Introduction

Data integration and exchange systems offer a uniform interface to a multitude of data
sources, and the ability to share data across multiple systems. These systems have re-
cently enjoyed significant research and commercial success [10,11]. Current data in-
tegration systems are essentially a natural extension of traditional database systems in
that queries are specified in a structured form and data is modeled in one of the tradi-
tional data models (relational, XML). In addition, the data integration system has exact
knowledge of how the data in the sources map to the schema used by the data integra-
tion system. Consequently, to set up a data integration application there is a need for
significant upfront effort in creating the mediated schema and the schema mappings.

Dataspace Support Platforms (DSSP) [12] envision data integration systems where
the amount of upfront effort is much smaller. The system should be able to bootstrap
itself and provide some useful services with no human intervention. Over time, through
user feedback or as sources are added and the data management needs become clearer,
the system evolves in a pay-as-you-go fashion.

To support DSSPs, we cannot rely on the same data modeling paradigms that form
the basis for data integration systems. In particular, we cannot assume that the mediated
schema is given to us in advance and that the schema mappings between the sources
and the mediated schema will be accurate. We argue that a DSSP needs to support
uncertainty at its very core: both in the mediated schema and in the schema mappings.

This article describes some of the formal foundations for data integration with uncer-
tainty. We define probabilistic schema mappings and probabilistic mediated schemas,
and show how to answer queries in their presence. With these foundations, it is possible
to completely automatically bootstrap a pay-as-you-go integration system.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 122–138, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Data Modeling in Dataspace Support Platforms 123

This article is largely based on previous papers [3,5]. The proofs of the theorems we
state and the experimental results validating some of our claims can be found therein.

2 Uncertainty in Data Integration

We begin by describing some of the possible sources of uncertainty in a dataspace-
like data integration system, and then explain how such a system should differ from a
traditional data integration system.

2.1 Sources of Uncertainty

Uncertainty can arise in several ways in a dataspace system.

Uncertain mediated schema: The mediated schema is the set of schema terms in which
queries are posed. They do not necessarily cover all the attributes appearing in any of
the sources, but rather the aspects of the domain that the application builder wishes to
expose to the users. Uncertainty in the mediated schema can arise for several reasons.
First, as we describe in Section 4, if the mediated schema is automatically inferred from
the data sources during bootstrapping, there will be some uncertainty about the results.
Second, when domains are broad, there will be some uncertainty about how to model
them. For example, if we model all the topics in Computer Science there will be some
uncertainty about the degree of overlap between different topics.

Uncertain schema mappings: Schema mappings specify the semantic relationships
between the terms in the sources and the terms used in the mediated schema. How-
ever, schema mappings can be inaccurate. In a dataspace, we expect that many of the
initial schema mappings will be automatically derived, and hence will be inaccurate.
In many applications it is impossible to create and maintain precise mappings between
data sources. This can be because the users are not skilled enough to provide precise
mappings, such as in personal information management [6], because people do not un-
derstand the domain well and thus do not even know what correct mappings are, such as
in bioinformatics, or because the scale of the data prevents generating and maintaining
precise mappings, such as in integrating data on the scale of the web [16].

Uncertain data: Data sources in a dataspace may not always be well structured, and
therefore some of the data may be obtained by automatic methods. Furthermore, sys-
tems that include many sources (e.g., the Web) may contain unreliable or inconsistent
data. Even in enterprise settings, it is common for informational data such as gender,
race, and income level to be dirty or missing, even when the transactional data is precise.

Uncertain queries: We expect that much of the early interaction with a dataspace will
be through keyword queries, since the users are not aware of a (non-existent) schema.
The system needs to translate these queries into some structured form so they can be
reformulated with respect to the data sources. At this step, the system may generate
multiple candidate structured queries and have some uncertainty about which query
captures the real intent of the user.

124 A.D. Sarma, X. Dong, and A.Y. Halevy

2.2 System Architecture

We now describe the architecture of a data integration module for DSSPs and contrast
it to a traditional data integration system.

The first and most fundamental characteristic of this system is that it is based on
a probabilistic data model. This means that we attach probabilities to tuples that we
process in the system, schema mappings, the mediated schemas, and possible interpre-
tations of keyword queries posed to the system. In contrast, a traditional data integration
system includes a single mediated schema and assumes a single (and correct) schema
mapping between the mediated schema and each source. The data in the sources is also
assumed to be correct.

Unlike a traditional data integration systems that assume that the query is posed in
a structured fashion (i.e., can be translated to some subset of SQL), here we assume
that queries are posed as keywords. Hence, whereas traditional data integration systems
begin by reformulating a query onto the schemas of the data sources, a DSSP needs to
first reformulate a keyword query into a set of candidate structured queries. We refer to
this step as keyword reformulation. Note that keyword reformulation is different from
techniques for keyword search on structured data (e.g., [14,1]) in that (a) it does not
assume access to all the data in the sources or that the sources support keyword search,
and (b) it tries to distinguish different structural elements in the query in order to pose
more precise queries to the sources (e.g., realizing that in the keyword query “Chicago
weather”, “weather” is an attribute label and “Chicago” is an instance name). That be-
ing said, keyword reformulation should benefit from techniques that support answering
keyword search on structured data.

The query answering model in a DSSP is also different. Instead of necessarily finding
all answers to a given query, our goal is typically to find the top-k answers, and rank
these answers most effectively.

The architecture of the system is shown in Figure 1. The system contains a number
of data sources and a mediated schema (we omit probabilistic mediated schemas from
this figure). When the user poses a query Q, which can be either a structured query

Mediated Schema

Q

Q1,...Qm

Keyword
Reformulation

Query
Reformulation

D1

D2

D3

D4

Dk

Q11,...Q1n ... Qk1,...Qkn

Query
Pocessor

Q11,...Q1n,…,Qk1,...Qkn

Fig. 1. Architecture of a data-integration system that handles uncertainty

Data Modeling in Dataspace Support Platforms 125

on the mediated schema or a keyword query, the system returns a set of answer tuples,
each with a probability. If Q is a keyword query, the system first performs keyword
reformulation to translate it into a set of candidate structured queries on the mediated
schema. Otherwise, the candidate query is Q itself.

We discuss probabilistic schema mappings in Section 3, and probabilistic mediated
schemas in Section 4.

2.3 Source of Probabilities

A critical issue in any system that manages uncertainty is whether we have a reliable
source of probabilities. Whereas obtaining reliable probabilities for such a system is one
of the most interesting areas for research, there is quite a bit to build on. For keyword
reformulation, it is possible to train and test reformulators on large numbers of queries
such that each reformulation result is given a probability based on its performance statis-
tics. In the case of schema matching, it is standard practice for schema matchers to also
associate numbers with the candidates they propose [4,20]. The issue here is that the num-
bers are meant only as a ranking mechanism rather than true probabilities. However, as
schema matching techniques start looking a larger number of schemas, one can ascribe
probabilities (or approximations thereof) to their measures (see Section 3.4). Finally,
information extraction techniques are also often based on statistical machine learning
methods, thereby lending their predictions a probabilistic interpretation.

3 Uncertainty in Mappings

The key to resolving heterogeneity at the schema level is to specify schema mappings
between data sources. These mappings describe the relationship between the contents
of the different sources and are used to reformulate a query posed over one source (or
a mediated schema) into queries over the sources that are deemed relevant. However,
in many applications we are not able to provide all the exact schema mappings upfront.
In this section we introduce probabilistic schema mappings (p-mappings) to capture
uncertainty on mappings between schemas.

We start by presenting a running example for this section that also motivates p-
mappings (Section 3.1). Then we present a formal definition of probabilistic schema
mapping and its semantics (Section 3.2). Section 3.3 describes algorithms for query
answering with respect to probabilistic mappings and discusses the complexity.

3.1 Motivating Probabilistic Mappings

Example 1. Consider a data source S, which describes a person by her email address,
current address, and permanent address, and the mediated schema T , which describes a
person by her name, email, mailing address, home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)
T=(name, email, mailing-addr, home-addr, office-addr)

126 A.D. Sarma, X. Dong, and A.Y. Halevy

Possible Mapping Prob
{(pname, name), (email-addr, email),

m1 =
(current-addr, mailing-addr), (permanent-addr, home-addr)} 0.5

{(pname, name), (email-addr, email),
m2 =

(permanent-addr, mailing-addr), (current-addr, home-addr)} 0.4

{(pname, name), (email-addr, mailing-addr),
m3 =

(current-addr, home-addr)} 0.1

(a)
pname email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(b)
Tuple (mailing-addr) Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(c)

Fig. 2. The running example: (a) a probabilistic schema mapping between S and T ; (b) a source
instance DS ; (c) the answers of Q over DS with respect to the probabilistic mapping

A semi-automatic schema-mapping tool may generate three possible mappings be-
tween S and T , assigning each a probability. Whereas the three mappings all map
pname to name, they map other attributes in the source and the target differently.
Figure 2(a) describes the three mappings using sets of attribute correspondences. For
example, mapping m1 maps pname to name, email-addr to email, current-addr to
mailing-addr, and permanent-addr to home-addr. Because of the uncertainty about
which mapping is correct, we consider all of these mappings in query answering.

Suppose the system receives a query Q composed on the mediated schema and ask-
ing for people’s mailing addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into different queries:

Q1: SELECT current-addr FROM S
Q2: SELECT permanent-addr FROM S
Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system generates a single aggregation
query based on Q1, Q2 and Q3 to compute the probability of each returned tuple, and
sends the query to the data source. Suppose the data source contains a table DS as
shown in Figure 2(b), the system will retrieve four answer tuples, each with a probabil-
ity, as shown in Figure 2(c).

If the user requires only the top-1 answer (i.e., the answer tuple with the highest
probability), the system decides at runtime which reformulated queries to execute. For
example, after executing Q1 and Q2 at the source, the system can already conclude that
(‘Sunnyvale’) is the top-1 answer and can skip query Q3. �

Data Modeling in Dataspace Support Platforms 127

3.2 Definition and Semantics

3.2.1 Schema Mappings
We begin by reviewing non-probabilistic schema mappings. The goal of a schema map-
ping is to specify the semantic relationships between a source schema and a target
schema. We refer to the source schema as S̄, and a relation in S̄ as S = 〈s1, . . . , sm〉.
Similarly, we refer to the target schema as T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

We consider a limited form of schema mappings that are also referred to as schema
matching in the literature. Specifically, a schema matching contains a set of attribute
correspondences. An attribute correspondence is of the form cij = (si, tj), where
si is a source attribute in the schema S and tj is a target attribute in the schema T .
Intuitively, cij specifies that there is a relationship between si and tj . In practice, a
correspondence also involves a function that transforms the value of si to the value
of tj . For example, the correspondence (c-degree, temperature) can be specified as
temperature=c-degree ∗1.8+32, describing a transformation from Celsius to Fahren-
heit. These functions are irrelevant to our discussion, and therefore we omit them. This
class of mappings are quite common in practice and already expose many of the novel
issues involved in probabilistic mappings. Broader classes of p-mappings are discussed
in [5]. Formally, relation mappings and schema mappings are defined as follows.

Definition 1 (Schema Mapping). Let S̄ and T̄ be relational schemas. A relation map-
ping M is a triple (S, T, m), where S is a relation in S̄, T is a relation in T̄ , and m is
a set of attribute correspondences between S and T .

When each source and target attribute occurs in at most one correspondence in m,
we call M a one-to-one relation mapping.

A schema mapping M is a set of one-to-one relation mappings between relations in
S̄ and in T̄ , where every relation in either S̄ or T̄ appears at most once. �

A pair of instances DS and DT satisfies a relation mapping m if for every source tuple
ts ∈ DS , there exists a target tuple tt ∈ Dt, such that for every attribute correspondence
(p, q) ∈ m, the value of attribute p in ts is the same as the value of attribute q in tt.

Example 2. Consider the mappings in Example 1. The source database in Figure 2(b)
(repeated in Figure 3(a)) and the target database in Figure 3(b) satisfy m1. �

3.2.2 Probabilistic Schema Mappings
Intuitively, a probabilistic schema mapping describes a probability distribution over a
set of possible schema mappings between a source schema and a target schema.

Definition 2 (Probabilistic Mapping). Let S̄ and T̄ be relational schemas. A proba-
bilistic mapping (p-mapping), pM , is a triple (S, T,m), where S ∈ S̄, T ∈ T̄ , and m
is a set {(m1,Pr(m1)), . . . , (ml,Pr(ml))}, such that

– for i ∈ [1, l], mi is a one-to-one mapping between S and T , and for every i, j ∈
[1, l], i �= j ⇒ mi �= mj .

– Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

128 A.D. Sarma, X. Dong, and A.Y. Halevy

pname email-addr current-addr permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(a)
name email mailing-addr home-addr office-addr
Alice alice@ Mountain View Sunnyvale office
Bob bob@ Sunnyvale Sunnyvale office

(b)
name email mailing-addr home-addr office-addr
Alice alice@ Sunnyvale Mountain View office
Bob email bob@ Sunnyvale office

(c)
Tuple (mailing-addr) Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(d)

Tuple (mailing-addr) Prob
(’Sunnyvale’) 0.94

(’Mountain View’) 0.5
(’alice@’) 0.1
(’bob@’) 0.1

(e)

Fig. 3. Example 3: (a) a source instance DS ; (b) a target instance that is by-table consistent with
DS and m1; (c) a target instance that is by-tuple consistent with DS and < m2, m3 >; (d)
Qtable(DS); (e) Qtuple(DS)

A schema p-mapping, pM , is a set of p-mappings between relations in S̄ and in T̄ ,
where every relation in either S̄ or T̄ appears in at most one p-mapping. �

We refer to a non-probabilistic mapping as an ordinary mapping. A schema p-mapping
may contain both p-mappings and ordinary mappings. Example 1 shows a p-mapping
(see Figure 2(a)) that contains three possible mappings.

3.2.3 Semantics of Probabilistic Mappings
Intuitively, a probabilistic schema mapping models the uncertainty about which of the
mappings in pM is the correct one. When a schema matching system produces a set of
candidate matches, there are two ways to interpret the uncertainty: (1) a single mapping
in pM is the correct one and it applies to all the data in S, or (2) several mappings
are partially correct and each is suitable for a subset of tuples in S, though it is not
known which mapping is the right one for a specific tuple. Figure 3(b) illustrates the first
interpretation and applies mapping m1. For the same example, the second interpretation
is equally valid: some people may choose to use their current address as mailing address
while others use their permanent address as mailing address; thus, for different tuples
we may apply different mappings, so the correct mapping depends on the particular
tuple.

We define query answering under both interpretations. The first interpretation is re-
ferred to as the by-table semantics and the second one is referred to as the by-tuple
semantics of probabilistic mappings. Note that one cannot argue for one interpretation
over the other; the needs of the application should dictate the appropriate semantics.
Furthermore, the complexity results for query answering, which will show advantages

Data Modeling in Dataspace Support Platforms 129

for by-table semantics, should not be taken as an argument in the favor of by-table
semantics.

We next define query answering with respect to p-mappings in detail and the defini-
tions for schema p-mappings are the obvious extensions. Recall that given a query and
an ordinary mapping, we can compute certain answers to the query with respect to the
mapping. Query answering with respect to p-mappings is defined as a natural extension
of certain answers, which we next review.

A mapping defines a relationship between instances of S and instances of T that are
consistent with the mapping.

Definition 3 (Consistent Target Instance). Let M = (S, T, m) be a relation mapping
and DS be an instance of S.

An instance DT of T is said to be consistent with DS and M , if for each tuple
ts ∈ DS , there exists a tuple tt ∈ DT , such that for every attribute correspondence
(as, at) ∈ m, the value of as in ts is the same as the value of at in tt. �

For a relation mapping M and a source instance DS , there can be an infinite number of
target instances that are consistent with DS and M . We denote by TarM (DS) the set
of all such target instances. The set of answers to a query Q is the intersection of the
answers on all instances in TarM (DS).

Definition 4 (Certain Answer). Let M = (S, T, m) be a relation mapping. Let Q be
a query over T and let DS be an instance of S.

A tuple t is said to be a certain answer of Q with respect to DS and M , if for every
instance DT ∈ TarM (DS), t ∈ Q(DT). �

By-table semantics: We now generalize these notions to the probabilistic setting, be-
ginning with the by-table semantics. Intuitively, a p-mapping pM describes a set of pos-
sible worlds, each with a possible mapping m ∈ pM . In by-table semantics, a source
table can fall in one of the possible worlds; that is, the possible mapping associated
with that possible world applies to the whole source table. Following this intuition, we
define target instances that are consistent with the source instance.

Definition 5 (By-table Consistent Instance). Let pM = (S, T,m) be a p-mapping
and DS be an instance of S.

An instance DT of T is said to be by-table consistent with DS and pM , if there exists
a mapping m ∈ m such that DS and DT satisfy m. �

Given a source instance DS and a possible mapping m ∈ m, there can be an infinite
number of target instances that are consistent with DS and m. We denote by Tarm(DS)
the set of all such instances.

In the probabilistic context, we assign a probability to every answer. Intuitively, we
consider the certain answers with respect to each possible mapping in isolation. The
probability of an answer t is the sum of the probabilities of the mappings for which t is
deemed to be a certain answer. We define by-table answers as follows:

Definition 6 (By-table Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a
query over T and let DS be an instance of S.

130 A.D. Sarma, X. Dong, and A.Y. Halevy

Let t be a tuple. Let m̄(t) be the subset of m, such that for each m ∈ m̄(t) and for
each DT ∈ Tarm(DS), t ∈ Q(DT).

Let p =
∑

m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is a by-table answer of Q with
respect to DS and pM . �

By-tuple semantics: If we follow the possible-world notions, in by-tuple semantics,
different tuples in a source table can fall in different possible worlds; that is, differ-
ent possible mappings associated with those possible worlds can apply to the different
source tuples.

Formally, the key difference in the definition of by-tuple semantics from that of by-
table semantics is that a consistent target instance is defined by a mapping sequence
that assigns a (possibly different) mapping in m to each source tuple in DS . (Without
losing generality, in order to compare between such sequences, we assign some order
to the tuples in the instance).

Definition 7 (By-tuple Consistent Instance). Let pM = (S, T,m) be a p-mapping
and let DS be an instance of S with d tuples.

An instance DT of T is said to be by-tuple consistent with DS and pM , if there
is a sequence 〈m1, . . . , md〉 such that d is the number of tuples in DS and for every
1 ≤ i ≤ d,

– mi ∈ m, and
– for the ith tuple of DS , ti, there exists a target tuple t′i ∈ DT such that for each

attribute correspondence (as, at) ∈ mi, the value of as in ti is the same as the
value of at in t′i . �

Given a mapping sequence seq = 〈m1, . . . , md〉, we denote by Tarseq(DS) the set
of all target instances that are consistent with DS and seq . Note that if DT is by-table
consistent with DS and m, then DT is also by-tuple consistent with DS and a mapping
sequence in which each mapping is m.

We can think of every sequence of mappings seq = 〈m1, . . . , md〉 as a separate
event whose probability is Pr(seq) = Πd

i=1Pr(mi). If there are l mappings in pM ,
then there are ld sequences of length d, and their probabilities add up to 1. We denote
by seqd(pM) the set of mapping sequences of length d generated from pM .

Definition 8 (By-tuple Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a
query over T and DS be an instance of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such that for each seq ∈
seq(t) and for each DT ∈ Tar seq(DS), t ∈ Q(DT).

Let p =
∑

seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a by-tuple answer of Q with
respect to DS and pM . �

The set of by-table answers for Q with respect to DS is denoted by Qtable(DS) and the
set of by-tuple answers for Q with respect to DS is denoted by Qtuple(DS).

Example 3. Consider the p-mapping pM , the source instance DS, and the query Q in
the motivating example.

Data Modeling in Dataspace Support Platforms 131

In by-table semantics, Figure 3(b) shows a target instance that is consistent with
DS (repeated in Figure 3(a)) and possible mapping m1. Figure 3(d) shows the by-table
answers of Q with respect to DS and pM . As an example, for tuple t =(‘Sunnyvale’),
we have m̄(t) = {m1, m2}, so the possible tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 3(c) shows a target instance that is by-tuple consis-
tent with DS and the mapping sequence < m2, m3 >. Figure 3(e) shows the by-
tuple answers of Q with respect to DS and pM . Note that the probability of tuple
t=(’Sunnyvale’) in the by-table answers is different from that in the by-tuple answers.
We describe how to compute the probabilities in detail in the next section. �

3.3 Query Answering

The following theorems are proved in [5] and consider by-table and by-tuple query
answering in turn.

Theorem 1. Let Q be an SPJ query and let pM be a schema p-mapping. Answering
Q with respect to pM in by-table semantics is in PTIME in the size of the data and the
mapping. �

Theorem 2. Let Q be an SPJ query and let pM be a schema p-mapping. The problem
of finding the probability for a by-tuple answer to Q with respect to pM is #P-complete
with respect to data complexity and is in PTIME with respect to mapping complexity. �

Although by-tuple query-answering is hard, [5] shows several important restricted cases
where it can still be done in polynomial time.

3.4 Creating P-Mappings

In [3] we address the problem of generating a p-mapping between a source schema
and a target schema. We assume an input of a set of weighted correspondences be-
tween the source attributes and the target attributes. These weighted correspondences
are created by a set of schema matching modules. There are two main challenges in
creating p-mappings: (1) There may not be any p-mapping consistent with a given set
of weight correspondences, and (2) when there is a consistent p-mapping, there may
be multiple consistent p-mappings, and the question is which of them to choose. The
algorithm we describe in [3] is based on normalizing weighted correspondences to en-
sure consistency, followed by choosing the p-mapping that maximizes the entropy of
the probability assignment.

4 Uncertainty in Mediated Schema

The mediated schema is the set of schema terms (e.g., relations, attribute names) in
which queries are posed. They do not necessarily cover all the attributes appearing
in any of the sources, but rather the aspects of the domain that are important for the
integration application. When domains are broad, and there are multiple perspectives
on them (e.g., a domain in science that is constantly under evolution), then there will

132 A.D. Sarma, X. Dong, and A.Y. Halevy

be uncertainty about which is the correct mediated schema and about the meaning
of its terms. Also, when the mediated schema is created automatically by inspecting
the sources in a pay-as-you-go system, there will be uncertainty about the mediated
schema.

In this section we first motivate the need for probabilistic mediated schemas (p-med-
schemas) with an example (Section 4.1). In Section 4.2 we formally define p-med-
schemas and relate them with p-mappings in terms of expressive power and semantics
of query answering.

4.1 P-Med-Schema Motivating Example

Let us begin with an example motivating p-med-schemas. Consider a setting in which
we are trying to automatically infer a mediated schema from a set of data sources, where
each of the sources is a single relational table. In this context, the mediated schema can
be thought of as a “clustering” of source attributes, with similar attributes being grouped
into the same cluster. The quality of query answers critically depends on the quality of
this clustering. Because of the heterogeneity of the data sources being integrated, one is
typically unsure of the semantics of the source attributes and in turn of the clustering.

Example 4. Consider two source schemas both describing people:

S1(name, hPhone, hAddr, oPhone, oAddr)
S2(name, phone, address)

In S2, the attribute phone can either be a home phone number or be an office phone
number. Similarly, address can either be a home address or be an office address.

Suppose we cluster the attributes of S1 and S2. There are multiple ways to cluster
the attributes and they correspond to different mediated schemas. Below we list a few
(in the mediated schemas we abbreviate hPhone as hP, oPhone as oP, hAddr as hA,
and oAddr as oA):

M1({name}, {phone, hP, oP}, {address, hA, oA})
M2({name}, {phone, hP}, {oP}, {address, oA}, {hA})
M3({name}, {phone, hP}, {oP}, {address, hA}, {oA})
M4({name}, {phone, oP}, {hP}, {address, oA}, {hA})
M5({name}, {phone}, {hP}, {oP}, {address}, {hA}, {oA})

None of the listed mediated schemas is perfect. Schema M1 groups multiple at-
tributes from S1. M2 seems inconsistent because phone is grouped with hPhone while
address is grouped with oAddress. Schemas M3, M4 and M5 are partially correct but
none of them captures the fact that phone and address can be either home phone and
home address, or office phone and office address.

Even if we introduce probabilistic schema mappings, none of the listed mediated
schemas will return ideal answers. For example, using M1 prohibits returning correct
answers for queries that contain both hPhone and oPhone because they are taken
to be the same attribute. As another example, consider a query that contains phone
and address. Using M3 or M4 as the mediated schema will unnecessarily favor home

Data Modeling in Dataspace Support Platforms 133

Possible Mapping Probability
{(name, name), (hP, hPP), (oP, oP),

(hA, hAA), (oA, oA)} 0.64

{(name, name), (hP, hPP), (oP, oP),
(oA, hAA), (hA, oA)} 0.16

{(name, name), (oP, hPP), (hP, oP),
(hA, hAA), (oA, oA)} 0.16

{(name, name), (oP, hPP), (hP, oP),
(oA, hAA), (hA, oA)} 0.04

(a)
Possible Mapping Probability

{(name, name), (oP, oPP), (hP, hP),
(oA, oAA), (hA, hA)} 0.64

{(name, name), (oP, oPP), (hP, hP),
(hA, oAA), (oA, hA)} 0.16

{(name, name), (hP, oPP), (oP, hP),
(oA, oAA), (hA, hA)} 0.16

{(name, name), (hP, oPP), (oP, hP),
(hA, oAA), (oA, hA)} 0.04

(b)
Answer Probability

(’Alice’, ’123-4567’, ’123, A Ave.’) 0.34
(’Alice’, ’765-4321’, ’456, B Ave.’) 0.34
(’Alice’, ’765-4321’, ’123, A Ave.’) 0.16
(’Alice’, ’123-4567’, ’456, B Ave.’) 0.16

(c)

Fig. 4. The motivating example: (a) p-mapping for S1 and M3, (b) p-mapping for S1 and M4, and
(c) by-table query answers w.r.t. M and pM. Here we denote {phone, hP} by hPP, {phone,
oP} by oPP, {address, hA} by hAA, and {address, oA} by oAA.

address and phone over office address and phone or vice versa. A system with M2 will
incorrectly favor answers that return a person’s home address together with office phone
number. A system with M5 will also return a person’s home address together with office
phone, and does not distinguish such answers from answers with correct correlations.

A probabilistic mediated schema will avoid this problem. Consider a probabilistic
mediated schema M that includes M3 and M4, each with probability 0.5. For each of
them and each source schema, we generate a probabilistic mapping (Section 3). For
example, the set of probabilistic mappings pM for S1 is shown in Figure 4(a) and (b).

Now consider an instance of S1 with a tuple

(’Alice’, ’123-4567’, ’123, A Ave.’,
’765-4321’, ’456, B Ave.’)

and a query

SELECT name, phone, address
FROM People

134 A.D. Sarma, X. Dong, and A.Y. Halevy

The by-table answer generated by our system with respect to M and pM is shown
in Figure 4(c). (As we describe in detail in the following sections, we allow users to
compose queries using any attribute in the source.) Compared with using one of M2 to
M5 as a mediated schema, our method generates better query results in that (1) it treats
answers with home address and home phone and answers with office address and office
phone equally, and (2) it favors answers with the correct correlation between address
and phone number. �

4.2 Probabilistic Mediated Schema

Consider a set of source schemas {S1, . . . , Sn}. We denote the attributes in schema
Si, i ∈ [1, n], by attr(Si), and the set of all source attributes as A. That is, A =
attr(S1) ∪ . . . ∪ attr(Sn). We denote a mediated schema for the set of sources
{S1, . . . , Sn} by M = {A1, . . . , Am}, where each of the Ai’s is called a mediated
attribute. The mediated attributes are sets of attributes from the sources, i.e., Ai ⊆ A;
for each i, j ∈ [1, m], i �= j ⇒ Ai ∩ Aj = ∅.

Note that whereas in a traditional mediated schema an attribute has a name, we do
not deal with naming of an attribute in our mediated schema and allow users to use
any source attribute in their queries. (In practice, we can use the most frequent source
attribute to represent a mediated attribute when exposing the mediated schema to users.)
If a query contains an attribute a ∈ Ai, i ∈ [1, m], then when answering the query we
replace a everywhere with Ai.

A probabilistic mediated schema consists of a set of mediated schemas, each with a
probability indicating the likelihood that the schema correctly describes the domain of
the sources. We formally define probabilistic mediated schemas as follows.

Definition 9 (Probabilistic Mediated Schema). Let {S1, . . . , Sn} be a set of schemas.
A probabilistic mediated schema (p-med-schema) for {S1, . . . , Sn} is a set

M = {(M1, P r(M1)), . . . , (Ml, P r(Ml))}

where

– for each i ∈ [1, l], Mi is a mediated schema for S1, . . . , Sn, and for each i, j ∈
[1, l], i �= j, Mi and Mj correspond to different clusterings of the source attributes;

– Pr(Mi) ∈ (0, 1], and Σl
i=1Pr(Mi) = 1. �

Semantics of queries: Next we define the semantics of query answering with respect
to a p-med-schema and a set of p-mappings for each mediated schema in the p-med-
schema. Recall that answering queries with respect to p-mappings returns a set of an-
swer tuples, each with a probability indicating the likelihood that the tuple occurs as an
answer. We consider by-table semantics here. Given a query Q, we compute answers by
first answering Q with respect to each possible mapping, and then for each answer tuple
t summing up the probabilities of the mappings with respect to which t is generated.

We now extend this notion for query answering that takes p-med-schema into consid-
eration. Intuitively, we compute query answers by first answering the query with respect
to each possible mediated schema, and then for each answer tuple taking the sum of its
probabilities weighted by the probabilities of the mediated schemas.

Data Modeling in Dataspace Support Platforms 135

Definition 10 (Query Answer). Let S be a source schema and M =
{(M1, P r(M1)), . . . , (Ml, P r(Ml))} be a p-med-schema. Let pM ={pM(M1), . . .,
pM(Ml)} be a set of p-mappings where pM(Mi) is the p-mapping between S and Mi.
Let D be an instance of S and Q be a query.

Let t be a tuple. Let Pr(t|Mi), i ∈ [1, l], be the probability of t in the answer of Q
with respect to Mi and pM(Mi). Let p = Σl

i=1Pr(t|Mi) ∗ Pr(Mi). If p > 0, then we
say (t, p) is a by-table answer with respect to M and pM.

We denote all by-table answers by QM,pM(D). �
We say that query answers A1 and A2 are equal (denoted A1 = A2) if A1 and A2
contain exactly the same set of tuples with the same probability assignments.

Expressive power: A natural question to ask at this point is whether probabilistic me-
diated schemas provide any added expressive power compared to deterministic ones.
Theorem 3 shows that if we consider one-to-many schema mappings, where one source
attribute can be mapped to multiple mediated attributes, then any combination of a
p-med-schema and p-mappings can be equivalently represented using a deterministic
mediated schema with p-mappings, but may not be represented using a p-med-schema
with deterministic schema mappings. Note that we can easily extend the definition of
query answers to one-to-many mappings as one mediated attribute can correspond to
no more than one source attribute.

Theorem 3. The following two claims hold.

1. Given a source schema S, a p-med-schema M, and a set of p-mappings pM be-
tween S and possible mediated schemas in M, there exists a deterministic me-
diated schema T and a p-mapping pM between S and T , such that ∀D, Q :
QM,pM(D) = QT,pM (D).

2. There exists a source schema S, a mediated schema T , a p-mapping pM between S
and T , and an instance D of S, such that for any p-med-schema M and any set m
of deterministic mappings between S and possible mediated schemas in M, there
exists a query Q such that QM,m(D) �= QT,pM (D). �

In contrast, Theorem 4 shows that if we restrict our attention to one-to-one mappings,
then a probabilistic mediated schema does add expressive power.

Theorem 4. There exists a source schema S, a p-med-schema M, a set of one-to-one
p-mappings pM between S and possible mediated schemas in M, and an instance D
of S, such that for any deterministic mediated schema T and any one-to-one p-mapping
pM between S and T , there exists a query Q such that, QM,pM(D) �= QT,pM (D). �
Constructing one-to-many p-mappings in practice is much harder than constructing
one-to-one p-mappings. When we are restricted to one-to-one p-mappings, p-med-
schemas grant us more expressive power while keeping the process of mapping gen-
eration feasible.

4.3 Creating P-Med-Schemas

In [3], we study the problem of creating p-med-schemas. First the algorithm constructs
a graph with source attributes as nodes, and weighted edges representing pairwise sim-
ilarities. Then, it groups similarity edges into certain and uncertain based on their

136 A.D. Sarma, X. Dong, and A.Y. Halevy

weights. Clusterings due to inclusion of all certain edges and combinations of inclu-
sion/exclusion of uncertain edges constitute possible mediated schemas. Probabilities
on each mediated schema are assigned based on consistency with respect to the data
sources.

To enable users to see a single mediated schema, reference [3] also describes how
to consolidate (without loss) the p-med-schema with one-to-one p-mappings into an
equivalent single mediated schema with one-to-many p-mappings.

5 Related Work

Probabilistic Mappings: There have been various models proposed to capture un-
certainty on mappings between attributes. [8] proposes keeping the top-K mappings
between two schemas, each with a probability (between 0 and 1) of being true. [9] pro-
poses assigning a probability for matching of every pair of source and target attributes.
This notion corresponds to weighted correspondences described in Section 3.4.

Magnani and Montesi [17] have empirically shown that top-k schema mappings can
be used to increase the recall of a data integration process and Gal [7] described how
to generate top-k schema matchings by combining the matching results generated by
various matchers. The probabilistic schema mappings we described above are different
as they contain all possible schema mappings that conform to the schema matching
results and assigns probabilities to these mappings to reflect the likelihood that each
mapping is correct. Nottelmann and Straccia [19] proposed generating probabilistic
schema matchings that capture the uncertainty on each matching step. The probabilistic
schema mappings we create not only capture our uncertainty on results of the matching
step, but also take into consideration various combinations of attribute correspondences
and describe a distribution of possible schema mappings where the probabilities of all
mappings sum up to 1.

Mediated Schemas: He and Chang [13] considered the problem of generating a medi-
ated schema for a set of web sources. Their approach was to create a mediated schema
that is statistically maximally consistent with the source schemas. To do so, they assume
that the source schemas are created by a generative model applied to some mediated
schema, which can be thought of as a probabilistic mediated schema. The probabilis-
tic mediated schema we described in this chapter has several advantages in capturing
heterogeneity and uncertainty in the domain. We can express a wider class of attribute
clusterings, and in particular clusterings that capture attribute correlations. Moreover,
we are able to combine attribute matching and co-occurrence properties for the cre-
ation of the probabilistic mediated schema, allowing for instance two attributes from
one source to have a nonzero probability of being grouped together in the mediated
schema. Also, the approach for p-med-schema creation described in this chapter is in-
dependent of a specific schema-matching technique, whereas the approach in [13] is
tuned for constructing generative models and hence must rely on statistical properties
of source schemas.

Magnani et al. [18] proposed generating a set of alternative mediated schemas based
on probabilistic relationships between relations (such as an Instructor relation

Data Modeling in Dataspace Support Platforms 137

intersects with a Teacher relation but is disjoint with a Student relation) obtained
by sampling the overlapping of data instances. Here we focus on matching attributes
within relations. In addition, our approach allows exploring various types of evidence to
improve matching and we assign probabilities to the mediated schemas we generate.

Chiticariu et. al. [2] studied the generation of multiple mediated schemas for an
existing set of data sources. They consider multi-table data sources, not considered
in this chapter, but explore interactive techniques that aid humans in arriving at the
mediated schemas.

6 Conclusions

The investigation of data integration with uncertainty is only beginning. This chapter
described some of the fundamental concepts on which such DSSP data integration sys-
tems will be built, but there is a lot more to do.

The main challenge is to build actual data integration systems that incorporate uncer-
tainty and thereby uncover a new set of challenges, such as efficiency and understanding
what are the common types of uncertainty that arise in data integration applications, so
techniques can be tailored for these cases.

Our work focussed only on bootstrapping a pay-as-you-go integration system. The
next challenge is to find methods to improve it over time (see [15] for a first work on
doing so).

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over
relational databases. In: Proc. of ICDE, pp. 5–16 (2002)

2. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated schemas. In: Proc.
of ACM SIGMOD (2008)

3. Das Sarma, A., Dong, L., Halevy, A.: Bootstrapping pay-as-you-go data integration systems.
In: Proc. of ACM SIGMOD (2008)

4. Doan, A., Halevy, A.Y.: Semantic integration research in the database community: A brief
survey. AI Magazine 26(1), 83–94 (2005)

5. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proc. of VLDB (2007)
6. Dong, X., Halevy, A.Y.: A platform for personal information management and integration.

In: Proc. of CIDR (2005)
7. Gal, A.: Why is schema matching tough and what can we do about it? SIGMOD

Record 35(4), 2–5 (2007)
8. Gal, A., Modica, G., Jamil, H., Eyal, A.: Automatic ontology matching using application

semantics. AI Magazine 26(1), 21–31 (2005)
9. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and eval-

uating automatic semantic reconciliation (2003)
10. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosenthal, A.,

Sikka, V.: Enterprise information integration: successes, challenges and controversies. In:
SIGMOD (2005)

11. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: VLDB
(2006)

138 A.D. Sarma, X. Dong, and A.Y. Halevy

12. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS (2006)
13. He, B., Chang, K.C.: Statistical schema matching across web query interfaces. In: Proc. of

ACM SIGMOD (2003)
14. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In:

Proc. of VLDB, pp. 670–681 (2002)
15. Jeffery, S., Franklin, M., Halevy, A.: Pay-as-you-go user feedback for dataspace systems. In:

Proc. of ACM SIGMOD (2008)
16. Madhavan, J., Cohen, S., Dong, X., Halevy, A., Jeffery, S., Ko, D., Yu, C.: Web-scale data

integration: You can afford to pay as you go. In: Proc. of CIDR (2007)
17. Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches and open

problems. In: VLDB workshop on Management of Uncertain Data, pp. 18–32 (2007)
18. Magnani, M., Rizopoulos, N., Brien, P., Montesi, D.: Schema integration based on uncertain

semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó.
(eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)

19. Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic
schema matching. Information Processing and Management 43(3), 552–576 (2007)

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 139–152, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Conceptual Modeling:
Past, Present and the Continuum of the Future

Nick Roussopoulos1 and Dimitris Karagiannis2

1 University of Maryland, Department of Computer Science,
College Park, MD 20742, USA

nick@cs.umd.edu
2 University of Vienna, Department of Knowledge and Business Engineering,

Brünner Strasse 72, 1210 Vienna, Austria
dk@dke.univie.ac.at

Abstract. In this paper we give a brief history on conceptual modeling in
computer science and we discuss state-of-the-art approaches. It is claimed that a
number of problems remain to be solved. “Schema-first” is no longer a viable
approach to meet the data needs in the dynamic world of the internet and web
services. This is also true for the “schema-later” approach simply because data
and data sources constantly change in depth and breadth and can neither wait
for the schema to be completed nor for the data to be collected. As a solution
we advocate for a new “schema-during” approach, in which the process of
Conceptual Modeling is in a continuum with the operations in the database.

1 Introduction

Conceptual Modelling (CM) plays an important role in the development of software
applications. Modelling acts as a starting point for understanding and, thus, forming
the common basis for developers and users, freeing the stakeholders involved from
implementation concerns. CM enables the integration of domain experts, who are
involved in a business process, and their knowledge, into the software development.

Conceptual modelling is the activity of creating conceptual models, i.e., models
that describe problems independently from the technology and strategy used to solve
the problem [Ka08]. The term conceptual modelling was consolidated in Brodie,
Mylopoulos and Schmidt [BMS84]. Mylopoulos [My92] defines CM as ‘the activity
of formally describing some aspects of the physical and social world around us for
purposes of understanding and communication’. CMs play an important role in a
variety of areas within computer science. Over the last decades it has found
applications in a variety of fields, including information system design, knowledge
representation for Artificial Intelligence, modelling of organizational environments,
business processes, software development processes, software requirements, or just
plain modelling some part of the world for purposes of human communication and
understanding. Mylopoulos [My98] classifies CM according their domains and their
application scenarios.

CM is an essential phase in the design of database systems [BLM92]. It dates back
to the mid 70’s, and its value has been well recognized, being considered by now as
perhaps the most important component of database design. In databases, the original

140 N. Roussopoulos and D. Karagiannis

conceptual modeling methods were almost exclusively targeted towards the
development of a global conceptual schema that would be the basis for understanding
by all users and applications. It would provide the foundation for maintaining
database consistency and integrity. The schema would also capture database access
rules and data constraints, but nothing about the physical data layout and distribution.
Data heterogeneity and database distribution were supposed to be completely hidden
from the user, and a single layer, the conceptual schema, would provide
“transparency” -- a term picked to mean “independence” from the underlying tedious
details. The conceptual schema was built for the user by the design team, and the
users had neither the need nor the ability to modify the schema it. They had to accept
whatever predefined schema view or views were given to them.

The above “schema-first” approach became unrealistic with the vast explosion of
data on the internet and web services. In this new environment, no modeler can design
a global schema to satisfy the thousands or millions of users and/or user categories
with predefined profiles. Furthermore, CM is a much slower process than web
evolution. The other two approaches, “schema-later” - where the data is semi-
structured, or “schema-never” - where all data is unstructured and irregular, are also
unsatisfactory. Schema-later is worse than schema-first because it has to deal not only
with the process of defining the schema but also with data transformation.
Furthermore, it provides limited structural organization, limited access and
optimization capability. Schema-never provides no efficient structured search, and is
limited to what search engines like Google provide.

In this short paper, we discuss a completely new approach: “schema-during” (SD).
The ideas are still at an early stage. However, we thought that providing some original
albeit developing ideas would be most appropriate for the “very original” John
Mylopoulos we honor in this symposium. Section 2 contains a short historical overview
of CM, emphasizing its database connections. In section 3, we discuss the current state
of conceptual modeling. Section 4 of this paper discusses SD and the environment it is
intended for. It introduces the concept of “sibling data”, a grouping mechanism for
interrelated data linked together as a unit. Section 5 has the conclusions.

2 Conceptual Modeling - Past

Because a conceptual level view of a domain is not supposed to be distracted by
implementation concerns – how the model will be represented inside the computer,
CM is intimately related to the notion of abstraction, which also has a long and
honorable history in Computer Science. In this section we highlight some of the chief
achievements of both these areas, with no attempt at being complete, though we will
try to point to the places where key contributions of our honoree, John Mylopoulos,
took place.

In addition, a model of some application domain consists not just of static objects,
but also dynamic events and activities that occur in it. We will therefore consider
some CM techniques that also address these aspects.

2.1 Early 1970ies – The Roots of Conceptual Modelling

The following are some of the most significant precursors to CM, in fields outside of
databases.

 Conceptual Modeling: Past, Present and the Continuum of the Future 141

One of the first and most influential approaches to abstraction applied to software
development can be found in [Pa72]. The major goal of the Parnas’ approach is to
provide sufficiently precise and complete specifications so that other pieces of
software can be written to interact with it without additional information. This is
achieved by providing concepts for data abstraction, by hiding implementation details
from the user.

Another important path blazer in the field of modelling was the programming
language Simula [DH72]. Simula introduced new concepts like objects, classes,
methods and especially subclasses, which support the notion of generalization
abstraction. Simula is considered the first object-oriented programming language, and
became a cornerstone of most object-oriented techniques.

In Artificial Intelligence, the work of Quillian [Qu68] on semantic networks, a
graphical knowledge representation language with nodes representing concepts and
edges relationships laid, the cornerstone for much of the next decade’s work,
especially the exploration of the use of inheritance as an inference mechanism, which
would become a hallmark of later CM techniques.

The Structured Analysis and Design Technique (SADT™), introduced by Ross
[Ro77] in the mid seventies, was one of the most significant early steps in the area of
requirements specifications. Among its distinguishing features is the equal emphasis
on modelling data (connected by edges representing transformations) as well as
activities (connected by edges representing flow of information.

2.2 Mid 1970ies – Databases: CM and Semantic Data Models

Most approaches to database desing initially relied on modelling the data structures
used to store the model in actual file systems. Two noteworthy approaches are the
hierarchical [TL76] and the network [Ts76] models, both focusing on the physical
level – what nowdays might be called graph models [AG08].

Codd’s revolutionary separation of logical data organization from physical
organization laid the ground for CM and for capturing more of the semantics of an
application [Co79]. Knowledge representation techniques as well as a form of data
abstraction were introduced by Abrial [Ab74], who proposed defining the semantics
of classes by access procedures. Roussopoulos & Mylopoulos [RM75] used a
semantic network for generating a relational schema for the target system and in
defining a set of semantic operators for maintaining the database consistent. Because
of its simplicity, Chen's Entity-Relationship (ER) Model1 [Ch76] became popular and
the de facto standard in data modelling and database design. [HK87] provides a
survey on the semantic data models.

Semantic data models allow for designing models at a higher level and enable the
database practitioners to naturally and directly incorporate in the schema a larger
portion of the semantics of the data [HM78]. Concepts for abstraction and
generalisation in database design have been introduced in database research by Smith

1 After the initial publication of Chen’s E-R model, a large number of extensions to this model

have been proposed in the eighties and nineties. Prominent examples are the Enhanced ER
model (EER), the E2R (read ‘E-squared-R’) and the Higher-Order Entity Relationship Model
(HERM). The enhancements in the ER model introduce concepts like composite attribute,
weak entity type, subclass and superclass relationships [HSA04].

142 N. Roussopoulos and D. Karagiannis

and Smith [SS77]. To this point, database design concepts, as for example Codd’s
normal form [Co70], focused on abstraction, while the concept of generalisation had
been largely ignored. Smith and Smith combined ‘generalization’ and ‘aggregation’
into one structuring discipline. However, aggregation was still not easily modelled
using E-R; it became the main thrust in Object Oriented databases. The advantage of
aggregation is that it provides an easier understanding of complex models and a more
systematic approach to database design. It mainly supports the development of highly
structured models without loss in intellectual manageability.

The first high level data definition languages for defining conceptual schemas –
like the Conceptual Schema Language (CSL) - were discussed in the late seventies.
Descriptive elements as well as procedural elements are provided within CSL. Hence,
static aspects and dynamic behaviour of data could be described by providing
standard types, object types and association types [BMF79].

A prominent example of a database design language, covering the aforementioned
concepts, is Taxis [My78]. Taxis provides relational database management facilities,
means of specifying semantic integrity constraints incorporated into transactions, and
an exception-handling mechanism. Taxis applies the concepts of class, property and
ISA (generalisation) relationship to all aspects of program design.

2.3 The 1980ies – An Efflorescense of CMs

In 1980, an influential workshop on Data Abstraction, Databases and Conceptual
Modelling took place in Pingree Park. The purpose of the workshop was to overcome
the boundaries between the sub-disciplines of computing as AI, Database
Management and Programming Languages, ending up with a series of further joint
initiatives to shape research and development of common interests. CM was
introduced as a term reflecting this broader perspective. The specialisation has
increased over the years and more and more sub-disciplines within CM emerged.
Nowadays, it is nearly impossible to define, which of these specialisations developed
over the years are required and which are accidental [Ka08]. However, the differences
between those sub-disciplines seem to arise from issues concerning notation and basic
vocabulary. Only in a minority of cases do the concepts introduced, the ways to utilise
the models, or the ways the models are constructed justify this development.

In the field of Requirements Engineering, Greenspan et al [GM94] adopted the
approach of Taxis (based on classes, properties and inheritance) and attempted to
formalise the SADT notation, which took seriously Michael Jackson’s prescription
that requirements must connect the existing world with the proposed whole, by
producing a model of the whole. RML embodies a notation for requirements
modelling which combines object-orientation and organisation, with an assertional
sublanuguage used to specify constraints and deductive rules, as well as time.

Another early example is the Adaptable Database Design methodology [RY84].
SDBD takes not only the environment of the data processing system into account, but
also focuses on the environment of the entire enterprise. Proceeding on the
assumption that without a complete understanding of how the enterprise operates, it is
not possible to develop an effective design. Thus it is recommended to start with an

 Conceptual Modeling: Past, Present and the Continuum of the Future 143

environment analysis phase followed by a system analysis phase, capturing and
analysing the operational behaviour of the organisation. 2

2.4 The 1990ies – Object Oriented Development, a New Programming
Paradigm

By the end of the eighties, a variety of object-oriented analysis techniques has been
developed. Important representatives of these techniques are the ‘Booch Method’ and
Rumbaugh’s ‘Object Modelling Technique’, both offering a more coherent modelling
framework than the combined use of data flow and entity-relationship diagrams (as for
example proposed in SADT). The Booch Method focused mainly on object-oriented
design (OOD), whereas the object-modelling technique (OMT) focused on object-
oriented analysis (OOA). In 1994 Booch and Rumbaugh decided to combine and unify
their object-oriented modelling methods by developing the Unified Modelling
Language (UML) [OMG07] - a language for modelling object systems. Through the
standardisation efforts undertaken by the Object Management Group (www.omg.org)
UML has been rapidly adopted as the de facto standard for modelling a very wide
range of applications and domains [BRJ05]. It is claimed that one important advantage
of UML is that it could be used both for modelling software, and for modelling the
problem domain that is supported by a system, i.e. conceptual modelling [EW05].

Another prominent example developed at that time is Telos – a knowledge
representation language designed specifically for information systems development
applications. The innovation of Telos is the treatment of attributes, promoted to a first
class citizenship status, and the introduction of special representational and inferential
mechanisms for handling temporal knowledge. These concepts provide means for
dealing with the evolutionary nature of knowledge about software [My90], [My92].

By the end of the nineties it was widely agreed that information systems need to
better match their operational organisational environment. Hence, requirement
specification needs to cover not only software specifications but also business models
and other kinds of information in describing the context in which the intended system
will function. The above UML emphasises concepts for modelling and analysis
during the later requirements phases, which usually focus on completeness,
consistency, and automated verification of functional requirements [Al00]. With
Tropos, a development method – based on the i* organisational modelling framework
[Yu95] – supporting the early phases of the requirement capture is provided. Tropos
is founded on the idea of using the agent paradigm and related mentalistic notions
during all phases of the development software process [Su05].

3 Conceptual Modeling - Present

The rapid evolution of the internet and the World Wide Web has and will continue to
bring about transformation. An increased need for integrating heterogeneous
information sources has arisen, since organisations start to break away from usual
application silo patterns and begin to develop a process-oriented view on the

2 A reference implementation of the SDBD method is available on www.openmodels.at. The

entire SDBD method is implemented on the meta modeling platform ADOxx 1.0.

144 N. Roussopoulos and D. Karagiannis

organisations’ business. More than that, software programs can be accessed and
executed via the web based on the idea of ‘Web Services’ enabling distributed
computation over the internet. Organisations are shifting towards a Service Oriented
Architectures (SOA) but the real advantage of SOA will not develop as long as web
services are not configurable at the business level [Ju08]. Hence, the gap between
analysis and design phase has to be bridged.

To support this claim, existing conceptual modelling frameworks need to be
reviewed and extended. As first attempts the integration of industry-wide business
process modelling standards (as the ‘Business Process Modelling Notation’, BPMN)
and the aforementioned web service standards can be seen. Business processes
modelled in BPMN can be exported to BPEL for execution, allowing for the straight-
through integration of business processes and web services. However, existing
approaches for automating service recognition, service configuration and
combination, service comparison and automated negotiation need to be enhanced and
standardised.

Existing research has primarily focused on the technologies that support SOA
deployments and the technical delivery of service based platforms [RLD08]. To
standardize the use of web services, the web service technology builds on top of web
standards and extends them with additional languages and protocols: The World Wide
Web Consortium (W3C) proposed the Web Service Description Language (WSDL)3
standard. The exchange of messages between web services is standardised via SOAP4
and the publication and advertisement of web services is supported through service
registries like UDDI5. In this context some work has been done to support the
modelling of web services in extended UML and the automatic generation of the
respective web service description in the WSDL standard [VdM05].

According to [Fe02], existing web technologies provide limited means in
automating service recognition, service configuration and combination (i.e., providing
complex workflows and business logics based on web services), service comparison
and automated negotiation. To bridge this gap concepts and frameworks like the Web
Service Modelling Framework (WSMF) [Fe02], that discusses an approach for
facilitating usage and invocation as well as composition of web services, are
promising approaches.

Other problems like the lack of concepts for the provision of service reputation
mechanisms to provide ratings of the quality of services [MS02], and to solve the
problem of ensuring trustworthiness between the stakeholders, are discussed in
[MS02]. However a final solution on this topic is not offered.

A more general approach for interoperability on web-scale is the idea of the
Semantic Web, where the contents of web resources, whether services or data, are to
be described using formal domain ontologies that allow them to be compared and

3 WSDL defines services as collections of network endpoints or ports. In WSDL the abstract

definition of endpoints and messages is separated from their concrete network deployment or
data format bindings (http://www.wsdl.org).

4 SOAP is a message layout specification that defines a uniform way of passing XML-encoded
data (http://www.soap.org).

5 UDDI provides a mechanism for clients to find web services. Using a UDDI interface,
businesses can dynamically lookup as well as discover services provided by external business
partners (http://www.uddi.org).

 Conceptual Modeling: Past, Present and the Continuum of the Future 145

matched. The current leading contenders for W3C approved languages to fulfil this
role are RDFS6 and OWL7. The latter is a Description Logic -- a descendant of
semantic networks, which has been formalized and for which optimized sound and
complete reasoners are now available.

4 Conceptual Modeling – The Continuum of the Future

In the world we live today, data is not hand-crafted but vastly generated by
computers, data streams, data sensors, searches on the Web [Fr06] and other Service
Oriented Architecture (SOA) applications. The data producers themselves constantly
change; new ones are introduced or previous ones evolve in both content format and
data density, i.e. more and higher resolution data, richer content, etc. What is needed
is a new approach which we will call “schema-during” (SD), in which the conceptual
modeling is in a “continuum” with the operational use of the database. In other words,
the schema design is done continuously and concurrently with data loading,
accessing, and other database management activities. The segregation of schema
creation and database operations no longer exists. Both schema and data continuously
evolve, and the end-user needs to be trained to manage both. The user also needs to be
equipped with appropriate tools in order to manage schema evolution - an area that is
still not well understood.

4.1 Conceptual Modeling for the Schema-During

We envision Conceptual Modeling to be a continuous process, performed
concurrently with data loading and management. Since the web environment is
constantly changing, modeling, populating, and managing data have to seamlessly
integrated and be part of the database management. This schema-during (SD) activity
brings a significant departure from the current practices. The end user will always
have to adapt the conceptual schema to match the changes of the sources, and to track
his interactions with the Web and SOA.

Data entry also occurs at any time, and is continuous. In many cases, raw data is
found by accessing a wide variety of data sources, scraping the web, or by using a
search engine or even accessing Wikis. Such raw data sources may be changing due
to the discovery of new data sources or because the data is better processed/resolved,
or simply because the sources changed their interface. Extract-Translate-Load (ETL)
tools are necessary to help the end user to do data entry. Such tools exist for loading
data warehouses and databases, but these were developed for programmers. New ETL
tools need to be usable by the end user. The configurations within these tools will be
for a short time before they have to be modified to adapt to environment changes.
Hence these tools need to be flexible, easy to adapt, and user friendly in order to
accommodate the continuous evolution of the data sources and the vast heterogeneity
in them.

Conceptual modeling in an SD approach entails adaptation and personalization of
the schema by the end user, which is in contrast to a steadfast global multi-user

6 http://www.w3.org/RDF/
7 http://www.w3.org/2004/OWL/

146 N. Roussopoulos and D. Karagiannis

integrated schema developed by a competent database designer or the DBA team. If
all users in SD are allowed to modify the schema, and evolve the data to comply with
the new schema, a new set of problems will arise. Cooperative schema evolution in
SD will open a new area of research, which would help the saturated database
community. New research problems will arise when the database allows concurrent
access and modification to the database schema. Transactional semantics need to be
introduced for the intensional (schema) changes - the analog of transaction
correctness (i.e. seriliazability). When concurrent transformations of the schema and
data occur, the notion of “transformational seriliazability” is needed. In this paper we
do not attempt to touch the issues of concurrent transformational semantics. First we
need to understand and develop the techniques and transformation tools for such
evolution, as for a single user. In the SD environment, the user needs to define his/her
needs in terms of modeling by specifying the metadata that describes the data he
wants to track. New entities and relationships are identified while existing ones need
to be modified and extended.

We suggest the relational model and its tabular format to capture the user’s models
over a wide and heterogeneous collection of data sources. The reasons are very
similar to those in the Polaris systems: simplicity, familiarity, etc. [St02].
Furthermore, the user needs to populate the table by mapping values appearing on the
screen to the table row and column. The values will be extracted from a wide variety
of underlying presentation layers such as HTML, Adobe pdf, Word, spreadsheet,
graphical object, streams, etc. The underlying raw documents and their context need
be preserved for visualization, further conceptual modeling and/or populating with
data. In many cases, the tables may have to be expanded with new columns or
reduced by deleting columns. In such cases, the interface has to support such an
expansion/reduction, and allow the user to fill in the new columns with data. The
transformations do not necessarily need to be complete -- some of the table columns
may remain empty simply because the data was not available prior to the expansion.
In an evolving world, we cannot insist on retrofitting or even inventing data that did
not exist, just to smooth tables.

A Mouse Click Language
A very important tool for end-user conceptual modeling is to have a click-language
for defining schema, data and populating the database. The ease of use of such a
language is vital. In a Web service oriented environment, the user interacts with the
browser and receives one or more screens full of data. The user can use the mouse and
the keyboard to define metadata and data, or can highlight schema names on the
screen, can right-click on the highlighted portions to bring a drop down menu to
choose some action. These actions will include:

a) Metadata definition using the highlighted words or phrases. Those would then
form the schema of a relation (the attribute names or the relation name)
unordered. A template overlayed on the screen would allow him to reorder,
modify, or simply rearrange these names.

b) Data entry into a previously defined table. Selection of the appropriate table
can be given in a screen overlay with the options. Rearrangement of the values
to the right attribute can be either done manually or could be inferred
depending how “semantically strong” the values are or by remembering
previous values of each column.

 Conceptual Modeling: Past, Present and the Continuum of the Future 147

c) Repeated data entry is achieved by recording the screen actions (cursor
positioning, click order, menu selections, etc) the user performs for a data
entry. Naming, storing, and recalling such prerecorded repeated data entries is
necessary even if it cannot always achieve full automation, and requires some
manual adjustments.

d) Overlayed annotations to the highlighted parts of the screen. These are entered
using the keyboard and are captured and glued to the screen position.
Annotations may not be just text but any other multi-media data such as voice,
images, video, URLs, and executable code. The code could possibly invoke
other activities not necessarily related to database modeling.

e) Retrieval of data using a Query-By-Example (QBE) [Zl77] like interface. The
values of the examples can also be picked from the highlighted portions of the
screen or they can also be modified. A somewhat useful search query would be
where a value is highlighted and an attribute is specified on a QBE template
and then all tables having the attribute are searched for the value specified.
When the attribute value is not specified, all tables are “grep”-ed to find the
specific values regardless of which attributes they are stored in.

f) In all queries, we would like to ban the “building part” of the join operators.
The relational join (in all forms and shapes –equi, theta, inner, outer, cross
product) is a syntactic operator that creates new data objects that are not
“semantically correct”. We prefer the result of each query involving a join to
be the set of all the intermediate results as separate relations - sub-relations of
the arguments – and which inherit their semantics from the basic relations and
thus are semantically correct. These subsets are obtained using the same
filtering and are ordered in the same way it is done in the relational algebra
(using the join-clauses and restriction-clauses) but the result of such query is a
set of subrelations rather than a single relation. We insist on this change
because we store the results of the queries in the database, and undefined
semantics of syntactic objects will lead to miss-interpretations8. Aligning of
the corresponding tuples of the sub-relations in a way similar to the end-result
of the join and the requested ordering is useful.

g) Schema modification and data translation. As new data arrives, the schema
needs to be modified to accommodate the changes. Operators that allow the
change of the table schema such as adding a new column, changing the names
of some attributes, and sometimes even the name of the table. What makes it
to be the same table is the primary key that identifies the table regardless
whether the table corresponds to an entity or a relationship. As long as the
primary key remains unchanged, the table is the same regardless of its name
and attribute name changes. If the primary key is modified, then a new table is
created and the old one along with its data remains unchanged. A way to
implement these changes is by creating a “surrogate” in the system composed
from the values of the primary key attributes. This PK surrogate uniquely
identifies the table and therefore its name can be modified without affecting

8 An example with two relations: student-enrollment(StudentID,CourseID,Semester, Grade)

and DriversLicense(UserID,UserName,Operator_Class). One can join the two relations
where Grade=Operator_Class which will join together each of the C students with every
driver with Operators Class C! Storing such a result can be miss-interpreted.

148 N. Roussopoulos and D. Karagiannis

the internal representation. Changes that do not affect the primary key can be
introduced directly to the table, e.g. a new column which would only be
populated from follow up data entries. Older tuples would remain partially
empty unless the user explicitly enters new values. Some of the older values
may be reformatted as long as they are not part of the primary key. Since the
primary key is maintained, partially filled tuples can coexist with fully
populated ones.

The above list is by no means complete. A lot more engineering work needs to be
done to make it usable.

4.2 The Concept of Sibdata

In the SD environment some of the ACID properties become irrelevant. For example,
the user has no control over some of the remote sites. However, durability is of great
concern not only on the server site but also on the local site. For example, in a travel
arrangement where several services are used to comprise a complete travel, the
transactions with each of the services involved are limited to each individual service
and no high level of transaction atomicity can be achieved across these services. And
yet, the user is concerned with the durability of the data of all these interactions as
they were produced for a single purpose. Because the ability to collectively or
partially abort or roll back is not available across multiple web service providers, the
user would have to devise compensating actions (transactions) to undo some of these
transactions and manually handle the data involved. This task becomes difficult and
tedious because the user has to dig into his cached data and extract all the pieces
needed to do so. In some cases, the cache may be on the URL field of the browser or
its temporary store, or in the user interface buffers that may be lost accidentally or
forgotten during long interactions. What is needed is a facility for naming and storing
all the data generated during the user’s interactions with multiple services, and an
aggregation mechanism to tie “sibling data” together into a single identifiable and
referenced unit.

We introduce a data grouping mechanism called “sibdata”. This is an analogous to
the concept of the transaction, which groups and treats a collection of actions as a single
processing unit on the database substrate. The sibdata is an aggregation of all the data
produced by one or more transactions and which data may or may not have logical
relationships other than the fact they were “siblings”; that is they were generated as part
of high level activity or inter-related activities, and therefore, all its pieces are dependent
on each other. In SQL jargon, this would be “group by affiliation” rather than “group by
value”. Sibdata is a defining and naming mechanism. The grouping is on the data not on
the transactions involved, and, thus, it is not a high-level transaction. However, each
sibdata is atomic in the sense that the individual data glued together to compose a
sibdata have no significance individually. Naming, saving into persistent storage,
accessing, and maintenance of sibdata become a user’s responsibility and provide
him/her a Conceptual Modeling tool for capturing and managing his/her data service
interactions. Sibdata is a live encapsulation mechanism that allows the user to create his
own data aggregates. It is a convenient and easy to manage data scratchpad. It is also
light-weight because it consists of metadata only and can be easily moved to and/or
accessed from remote sites.

 Conceptual Modeling: Past, Present and the Continuum of the Future 149

Sibdata is a concept that is missing from the database world. The reason for this may
have been that the capturing of raw data, the loading of it in the database, and all the
administration of these processes were considered being, like schema definition,
centralized database activities performed by the DBA. The Extract-Translate-Load
(ETL) activities were hidden from the users. Sibdata may bear some similarity to Object
Oriented database modeling, in which objects were capturing hierarchically aggregated
data objects. However, objects in an OO database model encapsulate access paths
imposed by the hierarchy and thus inherit data dependence. In contrast, sibdata does not
impose any data dependent access paths but treats the components as a set. No
additional semantics are implied other than the subcomponents are glued together.

In the following, we define some basic primitives for sibdata. In a follow up paper
we will define the full set of semantics for distributed sibdata and operational semantics
for storage management and logging, support for Service Level Agreement, etc.

Sibdata Primitives

a) Naming: A sibdata obtains a unique name identifier by the primitive operation
begin_sibdata <sibdata_name>. This primitive starts the collection of all data
interactions under the chosen <sibdata_name>. The sibdata remains open until
an end_sibdata <sibdata_name> that closes the sibdata. The data captured
under the sibdata includes not only the data directed to the screen but also to
other output ports.

b) Annotating: A sibdata is annotated by the user, and such annotations become
meta-data used for searching within a sibdata or in a database of sibdata.
Annotations reference data in sibdata and these references are captured
(tagged) within the sibdata. User annotation is a process that continues after a
sibdata has been closed by the user. The ability for the meta-schema to evolve
is needed as the user discovers new and better ways to organize and search the
sibdata. Tagging is a form of annotation, and is used to relate a metadata
name/label or an annotation to a specific position on the sibdata. The user tags
are used to search and access sibdata. All annotations of a sibdata are deleted
when the sibdata is dropped.

c) Aggregation/Composition: Sibdata may be aggregated/composed with other
sibdata to form new sibdata: Create_sibdata <sibdata_name> with
<sibdata_name> [,<sibdata_name>]. The default semantics would be a light-
weight grouping where the components are referenced only, but deep copy can
be useful in some cases. A sibdata can be also disaggregated or decomposed
by dropping it, Drop_sibdata <sibdata_name>. The sibdata will then be
dropped if it is not referenced by other sibdata. A reference count index has to
be maintained to avoid dangling references with the drop of a sibdata.

d) Maintenance and Scripting Control: Management and archival semantics are
needed. Some of these can be done through some scripting language. These
scripts would be used to display, align or synchronize received data but do not
control the data generation. The scripts allow one to write data driven
management scripts for the sibdata. These control primitives deal only the data
flow and the internal arrangement or positioning of the data components and
not with the control and access paths of the data sources. Therefore, they are
data independent.

150 N. Roussopoulos and D. Karagiannis

e) Logging: Sibdata will also capture the logs of the interactions of services. This
includes time of invocation, parameters, etc. Assuming that a local log is
maintained, each sibdata will store a pointer to the beginning of the position of
the log recording the begin_sibdata and a pointer to the record at the end of it.

The semantics of sibdata are now developed for the distributed environment. Issues
of trust, compliance of Service Level Agreements and dispute resolutions are inherent
to the web service environment.

5 Conclusions

In this paper we advocate for the need to bridge the gap between schema design and
database operation. The schema-during approach allows the user to perform CM
during the database operation and provides a continuum for these activities. We also
introduced the concept of sibdata for aggregating and managing sibling data.

The users need to be trained and equipped with high-level tools to operate in a
schema-during approach. These tools will allow the users to do conceptual modeling
(schema definition and modification) and data management (loading, accessing, and
archiving). We believe that managing the evolution of data and training the end-user
to cope with it is the only viable solution to the explosive data production of the
digital revolution and the constant change of the world we live in.

Acknowledgement

We like to thank Christoph Moser for his help on the coverage of CM and the
suggestions of the editor Alex Borgida on the paper organization. We also
acknowledge U2 for the conception of these ideas.

References

[Ab74] Abrial, J.-R.: Data Semantics. In: Klimbie, J.W., Koffman, K.L. (eds.) Data
Management Systems, pp. 1–59. North-Holland, Amsterdam (1974)

[AG08] Angles, R., Guteierrez, C.: Survey on graph database models. Computing Surveys
(CSUR) 40(1) (February 2008)

[Al00] Alencar, F.M.R., Castro, J., Filho, A.C., Mylopoulos, J.: From Early Requirements
Modeled by the i* Technique to Later Requirements modeled in Precise UML. In:
WER 2000, pp. 92–108 (2000)

[BLM92] Batini, C., Lenzerini, M., Navathe, S.: Database Design: An Entity-Relationship
Approach. Benjamin Cummings Publishing (1992)

[BMF79] Breutmann, B., Mauer, R., Falkenberg, E.: CSL: A language for defining conceptual
schema. Elsevier, North Holland 1 (1979)

[BMS84] Brodie, M., Mylopoulos, J., Schmidt, J.: On conceptual modelling: perspectives
from artificial intelligence, databases, and programming languages. Springer, New
York (1984)

[BRJ05] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (2005)

[Ch76] Chen, P.: The entity-relationship model: Towards a unified view of data. ACM
Transactions on Database Systems 1(1) (1976)

 Conceptual Modeling: Past, Present and the Continuum of the Future 151

[CKM00] Castro, J., Kolp, M., Mylopoulos, J.: Developing Agent-Oriented Information
Systems for the Enterprise. In: Proceedings Second International Conference on
Enterprise Information Systems, Stafford, UK (July 2000)

[Co70] Codd, E.: A relational model for large shared data banks. Communications of the
ACM 13(6), 377–387 (1970)

[Co79] Codd, E.: Extending the database relational model to capture more meaning. ACM
Transactions on Database Systems 4 (1979)

[De79] De Marco, T.: Structured Analysis and System Specification. Prentice-Hall,
Englewood Cliffs (1979)

[DH72] Dahl, O.-J., Hoare, C.: Hierarchical program structures. In: Dahl, O.-J., Dijkstra, E.,
Hoare, C. (eds.) Structured Programming. Academic Press, London (1972)

[EW05] Evermann, J., Wand, Y.: Toward Formalizing Domain Modeling Semantics in
Language Syntax. IEEE Transactions on Software Engineering 31(1), 21–37 (2005)

[Fe02] Fensel, D., Hendler, J., Lieberman, H., Wahlster, W.: Semantic Web Technology.
MIT Press, Boston (2002)

[Fr06] Franklin, M.: The Structure of (Computer) Scientific Revolutions. In: Keynote at
Dow Jones Enterprise Ventures, San Jose, CA (2006)

[HK87] Hull, R., King, R.: Semantic Database Modelling: Survey, Applications and
Research Issues. ACM Computing Surveys 19(3) (September 1987)

[HM78] Hammer, M., McLeod, D.: The semantic data model: A modelling mechanism for
database applications. In: Proceedings of the 1978 ACM SIGMOD international
conference on management of data, pp. 26–36. ACM, New York (1978)

[HSA04] Hussain, T., Shamail, S., Awais, M.M.: Improving quality in conceptual modelling.
In: OOPSLA 2004: Companion to the 19th annual ACM SGPLAN conference on
Object-oriented programming systems, languages and applications, October 2004,
pp. 171–172. ACM, New York (2004)

[Ju08] Juhrisch, M.: Using Enterprise Models to Configure Service-oriented Architectures.
In: Tagungsband – MKWI 2008 (2008)

[Ka08] Kaschek, R.: On the evolution of conceptual modelling. In: Dagstuhl Seminar
Proceedings 08181, Wellington, New Zealand, http://drops.dagstuhl.de/
opus/volltexte/2008/1598 (access, December 2008)

[MS02] Maximilien, E.M., Singh, M.P.: Conceptual Model of Web Service Reputation.
ACM SIGMOD Record 31(4) (December 2002)

[My78] Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.: A language facility for designing
interactive database-intensive applications. In: SIGMOD 1978: Proceedings of the
1978 ACM SIGMOD international conference on management of data (1978)

[My90] Mylopoulos, J., Norgida, A., Jarke, M., Koubarakis, M.: Telos: Representing
Knowledge About Informatin Systems. ACM Transactions on Information
Systems 8(4), 325–362 (1990)

[My92] Mylopoulos, J.: Conceptual Modelling and Telos. In: Loucopoulos, P., Zicari, R.
(eds.) Conceptual Modelling, Databases and CASE: An Integrated View of
Information Systems Development. McGraw Hill, New York (1992)

[My98] Mylopoulos, J.: Information Modeling in the Time of the Revolution. In: 9th
International Conference on advanced information systems engineering (CA ISE
1997), May 1998, vol. 23(3-4), pp. 127–155. Elsevier Science Ltd., Amsterdam
(1998)

[OMG07] OMG: OMG Unified Modeling Language (OMG UML) Infrastructure. Version 2.1.2,
http://www.omg.org/docs/formal/07-11-04.pdf (access: December
2008)

[Pa72] Parnas, D.L.: A Technique for Software Module Specification with Examples.
CACM 15(5), 330–336 (1972)

152 N. Roussopoulos and D. Karagiannis

[Qu 68] Quillian, R.: Semantic memory. In: Minsky, M. (ed.) Semantic Information
Processing, pp. 227–270. MIT Press, Cambridge (1968)

[RLD08] Roach, T., Low, G., D’Ambra, J.: CAPSICUM A Conceptual Model for Service
Oriented Architecture. In: SERVICES 2008: Proceedings of the 2008 IEEE
Congress on Services. IEEE Computer Society, Los Alamitos (2008)

[RM75] Roussopoulos, N., Mylopoulos, J.: Using semantic networks for database
management. In: VLDB 1975: Proceeedings of the 1st International Conference on
Very Large Data Bases (1975)

[Ro77] Ross, D.: Structured analysis: A language for communicating ideas. IEEE
Transactions on Software Engineering 3(1), 16–34 (1977)

[Ro82] Roussopoulos, N.: The Logical Access Path Schema of a Database. IEEE Trans.
Software Eng. 8(6), 563–573 (1982)

[RY84] Roussopoulos, N., Yeh, H.T.: An Adaptable Methodology for Database Design.
ACM Transactions on Database Systems 17(5), 64–80 (1984)

[SS77] Smith, J.M., Smith, D.C.P.: Database Abstractions: Aggregation and Generalization.
ACM Transactions on Database Systems 2(2) (June 1977)

[St02] Stolte, C., Tang, D., Hanrahan, P.: Polaris: A System for Query, Analysis and
Visualization of Multi-dimensional Relational Databases (extended paper). IEEE
Transactions on Visualization and Computer Graphics 8(1) (January 2002)

[Su05] Susi, A., Perini, A., Mylopoulos, J.: The Tropos Metamodel and its Use.
Informatica 29, 401–408 (2005)

[TF76] Taylor, R.W., Frank, R.L.: CODASYL database management systems. ACM
Computing Surveys (CSUR) 8(1), 67–103 (1976)

[TL76] Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical database management: A survey.
ACM Computing Surveys (CSUR) 8(1), 105–123 (1976)

[Ts76] Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical database management: A survey.
ACM Computing Surveys 8(1), 105–123 (1976)

[VdM05] Vara, J.M., de Castro, V., Marcos, E.: WSDL Automatic Generation from UML
Models in a MDA Framework. In: Proceedings of the International Conference on
Next Generation Web Services Practices (2005)

[Yu95] Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science (1995)

[Zl77] Zloof Moshé, M.: Query-by-Example: A Data Base Language. IBM Systems
Journal 16(4), 324–343 (1977)

On Conceptual Content Management
Interdisciplinary Insights beyond Computational Data

Joachim W. Schmidt

Institute for Software Systems
Hamburg University of Science and Technology

j.w.schmidt@tuhh.de

“Move away from any narrow interpretation of databases
and expand its focus to the hard problems faced by broad
visions of data, information, and knowledge management.”

Motto of the 12th International Joint Conference on Extending
Database Technology and Database Theory, Saint-Petersburg, 2009

Abstract. Instead of looking at content management as an extension
of traditional database technology (“blobs”) we exploit – in close cooper-
ation with our colleagues from Art History – the notion of symbol as de-
fined by Ernst Cassirer [1] in the cultural sciences. Since context binding,
its definition, application and control, is crucial to cultural symbol man-
agement, and, therefore, to content and concepts as the two closely inter-
twined sides of cultural symbols, its demands are detailed and designed
in a λ-calculus framework. Cassirer’s request for open and dynamic sym-
bol definition and modification leads us to a generator framework for the
implementation of Conceptual Content Management Systems (CCMS).
This presentation of our work is slightly allegoric and concentrates on
the foundation, rationale and implications of this research.

1 Introduction: Motivation and Overview

When starting our research in conceptual content modeling and management,
we considered two substantially different alternative paradigms to orient and
direct our work:

1. Either we could follow a conservative approach and develop content manage-
ment strictly out of Computer Science, by essentially “Extending Database
Technology” ([2] etc.). In this case we would consider content management
as a specific data-intensive and user-oriented application area with domain-
specific models, languages and methodologies.

2. Or we could start from the humanities and - based on Marshall McLuhan
and his general notion of media as “The Extensions of Man” [3], try to
understand content management in terms of such extension and its roots.
Based on these insights, user-adequate models for media content could be

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 153–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 J.W. Schmidt

developed along with model-based software architectures and systems for
the extended functionality of (multi-) media content management.

Like many of our colleagues, in our earlier work we essentially took route
number one, and tried to advance computer science by extending systems along
their technical dimensions:

– transient data were generalized into objects with lifetime including
persistence [4]

– built-in monomorphic types were extended into extensible polymorphic type
systems [5]

– single-threaded programs were expanded to multi-threaded executions [6]
– centralized computers were integrated into communicating computer net-

works, etc.

The issue of “usability and responsiveness” usually was regarded as a sec-
ondary one: “appropriate” user interfaces were added to technical solutions, and
technically interested and trained user communities learned how to cope with
them.

There were essentially two lines of influence which led us to choose route
number two for our work in conceptual content management.

First of all, there was, what I would call the Toronto influence: John Mylopou-
los’ early work on Conceptual Modeling [7] (and our marginal contributions to
it) made us sensitive to the higher-levels of application modeling beyond the
use of programming languages and database models [8]. In addition, there was
the influence of Marshall McLuhan’s work and of our occasional visits to his
“Center for Culture and Technology” at the University of Toronto in the late
70ies. McLuhan’s understanding of media as “the extensions of man” triggered
our view of content as something substantially different from just being “blobs”
- binary large objects.

In addition, we were influenced by our specific Hamburg constellation: in the
early 90ies we had started an interdisciplinary research project with partners
from Art History (Martin Warnke and his Hamburg institute). Due to their work
on political iconography [9] we had access to ample image, text and data material
organized around concepts from the domain of art and politics - although all
this material was represented through paper cut and paste. Methodologically,
Hamburg art historians are still heavily influenced by their former colleagues Aby
Warburg and Ernst Panofsky, from whom we learned not only how to establish
adequate descriptions of objects of art but also how to (partially) capture their
meaning.

Finally, and most importantly, this “Warburg connection” was our bridge to
Ernst Cassirer who also had worked at Hamburg University - he even was one of
its presidents before he had to leave Germany in 1933 - and his profound research
in Symbolic Forms [1, 10, 11]. According to Cassirer, man’s most important
capacity is his ability to freely create his own symbol systems, and the modus

On Conceptual Content Management 155

operandi of extensions of man is his capability to do open and dynamic symbolic
forming – man as animal symbolicum [1] and1 as symbolic species [12].

Cassirer defines symbols as indivisible units capable “to encompass the totality
of those phenomena in which the sensuous is in any way filled with meaning
(... “SinnerfÃĳllung” des Sinnlichen)”, and what humans recognize is not just
“a simple intuitive datum”, instead it does “follow from a process of symbolic
formation (... ist Ertrag und Ergebnis eines Prozesses der symbolischen Formung
[1]).” And this process of symbolic formation is open, no predefined and fixed
ontologies, and dynamic, a continuous activity, highly personalized. This means
that Cassirer leaves Kant’s fixed framework of a closed, time-unrelated apriori
in favor of open and dynamic aprioris legitimated pragmatically only by their
performance and truth in processes of interest [11].

Based on the above mindset we structured our research programme on con-
ceptual content management as follows. After consolidating our view on symbols
along the line of Cassirer and McLuhan we modeled Objects of Art [13] (and
other content-intensive artifacts) as content-concept pairs with a functional ap-
proach to the definition of bindings and to binding control (section 2). Conse-
quently, when designing our languages for content definition and querying we
started from a typed λ-calculus as a model basis for content abstraction and
application (section 3). Since we see content as typed symbols with the binding
abilities of linguistic objects [13] and since, due to Cassirer, symbols have to be
defined and manipulated within open and dynamic environments we choose a
generator technology for system implementation (section 4).

To summarize, the main purpose of this interdisciplinary work was to gain a
deeper insight into content management based on a generalized notion of sym-
bol. In addition, we wanted to benefit methodologically from the experience of
Art History as a discipline with a long tradition in understanding, and not just
describing, conceptually complex content. And, in doing so, hoping that this
know-how transfer into Computer Science may result in some interesting scien-
tific and technical insights in general content management which, perhaps, might
lead to some commercially relevant results [14].

In our interdisciplinary cooperation project with our colleagues from Art His-
tory we, as trained natural scientists with a programming language and database
background, learned the following message which essentially determined this re-
search:

“In Kant’s expression, the natural sciences teach us “to spell out phe-
nomena in order to read them off as experiences”; the science of culture
teaches us to interpret symbols in order to decipher their hidden mean-
ing, in order to make the life from which they originally emerged visible
again.” [10, p. 86]

1 While for Cassirer [1] symbols are the basis for knowledgeable representations, Dea-
con [12] emphasizes the role of symbols for meaningful identification. Computer
Science, finally, specializes in symbol manipulation, in particular, symbol reduc-
tion. This threefold use of symbols deserves, in our opinion, a deeper and coherent
investigation.

156 J.W. Schmidt

2 Conceptual Content Modeling: Foundation and
Rationale

Computer science was always regarded as a symbol manipulating discipline. The
general notion of symbol is that of instance-category or token-type pairs, e.g.,
<7, integer> or <true, Boolean>.

In the following, we will briefly sketch Cassirer’s view of symbols as general
content-concept pairs and the role they play in the natural and in the cultural
sciences, and relate this view to our work in computer-based conceptual content
management.

Cassirer [10] accepts a notion of symbol similar to that of the natural sciences,
but generalizes it from its limitations by theory-based categories and extends its
usability to cultural sciences.

Formal categories turn out to be appropriate for representing the results (or
their abstractions) ofwhatCassirer calls perception of things (Dingwahrnehmung).
This form of perception may best be characterized by the relationship between the
recipient and the received: in the natural sciences, the received is conceived by the
human receptor as an alien thing - aliena res, aliud, the me and the it.

Cultural sciences, on the other hand, are characterized by what Cassirer calls
perception of expression (Ausdruckswahrnehmung), the received is recognized by
the human as an alter ego, the me and the you.

Cultural sciences are, and have to be, far less formal than the natural sciences;
they characterize their categories not by axioms or formal denotations. Instead,
cultural objects are characterized by a variety of different concepts of form and
style.

“The wealth of different concepts of form and style that the science of
culture develop serves finally this one task: only through them is the
revival, the “palingenesis”, of culture possible.” [10, p. 77]

How is meaning then assigned to cultural categories if not by formal state-
ments? How else can this reflexive and analytic process which is so essential for
the understanding of objects of art be supported? In particular, since, as Cassirer
emphasizes

“Culture is forever creating new linguistic, artistic, and religious symbols
in an uninterrupted stream. However, science and philosophy must de-
compose the symbolic language into its elements in order to make them
intelligible. They must treat analytically what was produced syntheti-
cally.” [10, p. 86]

One pragmatic way for supporting this process of understanding as well as
teaching and learning in Art History is realized by exemplifying categories by
selected sets of particularly striking examples (“best practice”) [15, 16, 9]. Cas-
sirer also insists on emphasizing that the instance-category relationship in the
natural sciences and in mathematics differs essentially from that in the cultural
sciences. Type inference and type subsumption, for example, on the one hand,
and the use of selected instances as training sets (e.g., [17]) on the other.

On Conceptual Content Management 157

Fig. 1. Image card: Equestrian statue [9]

“We understand a science in its logical structure only once we have clar-
ified the manner in which it achieves the subsumption of the particular
under the universal.” [10, p. 69]

As an example for subsumption in the cultural sciences, Cassirer refers to
Jacob Burkhard when he tried to specify the characteristics of the “Renaissance
Man”, of the leading personalities of the Quattro cento, of a Leonardo Bruni,
Lorenzo Valle, . . . da Vinci, Machiavelli, Michelangelo, Borgia, etc. The result
was that whatever set of characteristics was used for one person didn’t fit most
of the others.

“The particular individuals belong together, not because they are alike
or resemble each other but because they cooperate in a common task,
which, in contrast to the Middle Ages, we sense to be new and to be the
distinctive “meaning” of the Renaissance. All genuine concepts of style
in the culture of science reduce, when analyzed more precisely, to such
concepts of meaning.” [10, p. 72]

So, the instance-category relationship in the cultural sciences is usually not
defined axiomatically by being a successor of zero or by being generated by
sequences of push and pop operations. Instead, persons, for example, are qual-
ified under the category “Renaissance Man”, by meeting certain non-functional
requirements such as working towards certain goals or sharing given standards
or quality constraints [18, 19]. Despite these differences between natural and cul-
tural sciences, Cassirer proposes for both areas the same notion of
symbol, defined as indivisible pairs of the sensuous content and its conceptual
meaning [1].

Warnke’s project on Political Iconography (PI) gave us the unique opportu-
nity to work with some hundred thousands of such symbols (Fig. 1, Equestrian

158 J.W. Schmidt

statue) represented by image cards. They are essentially used to define the cate-
gories relevant to the domain of political iconography and to give them meaning
by carefully selected example sets [9]. We computerized a subset of Warnke’s
material (see, http://www.welib.de/) essentially by following Cassirer’s notion
of symbol. For our purpose, we call such symbols assets [20].

Cassirer also recognized the importance of persistence for his generalized no-
tion of symbols. Cassirer calls persistent symbols monuments :

“What is actually preserved for us from the past are specific historical
monuments, “monuments” in words and writing, in image and bronze.
This becomes history for us only once we begin to see in these monuments
symbols not only in which we recognize specific forms of life, but by virtue
of which we are able to restore them for ourselves.” [10, p.77]

Fig. 2. Assets as content-concept pairs

Cassirer’s model corresponds in a sense to what we had found essential for the
realm of databases: content vs. values, concepts vs. types or domains, symbols
vs. typed objects, monuments vs. persistent objects and, finally, there is the
overall correspondence of goals: “to make monuments readable again” [10, p.77].

3 Languages for Conceptual Content: Design and Use

In his essays on Art and its Objects [13] Richard Wollheim also chooses a type-
token-framework for discussing the essence of cultural entities. After rejecting
several alternatives (such as the material object hypothesis, the Ideal theory and
the Presentational theory) Wollheim favours a view of art objects as linguistic
objects. Referring to Ludwig Wittgenstein [21], Nelson Goodman [22] and others,
Wollheim emphasizes the analogy between art and language, since “both are
heavily intertwined with the complex of our habits, experiences, skills” and that
both cannot exist outside this relationship (and vice versa).

On Conceptual Content Management 159

As a consequence, adequate representations of objects of art have to master,
just as linguistic objects do, rather complex and variable binding schemes re-
lating a wide variety of objects often reaching into domains outside art. Such
bindings, which a learned art historian is making implicitly, have to be made
explicit in any representation for it to be meaningful to others (and to computer
systems).

Fig. 3. Asset refinement for Dürer’s etching Adam and Eve

Computer scientists have learned to understand and master such binding
demands essentially by the means of λ-calculus (e.g., [23]). λ-expressions are
linguistic entities for which, by abstraction, selected code elements can be distin-
guished as being bindable, and then be explicitly bound by application of other
λ-expressions [20, 24].

160 J.W. Schmidt

Fig. 4. Asset graph: abstraction, application and selection

Roughly speaking, by our asset approach we treat content as code2 and allow
typed asset abstraction and application over content (Fig. 3: Asset definition and
refinement for Dürer’s etching “Adam and Eve”). Consequently, the asset system
has as its kernel a typed λ-calculus engine embedded into an o-o-like λ-expression
editor, and sitting on top of an open and dynamic persistence machine (see Section
4). The asset system is accessible by a linguistic as well as a graphical interface.

Beginning with Aby Warburg [25] and in particular with Erwin Panofsky [26,
27, 28], art history also developed a methodological approach to the systematic
specification of objects of art.

Based on the grounding level of pure existence (level 0) Panofsky introduces a
first level, where descriptions (Beschreibung) of objects of art are given in terms
of general purpose domains such as length, weight, time etc. or other generally
understood terms.

Level 2 gives the meaning (Bedeutung) of objects by introducing the specific
iconographic vocabulary used by the artists working in a certain domain. On
this level, a snake, for example, is not just an animal, as a description given
on level 1 would say; a snake on level 2 was for Dürer an icon for temptation
or persuasion. Finally, on level 3, objects of art are additionally represented by
general cultural effects (Wirkung) they cause or by which they are affected.

Panofsky (see table 1) emphasizes that higher strata include the lower ones,
i.e., objects represented for example on the 3rd level of iconology also include a
representation on levels 2, 1 and 0.

2 Wollheim objects to the notion of content as code [13, p.83]. His understanding of
code is, however, different of that of computer scientists: he refers to code as a specific
encoding of a language, e.g., by semaphores, binaries or other alphabets and not as a
piece of language text (as computer scientists do).

On Conceptual Content Management 161

Table 1. Panofsky Strata; Example: Dürer’s Etching Adam and Eve

Representation levels:

0. Individual (existence level): plain media view (image, text, speech, ...)
1. Characteristics (description level, pre-iconographic): color, sizes, age, ...; names

(artists, periods, regions, ...) humans, animals, fruits, trees, ...
2. Iconography (meaning level): paradise, seducing Eve, curious Adam, tempting ap-

ple, sinful snake, ...
3. Iconology (effect level): Jewish and Christian ethics and legal systems, their origins

and consequences, ...

If we compare this approach with computational data modeling then tradi-
tional databases would best correspond to Panofsky level 1. Application enti-
ties are described by reference to general-purpose domains such as space, time,
money etc. If such descriptions are highly regular and, in addition, content is
empty then assets collapse with the schema-defined Cartesian structures of re-
lational tuples or with class-generated objects. In this sense, Panofsky level 2
could best be compared with the domain-specific approach of (digital) libraries
[29] [30] while Panofsky level 3, allowing general reference to cultural concepts
and content, might best be related to open web-provided content [31].

Panofsky’s methodological approach to image description and understand-
ing was not unanimously accepted. Critics were, for example, based on the fact
that there was no room for any elements of stile and form used by an artist [32].
Panofsky did, for example, not model the expressive means of light or the specific
use of certain colors, of shade, perspective etc. or the meaning of neighbourhood
relationships. This omission of expressional properties leads to the problem of
integration and disintegration of the iconology-oriented method [33] and is def-
initely a serious deficit in Panofsky’s approach. This is particularly true since
Cassirer has already emphasized (see above) that the perception of expression
(Audruckswahrnehmung) is of central importance to the cultural sciences.

There are attempts to overcome such deficits, for example, for literary ob-
jects of art or linguistic content in general. Wilhelm Schneider [34], for example,
positions literary objects in an n-dimensional space of ordered expression types
(Ausdruckstypen) such as

– strength: weak ↔ extensive
– agressivity: low ↔ strong
– trust: little ↔ substantial
– emotion: low ↔ high

The meaning of such expression types are defined - just as Warnke does it for
Political Iconography - by typical example sets from the literature.

Pre-iconographic, description-level bindings usually characterize an object as
a whole (unless the object itself is a composit one, as, for example, a triptych).
However, bindings to iconographic elements of images (Panofsky level 2) typically
don’t refer to entire images but only to selected elements. Therefore, selector

162 J.W. Schmidt

Fig. 5. Asset selection and reduction

schemes typical for assets of a certain kind, e.g., for 2-dimensional images, are
made available. Spatial selectors can be applied to images and then, in a sense,
be reduced to assets with spatially selected content (see Fig. 5: Asset selection
and reduction).

The iconic elements of Dürer’s “Adam and Eve”, snake or apple, for example,
can first be selected by means of some parameterized selector spatial ; in a second
step, λ-abstractions and λ-applications can be made: the iconographic definition
of snake, for example, can be applied to the selected component instead of work-
ing on an asset as a whole (Fig. 4: Asset graph: abstraction, application and
selection). Selection can be nested to any depth.

A2 = λt : temptation((λs : spatial.A2)<4,4;6,7>)snake

Only in rather specific cases can our λ-expressions be reduced algorithmically.
Asset selection is one of these cases (Fig. 5: Asset selection and reduction).

In general, assets serve the purpose of being explicit persistent denotations of
semantically rich entities represented by complex symbol networks. If at all we
can see the process of “reduction” taking place in the mind of a human viewer,
who, based on rich, informative and comprehensible binding structures, is able
to “reduce” assets to its own mental objects of understanding. Therefore, the
issue of graphical interface design and development was essential for this work
(Fig. 6: Graphical user interface for asset manipulation and comprehension) [24].

In addition to system support for easy construction, access and comprehension
of asset networks, our research also addresses issues of query languages for such

On Conceptual Content Management 163

Fig. 6. Graphical user interface for asset manipulation and comprehension [24]

persistent asset systems. Query optimization is approached by exploiting partial
regularities of asset graphs and mapping them into schemata which can finally
be handled by conventional database technology. The syntactic and semantic
fine print of the Asset Language and the system implementation can be found
in [24, 20, 35].

We used and evaluated the asset language and its technology in extensive
content-intensive applications. In the GKNS project, for example (GKNS:
Geschichte der Kunstgeschichte in der Zeit des Nationalsozialismus; Art His-
tory in the Third Reich [36]), the Art History departments of Humboldt Uni-
versity, Berlin, the Universities of Bonn, Hamburg, Munich cooperated together
with our institute at TU Hamburg as technology provider. The GKNS project
had access to several large historical archives and evaluated extensive volumes
of mainly administrative material on German art history departments during
the time between 1930 and 1950. The project established a web portal giving
access to a coherent network of resources (see, http://welib.de/gkns) for an
intensive research on this topic. Since the portal intends do provide more than

http://welib.de/gkns

164 J.W. Schmidt

Fig. 7. Venia Legendi for Ludwig Heidenreich: document and its context [24]

just large volumes of scanned documents, content as well as its context has to
be modelled conceptually (Fig. 7: Venia Legendi for Ludwig Heidenreich: docu-
ment and its context). The context includes assets on colleagues, administrations,
publications, locations and institutions etc. and is intended to be as unbiased
as possible. This neutrality of concepts and content is further encouraged by
allowing a variety of personalized extensions and versions of asset networks [24].

Conceptually we position our work, as we have seen, in a language frame-
work. Another reason for doing so is Cassirer’s explicit demand for an open
and dynamic approach to symbolic forming. This implies, as discussed in the
subsequent section, substantial technical consequences for a CCM system archi-
tecture. (Another reason may be our personal background in and preferences for
computer languages and language technology).

4 A Generator Framework for Conceptual Content
Management

It is central to the approach of Cassirer that the process of symbol forming
has to be open and dynamic. If we are still willing to take Marshall McLuhan’s
view and accept a media approach to symbolic forming – media as extensions
of man – then any extended support for the human symbol determination effort

On Conceptual Content Management 165

Fig. 8. CCMS generation processes

(Bestimmungsleistung), any symbol handling support system (and that’s how
we look at conceptual content management), also has to be open and dynamic.
And open and dynamic modeling requires that domain modeling becomes part
of the domain experts’ working process.

For our assets, openness implies that any kind of a fixed, a-priori model is
not appropriate. The choice of concepts to be assigned to content is totally free
and not at all restricted by pre-defined and prescribed ontologies. Also, the ex-
emplar sets (learning sets) used for concept definition are subject to changes.
Such openness is also required for the refining and value-adding processes of
content abstraction and application. Furthermore, for each existing asset such
definitions and assignments must be changable unrestrictedly and at any time.
While open model definition and change is a rather challenging implementa-
tion demand, the operational requirements of CCMSs are less demanding: it is
generally sufficient that a generic CRUD-functionality (Create-Retrieve-Update-
Delete) together with generic presentation as well as query and communication
services be provided on openly defined symbols systems.

Dynamics means that the open flexibility sketched above has to be available
“online” without any delay by any software engineering life cycles. Whenever a
user wants to make changes, the CCMS has to react instantaneously. This also
implies that all the generic services provided by a CCMS such as query facilities,
presentation services, and in particular, all the communication and cooperation

166 J.W. Schmidt

Fig. 9. Six kinds of CCMS modules

capabilities between sequences of model versions of a specific user as well as
between the models of a cooperating user group have to work continuously under
such changes.

Under the above conditions, traditional software engineering approaches such
as generic software systems, domain-specific software, individually developed
software, etc. turn out to be either too restricted – when it comes to model
extension – or too powerful for the functional demands of CCMS operation.

As a consequence, we favour a generative approach to CCMS construction
[37, 35]. Over a fixed basis of (essentially CRUD) functionality we generate a
member of a family of CCM systems for each substantially changed version of
asset models, including the communication glue to make such versions cooperate.

Figure 8 gives an overview of the CCMS implementation (i.e., generation)
process. The arrows pointing downwards illustrate the initial generation of a
CCMS, the arrows pointing from left to right the incremental generation that
copes with model changes.

Generation starts from asset expressions in a language that allows to openly
define, change, and interrelate domain models.

Implementations of generic functionality are generated in the form of so-called
modules. Modules encapsulate one implementation of the generic functionality
following the principle of separation of concerns. The kinds of modules for the
most frequently occurring tasks are illustrated in Fig. 9. All modules have a
uniform interface and can be composed in layers. This makes it possible to
always combine modules in the way most appropriate to the task at hand. The
module interface reflects generic functionality. Each module can thus base its
functionality on calls to the module(s) of the underlying layer.

Modules are used to implement components. Each component encapsulates
one CCM model as well as all the asset instances already created according to
that model. A component offers services to the overall CCMS, where the services’
functionality is assembled from the functionality provided by modules.

Therefore, modules are concrete units that establish code reuse, whereas com-
ponents are logical units that establish content reuse.

Modules can be of several kinds:

– server modules access components via standard protocols.
– The data bound to asset instances are stored in third party systems, databases

in most cases. Mapping asset models to schemata of such systems is done by
client modules.

On Conceptual Content Management 167

– A central building block of the architecture of generated CCMSs is the me-
diator architecture [38]. In our approach it is implemented by modules of
two kinds. The first are mediation modules which delegate requests to other
modules based on the request.

– The other kind are transformation modules. By encapsulating mappings in
such modules rather than integrating this functionality into other modules,
mappings can be added dynamically (compare [39]).

– Hub modules uniformly distribute calls to a larger number of underlying
modules.

– By use of distribution modules components can reside at different physical lo-
cations and communicate by exchanging asset encoding in some marshalling
format.

These module kinds have been identified with respect to the requirements
of open and dynamic CCMSs. Various patterns are applied in order to offer
specific CCMS services. For example, schema evolution leads to a combination
of client, transformation, and mediation modules (indicated in Figure 10, see
[20] for details).

The generation of various software artifacts is performed by a CCM model
compiler. More precisely, we have defined a compiler framework that allows to
define compiler instances for different CCMS setups. One of the extension points
of this frameworks is the back-end, where different generators can be registered,
each of which provides one implementation of one module kind.

One of the tasks of the compiler framework itself is the scheduling of generator
execution. Schedules are computed based on information on producer/consumer
relationships between the generators. Figure 11 illustrates this for the example of
the generation of a web service server module. A set of generators is involved in
this effort: the API generator generates the uniform API from the given model.

Fig. 10. A sample module organisation

168 J.W. Schmidt

An XSD generator generates an XML schema definition that allows to encode
assets of the given model in XML. A WSDL generator generates the web service
descriptions for the services to be offered. Finally, the generator WS Impl creates
the server module for Web Services. As shown in Fig. 11, WS Impl depends on
the API (since this API has to be implemented) and the WSDL definition,
which in turn depends on the XSD. Therefore, the generator executions have to
be scheduled accordingly.

To summarize, the compiler framework in conjunction with the target ar-
chitecture allows one to define software components with a functionality that
is assembled from generic functionality. Compiler applications generate the re-
quired functions for assets according to a current model. Evolution is handled by
incremental generation: a new CCMS is generated for a new model, an existing
CCMS for the previous model is integrated. Content is retained and incremen-
tally transformed to the new model. Communication between systems of different
users or user groups is maintained in the same way.

The generative approach allows to meet the openness and dynamics require-
ments to a substantial degree: models can openly be defined and changed, and
CCMSs follow such changes dynamically.

Open model changes are applied by defining a new model and relating it
to the model currently in use. As seen above, asset redefinitions result in the
generation of a new CCMS that starts a new content base with new schemata
etc. This is why more changes are possible in model redefinitions than there are
legal additions to, for example, subclass definitions in object-oriented models.
While removing attributes from a subclass is not sound in an object-oriented
type system, attributes can simply be dropped during asset model evolution and
system generation – access to existing instances simply hides the attribute. For
the same reason, extensional definitions of concepts can be changed.

The fact that existing CCMSs are kept as subsystems (in the form of compo-
nents) during evolution (see Fig. 10) allows us to maintain working relationships
between revisions and variants of domain models, each of which is implemented
by a component of a CCMS. Content is preserved in the previous CCMS. Since
schemata, formats, etc. remain unchanged, there is no need for instantaneous
content migration. Instead, existing content can be accessed in terms of a new
model and is incrementally migrated through mediators. The fact that this hap-
pens whenever a user works with an asset provides quality assurance, since there
are only explicit updates, no automatic migration.

Since both the (generic) functionality as well as the services defined on top
of that functionality stay the same for all CCMS revisions and are applied in a
model-specific way, all other CCMS components as well as the CCMS users can
continuously interact with the respective CCMS. This is how communication be-
tween users whose models have been derived from a common ancestor model is
maintained. In the same way that users can access previously generated CCMSs
as subsystems, communication uses adaptation and mediation to maintain com-
munication paths between different CCMS components that include modules to
access each other.

On Conceptual Content Management 169

Fig. 11. Compiler framework

The ability to dynamically generate modules, to assemble them to form com-
ponents, and to integrate an existing CCMS to form an updated CCMS is the
means to achieve the desired dynamics. CCMS evolution does not interrupt the
users’ work since it does not involve manual software development cycles, and
both the content base as well as existing communication paths are automatically
maintained.

In section 2 we mentioned Cassirer’s two different kinds of symbols, the ones
in the cultural sciences essential for human communication and the ones based
on the formal categories of the natural sciences which includes, of course, our
discipline and its computational technology (alter ego vs. aliena res). From that
point of view, our effort of CCMS software implementation is essentially a map-
ping exercise between these two kinds of symbols – the symbols in the cultural
and in the natural sciences.

5 Conclusion

In this research we argue forcefully against any fixed and prescribed ontologies
for conceptual content modeling and management. Instead, we follow Cassirer’s
approach according to which the essential capacity of man – of the animal sym-
bolicum – is his abstract gift of open and dynamic forming of extensible symbol
systems.

Cassirer’s open and dynamic approach to the genesis and lifetime of symbols
serves as the blueprint for our software system development in conceptual content

170 J.W. Schmidt

management. Starting from simple services for computational content containers,
such as jpeg or ASCii files or databases, content can be introduced into media
objects and lifted to the objects of our asset language and system. Assets can
then meander through the value-adding Panofsky strata of content description
and meaning assignment: from the pre-iconic conceptual level with extensive
object descriptions up to assets with an iconographic meaning and, finally, to
the levels of iconological significance.

In the light of McLuhan, with his already very broad view on the notion of
media (his view includes radio and television as well as cars and money as media)
Cassirer’s symbolic forming, i.e., the abstract capacity of humans to open and
dynamically form extensible symbol systems should then be “the mother of all
media” – the ultimate “extension of man”.

And it is Computer and Communication Science which provides the means to
substantially and adequately support such extensible symbol systems and sym-
bolic media in multiple directions. Probably, it is this potential of our discipline
and this need for our discipline which explains its surprising success and makes
it the symbol-oriented medium.

Acknowledgement

I would very much like to give to my friends and colleagues Martin Warnke,
Hans-Werner Sehring and Sebastian Bossung my sincere thanks for their con-
stant interest in this research and for their substantial scientific and technical
contributions. Many thanks also to Mrs. Helen M. Pert who looked, as she had
always done in the past, over the English text.

References

[1] Cassirer, E.: Philosophie der symbolischen Formen, Hamburg (1923); see also:
Felix Meiner Verlag, Hamburg (2001); The Philosophy of Symbolic Forms. Yale
University Press, (1955)

[2] Schmidt, J.W., Missikoff, M., Ceri, S. (eds.): EDBT 1988. LNCS, vol. 303.
Springer, Heidelberg (1988)

[3] McLuhan, M.: Understanding Media: The Extensions of Man. The MIT Press,
Cambridge (1994)

[4] Schmidt, J.W.: Some high-level language constructs for data of type relation.
ACM Transactions on Database Systems, 247–261 (1977)

[5] Matthes, F., Schmidt, J.W.: Bulk Types: Built-In or Add-On? In: Kanelakis, P.,
Schmidt, J.W. (eds.) Proc. Third InternationalWorkshop on Database Program-
ming Languages, Nafplion, Greece, Morgan Kaufmann Publishers, San Francisco
(1991)

[6] Mathiske, B., Matthes, F., Schmidt, J.W.: On Migrating Threads. Journal of
Intelligent Information Systems 8(2), 167–191 (1997)

[7] Brodie, M., Mylopoulos, J., Schmidt, J.W.: On conceptual modelling - perspec-
tives from artificial intelligence, databases, and programming languages. Topics
in information systems. Springer, Heidelberg (1984)

On Conceptual Content Management 171

[8] Schmidt, J.W., Wetzel, I., Borgida, A., Mylopoulos, J.: Database programming
by formal refinement of conceptual designs. IEEE – Data Engineering (1989)

[9] Warnke, M., Fleckner, U., Ziegler, H.: Handbuch zur Politischen Ikonographie.
Verlag Beck, München (2009)

[10] Cassirer, E.: Zur Logik der Kulturwissenschaften, Göteborg (1942); see also: Wis-
senschaftliche Buchgesellschaft, Darmstadt (1961); The Logic of the Cultural Sci-
ences, Yale University Press (2000)

[11] Schmitz-Rigal, C.: Die Kunst offenen Wissens (The Art of Open Knowledge).
Felix Meiner Verlag, Hamburg (2002)

[12] Deacon, T.W.: The Symbolic Species. The Co-evolution of Language and the
Brain. W.W. Norton Company, New York (1997)

[13] Wollheim, R.: Art and its Objects. Harper and Row, New York (1968); see also:
Objekte der Kunst. Suhrkamp Verlag, Frankfurt am Main (1982)

[14] Gawecki, A., Matthes, F., Schmidt, J.W., Stamer, S.: CoreMedia AG. Co-founder
of CoreMedia AG, Hamburg (1998); http://www.coremedia.com

[15] Sehring, H.-W., Bossung, S., Schmidt, J.W.: Active learning by personalization -
lessons learnt from research in conceptual content management. In: Proc. of the
1st International Conference on Web Information Systems and Technologies, pp.
496–503. INSTICC Press, Miami (2005)

[16] Sehring, H.-W., Bossung, S., Schmidt, J.W.: Collaborative e-learning processes
in conceptual content management systems. In: Proc. of the IADIS International
Conference on Cognition and Exploratory Learning in Digital Age, IADIS, pp.
397–400 (2007)

[17] Hastie, T., Tibshirani, R., Friedman, J.: The elements of Statistical Learning:
Data Mining, Inference and Prediction. Springer, Heidelberg (2001)

[18] Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-functional re-
quirements: A process-oriented approach. IEEE Transactions on Software Engi-
neering, Special Issue on Knowledge Representation and Reasoning in Software
Development, 483–497 (1992)

[19] Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering. Kluwer, Dordrecht (2000)

[20] Sehring, H.-W., Schmidt, J.W.: Beyond Databases: An Asset Language for Con-
ceptual Content Management. In: Benczúr, A.A., Demetrovics, J., Gottlob, G.
(eds.) ADBIS 2004. LNCS, vol. 3255, pp. 99–112. Springer, Heidelberg (2004)

[21] Wittgenstein, L.: Philosophische Untersuchungen. Suhrkamp Verlag, Frankfurt
am Main (1960)

[22] Goodman, N.: Languages of Art, New York (1968); see also: Sprachen der Kunst.
Suhrkamp-Verlag, Frankfurt am Main (1969)

[23] Révész, G.: Lambda-Calculus, Combinators, and Functional Programming. Cam-
bridge University Press, Cambridge (1988)

[24] Bossung, S.: Conceptual Content Modeling: Languages, Applications, and Sys-
tems. PhD thesis, Hamburg University of Science and Technology (2007)

[25] Warburg, A.: Italienische Kunst und internazionale Astrologie im Palazzo Schi-
fanoja zu Ferrara, Gesammelte Schriften, vol. 2. Leipzig-Berlin (1932); see also:
Heckscher, W.S.: The Genesis of Iconology (1964)

[26] Panofsky, E.: Zum Problem der Beschreibung und Inhaltsdeutung von Werken
der bildenden Kunst. Logos 21 (1932); see also: Aufsätze zu Grundfragen der
Kunstwissenschaft, Berlin (1964)

[27] Panofsky, E.: Iconography and Iconology: An Introduction into the Study of Re-
naissance Art. Meaning in the Visual Arts. Doubleday Anchor Books, Garden
City, NY (1955)

http://www.coremedia.com

172 J.W. Schmidt

[28] Panofsky, E.: Meaning in the Visual Arts. Doubleday Anchor Books, Garden City,
NY (1955)

[29] Svenonius, E.: The Intellectual Foundation of Information Organization. The MIT
Press, Cambridge (2000)

[30] Schmidt, J.W., Schroeder, G., Niederee, C., Matthes, F.: Linguistic and archi-
tectural requirements for personalized digital libraries. International Journal on
Digital Libraries, 89–104 (1997)

[31] Bossung, S., Sehring, H.-W., Hupe, P., Schmidt, J.W.: Open and dynamic schema
evolution in content-intensive web applications. In: Proc. of the Second Interna-
tional Conference on Web Information Systems and Technologies, pp. 109–116.
INSTICC Press (2006)

[32] Dittmann, L.: Zur Kritik der kunstwissenschaftlichen Symboltheorie. Ikonographie
und Ikonologie. DuMont Verlag, Köln (1967)

[33] Forssmann, E.: Ikonologie und allgemeine Kunstgeschichte. Ikonographie und
Ikonologie. DuMont Verlag, Köln (1967)

[34] Schneider, W.: Ausdruckswerte der Deutschen Sprache – Eine Stilkunde. Wis-
senschaftliche Buchgesellschaft, Darmstadt (1968), Expression Values of the Ger-
man Language - Elements of Style, Leipzig und Berlin (1931)

[35] Sehring, H.-W.: Konzeptorientierte Inhaltsverwaltung – Modell, Systemarchitek-
tur und Prototypen. Dissertation, Hamburg University of Science and Technology
(2003)

[36] Sehring, H.-W., Bossung, S., Schmidt, J.W.: Die Warburg Electronic Library:
Materialien und Dokumenten zur Geschichte der Kunstgeschichte im National-
sozialismus. Schriften zur modernen Kunsthistoriographie, pp. 39–61 (2008)

[37] Sehring, H.-W., Bossung, S., Schmidt, J.W.: Content is capricious: A case for
dynamic system generation. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.)
ADBIS 2006. LNCS, vol. 4152, pp. 430–445. Springer, Heidelberg (2006)

[38] Wiederhold, G.: Mediators in the Architecture of Future Information Systems.
IEEE Computer, 38–49 (1992)

[39] Mezini, M., Seiter, L., Lieberherr, K.: Component integration with pluggable com-
posite adapters. In: Software Architectures and Component Technology, Kluwer,
Dordrecht (2000)

Conceptual Modeling for Data Integration

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Maurizio Lenzerini2, and Riccardo Rosati2

1 KRDB Research Centre
Free University of Bozen-Bolzano
calvanese@inf.unibz.it

2 Dip. di Informatica e Sistemistica
SAPIENZA Università di Roma

lastname@dis.uniroma1.it

Abstract. The goal of data integration is to provide a uniform access to a set of
heterogeneous data sources, freeing the user from the knowledge about where the
data are, how they are stored, and how they can be accessed. One of the outcomes
of the research work carried out on data integration in the last years is a clear
architecture, comprising a global schema, the source schema, and the mapping
between the source and the global schema. Although in many research works
and commercial tools the global schema is simply a data structure integrating the
data at the sources, we argue that the global schema should represent, instead,
the conceptual model of the domain. However, to fully pursue such an approach,
several challenging issues are to be addressed. The main goal of this paper is to
analyze one of them, namely, how to express the conceptual model representing
the global schema. We start our analysis with the case where such a schema is
expressed in terms of a UML class diagram, and we end up with a proposal of a
particular Description Logic, called DL-LiteA,id. We show that the data integra-
tion framework based on such a logic has several interesting properties, including
the fact that both reasoning at design time, and answering queries at run time can
be done efficiently.

1 Introduction

The goal of data integration is to provide a uniform access to a set of heterogeneous
data sources, freeing a client from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data in-
tegration solutions has been addressed by several research and development projects in
the last years. However, data integration is still one of the major challenges in Infor-
mation Technology [5]. One of the reasons is that large amounts of heterogeneous data
are nowadays available within an organization, but these data have been often collected
and stored by different applications and systems. Therefore, on the one hand the need
of accessing data by means of flexible and unified mechanisms is becoming more and
more important, and, on the other hand, current commercial data integration tools have
several drawbacks.

Starting from the late 90s, research in data integration has mostly focused on declar-
ative approaches (as opposed to procedural ones) [32,26]. One of the outcomes of this

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 173–197, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

calvanese@inf.unibz.it

174 D. Calvanese et al.

research work is a clear architecture for (mediator-based1) data integration. Accord-
ing to this architecture [26], the main components of a data integration system are the
global schema, the sources, and the mapping. Roughly speaking, the sources represent
the repositories where the data are, the global schema represents the unified structure
presented to the client, and the mapping relates the source data with the global schema.
There are at least two different approaches to the design of the global schema. In the
first approach, the global schema is expressed in terms of a database model (e.g., the
relational model, or a semistructured data model), and represents a sort of unified data
structure accommodating the various data at the sources. In the second approach the
global schema provides a conceptual representation of the application domain [6], rather
than a specification of a data structure. Thus, in this approach the distinction between
the global schema and the data sources reflects the separation between the conceptual
level (the one presented to the client), and the logical/physical level of the informa-
tion system (the one stored in the sources), with the mapping acting as the reconciling
structure between the two levels.

Although most of the research projects and the commercial data integration tools
follow the first approach, we argue that designing the system in such a way that the
global schema represents the conceptual model of the domain has several interesting
advantages, both in the design and in the operation of the data integration system.

The first advantage is that a conceptual level in the architecture for data integration
is the obvious means for pursuing a declarative approach to integration. As a conse-
quence, all the advantages deriving from making various aspects of the system explicit
are obtained, including the crucial fact that the conceptual level provides a system inde-
pendent specification of the domain of interest to the client. By making the representa-
tion of the domain explicit we gain re-usability of the acquired knowledge, which is not
achieved when the global schema is simply a unified description of the underlying data
sources. This may also have consequences on the design of the user interface. Indeed,
conceptual models are naturally expressed in a graphical form, and graphical tools that
adequately present the overall information scenario are key factors in user interfaces.

A second advantage is the use of the mapping component of the system for explic-
itly specifying the relationships between the data sources and the domain concepts.
The importance of this clearly emerges when looking at large organizations where the
information about data is widespread into separate pieces of documentation that are
often difficult to access and non necessarily conforming to common standards. The
conceptual model built for data integration can thus provide a common ground for the
documentation of the enterprise data stores and can be seen as a formal specification for
mediator design. Obviously, the above advantages carry over in the maintenance phase
of the data integration system (sources change, hence “design never ends”).

A third advantage has to do with incrementality and extensibility of the system. One
criticism that is often raised to mediator-based data integration is that it requires merg-
ing and integrating the source data, and this merging process can be very costly. How-
ever, the conceptual approach to data integration does not impose to fully integrate the
data sources at once. Rather, after building the domain model, one can incrementally
add new sources or new elements therein, when they become available, or when needed,

1 Other architectures, e.g. [4], are outside the scope of this paper.

Conceptual Modeling for Data Integration 175

thus amortizing the cost of integration. Therefore, the overall design can be regarded as
the incremental process of understanding and representing the domain on the one hand,
and the available data on the other hand.

We believe that all the advantages outlined above represent convincing arguments
supporting the conceptual approach to data integration. However, to fully pursue such
an approach, several challenging issues are to be addressed. The goal of this paper is
to analyze one of them, namely, how to express the conceptual model representing the
global schema.

We start our analysis with the case where the global schema of the data integration
system is expressed in terms of a UML class diagram. Notably, we show that the ex-
pressive power of UML class diagrams is enough to get intractability of various tasks,
including query answering. We then present a specific proposal of a logic-based lan-
guage for expressing conceptual models. The language, called DL-LiteA,id, is a tractable
Description Logic, specifically defined for achieving tractability of the reasoning tasks
that are relevant in data integration. The proposed data integration framework, based
on such a logic, has several interesting properties, including the fact that both reason-
ing at design time, and answering queries at run time can be done efficiently. Also, we
study possible extensions to the data integration framework based on DL-LiteA,id, and
show that our proposal basically represents an optimal compromise between expressive
power and computational complexity.

The paper is organized as follows. In Section 2, we describe a general architecture for
data integration, and the basic features of Description Logics, which are the logics we use
to formally express conceptual models. In Section 3, we analyze the case where the global
schema of the data integration system is expressed in terms of a UML class diagram. In
Section 4, we illustrate the basic characteristics of the Description Logic DL-LiteA,id, and
in Section 5, we illustrate a specific proposal of data integration system based on such
a logic. In Section 6, we study possible extensions to such data integration framework,
whereas in Section 7, we conclude the paper with a discussion on related and future work.

2 The Data Integration Framework

The goal of this section is to describe a general architecture for data integration. We
restrict our attention to data integration systems based on a so-called global schema,
or mediated schema. In other words, we refer to data integration systems whose aim
is providing the user with a representation of the domain of interest to the system, and
connecting such a representation to the data residing at the sources. Thus, the global
schema implicitly provides a reconciled view of all data, which can be queried by the
user. One of the theses of this paper is that the global schema can be profitably expressed
in terms of a conceptual model of the domain, and such a conceptual model can be
formalized in specialized logics, called Description Logics. Therefore, another goal of
this section is to illustrate the basic features of such logics.

2.1 Architecture for Data Integration

According to [26], we formalize a data integration system J in terms of a triple
〈G,S,M〉, where

176 D. Calvanese et al.

– G is the global schema, expressed in a language LG over an alphabet AG . The
alphabet comprises a symbol for each element of G (i.e., relation if G is relational,
class if G is object-oriented, etc.).

– S is the source schema, expressed in a language LS over an alphabet AS . The
alphabet AS includes a symbol for each element of the sources.

– M is the mapping between G and S, constituted by a set of assertions of the forms

qS � qG ,
qG � qS ,

where qS and qG are two queries of the same arity, respectively over the source
schema S, and over the global schema G. Queries qS are expressed in a query
language LM,S over the alphabet AS , and queries qG are expressed in a query
language LM,G over the alphabet AG . Intuitively, an assertion qS � qG specifies
that the concept represented by the query qS over the sources corresponds to the
concept in the global schema represented by the query qG (similarly for an assertion
of type qG � qS).

The global schema provides a description of the domain of interest, and not simply
a unified representation of the source data. The source schema describes the structure
of the sources, where the real data are. The assertions in the mapping establish the
connection between the elements of the global schema and those of the source schema.

The semantics of a data integration system is based on the notion of interpretation
in logic. Indeed, in this paper we assume that G is formalized as a logical theory, and
therefore, given a source database D (i.e., a database for S), the semantics of the whole
system coincides with the set of interpretations that satisfy all the assertions of G (i.e.,
they are logical models of G) and all the assertions of M with respect to D. Such a set
of interpretations, denoted semD(J), is called the set of models of J relative to D.

There are two basic tasks concerning a data integration system that we consider in
this paper. The first task is relevant in the design phase of the system, and concerns
the possibility of reasoning over the global schema: given G and a logical assertion
α, check whether α holds in every model of G. The second task is query answering,
which is crucial during the run-time of the system. Queries to J are posed in terms
of the global schema G, and are expressed in a query language LQ over the alphabet
AG . A query is intended to provide the specification of which extensional information
to extract from the domain of interest in the data integration system. More precisely,
given a source database D, the answer qJ ,D to a query q in J with respect to D is the
set of tuples t of objects such that t ∈ qB (i.e., t is an answer to q over B) for every
model B of J relative to D. The set qJ ,D is called the set of certain answers to q in J
with respect to D. Note that, from the point of view of logic, finding certain answers is
a logical implication problem: check whether the fact that t satisfies the query logically
follows from the information on the sources and on the mapping.

The above definition of data integration system is general enough to capture virtually
all approaches in the literature. Obviously, the nature of a specific approach depends on
the characteristics of the mapping, and on the expressive power of the various schema
and query languages. For example, the language LG may be very simple (basically
allowing for the definition of a set of relations), or may allow for various forms of

Conceptual Modeling for Data Integration 177

integrity constraints to be expressed over the symbols of AG . Analogously, the type
(e.g., relational, semistructured, etc.) and the expressive power of LS varies from one
approach to another.

2.2 Description Logics

Description Logics [2] (DLs) were introduced in the early 80s in the attempt to provide
a formal ground to Semantic Networks and Frames. Since then, they have evolved into
knowledge representation languages that are able to capture virtually all class-based
representation formalisms used in Artificial Intelligence, Software Engineering, and
Databases. One of the distinguishing features of the work on these logics is the detailed
computational complexity analysis both of the associated reasoning algorithms, and of
the logical implication problem that the algorithms are supposed to solve. By virtue
of this analysis, most of these logics have optimal reasoning algorithms, and practical
systems implementing such algorithms are now used in several projects. In DLs, the do-
main of interest is modeled by means of concepts and roles (i.e., binary relationships),
which denote classes of objects and binary relations between classes of objects, respec-
tively. Concepts and roles can be denoted using expressions of a specified languages,
and the various DLs differ in the expressive power of such a language. The DLs con-
sidered in this paper are subsets of a DL called ALCQIbid. ALCQIbid is an expressive
DL that extends the basic DL language AL (attributive language) with negation of ar-
bitrary concepts (indicated by the letter C), qualified number restrictions (indicated by
the letter Q), inverse of roles (indicated by the letter I), boolean combinations of roles
(indicated by the letter b), and identification assertions (indicated by the subscript id).
More in detail, concepts and roles in ALCQIbid are formed according to the following
syntax:

C, C′ −→ A | ¬C | C � C′ | C � C′ |
∀R.C | ∃R.C | � nR.C | � n R.C

R, R′ −→ P | P− | R ∩ R′ | R ∪ R′ | R \ R′

where A denotes an atomic concept, P an atomic role, P− the inverse of an atomic role,
C, C′ arbitrary concepts, and R, R′ arbitrary roles. Furthermore, ¬C denotes concept
negation, C � C′ concept intersection, C � C′ concept union, ∀R.C value restriction,
∃R.C qualified existential quantification on roles, and � n R.C and � n R.C so-called
number restrictions. We use �, denoting the top concept, as an abbreviation for A�¬A,
for some concept A. An arbitrary role can be an atomic role or its inverse, or a role
obtained combining roles through set theoretic operators, i.e., intersection (“∩”), union
(“∪”), and difference (“\”). W.l.o.g., we assume difference applied only to atomic roles
and their inverses.

As an example, consider the atomic concepts Man and Woman, and the atomic
roles HAS-HUSBAND, representing the relationship between a woman and the man
with whom she is married, and HAS-CHILD, representing the parent-child rela-
tionship. Then, intuitively, the inverse of HAS-HUSBAND, i.e., HAS-HUSBAND−,
represents the relationship between a man and his wife. Also, Man � Woman is a
concept representing people (considered the union of men and women), whereas the
concept ∃HAS-CHILD.Woman represents those having a daughter, and the concept

178 D. Calvanese et al.

� 2 HAS-CHILD.Woman � � 4 HAS-CHILD.� represents those having at least two
daughters and at most four children.

Like in any DL, an ALCQIbid knowledge base (KB) is a pair K = 〈T ,A〉, where
T , the TBox, is a finite set of intensional assertions, and A, the ABox, is a finite set of
extensional (or, membership) assertions.

The TBox may contain intensional assertions of two types, namely inclusion asser-
tions, and local identification assertions (see [13] for the meaning of “local” in this
context).

– An inclusion assertion has the form C � C′, with C and C′ arbitrary ALCQIbid

concepts, or the form R � R′, with R and R′ arbitraryALCQIbid roles. Intuitively,
an inclusion assertion states that, in every model of T , each instance of the left-hand
side expression is also an instance of the right-hand side expression. For example,
the inclusions Woman � � 1 HAS-HUSBAND.� and ∃HAS-HUSBAND−.� �
Man respectively specifies that women may have at most one husband and that
husbands are men.

– A local identification assertion (or, simply, identification assertion or identification
constraint – IdC) makes use of the notion of path. A path is an expression built
according to the following syntax,

π −→ S | D? | π ◦ π (1)

where S denotes an atomic role or the inverse of an atomic role, and π1 ◦ π2
denotes the composition of the paths π1 and π2. Finally, D denotes a concept,
and the expression D? is called a test relation, which represents the identity re-
lation on instances of D. Test relations are used in all those cases in which one
wants to impose that a path involves instances of a certain concept. For example,
HAS-CHILD ◦ Woman? is the path connecting someone with his/her daughters.

A path π denotes a complex property for the instances of concepts: given an
object o, every object that is reachable from o by means of π is called a π-filler
for o. Note that for a certain o there may be several distinct π-fillers, or no π-fillers
at all.

If π is a path, the length of π, denoted length(π), is 0 if π has the form D?, is 1
if π has the form S, and is length(π1)+ length(π2) if π has the form π1 ◦π2. With
the notion of path in place, we are ready for the definition of local identification
assertion, which is an assertion of the form

(id C π1, . . . , πn)

where C is an arbitrary concept, n ≥ 1, and π1, . . . , πn (called the components
of the identifier) are paths such that length(πi) ≥ 1 for all i ∈ {1, . . . , n}, and
length(πi) = 1 for at least one i ∈ {1, . . . , n}. Intuitively, such a constraint asserts
that for any two different instances o, o′ of C, there is at least one πi such that o
and o′ differ in the set of their πi-fillers. The term “local” emphasizes that at least
one of the paths refers to a local property of C.

For example, the identification assertion (id Woman HAS-HUSBAND) says that
a woman is identified by her husband, i.e., there are not two different women with

Conceptual Modeling for Data Integration 179

AI ⊆ ΔI

¬CI = ΔI \ CI

(C � C′)I = CI ∩ C′I

(C � C′)I = CI ∩ C′I

(∀R.C)I = { o | ∀o′. (o, o′) ∈ RI ⊃ o′ ∈ CI }
(∃R.C)I = { o | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI }

(� n R.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ RI}| ≥ n }
(� n R.C)I = { o | |{o′ ∈ CI | (o, o′) ∈ RI}| ≤ n }

P I ⊆ ΔI × ΔI

(P−)I = {(o, o′) | (o′, o) ∈ P I}
(R ∩ R′)I = RI ∩ R′I

(R ∪ R′)I = RI ∪ R′I

(R \ R′)I = RI \ R′I

Fig. 1. Interpretation of ALCQIbid concepts and roles

the same husband, whereas the identification assertion (id Man HAS-CHILD) says
that a man is identified by his children, i.e., there are not two men with a child in
common. We can also say that there are not two men with the same daughters by
means of the identification (id Man HAS-CHILD ◦ Woman?).

The ABox consists of a set of extensional assertions, which are used to state the
instances of concepts and roles. Each such assertion has the form A(a), P (a, b), a = b,
or a �= b, with A and P respectively an atomic concept and an atomic role occurring in
T , and a, b constants.

We now turn to the semantics of ALCQIbid, which is given in terms of interpreta-
tions. An interpretation I = (ΔI , ·I) consists of a non-empty interpretation domain
ΔI and an interpretation function ·I , which assigns to each concept C a subset CI of
ΔI , and to each role R a binary relation RI over ΔI is such a way that the conditions
specified in Figure 1 are satisfied. The semantics of an ALCQIbid KB K = 〈T ,A〉 is
the set of models of K, i.e., the set of interpretations satisfying all assertions in T and
A. It remains to specify when an interpretation satisfies an assertion.

An interpretation I satisfies an inclusion assertion C � C′ (resp., R � R′), if
CI ⊆ C′I (resp., RI ⊆ R′I).

In order to define the semantics of IdCs, we first define the semantics of paths, and
then specify the conditions for an interpretation to satisfy an IdC. The extension πI of
a path π in an interpretation I is defined as follows:

– if π = S, then πI = SI ,
– if π = D?, then πI = { (o, o) | o ∈ DI },
– if π = π1 ◦ π2, then πI = πI

1 ◦ πI
2 , where ◦ denotes the composition operator on

relations.

As a notation, we write πI(o) to denote the set of π-fillers for o in I, i.e., πI(o) =
{o′ | (o, o′) ∈ πI}. Then, an interpretation I satisfies the IdC (id C π1, . . . , πn) if for
all o, o′ ∈ CI , πI

1 (o)∩πI
1 (o′) �= ∅∧ · · ·∧πI

n(o)∩πI
n(o′) �= ∅ implies o = o′. Observe

that this definition is coherent with the intuitive reading of IdCs discussed above, in
particular by sanctioning that two different instances o, o′ of C differ in the set of their
πi-fillers when such sets are disjoint.

Finally, to specify the semantics of ALCQIbid ABox assertions, we extend the in-
terpretation function to constants, by assigning to each constant a an object aI ∈ ΔI .

180 D. Calvanese et al.

leagueplayedMatch nation

matchteam
HOST

HOME

OF

round

BELONGS-TO

PLAYED-IN

scheduledMatch

Fig. 2. Diagrammatic representation of the football leagues example

INCLUSION ASSERTIONS

league
 ∃OF.�
∃OF.�
 league

∃OF−.�
 nation
round
 ∃BELONGS-TO.�

∃BELONGS-TO.�
 round
∃BELONGS-TO−.�
 league

match
 ∃PLAYED-IN.�
∃PLAYED-IN.�
 match

∃PLAYED-IN−.�
 round
match
 ∃HOME.�

∃HOME.�
 match
∃HOME−.�
 team

∃HOST.�
 match
∃HOST−.�
 team

match
 ∃HOST.�
playedMatch
 match

scheduledMatch
 match
playedMatch
 ¬scheduledMatch

match
 playedMatch scheduledMatch
�
 � 1 OF.�
�
 � 1 BELONGS-TO.�
�
 � 1 PLAYED-IN.�
�
 � 1 HOME.�
�
 � 1 HOST.�

IDENTIFICATION ASSERTIONS

(id match HOME, PLAYED-IN)
(id match HOST, PLAYED-IN)

Fig. 3. The TBox in ALCQIbid for the football leagues example

An interpretation I satisfies a membership assertion A(a) if aI ∈ AI , a membership
assertion P (a, b) if (aI , bI) ∈ P I , an assertion of the form a = b if aI = bI , and an
assertion of the form a �= b if aI �= bI .

We also note that, as in many DLs, reasoning in ALCQIbid, i.e., checking whether
an assertion holds in every model of a KB, is decidable in deterministic exponential
time (see [2]).

We conclude this section with an example in which we present an ALCQIbid TBox
modeling the annual national football2 championships in Europe, where the champi-
onship for a specific nation is called league (e.g., the Spanish Liga). A league is struc-
tured in terms of a set of rounds. Every round contains a set of matches, each one
characterized by one home team and one host team. We distinguish between scheduled
matches, i.e., matches that have still to be played, and played matches. Obviously, a
match falls in exactly one of these two categories.

In Figure 2, we show a schematic representation of (part of) the ontology for the
football leagues domain. In this figure, the black arrow represents a partition of one
concept into a set of sub-concepts. The TBox assertions in ALCQIbid capturing the
above aspects are shown in Figure 3. In particular, the identification constraints model
the fact that a team is the home team of at most one match per round, and the host team
of at most one match per round.

2 Football is called “soccer” in the United States.

Conceptual Modeling for Data Integration 181

3 UML Class Diagram as Global Schema

In this section, we discuss the case where the global schema of a data integration system
is a UML class diagram.

Since we concentrate on class diagrams from the data integration perspective, we do
not deal with those features that are more relevant for the software engineering perspec-
tive, such as operations (methods) associated to classes, or public, protected, and private
qualifiers for methods and attributes. Also, for sake of brevity and to smooth the presen-
tation we make some simplifying assumptions that could all be lifted without changing
the results presented here (we refer to [3] for further details). In particular, we will not
deal explicitly with associations of arity greater than 2, and we will only deal with the
following multiplicities: 0..∗ (unconstrained), functional participation 0..1, mandatory
participation 1..∗, and one-to-one correspondence 1..1. These multiplicities are partic-
ularly important since they convey meaningful semantic aspects in modeling, and thus
are the most commonly used ones.

Our goal is twofold. One the one hand, we aim at showing how class diagrams can be
expressed in DLs. On the other hand, we aim at understanding which is the complexity
of the two tasks we are interested in for a data integration system, when the global
schema is a UML class diagram. We will show that the formalization in DLs helps us
in deriving complexity results for both tasks.

3.1 Representing UML Class Diagrams in DLs

A class in a UML class diagram denotes a sets of objects with common features. The
specification of a class contains its name and its attributes, each denoted by a name
(possibly followed by the multiplicity, between square brackets) and with an associated
type, which indicates the domain of the attribute values.

A UML class is represented by a DL concept. This follows naturally from the fact
that both UML classes and DL concepts denote sets of objects.

A UML attribute a of type T for a class C associates to each instance of C, zero,
one, or more instances of a class T . An optional multiplicity [i..j] for a specifies that
a associates to each instance of C, at least i and most j instances of T . When the
multiplicity for an attribute is missing, [1..1] is assumed, i.e., the attribute is mandatory
and single-valued.

To formalize attributes, we have to think of an attribute a of type T for a class C as
a binary relation between instances of C and instances of T . We capture such a binary
relation by means of a DL role ac. To specify the type of the attribute we use the DL
assertions

∃aC � C, ∃a−
C � T .

Such assertions specify precisely that, for each instance (c, v) of the role aC , the object
c is an instance of C, and the value v is an instance of T . Notice that in DL, the type T
is represented as a concept, although containing values. Note that the attribute name a
is not necessarily unique in the whole diagram, and hence two different classes, say C
and C′ could both have attribute a, possibly of different types. This situation is correctly
captured in the DL formalization, where the attribute is contextualized to each class with
a distinguished role, i.e., aC and aC′ .

182 D. Calvanese et al.

C2C1
m�..mun�..nu A

(a) Without association class

C2C1
m�..mun�..nu

A

RA,1 RA,2

(b) With association class

Fig. 4. Association in UML

To specify that the attribute is mandatory (i.e., multiplicity [1..∗]), we add the assertion

C � ∃aC ,

which specifies that each instance of C participates necessarily at least once to the role
aC . To specify that the attribute is single-valued (i.e., multiplicity [0..1]), we add the
assertion

(funct aC),

which is an abbreviation for � � � 1 aC .�. Finally, if the attribute is both mandatory
and single-valued (i.e., multiplicity [1..1]), we use both assertions together:

C � ∃aC , (funct aC).

An association in UML is a relation between the instances of two (or more) classes.
An association often has a related association class that describes properties of the asso-
ciation, such as attributes, operations, etc. A binary association A between the instances
of two classes C1 and C2 is graphically rendered as in Figure 4(a), where the multiplic-
ity m�..mu specifies that each instance of class C1 can participate at least m� times and
at most mu times to association A. The multiplicity n�..nu has an analogous meaning
for class C2.

An association A between classes C1 and C2 is formalized in DL by means of a role
A on which we enforce the assertions

∃A � C1, ∃A− � C2.

To express the multiplicity m�..mu on the participation of instances of C2 for each
given instance of C1, we use the assertion C1 � ∃A, if m� = 1, and (funct A), if
mu = 1. We can use similar assertions for the multiplicity n�..nu on the participation
of instances of C1 for each given instance of C2, i.e., C2 � ∃A−, if n� = 1, and
(funct A−), if nu = 1.

Next we focus on an association with a related association class, as shown in
Figure 4(b), where the class A is the association class related to the association, and
RA,1 and RA,2, if present, are the role names of C1 and C2 respectively, i.e., they spec-
ify the role that each class plays within the association A.

We formalize in DL an association A with an association class, by reifying it into a
DL concept A and introducing two DL roles RA,1, RA,2, one for each role of A, which

Conceptual Modeling for Data Integration 183

intuitively connect an object representing an instance of the association to the instances
of C1 and C2, respectively, that participate to the association3. Then, we enforce that
each instance of A participates exactly once both to RA,1 and to RA,2, by means of the
assertions

A � ∃RA,1, (funct RA,1), A � ∃RA,2, (funct RA,2).

To represent that the association A is between classes C1 and C2, we use the assertions

∃RA,1 � A, ∃R−
A,1 � C1, ∃RA,2 � A, ∃R−

A,2 � C2.

Finally, we use the assertion
(id A RA,1, RA,2)

to specify that each instance of the concept A represents a distinct tuple in C1 × C2.4

We can easily represent in DL multiplicities on an association with association class,
by imposing suitable assertions on the inverses of the DL roles modeling the roles of
the association. For example, to say that there is a one-to-one participation of instances
of C1 in the association (with related association class) A, we assert

C1 � ∃R−
A,1, (funct R−

A,1).

In UML, one can use generalization between a parent class and a child class to
specify that each instance of the child class is also an instance of the parent class. Hence,
the instances of the child class inherit the properties of the parent class, but typically
they satisfy additional properties that in general do not hold for the parent class.

Generalization is naturally supported in DLs. If a UML class C2 generalizes a class
C1, we can express this by the DL assertion

C1 � C2.

Inheritance between DL concepts works exactly as inheritance between UML classes.
This is an obvious consequence of the semantics of �, which is based on subsetting. As
a consequence, in the formalization, each attribute of C2 and each association involving
C2 is correctly inherited by C1. Observe that the formalization in DL also captures
directly inheritance among association classes, which are treated exactly as all other
classes, and multiple inheritance between classes (including association classes).

Moreover in UML, one can group several generalizations into a class hierarchy, as
shown in Figure 5. Such a hierarchy is captured in DL by a set of inclusion assertions,
one between each child class and the parent class, i.e.,

Ci � C, for each i ∈ {1, . . . , n}.

Often, when defining generalizations between classes, we need to add additional as-
sertions among the involved classes. For example, for the class hierarchy in Figure 5, an

3 If the roles of the association are not available, we may use an arbitrary DL role name.
4 Notice that such an approach can immediately be used to represent an association of any arity:

it suffices to repeat the above for every component.

184 D. Calvanese et al.

C2C1

C

Cn

{disjoint, complete}

Fig. 5. A class hierarchy in UML

assertion may express that C1, . . . , Cn are mutually disjoint. In DL, such a relationship
can be expressed by the assertions

Ci � ¬Cj , for each i, j ∈ {1, . . . , n} with i �= j.

Moreover, we may want to express that a generalization hierarchy is complete, i.e.,
that the subclasses C1, . . . , Cn are a covering of the superclass C. We can represent
such a situation in DL by including the additional assertion

C � C1 � · · · � Cn.

Such an assertion models a form of disjunctive information: each instance of C is either
an instance of C1, or an instance of C2, . . . or an instance of Cn.

Similarly to generalization between classes, UML allows one to state subset asser-
tions between associations. A subset assertion between two associations A and A′ can
be modeled in DL by means of the role inclusion assertion A � A′, involving the two
roles A and A′ representing the associations. When the two associations A and A′ are
represented by means of association classes, we need to use the concept inclusion as-
sertion A � A′, together with the role inclusion assertions between corresponding roles
of A and A′.

3.2 Reasoning and Query Answering

The fact that UML class diagrams can be captured by DLs enables the possibility of
performing sound and complete reasoning to do formal verification at design time and
query answering at runtime. Hence, one can exploit such ability to get support during
the design phase of the global schema, and to take the information in the global schema
fully into account during query answering.

It was shown in [3] that, unfortunately, reasoning (in particular checking the consis-
tency of the diagram, a task to which other typical reasoning tasks of interest reduce)
is EXPTIME-hard. What this result tells us is that, if the global schema is expressed in
UML, then the support at design time for a data integration system may be impossible
if the schema has a reasonable size.

Turning to query answering, the situation is even worse. The results in [11] imply
that answering conjunctive queries in the presence of a UML class diagram formed by
a single generalization with covering assertion is coNP-hard in the size of the instances

Conceptual Modeling for Data Integration 185

of classes and associations. Hence, query answering over even moderately large data
sets is again infeasible in practice. It is not difficult to see that this implies that, in a data
integration system where the global schema is expressed as a UML diagram, answering
conjunctive queries is coNP-hard with respect to the size of the source data.

Actually, as we will see in the next section, the culprit of such a high complexity
is mainly the ability of expressing covering assertions, which induces reasoning by
cases. Once we disallow covering and suitably restrict the simultaneous use of subset
constraints between associations and multiplicities, not only the sources of exponential
complexity disappear, but actually query answering becomes reducible to standard SQL
evaluation over a relational database.

4 A Tractable DL: DL-LiteA,id

We have seen that in a data integration system where the global schema is expressed as
a UML class diagram, reasoning is too complex. Thus, a natural question arising at this
point is: which is the right language to express the global schema of a data integration
system?

In this section, we present DL-LiteA,id, a DL of the DL-Lite family [12,11], enriched
with identification constraints (idCs) [12], and show that it is very well suited for con-
ceptual modeling in data integration, in particular for its ability of balancing expres-
sive power with efficiency of reasoning, i.e., query answering, which can be managed
through relational database technology.

DL-LiteA,id is essentially a subset of ALCQIbid, but, contrary to the DL presented
in Section 2, it distinguishes concepts from value-domains, which denote sets of (data)
values, and roles from attributes, which denote binary relations between objects and
values. Concepts, roles, attributes, and value-domains in this DL are formed according
to the following syntax5:

B −→ A | ∃Q | δ(U)
C −→ B | ¬B
Q −→ P | P−

R −→ Q | ¬Q

E −→ ρ(U)
F −→ �D | T1 | · · · | Tn

V −→ U | ¬U

In such rules, A, P , and P− respectively denote an atomic concept, an atomic role, and
the inverse of an atomic role, Q and R respectively denote a basic role and an arbitrary
role, whereas B denotes a basic concept, C an arbitrary concept, U an atomic attribute,
V an arbitrary attribute, E a basic value-domain, and F an arbitrary value-domain.
Furthermore, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values; ρ(U) denotes the range of U , i.e., the set of values that U relates to objects;
�D is the universal value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-
domains, corresponding to RDF data types, such as xsd:string, xsd:integer,
etc.

5 The results mentioned in this paper apply also to DL-LiteA,id extended with role attributes
(cf. [9]), which are not considered here for the sake of simplicity.

186 D. Calvanese et al.

In a DL-LiteA,id TBox, assertions have the forms

B � C Q � R E � F U � V
(funct Q) (funct U) (id C π1, . . . , πn)

The assertions above, from left to right, respectively denote inclusions between con-
cepts, roles, value-domains, and attributes, (global) functionality on roles and on
attributes, and identification constraints6. Notice that paths occurring in DL-LiteA,id

identification assertions may involve also attributes and value-domains, which are in-
stead not among the constructs present in ALCQIbid. More precisely, the symbol S in
equation (1) now can be also an attribute or the inverse of an attribute, and the symbol
D in (1) now can be also a basic or an arbitrary value-domain.

As for the ABox, beside assertions of the form A(a), P (a, b), with A an atomic con-
cept, P and atomic role, and a, b constants, in DL-LiteA,id we may also have assertions
of the form U(a, v), where U is an atomic attribute, a a constant, and v a value. Notice
however that assertions of the form a = b or a �= b are not allowed.

We are now ready to define what a DL-LiteA,id KB is.

Definition 1. A DL-LiteA,id KB K is a pair 〈T ,A〉, where T is a DL-LiteA,id TBox, A
is a DL-LiteA,id ABox, and the following conditions are satisfied:

(1) for each atomic role P , if either (funct P) or (funct P−) occur in T , then T does
not contain assertions of the form Q � P or Q � P−, where Q is a basic role;

(2) for each atomic attribute U , if (funct U) occurs in T , then T does not contain
assertions of the form U ′ � U , where U ′ is an atomic attribute;

(3) all concepts identified in T are basic concepts, i.e., in each IdC (id C π1, . . . , πn)
of T , the concept C is of the form A, ∃Q, or δ(U);

(4) all concepts or value-domains appearing in the test relations in T are of the form
A, ∃Q, δ(U), ρ(U), �D, T1, . . ., or Tn;

(5) for each IdC α in T , every role or attribute that occurs (in either direct or inverse
direction) in a path of α is not specialized in T ′, i.e., it does not appear in the
right-hand side of assertions of the form Q � Q′ or U � U ′.

Intuitively, the conditions stated at points (1-2) (resp., (5)) say that, in DL-LiteA,id

TBoxes, roles and attributes occurring in functionality assertions (resp., in paths of
IdCs) cannot be specialized. All the above conditions are crucial for the tractability of
reasoning in our logic.

The semantics of a DL-LiteA,id TBox is standard, except that it adopts the unique
name assumption: for every interpretation I, and distinct constants a, b, we have that
aI �= bI . Moreover, it takes into account the distinction between objects and values by
partitioning the interpretation domain in two sets, containing objects and values, respec-
tively. Note that the adoption of the unique name assumption in DL-LiteA,id makes it
meaningless to use ABox assertions of the form a = b and a �= b, which instead occur in
ALCQIbid knowledge bases. Indeed, assertions of the first form cannot be satisfied by
DL-LiteA,id interpretations, thus immediately making the knowledge base inconsistent,
whereas assertions of the second form are always satisfied and are therefore implicit.

6 We remind the reader that the identification constraints referred to in this paper are local.

Conceptual Modeling for Data Integration 187

league

playedMatch

nation

matchteam
HOST

HOME

OF

round

BELONGS-TO

PLAYED-IN

scheduledMatch

code

year

homeGoals

playedOn

hostGoals

Fig. 6. Diagrammatic representation of the football leagues ontology

We finally recall a notable result given in [13], characterizing the complexity of query
answering of UCQs over DL-LiteA,id knowledge bases. We remind the reader that AC0
is the complexity class that corresponds to the complexity in the size of the data of
evaluating a first-order (i.e., SQL) query over a relational database (see, e.g., [1]).

Theorem 1 ([13]). Answering UCQs in DL-LiteA,id can be done in AC0 with respect
to the size of ABox.

The above result is proved by showing that it is possible to reduce the query answer-
ing problem to the evaluation of a FOL query, directly translatable to SQL, over the
database corresponding to the ABox assertions, thus exploiting standard commercial
relational database technology.

Let us consider again the example on football leagues introduced in Section 2, and
model it as a DL-LiteA,id TBox. By virtue of the characteristics of DL-LiteA,id we can
now explicitly consider also attributes of concepts. In particular, we assume that when a
scheduled match takes place, it is played in a specific date, and that for every match that
has been played, the number of goals scored by the home team and by the host team
are given. Note that different matches scheduled for the same round can be played in
different dates. Also, we want to distinguish football championships on the basis of the
nation and the year in which a championship takes place (e.g., the 2008 Spanish Liga).
Finally, we assume that both matches and rounds have codes. In Figure 6, we show a
schematic representation of (part of) the new ontology for the football leagues domain,
whereas in Figure 7 the TBox assertions in DL-LiteA,id capturing the above aspects are
shown. Note that, beside the new assertions involving attributes, Figure 7 lists all asser-
tions given in Figure 37, which provide the ALCQIbid TBox modeling of the football
ontology, with the exception of the assertion match � scheduledMatch� playedMatch.
This is actually the price to pay to maintain reasoning tractable in DL-LiteA,id, and in
particular conjunctive query answering in AC0. Indeed, the above assertion expresses
the covering of the concept match with the concepts scheduledMatch and playedMatch,
but as said in Section 3, the presence of covering assertions makes query answering
coNP-hard in the size of the ABox.

7 We have used ∃R instead of ∃R.�, and inclusions of the form � � � 1R.� are expressed as
functional assertions of the form (funct R).

188 D. Calvanese et al.

INCLUSION ASSERTIONS

league
 ∃OF
∃OF
 league

∃OF−
 nation
round
 ∃BELONGS-TO

∃BELONGS-TO
 round
∃BELONGS-TO−
 league

match
 ∃PLAYED-IN
∃PLAYED-IN
 match

∃PLAYED-IN−
 round
match
 ∃HOME

∃HOME
 match
∃HOME−
 team

match
 ∃HOST
∃HOST
 match

∃HOST−
 team

playedMatch
 match
scheduledMatch
 match

playedMatch
 ¬scheduledMatch

league
 δ(year)
match
 δ(code)
round
 δ(code)

playedMatch
 δ(playedOn)
playedMatch
 δ(homeGoals)
playedMatch
 δ(hostGoals)

ρ(playedOn)
 xsd:date
ρ(homeGoals)
 xsd:nonNegativeInteger
ρ(hostGoals)
 xsd:nonNegativeInteger

ρ(code)
 xsd:positiveInteger
ρ(year)
 xsd:positiveInteger

FUNCTIONAL ASSERTIONS

(funct OF)
(funct BELONGS-TO)
(funct PLAYED-IN)
(funct HOME)
(funct HOST)

(funct year)
(funct code)
(funct playedOn)
(funct homeGoals)
(funct hostGoals)

IDENTIFICATION CONSTRAINTS

1. (id league OF, year)
2. (id round BELONGS-TO, code)
3. (id match PLAYED-IN, code)
4. (id match HOME, PLAYED-IN)
5. (id match HOST, PLAYED-IN)

6. (id playedMatch playedOn, HOST)
7. (id playedMatch playedOn, HOME)
8. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOME)
9. (id league year, BELONGS-TO− ◦ PLAYED-IN− ◦ HOST)

10. (id match HOME, HOST, PLAYED-IN ◦ BELONGS-TO ◦ year)

Fig. 7. The TBox in DL-LiteA,id for the football leagues example

The identification constraints given in Figure 7 model the following aspects:

1. No nation has two leagues in the same year.
2. Within a league, the code associated to a round is unique.
3. Every match is identified by its code within its round.
4. A team is the home team of at most one match per round.
5. As above for the host team.
6. No home team participates in different played matches in the same date
7. As above for the host team.
8. No home team plays in different leagues in the same year.
9. As above for the host team.

10. No pair (home team, host team) plays different matches in the same year.

5 Data Integration with DL-LiteA,id

In this section, we illustrate a specific proposal of data integration system based on
DL-LiteA,id, by describing the three components of the system. The choice for the lan-
guages used in the three components is tailored towards the goal of an optimal trade-off
between expressive power and complexity. After the description of the three compo-
nents, we briefly illustrate the algorithm for answering queries in our approach, and we
discuss its computational complexity.

Conceptual Modeling for Data Integration 189

5.1 The Global Schema

As said before, one of the basic characteristics of the approach to data integration ad-
vocated in this paper is that the global schema represents the conceptual model of the
domain of interest, rather than a mere description of a unified view of the source data.
We have also discussed the advantages of expressing the conceptual model in terms
of a DL. Finally, we have seen in the previous section that DL-LiteA,id represents a
valuable choice as a formalism for expressing the global schema of a data integration
system. Therefore, in our approach to data integration, the global schema is expressed
in terms of a DL-LiteA,id TBox. It is interesting to observe that most of the properties of
class diagrams discussed in Section 3 can indeed be expressed in DL-LiteA,id. The only
modeling construct that cannot be fully represented is covering. In other words, gen-
eralizations expressible in DL-LiteA,id are not complete. Also, functional associations
cannot be specialized.

5.2 The Source Schema

If J = 〈G,S,M〉 is a data integration system in our approach, S is assumed to be a flat
relational database schema, representing the schemas of all the data sources. Actually,
this is not a limitation of the system, since the source schema can always be thought
of as the schema managed by a relational data federation tool. Specifically, we assume
that a data federation tool is in charge of interacting with the data sources, presenting
them as a single relational database schema. Such a schema is obtained by wrapping
physical sources, possibly heterogeneous, and not necessarily in relational format. Fur-
thermore, the data federation tool is in charge of answering queries formulated over
the source schema, by suitably transforming such queries, forwarding them to the right
sources, and finally combining the single results into the overall answer. In other words,
the data federation tool makes the whole system independent from the physical nature
of the sources, by providing a logical representation of them (physical independence),
whereas the other components of the system make all the logical aspects transparent to
the user, by maintaining the conceptual global schema separate from the logical feder-
ated schema, and connecting them via suitable mappings (logical independence).

5.3 The Mapping

The mappings in our approach establish the relationship between the source schema
and the global schema, thus specifying how data stored at the sources are linked to
the instances of the concepts and the roles in the global schema. More specifically, we
follow the GAV (global-as-view) approach for specifying mappings, which requires to
describe the meaning of every element of the global schema by associating to it a view
over the sources. The dual approach, called LAV (local-as-view), would require the
sources to be defined as views over the global schema.

Moreover, our mapping specification language takes suitably into account the
impedance mismatch problem, i.e., the mismatch between the way in which data is
(and can be) represented in a data source, and the way in which the corresponding
information is rendered through the global schema.

190 D. Calvanese et al.

The mapping assertions keep data value constants separate from object identifiers,
and construct identifiers as (logic) terms over data values. More precisely, object iden-
tifiers in our approach are terms of the form f(d1, . . . , dn), called object terms, where
f is a function symbol of arity n > 0, and d1, . . . , dn are data values stored at the
sources. Note that this idea traces back to the work done in deductive object-oriented
databases [24].

We detail below the above ideas. The mapping component is specified through a set
of mapping assertions, each of the form

Φ(v) � G(w)

where

– Φ(v), called the body of the mapping, is a first-order logic (FOL) query of arity
n > 0, with distinguished variables v, over the source schema S (we will write
such query in the SQL syntax), and

– G(w), called the head, is an atom where G can be an atomic concept, an atomic
role, or an atomic attribute occurring in the global schema G, and w is a sequence
of terms.

We define three different types of mapping assertions:

– Concept mapping assertions, in which the head is a unary atom of the form
A(f(v)), where A is an atomic concept and f is a function symbol of arity n;

– Role mapping assertions, in which the head is a binary atom of the form
P (f1(v′), f2(v′′)), where P is an atomic role, f1 and f2 are function symbols of
arity n1, n2 > 0, and v′ and v′′ are sequences of variables appearing in v;

– Attribute mapping assertions, in which the head is a binary atom of the form
U(f(v′), v′′ : Ti), where U is an atomic attribute, f is a function symbol of ar-
ity n′ > 0, v′ is a sequence of variables appearing in v, v′′ is a variable appearing
in v, and Ti is an RDF data type.

In words, such mapping assertions are used to map source relations (and the tuples
they store), to concepts, roles, and attributes of the ontology (and the objects and the
values that constitute their instances), respectively. Note that an attribute mapping also
specifies the type of values retrieved from the source database, in order to guarantee
coherency of the system.

We conclude this section with an example of mapping assertions, referring again
to the football domain. Suppose that the source schema contains the relational ta-
ble TABLE(mcode,league,round,home,host), where a tuple (m, l, r, h1, h2)
with l > 0 represents a match with code m of league l and round r, and with home
team h1 and host team h2. If we want to map the tuples from the table TABLE to the
global schema shown in Figure 7, the mapping assertions might be as shown in Figure 8.
M1 is a concept mapping assertion that selects from TABLE the code and the round of
matches (only for the appropriate tuples), and then uses such data to build instances of
the concept match, using the function symbol m. M2 is an attribute mapping assertion
that is used to “populate” the attribute code for the objects that are instances of match.
Finally, M3 is a role mapping assertion relating TABLE to the atomic role PLAYED-IN,

Conceptual Modeling for Data Integration 191

M1: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 � match(m(T.mcode,T.round,T.league))

M2: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 � code(m(T.mcode,T.round,T.league),

T.mcode : xsd:string)

M3: SELECT T.mcode,
T.round,
T.league

FROM TABLE T
WHERE T.league > 0 � PLAYED-IN(m(T.mcode,T.round,T.league),

r(T.round, T.league))

Fig. 8. Example of mapping assertions

where instances of round are denoted by means of the function symbol r. We notice that
in the mapping assertion M2, the mapping designer had to specify a correct DL-LiteA,id

data type for the values extracted from the source.
We point out that, during query answering, the body of each mapping assertion is

never really evaluated in order to extract values from the sources to build instances of
the global schema, but rather it is used to unfold queries posed over the global schema,
rewriting them into queries posed over the source schema. We discuss this aspect next.

5.4 Query Answering

We sketch here our query answering technique (more details can be found in [30,10]).
Consider a data integration system J = 〈G,S,M〉 and a database D for S, and assume
that J is satisfiable with respect to D, i.e., semD(J) �= ∅ (cf. Section 2.1).

We start with the following observation. Suppose we evaluate (over D) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground
assertions, denoted by AM,D , that can be considered as a DL-LiteA,id ABox. It can be
shown that query answering over J and D can be reduced to query answering over the
DL-LiteA,id knowledge base constituted by the TBox G and the ABox AM,D. However,
due to the materialization of AM,D, the query answering algorithm resulting from this
approach would be polynomial in the size of D. On the contrary, our idea is to avoid
any ABox materialization, but rather answer Q by reformulating it into a new query that
can be afterwards evaluated directly over the database D. The resulting query answering
algorithm is much more efficient than the one sketched above, and is constituted by four
steps, which are called rewriting, filtering, unfolding, and evaluation, and are described
in the following.

192 D. Calvanese et al.

Rewriting. Given a UCQ Q over a data integration system J = 〈G,S,M〉, and a
source database D for J , the rewriting step computes a new UCQ Q1 overJ , where the
assertions of G are compiled in. In computing the rewriting, only inclusion assertions
of the form B1 � B2, Q1 � Q2, and U1 � U2 are taken into account, where Bi,
Qi, and Ui, with i ∈ {1, 2}, are a basic concept, a basic role, and an atomic attribute,
respectively. Intuitively, the query Q is rewritten according to the knowledge specified
in G that is relevant for answering Q, in such a way that the rewritten query Q1 is such
that Q

〈∅,S,M〉,D
1 = QJ ,D, i.e., the rewriting allows to get rid of G.

We refer to [30,12] for a formal description of the query rewriting algorithm and
for a proof of its soundness and completeness. We only notice here that the rewriting
procedure does not depend on the source database D, runs in polynomial time in the
size of G, and returns a query Q1 whose size is at most exponential in the size of Q.

Filtering. Let Q1 be the UCQ produced by the rewriting step above. In the filtering
step we take care of a particular problem that the disjuncts, i.e., conjunctive queries,
in Q1 might have. Specifically, a conjunctive query cq is called ill-typed if it has at
least one join variable x appearing in two incompatible positions in cq, i.e., such that
the TBox G of our data integration system logically implies that x is both of type Ti,
and of type Tj , with Ti �= Tj (remember that in DL-LiteA,id data types are pairwise
disjoint). The purpose of the filtering step is to remove from the UCQ Q1 all the ill-
typed conjunctive queries. Intuitively, such a step is needed because the query Q1 has
to be unfolded and then evaluated over the source database D (cf. the next two steps of
the query answering algorithm, described below). These last two steps, performed for
an ill-typed conjunctive query might produce incorrect results.

Unfolding. Given the UCQ Q2 over J computed by the filtering step, the unfolding
step computes, by using logic programming techniques, an SQL query Q3 over the
source schema S, that possibly returns object terms. It can be shown [30] that Q3 is
such that QD

3 = Q
〈∅,S,M〉,D
2 , i.e., unfolding allows us to get rid of M. Moreover, the

unfolding procedure does not depend on D, runs in polynomial time in the size of M,
and returns a query whose size is polynomial in the size of Q2.

Evaluation. The evaluation step consists in simply delegating the evaluation of the SQL
query Q3, produced by the unfolding step, to the data federation tool managing the data
sources. Formally, such a tool returns the set QD

3 , i.e., the set of tuples obtained from
the evaluation of Q3 over D.

5.5 Correctness and Complexity of Query Answering

It can be shown that the query answering procedure described above correctly com-
putes the certain answers to UCQs. Based on the computational properties of such an
algorithm, we can then characterize the complexity of our query answering method.

Theorem 2. Let J = 〈G,S,M〉 be a data integration system, and D a source
database for J . Answering a UCQ over J with respect to D can be reduced to the
evaluation of an SQL query over D, and can be done in AC0 in the size of D.

Conceptual Modeling for Data Integration 193

In other words, the above theorem says that UCQs in our approach are FO-rewritable.
Finally, we remark that, as we said at the beginning of this section, we have assumed

that the data integration system J is consistent with respect to the database D, i.e.,
semD(J) is non-empty. Notably, it can be shown that all the machinery we have de-
vised for query answering can also be used for checking consistency of J with respect
to D. Therefore, checking consistency can also be reduced to sending appropriate SQL
queries to the source database [30,13].

6 Extending the Data Integration Framework

We now analyze the possibility of extending the data integration setting presented above
without affecting the complexity of query answering. In particular, we investigate pos-
sible extensions for the language for expressing the global schema, the language for
expressing the mappings, and the language for expressing the source schema.

We start by dealing with extending the global schema language. There are two pos-
sible ways of extending DL-LiteA,id. The first one corresponds to a proper language
extension, i.e., adding new DL constructs to DL-LiteA,id, while the second one consists
of changing/strengthening the semantics of the formalism.

Concerning language extensions, the results in [11] show that it is not possible to
add any of the usual DL constructs to DL-LiteA,id while keeping the data complexity
of query answering within AC0. This means that DL-LiteA,id is essentially the most
expressive DL allowing for data integration systems where query answering is FO-
rewritable.

Concerning the possibility of strengthening the semantics, we briefly analyze the
consequences of removing the unique name assumption (UNA), i.e., the assumption
that, in every interpretation of a data integration system, two distinct object terms and
two distinct value constants denote two different domain elements. Unfortunately, this
leads query answering out of LOGSPACE, and therefore, this leads to loosing FO-
rewritability of queries.

Theorem 3 ([10]). Let J = 〈G,S,M〉 be a DL-LiteA,id data integration system ex-
tended by removing the UNA, and D a database for S. Computing the certain answers
to a query constituted by a single atom in J with respect to D is NLOGSPACE-hard in
the size of D.

Next we consider extensions to the mapping language. The possibility of extending
the language used to express the mapping has been analyzed in [10], which considers
the so-called GLAV mappings, i.e., assertions that relate conjunctive queries over the
sources to conjunctive queries over the global schema. Such assertions are therefore an
extension of both GAV and LAV mappings. Unfortunately, even with LAV mappings
only, it has been shown that instance checking and query answering are no more in
LOGSPACE with respect to data complexity. Thus, with LAV mappings, we again loose
FO-rewritability of UCQs.

Theorem 4 ([10]). Let J = 〈G,S,M〉 be a DL-LiteA,id data integration system ex-
tended with LAV mapping assertions, and D a database for S. Computing the certain

194 D. Calvanese et al.

answers to a query constituted by a single atom in J with respect to D is NLOGSPACE-
hard in the size of D.

Finally, we consider the possibility of handling source schemas beyond the relational
model. The data integration architecture referred to in this paper assumes to deal with
relational sources, managed by a relational data federation tool. It is not hard to see,
however, that all the results mentioned here apply also if we consider federation tools
that provide a representation of the data at the sources according to a different data
model (e.g., XML). Obviously, depending on the specific data model adopted by the
data federation tool, we have to resort to a suitable query language for expressing the
source queries appearing in the mapping assertions. To adhere to the framework adopted
in this paper, the only constraint imposed on the query language (that is trivially satisfied
by virtually all query languages used in practice) is that it is able to extract tuples of
values from the sources.

7 Discussion and Conclusions

Starting from the late 90s, research in data integration has mostly focused on declarative
approaches (as opposed to procedural ones) [32,26], such as the one advocated here.
The GAV approach for specifying mappings has been proposed e.g., in [15,20,31,22],
while the LAV approach is at the basis of the work in [25,18,14].

Although in the present work we make use of GAV mappings, the presence of
constraints expressed in a rich ontology language in the global schema, makes query
answering in our setting more similar to what is carried out in LAV data integration
systems rather than in GAV systems. Indeed, while in general GAV systems have been
realized as (simple) hierarchies of wrappers and mediators, query answering in LAV
can be considered a form of reasoning in the presence of incomplete information, and
thus significantly more complex. Early systems based on this approach, like Informa-
tion Manifold [28,29], or INFOMASTER [21,19], have implemented algorithms [28] for
rewriting queries using views (where the views are the ones specified through the CQs
in the mappings). The relationship between LAV and GAV data integration systems is
explored in [7], where it is indeed shown that a LAV system can be converted into a
GAV one by introducing suitable inclusion dependencies in the global schema. If no
functionality assertions are present in the global schema, such inclusion dependencies
can then be dealt with in a way similar to what is done here for concept and role in-
clusions in DL-LiteA,id. Note that this is no longer possible, instead, in the presence of
functionality assertions.

The approach illustrated in this paper has been implemented in a prototype system
called MASTRO-I (see [13]). We conclude the paper by mentioning some aspects that
are important for the problem of semantic data integration, but that have not been ad-
dressed yet in the development of the system.

A first important point is handling inconsistencies in the data, possibly using a declar-
ative, rather than an ad-hoc procedural approach. An interesting proposal is the one of
the INFOMIX system [27] for the integration of heterogeneous data sources (e.g., rela-
tional, XML, HTML) accessed through a relational global schema with powerful forms
of integrity constraints. The query answering technique proposed in such a system is

Conceptual Modeling for Data Integration 195

based on query rewriting in Datalog enriched with negation and disjunction, under sta-
ble model semantics [8,23].

A second interesting issue for further work is looking at “write-also” data integration
tools. Indeed, while the techniques presented in this paper provide support for answer-
ing queries posed to the data integration system, it could be of interest to also deal
with updates expressed on the global schema (e.g., according to the approach described
in [16,17]). The most challenging issue to be addressed in this context is to design
mechanisms for correctly reformulating an update expressed over the ontology into a
series of insert and delete operations on the data sources.

Acknowledgements. This research has been partially supported by the IP project On-
toRule (ONTOlogies meet Business RULEs ONtologiES), funded by the EC under ICT
Call 3 FP7-ICT-2008-3, contract number FP7-231875, by project DASIbench (Data and
Service Integration workbench), funded by IBM through a Faculty Award grant, and by
the MIUR FIRB 2005 project “Tecnologie Orientate alla Conoscenza per Aggregazioni
di Imprese in Internet” (TOCAI.IT).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.,
Reading (1995)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

3. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial
Intelligence 168(1–2), 70–118 (2005)

4. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L., Zaihrayeu,
I.: Data management for peer-to-peer computing: A vision. In: Proc. of the 5th Int. Workshop
on the Web and Databases, WebDB 2002 (2002)

5. Bernstein, P.A., Haas, L.: Informaton integration in the enterprise. Communications of the
ACM 51(9), 72–79 (2008)

6. Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.): On Conceptual Modeling: Perspectives
from Artificial Intelligence, Databases, and Programming Languages. Springer, Heidelberg
(1984)

7. Calı̀, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the expressive power of data in-
tegration systems. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 338–350. Springer, Heidelberg (2002)

8. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data inte-
gration systems. In: Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pp. 16–21 (2003)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Linking
data to ontologies: The description logic DL-LiteA. In: Proc. of the 2nd Int. Workshop on
OWL: Experiences and Directions (OWLED 2006). CEUR Electronic Workshop Proceed-
ings, vol. 216 (2006), http://ceur-ws.org/

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi,
M.: Data integration through DL-LiteA ontologies. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg (2008)

http://ceur-ws.org/

196 D. Calvanese et al.

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-based identifi-
cation constraints in description logics. In: Proc. of the 11th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2008), pp. 231–241 (2008)

14. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integration in data
warehousing. Int. J. of Cooperative Information Systems 10(3), 237–271 (2001)

15. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flickner, M., Lu-
niewski, A., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H., Wimmers, E.L.: Towards
heterogeneous multimedia information systems: The Garlic approach. In: Proc. of the 5th
Int. Workshop on Research Issues in Data Engineering – Distributed Object Management
(RIDE-DOM 1995), pp. 124–131. IEEE Computer Society Press, Los Alamitos

16. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic
ontologies at the instance level. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI 2006), pp. 1271–1276 (2006)

17. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the approximation of instance
level update and erasure in description logics. In: Proc. of the 22nd Nat. Conf. on Artificial
Intelligence (AAAI 2007), pp. 403–408 (2007)

18. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In: Proc. of the
16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS
1997), pp. 109–116 (1997)

19. Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data integration. J.
of Logic Programming 43(1), 49–73 (2000)

20. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D.,
Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: Data models and languages.
J. of Intelligent Information Systems 8(2), 117–132 (1997)

21. Genereseth, M.R., Keller, A.M., Duschka, O.M.: Infomaster: An information integration sys-
tem. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 539–542 (1997)

22. Goh, C.H., Bressan, S., Madnick, S.E., Siegel, M.D.: Context interchange: New features
and formalisms for the intelligent integration of information. ACM Trans. on Information
Systems 17(3), 270–293 (1999)

23. Grieco, L., Lembo, D., Ruzzi, M., Rosati, R.: Consistent query answering under key and
exclusion dependencies: Algorithms and experiments. In: Proc. of the 14th Int. Conf. on
Information and Knowledge Management (CIKM 2005), pp. 792–799 (2005)

24. Hull, R.: A survey of theoretical research on typed complex database objects. In: Paredaens,
J. (ed.) Databases, pp. 193–256. Academic Press, London (1988)

25. Kirk, T., Levy, A.Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In: Proceedings
of the AAAI 1995 Spring Symp. on Information Gathering from Heterogeneous, Distributed
Enviroments, pp. 85–91 (1995)

26. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp.
233–246 (2002)

27. Leone, N., Eiter, T., Faber, W., Fink, M., Gottlob, G., Greco, G., Kalka, E., Ianni, G., Lembo,
D., Lenzerini, M., Lio, V., Nowicki, B., Rosati, R., Ruzzi, M., Staniszkis, W., Terracina,
G.: The INFOMIX system for advanced integration of incomplete and inconsistent data. In:
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 915–917 (2005)

Conceptual Modeling for Data Integration 197

28. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogenous information sources using
source descriptions. In: Proc. of the 22nd Int. Conf. on Very Large Data Bases, VLDB 1996
(1996)

29. Levy, A.Y., Srivastava, D., Kirk, T.: Data model and query evaluation in global information
systems. J. of Intelligent Information Systems 5, 121–143 (1995)

30. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900,
pp. 133–173. Springer, Heidelberg (2008)

31. Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data sources with
DISCO. IEEE Trans. on Knowledge and Data Engineering 10(5), 808–823 (1998)

32. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis, P.G.
(eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)

Clio: Schema Mapping Creation and Data
Exchange

Ronald Fagin1, Laura M. Haas1, Mauricio Hernández1,
Renée J. Miller2, Lucian Popa1, and Yannis Velegrakis3

1 IBM Almaden Research Center, San Jose, CA 95120, USA
2 University of Toronto, Toronto ON M5S2E4, Canada

3 University of Trento, 38100 Trento, Italy
fagin@almaden.ibm.com, laura@almaden.ibm.com, mauricio@almaden.ibm.com,

miller@cs.toronto.edu, lucian@almaden.ibm.com, velgias@disi.unitn.eu

Abstract. The Clio project provides tools that vastly simplify infor-
mation integration. Information integration requires data conversions to
bring data in different representations into a common form. Key con-
tributions of Clio are the definition of non-procedural schema mappings
to describe the relationship between data in heterogeneous schemas, a
new paradigm in which we view the mapping creation process as one of
query discovery, and algorithms for automatically generating queries for
data transformation from the mappings. Clio provides algorithms to ad-
dress the needs of two major information integration problems, namely,
data integration and data exchange. In this chapter, we present our al-
gorithms for both schema mapping creation via query discovery, and for
query generation for data exchange. These algorithms can be used in
pure relational, pure XML, nested relational, or mixed relational and
nested contexts.

1 Introduction

We present a retrospective on key contributions of the Clio project, a joint
project between the IBM Almaden Research Center and the University of
Toronto begun in 1999. Clio’s goal is to radically simplify information inte-
gration, by providing tools that help in automating and managing one chal-
lenging piece of that problem: the conversion of data between representations.
Clio pioneered the use of schema mappings, specifications that describe the re-
lationship between data in two heterogeneous schemas. From this high-level,
non-procedural representation, it can automatically generate either a view, to
reformulate queries against one schema into queries on another for data integra-
tion, or code, to transform data from one representation to the other for data
exchange. In this chapter, we focus on two key components of Clio: the creation of
mappings between heterogeneous schemas, and their use for the implementation
of data exchange.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 198–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Clio: Schema Mapping Creation and Data Exchange 199

1.1 Schema Mapping

Schema mappings are fundamental for a number of important information in-
tegration problems [9] including data integration, data exchange, peer-to-peer
data sharing, schema integration and schema evolution. Applications are typ-
ically limited to handling information with a specific schema, so they rely on
systems that can create and use mappings to transform data from one represen-
tation to another.

A fundamental requirement for Clio is that it make no assumption about the
relationship between the schemas or how they were created. In particular, we do
not assume that either of the schemas is a global or mediator schema, nor that
one schema is a view (global or otherwise) over the other. This implies that both
schemas may contain data not represented in the other, and that both may have
their own constraints.

This requirement to map independently created schemas has a strong impact
on our mapping language, as we need one that is more general than those used in
traditional schema integration [6] or in mediator systems such as TSIMMIS [16]
or Information Manifold [34].

A second requirement is that we be able to map between relational schemas
and nested schemas (for example, XML schemas). As XML emerged as a common
standard for exchanging data, an early motivating application for our work was
publishing legacy relational data in XML. This often requires relational data to
be placed into a predefined XML schema (defined, e.g., by a standards committee
to permit meaningful exchange within a specific domain). However, for other
applications including schema evolution, data warehousing, and data federation,
we also need to be able to map data between different relational schemas and
between any combination of nested and relational schemas.

A third requirement is that we be able to create and use mappings at different
levels of granularity. For some applications and some schemas, it may be sufficient
to create fine-grained mappings between individual components (for example,
between attributes or elements to translate gross salary in francs to net salary
in dollars). For others, mappings between broader concepts are required (for
example, between the order concept in one billing application with that used
by another). And for other applications, we may need to map full documents
(for example, map every company’s carbon emission data expressed in a schema
suitable for the European Union Emission Trading Scheme to a schema designed
for the Portable Emissions Measurement Systems standard).

Finally, we want our mapping creation algorithms to be incremental. There
are many motivations for this. First, for many tasks, complete mapping of one
entire schema to another is not the goal. It may suffice to map a single concept to
achieve the desired interoperability. Second, we want a tool that gives users (or
systems) with only partial knowledge of the schemas, or limited resources, useful
(and usable) mappings despite their incomplete knowledge or resources. We hope
that incomplete mappings can help them in understanding the schemas and
data better, and that the mappings can be refined over time as need arises, for
example, as new data appears, or the application needs change. This particular

200 R. Fagin et al.

aspect of our approach was explored in more detail in our work on data-driven
mapping refinement [51] and in work on mapping debugging [3], but will not be
emphasized in this chapter. This ability to evolve mappings incrementally has
more recently been coined pay-as-you-go [23].

Clio mappings assume that we are given two schemas and that we would like
to map data from the first to the second. We refer to the first schema as a source
schema, and the second as a target schema. In practice, this meets most appli-
cation needs, as most require only a uni-directional flow of data. For example,
one common use of mappings is in query reformulation, commonly referred to
as data integration [33], where queries on a target schema are reformulated, us-
ing the mappings, into queries on a source schema. For applications requiring
bi-directional mapping, mappings are created in both directions.

1.2 Implementing Data Exchange

Another common use of mappings is for data exchange where the goal is to create
a target instance that reflects the source instance as accurately as possible [19].
Since the target is materialized, queries on the target schema can be answered
directly without query reformulation. At the time we started Clio, data inte-
gration had been widely studied, but work on data exchange was quite dated.
Foundational systems like Express [46,47] did data exchange for mappings which
were much less expressive than those needed to map arbitrary schemas. There
were no systems that performed data exchange for the general mappings we
strove to create.

For independent schemas, because the schemas may represent overlapping
but distinct sets of concepts, a schema mapping may relate a source instance
with many possible target instances. As a result, we have a fundamentally new
problem: given a schema mapping, determine which possible target instance is
the best one to use for data exchange. At the time of our first results [38,43],
this problem had not yet been formalized. Hence, in Clio, we made some intu-
itive decisions that were later formalized into a theory for data exchange [19].
In this chapter, we discuss this intuition, and how it corresponds to the later
theory. We also discuss some important systems issues not covered by the the-
ory. Specifically, we consider how to create a data exchange program from a
schema mapping. Due to the requirements for schema mapping laid out above,
we choose to produce executable queries for data exchange. A schema mapping
is a declarative specification of how an instance of a source schema corresponds
to possibly (infinitely) many target instances, and from this we choose a best
target instance to materialize. Hence, our data exchange queries, when executed
on a source instance, will generate this one chosen target instance.

The origins of this chapter first appeared in Miller et al. [38] and Popa et
al. [43]. This chapter also includes details, originally from Velegrakis [48], of
our data exchange implementation. The requirements outlined above force us to
accommodate various runtime environments. In this chapter, we discuss how to
generate data exchange queries in SQL, XQuery or XSLT.

Clio: Schema Mapping Creation and Data Exchange 201

The chapter is organized as follows. Section 2 introduces a motivating example
and describes the problem of schema mapping generation and the problem of
data exchange. Section 3 presents the data model we will use for representing
both relational and nested relational schemas along with our schema mapping
formalism. Section 4 presents our algorithm for generating schema mappings.
Section 5 presents our algorithm for data exchange (mapping code generation).
We present a discussion and analysis of our algorithms in Section 6, describe the
related work in Section 7 and then conclude.

2 A Motivating Example

To motivate our approach, we first walk through an example explaining the
intuition behind our mapping creation algorithm, and highlighting some of its
features. We then extend our example to illustrate how schema mappings can
be used to generate queries for data exchange, and describe the key innovations
in that algorithm.

2.1 Schema Mapping Creation

Schema. Consider a data source with information about companies and grants.
The structure of its data is described by the Schema S, illustrated in Figure 1. It is
a relational schema containing three tables, companies, grants, and contacts,
presented in a nested relational representation that we use to model both rela-
tional and XML schemas. It contains a set of grants (grants), each consisting of
a grant identifier (gid), a recipient (recipient), its amount (amount), its super-
visor (supervisor) and its manager (manager). The recipient is actually the
name of the company that received the grant. For each company, the database
stores its name (name), address (address) and the year it was founded (year).
Similarly, the supervisor and manager are references to some contact informa-
tion, which consists of an identifier (cid), an email (email) and a phone number
(phone). The curved lines f1, f2 and f3 in the figure represent referential con-
straints specified as part of the schema. For example, f1 may be a foreign key, or
simply an inclusion dependency, stating that values in grants.recipient must
also appear in companies.name.

Consider a second schema T , as illustrated on the right-hand side of Fig-
ure 1. It records the funding (fundings) that an organization (organizations)
receives, nested within the organization record. The amount of each funding
(budget) is kept in the finances record along with a contact phone number
(phone). The target may be an XML schema containing a referential constraint
in the form of a keyref definition (f4).

Correspondences. To begin to understand the relationship between the
schemas, we may invoke a schema matcher to generate a set of element cor-
respondences (or matchings). Alternatively, we could ask a user (for example, a
data designer or administrator familiar with the schemas) to draw lines between

202 R. Fagin et al.

contacts: Set of Rcd

f2

grants: Set of Rcd

f1
gid
recipient
amount
supervisor
manager

cid
email
phone

f3

year

name
address

companies: Set of Rcd

v3

v4

v2

v1

f4

year
code

fundings: Set of Rcd

finances: Set of Rcd

organizations: Set of Rcd

finId
budget
phone

fid
finId

Schema T:Schema S:

Fig. 1. A source and a target schema in a mapping scenario

elements that should contain related data. In our example, the dashed arrows
between the elements of the two schemas in Figure 1 represent a set of match-
ings or correspondences. The line v1 indicates (informally) that what is called
a company name in the first schema, is referred to as an organization code in
the second. In contrast, both schemas have an element year, but the data ad-
ministrator (or matching tool) has specified no arrow between them. That may
be because there is reason to believe that these elements do not represent the
same concept. For instance, element year in the first schema may represent the
time the company was founded, while in the second it may represent the time
the company had its initial public offer (IPO).

Our approach is agnostic to how correspondences are created, whether man-
ually or (semi-)automatically, but is cognizant that matchings are often incom-
plete, and sometimes incorrect. Hence, we have developed techniques for in-
crementally modifying mappings as correspondences change [49]. To keep our
example simple, we assume that correspondences v1, v2, v3, v4 are correct.

Mappings. One way a correspondence can be interpreted is that the target
schema element should be populated with values from the source schema element.
This can be formally expressed using an inter-schema inclusion dependency or
more generally through a source-to-target tuple generating dependency, (tgd) [7].
A tgd representing correspondence v1 of Figure 1 is shown below (the nested set
fundings which is represented by the variable F inside organizations will be
explained below).

∀n, d, y, companies(n, d, y) → ∃y′, F organizations(n, y′, F) (1)

This simple mapping states that for each companies tuple, there must be
an organizations tuple whose code is the same as the companies.name; this is
represented by the shared variable n, which carries source data to the target. As a
convention, when writing tgds, we underline all the variables that appear in both
the left-hand side and the right-hand side of the implication. This target tuple

Clio: Schema Mapping Creation and Data Exchange 203

must have a value for the year attribute, but the mapping does not specify what
this value should be (this is represented by the existential variable y′). Similarly,
we could write simple tgds to express the other three correspondences.

If our application only requires information about organizations (and not
about fundings or finances), then we can stop the mapping generation here.
This simple element-to-element mapping can be used for data exchange or for
data integration [52]. However, if the user is interested in mapping more data,
we can continue the mapping generation using the other correspondences from
Figure 1 to map additional concepts.

Associations. Correspondences alone do not specify how individual data values
should be connected in the target. For example, in the target, funding informa-
tion is nested inside organizations. This nesting indicates that there is a seman-
tic association between organization and funding records. This may represent
organizations and the funding that the organization has received, or possibly or-
ganizations and the funding that they have given to others. The semantics is not
specified precisely in the schema, but it is clear that some real-world association
is being represented. Given this, we will look for associations between organiza-
tion information and funding information in the source to see if one of these can
be used to associate data in the target. For our example, organizations.code
corresponds to companies.name, while fundings.fid corresponds to grants.gid.
Hence, our algorithm will search for associations between these source elements
within the source schema. In our example, the referential constraint f1 indicates
that each grant is associated with a company, thus this constraint can be used
to associate each company with a set of grants. In general, there may be many
ways to associate elements within a schema. Our algorithm will use logical infer-
ence to find all associations represented by referential constraints and a schema’s
relational and nesting structure.

For our example, we have only one way of associating company names and
grant gids in the source, so we will use this association to associate fundings with
organizations in the target. A mapping reflecting this association is represented
by the following formula.

∀n, d, y, g, a, s, m companies(n, d, y), grants(g, n, a, s, m) →

∃y′, F, f organizations(n, y′, F), F(g, f) (2)

The variable F in formula (2) does not represent an atomic value, but rather a
set identifier, and is also used as a term in the formula. This variable represents
the set of fundings that an organizations tuple has.

Notice that Mapping (2) specifies what must be true of the target data, given
that a certain pattern holds in the source data. In this example, it says that if
a grant joins with a company in the source, then there must be an organization
in the target with the name of the company as its code, and with a fundings
record nested inside of the organization record that has the grant’s gid as its
fundings.fid. No other constraints are placed on what is in this set. So the

204 R. Fagin et al.

mapping is specifying that the association between grants and companies should
be preserved in the target.

Now let us consider the correspondence v3. Considered in isolation, this cor-
respondence could be represented by the following mapping.

∀g, r, a, s, m grants(g, r, a, s, m) → ∃f, p finances(f, a, p) (3)

However, this mapping does not recognize that grant amounts are asso-
ciated with specific grant gids (in the source) and that fundings.fid and
finances.budget are associated in the target (through the referential constraint
f4). If these two associations represent the same semantic association, then a
better mapping can be constructed by using the source and target associations.

∀n, d, y, g, a, s, m companies(n, d, y), grants(g, n, a, s, m) →

∃y′, F, f, p organizations(n, y′, F), F(g, f), finances(f, a, p), (4)

Notice that a company and grant tuple that join in the source will create three
tuples in the target: an organizations tuple, a fundings tuple (which is nested
inside the organizations tuple), and a finances tuple. The mapping specifies
that the fundings and finances tuples must share the same value (f) in their
finId attributes. It does not, however, specify what this value must be (that is,
the variable f is existentially quantified and is not bound to source data).

Now to complete our example, let us consider the final correspondence v4. In
the target, a phone is associated with a budget because they are represented
in the same relation finances. In the source, there are two ways to associate
a grants.amount (the source for finances.budget) and a contacts.phone (the
source for finances.phone). These are represented by the two referential con-
straints f2 (which associates a grant with its supervisor’s phone) and f3 (which
associates a grant with its manager’s phone).

It is not clear which, if either, of these associations should be used to create
finances tuples. Clio will create two mappings, one using f2 (Mapping (5))
which uses a join on supervisor, and one using f3 (Mapping (6)) which uses a
join on manager. To help a user decide which mapping to use, Clio provides a
data viewer which allows users to see (and compare) sample target data created
by each mapping [51].

∀n, d, y, g, a, s, m, e, p companies(n, d, y), grants(g, n, a, s, m), contacts(s, e, p)

→ ∃y′, F, f organizations(n, y′, F), F(g, f), finances(f, a, p) (5)

∀n, d, y, g, a, s, m, e, p companies(n, d, y), grants(g, n, a, s, m), contacts(m, e, p)

→ ∃y′, F, f organizations(n, y′, F), F(g, f), finances(f, a, p) (6)

We have illustrated a few of the issues involved with generating schema map-
pings. We now highlight some of the features of the Clio mapping algorithm.

Clio: Schema Mapping Creation and Data Exchange 205

Mapping Formalism. As our example illustrated, we use source-to-target tgds,
a generalization of the relational tgds of Fagin et al. [19] to the nested relational
model, to represent schema mappings. Our mappings are a form of what has
been called sound GLAV (global-and-local-as-view) mappings [33]. In general,
a GLAV mapping asserts a relationship between a query over the source and a
query over the target. We use sound mappings, where the relationship between
queries is a containment relationship (the result of the source query is contained
in the target query) as is common in data integration. Such mappings do not
restrict what data can be in the target; hence, we have the freedom to map
multiple sources into a single target.

Mapping Generation. Clio exploits the schema and its constraints to gener-
ate a set of alternative mappings. Our approach uses the chase technique [36]
to generate all possible associations between source elements (and all possible
associations between target elements). The mappings are formed using these
associations or other associations given by a user.

Multiple Mappings. As we create mappings, each query may omit information
that the user may have wanted included. Consider Mapping (2). This mapping
takes grants that have an associated company and creates target data from this
information. Notice, however, that companies that have no grants would not
be included in the mapping. We may want to include all companies, not just
companies with grants, in the target. To allow for this, Clio generates a set
of mappings that would map all source data (in this example, both companies
with and without grants). A user can then choose among these mappings. If she
only wishes to map a subset of the source data, she can do so by selecting an
appropriate subset of the mappings Clio generates.

2.2 Query Generation for Data Exchange

For data exchange, Clio can generate code that, given a source instance, will
produce an instance of the target schema that satisfies the mapping and that
represents the source data as accurately as possible. In general, given a source
instance there may be many target instances that satisfy the mapping (or many
solutions in data exchange parlance [19]). Hence, to perform data exchange, we
must choose a single “best” target instance, i.e., a single solution to materialize.

Let us assume, for example, that the instance of the source schema of Figure 1
is the one illustrated in Figure 2, and that a user has indicated that Mapping (5)
is correct and would like to create a target instance. For each companies tuple
that joins with grants and contacts, the mapping indicates that there should
be an organizations tuple containing as organization code the company name.
Furthermore, there must also be a nested fundings element containing the gid
of the grant from the source. Finally, a finances element must also exist with
the same value for its finId as the value of finId in this fundings record.
Moreover, the finances element must contain the grant amount in the budget
element and the supervisor phone number as phone. An instance that satisfies

206 R. Fagin et al.

Companies
name address year
MS Redmond, SA 1975
AT&T Dallas, TX 1983
IBM Armonk, NY 1911

Grants
gid recipient amount supervisor manager
g1 MS 1M Rice Gates
g2 MS 2M Bama Gates
g4 AT&T 3M Greer Dorman

Contacts
cid email phone
Rice rice@microsoft 7062838
Gates gates@microsoft 7069273
Bama bama@microsoft 7066252
Greer rxga@att 3607270
Dorman dorman@att 3600102

Fig. 2. An instance for the source schema in Figure 1

the mapping, i.e., a solution, can be seen in Figure 3. In this solution, fundings
tuple g1 can correctly be joined with the first finances tuple to associate it with
its correct budget (1M). However, in Figure 3 all fundings tuples are associated
with all finances tuples, which was not true in the source. In data exchange,
we would like the target instance to represent only the data associations in the
source. Clearly the instance of Figure 3 does not fullfill that desire. Furthermore,
the last tuple in the Finances table does not correspond to any source data, yet
its inclusion in the instance does not violate Mapping (5). So while this instance
is a solution, it is not minimal.

Fagin et al. [19] proposed the use of universal solutions for data exchange. A uni-
versal solution is an instance of the target schema that contains no more and no
less than what the mapping specification requires. A universal solution for Map-
ping (5) is given in Figure 4. Note that the values of the finId attribute have
been created to associate each fundings with all and only the finances tuples
that contain the correct budget amount. The instance is also minimal in that it
does not contain any tuples that were not required to be in the target. To compute
a universal solution, Fagin et al. [19] present an algorithm based on the chase [36].
However, in Clio, we use queries to perform the data exchange. Here we present
algorithms that, given a schema mapping, generate a set of executable queries to
perform the desired data exchange. The queries can be in SQL, XQuery or XSLT
depending on the desired runtime environment. In the case of a pure relational
setting (relational source and target schemas), these queries generate a universal
solution. In our algorithm, we make use of Skolem functions (one-to-one func-
tions) that generate values based on a set of source values. We will discuss later
how to determine the correct arguments for these Skolem functions and when one
Skolem function should be reused in different schema elements. For example, in
Section 5, we show why the Skolem function for finId needs to depend on four
source attributes (name, gid, amount, and phone).

In the case of a nested target schema, Clio applies additional grouping
and nesting to produce a target instance that is in PNF (Partitioned Normal

Clio: Schema Mapping Creation and Data Exchange 207

Organizations
code year
MS

Fundings
fid finId
g1 10
g2 10

code year
AT&T

Fundings
fid finId
g4 10

Finances
finId budget phone
10 1M 7062838
10 2M 7069273
10 3M 3607270
10 5M 2609479

Fig. 3. A non-universal solution target instance for Mapping (5)

Form) [1]. This is done to minimize the redundancy in the target instance.
Consider the universal solution given in Figure 4 which contains a different
organizations tuple with a singleton fundings set for each companies and
grants pair in the source, even if multiple pairs share the same company name.
Clio avoids this redundancy, by producing a single organizations tuple for each
source name and grouping all the fundings that belong to the same organiza-
tion together under one single organization element (Figure 5). As shown in the
figure, we use Skolem functions to represent set identifiers for each fundings
set. Our algorithms determine the correct arguments for these Skolem functions
to achieve PNF grouping. In more recent work which will not be covered in this
chapter [24], we have considered how to declaratively represent PNF grouping
semantics in the mapping specification along with other types of grouping. In
this chapter, we will assume PNF is the desired semantics, and we present our
solutions for generating PNF target instances.

There are two main innovations in our data exchange algorithm. The first is
a new technique for generating Skolem terms to represent existential values and
for achieving grouping in the target instance. Second, our algorithm can identify
and merge data that are generated by different mappings, but represent the
same target entities. Assume, for instance, that the user wanted to populate the
target with all the companies, independently of whether they have funding or not.
Mapping (5) can generate only companies with grants (i.e., funding), due to the
join it performs on the source data. Mapping (1) on the other hand, generates all
the companies, but without their potential funding. The desired target instance
can be achieved by using both mappings (5) and (1). The resulting instance
would be the same as Figure 5 but with an additional organizations element
for IBM having an empty fundings subelement. The MS and AT&T tuples
would not be impacted, even though they are produced by both mappings.

208 R. Fagin et al.

Organizations
code year
MS

Fundings
fid finId
g1 Sk2(MS,g1,1M,7062838)

code year
MS

Fundings
fid finId
g2 Sk2(MS,g2,2M,7066252)

code year
AT&T

Fundings
fid finId
g4 Sk2(AT&T,g4,3M,3607270)

Finances
finId budget phone
Sk2(MS,g1,1M,7062838) 1M 7062838
Sk2(MS,g2,2M,7066252) 2M 7069273
Sk2(AT&T,g4,3M,3607270) 3M 3607270

Fig. 4. A universal solution target instance for Mapping (5)

3 Mapping Language and Schema Constraints

Schemas and Types. We use a nested relational model to model both relational
and XML Schemas. In general, a schema is a sequence of labels (called roots),
each with an associated type τ , defined by the grammar:

τ ::= String | Integer | Set of τ |Rcd[l1 : τ1,. . ., ln : τn] | Choice[l1 : τ1,. . ., ln : τn]

Types Integer and String are called atomic types, Set of is a set type, and Rcd
and Choice are complex types. With respect to XML Schema, we use Set of to
model repeatable elements (or repeatable groups of elements), while Rcd and
Choice are used to represent the “all” and “choice” model-groups. For each set
type Set of τ , τ must be an atomic (String or Integer) type or a Rcd type. We do
not consider order, that is, Set of represents unordered sets. “Sequence” model-
groups of XML Schema are also represented as (unordered) Rcd types.

Instances. An instance of a schema associates each schema root l of type τ with
a value v of type τ . For the atomic types, the allowed values are the expected ones
(i.e., strings, integers). A value of type Rcd[l1 : τ1, . . . , ln : τn] is an unordered
tuple of pairs [l1 : v1, . . . , ln : vn] where vi is a value of type τi with 1 ≤ i ≤ n.
A value of type Choice[l1 : τ1, . . . , ln : τn] on the other hand, is a pair 〈li : vi〉
where vi is a value of type τi with 1 ≤ i ≤n. With respect to XML, the labels
l1, . . . , ln model element names or attribute names, while the values v1, . . . , vn

represent the associated contents or value. In our model, we do not distinguish
between XML elements and attributes.

Clio: Schema Mapping Creation and Data Exchange 209

Organizations Sk0()
code year
MS

Fundings Sk1(MS)
fid finId
g1 Sk2(MS,g1,1M,7062838)
g2 Sk2(MS,g2,2M,7066252)

code year
AT&T

Fundings Sk1(AT&T)
fid finId
g4 Sk2(AT&T,g4,3M,3607270)

Finances Sk3()
finId budget phone
Sk2(MS,g1,1M,7062838) 1M 7062838
Sk2(MS,g2,2M,7066252) 2M 7069273
Sk2(AT&T,g4,3M,3607270) 3M 3607270

Fig. 5. A target instances for Mapping (5) in PNF

A value of type Set of τ is actually an identifier (set ID). This identifier
is associated to an unordered set {v1, v2, . . . , vn} of values, each being of type
τ .1 This id-based representation of sets faithfully captures the graph-based data
models of XML. In a constraint or expression in general, we shall always interpret
the equality of two expressions of set type to mean the equality of their set ids.

Mapping Language. Our mapping language is based on the source-to-target
tgds [19], extended to support nested relations. When restricted to the relational
model, our mapping formulas coincide with source-to-target tgds. However, we
permit variables occurring inside atoms in a tgd to represent relations as well as
atomic values to allow the representation of nested sets.

In this paper, as in other Clio work [43,49,52], we will use a more verbose form
of the mapping language to make the algorithms and ideas easier to follow. Let
an expression be defined by the grammar e ::= S | x | e.l, where x is a variable,
S is a schema root, l is a label, and e.l is record projection. Then a mapping is
a statement (constraint) of the form:

M ::= foreach x1 in g1, . . . , xn in gn

where B1
exists y1 in g′1, . . . , ym in g′m

where B2
with e1 = e′1 and . . . and ek = e′k

where each xi in gi (yj in g′j) is called a generator and each gi (g′j) is one of the
following two cases:

1. An expression e with type Set of τ ; in this case, the variable xi (yj) binds
to individual elements of the set e.

1 The reason will become clear when we talk about how data generated by different
mappings is merged to form one single instance of the target schema.

210 R. Fagin et al.

2. A choice selection e → l (where e is an expression with a type Choice [. . . , l :
τ, . . .]) representing the selection of attribute l of the expression e; in this
case, the variable xi (yj) will bind to the element of type τ under the choice
l of e.

The mapping is well-formed if the variable (if any) used in gi (g′j) is defined
by a previous generator within the same clause. Every schema root used in the
foreach must be a root of the source schema. Similarly, every schema root used
in the exists clause must be a target schema root. The two where clauses (B1
and B2) are conjunctions of equalities between expressions over x1, . . . , xn, or
y1, . . . , ym, respectively. They can also include equalities with constants (i.e.,
selections). Finally, each equality ei = e′i in the with clause involves a source
expression ei (over x1, . . . , xn) and a target expression e′i (over y1, . . . , ym), with
the requirement that ei and e′i are of the same atomic type.

For simplicity of presentation, we shall ignore for the remainder of this paper
the Choice types and their associated expressions. We note, however, that these
are an important part of XML Schema and XML mappings, and they are fully
supported in the Clio system.

Example 1. Recall the schemas in Figure 1. The following mapping is an inter-
pretation of the correspondences v1, v2, v3, given the structure of the schemas
and the constraints. It is equivalent to the tgd for Mapping (4) in Section 2.

foreach c in companies, g in grants
where c.name = g.recipient

exists o in organizations, f in fundings, f ′ in finances
where f .finId = f ′.finId

with c.name = o.code and g.gid = f .fid and g.amount = f ′.budget

Each mapping is, essentially, a source-to-target constraint of the form QS � QT ,
where QS (the foreach clause and its associated where clause) is a query over the
source and QT (the exists clause and its associated where clause) is a query
over the target. The mapping specifies a containment assertion: for each tuple
returned by QS , there must exist a corresponding tuple in QT . The with clause
makes explicit how the values selected by QS relate to the values in QT .

Schema Constraints (NRIs). Before defining the schema constraints that we
use in our mapping generation algorithm, we need to introduce primary paths
and relative paths.

Definition 1. A primary path with respect to a schema root R is a well-formed
sequence P of generators x1 in g1, . . . , xn in gn where the first generator g1 is an
expression that depends only on R and where each generator gi with i ≥ 2 is an
expression that depends only on the variable xi−1. Given a variable x of type τ ,
a relative path with respect to x is a well-formed sequence P (x) of generators
x1 in g1, . . . , xn in gn where the first generator g1 is an expression that depends
only on x and where each generator gi with i ≥ 2 is an expression that depends
only on xi−1.

Clio: Schema Mapping Creation and Data Exchange 211

The following are examples of primary paths and relative paths:

PS
1 : c in companies

PT
1 : o in organizations

PT
2 : o in organizations, f in o.fundings

PT
r : f in o.fundings

The first two paths, PS
1 and PT

1 , are primary paths corresponding to top-level
tables in the two schemas in our example. The third one is a primary path
corresponding to the nested set of fundings under the top-level organizations.
Finally, the fourth one is a relative path with respect to o : τ where τ is the
record type under organizations.

Primary paths will play an important role in the algorithm for mapping gener-
ation, as they will be the building blocks for larger associations between data el-
ements. Primary paths, together with relative paths, are also useful in definining
the schema constraints that we support in our nested relational model. Schema
constraints use a similar formalism as mappings, but they are defined within
a single schema. Hence, variables in both the foreach and the exists clauses are
defined on the same schema.

Definition 2. A nested referential integrity constraint (NRI) on a schema is
an expression of the form

foreach P1 exists P2 where B,

with the following requirements: (1) P1 is a primary path of the schema, (2) P2
is either a primary path of the schema or a relative path with respect to one of
the variables of P1, and (3) B is a conjunction of equalities of the form e1 = e2
where e1 is an expression depending on one of the variables of P1 and e2 is an
expression depending on one of the variables of P2.

As an example, the following NRI captures the constraint f4 informally described
in Section 2:

foreach o in organizations, f in o.fundings
exists f ′ in finances

where f .finId = f ′.finId

Note that NRIs, which capture relational foreign key and referential con-
straints as well as XML keyref constraints, are a special case of (intra-schema)
tgds and moreover such that the foreach and the exists clauses form paths. In
general, the source-to-target tgds expressing our mappings may join paths in
various ways, by using equalities in the where clause on the source and/or the
target side. As an example, the mapping in Example 1 in this section joins the
primary path for companies with the primary path for grants in the source,
and joins the primary path for fundings with the primary path for finances
in the target. The next section is focused on deriving such mappings.

212 R. Fagin et al.

4 Schema Mapping

Our mapping generation algorithm makes use of associations between atomic
elements within the source and target schemas. To describe our approach, we
first present an algorithm for finding natural associations within a schema. We
then present an algorithm that given a set of correspondences, and a set of source
and target associations, creates a set of schema mappings.

4.1 Associations

We begin by considering how the atomic elements within a schema can be related
to each other. We define the notion of association to describe a set of associated
atomic type schema elements. Formally, an association is a form of query (with
no return or select clause) over a single schema; intuitively, all the atomic type el-
ements reachable from the query variables (without using additional generators)
are considered to be “associated”.

Definition 3 (Association). An association is a statement of the form:

from x1 in g1, . . . , xn in gn

where B

where each xi in gi is a generator (as defined above). We require that the variable
(if any) used in gi is defined by a previous generator within the same clause.
The where clause (B) is a conjunction of equalities between expressions over
x1, . . . , xn. This clause may also include equalities with constants (i.e., selection
conditions).

An association implicitly defines a relationship among all the atomic elements
defined by expressions over the variables x1, . . . , xn. As a very simple example,
consider the following association:

from c in contacts

The atomic type elements that are implicitly part of this association are c.cid,
c.email and c.phone.

To understand and reason about mappings and rewritings of mappings, we
must understand (and be able to represent) relationships between associations.
We use renamings (1-1 functions) to express a form of subsumption between
associations.

Definition 4. An association A1 is dominated by an association A2 (denoted
as A1

.
!A2) if there is a renaming function h from the variables of A1 to the

variables of A2 such that the from and where clauses of h(A1) are subsets, re-
spectively, of the from and where clauses of A2. (Here we assume that the where

clause of A2 is closed under transitivity of equality.)

Clio: Schema Mapping Creation and Data Exchange 213

Definition 5. The union of two associations A1 and A2 (denoted as A1�A2)
is an association whose from and where clause consist of the contents of the
respective clauses of A1 and A2 taken together (with an appropriate renaming of
variables if they overlap).

If B is a set of equalities e=e′, we will abuse notation a bit and use A�B to
denote the association A with the equalities in B appended to its where clause.

Structural Associations. An important way to specify semantically meaning-
ful relationships between schema elements is through the structural organization
of the schema elements. Associations that are based on this kind of relationship
will be referred to as structural associations.

Definition 6 (Structural Association). A structural association is an
association defined by a primary path P and having no where clause: from P .

Example 2. Figure 6 indicates all the primary paths of the two schemas of Fig-
ure 1. There is one structural association for each primary path. Note that where
more than one relation is used, the relations are related through nesting. For ex-
ample, P T

2 represents fundings (which will each necessarily have an associated
organization).

PS
1 : p in companies

PS
2 : g in grants

PS
3 : c in contacts

P T
1 : o in organizations

P T
2 : o in organizations, f in o.fundings

P T
3 : f in finances

Fig. 6. Source and target primary paths

All primary paths (and therefore all structural associations) in a schema can
be computed by a one time traversal over the schema [43].

User Associations. The semantic relationships between atomic elements de-
scribed by structural associations are relationships that the data administrators
have encoded in the schema during schema design. However, there are rela-
tionships that can exist between schema elements, that are not encoded in the
schema, but can be either explicitly specified by a user, or identified through
other means such as examining the queries in a given query workload. Associa-
tions of this kind are referred to as user associations.

Definition 7. A user association is any association specified explicitly by a
user or implicitly though user actions.

214 R. Fagin et al.

Example 3. If the grants.gid contains as its first five letters, the name of the
company who gave a grant, then we may find in the workload queries that
perform this join frequently. Hence, we may define the following user association:

from g in grants, c in companies
where Substr(g.gid,1,5) = c.name

Logical Associations. Apart from the schema structure or a user query, an
additional way database designers may specify semantic relationships between
schema elements is by using constraints.

Example 4. Every record in grants in an instance of the source schema of Fig-
ure 1 is related to one or more records in companies through the referential
constraint f1 from the recipient element to name. From that, it is natural to
conclude that the elements of a grant are semantically related to the elements
of a company. Thus, they can be combined together to form an association.
Similarly, we can conclude that the elements of a grant are also related to the
elements of contacts through both of the referential constraints on supervisor
and manager. Formally, the resulting association is:

from g in grants , c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid

There are no other schema elements that can be added to the association by fol-
lowing the same reasoning (based on constraints). In that sense, the association
that has just been formed is maximal.

Associations that are maximal like the one described in the previous example
are called logical associations. Logical associations play an important role in
the current work, since they specify possible join paths, encoded by constraints,
through which schema elements in different relations or different primary paths
can be related. We shall make use of this information in order to understand
whether (and how) two correspondences in a schema mapping scenario should
be considered together when forming a mapping.

Logical associations are computed by using the chase [36]. The chase is a
classical method that was originally introduced to test the implication of func-
tional dependencies. The chase was introduced for the relational model and later
extended [42] so that it can be applied on schemas with nested structures.

The chase consists of a series of chase steps. A chase step of association A
with an NRI f : foreach X exists Y with B, can be applied if, by definition,
the association A contains the path X (up to a renaming α of the variables in
X) but does not satisfy the constraint, that is, A does not contain the path Y
(up to a renaming β of the variables in Y) such that B is satisfied (under the
corresponding renamings α and β). The result of the chase step is an association
A′ with the Y clause and the B conditions (under the respective renamings)
added to it. The chase can be used to enumerate logical join paths, based on

Clio: Schema Mapping Creation and Data Exchange 215

the set of referential constraints in a schema. We use an extension of a nested
chase [42] that can handle choice types and NRIs [48].

Let Σ denote a set of NRIs, and A an association. We denote by ChaseΣ(A)
the final association that is produced by a sequence of chase steps starting
from A as follows. In the case where no constraints in Σ can be applied to
A, then ChaseΣ(A) is A. If there are constraints that can be applied to A, then
ChaseΣ(A) is constructed as follows: a first step is applied on A; each subse-
quent step is applied on the output of the previous one; each step uses an NRI
from the set Σ; and the sequence of chase steps continues until no more can be
applied using NRIs from Σ. In general, if the constraints are cyclic, the chase
process may not terminate. However, if we restrict Σ to certain classes of con-
straints such as weakly-acyclic sets of NRIs, termination is guaranteed. (See also
the later discussion in Section 6.) Furthermore, it is known (see [19] for exam-
ple) that when the chase terminates, then it terminates with a unique result
(up to homomorphic equivalence2). Thus, the result ChaseΣ(A) is independent,
logically, of the particular order in which the constraints are applied.

Of particular interest to us is the chase applied to structural associations,
which is used to compute logical relationships that exist in the schema. A logical
association can then be formally defined as the result of such chase.

Definition 8 (Logical Association). A logical association is an association
ChaseΣ(A), where A is a structural association or a user association, and Σ is
the set of NRIs defined on the schema.

Example 5. Consider the structural association defined using PS
1 shown in Fig-

ure 6. A chase step with the referential constraint

f1 : foreach g in grants exists c in companies where g.recipient = c.name

cannot be applied since f1 uses grants in its foreach clause. A chase step with
f1 can, however, be applied on the association defined by PS

2 , since there is a
renaming function (in this case the identity mapping) from the variables in the
foreach clause of the constraint to the variables of the association. Applying the
chase step will lead to an association that is augmented with the exists and where

clauses of the constraint. Thus, the association becomes:

from g in grants, c in companies
where g.recipient = c.name

Performing a subsequent chase step with the referential constraint f2 creates the
association:

from g in grants , c in companies, s in contacts
where g.recipient = c.name and g.supervisor = s.cid

2 In our context, two associations are homomorphic equivalent if there are homo-
morphisms in both directions; this also implies that the associations have a unique
minimal form.

216 R. Fagin et al.

A subsequent chase step with constraint f3 will create the association:

from g in grants , c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid

No additional chase steps can be applied to this association, since all the con-
straints are “satisfied” by it. Thus, the last association is maximal, and it is a
logical association. Note how in this logical association the relation contacts
appears twice. This is due to the fact that there are two different join paths
through which one can reach contacts from grants. One is through the refer-
ential constraint f2 and one through f3.

Figure 7 indicates the logical associations that can be generated using all the
structural associations of our two example schemas of Figure 1.

AS
1 : from c in companies

AS
2 : from g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid and g.manager = m.cid
AS

3 : from c in contacts

AT
1 : from o in organizations

AT
2 : from o in organizations, f in o.fundings, i in finances

where f .finId = i.finId
AT

3 : from f in finances

Fig. 7. Source and target logical associations

4.2 Mapping Generation

Logical associations provide a way to meaningfully combine correspondences.
Intuitively, a set of correspondences whose source elements all occur in the same
source logical association, and whose target elements all occur in the same target
logical association can be interpreted together. Such a set of correspondences
maps a set of related elements in the source to a set of related elements in the
target data.

The algorithm for generating schema mappings finds maximal sets of corre-
spondences that can be interpreted together by testing whether the elements
they match belong in the same logical association, in the source and in the
target schema. As seen in the previous section, logical associations are not nec-
essarily disjoint. For example, AS

1 and AS
2 of Figure 7 both include elements

of companies, although AS
2 also includes elements of grants and contacts.

Thus, a correspondence can use elements that may occur in several logical as-
sociations (in both source and target). Rather than looking at each individual
correspondence, the mapping algorithm looks at each pair of source and target
logical associations. For each such pair, we can compute a candidate mapping

Clio: Schema Mapping Creation and Data Exchange 217

that includes all correspondences that use only elements within these logical as-
sociations. (As we shall see, not all candidate mappings are actually generated,
since some are subsumed by other mappings).

We begin by formally defining correspondences as mappings. First, we define
an intensional notion of a schema element that we shall use in the subsequent
definitions and algorithm.

Definition 9. Given a schema, a schema element is a pair 〈P ; e〉 where P is a
primary path in the schema and e is an expression depending on the last variable
of P .

Intuitively, the pair 〈P ; e〉 encodes the navigation pattern needed to “reach” all
instances of the schema element of interest. Note that a pair 〈P ; e〉 can be turned
into a query select e from P that actually retrieves all such instances.

For our example, 〈c in companies; c.name〉 represents the schema el-
ement name in the companies table of our source schema, while
〈o in organizations, f in o.fundings; f.fid〉 identifies the schema element fid
under fundings of organizations in our target schema.

Definition 10 (Correspondence). A correspondence from an element
〈PS ; eS〉 of a source schema to an element 〈PT ; eT 〉 of a target schema is defined
by the mapping:

v ::= foreach PSexists PT with eS = eT

In practice, a correspondence need not be restricted to an exact equality; we
may allow the application of a function f to eS . In such case the with clause
would be f(eS) = eT . Clio does not discover such functions, but does provide
a library of common type conversion functions that a user may specify on a
correspondence. The system also permits the use of user-defined functions. Sim-
ilarly, we could have a function applied to several source elements to generate a
single target element (for example, concat(fname,lname) = name). This type
of N:1 correspondence could be created by some matchers [11] and used by Clio
in mapping generation. To keep the notation for our algorithms simple, we will
assume that correspondences are of the form given in Definition 10.

Given a pair of source and target logical associations, we would like to define
when (and how) a correspondence v is relevant to this pair. In general, a corre-
spondence may be used in multiple ways with a pair of logical associations. For
example, a correspondence for the phone element under contacts can be used in
two ways with the pair of associations AS

2 and AT
2 in Figure 7 (to map either the

supervisor or manager phone). In our algorithm, we identify all possible ways
of using a correspondence. The following definition formalizes the notion of a
single use (which we call coverage) of a correspondence by a pair of associations.

Definition 11. A correspondence v : foreach PS exists PT with eS = eT is cov-
ered by a pair of associations <AS , AT > if PS

.
! AS (with some renaming

function h) and PT
.
! AT (with some renaming function h′). We say in this

case that there is a coverage of v by <AS , AT > via <h, h′>. We also say that
the result of the coverage is the expression h(eS)=h′(eT).

218 R. Fagin et al.

Our algorithm will consider each pair of source and target associations that cover
at least one correspondence. For each such pair, we will consider all correspon-
dences that are covered and pick one coverage for each. For each such choice (of
coverage), the algorithm will then construct what we call a Clio mapping.

Definition 12. Let S and T be a pair of source and target schemas and C a
set of correspondences between them. A Clio mapping is a mapping foreach AS

exists AT with E, where AS and AT are logical associations in the source and the
target schema, respectively, and E is a conjunction of equalities constructed as
follows. For each correspondence v in C that is covered by <AS , AT >, we choose
one coverage of v by <AS , AT > via <h, h′> and add the equality h(eS) = h′(eT)
that is the result of this coverage.

Note that, in the above definition, only one coverage for each correspondence
is considered when constructing a Clio mapping. Different coverages will yield
different Clio mappings. The following two examples illustrate the process for
two different pairs of associations.

Example 6. Consider the pair of logical associations <AS
1 , AT

1 >. We check
each of the correspondences in {v1, v2, v3, v4} to see if it is covered by
these associations. It is easy to see that the correspondence v1, which re-
lates the source element 〈c in companies; c.name〉 with the target element
〈o in organizations; o.code〉, is covered by our pair of associations. There is
only one coverage in this case, given by the identity renaming functions. Since
no other correspondence is covered, we can form a Clio mapping based on AS

1
and AT

1 , with the sole equality that results from v1 added to the with clause:

mv1: foreach c in companies
exists o in organizations
with c.name = o.code

In this simple example, the mapping happens to be the same as the original
correspondence. This is because both of the primary paths of this correspondence
are logical associations themselves, and also no other correspondence is covered;
hence, mapping mv1 is v1. (Notice that this is the same as Mapping (1) from
Section (2), where it was represented in traditional s-t tgd notation).

Example 7. As a more complex example of mapping generation, consider the
association pair <AS

2 , AT
2 >. Following the same steps, we can determine that

the correspondences v1, v2 and v3 are covered, and the following mapping using
only these three correspondences can be generated:

foreach g in grants, c in companies, s in contacts, m in contacts
where g.recipient = c.name and g.supervisor = s.cid

and g.manager = m.cid
exists o in organizations, f in o.fundings, i in finances

where f .finId = i.finId
with c.name = o.code and g.gid = f.fid and g.amount = i.budget

Clio: Schema Mapping Creation and Data Exchange 219

Consider now our final correspondence:

v4: foreach c in contacts
exists f in finances
with c.phone = f.phone

which is also covered by the above two associations. However, since contacts
appears twice in AS

2 , there are two different renaming functions for the foreach

clause of v4; hence, there are two different coverages. In the first, the variable c
(of v4) maps to s, while in the second, the variable c maps to m. This will lead
to the generation of the following two mappings.

M1:
foreach g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid
and g.manager = m.cid

exists o in organizations, f in o.fundings, i in finances
where f .finId = i.finId

with c.name = o.code and g.gid = f.fid and g.amount = i.budget
and s.phone = i.phone

M2:
foreach g in grants , c in companies, s in contacts, m in contacts

where g.recipient = c.name and g.supervisor = s.cid
and g.manager = m.cid

exists o in organizations, f in o.fundings, i in finances
where f .finId = i.finId

with c.name = o.code and g.gid = f.fid and g.amount = i.budget
and m.phone = i.phone

Notice that M1 and M2 have two copies of contacts in their source query, only
one of which is used in the target query. A minimization algorithm (similar to
tableau minimization [2]) can be applied to remove the occurrence of contacts
that is not used in the target. So Mapping M1 is equivalent to the Mapping (5)
of Section 2 which is written in the more common s-t tgd notation, and M2 is
equivalent to Mapping (6) of the same section.

Our mapping generation algorithm is summarized in Algorithm 1. If the
source schema has N logical associations and the target schema has M logical
associations, there will be N×M pairs of associations that have to be considered
by the algorithm. However, not all of these pairs will generate actual mappings.
Some pairs may not cover any correspondences and are discarded. Additionally,
some pairs of associations are subsumed by other pairs and they are also
discarded. More precisely, a pair <AS , AT > of associations is subsumed by
another pair <X, Y > of associations if: (1) X

.
! AS or Y

.
! AT , and at least one

of these two dominances is strict (i.e., X or Y have strictly smaller number of vari-
ables), and (2) the set of correspondences covered by <X, Y > is the same as the set
of correspondences coveredby<AS , AT >. Intuitively, all the correspondences that

220 R. Fagin et al.

Algorithm 1: Schema Mapping Generation
Input: A source schema S

A target schema T
A set of correspondences C

Output:The set of all Clio mappings M

GenerateMappings(S , T , C)
(1) M ← ∅
(2) AS ← Logical Associations of S
(3) AT ← Logical Associations of T
(4) foreach pair <AS , AT > of AS×AT

(5) V ← {v | v ∈ V ∧ v is covered by <AS , AT > }
(6) // If no correspondences are covered
(7) if V = ∅
(8) continue;
(9) // Check if subsumed

(10) if ∃ <X,Y > with X
.
�AS or Y

.
�AT , and at least one

dominance is strict
(11) V ′ ← {v | v ∈ C ∧ v covered by <X, Y > }
(12) if V ′ = V
(13) continue;
(14) let V be {v1, . . . , vm}
(15) for every vi: let Δvi be {<h, h′>| vi covered by

<AS , AT > via <h, h′>}
(16) // For every combination of correspondence coverages
(17) foreach (δ1, . . . , δm) ∈ Δv1 × . . . × Δvm

(18) W ← ∅
(19) foreach vi ∈ V
(20) let e = e′ be the equality in vi

(21) let δi be <h, h′>
(22) add equality h(e) = h′(e′) to W
(23) form Clio mapping M : foreach AS exists AT with W
(24) M ← M ∪ {M}
(25) return M

are covered by <AS , AT > are also covered by a “strictly smaller” pair of associ-
ations. The heuristic that we apply is to discard the “larger” mapping (based on
AS and AT) since it does not make use of the “extra” schema components. This
heuristic can eliminate a large number of unlikely mappings in practice and is a key
ingredient for the efficiency of the algorithm. Additional details regarding the data
structuresneeded to efficiently implement this heuristic are given inHaas et al. [27].

5 Query Generation for Data Exchange

The schema mappings we generate specify how the data of the two schemas
relate to each other. For data exchange, a source instance must be restructured

Clio: Schema Mapping Creation and Data Exchange 221

and transformed into an instance of the target schema. Fagin et al. [19] have
defined the problem as follows:

Definition 13. Given a source schema S, a target schema T , a set Σst of
source-to-target constraints (i.e., the mappings), and a set Σt of target con-
straints, the data exchange problem is the following problem: given a finite source
instance I, find a finite target instance J such that (I,J) satisfies Σst and
J satisfies Σt. Such an instance J is called a solution to the data exchange
problem.

This section will describe one approach to finding such a solution. We will discuss
in Section 6 how this solution relates to the universal solution of Fagin et al. [19].

Notice that a schema mapping (1) does not specify all target values and
(2) does not specify the grouping or nesting semantics for target data. Thus,
in generating a solution we will have to address these issues. Furthermore, in
generating a target instance, we will typically be using many mappings, as we
may have one or more mappings per concept in the schemas. Hence, we will need
to merge data produced from multiple mappings.

5.1 Intuition: What Are the Challenges

To begin, we will explore a bit further the challenges we face in building our
data exchange queries, building up intuition for the algorithm itself.

Creation of New Values in the Target. Consider the simple mapping sce-
nario of Figure 8(a). The source (Emps) and the target (Emps′) are sets containing
employee records. An employee record in the source has atomic elements A, B and
C, while an employee record in the target has elements A′, B′, C′ along with an
extra atomic element E′. For the purpose of this discussion, we choose to use the
abstract names A, etc., so that we can associate several different semantics with
these elements for illustration. In the mapping, the two source elements A and B
are mapped into the target elements A′ and B′, while C′ and E′ in the target are
left unmapped. Consider the following schema mapping which does not specify
any value for C′ or E′.

foreach e in Emps
exists e′ in Emps′

with e′.A′ = e.A and e′.B′ = e.B

To populate the target we need to decide what values (if any) to use for
unmapped elements. A frequent case in practice is one in which an unmapped
element does not play a crucial role for the integrity of the target. For example,
A and B could be employee name and salary, while C and E could be spouse
and date of birth, respectively, where neither is used in any schema constraint.
Creating a null value for C′ and E′ is then sufficient. If the unmapped element is
optional in a target XML schema, then we can omit this element in the exchange.

222 R. Fagin et al.

(b)(a)

A’
B’

A
B
C
D

A’
B’
C’
E’

A
B
C E’

Spouses’: Set of Rcd

Emps : Set of Rcd Emps’: Set of Rcd Emps : Set of Rcd

E’’

Emps’: Set of Rcd

C’

Fig. 8. Creation of new values in the target

Alternatively, the element E′ may be a key in the target relation, e.g., E′ could
be employee id. The intention of the mapping would be, in this case, to copy
employee data from the source, and assign a new id for each employee in the
target. Thus, a non-null (and distinct) value for E′ is needed for the integrity
of the target. In general, a target element is needed if it is (part of) a key or
referential constraint (such as a foreign key) or is both not nullable and not
optional.

If E′ is a key, we create a different but unique value for E′, for each combi-
nation of the source values for A and B using a one-to-one Skolem function. In
this example, values for E′ are created using the function SkE′(A, B). We can
then augment the schema mapping with explicit conditions in the with clause to
provide an appropriate value for all unmapped attributes.

foreach e in Emps
exists e′ in Emps′

with e′.A′ = e.A and e′.B′ = e.B and e′.C′ = null and e′.E′ = SkE′(e.A, e.B)

Notice that we choose to make E′ depend only on A and B, not on the (unmapped)
source element C. Thus, even if in the source there may exist two tuples with
the same combination for A and B, but with two different values for C (e.g., if C
is spouse as above, and an employee has two spouses), in the target there will
be only one tuple for the given combination of A and B (with one, unknown,
spouse). Thus, the semantics of the target is given solely by the values of the
source elements that are mapped. Of course, a new correspondence from C to C′

will change the mapping: an employee with two spouses will appear twice in the
target and the value for E′ will be SkE′(A, B, C).

Now consider an unmapped target element that is used in a referential con-
straint. In Figure 8(b), the (mapped) target element C′ is stored in a different
location (the set Spouses) than that of elements A′ and B′. However, the associ-
ation between A′, B′ values and C′ values is meant to be preserved by a referential
constraint (E′ plays the role of a reference in this case). The schema mapping
created by Clio is the following.

foreach e in Emps
exists e′ in Emps′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and e′.B′ = e.B and s′.C′ = e.C

Clio: Schema Mapping Creation and Data Exchange 223

Note that this mapping does not give a value for the required element Emps′.E′

or Spouses′.E′′. We can provide values for these two unmapped elements using
a Skolem function SkE′(A, B, C) to create values for E′ and E′′.

foreach e in Emps
exists e′ in Emps′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and e′.B′ = e.B and s′.C′ = e.C and e′.E′ = SkE′(e.A, e.B, e.C)

In the above example, the same Skolem function will populate both E′ and E′′,
since E′ and E′′ are required to be equal by the where clause of the mapping. In
general, however, different target attributes will use different Skolem functions.

Note also that if duplicate [a, b, c] triples occur in the source (perhaps with
different D values, where D is some other attribute) only one element is gener-
ated in each of Emps′ and Spouses′. Thus, we eliminate duplicates in the target
based on the mapped source data.

Grouping of Nested Elements. Consider now Figure 9(a), in which the target
schema contains two levels of nesting: elements A′ and C′ are at the top level,
while there are multiple B′ elements (Bs′ is of set type). Elements A, B, and C of
the source Emps are mapped, via correspondences, into the respective elements
of the target Emps′. The mapping that Clio generates:

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′

with e′.A′ = e.A and b′.B′ = e.B and e′.C′ = e.C

requires that all (A, B, C) values found in the source appear in the target. In
addition, a natural interpretation of the target schema is that all B values sharing
the same A and C be grouped together in one set. For illustration, if A, B, and
C are employee, child, and spouse names, respectively, Clio will choose to group
all children with the same employee and spouse in a single set. Note that this
behavior is not part of the mapping specification itself. (A solution of the above
mapping can be obtained by creating a target tuple with a singleton Bs′-set for
each source tuple.) However, for data exchange, we choose to add this grouping

(b)(a)

A’
Bs’: Set of Rcd

C’

A
B
C

Emps’ : Set of RcdEmps : Set of Rcd
A’

E’

A
B
C

Spouses’: Set of Rcd

Bs’: Set of Rcd
B’

Emps’: Set of Rcd Emps : Set of Rcd

E’’
C’

B’

Fig. 9. Grouping of elements in the target

224 R. Fagin et al.

semantics that is implicitly specified by the target schema, and produce a target
instance that is in Partitioned Normal Form (PNF) [1].

PNF: In any target nested relation, there cannot exist two distinct tuples that
coincide on all the atomic elements but have different set-valued elements.

To achieve this grouping behavior, we use Skolemization as well. If a target
element has a set type, then its identifier (recall that each set is identified in
the data model by a set id) is created via a Skolem function. This function does
not depend on any of the atomic elements that are mapped under (in terms
of nesting) the respective set type, in the schema hierarchy. Instead it depends
on all the atomic elements at the same level or above (up to the root of the
schema). The same Skolem function (for a given set type of the target schema)
is used across all mappings. Intuitively, we perform a deep union of all data
in the target independently of their source. For the example of Figure 9(a), we
modify the schema mapping with a Skolem function for Bs.

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′

with e′.A′ = e.A and b′.B′ = e.B and e′.C′ = e.C and e′.Bs′ = SkBs′(e.A, e.C)

The meaning of the above rule is the following: for each (a, b, c) triple of
values from the source, create a record in Emps′, with the appropriate A′ and C′

attributes, and also a Bs′ attribute, the value of which is the set id SkBs′(a, c).
Thus, the Skolem function SkBs′ is used here to create a set type element. Also,
we create an element B′, with value b, under SkBs′(a, c). Another tuple (a, b′, c)
will lead to the value b′ being nested in the same set as b.

Hence, we achieve desired grouping of B′ elements for fixed A′ and C′ values.

Value Creation Interacts with Grouping. To create a nested target in-
stance, we will need to consider referential constraints together with our desired
PNF grouping. We again explain our technique with an example. Consider Fig-
ure 9(b), where the elements A′ and C′ are stored in separate target sets. The
association between A′ (e.g., employee name) and C′ (e.g., spouse name) is pre-
served via the foreign key E′ (e.g., spouse id). Thus, E′ is a required element and
must be created. However, in this case, it is rather intuitive that the value of
E′ should not depend on the value of B′, but only on the A′ and C′ value. This,
combined with the PNF requirement, means that all the B′ (child) values are
grouped together if the employee and spouse names are the same. We achieve
therefore the same effect that the mapping of Figure 9(a) achieves. In contrast,
if E′ were to be assigned a different value for different B′ values, then each child
will end up in its own singleton set. For data exchange, we choose the first alter-
native, because we believe that this is the more practical interpretation. Thus,
we adjust the earlier Skolemization scheme for atomic type elements as follows.

The function used for creation of an atomic element E does not depend on
any of the atomic elements that occur at a lower level of nesting in the target
schema.

Clio: Schema Mapping Creation and Data Exchange 225

For the example of Figure 9(b) we create the rule:

foreach e in Emps
exists e′ in Emps′, b′ in e′.Bs′, s′ in Spouses′

where e′.E′ = s′.E′′

with e′.A′ = e.A and b′.B′ = e.B and s′.C′ = e.C and

e′.E′ = SkE′(e.A, e.C) and e′.Bs′ = SkBs′(e.A, SkE′(e.A, e.C))

Note that in this case, the Skolem function for Bs′ is (as before) a function
that depends on all the atomic type elements that are at the same level or above
it (in the schema hierarchy). Thus, it is a function of the values that are assigned
to A′ and E′ (the latter being a Skolem function itself, in this case).

As an extreme but instructive case, suppose that in Figure 9(b) we remove
the correspondences that involve A′ and C′, but keep the one that involves B′.
If the target elements A′ and C′ are not optional, then they will be created
by (unique) Skolem functions with no arguments. This is the same as saying
that they will each be assigned a single (distinct) null. Consequently, the two
target sets Emps′ and Spouses′ will each contain a single element: some unknown
employee, and some unknown spouse, respectively. In contrast, the nested set Bs′

will contain all the B values (all the children listed in Emps). Thus, the top-level
part of the schema plays only a structural role: it is minimally created in order to
satisfy the schema requirements, but the respective values are irrelevant. Later
on, as correspondences may be added that involve A′ and C′, the children will be
separated into different sets, depending on the mapped values.

We now describe in some detail the algorithm for generating the data exchange
queries. The algorithm is applied to every Clio mapping that has been generated,
and works in three steps. First, given a Clio mapping, we construct a graph that
represents the key portions of the query to be generated. Second, we annotate
that graph to generate the Skolem terms for the query. These two steps are
discussed in the next section. Finally, we walk the graph, producing the actual
query, as described in Section 5.3.

5.2 The Query Graph

Given a mapping m, a graph is constructed, called the query graph. The graph
will include a node for each target expression that can be constructed over the
variables in the exists clause of the mapping. Source expressions that provide
values for the target will also have nodes. Furthermore, the graph will include
links between nodes to reflect parent-child relationships and equality predicates,
respectively. This structure is then further refined to support Skolem function
generation; at that point, it contains all the information needed to generate the
query.

In the query generation algorithm, all the variables that appear in the input
mapping are assumed to be named consistently as: x0, x1, . . . for the source side,
and y0, y1, . . . for the target side. Let us revisit one of our earlier mappings (M1
in Section 4.2), using the above naming convention:

226 R. Fagin et al.

foreach x0 in companies, x1 in grants , x2 in contacts, x3 in contacts
where x0.name = x1.recipient and x1.supervisor = x2.cid

and x1.manager = x3.cid
exists y0 in organizations, y1 in y0.fundings, y2 in finances

where y1.finId = y2.finId
with x0.name = y0.code and x1.gid = y1.fid and x1.amount = y2.budget

and x2.phone = y2.phone

The query graph for this mapping is illustrated in Figure 10. The query graph
is constructed by adding a node for each variable (and its generator) in the exists

clause of the mapping. There are three such nodes in our example query graph.
Furthermore, we add nodes for all the atomic type elements that can be reached
from the above variables via record projection. For our example, we include
nodes for y0.code, y0.year, and so on. (If we have multiple levels of records,
then there will be several intermediate nodes that have to be introduced.) We
then add structural edges (the directed full arcs in the figure) to reflect the
obvious relationships between nodes. Moreover, we add source nodes for all the
source expressions that are actually used in the with clause of the mapping.
For our example, we add nodes for x0.name, x1.gid, and the other two source
expressions. We then attach these source nodes to the target nodes to which
they are “equal”. This is illustrated via the dotted, directed arcs in the figure
(e.g., the arc from y0.code to x0.name).

Finally, we use the equalities in the where clause on the target side and add
“equality” edges between target nodes. For our example, we add the dotted,
undirected, edge connecting the node for y1.finId and the node for y2.finId.

Next, we annotate each node in the query graph to facilitate the subsequent
generation of Skolem functions. Each node in the graph will be annotated with
a set of source expressions. These expressions will represent the arguments of
a potential Skolem function for that node. However, only the nodes that are

y0 (organizations)

y1 (fundings) y0.code y0. year

y1.fid y1.finId

x1.gid

x0.name

y2 (finances)

y2.budget y2.phoney2.finId

x1.amount x2.phone

x1.amount x2.phone

x1.gid

x0.name x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x1.amount, x2.phone,
x1.gid, x0.name

x0.name

Fig. 10. An annotated query graph

Clio: Schema Mapping Creation and Data Exchange 227

not mapped from the source and that are needed (as discussed in the previous
section) will receive an actual Skolem function.

The annotations are computed by a propagation algorithm. First, every target
node that is adjacent to a source schema node through an “equality” (dotted)
edge, is annotated with the expression of that source schema node and only
that. Next, we start propagating these expressions through the rest of the graph
according to the following rules.

– Upward propagation: Every expression that a node acquires is propagated
to its parent node, unless the (aquiring) node is a variable.

– Downward propagation: Every expression that a node acquires is propa-
gated to its children if they do not already have it and if they are not equal
to any of the source nodes.

– Eq propagation: Every expression that a node acquires is propagated to
the nodes related to it through equality edges.

The propagation rules are applied repeatedly until no more rules can be ap-
plied. Figure 10 illustrates the result of propagation for our example. The re-
sulting annotated graph is now ready for use to generate a data exchange query.

5.3 Generation of Transformation Queries

Once the query graph of a mapping has been generated, it can be converted to
an actual query. The language of the query depends on the model of the source
and target. When both source and target are relational schemas, the query will
be a relational SQL query. When one schema is XML, Clio can generate a data
exchange query in XQuery or XSLT. We describe here how to generate a data
exchange query in XQuery. The XSLT and SQL approaches are similar, though
for SQL, the query will not have nested elements.

The complete XQuery that is generated for our mapping M1 is shown in
Figure 11. An XSLT version of such query can be generated in a similar way,
with only syntactic differences.

To begin, the foreach clause of the mapping is converted to a query fragment
on the source schema. This is straightforward: Clio simply binds one variable to
each term of the mapping and adds the respective conditions in the where clause.
For instance, for our mapping M1, we create the following XQuery fragment:

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,
$x2 IN $doc0/contacts, $x3 IN $doc0/contacts,

WHERE $x0.name=$x1.recipient and $x1.supervisor=$x2.cid
and $x1.manager=$x3.cid

Let us denote this query fragment by QS
M1

. Note that this is not a complete
query since it does not have a result yet. This query fragment will be used
(repeatedly) in a larger query that we generate based on the query graph. The
algorithm starts at the target schema root in the query graph and performs a
depth-first traversal.

228 R. Fagin et al.

– If the node being visited corresponds to a complex type schema element,
then a complex element is generated by visiting the children and enclosing
their corresponding elements.

– If a node corresponding to an atomic type element is visited, then: (i) if the
node is linked to a source node (directly, or via any number of equality edges),
then a simple element is generated with the value equal to the expression
represented by the source node, or (ii) if the node corresponds to an optional
element, nothing is generated, or (iii) if the node corresponds to a nullable
schema element, the null value is generated; or finally, (iv) if none of the
above applies, a value must be generated for that element via a Skolem
function. In this case, we generate a fresh new Skolem function name and
add all arguments that annotate the node. We take care so that all the nodes
that are “equal” to the current node will receive the same Skolem function
name.

– If the node visited is a variable, then a FOR-WHERE-RETURN query is pro-
duced, by first taking a “copy” of the source query fragment (e.g., QS

M1
)

(where we rename, in a consistent way, all the variables in the query frag-
ment). In addition, we inspect the expressions that annotate the node and
compare with its parent variable (if any). For each common expression e, we
then add an extra equality condition that equates the expression e at the
parent query with (the renaming of) e in the current query. This creates a
correlated subquery.

For our example, the subquery that is generated for the node y1 in our
query graph is based on a copy of the query fragment QS

M1
, with an extra

equality requiring that (the renaming of) x0.name in the subquery is equal to
to x0.name in the parent (e.g., ”$x0L1/name/text() = $x0/name/text()”).

The traversal continues and any new elements, generated based on the
descendants of the current node (variable), will be placed inside the return
clause of the subquery that has just been created.

One issue that we need to address in the actual implementation is the fact that
Skolem functions are not first-class citizens in typical query languages, including
XQuery. However, this issue can be dealt with in practice by simulating a Skolem
function as a string that concatenates the name of the Skolem function with the
string representations of the values of the arguments.

The above query generation algorithm, as presented, is not complete in the
sense that it may not generate a PNF instance. If we consider each Clio mapping
individually, then the generated query does produce a data fragment that is in
PNF. However, in the case of multiple mappings, we still need to merge the
multiple fragments into one PNF instance.

The merging required by PNF can be achieved either via post-processing,
or by generating a more complex, two-phase query as follows. The first query
transforms the source data, based on the mappings, into a set of “flat” views
that encode (in a relational way) the nested target instance in PNF. Nested
sets are encoded in this flat view by using Skolem functions (as described in
Section 5.1). These Skolem functions represent the identifiers of sets, and each

Clio: Schema Mapping Creation and Data Exchange 229

LET $doc0 := document("input XML file goes here")

RETURN

<T>

{distinct-values (

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,

$x2 IN $doc0/contacts, $x3 IN $doc0/contacts

WHERE

$x0/name/text() = $x1/recipient/text() AND $x1/supervisor/text() = $x2/cid/text() AND

$x1/manager/text() = $x3/cid/text()

RETURN

<organization>

<code> { $x0/name/text() } </code>

<year> { "Sk3(", $x0/name/text(), ")" } </year>

{distinct-values (

FOR $x0L1 IN $doc0/companies, $x1L1 IN $doc0/grants,

$x2L1 IN $doc0/contacts, $x3L1 IN $doc0/contacts

WHERE

$x0L1/name/text() = $x1L1/recipient/text() AND $x1L1/supervisor/text() = $x2L1/cid/text()

AND $x1L1/manager/text() = $x3L1/cid/text() AND $x0L1/name/text() = $x0/name/text()

RETURN

<funding>

<fid> {$x0L1/gid/text()} </fid>

<finId>{"Sk5(", $x0L1/name/text(), ", ", $x2L1/phone/text(), ", ",

$x1L1/amount/text(), ", ", $x1L1/gid/text(), ")"}</finId>

</funding>) }

</organization>) }

{distinct-values (

FOR $x0 IN $doc0/companies, $x1 IN $doc0/grants,

$x2 IN $doc0/contacts, $x3 IN $doc0/contacts

WHERE

$x0/name/text() = $x1/recipient/text() AND $x1/supervisor/text() = $x2/cid/text() AND

$x1/manager/text() = $x3/cid/text()

RETURN

<financial>

<finId>{"Sk5(", $x0/name/text(), ", ", $x2/phone/text(), ", ",

$x1/amount/text(), ", ", $x1/gid/text(), ")"}</finId>

<budget> { $x1/amount/text() } </budget>

<phone> { $x2/phone/text() } </budget>

</financial>) }

</T>

Fig. 11. The data exchange XQuery for Mapping M1

tuple records the id of the set where it belongs. The second query can then take
this result and merge the data into the right hierarchy, by joining on the set
identifier information produced by the first query. The resulting instance is then
guaranteed to be in PNF.

The full details for the two-phase query generation can be found in [27] and
in [24].

6 Analysis

In this section we discuss the general conditions under which our method for map-
ping generation is applicable, and we make precise the connection between our
query generation algorithm and the data exchange framework of Fagin et al. [19].

6.1 Complexity and Termination of the Chase

The chase is the main process used to construct logical associations. In gen-
eral, it is known that the chase with general dependencies may not terminate.

230 R. Fagin et al.

The chase that we use is a special case in which the dependencies (the schema
constraints) are NRIs. Even in this special case, the chase may not terminate:
one can construct simple examples of cyclic inclusion dependencies (even for the
relational model) for which the chase does not terminate.

To guarantee termination, we restrict the NRIs within each schema to form
a weakly-acyclic set. The notion of a weakly-acyclic set of tgds has been stud-
ied [19] and, with a slight variation, in [17]; it was shown that weakly-acyclic
sets of tgds strictly generalize the previous notions of acyclic dependencies and it
was proven that the chase with a weakly-acyclic set of tgds always terminates in
polynomially many chase steps. The definition of weak-acyclicity and the argu-
ment for termination apply immediately when we consider tgds over the nested
relational model. Hence they apply to our NRIs.

While the number of chase steps required to complete the chase is polynomial
(in the weak-acyclic case), a chase step itself (of an association with an NRI)
can take an exponential amount of time in the worst case. This is due to the fact
that the paths in an NRI require matching (on the association) to determine the
applicability of the NRI. In general, there could be multiple ways of matching a
variable in the path with a variable in an association. Hence, matching a path
means exploring an exponential number of assignments of path variables in the
worst case. However, the exponential is in the size of the path (i.e., the number
of variables), which in practice is often small. Furthermore, in most cases, a
variable in a path has only one way of matching due to schema restrictions
(e.g., a variable required to be in companies can only match with a variable in
companies). Thus, the exponential worst case rarely materializes.

Another challenge that is often found in XML schemas is type recursion. Type
recursion occurs when a complex type is used in its own definition. Type recur-
sion leads to infinitely many structural associations that may result in infinitely

Fig. 12. Unlimited candidate mappings due to recursive types

Clio: Schema Mapping Creation and Data Exchange 231

many possible interpretations of a given set of correspondences. Figure 12 illus-
trates how type recursion can lead to an infinite number of mappings. In this
figure, the element Father is of type Persons. In order to partially cope with
this limitation we allow recursive types but we require the user to specify the
recursion level, or we choose a specific constant value as a bound. For example,
in the mapping scenario of Figure 12, if we bind the recursion level to one, then
only the first two mappings shown in the figure will be generated by the system,
and the user will be left to select the one that better describes the intended
semantics of the correspondences.

6.2 Characterization of Data Exchange

Consider a data exchange setting, that is, a source schema S, a target schema T ,
a set of mappings M from S to T , a set of target constraints ΣT , and an instance
I of schema S. The problem in data exchange is to find a solution, i.e., an instance
J of the target schema T that is consistent with the mappings in M. If we assume
that we are in the relational model, this allows us to use some of the existing
results in the research literature. In a data exchange setting, there may be more
than one solution. Fagin et al. [19] have provided an algebraic specification that
selects among all solutions of a data exchange setting, a special solution that is
referred to as a universal solution. A universal solution intuitively has no more
and no less data than required for data exchange, and represents the entire space
of possible solutions. A universal solution Ju is a solution for which there is a
homomorphism h to every other solution J . Fagin et al. provided an algorithm,
based on the chase, for computing a universal solution. That algorithm starts
with the source instance I and chases it with the mappings, and also with the
target schema constraints. The result of the chase gives a target instance that is
a universal solution.

There are two main differences in our approach. First, the process of generat-
ing logical associations compiles the schema constraints (NRIs) into the associa-
tions and, hence, into the mappings we generate. As a consequence, the resulting
set of mappings M “includes” the effect of the source and target schema con-
straints. Since in the algorithms presented in this chapter, we do not consider
other target constraints (e.g., key constraints or functional dependencies), we
reduce the data exchange problem to one based on M alone.

The other main difference is that we perform data exchange by generating
queries that “implement” M. The main property of our query generation al-
gorithm is that for relational schemas the instance Ju generated by our data
exchange queries is always a universal solution. Indeed, any other solution J will
agree with the instance Ju on the elements for which correspondences have been
defined (the elements determined by the mapping). For all the other elements,
the data exchange queries have generated Skolem values that can be mapped to
the corresponding values of instance J . Thus, there is a homomorphism from Ju

to any other solution J , which means that Ju is a universal solution.
For nested relational schemas, we additionally took the view that the map-

ping M also specifies some implicit grouping conditions on the target data. In

232 R. Fagin et al.

particular, we required that the target instance must be in partitioned normal
form (PNF): in any set we cannot have two distinct tuples that agree on all
the atomic valued components but do not agree on the set-valued elements. Our
query generation algorithm has then the property that the data exchange queries
we produce will always generate a target instance that is a PNF version of a uni-
versal solution. Alternatively, the generated target instance is a PNF solution
that is universal with respect to all PNF solutions.

7 Related Work

Declarative schema mapping formalisms have been used to provide formal
semantics for data exchange [19], data integration [33], peer data manage-
ment [28,13,25], pay-as-you-go integration systems [45], and model management
operators [8]. A whole area of model management has focused on such issues as
mapping composition [35,21,40] and mapping inverse [18,22].

Schema mappings are so important in information integration that many map-
ping formalisms have been proposed for different tasks. Here we mention only a
few. The important role of Skolem functions for merging data has been recognized
in a number of approaches [30,41]. HePToX [13] uses a datalog-like language that
supports nested data and allows Skolem functions. Extensions to the languages
used for schema mapping include nested mappings [24], which permit the declar-
ative specification of correlations between mappings and grouping semantics, in-
cluding the PNF grouping semantics used in Clio. Clip [44] provides a powerful vi-
sual language for specifying mappings between nested schemas. And second-order
tgds [21] provide a mapping language that is closed under composition.

Perhaps the only work on mapping discovery that predates Clio is the
TranSem system [39] which used matching to select among a pre-specified set
of local schema transformations that could help transform one schema into an-
other. Work on mapping discovery has certainly continued. Fuxman et al. [24]
consider how to create nested mappings. An et al. [5] consider how to use concep-
tual schemas to further automate mapping discovery. Yan et al. [51] and Alexe
et al. [3] consider how to use data examples to help a user interactively design
and refine mappings for relational and nested schemas respectively. Hernández
et al. [29] consider the generation of mappings that use data-metadata trans-
lations [50]. Also, Bohannon et al. [12] consider the generation of information
preserving mappings (based on path mappings).

Analysis of mappings has become an important new topic with work on verifi-
cation of mappings [14], mapping quality [15,32], and mapping optimization [20],
to name just a few.

Many industry tools such as BizTalk Mapper, IBM WebSphere Data Stage TX,
and Stylus Studio’s XML Mapper support the development (by a programmer) of
mappings. Although these tools do not automate the mapping discovery process,
they do provide useful programming environments for developing mappings. The
Clio algorithms for mapping discovery are used in several IBM products, including
IBM Rational Data Architect, and IBM InfoSphere FastTrack. STBenchmark [4]
presents a new benchmark for schema mapping systems.

Clio: Schema Mapping Creation and Data Exchange 233

Clio was the first system to generate code (in our case queries) for data ex-
change. The generation of efficient queries for data exchange is not considered
in work like Piazza [28] and HePToX [13] which instead focus on query genera-
tion for data integration. More recently, in model management [37,10], query or
code generation for data exchange has been considered for embedded dependen-
cies. Hernández et al. [29] generate data exchange queries for richer mappings
that include data to metadata conversion. And specialized engines for efficiently
executing data exchange queries have been proposed [31].

8 Conclusions

We have presented a retrospective on key contributions of the Clio schema map-
ping system. These innovations include a new paradigm, in which we view the
mapping creation process as one of query discovery. Clio provides a principled
algorithm for discovering queries over the source, queries over the target, and a
precise specification of their relationship. In Clio, we pioneered the use of schema
mapping queries to capture the relationship between data in two heterogeneous
schemas. Many uses have been found for such schema mappings, but Clio was the
first system to exploit them to perform data exchange between independently
created schemas, leading to a new theory of data exchange. In this chapter, we
have presented our algorithms for both schema mapping creation via query dis-
covery, and for query generation for data exchange. Our algorithms apply equally
in pure relational, pure XML (or any nested relational), and mixed relational
and nested contexts.

Clio set out to radically simplify information integration, by providing tools
that help users convert data between representations – a core capability for
integration. Today, most information integration systems, whether federation
engines that do data integration, or ETL engines that enable data exchange, in-
clude a suite of tools to help users understand their data and to create mappings,
though only a few leverage the power of Clio’s algorithms. In the next genera-
tion of integration tools, we need to leverage data and semantic metadata more
effectively in the integration process, combining data-driven, metadata-driven
and schema-driven reasoning. Further, we need to provide users with a higher
level of abstraction for the entire integration process, from identification of the
data of interest through returning the results. Ideally, users would not have to
decide a priori whether they wanted data integration or data exchange; instead,
the system should understand the user’s intentions and construct the integration
plan accordingly [26]. These challenges are natural next steps along the trail of
increased automation and radical simplification blazed by Clio.

References

1. Abiteboul, S., Bidoit, N.: Non-first Normal Form Relations: An Algebra Allowing
Data Restructuring. J. Comput. Syst. Sci. 33, 361–393 (1986)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

234 R. Fagin et al.

3. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.-C.: Muse: Mapping understand-
ing and design by example. In: Proceedings of International Conference on Data
Engineering (ICDE), pp. 10–19 (2008)

4. Alexe, B., Tan, W.-C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. In: Proceedings of the VLDB Endowment, vol. 1(1), pp. 230–
244 (2008)

5. An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discov-
ering Schema Mapping Expressions. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 206–215 (2007)

6. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys 18(4), 323–364 (1986)

7. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

8. Bernstein, P., Halevy, A., Pottinger, R.: A Vision for Management of Complex
Models. SIGMOD Record 29(4), 55–63 (2000)

9. Bernstein, P.A., Haas, L.M.: Information Integration in the Enterprise. Commun.
ACM 51(9), 72–79 (2008)

10. Bernstein, P.A., Melnik, S., Mork, P.: Interactive Schema Translation with
Instance-Level Mapping. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 1283–1286 (2005)

11. Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting Context into Schema
Matching. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 307–318 (2006)

12. Bohannon, P., Fan, W., Flaster, M., Narayan, P.P.S.: Information Preserving XML
Schema Embedding. In: Proceedings of the International Conference on Very Large
Data Bases (VLDB), pp. 85–96 (2005)

13. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, V.S., Pottinger, R.: HePToX:
Marrying XML and Heterogeneity in Your P2P Databases. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp. 1267–1270 (2005)

14. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping
verification: the spicy way. In: International Conference on Extending Database
Technology (EDBT), pp. 85–96 (2008)

15. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: The spicy sys-
tem: towards a notion of mapping quality. In: ACM SIGMOD Conference, pp.
1289–1294 (2008)

16. Chawathe, S., GarciaMolina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous In-
formation Sources. In: Proc. of the 100th Anniversary Meeting of the Information
Processing Society of Japan (IPSJ), Tokyo, Japan, pp. 7–18 (1994)

17. Deutsch, A., Tannen, V.: XML queries and constraints, containment and reformu-
lation. Theoretical Comput. Sci. 336(1), 57–87 (2005)

18. Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems
(TODS) 32(4), 25 (2007)

19. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. Theoretical Comput. Sci. 336(1), 89–124 (2005)

20. Fagin, R., Kolaitis, P.G., Nash, A., Popa, L.: Towards a theory of schema-mapping
optimization. In: Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), pp. 33–42 (2008)

21. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Composing schema mappings:
Second-order dependencies to the rescue. ACM Transactions on Database Systems
(TODS) 30(4), 994–1055 (2005)

Clio: Schema Mapping Creation and Data Exchange 235

22. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Quasi-inverses of schema mappings.
ACM Transactions on Database Systems (TODS) 33(2), 1–52 (2008)

23. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

24. Fuxman, A., Hernández, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested
Mappings: Schema Mapping Reloaded. In: Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pp. 67–78 (2006)

25. Fuxman, A., Kolaitis, P.G., Miller, R., Tan, W.-C.: Peer Data Exchange. ACM
Transactions on Database Systems (TODS) 31(4), 1454–1498 (2006)

26. Haas, L.: Beauty and the beast: The theory and practice of information integra-
tion. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43.
Springer, Heidelberg (2006)

27. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Tork Roth, M.: Clio grows up:
From research prototype to industrial tool. In: ACM SIGMOD Conference, pp.
805–810 (2005)

28. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The
piazza peer data management system. IEEE Transactions On Knowledge and Data
Engineering 16(7), 787–798 (2004)

29. Hernández, M.A., Papotti, P., Tan, W.-C.: Data exchange with data-metadata
translations. Proceedings of the VLDB Endowment 1(1), 260–273 (2008)

30. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object
Identifiers. In: Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 455–468 (1990)

31. Jiang, H., Ho, H., Popa, L., Han, W.-S.: Mapping-driven XML transformation. In:
Proceedings of the International WWW Conference, pp. 1063–1072 (2007)

32. Jiang, L., Borgida, A., Mylopoulos, J.: Towards a compositional semantic account
of data quality attributes. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER
2008. LNCS, vol. 5231, pp. 55–68. Springer, Heidelberg (2008)

33. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS), pp. 233–246 (2002)

34. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information
Sources Using Source Descriptions. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB), pp. 251–262 (1996)

35. Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In: Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB), pp.
572–583 (2003)

36. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies.
ACM Transactions on Database Systems (TODS) 4(4), 455–469 (1979)

37. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: Applying model management
to executable mappings. In: ACM SIGMOD Conference, pp. 167–178 (2005)

38. Miller, R.J., Haas, L.M., Hernández, M.: Schema Mapping as Query Discovery. In:
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pp. 77–88 (2000)

39. Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Trans-
lation. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 122–133 (1998)

40. Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings given by embedded
dependencies. In: Proceedings of the ACM Symposium on Principles of Database
Systems (PODS), pp. 172–183 (2005)

236 R. Fagin et al.

41. Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator
systems. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 413–424 (1996)

42. Popa, L., Tannen, V.: An Equational Chase for Path-Conjunctive Queries, Con-
straints, and Views. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 39–57. Springer, Heidelberg (1998)

43. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating Web
Data. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB), pp. 598–609 (2002)

44. Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernández, M.A.: Clip: a Visual Lan-
guage for Explicit Schema Mappings. In: Proceedings of International Conference
on Data Engineering (ICDE), pp. 30–39 (2008)

45. Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.:
iTrails: Pay-as-you-go information integration in dataspaces. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp. 663–674 (2007)

46. Shu, N.C., Housel, B.C., Lum, V.Y.: Convert: A high level translation definition
language for data conversion. Commun. ACM 18(10), 557–567 (1975)

47. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A
Data EXtraction, Processing and REstructuring System. ACM Transactions on
Database Systems (TODS) 2(2), 134–174 (1977)

48. Velegrakis, Y.: Managing Schema Mappings in Highly Heterogeneous Environ-
ments. PhD thesis, Department of Computer Science, University of Toronto (2004)

49. Velegrakis, Y., Miller, R.J., Popa, L.: On Preserving Mapping Consistency under
Schema Changes. International Journal on Very Large Data Bases 13(3), 274–293
(2004)

50. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM
Transactions on Database Systems (TODS) 30(2), 624–660 (2005)

51. Yan, L.-L., Miller, R.J., Haas, L., Fagin, R.: Data-Driven Understanding and Re-
finement of Schema Mappings. ACM SIGMOD Conference 30(2), 485–496 (2001)

52. Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data Integration.
ACM SIGMOD Conference 33(2), 371–382 (2004)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 237–253, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Heterogeneity in Model Management: A Meta Modeling
Approach

Matthias Jarke1,2, Manfred A. Jeusfeld4, Hans W. Nissen2,3, and Christoph Quix1

1 RWTH Aachen University, Informatik 5, Ahornstr. 55, 52074 Aachen, Germany
2 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

3 Cologne University of Applied Sciences, Betzdorfer Str.2, 50679 Köln, Germany
4 Tilburg University, The Netherlands
Jarke@cs.rwth-aachen.de

Abstract. As models are always abstractions of reality, we often need multiple
modeling perspectives for analysis. The interplay of such modeling perspectives
can take many forms and plays a role both at the design level, and during the
operation of information systems. Examples include viewpoint resolution in
requirements management, mapping between conceptual and implementation
design in databases, and the integration or interoperation of multiple data and
media sources. Starting from early experiences with our now 20-year old
ConceptBase implementation of the Telos language, we describe a logic-based
conceptual modeling and model management approach to these issues, focusing
on recent work which employs a generic meta model to facilitate mappings and
transformations between heterogeneous model representations both at the
schema and the data level.

1 Introduction

Only a few years after the introduction of conceptual modeling via early
representatives such as the Entity-Relationship Model or Structured Analysis and
Design, John Mylopoulos began a research agenda of investigating conceptual models
not just as pretty pictures for communication, but as formal objects with a logic
foundation. Exploiting the parallel advent of logic programming and logic databases,
models thus became accessible to, and useful for the fields of (a) Artificial
Intelligence (e.g. reasoning about model consistency), (b) Databases (e.g. storing,
retrieving, and integrating models; using models as organizing principles for large
data sets), and (c) Software Engineering (e.g. model-driven code generation, lifecycle
modeling and traceability, version and configuration management) [7].

Well-known early instances of this research agenda were the database design
language Taxis [34] and the requirements modeling language RML [16]. However,
the host of object-oriented modeling formalisms in the mid-1980s and early
precursors of model-driven architectures such as DAIDA [6, 24] demonstrated that it
was not enough to formalize individual modeling notations. With equal importance,
the relationships between models had to be managed. Examples include model
transformations and code generation, but also mappings among existing models, for
schema integration or traceability of design artifacts [43].

238 M. Jarke et al.

To avoid pairwise mappings between all the available modeling notations, the idea
of meta modeling was pursued by a number of researchers and standardization bodies.
As data can be seen as instances of the corresponding schemas (in short: models),
these models themselves can be seen as instances of one or more meta models. A
meta model can reflect generic knowledge about the language notation or the domain
ontology in which the model is expressed. The issue of relationships arises again
between meta models, such that in principle an infinite regress of meta meta models
(M2 models), meta meta meta models (M3 models), etc. emerges.

The different approaches to meta model management have addressed this issue in
different ways. Pioneered by the Information Resource Dictionary Standard
[IRDS90], most approaches stop at the M2 level, arguing that a simple generic meta
meta model is sufficient to express the notations and relationships. Typically, this M2
model reflects an elementary graph construct (e.g. in MetaEdit+ [28]), or the basic
class constructs such as generalization and aggregation (e.g. in the UML meta model
and the OMG Meta Object Facility [39]). In some cases, a richer generic meta model,
usually a domain-specific one, is employed to facilitate a higher quality of
consistency checking, or a higher degree of automated code generation.

The four-level meta model architecture comprises the data layer, the schema or
model layer, the meta model layer, and the M2 layer. For example, John can be
considered an instance of the model class Person which is an instance of the meta
model object Entity which is an instance of the M2 model object Class.

A related issue is the question how these levels are related to each other, i.e. the
formal semantics of this architecture. For example, one might want to express the
constraint that an instance of Person must be linked to at most one Social
Security Number, or that an instance of Entity may define mandatory
required relationships for all its instances, or even that any design object,
irrespective of its notation, should be traceable to some instance of an instance of
meta model object Requirement.

In IRDS, whose formalization was based on the SQL relational database standard,
the four levels are organized in three interlocking level pairs, which represent
application databases, data dictionaries or repositories, and method engineering
environments [22]. In each pair, the schema will express (SQL) structures, queries,
and integrity constraints about the level below. Analogously, in UML, an Object
Constraint Language OCL was added in which constraints about a model can be
expressed in meta models. Unfortunately, none of these approaches permits the
specification of constraints across multiple levels of abstraction, such as e.g. the
above traceability constraint. We call such multi-level constraints meta formulas.

The Telos language developed by an international network of researchers around
John Mylopoulos in several iterations during the second half of the 1980’s was not
only one of the first, but also perhaps the most radical attempt at meta modeling.
Telos does not only allow the specification of an arbitrary number of meta levels, but
also the specification of meta formulas. Since this demands, in principle, second-order
logic to be dealt with, the specification of Telos syntax and semantics had to be
restricted with great care, in order to maintain computational tractability. A first
paper-based formalization of Telos was completed in 1988 by Manolis Koubarakis,
adding an important component to the fundamental Telos paper written during the

 Heterogeneity in Model Management: A Meta Modeling Approach 239

sabbatical of Matthias Jarke in Toronto in late 1988 [25]. Shortly afterwards, based on
results from the European Computational Logic initiative Compulog, Manfred
Jeusfeld succeeded in defining a simpler semantics on the basis of Datalog with
stratified negation with only very minor restrictions of expressiveness [26]. This
formalization allowed the power of logic programming technologies such as partial
evaluation to be applied to the Telos implementation and provided, for the first time,
query and constraint optimization of meta formulae based on deductive database
technologies [JeJa90]. Our ConceptBase deductive object base, whose first version
was completed already in 1988 [25], was extended by these mechanisms [20] and has
since been further developed for many model management tasks.

2 Meta Formulae in ConceptBase

Perhaps the most distinguishing property of Telos is its ability to represent concepts at
any abstraction level (data, classes, meta classes, M2 classes) uniformly with a single
quadruple data structure called proposition: P(o,x,n,y). Comparable to RDF, this
data structure reifies all non-derived attributes, instantiations, and subclass relations.

Correct attribution, classification and specialization is expressed in logical axioms.
ConceptBase realizes them via a mapping to Datalog with stratified negation. They
form the pre-defined set of deductive rules and integrity constraints. As Telos allows
the definition of new (generic) constructs at the meta and metameta class level; the
meaning of the new constructs can be constrained by Datalog rules as well.

Traditionally, Datalog rules are only expressed for level pairs, i.e. for two
consecutive abstractions levels of the Meta Object Facility MOF. Fig. 1 shows an
example incarnation of the four MOF abstraction levels.

Fig. 1. Telos example in the MOF hierarchy

Concept

EntityType

Employee

mary bill

M0

M1

M3

Person

Domain
e_attr

Integer

salary

1000

sal1

M2

anne

240 M. Jarke et al.

An example rule at level M1 could be that any employee has at least one salary:

∀ e In(e,Employee) ⇒ ∃ s,n In(s,Integer) ∧ A(e,salary,n,s)

The predicate In(x,c) denotes that x is an instance of c. The predicate
A(x,m,n,y) denotes that x has an attribute with label n and attribute category m
and value y. The integrity constraint is displayed in first order logic but can be
transformed to Datalog.

If some other attribute needs to be regarded as required, a similar constraint would
have to be defined. To enable reuse of such formula patterns, we define the notion of
a meta formulas, for example:

∀c,d,m E(c,d,m) ⇒ (∀x In(x,c) ⇒ ∃y,n In(y,d) ∧ A(x,m,n,y))
∀a,c,m,d In(a,required) ∧ P(a,c,m,d) ⇒ E(c,d,m)

The first formula has a driver predicate E(c,d,m), which lists the so-called meta
variables in the remainder of the formula. A meta variable is a variable c that occurs
at the class position in In(x,c), or a variable m that occurs at the category position
in A(x,m,n,y). A meta formula is then a formula with at least one meta variable.
Using special predicates (x [in] c) and (x [m] y), the ConceptBase user can
ask directly for instances of instances x of a class c, respectively for the values y of
all instances of attribute metaclass m of a given object x.

It can be shown that any range-restricted formulas can be translated to one of the
following two normal forms:

∀ c E(c) ⇒ (c)

∃ c E(c) ∧ (c)

This allows ConceptBase to apply a partial evaluation technique to manage meta
formulas such as the one for the 'required' construct. ConceptBase maintains the
extension of the driver predicate E and replaces E(c) in the meta formula by its
extension. This generates a simplified version of the original meta formula where all
meta variables are eliminated. If the meta formula was universally quantified, the
simplified version decomposes into a conjunction of Horn clauses, ready to be
interpreted by a Datalog engine.

Meta formulae can be equally well applied to formalize generic constructs such as
transitivity, symmetry etc. These generic constructs can then be used to define the
meaning of sub-classing, part-of relations, but also of traceability. A library of
predefined meta formulae simplifies the definition of new constructs at the M2 level.

In the remainder of this chapter, we demonstrate the versatility of this approach by
three examples. First, we present a rather direct application where the meta model
hierarchy and a goal-oriented usage of meta formulae are employed to identify and
manage inconsistencies in requirements specifications in a productive manner.
Second, we discuss model-based data integration in the context of data quality
management in data warehouses; here, the specification of inter-model relationships
also needs to be propagated to the data level. Finally, we discuss how some of the key
ideas of generic, logic-based meta models can be extended to allow the management

 Heterogeneity in Model Management: A Meta Modeling Approach 241

of multiple pre-existing, complex information models and peer data networks
expressed in heterogeneous formalisms.

3 Perspective Resolution in Requirements Engineering

Systems analysis and design methodologies for information systems employ multiple
partial models or perspectives to structure the set of requirements specifications and
designs. Since the early 1990's, authors from the software engineering community
noticed that multiple stakeholders pursue conflicting opinions, have contradicting
requirements and alternative perspectives [3, 13, 11].

In consulting practice, such approaches have been pursued since the late 1980s,
albeit without much computer support. Prominent examples include IBM's JAD (Joint
Application Design) [2], SSM (Soft Systems Methodology) [8], and PFR (Analysis of
Presence and Future Requirements) [1]. Such goal-oriented teamwork approaches
specifically follow the objective to capture requirements from all available sources
and to make arising conflicts productive for deeper understanding and requirements
negotiation. Their main characteristics are: informal and teamwork-oriented
information acquisition, no fixed set of notations, goal-oriented perspective analysis,
and conflict tolerance.

Our approach for a metamodel-based perspective resolution in requirements
engineering is presented in Fig. 2 [36]. In the following paragraphs we explain the
five features indicated by the numbers in the figure in more detail.

Separation of Multiple Perspectives (1). The conceptual models represent
individual perspectives of stakeholders. The figure shows three perspectives
(A1,A2,A3) expressed in Notation A and two perspectives (B1,B2) expressed
in Notation B. Telos modules offer independent modeling contexts and enables

Perspective
B2

Notation
A

Notation
B

Integríty
Constraints

A <-> B

Perspective
Resolution

A1, A3 <-> B1

Perspective
A3

Perspective
A2

Perspective
A1

Perspective
B1

problem-oriented
meta meta model

meta
models

conceptual
models

instantiates

instantiates

instantiates

instantiates
instantiates

evaluation

automatic
generation

automatic
generation

coordinates

coordinates

coordinates

coordinates
coordinates

1

2

3

4

5
Perspective

B2

Notation
A

Notation
B

Integríty
Constraints

A <-> B

Perspective
Resolution

A1, A3 <-> B1

Perspective
A3

Perspective
A2

Perspective
A1

Perspective
B1

problem-oriented
meta meta model

meta
models

conceptual
models

instantiates

instantiates

instantiates

instantiates
instantiates

evaluation

automatic
generation

automatic
generation

coordinates

coordinates

coordinates

coordinates
coordinates

1

2

3

4

5

Fig. 2. Meta model driven perspective resolution

242 M. Jarke et al.

the representation of inconsistent conceptual models l; in ConceptBase, modules also
contain an authorization function for security. The intended application scenario of
modules in concurrent conceptual modeling processes induces the need for
communication between modules [38]. Often, one modeling task depends on another
one and reuses a part of its results. To support this situation, two modules can
communicate by setting up an import-relationship. The importing module obtains
access to the contents of the imported module. To protect a specific part of the
module contents, the concept allows the division of the accessible contents of a
module into a private and a public part. We had to add only seven new rules and six
new constraints to the Telos definition to introduce modules. In addition a number of
pre-defined objects were defined in order to introduce the built-in module System
and its relationships to other pre-defined objects. The full set of axioms and pre-
defined objects is given in [36]

Customizable Notations (2). We enable customizable notations by employing the
extensible meta modeling capability of Telos. The language allows to define and
modify meta models of the desired notations. The notations used to express the partial
models are specified on the second level, the meta level. The example comprises two
notations, Notation A and Notation B.

Adaptable Specification of Analysis Goals (3). A shared M2 model inter-relates the
modeling notations. It specifies the domain structure as well as specific analysis
goals. This model is created in teamwork at the beginning of the analysis project and
documents an agreed shared domain ontology of all participating stakeholders. An
analysis goal is actually an integrity constraint which defines a cross-perspective
check performed on the bottom level between concrete conceptual models.

Goal-Oriented Perspective Analysis (4). The analysis goals specified in the
problem-oriented meta meta model are stated independently from any specific
notation. They are formulated exclusively on the domain ontology. In order to be able
to analyze the partial models on the bottom layer, we transform the analysis goals into
integrity constraints on the notation meta models. If an analysis goal covers two or
more notations, the integrity constraint will be placed in a special module, the
resolution module. In such a module, all integrity constraints which specify the
relationships between partial models of the connected notations are collected.

Tolerance of Conflicts (5). To avoid interrupting the creative modeling activity in the
presence of inter-perspective inconsistencies, the cross-perspective analysis takes
place in separate resolution modules. The figure shows such a resolution module to
check the perspectives A1,A3 and B1. If the analysis results in a conflict between
perspectives, the conflict is continuously documented but it is not required that the
conflict is resolved immediately. Since the documentation is visible only within the
resolution module, the designers of the involved models are not affected.

The tolerance of conflicts within a resolution module is possible due to a relaxed
consistency enforcement approach. We allow insertions and deletions with a
resolution module even if they cause an inconsistency. But a totally anarchic state of
the object base is not desired. The inconsistent objects are managed in the sense that
the object base knows about the inconsistent objects it contains. We have developed
specialized inconsistency detection and management extensions to tolerate conflicts
but keep the formal semantics of the object base.

 Heterogeneity in Model Management: A Meta Modeling Approach 243

Agent Medium

Activity Data
output

supplies with

needs

generates

gives
takes

enters

writes

contains
performed_by

follows

input

Agent Medium

Activity Data
output

supplies with

needs

generates

gives
takes

enters

writes

contains
performed_by

follows

input

Fig. 3. The PFR meta meta model

Fig. 3 shows a Telos M2 model that has been used in several commercial analysis
projects using the PFR method [37]. The conceptual models are analyzed from three
perspectives: information-exchange, activity-sequence, and document-structure. The
information-exchange perspective is represented by an Agent who supplies other
agents with a Medium, the activity-sequence by the Activity that is
performed_by an Agent and produces Data as input or output, and the
document-structure by a Medium that contains Data. The M2 model contains a
precise description of the terms employed during a PFR analysis. Its structure focuses
on the expected problems in the domain. The distinction between Medium and Data,
for example, is essential to talk about the unnecessary exchange of documents, i.e.
documents which contain data that is not used by any activity.

Further experiences with this approach were gained in subsequent work in the
international Tropos project where we analyze the design and operation of
organization networks, by linking meta models such as i* strategic goals and
dependences with workflow models e.g. based on speech act theory [15].

Our meta model-centered approach can be contrasted with more direct
implementations of the ViewPoint approach [38]. ViewPoints aim at a completely
distributed architecture without any central control unit or method engineering
environment. Relationships between ViewPoints are defined by direct inter-
ViewPoint rules without overarching analysis goals. In addition, the Telos approach
allows the incorporation of customized notations, even at analysis time.

4 Model-Based Information Integration in Data Warehouses

While perspective resolution in requirements engineering typically operates at the
modeling level only, the design and operation of data warehouses has to consider the
integration and presentation of existing data, in addition to the schemas. We have
studied this problem in the European DWQ project [23].

244 M. Jarke et al.

Source
Data Store

DW
Data Store

Wrapper

Client
Data Store

Aggregation/
Customization

?

Observation

OLTP

OLAPClient
Model

Source
Model

Enterprise
Model

Source
Schema

DW
Schema

Transportation
Agent

Transportation
Agent

Client
Schema

Conceptual
Perspective

Logical
Perspective

Physical
Perspective

Fig. 4. Quality-Centered Data Warehouse Design in the DWQ project [JJQV99]

Traditionally, a data warehouse has been seen as a collection of views on various
operational data sources, typically collected over an extended period of time and with
a higher level of aggregation than the original data. This should enable online analytic
processing (OLAP) by the client in some kind of multi-dimensional data model. In
other words, the “global” data warehouse is seen as a view on the data sources which
again provides specialized views (data marts) for various analysis purposes.

However, this Global-as-View (GAV) approach may not be appropriate, if multiple
perspectives on the same reality and data quality need to be taken into account. As
Fig. 4 illustrates, the analyst wants to study a reality (say, an enterprise), which he
cannot observe directly. Different observations (documented transactions) have been
collected in data sources about this reality, such that these data sources must in
principle be seen as local views on the reality which should be represented by the data
warehouse. This Local-as-View (LAV) approach allows the data warehouse designer
to specify quality issues such as completeness, actuality, and precision of the data
sources with respect to an “ideal” enterprise information system, thus warning the
analyst of gaps where perhaps no data or only outdated or imprecise data exist.

The LAV approach requires, similar to the previous section, that the data warehouse
conceptual model and schema is initially specified independently of those of the
available data sources. Incidentally, this goes along well with current conceptual
modeling practice in industry which is often organized around a business process model
independent of available information systems. Inter-model constraints between the data
warehouse model and the models of the data sources are then specified separately, in a
manner similar to the one described in the previous section. Within a given modeling
formalism, powerful description logic formulae can be used for the specification of

 Heterogeneity in Model Management: A Meta Modeling Approach 245

these relationships [32] but for a setting of heterogeneous formalisms a homogenization
using a language such as Telos is first needed.

While there are clear advantages to the LAV approach in terms of data quality
management and understandability for the analyst, the mapping from the schema level
to the data level is significantly more complicated than in the GAV approach which
just involves regular simple querying of the sources using traditional view unfolding.
For LAV, an approach to question-answering using a pre-defined set of views (the
data sources) is required; a number of such approaches have appeared in the last
decade [17]. In our DWQ implementation, the inter-schema constraints have been
mapped down to a variant of the MiniCon algorithm [40, 41].

5 Dealing with Model Complexity: Model Management

5.1 The Model Management Movement

Referring to early experiences as described above, Bernstein et al. [4] brought up an
additional problem : the management of very large-scale legacy schemata and models
which can no longer be handled manually, yet need to be manipulated easily even by
relatively inexperienced users. This new approach was called “model management”
(not to be confused with mathematical model management discussed since the mid-
1980s in Operations Research and Computational Engineering Sciences). The main
idea is that, in a model management system, models and mappings should be
considered as first class objects and that operations should address models as a whole
and not only one model element at a time.

Model management aims at developing technologies and mechanisms to support
the integration, merging, evolution, and matching of data models at the conceptual
and logical design level. Bernstein et al. [4] proposed an algebraic approach with a
few well-defined operators: Match for identifying relationships and the generation of
a mapping between two schemas; Merge for the integration of schemas; and
Compose for the composition of mappings. Other operators such as DeepCopy and
Diff were defined in order to support complex sequences of model management
operations which could be covered completely by the algebra. While such operations
had already been discussed in the literature before, the aim was to generalize and
integrate the existing approaches in a unified, generic model management system.

Several prototypes based on this approach were built, but the initial goal of having
a set of independent operations which could be combined in arbitrary ways turned out
to be too challenging, largely because the mapping representation had been
underestimated. Although there have been many proposals for automatic methods for
schema matching [42, 44], the task of defining a complete and correct mapping
between two models still requires a lot of human effort, as the result of a match
operator can be only an approximation of the correct mapping. In addition, mappings
come in different flavors. For matching and simple schema integration tasks, pair-
wise correspondences of schema elements might be sufficient; however, more formal
tasks such as data translation or the integration of complex schemas require more
expressive mapping languages. Finally, the definition of a mapping might depend on
the context where it should be used. Extensional mappings refer data instances and
can be used for data translation from one data source to another one, intensional

246 M. Jarke et al.

mappings refer to the relationships of the schemas at the schema level, i.e. the
intended meaning of a schema element.

Because of the observation that the definition of mappings and their application is
a key issue in model management, Bernstein and Melnik [5] revised the initial vision
to put mappings into the focus. Similar to the discussion in the data warehouse
setting, mappings need to be expressed as queries. However, mappings between
heterogeneous formalisms again need the genericity of meta modeling. Therefore, we
developed a generic meta model which allows a uniform representation of data
models, regardless of the modeling language which was used originally to define the
data model. For a number of reasons, we do not rely on the Telos formalism as such,
but extract some of the most important meta formulas and embed them in a generic
meta model which is represented graphically in a UML-like notation.

The generic meta model GeRoMe [29] employs a role-based modeling approach in
which an object is regarded as playing roles in collaborations with other objects. This
allows describing the properties of model elements as accurately as possible while
using only metaclasses and roles from a relatively small set. Therefore, GeRoMe
provides a generic, yet detailed representation of data models which supports also the
definition of mappings using an expressive generic mapping language based on
second-order tuple generating dependencies, supported by our model management
toolkit GeRoMeSuite [30].

5.2 The Generic Role-Based Metamodel GeRoMe

Most existing systems on model and mapping management deals only with one or two
modeling languages (e.g. Clio [18]) or uses a rather simple generic representation
based on graphs (e.g. Rondo [33]), in which case the detailed semantics behind the
models is lost. The goal of GeRoMe is a detailed and uniform representation of data
models, enabling the integration, transformation, and mapping of models across
multiple formalisms. The most important role classes of the GeRoMe meta model are
shown in Fig. 5.

In GeRoMe each model element of a native model (e.g. an XML schema or a
relational schema) is represented as an object that plays a set of roles which decorate
it with features and act as interfaces to the model element. Fig. 7 shows an example of
a GeRoMe model of the XML Schema shown in Fig. 6.

The gray boxes in Fig. 7 denote model elements, the attached white boxes
represent the roles played by the model elements. XML Schema is in several aspects
different from “traditional” modeling languages such as EER or the Relational
Metamodel. The main concept of XML Schema “element” represents actually an
association between the parent complex type and the nested type. This is true for all
elements except those that are allowed as the root element of a document. In
GeRoMe, the definition of a root element is an association between the schema node
and the element's complex type, as there is no complex type in which the root element
is nested. In the example, the element University is an association between the
model element Schema and the complex type UniType. The fact that the
University element is an association is described by the Association (As) role
which connects the ObjectSet (OS) roles of Schema and UniType via two
anonymous model elements playing a CompositionEnd (CE) and an
ObjectAssociationEnd (OE) role, respectively.

 Heterogeneity in Model Management: A Meta Modeling Approach 247

Fig. 5. Subset of the GeRoMe meta model

Fig. 6. XML Schema for universities and students

Student

University

UniType

StudType

Schema

sname

ID

As

As

OS

OS

Ag
At

OE

CE

OE

CE

NS

OS uname

Ag

At

StringD

At

IntD

Role Types
NS: Namespace
OS: ObjectSet
AS: Association
CE: CompositionEnd
OE: ObjectAssociationEnd
Ag: Aggregate
At: Attribute
D: Domain

Fig. 7. GeRoMe representation of the XML schema in Fig. 6

<xsd:schema>

 <xsd:element name="University" type="UniType"/>

 <xsd:complexType name="UniType">

 <xsd:sequence>

 <xsd:element name="Student" type="StudType"/>

 </xsd:sequence>

 <xsd:attribute name="uname" type="xsd:string"/>

 </xsd:complexType>

 <xsd:complexType name="StudType">

 <xsd:attribute name="sname" type="xsd:string"/>

 <xsd:attribute name="ID" type="xsd:integer"/>

 </xsd:complexType>

</xsd:schema>

248 M. Jarke et al.

Since GeRoMe is a generic meta model, we must take care that comparable
modeling constructs from different modeling languages are represented uniformly.
For instance, in UML, associations may be of degree higher than two, whereas in the
ontology language OWL or in XML, instances of types (or classes) are only
connected via binary associations. However, in order to allow uniform handling by
model management operators, we need to represent all these types of associations in
the same way, i.e. using associations and association end roles.

The same structure of association and association end roles is used for the element
Student which is an association between the complex types UniType and
StudType. The two complex types have attributes; therefore, they also play
Aggregate (Ag) roles which link these model elements to their attributes. The model
element representing attributes play Attribute (At) roles which refer also to the types
of the attributes which are, in this example, simple domains denoted by the Domain
(D) role.

Note that the representation of models in GeRoMe is not to be used by end users
but internally by GeRoMeSuite, with the goal to provide more semantics to model
management operators than a simple graph based model.

5.3 Generic Schema Mappings

The generic representation of models is the basis for the generic mapping language
used in GeRoMeSuite. The mapping language is used to represent extensional
relationships between models, i.e. between their instances. Therefore, we need to
characterize instances of a GeRoMe model. Fig. 8 depicts an example instance for the
GeRoMe model of the XML Schema in Figs. 6 and 7.

The first inst-predicate defines an instance of the schema element which represents
the XML document itself. Two instances of the complex types and their attributes are
defined using av-predicates, which state that an object has a certain attribute value for
a specific attribute type. The last three lines define the associations and the
relationships between the objects defined before. A predicate part(as,ae,o) denotes
that the object o participates in the association as using the association end ae.

As the example shows, association end roles and attribute roles are not only able to
define flat structures, but also nested structures, such as element hierarchies in XML
schemas. This supports the representation of mappings between models with arbitrary
structures as well as mappings which are able to restructure the data between the
source and target model. We apply this basic idea to second order tuple generating
dependencies (SO tgds) [12], which gives a rich expressive mapping language but still
maintains features such as composability and executability.

Fig. 8. XML document and its representation as GeRoMe instance

 Heterogeneity in Model Management: A Meta Modeling Approach 249

Fig. 9. Generic mapping from an XML schema to a relational schema

The main feature of our mapping language is that we use reification to describe
data structures by introducing abstract individuals to denote the instances of model
elements. In the example of Fig. 8, the abstract individuals were identified by #0, #1,
#2, … Instead of describing these individuals by a single predicate (e.g. like a tuple in
a relational database), we use a set of predicates to describe each feature of that
object, similar to Telos. In combination with the ability to describe arbitrary
structures, the use of reification makes the mapping language also suitable for semi
structured data models such as XML.

A detailed presentation of the mapping language is beyond the scope of this
paper, details can be found in [31]. Fig. 9 shows an example of a mapping between
models originally represented in two different modeling languages, where the target
model is a relational schema with two relations University(uname) and
Student(id,sname,uni).

The predicates in the conditional part of the rule correspond to the instance
predicates shown in Fig. 8, now just with variables instead of constants. The variables
o0 to o4 represent abstract identifiers, their function is to describe (implicitly) the
structure of the source data that is queried for. In other approaches for mapping
representation (e.g. [14]) such structures are represented by nesting different sub-
expressions of a query. Although nested mappings are easier to read, they are strictly
less expressive than SO tgds. In addition, several mapping tasks such as composition,
inverting, optimization, and reasoning have to be reconsidered for nested mappings;
for example, it is not clear how to compose nested mappings and whether the result
composing two nested mappings can be expressed as a nested mapping.

Similarly to the abstract variables on the source side, the functions f and g
represent abstract identifiers on the target side, and therefore describe the structure of
the generated target data. Such abstract functions can be understood as Skolem
functions which do not have an explicit semantics; they are interpreted by syntactical
representation as terms. While the mapping is executed, these functions are used to
create the appropriate nesting and grouping structures of the target data.

To describe the structure of the target data, it is important to know which values
are used to identify an object. According to the definition of the relational schema,
universities are identified by their name (u) and students by their ID (i); that is why
we use u and i as arguments of the abstract functions f and g.

In addition to abstract functions, a mapping can also contain concrete (“normal”)
functions for value conversions or other types of data transformation. While executing

250 M. Jarke et al.

a mapping, these functions must be actually evaluated to get the value which has to be
inserted into the target.

The model management system GeRoMeSuite includes a mapping execution
engine. The system is able to execute mappings between XML, relational and Java
models. The generic query expression on the source side is translated into an
executable query of the corresponding query language (e.g. XQuery or SQL), while
on the target side, the resulting objects are created.

5.4 Application Example: Generic Peer Data Management

As an application of our generic model management approach, we consider peer data
management systems (PDMS) in a heterogeneous setting.

In PDMS, each peer can act as a data source as well as a mediator in the network.
Queries can be posed against any peer and are then rewritten to queries against
relevant data sources. Applications of peer data management can be found in the areas
of personal dataspaces and the semantic web. Both scenarios exhibit highly
heterogeneous data sources which may not only differ in the schemas exposed, but
also in the modeling languages used to describe the schemas. For instance, whereas
some data sources may be relational, others can be based on XML Schema or
ontologies. Such a PDMS requires a mapping language and query rewriting
algorithms that can deal with different modeling languages. We applied our generic
approach to query rewriting in PDMS. This includes rewriting of queries using
global-as-view and local-as-view mappings.

Fig. 10 sketches an example of query processing in the PDMS which uses view
unfolding and query folding for query rewriting. The user specifies the query using a
query interface similar to SQL. The user query Q, in the figure posed over the schema
S2 of the peer P2, is translated into a generic query expression using a syntax similar
to the generic mapping language sketched above. The generic query is sent to the peer
which checks whether the available mappings to other peers are relevant to the query.
In the example sketched in Fig. 10, the query can be answered by peer P1 and peer P3.
The schema S1 of peer P1 is expressed as GAV mapping, e.g. the schema elements of
S2 are expressed as a view on the elements of S1. Therefore, we can use view
unfolding: the mapping M12 is composed with the query Q which results in the
rewritten query QS1, i.e. the query Q in terms of the schema S1.

On the other hand, the mapping between P2 and P3 is expressed as a LAV
mapping from the viewpoint of peer P2. This means, that the elements of S3 are
expressed as views on S2. In this case, we again need the MiniCon algorithm [40, 41]
for query rewriting of LAV mappings.

Due to the reification in our mapping language, the number of predicates in a
mapping (or query) is significantly higher than in usual relational mappings. As the
complexity of the algorithms for query rewriting depends on the size of queries and
mappings (i.e. the number of predicates), the reified style of our mappings increases
the complexity. Therefore, it is important to keep the number of predicates as low as
possible while the query rewriting algorithms are applied.

 Heterogeneity in Model Management: A Meta Modeling Approach 251

S3

P3

Fig. 10. Query Processing in the Peer Data Management System

We have developed several optimization techniques inspired by the semantic
optimization techniques applied in the ConceptBase system. The basic idea is to
remove predicates which are already implied by other predicates [31].

6 Concluding Remarks

Heterogeneity of modeling notations, domain ontologies, and analysis goals is a fact
of life in model management. In this chapter, we have demonstrated with case
studies from requirements engineering, data warehouse management, and peer data
management, how this heterogeneity can be exploited and managed through generic
meta modeling technologies. The radical approach to meta modeling pioneered in
the Telos language and its mapping to efficient Datalog code using a carefully
designed, but extensible set of meta formulae turns out to be a key success factor
here.

The fundamental quadruple structure underlying Telos which preceded, but also
generalizes the triple structure underlying XML and, in particular, its metadata
sublanguage RDF, is not only an important prerequisite for this solution but has also
served as the basis for other important meta modeling standards beyond the examples
given in this chapter. An important example is the CIDOC Conceptual Reference
Model for model integration in digital libraries [10] which started from an
implementation of a subset of Telos developed at the FORTH institute in Crete
focusing just on its structural axioms [9]. Similar work linking conceptual modeling
to the MPEG-7 and MPEG-21 multimedia standards in the context of Internet
communities is currently pursued at RWTH Aachen University, extending the
community analysis tools from [15] by media aspects.

252 M. Jarke et al.

References

1. Abel, P.: Description of the USU-PFR Analysis Method, Technical Report, USU GmbH,
Möglingen, Germany (1995)

2. August, J.H.: Joint Application Design: The Group Session Approach to System Design.
Yourdan Press, Englewood Cliffs (1991)

3. Balzer, R.: Tolerating Inconsistencies. In: 13th Intl. Conf. Software Engineering (ICSE-
13), Austin, Texas, pp. 158–165 (1991)

4. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex
models. ACM SIGMOD Record 29(4), 55–63 (2000)

5. Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings. In:
ACM SIGMOD Intl. Conf. on Management of Data, Beijing, China, pp. 1–12 (2007)

6. Borgida, A., Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: The software
development environment as a knowledge base management system. In: Schmidt, J.W.,
Thanos, C. (eds.) Foundations of Knowledge Base Management (Xania Workshop), pp.
411–442. Springer Topics in Information Systems (1986)

7. Brodie, M.L., Mylopoulos, J., Schmidt, J.W.: On Conceptual Modelling – Perspectives from
Artificial Intelligence, Databases, and Programming Languages. Springer, Heidelberg (1984)

8. Checkland, P.B.: Soft Systems Methodology. In: Rosenhead, J. (ed.) Rational Analysis for
a Problematic World, pp. 71–100. John Wiley & Sons, Chichester (1989)

9. Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y.: The software information
base: a server for reuse. VLDB Journal 4(1), 1–43 (1995)

10. Doerr, M.: The CIDOC Conceptual Reference Model: an ontological approach to semantic
interoperability of metadata. AI Magazine 24(3), 75–92 (2003)

11. Easterbrook, S.M.: Learning from inconsistencies, 8th Intl. Workshop on Software
Specification and Design, Schloss Velen, Germany (1996)

12. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings: Second order
dependencies to the rescue. ACM Trans. Database Systems 30(4), 994–1055 (2005)

13. Feather, M.S., Fickas, S.: Coping with requirements freedoms. In: Intl. Workshop on the
Development of Intelligent Information Systems, Niagara-on-the-Lake, Ontario, Canada,
pp. 42–46 (1991)

14. Fuxman, A., Hernandez, M.A., Ho, C.T.H., Miller, R., Papotti, P., Popa, L.: Nested
mappings: schema mapping reloaded. In: Proc. 32nd Intl. Conf. Very Large Data Bases
(VLDB 2006), pp. 67–78. ACM Press, New York (2006)

15. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements engineering for
organization networks: a (dis-)trust-based approach. Requirements Eng. J. 8(1), 4–22 (2003)

16. Greenspan, S., Borgida, A., Mylopoulos, J.: A requirements modelling language and its
logic. Information Systems 11(1), 9–23 (1986)

17. Halevy, A.Y.: Answering queries using views: a survey. VLDB Journal 10(4), 270–294
(2001)

18. Hernandez, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema
mapping. In: ACM SIGMOD Conf., Santa Barbara, CA, p. 607 (2001)

19. ISO/IEC International Standard, Information Resource Dictionary System (IRDS) –
Framework, ISO/IEC 10027 (1990)

20. Jarke, M., Eherer, S., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase – a
deductive object base for meta data management. J. Intelligent Information Systems 4(2),
167–192 (1995)

21. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and quality in data
warehouses: an extended repository approach. Information Systems 24(3), 229–253 (1999)

22. Jarke, M., Klamma, R., Lyytinen, K.: Meta modeling. In: Jeusfeld, M.A., Jarke, M.,
Mylopoulos, J. (eds.) Meta Modeling for Method Engineering, MIT Press, Cambridge
(2009) (to appear)

 Heterogeneity in Model Management: A Meta Modeling Approach 253

23. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses,
2nd edn. Springer, Heidelberg (2003)

24. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: DAIDA – an environment for
evolving information systems. ACM Trans. Information Systems 10(1), 1–50 (1992)

25. Jarke, M., Rose, T.: Managing knowledge about information systems evolution. In: ACM
SIGMOD Conf., Chicago, IL, pp. 303–311 (1988)

26. Jeusfeld, M.A.: Update Control in Deductive Object Bases, PhD Thesis, University of
Passau (1992) (in German)

27. Jeusfeld, M.A., Jarke, M.: From relational to object-oriented integrity simplification. In:
Delobel, C., Masunaga, Y., Kifer, M. (eds.) DOOD 1991. LNCS, vol. 566, pp. 460–477.
Springer, Heidelberg (1991)

28. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ – a fully configurable multi-user and multi-
tool CASE and CAME environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos,
J. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

29. Kensche, D., Quix, C., Chatti, M.A., Jarke, M.: GeRoMe – a generic role based meta
model for model management. In: Spaccapietra, S., Atzeni, P., Fages, F., Hacid, M.-S.,
Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J., Zaihrayeu, I. (eds.) Journal
on Data Semantics VIII. LNCS, vol. 4380, pp. 82–117. Springer, Heidelberg (2007)

30. Kensche, D., Quix, C., Li, X., Li, Y.: GeRoMeSuite: A system for holistic generic model
management. In: 33rd Int. Conf. Very Large Data Bases (VLDB 2007), Vienna, Austria,
pp. 1322–1325 (2007)

31. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic schema mappings for composition
and query answering. In: Data & Knowledge Engineering (2009) (to appear)

32. Lenzerini, M.: Data integration: a theoretical perspective. 21. In: ACM Symp. Principles of
Database Systems (PODS), Madison, Wisconsin, pp. 233–246 (2002)

33. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic model
management. In: ACM SIGMOD Intl. Conf. Management of Data, San Diego, CA, pp.
193–204 (2003)

34. Mylopoulos, J., Bernstein, P.A., Wong, H.K.T.: A language facility for designing interactive
database-intensive applications. ACM Trans. Database Syst. 5(2), 185–207 (1980)

35. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos – representing knowledge
about information systems. ACM Transactions on Information Systems 8(4), 325–362 (1990)

36. Nissen, H.W., Jarke, M.: Repository support for multi-perspective requirements
engineering. Information Systems 24(2), 131–158 (1999)

37. Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., Huber, H.: Managing multiple
requirements perspectives with metamodels. IEEE Software 13(2), 37–48 (1996)

38. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships
between multiple views in requirements specifications. IEEE Trans. Software Eng. 20(10),
760–773 (1994)

39. Object Management Group: Meta Object Facility/MOF core specification version 2.0.
OMG (2006)

40. Pottinger, R., Halevy, A.Y.: MiniCon: a scalable algorithm for answering queries using
views. VLDB Journal 10(2-3), 182–198 (2001)

41. Quix, C.: Metadata Management for Quality-Oriented Information Logistics in Data
Warehouse Systems (in German). Ph.D. Thesis, RWTH Aachen University, Germany (2003)

42. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal 10(4), 334–350 (2001)

43. Ramesh, B., Jarke, M.: Reference models for requirements traceability. IEEE Trans.
Software Eng. 27(1), 58–93 (2001)

44. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spaccapietra,
S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171. Springer,
Heidelberg (2005)

Associativity and Commutativity in Generic
Merge

Rachel Pottinger1 and Philip A. Bernstein2

1 University of British Columbia
201-2366 Main Mall

Vancouver, BC Canada
rap@cs.ubc.ca

2 Microsoft Research
One Microsoft Way
Redmond, WA, USA

philbe@microsoft.com

Abstract. A model is a formal description of a complex application
artifact, such as a database schema, an application interface, a UML
model, an ontology, or a message format. The problem of merging such
models lies at the core of many meta data applications, such as view in-
tegration, mediated schema creation for data integration, and ontology
merging. This paper examines the problem of merging two models given
correspondences between them. In particular it concentrates on the as-
sociativity and commutativity of Merge, which are crucial properties if
Merge is to be composed with other operators.

1 Introduction

A model is a formal description of a complex application artifact, such as a
database schema, an application interface, a UML model, an ontology, or a mes-
sage format. One of John Mylopoulos’s major themes has been the development
and use of such models. To apply such models to design-time and run-time
scenarios requires that model transformations. These transformations are per-
formed by operators on models and on mappings between models, which is a
major subject of our own research. This paper focuses on one such operator,
Merge.

The problem of merging models lies at the core of many meta data applica-
tions, such as view integration, mediated schema creation for data integration,
and ontology merging. In each case, two given models need to be combined into
one. Because there are many different types of models and applications, this
problem has been tackled independently in specific domains many times. In [9]
we generalized that work by presenting a generic operator, Merge, that can be
applied in all these contexts. In this paper we extend [9] by showing that generic
Merge is commutative and associative.

Combining two models requires first determining correspondences between
the two models and then merging the models based on those correspondences.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 254–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Associativity and Commutativity in Generic Merge 255

Finding correspondences is called schema matching; it is a major topic of on-
going research and is not covered here; see [6,10] for recent summaries. Rather,
we focus on combining the models after correspondences are established. We
encapsulate the problem in an operator, Merge, which takes as input two mod-
els, A and B, and a mapping MapA B between them that embodies the given
correspondences, and returns a third model that is the “duplicate-free union” of
A and B with respect to MapA B . This is not as simple as set union because the
models have structure, so the semantics of “duplicates” and duplicate removal
may be complex. In addition, the result of the union can manifest constraint
violations, called conflicts, that Merge must repair.

An example of the problems addressed by Merge can be seen in Figure 1.
It shows two representations of Actor, each of which could be a class, concept,
table, etc. The solid diamond-headed arrows represent containment. A mapping
between A and B is shown by the double dashed lines (=). In this case, it seems
clear that Merge is meant to collapse A.Actor and B.Actor into a single element,
and similarly for Bio. Clearly, A.ActID should be merged with B.ActorID, but
what should the resulting element be called? Should the merged model represent
the actor’s name as one element (ActorName), two elements (FirstName and
LastName), three elements (ActorName with FirstName and LastName as
children), or in some other way? These cases of differing representations between
input models are called conflicts. For the most part, conflict resolution is inde-
pendent of how A and B are represented. Yet most work on merging schemas
concentrates on doing it in a data-model-specific way, revisiting the same prob-
lems for ER variations [11], XML [2], data warehouses [5], or semi-structured
data [3]. Note that these works, like ours, consider merging only the models, not
the instances of the models.

The similarities among these solutions offer an opportunity for abstraction.
One important step in this direction was a schema merging and conflict resolution
algorithm by Buneman, Davidson, and Kosky (hereafter BDK) [4]. Given a set
of pair-wise correspondences between two models that have specialization and
containment relationships, BDK give a formal definition of merge and show how
to resolve a certain kind of conflict to produce a unique result.

Actor

First
Name

ActID Last
Name

Bio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

Fig. 1. Examples of models to be merged. The solid diamond-headed arrows represent
containment. The double dashed lines (=) represent a mapping between A and B.

256 R. Pottinger and P.A. Bernstein

In [9] we presented a robust Merge algorithm based on BDK’s algorithm by
expanding the range of correspondences, model representations, conflict types,
and applications. Our previous work did not consider the assocativity and com-
mutativity of Merge. Understanding the associativity and commutivity of
Merge is crucial to being able to compose Merge with other operators; there-
fore, this paper builds on [9] by analyzing the associativity and commutativity
of our merge operator. Since this analysis refers heavily to the semantics and
implementation of the operator, we review the main aspects of the approach
in Sections 2 to 5 of this paper. Section 2 gives a precise definition of Merge.
Section 3 describes our categorization of conflicts that arise from combining two
models. Section 4 describes how to resolve conflicts in Merge, often automati-
cally. Section 5 defines our merge algorithm. Section 6 presents the new material
about the associativity and commutativity of Merge. Section 7 concludes.

2 Problem Definition

2.1 Representation of Models

Defining a representation for models requires (at least) three meta-levels. Using
conventional meta-data terminology, we can have: a model, such as the database
schema for a billing application; a meta-model, which consists of the type def-
initions for the objects of models, such as a meta-model that says a relational
database schema consists of table definitions, column definitions, etc.; and a
meta-meta-model, which is the representation language in which models and
meta-models are expressed. For example, a generic meta-meta-model may say
that a schema consists of objects, where an object could be a table, XML ele-
ment, or a class definition.

The goal of our merge operator, Merge, is to merge two models based on
a mapping between them. We discuss Merge using a small meta-meta-model
consisting of:

1. Elements with semi-structured properties (i.e., for an element x, there may
exist 0, 1, or many properties). Elements are the first class objects in a
model. Three properties are required: Name, ID, and History. Name is
self-explanatory. ID is the element’s unique identifier. History describes the
last operator that acted on the element. While all the elements in Figure 1
have History and ID properties, they are not shown for clarity.

2. Binary, directed, kinded relationships with cardinality constraints. A re-
lationship is a connection between two elements. Relationships can be ei-
ther explicitly present in the model or implied according to the meta-meta-
model’s rules. Such a rule might say that “a is a b” and “b is a c” implies
that “a is a c.” Relationship cardinalities are omitted from the figures for
ease of exposition.

For concreteness, we will use our meta-meta-model Vanilla [9]. It contains 5
different relationship types:

Associativity and Commutativity in Generic Merge 257

– Associates - A(x, y) means x is associated with y. This is the weakest rela-
tionship that can be expressed. It has no constraints or special semantics.

– Contains - C(x, y) means container x contains containee y.
– Has-a - H(x, y) means x has a sub-component y (sometimes called “weak

aggregation”). Has-a is weaker than Contains in that it does not propagate
delete and can be cyclic.

– Is-a - I(x, y) means x is a specialization of y.
– Type-of - T(x, y) means x is of type y.

Figure 1 shows an example model in this small meta-meta-model; elements
are shown as nodes, the value of the Name property is the node’s label, map-
ping relationships are edges with arrowheads, and containment relationships are
diamond-headed edges.

2.2 Merge Inputs

The inputs to Merge are the following:

1. Two models: A and B.
2. A mapping, MapA B, which is a model that defines how A and B are related.
3. An optional designation that one of A or B is the preferred model. When

Merge faces a choice that is not specified in the mapping, it chooses the
option from the preferred model, if there is one.

4. Optional overrides for default Merge behavior (explained further below).

The input mapping is more expressive than simple equalities; it is a first-
class model consisting of elements and relationships. Some of its elements are
mapping elements. A mapping element, x, is like any other element except it also
is the origin of a mapping relationship, M(x, y), which specifies that the origin
element, x, represents the destination element, y. So a given mapping element, x,
represents all elements y such that M(x, y). All elements of MapA B in Figure 1
are mapping elements. In MapA B in Figure 3 AllBios is not a mapping element.

There are two kinds of mapping relationships: equality and similarity. An
equality mapping relationship Me asserts that for some set of models, collectively
known as Y , for all elements y1, y2 ∈ Y such that Me(x, y1) and Me(x, y2),
y1 = y2. All elements represented by the same equality mapping relationship
are said to correspond to one another. A similarity mapping relationship Ms
asserts that the set of all y ∈ Y such that Ms(x, y) are related through the
value of x’s Expression property, which is a property of all mapping elements
that are the origin of mapping similarity relationships. For example, if A.Bio
is a French translation of B.Bio and this needs to be reflected explicitly in
the merged model, they could be connected by similarity mapping relationships
to a mapping element (as shown in Figure 2) with an Expression property
“A.Bio = English2French(B.Bio)”. The semantics of the Expression property
are not interpreted by Merge. Equality mapping relationships are represented
by double-dashed-lines (=); similarity mapping relationships are represented by
double-wavy-lines (≈).

258 R. Pottinger and P.A. Bernstein

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B'

m1

m2 m3 m4

Fig. 2. A mapping using both equality mapping relationships (the double-dashed-lines)
and similarity mapping relationships (the double-wavy lines)

Given this rich mapping structure, complex relationships can be defined be-
tween elements in A and B, not just simple correspondences. For example, the
mapping in Figure 3 (which is between the same models in Figure 1) shows
that the FirstName and LastName of model B should be child elements of
the ActorName element of model A; this is expressed by element m4, which
represents ActorName in A and contains elements m5 and m6 which represent
FirstName and LastName respectively in B.

Actor

First
NameActID Last

NameBio

Actor

Actor
ID

Actor
Name Bio

Model A Model BMapA_B

m1

m3 m4

m5 m6

All
Bios

m7
Name=

m8
Name=

Fig. 3. A more complicated mapping between the models in Figure 1; MapA B contains
an element that does not appear in either A or B

A mapping can also contain non-mapping elements that do not represent
elements in either A or B but help describe how elements in A and B are related,
such as AllBios in Figure 3. The mapping MapA B in Figure 3 indicates that
A.Bio should be renamed “Official,” B.Bio should be renamed “Unofficial,” and
both are contained in a new element, AllBios, that appears only in MapA B.

Prior algorithms, whose mappings are not first-class models, cannot express
non-equality relationships. Often, they require user intervention during Merge
to incorporate relationships that are more complicated than simply equating
two elements. Merge can encode simple correspondences in a mapping, so it can
function even if a first-class mapping is unavailable.

Associativity and Commutativity in Generic Merge 259

2.3 Merge Semantics

The output of Merge is a model that retains all non-duplicated information in
A, B, and MapA B; it collapses information that MapA B declares redundant. If
we consider the mapping to be a third model, this definition corresponds to the
least-upper-bound defined in [4]: “a schema that presents all the information of
the schemas being merged, but no additional information.” We require Merge to
be generic in the sense that it does not require its inputs or outputs to satisfy any
given meta-model. We now define the semantics of Merge more precisely. The
function “Merge(A, MapA B, B) → G” merges two models A and B based on
a mapping MapA B, between A and B, producing a new model G that satisfies
the following Generic Merge Requirements (GMRs):

1. Element preservation: Each element in the input has a corresponding
element in G. Formally: each element e ∈ A ∪ B ∪ MapA B corresponds to
exactly one element e′ ∈ G. We define this correspondence as χ(e, e′).

2. Equality preservation: Input elements are mapped to the same element
in G if and only if they are equal in the mapping, where equality in the
mapping is transitive. Formally: two elements s, t ∈A∪B are said to be
equal in MapA B if there is an element v ∈ A ∪ B and an equality mapping
element x such that Me(x, s) and Me(x, v), where either v = t or v is equal
to t in MapA B. If two elements s, t ∈ A ∪ B are equal in MapA B, then
there exists a unique element e ∈ G such that χ(s, e) and χ(t, e). If not, then
there is no such e, so s and t correspond to different elements in G.

3. Relationship preservation: Each input relationship is explicitly in or im-
plied by G. Formally: for each relationship R(s, t) ∈ A∪B ∪MapA B where
s, t ∈ A ∪ B ∪ MapA B and R is not a mapping relationship Me(s, t) or
Ms(s, t), if χ(s, s′) and χ(t, t′), then either s′ = t′, R(s′, t′) ∈ G, or R(s′, t′)
is implied in G.

4. Similarity preservation: Elements that are declared to be similar (but not
equal) to one another in MapA B retain their separate identity in G and are
related to each other by some relationship. More formally, for each pair of
elements s, t ∈ A∪B, where s and t are the destination of similarity mapping
relationships originating at a mapping element, x, in MapA B and s and t are
not equal, there exist elements e, s′, t′ ∈ G and a meta-model-specific non-
mapping relationship R such that χ(s, s′), χ(t, t′), R(e, s′), R(e, t′), χ(x, e),
and e includes an expression relating s and t.

5. Meta-meta-model constraint satisfaction: G satisfies all constraints of
the meta-meta-model. G may include elements and relationships in addition
to those specified above that help it satisfy these constraints. Note that we
do not require G to conform to any meta-model.

6. Extraneous item prohibition: Other than the elements and relationships
specified above, no additional elements or relationships exist in G.

7. Property preservation: For each element e ∈ G, e has property p if and
only if ∃t ∈ A ∪ B ∪ MapA B s.t. χ(t, e) and t has property p.

8. Value preference: The value, v, of a property p, for an element e is denoted
p(e) = v. For each e ∈ G, p(e) is chosen from mapping elements corresponding

260 R. Pottinger and P.A. Bernstein

to e if possible, else from the preferred model if possible, else from any element
that corresponds to e. More formally:
– T = {t | χ(t, e)}
– J = {j ∈ (T ∩ MapA B) | p(j) is defined}
– K = {k ∈ (T ∩ the preferred model) | p(k) is defined}
– N = {n ∈ T | p(n) is defined}

• If J �= # then p(e) = p(j) for some j ∈ J
• Else if K �= #, then p(e) = p(k) for some k ∈ K
• Else p(e) = p(n) for some n ∈ N

GMR 8 illustrates our overall conflict resolution strategy: give preference first
to the option specified in the mapping (i.e., the explicit user input), then to the
preferred model, else choose a value from one of the input elements. The ID
and History properties are determined differently as discussed in Section 5. For
example, the result of merging the models in Figure 3 is shown in Figure 4. Note
that the relationships Actor − FirstName and Actor − LastName in model B
and the Actor − Bio relationships in both models are implied by transitivity in
Figure 4, so GMR 3 is satisfied.

ActorID AllBios ActorName

LastNameFirstName

Actor

UnofficialOfficial

Fig. 4. The result of performing the merge in Figure 3

The GMRs are not always satisfiable. For example, if there are constraints
on the cardinality of relationships that are incident to an element, then there
may be no way to preserve all relationships. Depending on the relationships and
meta-meta-model constraints, there may be an automatic resolution, manual
resolution or no resolution that satisfies the GMRs. In Section 4 we present con-
flict resolutions for some common constraints and discuss when such resolution
can be automatic. We also specify default resolution strategies for each category
of constraint and note when resolution can be made to satisfy the GMRs.

3 Conflict Resolution

Determining the merged model requires resolving conflicts in the input. We
categorize conflicts based on the meta-level at which they occur: representation
conflicts (Section 3.1) occur at the model level, meta-model conflicts (Section 3.2)
occur at the meta-model level, and fundamental conflicts (Section 3.3) occur at
the meta-meta-model level.

Associativity and Commutativity in Generic Merge 261

3.1 Representation Conflicts

A representation conflict arises when two models describe the same concept
in different ways. For example, in Figure 1 model A represents Name by one
element, ActorName, while model B represents it by two elements, FirstName
and LastName. After merging the two models, should Name be represented by
one, two or three elements? The decision is application dependent.

The input mapping resolves representation conflicts in Merge. Since the map-
ping is a model, it can specify that elements in models A and B are either:

– The same, by being the destination of equality mapping relationships that
originate at the same mapping element. Merge can collapse these elements
into one element that includes all relationships incident to the elements in
the conflicting representations.

– Related by relationships and elements in our meta-meta-model. E.g., we can
model FirstName and LastName in A as child elements of ActorName in
B by the mapping shown in Figure 3.

– Related in some more complex fashion that we cannot represent using our
meta-meta-model’s relationship kinds. E.g., we can represent that
ActorName equals the concatenation of FirstName and LastName by
a mapping element that has similarity mapping relationships incident to
all three and an Expression property describing the concatenation. Reso-
lution can be done by a later operator that understands the semantics of
Expression.

The mapping can also specify property values. For example, in Figure 3
MapA B specifies that the elements contained by AllBios should be named
Official and Unofficial.

Solving representation conflicts has been a focus of the ontology merging
literature ([7,8]) and of database schema merging ([1,11]). Since representation
conflicts are resolved before Merge occurs, we do not discuss their resolution.

3.2 Meta-model Conflicts

Traditionally, merge results are required to conform to a given meta-model. Since
Merge is meta-model independent, it does not resolve meta-model conflicts. We
therefore introduce an operator, EnforceContraints, that coerces a model to
obey a set of constraints. This operator is necessarily meta-model specific. How-
ever, it may be possible to implement it in a generic way, driven by a declarative
specification of each meta-model’s constraints. EnforceContraints would en-
force other constraints, such as integrity constraints, as well. Since meta-model
conflicts are resolved after Merge, we do not discuss their resolution.

3.3 Fundamental Conflicts

A fundamental conflict occurs when the result of Merge would not be a model
due to violations of the meta-meta-model. This is unacceptable because later
operators would be unable to manipulate it.

262 R. Pottinger and P.A. Bernstein

ZipCode ZipCode

Integer String

m1 ZipCode

Integer String

(a) (b)

Fig. 5. A merge input (a) and its result (b) that violates the one-type restriction. The
double triangle arrow represents the Type-of relationship.

One possible meta-meta-model constraint is that an element has at most one
type. We call this the one-type restriction. Given this constraint, an element with
two types manifests a fundamental conflict. For example in the model fragments
in Figure 5(a) ZipCode has two types: Integer and String. In the Merge result
in Figure 5(b), the two ZipCode elements are collapsed into one element. But the
type elements remain separate, so ZipCode is the origin of two type relationships.

Since Merge must return a well-formed instance of the meta-meta-model,
it must resolve fundamental conflicts. Resolution rules for some fundamental
conflicts have been proposed, such as [4] for the one-type restriction. We identify
other kinds of fundamental conflicts and resolution rules for them in Section 4
and incorporate them into our generic Merge.

4 Resolving Fundamental Conflicts

This section briefly discusses resolution of one fundamental conflict in Merge —
the one-type conflict. Full discussion of fundamental conflicts (including what
features lead to an automatic Merge, when manual intervention is required, and
default resolutions) can be found in [9].

Many meta-meta-models restrict some kinds of relationships to a maximum
or minimum number of occurrences incident to a given element. For example,
the one-type restriction says that no element can be the origin of more than one
Type-of relationship. Such restrictions can specify minima and/or maxima on
origins or destinations of a relationship of a given kind. Merge resolves one-type
conflicts using a customization of the BDK algorithm ([4]) for Vanilla, which is
described in [9]. Recall Figure 5 where the merged ZipCode element has both
Integer and String types. The BDK resolution creates a new type that inherits
from both Integer and String and replaces the two Type-of relationships from
ZipCode by one Type-of relationship to the new type, as shown in Figure 6. By
the implication rules of Vanilla, both of the original relationships (ZipCode is
of type Integer and String) are implied [9].

This approach to resolving one-type conflicts is an example of a more general
approach, which is the one we use as a default: to resolve a conflict, alter explicit
relationships so that they are still implied and the GMRs are still satisfied.

Associativity and Commutativity in Generic Merge 263

ZipCode
Integer String

NewType

Fig. 6. Resolving the one-type conflict of Figure 5. The single triangle arrow represents
the Is-A relationship.

Since the default resolution may be inadequate due to application-specific
requirements, Merge allows the user to either (1) specify an alternative function
to apply for each conflict resolution category or (2) resolve the conflict manually.

5 The Merge Algorithm

The following describes an algorithm for Merge that satisfies the GMRs:

1. Initialize the merge result G to #.
2. Elements: Induce an equivalence relation by grouping the elements of A, B,

and MapA B. Initially each element is in its own group. Then:
(a) If a relationship Me(d, e) exists between an element e ∈ (A ∪ B) and a

mapping element d ∈ MapA B, then combine the groups containing d
and e.

(b) Iterate (a) to a fixpoint and create a new element in G for each group.
3. Element Properties: Let e be a merged element in G corresponding to a

group I. The value v of property p of e, p(e) = v, is defined as follows:
(a) The properties of e are the union of the properties of the elements of I.

Merge determines the values of properties of e other than History and
ID as follows:
J = {j ∈ (I ∩ MapA B) | p(j) is defined}
K = {k ∈ (I ∩ the preferred model) | p(k) is defined}
N = {n ∈ I | p(n) is defined}

i. If J �= #, then p(e) = p(j) for some j ∈ J
ii. Else if K �= #, then p(e) = p(k) for some k ∈ K
iii. Else p(e) = p(n) for some n ∈ N
By definition of N , some value for each property of e must exist. In (i)
– (iii) if more than one value is possible, then one is chosen arbitrarily.

(b) Property ID(e) is set to an unused ID value. Property History(e) de-
scribes the last action on e. It contains the operator used (in this case,
Merge) and the ID of each element in I. This implicitly connects the
Merge result to the input models and mapping without the existence of
an explicit mapping between them.

4. Relationships: For every two elements e′ and f ′ in G that correspond to
distinct groups E and F , where E and F do not contain elements that are
the origin of similarity mapping relationships, if there exists e ∈ E and

264 R. Pottinger and P.A. Bernstein

Actor

ActorID SimActorName

BioBio

Fig. 7. Results of Merge on Figure 2. The empty diamond headed arrow indicate a
Has-a relationship.

f ∈ F such that R(e, f) is of kind t and has cardinality c, then create a
(single) relationship R(e′, f ′) of kind t and cardinality c. Reflexive mapping
relationships (i.e., mapping relationships between elements that have been
collapsed) are excluded since they no longer serve a purpose.
(a) Replace each similarity mapping relationship, Ms, whose origin is m by

a weak-aggregation relationship — in Vanilla, this would be the Has-a
relationship. This relationship has an origin of e and and a destination
of the element of G that corresponds to Ms’s destination’s group. For
example, if the two Bio elements in Figure 1 were connected by similar-
ity mapping relationships instead of equality mapping relationships, the
result would be as in Figure 7.

(b) Relationships originating from an element are ordered as follows:
i. First those corresponding to relationships in MapA B ,
ii. Then those corresponding to relationships in the preferred model but

not in MapA B,
iii. Then all other relationships. Within each of the above categories,

relationships appear in the order they appear in the input. Finally,
Merge removes implied relationships from G until a minimal cover-
ing remains.

5. Fundamental conflict resolution: After steps (1) – (4) above, G is a duplicate-
free union of A, B, and MapA B. For each fundamental conflict in G (if any),
if a special resolution strategy has been defined, then apply it. If not, apply
the default resolution strategy.

Resolving one conflict may interfere with another, or even create another.
If interference between conflict resolution steps is a concern in another meta-
meta-model, then Merge can apply a priority scheme based on an ordered list
of conflict resolutions. The conflict resolutions are then applied until reaching
fixpoint. Since resolving one-type conflicts cannot create cycles in Vanilla, con-
flict resolution in Vanilla is guaranteed to terminate. However, conflict resolution
rules in other meta-meta-models must be examined to avoid infinite loops.

The algorithm described above satisfies the GMRs in Section 2.3. We can see
this as follows:
– Step 1 (Initialization) initializes G to the empty set.
– Step 2 (Elements) enforces GMR 1 (Element preservation). It also enforces

the first direction of GMR 2 (Equality preservation); elements equated by
MapA B are equated in G. No other work is performed in step 2.

Associativity and Commutativity in Generic Merge 265

– Step 3 (Element properties) performs exactly the work in GMR 7 (Prop-
erty preservation) and GMR 8 (Value preference) except for the refinements
in steps 3b and 3c for the ID and History properties. No other work is
performed in step 3.

– In step 4 (Relationships), step 4a enforces GMR 3 (Relationship preser-
vation) and step 4b enforces that a relationship exists between elements
mapped as similar, as required in GMR 4 (Similarity preservation). Step 4d
removes only relationships that are considered redundant by the meta-meta-
model. Step 4c (relationship ordering) is the only step not explicitly covered
by a GMR, and it does not interfere with any other GMRs.

– Step 5 (Fundamental conflict resolution) enforces GMR 5 (meta-meta-model
constraint satisfaction) and performs no other work.

If special resolution strategies in step 5 do nothing to violate any GMR or
equate any elements not already equated, GMRs 2 (Equality preservation), 4
(Similarity preservation) and 6 (Extraneous item prohibition) are satisfied, and
all GMRs are satisfied. Other than special properties (ID and History) and the
ordering of relationships, no additional work is performed beyond what is needed
to satisfy the GMRs.

6 Algebraic Properties of Merge

It is important that the result of one or more invocations of Merge be insensitive
to the order in which models are merged. Otherwise, it would be difficult to
predict the result of using Merge, especially when more than two models need
to be merged, since this requires invoking a sequence of merge operators.

In this section, we show that Merge is well-behaved. In Section 6.1 we show
that it is commutative, meaning that the order of two models being merged has
no effect on the result. In Section 6.2 we show that Merge is associative in the
simple case of three models connected by two mappings. That is, given three
models M , N , and O that are related by two mappings MapM N and MapN O,
the result of merging them is the same whether M and N are merged first or N
and O are merged first.

There aremore general caseswhere the orderofmerges affects the choice ofmap-
pings that are used to drive each merge. In addition to MapM N and MapN O, if
there is also a third mapping MapM O between models M and O, then the choice
of which pair of models to merge first can affect the result. In Section 6.3 we give
conditions under which Merge is commutative and associative in such cases.

For ease of exposition we only consider cases where the outcome of each
invocation of Merge is uniquely specified by the inputs (e.g., exactly one correct
choice of value exists for each property).

6.1 Commutativity

We say that Merge is commutative if, for any pair of models M and N and
any mapping MapM N between them, Merge(M, MapM N , N) = Merge(N,

266 R. Pottinger and P.A. Bernstein

MapM N , M) = G. We argue that Merge is commutative under two assump-
tions: (1) the same model is the preferred model in both invocations of Merge
and (2) if there are unspecified choices to be made (e.g., choosing a property
value from among several possibilities, each of which is allowed by Merge), the
same choice is made in both invocations of Merge. We begin by showing that
commutativity holds for Merge as specified by the GMRs and then show that
it holds for the Merge algorithm specified in Section 5.

The commutativity of Merge as specified by the GMRs in Section 2.3 follows
directly from their definition, since the GMRs are symmetric: Rules 1–4 and
6–7 are inherently symmetric. Rule 8 (Value preference) is symmetric as long as
the preferred model is the same in both invocations of Merge and unspecified
choices are the same in both invocations of Merge, as stipulated in (2) above.
Rule 5 is the resolution of fundamental conflicts. In Vanilla this is symmetric,
but Merge in other meta-meta-models may not be commutative, depending on
their conflict resolution rules. It is worth noting that other than the mapping
relationships, GMR 3 (Relationship Preservation) and Merge in general treat
the relationships in the same way and thus no special handling is required for
the different relationships.

The algorithm specification in Section 5 is commutative as well; again we show
this from the algorithm’s symmetry. Steps 1 (Initialize) and 2 (Elements) are
symmetric. Steps 3 (Element properties) and 4 (Relationships) are symmetric as
long as the preferred model is the same in both merges and arbitrary choices are
the same, as stipulated in (2) above. Step 5 (Fundamental conflict resolution) is
symmetric if the conflict resolutions are symmetric. As argued above, this holds
for conflict resolution in Vanilla, and hence the Merge algorithm is symmetric
and thus commutative in Vanilla.

6.2 Associativity

We say that two models are isomorphic if there is a 1:1 onto correspondence
between their elements, and they have the same relationships and properties
(but the values of their properties and the ordering of their relationships may
differ). Merge is associative if, for any three models M , N , and O, and any two
mappings MapM N (between M and N) and MapN O (between N and O), R
is isomorphic to S where:

P = Merge(M, MapM N , N)
Q = Merge(N, MapN O, O)
MapP N = Match(P, N)
MapN Q = Match(N, Q)
R = Merge(P, Compose(MapP N , MapN O), O)
S = Merge(M, Compose(MapM N , MapN Q), Q)

Match(P, N) and Match(N, Q) compute χ as defined in the GMRs by match-
ing the IDs of N with the IDs in the History property of P and Q respectively.
N , P , Q, Match(P, N), and Match(N, Q) are shown in Figure 8.

Associativity and Commutativity in Generic Merge 267

MapM_N MapN_OM

QP

N O

MapP_N MapN_Q

Fig. 8. Showing associativity requires intermediate mappings

The Compose operator takes a mapping between models A and B and a
mapping between models B and C and returns the composed mapping between
A and C. Consider Compose(MapP N , MapN O). Intuitively it must transfer
each mapping relationship of MapN O having a destination in N to a relationship
having a destination in P . Since MapP N maps each element in N to exactly
one element in P , any Compose operator will provide this functionality (such as
the one described in [9]). Compose(MapM N , MapN Q) operates similarly.

A morphism is a set of directed morphism relationships from elements of one
model to elements of another. To show that the two final merged models R and
S are isomorphic, we define a morphism ϕ(R → S) and show that (i) ϕ is 1:1
and onto, (ii) R(x, y) ∈ RR if and only if R(ϕ(x), ϕ(y)) ∈ RS , and (iii) x has
property p if and only if ϕ(x) has property p. We initially consider the result of
Merge ignoring the fundamental conflict resolution. We phrase the argument in
terms of the GMRs. The end of Section 5 shows that the algorithm maintains all
of the GMRs. The only additional work done by the merge algorithm beyond the
GMRs is (1) to order the relationships and (2) set the value of the ID property.
Since the latter two additions do not affect the isomorphism, so we do not repeat
the associativity argument for the algorithm.

We create ϕ as follows. First we create the morphisms shown as arrows in
Figure 9 by using Match and Compose the same way they were used to create
R and S. We refer to the morphisms in Figure 9 that start at R as MorphR

and those that end at S as MorphS . Next we create five morphisms from R to
S by composing MorphR with MorphS . ϕ is the duplicate-free union of these
five morphisms.

We want to show that ϕ is an isomorphism from R to S; this will show that
R and S are isomorphic to one another and hence that Merge is associative.
We first show that ϕ is onto (i.e., for all y ∈ S, there exists x ∈ R such that
ϕ(x) = y):

MapM_N MapN_OM

SR

N O

Fig. 9. Initial morphisms created to show associativity

268 R. Pottinger and P.A. Bernstein

1. Let T be the set of elements in M , MapM N , N , MapN O, and O.
2. By GMRs 1 (Element preservation) and 2 (Equality preservation) and the

definitions of Match and Compose, each element in T is the destination
of exactly one morphism relationship in MorphR. I.e., each element in M ,
MapM N , N , MapN O, and O corresponds to exactly one element in the
merged model. By GMR 6 (Extraneous item prohibition) and the definitions
of Match and Compose each element in R is the origin of at least one
morphism relationship to T . I.e., each element in R must correspond to some
element in M , MapM N , N , MapN O, or O. We are not considering conflict
resolution, so no elements are introduced due to GMR 5 (Meta-meta-model
constraint satisfaction).

3. Similarly each element of T is the origin of exactly one morphism relationship
in MorphS and each element in S is the destination of at least one MorphS

morphism relationship from T .
4. Hence by steps 2 and 3 and the definitions of Match and Compose, ϕ is

onto.

Next we show that ϕ is 1:1(i.e., ∀x1, x2 ∈ R, ϕ(x1) = ϕ(x2) → x1 = x2). The
proof is by contradiction.

1. Suppose ϕ is not 1:1. Then there must exist some x1 x2 ∈ R s.t. x1 �= x2
and ϕ(x1) = ϕ(x2). Let ϕ(x1) = ϕ(x2) = s.

2. In that case, from the definition of ϕ, there exists some elements m1, m2 ∈
M ∪ MapM N ∪ N ∪ MapN O ∪ O s.t. MorphR(x1, m1), MorphR(x2, m2),
MorphS(m1, s), MorphS(m2, s) where m1 �= m2.

3. From GMR 2 (Equality preservation) and the definitions of Match and
Compose, s must be the result of merging some elements from T that were
equal in some mapping. However the equating of elements is associative;
this follows directly from the grouping strategy in Merge step 2 (Element
properties). Therefore either:
(a) m1 and m2 are not equated by a mapping, then they will not be merged

into the same object — in which case it cannot be that MorphS(m1, s),
MorphS(m2, s), since m1 �= m2 or

(b) m1 and m2 are equated by a mapping, in which case they will be merged
into the same object — in which case it cannot be that MorphR(x1, m1),
MorphR(x2, m2) since m1 �= m2.

4. Hence the equating of the elements is associative and ϕ is 1:1.

The next step in showing ϕ is an isomorphism from R to S is to show that
R(x, y) ∈ RR if and only if R(ϕ (x), ϕ (y)) ∈ RS . That is, a relationship exists in
R if and only if a corresponding relationship exists in S. GMR 3 (Relationship
preservation) guarantees that each relationship R input to Merge has a corre-
sponding relationship R′ in the merged model unless R’s origin and destinations
collapse into one element. Similarly the Match and Compose definitions preserve
the elements, and a relationship R(x, y) ∈ RR if and only if R(ϕ(x), ϕ(y)) ∈ RS .

The last step to show that ϕ is an isomorphism is to show that each element
r ∈ R has property p if and only if ϕ(r) has property p. GMR 7 (Property

Associativity and Commutativity in Generic Merge 269

r
Bio = a

v
Bio = c

t
Bio = b

Model M MapM_N Model OModel N MapN_O

m1
Bio = a m3

Preferred Model = Model O

Fig. 10. A series of mappings and models

preservation) implies that each element in the merged model has a property p
if and only if some input element that it corresponds to has property p. From
the argument showing that ϕ is 1:1, we know that the equating of elements is
associative, and hence r ∈ R has property p if and only if ϕ(r) has property p.
Hence ϕ is an isomorphism from R to S and Merge is associative.

Merge is not associative with respect to the values of properties. Their value
is determined by GMR 8 (Value preference). After a sequence of Merges, the
final value of a property may depend on the order in which the Merges are
executed, because the value assigned by the last Merge can overwrite the values
of any Merges that preceded it. For example, in Figure 10 the mapping element
m1 in MapM N specifies the value a for property Bio. In addition, the Merge
definition specifies that O is the preferred model for the merge of N and O. If
the sequence of operators is:

Merge(M, MapM N , N) → P
Merge(P, Compose(Match(P, N), MapN O), O) → R,

then in model P the Bio property as a result of merging r and t will have the
value a since it is specified in m1. In the second Merge, model O will be the
preferred model, and the value of the Bio property of the resulting element is c.

However, if the sequence of operators is:

Merge(N, MapN O, O) → Q
Merge(M, Compose(MapM N , Match(N, Q)), Q) → S,

then the Bio property of the element that corresponds to t and v will have value
c since O is the preferred model. Since the value of Bio in mapping element m1
is a, its value in the final result is a instead of c as in the first example.

Unless Merge can express a total preference between models – which is im-
practical – it will not be associative with respect to the final values of properties.

Hence, ignoring conflict resolution, Merge is associative. Since all of the fun-
damental conflict resolution in Vanilla is associative, Merge is associative for
Vanilla as well (see [4] for references on the associativity of the BDK).

6.3 Mapping-Independent Commutativity and Associativity

We say that Merge is mapping-independent commutative (respectively asso-
ciative) if it is commutative (respectively associative) even when the order of

270 R. Pottinger and P.A. Bernstein

r

w

v

u

t

s

Model M MapM_N Model OModel N MapN_O

MapMO

m1

m2

m3

m4

r/t/v

ws/u

Model P
r/t/v

ws

Model Q

u

(a) (b) (c)

Fig. 11. A series of merges (a) A set of models and mappings. (b) the result of merging
the models using MapM N and MapN O. (c) the results of merging the models using
MapN O and MapM O.

Merge operations affects the choice of mapping that is used in each Merge. For
example, consider the models and mappings in Figure 11. In (a), MapM N is
the only mapping that equates elements s and u. When MapM N is used, as in
(b), elements s and u are combined. However, when MapM N is not used, as in
(c), s and u remain as separate elements.

When is Merge guaranteed to be mapping-independent associative and com-
mutative? Ignoring meta-meta-model constraint satisfaction, given a set of mod-
els, S (e.g., M, N, O in Figure 11), and two sets of mappings MappingsA (e.g.,
MapM N , MapN O) and MappingsB (e.g., MapN O, MapM O) over S, in order
for Merge to produce isomorphic results it must be the case that:

– Elements r and v are equated to one another either directly or transitively
in MappingsA if and only if they are equated to one another directly or
transitively in MappingsB; r can be declared equal to t and t equal to v in
one set of mappings and in another set of mappings r can be declared equal
to v and v equal to t.

– Elements r and v are declared to be “similar to” another element in
MappingsA if and only if they are declared to be “similar to” the same
element in MappingsB.

– Additional elements and relationships are introduced in MappingsA if and
only if corresponding elements and relationships are introduced in
MappingsB.

Informally, we know that these are the only requirements because:

– Merge is associative and commutative if the mappings are the same, as
shown above.

– Mappings have three roles with respect to Merge; they can (1) declare ele-
ments to be equal, (2) declare elements to be similar or (3) add in additional
elements and relationships. We address each of these three roles below:

Associativity and Commutativity in Generic Merge 271

1. Equality: Since equality is transitive, we only need to enforce that ele-
ments that are equated in one set of mappings are also equated in the
other.

2. Similarity: MappingsA and MappingsB must both declare that the same
elements are similar if they are to be isomorphic to each other. However,
similarity is not transitive. If it is used then there is an implicit restriction
on the sets of mappings; if MappingsA declares an element in model S1
to be similar to an element in model S2, then MappingsB must contain
a mapping between S1 and S2 in order for the similarity relationship
to be expressed. We do not need to consider the more complicated case
when one mapping declares two elements to be similar through a map-
ping element, s, and then another mapping element, t, declares s to be
similar to some other element because by our problem definition the set
of mappings cannot map results of previous Merges.

3. Additional elements and relationships: Finally, because mappings can
also add elements and relationships, if MappingsA adds an element or
a relationship, then MappingsB must add a corresponding element or
relationship, too. However, as with similarity, there may be an implicit
restriction on the set of mappings; if MappingsA declares an element
in model S1 to contain an element in model S2, then MappingsB must
contain a mapping between S1 and S2 for the Contains relationship to
be expressed. Again, because the set of mappings cannot map results of
previous merges, we need not consider more complicated cases.

7 Conclusions

The problem of merging models lies at the core of many meta data applications.
In each case, two given models need to be combined into one. Because there are
many different types of models and applications, this problem has been tackled
independently in specific domains many times. In [9] we generalized that work
by presenting a generic operator, Merge, that can be applied in all of these
domains. This paper extended [9] by showing that generic Merge is commutative
and associative.

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

2. Beeri, C., Milo, T.: Schemas for integration and translation of structured and semi-
structured data. In: ICDT, pp. 296–313 (1999)

3. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured
and structured data sources. SIGMOD Record 28(1), 54–59 (1999)

4. Buneman, P., Davidson, S.B., Kosky, A.: Theoretical aspects of schema merging.
In: Pirotte, A., Delobel, C., Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp.
152–167. Springer, Heidelberg (1992)

272 R. Pottinger and P.A. Bernstein

5. Calvanese, D., De Giacomo, G., Lenzerini, M.: What can knowledge representation
do for semi-structured data? In: AAAI (1998)

6. Doan, A., Halevy, A.: Semantic integration research in the database community:
A brief survey. AI Magazine 26(1), 83–94 (2005)

7. Noy, N.F., Musen, M.A.: Smart: Automated support for ontology merging and
alignment. In: Banff Workshop on Knowledge Acquisition, Modeling, and Manage-
ment (1999)

8. Noy, N.F., Musen, M.A.: Prompt: Algorithm and tool for ontology merging and
alignment. In: AAAI (2000)

9. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences.
In: VLDB, pp. 862–873 (2003)

10. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

11. Spaccapietra, S., Parent, C.: View integration: A step forward in solving structural
conflicts. TKDE 6(2), 258–274 (1994)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 273–292, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The History of WebML
Lessons Learned from 10 Years of

Model-Driven Development of Web Applications

Stefano Ceri, Marco Brambilla, and Piero Fraternali

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. I20133 Milano, Italy

{ceri,mbrambil,fraterna}@elet.polimi.it

Abstract. This work presents a retrospective analysis on the conceptual
modeling language for Web applications called WebML, which was first
defined about 10 years ago. WebML has been an incubator for research on
conceptual modeling, exploiting existing experiences in the field and
continuously addressing new challenges concerning abstractions, methods,
tools, and technologies. People working on WebML are spread among
universities, technology transfer centres, and a spin-off. In this paper, we
illustrate the history of WebML, we summarize the essence of the approach,
and we sketch the main research branches that spawned from the initial
proposal. We describe how new trends in research, application development,
methodology, and tool prototyping led to the continuous growth of the
modeling language.

1 Introduction

Data-intensive Web applications, i.e., software systems whose main purpose is to give
access to well-organized content, represented the first industrial application of the
Web, and are still predominant in terms of volume and commercial value. All
companies have an institutional site showing their business and describing their
offers, and many enterprises manage the relations with their customers through the
Web. Therefore, these applications have been a preferred target of development
methods and tools, which have been available for a long time.

Among them, the Web Modelling Language (WebML) [1] was defined, about 10
years ago, as a conceptual model for data-intensive Web applications. In the early
days of Web development, technologies were immature and in perpetual change; as a
reaction, WebML was conceived as a high level, implementation-independent
conceptual model, and the associated design support environment, called WebRatio
[9], has always been platform-independent, so as to adapt to frequent technological
changes.

While other conceptual models focus more on the early phases of the development
process (i.e., requirement specification [21]), WebML concentrates on the later
phases, starting from design, down to the implementation. As many other conceptual
modeling languages [14], WebML is based upon the principle of separation of

274 S. Ceri, M. Brambilla, and P. Fraternali

concerns: content, interface logics, and presentation logics are defined as separate
models of the application. The main innovation in WebML comes from the hypertext
modelling notation (patented in 2003), which enables the specification of Web pages
consisting of conceptual components (units) interconnected by conceptual links. The
hypertext model is drawn in a simple and quite intuitive visual notation, but has a
rigorous semantics, which allows the automatic transformation of diagrams into the
complete running code of a data-intensive Web application. Originally, the focus of
the design of WebML concentrated on the definition of a powerful set of units; with
time, we realized that units are just specific components, which can be defined and
adapted to the needs of any new technological development; instead, the essence of
the WebML hypertext model lies in the rules for assembling components and links
into a graph, and for inferring all the possible parameter passing rules from the
component interfaces and the link types. A well-formed graph guarantees the correct
data flow among units and dictates the proper component execution order when
computing the content of pages. Ultimately, computing a hypertext model amounts to
enacting a workflow of component execution driven by the user’s “clicking
behaviour”. In retrospective, the choices of link and component semantics were quite
adequate to the purpose and remained stable throughout ten years of language
evolution.

While the Web has gone through waves of innovation, new technological scenarios
have developed, and revolutionary concepts – such as enabling the interaction of
software programs rather than only humans – have emerged. Several new challenges
have been addressed within the WebML context, including:

• Web services and service-oriented architectures [11];
• Integration with business processes [5];
• Personalization, adaptation, context awareness, and mobility [6];
• Semantic Web and Semantic Web Services [4];
• Rich Internet Applications [3];
• Search-based applications;
• Support of reuse, multi-threading, and modularization.

This paper highlights the core nucleus of the WebML language, which has remained
stable over the years, and illustrates how we have dealt with each new challenge through
a four-step approach. The treatment of each extension is necessarily concise and visual,
for more details we refer readers to published papers and reports.

2 The Original WebML Language

The specification of a Web application in WebML [2] consists of a set of orthogonal
models: the application data model (an extended Entity-Relationship model), one or
more hypertext models (i.e., different site views for different types of users),
expressing the navigation paths and the page composition; and the presentation
model, describing the visual aspect of the pages. We focus on the hypertext model, as
the data model is not innovative; the presentation model is also quite interesting, as it
enables “dressing” a hypertext model to obtain Web pages with the desired layout and
look&feel for any rendition technology, but is also outside the scope of this paper.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 275

2.1 The WebML Hypertext Model

A hypertext model consists of one or more site views, each of them targeted to a
specific user role or client device. A site view is a collection of pages (possibly
grouped into areas for modularization purposes); the content of pages is expressed by
components for data publishing (called content units); the business logic triggered by
the user’s interaction is instead represented by sequences of operation units, which
denote components for modifying data or for performing arbitrary business actions
(e.g., sending email). Content and operations units are connected by links, which
specify the data flow between them and the process flow for computing page content
and for enacting the business logic, in reaction to user’s generated navigation events.

Consider for instance a simple scenario: users browse a Home Page, from where
they can navigate to a page showing an index of loan products. After choosing one
loan, users are lead to a page with the loan details and the list of proposals for the
chosen loan. The WebML specification for the described hypertext is depicted in
Figure 1. The Home Page contains only some static content, which is not modeled. A
link from this page leads to the Loans page, containing an index of all loans,
graphically represented by means of an index unit labeled Loans Index. When the user
selects a loan from the index, he is taken to the Chosen Loan page, showing the loan
details. In this page, a data unit, labeled Loan Details, displays the attributes of the
loan (e.g. the company, the total amount and the rate), and is linked to another index
unit, labeled Proposals Index, which displays the plan options.

Home page Chosen Loan page

LoanProposals
[LoanToProposal]

Loan

Proposals
Index

Loan Details

Loans page

Loan

Loans Index Enter New
Proposal

Create Prop

LoanProposal

H

Connect

LoanToProposal

OK

Fig. 1. A WebML hypertext for browsing and updating information

This example contains units for publishing content (data and index units), which
display some of the attributes of one or more instances of a given entity.
Syntactically, each type of unit has a distinguished icon and the entity name is
specified at the bottom of the unit; below the entity name, predicates (called selectors)
express conditions filtering the entity instances to be shown. The example of Figure 1
also shows static content units, which display fixed content not coming from the
objects in the data model: this is the case of the Enter New Proposal entry unit, which
denotes a form for data entry. The hypertext model also illustrates the use of operation
units: the outgoing link of the Enter New Proposal entry unit activates a sequence of
two operation units: a create and a connect unit, which respectively create an instance
of the LoanProposal entity and connect it with a relationship instance to the Loan
entity.

WebML distinguishes between normal, transport, and automatic links. Normal
links (denoted by solid arrows) enable navigation and are rendered as hypertext
anchors or form buttons, while transport links (denoted by dashed arrows) enable
only parameter passing and are not rendered as navigable widgets. Automatic links

276 S. Ceri, M. Brambilla, and P. Fraternali

(denoted by an [A] icon) are normal links, which are automatically “navigated” by the
system on page load. Orthogonally, links can be classified as contextual or non-
contextual: contextual links transfer data between units, whereas non-contextual
links enable navigation between pages, with no associated parameters. Operation
units also demand two other types of links: OK links and KO links, respectively
denoting the course of action taken after success or failure in the execution of the
operation. In the example of Figure 1:

• The link from the Home page to the Loans page is non-contextual, since
it carries no information, and simply enables a change of page.

• The link from the Loans Index unit to the Loan Details unit is normal and
contextual, as it transports the ID of the loan chosen in the index unit and
displayed in the data unit.

• The link from the Loan Details data unit to the Proposals Index unit is a
transport link: when the user enters the Chosen Loan page, the Loan
Details unit is displayed and, at the same time, the Loan ID is transferred
to the Proposal Index unit, so that the content of the Proposals index unit
is computed and displayed without user's intervention. No navigable
anchor is rendered, because there is no need of the user’s interaction.

• The outgoing link of the Connect unit, labelled OK, denotes that after the
successful execution of the operation the Choose Loan page is displayed.

The content of a unit depends on its input links and local selectors. For instance,

the Loan ID is used to select those proposals associated with a given loan by the
relationship role LoanToProposal; this selection is expressed by the selector condition
[LoanToProposal] below the unit’s entity. In general, arbitrary logical conditions can
be used, but conjunctive expressions are easily presented in the diagrams, where each
conjunct is a predicate over an entity’s attribute or relationship role.

2.2 Semantics of the WebML Hypertext Model

As already mentioned, WebML is associated with a page computation algorithm
deriving from the formal definition of the model’s semantics (based on statecharts in
[10]). The essential point is the page computation algorithm, which describes how
the content of the page is determined after a navigation event produced by the user.
Page computation amounts to the progressive evaluation of the various units of a
page, starting from input parameters associated with the navigation of a link. This
process implies the orderly propagation of the value of link parameters, from an initial
set of units, whose content is computable when the page is accessed, to other units,
which expect input from automatic or transport links exiting from the already
computed units of the page.

In WebML, pages are the fundamental unit of computation. A WebML page may
contain multiple units linked to each other to form a complex graph, and may be
accessed by means of several different links, originating from other pages, from a unit
inside the page itself, or from an operation activated from the same page or from
another page. The content of a page must be computed or recomputed in the following
cases:

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 277

• When the page is entered through a link (contextual or non-contextual)
originating in another page; in this case the contents of all units of the
page are calculated afresh, based on the possible parameter values carried
by the link.

• When the user navigates an intra-page link and thus supplies some new
input to the destination unit of the link; in this case, part of the content of
the page is calculated based on the parameter values associated with the
intra-page link, but part of the content of the page is computed based on
the values of parameters existing prior to the navigation of the intra-page
link, so that past user’s choices are not lost when navigating the link.

• When an operation is invoked, ending with a link pointing back to the
same page: this case is similar to the navigation of an intra-page link, but
in addition the operation may have side effects on the content visualized
in the page, which may change the content displayed by the page.

The example in Figure 2 illustrates the three cases:

• When the ArtistIndex page is accessed through the non-contextual link
labeled Link1 or the Artist page is accessed through the contextual link
labeled Link2, the content of the entire destination page is computed
afresh, taking into account the possible input values associated with the
navigated link (e.g., the OID of the selected artist when Link 2 is
navigated).

• When the user selects a new album from the AlbumIndex unit, new
context information flows along the link labeled Link3 and determines
the album to be displayed in the AlbumData unit; at the same time, the
Artist displayed in the ArtistData data unit must be “remembered” and
redisplayed, because the input of the ArtistData unit is not directly
affected by the navigation of the intra-page link.

• When the delete operation is performed successfully and the page is re-
entered through the OK link Link4, the content of the ArtistData unit is
preserved, so to remember the past user’s choice, whereas the content of
the AlbumIndex unit and of the AlbumData unit is refreshed, so that the
deleted album no longer appears in the AlbumIndex unit and in the
AlbumData unit. If the delete operation fails, the KO link Link5 is
followed and the content of the AlbumData unit is refreshed using the
OID of the object that could not be deleted, and the content of the other
units is restored. This ensures that the previously selected artist, his/her
albums, and the details of the album tentatively deleted continue to be
displayed when the page is re-accessed after the failed operation.

The page computation process is triggered by any of the previously discussed
navigational events (inter-page link navigation, intra-page link navigation, operation
activation). Based on the navigated link, a set of parameter values is collected and
passed in input to the page, which determines the initial input for some of the page
units. The page computation algorithm starts by tagging as computable all context-
free units (e.g., units with no input parameters, like the ArtistIndex unit) and possibly

278 S. Ceri, M. Brambilla, and P. Fraternali

Fig. 2. Example of WebML Page with different access paths

the externally dependent units for which there are sufficient input values in the
parameters passed to the page (e.g., the ArtistData unit when Link2 is navigated).
Then, the computation proceeds by evaluating the units one after another, until all
possible units have been evaluated. The computation process exploits the propagation
of context along automatic and transport links, and a specificity rule telling which
alternative input should be considered when multiple choices are available for
evaluating the same unit.

The specificity rule introduces a partial order in parameter passing, therefore a
page computation is nondeterministic (but the WebRatio tool identifies such
situations and prompt designers to change the model to eliminate non-determinism).
Moreover, some hypertexts can be non-computable, due to circular dependencies
among units or pages, causing a deadlock in the assignment of input values to some
units. The complete description of the WebML hypertext model semantics is in
Chapter 5 of [8] and in [10].

2.3 The WebML Design Process

The WebML methodology exploits a formal design process, explained in Chapter 6
of [8], shown in Figure 3. The process includes the classic phases of requirement
analysis (thoroughly addressed by dedicated methods, such as [21]), data design,
hypertext design, and presentation design, followed by architecture design and
implementation. The 4-step procedure, from requirements to data, to hypertext, to
presentation design, can be iterated multiple times with the support of WebRatio,
which acts as a rapid prototyping tool; experience has shown that a crucial advantage
of using the model-driven approach comes from the ability to generate incremental
prototypes directly under the eyes of the application stakeholders. Web-specific data
design guidelines, based on the notion of the web mart as a standard ER schema that
is recurrent in Web applications, have also been proposed in [9].

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 279

HYPERTEXT MODELING

Business requirements

DATA MODELING

ARCHITECTURE
DESIGN

REQUIREMENTS
ANALYSIS

IMPLEMENTATIONTESTING AND EVALUATION

MAINTENANCE AND
EVOLUTION

PRESENTATION MODELING

Fig. 3. The WebML Development process

2.4 The Added Value of WebML

Before describing the extensions of the original WebML model, we wish to distill the
concepts that proved most valuable in the ten-year experience of development and
research with WebML. Our experience demonstrated that the true added value of
WebML stands in the following aspects:

• The choice of component-based design as the fundamental development
paradigm and the standardization of component specification, which allow
extending the language without altering its semantics.

• The use of links of different types, for specifying the “wiring” of components,
which can be assembled into pages and sequences of operations.

• Powerful and automatic inference rules for parameter matching, allowing the
designer to avoid explicit specification of the data carried by contextual links in
all cases in which they can be deduced from the context.

The result of these design principles is an easy-to-learn formalism: the hypertext
model consists of very few concepts (e.g., compared to UML): site views, areas,
pages, content units, operation units, and links. At the same time, the openness of the
implementation allows developers to enrich WebRatio with the components of their
choice, so to achieve an almost unlimited variety of effects.

The subsequent evolution of the model built upon these aspects, adding domain-
specific features to the core nucleus of the language. In retrospective, we have addressed
every new challenge by using a common approach, which indeed has become evident to
us during the course of time, and now is well understood and constitutes the base for all
new additions. For every new research direction, four different kinds of extensions are
designed, respectively addressing the development process, the content model, the
hypertext meta-model, and the tool framework:

• Extensions of the development process capture the new steps of the design that
are needed to address the new direction, providing as well the methodological
guidelines and best practices for helping designers.

• Extensions of the content model express domain-specific standard data schemas,
e.g., collections of entities and relationships, that characterize the applications in

280 S. Ceri, M. Brambilla, and P. Fraternali

the area of interest; the standard schema is connected with the application data
model, to enable an integrated use of domain objects and special-purpose data.

• Extension of the hypertext meta-model refine the standard WebML concepts to
capture the new abstractions required for addressing the new modelling
perspective; in this way, the core semantics of WebML is preserved, but
functionality is added by plugging in “libraries” of specialized concepts.

• Extensions of the tool framework introduce new modules in the open architecture
of WebRatio (specialized data elements, new content and operation units, novel
containers of model elements, etc.), implement wizards for expressing the
semantics of new components in terms of existing ones, and provide code
generation and runtime support for each new addition.

3 Service-Oriented Architectures

The first WebML extension discussed in this paper is towards the Service Oriented
Architectures [11]. Our extension includes four components:

• The extension to the development process and the definition of some
methodological guidelines for SOA design;

• A standard data schema for representing the services and the business processes
to be performed;

• New WebML units for covering Web service specification and invocation,
together with primitives for enforcing business process constraints;

• The support of the specified solutions through a process modeller, a translator of
processes into hypertext skeletons, and an XML-to-XML mapping tool.

The extension of the development process to SOA requires separating application

design from service design; the former addresses the front-end of a Web integration
application targeted to the user, while the latter focuses on provisioning well-designed
services, usable across different Web applications.

(a)

(b)

Fig. 4. Example of WebML hypertext model with invocation of remote service

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 281

The contet model for SOAs (not shown here for sake of brevity) supports the
description of Web Services according to WSDL, including the notions of services,
ports, and input/output messages.

Extensions to the hypertext model cover both Web Service publication and Web
Service consumption. Web Service publication is expressed as a novel container
(called Service View), which is analogous to a site view, but contains specifications of
services instead of pages. A service specification is denoted by a Port, which is a
container of the operations triggered upon invocation of the service.

Service invocation and reaction to messages are supported by specialized
components, called Web Service units. These primitives correspond to the WSDL
classes of Web service operations and comprise:

• Web service publication primitives: Solicit unit (representing the end-point of
a Web service), and Response unit (providing the response at the end of a Web
service implementation); they are used in a service view as part of the
specification of the computation performed by a Web Service.

• Web Service invocation primitives: Request-response and Request units; they
are used in site views, and denote the invocation of remote Web Services from
the front-end of a web application.

For instance, Figure 4 shows a hypertext that specifies a front-end for invoking a
web Service (Figure 4a) and the specification of the web Service within a port
container (Figure 4b).

In the Supply Area of Figure 4a, the user can access the SupplySearch page, in which
the SearchProducts entry unit enables the input of search keywords. The submission of
the form, denoted by the navigation of the outgoing link of the entry unit, triggers a
request-response operation (RemoteSearch), which builds the XML input requested by
the service and collects the XML response returned by it. From the service response, a
set of instances of the Product entity are created, and displayed to the user by means of
the Products index unit in the Products page; the user may continue browsing, e.g., by
choosing one of the displayed products and looking at its details.

Figure 4b represents the service view that publishes the RemoteSearch service
invoked by the previously described hypertext. The ProductManagementPort
contains the chain of operations that make up the service: the sequence starts with the
SearchSolicit unit, which denotes the reception of the message. Upon the arrival of
the message, an XML-out operation extracts from the service provider’s database the
list of desired products and formats it as an XML document. The service terminates
with the SearchResponse unit, which returns the response message to the invoker1.

For supporting service design, WebRatio has been extended with:

• The novel Web service units.
• The Service view and Port containers.

1 Service ports are an example of a WebML concept that has nothing to do with the user’s

interaction, which shows how the original target of the model (hypertext navigation) has been
generalized to cover new requirements. Even more radical shifts will be needed to deal with
semantic Web Services, as illustrated in the sequel.

282 S. Ceri, M. Brambilla, and P. Fraternali

• The runtime and code generator features necessary to produce the actual
executable code corresponding to the additional modeling primitives.

4 Workflow-Driven Applications for the Web

The Web has become a popular implementation platform for B2B applications, whose
goal is not only the navigation of content, but also the enactment of intra- and inter-
organization business processes. Web-based B2B applications exhibit much more
sophisticated interaction patterns than traditional Web applications: they back a
structured process, consisting of activities governed by execution constraints, serving
different user roles, whose joint work must be coordinated. They may be distributed
across different processor nodes, due to organizational constraints, design
opportunity, or existence of legacy systems to be reused. WebML has been extended
to cover the requirements of this class of applications [5], by:

• The integration in the development life-cycle of workflow-specific deign
guidelines;

• Two different models for representing the business processes;
• New design primitives (namely, WebML units) for enforcing business process

constraints;
• New tools for workflow-driven application design: a process modeller and a

translator of processes into hypertext skeletons.

The incorporation of business processes in WebML has been pursued in two
distinct, yet complementary, scenarios:

1) Static business process, i.e., processes defined once during the design phase
and then preserved for the entire application lifetime.

2) Dynamic business processes, in which the process schema is subject to
continuous evolution.

Some aspects are common to the two scenarios, while others differ significantly. In
the following, we will highlight the differences, when needed.

The WebML design process is extended with a new phase, business process
modeling, preceding data and hypertext design. In case of dynamic BP, changes to the
process are allowed at runtime too, and the system automatically adapts its behavior.

A content model for static processes, shown in Figure 5, represents meta-data
about the business processes. A process is represented by the Process entity,
associated with the ActivityType entity, representing the kinds of activities that can be
executed in the process. An instance of a process is modeled by the Case entity,
related to its Process (via the InstanceOf relationship) and to its activities (via the
PartOf relationship); entity ActivityInstance denotes the actual instances of activities
within cases.

With dynamic processes, the basic content model is completed by a few additional
entities and relationships that represent the sequence constraints between activities,
the branching and joining points, and the execution conditions. Thanks to the more
refined meta-data, the application can infer the process structure and execution status
at runtime and adapt to dynamic changes of the process schema.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 283

User Metadata

ActivityType

Name
Description

User

Username
Password
...

Group

Name
...

0:N

1:1

Activity Instance

Status
StartTimeStamp
EndTimeStamp

Case

Status
Name
StartTimeStamp
EndTimeStamp

0:N 0:N

0:N

1:1 1:N

Assigned To

1:1

0:N

1:1

Process

Name
1:1 1:N

0:N

1:N
Default

Assigned To
PartOf

PartOf

Entity X
0:N

0:N

Related To

Application Data Model

1:1

0:N
InstanceOfInstanceOf

0:N 1:1
Executed By

Process Metadata

Entity Y

0:N

0:N

Related To

Entity Z

0:N

0:N

Related To

Fig. 5. Content model for the specification of a business process

 Activity Area2

A

 Activity Area1

A

... ...

Fig. 6. Two activity areas and the start and end links that denote the initiation and termination
of an activity

In case of static processes, the process structure is embodied in the topology of the

hypertext. The intuition is that the process progresses as the actors navigate the front-
end, provided that the hypertext model and the process metadata are kept in synch. To
this end, new primitives are added to the hypertext model, for specifying activity
boundaries (namely activity areas) and process-dependent navigation (namely
workflow links). Figure 6 shows some of these primitives: “Activity Areas” denote
groups of pages that implement the front-end for executing an activity; specialized
links represent the workflow-related side effects of navigation: starting, ending,
suspending, and resuming activities. Distributed processes deployed on SOAs can be
obtained by combining the workflow and Web Services primitives [5].

For dynamic business processes, the next activity to be executed is not statically
specified by an activity area, but is determined at runtime by a unit (called Next unit),
which encapsulates the process control logic. It exploits the information stored in the
process meta-data and log to calculate the current process status and the enabled state
transitions. It is associated with the current ActivityInstance, and needs the following
input parameters: caseID (the currently executed process instance ID), activityID (the
activity instance ID that has just terminated), and the conditionParameters (the values
required by the conditions to be evaluated). The Next unit finds all the process
constraints related to the specified activity instance, evaluates them according to the

284 S. Ceri, M. Brambilla, and P. Fraternali

defined precedence constraints (i.e., sequence, AND-join, etc.), and, if the conditions
hold, enables the execution of the subsequent activities in the workflow. If the
activities are automatic, they are immediately started. If they involve human choice,
the application model consists of the site view for the user to choose when to start the
activity. An example of Next unit can be found in Section 8, dealing with Search-
based Web applications.

For supporting the design of workflow-driven Web applications, several tool
extensions have been prototyped and are currently being ported to the commercial
version of WebRatio:

• A workflow modeling editor for specifying business processes in the BPMN
notation.

• Model transformations that translate a business process model into a skeleton of
WebML hypertext model.

• The abovementioned operation units and special-purpose links for implementing
the static and dynamic workflow enactment.

5 User Personalization and Context Awareness

WebML has been also applied to the design of adaptive, context-aware Web
applications, i.e. applications which exploit the context and adapt their behaviour to
usage conditions and user’s preferences [6].

In these applications, the design process is extended by a preliminary step
dedicated to the modeling of the user profiles and of the contextual information.

1:N 1:N
UserComment

Comment
Rate
Title
Comment_Date

Personalization
sub-schema Basic user sub-schema

Activity
Name
Handycap
Description

0:N

Context sub-schema

Group
GroupName

Module
ModuleID

Movie
Title
Year
Description
Official _Site

1:N0:N
User

UserName
Password
EMail

0:N 1:N

1:1

0:N

0:N

Cinema
Name
Address
Description
Picture

Location
MinLon
MaxLon
MinLat
MaxLon

1:1
0:N

Device
CPU
InputDevice
Display
Memory

1:N

1:1

1:N 1:1

Fig. 7. Three models representing user, personalization, and context data

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 285

User and context requirements are described by means of three different models,
complementing the application data (see Figure 7):

• The user model describes data about users and their access rights to the domain
objects. In particular, entity User expresses a basic user profile, entity Group
enables access rights for groups of users, and entity Module allows users and
groups to be selectively granted access to any hypertext element (site views,
pages, individual content units, and even links).

• The personalization model associates application entities with the User entity by
means of relationships denoting user preferences or ownership. For example, the
relationship between the entities User and UserComment in Figure 7 enables
the identification of the comments s/he has posted, and the relationship between
the entities User and Movie represents the preferences of the user for specific
movies.

• The context model includes entities such as Device, Location and Activity, which
describe context properties relevant to adaptivity. Context entities are connected
to the User entity, to associate each user with her/his (personal) context.

During hypertext design, context-awareness can be associated with selected pages,
and not necessarily with the whole application. Location-aware pages are tagged
with a C-label (standing for “Context-aware”) to distinguish them from conventional
pages. Adaptivity actions are clustered within a context cloud which must be executed
prior to the computation of the page. Clouds typically includes WebML operations
that read the personalization or context data and then customize the page content or
modify the navigation flow defined in the model.

A prototype extension of WebRatio generates pages with adaptive business logic;
such a prototype has been used in some applications but has not been included yet
into the commercial version.

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object
 Identifier

C

Conventional
Page 1

Conventional
Page 2

Fig. 8. Model with a context-aware page, labelled with a “C” and associated with a “context
cloud”

286 S. Ceri, M. Brambilla, and P. Fraternali

6 Semantic Web Services

Traditionally, the service requestor and service provider are designed jointly and then
tightly bound together when an application is created. The emerging field of Semantic
Web Services (SWS) [26] provides paradigms for semantically enriching the existing
syntactic descriptions of Web services; then, the service requestor can search, either at
design or at run time, among a variety of Web-enabled service providers, by choosing
the service that best fits the requestor’s requirements. Such a flexible binding of
requestor and providers allows for dynamic and evolving applications to be created,
utilizing automatic resource discovery, selection, mediation and invocation.

We extended WebML in [4] so as to generate, on top of conventional models (of:
processes, data, services, and interfaces), a large portion of the semantic descriptions
required by the SWS in a semi-automatic manner, thus integrating the production and
maintenance of semantic information into the application generation cycle.

To address the new SWS requirements, we defined a process for semantic service
design by extending the SOA design process with two additional tasks:

• Ontology Importing, for reusing existing ontologies that may be exploited for
describing the domain of the Web application under development.

• Semantic Annotation, for specifying how the hypertext pages or services can be
annotated using existing ontological knowledge.

At the conceptual level, the content model for Semantic Web applications

addresses the integration of existing third-party ontologies in the conceptual data
model. At the logical level, imported ontological data can be either copied into an
application-specific implementation of the E-R model (typically a relational database)
or maintained in remote semantic repository and queried on demand.

The basic WebML primitives have been extended with components for ontology
querying and navigation, exploiting the expressive power of ontological languages
(inspired by SPARQL and RDF-S). These units allow queries on classes, instances,
properties, and values; checking the existence of specific concepts; and verifying
whether a relationship holds between two resources. Further units import content
from an ontology and return the RDF description of a given portion of the ontological
model. Operations such as lifting and lowering have been introduced too, by
extending the XML2XML mapping components already developed in the context of
SOAs. These units, together with the standard WebML primitives and the SOA
extensions, allow designers to specify new kinds of applications. For instance, it is
possible to define WSMO mediators [4], as demonstrated in the context of the SWS
Challenge.

The SWS primitives have been implemented in two versions: when ontological
data are maintained in an external repository, the implementation exploits ontological
query languages; when ontological data are integrated within an internal relational
source, the implementation is directly mapped to such source.

The WebRatio development tool has been extended with prototypical automatic
generators of WSMO-compliant descriptions (goals, choreographies, capabilities,
and mediators) from the models already available in WebML, i.e., business processes,
content models, and service models. The automatically generated annotations cannot

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 287

express the full semantics of services and applications, but they provide an initial
skeleton, which can be completed manually.

7 Rich Internet Applications

Due to the increasingly complex requirements of applications, current Web
technologies are starting to show usability and interactivity limits. Rich Internet
Applications (RIAs) have been recently proposed as the response to such drawbacks;
they are a variant of Web-based systems minimizing client-server data transfers and
moving the interaction and presentation layers from the server to the client. While in
traditional data-intensive Web applications content resides solely at the server-side, in
the form of database tuples or as user session-related main memory objects, in RIAs
content can also reside in the client, as main memory objects with the same visibility
and duration of the client application, or even, in some technologies, as persistent
client-side objects. Also, in RIAs more powerful communication patterns are possible,
like server-to-client message push and asynchronous event processing. WebML has
been extended with the aim of reducing the gap between Web development
methodologies and the RIA paradigm, leveraging the common features of RIAs and
traditional Web applications [3].

The design process is extended by defining the allocation to the client or server
side of data elements (entities and relationships) and hypertext components (pages,
content and operation units), and by establishing the relevant client-server
communication patterns (consisting of policies for event notification, recipient
filtering, and synchronous/asynchronous event processing).

In the content model, concepts are therefore characterized by two different
dimensions: their location, which can be the server or the client, and their duration,
which can be persistent or temporary. For example, in Figure 9 the Wish Lists entity is
tagged as client (C) and temporary (unfilled icon) to denote that the data are
temporarily stored at the client side, for the duration of the application run.

Similarly, the notion of page in WebML has been extended, by adding client
pages, which incorporate content or logics managed (at least in part) by the client;
their content can be computed at the server or client side, whereas presentation,
rendering and event handling occur at the client side. The events generated by the
user’s interaction can be processed locally at the client or dispatched to the server.
Event handling operations are also introduce (send event and receive event) which
enable the expression of flexible communication patterns, including real-time

Fig. 9. Example of RIA-enabled WebML data (a) and hypertext model (b)

288 S. Ceri, M. Brambilla, and P. Fraternali

collaboration, server push, and asynchronous event processing. Classical WebML
content units are also extended with the possibility of specifying that the source
entity, the selector conditions, or ordering clauses be managed either on the server or
on the client. Figure 9 shows a client page which contains an index unit with the
population fetched from the server, but filtered using a predicate (price<=max)
computed on the client. In order to fit the more flexible way in which RIAs handle the
content of pages, the semantics of page computation has also been revised.

The RIA modelling primitives have been implemented in WebRatio through a
prototypical code generator for the client-side pages, exploiting an open source RIA
platform (www.openlaszlo.org) for handling events and managing the computation of
client-side content units and operations. Each content unit is mapped into: (1) a view
component for rendering, (2) a model component for data management, business
logic, and server communication, (3) possibly a service on the server-side for data
query and result formatting in XML. A subset of the prototyped features, including
AJAX behaviours and client-side event management, is already available in the
commercial version of WebRatio.

8 Related Work

Web Application Modeling. Several methodologies and notations address
conceptual modeling of Web applications [31]. Among more recent projects, WebML
is closer to those based on conceptual methodologies like W2000 [16] and OO-
HMETHOD [29] (based on UML interaction diagrams), Araneus [35, 36], Strudel
[27] and OOHDM [40]. The WAE UML extension by Conallen [23] focuses mainly
on implementation and architectural issues of Web application design. Commercial
vendors are proposing tools for Web development, however most of them have only
adapted to the Web environment modeling concepts borrowed from other fields.
Among them, Oracle JDeveloper 10g [38], Code Charge Studio [22], Rational Rapid
Developer [39], and ArcStyler [13], which also features business process to Web
model translation and direct implementation.

Business Processes. Several existing platforms and languages allow integrating the
design of Web applications and business processes. Among the existing models, we
can mention Araneus [36], that has been extended with a workflow conceptual model,
allowing the interaction between the hypertext and an underlying workflow
management system. The Process Modeling Language (PML) [37], a lightweight
formalism similar to BPMN that can be automatically compiled into a simple Web-
based application, starting from imperative programming-style syntax. Among the
Web design proposals, OO-H and UWE have specifically addressed the integration of
process and navigation modeling. The authors of OO-H and UWE propose a joint
approach [34] to the integration of process and navigation modeling. In particular,
both methodologies converge in the requirements analysis phase, where UML Use
Case, Class, and Activity Diagrams are exploited to capture the requirements, and
then, the methods slightly diverge in the design phase. In OOHDM [40], the content
and navigation models are extended with activity entities and activity nodes
respectively, represented by UML primitives. In WSDM [25], the process design is
driven by the user requirements and is based on the ConcurTaskTrees notation.

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 289

Web Services. A flurry of activity is currently taking place in the field of Web
service description [44]. Several XML languages for orchestration and choreography
of services have been proposed (e.g., BPEL4WS [19]). WebML is expressive enough
to capture any BPEL4WS-style service composition pattern [5]. The ActiveXML
system [15] manages XML documents including calls to services, but ignoring Web
interfaces and complex processes.

Semantic Web. Several traditional Web design methodologies (like OOHDM [41])
and new approaches (like Hera [43]) are focusing on Semantic Web applications.
MIDAS is a framework based on MDA for Semantic Web applications [12]. Research
efforts are converging on the proposal of combining Semantic Web Services (SWS) and
Business Process Management (BPM) to create one consolidated technology, called
Semantic Business Process Management (SBPM) [33]. Our extensions to the Semantic
Web Services benefit from the WSMO [26] framework for handling Semantic Web
Services.

Adaptivity and context-awareness. Within the domain of theWeb, so-called
adaptive hypermedia systems [20] address advanced adaptation and personalization
mechanisms, and recent research efforts also address the special needs of mobileWeb
applications and portable device characteristics. HyCon [32], for example, is a
platform for the development of context-aware hypermedia systems with special
emphasis on location-based services. AHA! [24] is a user modeling and adaptation
tool originally developed in the e-learning domain. Other works [18] address the fast
development of context-aware (Web) applications along a technological, database-
driven approach, combining a universal context engine in combination with a suitable
content management system [30]. On top of the Hera project, Fiala et al. [2004]
propose implementation and deployment of component-based, adaptive Web
presentations. [17] extend the previous approach by addressing the lack of dynamism.

RIAs. Some approaches address the complexity of RIAs through the exploitation of
state models for interface design. Exploiting MDA life-cycle is a missing feature in
the related work. Our approach is also different with respect to other recent proposals
in the Web Engineering field to represent the RIA foundations (e.g. [42]), because we
include a more abstract level of representation of states and events.

9 Conclusions

The “WebML approach” has acted as a framework for continuous innovation and
exploration of new research directions. This is made possible by a unique
combination of environmental conditions:

• Availability of well-defined conceptual models;
• Extensibility of the model thanks to a plug-in based structure;
• Availability of a CASE tool for fast prototyping of application and easy

integration of new features and components;
• Formally defined development process for Web applications;
• Strong link between the research (mostly performed in university) and the

technology transfer into an industrial-strenght product (performed within a spin-off);

290 S. Ceri, M. Brambilla, and P. Fraternali

• Interactions with real world requirements, enabled by interaction with customers
of the spin-off.

• Participation to the international research community, through experience and
people exchange and several EU-funded projects.

This mix of ingredients has allowed us to follow our own pathway to innovation in
conceptual modeling.

Wide adoption of the approach has been secured thanks to low learning barrier to
the newcomers and availability of suitable tool support. Basic modelling skills are
usually taught in 6 hours of academic lessons, and the full training program for
certified professionals requires a total of 8 days. On-the-field statistics estimate that 2
to 3 months are needed for enabling full productivity at industrial level. Once this is
achieved, high efficiency is granted in the development process, thanks to automatic
code generation that reaches 90% of the total software artifacts in typical industrial
applications [2].

Adoption of WebML can be inferred from the spreading of the associated
WebRatio toolsuite. The WebRatio company registered more than 27,000 downloads
of the tool since its first release (among them, more than 7,500 of the last Eclipse-
based release, WebRatio 5). 70 companies adopted the commercial version of the tool
for medium-to-large development projects and 158 universities subscribed to the
academic program, that currently involves more than 5,900 students and researchers
worldwide.

Acknowledgements

We wish to thank all the people who work for developing WebML within the
“Database and Web” group at Politecnico di Milano and the developers of the Web
Models spin-off.

References – WebML

[1] Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web
Applications Design and Development with WebML and WebRatio 5.0. TOOLS, pp.
392–411 (2008), http://www.webratio.com/

[2] Acerbis, R., Bongio, A., Brambilla, M., Tisi, M., Ceri, S., Tosetti, E.: Developing
eBusiness solutions with a model driven approach: The case of acer EMEA. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 539–544.
Springer, Heidelberg (2007)

[3] Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual Modeling and
Code Generation for Rich Internet Applications. In: International Conference on Web
Engineering, pp. 353–360. Springer, Heidelberg (2006)

[4] Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E.: Model-Driven Design and
Development of Semantic Web Service Applications. ACM TOIT 8(1) (2008)

[5] Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM 15(4) (2006)

[6] Ceri, S., Daniel, F., Matera, M., Facca, F.: Model-driven Development of Context-Aware
Web Applications. ACM TOIT 7(1) (2007)

The History of WebML: Lessons Learned from 10 Years of Model-Driven Development 291

[7] Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9 / Computer Networks 33 (2000)

[8] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

[9] Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing Data-Intensive Web Applications
for Content Accessibility using Web Marts. Communications of ACM 50(4), 55–61
(2007)

[10] Comai, S., Fraternali, P.: A Semantic Model for Specifying Data-Intensive Web
Applications Using WebML. In: Semantic Web Workshop, Stanford, USA (July 2001)

[11] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design
and Deployment of Service-Enabled Web Applications. ACM TOIT 5(3) (2005)

References – Related Work

[12] Acuña, C.J., Marcos, E.: Modeling semantic web services: a case study. In: Proceedings
of the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto,
California, USA, pp. 32–39 (2006)

[13] ArcStyler, http://www.arcstyler.com
[14] Brodie, M., Mylopoulos, J., Schmidt, J. (eds.): On Conceptual Modelling: Perspectives

from Artificial Intelligence, Databases and Programming Languages. Springer,
Heidelberg (1984)

[15] Abiteboul, S., Bonifati, A., Cobéna, G., Manolescu, I., Milo, T.: Dynamic XML
Documents with Distribution and Replication, SIGMOD (2003)

[16] Baresi, L., Garzotto, F., Paolini, P.: From Web Sites to Web Applications: New Issues for
Conceptual Modeling. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops
2000. LNCS, vol. 1921, pp. 89–100. Springer, Heidelberg (2000)

[17] Barna, P., Houben, G.-J., Frasincar, F.: Specification of Adaptive Behavior Using a
General-Purpose Design Methodology for Dynamic Web Applications. In: De Bra,
P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 283–286. Springer, Heidelberg
(2004)

[18] Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Interplay of
content and context. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 187–200. Springer, Heidelberg (2004)

[19] BPEL4WS: Business Process Execution Language for Web Services,
http://www.ibm.com/developerworks/Webservices

[20] Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. User Model and
User-Adapted Interaction 6(2-3), 87–129

[21] Castro, J., Kolp, M., Mylopoulos, J.: A requirements-driven development methodology.
In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
108–123. Springer, Heidelberg (2001)

[22] Code Charge Studio 2.3, http://www.codecharge.com/studio
[23] Conallen, J.: Building Web Applications with UML, October 2002. Addison-Wesley,

Reading (2002)
[24] De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based Reference Model for

Adaptive Hypermedia. In: HYPERTEXT 1999: Proceedings of the tenth ACM
Conference on Hypertext and hypermedia: returning to our diverse roots, pp. 147–156
(1999)

[25] De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In: Third International Workshop on Web Oriented Software Technology,
Oviedo 2003, pp. 1–12 (2003)

292 S. Ceri, M. Brambilla, and P. Fraternali

[26] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services – The Web Service Modeling Ontology. Springer,
Heidelberg (2006)

[27] Fernandez, M.F., Florescu, D., Kang, J., Levy, A.Y., Suciu, D.: Catching the Boat with
Strudel: Experiences with a Web-Site Management System. In: SIGMOD 1998, pp. 414–
425 (1998)

[28] Fiala, Z., Hinz, M., Houben, G.-J., Frasincar, F.: Design and Implementation of
Component-based Adaptive Web Presentations. In: ACM SAC, pp. 1698–1704

[29] Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web
Applications. IEEE MultiMedia 8(2), 26–39 (2001)

[30] Grossniklaus, M., Norrie, M.C.: Information Concepts for Content Management. In:
WISE Workshops, pp. 150–159

[31] Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31(3), 227–263 (1999)

[32] Hansen, F.A., Bouvin, N.O., Christensen, B.G., Grønbæk, K., Pedersen, T.B., Gagach, J.:
Integrating the Web and the World: Contextual Trails on the Move. In: Proc. of ACM-
Hypertext 2004, pp. 98–107 (2004)

[33] Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business
Process Management: A Vision Towards Using Semantic Web Services for Business
Process Management. In: Proceedings of the IEEE ICEBE 2005, Beijing, China, October
18-20, 2005, pp. 535–540 (2005)

[34] Koch, N., Kraus, A., Cachero, C., Melia, S.: Integration of Business Processes in Web
Application Models. Journal of Web Eng. 3(1), 22–49 (2004)

[35] Mecca, G., Merialdo, P., Atzeni, P., Crescenzi, V.: The (Short) Araneus Guide to Web-
Site Development. In: WebDB (Informal Proceedings), pp. 13–18 (1999)

[36] Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive Websites:
the Araneus approach. ACM TOIT 3(1), 49–92 (2003)

[37] Noll, J., Scacchi, W.: Specifying process-oriented hypertext for organizational
computing. Journal of Network and Computer Applications 24, 39–61 (2001)

[38] Oracle, Oracle Developer Suite, JDeveloper 10g, http://www.oracle.com/tools
[39] Rational, Rational Rapid Developer,

 http://www.ibm.com/software/awdtools/rapiddeveloper
[40] Rossi, L., Schmid, H., Lyardet, F.: Engineering Business Processes in Web Applications:

Modeling and Navigation Issues. In: Third International Workshop on Web Oriented
Software Technology, Oviedo 2003, pp. 81–89 (2003)

[41] Schwabe, D., Rossi, G.: The Object-Oriented Hypermedia Design Model.
Communications of the ACM 38(8), 45–46

[42] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich
Internet Applications. In: Latin-American Conference on the WWW, pp. 144–153. IEEE,
Los Alamitos (2007)

[43] Vdovjak, R., Frasincar, F., Houben, G.-J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering 2(1-2), 3–26 (2003)

[44] Web Services Description Language 1.1, W3C Note (March 2001)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 293–318, 2009.
© Springer-Verlag Berlin Heidelberg 2009

GAMBUSE: A Gap Analysis Methodology for
Engineering SOA-Based Applications

Dinh Khoa Nguyen1, Willem-Jan van den Heuvel1, Mike P. Papazoglou1,
Valeria de Castro2, and Esperanza Marcos2

1 European Research Institute in Service Science (ERISS), Tilburg University
P.O. Box 90153, 5000 LE, Tilburg, The Netherlands

{D.K.Nguyen,W.J.A.M.vdnHeuvel,M.P.Papazoglou}@uvt.nl
2 Kybele Research Group, Rey Juan Carlos University

Tulipán S/N, 28933, Móstoles, Madrid, Spain
{valeria.decastro,esperanza.marcos}@urjc.es

Abstract. The objective of business service analysis is to identify candidate
business processes and services, and provide an in-depth understanding of their
functionality, scope, reuse, and granularity. Unfortunately, many of today’s ser-
vice analysis and design techniques rely on ad-hoc and experience-based identi-
fication of value-creating business services and implicitly assume a “blue sky”
situation focusing on the development of completely new services while offer-
ing very limited support for discovering candidate services from a varied
inventory of pre-existing software assets. In this article, we introduce a novel
business service engineering methodology that identifies and conceptualizes
business services in a business domain. Moreover, our approach takes into ac-
count a realistic situation, in which pre-existing enterprise assets must be con-
sidered for the reuse to implement fragments of the newly conceived business
services. A running example is provided to exemplify our approach.1

1 Introduction

Service Oriented Architecture (SOA) promotes highly standardized, loosely coupled
and Web-enabled services to foster rapid, low-cost and easy composition of distrib-
uted enterprise applications [17]. Central to any SOA development methodology are
business service analysis and design techniques for identifying, conceptualizing, pro-
filing and rationalizing service-enabled business processes. Business services capture
transactional and value-creating business activities that are delivered by service pro-
viders to service clients under strict business conditions, e.g., sending an invoice,
checking inventories or creating a purchase order [11]. Business services are intrinsi-
cally conceptual and implementation-agnostic. They may be physically realized in
several alternative ways; typically however they are constructed with Web service
technologies, e.g., SOAP, WSDL and BPEL. Unfortunately, many of today’s service

1 This work has been partially funded by the National Dutch Research Council (NWO) under

the project Service-enAbling Pre-exIsting ENterpriSe Assets (SAPIENSA), and by the
European FP-7 Network of Excellence S-Cube, Grant Agreement no. 215483.

294 D.K. Nguyen et al.

analysis and design methodologies rely only on intuitive or experience-based service
identification techniques that identify business-relevant services from existing best-in-
class case studies. There is a lack of a more rigorous approach that ensures that the
resulting business services can contribute high business value and have the right
granularity level for maintainability and reusability purposes across the enterprise.
The reuse of existing functionalities in the development of new business services in a
specific business domain becomes one of the major aspects in modern SOA develop-
ment methodologies. However, the migration of the existing systems to a new SOA
environment goes far beyond the basic wrapping techniques, which are used to
typically implement a thin SOAP/WSDL/UDDI layer on top of existing software
functionalities [15]. While relatively simple non-critical applications may be effec-
tively built in this way, designing industrial-strength SOAs necessitates a business
service analysis methodology to support the dissecting, decomposing and repurposing
existing software functionalities for the new business services.

The approach that we introduce in this article is named “Gap Analysis Methodol-
ogy for BUsiness Service Engineering” (GAMBUSE) and attempts to address this
specific shortcoming by concentrating on the following two inter-related issues:

• Business Service Identification: In a service-enabled to-be process, each activity
contributes to a well-defined business objective, e.g., order management, inventory
management, customer management, etc., and could be realized by a high-level
composite service interaction. GAMBUSE introduces a process-driven technique to
identify and conceptualize meaningful business services for an SOA project by collec-
tively grouping all activities that contribute to the same course into logically cohesive
and loosely coupled business services. A high-quality SOA design must ensure that
the resulting business services have the right level of granularity for the maintainabil-
ity and reusability purposes.
• Gap Analysis approach for reusing and repurposing existing software assets:
GAMBUSE adopts a flexible gap analysis approach that detects and assesses the
reuse of available software assets (termed as-is services) as (parts of) the newly con-
ceived business services that collectively shape a to-be business process. Functional
equivalence and behavioural and policy misfits between newly developed to-be proc-
ess and (mined) as-is processes from existing physical enterprise assets are taken into
account to support the reuse strategy of existing software functionalities.

Our contribution is the definition of a model-driven approach with models as the

first-class citizens. Adopting a model-driven approach adds the benefits of the “Model
Driven Architecture” (MDA) approach as defined by the OMG [13] to the develop-
ment process of SOA. The MDA approach provides guidelines to capture the
structural as well as the behavioural aspects of a SOA using models, which can then
be translated via standardised transformation rules into interface specifications for any
particular application platforms. Over the last years the OMG has recognized that not
all applications can be developed in a top-down manner and introduced the “Architec-
ture Driven Modernisation” (ADM) approach [24] that provides methods to recover
design information from existing applications for which no MDA model exists
(bottom-up approach).

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 295

Fig. 1. Inputs and Output of GAMBUSE

The GAMBUSE approach is shown in Fig. 1. Inputs of GAMBUSE include the
abstract as-is and to-be process models. The as-is process models are recovered from
pre-existing software assets, e.g., legacy systems, databases, enterprise packages, etc.,
and relies on the ADM approach2 allowing the various stakeholders to understand the
portfolio of available applications and business processes. In contrast, the to-be proc-
ess models are the desired novel business processes introduce to address current and
future enterprise needs. Output of GAMBUSE is a business service blueprint that can
be used to define abstract business services for the next service design phase. This
blueprint not only specifies the new business services in terms of their functionality,
behaviour and policies, but also defines several service realization strategies and pro-
poses a decision framework for selecting an appropriate one. A service realization
strategy should include design decisions whether (parts of) the new business service
functionalities can be obtained by reusing or revamping existing (internal or external)
IT assets, or whether they should be re-designed or developed from scratch [15,17].

In general, gap analysis has already been extensively studied in various domains
such as business process management [9,14] and supply chain management [5]. Sev-
eral approaches have emerged which aim to help organizations obtain a better under-
standing of improving their business. However, it is important to remark that although
most of these proposals provide accurate techniques and indicators to better
understand the best practices leveraging business process improvements, they are
unfortunately not tailored towards specific requirements of SOA processes and leave
service-development in the users’ hands. To the best of our knowledge, there exists no
proposal that defines a model-driven approach for gap analysis, although it is possible
to identify some work describing, in a very abstract way, some details that need to be
taken into account in order to drive the gap analysis by means of models [2,19].

The remainder of this article is structured as follows: Section 2 explains our gap
analysis methodology GAMBUSE in detail. A running example is provided in

2 This depends on the level of documentation available in an enterprise. If the process model

descriptions are detailed and well-documented, an ADM approach is not necessary.

To-Be Business Process Models

As-Is Business Process Models

GAMBUSE
Business Service Blueprint
including
Service Realization Strategies

Business Process Innovation,
Simulation, Modeling Business
Process Portfolio

Current Situation:
Legacy systems
Databases
Enterprise packages

296 D.K. Nguyen et al.

Section 3 to exemplify our approach. Section 4 introduces our method to formally
describe a service (or process) based on a stratified reference service meta-model, on
which the whole GAMBUSE methodology relies. In Section 5, we scrutinize step 3 of
the GAMBUSE methodology, namely the technique to identify and extract business
services out of the to-be process models. Section 6 targets the matching technique in
GAMBUSE that amalgamates various existing techniques. Lastly, Section 7 con-
cludes the article by presenting open research issues to be tackled in future work.

2 GAMBUSE - A Model-Driven Gap Analysis Methodology for
Business Service Engineering

The GAMBUSE approach for gap analysis is firmly grounded on model management,
which has been proposed for studying a similar problem, albeit in the domain of data
integration [3,4]. In contrast to the traditional data-oriented approach that focuses on
data heterogeneity- and impedance mismatches, GAMBUSE leverages a number of
generic meta-model operators3 to address its two ultimate goals of the business ser-
vice analysis: Business Service Identification and Gap Analysis.

To achieve canonicalization and consequently alleviate problems associated with
terminology nuances and functional granularity, we assume that both the as-is and to-
be models are grounded on the Supply Chain Operations Reference model SCOR [5].
In particular, we assume that the GAMBUSE as-is and to-be models are expressed in
SCOR Level-4 processes. Level-4 processes allow enterprises to implement their own
specific supply-chain management practices. Level-4 processes extend Level-3 proc-
esses that provide standard process element definitions, process element information,
inputs and outputs, process performance metrics and best practices where applicable
in a specific supply chain. Furthermore we assume that the process and activity names
are consistent in both the as-is and to-be models. The specific steps of service gap
analysis are depicted in Fig. 2.

• Step 1: Creating meta-model instances for the as-is and to-be business
process. GAMBUSE is based on a stratified reference Service Meta-Model (SMM)
that specifies and correlates all modeling constructs for business processes. During
this step, the Service Schema Specifications (SSS) of the as-is and to-be process that
contain their activities, business entities, attributes, constraints, business rules, etc.,
are instantiated from the SMM. Inspired by the model management vision in [3,4], the
SMM accommodates the generic meta-model operators essential for deriving func-
tional fragments (in step 2) and subsequently business services (in step 3) from the to-
be process model, as well as for the matching between as-is and to-be process in step
4. Section 4 will first describe the SMM in detail, and then explain how to instantiate
the SSS from the SMM for the as-is and to-be process.

3 A meta-model operator is a logical operator that works on the instances of a meta-model. It

can be a simple set operator, or a complex high-level one. Sample operators are extract,
insert, Unify, Decompose, Subtract or Scope. See Appendix A for a
comprehensive overview of operators in GAMBUSE.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 297

• Step 2: Identification and scoping of to-be functional fragments. In the second
step conceptual boundaries are conceived around modelling elements from the to-be
model, mining modelling fragments that are rudimentary formations of related con-
ceptual model elements. Therefore, GAMBUSE adopts the technique from [23] in
parsing a business process into a Process Structure Tree containing Single-Entry-
Single-Exit (SESE) canonical4 fragments and residual activities. The meta-model
operators work on the instances of the to-be activities and produce the new functional
SESE fragments that are again instantiated from the SMM for the next step.
• Step 3: Distilling business services from the to-be process model. The identi-
fied and scoped SESE functional fragments are used as inputs for the identification of
business services. This step subsequently applies meta-model operators on the func-
tional fragments to yield business services that comply with essential quality criteria
including high functional and logical cohesion, low coupling, and the right level of
scoping and autonomy (granularity). Section 5 will describe and illustrate this step in
detail with a running example.
• Step 4: Detecting and assessing the reusability of as-is systems. Functional
overlaps and discrepancies, and misfits in behaviour and business policies between
the as-is and to-be process are discovered during step 4. This step aims to detect reus-
able as-is functionalities (exposed by the existing software systems to implement as-is
activities) for implementing (parts of) the newly identified business services in the to-
be process. A matching method is used in this step to yield the logical equivalence
between the as-is and to-be activities. Section 6 will explain the matching in detail by
means of a running example.

• Step 5: Service Realization and Reusability strategy. During this step, the list
of business services is consolidated, and subsequently an appropriate realization strat-
egy is selected. Strategies include the reuse of existing assets through repurposing or
revamping, development from scratch, outsourced development contract, service

Fig. 2. GAMBUSE steps

4 Canonical means that the SESE fragment must be maximal. More explanations can be found

in [23].

Step 1: Creating meta-
model instances for the
as-is and to-be
business process (Sec-
tion 4)

Step 2: Identification
and scoping of to-be
functional fragments
(briefly discussed in
Section 4)

Step 3: Distilling
business services from
the to-be process
model (Section 5)

Step 4: Detecting and
assessing the reusabil-
ity of as-is systems
(Section 6)

Step 5: Selecting
service realization and
reuse strategy (briefly
discussed in Section 6)

Step 6: Creating Busi-
ness Service Blue-
prints

298 D.K. Nguyen et al.

rental contract, infrastructure rental contract, etc [15,17]. A migration plan is devised
that will ease the transformation of the existing assets in the as-is model into the new
business services.
• Step 6: Creating Business Service Blueprints. GAMBUSE concludes with the
construction of an abstract business service model and detailed metadata that captures
conceptual processes and policy definitions, and serves as the basis for further con-
cretization into service interface definitions (e.g., using WSDL, WS-Policy and
BPEL) during service design. This phase is by now well understood and its detailed
description can be found in [17]. Note that the transformation from the abstract to the
physical model is still under research, but may already be facilitated by several
model-driven techniques, including [10].

In the remainder of the article, we will explain the steps of GAMBUSE in Fig. 2
more in detail, by means of a case study that will be outlined in the next section.

3 Case Study

We introduce in this section a simple, yet realistic case study to exemplify our gap
analysis approach. Let AutoScore be a fictional automotive company that builds its
supply chain conforming to the SCOR model.

Fig. 3 illustrates the as-is and to-be SCOR level 4 models implementing the SCOR
level 3 activity D1.2 “Receive, Validate and Enter Order” by the company Auto-
Score. The as-is process (on the left side of Fig. 3) is the abstraction of an activity
flow that is subsequently executed by the existing functionalities exposed by existing
software systems. Normally, as-is enterprise systems communicate with each other
via standardized synchronous invocation such as Remote Procedure Call (RPC) or
Remote Method Invocation (RMI) in Java, Remote Function Call (RFC) with Busi-
ness API (BAPI) within SAP systems, or by using Sapjco (Sap-java-connector) li-
brary for a connection between a Java system and a SAP system. In some special
cases, especially in the shop-floor manufacturing systems like the Programmable
Logic Controller or Manufacturing Execution System, communication is only
supported by proprietary APIs.

From the technical design point of view, a problem from which enterprises must
suffer is the necessity to support various communication protocols among heteroge-
neous systems. Other inefficiencies are the maintainability and reusability of IT as-
sets. Software functionalities are hard to maintain and reuse across the enterprise
since they statically belong together to enterprise packages or legacy systems and may
also strongly depend on each other. Furthermore, flexibility and agility are other sig-
nificant issues for market competitiveness that enterprises cannot fulfil with this static
setting. For instance, changes in the process because of new market demands lead to
necessary modifications of legacy software systems that could take months to com-
plete and by that time enterprises may have already lost the market.

From the business analysis point of view, the as-is process in Fig. 3 reflects a basic
process variant that suffers from several inefficiencies:

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 299

• Order submission is possible only via phone or letter, because the Order Process-
ing system does not provide a web interface.

• Order cancellation is not allowed after submission. Order Processing and ERP
systems do not have the ‘revert’ option.

• The process does not distinguish between different kinds of customers, treating all
orders in the same manner.

• Most activities are executed sequentially, although they are not dependent on each
other, e.g., A3 and A4.

• Product availability is checked very late (A5-3), even after the order confirmation
is sent to the customer (A5-2). In the worst case that the product volume at that
time is not enough for order fulfilment and still needs extra time to be produced,
the order might be delayed longer.

• Rejecting customers’ orders with letters might not be convenient for explaining
the reasons and solving disputes.

The as-is process in Fig. 3 is recovered by the IT specialists from existing running
systems, reflecting process details on several granularity levels. For instance, in our
case study activities A5 and A6 are described with more detailed refinements contain-
ing the nested finer-grained activities. These nested activities can be considered to be
in AutoScore’s SCOR level 5 process configuration or below.

In addition, we assume AutoScore has implemented a Java system for Order Proc-
essing and utilizes a legacy CRM system and an ERP package. Fig. 3 also explains
which activities are executed by which of these 3 systems. An ad-hoc process redes-
ign and reconfiguration among these systems may help target the inefficiencies
mentioned above, but it would lead to enormous effort and cost to change the current
static setting. Moreover, AutoScore foresees the necessity to reconfigure their systems
into a more modular, dynamic and loosely coupled paradigm with standardized com-
munication protocols to cope with future unforeseen demands.

This situation has lead to the decision of AutoScore to use an SOA to rationalize
their system landscape. Alongside, business analysts of AutoScore sit down together
and improve (redesign) this order process based on some industrial best practices,
e.g., SCOR best practices. The redesigned to-be process will be implemented follow-
ing the SOA paradigm. Firstly, the technology-independent process model on the
right side of Fig. 3 is designed by the business analysts using UML activity diagram.
The next step is our focus to show how GAMBUSE works to extract meaningful
business services from the to-be model and to assess the reuse of existing as-is func-
tionalities for implementing (parts of) these new business services. In the last step, all
the process and business service models will be translated into technology-specific
models, e.g., into WS-* and BPEL, so that they can be deployed and turn into
operation mode.

A simplifying assumption of our running example is that regardless of their level
of granularity, activities within AutoScore always have unique and meaningful labels.
This holds for both as-is and to-be processes. The to-be process allows customers to
submit an order via online form, and to cancel an order if it has not been confirmed
(A’1). Furthermore it differentiates between gold and standard customers. The cus-
tomer type of an individual client can be checked with the customer profile (A’3).
Gold customers’ credits are fully trusted and hence do not need to be validated.

300 D.K. Nguyen et al.

Fig. 3. A Case Study in SCOR level 4

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 301

Fig. 4. Data Structures of Business Entities and Information Entities used in the case study

Assuming customers have been informed about the item prices in the product cata-
logue and hence, they must indicate the item prices in the order and these prices are
validated against an exclusive tariff scheme for gold customers (A’4). In contrast,
credit cards of standard customers are checked for validity before the order can be
processed (A’6), and the prices are validated against a standard tariff scheme (A’5).
Both activities are independent and may be executed in parallel. Note that the activity
A’4 is marked by the business analysts as an extension of A’5 and can accept different
types of arguments, i.e., both gold and standard tariff schemes.

In addition, business analysts have concluded that availability checking can be im-
proved by rescheduling this activity (A’7), and introducing an auxiliary inventory
reservation activity (A’8). After inventory has been checked and reserved, the order
can be accepted, and a confirmation letter is issued to the customer (A’9), while enter-
ing the order into the system (A’10), and releasing product inventory for the delivery
(A’11). In the revamped process, not only a rejection letter (A’12) can be issued, but
also the customers can be called to be informed of the rejection (A’13). Again, busi-
ness analysts have marked A’13 as an extension of A’12. In the last step of the
process, the order is finalized and administratively logged (A’14).

Within the as-is and to-be processes, control nodes are modelled explicitly and as-
signed also with unique labels. Xor-type decision nodes have the name beginning
with D, Merge nodes with M, Split node with S and Join node with J. Pre-, post-
conditions and invariants for each activity are also specified by the annotations or
expressed by the guards of activity transitions. Global business rules and regulatory
compliance can be expressed by following a particular flow of activities, or can be
translated into local invariants that constrain on every activity.

Beside the process model, business analysts also specify the data structures of the
Information Entities used within the process. Fig.4 depicts the Information Entities
that capture input and output data of the process activities. They can have not only
primitive types like integer, boolean, string, etc., but also complex types, meaning that
they can contain other nested complex and simple types. Information Entities are
gathered together to higher-level Business Entities. For instance in Fig. 4, the Busi-
ness Entity Order comprises of orderID (o1), customerID (o2), status (o3), a list of

302 D.K. Nguyen et al.

Items (o4), a orderDelay(o8) and a verificationResult(o9). An Item (o4) is an
Information Entity of a complex type containing ItemID (o5), Quantity(o6) and
PriceIndication(o7). Note that in the to-be process, business analysts decide to reuse
the existing as-is data structures and may introduce new Information Entities or rede-
fine the existing ones. For instance in the to-be process, customerType is newly intro-
duced to distinguish different kinds of customers, and orderDelay is introduced to
keep track of the pending time of the order.

Step 1 of GAMBUSE instantiates the as-is and to-be processes including their ac-
tivities, business entities, information entities, constraints, rules etc. from the SMM.
The results of step 1 will be two SSS descriptions for the as-is and to-be process re-
spectively. Details of the SMM, SSS and instantiating examples of our case study will
be introduced in the next section.

4 Core Service Meta-Model (SMM) and Service Schema
Specification (SSS) for GAMBUSE

GAMBUSE is developed on top of a stratified reference Service Meta-Model (SMM)
that specifies and correlates modelling constructs for processes, policies and business
services. For each specific as-is and to-be business process, a Service Schema Speci-
fication (SSS) can be generated from the SMM by instantiating the concepts and
relations in the SMM. The SSS will be further used to generate executable service
instances that are deployed and operate in some process and service engines. Fig. 5
illustrates the relationships between these abstraction levels. However, in this article
we neglect the instance level of processes and services since GAMBUSE only con-
centrates on the processes and services at the design time. This section will introduce
the details of the SMM (Section 4.2), and the formal description of the concepts in
SMM and elements in SSS (Section 4.3), on which our meta-model operators can be
applied.

Fig. 5. Abstraction levels in GAMBUSE

instantiate

generate

Service Instance

Service Schema Specification
GAMBUSE
Meta-model
operators

Service Meta-Model (SMM)

Service In-
stance

Service Instance
Service Instance

Service Instance

Service Schema Specification (SSS)

Service Schema Specification (SSS)

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 303

4.1 Universal Relationships

In order to show relationships between concepts in the SMM we have adopted the
formal semantics in [1] for describing relationships such as composition, aggregation,
and association found in object-oriented languages and in the AI semantic nets:

Composition:
⎯⎯⎯ →⎯

∃∀
c

xyxy :!,

X Y

1 *

The composition relation between x and y indicates that if x is deleted, y will be de-
leted too. Between two concepts x and y there can be only one composition relation.

Aggregation:
⎯⎯⎯ →⎯

∃∀
a

xyxy :,

X Y

1 *

Between x and y there could be several aggregation relations. An aggregation relation
between x and y indicates that if x is deleted, y will be deleted too, if y has no other
relations.

Association:
⎯⎯⎯ →⎯

∃∃
s

xyxy :,

X Y

1 *

An association relation does not pose any restrictions on x and y.

In general we define a relation between x and y with the following description

General relation:),(
⎯⎯⎯ →⎯

=
r

xynamerelation },,{ sacr =

In UML, relations between the concepts have also the cardinality. We define the
cardinality with the following notation:

1|||| −
yx ycardinalitycardinalit , }1|1|1|0|0{ ≥≤≥∈ycardinalit

where
0 means the cardinality = 0
>=0 means cardinality = 0…*
1 means cardinality = 1
<= 1 means cardinality = 0…1
>= 1 means cardinality = 1…*

For example if we have the following description of a relation R between 2 con-

cepts x and y,)|1||1|,(1−≥
a

xyR , it means that x is an aggregation of one or many

(1…*) y.

4.2 Service Meta-Model (SMM)

The SMM adapted from [1] comprises of concepts, and their parameters and relations.
In particular, parameters can be property domains or attributes. A property domain pdi

304 D.K. Nguyen et al.

has a set of properties pi. The generation of the SSS from the SMM will assign a spe-

cific property for a property domain. For example, the message pattern (property-
domain) of an (WSDL) service operation will be set to request-response (property).
Attributes are the parameters which are assigned specific values when a service in-
stance is created from the SSS, i.e., during runtime. In this article, we do not discuss
the instance level. Hence, although attributes are provided in our formal descriptions,
they are not considered in our approach.

Fig. 6 illustrates the SMM using classical UML class diagram notations. Each class
(representing a concept) in Fig. 6 can be described with the following formal notation

),,(*** relationattributedomainpropertyConcept −

For instance, the concept Information Entity in Fig. 6 has the following
description5

),...)]0][0[,(,,,(1*
⎯⎯⎯ →⎯

−≥≥

s

nEntityInformatioMessageincludesAttvalueRangetypeEntitynInformatio

which means that the concept Information Entity has two property domains type and
valueRange, and among other relations, an association “includes” with the concept
Message. The relation indicates that a Message might include 0 or many Information
Entities and an Information Entity can be included in 0 or many Messages. The con-
cept Information Entity might have a set of attributes Att* but we do not list them
here. In the following, other important concepts and relations in SMM will be
described.

The SMM spans three logical layers: Structural, Behavioural, and Regu-
latory. A Service constitutes the heart-and-soul of the SMM, crosscutting the
three layers. They can be a high-level business services, a composite application ser-
vices, an atomic technical service, or a human-provided service.

The structural layer defines static description of business service constituents
and its operational semantics. In particular, this layer specifies service opera-
tions, i.e., specific functions that a Service provides by consuming input mes-
sages and producing output messages. Messages are logically organized in typed
Information Entities, which collectively make up Business Entities.

Next, the behavioural layer is designed on top of the structural layer,
managing control and execution aspects of the Services. In particular, this layer
predefines (Sub-)Processes that are the implementations of business services.
They comprises of functional fragments, each of which captures a cohesive
capsule of business functionality, such as invoicing. Functional fragments
encompass a number of process activities. An Activity entails a logical
functionality that invokes an (atomic or composite) Service Operation of an-
other Service, or it can be a control flow construct like decision, merge, fork and
join, or it can simply be a human task. (Sub-)Processes are designed as state-full,
where the activities and functional fragments are state transi-
tions that may query or change attribute values of Business Entities. This

5 Note that we have omitted here some other relations of the concept Information Entity for

brevity.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 305

Fig. 6. Service Meta-Model (SMM)

306 D.K. Nguyen et al.

layer also defines Operation Conditions that can be clustered into con-
straint sets and then attached to activities, as pre- and post-conditions
and invariant including, temporal, spatial, financial, constraints.

Lastly, the regulatory layer conceptualizes business decision rules as well
as policies that govern the business logic of process. Particularly, this layer de-
fines the concept of a Business Ruleset, capturing user-defined business
rules. These rules constitute an abstract Service Policy that all Services
must respect.

4.3 Service Schema Specification (SSS)

A Service Schema Specification is a formal description generated from the SMM for
a specific service or process. Business processes themselves can be considered as
high-level services and hence can be transformed into SSS descriptions. In step 1, our
GAMBUSE approach leverages the SSS as a means for formally describing the as-is
and to-be processes in a way that meta-model operators can work on them later.

Definition 4-1. Service Schema Specification (SSS) [1]: SSS is a collective set of

elements niei ,...,1},{ ==ε , in which each ie is an instance of a concept in the

SMM and described by a tuple in the following BNF-format:

occurence. 1-0 means ?'' and s,occurrencen -0 means '*'

integer :

||:

)||||,(:

be,- to|is-as :

)(:),(:

,string:,string:,string :

,),(,,:

1

??

=
=

=

=
−==

===
><=

⎯→⎯⎯→⎯⎯→⎯

−

c

eeeeeeRT

ccRTnamerelation

type

domainpropertyvalpropertyConceptvalname

propertyattributename

typerelationpropertyattributenamee

sac

e

e

An element e is an instance of a concept in the SMM, and according to our
assumption, it must have a globally unique and expressive name. The instantiation
assigns a unique name for the element and selects a specific property for each prop-
erty-domain by applying the function val(). Type indicates whether this element be-
longs to the existing as-is process or the redesigned to-be process. Properties can also
constrain the instantiated Relations, e.g., if a Service Operation instance has the mes-
sagePattern = request-response, then it must have only one Message with
messageRole = input and one Message with messageRole=output.

Step 1 of GAMBUSE creates two SSSs for the as-is and to-be process model respec-
tively by instantiating all corresponding model elements, such as the processes, activi-
ties, input/output Information Entities, Operation Conditions, Constraints, etc. We
briefly introduce in the following the formal description of the element A’4 in the
to-be SSS, which represents the to-be activity A’4 (Validate Gold Price) in our case
study in Section 3 (Fig. 3).

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 307

A’4 is an instance of the SMM concept Activity that has the following formal
description:

),...)]0][0[,'ofinput is('...,

),]0][0[,'by followed is('*,...,,cos,(

1

1

⎯⎯⎯ →⎯
−

⎯⎯⎯ →⎯
−

≥≥

≥≥
s

ActivitynEntityInformatio

s

ActivityActivityAttttypeActivity

Note that we have omitted some other relations of the SMM concept Activity
for the reason of brevity. Then, A’4 is instantiated from the concept Activity by
assigning specific name, properties, and details of the relations, according to our case
study in Section 3 (Fig. 3 and Fig. 4). The instantiated cardinalities of the relations in
A’4 must be the same or restrictions of the cardinalities of the relations in Activ-
ity. Afterwards, A’4 becomes an element in the to-be SSS and has the following
formal description:

>=<
>=<

>=<

>≥

=<

⎯⎯⎯ →⎯
−

⎯⎯⎯ →⎯
−

⎯⎯⎯ →⎯
−

,......'int'*,,'ationPriceIndic':7

..,....)....'node control('*,,'3 be-To Node-Decision':3'

..,....)....'node control('*,,'2 be-To Node-Merge':2'

Entityn Informatioconcept SMM the

 of instancean is IEo7 andActivity concept SMM theof instancesother twoare D'3 M'2, where

),.......]1][1[4'7,'ofinput is('......,

,50)),]1][1[4'3',by' followed is(',)]1][1[2'4','by followed is(',' tasksystem('

*,,Price' Gold Validate':4'

1

11

AttIEo

AttD

AttM

s

AIEo

s

AD

s

MA

AttA

Activity A’4 has the label name ‘Validate Gold Price’, and two properties, ‘system
task’, assigned from the property-domain type, and 50, assigned from property-
domain cost. The former indicates that it is executed by a system functionality and
the latter is the estimated cost of implementing this functionality as service operation.
Because A’4 is a system task, it can follow and be followed by only exactly one node.
The two relations associated with the property ’system task’ imply this restriction.
According to the to-be process of our case study in Section 3 (Fig. 3), A’4 is described
to follow D’3 and be followed by M’2. Among many other relations, we describe here
only another relation ‘is input of’ of A’4. This relation yields that A’4 takes the Infor-
mation Entity ‘PriceIndication’ as input, which is the price in integer submitted by
the customer in the order.

In step 2 of GAMBUSE, the instantiated to-be activities are grouped into func-
tional SESE fragments using the technique described in [23]. Our case study in Fig. 3
also visualizes graphically the results of this step, decomposing the to-be process into
SESE functional fragments that are demarcated by red dashed lines. Notably, each
individual activity is shaped as an atomic, non-decomposable SESE functional

308 D.K. Nguyen et al.

fragment while the entire process is the coarsest-grained SESE fragment. Instances of
the concept functional fragment in the SMM are created for the new SESE
fragments and added to the SSS. Then the meta-model operators are applied for sub-
sequently grouping the to-be activities into these new fragments6. The resulting SESE
fragments are a preparatory step identifying only the candidate business services for
the next step 3. Next section will explain this step, in which GAMBUSE leverages the
same meta-model operators to dissect or recompose the fragments to yield the final
business services, while ensuring the right level of granularity of them.

5 Distilling Business Services from the To-Be Process Model

During step 3 of GAMBUSE, the identified SESE functional fragments7 in the to-be
process are further analyzed to yield the final business services. Starting from these
SESE fragments (fragments for short), which are the instances of the SMM concept
functional fragment and the elements of the to-be SSS, this step leverages a
toolkit of several meta-model operators defined in Section 5.1 to subsequently dissect
and recompose these fragments in order to distil meaningful to-be business services.
Moreover, the resulting business services must comply with essential quality criteria,
including high cohesion and loose coupling. Section 5.2 introduces these foundational
SOA design criteria for business service design. Lastly, Section 5.3 explains the detail
of step 3 of GAMBUSE, grouping the process activities into highly cohesive and
loosely coupled business services.

5.1 Meta-Model Operators for Distilling Business Services

From the business perspective it is preferable to identify and distil coarse-grained and
highly cohesive business services that collectively shape a self-contained business
process. The Unify operator facilitates the amalgamation of fragments that exhibit
similar functionalities to coarser-grained ones. This operator thus facilitates the rec-
onciliation of the to-be model as far as the granularity of their constituents is con-
cerned. Principally, two unification variants are supported. Firstly, two fragments can
be merged in a new coarser-grained one, or secondly, a fragment can be injected into
another one.

Definition 5-1. Unify operators, (FΛ | F2’) = Unify (F1 , F2), are composite operators
that use two fragments as inputs, and result in a new aggregated one or a new version
of an existing one. Inspired by [12], the unification operator utilizes the GraphMerge
algorithm [6], which basically consists of four subsequent steps: (1) transform the
fragments F1, F2 into two directed graphs g1, g2, (2) reconcile the labels lm and ln of all
sub-fragments fm and fn (fm ∈ F1 and fn∈ F2) (3) fuse two graphs, (4) make resulting
graph well-formed respecting the meta-model underpinning (F1, F2), i.e., the SMM in
this case. The result is a new fragment FΛ, which is again instantiated from the SMM
and added into the to-be SSS, or a modified version F2’ of F2 in the to-be SSS.

6 We do not describe this step in detail because the meta-model operators used for grouping in

this step are similar to the ones that will be used in the next step 3. We refer interested readers
of the SESE decomposition technique to the work reported in [23].

7 Note that each individual activity is also a finest-grained SESE fragment.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 309

Extracting a fragment out of a process model is facilitated by the extract operator.
This operator simply removes all relations between this fragment and other fragments
in the SSS. The other way around, a new fragment can be weaved into a process
model with the insert operator, by adding new relations with the existing fragments
in the SSS.

5.2 Cohesion and Coupling Criteria

Cohesion and coupling are key guiding principles to ascertain reasonable quality of
the resulting business services. Researchers recently studied the use of existing cohe-
sion and coupling criteria for software systems for process design [8]. The work re-
ported in [18,22] provides a comprehensive state-of-the-art in cohesion and coupling
metrics that are particularly useful for measuring the quality of different design op-
tions of an entire business process. Although these metrics are useful in their own
right, they have very limited value to business service engineers if not augmented
with additional information for business service identification.

GAMBUSE considers cohesion as the degree of the strength of functional related-
ness of activities within each business service. Coarse-grained and highly cohesive
business services should be identified and distilled from the to-be process for main-
tainability and reusability purposes. GAMBUSE follows a set of guidelines to ensure
a high cohesion degree of the resulting business services (adapted from [17]):

• Functional cohesion: A functionally cohesive business service should perform
activities that are related to one and only one well-defined business function.

• Data cohesion: A data-cohesive business service is the one whose activities have
high overlaps of input and output data. Data-cohesive business services are cleanly
decoupled from other business services as their activities are hardly related to
other activities.

• Logical cohesion: A logically cohesive business service is the one whose activities
perform a set of independent but logically similar functions (alternatives) of the
same general category and are tied together by means of control flows.

In our case study in Section 3 (Fig.3 and Fig. 4), A’1-Register Order and A’2-
Verify Order can be considered to be functionally cohesive, contributing to the same
business function “Order Management”. Data cohesion can be checked by computing
the overlaps of input/output Information Entities between two activities. However,
overlaps in output data are excluded because they reflect different variants that result
in the same outcome. For instance, A’7-Check Availability and A’8-Reserve Inventory
are data-cohesive, since they both consume the same input Information Entities:
ItemID(o5) [1…N] and Quantity(o6) [1…N]. An activity and its extensions can be
considered to be logically cohesive, e.g., A’5-“Validate Price” and A’4-“Validate
Gold Price”, since they are two alternatives of the same logical function.

In addition to cohesion, coupling is another criterion for a high-quality process de-
sign. Coupling must be analyzed from the global process design perspective to evalu-
ate the inter-dependency grade between the process elements and hence yield the
process complexity. It is hypothesized that a process with high coupling grade (high
complexity) contains more errors than with low coupling grade [7]. Step 3 of
GAMBUSE aims to identify not only highly cohesive but also loosely coupled

310 D.K. Nguyen et al.

business services. Loose coupling can help increase the understandability of the proc-
ess design and isolate a business service from changes of the other, therefore increase
the maintainability and reusability of the overall process and also its underlying
business services.

5.3 Grouping Process Activities into Business Services

In step 3, GAMBUSE leverages cohesion and coupling criteria in a novel way for
mining business services from the SESE fragments in the to-be process model.
Particularly, mining is organized in two steps:

• Cohesion criteria assist in deciding whether two fragments should be merged into
a new, more cohesive, and higher-order fragment. Our inside-out approach begins
with the finest-grained fragments in a model, namely the process activities, and in-
crementally groups them into a coarser-grained fragment, if they are highly cohesive
according to the criteria above. Inside a parent fragment F, grouping among child
fragments will be iteratively performed until the fix point where no new fragment can
be further created. Then, F will be neglected, i.e., removed from the to-be SSS, and
the new constituted fragments inside F will become again the child fragments of the
parent fragment of F for the next grouping round.

For instance in our case study in Section 3 (Fig. 3), A’7 and A’8 are cohesive and
can be unified. Hence, the whole SESE fragment F1 becomes a cohesive fragment.
However, it is not always the case that an SESE fragment becomes a cohesive frag-
ment. Since A’5 and A’6 are not cohesive enough, they remain separated. F3 will then
disappear and A’5 and A’6 will be further considered for grouping inside F2. The
other way around, a resulting cohesive fragment might not always be an SESE frag-
ment, e.g., continuing our example inside F2, A’5 is now highly cohesive with A’4
and can be unified to a new cohesive but non-SESE fragment.
• In the second step of mining, the resulting cohesive fragments will be further ana-
lyzed and reinforced according to the coupling criterion. It could be the case that two
non-cohesive fragments have too many dependencies and hence still need to be
unified into a new fragment. In general, it is hard to automatically detect a local con-
stellation of highly coupled fragments inside the to-be process. Rather, this step re-
quires human involvement from business process analysts who may suggest the
grouping alternatives of process elements to reduce the total coupling grade of the
process. A coupling metric is crucial in this step to provide the means for evaluating
each grouping alternative. Recent work in [7,18,22] introduces a metric that evaluates
the coupling grade between all process steps in a model, taking into account also the
impact of the coupling degree of different connectors (AND, OR, XOR). This metric
could help business service engineers decide whether a grouping alternative can help
reduce the total coupling grade of the to-be process.

In conclusion, starting with the SESE functional fragments, this step subsequently
groups two fragments F1 and F2 into a new one F, if they are highly cohesive or
highly dependent on each other. Instances of all the newly resulting fragments are
created from the SMM and added to the to-be SSS. Meta-model operators needed in
this case are: (1) extract(SSS, F1), i.e., extracting the F1 out of the to-be SSS, (2)
extract(SSS, F2), (3) F=Unify(F1, F2), i.e., unifying F1 and F2 to F, and lastly, (4)
insert(SSS, F), i.e., inserting the new F to the to-be SSS.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 311

Fig. 7. To-Be Process with final business services based on cohesion and coupling criteria

At the end of this step, the resulting fragments embody the “final” business ser-
vices that should be included in the to-be SSS. Business services can be instantiated
from the SMM and added to the to-be SSS as follows: For each final fragment F in
the to-be SSS, which is actually an instance of the functional fragment in the
SMM, (1) create a new instance S of the Service in the SMM with type “Busi-
ness Service” and add it to the to-be SSS, (2) link the service S to the fragment
F with the relation “executes”, indicating that F is executed by S.

Fig. 7 depicts the final business services resulting from cohesion- and coupling-
based grouping of activities. The resulting fragments after the first step of grouping
based only on the cohesion criteria are demarcated by the black lines. In the second
step, more model elements are grouped together to reduce the total coupling grade of
the process, resulting in the final business services demarcated by the red dashed
lines. For instance, A’6 is included in BS4 and A’9 is included in BS5, although BS4
and BS5 then become not as cohesive as before. Although further groupings are still
able to reduce the total coupling grade, the business service engineers decide to stop
here because otherwise, the resulting business services are too coarse-grained and no
longer sufficiently cohesive. They also believe that they have reached a reasonable
design quality of the to-be process.

312 D.K. Nguyen et al.

6 Detecting and Assessing the Reusability of As-Is Systems

Functional overlaps and discrepancies, as well as misfits in behaviour and policy
between the as-is and to-be process are detected in the step 4 of GAMBUSE, aiming
to assess the reusability of existing software functionalities that currently perform
specific activities in the as-is process. Given the formal Service Schema Specifica-
tions (SSS) of the as-is and to-be process derived from step 1, several activity match-
ing approaches are introduced in this section to detect the equivalence between an
as-is and a to-be activity. These comprise of:

• Discovery of functional overlaps or extensions based on simple label matching.
• Syntactic matching of activity signatures.
• Behavioural matching of activity signatures.

All these three matching approaches are performed by the meta-model operator
Match which operates on the SSS as-is and to-be activities and other related SSS
elements such as Information Entities, Operation Conditions, etc.

Firstly, functional overlaps between as-is and to-be activities in GAMBUSE rely
on simple label matching, since we assume that activities always have unique and
meaningful labels regardless of their granularity level. Furthermore in the to-be proc-
ess, we also assume that activities and their extensions are marked by the business
analysts. Our approach is simple, if a to-be activity A’ is a functional overlap of an as-
is activity A, all extended activities of A’ will be functional extensions of A. For
instance in our case study in Section 3 (Fig. 3), A’5 (“Validate Price”) and A4
(“Validate Price”) have the same label and are functionally overlap. Hence, A’4
(“Validate Gold Price”) (the extension of A’5) can be considered as a functional
extension of A4.

In addition to functional overlaps and extensions based on label matching, we
require the syntactic and behavioural signature compatibility of as-is and to-be activi-
ties. Our work so far concentrates on matching the signatures of activities.

Definition 6-1: Activity Signature. The signature of an activity A is defined as a 5-
tuple A = (inputs, outputs, preconditions, post-conditions, invariants) with

inputs = (Information Entity*), outputs = (Information Entity*),
preconditions = (Operation Condition*), post-conditions = (Operation Condi-

tion*), invariants = (Operation Condition*), and
Operation Condition = (Constraint*).
Information Entity, Operation Condition and Constraint are related elements of

the element Activity in the SSS. Inputs and outputs signify the syntactic signature and
pre-, post-conditions and invariants signify the behavioural signature.

Example 6-1: In our case study in Section 3 (Fig. 3 and Fig. 4), the signature of the to-
be activity A’4 (“Validate Gold Price”) contains:
inputs=< (ItemID(o5), PriceIndication(o7) [1…N] , customerType(c2)>
outputs=< verificationResult(o9), status(o3) >,
preconditions=<”customerType=’gold’”>,
post-conditions=<”status=’PriceValidated’”>, invariants=<>

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 313

and the signature of the as-is activity A4 (“Validate Price”) contains
inputs=< (ItemID(o5), PriceIndication(o7) [1…N] >,
outputs=< verificationResult(o9), status(o3) >,
preconditions=<>,
post-conditions=<”status=’PriceValidated’”>, invariants=<>

Signature matching comprises of two sub-steps: syntactic signature matching with
inputs and outputs (Section 6.1) and behavioural signature matching with precondi-
tions, post-conditions and invariants (Section 6.2). Lastly, Section 6.3 introduces the
meta-model operators Match to yield the activity equivalence and Disparity to detect
the activities in the to-be process that cannot be matched.

6.1 Syntactic Signature Matching

Syntactic signature matching concentrates on the matching of input/output data types
of as-is and to-be activities. Data in our approach are captured in Information Entities,
which denote the elements in the SSS and have defined XSD types. The following
theoretical approach of syntactic signature matching is based on the work reported in
[16,20,21] which leverages type checking technique for checking version compatibil-
ity of service signature interfaces:

Definition 6-2: Contra-Variance of Input Information Entities. Let IN be the collec-
tion of input Information Entities ie of an activity A and let IN’ be the collection of
input Information Entities ie’ of an activity A’. Then IN is contra-variant to IN’, iff
∀ie ∈ IN, ∃ ie’ ∈ IN’, so that ie’ has the same or extended XSD type8 as ie.

Definition 6-3: Co-Variance of Output Information Entities. Let Out be the collec-
tion of output Information Entities ie of an activity A and let Out’ be the collection of
output Information Entities ie’ of an activity A’. Then Out is co-variant to Out’, iff
∀ie’ ∈ Out’, ∃ ie ∈ Out, so that ie has the same or extended XSD type as ie’.

Definition 6-4: Syntactic signature compatibility [20]. A to-be activity Aω, has a
syntactically compatible signature with Aα , denoted by Aα ⊕ Aω , iff inputs of Aα are
contra-variant to inputs of Aω (see def 6-2) and outputs of Aα are co-variant to outputs
of Aω (see def 6-3)

Example 6-2: Continuing the example 6-1, we claim that the to-be activity A’4 has a
syntactically compatible signature with the as-is activity A4 because:

- In our case study in Section 3, as-is and to-be processes use the common Infor-
mation Entities with primitive types. Only in the to-be process, some extra In-
formation Entities are newly introduced.

- A’4 consumes one input Information Entity more, i.e., the customerType (c2).
- A’4 produces the same output Information Entities as A4.

8 An XSD type extension can be a primitive type extension, e.g., long extends int, or a complex

type extension, i.e., ∀e - nested Information Entities in ie, ∃e’ - nested Information Entities in
ie’, so that e’ has the same or extended XSD type as e.

314 D.K. Nguyen et al.

The next step is to consider the behavioural signature compatibility between an as-is
and a to-be activity.

6.2 Behavioural Signature Matching

The behavioural signature of an activity is defined as a set of preconditions, post-
conditions and invariants that constrain the activity execution9. Global business rules
and policy that constrain all (or a subset of) activities may be translated into local
rules of each activity and expressed by a set of Operation Conditions in the
SSS, namely the Pre-, Post-conditions and Invariants. Each of these
Operation Conditions consists of a number of Constraints. In the cur-
rent version of GAMBUSE, a Constraint ct is expressed by restricting the proper-
ties ”value range” Ri of one or many SSS Information Entities iei with
primitive XSD types, denoted by ct ∑i (iei, Ri) , i=1…N.

Example 6-3: For instance in our case study in Section 3 (Fig. 3 and Fig. 4), let vR be
the property “value range” of the Information Entity orderDelay(o8), and vR is ini-
tially set to [1…30] (days) by default by the company AutoScore, meaning that in
general case an order can delay maximum 30 days. Then, the precondition “Order
Delay < 1 week” of A’9 can be translated into vR = [1…7] (days).

Definition 6-5: Constraint Extension: A constraint ct is an extension of another con-
straint ct’, denoted by ct ⊇ ct’, iff
- both of them can be translated into a set of restricted value ranges of Information

Entities, i.e., ct ∑i (iei, Ri) , i=1…N and ct’ ∑j (ie’j, Rj) j=1…M, and
- ∀ ie’j, ∃ iei , so that iei has the same or extended primitive XSD type as ie’j , and Ri

⊇ Rj.

Example 6-4: Continuing the example 6-3, a sample extension vR1 of the precondition
vR of A’9 could be “Order Delay < 2 week”, i.e., vR1 = [1…14] (days).

Definition 6-6: Contra-Variance of Preconditions. Let Pre be the collection of pre-
condition constraints of an activity A and let Pre’ be the collection of precondition
constraints of another activity A’. Then Pre is contra-variant to Pre’, iff ∀ct∈ Pre, ∃
ct’ ∈ Pre’, so that ct ⊆ ct’ (see def 6-5).

Definition 6-7: Co-Variance of Post-conditions. Let Post be the collection of post-
condition constraints of an activity A and let Post’ be the collection of post-condition
constraints of another activity A’. Then Post is co-variant to Post’, iff ∀ct’ ∈ Post’, ∃
ct ∈ Post, so that ct’ ⊆ ct (see def 6-5).

Definition 6-8: Contra-Variance of Invariants. Let Inv be the collection of invariant
constraints on an activity A and let Inv’ be the collection of invariant constraints on
another activity A’. Then Inv is contra-variant to Inv’, iff ∀ct∈ Inv, ∃ ct’ ∈ Inv’, so
that ct ⊆ ct’ (see def 6-5).

9 In fact, the behaviour of an activity with pre-, post-conditions and invariants implicitly reflects

its functionality. Hence, behavioural signature matching may be considered to complement
our simple functional matching approach based on label matching mentioned before.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 315

We are now able to derive the definition of behavioural signature compatibility.

Definition 6-9: Behavioural signature compatibility To-be activity Aω has behaviour-
ally compatible signature with as-is activity Aα , denoted by Aα ≈ Aω , iff

- The preconditions and invariants of Aα are contra-variant to the preconditions
and invariants of Aω (see def 6-6 and def 6-8) and

- The post-conditions of Aα are co-variant to the post-conditions of Aω (see def 6-7).

Example 6-5: Continuing the examples 6-1 and 6-2 regarding our case study in Sec-
tion 3 (Fig. 3), we claim that the to-be A’4 has a behaviourally compatible signature
with the as-is A4 since:

- A’4 requires the precondition “customerType=gold” while A4 has no precondition.
- Both A’4 and A4 require the post-condition ”status=PriceValidated”.
- Both A’4 and A4 have no invariant.

6.3 Match and Disparity Operators

Given the theoretical approaches for functional overlap (or extension) and (syntactic
and behavioural) signature compatibility, we define the meta-model operator Match to
yield activity equivalence.

Definition 6-10: Match operator. This operator works on the SSS elements, i.e., an
as-is activity Aα and a to-be activity Aω and other related elements, to yield equiva-
lence relation ‘≡’ between these two activities, denoted by Aα ≡ Aω, meaning that Aω
can be substituted by Aα. We define Aα ≡ Aω iff

- Aω is a functional overlap or extension of Aα and
- Aα ⊕ Aω (see def 6-4) and Aα ≈ Aω (see def 6-9).

In addition, the equivalence relation detected by the Match operator is distinguished
between absolute and partial equivalence. In particular, Aα is absolutely equivalent to
Aω if it is a functional overlap of Aω and has exactly the same syntactic and behav-
ioural signature as Aω. That means the as-is functionalities implementing Aα can be
completely repurposed to implement Aω. All other cases are partial equivalence,
meaning that the as-is functionalities must be revamped before being reused.

Beside activity equivalence, disparities between as-is and to-be process can be
identified by the disparity operator. This operator is basically a variant of the Full-
OuterMatch introduced in [4], revealing activities that appear in the to-be model but
cannot be matched to any activities in the as-is model, but not the other way around.

Definition 6-11: Disparity operator. The disparity operator takes the as-is model Mα,
and the to-be model Mω as inputs, and returns process activities that appear in the to-
be but not in the as-is model, i.e., new activities that were added to or revamped in the
to-be model. Hence, this operator returns all Aω ∈ Mω, where ¬(Aα ≡ Aω), ∀Aα ∈
Mα.

316 D.K. Nguyen et al.

Example 6-6: Regarding our case study in Section 3 (Fig. 3), activity matching yields:
- Absolute equivalence: A2 ≡ A’2, A4 ≡ A’5, A3 ≡ A’6, A5-4 ≡ A’11, A6-1 ≡ A’12, A6-2 ≡

A’14.
- Partial equivalence: A1 ≡ A’1 , A4 ≡ A’4, A5-3 ≡ A’7, A5-2 ≡ A’9, A5-1 ≡ A’10, A6-1 ≡

A’13.
- Disparities: A’3, A’8.

At the end of this matching step, the business service engineers are provided with:

• Final business services collectively constituting the to-be process.
• Reusability of as-is process activities for the to-be process with associated infor-

mation like which existing software functionalities of which existing systems are
currently implementing these as-is activities.

In step 5 of GAMBUSE, with this information business service engineers can make
educated decisions on the realization strategy for each newly conceived business ser-
vice. For instance, revamping or repurposing existing functionalities will be applied for
business services with high reusability of as-is software assets that can be efficiently
maintained and migrated to SOA environment. In contrast, business services with low
reuse or with reuse of cost-intensive functionalities will be considered to be newly
developed in-house, outsourced, or rent from external service providers.

Example 6-7: Fig. 7 depicts the final business services in the to-be process of our
case study. In addition, the matching results given in example 6-6 yield the reusability
of as-is functionalities. In step 5 of GAMBUSE, the initial decisions of the business
service engineers are as follows:

- Reusing existing systems to implement BS1, BS4, BS5, BS6 since these business
services contain only matched activities that can be realized by repurposing or re-
vamping existing as-is functionalities.

- Developing BS2 and BS3 from scratch, since they have no or low reuse of existing
functionalities.

However, the cost of modifying the existing rigid CRM and ERP systems for im-
plementing BS5 and BS6 and the cost of migrating them into SOA environment are
considerably very high. Hence, the business service engineers finally change their
minds to purchase new SOA-based enterprise packages for realizing BS5 and BS6.

7 Conclusions and Further Research Work

In this article, we have introduced the novel business service engineering methodology,
GAMBUSE, for developing SOA-based applications. GAMBUSE provides the tech-
niques to identify modular, cohesive, and reusable business services in a redesigned to-
be process, while taking into account also the reuse of existing functionalities exposed
by existing software assets. In contrast to existing service and gap analysis techniques,
the methodology that we presented here represents a first attempt in assisting business
service engineers to identify reusable parts of the business services in as-is process
models, stressing reliance on a reference service meta-models, and taking into account a
set of development strategies and foundational SOA design principles.

GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications 317

The research results presented in this article are core in nature. Improvements are
needed in several directions. Firstly, we would like to further formalize the semantics
of the meta-model operators, e.g., defining the matching operator so that it can cope
with business protocol- and transactional semantics. Then, we intend to develop an
experimental prototype to further study the ramifications of the operators. Our current
implementation uses ConceptBase, a deductive database management system, within
which we have defined the operators as a set of declarative and active rules that oper-
ate on as-is and to-be model and meta-model facts; however, this approach is too
restrictive for our purposes. Furthermore, we may extend GAMBUSE with modelling
constructs for capturing business value, so candidate business services may not only
be identified and developed relying on both technical functional and non-functional
criteria, but also on the degree in which they contribute to business objectives. Last
but not least, we also foresee the necessity to incorporate with industrial partners to
gain experience and lesions learned from applying the methodology in the industry.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service
specifications. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
359–374. Springer, Heidelberg (2008)

2. Armstrong, C., Underbakke, B.: MDA Legacy Modernization Case Study: State of Wis-
consin Unemployment Insurance Division, Architecture-Driven Modernization Workshop
- A Model-driven Approach to Modernizing IT Systems, Chicago, IL, USA (2004)

3. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management of
Data, ACM, NY (2007)

4. Bernstein, P., Halevy, A., Pottinger, R.: A vision for management of complex models.
ACM SIGMOD Record 29(4), 55–63 (2000)

5. Bolstorff, P., Rosenbaum, R.: Supply Chain Excellence: A Handbook for Dramatic Im-
provement Using the Scor Model, 2nd edn. Ed. AMACOM (2007)

6. Buneman, P., et al.: Theoretical Aspects of Schema Merging. In: Pirotte, A., Delobel, C.,
Gottlob, G. (eds.) EDBT 1992. LNCS, vol. 580, pp. 152–167. Springer, Heidelberg (1992)

7. Cardoso, J., Vanderfeesten, I., Reijers, H.A.: A weighted coupling metric for business
process models. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, Springer, Heidelberg (2007)

8. Guceglioglu, A.S., Demirors, O.: Using Software Quality Characteristics to Measure Busi-
ness Process Quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg (2005)

9. Jeston, J., Nelis, J.: Business Process Management: Practical Guidelines to Successful Im-
plementations, 3rd edn. Butterworth-Heinemann (2006)

10. Mantell, K.: From UML to BPEL: MDA in a Web Services World, DeveloperWorks (Sep-
tember 2005)

11. Marks, E., Bell, M.: Service Oriented Architecture: A planning and implementation guide
for Business and Technology. John Wiley & Sons, Chichester (2006)

12. Melnik, S. (ed.): Generic Model Management. LNCS, vol. 2967. Springer, Heidelberg
(2004)

13. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1, Document number omg/2003-06-01
(2003), http://www.omg.com/mda

318 D.K. Nguyen et al.

14. Palmer, N., Mooney, L.: Building a business case for BPM – a fast path to real result.
White paper (2007)

15. Papazoglou, M.P., van den Heuvel, W.J.: Business Process Development Lifecycle Meth-
odology. Communications of ACM (October 2007)

16. Papazoglou, M.P.: The Challenges of Service Evolution. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)

17. Papazoglou, M.: Web service: principle and technology. Pearson Prentice Hall (2008)
18. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow Proc-

ess Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp.
290–305. Springer, Heidelberg (2004)

19. Ulrich, W.: Aligning Existing IT Architectures with SOA, OMG SOA Information Day
(2004), http://soa.omg.org/SOA-Info-Day_12-06.htm

20. Van den Heuvel, W.J.: Aligning Modern Business Processes and Legacy Applications.
MIT Press, Cambridge (2007)

21. Van den Heuvel, W.J.: Matching and Adaptation: Core Techniques for MDA-(ADM)-
driven Integration of new Business Applications with Wrapped Legacy Systems. In:
MELS Workshop, IEEE, Los Alamitos (2004)

22. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Evaluating Workflow Process De-
signs using Cohesion and Coupling Metrics. Computers in Industry 59(5), 420–437 (2008)

23. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for
business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J., Nara-
simhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

24. Watson, A.: A Brief History of MDA, Upgrade. The European Journal for the Informatics
Profesional IX(2) (2008)

Appendix A: Generic Meta-model Operators in GAMBUSE

Primitives
Signature Description
c = extract (M,c) Returns classifier(s) c in model M.
M’ = remove (M,c) Returns a sub-model of model M that does not con-

tain classifiers in c.
M’ = insert (M,c) Returns a “super-model” of model M that also con-

tains classifier c.
Higher-order operators
Signature Description
(cα ≡ cω)= MatchΓ(Mα,Mω) Returns pairs of equivalent classifiers from the as-is

model, Mα, and the to be model Mω according to
equivalence level Γ.

(cΛ | c2’) = Unify (c1 , c2) Returns the new classifier CΛ that composes two
classifiers C1, C2. Alternatively, it yields a new ver-
sion of C2’ that subsumes C1.

(c1 , c2)= Decompose(CΛ) Returns the two new classifiers c1, c2 that are de-
composed from CΛ

cω Disparity (Mα,Mω) Returns all classifiers cω from the to-be model Mω
that are not in the as-is model Mα.

Mω’ Subtract (Mω, cω) or
Scope(Mω, cω)

Returns the scoped model Mω’ without cω

Web Service Composition via the Customization
of Golog Programs with User Preferences�

Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada
{shirin,nataliya,sheila}@cs.toronto.edu

Abstract. We claim that user preferences are a key component of effec-
tive Web service composition, and one that has largely been ignored. In
this paper we propose a means of specifying and intergrating user prefer-
ences into Web service composition. To this end, we propose a means of
performing automated Web service composition by exploiting a flexible
template of the composition in the form of a generic procedure. This tem-
plate is augmented by a rich specification of user preferences that guide
the instantiation of the template. We exploit the agent programming
language Golog to represent our templates as Golog generic procedures
and we exploit a first-order preference language to represent rich qualita-
tive temporally-extended user preferences. From these we generate Web
service compositions that realize a given generic procedure, satisfying
the user’s hard constraints and optimizing for the user’s preferences. We
prove our approach is sound and optimal. Our system, GologPref, is im-
plemented and interacting with services on the Web. The language and
techniques proposed in this paper can be integrated into a variety of
approaches to Web or Grid service composition.

Preamble

We were inspired to include the research that follows in this volume in honour
of John Mylopoulos because it touches upon at least two different themes that
John has addressed in his research in recent years. In particular, John’s work
on Tropos has focused on the specification of information system requirements
in terms of actors, goals, and interdependencies. The Tropos methodology can
be realized in a variety of agent programming environments, including variants
of Golog. John and his colleagues have applied the Tropos methodology to the
design of a variety of software systems, including the design of Web services.
In this context our Golog Web service composition templates can be seen as a
specification of the requirements of our Web service composition, while our user
preferences correspond to a specification of soft requirements to be optimized.

� An earlier version of this paper originally appeared as Web Service Composition
via Generic Procedures and Customizing User Preferences in [1] and is reprinted in
revised form with the permission of the publishers.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 319–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

320 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

1 Introduction

Web services provide a standardized means for diverse, distributed software ap-
plications to be published on the Web and to interoperate seamlessly. Simple Web
accessible programs are described using machine-processable descriptions and
can be loosely composed together to achieve complex behaviour. The weather ser-
vice at www.weather.com and the flight-booking services at www.aircanada.ca,
are examples of Web applications that can be described and composed as Web
services. They might be coupled as part of a travel-booking service, for
example.

Automated Web service composition is one of many interesting challenges fac-
ing the Semantic Web. Given computer-interpretable descriptions of: the task
to be performed, the properties and capabilities of available Web services, and
possibly some information about the client or user’s specific constraints, auto-
mated Web service composition requires a computer program to automatically
select, integrate and invoke multiple Web services in order to achieve the speci-
fied task in accordance with any user-specific constraints. Compositions of Web
or Grid services are necessary for realizing both routine and complex tasks on
the Web (resp. Grid) without the need for time-consuming manual composition
and integration of information. Compositions are also a useful way of enforcing
business rules and policies in both Web and Grid computing.

Fully automated Web service composition has been characterized as akin to
both an artificial intelligence (AI) planning task and to a restricted software
synthesis task (e.g., [2]). A composition can be achieved using classical AI plan-
ning techniques by conceiving services as primitive or complex actions and the
task description specified as a (final state) goal (e.g., [3,4]). This approach has
its drawbacks when dealing with data. In general, the search space for a com-
position (aka plan) is huge because of the large number of available services
(actions), which grow far larger with grounding for data.

A reasonable middle ground which we originally proposed in [5,2] is to specify
a flexible template of the composition in the form of a generic procedure and
to customize such a procedure with user constraints. We argued that many of
the tasks performed on the Web or on intranets are repeated routinely, and the
basic steps to achieving these tasks are well understood, at least at an abstract
level – travel planning is one such example. Nevertheless, the realization of such
tasks varies as it is tailored to individual users. As such, our proposal was to
specify such tasks using a workflow template or generic procedure and to cus-
tomize the procedure with user constraints at run time. Such an approach is
generally of the same complexity as planning but the search space is greatly
reduced, and as such significantly more efficient than planning without such
generic advice.

In [2] we proposed to use an augmented version of the agent programming
language Golog [6] to specify our generic procedures or workflows with sufficient
nondeterminism to allow for customization. (E.g., “book inter-city transporta-
tion, local transportation and accommodations in any order”). User constraints

Web Service Composition via the Customization of Golog Programs 321

(e.g., “I want to fly with Air Canada.”) were limited to hard constraints (as
opposed to “soft”), were specified in first-order logic (FOL), and were applied to
the generic procedure at run-time to generate a user-specific composition of ser-
vices. A similar approach was adopted using hierarchical task networks (HTNs)
to represent generic procedures or templates, and realized using the HTN plan-
ner, SHOP2 (e.g., [7]) without user customization of the HTN template.

In this paper, we extend our Golog framework for Web service composition,
customizing Golog generic procedures not only with hard constraints but with
soft user constraints (henceforth referred to as preferences). These preferences
are defeasible and may not be mutually achievable. We argue that user prefer-
ences are a critical and missing component of most existing approaches to Web
service composition. User preferences are key for at least two reasons. First, the
user’s task (specified as a goal and/or generic procedure with user constraints)
is often under constrained. As such, it induces a family of solutions. User pref-
erences enable a user to specify properties of solutions that make them more
or less desirable. The composition system can use these to generate preferred
solutions.

A second reason why user preferences are critical to Web service composition
is with respect to how the composition is performed. A key component of Web
service composition is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of services) are selected
for composition based on their preconditions and effects, and there is often only
one primitive action that realizes a particular effect. Like actions, services are
selected for composition based on functional properties such as inputs, output,
preconditions and effects, but they are also selected based on domain-specific
nonfunctional properties such as, in the case of airline ticket booking, whether
they book flights with a carrier the user prefers, what credit cards they accept,
how trusted they are, etc. By integrating user preferences into Web service com-
position, preferences over services (the how) can be specified and considered
along side preferences over the solutions (the what).

In this paper we recast the problem of Web service composition as the task
of finding a composition of services that achieves the task description (specified
as a generic procedure in Golog), that achieves the user’s hard constraints, and
that is optimal with respect to the user’s preferences. To specify user preferences,
we exploit a rich qualitative preference language, based on the LPP language
proposed by Bienvenu et al. to specify users’ preferences in a variant of linear
temporal logic (LTL) [8,9]. We prove the soundness of our approach and the
optimality of our compositions with respect to the user’s preferences. Our system
can be used to select the optimal solution from among families of solutions that
achieve the user’s stated objective. Our system is implemented in Prolog and
integrated with a selection of scraped Web services that are appropriate to our
test domain of travel planning.

The work presented here is predicated on the assumption that Web services
have been described in a computer-interpretable form. This is the starting point

322 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

for most work on semantic Web services [5] and a great deal of effort has gone
into the development of ontologies for precisely this purpose. In this paper, Web
service descriptions are presented in FOL, not in one of the typical Semantic
Web languages such as OWL [10] nor more specifically in terms of a semantic
Web service ontology such as OWL-S [11], WSMO [12] or SWSO [13]. Neverthe-
less, it is of direct significance to semantic Web services. As noted in (e.g., [11])
process models, necessary for Web service composition, cannot be expressed in
OWL while preserving all and only the intended interpretations of the process
model. OWL (and thus OWL-S) is not sufficiently expressive. Further OWL
reasoners are not designed for the type of inference necessary for Web service
composition. For both these reasons, Web service composition systems generally
translate the relevant aspects of service ontologies such as OWL-S into inter-
nal representations such as the Planning Domain Definition Language (PDDL)
that are more amenable to AI planning (e.g., [7,14]). Golog served as one of the
inspirations for what is now OWL-S [5] and all the OWL-S constructs have trans-
lations into Golog [15]. Further, the semantics of the OWL-S process model has
been specified in situation calculus [13,16]. Thus, our Golog generic procedures
can be expressed in OWL-S and likewise, OWL-S ontologies can be translated
into our formalism. We do not have a current implementation of this translation,
but it is conceptually straightforward.

2 Situation Calculus and Golog

We use the situation calculus and FOL to describe the functional and nonfunc-
tional properties of our Web services. We use the agent programming language
Golog to specify composite Web services and to specify our generic procedures.
In this section, we review the essentials of situation calculus and Golog.

The situation calculus is a logical language for specifying and reasoning about
dynamical systems [6]. In the situation calculus, the state of the world is ex-
pressed in terms of functions and relations (fluents) relativized to a particular
situation s, e.g., F (x, s). In this paper, we distinguish between the set of fluent
predicates, F , and the set of non-fluent predicates, R, representing properties
that do not change over time. A situation s is a history of the primitive ac-
tions, a ∈ A, performed from a distinguished initial situation S0. The function
do(a, s) maps a situation and an action into a new situation thus inducing a tree
of situations rooted in S0. Poss(a, s) is true if action a is possible in situation s.

Web services such as the Web exposed application at www.weather.com are
viewed as actions in the situation calculus and are described as actions in terms
of a situation calculus basic action theory, D. The details of D are not essential
to this paper but the interested reader is directed to [6,16,2] for further details.

Golog [6] is a high-level logic programming language for the specification and
execution of complex actions in dynamical domains. It builds on top of the situ-
ation calculus by providing Algol-inspired extralogical constructs for assembling
primitive situation calculus actions into complex actions (aka programs) δ. These

Web Service Composition via the Customization of Golog Programs 323

complex actions simply serve as constraints upon the situation tree. Complex
action constructs include the following:

nil – the empty program
a – primitive action
φ? – test action
πx. δ – nondeterministic choice of argument
δ1; δ2 – sequences (δ1 is followed by δ2)
δ1|δ2 – nondeterministic choice between δ1 and δ2
if φ then δ1 else δ2 endif – conditional
while φ do δ endW – loop
proc P (v) δ endProc – procedure

We also include the construct anyorder[δ1, . . . , δn] which is encoded as the non-
deterministic choice of all possible permutaions of the sequencing of δ1, . . . , δn.
The conditional and while-loop constructs are defined in terms of other con-
structs. For the purposes of Web service composition we generally treat iteration
as finitely bounded by a parameter k. Such finitely bounded programs are called
tree programs.

if φ then δ1 else δ2 endIf def= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ endWhile def= if φ then δ endIf 1

whilek(φ) δ endWhile def=
if φ then [δ; while k−1(φ)δ endWhile] endIf

These constructs can be used to write programs in the language of the domain
theory, or more specifically, they can be used to specify both composite Web
services and also generic procedures for Web service composition. E.g.2,

bookAirT icket(x) ; if far then bookRentalCar(y) else bookTaxi(y) endIf

bookRentalCar(x) ; bookHotel(y).

In order to understand how we modify Golog to incorporate user preferences,
the reader must understand the basics of Golog semantics. There are two popular
semantics for Golog programs: the original evaluation semantics [6] and a related
single-step transition semantics that was proposed for on-line execution of con-
current Golog programs [17]. The transition semantics is axiomatized through
two predicates Trans(δ, s, δ′, s′) and Final(δ, s). Given an action theory D, a
program δ and a situation s, Trans defines the set of possible successor configu-
rations (δ′, s′) according to the action theory. Final defines whether a program

1 if-then-endIf is the obvious variant of if-then-else-endIf.
2 Following convention we will generally refer to fluents in situation-suppressed form,

e.g., at(Toronto) rather than at(Toronto, s). Reintroduction of the situation term is
denoted by [s]. Variables are universally quantified unless otherwise noted.

324 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

successfully terminated, in a given situation. Trans and Final are defined for
every complex action. A few examples follow. (See [17] for details):

Trans(nil, s, δ′, s′) ≡ False

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ′, s′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′, s′)

Trans([δ1 | δ2], s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ

′, s′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.T rans(δv
x, s, δ′, s′)

Final(nil, s) ≡ TRUE

Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the program bookCar(x); bookHotel(y), if the action bookCar(x) is
possible in situation s, then

Trans([bookCar(x); bookHotel(y)], s, bookHotel(y), do(bookCar(x), s))

describes the only possible transition according to the action theory.
do(bookCar(x), s) is the transition and bookHotel(y) is the remaining program
to be executed. Using the transitive closure of Trans, denoted Trans∗, one can
define a Do predicate as follows. This Do is equivalent to the original evaluation
semantics Do [17].

Do(δ, s, s′) def= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (1)

Given a domain theory, D and Golog program δ, program execution must
find a sequence of actions a (where a is a vector of actions) such that: D |=
Do(δ, S0, do(a, S0)). Do(δ, S0, do(a, S0)) denotes that the Golog program δ, start-
ing execution in S0 will legally terminate in situation do(a, S0), where do(a, S0)
abbreviates do(an, do(an−1, . . . , do(a1, S0))). Thus, given a generic procedure, de-
scribed as a Golog program δ, and an initial situation S0, we would like to infer
a terminating situation do(a, S0) such that the vector a denotes a sequence of
Web services that can be performed to realize the generic procedure.

3 Specifying User Preferences

In this section, we describe the syntax of the first-order language we use for spec-
ifying user preferences. This description follows the LPP language we proposed
in [8,9] for preference-based planning. The semantics of the language is described
in the situation calculus. We provide an informal description here, directing the
reader to [8,9] for further details. Our language is richly expressive, enabling the
expression of static as well as temporal preferences, and action-centric as well as
state-centric preferences. Unlike many preference languages, it induces a total
order over the compositions, which avoids the high degree of incomparability ex-
perienced by many other non-quantitative preference languages, and simplifies

Web Service Composition via the Customization of Golog Programs 325

computation of preferred compositions. Our language is qualitative, rather than
ordinal or quantitative. Unlike many ordinal preference languages, our language
provides a facility to stipulate the relative strength of preferences. We claim that
its qualitative nature facilitates elicitation.

Illustrative example: To help illustrate our preference language, consider the
task of travel planning. A generic procedure, easily specified in Golog, might say:
In any order, book inter-city transportation, book local accommodations and book
local transportation. With this generic procedure in hand an individual user can
specify their hard constraints (e.g., Lara needs to be in Chicago July 29-Aug 5,
2009.) together with a list of preferences described in the language to follow.

To understand the preference language, consider the composition we are trying
to generate to be a situation – a sequence of actions or Web services executed
from the initial situation. A user specifies his or her preferences in terms of
a single, so-called General Preference Formula. This formula is an aggregation
of preferences over constituent properties of situations (i.e., compositions). The
basic building block of our preference formula is a Trajectory Property Formula
which describes properties of (partial) situations (i.e., compositions).

Definition 1 (Trajectory Property Formula (TPF)).
A trajectory property formula is a sentence drawn from the smallest set B where:

1. F ⊂ B
2. R ⊂ B
3. f ∈ F, then final(f) ∈ B
4. If a ∈ A, then occ(a) ∈ B
5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1,

next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(f) states that fluent f holds in the final situation, occ(a) states that action
a occurs in the present situation, and next(ϕ1), always(ϕ1), eventually(ϕ1), and
until(ϕ1, ϕ2) are basic LTL constructs.

TPFs establish properties of preferred situations (i.e., compositions of ser-
vices). By combining TPFs using boolean connectives we are able to express a
wide variety of properties of situations. E.g.3

final(at(Home)) (P1)

(∃ c).occ′(bookAir(c, Economy, Direct)) ∧ member(c, StarAlliance) (P2)

always(¬((∃ h).hotelBooked(h) ∧ hilton(h))) (P3)

(∃ h, r).(occ′(bookHotel(h, r)) ∧ paymentOption(h, V isa)

∧ starsGE(r, 3) (P4)

P1 states that the user is at home in the final situation. P2 states that at
some point the user books a direct economy flight with a Star Alliance carrier.
Recall there was no stipulation in the generic procedure regarding the mode of
3 To simplify the examples many parameters have been suppressed. For legibility,

variables are bold faced, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), and we
refer to the preference formulae by their labels.

326 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

transportation between cities or locally. P3 states that a Hilton hotel never be
booked while P4 states that at some point the user books a hotel that accept
Visa credit cards and has a rating of 3 or more.

To define a preference ordering over alternative properties of situations, we
define Atomic Preference Formulae (APFs). Each alternative being ordered com-
prises two components: the property of the situation, specified by a TPF, and a
value term which stipulates the relative strength of the preference.

Definition 2 (Atomic Preference Formula (APF)).
Let V be a totally ordered set with minimal element vmin and maximal element vmax.

An atomic preference formula is a formula ϕ0[v0] � ϕ1[v1] � ... � ϕn[vn], where each

ϕi is a TPF, each vi ∈ V, vi < vj for i < j, and v0 = vmin. When n = 0, atomic

preference formulae correspond to TPFs.

An APF expresses a preference over alternatives. Note that vmin is the most
preferred and vmax is the least preferred. In what follows, we let V = [0, 1], but
we could instead choose a strictly qualitative set like {best < good < indifferent <
bad < worst} since the operations on these values are limited to max and min.
The following APFs express an ordering over Lara’s preferences.

P2[0]

� (∃ c, w).occ′(bookAir(c, Economy, w) ∧ member(c, StarAlliance)[0.2]

� occ′(bookAir(Delta, Economy,Direct))[0.5] (P5)

(∃ t).occ′(bookCar(National, t))[0] � (∃ t).occ′(bookCar(Alamo, t))[0.2]

� (∃ t).occ′(bookCar(Avis, t))[0.8] (P6)

(∃ c).occ′(bookCar(c, SUV))[0] � (∃ c).occ′(bookCar(c, Compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with a Star Alliance car-
rier, followed by economy flights with a Star Alliance carrier, followed by direct
economy flights with Delta airlines. P6 and P7 are preference over cars. Lara
strongly prefers National and then Alamo over Avis, followed by all other car-
rental companies. Finally she slightly prefers an SUV over a compact with any
other type of car a distant third.

To allow the user to specify more complex preferences and to aggregate prefer-
ences, General Preference Formulae (GFPs) extend our language to conditional,
conjunctive, and disjunctive preferences.

Definition 3 (General Preference Formula (GPF)).
A formula Φ is a general preference formula if one of the following holds:

• Φ is an APF

• Φ is γ : Ψ , where γ is a TPF and Ψ is a GPF [Conditional]

• Φ is one of

- Ψ0 &Ψ1 & ... &Ψn [General Conjunction]

- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a GPF.

Web Service Composition via the Customization of Golog Programs 327

Continuing our example:

(∀ h, c, e, w).always(¬hotelBooked(h) : ¬occ′(bookAir(c, e, w))) (P8)

far : P5 (P9)

P3& P4& P6& P7& P8&P9 (P10)

P8 states that Lara prefers not to book her air ticket until she has a hotel
booked. P9 conditions Lara’s airline preferences on her destination being far
away. (If it is not far, she will not fly and the preferences are irrelevant.) Finally,
P10 aggregates previous preferences into one formula.

Semantics: Informally, the semantics of our preference language is achieved
through assigning a weight to a situation s with respect to a GPF, Φ, written
ws(Φ). This weight is a composition of its constituents. For TPFs, a situation
s is assigned the value vmin if the TPF is satisfied in s, vmax otherwise. Recall
that in our example above vmin = 0 and vmax = 1, though they could equally
well have been a qualitative e.g., [excellent, abysmal]. Similarly, given an APF,
and a situation s, s is assigned the weight of the best TPF that it satisfies
within the defined APF. Returning to our example above, for P6 if a situation
(composition) booked a car from Alamo rental car, it would get a weight of 0.2.
Finally GPF semantics follow the natural semantics of boolean connectives. As
such General Conjunction yields the maximum of its constituent GPF weights
and General Disjunction yields the minimum of its constituent GPF weights. For
a full explanation of the situation calculus semantics, please see [8]. Here we also
define further aggregations that can be performed. These are mostly syntactic
sugar that are compelling to the user and we omit them for space.

We conclude this section with the following definition which shows us how to
compare two situations (and thus two compositions) with respect to a GPF:

Definition 4 (Preferred Situations). A situation s1 is at least as preferred as

a situation s2 with respect to a GPF Φ, written pref(s1, s2, Φ) if ws1(Φ) ≤ ws2(Φ).

4 Web Service Composition

In this section, we define the notion of Web service composition with generic
procedures and customizing user preferences, present an algorithm for computing
these compositions and prove properties of our algorithm. Our definition relies
on the definition of Do from (1) in Section 2.

Definition 5 (WebServiceCompositionw/UserPreferences (WSCP)).
A Web service composition problem with user preferences is described as a 5-tuple

(D, O, δ, C, Φ) where:
• D is a situation calculus basic action theory describing functional properties of the
Web services,

328 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

• O is a FOL theory describing the non-functional properties of the Web services4,
• δ is a generic procedure described in Golog,
• C is a formula expressing hard user constraints, and
• Φ is a GPF describing user preferences.

A Web Service Composition (WSC) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

A preferred WSC (WSCP) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

∧ � ∃s′.[Do(δ, S0, s
′) ∧ C(s′) ∧ pref(s′, s, Φ)]

A WSC is a sequence of Web services, a, whose execution starting in the ini-
tial situation enforces the generic procedure and hard constraints terminating
successfully in do(a, s). A WSCP yields a most preferred terminating situation.

4.1 Computing Preferred Compositions

A Golog program places constraints on the situation tree that evolves from S0. As
such, any implementation of Golog is effectively doing planning in a constrained
search space, searching for a legal termination of the Golog program. The actions
that define this terminating situation are the plan. In the case of composing web
services, this plan is a web service composition.

To compute a preferred composition, WSCP, we search through this same con-
strained search space to find the most preferred terminating situation. Our ap-
proach, embodied in a system called GologPref, searches for this optimal termi-
nating situation by modifying the PPLAN approach to planning with preferences
proposed in [8]. In particular, GologPref performs best-first search through the
constrained search space resulting from the Golog program, δ; C. The search is
guided by an admissible evaluation function that evaluates partial plans with re-
spect to whether they satisfy the preference formula, Φ. The admissible evaluation
function is the optimistic evaluation of the preference formula, with the pessimistic
evaluation and the plan length used as tie breakers where necessary, in that order.

The preference formula Φ and the constraints C are evaluated over intermedi-
ate situations (partial compositions) by exploiting progression as described in [8].
Informally, progression takes a situation and a temporal logic formula (TLF),
evaluates the TLF with respect to the state of the situation, and generates a
new formula representing those aspects of the TLF that remain to be satisfied
in subsequent situations.

Fig 1 provides a sketch of the basic GologPref algorithm following from PPLAN.
The full GologPref algorithm takes as input a 5-tuple (D, O, δ, C, Φ). For ease of
explication, our algorithm sketch in Fig 1 explictly identifies the initial situation
of D, init, the Golog program, δ; C which we refer to as pgm and Φ, which we re-
fer to as pref. GologPref returns a sequence of Web services, i.e. a plan, and the
weight of that plan. The frontier is a list of nodes of the form [optW, pessW, pgm,
4 The content of D and O would typically come from an OWL-S, SWSO, or other

semantic Web service ontology.

Web Service Composition via the Customization of Golog Programs 329

GologPref(init, pgm, pref)
frontier ← initFrontier(init, pgm, pref)
while frontier �= ∅

current ← removeFirst(frontier)
% establishes current values for progPgm, partialPlan, state, progPref
if progPgm=nil and optW =pessW

return partialPlan, optW
end if
neighbours ← expand(progPgm, partialPlan, state, progPref)
frontier ← sortNmergeByVal(neighbours, frontier)

end while
return [], ∞

expand(progPgm, partialPlan, state, progPref) returns a list of new nodes to add
to the frontier. If partialPlan=nil then expand returns []. Otherwise, expand uses
Golog’s Trans to determine all the executable actions that are legal transitions of
progPgm in state and to compute the remaining program for each.
It returns a list which contains, for each of these executable actions a a node

(optW, pessW,newProgPgm, newPartialPlan, newState, newProgPref)
and for each a leading to a terminating state, a second node

(realW, realW, nil, newPartialPlan, newState, newProgPref).

Fig. 1. A sketch of the GologPref algorithm

partialPlan, state, pref], sorted by optimistic weight, pessimistic weight, and then
by length. The frontier is initialized to the input program and the empty partial
plan, its optW, pessW, and pref corresponding to the progression and evaluation
of the input preference formula in the initial state.

On each iteration of the while loop, GologPref removes the first node from
the frontier and places it in current. If the Golog program of current is nil then
the situation associated with this node is a terminating situation. If it is also
the case that optW =pessW, then GologPref returns current’s partial plan and
weight. Otherwise, it calls the function expand with current’s node as input.

expand returns a new list of nodes to add to the frontier. If progPgm is
nil then no new nodes are added to the frontier. Otherwise, expand generates
a new set of nodes of the form [optW, pessW, prog, partialPlan, state, pref], one
for each action that is a legal Golog transition of pgm in state. For actions leading
to terminating states, expand also generates a second node of the same form
but with optW and pessW replaced by the actual weight achieved by the plan.
The new nodes generated by expand are then sorted by optW, pessW, then
length and merged with the remainder of the frontier. If we reach the empty
frontier, we exit the while loop and return the empty plan.

We now prove the correctness of our algorithm.

Theorem 1 (Soundness and Optimality).
Let P=(D, O, δ,C, Φ) be a Web service composition problem, where δ is a tree pro-

gram. Let a be the plan returned by GologPref from input P. Then a is a WSCP of

(D, O, δ, C, Φ).

330 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

Proof sketch: We prove that the algorithm terminates appealing to the fact that
δ is a tree program. Then we prove that a is a WSC by cases over Trans and
Final. Finally we prove that a is also optimal, by exploiting the correctness of
progression of preference formuale proven in [8], the admissibility of our evalua-
tion function, and the bounded size of the search space generated by the Golog
program δ; C.

4.2 Integrated Optimal Web Service Selection

Most Web service composition systems use AI planning techniques and as such
generally ignore the important problem of Web service selection or discovery,
assuming it will be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for composition based,
not only on their inputs, outputs, preconditions and effects but also based on
other nonfunctional properties. As such, users are able to specify properties of
services that they desire along side other properties of their preferred solution,
and services are selected that optimize for the users preferences in the context
of the overall composition.

To see how selection of services can be encoded in our system, we reintroduce
the service parameter u which was suppressed from the example preferences in
Section 3. Revisiting P2, we see how the selection of a service u is easily realized
within our preference framework with preference P2’.

(∃ c, u).occ′(bookAir(c, Economy, Direct, u)) ∧ member(c, StarAlliance)

∧ serviceType(u, AirT icketV endor) ∧ sellsT ickets(u, c) (P2’)

P2’ causes GologPref to prefer booking air tickets with an air ticket vendor
that sells the tickets of a carrier that is a member of Star Alliance.

5 Implementation and Application

We have implemented the generation of Web Service compositions using generic
procedures and customizing user preferences as described in previous sections.
Our implementation, GologPref, builds on an implementation of PPLAN[8] and
an implementation of IndiGolog [6] both in SWI Prolog5.

GologPref interfaces with Web services through the implementation of
domain-specific scrapers developed using AgentBuilder 3.2, and AgentRunner
3.2, Web agent design applications developed by Fetch Technologies c©. Among
the sites we have scraped are Mapquest, and several air, car and hotel services.
The information gathered is collected in XML and then processed by GologPref.

We tested GologPref in the domain of travel planning. Our tests serve pre-
dominantly as a proof of the concept and to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was very simple, allowing
flexibility in how it could be instantiated. What follows is an example of the
Prolog encoding of a GologPref generic procedure.
5 See [6] for a description of the translation of D to Prolog.

Web Service Composition via the Customization of Golog Programs 331

anyorder[bookAcc, bookCityToCityTranspo, bookLocalTranspo]

proc(bookAcc(Location, Day, Num),

[stayWithFriends(Location) | bookHotel(Location, Day, Num)]).

proc(bookLocalTranspo(Location, StartDay, ReturnDay),

[getRide(Location, StartDay, ReturnDay) |

walk(Location) | bookCar(Location, StartDay, ReturnDay)]).

proc(bookCityToCityTranspo(Location, Des, StartDay, ReturnDay),

[getRide(Location, Des, StartDay, ReturnDay) |

bookAir(Location, Des, StartDay, ReturnDay) |

bookCar(Location, Des, StartDay, ReturnDay)]).

We tested our GologPref generic procedure with 3 different user profiles: Jack
the impoverished university student, Lara the picky frequent flyer, and Conrad the
corporate executive who likes timely luxury travel. Each user lived in Toronto and
wanted to be in Chicago for specific days. A set of rich user preferences were defined
for eachuser along the lines of those illustrated in Section 3.These preferences often
required access to different Web information, such as driving distances.

Not surprisingly, in all cases, GologPref found the optimal WSC for the user.
Compositions varied greatly ranging from Jack who arranged accommodations
with friends; checked out the distance to his local destinations and then arranged
his local transportation (walking since his local destination was close to where he
was staying); then once his accommodations were confirmed, booking an econ-
omy air ticket Toronto-Chicago with one stop on US Airways with Expedia. Lara
on the other hand, booked a hotel (not Hilton), booked an intermediate-sized
car with National, and a direct economy air ticket with Star Alliance partner
Air Canada via the Air Canada Web site. The optimality and the diversity of
the compositions, all from the same generic procedure, illustrate the flexibility
afforded by the WSCP approach.

Figure 2 shows the number of nodes expanded relative to the search space size
for 6 test scenarios. The full search space represents all possible combinations
of city-to-city transportation, accommodations and local transportation avail-
able to the users which could have been considered. These results illustrate the
effectiveness of the heuristic used to find optimal compositions.

Case Nodes Nodes Time Nodes in
Number Expanded Considered (sec) Full Search Space

1 104 1700 14.38 28,512
2 102 1647 13.71 28,512
3 27 371 2.06 28,512
4 27 368 2.09 28,512
5 99 1692 14.92 28,512
6 108 1761 14.97 28,512

Fig. 2. Test results for 6 scenarios run under 64bit Ubuntu Linux with 2.66 GHz CPU

332 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

6 Summary and Related Work

In this paper we argued that the integration of user preferences into Web service
composition was a key missing component of Web service composition. Building
on our previous framework for Web service composition via generic procedures
[2] and our work on preference-based planning [8], we proposed a system for
Web service composition with user preferences. Key contributions of this paper
include: characterization of the task of Web service composition with generic
procedures and user preferences, provision of a previously developed language for
specifying user preferences, provision of the GologPref algorithm that integrates
preference-based reasoning into Golog, a proof of the soundness and optimality of
GologPref with respect to the user’s preferences, and a working implementation
of our GologPref algorithm. A notable side effect of our framework is the seamless
integration of Web service selection with the composition process.

We tested GologPref on 6 diverse scenarios applied to the same generic pro-
cedure. Results illustrated the diversity of compositions that could be generated
from the same generic procedure. The number of nodes expanded by the heuris-
tic search was several orders of magnitude smaller than the grounded search
space, illustrating the effectiveness of the heuristic and the Golog program in
guiding search.

A number of researchers have advocated using AI planning techniques to
address the task of Web service composition including using regression-based
planners [3], planners based on model checking (e.g., [4]), highly optimized hi-
erarchical task network (HTN) planners such as SHOP2 (e.g., [18]), and a com-
bination of classical and HTN planning called XPLAN [14]. Like Golog, HTNs
afford the user the ability to define a generic procedure or template of how to
perform a task.

Sirin et al. incorporated simple service preferences into the SHOP2 HTN plan-
ner to achieve dynamic service binding [7]. Their preference language is signifi-
cantly less expressive than the one presented here and is restricted to the task of
service selection rather than solution optimization. Nevertheless, it is a promis-
ing start. Also related is the work by Fritz and the third author in which they
precompiled a subset of the preference language presented here into Golog pro-
grams that were then integrated with a decision-theoretic Golog (DTGolog) pro-
gram [19]. The main objective of this work was to provide a means of integrating
qualitative and quantitative preferences for agent programming. While both used
a form of Golog, the form and processing of preferences was quite different.

Since the original publication of this work, preference-based planning has
been the subject of much interest, spurred on in great part by three tracks on
planning with preferences at the 2006 International Planning Competition (IPC-
5). A number of preference-based planners were developed, including one by a
subset of the authors, all based on the competition’s PDDL3 language [20]. The
most notable new work that is directly related to this paper is that of [21]. In this
paper, the authors propose a prototype HTN preference-based planner, scup,
tailored to the task of Web service composition and that uses PDDL3 as its
preference specification language.

Web Service Composition via the Customization of Golog Programs 333

We also have two follow-up pieces of work [22] and [23] in which we specify
flexible templates in the form of an HTN rather than a Golog generic procedure.
In [22] we proposed a qualitative language very similar to the preference lan-
guage discussed in this paper but tailored to HTN planning. In [23] we extended
PDDL3 with HTN-specific preference constructs. The proposed planners employ
state of the art heuristic guided search and algorithms that exploit HTN-specific
preferences and control. In contrast to the work presented here, optimality is not
guaranteed without exhaustive search. In future work, we would like to improve
the GologPref algorithm with the addition of more informative inadmissible
heuristics coupled with branch and bound search. We would also like to exploit
a recent extension to the LPP preference language to include preferences over
the occurrence of Golog complex actions [9].

Acknowledgements

The authors would like to thank Meghyn Bienvenu for her initial work on
PPLAN which was fundamental to the realization of this work. We also wish
to thank Christian Fritz for subsequent improvements to the PPLAN algorithm
and for much useful discussion. Finally we would like to thank Fetch Technologies
for allowing us to use their AgentBuilder software. We gratefully acknowledge
funding from the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Ontario Ministry of Innovations Early Researcher Award (ERA),
and the CRA’s Canadian Distributed Mentorship Project (CDMP).

References

1. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic
procedures and customizing user preferences. In: Cruz, I., Decker, S., Allemang,
D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 597–611. Springer, Heidelberg (2006)

2. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR), Toulouse, France, pp. 482–493 (2002)

3. McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), pp. 204–211 (2002)

4. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

5. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems
(Special Issue on the Semantic Web) 16 (2001)

6. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

7. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2005)

8. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal prefer-
ences. In: Proceedings of the 10th International Conference on Knowledge Repre-
sentation and Reasoning (KR), pp. 134–144 (2006)

334 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

9. Bienvenu, M., Fritz, C., McIlraith, S.: Specifying and generating preferred plans
(submitted for publication, 2009)

10. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

11. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

12. Bruijn, J.D., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage WSML: An overview. Technical report, DERI (2006)

13. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-
vice ontology (SWSO) first-order logic ontology for web services, FLOWS (2005),
http://www.daml.org/services/swsl/report/

14. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-Xplan. In: AAAI 2005 Fall Symposium (2005)

15. McIlraith, S., Fadel, R.: Planning with complex actions. In: Proceedings of the
9th International Workshop on Non-Monotonic Reasoning NMR-2002, pp. 356–
364 (2002)

16. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proc. of the 11th International World Wide Web Conference,
WWW 2002 (2002)

17. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1–2),
109–169 (2000)

18. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web
services. In: AAAI-2005 Fall Symposium on Agents and the Semantic Web (2005)

19. Fritz, C., McIlraith, S.: Decision-theoretic golog with qualitative preferences. In:
Proceedings of the 10th International Conference on Knowledge Representation
and Reasoning (KR), Lake District, UK, pp. 153–163 (2006)

20. Gerevini, A., Long, D.: Plan constraints and preferences for PDDL3. Technical Re-
port 2005-08-07, Department of Electronics for Automation, University of Brescia,
Brescia, Italy (2005)

21. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 629–643. Springer, Heidelberg (2008)

22. Sohrabi, S., McIlraith, S.A.: On planning with preferences in HTN. In: 12th Inter-
national Workshop on Non-Monotonic Reasoning (NMR-2008), Sydney, Australia,
pp. 241–248 (2008)

23. Sohrabi, S., Baier, J., McIlraith, S.: HTN planning with preferences. In: Proceed-
ings of the 21st International Joint Conference on Artificial Intelligence, IJCAI
(2009)

http://www.daml.org/services/swsl/report/

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 335–362, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Dealing with Complexity Using Conceptual Models
Based on Tropos

Jaelson Castro1, Manuel Kolp2, Lin Liu3, and Anna Perini4

1 Universidade Federal de Pernambuco, Recife, Brazil
jbc@cin.ufpe.br

2 University of Louvain, LSM-ISYS, Louvain-la-Neuve, Belgium
manuel.kolp@uclouvain.be

3 Tsinghua University, Beijing, China
linliu@tsinghua.edu.cn

4 Fondazione Bruno Kessler – Irst, CIT, Trento, Italy
perini@fbk.eu

Abstract. Since its establishment, the major objective of the Tropos method-
ology has been to develop an approach for the systematic engineering of agent-
oriented information systems. In this chapter we illustrate a number of ap-
proaches to deal with complexity, which address different activities in software
development and are deemed to be used in combination. We begin with
handling complexity at requirements levels. In particular we examine how
modularization can be improved using some of Aspect Oriented Software De-
velopment Principles. We then examine how model-based testing applied in
parallel to requirements analysis and design can support incremental validation
and testing of software components, as well as help to clarify ambiguities in re-
quirements. We also look at how Tropos can help to address complexity in so-
cial context when making design decisions. Last but not least, we show how to
tackle complexity at the process modelling level. We explore iterative devel-
opment extension to Tropos as well as perspectives taken from software project
management. This allows us to deal with the complexity of large real world
projects.

Keywords: requirements engineering, complexity, aspect, goal modelling, test-
ing, process modelling.

1 Introduction

Enterprises are continually changing their internal structures and business processes,
as well as their external alliances, as they strive to improve and grow. Software sys-
tems that operate within such a setting have to evolve continuously to accommodate
new technologies and meet new requirements. Indeed, it is well known that the latest
generation of software systems, such as Enterprise Resource Planning (ERP), group-
ware, knowledge management and e-business systems, should be designed to perform
within ever-changing organizational environments.

336 J. Castro et al.

These features will characterize more and more future software systems [14],
which will be employed by an increasing number of people for different purposes and
using a variety of devices. These systems will use a growing amount of data stored,
accessed, manipulated, and refined in a distributed way, and rest on a set of interde-
pendencies among software components (services), which may dynamically change.
This increase in size (scale) and dynamicity are considered major sources of complex-
ity of software systems, which calls for new solution approaches and new concepts
for system design, development, operation, and evolution. A rich research agenda is
proposed in [14] that highlights, for example, the need of more expressive modeling
languages and of revisiting model-based, aspect-oriented, and other generative meth-
ods for helping to validate and certify requirements.

The Tropos project [24], [5] was launched with the objective to develop a method-
ology for building agent-oriented information systems, in competition with existing
methodologies founded on structured and object-oriented concepts. Agent-based
technologies are considered a promising solution towards the realization of software
having flexibility and (self-)adaptive properties [23], moreover the agent paradigm
offers a suitable set of concepts to model large-scale systems in terms of socio-
technical ecosystems [14].

The Tropos methodology rests on the idea of starting by building a model of the
organizational context within which the system-to-be will eventually function, then
the system-to-be is introduced and the model is incrementally refined and extended
with a definition of the functional and non-functional requirements of the system-to-
be. This model provides a common interface to the various software development
activities. The model also serves as a basis for documentation and evolution of the
software system. The approach is requirements-driven in the sense that the concepts
used to define requirements for a software system are also used later on during design
and implementation. To this end, Tropos adopts the concepts offered by i* [37], a
modelling framework proposing concepts such as actor (actors can be agents, posi-
tions or roles), social dependency among actors, including goal, softgoal, task and
resource dependencies. Thus, an actor can depend upon another one to satisfy a goal,
execute a task, and provide a resource or satisfice a softgoal. Softgoals are associated
to non-functional requirements, while goals, tasks and resources are associated to
system functionalities. The i* framework offers two models: the Strategic Depend-
ency (SD) and Strategic Rationale (SR). The SD model consists of a set of nodes and
links connecting them, where nodes represent actors and each link indicates a depend-
ency between two actors (dependum). The depending actor is called depender, and the
actor who is depended upon is called the dependee. The SR model provides a more
detailed level of modeling by looking “inside” actors to model internal intentional
relationships.

Researches on how to manage software complexity with Tropos have been
conducted in parallel, by different research groups. They attack the problem from a
number of perspectives, involving technical (e.g. related to issues in modeling and
validation of requirements), as well as managerial and automation issues.

In this chapter, we illustrate some of them, with the objective to show their com-
plementarities and the potential to be used in combination.

It is well known that requirements models may become cluttered, compromising
their evolution and scalability. In fact, empirical evaluation has shown that there is a

 Dealing with Complexity Using Conceptual Models Based on Tropos 337

lack of modularity in the i* framework [13]. This is a serious drawback for large and
complex projects. In fact, i* models tend to include scattered and tangled representa-
tions, i.e. crosscutting, resulting in models with poor modularization and, therefore,
harder to understand and maintain [1]. In Section 3, we present an approach to create
modular i*/Tropos models, where a desired concern is separated as an individual
actor. Consequently, improved modularization mechanisms are required to avoid the
crosscutting representations in i* /Tropos models.

Developing complex software systems requires that single components, as well as
the overall system, are incrementally validated and certified against requirements and
user expectations, along the whole development process. This motivated the adoption
of a V-model1 approach to software development in Tropos that complement analysis
and design with validation phases, which is called Goal-Oriented Software Testing
(GOST) [26]. Section 4 recalls basic elements of GOST and illustrates how it works
when validating early requirements against user goals. A further benefit of the GOST
methodology will also emerge since early test specification will require clarifying
ambiguities in the requirements model, then improving the requirements model itself.

In order to design a better information system, a designer would like to have nota-
tions to visualize how design experts’ know-how can be applied according to one's
specific social and technology situation. Section 5 proposes the combined use of Tropos
and a scenario-oriented notation UCM for representing design knowledge of informa-
tion systems. So that goal models are combined with scenarios descriptions to comple-
ment each other to handle complexity in design decision making. The combined use of
GRL (a variant of i*/Tropos) and a scenario mapping approach is part of the Users
Requirements Notation (URN), a newly approved ITU-T standard [17] [1][22].

Section 6 proposes I-Tropos, a software project management framework dedicated
to extend Tropos with an iterative life cycle. The process fills the project and product
life cycle gaps of Tropos and offers a goal-oriented project management perspective
to support project stakeholders for applying Tropos on large information systems. It is
supported by DesCARTES a specific CASE tool.

2 Running Example

In order to illustrate Tropos requirements models, let us consider the Media Shop
example presented in [10]. Media Shop is a store which sells and ships different kinds
of media items, such as books, newspapers, magazines. To increase market share,
Media Shop has decided to use the Medi@ system, a business to customer retail sales
front-end on the Internet to allow an on-line customer to examine the items in its
catalogue and place orders.

The system uses communication facilities provided by Telecom Cpy. There are no
registration restrictions, or identification procedures for Medi@ users. Potential cus-
tomers can search the on-line store by either browsing the catalogue or querying the
item database. An on-line search engine allows customers with particular items in
mind to search title, author/artist and description fields through keywords or full-text

1 The V-Model gets its name from the fact that the process is often mapped out as a flowchart

that takes the form of the letter V: the left edge defines a sequence of analysis and design ac-
tivities, the right edge the corresponding set of validation and testing activities.

338 J. Castro et al.

search. If the item is not available in the catalogue, the customer has the option of
asking Media Shop to order it.

In Figure 1 you can find an expanded description of the Medi@ actor. In this ac-
tor, a root task Manage Internet Shop is specified (located at the centre-top of the
larger circle that represents the Medi@ actor’s boundary). That task is firstly refined
into Item Searching Handled goal, Secure, Adaptable and Available softgoals, and
Produce Statistics task. These intentional elements are further refined by using task-
decomposition, means-end and contribution links to define the Medi@ system
requirements. These three new types of relationships are explained as follows: (i)
task-decomposition links describe what should be done to perform a certain task (e.g.,
the relationship between the Provide Access Link task and the Provided Internet Ser-
vice task inside the Telecom Cpy actor); (ii) means-end links suggest that one model
element can be offered as a means to achieve another model element (e.g., relation-
ship between the Chose Non-Available Item task and the Item Selection goal inside
the Medi@ actor); (iii) contributions links suggest how a task can contribute (posi-
tively or negatively) to satisfy a softgoal (e.g., the relationship between the Use Fault-
Tolerant Strategies task and the Available softgoal inside the Medi@ actor).

Fig. 1. The Medi@ Strategic Rationale Model

 Dealing with Complexity Using Conceptual Models Based on Tropos 339

Apart from the previous three types of relationships, there are intentional depend-
encies between actors, which can be of four types: goal, task, resource or softgoal. For
example, the Customer actor (depender) is related to Medi@ (dependee) actor through
Availability goal (dependum).

3 Modularization of Requirements Models

As the problem at hand grows, i*/Tropos models may become cluttered, compromis-
ing their evolution and scalability. This is a serious drawback for large and complex
projects. In fact, i* models tend to include scattered and tangled representations, i.e.
crosscutting, resulting in models with poor modularization and, therefore, harder to
understand and maintain [1]. This problem could be avoided if some approach was
available to create modular i*/Tropos models, where a desired concern is separated as
an individual actor. Consequently, improved modularization mechanisms are required
to avoid the crosscutting representations in i*/Tropos models.

In the sequel we introduce (i) a set of guidelines to identify crosscutting concerns
in i* models; and (ii) propose an extension of the i* modelling language [37] by add-
ing aspectual constructors to modularize crosscutting concerns and to allow its
graphical composition with other system modules.

3.1 Identifying and Modularizing Aspects

The following three guidelines described helps to identify aspectual elements.

Guideline G1 (Repeated dependum): if a dependum (i.e. a goal, a task, a resource
or a softgoal) is provided by at least two dependee actors, and the subgraph opera-
tionalizing that dependum is handled equally by all dependee actors, then this opera-
tionalization is part of an aspectual element.

This guideline aims at identifying dependencies in a SD model that have been re-
peated and addressed in similar ways. Thus, if a dependency has multiple similar
occurrences, i.e. different dependee actors can handle (operationalize) it in the same
way, the elements contained in the operationalization sub-graph can be relocated to
an aspectual element. For example, in Figure 1, the Availability softgoal dependum
has multiple occurrences in the model. But this repetition is not sufficient. It is also
necessary to check if their respective operationalizations (inside the respective de-
pendee actors) are the same. Notice that in Telecom Cpy actor, the Availability depen-
dum is related to the softgoal Available, operationalized by Use Fault-Tolerance
Strategies task. The Medi@ actor treats Availability dependum similarly, since it is
also operationalized by Use Fault-Tolerance Strategies task. This means that the
entire sub-graph operationalizing the Availability dependum will be part of an aspec-
tual element, because it is repeated in different actors. This element will be the Avail-
ability Manager aspectual element (Figure 3).

Guideline G2 (Repeated intentional element): This guideline is subdivided into
three sub-guidelines: one deals with the task decomposition link; another deals with
means-ends links (which includes the contribution link); and the last one deals with

340 J. Castro et al.

both links (task-decomposition and means-ends links). These sub-guidelines are
applied to the intentional elements that are internal to the actor’s boundary presented
in the SR model.

Guideline G2.1 (Intentional element in a task-decomposition link): if an inten-
tional element (goal, softgoal or task) is required by (i.e., is a decomposition element
of) two or more internal tasks, indicating a sharing of information, then the subgraph
that contains this element as the root is part of an aspectual element.

In Figure 1, the Item Selection goal is simultaneously required through task-
decomposition by the tasks: Database Querying and Catalogue Consulting. Thus, the
Item Selection goal is part of an aspectual element.

Guideline G2.2 (Intentional element in a means-end link): if an intentional ele-
ment (goal, softgoal or task) is a means element which is required by two or more end
elements (indicating a sharing of information) then the sub-graph containing this
element as a root will be part of an aspectual element.

According to Figure 1, Use Secure Form task is simultaneously a means to Get
Customer Information goal (end) and contributes to Secure softgoal. Hence, if we
consider a contribution link as a means-end link (such as in [37]), the Use Secure
Form is part of an aspectual element.

Guideline G2.3 (Intentional element is found simultaneously in a task-
decomposition link and in a means-end link): if an intentional element (goal, soft-
goal or task) is a means element and also is a sub-element in a task-decomposition
(indicating a sharing of information) then the sub-graph containing this element as
the root is part of an aspectual element.

In Figure 1, this guideline captures the Get Payment Information goal which is a
means to achieve Get Used Payment Way goal (through a means-end link) and a sub-
element of Manage Payment task (through a task-decomposition link). Then the sub-
graph with Get Payment Information goal as the root is part of an aspectual element.

Guideline G3 (Redundancy): the aspectual elements identified by guidelines G1 and
G2 are now merged together to remove multiple occurrences.

In the example, we have captured Encrypt Data task simultaneously by the guide-
lines G2.2 and G2.3. To increase cohesion of the aspectual element, along with each
intentional element identified by the guidelines, it is also required to extract other
intentional elements related to the same concern and locate them all into the same
aspectual element.

For example, in Figure 1, the tasks Update Encryption Strategy and Encrypt Data
were identified by the guidelines and should be modularized by an aspectual element.
However, these tasks are part of the sub-graph that operationalizes the Secure softgoal
which was first identified, separated and located into an aspectual element. Therefore,
those tasks can be seen as related to the Security concern. Thus, all these intentional
elements can be extracted and located into the aspectual element Security Manager
(Figure 2 (b)).

 Dealing with Complexity Using Conceptual Models Based on Tropos 341

3.2 Identifying Relationship among Aspectual Elements

In parallel with the aspect identification, we may store the information of the relation-
ships of all elements captured by the guidelines (for example into a table) to allow the
automation of the process From the model in Figure 1 and the guidelines proposed in
Section 3.1 we list in Table 1 some elements (for lack of space, not all captured ele-
ments are listed in the Table 1) that must be made persistent: (i) the dependee actor,
which provides an intentional element, in both SD and SR models; (ii) the aspect
which is the identified crosscutting intentional element; (iii) the concern addressed by
intentional element; (iv) the related elements which represent the elements of the sub-
graph provided that they have not already been captured as aspect; (v) the chosen
name for the identified aspectual element.

For example, in the case study the Customer depends on the Medi@ and Telecom
Cpy for the intentional Availability element (a softgoal). According to guideline G1
the characteristics of this dependency indicated the need to identify an aspect to deal
with the availability concern. Hence, we need to define an appropriate name for it. For
example it could be called Availability Manager. Its related intentional element is
only the Use Fault-Tolerance Strategies task that is present in both original dependee
actors (Medi@ and Telecom Cpy). Hence, it should be transferred to that new element
(Availability Manager). Similar analysis can be performed for the Confirm Payment
goal (by G2.3), Encrypt Data task (by G2.3), and Item Selection task (by G2.1).

Table 1. Modularization of Aspects

Actor Crosscutting
Element

Concern Related Elements Aspectual
Element
Name

Medi@ Confirm
Payment goal

Payment Manage Payment
task, and Process
Payment and Get
Payment Information
goals

Payment
Processor

Medi@ Encrypt Data
task

Security Update Encryption
Strategy task, Secure
softgoal

Security Man-
ager

Medi@ Item Selection
goal

Item
Selection

Choose Available
Item and Choose Non-
Available Item tasks

Item Selector

Medi@,
Telecom

Cpy

Available soft-
goal

Availability Use Fault-Tolerance
Strategies

Avalability
Manager

3.3 Representing Aspectual Elements Using the Aspectual i* Notation

A specific notation has been created to represent aspectual i* models. This leads to
the addition of two new concepts in the i* modeling language, namely aspectual ele-
ment and crosscut relationship. Aspectual elements modularize crosscutting concerns
and the crosscut relationship captures the information of source and target model

342 J. Castro et al.

elements, as well as, when and how an aspectual element crosscuts other model ele-
ments. For modularization purposes and following the principles of AOSD, we should
extract and modularize the aspects, removing them from the original actors, and plac-
ing them in a new type of model element, the so called Aspectual Element. This new
element is graphically represented by an actor with a vertical line crossing it (see, for
example, the Security Manager element in Figure 2). An aspectual element, as well as
an actor, is composed of intentional elements, whereas an intentional element can be a
goal, a softgoal, a resource or a task. An aspectual element can be composed with an
actor or another aspectual element through a Crosscut Relationship. This relationship
specifies how an intentional element, located inside an aspectual element, is related
with another intentional element, which is located inside an actor or another aspectual

Fig. 2. Aspect Modelling for: (a) Payment Processor; (b)Security Manager; (c) Item Selector;
(d) Availability Manager

 Dealing with Complexity Using Conceptual Models Based on Tropos 343

element. The how attribute present in the crosscut relationship means the type of i*
relationship (Task-Decomposition (TD), Means-End (ME) and Contribution) that will
be recovered with the weaving. The crosscut relationship between each aspectual
element and other model elements are shown as arcs, with a dark triangle (Figure 2).

The direction indicated by the triangle suggests the way of the composition, mean-
ing that the source element’s behavior needs to be composed with the target elements’
behaviors. The crosscut relationship also contains a when attribute, which can assume
the values before or after, to specify when an element inside the aspectual element
will be composed with an element inside another aspectual element or Actor. This
composition rule must be defined taking into account the intentional element in rela-
tion to whom the composition must occur, described by the attribute whom (see, for
example, the legend in Figure 2).

In order to describe the aspectual elements and to systematically compose them
with other model elements, we use the concept of model roles [19] which have been
used to describe object-oriented patterns, as proposed in [15], and agent-oriented
patterns, as presented in [32]. They facilitate the graphical composition of concern
and improve the reuse of aspectual elements.

 In particular, to describe aspectual elements, it is necessary to specialize each
target intentional element in a crosscut relationship and the attribute of the crosscut
relationship: how, when and whom. Model roles are identified by preceding the inten-
tional elements (goals, task, softgoals) identifiers with a “|” (see Figure 2). In practice
they work as variables to be instantiated to concrete model elements.

Let us concentrate on Payment Processor, Security Manager, Item Selector, and
Availability Manager depicted in Figure 2(a), Figure 2(b), Figure 2(c) and Figure
2(d), respectively. The composition of the aspectual elements with the original model
requires the instantiation (or binding) of the model roles present in the crosscut rela-
tionship and in the target element related with the crosscut relationship. Thus, to com-
pose the aspectual element Payment Processor with the Medi@ actor, we need to bind
|Goal 2 to Get Used Payment Way (see Figure 3). Since the relationship from a goal to
another goal can only be a means-end link, the properties of that crosscut relationship
do not have any model roles. Observe that the when and whom properties are used just
in case we need to insert the ordering of composition. If the when (and, therefore, the
whom) property is empty, then the order of the task-decomposition weaving does not
matter. Finally, the composition of Payment Processor aspectual element with the
Medi@ Actor needs also to bind |Goal 1 to Get Bought Items and |Task 4 to Shopping
Cart. For the crosscut relationship properties of |Task4, we need to bind |when to after
and |whom to none (this means after all sub-elements of Shopping Cart Task).

Notice also that the how property of this crosscut relationship is already stated as
TD (Task Decomposition) because the relationship from a goal to a task can only be a
task-decomposition link. As a result, in Figure 3, Payment Processor is composed
with the Item Transactor aspectual element by adding a task-decomposition link from
Confirm Payment goal to Shopping Cart task after all intentional elements. It is also
composed with the Medi@ actor by adding both a means-end link from Confirm
Payment goal to Get Bought Items task and a means-end link from Get Payment
Information goal to Get Used Payment Way goal.

344 J. Castro et al.

3.4 Performing Trade-Off Analysis

After composing the aspectual elements with the i* models using the graphical com-
position rules, we should identify and resolve conflicting situations that may exist in
composition points [30].

A trade-off analysis method could be considered, as for example [7], when we have
two or more aspectual elements composed with the same element in a base module. We
start by analyzing if these aspects influence negatively on each other. In such cases, we
need to choose proper trade-off analysis methods to guide the conflict resolution.

In Figure 3, one conflicting situation could be identified in the Manage Internet
Shop task at the Medi@ actor. In this composition point three aspects, the Security
Manager, Availability Manager and Adaptability Manager, are composed through a
task-decomposition. Therefore, it is necessary to establish their order of composition.

In general, conflict resolution might lead to a revision of the requirements specifi-
cation (stakeholders’ requirements, aspectual requirements or composition rules). If
this happens, the requirements are recomposed, the i* models are restructured and any
further conflicts arising are resolved.

Fig. 3. The Medi@ Aspectual Strategic Rationale (SR) Model

 Dealing with Complexity Using Conceptual Models Based on Tropos 345

4 Early Validation of Requirements Models

The V-model defines a software development process that supports incremental valida-
tion of software artefacts as well as code testing, according to a test-first perspective in
software development that is becoming more and more compelling while the complex-
ity of the system-to-be increases. In the V-model, validation and testing activities start at
the beginning of the project, and complement requirements and design activities [12].

Fig. 4. The V-Model in GOST [26]

The Goal-Oriented Software Testing (GOST) approach proposed in [26], applies
the V-model to the Tropos methodology [6]. In GOST test cases are derived from
goal-oriented analysis and design models. GOST identifies five different validation
and testing levels, each one addressing a specific objective, namely, acceptance, sys-
tem, integration, agent, and unit testing. It provides also detailed procedures for deriv-
ing test suites from Tropos design artefacts, based on the relationship between design
and testing artefacts depicted in Figure 4: the acceptance test’s artefact is in relation-
ship with early and late requirements models; system test with late requirements and
architectural design models; agent test with architectural and detailed design; and unit
testing is in relationship with detailed design and agent code.

In this section, we illustrate how the GOST approach works focusing on accep-
tance testing and show how we can derive test suites from early and late-requirements
models using an excerpt of the Tropos requirements model of the Medi@ system,
depicted in Figure 5. Test cases for the other validation and testing levels can be
derived following analogous procedures.

Acceptance testing aims at testing the software system in the customer execution envi-
ronment (with the involvement of the stakeholders), and at verifying that the system meets
the original stakeholder goals. In GOST, acceptance test suites (that is set of test cases) can
be derived from early and late requirements models applying the following procedure2:

2 The procedure to derive acceptance test suites has been here adapted since the original i*

modelling language is used [37], instead of the Tropos variant described in [33].

346 J. Castro et al.

Fig. 5. An excerpt of the Medi@ Early and Late Requirements Model [10]

Acceptance test suites derivation consists of the following steps:
 1: forall actor ∈{stakeholder actors}do
 2: forall d ∈ {actor’s dependencies towards the system}do
 3: analyze the corresponding system goal/task/softgoal (in the SR model of the

system)
 4: for all lt ∈{leaf task in the means-end / decomposition tree}
 and sg ∈{softgoal} do
 5: /*create a test suite for lt and sg */
 6: step1: identify operational or usage scenarios related to lt
 7: step2: identify fulfillment criteria (oracle) for each scenario
 8: step3: create one test suite with at least one test case for each scenario
 9: endfor
 10: endfor
 11: endfor

While deriving test cases we may discover underspecified or potentially conflict-

ing situations that need to refine the original requirements specification. That is, the
test-first perspective brings as additional benefits the possibility of preventing defects
and faults and of improving requirements specifications [3].

This emerged also when applying the above procedure to the early- and late-
requirements models of Media@ which is partially reported in Figure 5, as discussed
in the following.

 Dealing with Complexity Using Conceptual Models Based on Tropos 347

Along step #2 in the test suite derivation procedure, we first identify the Medi@
system requirements that derive from domain stakeholders dependencies. The result is
illustrated in Table 2, which lists: the domain stakeholders (the Media Supplier, the
Customer and the Media Shop); their dependencies to the system-to-be, namely the
Medi@ system; and the associated requirements that may be expressed in terms of
goals, tasks, softgoals.

A first observation is that we have two different dependencies from the same do-
main stakeholder (the Customer) that define the same requirement of Medi@, which
is represented by the Shopping task. This observation raises the following questions:

– is there any real difference between the task dependency and the goal de-
pendency, or shall we consider the Place Order task as the intended way by
the Customer to pursue its Buy Media item goal?

– why does the Place Order task dependency induce the Secure quality while
the Buy Media item goal does not?

These questions should be posed back to the requirements analyst that can refine
the model. A possible refinement could be that of considering only one of the two
dependencies, maintaining the link to the two requirements expressed by the Medi@´s
Shopping Cart task and Secure softgoal.

Let’s focus now on the Medi@’s Shopping Cart task and apply steps from #4 to #9
to derive a test suite for it. Table 3, illustrates examples of test suites for the leaf tasks
Pick available item and Pre-Order non available item, Add Item and Check Out3.

Acceptance tests assume that an URL for Medi@ is available for internet access
through a web browser, and it serves a (set) of Media Shop(s) which sells DVD,
Book, Video concerning a variety of categories, such as Sport, Music of different

Table 2. System-to-be Requirements Derived from Domain Stakeholders Dependencies.

Medi@ requirements Domain
Stakeholder

Dependency
Root
Goal

Root Task Softgoal

[G] Process Internet
Order

- Manage Internet
Shop

- Media Shop

[SG] Adaptability - - Adaptable
MediaSupplier [G] Find User New

Needs
 Pre-Order Non

Available Item

[SG] Availability Available
[G] Buy Media Item - Shopping Cart -
[T] Place Order - Shopping Cart Secure
[T] Keyword Search - Database Querying Secure
[T] Browse Catalogue - Catalogue

Consulting

Customer

[SG] Security - Secure

3 The complete application of the steps #4-#9 to the Shopping cart task will derive test suites

also for the other leaf tasks, namely Check Out, Get Identification Detail. They are not shown
here for space reasons.

348 J. Castro et al.

Table 3. Examples of Test Suite derived by applying the Acceptance Test Suite Derivation
Procedure

TS Leaf
task

TC Scenario Oracle

TC1.1 Given a list of 4 items each one
identified by a unique name (or
a short description) the user can
point and click on the name of
the third item with the mouse or
the pen-stick.

An instance of selected-
item with the ID of item
#3 is created and ready to
be added to the cart.

TC1.2 Given a list of 4 items, two
having similar or equal names,
the user can point it with the
mouse (or the pen-stick) to get
a short description. A further
click on it will define its
selection.

An instance of selected-
item with the right ID is
created and ready to be
added to the cart.

TC1.3 The available item list is empty The customer can switch
to the Pre-Order non
available item function or
perform another query

TS1 Pick
available
item

TC1.4 The session expires while the
customer pick an item from the
list

Resuming the session the
customer is informed
about the current selected
items

TS2 Pre-
order
non
avail-
able
item

TC2.1 The customer can select an item
marked as not available

An instance of selected-
item with the right ID is
created and ready to be
added to the cart in the
pre-order set.

TC3.1 The customer add to the cart
one item from the list of
selected items (both available
or not)

The cart set is updated
upon the inclusion of the
added item

TS3 Add
Item

TC3.2 The customer add to the cart
all the selected items (both
available or not)

The cart set is updated
upon the addition of the
selected items

TC4.1 The customer is shown the list
of items put in the cart and
confirm the order

The order of the selected
items is ready to be
completed with the
customer payment info

TS4 Check
Out

TC4.2 The session expires The order info are saved
and ready to be
resubmitted to the
customer for confirmation

 Dealing with Complexity Using Conceptual Models Based on Tropos 349

genres. These Media Shops rest on (a) Media Supplier(s) to have the ordered items
available to be sent to the customers. Customers access to the Medi@ system with a
laptop equipped with a mouse or with a PDA equipped with a pen-stick.

Focusing on TS2 we may notice that the Pre-order non available item leaf task re-
sults from the analysis of the Medi@´s Shopping Cart root task as well as from the
dependency from the Media Supplier domain stakeholder to achieve the Find User
New Need goal. The requirements model seems to assume that the Medi@ system is
able to provide to the customers a list of items which fit their current needs, and are
marked as available or not. This requires that the Media Suppliers, the Media Shop is
working with, allow the system to access their product databases, which should be
dynamically updated with respect to the (non)/availability of their products.

This requirement should be made explicit, for instance in the analysis of the Item
Searching Handled goal, or in the associated Database Querying and Catalogue Con-
sulting tasks. Here the database or the catalogue the two tasks refer to, may
correspond to a distributed database (or catalogue) that can be built dynamically by
accessing to the catalogues of the media suppliers that work for the Media Shop.

5 Dealing with Complexity Using a Combined Goal and Scenario
Approach

The combined use of goals and scenarios has been explored within requirements en-
gineering, primarily for eliciting, validating and documenting software requirements.
Van Lamsweerde and Willement studied the use of scenarios for requirements elicita-
tion and explored the process of inferring formal specifications of goals and
requirements from scenario descriptions in [21].

In the CREWS project, Rolland et al. have proposed the coupling of goals and
scenarios in requirements engineering with CREWS-L’Ecritoire [31]. In CREWS-
L’Ecritoire, scenarios are used as a means to elicit requirements/goals of the system-
to-be. Both goals and scenarios are represented as structured text. The coupling of
goal and scenario could be considered as a “tight” coupling, as goals and scenarios are
structured into <Goal, Scenario> pairs, which are called “requirement chunks”. Their
work focuses mainly on the elicitation of functional requirements/goals.

The Software Architecture Analysis Method (SAAM) [17] is a scenario-based
method for evaluating architectures. It provides a means to characterize how well a
particular architectural design responds to the demands placed on it by a particular set
of scenarios. Based on the notion of context-based evaluation of quality attributes,
scenarios are used as a descriptive means of specifying and evaluating quality attrib-
utes. SAAM scenarios are use-oriented scenarios, which are designed specifically to
evaluate certain quality attributes of architecture. The evaluations are done using
simulations or tests on a finished design.

This section first introduces the goal and scenario model integrated design process
based on Tropos and UCM [8]. Then the running example is used to illustrate how to
deal with design decision making problems with the Tropos concepts. Part of this
work is based on [22] and the URN [17] notation, new development of this work is
that we aim at using the joint goal and scenario analysis to cope with the complexity
in the organizational environment – mutual social dependencies, conflicting intentions
and interests, hard to express operational scenarios.

350 J. Castro et al.

5.1 Coping with Complexity Using TROPOS

Based on the Tropos concepts, we now explore how to capture the organizational and
environmental complexity with strategic dependency network, and how agents can
respond to the complexity according to their own needs and capabilities based on
strategic rationale analysis.

Fig. 6. Goal and Scenario Model Integrated Design Process

 Dealing with Complexity Using Conceptual Models Based on Tropos 351

We use the running example to illustrate the complementary application of Tropos
and UCM. The approach is applicable to information systems in general, where there
are conflicting goals and tradeoffs during design. Starting from the identification of
the major stakeholders of the domain, we explain in sequence how to capture the
original business objectives of the stakeholders, refine and operationalize these objec-
tives into applicable design alternatives with Tropos and how to visualize and concre-
tize some solutions with UCM.

Step 1: Placing system design within its broader social context, the proposed model-
ing approach can help to address the following questions systematically: Who are the
major players in the business domain? What kinds of relationships exist among them?
What are the business objectives and criteria of success for these players? The various
dependency links in the model depict that in the Media example, the Medi@ is a key
player, who provides media products and services to Customers through the Internet.
At the same time, it depends on the support of Telecom Company, Media Supplier and
Bank.

Step 2: After the main players are identified, we ask them what their business objec-
tives are, i.e., what they hope to accomplish for their organization, their sponsors, or
their financial backers. Assume that, in our specific e-commerce system, the Medi@
is playing the role of "Media Service Provider", who should then have two things in
mind:

Attract new customer by selling media products online
Improve availability, adaptability and security of the service
They are represented as softgoals in the Tropos model in Figure 7.

Step 3: Explore the alternative business processes, methods or technologies used in
this industry or business. Evaluate how these alternatives are serving the specific
business objectives and the quality expectations of stakeholders.

In Figure 7, we see how the two solutions Medi@ and Conventional Media Shop
contribute differently to the goals. By using contribution links labeled with numbers
or different symbolic types, the model portrayed that Medi@ makes the goal of Avail-
ability satisficable, while media shop method hurts the fulfillment of this goal. Fur-
thermore, the fulfilling of this goal helps the achievement of Attract New Customer
goal. The result of this analysis suggests that Medi@ may be a better option for cur-
rent stakeholder. Part of this model (the two softgoals and the help relationship
between them) is only applicable to current system, while other part (the structure
showing the different resource consumption of the two solutions) depicts generic
domain knowledge reusable to all service providers of Media Products.

Step 4: The advantages and disadvantages of the candidate solution are further inves-
tigated by evaluating its contributions to other concerned softgoals. For each disad-
vantage, mitigation plans are considered to complement the current solution.

The corresponding goal model shows that the advantages of Media@ include
Availability, Increase Market Share and Adaptablity is satisfied. Consequently, the
overall quality of service improved. It also contributions positively to Globalization,
Flexibility, both of which contribute positively (helps) to the customer's satisfactory.

352 J. Castro et al.

Fig. 7. Two Alternative Solutions in the Medi@ Example

However, there are also disadvantages e.g., the inherent Security and More Efforts on
Electronic Delivery of Media@ hurts the high level goals of the stakeholder. These
disadvantages can be mitigated by countermeasures such as “DRM”, which is repre-
sented as tasks connected with a negative correlation links (the dotted lines with
arrows) to the unfavorable contributions links in the graph.

To identify the best design solutions, goal-reasoning techniques such as qualitative
goal labeling algorithms are used. Quantitative techniques, such as probability or
other quantitative measures, are used. With the help of i* model, we are able to ex-
plore a space of design alternatives of considerable size. If there are m decision points
(goals/softgoals with black rectangle shadow) and average n options at each point,
there will be about nm alternatives to be chosen from. Considering the presence of
some external domain constraints, not all of alternatives are workable. When there is a
large space of alternatives to choose from, system designers will greatly appreciate
automated support such as an approximate ranking according to some criteria. The
ranking of design alternatives is determined by the contributions to the softgoals of
concern. In order to rank design alternatives, various criteria can be adopted. We can
then either rank alternatives according to their overall contributions to all softgoals, or
rank according to user’s specific preferences.

Step 5: Identify the alternative essential sub-processes/components to implement the
candidate solution. Next, we build model to elaborate the generic knowledge about
Media Shop Managed. First of all, a media shop manager needs to Choose a Business
Front-end, decide whether to use bricks or clicks, and order handling Process for the
business. As all of these sub-processes are necessary steps for the finishing of the root
task, they are represented as subgoals connected to the root task with decomposition
links.

 Dealing with Complexity Using Conceptual Models Based on Tropos 353

Step 6: As the goal-oriented design proceeds, finer-grained analysis needs to be con-
ducted; hence the scenario-based notation comes into use. To elaborate the goal Pick
Ordering Process, alternative processes are denoted in the i* model as task nodes
having different usage. For instance, Media Shop provides physical shopping experi-
ence, as they provide a Safe and convenient solution.

Each of the alternative processes can be described as a UCM scenario. Medi@ sys-
tem and Customer are represented as agent components (rectangles), holders of
responsibilities (small crosses along on the wiggle lines). In the scenario, the use case
path shows that different Customers can have different routines if they choose differ-
ent subjects in the Web Interface. The Customer and the Medi@ system collaborates
on searching on the web for materials of interest, so they are sharing responsibilities
(denoted by adding a square S between the shared responsibilities).

Having analyzed the benefits and tradeoffs of these structures, we can see that
UCM is a useful counterpart to Tropos in the process from requirements to high-
level design, because it provides a concrete model of each design alternative. Based
on the features in such a model, new non-functional requirements may be detected
and added to the Tropos model. At the same time, in the Tropos model, new means
to achieve the functional requirements can always be explored and concretized in
a UCM model. Thus the above design process may iterate several rounds until an
acceptable design is made.

Fig. 8. Medi@ Scenario Model in UCM

6 Software Project Management Process

Due to benefits and perspectives such as efficient software project management, con-
tinuous organizational modeling and requirements acquisition, early implementation,
continuous testing and modularity, iterative development is more and more used by
software engineering professionals especially through methodologies such as the
Unified Process [34].

Most agent-oriented software development and requirements-driven methodologies
only use a waterfall system development life cycle (SDLC) or advice their users to
proceed iteratively without offering a strong project management framework to sup-
port that way of proceeding. Consequently they are not suited for the development of
huge and complex user-intensive applications. The aim of this section is to present a
research dedicated to extend Tropos with an iterative life cycle called I-Tropos4. This

4 I-Tropos stands for Iterative Tropos.

354 J. Castro et al.

methodology fills the project and product life cycle gaps of Tropos and offers a goal-
oriented project management perspective to support project stakeholders for applying
the methodology.

The I-Tropos project management framework covers several dimensions including
risk, quality, time and process management. Contributions include, among others,
taking threats and quality factors’ evaluation directly in account for planning the goals
realization over multiple iterations. The process is exposed in this section and illus-
trated on the Medi@ case study using DesCARTES, a CASE-tool designed to support
I-Tropos.

6.1 Process Engineering Concepts

An I-Tropos development is made of disciplines5 iteratively repeated while the rela-
tive effort spend on each one is variable from one iteration to the other. The Organiza-
tional Modeling and Requirements Engineering disciplines are respectively largely
inspired by Tropos’ Early and Late Requirements disciplines. The Architectural and
Detailed Design disciplines correspond to the same stages of traditional Tropos. I-
Tropos includes core activities i.e. Organizational Modeling, Requirements Engineer-
ing, Architectural Design, Detailed Design, Implementation, Test and Deployment but
also support disciplines to handle the project development called Risk Management,
Time Management, Quality Management and Software Process Management. There is
little need for support activities in a process using a waterfall SDLC since the core
disciplines are sequentially achieved one for all. When dealing with a process using
an iterative SDLC, the need for support disciplines for managing the whole software
project is from primary importance. I-Tropos process’ disciplines are described in
detail in [35].

Using an iterative SDLC implies repeating process’ disciplines many times during
the software project. Each iteration belongs to one of the four phases inspired by the
Unified Process (UP); a complementary documentation can be found in [20] while a
summary of each phase objective is depicted into the next section. These phases are
achieved sequentially and have different goals evaluated at milestones through
knowledge and achievement oriented metrics, those are informally described into the
next section. Figure 9 offers a two dimensional view of the I-Tropos process: it shows
the disciplines and the four different phases they belong to.

5 The phase and discipline notions are often presented as synonyms in software engineering

literature. In [24], Tropos is described as composed of five phases (Early Requirements, Late
Requirements, Architectural Design, Detailed Design and Implementation). However [29]
defines disciplines as “a particular specialization of Package that partitions the Activities
within a process according to a common “theme”.”, while the phase is defined as “a speciali-
zation of WorkDefinition such that its precondition defines the phase entry criteria and its
goal (often called a "milestone") defines the phase exit criteria”. In order to be compliant
with the most generic terminology, traditional Tropos phases will be called disciplines in our
software process description since they partition Activities under a common theme. In the
same way, phases will be considered as groups of iterations which are workflows with a mi-
nor milestone.

 Dealing with Complexity Using Conceptual Models Based on Tropos 355

Requirements

Engineering

TestTestTestTestTestTest

ImplementationImplementationImplementationImplementationImplementationImplementation

Requirements

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Organizational

Modeling

Requirements

Engineering

Architectural

Design

Detailed

Design

Implementation

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

Architectural

Design

Detailed

Design

D

I

S

C

I

P

L

I

N

E

S

Deployment Deployment Deployment Deployment Deployment Deployment Deployment

Test

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements Requirements

Engineering

Requirements

Engineering

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

Software Project

Management

SETTING BLUEPRINTING BUILDING SETUPING

Major

Milestone

Major

Milestone

Major

Milestone

Major

Milestone

Fig. 9. I-Tropos: Iterative Perspective

6.2 Process Phases

I-Tropos phases are inspired by the UP phases6; each one is made of one or more
iterations. Disciplines are gone through sequentially; as stressed before the phases are
separated by major milestones. Each of them has its own goal:

The setting phase is designed to identify and specify most stakeholders require-
ments, have a first approach of the environment scope, identify and evaluate project’s
threats and identify and evaluate quality factors.

The blueprinting phase is designed to produce a consistent architecture for the sys-
tem on the basis of the identified requirements, eliminate most risky features in priority
and evaluate blueprints/prototypes to stakeholders; feedback will feed next iterations.

The building phase is designed to build a working application and validate
developments.

The setuping phase is designed to finalize production, train users and document the
system.

6.3 Process Core Disciplines

The I-Tropos process has been fully described using the Software Engineering Process
Metamodel in [35]. That technical report describes each process’ Discipline, Activity,

6 The phases milestones expressed hereafter are based on the metrics expressed in the Unified

Process (see [20]).

356 J. Castro et al.

Role, WorkDefinition and WorkProduct, so that it can be used as reference or guide to
the methodology. A lightened overview of the process is given in this section.

The Organizational Modeling discipline, strongly inspired from the Tropos Early
Requirements stage, aims to understand the problem by studying the existing organ-
izational setting.

The Requirements Engineering discipline, inspired from the Tropos Late Require-
ments stage, extends models created previously by including the system to-be, mod-
eled as one or more actors.

The Architectural Design discipline, inspired by the Tropos Architectural Design
stage, aims to build the system’s architecture specification, by organizing the depend-
encies between the various sub-actors identified so far, in order to meet functional and
non-functional requirements of the system.

The Detailed Design discipline, inspired by Tropos Detailed Design, aims at defin-
ing the behavior of each architectural component in further detail.

The Implementation discipline aims to produce an executable release of the appli-
cation on the basis of the detailed design specification.

The Test discipline aims on evaluating the quality of the executable release.
The Deployment discipline aims to test the software in its final operational envi-

ronment.

6.4 Process Support Disciplines

These disciplines provide features to support software development i.e. tools to man-
age risks, quality levels, time, resources allocation but also the software process itself.
All those features can be regrouped onto the term software project management.

Risk Management is the process of identifying, analyzing, assessing risk as well as
developing strategies to manage it. Strategies include transferring risk to another
party, avoiding risk, reducing its negative effects or accepting some or all of the con-
sequences of a particular one. Technical answers are available to manage risky issues.
Choosing the right mean to deal with particular risk is a matter of compromise be-
tween level of security and cost. This compromise requires an accurate identification
of the threats as well as their adequate evaluation.

Quality Management is the process of ensuring that quality expected and con-
tracted with clients is achieved throughout the project. Strategies include defining
quality issues and the minimum quality level for those issues. Technical answers are
available to reach quality benchmarks. Choosing the right mean to deal with quality
issues is a matter of compromise between level of quality and cost. This compromise
requires an accurate identification of the quality benchmarks as well as their adequate
evaluation.

Time Management is the process of monitoring and controlling the resources (time,
human and material) spent on the activities and tasks of a project. This discipline is of
primary importance since, on the basis of the risk and quality analyses, the global
iterations time and human resources allocation are computed; they are revised during
each iteration.

Software Process Management is the use of process engineering concepts, tech-
niques, and practices to explicitly monitor, control, and improve the systems
engineering process. The objective of systems engineering process management is to

 Dealing with Complexity Using Conceptual Models Based on Tropos 357

enable an organization to produce system/segment products according to plan while
simultaneously improving its ability to produce better products [9]. In this context,
Software Process Management regroups the activities aimed to tailor the generic
process onto a specific project as well as improving the software process.

6.5 Applying I-Tropos on Medi@

Figure 10 depicts DesCARTES [11], more specifically the cost and effort estimation
interface provided by the module supporting the Software Project/Time Management
Disciplines from I-Tropos. Project Management Features such as scale drivers, cost
factors, increment settings, labor rates, breakage, etc., can directly be tuned through
this kind of interfaces.

Fig. 10. DesCARTES: Estimating the Medi@ Application with the I-Tropos Software Pro-
ject/Time Management Disciplines Module

DesCARTES (Design CASE Tool for Agent-Oriented Repositories, Techniques,
Environments and Systems) Architect is a Computer-Aided Software Engineering
Tool developed as a plug-in for the Eclipse Platform by the Information Systems Unit
at the University of Louvain. It is designed to support various models edition: i* mod-
els (Strategic Dependency and Strategic Rationale models), NFR models, UML mod-
els, AUML models in the context of I-Tropos or Unified Process-like developments.
The originality of the tool is that it allows the development of the methodology
models throughout iterative software life cycle processes as well as forward engineer-
ing capabilities and integrated software project management, time and risk/quality
management modules.

358 J. Castro et al.

Figure 11 provides graphical reporting outputs directly produced by DesCARTES
related to the cost, effort, activities and schedule estimation for Medi@.

Instantiated to Medi@, these outputs applying regression models based on CO-
COMO or SLIM [4] and factor scales supported by maturity models such as CMM-I
give the following estimation figures. Total size is estimated to 101700 Java SLOC
while the total cost will be 271 400 $. The duration of the project will be 13.6 months
with 46.7 actual person-months (PM) and a nominal PM at 29.1. Productivity is esti-
mated to 256.9 SLOC per PM at the unit cost at 22.26$ per line. Average staffing
during the project is 3.43 persons with a high at 4.87 during Building a low at 1.71
during Setting.

Fig. 11. Graphical Outputs from DesCARTES: Cost, Effort, Activities and Schedule Estimation
for Medi@

7 Conclusion

This chapter presents a set of approaches to deal with complexity, which address
various activities in software development, namely requirements modeling, testing
and project management.

More specifically, we outlined an approach to improve modularization of require-
ments models described in i*, by identifying, separating and composing crosscutting
concerns. A specific notation has been created to represent aspectual i* models. This
leads to the addition of two new concepts in the i*/Tropos modeling language, namely
aspectual element and crosscut relationship. Aspectual elements modularize crosscut-
ting concerns while the crosscut relationship captures the information of source and
target model elements, as well as, when and how an aspectual element crosscuts other
model elements. The approach introduces modularity (it creates units that are strongly
cohesive and loosely coupled), reduces the scalability (removing the redundant ele-
ments and links) and improves the reusability. Work in under way to evaluate the
resulting models by means of metrics to assess well-known attributes in software
engineering, such as separation of concerns, size, cohesion and coupling. In the near

 Dealing with Complexity Using Conceptual Models Based on Tropos 359

future we plan to define a trade-off analysis method to complement the proposed
process as well as to provide tool support for the approach.

The application of a V-model software development process in Tropos, namely the
GOST methodology [26], has been introduced, as an approach to enable incremental
validation and testing of artifacts while building complex software system. Further
benefits of using this test-first perspective for clarifying ambiguities in requirements
models has also been illustrated by applying GOST to a fragment of the early- and
late-requirements models of the Media@ system. The systematic application of the
GOST approach can be supported by the eCAT tool, which automatically generates
test suite skeletons from goal models [25]. Extensions of GOST with automated test
case generation techniques are described in [27] and [28]. This is a necessary step
towards supporting a continuous validation and testing approach for the development
of complex software systems.

The combined use of Tropos and UCM enables the description of functional and
non-functional requirements, abstract requirements and concrete system models, in-
tentional strategic design rationales and non-intentional details of concurrent, tempo-
ral aspects of the future system. It is natural to adopt Tropos as a basic requirements
knowledge representation language, and try to find how other existing requirements
modeling languages relate and complement to it. So following the attempt in integrat-
ing i*(GRL) with UCM, we move to integrate i* with the Problem Frames. The ulti-
mate objective is to build a requirement ontology that incorporates as many perspec-
tives as possible.

In terms of software process management, I-Tropos represents an evolution of the
Tropos process. It constitutes an operationalization of the Tropos methodology in
order to be used in large software developments. I-Tropos mainly fills up the gap of
project management which is, for now, seldom approached in MAS literature. The
main contributions include meta-level process documentation, a full software and
product life cycle coverage, a project management framework for the inclusion of
Tropos developments into an iterative and incremental process template and the sup-
port of a specific CASE tool, DesCARTES. I-Tropos is an adequate project manage-
ment for building large-scale enterprise systems from scratch. However, many firms
have turned to the reuse of existing software or using commercial off-the-shelf
(COTS) software as an option due to lower cost and time of development. Work for
enlarging its scope including COTS software customization onto specific case and
adequate project management is in progress. The basic adaptation of I-Tropos to sup-
port this paradigm of software development is described in [36].

Acknowledgements

This work was supported by several research grants: National Natural Science
Foundation of China (Grant No.60873064), National Basic Research and Develop-
ment 973 Program of China (Grant No.2009CB320706), CNPq Grant 308587/2007-3,
BIT Initiative, FUR-PAT Trento (STAMPS project). We thank our colleagues at
Universidade Federal de Pernambuco and Universidade Nova de Lisboa, in particular
Fernanda Alencar, João Araújo and Ana moreira for their contributions to the
aspectualization of i* models.

360 J. Castro et al.

References

1. Amyot, D.: Introduction to the User Requriements Notation: Learning by Example. Com-
puter Networks~42(3), 285--301 (2003)

2. Alencar, F., Castro, J., Moreira, A., Araújo, J., Silva, C., Ramos, R., Mylopoulos, J.: Inte-
gration of aspects with i* models. In: Kolp, M., Henderson-Sellers, B., Mouratidis, H.,
Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS, vol. 4898, pp. 183–201.
Springer, Heidelberg (2008)

3. Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Publishing
Co., Inc., Boston (2002)

4. Boehm, B., et al.: Software cost estimation with COCOMO II. Prentice-Hall, Englewood
Cliffs (2000)

5. Bresciani, P., Perini, A., Giunchiglia, F., Giorgini, P., Mylopoulos, J.: A Knowledge Level
Software Engineering Methodology for Agent Oriented Programming. In: Proc. of the 5th
Int. Conference on Autonomous Agents (Agents 2001), Montreal, pp. 648–655 (2001)

6. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

7. Brito, I.S., Vieira, F., Moreira, A., Ribeiro, R.A.: Handling conflicts in aspectual require-
ments compositions. In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS,
vol. 4620, pp. 144–166. Springer, Heidelberg (2007)

8. Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. Transactions
on Software Engineering 24(12), 1131–1155 (1998)

9. Capability Assessment Working Group on Systems Engineering, Systems Engineering
Capability Assessment Model, INCOSE-TP-1996-002-01, Version 1.50a (June 1996)

10. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems Engi-
neering: The Tropos Project. Information Systems Journal 27(6), 365–389 (2002)

11. DesCARTES Architect: Design CASE Tool for Agent-Oriented Repositories, Techniques,
Environments and Systems (2008), http://www.isys.ucl.ac.be/descartes/

12. Development Standards for IT Systems of the Federal Republic of Germany, The V-Model
(2005), http://www.v-modell-xt.de

13. Estrada, H., Rebollar, A.M., Pastor, Ó., Mylopoulos, J.: An empirical evaluation of the i*
framework in a model-based software generation environment. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

14. Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longsta, T., Sullivan, K., Wallnau,
K.: Ultra-large-scale systems: The software challenge of the future. Technical report,
Software Engineering Institute (July 2006), http://www.sei.cmu.edu/uls/

15. France, F., Kim, D., Ghosh, S., Song, E.: A UML-Based Pattern Specification Technique.
IEEE Transactions on Software Engineering 30(3), 193–206 (2004)

16. Graham, D.R.: Requirements and testing: Seven missing-link myths. IEEE Software 19(5),
15–17 (2002)

17. International Telecommunications Union (ITU-T) Recommendation Z.151: User Require-
ments Notation (URN) - Language Definition (2008)

 Dealing with Complexity Using Conceptual Models Based on Tropos 361

18. Kazman, R., Bass, L., Abowd, G., Webb, M.: SAAM: A Method for Analyzing the Proper-
ties of Software Architectures. In: Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, May 1994, pp. 81–90 (1994)

19. Kim, D., France, R., Ghosh, S., Song, E.: Using Role-Based Modeling Language as Pre-
cise Characterizations of Model Families. In: 8th Intl. Conf. on Engineering of Complex
Computer Systems, IEEE, USA (2002)

20. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Reading
(2003)

21. van Lamsweerde, A., Willemet, L.: Inferring Declarative Requirements Specifications
from Operational Scenarios. IEEE Transactions on Software Engineering, Special Issue on
Scenario Management (December 1998)

22. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. Information Systems 29(2), 187–203 (2004)

23. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Inter-
action (A Roadmap for Agent Based Computing). AgentLink, Liverpool, UK (2005)

24. Mylopoulos, J., Castro, J.: Tropos: A Framework for Requirements-Driven Software De-
velopment. In: Brinkkemper, S., Lindencrona, E., Sølvberg, A. (eds.) Information Systems
Engineering: State of the Art and Research Themes, pp. 261–273. Springer, Heidelberg
(2000)

25. Nguyen, C.D., Perini, A., Tonella, P.: eCAT: a Tool for Automating Test Cases Generation
and Execution in Testing Multi-Agent Systems (Demo Paper). In: Proc. Of the 7th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Demo
Proceedings, Estoril, Portugal, May 12-16, 2008, pp. 1669–1670 (2008)

26. Nguyen, C.D., Perini, A., Tonella, P.: Goal-Oriented Testing for MAS. Int. Journal of
Agent-Oriented Software Engineering (submitted, 2008)

27. Nguyen, C.D., Perini, A., Tonella, P.: Automated Continuous Testing of Autonomous Dis-
tributed Systems. In: 1st International Workshop on Search-Based Software Testing, in
conjunction with the IEEE International Conference on Software Testing, Verification and
Validation, ICST 2008 (2008)

28. Nguyen, C.D., Miles, S., Perini, A., Tonella, P., Harman, M., Luck, M.: Evolutionary Test-
ing of Autonomous Software Agents. In: Decker, Sichman, Sierra, Castelfranchi (eds.)
Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Budapest, Hungary, May 10-15 (2009)

29. OMG: The Software Process Engineering Metamodel Specification. Version 1.1 (January
2005)

30. Rashid, A., Moreira, A., Araujo, J.: Modularisation and Composition of Aspectual Re-
quirements. In: Proc. of the 2nd Intl. Conf. on Aspect-Oriented Software Development, pp.
11–20. ACM Press, New York (2003)

31. Rolland, C., Grosz, G., Kla, R.: Experience With Goal-Scenario Couplingin Requirements
Engineering. In: Proceedings of the IEEE International Symposium on Requirements En-
gineering 1998, Limerick, Ireland (1998)

32. Silva, C., Araújo, J., Moreira, A., Castro, J.: Designing Social Patterns using Advanced
Separation of Concerns. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 309–323. Springer, Heidelberg (2007)

362 J. Castro et al.

33. Susi, A., Perini, A., Giorgini, P., Mylopoulos, J.: The Tropos metamodel and its use. In-
formatica 29(4), 401–408 (2005)

34. Royce, W.: Software Project Management. A Unified Framework. Addison-Wesley, Read-
ing (1998)

35. Wautelet, Y., Kolp, M., Achbany, Y.: S-Tropos: An Iterative SPEM-Centric Project Manage-
ment Process. Working Paper IAG 06/01, Université catholique de Louvain (2006)

36. Wautelet, Y., Achbany, Y., Kiv, S., Kolp, M.: A Service-Oriented Framework for Compo-
nent-Based Software Development: An i* Driven Approach. In: Proceedings of the 11th
International Conference on Enterprise Information Systems, ICEIS 2009, Milan (2009)

37. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Ph.D Thesis, De-
partment of Computer Science, University of Toronto, Canada (1995)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 363–379, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On Non-Functional Requirements in Software
Engineering

Lawrence Chung1 and Julio Cesar Sampaio do Prado Leite2

1 Department of Computer Science, The University of Texas at Dallas
2 Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro

www.utdallas.edu/~chung/, www.inf.puc-rio.br/~julio

Abstract. Essentially a software system’s utility is determined by both its func-
tionality and its non-functional characteristics, such as usability, flexibility, per-
formance, interoperability and security. Nonetheless, there has been a lop-sided
emphasis in the functionality of the software, even though the functionality is
not useful or usable without the necessary non-functional characteristics. In this
chapter, we review the state of the art on the treatment of non-functional
requirements (hereafter, NFRs), while providing some prospects for future
directions.

Keywords: Non-functional requirements, NFRs, softgoals, satisficing, re-
quirements engineering, goal-oriented requirements engineering, alternatives,
selection criteria.

1 Introduction

“Soft is harder to deal with than hard.” [Anonymous]

Essentially a system’s utility is determined by both its functionality and its non-
functional characteristics, such as usability, flexibility, performance, interoperability
and security. Nonetheless, there has been a lop-sided emphasis in the functionality of
the system, even though the functionality is not useful or usable without the necessary
non-functional characteristics.

Just with almost everything else, the concept of quality is also fundamental to soft-
ware engineering, and both functional and non-functional characteristics must be
taken into consideration in the development of a quality software system. However,
partly due to the short history behind software engineering, partly due to the demand
on quickly having running systems fulfilling the basic necessity, and also partly due
to the “soft” nature of non-functional things, most of the attention in software engi-
neering in the past has been centered on notations and techniques for defining and
providing the functions a software system has to perform.

A frequently observable practice, as a result of this lop-sided emphasis in the
functional side of a software artifact, is that the needed quality characteristics are
treated only as technical issues related mostly to the detailed design or testing of an

364 L. Chung and J.C.S. do Prado Leite

implemented system. This kind of practice, of course, is quite inadequate. Detailed
design and testing do not make much sense without their preceding phases of under-
standing what the real-world problem is to which a software system might be
proposed as a solution and also what the specifics of the software solution, i.e., the
requirements, might be like. And real-world problems are more non-functionally
oriented than they are functionally oriented, e.g., poor productivity, slow processing,
high cost, low quality, and unhappy customer.

Although the requirements engineering community has classified requirements as
either functional or non-functional, most existing requirements models and require-
ments specification languages lacked a proper treatment of quality characteristics.
Treating quality characteristics as a whole, and not just as functionality alone, has
been a key focus of works in the area of goal-oriented requirements engineering [1]
[2], and in particular the NFR Framework [3] that treats non-functionality at a high
level of abstraction for both the problem and the solution.

This chapter brings forth a review of the literature on NFRs, with emphasis in the
different definitions, representation schemes, as well as more advanced uses of the
concepts. At the end, we conclude the chapter by discussing open issues in the early
treatment of NFRs and its impacts on software construction.

2 What are Non-Functional Requirements?

In literature, a plethora of definitions can be found of non-functional requirements
(NFRs).

Colloquially speaking, NFRs have been referred to as “-ilities” (e.g., usability) or
“-ities” (e.g., integrity), i.e., words ending with the string “-ility” or “-ity. A large list
of such words can be found, for example, in [3]. There are many other types of NFRs
that do not end with either “-ility” or “-ity” as well, such as performance, user-
friendliness and coherence.

An important piece of work on NFRs is the NFR Framework [1] [3], which de-
couples the concept of functionality from other quality attributes and concerns for
productivity, time and cost, by means of a higher-level of abstraction. Instead of
focusing on expressing requirements in terms of detailed functions, constraints and
attributes, the NFR Framework devised the distinction of NFRs by using the concepts
of goal and softgoal. More details on the NFR Framework will be described further in
Section 4.

In the area of Software Architecture, one frequently encountered keyword is “qual-
ity attributes” [4], which is understood as a set of concerns related to the concept of
quality. For a definition of quality, an IEEE standard [5] is used here as a companion:
“Software quality is the degree to which software possesses a desired combination of
attributes (e.g., reliability, interoperability).”

Several other authors have also treated these types of concerns. For instance, basic
quality (functionality, reliability, ease of use, economy and safety) is distinguished
from extra quality (flexibility, reparability, adaptability, understandability, documen-
tation and enhanceability) in [6].

 On Non-Functional Requirements in Software Engineering 365

In the area of engineering and management, the well known QFD (Quality Func-
tion Deployment) strategy [7] distinguishes positive quality from negative quality:
“QFD is quite different in that it seeks out both "spoken" and "unspoken" customer
requirements and maximizes "positive" quality (such as ease of use, fun, luxury) that
creates value. Traditional quality systems aim at minimizing negative quality (such as
defects, poor service)”. One of the techniques used by QFD strategies is the House of
Quality [8], in which the process starts "...with the customer, whose requirements are
called customer attributes (CA´s) - phrases customers use to describe products and
product characteristics...". Incidentally, none of the examples of the CA´s in [8] is
related to functionality or just functionality alone.

In the area of software requirements, the term non-functional requirements [9] has
been used to refer to concerns not related to the functionality of the software. How-
ever, different authors characterize this difference in informal and unequal defini-
tions. For example, a series of such definitions is summarized in [10]:

a) “Describe the non-behavioral aspects of a system, capturing the properties
and constraints under which a system must operate. “
b) “The required overall attributes of the system, including portability, reli-
ability, efficiency, human engineering, testability, understandability, and
modifiability.”
c) “Requirements which are not specifically concerned with the functionality
of a system. They place restrictions on the product being developed and the
development process, and they specify external constraints that the product
must meet.”
d) “... global requirements on its development or operational cost, perform-
ance, reliability, maintainability, portability, robustness, and the like. ...
There is not a formal definition or a complete list of nonfunctional require-
ments.”
e) “The behavioral properties that the specified functions must have, such as
performance, usability.”
f) “A property, or quality, that the product must have, such as an appearance,
or a speed or accuracy property.”
g) “A description of a property or characteristic that a software system must
exhibit or a constraint that it must respect, other than an observable system
behavior.”

After arguing that the definitions are unclear and that they lack consensus, the author
says: “For persons who do not want to dispose of the term ‘non-functional require-
ment’, we can define this term additionally as: DEFINITION. A non-functional
requirement is an attribute of or a constraint on a system.” [10].

There are other additional definitions in literature worth adding to the list.

h) ” … types of concerns: functional concerns associated with the services to
be provided, and nonfunctional concerns associated with quality of service –
such as safety, security, accuracy, performance, and so forth.” [2].
i) “The term “non-functional requirement” is used to delineate requirements
focusing on “how good” software does something as opposed to the func-
tional requirements, which focus on “what” the software does.” [11].

366 L. Chung and J.C.S. do Prado Leite

j) “Putting it another way, NFRs constitute the justifications of design deci-
sions and constrain the way in which the required functionality may be real-
ized.” [12].

On purpose, we left the citation to [12] as the last definition of the several presented.
This definition of nonfunctional requirements is of major importance and will be
commented later on in Section 4.

Since we are revisiting so many definitions, it might help to focus on the definition
of four words that seem central to all of the definitions: quality, functionality, func-
tional and nonfunctional. The definitions were selected from WordNet [13]. Word-
Net is a lexical database of English, where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.
Here we list the major definition of each of these words as they appear in Wordnet.
We do this to call the attention to the term nonfunctional.

Quality: Noun -- S: (n) quality (an essential and distinguishing attribute of something
or someone)

Functional: Adjective -- S: (adj) functional (designed for or capable of a particular
function or use)

Nonfunctional: Adjective -- S: (adj) nonfunctional (not having or performing a func-
tion); S: (adj) malfunctioning, nonfunctional (not performing or able to perform its
regular function)

Functionality: Noun -- S: (n) functionality (capable of serving a purpose well)

If we carefully examine these definitions, we notice that the word “functional” is an
adjective and “quality” is both noun and adjective, whereas “functionality” is a noun.
We also notice that “functional” refers to use and “functionality” refers to purpose.

We bring these definitions to bear, since if we understand the terms “functional re-
quirements” and “non-functional requirements” out of context, they may bring up
different semantics. Of course, the term “non-functional requirements” is not meant
to mean requirements that are not able to perform a function, but if interpreted out of
context, it may create a confusion. If the literature were more careful in choosing
names, this potential confusion could have been avoided.

Notwithstanding these observations and the fact that functionality can be seen as
quality as well, as also note in [6], we understand that the distinction among these two
types of quality is extremely helpful and important in software engineering.

A central point for the distinction of functionality and other qualities is that, for
software construction, the purpose of the software system needs to be well defined in
terms of the functions that the software will perform. It may sound strange, but this
distinction is not as evident in other areas of engineering, as we could see from the
QFD strategy. In business and engineering, the function of an artifact or an activity
mostly deals with physical entities, and is usually clear and upfront. In contrast, in
software engineering whose products are conceptual entities, this is not the case. As a
matter of fact, it would be odd to detail, by functions, the fact that a car has to be able
to transport people, but, for a software system to be built, a software engineer has to
understand what functions it should perform, usually with greater difficulty since they
are not evidently visible, measurable, touchable, etc. Furthermore, software is so

 On Non-Functional Requirements in Software Engineering 367

rapidly being applied to new application areas that it is not possible for a software
engineer to build always on experiences. It is a rather well known fact that a software
product may be targeting a domain not familiar to a software engineer – a problem
that other types of engineers usually do not have to confront with.

The distinction between functionality and other qualities in the field of require-
ments engineering has an important benefit: it makes clear to software engineers that
requirements are meant to deal with quality attributes and not with just one of them.
As the software industry became more mature and different domains were explored
by software engineers, it became clearer that it would not be enough just to deal with
the description of the desired functionality, but that quality attributes should be care-
fully thought of early on as well.

So, in the presence of so many different definitions on NFRs, how should we pro-
ceed? We want our working definition to be as consistent with, and accommodating,
other definitions. As a working definition, we start with the colloquial definition of
NFRs, as in the NFR framework [1] [3], namely, any “-ilities”, “-ities”, along with
many other things that do not necessarily end with either of them, such as perform-
ance, user-friendliness and coherence, as well as concerns on productivity, time, cost
and personal happiness. In view of mathematical functions, in the form of,

f: I → O (e.g., sum: int x int → int),

just about anything that addresses characteristics of f, I, O or relationships between I
and O will be considered NFRs. For example, whether the summation function can
easily be found on a calculator, whether the function can easily be built or modified,
in a time- and cost-effective manner, whether the function returns the output fast, who
can see the function, the inputs, or the output, for instance.

3 Some Classification Schemes

As seen in the previous section, various pieces of work provide for ways to distin-
guish among different types of quality concerns. One is the distinction between basic
and extra quality [6]. Another is the distinction among concerns (sub-attributes of a
quality attribute), factors (or impairments - possible properties of the system, such as
policies and mechanisms built into the system, that have an impact on the concerns)
and methods (means used by the system to attain the concerns) [4].

The standard ISO/IEC 9126 [14] is also noteworthy which distinguishes 4 types of
quality levels: quality in use, external quality, internal quality and process quality.
Based on these types, [11] provides a process oriented classification comprised of :

1) “The identification of NFR from different viewpoints and different levels
of detail.”
2) “The support for uncovering dependencies and conflicts between them,
and to discuss and prioritize them accordingly.”
3) “The documentation of NFR and the evaluation of this documentation.”
4) “The support for identifying means to satisfy the NFR, to evaluate and
discuss means, and to make trade-off decision accordingly. This includes
cost estimation.”, and
5) “The support for change and project management.”

368 L. Chung and J.C.S. do Prado Leite

Another proposal is made in [15], using the concepts of the NFR Framework [3], on a
classification of goals and softgoals, driven by the “non functional perspective”. This
classification provides 4 categories: functional hardgoals, nonfunctional hardgoals,
functional softgoals and nonfunctional softgoals.

Another classification scheme is introduced in [16]:

• Interface requirements: describe how the system is to interface with its
environment, users and other systems. E.g., user interfaces and their
qualities (e.g., user-friendliness).

• Performance requirements: describe performance constraints involving
o time/space bounds, such as workloads, response time, through-

put and available storage space. E.g., “system must handle 100
transactions/second.”

o reliability involving the availability of components and integ-
rity of information maintained and supplied to the system. E.g.,
“system must have less than 1hr downtime/3 months.”

o security, such as permissible information flows.
o survivability, such as system endurance under fire, natural ca-

tastrophes.
• Operating requirements: include physical constraints (size, weight), per-

sonnel availability, skill level considerations, system accessibility for
maintenance, etc.

• Lifecycle requirements: can be classified under two subcategories:
o quality of the design: measured in terms such as maintainabil-

ity, enhanceability, portability.
o limits on development, such as development time limitations,

resource availability, methodological standards, etc.
• Economic requirements: immediate and/or long-term costs
• Political requirements

Figure 1 depicts a software quality tree [17] which aims to address concerns for key
types of NFRs and importantly possible correlations among them.

FURPS is an acronym representing a model for classifying software quality attrib-
utes or non-functional requirements, developed at Hewlett-Packard, and + was later
added, hence FURPS+, to extend the acronym to emphasize various attributes [18]:

• Functionality - Feature set, Capabilities, Generality, Security
• Usability - Human factors, Aesthetics, Consistency, Documentation
• Reliability - Frequency/severity of failure, Recoverability, Predictability,

Accuracy, Mean time to failure
• Performance - Speed, Efficiency, Resource consumption, Throughput, Re-

sponse time
• Supportability - Testability, Extensibility, Adaptability, Maintainability,

Compatibility, Configurability, Serviceability, Installability, Localizabil-
ity, Portability

 On Non-Functional Requirements in Software Engineering 369

general utility

as-is utility

maintainability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Fig. 1. Software Quality Tree [17]

However, even these well-known classification schemes are inconsistent with each

other. For example, consider performance. In Roman’s classification scheme, it is
defined in terms 4 sub-categories, whereas it does not even appear in software quality
tree, while it is shown but quite differently in FURPS+.

Another observation is that neither Roman’s nor FURPS+ recognizes any potential
interactions among NFRS, while software quality tree does so to a certain extent. For
example, in software quality tree, portability and reliability are related to each other
through a common sub-concept of self-containedness.

Similar observations can be made about other types of NFRs than performance, not
only concerning the few classification schemes shown here but many other ones not
shown here as well, including the one in [19].

Not surprisingly, NFRs play a critical role in the area of architectural design, and a
classification scheme is provided in the context of ATAM evaluations [20], e.g., dis-
tinction of runtime qualities (availability, performance, security) from development
time qualities (modifiability, integration). ATAM also addresses risk, while consider-
ing a hierarchy of architecture, process and organization.

370 L. Chung and J.C.S. do Prado Leite

Now, what should a software practitioner do then, when even well-known classifi-
cation schemes are inconsistent with one another, not only terminologically but also
categorically?

A software practitioner should be aware of some of the well known classification
schemes, such as ISO 9126 - an international standard for the evaluation of software
quality, and consider one or more to adopt with some tailoring. No matter what classi-
fication scheme a software practitioner might choose to adopt, the most important
thing to bear in mind is that s/he should know what s/he means by an NFR term, such
as performance, so that the meaning of such an NFR can be communicated with the
user as well as with system/software developers so that the end product will behave as
expected.

4 Representations of Non-Functional Requirements

Requirements dealing with NFRs are usually separated from the functionality re-
quirements. A usual way to represent them is by means of requirements sentences,
which are listed separately under different sections of the technical requirements sec-
tion. The IEEE standard 830 - Recommended Practice for Software Requirements
Specifications - is a good example, where Section 3.2 is used for specifying func-
tional requirements, while the rest of Section 3 is used to describe different types of
NFRs.

Some authors propose a structure around the requirements sentences as the one
proposed by [21] that is comprised of: identification number, NFR type, use case
related to it, description, rationale, originator, fit criterion, customer satisfaction, cus-
tomer dissatisfaction, priority, conflicts, supporting material, and history. All of these
are informal, textual information.

In the classic work with SADT [22], a requirements definition should answer three
types of questions: why a system is needed (context analysis), what system features
will serve to satisfy this context (system functional requirements), and how the system
is to be constructed (system non-functional requirements). Although there is no ex-
plicit reference to functionality oriented requirements versus quality requirements,
SADT’s actigrams can be used to indirectly address some of the NFR concerns. An
actigram can be associated with four types of information that interact with the activ-
ity: input, control, output and mechanism. The spirit of the control information is
much related to the idea of non-functionality, since the control arrow in SADT has the
purpose to constrain how the activity is performed. As such, SADT provides a way to
address quality attributes or constraints.

NFRs are also commonly represented by trees, expressing the concept of NFR
clustering or decomposition [4] and also by lists as well.

Some authors have used NFRs in conjunction with a more structured requirements
representation notation, e.g., the combination of NFRs with use cases or misuse cases
(for example, see [23], [24],[25], [26] and [27]).

NFRs are also represented as restrictions over different parts of a scenario, along
with time and location as the contextual information in the scenario description [28].
Here, the representation of a scenario is comprised of: title, goal, context, resources,
actors, episodes, exceptions and the attribute constraint, which applies to context,

 On Non-Functional Requirements in Software Engineering 371

resources and episodes. The entity context is further divided into geographical loca-
tion, time and pre-condition.

Among many proposals, however, the goal oriented approaches, as in [2] [3], were
the first to treat NFRs in more depth.

In KAOS [2], which perhaps pioneered in promoting goal-oriented requirements
engineering at least from a functional goal perspective, goals are: “… modelled by
intrinsic features such as their type and attributes, and by their links to other goals and
to other elements of a requirements model.” KAOS addresses both functional goals
and non-functional goals, which are formalized in terms of operators, such as
Achieve, Maintain and Avoid, and by activities based on temporal logic augmented
with some special temporal operators. For instance, KAOS offers special operators
for concepts, such as “sometime in the future” and “always in the future unless”.
Thanks to their formal nature, representations in KAOS are amenable to automatic
verification and reasoning. In KAOS, goals are characterized as a set of high level
constraints over states. For instance, an informal goal: {{Goal Maintain
[DoorsClosedWhileMoving]}} [2] can be expressed by the following formula:

{{∀ tr: Train, loc, loc’: Location At (tr, loc) ∧ o At (tr, loc’) ∧ loc <> loc’⇒
tr.Doors = 'closed' ∧ o (tr.Doors = 'closed')}}.

The above formula, where “o” is a temporal operator denoting next state, means that
while a train moves from one location to another location, its doors much be closed
during the move.

Although the KAOS’ representation language does not differentiate between func-
tional and non-functional goals, the KAOS graphical AND/OR graph makes the
differentiation. Goals that can be assigned to individual agents need no further de-
composition and can be “operationalized”, that is, they can be described in terms of
constraints.

Not unlike KAOS, the NFR Framework also promotes goal orientation, but with
the main emphasis on NFRs. In the NFR Framework, non-functional requirements are
treated as softgoals, i.e., goals that need to be addressed not absolutely but in a good-
enough sense. This is in recognition of the difficulties that are associated with both
the problem and the corresponding solution. Concerning the problem statement, it is
often times extremely difficult, if not impossible, to define an NFR term completely
unambiguously without using any other NFR term, which in turn will have to be de-
fined. Concerning the solution, it is also often times extremely difficult to explore a
complete list of possible solutions and choose the best, or optimal, solution, due to
various resource limitations such as the time, manpower and money available for such
an exploration.

Reflecting the sense of “good enough”, the NFR Framework introduces the notion
of satisficing, and, with this notion, a softgoal is said to satisfice (instead of satisfy)
another softgoal. The NFR Framework offers several different types of contributions
whereby a softgoal satisfices, or denies, another softgoal - MAKE, HELP, HURT and
BREAK are the prominent ones, as well as AND and OR (these also incorporate the
notion of “good enough” rather than “absolute satisfaction”). MAKE and HELP are
used to represent a softgoal positively satisficing another, while BREAK and HURT
to represent a softgoal negatively satisficing (or denying) another . While MAKE and

372 L. Chung and J.C.S. do Prado Leite

BREAK respectively reflect our level of confidence in one softgoal fully satisficing or
denying another, HELP and HURT respectively reflect our level of confidence in one
softgoal partially satisficing or denying another.

In the NFR Framework, each softgoal or contribution is associated with a label, in-
dicating the degree to which it is satisficed or denied. A label propogation procedure
is offered in the NFR Framework in order to determine the effect of various design
decisions, regardless of whether they are system-level or software-level. In addition to
a label, each softgoal or contribution can also be associated with a criticality value,
such as extremely critical, critical, and non-critical.

When using the NFR Framework, NFRs are posted as softgoals to be addressed or
achieved, and an iterative and interleaving process is applied in order to satisfice
them, through AND/OR decompositions, operationalizations and argumentations.
Throughout the process, a visual representation, SIG (softgoal interdependency
graph), is created and maintained which keeps track of softgoals and their inter-
dependencies, along with the impact of various decisions through labels. In this
sense, a SIG shows how various (design) decisions are rationalized.

In order to alleviate the difficulties associated with the search for knowledge for
dealing with NFRs , the NFR Framework offers methods for capturing knowledge of
ways to satisfice NFRs and correlation rules for knowledge of the side effects that
such methods induce.

As with goals in KAOS, softgoals in the NFR Framework are associated with, and
ultimately achieved, by the actions of agents – human, hardware or software. This is
consistent with the spirit of the reference model [29], in which (functional) require-
ments are satisfied through the collaboration between the software system behavior
and environment phenomena that are caused by agents in the environment, although
here we are also concerned with softgoals that (functional) requirements are intended
to help achieve together with environment phenomena. Note that requirements are
part of the solution to some problem in a piece of reality, and the notion of softgoals
can be used to represent anything non-functional, be it about the problem domain or
the solution.

The i* family: i* [30], Tropos [31] and GRL(Goal Requirements Language) [32]
inherited the concept of softgoal from the NFR Framework, aiming at dealing with
softgoals, or non-functionality related attributes, as a first class modeling concept.

As mentioned in Section 2, the last definition [12] presented was somewhat different
from the rest: an NFR is described as a justification of a design decision and as a con-
straint on the way in which a required functionality may be realized. This is exactly
why the proper identification and representation of NFRs play a key role in software
engineering, since software engineering is said to be all about decision-making.

As several authors have pointed out, NFRs do need to be transformed through
some means, methods or operations. This is also why a goal-oriented representation
is so well suited for NFRs - they are initially expressed in general terms as more ab-
stract requirements, but then gradually are further refined into more concrete terms
and details.

When NFRs eventually are operationalized, in terms of software operations, enti-
ties or constraints, they become the justification for why such operationalizations
exist in the software system, i.e., to serve the quality attributes specified as NFR
softgoals. If the software engineers are careful enough to maintain the history of the

 On Non-Functional Requirements in Software Engineering 373

software construction, they will then be able to explain and justify why such opera-
tionalizations exist. It goes without saying that this argument is also valid for func-
tionality as well, but the key point here is that the choice on a specific operation to
reify a quality concern affects how the overall functionality is achieved. Put differ-
ently, different sorts of design decisions are made throughout a software development
process, and NFRs act as the criteria for such design decisions (See [33] for a
discussion about these design decisions in the context of use cases). As argued in
[12], an NFR is not just an after-the-fact justification, but constrains how functionality
is realized.

So, if the software engineer uses quality attributes up front during the software de-
velopment process, there will be a network of explanations, bounded by the usage of
rationality, linking the results of decisions with the quality attributes. Work on design
rationale [34], drawing on earlier work on the Ibis idea [35], focuses on the justifica-
tion of decisions, but without taking into consideration pre-existing factors that lead to
the decision. Work on design rationale can benefit from better ways of dealing with
the dynamic and contextual nature of software design and with the limitations of
working with the myriad of possible alternatives and their justifications [36].

Integration of functionality and other qualities is said to be essential. Although no
one would dispute that truism, few have proposed or advocated a process that really
intertwines these two classes of requirements. Goal-oriented methods, such as the
NFR Framework, KAOS and the i* family, are the few exceptions that make the con-
sideration of non-functionality as a first class concept, being intertwined with the
functionality, as they are reified. However, it shouldn’t come as a surprise that each
approach has its own particular ways of doing this interweaving of functionality and
quality attributes, with several distinct variations and without necessarily keeping the
development history.

So what? In a nutshell, the point we are trying to make is twofold: not only non-
functional requirements need to be stated up front, but they can help the software
engineer make design decisions, while also justifying such decisions. However, in
order to take this into consideration, it is necessary that quality attributes not be con-
sidered just as a separate set of requirements, but with the consideration of the func-
tionality throughout the development process.

The NFR Framework and the i* family have an intrinsic characteristic that sets
them apart from other NFR methods - the reliance on a qualitative approach towards
NFRs or softgoals. In the heart of the NFR Framework lies the concept that softgoals
are idealizations and, as such, without all its defining properties necessarily estab-
lished. This characteristic is similar to the notion of “bounded rationality” put
forward by Herbert Simon [37] when explaining his understanding of the process
designers use to make a decision given incomplete information. This qualitative
characteristic is built on the ideas of contribution and correlation among softgoals as
explained earlier. By means of contributions, a softgoal may be decomposed up to
the level of operationalization, and, by correlations, different softgoals may interfere
among themselves. A network of such contributions and correlations makes it possi-
ble to carry out different sorts of qualitative reasoning. The semantics of such a net-
work is given by relationships over three dimensions a) decompositions over an
AND/OR tree, b) contributions among sub-trees and c) correlations among different
softgoals, all leading to the formation of a softgoal interdependency graph (SIG).

374 L. Chung and J.C.S. do Prado Leite

While the NFR Framework’s focus is on NFRs, as described at the end of Section
2, NFRs exist in relation to functional things. UML is a functionally-oriented Object-
Oriented analysis and design language, and one of the first works to detail how the
NFR Framework could help attain better UML models is described in [38], which
presents a process for linking NFR graphs with UML models. The central idea is to
qualitatively realize softgoals in the UML models. The realization for UML classes,
for instance, was based on introducing attributes to classes, methods, or constraints
over the attributes.

In i* [30], the links among softgoals and operations (tasks or resources) are more
explicit, since modeling is carried out simultaneously in the context of the Strategic
Rationale (SR) diagram. In a SR diagram, means-ends relationships (i* specialization
operator) can show how choices (tasks) are related to different softgoals, while also
showing the pros and cons of each selection.

The NFR Framework presented in this Section accommodates any classification
scheme that was discussed in Section 3, through AND/OR decompositions, and goes
beyond by offering those concepts of operationalizations and argumentations, to-
gether with positive/negative correlations. In terms of these concepts, the NFR
Framework helps rationalize design decisions – both system-level and software-level.
For representation of NFRs, it recognizes NFRs as softgoals and relatioships between
them as partial/full positive/negative contributions.

5 Future Directions

There have been several pieces of work that further explored the concepts of soft-
goals, while shaping some scenario for future directions. We classify them in six
areas: software variability, requirements analysis, requirements elicitation, require-
ments reusability, requirements traceability and aspect-oriented development. Each
of these areas has explored particular aspects of the idea of a SIG (Softgoal Interde-
pendency Graph).

When dealing with software product lines, the idea of variability is critical, since, at
some parts of a product line, architecture variation points will exist to enable the pro-
duction of different alternatives necessary to compose different products out of a single
common architecture. The works of [39] [40] [41] explored the fact that the alternatives
are intrinsic in SIG models, since they are AND/OR graphs. Using a goal-oriented
approach to product lines brings a seamless way of producing product line architectures,
since features are not only identified, but also justified, in terms of softgoals.

One of the major advantages of the qualitative approach of a SIG is that it facili-
tates analysis. The very idea that there can be different types of relationships among
softgoals and between softgoals and operationalizations in a SIG brings the opportu-
nity to conduct analysis, by propagating the impact of decisions along the correlation
contribution relationships. Using the concept of label propagation over a SIG graph, it
is possible to evaluate how a given operationalization of an NFR will impact the
whole graph. The original process was devised in the NFR Framework [3] and varia-
tions followed [42] [43]. Using the idea of label propagation, different types of
analysis could be performed early on before committing to an architecture or to code,
as seen in the exploration of security concerns [44], in visually choosing operationali-
zations [45], and in casting an i* model analysis as a SAT problem [46].

 On Non-Functional Requirements in Software Engineering 375

Eliciting requirements requires use of different sets of techniques, but most of them
are centered on discovering functionality only. Work on goal elicitation needs to con-
sider both functionality and other qualities. Work in this regard includes a proposal
on an elicitation scheme that departs from an extended lexicon [47], repertory grid
techniques to help the clarification of naming during the elicitation process [48], and
Personal Construct Theory to elicit contribution among softgoal [49].

The NFR Framework [3] has identified that NFR catalogues, composed of SIG
graphs, were an important aspect of building software using the softgoal concept.
Later work [50] explored the ideas further on stressing the aspect of reusability, while
proposing a method for maintaining a softgoal organization aimed for reuse. The idea
of a goal centric traceability based on softgoal graphs is explored in [51] [52], in
which the softgoal network is used as a baseline for explaining changes over software
evolution.

The relationship among the quality attributes and aspect-oriented development has
been explored in [53] and [54]. Later on, others have identified the important role the
NFR Framework - in particular, softgoals - plays in dealing with early aspects [27],
[55] [56] [57] [58] [59] (See [60] for a survey on the topic).

Although these recent results helped further understanding of the general concept
of quality requirements and opened new paths for future research, other issues need
further advance as well, such as the integration of NFRs into other requirements mod-
els, such as the reference model [29] and the four variable model [61] which have had
significant influences in the area of requirements engineering. Although these models
address performance or accuracy concerns, they are essentially functional models
and without the notion of goals. As briefly mentioned in Section 4, for example, the
reference model states that (functional) requirements are satisfied through the collabo-
ration between the functional behavior of the software system and the (functional)
phenomena in the environment. KAOS [2] goes beyond these functional models and
introduces general types of softgoals for the overall system, while addressing
performance, accuracy and security concerns for the software system.

We also agree with [11] on the need for further empirical research on the use of
NFRs during requirements engineering and on the usage of ethnographical studies on
how software teams deal with quality issues as requirements. We understand that this
research should be conducted with real projects, both in lab situations as well as on
industry projects, to improve our knowledge on dealing with quality issues early on.

Acknowledgements. We appreciate the comments from Barbara Paech on an earlier
draft, which significantly helped us improve the paper in a more understandable manner.

References

1. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Require-
ments: A Process-Oriented Approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992),
http://dx.doi.org/10.1109/32.142871

2. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Pro-
ceedings of the 5th IEEE international Symposium on Requirements Engineering, August
27-31, 2001, p. 249. IEEE Computer Society, Washington (2001)

376 L. Chung and J.C.S. do Prado Leite

3. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. International Series in Software Engineering, vol. 5, p. 476. Springer, Hei-
delberg (1999)

4. Barbacci, M., Longstaff, T.H., Klein, M.H., Weinstock, C.B.: Quality Attributes, Techni-
cal Report CMU/SEI-95-TR-021, ESC-TR-95-021 (December 1995)

5. IEEE Standard 1061-1992 Standard for a Software Quality Metrics Methodology. Institute
of Electrical and Electronics Engineers, New York (1992)

6. Freeman, P.A.: Software Perspectives: The System is the Message. Addison-Wesley,
Reading (1987)

7. QFD Institute, Quality Function Deployment, http://www.qfdi.org/
8. Hauser Jr., Clausing, D.: The house of quality. Harvard Business Review 66(3), 63–73

(1988)
9. Yeh, R.T., Zave, P., Conn, A.P., Cole, G.E.: Software Requirements Analysis — New Di-

rections and Perspectives. In: Vick, C.R., Ramamoorthy, C.V. (eds.) Handbook of Soft-
ware Engineering, Van Nostrand Reinhold Co. (1984)

10. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 21–26 (2007)

11. Paech, B., Kerkow, D.: Non-Functional Requirements Engineering - Quality is Essential.
In: 10th Anniversary International Workshop on Requirements Engineering: Foundation
for Software Quality, REFSQ 2004 (2004), http://www.sse.uni-essen.de/
refsq/downloads/toc-refsq04.pdf

12. Landes, D., Studer, R.: The Treatment of Non-Functional Requirements in MIKE. In: Bo-
tella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 294–306. Springer, Heidel-
berg (1995)

13. A lexical database of English, http://wordnet.princeton.edu/
14. ISO/IEC 9126-1:2001(E): Software Engineering - Product Quality - Part 1: Quality Model

(2001)
15. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: A more expressive softgoal conceptualization

for quality requirements analysis. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006.
LNCS, vol. 4215, pp. 281–295. Springer, Heidelberg (2006)

16. Roman, G.-C.: A Taxonomy of Current Issues in Requirements Engineering. IEEE Com-
puter, 14–21 (April 1985)

17. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.: Charac-
teristics of Software Quality. North-Holland, Amsterdam (1978)

18. Grady, R., Caswell, D.: Software Metrics: Establishing a Company-wide Program. Pren-
tice-Hall, Englewood Cliffs (1987)

19. Bowen, T.P., Wigle, G.B., Tsai, J.T.: Specification of Software Quality Attributes, Report
RADC-TR-85-37, vol. I (Introduction), vol. II (Software Quality Specification Guide-
book), vol. III (Software Quality Evaluation Guidebook), Rome Air Development Center,
Griffiss Air Force Base, NY (February 1985)

20. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Through Architecture
Evaluations, Technical Report CMU/SEI-2006-TR-012, ESC-TR-2006-012 (2006)

21. Robertson, S., Robertson, J.: The Volere requirements process, Mastering the Require-
ments Process. Addison-Wesley, London (1999)

22. Ross, D.T.: Structured Analysis (SA): A Language for Communicating Ideas. IEEE Trans.
Softw. Eng. 3(1), 16–34 (1977),

 http://dx.doi.org/10.1109/TSE.1977.229900
23. Chung, L., Supakkul, S.: Representing nFRs and fRs: A goal-oriented and use case driven

approach. In: Dosch, W., Lee, R.Y., Wu, C. (eds.) SERA 2004. LNCS, vol. 3647, pp. 29–
41. Springer, Heidelberg (2006)

24. Herrmann, A., Paech, B.: MOQARE: misuse-oriented quality requirements engineering.
Requir. Eng. 13(1), 73–86 (2008)

 On Non-Functional Requirements in Software Engineering 377

25. Cysneiros, L.M., do Prado Leite, J.C.: Using UML to reflect non-functional requirements.
In: Stewart, D.A., Johnson, J.H. (eds.) Proceedings of the 2001 Conference of the Centre
For Advanced Studies on Collaborative Research. IBM Centre for Advanced Studies Con-
ference, vol. 2. IBM Press (2001)

26. Alexander, I.: Misuse cases help to elicit non-functional requirements. Computing & Con-
trol Engineering Journal 14(1), 40–45 (2003)

27. de Sousa, T.G.M.C., Castro, J.F.B.: Towards a Goal-Oriented Requirements Methodology
Based on the Separation of Concerns Principle. In: Anais do WER 2003 - Workshop em En-
genharia de Requisitos, Piracicaba-SP, Brasil, November 27-28, 2003, pp. 223–239 (2003),
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER03/
georgia_souza.pdf

28. Leite, J.C., Hadad, G., Doorn, J., Kaplan, G.: A Scenario Construction Process. Require-
ments Engineering Journal 5(1), 38–61 (2000)

29. Gunter, C., Gunter, E., Jackson, M., Zave, P.: A Reference Model for Requirements and
Specifcations. IEEE Software, 37–43 (2000)

30. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the Third IEEE International Symposium on Requirements En-
gineering, pp. 226–235 (1997)

31. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems 27(6), 365–389 (2002)

32. Amyot, D., Mussbacher, G.: URN: Towards a new standard for the visual description of
requirements. In: Sherratt, E. (ed.) SAM 2002. LNCS, vol. 2599, pp. 21–37. Springer,
Heidelberg (2003)

33. Dutoit, A.H., Paech, B.: Rationale-based use case specification. Requirements engineer-
ing 7(1), 1–3 (2002)

34. Potts, C., Bruns, G.: Recording the reasons for design decisions. In: Proceedings of the
10th international Conference on Software Engineering. International Conference on Soft-
ware Engineering, Singapore, April 11-15, 1988, pp. 418–427. IEEE Computer Society
Press, Los Alamitos (1988)

35. Kunz, W., Rittel, H.W.J.: Issues as Elements of Information Systems, Working Paper No.
131 (July 1970); Studiengruppe für Systemforschung, Heidelberg, Germany (reprinted,
May 1979)

36. Dutoit, A.H., McCall, R., Mistrík, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer, Heidelberg (2006)

37. Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge, MA
(1977)

38. Cysneiros, L.M., Leite, J.C.: Nonfunctional Requirements: From Elicitation to Conceptual
Models. IEEE Trans. Softw. Eng. 30(5), 328–350 (2004),

 http://dx.doi.org/10.1109/TSE.2004.10
39. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E.S.K., Mylopoulos, J.: On Goal-based Vari-

ability Acquisition and Analysis. In: RE 2006, pp. 76–85 (2006)
40. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.: From goals to high-

variability software design. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Founda-
tions of Intelligent Systems. LNCS, vol. 4994, pp. 1–16. Springer, Heidelberg (2008)

41. González-Baixauli, B., Laguna, M.A., Leite, J.C.: Using Goal-Models to Analyze Variabil-
ity. In: First International Workshop on Variability Modelling of Software-Intensive Sys-
tems, VaMoS 2007, Proceedings, Limerick, Ireland, January 16-18, 2007, pp. 101–107,
Lero Technical Report 2007-01 2007 (2007)

42. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal Models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp.
167–181. Springer, Heidelberg (2002)

378 L. Chung and J.C.S. do Prado Leite

43. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-Oriented Requirements Analy-
sis Method. In: Proceedings of the 10th Anniversary IEEE Joint international Conference
on Requirements Engineering, September 09-13, 2002, pp. 13–22. IEEE Computer Soci-
ety, Washington (2002)

44. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a So-
cial Setting. In: Proceedings of the 11th IEEE international Conference on Requirements
Engineering, September 08-12, 2003, IEEE Computer Society, Washington (2003)

45. Gonzalez-Baixauli, B., Leite, J.C., Mylopoulos, J.: Visual Variability Analysis for Goal
Models. In: Proceedings of the Requirements Engineering Conference, 12th IEEE interna-
tional, September 06-10, 2004, pp. 198–207. IEEE Computer Society, Washington (2004),
http://dx.doi.org/10.1109/RE.2004.56

46. Horkoff, J., Yu, E.S.K.: Qualitative, Interactive, Backward Analysis of i* Models. In: iStar
2008, pp. 43–46 (2008)

47. Oliveira, A.P.A., Leite, J.C., Cysneiros, L.M.: AGFL - Agent Goals from Lexicon - Elicit-
ing Multi-Agent Systems Intentionality. In: iStar 2008, pp. 29–32 (2008)

48. Niu, N., Easterbrook, S.M.: Managing Terminological Interference in Goal Models with
Repertory Grid. In: RE 2006, pp. 296–299 (2006)

49. González-Baixauli, B., Leite, J.C., Laguna, M.A.: Eliciting Non-Functional Requirements
Interactions Using the Personal Construct Theory. In: RE 2006, pp. 340–341 (2006)

50. Cysneiros, L.M., Werneck, V., Kushniruk, A.: Reusable Knowledge for Satisficing Usabil-
ity Requirements. In: RE 2005, pp. 463–464 (2005)

51. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-
centric traceability for managing non-functional requirements. In: Proceedings of the 27th
international Conference on Software Engineering, ICSE 2005, St. Louis, MO, USA, May
15-21, 2005, pp. 362–371. ACM, New York (2005),

 http://doi.acm.org/10.1145/1062455.1062525
52. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal-Centric Traceability: Using Virtual

Plumblines to Maintain Critical Systemic Qualities. IEEE Trans. Softw. Eng. 34(5), 685–
699 (2008), http://dx.doi.org/10.1109/TSE.2008.45

53. Grundy, J.C.: Aspect-Oriented Requirements Engineering for Component-Based Software
Systems. In: Proceedings of the 4th IEEE international Symposium on Requirements En-
gineering, RE, June 07-11, 1999, pp. 84–91. IEEE Computer Society, Washington (1999)

54. Moreira, A., Araújo, J., Brito, I.: Crosscutting quality attributes for requirements engineer-
ing. In: Proceedings of the 14th international Conference on Software Engineering and
Knowledge Engineering, SEKE 2002, Ischia, Italy, July 15-19, 2002, vol. 27, pp. 167–174.
ACM, New York (2002), http://doi.acm.org/10.1145/568760.568790

55. Yu, Y., Leite, J.C., Mylopoulos, J.: From Goals to Aspects: Discovering Aspects from Re-
quirements Goal Models. In: 12th IEEE international Proceedings of the Requirements
Engineering Conference, September 06-10, 2004, pp. 38–47. IEEE Computer Society,
Washington (2004), http://dx.doi.org/10.1109/RE.2004.23

56. Brito, I., Moreira, A.: Integrating the NFR framework in a RE model. In: EA-AOSD 2004:
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design, held in conjunction with the 3rd International Conference on Aspect-Oriented
Software Development, Lancaster, UK, March 22-26 (2004),
http://trese.cs.utwente.nl/workshops/early-aspects-2004/
Papers/BritoMoreira.pdf

57. Alencar, F., Silva, C., Moreira, A., Araújo, J., Castro, J.: Identifying Candidate Aspects
with I-star Approach. In: Early Aspects 2006: Traceability of Aspects in the Early Life
Cycle, pp. 4–10 (2006)

 On Non-Functional Requirements in Software Engineering 379

58. de Padua Albuquerque Oliveira, A., Cysneiros, L.M., do Prado Leite, J.C., Figueiredo,
E.M., Lucena, C.J.: Integrating scenarios, i*, and AspectT in the context of multi-agent
systems. In: Proceedings of the 2006 Conference of the Center For Advanced Studies on
Collaborative Research, CASCON 2006, Toronto, Ontario, Canada, October 16-19, 2006,
p. 16. ACM, New York (2006), http://doi.acm.org/10.1145/1188966.
1188988

59. da Silva, L.F., Leite, J.C.: Generating Requirements Views: A Transformation-Driven Ap-
proach. ECEASST 3 (2006)

60. Yu, Y., Niu, N., González-Baixauli, B., Mylopoulos, J., Easterbrook, S., Leite, J.C.: Re-
quirements Engineering and Aspects. In: Design Requirements Engineering: A Ten-Year
Perspective. Lecture Notes in Business Information Processing, pp. 432–452. Springer,
Heidelberg (2009)

61. Parnas, D.L., Madey, J.: Functional Documentation for Computer Systems. Science of
Computer Programming 25(1), 41–61 (1995)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 380–397, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reasoning About Alternative Requirements Options*

Axel van Lamsweerde

Département d‘Ingénierie Informatique, Université catholique de Louvain,
Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium)

avl@info.ucl.ac.be

Abstract. This paper elaborates on some of the fundamental contributions made
by John Mylopoulos in the area of Requirements Engineering. We specifically
focus on the use of goal models and their soft goals for reasoning about alterna-
tive options arising in the requirements engineering process. A personal account
of John’s qualitative reasoning technique for comparing alternatives is provided
first. A quantitative but lightweight technique for evaluating alternative options
is then presented. This technique builds on mechanisms introduced by the
qualitative scheme while overcoming some problems raised by it. A meeting
scheduling system is used as a running example to illustrate the main ideas.

1 Introduction

Poor requirements were recurrently recognized to be the major cause of software prob-
lems such as cost overruns, delivery delays, failure to meet expectations, or degrada-
tions in the environment controlled by the software. The early awareness of the
so-called requirements problem [2], [3], [6] raised preliminary efforts to develop mod-
eling languages for requirements definition and analysis [1], [40], [18]. With the in-
creasing complexity of software-intensive systems, the research challenges raised by
the requirements problem were so significant that an active community emerged in the
nineties with dedicated conferences, workshops, working groups, networks, and jour-
nals. The term “requirements engineering” (RE) was introduced to refer to the process
of eliciting, evaluating, specifying, consolidating, and changing the objectives, func-
tionalities, qualities, and constraints to be achieved by a software-intensive system.

John Mylopoulos was involved in requirements engineering research since the
early days. His ICSE’82 paper brought early RE research efforts significantly further
[16]. The SADT graphical language [40] allowed analysts to model two dual system
views, the data view and the operation view, together with rudimentary forms of
events, triggering operations, and performing agents. As in Structured Analysis [13],
stepwise model refinement was supported. The RML language introduced in [16]
provided richer structuring mechanisms such as generalization, aggregation and clas-
sification. In that sense it was a precursor to object-oriented analysis techniques.
These structuring mechanisms were applicable to three kinds of conceptual units:

* Sections 4 and 5 of this paper are slight adaptations of Sections 16.3.1 and 16.3.2 in Chapter

16 of A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to
Software Specifications, Wiley, 2009.

 Reasoning About Alternative Requirements Options 381

entities, operations, and constraints. Constraints were expressed in a formal assertion
language providing, in particular, built-in constructs for temporal referencing. RML
was also the first requirements modeling language to have a formal semantics, defined
in terms of mappings to first-order predicate logic [17]. The RML breakthrough was
made possible, I believe, thanks to John’s unique position at the intersection of three
different areas: database modeling [41], [33], knowledge representation [5], and for-
mal specification [4].

In the early nineties, John’s group and mine converged on two observations (with-
out any interaction at that time):

• Models for RE needed richer and higher-level abstractions than those pro-
vided by design modeling languages and software specification tech-
niques. (It took more than a decade for this observation to gain wide
acceptance [32], [36], [22], [24]).

• Some well-established AI techniques were relevant to the RE challenges
we wanted to address, in particular in the area of general problem solving,
knowledge representation, and knowledge acquisition [21], [34].

Goal-Oriented Requirements Engineering (GORE) emerged from these premises.
Two GORE frameworks appeared independently: KAOS [10], [11] and NFR/i* [34],
[43]. While both frameworks addressed common targets such as modeling goals and
their responsible agents, there were differences and complementarities in focus.

• By and large, the emphasis in NFR/i* was more on qualitative reasoning
about soft goals for: analysis of goal contributions [8]; evaluation of alter-
native goal refinements [35]; reasoning about dependencies among organ-
izational agents [43] and vulnerabilities resulting from such dependencies
[31]; customization of user-software interactions [19]; and transition to
agent-oriented programming [7].

• In KAOS, the emphasis was more on semi-formal and formal reasoning
about behavioral goals for: derivation of goal refinements [12], goal opera-
tionalizations [29], and goal assignments [28]; goal-based risk analysis
[27]; conflict management [26]; and behavior model synthesis from goals
and scenarios [9].

KAOS was more oriented towards goal satisfaction whereas NFR/I* was more ori-
ented towards goal satisficing. Beyond our complementary approaches, there were
parallel efforts towards formal goal-based model checking and animation [15], [42],
[38] and security analysis [31], [23].

In this overall setting, this paper focuses on what appears to me among the most
important contributions of John’s group to RE, namely,

• the introduction and use of soft goals as criteria for evaluating alternative
options arising throughout the RE process;

• the exploitation of goal models for evaluating such options through quali-
tative reasoning schemes.

This choice of focus is inevitably biased by my research interests and by the ways
John’s work has influenced my own efforts. The purpose of the paper is to provide a

382 A. van Lamsweerde

brief personal account of John’s work in this area and discuss some continuation
aimed at addressing various issues raised by it.

Section 2 reviews the various types of alternative options we can find during re-
quirements elicitation and evaluation. Section 3 briefly discusses goal models together
with the role played by soft goals in them. Section 4 outlines the qualitative reasoning
technique in [34], illustrates its use on a meeting scheduling system, and discusses
some problems we may experience with it. Section 5 presents a lightweight quantita-
tive technique aimed at addressing these problems while sharing the same underlying
principles.

2 Alternative Options in Requirements Engineering

In any software project, we need to discover, understand, formulate, analyze and
agree on what problem should be solved, why such problem needs to be solved, and
who should be involved in the responsibility of solving that problem. The problem
arises within some broader context. It is in general rooted in a complex organiza-
tional, technical, or physical system. This system is made of components such as
organizational units, people playing specific roles, devices such as measurement in-
struments, sensors and actuators, and pre-existing software. The aim of the project is
to improve this system by building a software solution to the problem and plugging it
into the system. We therefore need to consider two versions of the same system:

• the system-as-is is the system as it exists before the software is built into it,
• the system-to-be is the system as it should be when the software will be

built and operate in it.

Our job as requirements engineers is to explore the desired effects of the software-
to-be on its surrounding environment together with the assumptions we need to make
about this environment. While doing so, we have to make decisions among alternative
options arising at multiple places [25], in particular:

• When we have elicited an objective of the system-to-be and want to de-
compose it into sub-objectives; different decompositions might be envi-
sioned, and we need to select a “best” one.

• When we have identified some likely and critical risk; different counter-
measures might be envisioned, and we need to select a “best” one.

• When we have detected a conflict between objectives or requirements and
want to resolve it; different resolutions might be envisioned, and we need
to select a “best” one.

• When we operationalize a system objective through some combination of
functional features, constraints, and assumptions; different combinations
might be envisioned, and we need to select a “best” one.

• When we consider alternative assignments of responsibilities among com-
ponents of the system-to-be –in particular, alternative software-
environment boundaries where more or less functionality is automated;
“best” alternatives must eventually be selected.

 Reasoning About Alternative Requirements Options 383

All such situations involve system design decisions (not to be confused with soft-
ware design decisions). Once such decisions have been made, we need to recursively
elicit, evaluate, document, and consolidate new requirements and assumptions based
on them. Different decisions result in different system proposals which, in turn, will
result in different software architectures.

Consider a meeting scheduling system, for example. The objective of knowing the
constraints of invited participants might be decomposed into a sub-objective of know-
ing these constraints through email requests or, alternatively, a sub-objective of know-
ing them through access to their electronic agenda. A system based on e-mail
communication for getting constraints will be different at places from one based on e-
agendas. Likewise, different system proposals will result from an alternative where
meeting initiators are taking responsibility for resolving date conflicts and a more
automated alternative where the software-to-be is responsible for this.

3 Goal Models and the Role of Soft Goals

The system-to-be is intended to meet a number of objectives. These are highlighted as
first-class citizens in a goal model where they are interrelated through posi-
tive/negative contribution links. A goal is a prescriptive statement of intent the system
should satisfy through cooperation of its agents. An agent is an active system compo-
nent having to play some role in goal satisfaction through adequate control of system
items [25].

Goal satisfaction may involve a variety of system agents defining the system scope.
The finer-grained a goal is, the fewer agents are required to satisfy it. A requirement
is a goal under responsibility of a single agent of the software-to-be. An expectation is
a goal under responsibility of a single agent in the environment of the software-to-be.
Expectations cannot be enforced by the software-to-be; they form one kind of as-
sumption we need to make for the system to satisfy its goals.

To be under the sole responsibility of an agent, a goal must be realizable by this
agent [28]. This means roughly that the agent must be able to control the state vari-
ables constrained by the goal specification and to monitor the state variables to be
evaluated in this specification.

While reasoning about goal satisfaction in the RE process, we often need to use
domain properties [25]. These are descriptive statements about the system unlike
goals; the latter are prescriptive. Domain properties are expected to hold invariably
regardless of how the system will behave [20], [37]. The distinction between descrip-
tive and prescriptive statements is important. Goals may need to be refined into sub-
goals, negotiated with stakeholders, assigned to agents responsible for them, weak-
ened in case of conflict, or strengthened or discarded in case of unacceptable exposure
to risks. Unlike prescriptive statements, domain properties are not subject to such
decisions in the RE process.

A goal is either a behavioral goal or a soft goal. A behavioral goal prescribes in-
tended system behaviors declaratively. It implicitly defines a maximal set of admissi-
ble behaviors [11]. Behavioral goals can be Achieve or Maintain/Avoid goals. An
Achieve goal prescribes some TargetCondition to be established sooner or later when
some current condition holds. A Maintain goal prescribes some GoodCondition to be
maintained. (Similarly, an Avoid goal prescribes some BadCondition to be avoided.)

384 A. van Lamsweerde

Unlike behavioral goals, a soft goal cannot be established in a clear-cut sense [34].
In a meeting scheduling system, for example, we cannot say in a strict sense whether
a specic system behavior satisfies the goal of reducing the meeting initiator’s load or
not. We may however say that one system behavior reduces the initiator’s load further
than another. Said in more general terms, the phrase “goal satisfaction” should not be
taken in a strict sense for a soft goal as we cannot observe that the goal is satisfied by
some behaviors and not satisfied by others. The phrase “goal satisficing” is some-
times used instead; the degree of satisfaction of a soft goal may be higher in one
alternative than in another.

Behavioral goals are therefore used for deriving system operations to satisfy them
[11], [29] whereas soft goals are used for comparing alternative options to select best
ones [34], [8]. We come back to this in Sections 4 and 5.

The behavioral/soft goal typology should not be confused with a goal
categorization into functional goals, underlying system services, and non-functional
goals, prescribing qualiy of service. For example, a confidentiality goal
Avoid[SensitiveInformationDisclosed] is traditionally considered as non-functional; it is not
a soft goal though as we can always determine whether or not this goal is satisfied in a
clear-cut sense.

A goal model is basically an annotated AND/OR graph showing how higher-level
goals are satisfied by lower-level ones (goal refinement) and, conversely, how
lower-level goals contribute to the satisfaction of higher-level ones (goal abstraction)
[10], [34].

Fig. 1 shows a fragment of a goal model for the meeting scheduling system. The
goals appearing there are behavioral goals.

RequestedMeetingScheduled

ConstraintsAcquired
ByEmail

…

ParticipantConstraints
KnownFromRequest

MeetingScheduled
FromConstraints

ConstraintsObtained
FromE-agenda

Constraints
Requested

E-agenda
Accessible

Scheduler Scheduler Participant Communication
Infrastructure

Communication
Working

Constraints
Transmitted

Communication
Infrastructure

AND-refinement

OR-refinement

ConstraintsAcquired
FromE-Agenda

ConstraintsTaken
ByDefault

goal

agent

assignment

Fig. 1. Goal model fragment for the meeting scheduling system

 Reasoning About Alternative Requirements Options 385

In a goal model, the top goals are the highest-level ones to be still in the system
scope whereas the bottom goals are requirements or expectations assignable to single
system agents (see the bottom of Fig. 1). In such graph, an AND-refinement link
relates a goal to a set of subgoals called refinement. Domain properties may also be
included in a refinement. The meaning is that the parent goal can be satis-
fied/satisficed by satisfying/satisficing all subgoals in the refinement, assuming the
domain properties to hold. A goal node can be OR-refined into multiple AND-
refinements; each of these is called alternative for satisfying/satisficing the parent
goal. The meaning of multiple alternative refinements is that the parent goal can be
satisfied/satisficed by satisfying/satisficing the conjoined subgoals in any of the alter-
native refinements.

For example, the goal ParticipantConstraintsKnownFromRequest in Fig. 1 is OR-refined
into three alternatives: ConstraintsAcquiredByEmail, ConstraintsAcquiredFromE-Agenda, and
ConstraintsTakenByDefault. The goal ConstraintsAcquiredByEmail is in turn AND-refined
into three subgoals: ConstraintsRequested, ConstraintsTransmitted, and Communication-
Working.
A goal model may also document conflicts that were detected among two or more
goals (see Fig. 2 in the next section for an example). A conflict arises when behavioral
goals cannot be satisfied together or when one of the soft goals contributes negatively
to the other goals.

Goal nodes in a goal model are annotated with individual features such as their
name and precise specification in natural language, their type, category, priority level,
elicitation source, etc. Such annotations act as placeholders for dedicated techniques
used in the RE process [25]. For example, priority levels are used for conflict man-
agement and requirements prioritization.

The systems as-is and to-be can both be captured within the same model. The
two versions share high-level goals and differ along OR-refinement branches of com-
mon parent goals. We can thereby capture multiple variants in a system family.

Goal models can be used for a wide variety of purposes [24], [25], including: the
evaluation of alternative options; the structuring and documentation of satisfaction
arguments; the checking of the correctness of goal refinements and operationaliza-
tions; model animation; the analysis of risks, security threats, and conflicts; require-
ments prioritization; traceability management; the derivation of software architecture
drafts; and the semi-automated generation of the requirements document. In this paper
we focus on the use of goal models as a basis for evaluating alternative options.

4 Qualitative Reasoning about Alternative Options

Throughout the RE process we need to explore alternative options of different types,
as introduced in Section 2, and select best ones based on specific evaluation criteria.
In a GORE framework, options may refer to alternative goal refinements, responsibil-
ity assignments, operationalizations, conflict resolutions, risk resolutions, and threat
resolutions.

To compare options and select best ones, we need evaluation criteria. The great
idea set forth by the NFR framework was to use the soft goals identified in the goal
model as evaluation criteria [34]. Different alternatives contribute to different degrees

386 A. van Lamsweerde

of satisficing these soft goals. Although originally described in the context of alterna-
tive goal refinements, the qualitative evaluation technique in [34] does in fact work
for the other types of options as well.

The general idea is to use qualitative estimations for assessing the positive or nega-
tive contribution of alternative options to the soft goals [34]. The aim is to determine,
in each alternative, a qualitative degree of satisfaction of the top-level soft goals in the
goal refinement graph; the option with best degrees of satisfaction is then selected.

To achieve this we need, for each alternative option, to:

• assess its positive or negative influence on each leaf soft goal in the model,
• propagate such influence bottom-up in the goal graph until we reach the

top-level soft goals.

Let us make these steps more precise while seeing them in action on our meeting
scheduling system. Fig. 2 shows a portion of a goal model with soft goal refinements
and conflicts – e.g., the faster the constraint acquisition process or the fewer the inter-
actions with a participant, the less accurate the acquired constraints with respect to the
participant’s actual constraints.

4.1 Assessing the Qualitative Contribution of Alternative Options to Leaf Soft
Goals

We first need to qualitatively assess the extent to which each alternative contributes to
the various leaf goals in soft goal refinement trees – e.g., “++” (very positively), “+”
(positively), “-” (negatively), “--” (very negatively), “n” (neutral). This amounts to
putting some qualitative weight on refinement and conflict links in the goal model.

Condider our meeting scheduler case study, for example. Fig. 1 highlighted three
alternative options for knowing the participant’s date constraints:

• acquiring them by email requests,
• acquiring them by access to the participant’s electronic agenda,
• taking default constraints (such as working days only).

Table 1 shows the qualitative contribution of these three options to the four
leaf soft goals in Fig. 2. For example, the option ConstraintsAcquiredByEmail might

Table 1. Qualitative contributions of options to leaf soft goals

 Alternative options

Leaf soft goals
Constraints
Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
aken

ByDefault
AccurateConstraints + - -
FastConstraintAcquisition - + +
Minimum Replanning + - -
Minimum Interaction
ForGettingConstraints

- + -

 Reasoning About Alternative Requirements Options 387

Constraints
EasyToSubmit

EffectiveMeetingScheduling

MinimumOverheadOnParticipant MaximumAttendance

 FastScheduling MinimumInteractionConvenientSchedule

AccurateConstraints

MaximumMeetingTimeliness

FastConstraintAcquisition MinimumReplanning MinimumInteraction
ForGettingConstraints

S SD, D → D

S D, U+ → U

U+, U → U

U+, D → U

U U

U, U, U → U

D, D → D

 potential conflict

Fig. 2. Upward propagation of satisficing labels in a soft goal refinement graph [25]

contribute negatively to the soft goal FastConstraintAcquisition (as an invited participant
might be non-responsive), positively to the soft goal AccurateConstraints (as the partici-
pant is likely to know her actual constraints), negatively to the soft goal MinimumInter-
actionForGettingConstraints (as the participant might get multiple email reminders), etc.
On the other hand, the option ConstraintsAcquiredFromE-Agenda might contribute posi-
tively to FastConstraintAcquisition, negatively to AccurateConstraints (as the participant’s
e-agenda is likely to inaccurately reflect her actual availabilities), and positively to
MinimumInteractionForGettingConstraints (as no participant interaction is required) .

4.2 Bottom-Up Propagation of Qualitative Contributions

The next step consists of propagating such contributions upwards in the sof goal
graph through refinement and conflict links. For this we may use a procedure that
assigns qualitative labels to each node in the graph [34]. A node is labelled:

S (satisficed): if it is satisficeable and not deniable,
D (denied): if it is deniable but not satisficeable,
C (conflicting): if it is both satisficeable and deniable,
U (undetermined): if it is neither satisficeable nor deniable.

The procedure propagates such labels bottom-up along refinement links, marked as
“+” or “++” according to the strength of the positive contribution, and along conflict
links, marked as “-” or “--” according to the severity of the negative contribution.
Additional label values can be assigned at intermediate stages of the procedure, e.g.,

U+: unconclusive positive support, U-: unconclusive negative support,
?: user intervention required for getting an adequate label value.

An upward propagation step from offspring nodes to their parent node goes as
follows.

388 A. van Lamsweerde

1. The individual effect of a weighted link from an offspring to its parent is deter-
mined according to propagation rules such as the ones shown in Table 2 (we only
consider a few weights to make things simpler). One additional rule states that if a
node is a refinement node and all its offspring nodes have a S label then this node
gets a S label. A node will thus in general have multiple labels –one per incoming
link.

2. The various labels thereby collected at a parent node are merged into one single
label. The user is first asked to combine the U+ and U- labels into one or more S,
D, C and U labels. The result is then combined into a single label by choosing the
minimal label according to the following ordering:

S, D ≥ U ≥ C.

This upward propagation step is applied recursively until the top-level soft goals
get a single label.

Let us see how this technique works for the options in Fig. 1 and the soft goal
model portion in Fig. 2. We consider the first option ConstraintsAcquiredByEmail in
Table 1; it therefore gets a “S” label at the left bottom in Fig. 2. According to Table 2,
its “+” contribution links to AccurateConstraints and MinimumReplanning yield a “S” label
for these two leaf soft goals (as no other subgoal is shown for the latter goals in the
goal model; otherwise they would get a “U+” instead, unless all other subgoals have a
“S”). On the other hand, the “-” links from this first option to FastConstraintAcquisition
and MinimumInteractionForGettingConstraints yield a “D” label for these two leaf soft
goals in Fig. 2.

At the next step, the “S” label of AccurateConstraints yields a “S” label for Conven-
ientSchedule, through a “+” link, and a “D” label for FastConstraintAcquisition, through
the “-” conflict link shown in Fig. 2. Based on the above ordering, the labels “D,D”
on the latter goal get merged into a single “D”.

At the next step, this “D” label on FastConstraintAcquisition gets propagated through
a “+” link to the parent goal FastScheduling as a “D” label again whereas the latter goal
also gets a “U+” label through a “+” link from its offspring MinimumReplanning (see
Table 2). After user intervention this “U+” might become “U” and the resulting label
merge yields, according to the predefined label ordering, a single “U” label for Fast-
Scheduling. The process goes on upwards until we obtain “U, U, U” labels for the top
soft goal EffectiveMeetingScheduling, which get merged into a single “U” label.

Table 2. Qualitative label propagation rules [34]

 Link
weight

 + - n
Offspring

label
 Parent

label

S U+ D U

D D U+ U

C ? ? U

U U U U

 Reasoning About Alternative Requirements Options 389

Constraints
EasyToSubmit

EffectiveMeetingScheduling

MinimumOverheadOnParticipant MaximumAttendance

 FastScheduling MinimumInteractionConvenientSchedule

AccurateConstraints

MaximumMeetingTimeliness

FastConstraintAcquisition MinimumReplanning MinimumInteraction
ForGettingConstraints

D D

D U+, D → U

D

D, U+, → U

U U

D, U, U → U

S, S → S S, S → S

Fig. 3. Propagation of degrees of satisficing for the option Constraints Acquired From E-
Agenda

A similar upward propagation for the second option in Table 1, namely, Constraint-
sAcquiredFromE-Agenda, yields “D, U, U” labels for the top soft goal, as shown in Fig. 3.

4.3 Discussion

Overall the two options ConstraintsAcquiredByEmail and ConstraintsAcquiredFromE-Agenda
seem comparable as they get the same top label after merge, namely, “U” (undeter-
mined). However, the second option has a “D” label (denied) among the top labels
which might make it less preferred. The third option of just taking default constraints
gets one “D” more at the top which might be a good reason for discarding it.

This simple meeting scheduling example illustrates some limitations of qualitative
approaches:

• The propagation rules make labels become rapidly unconclusive as we
move up in the soft goal refinement tree. To overcome this, we might re-
fine the qualitative labels, weights, and propagation rules in Table 2 to
make them less rough.

• Still, the various types of labels and link weights have no clear meaning in
terms of system-specific phenomena. Qualitative reasoning schemes pro-
vide some quick and cheap means for rough evaluation in the early stages
of the RE process. Their applicability for effective decision support based
on accurate arguments appears more questionable.

• All leaf soft goals used as evaluation criteria are considered to have the
same importance. This is rarely the case in practice. For example, the soft
goal AccurateConstraints is much more important than the soft goal Mini-
mumInteractionForGettingConstraints in view of the key concern of maxi-
mum attendance to the meeting.

Regarding the second limitation above, the problem partly arises from the way soft
goals are specified. Their specification often violates a basic RE principle stating that
goals, requirements and assumptions should be measurable. The specification of a

390 A. van Lamsweerde

soft goal should therefore be complemented with a fit criterion that quantifies the
extent to which this goal must be satisfied [39]. For example:

ConvenientSchedule: The scheduled meeting dates shall meet the date constraints of invited
participants as much as possible.

 Fit criterion: Scheduled dates should fit all actual date constraints of at least 90% of in-
vited participants.

MinimumInteractionforGettingConstraints: There should be as little interaction as possible
with participants for getting their time constraints.

 Fit criterion: There should be at most 4 interactions per participant to organize a
meeting.

Measurable soft goal specifications open the way to more accurate evaluation as
we discuss now.

5 Lightweight Quantitative Evaluation of Alternative Options

To address the preceding limitations, we may use quantitative estimations for assess-
ing the positive or negative contribution of alternative options to soft goals. The aim
is to determine the overall score of each option with respect to all the leaf soft goals in
the goal refinement graph, taking their respective importance into account. The option
with highest score is then selected.

To achieve this,

• We assign different weights to the leaf soft goals in order to reflect their
relative importance.

• We numerically score each option against the leaf soft goals. The scores
should be grounded on measurable system phenomena related to the fit
criteria of these soft goals.

• We collect the weights and scores in a weighted matrix for overall com-
parison.

5.1 Quantifying Option Contributions to Leaf Soft Goals through Score
Matrices

Weighted matrices are a standard system engineering technique for quantitative deci-
sion support. Such matrices bear similarities with those used for risk management
within the RE process [14]. They capture estimated scores of each option with respect
to the evaluation criteria used.

• As our evaluation criteria are the soft goals from the goal model, we first
assign a weight to each leaf soft goal to reflect its importance relatively to
others – typically, a numerical proportion. Such weight can be derived
from the goal’s priority level specified in the goal model [25].

• A matrix cell associated with an option opt and a leaf soft goal lsg captures
the estimated score of the option with respect to this soft goal. A score X
means that the option is estimated to satisfy the soft goal in X% of the
cases.

 Reasoning About Alternative Requirements Options 391

• The last row of the matrix gives the overall score of each option as a
weighted summation of its scores with respect to each leaf soft goal:

totalScore (opt) = ∑lsg (Score (opt, lsg) × Weight (lsg))

Table 3. Weighted matrix for evaluating alternative options against all leaf soft goals [25]

Importance

 Option scores

Leaf soft goals weighting Constraints
Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
AccurateConstraints 0.50 0.90 0.30 0.10

Fast
ConstraintAcquisition

0.30 0.50 0.90 1.00

MinimumReplanning 0.10 0.80 0.30 0.10

MinimumInteraction
ForGettingConstraints

0.10 0.50 1.00 1.00

TOTAL 1.00 0.73 0.55 0.46

Table 3 shows such quantitative evaluation for the options and soft goals evaluated

qualitatively in Table 1. In this evaluation, the soft goal AccurateConstraints is
considered relatively much more important than the soft goals MinimumInteractionForGet-
tingConstraints and MinimumReplanning (the latter having the same level of limited impor-
tance). The first option, ConstraintsAcquiredByEmail, is estimated to satisfy the soft goal
AccurateConstraints in 90 % of the cases –as invited participants are expected to directly
express their own constraints. The 10% remaining stand for participants confusing
dates or having taken other commitments in the meantime. Overall, this first option
outperforms the others in view of the relative weights assigned to each soft goal.

For this approach to work effectively, we need to be able to determine adequate
option scores against each leaf soft goal in the goal model. Note that the accuracy of
an individual score taken in isolation is not what matters the most. We can draw
meaningful comparative conclusions as long as all scores are set consistently, from
one alternative to the other, as a common basis for making comparisons. Neverthe-
less, to avoid subjective estimations resulting in questionable decisions, the scores
should be grounded on domain expertise, experience with similar systems and inter-
pretations in terms of measurable phenomena in the system.

5.2 Deriving Option Scores from Measures of Soft Goal Satisficing

The goal model may be used to estimate option scores that are grounded on measur-
able system phenomena. The general idea is to: identify gauge variables referred to in
the specification of the soft goals and their fit criterion; evaluate such variables along
the refinement tree of the various options; and derive options scores from the values
obtained.

392 A. van Lamsweerde

Identifying and evaluating gauge variables. A gauge variable is a variable
associated with a specific leaf soft goal in the goal model. It may capture:

• a quantity the soft goal prescribes to Improve, Increase, Reduce, Maxi-
mize, or Minimize;

• the estimated cost of satisficing this soft goal;
• the estimated time taken for satisficing it.

Consider the leaf soft goal MinimumInteractionForGettingConstraints in the meeting
scheduling system. Its specification was seen to be:

There should be as little interaction as possible with participants for getting their time con-
straints.

 Fit criterion: There should be at most 4 interactions per participant to organize a
meeting.

The variable ExpectedNumberOfInteractions may be derived from this specification as
a gauge variable for this soft goal. It estimates the average number of interactions
between a participant and the scheduler to get the participant’s constraints. Note that
the full specification implicitly specifies an ideal target value (0) and an acceptability
threshold (4).

To support the evaluation of options based on soft goals grounded on measurable
phenomena, a gauge variable should meet the following requirements.

• Soft goal measure: To enable comparisons of options with respect to soft
goals, the variable should provide some measure of the degree of satis-
ficing of its associated leaf soft goal.

• Cumulative quantity: To enable accurate estimations of its values for the
different options, the variable should propagate additively along the AND-
trees refining these options in the goal model.

Fig. 4 explains what is meant by additive propagation. Let lsg denote a leaf soft
goal and gv a cumulative gauge variable associated with it. In view of the semantics
of goal AND-refinement, the value of gv at a parent goal G in the refinement tree of a
specific option is obtained by summing up the values of gv at the subgoals G1 and
G2. When a value for the variable at some subgoal makes no sense, we just ignore it
in the summation.

G1

Quantitylsg (G) = Quantitylsg (G1) + Quantitylsg (G2)

SatisfCostlsg (G) = SatisfCostlsg (G1) + SatisfCostlsg (G2)

SatisfTimelsg (G) = SatisfTimelsg (G1) + SatisfTimelsg (G2)

G

G2

Quantitylsg (G1)

SatisfCostlsg (G1)

SatisfTimelsg (G1)

Quantitylsg (G2)

SatisfCostlsg (G2)

SatisfTimelsg (G2)

Fig. 4. Cumulative propagation of gauge variables [25]

 Reasoning About Alternative Requirements Options 393

The merits of an option are obtained by upward propagation, along the option’s re-
finement tree, of the cumulative values of the gauge variables measuring the satis-
ficing of the leaf soft goals in the goal model, starting from the option’s own leaf
subgoals. The reason for performing such up-propagation is that the values of gauge
variables will generally be more easily and accurately estimated for the finer-grained
leaf subgoals of the option.

Table 4 illustrates the evaluation of gauge variables by up-propagation from the
leaf subgoals in the various options. Each gauge variable there corresponds to a quan-
tity that the associated leaf soft goal in Table 3 prescribes to Maximize or Minimize.

Table 4. Values of gauge variables for soft goal satisficing by alternative options [25]

 Option values

Soft-goal gauge variable Constraints
Acquired
By Email

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
Expected Number of Correct

Free Half-Days per Week
9 3 1

Expected Constraint Acquisition
Time (in days)

3 1 0

Expected Number of Replannings 0.5 2 4

Expected Number of Interactions 2 0 0

For example, consider the gauge variable ExpectedNumberOfInteractions in Table 4,
associated with the soft goal MinimumInteractionForGettingConstraints in Table 3. The
estimated value “2” for this variable in the option ConstraintsAcquiredByEmail is ob-
tained by summing the value “1” for the subgoal ConstraintsRequested in Fig. 1 (one
interaction per requested constraints) and the value “1” for the subgoal Constraint-
sTransmitted (another interaction per returned constraints). The estimated value “3” in
the same column, for the same option and the gauge variable ExpectedConstraintAcquisi-
tionTime associated with the soft goal FastConstraintAcquisition, results from “0” (time
taken for the scheduler to request constraints) + “3” (estimated average time, in days,
for a participant to return her constraints). Each gauge variable in Table 4 is derived
from the specification and fit criterion of the corresponding leaf soft goal in Table 3;
its values are obtained by up-propagation along the refinement tree of the correspond-
ing option from the estimated values at leaf nodes (see Fig. 4).

Deriving option scores from values of gauge variables. Once the overall gauge
values are obtained at the root of the refinement tree of each option by such up-
propagation, we can derive the scores of each option as follows.

Let Score (opt, lsg) denote the score of option opt with respect to the leaf soft goal
lsg. Let gV denote the value of the gauge variable associated with lsg, obtained at
the root of opt’s refinement tree by up-propagation from its leaf subgoals. Let gT de-
note the ideal target value we would expect for this variable and gmax its maximum

394 A. van Lamsweerde

acceptable value; gT and gmax are derived from lsg’s specification and fit criterion,
respectively. We then have:

Score (opt, lsg) = 1 – (| gT – gV |) / gmax

As we can see from this formula, the closer the gauge value to its ideal target rela-
tively to its maximum acceptable value, the closer the corresponding score to 1.
The more distant the gauge value from its ideal target relatively to its maximum
acceptable value, the closer the corresponding score to 0.

Table 5. Evaluation of alternative options against leaf soft goals based on gauge variables

Importance

 Option scores

Leaf soft goals weighting gT gmax Constraints
Acquired
ByEmail

Constraints
Acquired

FromE-Agenda

Constraints
Taken

ByDefault
AccurateConstraints 0.50 10 10 0.90 0.30 0.10

Fast
ConstraintAcquisition

0.30 0 6 0.50 0.84 (0.90) 1.00

MinimumReplanning 0.10 0 4 0.87 (0.90) 0.50 (0.30) 0 (0.10)
Minimum

InteractionFor
GettingConstraints

0.10 0 4 0.50 1.00 1.00

TOTAL 1.00 0.74 (0.73) 0.55 0.45 (0.46)

Table 5 shows another weighted matrix for evaluating alternative options in our
meeting scheduling system. Compared to the matrix in Table 3, this one is based on
such score derivation from the values of the gauge variables in Table 4. (The numbers
in parentheses refer to the corresponding rough estimations in Table 3.)

For example, Table 4 gave a value of “2” for the gauge variable ExpectedNum-
berOfInteractions in the option ConstraintsAcquiredByEmail. This gauge measures the de-
gree of satisficing of the Minimize soft goal MinimumInteractionForGettingConstraints.
From the specification and fit criterion of this soft goal, we get the values “0” for gT
and “4” for gmax. As the value gV for this gauge, obtained by up-propagation from the
leaf nodes in the refinement tree of the option ConstraintsAcquiredByEmail, is “2”, the
score obtained according to the preceding formula is “0.50”. Similarly, Table 4 gave a
value of “9” for the gauge variable ExpectedNumberOfCorrectFreeHalfDaysPerWeek in the
option ConstraintsAcquiredByEmail. This gauge measures the degree of satisficing of the
Maximize soft goal AccurateConstraints; a value X for this variable means that, among
the 10 working half-days in a week where a participant is stated to be free, X of these
are half-days where she is actually free. From the specification and fit criterion of this
soft goal, we get the values “10” for gT and “10” for gmax. As the value gV for this
gauge, obtained by up-propagation from the leaf nodes in the refinement tree of the
option ConstraintsAcquiredByEmail, is “9”, the score obtained according to the preceding
formula is “0.90”.

In comparison with Table 3, the numbers in Table 5 are not significantly different.
They result in the same comparative evaluation yielding the selection of the first

 Reasoning About Alternative Requirements Options 395

option ConstraintsAcquiredByEmail as best one. There are significant differences, how-
ever, in the arguability of conclusions and the way we get to them through gauge
variables:

• these conclusions rely on measures of degree of soft goal satisficing that
are based on system phenomena;

• they are derived systematically from the specifications of the leaf soft
goals in the goal model.

We therefore gain increased confidence in the adequacy of our conclusions.
A more sophisticated approach to quantitative reasoning about alternative options

can be found in [30]. Quality variables are used there instead of gauge variables. They
are random variables with probability distribution functions. The analysis then is
more accurate but more heavyweight as a price to pay.

6 Conclusion

The evaluation of alternative system options is at the heart of the RE process. John
Mylopoulos has significantly contributed to the development of concepts, models and
techniques for this critical task. The important role played by goal models, soft goals
as evaluation criteria, and propagation of positive/negative goal contributions are now
much better understood. Others have built upon his results and will continue to ex-
plore the directions he has opened.

Beyond the work outlined in this paper, the RE community owes much to John for
his contribution to raising the technical standards in the field, his open-minded and
interdisciplinary attitude in research, his humility and friendliness in research interac-
tions, and the network of colleagues he has created worldwide.

Acknowledgement. The principle of using measurable fit criteria for quantitative
reasoning about soft goals results from joint work with Emmanuel Letier. Warm
thanks are due to the reviewer of this paper whose requests for clarification resulted in
the introduction of quantified links between option scores and soft-goal gauge
variables.

References

1. Alford, M.: A Requirements Engineering Methodology for Real-Time Processing Re-
quirements. IEEE Transactions on Software Engineering 3(1), 60–69 (1977)

2. Bell, T.E., Thayer, T.A.: Software Requirements: Are They Really a Problem? In: Proc.
ICSE 1976: 2nd International Conference on Software Enginering, San Francisco, pp. 61–
68 (1976)

3. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
4. Borgida, A., Mylopoulos, J., Reiter, R.: And Nothing Else Changes: The Frame Problem in

Procedure Specifications. In: Proc. ICSE 1993 - 15th International Conference on Software
Engineering, Baltimore (May 1993)

396 A. van Lamsweerde

5. Brodie, M., Mylopoulos, J., Schmidt, J. (eds.): On Conceptual Modeling: Perspectives
from Artificial Intelligence, Databases, and Programming Languages. Springer, Heidelberg
(1984)

6. Brooks, F.P.: No Silver Bullet: Essence and Accidents of Software Engineering. IEEE
Computer 20(4), 10–19 (1987)

7. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineeering: the TROPOS Project. Information Systems 27, 365–389 (2002)

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in software en-
gineering. Kluwer Academic, Boston (2000)

9. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, Goals, and State Machines: A
Win-Win Partnership for Model Synthesis. In: Proceedings of FSE 2006, 14th ACM Inter-
national Symp. on the Foundations of Software Engineering, November 2006, Portland,
OR (2006)

10. Dardenne, A., Fickas, S.S., van Lamsweerde, A.: Goal-directed Concept Acquisition in
Requirements Elicitation. In: Proc. 6th International Workshop on Software Specification
and Design, Como, Italy, pp. 14–21 (1991)

11. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
Science of Computer Programming 20, 3–50 (1993)

12. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven Re-
quirements Elaboration. In: FSE’4 - Fourth ACM SIGSOFT Symp. on the Foundations of
Software Engineering, October 1996, pp. 179–190 (1996)

13. DeMarco, T.: Structured Analysis and System Specification. Yourdon Press (1978)
14. Feather, M.S., Cornford, S.L.: Quantitative Risk-Based Requirements Reasoning. Re-

quirements Engineering Journal 8(4), 248–265 (2003)
15. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model Checking Early Require-

ments Specifications in Tropos. In: Proc. RE 2001 - 5th Intl. Symp. Requirements Engi-
neering, Toronto (August 2001)

16. Greenspan, S.J., Mylopoulos, J., Borgida, A.: Capturing More World Knowledge in the
Requirements Specification. In: Proc. ICSE-1982: 6th Intl. Conf. on Software Enginering,
Tokyo (1982)

17. Greenspan, S.J., Borgida, A., Mylopoulos, J.: A Requirements Modeling Language and its
Logic. Information Systems 11(1), 9–23 (1986)

18. Heninger, K.L.: Specifying Software Requirements for Complex Systems: New Tech-
niques and their Application. IEEE Transactions on Software Engineering 6(1), 2–13
(1980)

19. Hui, B., Laiskos, S., Mylopoulos, J.: Requirements Analysis for Customizable Software: A
Goals Skills Preferences Framework. In: Proc. RE 2003: 11th IEEE Joint Intl. Require-
ments Engineering Conference, Monterey, CA, September 2003, pp. 117–126 (2003)

20. Jackson, M.: Software Requirements & Specifications - A Lexicon of Practice, Principles
and Prejudices. ACM Press, Addison-Wesley (1995)

21. van Lamsweerde, A., Dardenne, A., Delcourt, B., Dubisy, F.: The KAOS Project: Knowl-
edge Acquisition in Automated Specification of Software. In: Proc. AAAI Spring Sympo-
sium Series, Track: Design of Composite Systems, Stanford University, American Asso-
ciation for Artificial Intelligence, March 1991, pp. 59–62 (1991)

22. van Lamsweerde, A.: Requirements Engineering in the Year 00: A Research Perspective.
In: Proc. ICSE 2000: 22nd International Conference on Software Engineering, pp. 5–19.
ACM Press, New York (2000) (invited keynote paper)

23. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: Proc. ICSE 2004, 26th Intl. Conference on Software Engineering, Edin-
burgh, May 2004, pp. 148–157. ACM-IEEE (2004)

 Reasoning About Alternative Requirements Options 397

24. van Lamsweerde, A.: Requirements Engineering: From Craft to Discipline. Invited Paper
for the ACM Sigsoft Outstanding Research Award, Proc FSE-16: 16th ACM Conference
on the Foundations of Software Engineering, Atlanta (November 2008)

25. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications, January 2009. Wiley, Chichester (2009)

26. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven Re-
quirements Engineering. IEEE Transactions on Sofware Engineering 24(11), 908–926
(1998)

27. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements Engi-
neering. IEEE Transactions on Software Engineering 26(10), 978–1005 (2000)

28. Letier, E., van Lamsweerde, A.: Agent-Based Tactics for Goal-Oriented Requirements
Elaboration. In: Proc. ICSE 2002: 24th Intl. Conf. on Software Engineering, May 2002.
ACM-IEEE (2002)

29. Letier, E., van Lamsweerde, A.: Deriving Operational Software Specifications from Sys-
tem Goals. In: Proc. FSE’10: 10 th ACM Symp. Foundations of Software Engineering,
Charleston (November 2002)

30. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for Require-
ments and Design Engineering. In: Proc. FSE 2004, 12th ACM International Symp. on the
Foundations of Software Engineering, Newport Beach, CA, November 2004, pp. 53–62
(2004)

31. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a So-
cial Setting. In: Proc. RE 2003: Intl. Requirements Engineering Conf. (September 2003)

32. Mylopoulos, J.: Information Modeling in the Time of the Revolution, Invited Review. In-
formation Systems 23(3-4), 127–155 (1998)

33. Mylopoulos, J., Bernstein, P., Wong, H.: A Language Facility for Designing Interactive
Database-Intensive Applications. ACM Transactions on Database Systems 5(2) (June
1980)

34. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Require-
ments: A Process-Oriented Approach. IEEE Transactions on Sofware Engineering 18(6),
483–497 (1992)

35. Mylopoulos, J., Chung, L., Liao, S., Wong, H., Yu, E.: Exploring Alternatives During Re-
quirements Analysis. IEEE Software 18(1), 92–96 (2001)

36. Mylopoulos, J., Chung, L.L., Yu, E.E.: From Object-Oriented to Goal-Oriented Require-
ments Analysis. Communications of the ACM 42(1), 31–37 (1999)

37. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of Com-
puter Programming 25, 41–61 (1995)

38. Ponsard, C., Massonet, P., Molderez, J.F., Rifaut, A., van Lamsweerde, A.: Early Verifica-
tion and Validation of Mission-Critical Systems. Formal Methods in System Design 30(3),
233–247 (2007)

39. Robertson, S., Robertson, J.: Mastering the Requirements Process. ACM Press, Addison-
Wesley (1999)

40. Ross, D.T., Schoman, K.E.: Structured Analysis (SA): A Language for Communicating
Ideas. IEEE Transactions on Software Engineering 3(1), 16–34 (1977)

41. Roussopoulos, N., Mylopoulos, J.: Using Semantic Networks for Database Management.
In: Proc. 1st Conf. on Very Large Databases (VLDB), September 1975, pp. 144–172
(1975)

42. Tran Van, H., van Lamsweerde, A., Massonet, P., Ponsard, C.: Goal-Oriented Require-
ments Animation. In: Proc. RE 2004, 12th IEEE Joint International Requirements Engi-
neering Conference, Kyoto, September 2004, pp. 218–228 (2004)

43. Yu, E.S.K.: Modelling Organizations for Information Systems Requirements Engineering.
In: Proc. RE 1993 - 1st Intl Symp. on Requirements Engineering, pp. 34–41 (1993)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 398–416, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Supporting Requirements Elicitation through
Goal/Scenario Coupling

Colette Rolland and Camille Salinesi

Centre de Recherche en Informatique, 90,
rue Tolbiac 75013 Paris, France

{colette.rolland,camille.salinesi}@univ-paris1.fr

Abstract. Goals have long been recognized to be an essential component in-
volved in the Requirements Engineering (RE) process. They have proved to be
an effective way to support a number of requirements engineering activities
such as requirements elicitation, systematic exploration of design choices,
checking requirements completeness, ensuring requirements pre-traceability
and helping in the detection of threats, conflicts, obstacles and their resolution.
The leading role played by goals in the RE process led to a whole stream of re-
search on goal modeling, goal specification/formulation and goal-based reason-
ing for the multiple aforementioned purposes. On the other hand, there is
evidence that dealing with goal is not an easy task and presents a number of dif-
ficulties in practice. To overcome these difficulties, many authors suggest com-
bining goals and scenarios. The reason is that they complement each other:
there is a mutual mitigation of difficulties encountered with one by using the
other. The paper reviews various research efforts undertaken in this line of re-
search. It uses L’Ecritoire, an approach that guides the requirements elicitation
and specification process through interleaved goal modelling and scenario
authoring to illustrate the combined use of goals and scenarios to reason about
requirements for the system To-Be.

1 Introduction

Goals have long been recognized to be an essential component involved in the Re-
quirements Engineering (RE) process. In their seminal paper, Ross and Schoman
stated “requirements definition must say why a system is needed, based on current
and foreseen conditions, which may be internal operations or external market. It must
say what a system features will serve and satisfy this context. And it must say how the
system is to be constructed” [1]. Typically, the current system is analyzed; problems
are pointed out and opportunities are identified; high level strategic goals are elicited
and refined to address such problems and meet such opportunities; requirements are
then elaborated to meet these goals. Goals are thus, the driving force of the require-
ments engineering process.

Goals have proved to be an effective way to elicit requirements [2] [3] but also to
support a systematic exploration of design choices [4] [5] [6] to check requirements
completeness [7], to ensure requirements pre-traceability [8] [9] to help in the detec-
tion of threats [10] conflicts [11] and obstacles [12] and their resolution, and to ana-
lyse systems evolution [18] [27]. The leading role played by goals in the RE process

 Supporting Requirements Elicitation through Goal/Scenario Coupling 399

led to a whole stream of research on goal modeling, goal specification/formulation
and goal-based reasoning for the multiple aforementioned purposes. John Mylopoulos
and his team played a leading role in this stream and produced a vast set of papers that
are highly referenced in the RE literature [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52].

However, several authors [13], [14], [3], [15] also acknowledge the fact that deal-
ing with goal is not an easy task. Experience shows that it is difficult for domain ex-
perts to deal with the fuzzy concept of a goal [16] [17]. Though it is assumed that
systems are constructed with some goals in mind [7], experience [18] shows that
goals are not given and therefore the question of where they originate from [1] ac-
quires importance. In addition, the goals often given by organizations are not real
ones but reflect an idealized view of the enterprise. Therefore, proceeding from these
may lead to ineffective requirements [19]. Thus, goal discovery is rarely an easy task.

Scenario modelling is another way to facilitate requirements elicitation from an
analysis of the wider context in which the system will operate. By capturing examples
and illustrations, scenarios help people in reasoning about complex systems [27]. A
scenario is ‘a possible behavior limited to a set of purposeful interactions taking place
among several agents’ [20] [21]. It describes a desirable functionality of a system
under design, and thus, helps in identifying requirements [22]. The problem with
scenarios is that they are inherently partial and therefore they raise a coverage prob-
lem making it impossible to verify the completeness of the requirements [23]. Be-
sides, because they deal with examples and illustrations, scenarios only provide re-
stricted requirements descriptions which need to be generalized to obtain complete
requirements [24].

Some proposals have been made to couple goals and scenarios together. Potts [19]
[25] claims that it is «unwise to apply goal based requirements methods in isolation»
and suggests that they should be complemented with scenarios. Yet other proposals
exist which interpret scenarios as containing information on how goals can be
achieved [26] [23]. Thus, the goal-scenario combination has been used to operational-
ize goals. Yet others look upon goals as playing a documentation role only. This view
is taken in [28] [29] [30] [31] [53] where a goal is considered as a contextual property
of a use case (integrated set of scenarios) i.e. it is a property that relates the scenario
to its organizational context. Cockburn [23] goes beyond this view and suggests the
use of goals to structure use cases by connecting every action in a scenario to a goal
of another use case at a lower level of abstraction. In this sense a scenario is discov-
ered each time a goal is.

All these views suggest a unidirectional relationship between goals and scenarios:
the goal-scenario combination has been used to operationalize goals. This is because
scenarios can be interpreted as containing information on how goals can be achieved.
In the CREWS project [3], we developed the L’Ecritoire approach in which we view
this relationship as bi-directional: just as goals can help in scenario discovery, so also
scenarios can help in goal discovery. The total solution is in two parts. First, for a
goal, textual scenarios are authored. Thereafter, the authored scenario is explored to
yield goals which, in turn, cause new scenarios to be authored and so on. The rest of
this paper illustrates how this bidirectional coupling can help eliciting requirements.

The paper is organized in two main sections. The first presents an overview of
L’Ecritoire approach: the goal-scenario coupling, the notion of a requirement chunk,

400 C. Rolland and C. Salinesi

scenario authoring, goal discovery and associated enactable rules. In the third section,
the functionality of the tool that supports the approach is illustrated through a usage
scenario. The concluding section highlights the benefits of goal-scenario coupling.

2 Overview of the L’Ecritoire Approach

L’Ecritoire is an approach supported by a software tool for requirements elicitation,
structuration, and documentation. It draws heavily from the work on goal, scenario,
and goal-scenario coupling found in the literature.

2.1 The Notion of a Requirement Chunk

At the core of the L’Ecritoire approach is the notion of a Requirement Chunk. We
define a Requirement Chunk (RC) as a pair <G, Sc> where G is a goal and Sc is a
scenario. Since a goal is intentional and a scenario is operational in nature, a require-
ment chunk is a possible way in which the goal can be achieved.

• A goal is defined [32] as 'something that some stakeholder hopes to achieve in
the future'. In L’Ecritoire, it is expressed as a clause with a main verb and several
parameters, where each parameter plays a different role with respect to the verb.
For example in the goal statement :

'Withdraw verb (cash)target (from ATM)means'

'Withdraw' is the main verb, 'cash' is the parameter target of the goal, and 'from
ATM' is a parameter describing the means by which the goal is achieved. We
adopt the linguistic approach of Fillmore's Case grammar [33], and its extensions
[34] [35], to define goal parameters [36]. Each type of parameter corresponds to a
case and plays a different role within a goal statement. One of these parameters is
the manner which refers to an approach, a way by which the goal can be
achieved. We will see later that L’Ecritoire uses this parameter to distinguish two
RCs corresponding to two different ways to achieving the same goal. For exam-
ple: Withdraw cash from the ATM normally and Withdraw cash from the ATM
with insufficient account balance .Normally and with insufficient account balance
are two different manners for Withdrawing cash from an ATM.

• A scenario is 'a possible behavior limited to a set of purposeful interactions tak-
ing place among several agents' [32]. In L’Ecritoire, a scenario is defined as
composed of one or more actions which describe a unique path leading from an
initial to a final state.

• The initial state defines the preconditions for the scenario to be triggered. For
example, the scenario 'Withdraw cash from the ATM' cannot be performed if the
initial state 'The bank customer has a card' and 'The ATM is ready' is not true.
The final state is the state reached at the end of the scenario. The scenario 'With-
draw cash from the ATM' leads to the compound state 'The user has cash', and
'The ATM is ready'.

• Actions in a scenario are of two types, atomic actions and flows of actions.
Atomic actions are interactions ‘from’ an agent ‘to’ another which affect some
‘parameter objects’. The clause 'The bank customer inserts a card in the ATM' is

 Supporting Requirements Elicitation through Goal/Scenario Coupling 401

an example of an atomic action involving two different agents 'The bank cus-
tomer' and 'the ATM' and having the ‘card’ as parameter.

Flows of actions are composed of several actions and can be of different types:
sequence, concurrent, iterative and conditional. The sentence 'The bank customer
gets a card from the bank, then the bank customer withdraws cash from the ATM'
is an example of a sequence comprising two atomic actions. The flow of actions
'While the ATM keeps the card, the ATM displays an "invalid card" message to
the bank customer' is concurrent; there is no predefined order between the two
concurrent actions.

• Requirement chunks can be assembled together through AND, OR and Refined-by
relationships. ORed RCs are variants one of the others; they represent alternative
ways of fulfilling the same goal. RCs related by a Refined-by relationship are at
different level of abstraction. ANDed RCs are complementary chunks in the sense
that every one requires the others to define a completely functioning system.

• The L’Ecritoire approach identifies three levels of requirements abstraction,
namely the contextual, system interaction and system internal levels.

The aim of the contextual level is to identify the services that a system should
provide to fulfill a high level, strategic goal. At the system interaction level the
focus is on the interactions between the system and its users to achieve the ser-
vices assigned to the system at the contextual level. Thus, the contextual level is
the bridge between strategic goals and system functional requirements. The sys-
tem internal level focuses on what the system needs to perform the interactions
selected at the system interaction level. The ‘what’ is expressed in terms of sys-
tem internal actions that involve system objects but may require external objects
such as other systems. This level defines the software requirements to meet the
system functional requirements.

2.2 The Scenario-Authoring, Goal-Discovery Process

The L’Ecritoire requirements elicitation process is organized around two main activities:

- goal discovery and,
- scenario authoring

In this process, goal discovery and scenario authoring are complementary activities,
the former following the latter. As shown in Figure 1, these activities are repeated to
incrementally populate the requirement chunk hierarchy.

As shown in Fig.1, the requirements elicitation process is an iterative process com-
prising a number of steps by which the RCs at the three levels of abstraction (contex-
tual, interaction and internal) are progressively discovered and specified. Each step
exploits the goal-scenario relationship in both, the forward and backward directions.
A step starts with a goal and the goal-scenario relationship is then exploited in the
forward direction to author a scenario which is a possible concretization of this goal.
Then the goal-scenario relationship is exploited in the reverse direction to discover
new goals based on an analysis of the scenario. In subsequent steps, starting from the
goals of these new RCs, scenarios are authored and the requirements elicitation cycle
thus continues.

402 C. Rolland and C. Salinesi

scenario
authoring

goal discovery based on flow strategy

scenario
authoring

step1
step2

step3

Fig. 1. The requirements elicitation process

Thus, the starting point can be a single goal at the contextual level for which a first
scenario will be authored and goals discovered for which new scenarios will be au-
thored etc.

Each of the two main activities, goal discovery and scenario authoring, is sup-
ported by systematic rules, (1) authoring rules and (2) discovery rules. Authoring
rules allow L’Ecritoire scenarios which are textual to be authored. Discovery rules are
for discovering goals through the analysis of authored scenarios.

Authoring rules and discovery rules that guide the iterative process are explained in
detail in the following.

2.3 Authoring Rules

The role of authoring rules is to ensure the authoring of quality scenarios that can
support the automatic goal discovery process. These rules combine style and contents
guidelines with an advanced linguistic support embedded in a software tool that we
refer to as linguistic device. The former help L’Ecritoire user to write scenarios
whereas the latter help in scenario analysis, disambiguation and completion. The lin-
guistic device is based on a case grammar and case patterns. A detailed description
can be found in [37] [38] [39].

2.3.1 Style and Contents Guidelines
A L’Ecritoire scenario is a textual one. It is a full prose narrative describing a possi-
ble behavior to fulfill the goal of the associated RC. Style guidelines help the
L’Ecritoire user in the wording of the text. “Make use of the active voice” and “Avoid
the use of pronouns and articles” are examples of style guidelines. Contents guide-
lines advise on what is a correct text content. “Any communication action should be
directed from an agent to another agent and apply on a parameter” is an example of
contents guideline.

Style guidelines are applicable to any type of RCs, contextual, system interaction
and system internal whereas there are specific contents guidelines for each level of
abstraction. The violation of a style guideline is the sign of an incorrect scenario and
can lead to erroneous results when applying the enactable rules. The second style
guideline above helps for example, in removing ambiguity. Contents guidelines help
in writing complete communication statements [41] [39] [37].

 Supporting Requirements Elicitation through Goal/Scenario Coupling 403

We refer to the scenario written by l’Ecritoire user in narrative prose with the help
of style and contents guidelines, as the initial narrative scenario.

2.3.2 Linguistic Device
The linguistic device enables the transformation of the initial narrative scenario into a
complete, non ambiguous text matching the L’Ecritoire scenario model. This trans-
formation is required to produce a quality requirement document and, also to allow
the automatic discovery of goals from scenario analysis using the discovery rules.

Linguistic approach. Scenario transformation is supported by a linguistic approach
based on a Case Grammar inspired by Fillmore’s Case Theory [33]. As shown in
Figure 2, the approach is grounded in three elements, semantic structures, semantic
patterns and scenario model. Semantic structures correspond to the linguistic struc-
tures of statements in the scenario text whereas semantic patterns provide the seman-
tic meaning of these statements. According to Chomsky, linguistic structures are the
surface structures of statements whereas semantic patterns correspond to their deep
structures [40]. The scenario model provides the structure of concepts of any scenario
as described in section 2. The correspondence between linguistic structures and
semantic patterns helps in associating a meaning to a scenario statement; the corre-
spondence between a semantic pattern and the scenario model defines the relationship
between the textual form of a scenario and its conceptual form.

 Semantic
 Patterns

Linguistic
structures

Scenario
Model

(1) Scenario
Analysis (2) Mapping on

scenario model
concepts

(3) Generation of
structured text

Fig. 2. The linguistic approach for scenario semantic analysis

The semantic analysis of the initial narrative scenario is performed in three steps.
The scenario text is parsed and every clause and sentence is matched first onto lin-
guistic structures and then onto semantic patterns (1); thus every clause and sentence
of the scenario text is represented as semantic pattern instances. Elements of the pat-
tern instances are mapped onto concepts of the scenario model (2) and finally, the
scenario structured text is generated (3).

The example below illustrates the three steps:

Initial clause: ‘’A card is inserted by a user into the ATM’’

Linguistic structure instance: [‘A card’] (Subject)Object [‘is inserted’](Main
Verb)Communication [‘by a user’](Complement)Agent+Source

404 C. Rolland and C. Salinesi

[‘into the ATM’](Complement)Destination](VG passive)Communication

Semantic pattern (communication) instance: Communication (‘insert’) [Agent: ‘a
user’; Object: ‘a card’; Source: ‘a user’; Destina-
tion: ‘the ATM’]

Model concept (Atomic action)

 Name: ‘insert’;
 To Agent: ‘the ATM’;
 From Agent: ‘a user’;
 Parameter: ‘a card’;

Scenario linguistic completion. Linguistic incompleteness of an initial scenario text is
detected thanks to the semantic pattern instantiation. When the instantiation of a se-
mantic pattern for a given clause of the initial scenario text is incomplete, L’Ecritoire
detects the incompleteness and asks the user to complete the original statement.

For example, for the following scenario action « a prompt for code is given » the
instantiated pattern communication(give) [Agent : ? ; object : a prompt for code ;
Source : ? ; Destination : ?] shows missing elements. Every ‘?’ above must be re-
placed by a term. This leads to the completed sentence: « a prompt for code is given
by the ATM to the user ».

Scenario linguistic disambiguation. The syntactical analysis previous to pattern
matching is used to detect anaphoric references in the initial scenario text and to ask
the user to replace them by unambiguous terms. For example in the action « the user
inserts his card in the ATM »: the anaphoric reference ‘his’ is detected; the user is
asked to replace ‘his’ by a non-ambiguous term, in this case the ‘customer’, and the
action is rephrased as « the user inserts the customer’s card in the ATM ».

2.4 Discovery Rules

Discovery rules guide the L’Ecritoire user in discovering new goals and therefore,
eliciting new requirement chunks. The discovery is based on the analysis of scenarios
through one of the three proposed discovery strategies, namely the refinement, com-
position and alternative strategies. These strategies correspond to the three types of
relationships among RCs introduced in section 2.1 above. Given a pair <G,Sc>:

• the composition strategy looks for goals Gi ANDed to G,

• the alternative strategy searches for goals Gj ORed to G,

• the refinement strategy aims at the discovery of goals Gk at a lower level
of abstraction than G.

Composition (alternative) rules help in discovering ANDed (ORed) goals to G that
are found at the same level of abstraction as G. The <G,Sc> chunk is processed by the
refinement rules to produce goals at a lower level of abstraction than G. This is done
by considering (in a similar way to that suggested by Cockburn [30]) each interaction
in Sc as a goal. Thus as many goals are produced as there are interactions in Sc.

 Supporting Requirements Elicitation through Goal/Scenario Coupling 405

As shown in Figure 3, once a complete scenario has been authored, any of these
three strategies can be followed. Thus, there is no imposed ordering on the flow of
steps which instead, is dynamically defined.

R C Composition
Strategy

Scenario
Authoring

Step

Gi

Gj

Gk

G Sc

Alternative
Strategy

Abstraction
Strategy

Flow Strategy Selection

Fig. 3. Selecting a strategy

L’Ecritoire uses six discovery rules, two for each strategy. Rules can be applied at
any of the three levels of abstraction, contextual, system interaction and system inter-
nal. A detail description of rules can be found in [38] [42]. As an example of a rule,
we present the refinement rule R1 and exemplify it with the example of ATM system
engineering.

Refinement guiding rule (R1)

Goal: Discover (from requirement chunk <G,Sc>)So (goals refined from G)Res
(using every atomic action of Sc as a goal)Man

Body:

Step1: Associate a goal Gi to every atomic action Ai in Sc. Gi refines G

Step2: Complement Gi by the manner ‘in a normal way’ which refers to the normal
course of actions to attain the goal.

Step3: User evaluates the proposed panel of goals Gi and selects the goals of interest.

Step4: Requirement chunks corresponding to these selected goals are ANDed
to one another

The guiding rule R1 aims at refining a given requirement chunk (from RC<G,Sc>)So
by suggesting new goals at a lower level of abstraction than G (goals refined from
G)Res.

406 C. Rolland and C. Salinesi

The refinement mechanism underlying the rule looks to every interaction
between two agents in the scenario Sc as a goal for the lower level of ab-
straction (step1). Let us take as an example the scenario of the requirement
chunk RC < G, Sc> presented below:

Goal G: Improve services to our customers by providing cash from the ATM

Scenario SC:

1- If the bank customer gets a card from the bank,

2- Then, the bank customer withdraws cash from the ATM

3- and the ATM reports cash transactions to the bank.

This scenario text corresponds to the structured textual form of the scenario as it re-
sults from the authoring step. The internal form is a set of semantic pattern instances
which clearly identify three agents namely, the bank, the customer and the ATM as
well as three interactions namely 'Get card', 'Withdraw cash' and 'Report cash transac-
tions' corresponding to the three services involving the ATM. These services are pro-
posed as goals of a finer grain than G, to be further made concrete by authoring
scenarios for these goals.

We propose that these scenarios describe the normal course of actions. Thus, in the
formulation of these goals according to the linguistic template (see section 2.1) the
manner of every generated goal Gi is fixed to 'in a normal way' (step2). This leads in
the above example, to propose to the user the three following refined goals:

• G 1: 'Get card from the bank in a normal way'
• G 2: 'Withdraw cash from ATM in a normal way'
• G 3: 'Report cash transactions to the bank in a normal way'

These three goals G 1 , G 2 , and G 3 are refined goals from G; they belong to the in-
teraction level as G is at the contextual level. They are related to G by a refined-by
relationship. Assuming that the user accepts the three suggested goals (step3), the
corresponding requirement chunks RC1, RC2, RC3 are introduced in the RC document
and ANDed to one another (step4). These three RCs are at the interaction level.

3 The Usage Scenario

In this section, we illustrate the functionality of the L’Ecritoire tool through a usage
scenario drawn from the ATM system. The scenario shows how the user of the tool
interacts with L’Ecritoire to engineer system requirements. It illustrates a top down
approach that, starting from a goal at the system interaction level and using the three
discovery strategies of section 2, guides the elicitation of system requirements.

Step 1: Starting the Session

Let us start the session with the capture of a new RC. This requires two activities (a)
entering the new goal and (b) authoring a scenario for this goal. Both these can be
done in the window presented in Figure 6.

 Supporting Requirements Elicitation through Goal/Scenario Coupling 407

Fig. 4. Capturing a new RC

(a) The user enters the goal ‘Withdraw cash from the ATM in a normal way’. The user
has also to name the associated RC (Withdraw 1) and provide its type (interaction).

(b) A scenario is authored for the goal entered in (a) above. Since the scenario is en-
tered in natural language, the user may use the facilities provided by the four buttons,
Consult Glossary, Contents Guidelines, Style Guidelines, and Check Spelling. The
first allows the user to consult the glossary to use the appropriate term. The second
and the third provide contents and style guidelines appropriate for this type of RC.
Finally, it is possible to perform a spell-check on the scenario being authored using
the last button.

The authored scenario is reproduced below for ease of reference in the rest of this
paper.

The user inserts his card in the ATM.
The ATM checks the card validity.
If the card is valid, a prompt for code is given, the user inputs his code.
The ATM checks the code validity.
If it is valid, the ATM displays a prompt for amount to the user.
The user enters an amount.
The ATM checks the amount validity.
If the amount is valid, the card is ejected and then the ATM proposes a receipt
to the user.
The user enters his choice.
If a receipt was asked, the receipt is printed but before the ATM delivers the
cash.

408 C. Rolland and C. Salinesi

Step 2: Scenario Analysis

L’Ecritoire provides a guidance mechanism to progress in the process. This mecha-
nism is activated by clicking the right button of the mouse. It gives a menu of rules
that can be enacted upon the requirement chunk under consideration. Using this pro-
gress guidance mechanism, the user may decide to progress with the guided analysis
of the scenario that was just captured. The Analysis and Verification window is
shown in Figure 5. It appears with the textual scenario written during the previous
step displayed in the text zone of the top left of the window.

To activate the linguistic devices, the user has to click the Generate Patterns button
of Figure 5. The result of the linguistic analysis is shown as a set of instantiated pat-
terns in the Instantiated Patterns widget. A list of errors found during pattern instan-
tiation can be displayed in the Error List widget by clicking the button Linguistic
Check. The errors reported in the Error List must be removed from the scenario.
These corrections are performed in the Scenario Description widget and step 3 as de-
scribed here is repeated till no errors are found. The corrected scenario is finally
found in the Scenario Description widget. This scenario is stored in the L’Ecritoire
repository.

Fig. 5. The analysis and verification window

 Supporting Requirements Elicitation through Goal/Scenario Coupling 409

The corrected version of the initial scenario is shown below with the corrections in
bold.

The user inserts a card in the ATM.
The ATM checks the card validity.
If the card is valid a prompt for code is given by the ATM to the user,
the user inputs the code in the ATM.
The ATM checks the code validity.
If the code is valid, the ATM displays a prompt for amount to the user.
The user enters an amount in the ATM.
The ATM checks the amount validity.
If the amount is valid, the ATM ejects the card to the user and then the
ATM proposes a receipt to the user.
The user enters the user's choice in the ATM.
If a receipt was asked the receipt is printed by the ATM to the user but
before the ATM delivers the cash to the user.

Step 3: Structuring Scenario Text

The instantiated patterns corresponding to the text above represent the essence of the
scenario as input by the user. Whereas these patterns can be used by L’Ecritoire inter-
nally, they are not in a readable form for the user. The purpose of step 4 is to map the
patterns instances into a structured readable text.

Clicking the OK button of the previous window prompts the window of Figure 6
with its Instantiated Patterns widget containing the instantiated patterns. When the
Map button is pressed then L’Ecritoire generates the structured text for the scenario
and displays it in the Structured Text widget.

Fig. 6. The Mapping window

410 C. Rolland and C. Salinesi

The structured scenario is reproduced below for sake of clarity.

1. the user inserts a card in the ATM
2. the ATM checks the card validity
3. If the card is valid

 Then
 4. a prompt for code is given by the ATM to the user
 5. the user inputs the code in the ATM
 6. the ATM checks the code validity
 7. If the code is valid
 Then
 8. the ATM displays a prompt for amount to the user
 9. the user enters an amount in the ATM
 10. the ATM checks the amount validity
 11. If the amount is valid
 Then
 12. the ATM ejects the card to the user
 13. the ATM proposes a receipt to the user

 14. the user input the user's choice
 15. If a receipt was asked
 Then
 16. the ATM delivers the cash to the user

 17. the receipt is printed by the ATM to the user

Step 4: Discover Goals from the Scenario

Upon using the progress guidance mechanism again, the user is presented with the
three strategies, Refinement, Complementary, and Alternative, that can be deployed
for goal discovery from the scenario. The user considers the properties of the scenario
to decide the strategies to be adopted. Evidently, the scenario above has a large num-
ber of variants as shown by the number of If statements in it. Indeed, for every If
statement at least one alternative way of proceeding can be described. Therefore the
Alternative strategy must be deployed to guide in the discovery of those variants. Be-
sides, an examination of the first three conditions of the scenario (lines 3, 7 and 11)
shows that there are many ways in which these could be handled (for example a card
could be invalid for different reasons). Therefore the user selects the Refinement
strategy to help him/her eliciting internal requirements .

Having determined the two interesting strategies, the user decides to first select the
Alternative strategy and then the Refinement one. The response of L’Ecritoire is
shown in steps 5 and 6 respectively.

Step 5: Using the Alternative Strategy

In our illustration, the user selects the alternative strategy and within this strategy the
rule to Search alternative manners to fulfill the same goal. The window of Figure 7
now appears on the screen with the Conditions List and Missing Cases widgets al-
ready filled in. The former contains the conditions of the If statements of the scenario

 Supporting Requirements Elicitation through Goal/Scenario Coupling 411

Fig. 7. The goal discovery window for the alternative strategy

Fig. 8. The goal discovery window for the alternative strategy

of step 3. The ordering of the conditions reflects the nesting of the If statements in the
scenario. This rule computes all possible combinations of the negation of these condi-
tions and considers each of these as a missing case. It can be seen that l’Ecritoire
performs a sort of completeness test here to discover missing cases. These cases
are displayed in the Missing Cases Widget. As shown in Figure 7, there are four

412 C. Rolland and C. Salinesi

conditions C1 to C4 in the scenario. The rule computes the four missing cases, not
C1, C1 and not C2, C1 and C2 and not C3, C1 and C2 and C3 and not C4.

The user now examines each of the candidate missing cases and if found relevant,
formulates it as a goal. As soon as the user selects a case in the Missing Cases widget,
the Discover window is prompted as shown in Figure 8. Thus the user can formulate
the goal corresponding to this missing case. As illustrated in Figure 8 the case, C1 and
not C2, is found relevant. For the ATM this means that it must react to a wrongly en-
tered PIN code and so the user formulates the goal, Withdraw cash with an error cor-
rection phase (Figure 8).

Step 6: Using the Refinement Strategy

Let us now consider the second case, that of selection of the Refinement strategy, of
step 4 above. The window shown in Figure 9 appears with the Action List widget
already displayed. The list of actions corresponds to the atomic actions of the scenario
which have been automatically extracted from the internal representation of the sce-
nario stored in the L’Ecritoire repository. The user considers each action in this list as
a candidate goal at the next lower abstraction level. Upon selection of such an action,
the Discover window is prompted to allow rephrasing it as a goal. The type of the RC
associated to this goal is automatically set to “internal”. As shown in Figure 9, action
2 of the scenario of step 3 “2. the ATM checks the card validity” is refined as the goal
Check the card validity. Similarly for action 6 the goal is Check the code validity.

Fig. 9. The goal discovery window for the refinement strategy

 Supporting Requirements Elicitation through Goal/Scenario Coupling 413

Step7: Terminating the Session

At this point the user has discovered three goals, namely, Withdraw cash with an er-
ror correction phase, Check the card validity, and Check the code validity. A scenario
has still to be authored for each one of these from which new goals will be
discovered. It can be done in this session itself or in another session. In the latter case,
the current session is terminated. When a new session will be launched then
L’Ecritoire will display the list of pending RCs.

4 Conclusion

Despite the importance of goals in the requirements elicitation process, experience
shows difficulties in goal discovery. Vice versa, despite the concreteness of scenarios
to capture some relevant aspects of the system To-Be, scenarios pose the coverage
and completeness problems. One possible solution to mitigate the difficulties
encountered in the separate use of goals or scenarios to discover accurate
requirements is to combine them. The paper presents the l’Ecritoire approach that has
been developed in this perspective.

The basis of the l’Ecritoire approach is the exploitation of the goal-scenario
relationship but in the reverse direction. One can now talk of a tight coupling between
goals and scenarios; in the forward direction this coupling promotes goal
operationalisation whereas in the reverse direction it promotes goal discovery. Since,
in the forward direction, scenarios represent a concrete, useful way of realising a goal,
any technique which uses scenarios to discover goals shall produce potentially useful
goals. This contributes to removing the fitness of use problem identified by Potts
which leads to the generation of spurious, uninteresting or non-critical goals.

Since interactions expressed in scenarios are concrete and recognisable, the use of
goal-scenario coupling for goal discovery helps in removing the 'fuzziness' that
domain experts find in the notion of a goal. Instead, each interaction corresponds to
goals. Again, goal discovery now becomes a natural process through interactions of
scenarios and the goal-scenario coupling removes some of the mystery and ad-hocism
associated with it. In this sense it helps in goal discovery.

Finally, the combination of composition, alternative and refinement rules alleviates
the problem of goal reduction. By generating AND, OR relationships and goals at
different abstraction levels, the approach automates and supports a major part of the
requirements engineer's work.

References

1. Ross, D.T., Schoman, K.E.: Structured Analysis for Requirements Definition. IEEE Trans-
actions on Software Engineering 3(1), 6–15 (1977)

2. Potts, C., Takahashi, K., Antòn, A.I.: Inquiry-based requirements analysis. IEEE Soft-
ware 11(2), 21–32 (1994)

3. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding goal modelling using scenarios. IEEE
Transactions on Software Engineering, Special Issue on Scenario Management 24(12)
(1998)

414 C. Rolland and C. Salinesi

4. Rolland, C., Grosz, G., Kla, R.: Experience with goal-scenario coupling. in requirements
engineering. In: Proceedings of the Fourth IEEE International Symposium on Require-
ments Engineering, Limerik, Ireland (1999)

5. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo, M., In-
verardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

6. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis, Dept.
Computer Science, University of Toronto (1994)

7. Yue, K.: What does it mean to say that a specification is complete? In: Proc. IWSSD-4.
Four International Workshop on Software Specification and Design, Monterrey, USA
(1987)

8. Gote, O., Finkelstein, A.: Modelling the contribution structure underlying requirements.
In: 1st Int. Workshop on Requirements Engineering: Foundation of Software Quality,
Utrech, Netherlands (1994)

9. Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements traceability:
a case study. In: Proceedings of the 2nd Symposium on Requirements Engineering (RE
1995), UK, pp. 89–95 (1995)

10. Ivankina, E., Salinesi, C.: An Approach to Guide Requirement Elicitation by Analysing the
Causes and Consequences of Threats. In: 14th European - Japanese Conference on Infor-
mation Modelling and Knowledge Bases, Skövde, Sweden (2004)

11. Lamsweerde, A.V., Darimont, R., Letier, E.: Managing conflicts in Goal-driven Require-
ments Engineering. IEEE Transactions on Software Engineering 24(11) (1998)

12. Lamsweerde, A.V., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Transactions on Software Engineering, Special Issue on Exception Han-
dling 26(10), 978–1005 (2000)

13. Lamsweerde, A.V., Dairmont, R., Massonet, P.: Goal directed elaboration of requirements
for a meeting scheduler: Problems and Lessons Learnt. In: Proc. Of RE 1995 – 2nd Int.
Symp. On Requirements Engineering, York, pp. 194–204 (1995)

14. Anton, A.I., Potts, C.: The use of goals to surface requirements for evolving systems. In:
International Conference on Software Engineering (ICSE 1998), Kyoto, Japan, pp. 157–
166, 19–25 (1998)

15. Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements elicitation and validation with real
world scenes. IEEE Transactions on Software Engineering, Special Issue on Scenario
Management 24(12), 11036–1054 (1998)

16. Bubenko, J., Rolland, C., Loucopoulos, P., De Antonellis, V.: Facilitating ‘fuzzy to for-
mal’ requirements modelling. In: IEEE 1st Conference on Requirements Enginering, ICRE
1994, pp. 154–158 (1994)

17. Anton, A.I.: Goal based requirements analysis. In: Proceedings of the 2nd International
Conference on Requirements Engineering ICRE 1996, pp. 136–144 (1996)

18. Etien, A., Salinesi, C.: Managing Requirements in a co-evolution context. In: Proceedings
of the 13th IEEE International Conference on Requirements Engineering (RE 2005), pp.
125–134 (2005)

19. Potts, C.: Fitness for use: the system quality that matters most. In: Proceedings of the Third
International Workshop on Requirements Engineering: Foundations of Software Quality
REFSQ 1997, Barcelona, pp. 15–28 (1997)

20. Caroll, J.M.: The Scenario Perspective on System Development. In: Carroll, J.M. (ed.)
Scenario-Based Design: Envisioning Work and Technology in System Development
(1995)

21. Mack, R.L.: Discussion: Scenarios as Engines of Design. In: Carroll, J.M. (ed.) Scenario-
Based Design: Envisioning Work and Technology in System Development, pp. 361–387.
John Wiley and Sons, Chichester (1995)

22. Potts, C., Takahashi, K., Anton, A.I.: Inquiry-based requirements analysis. IEEE Soft-
ware 11(2), 21–32 (1994)

 Supporting Requirements Elicitation through Goal/Scenario Coupling 415

23. Cockburn, A.: Structuring Use Cases with Goals. Technical report. Human and Technol-
ogy, 7691 Dell Rd, Salt Lake City, UT 84121, HaT.TR.95.1 (1995),

 http://members.aol.com/acocburn/papers/usecases.htm
24. Jarke, M., Tung Bui, X., Carroll, J.M.: Scenario management: an interdisciplinary ap-

proach. Requirements Engineering Journal 23(3-4), 155–173 (1998)
25. Anton, A.I., Mc Cracken, W.M., Potts, C.: Goal Decomposition and Scenario Analysis in

Business Process Reengineering. In: Wijers, G., Wasserman, T., Brinkkemper, S. (eds.)
CAiSE 1994. LNCS, vol. 811, pp. 94–104. Springer, Heidelberg (1994)

26. Holbrook, C.H.: A Scenario - Based Methodology for Conducting Requirements Elicita-
tion. ACM SIGSOFT, Software Engineering Notes 15(1), 95–104 (1990)

27. Salinesi, C., Presso, M.J.: A method to analyse changes in the realisation of business inten-
tions and strategies for information system adaptation. In: Proceedings of 6th International
Enterprise Distributed Object Computing Conference (EDOC 2002), pp. 84–95 (2002)

28. Dano, B., Briand, H., Barbier, F.: A Use Case Driven Requirements Engineering Process.
In: Third IEEE International Symposium On Requirements Engineering RE 1997, Antapo-
lis, Maryland, IEEE Computer Society Press, Los Alamitos (1997)

29. Jacobson, I.: The Use Case Construct in Object-Oriented Software Engineering. In: Car-
roll, J.M. (ed.) Scenario-based design: envisioning work and technology in system devel-
opment, pp. 309–336. John Wiley and Sons, Chichester (1995)

30. do Prado Leite, J.C.S., Rossi, G., Balaguer, F., Maiorana, A., Kaplan, G., Hadad, G.,
Oliveros, A.: Enhancing a Requirements Baseline with Scenarios. In: Third IEEE Interna-
tional Symposium On Requirements Engineering RE 1997, Antapolis, Maryland, pp. 44–
53. IEEE Computer Society Press, Los Alamitos (1997)

31. Pohl, K., Haumer, P.: Modelling Contextual Information about Scenarios. In: Proceedings
of the Third International Workshop on Requirements Engineering: Foundations of Soft-
ware Quality REFSQ 1997, Barcelona, pp. 187–204 (1997)

32. CREWS Team, The CREWS glossary, CREWS report 98-1 (1998),
 http://SUNSITE.informatik.rwth-aachen.de/CREWS/reports.htm

33. Fillmore, C.: The case for case. In: Holt, Rinehart, Winston (eds.) Universals in linguistic
theory, pp. 1–90. Bach & Harms Publishing Company (1968)

34. Dik, S.C.: The theory of functional grammar, part I: the structure of the clause. Functional
Grammar Series. Fories Publications (1989)

35. Schanck, R.C.: Identification of conceptualisations underlying natural language. In:
Shanck, R.C., Colby, K.M. (eds.) Computer models of thought and language, pp. 187–247.
Freeman, San Francisco (1973)

36. Prat, N.: Goal formalisation and classification for requirements engineering. In: Proceed-
ings of the Third International Workshop on Requirements Engineering: Foundations of
Software Quality REFSQ 1997, Barcelona, pp. 145–156 (1997)

37. Ben Achour, C.: Requirements Extraction From Textual Scenarios. PhD Thesis, University
Paris 6 Jussieu (1999)

38. Rolland, C., Ben Achour, C.: Guiding the construction of textual use case specifications.
Data & Knowledge Engineering Journal 25(1), 125–160 (1997)

39. Salinesi, C.: Authoring Use Cases. In: Alexander, I., Maiden, N. (eds.) Scenarios & Use
Cases, Stories through the System Life-Cycle, John Wiley and Sons, Chichester (2004)

40. Chomsky, N.: Structures Syntaxiques. Editions du Seuil, Paris (1969)
41. Ben Achour, C., Rolland, C., Maiden, N.A.M., Souveyet, C.: Guiding Use Case authoring:

results of an empirical study. In: IEEE International Symposium on Requirements Engi-
neering (RE 1999), Essen Germany (1999)

42. Tawbi, M.: Crews-L’Ecritoire: un guidage outillé du processus d’Ingénierie des Besoins.
Ph.D. Thesis University of Paris 1 (2001)

43. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements:
aprocess-oriented approach. IEEE Transactions on Software Engineering 18(6), 483–497
(1992)

416 C. Rolland and C. Salinesi

44. Yu, E., Mylopoulos, J.: Understanding « Why » in Software Process Modelling, Analysis
and Design. In: 16th Int. Conf. Software Engineering, Sorrento, Italy (1994)

45. Yu, E., Mylopoulos, J.J.: Using goals, rules, and methods to support reasoning in business
process reengineering. International Journal of Intelligent Systems in Accounting, Finance
and Management 5(1), 1–13 (1996)

46. Mylopoulos, J., Chung, L., Yu, E.: From Object Oriented to Agent Oriented Require-
mentes Analsyis. Communications of the ACM 42(1), 31–37 (1999)

47. Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early requirements
specification in Tropos. In: Proc. of the 5th Int. Symposium on Requirements Engineering
(RE 2001), Toronto, Canada (2001)

48. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal Models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp.
167–181. Springer, Heidelberg (2002)

49. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a So-
cial Setting. In: 11th IEEE International Requirements Engineering Conference (RE 2003),
Monterey Bay, California, USA, September 2003, p. 151 (2003)

50. Castro, J., Silva, C., Mylopoulos, J.: Modeling Organizational Architecutreal Styles in
UML. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 11–126.
Springer, Heidelberg (2003)

51. Yu, Y., Sampaio de Leite, J., Mylopoulos, J.: From Goals to Aspects: Discovering Aspects
from Requirements Goal Models. In: 12th International Requirements Engineering Con-
ference (RE 2004), Tokyo, Japan, pp. 38–47 (2004)

52. Yu, Y., Niu, N., Gonzalez Baixauli, B., Candillon, W., Mylopoulos, J., Easterbrook, S.,
Sampaio de Leite, J., VenWormhoubt, G.: Tracing and Validating Goal Aspects. In: 15th
IEEE International Requirements Engineering Conference (RE 2008), Barcelona, Spain
(2008)

53. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario
Modelling Approach. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp.
187–203. Springer, Heidelberg (2004)

Enhancing Tropos with Commitments
A Business Metamodel and Methodology

Pankaj R. Telang and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

prtelang@ncsu.edu, singh@ncsu.edu

Abstract. This paper motivates a novel metamodel and methodology
for specifying cross-organizational business interactions that is based on
Tropos. Current approaches for business modeling are either high-level
and semiformal or formal but low-level. Thus they fail to support flexible
but rigorous modeling and enactment of business processes. This paper
begins from the well-known Tropos approach and enhances it with com-
mitments. It proposes a natural metamodel based on commitments and
a methodology for specifying a business model. This paper includes an
insurance industry case study that several researchers have previously
used.

1 Introduction

Modern organizations form complex business relationships with their partners
to create and provide value to their customers. Due to competitive pressures,
modern organizations are continually forced to improve their operations. Such
improvements increasingly involve outsourcing noncore business tasks, and other
redistributions and realignments of business functions. A business model serves
as a starting point for realizing the IT systems required to support the operations
of these organizations.

Current approaches are inadequate for capturing business models in a manner
that is both flexible and formal. On the one hand, management scientists have
proposed a number of high-level business metamodels. However, these models
are semiformal, and are useful primarily for valuation and profitability analysis.
On the other hand, computer scientists have proposed low-level business meta-
models, which consider abstractions centered on data and control flow. These
approaches fail to capture the business meaning of the interactions.

This paper motivates a novel business metamodel and methodology based on
Tropos [2], an established agent-oriented engineering methodology, as enhanced
with commitments. Tropos provides a well-defined requirements engineering ap-
proach for modeling agents, and their mutual dependencies. However, it lacks ap-
propriate treatment of agent commitments. Commitments [6] are a well-studied
concept for modeling business interactions. Commitments help capture the busi-
ness meaning of interactions in a manner that supports judgments of compliance

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 417–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

418 P.R. Telang and M.P. Singh

while enabling flexible enactment. Our proposed metamodel benefits from the
goal, task, and dependency modeling offered by Tropos, and the semantics and
flexibility offered by commitments. We exercise our approach on an insurance
industry scenario, a well-known case study from the literature.

Contributions. The main contribution of this paper is a novel agent-oriented
business metamodel and methodology. A real-life insurance claim processing
scenario validates our proposal.

Organization. Section 2 presents our business metamodel and methodology.
Section 3 applies the methodology to create a business model for an insurance
claim processing scenario. Section 4 introduces the notion of agent conformance
and presents an approach for verifying it. Section 5 compares our approach with
related work.

2 Metamodel and Methodology

In our treatment, a business model captures the business organizations involved
in conducting a specified element of business and the commitments between
them. An organization executes business tasks either to achieve its own goals,
or to satisfy its commitments toward another organization. We now define the
concepts used by our metamodel using which such models may be expressed.
With the exception of commitment, these concepts are based on Tropos.

Agent: A computational representation of a business organization. An agent
abstraction captures the autonomy and heterogeneity of a real-world busi-
ness. An agent has goals and capabilities to execute tasks. It enters into
business relationships with other agents to acquire capabilities, that is, to
get other agents to execute tasks on its behalf.

Role: An abstraction over agents via their related sets of commitments and
tasks. An agent can adopt one or more roles in a business model.

Goal: A state or condition of the world that an agent would like to bring about
or have brought about. In simple terms, a goal is an end. AND-OR decom-
position helps decompose a root goal into subgoals.

Task: An abstract way of executing a business activity, that is, the means by
which a goal can be achieved. Similar to a goal, a root task can be decom-
posed into subtasks.

Dependency: A relationship between two roles where one role depends upon
the other for achieving a goal or executing a task. The former role is called the
depender, the latter is called the dependee, and the object of the dependency
is called the dependum.

Commitment: A commitment C(r1, r2, p, q) denotes that the role r1 is re-
sponsible to the role r2 for bringing about the the condition q if p holds.
In this commitment, r1 is the debtor, r2 is the creditor, p is the antecedent,
and q is the consequent. A commitment may be created. When its condition
is brought about, it is discharged. The creditor may assign a commitment

Enhancing Tropos with Commitments 419

to another agent. Conversely, a debtor may delegate a commitment to an-
other agent. A debtor may also cancel a commitment and a creditor may
release the debtor from the commitment. The above operations describe how
a commitment can be manipulated.

A traditional obligation specifies a condition that an agent ought to bring
about. Unlike commitments, an obligation cannot be assigned, delegated,
canceled, or released.

Table 1 outlines the steps in our proposed methodology. The subsections below
describe each step in detail.

Table 1. Methodology steps

Step Description Input Output

S1 Identify agents and roles Scenario description, process
flows, domain knowledge

Agents and roles

S2 Determine goals and goal
dependencies

Roles, scenario description,
process flows, domain knowl-
edge

Goals and goal
dependencies

S3 Identify tasks and task de-
pendencies

Roles, goal dependencies,
scenario description, process
flows, domain knowledge

Tasks and task
dependencies

S4 Identify commitments Task dependencies, scenario
description, process flows, do-
main knowledge

Commitments

2.1 Step S1: Agent and Role Identification

Agents represent the business organizations participating in the scenario of in-
terest. A scenario description typically specifies the agents using terms like com-
pany, partner, and organization. If there is a single agent of its kind, then the
scenario description usually specifies a unique name for it. In case we have mul-
tiple agents of the same kind, a scenario description may specify a role name.
For each uniquely named agent, the business functions it provides yields the
associated role.

A traditional process flow, if available, can help us identify the roles. For
example, a role in a choreography corresponds to a role in our business model.
Similarly, partner link in an orchestration, corresponds to a role in our model.

2.2 Step S2: Determine Goals and Dependencies

This step iteratively determines the goal dependencies between the roles. First,
it identifies the main roles and their high-level goal dependencies. Second, using
means-end and AND-OR decomposition analysis, it refines the high-level root

420 P.R. Telang and M.P. Singh

goals into subgoals. Third, this step introduces roles that adopt these subgoals.
It then iteratively refines the subgoals until no new dependencies arise.

The scenario description may explicitly or implicitly specify business depen-
dencies between participating organizations. These dependencies yield the goal
dependencies between the roles. In cases where the dependencies are not clear
from the scenario, additional business insight may be needed.

Thus, Step S2 identifies goals adopted by different roles, that is, the goals of
each dependee role.

2.3 Step S3: Determine Tasks and Dependencies

For each role, this step refines the goal dependencies from Step S2 into task
dependencies. A set of tasks achieves a goal. The means-end analysis identifies
the set of tasks required for achieving a goal. A task is refined into subtasks
using AND-OR decomposition. The refined tasks identify dependencies that are
not evident at the higher level task. The decomposition iterates until no new
task dependencies emerge.

As we analyze additional roles, we may discover new task dependencies, re-
quiring the addition of any missing tasks and goals to the (potentially already
analyzed) roles.

2.4 Step S4: Identify Commitments

This step identifies commitments between roles in terms of tasks. It analyzes each
task dependency from Step S3 to identify if a commitment exists corresponding
to that dependency. For a task dependency, if the dependee is obliged to the
depender for executing the dependum task, then a commitment exists, where
the depender is the creditor, the dependee is the debtor, and the dependum
task is the consequent. The antecedent of the commitment is determined by
identifying the tasks that the debtor requires as prerequisites for executing the
consequent task. If the dependee is not obliged to the depender for executing a
task, then no commitment exists. This implies that the dependee executes the
task to achieve its internal goal.

Although the scenario description and process flow may contain information
that yields commitments, additional human insight is typically required to cor-
rectly identify the commitments.

3 Methodology Applied to a Real-World Case

This section describes a real-world insurance claim processing use case. It further
describes an application of our methodology and the resulting model for that
use case. Figure 1 clarifies the notation used in the figures that follow.

Enhancing Tropos with Commitments 421

Role

Goal

Task

Depender

Dependee

Dependum

AND decomposition

Means-end analysis

AND decomposition

Depender

Dependee

Dependum

Reason

Dependee

Depender

Dependum

Fig. 1. Notations

3.1 Insurance Claim Processing Scenario

AGFIL [3] is an insurance company in Ireland. It underwrites insurance policies
and covers losses incurred by policy holders. AGFIL provides an emergency
service to its policy holders. Figure 2 shows the parties involved in providing
emergency service, their individual processes, and the control and data flows
among these processes.

To provide emergency service, AGFIL must provide claim reception and vehi-
cle repair to the policy holders. Additionally, it needs to assess claims to protect
itself against fraud. AGFIL uses its partners, Europ Assist, Lee Consulting Ser-
vices (CS), and various repairers, for executing these tasks. Europ Assist provides
a 24-hour help-line to customers for reporting a claim, and provides them the
name of an approved repairer facility. Lee CS performs the necessary assessment
and additionally presents invoices to AGFIL on behalf of the repairers. Several
approved repairers provide repair services. AGFIL remains in charge of making
the final decision on claim approvals, and making the payment.

3.2 Step S1

The insurance claim processing scenario from Section 1 specifies AGFIL, EA,
and Lee CS as uniquely named agents. The process flow also shows these agents.
These agents serve the business functions of insurer, call center, and assessor,
respectively. Therefore, we can induce the corresponding roles from them. The
description additionally specifies the repairer, claim adjustor, and policy holder
roles that are enacted by multiple agents.

422 P.R. Telang and M.P. Singh

Notify
Lee
C.S.

Obtain
claim
form

Check
claim
form Amend

estimate
Reconcile

info
Finalize
claim

Gather
info

Validate
info

Assign
garage

Notify
AGFIL

Receive
car

Estimate
repair
cost

Inspect
car

Repair
car Invoice

Obtain
details

Contact
garage

Assign
adjustor

Agree
repair

Check
invoice

Estimate
< 500

E
u
r
o
p

A
s
s
i
s
t

AGFIL

Lee C. S.

Repairer

Fig. 2. Insurance claim processing [3]

3.3 Step S2

In the AGFIL scenario, the main roles are insurer and policy holder. A policy
holder depends upon the insurer for receiving emergency service and, in ex-
change, the insurer depends upon the policy holder for the insurance premium
payment. Fig. 3 shows these dependencies using the Tropos notation.

Insurer Policy
Holder

emergency
service

insurance
premium
payment

Fig. 3. Insurer and policy holder goal dependencies

Using AND decomposition, in Fig. 4, the insurer’s goal of emergency service
yields subgoals of claim reception, claim assessment, vehicle repair, and claim
finalization. Among these, the policy holder depends on the insurer for vehicle
repair and claim reception. The insurer requires additional subgoals to provide
emergency service but these additional goals do not involve a dependency from
the policy holder. As the goal structure is refined and later, in Step S3, when
the task structure is identified, a dependency between one of these subgoals and
the policy holder may be discovered.

Enhancing Tropos with Commitments 423

Insurer

emergency
service

claim reception

claim
assessment

vehicle repair

claim
finalization

Policy
Holder

insurance
premium
payment

Fig. 4. Emergency service goal decomposition

In Fig. 5, the insurer delegates claim reception to the call center. The policy
holder now depends upon the call center for claim reception. In exchange for
claim reception, the insurer pays service charges to the call center. Fig. 5 omits
the claim assessment and finalization subgoals as they are not dependent upon
other roles.

In Fig. 6, the insurer delegates claim assessment to the assessor. The assessor
role and a dependency from the insurer to the assessor is added to the model. In
exchange, the assessor depends upon the insurer for the payment of assessment fees.

Fig. 7 shows all roles and goal dependencies. The assessor delegates vehicle
inspection, which is a subgoal of claim assessment, to an adjustor. The adjustor,

Policy
Holder

insurance
premium
payment

vehicle repairInsurer

claim receptionCall
center

claim reception
service payment

Fig. 5. Insurer delegates claim reception

424 P.R. Telang and M.P. Singh

Policy
Holder

insurance
premium
payment

vehicle repairInsurer

claim receptionCall
center

claim reception
service payment

Assessor

claim
assessment

assessment
fees payment

Fig. 6. Insurer delegates claim assessment

Policy
Holder

insurance
premium
payment

vehicle repair

Insurer

claim receptionCall
center

claim reception
service payment

Assessor

claim
assessment

assessment
fees payment

vehicle
inspection

Adjustorinspection fees
payment

Repairer

vehicle repair
charge payment

Fig. 7. AGFIL goal dependency model

Enhancing Tropos with Commitments 425

in exchange, depends upon the assessor for inspection fees payment. The insurer
delegates vehicle repair to a repairer. In exchange, the repairer depends upon
the insurer for vehicle repair payment.

3.4 Step S3

Fig. 8 shows the tasks and the task dependencies we identify by analyzing the
call center role. From S2, the call center has the goal of claim reception. By
performing means-end analysis on this goal, we obtain tasks of gathering claim
information, assigning garage, sending claim, and validating claim.

When the policy holder reports an accident, the call center gathers claim
information and assigns a garage. This means that the policy holder depends
upon the call center for gathering claim information and assigning a garage.
Additionally, the repairer depends on the call center to assign a garage.

Using AND-OR decomposition of the validate claim information task, we
obtain two subtasks: request policy information and validate. The call center
depends upon the insurer for providing policy information, and it performs val-
idation without any dependency.

From Step S2, the call center depends on the insurer for payment of the claim
reception charge. This yields a dependency from the call center to the insurer
for the task of paying claim reception charge. The call center executes a task
of receiving this payment and it derives a new call center goal of service charge
collection.

claim reception

assign
garage

validate
claim
infosend

claim to
insurer

gather
claim
info

Policy
Holder

Insurer

request
policy
info

validate

service charge
collection

receive
payment

pay
claim

reception
charge

provide
policy
info

Call
Center

Fig. 8. Call center task dependencies

426 P.R. Telang and M.P. Singh

Assessor

claim
assessment

obtain
repair

estimate

agree to
repair

receive
claim

Adjustor

check
invoice

Repairer
estimate

repair
cost

Insurer

send
claim to
assessor

inspection fees
payment

pay
inspection

fees

assessment
fees collection

receive
assess

fees

pay
assess

fees

request
vehicle

inspection

inspect
vehicle

Fig. 9. Assessor task dependencies

The call center sends a validated claim to the insurer for further processing.
This yields a dependency from the insurer to the call center for sending the
claim.

Fig. 9 shows the tasks and the task dependencies derived for the assessor role.
The assessor has goals of claim assessment and inspection fees payment. A new
goal of assessment fees collection is derived similarly to the goal of receiving
service payment of the call center.

Repairer

vehicle repair

repair
vehicle

esimate
repair
cost

send
invoice

Policy
Holder Assessor

repair charge
collection

Insurer

receive
repair
charge

pay
repair
charge

check
invoice

Fig. 10. Repairer task dependencies

Enhancing Tropos with Commitments 427

Adjustor

vehicle
inspection

inspect
vehicle

present
vehicle Repairer

inspection fees
collection

receive
inspection

fees

pay
inspection

fees
Assessor

Fig. 11. Adjustor task dependencies

Insurer

claim
finalization

receive
claim

send
claim to
assess

amend
estimate

reconcile

finalize

send
claim to
insurer

Call
Center

agree to
repairAssessor

provide
policy
info

maintain policy
store

Fig. 12. Insurer task dependencies: Business function goals

The goal of assessment fees collection requires a receive assessment fees task,
which depends upon the insurer’s pay assessment fees task. The tasks needed
to cover claim assessment goal are receive claim, check invoice, agree to repair,
obtain repair estimate, and inspect vehicle. The receive claim task depends upon
the insurer’s task of sending claim. The insurer depends upon the check invoice
and agree to repair tasks performed by the assessor. The repairer depends upon

428 P.R. Telang and M.P. Singh

Insurer

insurance
premium
collection

claim reception
service payment

vehicle repair
charge payment

assessment
fees payment

receive
insurance
premium

pay claim
reception
charge

pay
vehicle
repair
charge

pay
assess

fees

Call
Center

Policy
Holder

pay
insurance
premium

Repairer

Assessor

Fig. 13. Insurer task dependencies: Payment related goals

the assessor for checking the invoice and agreeing to repair. For obtaining the
repair estimate, the assessor depends upon the repairer to estimate the repair
cost. The assessor depends upon the adjustor to inspect a vehicle. The goal of
inspection fees payment requires a task of paying inspection fees to the adjustor.

Similarly, we analyze repairer, adjustor, insurer, and policy holder roles to
obtain the task dependencies shown in Figs. 10, 11, 12, 13, and 14 respectively.

Policy
Holder

receive
emergency

service

report
accident receive

garage
info

send
vehicle

Call
Center

assign
garage Repairer

insurance
premium
payment

pay
insurance
premium

Insurer
gather
claim
info

repair
vehicle

Fig. 14. Policy holder task dependencies

Enhancing Tropos with Commitments 429

Call
Center

assign
garage
C2

send
claim to
insurer
C4

gather
claim info
C1

Assessor

agree to
repair
C5

check
invoice
C6

pay
inspection

fees
C10

Repairer

repair
vehicle
C9

esimate
repair cost

C7

Adjustor

inspect
vehicle
C8

Insurer

pay claim
reception
charge
C11

pay vehicle
repair charge

C13

pay
assess

fees
C14

Policy
Holder

pay
insurance
premium
C12 send claim

to assess

provide
policy info

C3

present
vehicle

Fig. 15. All task dependencies

Fig. 15 consolidates the task dependencies among all roles. This figure shows
only the dependum tasks and hides the tasks that are reasons for the individual
dependencies. For example, Fig. 15 shows the pay repair charge task but does
not show the receive repair charge task.

3.5 Step S4

This step identifies the commitments for each task dependency from Step S3.
Fig. 15 annotates each task dependency with the corresponding commitment.
Table 2 summarizes these commitments.

The commitment C1 means that the call center commits to the policy holder
for gathering claim information if the policy holder reports an accident. In C2,
the call center commits to assigning a garage if the policy holder reports an
accident and if the claim request is valid. In C3, the insurer commits to providing

430 P.R. Telang and M.P. Singh

Table 2. Commitments for AGFIL scenario

Id Task Commitment

1 gather claim
info

C(Call center, Policy holder, reportAccident, gatherInfo)

2 assign garage C(Call center, Policy holder, reportAccident ∧ validClaim,
assignGarage)

3 provide policy
info

C(Insurer, Call center, reqPolicyInfo, providePolicyInfo)

4 send claim to
insurer

C(Call center, Insurer, reportAccident ∧ validClaim ∧ pay-
ClaimRecCharge, sendClaimToInsurer)

5 agree to repair C(Assessor, Insurer, sendClaimToAssess ∧ payAssessFees,
agreeToRepair)

6 check invoice C(Assessor, Repairer, sendInvoice, checkInvoice)

7 estimate
repair cost

C(Repairer, Assessor, reqEstimate, estimateRepairCost)

8 inspect vehicle C(Adjustor, Assessor, reqInspection ∧ payInsFees, inspectVe-
hicle)

9 repair vehicle C(Repairer, Policy holder, validClaim, repairVehicle)

10 pay inspection
fees

C(Assessor, Adjustor, inspectVehicle, payInsFees)

11 pay claim re-
ception charge

C(Insurer, Call center, C1 ∧ C2 ∧ C4, payClaimRecCharge)

12 pay insurance
premium

C(Policy holder, Insurer, C9, payInsurancePremium)

13 pay vehicle re-
pair charge

C(Insurer, Repairer, repairVehicle, payRepairCharge)

14 pay assess-
ment fees

C(Insurer, Assessor, agreeToRepair, payAssessFees)

policy information if the call center requests it. The commitment C4 means that
the call center commits to sending a claim to the insurer if it receives a valid
claim and the insurer pays claim reception charge. In C5, the assessor commits
to the insurer to negotiate and bring about the agreement to repair provided the
insurer requests claim assessment and pays the assessment fees. Commitment
C6 means that the assessor commits to the repairer for checking the invoice and
for forwarding it to the insurer, provided the repairer sends the invoice. In C7,
the repairer commits to the assessor for estimating the repair cost if requested.
In C8, the adjustor commits to the assessor for inspecting the vehicle if the
assessor requests inspection, and pays for it. The commitment C9 means that
the repairer commits to the policy holder for repairing the vehicle provided the
claim is valid. In C10, the assessor commits to paying the adjustor for inspection
if the vehicle is inspected. The commitment C11 means that the insurer commits
to the call center for paying if the call center creates commitments C1, C2, and

Enhancing Tropos with Commitments 431

C4. That is, if the call center commits to gathering claim information, assigning
a garage, and sending the claim to insurer. In C12, the policy holder commits
to paying the insurance premium to the insurer if commitment C9 is created for
repairing the vehicle. In C13, the insurer commits to the repairer for payment if
the vehicle is repaired. The commitment C14 means that the insurer commits to
the assessor for payment if the assessor brings about the agreement to repair.

There is no commitment associated with some of the task dependencies. For
example, the assessor depends upon the insurer for sending a claim for assess-
ment. In this case, the insurer does not commit to sending the claim to the
assessor.

4 Verifying Agent Interactions

Since agents are autonomous (based on the fact that they represent autonomous
business organizations), they may not conform to a given model. So it is im-
portant to verify agent interactions with respect to a model. A business model
captures commitments between agents. The commitments provide a basis for
verifying agent interactions for conformance with the specified business model.

We consider a UML sequence diagram as a low-level model for agent inter-
actions as they are realized. The roles appear as objects in this diagram and
they exchange messages. Roles may exchange multiple messages for executing
one task. For example, consider the task of reporting an accident. The policy
holder sends a message to the insurer for this task. If the information in that
message is incomplete, the insurer may send a message to the policy holder re-
questing additional information. This would repeat until the insurer receives all
information, at which point the task of reporting accident would complete.

An agent conforms to a business model if it satisfies each commitment of which
it is the debtor and whose antecedent holds. To verify conformance, we iterate over
active commitments from the business model. For each commitment, we evaluate
its antecedent and consequent using the tasks and the domain facts asserted in
the interaction model. Each commitment whose consequent evaluates to true is
satisfied. Each commitment whose antecedent evaluates to true, but consequent
to false, is a detached commitment that is violated. Hence, the debtor of a violated
commitment is the agent that fails conformancewith respect to the businessmodel.

The agent interactions can be verified either at design time or at run time.
At design time, a low-level interaction model design can be verified against a
business model. There can be many interaction models that satisfy a given busi-
ness model. At run time, the emergent agent behavior, captured in the form of a
low-level interaction model, can be verified against a business model. When such
verification is performed, some interactions may still be pending, and therefore,
some commitments may be eventually satisfied. Therefore, to detect violations
we must model the various tasks as being time bounded, that is, as including
timeouts. A commitment whose antecedent evaluates to true but consequent to
false (taking timeouts into consideration) is violated. Figure 16 shows a series
of conforming and nonconforming interactions for AGFIL scenario. A message
labeled Ti corresponds to the task i in Table 2.

432 P.R. Telang and M.P. Singh

Policy Holder Call Center Insurer

T12: pay insurance premium

report accident

T11: pay claim rec charge

Assessor Adjustor

req vehicle ins

T8: inspect vehicle

Insurer Assessor

send claim to assessor

T5: agree to repair

T14: pay assess fees

Policy Holder Repairer

request repair

T9: repair vehicle

T13: pay repair charge

Insurer

(a) (b)

(c) (d)

Fig. 16. Conforming and nonconforming agent interactions

• Fig. 16(a) shows an interaction between the insurer and the assessor. The
insurer sends a claim for assessment to the assessor. The assessor negotiates
the repair charge with the repairer, and brings about an agreement with
the repairer for vehicle repair. This satisfies commitment C5, and detaches
commitment C14. The insurer pays the assessment fees to the assessor, and
satisfies C14. Since, the insurer and the assessor satisfy their commitments,
they conform to the business model.

• Fig. 16(b) shows another example of conforming interaction between a policy
holder, a repairer, and the insurer. The policy holder provides claim infor-
mation, and requests the repairer for vehicle repair. The repairer finds the
claim to be valid, and repairs the vehicle. The repairer satisfies commitment
C9 and detaches commitment C13. By paying the repair charge, the insurer
satisfies commitment C13.

• Fig. 16(c) shows an example of nonconforming interaction between a policy
holder, the call center, and the insurer. The policy holder obtains insurance
by paying the requisite premium to the insurer. The insurer pays the call
center for providing claim reception service. Then the policy holder reports
an accident and detaches commitments C1, C2, and C4, assuming the claim
to be valid. But the call center does not gather the claim information, assign
a garage, or send the claim to the insurer. Therefore, the call center violates
commitments C1, C2, and C4, and does not conform to the model.

• Fig. 16(d) shows another example of a nonconforming interaction. The asses-
sor requests a vehicle inspection from the adjustor. The adjustor inspects the
vehicle, and detaches commitment C10. However, the assessor violates com-
mitment C10 by not paying the inspection fees to the adjustor, and therefore
fails to conform with the model.

Enhancing Tropos with Commitments 433

5 Discussion

This paper proposes an agent-oriented business metamodel based on Tropos. The
model uses the mental and social concepts of Tropos. It also uses the goal, plan,
and dependency modeling techniques from Tropos. The goal and plan modeling
are based on the means-end and AND-OR analyses.

Our approach offers two major benefits. One, the high-level metamodel cap-
tures the business relationships directly. Thus it shows how the business model
may be modified in the face of changing business needs. For example, the insurer
may decide to outsource claim handling (as in the above case) or may decide
to insource it. A business analyst can readily determine if the resulting business
model is sound. Likewise, each participant can evaluate a potential change to the
business model in terms of whether it would affect the commitments of which
it is the debtor or the creditor. Two, the high-level metamodel yields a natural
basis for reasoning about correctness. We can use the business relationships as a
basis for determining whether a particular enactment is conforming and whether
a particular way to generate an enactment is sound.

Tropos is a general purpose agent-oriented software engineering methodol-
ogy. It can be applied to a wide range of software applications, and it covers
all phases of software development. In contrast, our proposed methodology is
tailored specifically for business modeling.

A key difference between our model and Tropos is the concept of commitment.
In Tropos, a dependency means that a depender actor depends on a dependee
actor for executing a plan or achieving a goal. The concept of dependency does
not model what is required of the depender, and the dependee unconditionally
adopts the dependency. The debtor, creditor, and consequent of a commitment
are similar to the Tropos dependee, depender, and dependum, respectively. How-
ever, unlike a dependency, a commitment includes an antecedent that brings it
into full force. This enables modeling reciprocal relationships between economic
entities, which is lacking in the concept of dependency.

Andersson et al. [1] present what they call a “reference” ontology for business
models based on concepts from three approaches, namely, REA, BMO, and e3-
value. Table 3 compares their ontology concepts to the concepts from our model.
Their concepts of actor and actor type are similar to our agent and role, respec-
tively. A domain ontology captures resource, resource type, feature, and right in
our approach. Our task abstraction is similar to the concept of event without ad-
ditional classification into types. Andersson et al.’s notion of commitment is close
to our concept of commitment. Their concepts of exchange, transaction, contract,
agreement, and reciprocity are reflected as two or more commitments in our ap-
proach. Unlike our metamodel, Andersson et al.do not model actor goals.

Gordijn and Wieringa [5] propose e3-value business model. Unlike our meta-
model, e3-value is a semiformal model based on economic concepts, and is mainly
intended for profitability analysis. A value interface in e3-value aggregates re-
lated in and out value ports of an actor to represent economic reciprocity. This
concept is close to our concept of commitment, but it lacks similar semantics and
flexibility. For example, unlike a value interface, a commitment can be delegated.

434 P.R. Telang and M.P. Singh

Table 3. Proposed business metamodel related to Andersson et al.’s ontology

Reference ontology concept Business metamodel concept

Actor Agent
Actor type Role
A pair of transfers A pair of commitments
Resource, resource type, feature,
right

Defined in domain ontology

Event Task
Commitment Commitment
Exchange A pair of commitments
Transaction Set of commitments
Contract Set of commitments
Agreement Commitment
Reciprocity A pair of commitments
Claim Detached commitment

Due to this, an e3-value model may capture value exchange among two actors,
but during execution, the exchange and interaction may take place between two
different actors, and without a clear notion of delegation, it is not obvious how
the latter is selected.

Opera is a framework for modeling multi-agent societies [7], though from
the perspective of a single designer or economic entity. In contrast, we model
interactions among multiple entities. Opera’s concepts of landmark and contract
are close to our concepts of task and commitment, respectively. However, Opera
uses traditional obligations, which lack the flexibility of commitments. Unlike
obligations, a commitment can be manipulated as Sec. 2 describes.

Amoeba [4] is a process modeling methodology based on commitment proto-
cols. This methodology creates a process model in terms of fine-grained messages
and commitments. In contrast, our model is at a higher level of abstraction and
includes business goals and tasks in addition to commitments.

References

1. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
Gordijn, J., Grégoire, B., Schmitt, M., Dubois, E., Abels, S., Hahn, A., Wangler,
B., Weigand, H.: Towards a reference ontology for business models. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer,
Heidelberg (2006)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

3. Browne, S., Kellett, M.: Insurance (motor damage claims) scenario. Document Iden-
tifier D1.a, CrossFlow Consortium (1999)

Enhancing Tropos with Commitments 435

4. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and
evolution of cross-organizational business processes. ACM Transactions on Software
Engineering and Methodology, TOSEM (to appear, 2009)

5. Gordijn, J., Wieringa, R.: A value-oriented approach to E-business process de-
sign. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 390–403.
Springer, Heidelberg (2003)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unifi-
cation of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

7. Weigand, H., Dignum, V., Meyer, J.-J.C., Dignum, F.: Specification by refinement
and agreement: Designing agent interaction using landmarks and contracts. In:
Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS, vol. 2577, pp.
257–269. Springer, Heidelberg (2003)

“Reducing” CLASSIC to Practice:
Knowledge Representation Theory Meets

Reality�

Ronald J. Brachman1, Alex Borgida2,��,
Deborah L. McGuinness3, and Peter F. Patel-Schneider4

1 Yahoo! Research
2 Rutgers University

3 Rensselaer Polytechnic Institute
4 Bell Labs Research

Abstract. Most recent key developments in research on knowledge rep-
resentation (KR) have been of the more theoretical sort, involving worst-
case complexity results, solutions to technical challenge problems, etc.
While some of this work has influenced practice in Artificial Intelligence,
it is rarely—if ever—made clear what is compromised when the transi-
tion is made from relatively abstract theory to the real world. classic is
a description logic with an ancestry of extensive theoretical work (tracing
back over twenty years to kl-one), and several novel contributions to
KR theory. Basic research on classic paved the way for an implemen-
tation that has been used significantly in practice, including by users
not versed in KR theory. In moving from a pure logic to a practical
tool, many compromises and changes of perspective were necessary. We
report on this transition and articulate some of the profound influences
practice can have on relatively idealistic theoretical work. We have found
that classic has been quite useful in practice, yet still strongly retains
most of its original spirit, but much of our thinking and many details
had to change along the way.

FORWARD - February 2009

The practical instantiation of theories is an important, but often neglected, com-
ponent of knowledge representation. The work on classic, described in this
paper, was undertaken at AT&T Bell Labs around 1990, and fits into this com-
ponent, taking the formal theories of description logic and crafting a useful
system for representing information.

The state of the art in description logics has changed considerably since clas-

sic was first envisioned in the late 1980s. Advances in algorithms and computers
have made for effective reasoners for theoretically intractable description logics,

� A slightly different version published in Artificial Intelligence, 114, October 1999,
pages 203–237.

�� Supported in part by the AT&T Foundation and NSF IRI 9119310 & 9619979.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 436–465, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

“Reducing” CLASSIC to Practice 437

leading up to modern reasoners for description logics like shoiq, where reasoning
is NExpTime complete.

These advances in reasoning have led to the adaptation of description logics to
the Semantic Web. The changes needed were theoretically quite small, amount-
ing mostly to using IRIs as names and adding the datatypes of XML Schema.
This lead, through a number of intermediate steps, to the W3C Web Ontology
Language OWL. However, quite a bit of practical adaptation was needed as well,
including allowing non-logical decorations, adding a method of combining docu-
ments on the web into one knowledge base, building user interface systems like
Protégé (http://www.co-ode.org/downloads/protege-x/), and providing APIs for
popular programming languages. There are a now multiple reasoning systems for
OWL, including Pellet (http://clarkparsia.com/pellet/), Racer (http://www.racer-
systems.com/), and FaCT++ (http://code.google.com/p/factplusplus/), which
are based on this combination of theoretical underpinnings and attention to
practical details, now prevalent in the description logic community.

1 Introduction

In recent years, the research area of knowledge representation (KR) has come
to emphasize and encourage what are generally considered more “theoretical”
results, such as novel logics, formal complexity analyses, and solutions to highly
technical challenge problems. In many respects, this is reasonable, since such
results tend to be clean, presentable in small packages (i.e., conference-length
papers), easily built upon by others, and directly evaluable because of their
formal presentation. Even the recent reappearance of papers on algorithms and
empirical analyses of reasoning systems has emphasized the formal aspects of
such work. But lurking in the virtual hegemony of theory and formalism in
published work is the tacit belief that there is nothing interesting enough in the
reduction of KR theory to practice to warrant publication or discussion. In other
words, it seems generally assumed that theoretical contributions can be reduced
to practice in a straightforward way, and that once the initial theoretical work
is wrapped up, all of the novel and important work is done.

Experience in building serious KR systems challenges these assumptions.
There is a long and difficult road to travel from the pristine clarity of a new
logic to a system that really works and is usable by those other than its inven-
tors. Events along this road can fundamentally alter the shape of a knowledge
representation system, and can inspire substantial amounts of new theoretical
work.

Our goal here is to attempt to show some of the key influences that KR
practice can exert on KR theory. In doing so, we hope to reveal some impor-
tant contributions to KR research to be made by those most concerned with
the reduction to practice. In order to do this, we will lean on our experience
with classic, a description logic-based KR system. classic has seen both ends
of the theory-to-practice spectrum in quite concrete ways: on the one hand, it
was developed after many years of kl-one-inspired research on description sys-
tems, and was initially presented as a clean and simple language and system [5]

438 R.J. Brachman et al.

with a formal semantics for subsumption, etc.; on the other, it has also been
re-engineered from an initial lisp implementation to C and then to C++, has
been widely distributed, and has been used in several fielded industrial products
in several companies on an everyday basis (making classic one of a few KR
systems to be moved all the way into successful commercial practice). Our sub-
stantial system development effort made it clear to us that moving a KR idea
into real practice is not just a small matter of programming, and that significant
research is still necessary even after the basic theory is in place.

Our plan in this paper is first to give an introduction to the goals and design of
our system, and then to summarize the “theoretical” classic as originally pro-
posed and published. We will then explain our transition from research design to
production use. Rather than give a potentially unrevealing historical account, we
will subsequently attempt to abstract out five general factors that caused impor-
tant changes in our thinking or in the system design, giving concrete examples
of each in the evolution of classic:

1. general considerations in creating and supporting a running system;
2. implementation issues, ranging from efficiency tradeoffs to the sheer com-

plexity of building a feature;
3. general issues of real use by real people, such as learnability of the language

and error-handling;
4. needs of particular applications; and
5. the unearthing of incompleteness and mistakes through programming, use,

and community discussion.

While some of these concerns may seem rather prosaic, the point is that they
have a hitherto unacknowledged—and substantial—influence on the ultimate
shape, and certainly on the ultimate true value of any knowledge representation
proposal. There is nothing particularly atypical about the research history of
classic; as a result, the lessons to be learned here should apply quite broadly
in KR research, if not in AI research in general.

2 The Original classic

While potential applications were generally kept in mind, classic was originally
designed in a typical research fashion—on paper, with attention paid to formal,
logical properties, and without much regard to implementation or application
details. This section outlines briefly the original design, before we attempted to
build a practical tool based on it. The interested reader can also see [5], which
is a traditional research article on the original version of the language, and [12]
for more details.

2.1 Goals

classic was designed to clarify and overcome some limitations in a series of
knowledge representation languages that stemmed originally from work on kl-

one [9,13]. Previous work on nikl [32], krypton [10], and kandor [36] had

“Reducing” CLASSIC to Practice 439

shown that languages emphasizing structured descriptions and their relation-
ships were of both theoretical and practical interest. Work on kl-one and its
successors1 grew to be quite popular in the US and Europe in the 1980’s, largely
because of the semantic cleanliness of these languages, the appeal of object-
centered (“frame”) representations, and their provision for some key forms of
inference not available in other formalisms (e.g., classification—see below). Nu-
merous publications addressed formal and theoretical issues in “kl-one-like”
languages, including formal semantics and computational complexity of variant
languages (see, or example, [19]). However, the key prior implemented systems
all had some fundamental flaws,2 and the classic effort, initiated in the mid
’80’s at AT&T, was in large part launched to design a formalism that was free
of these defects.

Another central goal of classic was to produce a compact logic and ulti-
mately, a small, manageable, and efficient system. Small systems have important
advantages in a practical setting, such as portability, maintainability, and com-
prehensibility. Our intention was eventually to put KR technology in the hands
of regular technical (non-AI) employees within AT&T, to allow them to build
their own domain models and maintain them. Success on this account seemed
to very strongly depend on how simply and effortlessly new technology could
integrate into an existing environment and on how easy it would be to learn how
to use it, not to mention on reasonable and predictable performance. Our plan
was to take computational predictability (both of the inferences performed and
the resources used) seriously. All in all, because of our desire to connect with
extremely busy developers working on real problems, simplicity and performance
were paramount in our thinking from the very beginning.

As has been often discussed in the literature [11,21], expressiveness in a KR
language trades off against computational complexity, and our original hope was
to produce a complete inference system that was worst-case tractable. This con-
trasts the classic work even with other contemporaneous efforts in the same
family, e.g., loom [24] and back [39], and with much work elsewhere in KR. Like
classic, both of these systems ended up in the hands of users at sites other than
where they were developed (in fact, loom has a user base of several hundreds,
mostly in the AI research community), and had to go through the additional ef-
forts, described in this paper, at supporting a user interface, escape mechanisms
from expressive limitations, and rules. However, both loom and back opted for
more expressive logics and incomplete implementations, which left them with
the problem of characterizing the inferences (not) being performed. In classic,
although we eventually incorporated language features that were on paper in-
tractable (e.g., role hierarchies), the implementation of concept reasoning was
kept complete, except for reasoning with individuals in concepts, and in that
case both a precise formal and procedural characterization were given [7].

1 These systems came to be called “description logics”—see below.
2 E.g., nikl had no mechanism for asserting specific, concrete facts; krypton was so

general as to be fairly unusable; and kandor handled individual objects in a domain
in a very incomplete way.

440 R.J. Brachman et al.

Many more recent description logic-based KR systems have explicitly taken
a different view of this expressiveness/tractability tradeoff. They chose to im-
plement complete reasoners for expressive languages and thus, of necessity, have
intractable inference algorithms. Initially these systems had poor computational
properties [2,15], but recent advances in description logic inference algoritms, ini-
tiated by Ian Horrocks, have led to a new generation of systems with surprisingly
effective performance [22,38].

classic continues to be an important data point, and a useful experiment on
exactly how one can design a small but useful language, but as we see below,
the original theoretical goal of worst-case polynomial complexity could not be
preserved without detriment to real users.3

Finally, classic was designed to fill a small number of specific application
needs. We had had experience with a form of deductive information retrieval,
for example in the context of information about a large software system [18], and
needed a better tool to support this work. We also had envisioned classic as a
deductive, object-oriented database system (see [5]; some success on this front
was eventually reported in [42] and [14]). It was not our intention to provide
some generic “general knowledge representation system,” applicable to any and
all problems. classic would probably not be useful, for example, for arbitrary
semantic representation in a natural language system, nor was it intended as a
“shell” for building an entire expert system. But the potential gains from keeping
the system small and simple justified the inability to meet arbitrary (and too
often, ill-defined) AI needs—and it was most important to have it work well on
our target applications.

2.2 The Description Language

classic is based on a description logic (DL), a formal logic whose principal ob-
jects are structured terms used to describe individual objects in a domain. De-
scriptions are constructed by composing description-forming constructors from
a small repertoire and specifying arguments to these constructors. For example,
using the constructor ALL, which is a way to restrict the values of a property
to members of a single class, we might construct the description, “(something)
all of whose children are female”:

(ALL child FEMALE).

Descriptions can then be asserted to hold of individuals in the domain, associ-
ated with names in a knowledge base, or used in simple rules. Because of the
formal, compositional structure of descriptions (i.e., they are like the complex
types in programming languages), certain inferences follow both generically—one

3 However, we state emphatically that this did not mean that the only alternative was
to resort to an arbitrarily expressive language to satisfy our users. As we discuss
below, the extensions made to meet real needs were generally simple, and classic is
still clearly a small system, yet one of the most widely used description logic-based
systems.

“Reducing” CLASSIC to Practice 441

description can be proven to imply another—and with respect to individuals—a
description can imply certain non-obvious properties of an individual.

In classic, as in most description logic work, we call our descriptions con-
cepts, and individual objects in the domain are modeled by individuals. To build
concepts, we generally use descriptions of properties and parts, which we call
roles (e.g., child, above). classic also allows the association of simple rules
with named concepts; these were considered to be like forward-chaining proce-
dural rules (also known as “triggers” in active databases). For example,

AT&T-EMPLOYEE �

(AND (AT-LEAST 1 HRID-number)
(ALL HRID-number 7-DIGIT-INTEGER))

would mean “If an AT&T employee is recognized then assert about it that it
has at least one HR ID number, all of which are 7-digit integers.”

classic’s description-forming constructors were based on the key constructs
seen in frame representations over the years. These constructors have cleaned up
ambiguities in prior frame systems, and are embedded in a fully compositional,
uniform description language. The constructors in the original design ranged
from conjunction of descriptions (AND); to role “value restrictions” (ALL);
number restrictions on roles (AT-LEAST, AT-MOST); a set-forming construc-
tor (ONE-OF); and constructors for forming “primitive” concepts (PRIMI-

TIVE, DISJOINT-PRIMITIVE), which have necessary but not sufficient
conditions. classic also has a constructor SAME-AS, specifying objects for
which the values of two sequences of roles have the same value; and a role-filling
constructor (FILLS) and a constructor for “closing” roles (CLOSE),4 although
these were originally only applicable to individuals.

2.3 Operations on classic Knowledge Bases

The description-forming constructors are used to create descriptions that are,
in turn, used to define named concepts, create rules, and describe individual
objects in the domain. In order to create new concepts and assign descriptions
to individuals, etc., the user interacts with the classic system by means of a set
of knowledge base-manipulating operations. Generally speaking, operations on a
classic knowledge base (KB) include additions to the KB and queries.

Additive (monotonic) updates to the KB include the definition of new con-
cepts or roles, specification of rules, and assertion of properties to hold of par-
ticular individuals. By “definition” here, we mean the association of a name
(e.g., SATISFIED-GRANDPARENT) with a classic description (e.g., (AND PERSON
(ALL grandchild MARRIED)), intended to denote “a person all of whose grand-
children are married”). One of the contributions of classic, also developed

4 Role fillers for classic’s individuals are treated under a “non-closed-world” assump-
tion, in that unless the KB is told that it knows all the fillers of a certain role, it
assumes that more can be added (unless the number restrictions forbid it, in which
case role closure is implied).

442 R.J. Brachman et al.

contemporaneously in back [43], is the ability to specify incomplete information
on individuals; for example, it is possible to assert that Leland is an instance of

(AND (AT-LEAST 1 child)
(ALL works-for

(ONE-OF Great-Northern-Hotel Double-R-Diner)))

indicating that “Leland has at least one child and works for either the Great
Northern Hotel or the Double-R Diner.” Thus, individual objects are not re-
quired to be in the restricted form of simple tuples or complete records.

classic can also answer numerous questions from a KB, including whether
one concept subsumes another, whether an individual is an instance of a concept,
and whether two concepts are disjoint, and it can respond to various types of
retrieval queries (e.g., fetch the properties of an individual, fetch all the instances
of a concept).

These general operations on classic knowledge bases were characteristic of
the system throughout its evolution, although specific operations changed in
interesting ways and new ones (especially dealing with retraction of information)
were added, as discussed later.

2.4 Inferences

A key advantage of classic over many other systems was the variety and types
of inferences it provided. Some of the standard frame inferences, like (strict)
inheritance, are part of classic’s definition, but so are several others that
make description-logic-based systems unique among object-centered KR sys-
tems. Among classic’s inferences are

– “completion” inferences: logical consequences of assertions about individuals
and descriptions of concepts are computed; there are a number of these
inferences classic can make, including inheritance (if A is an instance of
B and B is a subclass of C, then A “inherits” all the properties of C),
combination of restrictions on concepts and individuals, and propagation of
consequences from one individual to another (if A fills a role r on B, and B
is an instance of something which is known to restrict all of its fillers for the
r role to be instances of D, then A is an instance of D);

– contradiction detection: inherited and propagated information is used to de-
tect contradictions in descriptions of individuals, as well as incoherent con-
cepts.

– classification and subsumption inferences: concept classification, in which all
concepts more general than a concept and all concepts more specific than
a concept are found; individual classification, in which all concepts that an
individual satisfies are determined; and subsumption, i.e., whether or not one
concept is more general than another.

– rule application: when an individual is determined to satisfy the antecedent
of a rule, it is asserted to satisfy the consequent as well.

“Reducing” CLASSIC to Practice 443

2.5 Other Theoretical Aspects of classic

Since the original design of classic proceeded mainly from a theoretical stand-
point, other formal aspects of the logic were explored and developed. classic’s
concept constructors had a traditional formal semantics similar to the semantics
of related languages. Since reasoning about individuals was more procedural,
and did not have the same formal tradition, it did not initially receive the same
precise formal treatment. In hindsight, it would have been of considerable help
to have found a formal semantics for this aspect too, although this ended up
requiring entirely new machinery (as discovered by Donini, et al. [20]) and may
well have cost us too much in terms of time and lost opportunities (another key
factor in the production of a successful system).

Given our desire for compactness and performance, we were also concerned
with the computational complexity of the inferences to be provided by classic.
Based on the experience with implementing previous description logic-based sys-
tems, and the work of Aı̈t-Kaci [1] on reasoning with attribute-chain identities,
we believed that we had a good chance to develop an efficient, polynomial-time
algorithm for the subsumption inference. However, at this stage we did not have
a formal proof of the tractability of the logic, nor of the completeness of our
implementation. To some extent we were going on faith that the language was
simple enough, and that we were avoiding the known intractability traps, such as
those pointed out by Nebel [34]. As we shall see, this faith was in part misplaced,
from the strictly formal point of view, although in practice we were on the right
track.

2.6 Anticipating Implementation

The original classic proposal to some extent anticipated building a practical
tool. Two concessions were made directly in the language. First, inspired by the
taxis database programming language [33], we allowed the formation of concepts
that could compute their membership using test functions to be written in the
host programming language. TEST concepts would act as primitive concepts,
in that their necessary and sufficient conditions would not be visible to classic

for inference. But they would allow the user to partly make up for classic’s
limited expressive power, at least in dealing with individuals.

Second, we specified a class of individuals in the language called “host” indi-
viduals, which would allow direct incorporation of things like strings and numbers
from the host programming language. Many previous KR languages had failed to
make a clean distinction between values, such as numbers and strings, borrowed
directly from the implementation, and objects totally within the representation
system. classic cleared this up even in the initial formal design; for example,
a host individual could not have roles, since it is immutable and all of its prop-
erties are implied by its identity. Also, the (test) definitions of important host
concepts (like NUMBER, STRING, etc.) could be derived automatically from the
host environment.

444 R.J. Brachman et al.

2.7 The Result

Prior to the completion and release of an implementation and its use in ap-
plications, classic thus had the description language grammar illustrated in
Figure 1—this is roughly the version of classic published in 1989 [5], and was
the initial basis for discussions with our development colleagues (see below). Us-
ing descriptions formed from this grammar, a user could create a knowledge base
by defining new named concepts and roles, asserting that certain restricted types
of descriptions applied to individuals, and adding rules, as defined in Figure 2.

Numerous straightforward types of KB queries were also available. These in-
cluded retrieval of information told to the system, retrieval of information de-
rived by the system, and queries about the derived taxonomy of concepts and
individuals.

Even at this point, the classic logic made a number of new contributions to
KR, including the following:

– full integration of host-language values,
– support for equalities on attribute chains (SAME-AS),
– the ability to assert partial information about individuals,
– the addition of a simple form of forward-chaining implication to a kl-one-

like language,
– the ONE-OF construct for constructing explicit sets of individuals,
– a broad cadre of inferences including full propagation of information implied

by assertions, and
– a comprehensive and clean retraction mechanism for assertions,

<concept-expression> ::=
THING | CLASSIC-THING | HOST-THING | % built-in names
<concept-name> | % names defined in the KB
(AND <concept-expression>+) | % conjunction
(ALL <role-name><concept-expression>) | % universal value restriction
(AT-LEAST <positive-integer><role-name>) | % minimum cardinality
(AT-MOST <non-negative-integer><role-name>) | % maximum cardinality
(SAME-AS (<role-name>+)(<role-name>+)) | % role-filler equality
(TEST <function> [<realm>]) | % procedural test
(ONE-OF <individual-name>+) | % set of individuals
(PRIMITIVE <concept-expression> <index>) | % primitive concept
(DISJOINT-PRIMITIVE <concept-expression> <group-index> <index>)

<realm> ::= HOST | CLASSIC

<individual-expression> ::=
<concept-expression> |

(FILLS <role-name> <individual-name>) | % role-filling
(CLOSE <role-name>) | % role closure
(AND <individual-expression>+) % conjunction

Fig. 1. The Original classic Expression Grammar (comments in italics)

“Reducing” CLASSIC to Practice 445

<knowledge-base> ::= <statement>+

<statement> ::=
(DEFINE-CONCEPT <name> <concept-expression>) % new concept
(DEFINE-ROLE <name>) % new role
(CREATE-IND <name> <individual-expression>) % new individual
(IND-ADD <name> <individual-expression>) % add information
(ADD-RULE <concept-name> <concept-expression>) % add a rule

Fig. 2. The Original classic Knowledge Base Grammar

all in the context of a simple, learnable clean frame system.5 In this respect, the
work was worth publishing; but in retrospect it was naive of us to think that we
could “just” build it and use it.

3 The Transition to Practice

Given the simplicity of the original design of classic, we held the traditional
opinion that there was essentially no research left in implementing the system
and having users use it in applications. In late 1988, we concluded a typical
AI programming effort, building a classic prototype in common lisp. As this
version was nearing completion, we began to confer with colleagues in an AT&T
development organization about the potential distribution of classic within
the company. Despite the availability of a number of AI tools, an internal imple-
mentation of classic held many advantages: we could maintain it and extend it
ourselves, in particular, tuning it to our users; we could assure that it integrated
with existing, non-AI environments—our many legacy systems; and we could
assure that the system had a well-understood, formal foundation (in contrast to
virtually all AI tools commercially available at the time). Thus we initiated a
collaborative effort to create a truly practical version of classic, written in C.
Our intention was to develop the C version, maintain it, create a training course,
and eventually find ways to make it usable even by novices. Meanwhile, as the C
effort progressed, we began to experiment with our first applications using the
lisp prototype.

The issues and insights reported in the next several sections arose over an
extended period of time, in which we collaborated on the design of the C version
of classic, and developed several substantial and different types of applications,
and, later, produced a third version of classic (in C++). Two of the applica-
tions were more or less along the lines we expected. But the others were not
originally foreseen. The first two applications—a software information system
using classification to do retrieval [18], and what could be considered a “seman-
tic data model” front end to a relational database of program cross-reference

5 Some, though not all, of these features were independently introduced in the other
two description logic-based systems being developed at about the same time—loom

[24] and back [39].

446 R.J. Brachman et al.

information [42]—were planned from the beginning. Other types of applications
were unanticipated. One family of applications (FindUR [26]) used classic to
manage background ontologies, which were used to do query expansion in World-
Wide Web searches. The description logic system organized descriptions and
detected problems in collaboratively generated ontologies maintained by peo-
ple not trained in knowledge representation. Another application proved to be
the basis of a commercially deployed NCR product. It was the front end for
data analysis in a data mining setting and was marketed as the “Management
Discovery Tool” (MDT). Our family of configuration applications [44,31,30,28]
was the most successful of the applications. Fifteen different configurators were
built using classic, and these have gone on to have processed more than $6
billion worth of orders for telecommunications equipment in AT&T and Lucent
Technologies.

In addressing the needs of these applications, we developed interim versions
of the lisp classic system and received feedback from users along the way.
Thus the “transition research” reported here was stimulated both by the need
to construct a usable system in general and by the demands of real users in real
applications.

4 Feedback from Practice

The process of implementing, re-implementing in C, and having application
builders use classic and provide us with feedback, resulted in significant
changes. Some of these arose because of simple facts of life of providing real
software to real people, some arose because it is impossible to anticipate many
key needs before people start to use a system, and some arose because it is hard
to truly complete the formal analysis before you begin building a system.6

There are many significant lessons to be learned from the attempt to move
an abstract KR service into the real world, some of which are sociological and
very general, and some of which are very low-level and relate only to implemen-
tation details. We restrict ourselves here mainly to technical considerations that
influenced the ultimate shape of the classic language and KB operations, and
critical differences between the original proposal and the final form. We look at
a small number of examples in each case. Even looking at the feedback from
practice to theory involving only basic language and KB operations, there are
numerous factors that end up shaping the final version of a logic. Here we cover
issues relating to software system development, per se; implementation consid-
erations; needs of users; the needs of specific applications; and the demand from
practice that all details be worked out.

6 This is by no means to say that such prior formal analyses are not also critical
to the success of a project. Here, our intention is simply to focus on the relatively
unheralded role that implementation and use play in the success and ultimate shape
of KR systems.

“Reducing” CLASSIC to Practice 447

4.1 Creating and Supporting a System

Even if the setting is not a commercial one, the intent to create and release
a system carries certain obligations. In the case of classic, our development
collaborators made one thing very clear: do not release software of which you
are unsure. In particular, it is important not to include features in an initial
release that you might choose later to remove from the language. Once someone
starts to use your system, it is almost unpardonable to release a future generation
in which features that used to be supported no longer are (at least with respect
to the central representation language constructs).

Even in a research setting, while we are used to playing with features of a
language to see what works best, once software is created, it is awkward at best
to nonmonotonically change the supported language. In classic, this meant
that we needed to carefully consider every constructor, to make sure that we
were confident in its meaning and utility. In particular, we were forced by our
commitment to efficient implementation to exclude the original, general SAME-

AS constructor from the initial system specification because its implementation
was appearing increasingly more complex (see Section 4.2).

This constraint also forced us to abandon a constructorwe were considering that
would allow the expression of concepts like “at least one female child” (this type
of constuct has come to be known as a “qualified number restriction”). In the gen-
eral case, such a constructor rendered inference intractable [34] and we wanted to
avoid known intractability. Had our users demanded these constructors, we might
have tried for a reasonable partial implementation. Unfortunately, we did not have
a handle on an incomplete algorithm that we could guarantee would only get more
complete with subsequent releases, and which had a simple and understandable
description of what it computed. The latter is particularly important, since oth-
erwise users might expect certain conclusions to be drawn when the algorithm in
fact would miss them. Such mismatched expectations could be disastrous for the
acceptability of the product. We were strongly told that it was better to eliminate
a construct than to have a confusing and unintuitive partial implementation of it.
Upward compatibility dictated that even with incomplete algorithms, subsequent
versions of the system would still make at least all inferences made in earlier ver-
sions. Thus, wewere better off fromthis perspective inkeeping the language simple,
and left this construct out of the initial released version.

There were other influences on the evolution of classic because of this pro-
saic, but important type of constraint. For a while, we had contemplated a role
inverse construct (see Section 4.2). For example, as was common in many older
semantic network schemes, we wanted to say that parent was the inverse of
child. While we had not designed such a construct into the original specifica-
tion, it appeared to be potentially very useful in our applications. We worked
out several solutions to the problem, including a fairly obvious and general one
that allowed inverses to be used for any role at any time. However, the cost
appeared to be very high, and it was not even clear that we could implement
the most general approach. As a result, we were forced to abandon any attempt
to implement role inverses in the first released version of classic. We were not

448 R.J. Brachman et al.

totally confident that we could stick with any initial attempt through all subse-
quent releases, and we did not want to start with an awkward compromise that
might be abandoned later.

Another consideration is harder to be technical about or to quantify, but was
equally important to us. As the system began to be used, it became clear that we
needed to be as sure as possible that our constructors were the best way to carve
up the terminological space. In description logics, there are many variant ways to
achieve the same effect, some of which are more elegant and comprehensible than
others. Since we intended to put our software in the hands of non-experts, getting
the abstraction right was paramount. Otherwise, either the system would simply
not be used, or a second release with better constructors would fail to be upward
compatible. In classic’s case, we put a great deal of effort into an assessment of
which constructors had worked well and which had not in previous systems.

Finally, as mentioned, classic early on became a coordinated effort between
research and development organizations. Once we had the development (C lan-
guage) version of classic released and a set of commercial applications in place,
we thought that we had reached a steady state. The research team would exper-
iment with adding new features first to the lisp version of classic, and then
the development team would port those features to the C version. Both teams
were involved in both activities, so that while the C version of classic would
lag behind the lisp version, it would never be too far behind.

Unfortunately, this anticipated mode of operation turned out to have several
problems. First, for pragmatic reasons in getting off the ground, the C version
never did have all the features of even the initial lisp version. Second, once the
C version was suitable for the commercial applications, there was no short-term
development reason for adding features to it. Additions to the C version would
be supported by development resources only in response to needs from current or
proposed applications. Third, the research team had neither the resources nor,
indeed, the expertise to change the C version.

These mundane human resource constraints meant that it was very unlikely
that the C version of classic would ever approach the capabilities of the lisp

version. Once we realized this, we decided that the only solution would be to
create a combined version of classic in a language acceptable for both research
and development. This combined version, which we called NeoClassic, was
written in C++, the only language acceptable to development that was reasonable
for research purposes. NeoClassic was designed to immediately supplant the C
version of classic and was supposed to quickly acquire the features of the lisp

version, modified as appropriate. Implementation of NeoClassic proceeded to
the point that it was usable and as featureful as the C version, but ultimately
corporate changes and personnel issues caused the work to be scaled back.

4.2 Implementation Considerations

There were at least two aspects of the implementation effort itself that ultimately
ended up influencing the language and operation design. One was the sheer

“Reducing” CLASSIC to Practice 449

difficulty of implementing certain inferences, and the other was the normal kind
of tradeoff one makes between time and space.

Complex Operations. We began our implementation by attempting to con-
struct a complex subsumption algorithm that included SAME-AS relations be-
tween roles. For example, we wanted to be able to detect that a concept that
included

(AND (SAME-AS (boss) (tennis-partner))
(SAME-AS (tennis-partner) (advisor)))

was subsumed by (i.e., was more specific than) a concept that included

(SAME-AS (boss) (advisor));

in other words, that someone whose boss is her tennis partner, and whose tennis
partner is her advisor, must of necessity be someone whose boss is her advisor.

Because SAME-AS could take arbitrary role paths, roles could possibly be
unfilled for certain individuals, and roles could have more than one filler; this
made for some very complex computations in support of subsumption. Cases
had to be split, for example, into those where roles had some fillers and those
where they had none, and less-than-obvious multiplications and divisions had to
be made in the presence of number restrictions. More than once, as soon as we
thought we had all cases covered, we would discover a new, more subtle one that
was not covered. When we finally came to a point where we needed a result from
group theory and the use of factorial to get some cardinalities right, we decided
to abandon the implementation.

As it turns out, our attempts at a straightforward and efficient solution to what
appeared to us to be a tractable problem were thwarted for a deep reason:
full equality for roles is undecidable. This result was later proved by Schmidt-
Schauss [41] and Patel-Schneider [37]. Thus, our implementation enterprise could
never have fully succeeded, although we did not know it at the time. The end
result of all of this was an important change to the classic language (and there-
fore needed to be reflected in the semantics): we moved to distinguish between at-
tributes, which could have exactly one filler, and other roles, which could have more
than one filler. SAME-AS could then be implemented efficiently for attributes (us-
ing ideas from [1]), appropriately restricted to reflect the dichotomy. In the end, the
distinction between attributes and multiply-filled roles was a natural one, given
the distinction between functions and relations in first-order logic, and the com-
mon use of single-valued relations in feature logics and relational databases.7

Other aspects of classic evolved for similar reasons. For example, while our
original specification for a TEST concept was conceptually sufficient, we left it

7 Attributes correspond to functionally-dependent columns in relations, whereas
multiply-filled roles would most easily correspond to two-column relations. These cor-
respondences turned out to be of great use to us when we subsequently attempted to
interface classic to a relational database [14].

450 R.J. Brachman et al.

to the user to specify (optionally) a “realm” (i.e., CLASSIC or HOST). This made
the processing more complex—and different—for concepts that had TESTs than
for those that did not. It was also the only case of a concept construct for which
the user had to specify a realm at all. In order to make the code more simple and
reliable, and the interface more uniform, we eventually substituted for TEST two
different constructors (TEST-C, TEST-H), which would each be unambiguous
about its realm.

Implementation Tradeoffs. It is well known that creating computer programs
involves making tradeoffs between time and the use of space. In most cases,
decisions made because of efficiency should not be of consequence to the system’s
functional interface. However, some tradeoffs can be extremely consequential,
and yet never occur to designers of an unimplemented language.

One tradeoff that affected our user language involved the form and utility of
role inverses. If one could afford to keep backpointers from every filler back to ev-
ery role it fills, then one could have an (INVERSE <role>) construct appear any
place in the language that a role can. This would be quite convenient for the user
and would contribute to the uniformity of the language—but it would also entail
significant overhead. An alternate view is to force users to explicitly declare in ad-
vance any role inverses that they intend to use at the same time the primitive roles
are declared. Then, backpointers would be maintained only for explicitly declared
roles. The point here is not which approach is best, but rather that practical con-
siderations can have significant effects on a pure language that never takes such
things into account. Given the large difference between the two approaches, and
inferential difficulty that results from including inverses in the language, we chose
to exclude them altogether from the first release. A more recent version of clas-

sic included them, since we subsequently had a chance to think hard about the
interplay between language, operation, and implementation design.

While the original specification of classic did not account for retraction of in-
formation, our applications soon forced us into providing such a facility. In this
case, retraction became one of the key reflectors of implementation tradeoffs. Most
reasonable implementations of retraction in inference systems keep track of depen-
dencies. Given extremely large knowledge bases, it may be too expensive (both in
space and time) to keep track of such dependencies at a very fine-grained level
of detail. Because of this, classic has a unique medium-grain-sized dependency
mechanism, such that for each individual, all other individuals can be found where
a change to one of them could imply a change to the original. This medium-grained
approach saves space over approaches (e.g., [24]) that keep track of dependencies
at the assertion level, or approaches that keep track of all dependencies in a truth-
maintenance fashion. The reduction in the amount of record-keeping also saves
time, which we believe even results in an overall faster system.

4.3 Serving the General User Population

Real use of a system, regardless of the particular applications supported, imme-
diately makes rigorous demands on a formalism that may otherwise look good on

“Reducing” CLASSIC to Practice 451

paper. We consider three types of issues here: (1) comprehension and usability
of the language by users; (2) specific features of the user interface, e.g., error-
handling and explanation, that make the system more usable; and (3) getting
around gaps in the logic.

Usability of the Language. Concepts like “usability” are admittedly vague,
but it is clear that users will not stick with a system if the abstractions behind
its logic and interface do not make sense. Formal semantics makes precise what
things mean, and it behooves us to provide such formal bases for our logics.
However, how simple a language is to learn and how easy it is to mentally
generate the name of a function that is needed are more likely the real dictators
of ultimate success or failure.

In the classic world, this meant (among other things) that the language
should be as uniform as possible—the more special cases, the more problems.
Just being forced to think about this led us to an insight that made the language
better: there was in general no good reason to distinguish between what one could
say about an individual and what one could use as part of a concept. (Note in
the grammar of Figure 1 that concept-expressions and individual-expressions are
treated differently.) The FILLS constructor should have been equally applicable
to both; in other words, it makes sense to form the general concept of “an
automobile whose manufacturer is Volvo,” where Volvo is an individual:

(AND AUTOMOBILE (FILLS manufacturer Volvo))

In the original specification, we thought of role-filling as something one does
exclusively in individuals. The one sticking point to a generalization was the
CLOSE constructor, which we felt did not make much sense for concepts; but
as we see below, further thinking about CLOSE (instigated by user concerns)
eventually led us to determine that it was mistakenly in the language in the first
place. As a result, the types of descriptions allowable as definitions of concepts
and for assertions about individuals could be merged.

There were other simplifications based on generic user concerns like under-
standability that helped us derive an even cleaner logic. For example, the PRIM-

ITIVE and DISJOINT-PRIMITIVE concept-forming constructors,
which had a firm semantics but were found problematic by non-experts in ac-

tual use, were removed from the language and better instantiated as variants on
the concept-defining interface function. The conceptually adequate but awkward
arguments to DISJOINT-PRIMITIVE were also simplified.

While we provided all of our research papers, potential users demanded usage
guidelines aimed at non-PhD researchers, to aid their comprehension of the logic.
In an effort to educate people on when a description logic-based system might
be useful, what its limitations were, and how one might go about using one
in a simple application, a long paper was written with a running (executable)
example on how to use the system [12]. This paper discussed typical knowledge
bases, useful “tricks of the trade,” ideas in our logic that would be difficult for
non-KR people, and a conventional methodology for building classic KB’s.

452 R.J. Brachman et al.

Motivated by the need to help users understand classic’s reasoning paradigm
and by the need to have a quick prototyping environment for showing off novel
functionality, we developed several demonstration systems. The first such system
was a simple application that captured “typical” reasoning patterns in an ac-
cessible domain—advising the selection of wines with meals. While this applica-
tion was appropriate for many students, an application more closely resembling
commercial applications in configuration was needed to give more meaningful
demonstrations internally and to provide concrete suggestions of new function-
ality that developers might consider using in their applications. This led to a
more complex application concerning stereo system configuration, which had a
fairly elaborate graphical interface [29,28]. Both of these applications have sub-
sequently been adapted for the Web.

Motivated by the need to grow a larger community of people trained in knowl-
edge representation in general and description logics in particular, we collabo-
rated with a corporate training center to generate a course. Independently, at
least one university developed a similar course and a set of five running assign-
ments to help students gain experience using the system. We collaborated with
University of Pittsburgh on the tutorial to support the educators and to gather
feedback from the students. The student feedback from yearly course offerings
drove many of our environmental enhancements such as enhanced explanation
support for contradictions, pruning, and debugging.

All of this effort in building user aids seemed truly “ancillary” at the begin-
ning, but proved to be crucial in the end.

Human Interface Features. Even with a perfectly understandable and intu-
itive logic, a minimal, raw implementation will be almost impossible to use. In
general, our customers told us, the system’s development environment (for build-
ing and debugging knowledge bases) was a make-or-break concern. For example,
logics discussed in papers do not deal with issues like error-handling, yet real
users can not use systems unless they get meaningful error-reporting and rea-
sonable error-handling, especially when the KR system is embedded in a larger
system. As a result of direct and strong feedback from users, the released ver-
sion of classic had extensive error-handling, including well-documented return
codes and rational and consistent error returns.

More specifically, our configuration applications relied heavily on the detec-
tion of contradictions, since users would, among other things, try out potential
updates in a “what-if” mode. Certain input specifications might lead to an in-
consistency with the updates that had previously been made. One of the key
aspects of contradiction-handling, then, was the need to roll back the effects
of the update that caused such an inconsistency in the knowledge base. Since
classic was able to do elaborate propagation and rule-application, a long and
ramified inference chain may have been triggered before a contradiction was en-
countered, and unless every piece of that chain were removed, the knowledge
base would be left in an incoherent state. This need led us to consider ways
to unravel inferences, including the possible use of a database-style “commit”

“Reducing” CLASSIC to Practice 453

operation (i.e., the knowledge base would never be changed until all inferences
concluded successfully).

We eventually settled on a more conventional AI approach using dependen-
cies, which gave us a general facility that not only would guarantee the KB to be
returned to a meaningful state after a contradiction occurred, but would allow
the user direct retraction of facts previously told. As it turned out, the availabil-
ity of such a retraction capability was critical in “selling” the application to its
sponsors, since the ability to explore alternative options in unconstrained ways
was essential to the interactive customer sales process.

Another generic area that needed attention was explanation of reasoning—a
topic relatively ignored by the KR community. If users are to build nontrivial KB’s,
they will need help in understanding and debugging them; they will need to know
why an inference failed, or why a conclusion was reached. While the expert systems
community may have learned this lesson, it is an important one for those working
in general KR as well. Our users made a very strong case to us that such a feature
was critical to their successful construction of knowledge bases.

We responded by adding an explanation mechanism to classic [25,27]. Since
the key inference in classic is subsumption, its explanation forms the foundation
of an explanation module. Although subsumption is calculated procedurally in
classic, we found it necessary to provide a declarative presentation of classic’s
deductions in order to reduce the length of explanations and to remove the arti-
facts of the procedural implementation. We used an incremental proof-theoretic
foundation and applied it to all of the inferences in classic, including the infer-
ences for handling constraint propagation and other individual inferences. This
basic explanation foundation has proved useful and general and since then has
been used (in joint work with Ian Horrocks and Enrico Franconi) as the founda-
tion for a design for explaining the reasoning in tableaux-based description logic
reasoners, and also (in joint work with James Rice) in an implemented system
for explaining the reasoning in a model-elimination theorem prover at Stanford.

As soon as we had both explanation and appropriate handling of contradic-
tions in classic, we found that specialized support for explanation of contra-
dictions was called for. If an explanation system is already implemented, then
explaining contradictions is almost a special case of explaining any inference, but
with a twist. Information added to one object in the knowledge base may cause
another object to become inconsistent. Typical description logic systems, includ-
ing classic, require consistent knowledge bases, thus whenever they discover a
contradiction, they use some form of truth maintenance to revert to a consistent
state of knowledge (as mentioned above), removing conclusions that depend on
the information removed from the knowledge base. But a simple-minded expla-
nation based solely on information that is currently in the knowledge base would
not be able to refer to these removed conclusions. Thus, any explanation system
capable of explaining contradictions would need to access its inconsistent states
as well as the current state of the knowledge base.

Another issue relevant to explanation is the potential incompleteness of the
reasoner. In particular, a user might have an intuition that some conclusion

454 R.J. Brachman et al.

should have been reached, but the system did not reach it. To explain this might
in general require using a different, complete reasoner, but frequently occuring
special cases can be built into the system itself.8

As classic makes it easy to generate and reason with complicated objects,
our users found naive object presentations to be overwhelming. For example, in
our stereo demonstration application, a typical stereo system description gener-
ated four pages of printout. This contained clearly meaningful information, such
as price ranges and model numbers, but also descriptions of where the compo-
nent might be displayed in the rack and which superconcepts were related to
the object. In fact, in some contexts it might be desirable to print just model
numbers, while in other contexts it might be desirable to print price ranges and
model numbers of components.

To reduce the amount of information presented in classic explanations we
added facilities for describing what is interesting to print or explain on a concept-
by-concept basis. This led us to a meta-language for matching “interesting”
aspects of descriptions [25,8]. The approach provides support for encoding both
domain-independent and domain-dependent information to be used along with
context to determine what information to print or explain. The meta-language
essentially extends the base description logic with some carefully chosen auto-
epistemic constructors (“Is at least one filler known?”) to help decide what to
print. As a result, in one application object presentations and explanations were
reduced by an order of magnitude, which was essential in making the project
practical.

Overcoming Gaps in the Logic. Another key point of tension between theory
and practice is the notion of an “escape” for the user, e.g., a means to get around
an expressive limitation in the logic by resorting to raw lisp or C code. As
mentioned above, we included in the original specification a TEST construct,
which allowed the user to resort to code to express sufficiency conditions for a
concept. In the original paper, we did not technically include TESTs in concept
definitions, since no formal semantics was available for it. We quickly provided
guidelines (e.g., avoiding side-effects) that could guarantee that TEST-defined
concepts could fit into our formal semantics, even if the TEST code itself was
opaque to classic. But our view was that the TEST construct was not intended
to be a general programming interface.

As it turned out, TEST-concepts were one of the absolute keys to successful
use of classic. In fact, they not only turned out to be a critical feature to our
users, but as we observed the patterns of tests that were written in real applica-
tions, we were able to ascertain a small number of new features that were missing
from the language but fundamental to our applications. First, we discovered that
users consistently used TESTs to encode simple numerical range restrictions; as
we mention below, this led us to create MAX and MIN constructors for our
concept language. Later, in one significantly large and real-world application,

8 In the case of classic, inferences not supported by the modified semantics of indi-
viduals used in subsumption reasoning fall into this category.

“Reducing” CLASSIC to Practice 455

we found only six different patterns of TEST concepts, with over 85% of these
falling into only two types; one was computing via a function a universal re-
striction on a role (actually, a numerical range), and the other was computing a
numerical filler for a role (a simple sum). We have subsequently made additions
to classic to accommodate these common patterns of usage (i.e., “computed
rules”), and have found that newer versions of the same knowledge base are sub-
stantially simpler, and less prone to error (the original TESTs were written to
achieve some of their effects by side-effect, which we subsequently eliminated).

Thus, while our original fear was that an escape to lisp or C was an embar-
rassing concession to implementation, and one that would destroy the semantics
of the logic if used, our TESTs were never used for arbitrary, destructive com-
putation. Rather, this mechanism turned out to be a means for us to measure
specifically where our original design was falling short, all the while staying
within a reasonable formal semantics.9

4.4 Meeting the Needs of Particular Applications

As soon as a system is put to any real use, mismatches or inadequacies in support
of particular applications become very evident. In this respect, there seems to be
all the difference in the world between the few small examples given in research
papers and the details of real, sizable knowledge bases. As mentioned, we took
on several significant and different types of applications. While the demands
from each of them were somewhat different, they clearly did not demand that
we immediately extend classic to handle the expressive power of full first-order
logic. In fact, the limited number of extensions and changes that arose from the
interaction with individual applications are useful in all of them, and all stay
within the original spirit of simplicity.

Language and KB Operation Features. Among the first needs we had to
address was the significance of numbers and strings. Virtually all of the appli-
cations needed to express concepts limiting the values of roles that had HOST

values in them, as in, for example, “a manager whose salary is between 20000
and 30000.” On the one hand, this need vindicated our original decision to inte-
grate host information in a serious manner.10 On the other, as mentioned above,
the need to create TEST-concepts just to test simple ranges like this showed us
that we would have a hard time measuring up to almost any application that
9 As evidence of the continuing general lack of appreciation of the more theoretically-

inclined towards pragmatic issues, consider that one of the reviewers of our 1989
paper [5] called TESTs “an abomination.” Yet, not only were they undeniably crit-
ical to our users, we managed to keep them in line semantically and they provided
concrete input concerning the expressive extensions that were most required by our
users.

10 We should point out that integration here is not just a simple matter of allowing
numbers or strings in roles; it has ramifications for the language syntax and parsing,
part of the concept hierarchy must be built automatically, data structures for CLASSIC

individuals need to be carefully distinguished from arbitrary lisp structures, etc.

456 R.J. Brachman et al.

used real data (especially if it came from a DBMS). Thus, recent versions of
classic have new concept types that represent ranges of HOST values.11 These
are integrated in a uniform manner with other concept constructors, and the
semantics accounts for them.

Another major consequence of dealing with a significant application is the
reality of querying the KB. Our original design of classic (as was the case with
virtually all frame systems) paid scant attention to queries other than those of
the obvious sort, e.g., retrieving instances of concepts. Once we began to see
classic as a kind of deductive database manager, we were forced to face the
problem that our querying facilities were very weak. This led to the design of a
substantial query language for classic, which could handle the needed object-
oriented queries, as well as the sql-style retrievals that are so common in the
real world of information management. While this is not profound (although the
query language we developed has some novel features and is itself an important
contribution), the key point is that it was the attempt at application that made
us realize that an entire critical component was missing from our work.

Two other consequences of this sort bear brief mention.
First, our simple notion of a TEST was sufficient to get us off the ground.

Our intention was to pass the individual being tested to the test function as a
single argument. As it turned out, our users needed to pass other items in as
arguments. For example, if the test were a simple function to compute whether
the value of a role were greater than some number, say 5, then the number 5
should have been coded directly into the test function; this, in turn, would have
led to the creation of many almost-identical functions—unless we provided the
ability to pass in additional arguments. We have done so in the latest versions
of classic.

Second, our original design of rules was a sufficient foundation, but it required
a named concept to exist as the left-hand-side of the rule. As soon as some of our
users tried to use this, they found that they had to construct concepts artificially,
just to serve to invoke the rules. While this posed no conceptual problem for the
logic, and no semantic aberration, it became a practical nightmare. Thus, it was
important to extend our rules to allow a filter; in other words, the rule could be
associated with the most general named concept for which it made sense, but
only fired when a filtering subcondition was satisfied. This now avoids needless
creation of artificial concepts.

API’s. Finally, an important consideration was the relationship between our
KR system and the application that used it. In the vast majority of our applica-
tions, classic had to serve as a tightly integrated component of a much larger
overall system. For this to be workable, classic had to provide a full-featured
application programming interface (API) for use by the rest of the system.
11 MAX and MIN have instances that are numbers; e.g., (MAX 25) represents the set

of integers that are less than or equal to 25. These are used to restrict the value of
a filler of a role; for example, we could use MAX to specify the value restriction on
a person’s age, as in (AND PERSON (ALL age (MAX 25))). AT-LEAST and AT-

MOST, on the other hand, restrict the number of fillers of a role, not their values.

“Reducing” CLASSIC to Practice 457

Our most complete API was in the NeoClassic (C++) system. It had the
usual calls to add and retract knowledge and to query for the presence of partic-
ular knowledge. In addition, there was a broader interface that let the rest of the
system receive and process the data structures used inside NeoClassic to rep-
resent knowledge, but without allowing these structures to be modified outside
of NeoClassic.12 This interface allowed for much faster access to the knowledge
stored by NeoClassic, as many accesses were simply to retrieve fields from a
data structure. Further, direct access to data structures allowed the rest of the
system to keep track of knowledge from NeoClassic without having to keep
track of a “name” for the knowledge, and also supported explanation.

A less-traditional interface that is provided by both lisp classic and Neo-

Classic is a notification mechanism (“hooks”). This mechanism allows program-
mers to write functions that are called when particular changes are made in the
knowledge stored in the system or when the system infers new knowledge from
other knowledge. Hooks for the retraction of knowledge from the system are also
provided. These hooks allow, among other things, the creation of a graphical
user interface that mirrors (some portion or view of) the knowledge stored in
the representation system.

Lately, others in the knowledge representation community have recognized
the need for common API’s, (e.g., the general frame protocol [17] and the open
knowledge base connectivity [16]) and translators exist between the general frame
protocol API specification and classic.

4.5 Revisiting What Looked Good on Paper

Probably more commonly than researchers would like to admit, theoretical KR
papers are not always what they seem. While theorems and formal semantics
help us get a handle on the consequences of our formalisms, they do not always
do a complete job; it is also not unheard of for them to contain mistakes. Our own
experience was that several parts of our original formalism were clarified sub-
stantially by the experience of having to implement an inference algorithm and
have it used on real problems. In each case, a change was necessary to the orig-
inal formal work to accommodate the new findings. Because of the complexities
and subtleties of real-world problems, and the extreme difficulty of anticipating
in the abstract what real users will want, it seems that this type of effect is
inevitable, and a critical contribution of practice over pure “theory.”

For example, we had originally proposed that CLOSE could appear in a de-
scription applied to an individual, to signal that the role fillers asserted by the
description were the only fillers. Thus, one could assert of Dale,

(AND (FILLS friend Audrey)
(FILLS friend Harry)
(CLOSE friend));

12 Of course, as C++ does not have an inviolable type system, there are mechanisms to
modify these structures. It is just that any well-typed access cannot.

458 R.J. Brachman et al.

this was to mean that Audrey and Harry were Dale’s only friends. We thought of
this, semantically, as a simple predicate closure operation. However, once a real
knowledge base was constructed, and users started interacting with the system,
we discovered a subtle ordering dependency: pairs of CLOSE constructors could
produce different effects if their order were reversed; this occured because the
first closing could trigger a rule firing, whose effect could then be to enable or
block another rule firing in conjunction with the second closing. This led us to
discover that our original characterization of CLOSE was in general wrong. In
reality, it had an autoepistemic aspect, and thus closing roles had to become
an operation on an entire knowledge base, and could not be part of a larger
expression. CLOSE was thus removed from the description language and made
a knowledge base operation.

We had a small number of similar experiences with other aspects of the lan-
guage. For instance, our original estimation was that a certain part of classic’s
reasoning with individuals was complete for the purposes of subsumption check-
ing. In implementation, we had to look substantially closer at what properties of
individuals could count in the subsumption of concepts (individuals could appear
in concepts originally in ONE-OF constructs, and later, in FILLS expressions).
In doing so, we discovered that while the implementation actually did what we
thought was right—it ignored contingent properties of individuals in subsump-
tion calculations—the semantics was wrong. We eventually found a suitable,
interesting, and somewhat non-standard semantic account that described what
we really meant [7]. Moreover, it was discovered ([40] and, independently, [7])
that reasoning with ONE-OF according to standard semantics is intractable.
In retrospect, our belief is that it would have been a mistake to omit individ-
uals from concept descriptions because of this complexity result, and that our
intuitions serendipitously led us to a good compromise. So, while formal seman-
tics are a good foundation on which to build, they are not necessarily what the
designers mean or what the users need to understand.

Being forced by implementation to get every last detail right also caused us
ultimately to better understand our TEST constructs. Given when they would
be invoked, it eventually became clear (thanks to a key user’s discovery) that
TESTs, which were originally two-valued functions, had to be three-valued: since
classic supports partial information about individuals, it is possible for a test
to “fail” at one point and succeed later, even with strictly monotonic additions to
the KB. If the test truly failed the first time, and the individual were determined
not to satisfy a description based on this failure, nonmonotonicity would be
introduced in an inappropriate way. Thus TEST functions need to tell their
caller if the individual provably satisfies the test, provably fails it, or neither.

4.6 Other Important Influences

While our focus here has been on the feedback from our practice with classic

to our theory, it is important to point out that our practical work on classic

both spawned and benefited from other theoretical work.

“Reducing” CLASSIC to Practice 459

For example, we had not worried about that fact that expanding the defi-
nitions of concepts could, in the worst case, lead to an exponential blow-up in
the space required to represent a classic knowledge base, but we did not know
whether there was perhaps a better method. Work by Nebel [34] showing that
there is an inherent intractability in the processing of description logic knowledge
bases made the existence of such a method unlikely.

As mentioned, the original CLOSE constructor had to be abandoned because
of implementation ordering difficulties. We replaced the CLOSE constructor
with an operation on knowledge bases, to which we gave an operational seman-
tics. Donini, et al., [20] realized the true epistemic nature of this operation, and
pointed out that the trigger rules used in classic and loom also have such an
epistemic nature. As a result, a theory of epistemic DL’s was developed, where
rules like PERSON �(ALL parents PERSON), hitherto given an operational in-
terpretation, were integrated into the knowledge base by using a modal operator
K: K(PERSON) =⇒ (ALL parents PERSON), and thus given a denotational
semantics. This semantics provides a justification for the operational treatment
provided in classic.

The successful implementation and use of filtering for elimination of unin-
teresting information about individuals led to its formalization through the no-
tion of patterns—descriptions with variables occurring in some places instead
of identifiers—and pattern matching [8]. This formal work has been extended to
other languages [3], and may have applications to knowledge-base integration,
where concepts from one ontology may be matched against corresponding parts
of the other ontology, in order to discover commonalities [6].

Inspired by the need for both domain-independent extensions (e.g., qualified
number restriction), and domain-specific ones (e.g., reasoning with dates, plans,
etc.), the classic implementation was analyzed, rationalized and generalized to
an architecture that supports the addition of new concept constructors [4]. In
fact, the last version of lisp classic (release 2.3) has features for adding sub-
sumption reasoning for some TEST-concepts, because a description like (TEST-

H initialSubstring "reason")—denoting strings that begin with the let-
ters r-e-a-s-o-n—can be viewed as just a syntactic variant of the description
(INITIAL-SUBSTRING "reason"), which makes it clear that a new con-
structor is being used. Note that the addition of arguments to TEST-concept
functions was crucial in this step to extensibility.

5 Modern classic

The result of the long and arduous trail implied above, from typical research
paper to practical system, was a significant improvement in the classic lan-
guage and the clarity of operations on a classic knowledge base. The basic
expression grammar was simplified and made more uniform (see Figure 3), and
the semantics was adjusted to be truer to our original intention. KB operations
were streamlined and made more useful, and error-handling and retraction were
added. The resulting system is unarguably superior to the original in every way:

460 R.J. Brachman et al.

<concept-expression> ::=
THING | CLASSIC-THING | HOST-THING | NUMBER | STRING |

<concept-name> |

(AND <concept-expression>+) |
(ALL <role-name><concept-expression>) |
(AT-LEAST <positive-integer><role-name>) |

(AT-MOST <non-negative-integer><role-name>) |
(FILLS <role-name> <individual-name>+) | % added for uniformity
(SAME-AS (<attribute-name>+) (<attribute-name>+)) | % restricted
(TEST-C <function><arg>∗) | % clarified; arguments added; 3-valued
(TEST-H <function><arg>∗) | % clarified; arguments added; 3-valued
(ONE-OF <individual-name>+) |
(MAX <number>) | % added
(MIN <number>) % added

<individual-expression> ::=
<concept-expression> | % made uniform with concepts
<individual-name> |

<host-language constant>

Fig. 3. The Resulting classic Concept Language

it has new constructs that meet real needs, substantial parts of it have been
validated by use, the overall interface makes more sense, it is cleaner and more
elegant, and it is devoid of flaws that were subtly hidden in the original.

The effects of the pragmatic factors we have described here are varied, and
not easily classified. But they are clearly substantial and were critical to the
success and ultimate form of classic. To summarize, here are some of the most
important changes that were driven by the attempt to “reduce” the system to
practice and put it to the test of real use:

– language improvements: equal descriptive power for individuals and con-
cepts; distinction between attributes and multiply-filled roles; SAME-AS ap-
plicable to attributes only and efficiently computable; arguments for TEST-
concepts; three-valued TESTs; completely compositional language with no
order dependencies; numeric range concepts; rules with filter conditions, no
longer requiring artificial concepts; realms of TEST-concepts unambiguous
and TEST constructs made uniform with other parts of language; computed
rules;

– interface improvements: primitive and disjoint primitive definition as KB op-
erators; disjoint primitive specification simplified; CLOSE as a KB operator;
sophisticated query language and implemented query processor; complete
API for embedded use;

– system features: comprehensive error-reporting and handling; extensive ex-
planation capabilities; filtering language for pruning; renaming of concepts;
retraction of “told” information; contradiction-handling.

Finally, we completed the cycle by embarking on an actual formal proof of
the tractability of classic and the completeness of our reasoner [7]. This proof

“Reducing” CLASSIC to Practice 461

was more difficult than usual because the language lacks negation, so standard
techniques could not be applied. We ended up using an abstraction of the im-
plementation data structure for the proof, and we must admit that it took the
trained eye of a very devoted and skilled reviewer to get the details right. So,
while it would have been nice to have come up with this proof before we even
proposed the logic and tried to implement it, it is very doubtful that we would
have succeeded, without the experience of practice to guide us.

6 Lessons

The main lesson to be learned here is that despite the ability to publish theo-
retical accounts of logics and their properties, the true theoretical work on KR
systems is not really done until issues of implementation and use are addressed
head-on. The basic ideas can hold up reasonably well in the transition from
paper to system, but traditional research papers miss many make-or-break is-
sues that determine a proposal’s true value in the end. Arguments about needed
expressive power, the impact of complexity results, the naturalness and utility
of language constructs, etc., are all relatively hollow until made concrete with
specific applications and implementation considerations.

Although a complete formal specification of a knowledge representation sys-
tem (including an algorithmic specification of the inferences that the system
is required to perform and a computational analysis of these inferences) is es-
sential, the presence of a formal account is not sufficient for the success of the
system. There is no guarantee, for example, that a formally tractable knowledge
representation system can be effectively implemented, as it may be exceedingly
difficult to code the inference algorithms or other portions of the system effi-
ciently enough for use or perspicuously enough to tell if they are correct. Even
then, there is no guarantee that the resulting system will be useful in practice,
even if it appears at first glance to meet some apparent needs. Finally, getting
the formal specification really right is an extremely difficult task, especially for
systems that perform partial reasoning or which have non-standard but useful
constructs. All told, the implementation and use of the system is a vital comple-
ment to work on knowledge representation “theory.” It can illuminate problems
in the formal specification, and will inevitably provide real problems for the
theory side to explain.

Our experience with classic has taught us this lesson in some very specific
ways. Any hope of having the system make a real impact (e.g., in a product)
rested on some very practical considerations that in some cases were impossible
to anticipate before interacting with developers. We learned through extensive
interaction with our developers that issues like upward compatibility and sim-
plicity were in some ways much more important than individual features. We
learned that usability issues such as explanation, contradiction-handling, and
pruning were critical to longevity and maintenance in applications and were
much more important than additional language constructs. We learned that at-
tention to complexity (although not maniacal concern with it) was very much

462 R.J. Brachman et al.

worth the effort, because of the critical impact of performance and predictabil-
ity on acceptance of the system. We also learned that we could not afford to
be totally rigid on any point—be it language features, complexity, or names of
functions—without jeopardizing potential use of the system. The feeling of the
classic group is that the resulting system is clearly far better than anything we
could have built in a research vacuum. And the effort of reducing our ideas to
a practical system generated a great deal of research—on language constructs,
complexity, and even formal semantics—that was not only interesting, but im-
portant simply by virtue of the very fact that it arose out of real problems.

At a more strategic level, one very important lesson for us was the significance
of a certain kind of conservatism. We could have invested a large amount of
time designing features and providing expressive power (and implementation
complexity) that would have, as it turned out, gone completely to waste. On the
flip side, our users gave us clear and direct evidence of features that they did need,
and that we were not providing, via our TEST construct, which, to be honest,
surprised us both in its criticality and in the simple and regular ways in which
it was used—not to mention the smallness of the number of needed extensions.
All told, our decision to start with a small (but not hopelessly impoverished)
language, with room for growth in a reasoned fashion, was clearly a successful
one. While such emphasis on simplicity might not necessarily be right for all
projects, given the constraints under which product developers live, it is a key
issue to consider when the practice that we are “reducing” to is not just for AI
research but for development and product.

In sum, a number of key factors of a strongly pragmatic sort show that logics
that look good on paper may have a long way to go before they can have any
impact in the real world. These factors range from upward compatibility and
system maintenance to implementation tradeoffs and critical system features
like error-handling and explanation. They include learnability of the language
and occasional escapes to circumvent limitations of the system. While individual
gains in classic derived from attention to these practical concerns may each
have been small, they all added up, and made a big difference to success of the
system as a whole. It is quite clear that if practical concerns were ignored, the
resulting system would have had at best limited utility. In fact, in general in our
field, it seems that the true theoretical work is not done until the implementation
runs and the users have had their say.

References

1. Aı̈t-Kaci, H.: Type subsumption as a model of computation. In: Kerschberg, L. (ed.)
Proceedings of the First International Conference on Expert Database Systems,
Kiawah Island, South Carolina, October 1984, pp. 124–150 (1984)

2. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.: An empirical
analysis of optimization techniques for terminological representation systems, or,
making KRIS get a move on. In: Nebel, et al. (eds.) [35], pp. 270–281

3. Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description
logics. Journal of Logic and Computation 9(3), 411–447 (1999)

“Reducing” CLASSIC to Practice 463

4. Borgida, A.: Extensible knowledge representation: the case of description reasoners.
Journal of Artificial Intelligence Research 10, 399–434 (1999)

5. Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A struc-
tural data model for objects. In: Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Mangement of Data, June 1989, pp. 59–67. Association for
Computing Machinery, New York (1989)

6. Borgida, A., Küsters, R.: What’s NOT in a name?: Initial explorations of a struc-
tural approach to intgerating large concept knowledge bases. Technical Report
DCS-TR-391, Rutgers University, Dept. of Computer Science (August 1999)

7. Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for sub-
sumption in the Classic description logic. Journal of Artificial Intelligence Re-
search 1, 277–308 (1994)

8. Borgida, A., McGuinness, D.L.: Inquiring about frames. In: Aiello, L.C., Doyle,
J., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR 1996), November 1996, pp.
340–349. Morgan Kaufmann Publishers, San Francisco (1996)

9. Brachman, R.J.: A Structural Paradigm for Representing Knowledge. PhD thesis,
Harvard University, Cambridge, MA (1977); BBN Report No. 3605, Bolt Beranek
and Newman, Inc., Cambridge, MA (July 1978) (revised version)

10. Brachman, R.J., Fikes, R.E., Levesque, H.J.: KRYPTON: Integrating terminol-
ogy and assertion. In: Proceedings of the Third National Conference on Artificial
Intelligence, Washington, DC, August 1983, pp. 31–35. American Association for
Artificial Intelligence, Menlo Park (1983)

11. Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based
description languages. In: Proceedings of the Fourth National Conference on Ar-
tificial Intelligence, Austin, Texas, August 1984, pp. 34–37. American Association
for Artificial Intelligence, Menlo Park (1984)

12. Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida,
A.: Living with CLASSIC: When and how to use a KL-ONE-like language. In:
Sowa, J.F. (ed.) Principles of Semantic Networks: Explorations in the represen-
tation of knowledge, pp. 401–456. Morgan Kaufmann Publishers, San Francisco
(1991)

13. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge represen-
tation system. Cognitive Science 9(2), 171–216 (1985)

14. Brachman, R.J., Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F.,
Kirk, T., Lazar, A., McGuinness, D.L., Resnick, L.A.: Knowledge representation
support for data archaeology. In: First International Conference on Information
and Knowledge Management, Baltimore, MD, November 1992, pp. 457–464 (1992)

15. Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive de-
scription logics: a preliminary report. In: Ellis, G., Levinson, R.A., Fall, A., Dahl,
V. (eds.) Knowledge Retrieval, Use and Storage for Efficiency: Proceedings of the
First International KRUSE Symposium, pp. 28–39 (1995)

16. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D.: Open Knowledge Base Con-
nectivity 2.0. Technical report, Technical Report KSL-09-06, Stanford University
KSL (1998)

17. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.: The Generic Frame
Protocol 2.0. Technical report, Artificial Intelligence Center, SRI International,
Menlo Park, CA (July 1997)

18. Devanbu, P., Brachman, R.J., Ballard, B., Selfridge, P.G.: LaSSIE: A knowledge-
based software information system. Communications of the ACM 34(5), 35–49
(1991)

464 R.J. Brachman et al.

19. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In:
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence.
International Joint Committee on Artificial Intelligence, Sydney, Australia, August
1991, pp. 458–453 (1991)

20. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: Adding epistemic
operators to concept languages. In: Nebel et al. (ed.) [35], pp. 342–353

21. Doyle, J., Patil, R.: Two theses of knowledge representation: Language restric-
tions, taxonomic classification, and the utility of representation services. Artificial
Intelligence 48(3), 261–297 (1991)

22. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Cohn,
A.G., Schubert, L., Shapiro, S.C. (eds.) Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KR 1998), June
1998, pp. 636–647. Morgan Kaufmann Publishers, San Francisco (1998)

23. International Joint Committee on Artificial Intelligence. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (August 1995)

24. MacGregor, R.M.: A deductive pattern matcher. In: Proceedings of the Seventh
National Conference on Artificial Intelligence, St. Paul, Minnesota, August 1988,
pp. 403–408. American Association for Artificial Intelligence, Menlo Park (1988)

25. McGuinness, D.L.: Explaining Reasoning in Description Logics. PhD thesis, De-
partment of Computer Science, Rutgers University (October 1996); also available
as Rutgers Technical Report Number LCSR-TR-277

26. McGuinness, D.L.: Ontological issues for knowledge-enhanced search. In: Proceed-
ings of Formal Ontology in Information Systems. IOS-Press, Washington (1998);
also In: Frontiers in Artificial Intelligence and Applications (to appear)

27. McGuinness, D.L., Borgida, A.: Explaining subsumption in Description Logics. In:
IJCAI 1995 [23], pp. 816–821

28. McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Isbell, C., Parker, M.,
Welty, C.: A description logic-based configuration for the web. SIGART Bul-
letin 9(2) (fall, 1998)

29. McGuinness, D.L., Resnick, L.A., Isbell, C.: Description Logic in practice: A CLAS-
SIC application. In: IJCAI-1995 [23], pp. 2045–2046

30. McGuinness, D.L., Wright, J.R.: Conceptual modeling for configuration: A descrip-
tion logic-based configurator platform. Artificial Intelligence for Engineering De-
sign, Analysis, and Manufacturing Journal - Special Issue on Configuration (1998)

31. McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based
configuration platform. IEEE Intelligent Systems (1998)

32. Moser, M.G.: An overview of NIKL, the new implementation of KL-ONE. Technical
Report 5421, BBN Laboratories, 1983. Part of a collection entitled “Research in
Knowledge Representation for Natural Language Understanding—Annual Report
(September 1, 1982–August 31, 1983)

33. Mylopoulos, J., Bernstein, P., Wong, H.K.T.: A language facility for designing
database-intensive applications. ACM Transactions on Database Systems 5(2),
185–207 (1980)

34. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelli-
gence 43(2), 235–249 (1990)

35. Nebel, B., Rich, C., Swartout, W. (eds.): Principles of Knowledge Representation
and Reasoning: Proceedings of the Third International Conference (KR 1992).
Morgan Kaufmann Publishers, San Francisco (1992)

“Reducing” CLASSIC to Practice 465

36. Patel-Schneider, P.F.: Small can be beautiful in knowledge representation. In: Pro-
ceedings of the IEEE Workshop on Principles of Knowledge-Based Systems, Den-
ver, Colorado, December 1984, pp. 11–16. IEEE Computer Society, Los Alamitos
(1984)

37. Patel-Schneider, P.F.: Undecidability of subsumption in NIKL. Artificial Intelli-
gence 39(2), 263–272 (1989)

38. Patel-Schneider, P.F.: DLP system description. In: Franconi, E., De Giacomo, G.,
MacGregor, R.M., Nutt, W., Welty, C.A. (eds.) Proceedings of the 1998 Inter-
national Workshop on Description Logics, June 1998, pp. 87–89 (1998); available
electronically as a CEUR publication at
http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-11/

39. Peltason, C., von Luck, K., Nebel, B., Schmiedel, A.: The user’s guide to the
BACK system. KIT-Report 42, Fachbereich Informatik, Technische Universität
Berlin (January 1987)

40. Schaerf, A.: Reasoning with individuals in concept languages. Data and Knowledge
Engineering 13(2), 141–176 (1994)

41. Schmidt-Schauss, M.: Subsumption in KL-ONE is undecidable. In: Brachman, R.J.,
Levesque, H.J., Reiter, R. (eds.) Principles of Knowledge Representation and Rea-
soning: Proceedings of the First International Conference (KR 1989), May 1989,
pp. 421–431. Morgan Kaufmann Publishers, San Francisco (1989)

42. Selfridge, P.: Knowledge representation support for a software information sys-
tem. In: IEEE Conference on Artificial Intellingence Applications, Miami, Florida,
February 1991, pp. 134–140. The Institute of Electrical and Electronic Engineers
(1991)

43. von Luck, K., Nebel, B., Peltason, C., Schmiedel, A.: BACK to consistency and
incompleteness. In: Stoyan, H. (ed.) Proceedings of GWAI-1985—the 9th German
Workshop on Artificial Intelligence, pp. 245–257. Springer, Heidelberg (1986)

44. Wright, J.R., Weixelbaum, E.S., Brown, K., Vesonder, G.T., Palmer, S.R., Berman,
J.I., Moore, H.H.: A knowledge-based configurator that supports sales, engineering,
and manufacturing at AT&T network systems. In: Proceedings of the Innovative
Applications of Artificial Intelligence Conference, Washington, July 1993, pp. 183–
193. American Association for Artificial Intelligence, Menlo Park (1993)

http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-11/

The KBMS Project and Beyond

Vinay K. Chaudhri1, Igor Jurisica2, Manolis Koubarakis3,
Dimitris Plexousakis4, and Thodoros Topaloglou5

1 SRI International, Menlo Park, CA, USA
2 Ontario Cancer Institute, University Health Network, Toronto, Canada

3 National and Kapodistrian University of Athens, Athens, Greece
4 University of Crete and FORTH-ICS, Heraklion, Crete, Greece

5 McGill University and Genome Quebec Innovation Center, Montreal, Canada

Abstract. The Knowledge Base Management Systems (KBMS) Project
at the University of Toronto (1985-1995) was inspired by a need for
advanced knowledge representation applications that require knowledge
bases containing hundreds of thousands or even millions of knowledge
units. The knowledge representation language Telos provided a frame-
work for the project. The key results included conceptual modeling inno-
vations in the use of semantic abstractions, representations of time and
space, and implementation techniques for storage management, query
processing, rule management, and concurrency control. In this paper, we
review the key ideas introduced in the KBMS project, and connect them
to some of the work since the conclusion of the project that is either
closely related to or directly inspired by it.

1 Introduction

In the early nineties, the emergence of advanced applications such as Computer-
Aided Design (CAD), software engineering, real-time control systems, and grand
challenge projects such as the DARPA knowledge sharing project [1] and the Hu-
man Genome project [2] required technologies for creating and managing data
representations with rich structure and ability for inference. The goal of the
Knowledge Base Management Systems (KBMS) project, led by Prof. John My-
lopoulos, was to develop the technology for construction and efficient access of
large and shared knowledge bases (KBs). At that time, the state of the art in
KB implementations was to use expert system shells or programming languages
such as Lisp or Prolog. In the KBMS project, we investigated the use of database
technology as a source for techniques for advancing the state of the art in con-
structing large knowledge base systems [3].

The knowledge representation language Telos provided the focal point of re-
search in the KBMS project, and a framework for five Ph.D. [4,5,6,7,8] and three
Masters [9,10] theses. We begin this paper with an overview of Telos and the key
technical results of the project. We then discuss the current state of development
of knowledge base systems most closely related to the problems investigated in
the KBMS project.

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 466–482, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The KBMS Project and Beyond 467

2 The Knowledge Representation Language Telos

Since a detailed description of Telos is available in published papers [11], we will
highlight here only its salient features.

Propositions: A proposition is the fundamental unit in a KB. A proposition is a
triple, and can represent an individual or an attribute.

Structural Knowledge: The propositions in a KB are organized along three dimen-
sions: aggregation, classification, and instantiation. The aggregation represents
structured objects, the classification represents the class-subclass relationship,
and the instantiation represents the class-instance relationship.

Classes can be instances of other classes, thus allowing meta-classes. Meta-
classes are a mechanism for extending the representation model. Similarly, at-
tributes can be instances of classes, called attribute classes, which provide a
mechanism to impose constraints or specific semantics to attributes.

Temporal Knowledge: Every Telos proposition has an associated history time
and a belief time. The history time of a proposition represents the lifetime of a
proposition in the application domain (i.e., the lifetime of an entity or a rela-
tionship). A proposition’s belief time, on the other hand, refers to the time when
the proposition is believed by the KB, i.e., the interval between the moment the
proposition is added to the KB and the time when its belief is terminated. In
Telos, time is modeled using intervals that can be related using the relations
in Allen’s Interval Algebra [12]. The combination of constraint-based temporal
representations and nontemporal ones was fully explored in the Ph.D. thesis of
Koubarakis [4].

Assertional Knowledge: Telos provides an assertion language for the expression of
deductive rules and integrity constraints. The assertion language is a first-order
language with equality. Telos supports both static constraints (that apply to all
states of a KB) and dynamic constraints (that apply to those temporal states
that satisfy specific temporal predicates or to the transition between temporal
states). Deductive rules are also explicitly associated with history and belief time
intervals.

Telos supports primitive KB operations such as Tell, Untell, Retell, and Ask
that can be used to query and update the KB. A possible-worlds semantics for
Telos was defined in the Master’s thesis of Plexousakis [10]. The semantics of
Telos include an ontology of objects based on the property of existence, and
proofs for the soundness, consistency, and completeness of a Telos KB.

Spatial Knowledge: The representation for the spatial knowledge in Telos was
defined in the Ph.D. thesis of Topaloglou [7]. The spatial representation in Telos
was accomplished through a library of meta-classes and meta-attributes that
capture the semantics of spatial features of physical objects. The objects with
a spatial extension can be placed in spaces, called maps, at variable scales and
related to other spatial objects or constants through qualitative or quantitative
relationships.

468 V.K. Chaudhri et al.

2.1 Telos Implementations

There have been four implementations of Telos. The first implementation was
done as part of two Master’s theses [9], carried out at the University of Toronto
and ICS-FORTH, and covered all the features of Telos including reasoning with
incomplete temporal information. The implementation language was Prolog with
the temporal reasoning module implemented in C for efficiency. The temporal
reasoning module implemented constraint satisfaction for a subset of Allen’s
Interval Algebra so that consistency checking remains polynomial. Nevertheless,
the data complexity of query answering for the query language used is at least
NP-hard [13].

The second implementation of Telos was done by an ICS-FORTH team led by
Martin Doerr. The implementation was done in C++ and covered only the struc-
tural knowledge, and provided no support for assertional or temporal knowledge.
This Telos prototype was used in the implementation of the Software Information
Base [14].

The third implementation of Telos was based on the dialect O-Telos defined
in the Ph.D. thesis of Manfred Jeusfeld at the University of Passau, and im-
plemented in the ConceptBase system [15]. O-Telos omitted the history time
component of Telos and its facilities for reasoning with incomplete information,
and implemented only the structural and assertional knowledge features of Telos.
Since 1995, ConceptBase has been continuously developed and it is freely avail-
able.1 ConceptBase is currently applied at more than 500 sites worldwide for
research as well as teaching and is the most complete implementation of Telos.

The fourth implementation, called Common Knowledge Base (CKB), was
done by Bryan Kramer and Martin Stanley at the University of Toronto in the
context of the APACS project. This implementation was done in C++ and a
commercial object-oriented database management system, Versant, and covered
only the structural knowledge [16].

2.2 Research on Implementation Techniques

The implementations of Telos mentioned above were done using the technology
available at that time, did not support all the features of Telos, and, with the ex-
ception of ConceptBase, were not designed with scalability in mind. A significant
effort in the KBMS project was devoted to addressing these limitations. Specifi-
cally, we investigated database techniques for implementing Telos, and subjected
those techniques to rigorous performance evaluation [3]. We summarize here the
techniques that were developed during the KBMS project.

Storage Management: The research goal of this task was to efficiently store
on disk a KB that was too large to fit in the main memory. We developed a
scheme called Controlled Decomposition Model, that could map the structural
knowledge of a KB to a set of relations in a way that the information that was

1 http://www-i5.informatik.rwth-aachen.de/CBdoc/

http://www-i5.informatik.rwth-aachen.de/CBdoc/

The KBMS Project and Beyond 469

likely to be accessed together was stored together for efficient access, while the
rest was split across multiple relations to support efficient storage and updates
[17]. We extended the database techniques based on join indices to deal with the
temporal dimension of a KB.

Query Processing: The research goal of this task was to develop semantic
query optimization techniques for processing Telos queries [18]. We developed
query simplification techniques for temporal knowledge, syntactic simplification
techniques that apply knowledge of the class hierarchy, and techniques for gen-
erating query evaluation plans. We also developed a cost model for optimizing
path queries in knowledge bases with structural and temporal knowledge. [19].

Concurrency Control: The goal of this task was to develop techniques to
allow multi-user updates to a KB and was done as part of the Ph.D. thesis
of Chaudhri [5]. The key result was a new locking protocol, called the Dynamic
Directed Graph policy, that improved performance over the traditional two phase
locking protocol by taking advantage of the assertional component of Telos.

Integrity Constraints: The research goal of this task was to develop an al-
gorithm for efficient checking of integrity constraints for a Telos KB. This re-
search was done as a part of the Ph.D. thesis of Plexousakis [6]. We developed
techniques for compiling, simplifying and checking the violation of integrity con-
straints when there are updates to a KB. The technique took into account the
temporal knowledge of Telos as well as potential interactions between rules and
integrity constraints.

Case-based Reasoning: The research goal of this task was to develop a
methodology for building large and complex case-based reasoning systems, and it
was done as part of the Ph.D. thesis of Jurisica [8]. To achieve flexibility without
reducing performance, we adapted an incremental view maintenance algorithm
from database management systems [20] into a reasoning system called TA3,
and successfully applied it to several biomedical domains [21,22,23,22,24,25].
The key components of TA3 included case representation in Telos, incremental
query relaxation, modified k-nearest neighbor algorithm, and anytime retrieval
algorithm.

3 Evolution of Knowledge Systems Since the KBMS
Project

It is helpful to think of problems in the general area of constructing large knowl-
edge systems in three broad classes: Content Modeling, Implemented Systems
and Measurement and Evaluation. We now consider each of these subtopics in
detail concentrating on research that took place after the KBMS project, and is
either closely related to it or directly inspired by it. We notice that much of this
work is at the core of research areas that have received much attention recently
such as scientific data management or the Semantic Web.

470 V.K. Chaudhri et al.

3.1 Content Modeling

There are two aspects of content modeling: the knowledge representation lan-
guage itself, and the KB content. In Telos, the temporal and spatial representa-
tions were considered part of the language itself. This is not the case in systems
such as Cyc [26] in which the temporal knowledge and spatial knowledge are con-
sidered as subtheories in a KB - known as an upper ontology, and independent
of the representation language. Here, we review the research on KR language
features that were the subject of inquiry in Telos.

Structural Knowledge: In the mid-nineties, several KR research groups in-
vestigated languages such as CLASSIC [27], LOOM [28], and Ontolingua [29]
that are in the tradition of KL-ONE [30]. In an effort to synthesize among the
best features of various languages, Peter Karp at SRI International did a survey
of frame-based knowledge representation languages prevalent at that time that
led to the development of the Generic Frame Protocol [31] followed by the Open
Knowledge Base Connectivity Model [32].

The World-Wide Web (WWW) gave rise to a whole new group of languages
that are based on semantic abstractions and were designed as a foundation for the
Semantic Web [33]. Building on the WWW technologies (for example, Uniform
Resource Indicators) and the past research on semantic networks and frame-based
knowledge representation languages,ResourceDescription Framework (RDF) was
created [34] and became a standard of the World Wide Web Consortium (W3C) in
2004.2 With a similar emphasis, the DARPA Agent Markup Language program3

(DAML) focused on standardizing expressive knowledge representation languages
for the WWW. At the same time, another groupof researchers,mainly based in Eu-
rope, developed a competitor ontology language called the Ontology Interchange
Language (OIL) [35]. The interaction among DAML and OIL led to the language
DAML+OIL, which eventually became the Ontology Web Language or OWL that
became a W3C recommendation in 2004.4

Looking back at the gradual development of the languages mentioned above,
it is easy to discern the influence of Telos and the KL-ONE tradition in RDF and
the languages building on them. RDF triples bear a close resemblance to Telos
propositions. The abstraction mechanisms adopted in these languages had al-
ready been incorporated as modeling primitives in the representation framework
of Telos since the late 1980s.

Assertional Knowledge: Early efforts to combine an assertion language with
structural knowledge predate Telos and the KBMS project (see, e.g., KRYP-
TON [36]); such languages are now part of several implemented systems [29,26].
In parallel to work on Telos, there have also been various other proposals of
languages combining an assertional and structural knowledge, many of them

2 http://www.w3.org/RDF/
3 http://www.daml.org
4 http://www.w3.org/2004/OWL/

http://www.w3.org/RDF/
http://www.daml.org
http://www.w3.org/2004/OWL/

The KBMS Project and Beyond 471

coming under the label “deductive and object-oriented” languages. Perhaps the
most theoretically elegant language in this family is F-Logic [37]. F-Logic, like all
other deductive and object-oriented languages, originated from the database and
logic programming traditions, and accounts in a clean and declarative fashion
for most of the structural aspects of object-oriented and frame-based languages.

F-Logic, however, does not allow for temporal or spatial knowledge in its
assertion language in the way that Telos supports. An additional distinguishing
feature of the assertional component of Telos, not present in related languages, is
the coupling of the integrity constraints and deductive rules with the structural
knowledge. In Telos, rules and constraints are treated uniformly and can be
attached to classes at any level of the class hierarchy.

More recently, there have been several proposals for rule languages for the
Semantic Web. For example, Semantic Web Rule Language (SWRL) deals with
issues such as rule definition based on OWL.5 Semantic Inferencing for Large
Knowledge or SILK is an effort to define an expressive rule language that ad-
dresses issues such as reasoning with processes and defaults.6. The Rule Markup
Language (RuleML) initiative aims at defining a common rule interchange and
markup language based on XML and RDF.7 The problems studied in the con-
text of the specification, semantics and use of the assertion language of Telos are
thus recast and expanded in the context of reasoning on the Semantic Web.

TemporalKnowledge: The rich temporal knowledge representation concepts of
Telos (history time, belief time, interval-based incompleteness of historical knowl-
edge) did not find any followers in the deductive and object-oriented (or frame-
based) families of languages. There has been interesting relatedwork in other areas.

The distinction between history and belief time had already been made ex-
plicitly in the area of temporal relational databases [38,39] before Telos was put
forward (the corresponding terms used were valid time and transaction time)
and Telos had benefited from this work. The area of temporal databases saw
an explosion of activity culminating in the specification of the query language
TSQL2 [40], a temporal extension of the SQL-92 standard. In the deductive
database and logic programming community, the most comprehensive proposal
to introduce valid and transaction time using event calculus is by Sripada [41].

Gutierrez and colleagues [42,43,44] have proposed to extend RDF triples of
the form (s, p, o) with an additional temporal label t that is a natural number.
The resulting quad (s, p, o, t) is called a temporal RDF triple and denotes the fact
that the triple (s, p, o) is valid at time t. Based on this definition, [42,43,44] define
a temporal RDF graph as a set of temporal RDF triples, and study problems of
semantics and computational complexity of query answering. This representation
directly maps to the representation of propositions in Telos.

The temporal description logics introduce a concrete domain to model time
together with appropriate definitions for concepts, roles and features [45]. Work

5 http://www.w3.org/Submission/SWRL/
6 http://silk.projects.semwebcentral.org/
7 http://www.ruleml.org/

http://www.w3.org/Submission/SWRL/
http://silk.projects.semwebcentral.org/
http://www.ruleml.org/

472 V.K. Chaudhri et al.

here has concentrated mostly on issues of semantics and reasoning in these logics
with little emphasis on implementations.

Starting with Cyc,8 there has also been work on ontologies of time 9. The time
ontology in Cyc is one of the most comprehensive representations of time avail-
able today and has been reused outside the context for which it was originally
created [46].

Spatial Knowledge: Numerous spatial representations and calculi to support
efficient reasoning with spatial knowledge are now available that were not avail-
able at the time of the KBMS project [47]. The most comprehensive repre-
sentation of space in an implemented system is in the Cyc KB. The Cyc KB
provides a first-order axiomatization of basic spatial representational primitives.
It includes axiomatization of more than 65 spatial predicates, which include 15
different kinds of containment and 7 different kinds of covering. It also supports
representations for shapes, boundaries, regions, and convex hulls [48].

The Semantic Web language RDF has recently been extended to represent
spatial knowledge. In the system SPAUK [49], geometric attributes of a resource
(e.g., location of a gas station) are represented in RDF by introducing a blank
node for the geometry, specifying the geometry using the Geography Markup
Language,10 and associating the blank node with the resource using Geogra-
phy Encoded Objects for RSS feeds.11 Queries in SPAUK are expressed in the
SPARQL query language utilizing geometric vocabularies and ontologies [47].
In a similar spirit, Perry defines an extension of SPARQL, called SPARQL-ST,
that allows one to query spatial and nonspatial data with a time dimension [50].

3.2 Implemented Systems

We review here the implemented systems to which the graduates of the KBMS
project have contributed. These systems are closely related to the spirit of the
KBMS project.

The PERK System: The PERK (or Persistent Knowledge) system at SRI
International was implemented to enable collaborative construction of KBs [51].
It addressed the issues of storage management, concurrency control, graphical
editing, and application programming interfaces. The PERK system supports
only structural knowledge, and has no support for assertional, temporal or spatial
knowledge. We consider here the topics of storage management and concurrency
control since they are most closely related to the implementation techniques of
Telos KBMS.

The storage system in PERK is aimed at allowing incremental loading and
saving of a large KB into the main memory. It achieves this by submerging
8 http://www.opencyc.org/
9 http://www.w3.org/TR/2006/WD-owl-time-20060927/

10 http://www.opengeospatial.org/standards/gml
11 http://georss.org/

http://www.opencyc.org/
http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://www.opengeospatial.org/standards/gml
http://georss.org/

The KBMS Project and Beyond 473

the commercial Oracle database management system in an existing Lisp-based
frame-based representation system. Due to impedance mismatch between the
in-memory representation of Lisp objects and a relational database, and to fa-
cilitate evolution of the schema, PERK represents the content of a frame using a
compressed string representation. Since a string representation is not in the first
normal form, it is unable to support query processing directly by the database.
All the query processing is then done in memory using the frame system. To
facilitate fast retrieval, PERK adds indices for frequently accessed slots. The
spirit of this design is very close to the controlled decomposition model used in
the Telos KBMS.

The concurrency control scheme in PERK is based on an optimistic concur-
rency control approach: the users are allowed to make divergent updates to the
KB; and once they are satisfied with their changes, they attempt to commit
their updates; any conflicting updates are detected and they must resolve the
conflicts. This model seemed preferable to locking-based approach advocated in
the Telos KBMS because it allowed greater collaboration among the contribu-
tors. The conflict detection is done based on a change log that is organized at the
granularity of knowledge editing operations and not low-level storage operations
in a database. The PERK system is in extensive use as the back end of SRI’s
EcoCyc system [52].

The OPM Tools Suite: The Object Protocol Model (OPM) project [53] at
the Lawrence Berkeley National Laboratory utilizes a semantic data model to
describe the semantics of the entities in biological databases and build advanced
query mechanisms for biological data. The OPM project shares significant sim-
ilarities with the Telos knowledge management project.

OPM is an object-based data model that is very similar to Telos and is used
to describe a database at a conceptual level in terms of classes, attributes, and
relationships. By representing the semantics of the data, it enables scientific
users to create, query, and integrate databases without being bogged down by
implementation and system-level details. The gap between the user view and
the implementation view of a database is bridged by data management tools
that are driven by rich meta-data represented in OPM. The OPM suite in-
cludes tools for creating and querying databases, adding a query interface to an
existing database, querying multiple databases, and extending databases with
application-specific data types and methods. Forward development of an OPM
database results in the creation of a relational database and object-relational (O-
R) mapping meta-data that are used to reformulate object queries to relational
ones, and reconstruct objects from the results of a relational query plan. The O-
R mapping of OPM shares striking similarities to the controlled decomposition
model, although they have been developed independently.

The mechanism for model extensibility in OPM, needed to support methods
and application-specific types, such as DNA sequences and images, was realized
following an approach similar to the Telos approach, i.e., adding a new meta-
class at the language level, and complemented by a robust integration framework
and implementation infrastructure [54].

474 V.K. Chaudhri et al.

The RDF Suite: Due to the expansion of the WWW, there is a significant need
to enable querying over heterogeneous information sources. One effort to meet
this need is the ICS-FORTH RDFSuite [55], which provides services for loading,
parsing, schema-aware storage, querying, viewing, and updating of RDF/S re-
source descriptions and schemas. The design of RDFSuite was influenced by the
design decisions of the Telos KBMS, in particular with respect to storage man-
agement and querying. RDFSuite comprises (a) the Validating RDF Parser: a
parser supporting semantic validation of both RDF/S resource descriptions and
schemas, (b) the RDF Schema Specific DataBase: a store exploiting a variety of
Object-Relational (SQL3) representations to manage RDF/S resource descrip-
tions and schemas, (c) the RDF Query Language: a declarative language for
uniformly querying RDF/S resource descriptions and schemata, (d) the RDF
View Language: the first declarative language for creating virtual RDF/S re-
source descriptions and schemas, and (e) the RQL Graphical Query Generator:
a user interface generating minimal declarative queries by taking into account
the browsing actions in an RDF/S schema during a user navigation session.

The TA3 System: The TA3 system was developed as part of the Ph.D. the-
sis of Jurisica [8] and has undergone significant evolution. The TA3 system has
been expanded by using incremental query relaxation and anytime retrieval algo-
rithm [20], reimplementing the system in Java, and using the IBM DB2 relational
database for persistent storage [23]. Further expansion covered support to han-
dle images [22,56,24,57], improved performance with data mining [25,58], and
improved accuracy with an ensemble of classifiers [59].

The TA3 system currently handles the scale and the size of data for which
the KBMS project was envisioned. As a specific example, it is being used to
store and analyze protein crystallization experiments [60,23,58]. In its current
use, there are 12,000 protein crystallization experiments, each of which has 9,216
attributes, and the data is derived from 110,592,000 images [61,62]. The reposi-
tory grows at a rate of more than 200 experiments each month. Before TA3 can
suggest crystallization optimization strategies for a novel protein, we have to
compute 12,375 image features and automatically classify images into 10 possi-
ble categories [56,63,61,62].

The key to scaling the techniques that were developed in the KBMS project for
this new application has been the use of a scalable computational infrastructure.
Although the TA3 system can run on a regular Unix or Windows server, the
image processing runs on the World Community Grid12 and the post-processing
is done on a 1,344-core Linux cluster.

Another large-scale application of the TA3 system involves estimating a job
runtime [64]. The application domain considered scheduling Functional Regres-
sion Tests (FRT) for the IBM DB2 Universal Database product Version 8.2 (DB2
UDB) [65]. A job runtime can be affected by a large number of both job and
machine characteristics. Scalable performance is critical, as there are more than
50,000 jobs to test for each version of DB2 UDB in a grid, which comprises about

12 http://www.worldcommunitygrid.org

The KBMS Project and Beyond 475

300 machines with different configurations. A case is represented as a record that
includes job information, machine information, and runtime information. Case
retrieval and adaptation uses the priorities of job and both static and dynamic
machine characteristics. Our experimental results show that for more than 90%
of jobs, the estimation error is 45% or less, and the average estimation error is
at most 22%. Applying the system to FRT, we achieved average performance
improvements of 20% to 50%. In the worst case, we still achieved a 13% to 36%
performance improvement [65].

3.3 Measurement and Evaluation

Performance evaluation of implementation techniques was a central methodol-
ogy in the KBMS project. We discuss here innovations in measurement and
evaluation of knowledge-based systems.

Metrics on KB Size: In the world of databases, the size of the data measured
in records or bytes is a very good indicator of the scale of the problem. But, a
similar measure such as “millions of knowledge units” is not always meaningful
in the context of KBs. For example, a KB containing millions of simple facts
may have less knowledge content than a KB with a small number of axioms.
As an approximate measure, one can use the number of axioms in a KB as one
measure of competence. competence.

One possible approach to measuring the size was investigated in DARPA’s
High Performance KBs (HPKB) project in which the measure of axiom counts
was refined to include axiom categories [66]:

1. Constants are any names in the KB, whether an individual, class, relation,
function, or a KB module.

2. Structural statements are ground statements about the semantic abstractions
in a KB, for example, subclass-of, instance-of, domain, and range assertions.

3. Ground facts are any statement without a variable.
4. Implications include any nonground statement that has an implies (a ground

statement that contains an implication is counted as a ground statement).
5. Non ground, non implications are statements that contain variables but not

an implication.

While axiom categories are an improvement over measuring the size in terms
of knowledge units, they are still imperfect; a larger number of axioms in a cate-
gory does not alway imply a greater amount of knowledge. As a methodological
improvement, Vulcan’s Project Halo measures the size of a KB in terms of the
questions it is able to answer on a standardized college-level test [67]. While
the approach of using a standardized test is a significant improvement, we be-
lieve new ways of measuring the KB content and quality are needed that are
applicable to more general classes of systems.

476 V.K. Chaudhri et al.

Knowledge Reuse Metrics: A central claim in building the content for large
KBs is that as we add more content, things get easier, as the content added later
builds on what already exists. This is a claim that makes intuitive sense because
when new knowledge is to be added to a KB, relevant terms may already exist
and some knowledge may be available through inheritance. One innovative way
to test this claim is to study how knowledge is reused in a large KB [68] that
was tried in DARPA’s HPKB project.

The knowledge reuse metric can be defined as follows. Suppose one wishes to
add a new piece of knowledge to a KB. Every item i one wishes to add to the
KB contains n(i) terms, k(i) of which are already in the KB, and support is
s(i) = k(i)/n(i). Adding new terms to a KB changes the size of the KB, and the
support offered by the KB for future axioms might be higher because new terms
were added. Thus, support is indexed by versions of the KB: s(i, j) = k(i, j)/n(i)
is the support provided by version j of the KB for concept i.

Although the idea of knowledge sharing has been in the literature for many
years [1], the reuse metric was one of the first attempts to empirically study the
claim. The results in using this metric suggested that the answer depends on the
kind of prior knowledge, who is using it, and what it is used for. There is still
lot of room for further understanding of the KB construction process: How long
will a knowledge engineer hunt for a relevant term or axiom in a prior ontology?
How rapidly do KBs diverge from available ontologies if knowledge engineers
do not find the terms they need in the ontologies? By what process does a
knowledge engineer reuse not an individual term but a larger fragment of an
ontology, including axioms? How does a very general ontology inform the design
of KBs, and what factors affect whether knowledge engineers take advantage
of the ontology? Why do prior ontologies apparently provide less support for
encoding axioms than for encoding test questions?

Benchmarks for Knowledge Base Systems: At the time of the KBMS
project, hardly any data sets were available for testing tools and algorithms that
we were investigating. In recent years, some progress has been made on this
front, and we review two such efforts.

The Lehigh University Benchmark (LUBM) is a benchmark for large OWL
KBs [69]. The LUBM features an ontology for the university domain, synthetic
OWL data scalable to an arbitrary size, fourteen extensional queries representing
a variety of properties, and several performance metrics. The LUBM can be used
to evaluate systems with different reasoning capabilities and storage mechanisms.
It has been used for memory-based systems as well as systems with persistent
storage.

The OpenRuleBench13 is a suite of benchmarks for analyzing the perfor-
mance and scalability of different rule engines. It has been tested on five different
technologies: Prolog, deductive databases, production rules, triple engines, and
general KBs. It examines how different systems scale for a number of com-
mon problem sets that involve reasoning such as recursion and negation. It also

13 http://rulebench.projects.semwebcentral.org/

http://rulebench.projects.semwebcentral.org/

The KBMS Project and Beyond 477

examines, by interpolation, how these technologies or their successors might per-
form on the WWW scale.

There is no existing benchmark to characterize the performance of tempo-
ral and spatial reasoning systems, but there is recent interest in the research
community to define such a benchmark [70].

We believe that further work on benchmarking and evaluating the implemen-
tations of KB systems is essential to continued science and engineering of KBMS
implementations.

4 Summary and Conclusions

The Telos KBMS project attempted an extensive experimentation of applying
database management techniques to implementation of KBs. The project fulfilled
its goals by at least two measures. First, it generated five Ph.D. theses, and three
Master’s theses, and trained highly qualified personnel who later contributed to
a number of visible projects. Second, it emphasized key themes in knowledge
base management that have sustained the test of time. The key findings of the
project were the following:

1. A rich representation language that combines semantic abstractions of classi-
fication, instantiation, aggregation with deductive rules, integrity constraints
with temporal and spatial representation defined as part of the language is
essential for constructing large knowledge bases.

2. To achieve efficient implementation of large knowledge bases, we will need
to rely on implementation techniques from database management systems
such as storage management, query processing, concurrency control, rule
management, and view maintenence.

3. Performance evaluation is core methodology for testing the implementations
for large KB systems.

The semantic abstractions considered in the Telos knowledge representation
language are at the core of most modern representation systems. There are
languages and systems that specialize in various advanced features such as
object-oriented and deductive representations (for example, F-Logic), rule and
constraint management (for example, relational and deductive databases) or
temporal reasoning (for example, Allen’s calculus), but there is no unified repre-
sentation and reasoning theory that combines all the features that were
considered in Telos into one language.

The adoption of systems such as PERK, OPM, and TA3 suggests that the
bio-medical research community has been the earliest adopter of expressive rep-
resentation languages and the database techniques of the sort investigated in the
Telos KBMS project. The recent work on the Semantic Web is leveraging the
same ideas and technology - the theory and practice behind the RDF framework
(e.g., as realized in the RDFSuite) is just one such instance.

Performance evaluation of knowledge base systems has now become a central
methodology, especially in government funded projects in the United States as

478 V.K. Chaudhri et al.

exemplified by the HPKB project. The research community has started to define
benchmarks for characterizing the performance for isolated systems features (for
example, LUBM and OpenRuleBench), and there is growing need and acceptance
for benchmarking and performance evaluation of knowledge base systems.

Reflecting on our work on the KBMS project, we can say that due to the
WWW and the proliferation of scientific data, the knowledge management chal-
lenges today are even more real and significant than twenty years ago. As a
result, the concepts, techniques, and methods investigated in the KBMS project
will continue to have very high relevance for many years to come.

References

[1] Neches, R., Fikes, R., Finin, T.W., Gruber, T.R., Patil, R.S., Senator, T.E.,
Swartout, W.R.: Enabling technology for knowledge sharing. AI Magazine 12(3),
36–56 (1991)

[2] Frenkel, K.A.: The Human Genome Project and informatics. Communications of
the ACM 34(11), 41–51 (1991)

[3] Mylopoulos, J., Chaudhri, V.K., Plexousakis, D., Shrufi, A., Topaloglou, T.: Build-
ing knowledge base management systems. The VLDB Journal 5(4), 238–263 (1996)

[4] Koubarakis, M.: Foundations of Temporal Constraint Databases. PhD thesis,
Computer Science Division, Dept. of Electrical and Computer Engineering, Na-
tional Technical University of Athens (February 1994)

[5] Chaudhri, V.K.: Transaction Synchronization in Knowledge Bases: Concepts, Re-
alization and Quantitative Evaluation. PhD thesis, University of Toronto, Toronto
(January 1995)

[6] Plexousakis, D.: Integrity Constraint and Rule Maintenence in Temporal Deduc-
tive Knowledge Bases. PhD thesis, University of Toronto, Toronto (1996)

[7] Topalogou, T.: On the Representation of Spatial Knowledge in Knowledge Bases.
PhD thesis, University of Toronto, Toronto (1996)

[8] Jurisica, I.: TA3: Theory, Implementation, and Applications of Similarity-Based
Retrieval for Case-Based Reasoning. PhD thesis, University of Toronto, Depart-
ment of Computer Science, Toronto, Ontario (1998)

[9] Topaloglou, T., Koubarakis, M.: Implementation of Telos: Problems and Solu-
tions. Technical Report KRR-TR-89-8, Dept. of Computer Science, University of
Toronto (1989)

[10] Plexousakis, D.: An Ontology and a Possible-Worlds Semantics for Telos. Master’s
thesis, Dept. of Computer Science, University of Toronto (1990)

[11] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: A language for
representing knowledge about information systems. ACM Transactions on Infor-
mation Systems 8(4), 325–362 (1990)

[12] Allen, J.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

[13] Koubarakis, M.: The complexity of query evaluation in indefinite temporal con-
straint databases. Theoretical Computer Science 171, 25–60 (1997); Special Issue
on Uncertainty in Databases and Deductive Systems, Lakshmanan, L.V.S. (ed.)

[14] Constantopoulos, P., Doerr, M., Vassiliou, Y.: Repositories for software reuse:
The software information base. In: Information System Development Process, pp.
285–307 (1993)

The KBMS Project and Beyond 479

[15] Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase - A deduc-
tive object base for meta data management. Journal of Intelligent Information
Systems 4(2), 167–192 (1995)

[16] Wang, H., Mylopoulos, J., Kusniruk, A., Kramer, B., Stanley, M.: KNOWBEL:
New tools for expert system development. In: Bourbakis, N.G. (ed.) Developement
of Knowledge-Based Shells. Advanced Series on Artificial Intelligence, World Sci-
entific, Singapore (1993)

[17] Topaloglou, T.: Storage management for knowledge bases. In: CIKM 1993: Pro-
ceedings of the Second International Conference on Information and Knowledge
Management, pp. 95–104. ACM, New York (1993)

[18] Topaloglou, T., Illarramendi, A., Sbattella, L.: Query optimization for KBMSs:
Temporal, syntactic and semantic transformantions. In: Golshani, F. (ed.) Pro-
ceedings of the Eighth International Conference on Data Engineering, Tempe,
Arizona, February 3-7, 1992, pp. 310–319. IEEE Computer Society, Los Alamitos
(1992)

[19] Shrufi, A., Topaloglou, T.: Query processing for knowledge bases using join indices.
In: Proceedings of the 4th International Conference on Information and Knowledge
Management, Baltimore (November 1995)

[20] Jurisica, I., Glasgow, J., Mylopoulos, J.: Incremental iterative retrieval and brows-
ing for efficient conversational CBR systems. International Journal of Applied
Intelligence 12(3), 251–268 (2000)

[21] Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H., Casper, R.F.: Case-based
reasoning in IVF: Prediction and knowledge mining. Artif. Intell. Med. 12(1),
1–24 (1998)

[22] Jurisica, I., Rogers, P., Glasgow, J., Collins, R., Wolfley, J., Luft, J., DeTitta, G.:
Improving objectivity and scalability in protein crystallization: Integrating image
analysis with knowledge discovery. IEEE Intelligent Systems Journal, Special Issue
on Intelligent Systems in Biology, 26–34 (November/December 2001)

[23] Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Luft, J., Wolfley, J., Bianca, M.,
Weeks, D., DeTitta, G.T.: Intelligent decision support for protein crystal growth.
IBM Systems Journal, Special Issue on Deep Computing for Life Sciences 40(2),
394–409 (2001)

[24] Jurisica, I., Glasgow, J.: Application of case-based reasoning in molecular biol-
ogy. Artificial Intelligence Magazine, Special issue on Bioinformatics 25(1), 85–95
(2004)

[25] Arshadi, N., Jurisica, I.: Integrating case-based reasoning systems with data min-
ing techniques for discovering and using disease biomarkers. IEEE Transactions on
Knowledge and Data Engineering. Special Issue on Mining Biological Data 17(8),
1127–1137 (2005)

[26] Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., Shepherd, M.: Cyc: Toward
programs with common sense. Commun. ACM 33(8), 30–49 (1990)

[27] Borgida, A., Brachman, R., McGuiness, D., Resnick, L.: CLASSIC: A structural
data model for objects. In: Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, pp. 58–67 (1989)

[28] MacGregor, R.M., Brill, D.: Recognition algorithms for the LOOM classifier. In:
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 774–
779 (1992)

480 V.K. Chaudhri et al.

[29] Farquhar, A., Fikes, R., Rice, J.: The ontolingua server: a tool for collaborative
ontology construction. Int. J. Hum.-Comput. Stud. 46(6), 707–727 (1997)

[30] Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representa-
tion system. Cognitive Science 9(2), 171–216 (1985)

[31] Karp, P.D., Myers, K.L., Gruber, T.R.: The generic frame protocol. In: IJCAI,
vol. 1, pp. 768–774 (1995)

[32] Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.: OKBC: A pro-
grammatic foundation for knowledge base interoperability. In: AAAI/IAAI, pp.
600–607 (1998)

[33] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5), 34–43 (2001)

[34] Lassila, O.: The resource description framework. IEEE Intelligent Systems 15(6),
67–69 (2000)

[35] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F.: OIL: an ontology infrastructure for the semantic web. IEEE Intelligent Sys-
tems 16(2), 38–45 (2001)

[36] Brachman, R.J., Levesque, H.J., Fikes, R.: Krypton: Integrating terminology and
assertion. In: AAAI, pp. 31–35 (1983)

[37] Kifer, M., Lausen, G.: F-Logic: A higher-order language for reasoning about ob-
jects, inheritance, and scheme. In: Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 134–146 (1989)

[38] Snodgrass, R., Ahn, I.: A taxonomy of time in databases. In: Proceedings of ACM
SIGMOD International Conference on Management of Data, pp. 236–246 (1985)

[39] Snodgrass, R.: The temporal query language TQuel. ACM Transcactions on
Database Systems 12(2), 247–298 (1987)

[40] Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Dordrecht
(1995)

[41] Sripada, S.M.: A logical framework for temporal deductive databases. In: Bancil-
hon, F., DeWitt, D.J. (eds.) Fourteenth International Conference on Very Large
Data Bases, Proceedings, Los Angeles, California, USA, August 29-September 1,
1988, pp. 171–182. Morgan Kaufmann, San Francisco (1988)

[42] Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing time into RDF. IEEE Trans-
actions on Knowledge and Data Engineering 19(2), 207–218 (2007)

[43] Gutierrez, C., Hurtado, C., Vaisman, R.: Temporal RDF. In: European Conference
on the Semantic Web, pp. 93–107 (2005)

[44] Hurtado, C., Vaisman, A.: Reasoning with temporal constraints in RDF. In: Prin-
ciples and Practice of Semantic Web Reasoning, pp. 164–178. Springer, Heidelberg
(2006)

[45] Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete
domains and general tboxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)

[46] Chaudhri, V.K., Stickel, M.E., Thomere, J.F., Waldinger, R.J.: Reusing prior
knowledge: Problems and solutions. In: Proceedings of the AAAI Conference on
Artificial Intelligence (2000)

[47] Cohn, A.G., Bennett, B., Gooday, J.M., Gotts, N.: RCC: A calculus for region
based qualitative spatial reasoning. GeoInformatica, 275–316 (1997)

[48] Uribe, T.E., Chaudhri, V.K., Hayes, P.J., Stickel, M.E.: Qualitative spatial reason-
ing for question-answering: Axiom reuse and algebraic methods. In: Proceedings
of the AAAI Spring Symposium on Mining Answers from Texts and Knowledge
Bases (2002)

The KBMS Project and Beyond 481

[49] Kolas, D., Self, T.: Spatially-augmented knowledge base. In: Aberer, K., Choi, K.-
S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 785–794. Springer, Heidelberg (2007)

[50] Perry, M.: A Framework to Support Spatial, Temporal and Thematic Analytics
over Semantic Web Data. PhD thesis, Wright State University (2008)

[51] Karp, P.D., Chaudhri, V.K., Paley, S.M.: A collaborative environment for author-
ing large knowledge bases. J. Intell. Inf. Syst. 13(3), 155–194 (1999)

[52] Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J., Paley, S.,
Pellegrini-Toole, A., Bonavides, C., Gama-Castro, S.: The EcoCyc database. Nu-
cleic Acids Research 30(1), 56–58 (2002)

[53] Chen, I.M.A., Kosky, A., Markowitz, V.M., Szeto, E., Topaloglou, T.: Advanced
query mechanisms for biological databases. In: ISMB 1998: Proceedings of the 6th
International Conference on Intelligent Systems for Molecular Biology, pp. 43–51.
AAAI Press, Menlo Park (1998)

[54] Topaloglou, T., Kosky, A., Markowitz, V.M.: Seamless integration of biological
applications within a database framework. In: Proceedings of the Seventh Inter-
national Conference on Intelligent Systems for Molecular Biology, pp. 272–281.
AAAI Press, Menlo Park (1999)

[55] Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDF Suite: Managing voluminous RDF description bases. In: Pro-
ceedings of the 2nd International Workshop on the Semantic Web (2001)

[56] Cumbaa, C.A., Lauricella, A., Fehrman, N., Veatch, C., Collins, R., Luft,
J., DeTitta, G., Jurisica, I.: Automatic classification of sub-microlitre protein-
crystallization trials in 1536-well plates. Acta Crystallogr. D Biol. Crystal-
logr. 59(Pt 9), 1619–1627 (2003); 22805983 0907-4449 Journal Article

[57] Acton, B.M., Jurisicova, A., Jurisica, I., Casper, R.F.: Alterations in mitochondrial
membrane potential during preimplantation stages of mouse and human embryo
development. Mol. Hum. Reprod. 10(1), 23–32 (2004)

[58] Jurisica, I., Wigle, D.A.: Knowledge Discovery in Proteomics. Mathematical Biol-
ogy and Medicine. Chapman and Hall/CRC Press (2006)

[59] Arshadi, N., Jurisica, I.: An ensemble of case-based classifiers for high-dimensional
biological domains. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS,
vol. 3620, pp. 21–34. Springer, Heidelberg (2005)

[60] Jurisica, I., Rogers, P., Glasgow, J., Fortier, S., Collins, R., Wolfley, J., Luft, J.,
DeTitta, G.T.: High throughput macromolecular crystallization: An application of
case-based reasoning and data mining. In: Johnson, L., Turk, D. (eds.) Methods in
Macromolecular Crystallography, Kluwer Academic Publishers, Dordrecht (2000)

[61] Snell, E., Lauricella, A., Potter, S., Luft, J., Gulde, S., Collins, R., Franks, G.,
Malkowski, M., Cumbaa, C., Jurisica, I., DeTitta, G.T.: Establishing a training
set through the visual analysis of crystallization trials Part II: Crystal examples.
Acta Crystallographica D (2008)

[62] Snell, E., Luft, J., Potter, S., Lauricella, A., Gulde, S., Malkowski, M., Koszelak-
Rosenblum, M., Said, M., Smith, J., Veatch, C., Collins, R., Franks, G., Thayer,
M., Cumbaa, C., Jurisica, I., DeTitta, G.T.: Establishing a training set through
the visual analysis of crystallization trials Part I: 150,000 images. Acta Crystallo-
graphica D (2008)

[63] Cumbaa, C., Jurisica, I.: Automatic classification and pattern discovery in high-
throughput protein crystallization trials. J. Struct. Funct. Genomics 6(2-3), 195–
202 (2005)

482 V.K. Chaudhri et al.

[64] Xia, E., Jurisica, I., Waterhouse, J., Sloan, V.: Runtime estimation using the case-
based reasoning approach for scheduling in a grid environment. J. ACM (submit-
ted)

[65] Xia, E., Jurisica, I., Waterhouse, J., Sloan, V.: Runtime estimation using a case-
based reasoning system for scheduling in a grid environment. IBM Invention Dis-
closure (2007)

[66] Pease, A., Chaudhri, V.K., Lehman, F., Farquhar, A.: Practical Knowlege Repre-
sentation and the DARPA High Performance Knowledge Base Project. In: Seventh
International Conference on Principles of Knowledge Representation and Reason-
ing, Breckenridge, CO (2000)

[67] Friedland, N., Allen, P., Mathews, G., Whitbrock, M., Baxter, D., Curts, J., Shep-
ard, B., Miraglia, P., Angele, J., Staab, S., Moench, E., Opperman, H., Wenke,
D., Israel, D., Chaudhri, V., Porter, B., Barker, K., Fan, J., Chaw, S.Y., Yeh, P.,
Tecuci, D., Clark, P.: Project Halo: Towards a Digital Aristotle. The AI Magazine
(2004)

[68] Cohen, P., Chaudhri, V.K., Pease, A., Schrag, B.: Does prior knowledge facilitate
the development of knowledge-based systems. In: Proceedings of the AAAI 1999,
pp. 221–226 (1999)

[69] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. The Journal of Web Semantics 3(2), 158–182 (2005)

[70] Nebel, B.: Benchmarking of qualitative temporal and spatial reasoning systems.
In: AAAI Spring Symposium, AAAI Press, Menlo Park (2009)

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 483–503, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using the ConGolog and CASL Formal Agent
Specification Languages for the Analysis, Verification,

and Simulation of i* Models

Alexei Lapouchnian1 and Yves Lespérance2

1 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
alexei@cs.toronto.edu

2 Department of Computer Science and Engineering, York University,
Toronto, ON M3J 1P3, Canada
lesperan@cse.yorku.ca

Abstract. This chapter describes an agent-oriented requirements engineering
approach that combines informal i* models with formal specifications in the
multiagent system specification formalisms ConGolog and its extension CASL.
This allows the requirements engineer to exploit the complementary features of
the frameworks. i* can be used to model social dependencies between agents
and how process design choices affect the agents’ goals. ConGolog or CASL
can be used to model complex processes formally. We introduce an intermedi-
ate notation to support the mapping between i* models and ConGolog/CASL
specifications. In the combined i*-CASL framework, agents’ goals and knowl-
edge are represented as their subjective mental states, which allows for the for-
mal analysis and verification of, among other things, complex agent interactions
and incomplete knowledge. Our models can also serve as high-level specifica-
tions for multiagent systems.

This volume is dedicated to John Mylopoulos. Yves was fortunate to have John as his
Master's thesis supervisor 30 years ago and John is Alexei's current Ph.D. thesis su-
pervisor. The work described in this paper fits perfectly in the model-based approach
to software/systems engineering that John developed and promoted throughout his
career. His vision, with its roots in knowledge representation research, its embrace of
ideas from social science, and its insights into the "model-based" future of soft-
ware/systems engineering continues to inspire us. Thanks John, for all the inspiration
and mentoring.

1 Introduction

i* [29] is an informal diagram-based language for early-phase requirements engineer-
ing that supports the modeling of social and intentional dependencies between agents
and how process design choices affect the agents’ goals, both functional and non-
functional. It has become clear that such social and organizational issues play an im-
portant role in many domains and applications. However, i* is not a formal language,

484 A. Lapouchnian and Y. Lespérance

has inadequate precision, and thus provides limited support for describing and analyz-
ing complex processes. While it is possible to informally analyze small systems, for-
mal analysis is needed for realistically-sized ones.

To alleviate this, we first propose an approach that integrates i* with a formal mul-
tiagent system specification language, ConGolog [5, 13], in the context of agent-
oriented requirements engineering. ConGolog is an expressive formal language for
process specification and agent programming. It supports the formal specification of
complex multiagent systems, but lacks features for modeling the rationale behind design
choices available in i*. In this paper, we show how i* and ConGolog can be used in
combination. The i* framework will be used to model different alternatives for the de-
sired system, to analyze and decompose the functions of the different actors, and to
model the dependency relationships between the actors and the rationale behind process
design decisions. The ConGolog framework will be used to formally specify the system
behaviour described informally in the i* model. The ConGolog model will provide
more detailed information about the actors, tasks, processes, and goals in the system,
and the relationships between them. Complete ConGolog models are executable and this
will be used to validate the specifications by simulation. To bridge the gap between i*
and ConGolog models, an intermediate notation involving the use of process specifica-
tion annotations in i* SR diagrams will be introduced [26, 27]. We will describe how
such annotated SR (ASR) diagrams can be systematically mapped into ConGolog
formal specifications that capture their informal meaning, and support validation
through simulation and verification. The annotations are not used to capture design-
level information, but to obtain a more complete and precise model of the domain.

Its support for modeling intentional notions such as goals makes the i* notation
especially suited for developing multiagent systems, e.g., as in the Tropos
agent-oriented development framework [2]. Agents are active, social, and adaptable
software system entities situated in some environment and capable of autonomous
execution of actions in order to achieve their objectives [28]. Furthermore, most prob-
lems are too complex to be solved by just one agent — one must create a multiagent
system (MAS) with several agents working together to achieve their objectives and
ultimately deliver the desired application. Therefore, adopting the agent-oriented
approach to software engineering means that the problem is decomposed into multi-
ple, autonomous, interacting agents, each with their own objectives. Agents in MAS
frequently represent individuals, companies, etc. This means that there is an “underly-
ing organizational context” [8] in MAS. Like humans, agents need to coordinate their
activities, cooperate, request help from others, etc., often through negotiation. Unlike
in object-oriented or component-based systems, interactions in multiagent systems
occur through high-level agent communication languages, so interactions are mostly
viewed not at the syntactic level, but “at the knowledge level, in terms of goal delega-
tion, etc.” [8]. Therefore, modeling and analyzing agents’ mental states helps in the
specification and analysis of multiagent systems.

In requirements engineering (RE), goal-oriented approaches, e.g., KAOS [4] have
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level
stakeholder objectives are identified as goals and later refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environment.
Their reliance on goals makes goal-oriented requirements engineering methods and
agent-oriented software engineering a great match. Moreover, agent-oriented analysis

 Using the ConGolog and CASL Formal Agent Specification Languages 485

is central to requirements engineering since the assignment of responsibilities for
goals and constraints among components in the software-to-be and agents in the envi-
ronment is the main outcome of the RE process [10]. Therefore, it is natural to use a
goal-oriented requirements engineering approach when developing MAS. With
GORE, it is easy to make the transition from the requirements to the high-level MAS
specifications. For example, strategic relationships among agents will become high-
level patterns of inter-agent communication.

Thus, it would be desirable to devise an agent-oriented requirements engineering
approach with a formal component that supports rigorous formal analysis, including
reasoning about agents’ goals (and knowledge). This would allow for rigorous formal
analysis of the requirements expressed as the objectives of the agents in a MAS.

Ordinary ConGolog does not support the specification of the intentional features of
i* models, that is, the mental states of the agents in the system/organization modeled;
these must be operationalized before they are mapped into ConGolog. But there is an
extension of ConGolog called the Cognitive Agents Specification Language (CASL)
[22, 23, 24] that supports formal modeling of agent mental states, incomplete agent
knowledge, etc. Mapping i* models into CASL gives the modeler the flexibility and
intuitiveness of the i* notation as well as the powerful formal analysis capabilities of
CASL. So we will extend the i*-ConGolog approach to combine i* with CASL and
accommodate formal models of agents’ mental states. Our intermediate notation will
be generalized to support the intentional/mental state modeling features of CASL [11,
12], in what we will call intentional annotated SR (iASR) diagrams. With our i*-
CASL-based approach, a CASL model can be used both as a requirements analysis
tool and as a formal high-level specification for a multiagent system that satisfies the
requirements. This model can be formally analyzed using the CASLve [22, 24] verifi-
cation tool or other tools and the results can be fed back into the requirements model.

One of the main features of this approach is that goals (and knowledge) are as-
signed to particular agents thus becoming their subjective attributes as opposed to
being objective system properties as in many other approaches, e.g., Tropos [2] and
KAOS [4]. This allows for the modeling of conflicting goals, agent negotiation, in-
formation exchange, complex agent interaction protocols, etc.

The rest of the chapter is organized as follows. Section 2 briefly introduces i* and a
case study that we will refer to throughout the chapter, and gives an overview of the
ConGolog framework. Section 3 presents our approach to map i* diagrams into Con-
Golog formal specifications and discusses the use of simulation to validate the mod-
els. Section 4 discusses our second approach where i* models are mapped into CASL,
to preserve the intentional features of the models in the formal specifications; we also
discuss verification. We conclude in Section 5 by summarizing our results, comparing
our approach to related work, and discussing possible extensions.

2 Background

2.1 The i* Framework and a Case Study

i* [29] is an agent-oriented modeling framework that can be used for requirements
engineering, business process reengineering, etc. i* centers on the notion of inten-
tional actor and intentional dependency. In the approaches described here, we use i*

486 A. Lapouchnian and Y. Lespérance

as a graphical requirements modeling notation. We will assume a basic knowledge of
i* in the remainder; to learn about i* see [30] or the chapter by Yu in this book. We
will add various new notational elements to SR diagrams to produce our ASR and
iASR diagrams; we will discuss these in detail in later sections. Note also that we do
not use softgoals or resource dependencies in ASR and iASR (we will explain why
later).

To illustrate the approach that we propose, we will use a variant of the meeting
scheduling problem, which has become a popular exemplar in RE [9]. In the context
of the i* modeling framework a meeting scheduling process was first analyzed in
[30]. We introduce a number of modifications to the meeting scheduling process to
make our models easier to understand. For instance, we take the length of meetings to
be the whole day. We also assume that in the environment of the system-to-be there is
a legacy software system called the Meeting Room Booking System (MRBS) that handles
the booking of meeting rooms. Complete case studies are presented in [11, 12].

Disruptor AtMeetingMeeting
Initiator

Meeting
Participant

Meeting
Scheduler

MRBS

Meeting
Scheduled

Meeting
Info

AtMeeting

Room Booked

Available
Dates

Location

Meeting
Info

Agent Role

Actors

Task Dependency

Goal Dependency

Resource Dependency

Intentional
Dependencies

Softgoal Dependency

Fig. 1. The Meeting Scheduler in its environment

SetupMeeting

MeetingSetup

Meeting
Scheduled

Use
Meeting

Scheduler

Meeting
Scheduler

Meeting
Scheduled

Get
Meeting

Info

Meeting Info

+/-

Task Decomposition

Means-Ends Link

Softgoal Contribution

Actor Boundary

Task

Goal

Softgoal

Legend
Meeting
Initiator

Schedule
Manually

Minimize Effort

+ –

Fig. 2. SR model for the meeting initiator

Fig. 1 is a Strategic Dependency diagram showing the computerized Meeting
Scheduler (MS) agent in its environment. Here, the role Meeting Initiator (MI) depends on
the MS for scheduling meetings and for being informed about the meeting details. The
MS, in turn, depends on the Meeting Participant (MP) role for attending meetings and for
providing his/her available dates to it. The MS uses the booking system to book rooms

 Using the ConGolog and CASL Formal Agent Specification Languages 487

for meetings. The Disruptor actor represents outside actors that cause changes in par-
ticipants’ schedules, thus modeling the environment dynamics.

Fig. 2 is a simple SR models showing some details of the MI process. To schedule
meetings, the MI can either do it manually, or delegate it to the scheduler. Softgoal
contribution links specify how process alternatives affect quality requirements (soft-
goals), and so softgoals such as MinimizeEffort in Fig. 2 are used to evaluate these
alternatives.

2.2 The Formal Foundations: The Situation Calculus and ConGolog

ConGolog [5] is a framework for process modeling and agent programming. It is
based on the situation calculus [15], a language of predicate logic for representing
dynamically changing worlds. The ConGolog framework can be used to model com-
plex processes involving loops, concurrency, multiple agents, etc. Because it is logic-
based, the framework can accommodate incompletely specified models, either in the
sense that the initial state of the system is not completely specified, or that the proc-
esses involved are non-deterministic and may evolve in any number of ways.

A ConGolog specification includes two components. First, to support reasoning
about the processes executing in a certain domain, that domain must be formally
specified: what predicates describe the domain, what primitive actions are available to
agents, what the preconditions and effects of these actions are, and what is known
about the initial state of the system. The other component of a ConGolog specification
is the model of the process of interest, i.e. the behaviour of the agents in the domain.

In ConGolog and in the situation calculus, a dynamic domain is modeled in terms
of the following entities:

 Primitive actions: all changes to the world are assumed to be the result of named
primitive actions that are performed by some agent; primitive actions are repre-
sented by terms, e.g. acceptAgreementReq(participant,MS,reqID, date), i.e. the
participant agent accepts the request reqID from the MS agent to attend a meeting
on date.

 Situations: these correspond to possible world histories viewed as sequences of
actions. The actual initial situation (where no actions have yet been executed) is
represented by the constant S0. There is a distinguished binary function symbol do
and a term do(a,s) denotes the situation that results from action a being performed
in situation s. For example, do(a3,do(a2,do(a1,S0))) represents the situation where
first a1, then a2, and then a3 have been performed starting in the initial situation S0.
Thus, situations are organized in tree structures rooted in some initial situation; the
situations are nodes in the tree and the edges correspond to primitive actions.

 Fluents: these are properties, relations, or functions of interest whose value may
change from situation to situation; they are represented by predicate and function
symbols that take a situation term as their last argument, e.g. agreementReqRcvd(
participant,MS,reqID, date,s), i.e. participant has received a request reqID from
MS to agree to hold a meeting on date in situation s. Non-fluent predi-
cates/functions may also be used to represent static features of the domain.

488 A. Lapouchnian and Y. Lespérance

The dynamics of a domain are specified using four kinds of axioms:

 Action precondition axioms: these state the conditions under which an action can
be performed; they use the predicate Poss(a,s), meaning that action a is possible in
situation s. E.g., in our meeting scheduling domain, we have:

Poss(acceptAgreementReq(participant,MS,reqID,date),s) ≡
 agreementReqRcvd(participant,MS,reqID,date,s) ∧

dateFree(participant,date,s)

This says that in situation s, participant may perform the action of accepting a
request reqID from MS to hold a meeting on date if and only if he has received a
request to that effect and the date is free for him.

 Successor state axioms (SSA): these specify how the fluents are affected by the
actions in the domain. E.g., in our meeting scheduling domain, we have:

agreementReqRcvd(participant,MS,reqID,date,do(a,s)) ≡
a = requestAgreement(MS,participant,date) ∧

requestCounter(s) = reqID ∨
agreementReqRcvd(participant,MS,reqID,date,s)

This says that participant has received a request reqID from MS to agree to hold
a meeting on date in situation do(a,s) if and only if the action a is such a request
and the value of the request counter is reqID or if she had already received such a
request in situation s.

Successor state axioms were introduced by Reiter [19] and provide a solution
to the frame problem. They can be generated automatically from a specification
of the effects of primitive actions if we assume that the specification is complete.
Lespérance et al. [13] described a convenient high-level notation for specifying
the effects (and preconditions) of actions and a tool that compiles such specifica-
tions into successor state axioms.

 Initial situation axioms: these specify the initial state of the modeled system. E.g.,
in our meeting scheduling domain, we might have the following initial situation
axiom: participantTimeSchedule(Yves,S0) = [10,12], representing the fact that
agent Yves is busy on the 10th and 12th in the initial situation.

 Other axioms: these include unique name axioms for actions, axioms specifying
the agent of each type of action, and domain independent foundational axioms as
described in [19].

The process of a system is specified procedurally in the ConGolog framework. We
define a main procedure that specifies the behaviour of the whole system. Every agent
has an associated ConGolog procedure to represent its behaviour in the system. The
behaviour of agents is specified using a rich high-level programming language with
recursive procedures, while loops, conditionals, non-determinism, concurrency, and
interrupts [5]. The available constructs include:

 Using the ConGolog and CASL Formal Agent Specification Languages 489

a, primitive action
φ?, wait for condition
δ1;δ2, sequence
δ1|δ2, nondeterministic branch
δ*, nondeterministic iteration
πv.δ, nondeterministic choice of argument
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1||δ2, concurrency with equal priority
δ1»δ2, concurrency with δ1 at higher priority
guard φ do δ endGuard guard
<v: φ → δ until α> interrupt
β(p), procedure call

Note the presence of several non-deterministic constructs. For instance, δ1|δ2 nonde-
terministically chooses between executing δ1 or δ2. πv.δ non-deterministically picks a
binding for the variable v and performs the program δ for that binding. δ* performs δ
zero or more times. A test/wait action φ? blocks until the condition φ becomes true.
<v: φ → δ until α> represents an interrupt; when the trigger condition φ becomes true
for some value of v, the interrupt triggers and the body, δ, is executed; the interrupt
may trigger repeatedly as long as its cancellation condition α does not hold. The guard
construct blocks the execution of a program δ until the condition φ becomes true.

A formal semantics based on transition systems (structural operational semantics)
has been specified for ConGolog [5]. It defines a special predicate Do(program,s,s′)
that holds if there is a successful execution of program that ends in situation s′ after
starting in s. Communication between agents can be represented by actions performed
by the sender agent, which affect certain fluents that the recipient agent has access to.

A process simulation and validation tool for ConGolog has been implemented [5].
It uses an interpreter for ConGolog implemented in Prolog. This implementation
requires that the precondition axioms, successor state axioms, and axioms about the
initial situation be expressed as Prolog clauses, and relies on Prolog’s closed world
assumption and negation as failure. Thus with this tool, simulation can only be per-
formed for completely specified initial states.

A verification tool has also been developed [22, 24]. We discuss verification in
Section 4.3. De Giacomo et al. [5] describe applications of ConGolog in different
areas, such as robot programming, personal assistants, etc. Lespérance et al. [13]
discuss the use of ConGolog (without combining it with i*) for process modeling and
requirements engineering.

3 Using ConGolog for the Analysis, Simulation, and Verification
of i* Models

While the informal i* notation can be successfully used for modeling and analysing
relatively small systems, formal analysis is very helpful with larger systems. Thus,
formal analysis of i* models is one of the goals of the approaches presented here.
Another aim is to allow for a smooth transition from requirements specifications to

490 A. Lapouchnian and Y. Lespérance

high-level design for agent-based systems. While the i* SR diagram notation allows
many aspects of processes to be represented, it is somewhat imprecise and the models
produced are often incomplete. For instance, it is not specified whether the subtask in a
task decomposition link has to be performed once or several times. In a ConGolog
model, on the other hand, the process must be completely and precisely specified (al-
though non-deterministic processes are allowed). We need to bridge this gap. To do
this, we will introduce a set of annotations to SR diagrams that allow the missing in-
formation to be specified. We also want to have a tight mapping between this Anno-
tated SR (ASR) diagram and the associated ConGolog model, one that specifies which
parts of each model are related. This allows us to identify which parts of the ConGolog
model need to be changed when the SR/ASR diagram is modified and vice versa. The
i*-ConGolog approach that we describe in this section is largely based on [26, 27].

3.1 Annotated SR Diagrams

The main tool that we use for disambiguating SR diagrams is annotations. Annota-
tions allow analysts to model the domain more precisely and capture data/control
dependencies among goals and other details. Annotations, introduced in [26, 27] and
extended in [11, 12], are textual constraints on ASR diagrams and can be of three
types: composition, link, and applicability conditions. Composition annotations
(specified by σ in Fig. 3) are applied to task and means-ends decompositions and
specify how the subtasks/subgoals are to be combined to execute the supertask and
achieve the goal respectively. Four types of composition are allowed: sequence (“;”),
which is the default for task decompositions, concurrency (“||”), prioritized concur-
rency (“»”), and alternative (“|”), which is the default for means-ends decompositions.
These annotations are applied to subtasks/subgoals from left to right. E.g., in Fig. 3, if
the ”»” annotation is applied, n1 has the highest priority, while nk has the lowest. The
choice of composition annotations is based on the ways actions and procedures can be
composed in ConGolog.

Link annotations (γi in Fig. 3) are applied to subtasks/subgoals (ni) and specify
how/under which condition they are supposed to be achieved/executed. There are six
types of link annotations (corresponding to ConGolog operators): while loop, for loop
(introduced in [22]), the if condition, the pick, the interrupt, and the guard (introduced
in [11, 12]). The difference between the if annotation and the guard is that the guard
blocks execution until its condition becomes true while the task with the if link anno-
tation is skipped if the condition is not true. The pick annotation
(π(VariableList,Condition)) non-deterministically picks values for variables in the

...

Composition
Annotation

γ1 γkγ2 γ3

σ
Supertask

n1 n3n2 nk

Fig. 3. Composition and link annotations

 Using the ConGolog and CASL Formal Agent Specification Languages 491

subtask that satisfy the condition. The interrupt (whenever(varList, Condition, Can-
celCondition)) fires and executes the subtask whenever there is a binding for the vari-
ables that satisfies the condition until the cancellation condition becomes true. Guards
(guard(Condition)) block the subtask’s execution until the condition becomes true.
The absence of a link annotation on a particular decomposition link indicates the
absence of any conditions on the subgoal/subtask.

If alternative means of achieving a certain goal exist, the designer can specify
under which circumstances it makes sense to try each alternative. We call these appli-
cability conditions and introduce a new annotation ac(condition) to be used with
means-ends links to specify them. The presence of an applicability condition (AC)
annotation specifies that only when the condition is true may the agent select the
associated alternative in attempting to achieve the parent goal. E.g., one may specify
that phoning participants to notify them of the meeting details is applicable only for
important participants, while the email option is applicable for everyone (see Fig. 6).
When there is no applicability condition, an alternative can always be selected.

3.2 Increasing Precision with ASR Models

The starting point for developing an ASR diagram for an actor is the regular SR dia-
gram for that actor (e.g., see Fig. 2). It then can be appropriately transformed to be-
come an ASR diagram every element of which can easily be mapped into ConGolog.
The steps for producing ASR diagrams from SR ones include the addition of model
annotations, the removal of softgoals, the deidealization of goals [9], and the addition
of details of agent interaction to the model. Since an ASR diagram is going to be
mapped into a ConGolog specification consisting of parameterized procedures, pa-
rameters for annotations/goals/tasks capturing the details of events as well as what
data or resources are needed for goal achievement or task execution can be specified
in ASR diagrams (see Fig. 6) to simplify the generation of ConGolog code. However,
we sometimes omit the parameters in ASR diagrams for brevity.

Softgoals. Softgoals represent non-functional requirements [3] and are imprecise
and difficult to handle in a formal specifications language such as ConGolog. There-
fore in this approach, we use softgoals to choose the best process alternatives and then
remove them before ASR diagrams are produced. Alternatively, softgoals can be
operationalized or metricized, thus becoming hard goals. The removal of softgoals in
ASR diagrams is a significant deviation from the standard i* framework.

Deidealization of goals. Goals in ASR diagrams that cannot always be achieved
are replaced by weaker goals that can. This involves identifying various possible
failure conditions and guarding against them.

Providing agent interaction details. i* usually abstracts from modeling any details
of agent interactions. In ASR diagrams, we specify the interactions through which
intentional dependencies are realized by the actors involved. Interactions are specified
as processes involving various “communication” primitive actions that change the
state of the system. The effects of these actions are modeled using ordinary flu-
ents/properties. This supports simulation, but does not capture the fact that these ac-
tions operate on the mental states of the communicating agents. We address this in
Section 4. Agent interaction details include tasks such as requests for services or

492 A. Lapouchnian and Y. Lespérance

information from agents in the system, tasks that supply information or communicate
about success or failure in providing services, etc. Arbitrarily complex interaction
protocols can be specified. We assume that the communication links are reliable.

In ASR diagrams, all resource dependencies are modeled more precisely using ei-
ther goal or task dependencies according to the level of freedom that the dependee has
in supplying the resource.

whenever(Requested
ScheduleMeeting

guard(AllAvailDates
Received)

...

||

TryToSchedule
Meeting

AvailableDates
Known

obtainAvailableDates
FromParticipant

TryGetAgreement
OnDate

Meeting
Participant

MS
Behaviour

MeetingScheduled
IfPossible

for(p,Participants(p))

requestEnterDate
Range

MeetingScheduled
IfPossible

EnterDate
Range

Meeting
Initiator

sendAvailable
Dates

guard(DateRangeEntered)

...

...

mergeAvail
Dates

Fig. 4. A fragment of the ASR diagram for the MS agent

Fig. 4 shows a small fragment of the ASR diagram for the Meeting Scheduler agent.
This model shows a very high-level view of the achievement of the goal TryToSched-
uleMeeting. Here, the MS must get the suggested meeting dates from the MI, get the
available dates from the participants, find agreeable dates (potential dates for the
meeting), and try to arrange the meeting on one of those days. Various annotations
have been added to the model. The absence of a composition annotation for the Try-
ToScheduleMeeting task indicates that it is sequentially decomposed. There are inter-
rupt/guard annotations that let the MS agent monitor for incoming requests and for
replies to its queries about the meeting date range and available dates for participants.
The for annotation indicates that the querying for the available dates is iterated for all
the participants. Note that the goal TryToScheduleMeeting in Fig. 4 is a deidealized
(weakened) goal.

 Using the ConGolog and CASL Formal Agent Specification Languages 493

3.3 Mapping ASR Diagrams into ConGolog

Once all necessary details have been introduced into an ASR diagram, it can be
mapped into a corresponding formal ConGolog model, thus making the model ame-
nable to formal analysis. The modeler must define a mapping m that maps every ele-
ment (except for intentional dependencies) of an ASR diagram into ConGolog. This
mapping associates ASR diagram elements with ConGolog procedures, primitive
actions, and formulas so that a ConGolog program can be generated from an ASR
diagram. Specifically, agents are mapped into constants that serve as their names and
ConGolog procedures that specify their behaviour; roles and positions are mapped
into similar procedures with an agent parameter so that they can be instantiated by
individual agents. So, when an agent plays several roles or occupies several positions,
it executes the procedures that correspond to these roles/positions concurrently. Leaf-
level task nodes are mapped into ConGolog procedures or primitive actions. Compo-
sition and link annotations are mapped into the corresponding ConGolog operators,
and conditions present in the annotations map into ConGolog formulas.

Mapping Task Nodes. A non-leaf task node with its decomposition is automatically
mapped into a ConGolog procedure that reflects the structure of the decomposition
and all the annotations.

Consider the shaded part of Fig. 4, where the task TryToScheduleMeeting is decom-
posed into a number of subtasks/subgoals. This task will be mapped into the follow-
ing ConGolog procedure (it contains parts still to be mapped into ConGolog; they are
the parameters of the mapping m). Here, the parameter mid stands for “meeting ID”, a
unique meeting identifier:

proc TryToScheduleMeeting(mid,mi)
 requestEnterDateRange(MS,mi,mid);
 guard m(DateRangeEntered) do
 m(AvailableDatesKnown).achieve;
 endGuard;
 guard m(AllAvailDatesReceived) do
 mergeAvailDates(MS,mid);
 endGuard;
 TryToGetAgreementOnDate(MS,mid);
endProc

Notice that the mapping of tasks into ConGolog procedures is compositional. We have
defined a set of mapping rules that formally specify this part of the mapping process.

Mapping Goal Nodes. In the i*-ConGolog approach, goal nodes are mapped into a
ConGolog formula that represents the desired state of affairs associated with the goal
and a procedure that encodes means for achieving the goal. The achievement proce-
dure is generated from the decomposition of the goal into means for achieving it,
which is modeled in the ASR diagram through means-ends links. This is similar to the
mapping of task decompositions as seen above and can be performed automatically.
The achievement procedure for a goal G can be referenced as m(G).achieve (e.g., see
the code fragment above). Fig. 5 shows a generic goal decomposition together with
the generated achievement procedure. At the end of the achievement procedure, there
is typically a test that makes sure that the goal is achieved: m(G).formula)?.

494 A. Lapouchnian and Y. Lespérance

σ
αn

ac(φn)α1
ac(φ1)

...Means1 Meansn

proc GAchieve
 (guard m(φ1) do
 m (α1)(m(Means1))
 endGuard
 m(σ)
 …
 m(σ)
 guard m (φn) do
 m (αn)(m(Meansn))
 endGuard);

(m(G).formula)?
endProc

G
m

Fig. 5. Generating a goal achievement procedure

The default composition annotation for means-ends decompositions (represented
by σ in Fig. 5) is alternative (“|”). This indicates that the means for achieving the goal
is selected non-deterministically. As shown in Fig. 5, each goal achievement alterna-
tive is wrapped in a guard operator with the guard condition being the result of
mapping the corresponding applicability condition annotation. This ensures that an
alternative will only be selected when it can begin execution and its applicability
condition holds. Other composition annotations (e.g. concurrency or sequence) can
also be used. Note that neither ConGolog nor CASL currently provides built-in
language constructs for sophisticated handling of alternative selection, execution
monitoring, failure handling, retries, etc.; this is an area for future work.

Since in this approach, softgoals are removed from ASR diagrams, applicability
conditions can be used to capture in a formal way the fitness of the alternatives with
respect to softgoals (this fitness is normally encoded by the softgoal contribution links
in SR diagrams). For example, one can specify that phoning participants to notify
them of the meeting details is applicable only in cases with few participants, while the
email option is applicable for any number of participants (see Fig. 6). This may be
due to the softgoal Minimize Effort that has been removed from the model before the
ASR diagram was produced.

In addition to applicability conditions, other link annotations can be used with
means-ends decompositions to specify extra control information. These are repre-
sented by αi in Fig. 5 and are exemplified by the for loop annotations in Fig. 6. Note
that these annotations are applied after applicability conditions.

for(p,Participant (mid,p))

ac(NoOfPtcpts(mid) < 4)

Phone
Participant

(mid,p)

Email
Participant

(mid,p)

 proc NotifyAchieve
 guard

NoOfPtcpts(mid) < 4 do
 for p:Participant (mid,p) do

m(PhoneParticipant (mid,p))
endFor

 endGuard
 |
 for p:Participant (mid,p) do

m(EmailParticipant (mid,p))
endFor

endProc

Notify
Participants

(mid)

m

for(p,Participant (mid,p))

Fig. 6. Goal achievement procedure example

 Using the ConGolog and CASL Formal Agent Specification Languages 495

Specifying Domain Dynamics. To obtain a complete ConGolog specification, one
needs to provide the declarative part of the specification, namely an action precondi-
tion axiom for every primitive action, a successor state axiom for every fluent, and
initial state axioms, as described in Section 2.2.

3.4 Simulation

ConGolog models can be executed to run process simulation experiments. To do this,
the modeler must first specify an instance of the overall system. We do this by defin-
ing a main procedure. Here is how this looks in the ConGolog simulation tool nota-
tion (#= is the concurrent execution operator):

 proc(main,[
 initiator_behavior(mi,ms)#=
 meetingScheduler_behavior(ms,mi)#=
 participant_behaviour(yves,ms)#=
 participant_behaviour(alexei,ms)#=
]).

Here, there are the Meeting Initiator agent, mi, the Meeting Scheduler ms, and two
participants, yves and alexei. The modeler must also provide a complete specifi-
cation of the initial state of the system. Here, the possible meeting dates are repre-
sented as integers in order to simplify the explanation. Initially the schedule for the
participant alexei is [11,12,14], i.e., alexei is busy on the 11th, 12th, and 14th
of some month. The schedule for the participant yves is [10,12], i.e. yves is
busy on the 10th and 12th. The Meeting Initiator mi wants to schedule a meeting with
alexei and yves on the 12th or 14th. Then the modeler can execute the main pro-
cedure to obtain a simulation trace. The simulation obtained from this instance of the
system is as follows:

// start interrupts in initial situation
startInterrupts
// mi requests ms to schedule a meeting with alexei and yves
requestScheduleMeeting(mi,ms,[alexei,yves])
// ms requests mi to enter the possible date range for meeting with id = 1
requestEnterDateRange(ms,mi,1)
// mi enters 12, 14 as possible meeting dates
enterDateRange(mi,ms,1,[12,14])
// ms requests available dates from all participants
obtainAvailDatesFromParticipant(ms,yves,1)
obtainAvailDatesFromParticipant(ms,alexei,1)
// yves sends his available dates
sendAvailDates(yves,ms,1,[…])
// alexei sends his available dates
sendAvailDates(alexei,ms,1,[…])
mergeAvailableDates(ms,1)
// ms finds the list of common available dates empty
setAllMergedlist(ms,1,[])

496 A. Lapouchnian and Y. Lespérance

// ms notifies both participants and the initiator that it failed to schedule
// meeting 1
notifyFail(ms,mi,1,[alexei,yves])
notifyFail(ms,alexei,1,[alexei,yves])
notifyFail(ms,yves,1,[alexei,yves])

Generally, this validation step of the process involves finding gaps or errors in the
specification by simulating the processes. The ConGolog code can be instrumented
with tests (using the “?” operator) to verify that desired properties hold, e.g., during
or at the end of the execution of the program. Alternative specifications can be also
compared. A graphical user interface tool for conducting such simulation experiments
is available, see [13]. As mentioned, the simulation tool requires a complete specifica-
tion of the initial state. This limitation comes from the fact that the tool uses Prolog
and its closed world assumption to reason about how the state changes. The tool (like
ConGolog itself) does not provide support for modeling agent mental states and how
they are affected by communication and other actions. As we saw in the examples, it
is possible to model limited aspects of this using ordinary actions and fluent predi-
cates, but this does not capture the full logic of mental states and communication.
Work is underway to relax these limitations and develop techniques for efficient rea-
soning about limited types of incomplete knowledge and knowledge-producing ac-
tions in ConGolog [20]. ConGolog models can also be verified using the CASLve
tool discussed in Section 4.3.

4 Modeling Mental States in Requirements Engineering

4.1 Motivation

Suppose that we are employing an approach like Tropos [2, 6] to model a simple goal
delegation involving two agents. Fig. 7 shows a goal dependency where the Meeting
Scheduler depends on the Meeting Participant for attending a meeting. We would like to

AtMeeting(MP)

1. Before delegation
Goal(MS,AtMeeting(MP)) .
Know(MS,Goal(MS,AtMeeting(MP)))

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP))
Know(MS,Goal(MP,AtMeeting(MP)))
Know(MS,Know(MP,

Goal(MP,AtMeeting(MP))))
Know(MS,Know(MP,

Goal(MS,AtMeeting(MP))))

1. Before delegation
?

2. Delegation through
request(MS,MP,AtMeeting(MP))

3. After Delegation
¬Goal(MP,¬AtMeeting(MP))
Goal(MP,AtMeeting(MP))
Know(MP,Goal(MP,AtMeeting(MP)))
Know(MP,Goal(MS,AtMeeting(MP)))
Know(MP,Know(MS,

Goal(MP,AtMeeting(MP))))

MS MP

Meeting
Participant

Meeting
Scheduler

Fig. 7. A motivating example

 Using the ConGolog and CASL Formal Agent Specification Languages 497

be able to analyze this interaction and predict how it will affect the agents’ goals and
knowledge. Using the i*-CASL approach presented in this section [11, 12], one can
create a formal model based on the diagram, analyze it, and conclude that, e.g., before
the goal delegation, the MS has the goal AtMeeting(MP) and knows about this fact.
After the delegation (and provided that the MP did not have a conflicting goal), the MS
knows that the MP has acquired the goal, that the MP knows that it has the goal, and
that the MP knows that the MS has the same goal, etc. Similar questions can be asked
about MP.

Note that the change in the mental state of the requestee agent is the core of goal
delegation. One of the main features of the i*-CASL approach is that goals (and
knowledge) are assigned to particular agents thus becoming their subjective attributes
as opposed to being objective system properties as in many other approaches (e.g.,
[4]). This allows for the modeling of conflicting goals, agent negotiation, information
exchange, complex agent interaction protocols, etc. In CASL, the full logic of these
mental states and how they change is formalized. The i*-CASL approach thus allows
for creating richer, more expressive specifications with precise modeling of agents’
mental states. However, the more complex CASL models currently require the use of
a theorem-prover-based verification tool such as CASLve and cannot be used with the
ConGolog simulation tool.

4.2 The Cognitive Agents Specification Language

The Cognitive Agents Specification Language (CASL) [22, 23] is a formal specifica-
tion language that extends ConGolog to incorporate models of mental states expressed
in the situation calculus [21]. CASL uses modal operators to formally represent
agents’ knowledge and goals; communication actions are provided to update these
mental states and ConGolog is then employed to specify the behaviour of agents. The
logical foundations of CASL allow it to be used to specify and analyze a wide variety
of MAS as shown in [22, 23]. For instance, it can model non-deterministic behaviours
and systems with an incompletely specified initial state. Similar to ConGolog (see
Section 2.2), CASL specifications consist of two parts: the model of the domain and
its dynamics (the declarative part) and the specification of the agents’ behaviour (the
procedural part).

The formal representation for both goals and knowledge in CASL is based on a
possible worlds semantics incorporated into the situation calculus, where situations
are viewed as possible worlds [16, 21]. CASL uses accessibility relations K and W to
model what an agent knows and what it wants respectively. K(agt,s′,s) holds if the
situation s′ is compatible with what the agent agt knows in situation s. In this case, the
situation s′ is called K-accessible. When an agent does not know the truth value of
some formula φ, it considers possible (formally, K-accessible) some situations where
φ is true and some where it is false. An agent knows that φ in situation s if φ is true in
all its K-accessible situations in s: Know(agt,φ,s)=∀s′(K(agt,s′,s)⊃ φ[s′]). Constraints
on the K relation ensure that agents have positive and negative introspection (i.e.,
agents know whether they know/don’t know something) and guarantee that what is
known is true. Built-in communication actions such as inform are used for exchanging
information among agents. The precondition for the inform action ensures that no

498 A. Lapouchnian and Y. Lespérance

false information is transmitted. The changes to agents’ knowledge due to communi-
cation and other actions are specified by the successor state axiom for the K relation.
The specification ensures that agents are aware of the execution of all actions. En-
hanced accounts of knowledge change and communication in the situation calculus
have also been proposed to handle, for instance, encrypted messages [23] or belief
revision [25].

The accessibility relation W(agt,s′,s) holds if in situation s an agent considers that
everything that it wants to be true actually holds in s′, which is called W-accessible.
We use the formula Goal(agt,ψ,s) to indicate that in situation s the agent agt has the
goal that ψ holds. The definition of Goal says that ψ must be true in all W-accessible
situations that have a K-accessible situation in their past. This ensures that while
agents may want something they know is impossible to achieve, the goals of agents
must be consistent with what they currently know. There are constraints on the W and
K relations that ensure that agent’s goals are consistent and that agents introspect their
goals. In our approach, we mostly use achievement goals that specify the desired
states of the world. We use the formula Goal(agt,Eventually(ψ),s) to state that agt has
the goal that ψ is eventually true. The built-in communication actions request and
cancelRequest are used by agents to request services from other agents and to cancel
such requests respectively. Requests are used to establish intentional dependencies
among actors and lead to changes in goals of the requested agent. The dynamics of
the W relation are specified, as usual, by a successor state axiom that guarantees that
no inconsistent goals are adopted.

4.3 The i*-CASL Notation and Process

Increasing Precision with Intentional Annotated Strategic Rationale Models. Our
aim in this approach is to tightly associate i* models with formal specifications in
CASL. As was the case with the i*-ConGolog approach presented in Section 3, we
use an intermediate notation, Intentional Annotated SR (iASR) diagrams, to bridge the
gap between SR diagrams and CASL specifications.

When developing an iASR diagram, one starts with the corresponding SR diagram
(e.g., see Fig. 2). The steps for producing iASR diagrams from the corresponding SR
ones are similar to the ones presented in Section 3.

Agent Goals in iASR Models. A CASL agent has procedural (behaviour) and declara-
tive (mental state) components. iASR diagrams only model agent processes and thus
are used to represent the procedural component of CASL agents. A goal node in an
iASR diagram indicates that the agent knows that the goal is in its mental state and is
prepared to deliberate about if and how to achieve it. For the agent to modify its be-
haviour in response to the changes to its mental state, it must synchronize its proce-
dural and declarative components (see Fig. 8A). Agent mental states usually change
as a result of communication acts that realize goal delegation and information ex-
change. So, the procedural component of the agent must monitor for these changes.
The way to do this is to use interrupts or guards with their conditions being the pres-
ence of certain goals or knowledge in the mental state of the agent (Fig. 8B). Proce-
durally, the goal node is interpreted as invoking the means to achieve it.

 Using the ConGolog and CASL Formal Agent Specification Languages 499

commit
guard,

interrupt

Declarative
Component

Procedural
Component

request,
inform, etc.

CASL
Agent

guard(Goal(agt,Goal1))

Task1

Goal1A B

Fig. 8. Synchronizing declarative and procedural components of CASL specifications

In CASL, only communication actions have effects on the mental state of the
agents. However, we also would like the agents to be able to change their mental state
on their own by executing the action commit(agent,φ), where φ is a formula that the
agent (or the modeler) wants to hold. Thus, in iASR diagrams all agent goals must be
acquired either from intentional dependencies or by using the commit action. By in-
troducing goals into the models of agent processes, the modeler captures the fact that
multiple existing or potential alternatives exist in these processes and makes sure the
mental state of agents reflect this. This allows agents to reason about their goals and
ways to attain them at runtime.
Modeling agent interactions. We take an intentional stance towards modeling agent
interactions. We are modeling them with built-in generic communication actions (e.g.,
request, inform) that modify the mental states of the agents. In iASR models, these
generic communication actions are used to request services, provide information, etc.
Also, the conditions in annotations and communication actions (as well as the commit
action) may refer to the agents’ mental states, knowledge and goals. Because of the
importance of agent interactions in MAS, in order to formally verify multiagent sys-
tem specifications in CASL, all high-level aspects of agent interaction must be pro-
vided in the corresponding iASR models.

Fig. 9A and Fig. 9B illustrate how an intentional goal dependency RoomBooked
(see Fig. 1) can be modeled in SR and iASR models respectively. It is established by
the MS’s execution of the request action (with that goal as the argument) towards the
MRBS agent. This will cause the MRBS to acquire the goal RoomBooked (if it is consis-
tent with its existing goals). The interrupt in the iASR model for the MRBS monitors

whenever(Goal(MRBS,
RoomBooked(mid,d)),

systemTerminated)

guard(KWhether(MS,
RoomBooked(mid,d)))

;

ReserveRoom
forDate(mid,d))

request(MRBS,
RoomBooked(mid,d))

Notify
Participants(mid,d)

MRBS
BehaviourMeeting

Scheduler

MRBS

Room
Booked(mid,d)

Room
Booked(mid,d)

ReserveRoom
forDate

Room
Booked(mid,d)

Room
Booked(mid,d)

Meeting
Scheduler MRBS

A

B

Fig. 9. Adding iASR-level agent interaction details

500 A. Lapouchnian and Y. Lespérance

its mental state for the goal and triggers the behaviour for achieving it (i.e. booking a
room, which is not shown) when the goal is acquired. Also, once the MS’s knowledge
state is updated and it knows whether (formally, KWhether) the room has been
booked (note the guard condition), the task for notifying participants will be triggered.

From iASR Models to CASL Specifications. Once an iASR model has been
produced, it can be mapped into a CASL specification for formal analysis.

As previously, the modeler defines a mapping m that associates iASR model ele-
ments (except for dependencies) with CASL procedures, primitive actions, and for-
mulas, so that a CASL program can be generated from an iASR model. Specifically,
actors are mapped into CASL procedures, leaf-level tasks are mapped into procedures
or primitive actions, while annotations are mapped into CASL operators. Conditions
in the annotations map into CASL formulas that can refer to agents’ mental states.

Mapping Goal Nodes. An iASR goal node is mapped into a CASL formula (the
formal definition for the goal) and an achievement procedure that is based on the
means-ends decomposition for the goal in the iASR diagram (see Fig. 5). E.g., a for-
mal definition for MeetingScheduled(mid,s) could be: ∃d[AgreeableDate(mid, date,s)
∧ AllAccepted(mid,date,s) ∧ RoomBooked(mid,date, s)]. This says that there must be
a date agreeable for everybody on which a room was booked and all participants
accepted to meet. Often, an initial goal definition is too ideal and needs to be
deidealized [9] or weakened. See [12] for an example.

CASL’s support for reasoning about agents’ goals gave us the ability not to main-
tain meeting participants’ schedules explicitly. Rather, we relied on the presence of
goals AtMeeting(participant,mid,date,s) in their mental states together with an axiom
that made sure that they could only attend one meeting per time slot (see [12]).

The achievement procedures for goals are automatically constructed based on the
modeled means for achieving them as described in Section 3.

Modeling Dependencies. Intentional dependencies are not mapped into CASL per se
— they are established by the associated agent interactions. iASR tasks requesting
help from agents will generally be mapped into actions of the type re-
quest(FromAgt,ToAgt,Eventually(φ)) for an achievement goal φ. For task dependen-
cies, we use request(FromAgt, ToAgt, DoAL(SomeProcedure)) to request that a
known procedure be executed while allowing other actions to occur (DoAL stands for
“do at least”).

In order for a dependency to be established, we also need a commitment from a de-
pendee agent to act on the request from the depender. It must monitor its mental state
for the newly acquired goals, which is done using interrupts that trigger whenever un-
achieved goals of certain types are in their mental states. The bodies of interrupts spec-
ify appropriate responses to the messages. Also, cancellation conditions in interrupts
allow the agents to monitor for certain requests/informs only in particular contexts (e.g.,
while some interaction protocol is being enacted). For details, see [11, 12].

Analysis and Verification. Once an iASR model is mapped into the corresponding
CASL specification, it is ready to be formally analyzed. One tool that can be used is
CASLve [24, 22], a theorem-prover-based verification environment for CASL.
CASLve provides a library of theories for representing CASL specifications and
lemmas that facilitate various types of verification proofs. In addition to physical

 Using the ConGolog and CASL Formal Agent Specification Languages 501

executability of agent programs, one can also check for the epistemic feasibility of
agent plans [14], i.e., whether agents have enough knowledge to successfully execute
their processes. Alternative verification approaches based, for instance, on simulation
or model checking can be used. However, they require much less expressive
languages, so CASL specifications need to be simplified for these approaches.

If expected properties of the system are not entailed by the CASL model, it means
that the model is incorrect and needs to be fixed. The source of an error found during
verification can usually be traced to a portion of the CASL code, and to a part of its
iASR model, since our systematic mapping supports traceability.

5 Discussion and Future Work

In this chapter, we have presented an approach to requirements engineering that in-
volves the combined use of i* and some multiagent system specification formalisms,
ConGolog and its extension CASL. This allows the requirements engineer to exploit
the complementary features of the frameworks. The i* framework can be used to
model social dependencies between agents, perform an analysis of opportunities and
vulnerabilities, explore alternatives and trade-offs. These models are then gradually
made more precise with the use of annotated models. ConGolog or CASL can then be
used to model complex processes formally with subsequent verification or simulation
(for ConGolog only). Additionally, CASL supports the explicit modeling of agent
mental states and reasoning about them. In our approach, both graphical/informal and
textual/formal notations are used, which supports a progressive specification process
and helps in communicating with the clients, while providing traceability.

There have been a few other proposals for using i* with formal specification lan-
guages for RE. The Trust-Confidence-Distrust (TCD) approach combining i* and Con-
Golog to model/analyze trust in social networks was proposed in [7]. TCD is focused on
a specific type of applications and has an extended SR notation that is quite different
from our proposal in terms sequencing of elements, explicit preconditions, etc.

Formal Tropos (FT) [6] is another approach that supports formal analysis of i*
models though model checking. Its specifications use temporal logic and it can be
used at the SD level, unlike our approaches, which use procedural notations that are
more suitable for SR models. Unlike CASL, the formal components of FT and the i*-
ConGolog approach do not support reasoning about goals and knowledge and thus
require that goals be abstracted out of the specifications. However, most agent inter-
actions involve knowledge exchange and goal delegation. The ability of CASL to
formally model and reason about mental states as properties of agents is important
and supports new types of analysis (e.g., of conflicting goals).

In future work, we would like to develop tool support for representing ASR/iASR
diagrams and mapping them into ConGolog/CASL and for supporting the co-
evolution of the two representations. We expect that our RE toolkit will be able to
significantly simplify the specification of the declarative component of Con-
Golog/CASL models. We plan to explore how different types of agent goals (e.g.,
maintenance) as well as privacy, security, and trust can be handled in CASL. There
are also a number of limitations of CASL’s formalization of mental state change and
communication that should be addressed in future work. One such limitation is that

502 A. Lapouchnian and Y. Lespérance

agents cannot send false information. Removing this limitation requires modeling
belief revision, which adds a lot of complexity (see [25]). However, this will support
modeling of, e.g., malicious and untruthful agents.

We also note that CASL assumes that all agents are aware of all actions being exe-
cuted in the system. Often, it would be useful to lift this restriction, but dealing with
the resulting lack of knowledge about agents’ mental states can be challenging.

Finally, there is also ongoing work on supporting limited forms of incomplete
knowledge and information acquisition actions in a logic programming-based Con-
Golog implementation [20]. This may eventually lead to an executable version of
CASL where simulation can be performed on models of agents with mental states.

Bibliography

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.): Multi-agent pro-
gramming: Languages, platforms and applications. Springer, Heidelberg (2005)

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

3. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional requirements in software en-
gineering. Kluwer, Dordrecht (2000)

4. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

5. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent programming lan-
guage based on the Situation Calculus. Artificial Intelligence 121(1-2), 109–169 (2000)

6. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requirements Engineering Journal 9(2), 132–150
(2004)

7. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements management for
organisation networks: a (Dis)trust-based approach. Requirements Engineering Jour-
nal 8(1), 4–22 (2003)

8. Jennings, N.R.: Agent-oriented software engineering. In: Garijo, F.J., Boman, M. (eds.)
MAAMAW 1999. LNCS, vol. 1647, pp. 1–7. Springer, Heidelberg (1999)

9. van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of require-
ments for a meeting scheduler: problems and lessons learnt. In: Proc. RE 1995, York, UK
(1995)

10. van Lamsweerde, A.: Requirements engineering in the year 00: a research perspective. In:
Proc. ICSE 2000, Limerick, Ireland (2000)

11. Lapouchnian, A.: Modeling mental states in requirements engineering - an agent-oriented
framework based on i* and CASL. M.Sc. Thesis. Department of Computer Science, York
University, Toronto (2004)

12. Lapouchnian, A., Lespérance, Y.: Modeling mental states in agent-oriented requirements
engineering. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 480–494.
Springer, Heidelberg (2006)

13. Lespérance, Y., Kelley, T.G., Mylopoulos, J., Yu, E.S.K.: Modeling dynamic domains
with conGolog. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp.
365–380. Springer, Heidelberg (1999)

14. Lespérance, Y.: On the epistemic feasibility of plans in multiagent systems specifications.
In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp. 69–85. Springer,
Heidelberg (2002)

 Using the ConGolog and CASL Formal Agent Specification Languages 503

15. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial in-
telligence. Machine Intelligence 4, 463–502 (1969)

16. Moore, R.C.: A formal theory of knowledge and action. In: Hobbs, J.R., Moore, R.C.
(eds.) Formal Theories of the Common Sense World, pp. 319–358. Ablex Publishing,
Greenwich (1985)

17. van Otterloo, S., van der Hoek, W., Wooldrige, M.: Model checking a knowledge ex-
change scenario. Applied Artificial Intelligence 18(9-10), 937–952 (2004)

18. Reiter, R.: The frame problem in the Situation Calculus: a simple solution (sometimes) and
a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380.
Academic Press, London (1991)

19. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge (2001)

20. Sardina, S., Vassos, S.: The Wumpus world in IndiGolog: A Preliminary Report. In: Proc.
Sixth Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC 2005) at
IJCAI 2005, Edinburgh, UK (2005)

21. Scherl, R.B., Levesque, H.: Knowledge, action, and the frame problem. Artificial Intelli-
gence 144(1-2), 1–39 (2003)

22. Shapiro, S.: Specifying and Verifying Multiagent Systems Using CASL. Ph.D. Thesis.
Dept. of Computer Science, University of Toronto (2004)

23. Shapiro, S.: Modeling Multiagent Systems with CASL - A Feature Interaction Resolution
Application. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS, vol. 1986,
pp. 244–259. Springer, Heidelberg (2001)

24. Shapiro, S., Lespérance, Y., Levesque, H.: The Cognitive Agents Specification Language
and verification environment for multiagent systems. In: Proc. AAMAS 2002, Bologna, It-
aly, pp. 19–26 (2002)

25. Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.: Iterated belief change in the
Situation Calculus. In: Proc. KR-2000, Breckenridge, Colorado, USA (2000)

26. Wang, X.: Agent-oriented requirements engineering using the ConGolog and i* frame-
works. M.Sc. Thesis. Department of Computer Science, York University, Toronto (2001)

27. Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using ConGolog and
i*. In: Proc. AOIS 2001 (2001)

28. Wooldridge, M.: Agent-based software engineering. IEE Proceedings on Software Engi-
neering 144(1), 26–37 (1997)

29. Yu, E.: Modeling strategic relationships for process reengineering. Ph.D. Thesis. Depart-
ment of Computer Science, University of Toronto (1995)

30. Yu, E.: Towards modeling and reasoning support for early requirements engineer-
ing. In: Proc. RE 1997, Annapolis, MD, USA (1997)

Author Index

Artale, Alessandro 10

Bernstein, Philip A. 254
Borgida, Alex 436
Brachman, Ronald J. 436
Brambilla, Marco 273
Brodie, Michael L. 1

Calvanese, Diego 173
Castro, Jaelson 335
Ceri, Stefano 273
Chaudhri, Vinay K. 466
Chung, Lawrence 363

de Castro, Valeria 293
De Giacomo, Giuseppe 173
Dong, Xin (Luna) 122
Dutta, Biswanath 36

Fagin, Ronald 198
Franconi, Enrico 10
Fraternali, Piero 273

Giunchiglia, Fausto 36
Guarino, Nicola 52

Haas, Laura M. 198
Halevy, Alon Y. 122
Hernández, Mauricio 198

Jackson, Michael 68
Jarke, Matthias 237
Jeusfeld, Manfred A. 237
Jurisica, Igor 466

Karagiannis, Dimitris 139
Kolp, Manuel 335
Koubarakis, Manolis 466

Lakemeyer, Gerhard 82
Lapouchnian, Alexei 483
Leite, Julio Cesar Sampaio

do Prado 363

Lembo, Domenico 173
Lenzerini, Maurizio 173
Lespérance, Yves 483
Levesque, Hector J. 82
Liu, Lin 335

Maltese, Vincenzo 36
Marcos, Esperanza 293
McGuinness, Deborah L. 436
McIlraith, Sheila A. 319
Miller, Renée J. 198

Nguyen, Dinh Khoa 293
Nissen, Hans W. 237

Papazoglou, Mike P. 293
Patel-Schneider, Peter F. 436
Perini, Anna 335
Plexousakis, Dimitris 466
Popa, Lucian 198
Pottinger, Rachel 254
Prokoshyna, Nataliya 319

Quix, Christoph 237

Rolland, Colette 398
Rosati, Riccardo 173
Roussopoulos, Nick 139

Salinesi, Camille 398
Sarma, Anish Das 122
Schmidt, Joachim W. 153
Singh, Munindar P. 417
Sohrabi, Shirin 319

Telang, Pankaj R. 417
Topaloglou, Thodoros 466

van den Heuvel, Willem-Jan 293
van Lamsweerde, Axel 380
Velegrakis, Yannis 198

Yu, Eric S. 99

	Title Page
	Preface
	Table of Contents
	John Mylopoulos: Sewing Seeds of Conceptual Modelling
	Sewing Seeds of Conceptual Modeling
	A Golden Age in Computer Science
	The Emergence of Data Modelling
	Seeds of Conceptual Modelling at UofT
	Conceptual Modelling in AI, DB, and PL
	The Contributions of Early Conceptual Modelling
	Conceptual Modelling in Software Engineering and Beyond
	And Beyond That
	References

	Foundations
	Foundations of Temporal Conceptual Data Models
	Introduction
	Temporal Modelling Constructors
	Modelling Requirements
	A Formalisation of Temporal Data Models
	Timestamping
	Evolution Constraints
	Status Classes
	Transition
	Generation Relationships

	The Temporal Description Logic
	Encoding Temporal Schemas in Description Logics
	Correctness of the Encoding

	Complexity of Reasoning on Temporal Models
	Conclusions
	References

	Faceted Lightweight Ontologies
	Introduction
	Lightweight Classification Ontologies
	Descriptive Ontologies
	Classification Ontologies
	Lightweight Classification Ontologies

	Facets
	Faceted Lightweight Ontologies
	Subject Indexing
	Conclusion
	References

	The Ontological Level: Revisiting 30 Years of Knowledge Representation
	Introduction
	Knowledge Representation Levels
	From the Logical Level to the Ontological Level
	Basic Distinctions among Properties
	Sortal vs. Non-sortal Properties
	Kinds of Rigidity
	Rigid Sortals: Types and Quasi-types
	Anti-rigid Sortals: Material Roles and Phases
	Semi-rigid Sortals
	Non-sortals: Categories, Formal Roles, and Attributions
	The Rocks Example Revisited

	Basic Distinctions among Binary Properties
	Conclusions
	References

	Some Notes on Models and Modelling
	Modelling and Understanding
	Models and Subjects
	Mental Models and Reasoning
	Overt Models
	Model Imperfection
	Models and Interpretations
	Designations
	Interpretation for Analogical Models
	Designing and Understanding an Analogical Model
	The Context of a Model
	The Local Context of a Model
	The Scope and Span of a Model
	Vague Models
	Building Precision on Vagueness
	Summary
	References

	A Semantical Account of Progression in the Presence of Defaults
	Introduction
	The Logic ${\mathcal ES}_O$
	The Language
	The Semantics
	Some Properties

	The Semantics of Progression and Defaults
	Basic Action Theories
	Progression = Only-Knowing After an Action
	Comparison with Lin and Reiter
	Defaults for Basic Action Theories
	An Example

	Related Work
	Conclusion
	References

	Social Modeling and i*
	Why Social Modeling
	Premises and Features of i* Modeling
	Actor Autonomy
	Intentionality
	Sociality
	Rationality
	Contingent Boundaries and Identities
	Strategic Reflectivity

	Social Modeling for Requirements Engineering
	Social Modeling for Software Development
	Social Modeling for Enterprise Engineering
	Social Modeling for Security, Privacy, and Trust
	Research Issues
	Usage Contexts and Methodologies
	Conceptual Limitations and Extensions
	Model Management and Tools

	Conclusions
	References

	Information Systems
	Data Modeling in Dataspace Support Platforms
	Introduction
	Uncertainty in Data Integration
	Uncertainty in Mappings
	Uncertainty in Mediated Schema
	Related Work
	Conclusions
	References

	Conceptual Modeling: Past, Present and the Continuum of the Future
	Introduction
	Conceptual Modeling - Past
	Early 1970ies – The Roots of Conceptual Modelling
	Mid 1970ies – Databases: CM and Semantic Data Models
	The 1980ies – An Efflorescense of CMs
	The 1990ies – Object Oriented Development, a New Programming Paradigm

	Conceptual Modeling - Present
	Conceptual Modeling – The Continuum of the Future
	Conceptual Modeling for the Schema-During
	The Concept of Sibdata

	Conclusions
	References

	On Conceptual Content Management Interdisciplinary Insights beyond Computational Data
	Introduction: Motivation and Overview
	Conceptual Content Modeling: Foundation and Rationale
	Languages for Conceptual Content: Design and Use
	A Generator Framework for Conceptual Content Management
	Conclusion
	References

	Information Integration
	Conceptual Modeling for Data Integration
	Introduction
	The Data Integration Framework
	Architecture for Data Integration
	Description Logics

	UML Class Diagram as Global Schema
	Representing UML Class Diagrams in DLs
	Reasoning and Query Answering

	A Tractable DL: $DL-Lite_{A,id}$
	Data Integration with $DL-Lite_{A,id}$
	The Global Schema
	The Source Schema
	The Mapping
	Query Answering
	Correctness and Complexity of Query Answering

	Extending the Data Integration Framework
	Discussion and Conclusions
	References

	Clio: Schema Mapping Creation and Data Exchange
	Introduction
	Schema Mapping
	Implementing Data Exchange

	A Motivating Example
	Schema Mapping Creation
	Query Generation for Data Exchange

	Mapping Language and Schema Constraints
	Schema Mapping
	Associations
	Mapping Generation

	Query Generation for Data Exchange
	Intuition: What Are the Challenges
	The Query Graph
	Generation of Transformation Queries

	Analysis
	Complexity and Termination of the Chase
	Characterization of Data Exchange

	Related Work
	Conclusions
	References

	Heterogeneity in Model Management: A Meta Modeling Approach
	Introduction
	Meta Formulae in ConceptBase
	Perspective Resolution in Requirements Engineering
	Model-Based Information Integration in Data Warehouses
	Dealing with Model Complexity: Model Management
	The Model Management Movement
	The Generic Role-Based Metamodel GeRoMe
	Generic Schema Mappings
	Application Example: Generic Peer Data Management

	Concluding Remarks
	References

	Associativity and Commutativity in Generic Merge
	Introduction
	Problem Definition
	Representation of Models
	$Merge$ Inputs
	$Merge$ Semantics

	Conflict Resolution
	Representation Conflicts
	Meta-model Conflicts
	Fundamental Conflicts

	Resolving Fundamental Conflicts
	The $Merge$ Algorithm
	Algebraic Properties of Merge
	Commutativity
	Associativity
	Mapping-Independent Commutativity and Associativity

	Conclusions
	References

	Web and Services
	The History of WebML
	Introduction
	The Original WebML Language
	The WebML Hypertext Model
	Semantics of the WebML Hypertext Model
	The WebML Design Process
	The Added Value of WebML

	Service-Oriented Architectures
	Workflow-Driven Applications for the Web
	User Personalization and Context Awareness
	Semantic Web Services
	Rich Internet Applications
	Related Work
	Conclusions
	References – WebML

	GAMBUSE: A Gap Analysis Methodology for Engineering SOA-Based Applications
	Introduction
	GAMBUSE - A Model-Driven Gap Analysis Methodology for Business Service Engineering
	Case Study
	Core Service Meta-Model (SMM) and Service Schema Specification (SSS) for GAMBUSE
	Universal Relationships
	Service Meta-Model (SMM)
	Service Schema Specification (SSS)

	Distilling Business Services from the To-Be Process Model
	Meta-Model Operators for Distilling Business Services
	Cohesion and Coupling Criteria
	Grouping Process Activities into Business Services

	Detecting and Assessing the Reusability of As-Is Systems
	Syntactic Signature Matching
	Behavioural Signature Matching
	Match and Disparity Operators

	Conclusions and Further Research Work
	References
	Appendix

	Web Service Composition via the Customization of Golog Programs with User Preferences
	Introduction
	Situation Calculus and Golog
	Specifying User Preferences
	Web Service Composition
	Computing Preferred Compositions
	Integrated Optimal Web Service Selection

	Implementation and Application
	Summary and Related Work
	References

	Software and Requirements Engineering
	Dealing with Complexity Using Conceptual ModelsBased on $Tropos$
	Introduction
	Running Example
	Modularization of Requirements Models
	Identifying and Modularizing Aspects
	Identifying Relationship among Aspectual Elements
	Representing Aspectual Elements Using the Aspectual i* Notation
	Performing Trade-Off Analysis

	Early Validation of Requirements Models
	Dealing with Complexity Using a Combined Goal and Scenario Approach
	Coping with Complexity Using TROPOS

	Software Project Management Process
	Process Engineering Concepts
	Process Phases
	Process Core Disciplines
	Process Support Disciplines
	Applying I-Tropos on Medi@

	Conclusion
	References

	On Non-Functional Requirements in Software Engineering
	Introduction
	What are Non-Functional Requirements?
	Some Classification Schemes
	Representations of Non-Functional Requirements
	Future Directions
	References

	Reasoning About Alternative Requirements Options
	Introduction
	Alternative Options in Requirements Engineering
	Goal Models and the Role of Soft Goals
	Qualitative Reasoning about Alternative Options
	Assessing the Qualitative Contribution of Alternative Options to Leaf Soft Goals
	Bottom-Up Propagation of Qualitative Contributions
	Discussion

	Lightweight Quantitative Evaluation of Alternative Options
	Quantifying Option Contributions to Leaf Soft Goals through Score Matrices
	Deriving Option Scores from Measures of Soft Goal Satisficing

	Conclusion
	References

	Supporting Requirements Elicitation through Goal/Scenario Coupling
	Introduction
	Overview of the L’Ecritoire Approach
	The Notion of a Requirement Chunk
	The Scenario-Authoring, Goal-Discovery Process
	Authoring Rules
	Discovery Rules

	The Usage Scenario
	Step 1: Starting the Session
	Step 2: Scenario Analysis
	Step 3: Structuring Scenario Text
	Step 4: Discover Goals from the Scenario
	Step 5: Using the Alternative Strategy
	Step 6: Using the Refinement Strategy
	Step7: Terminating the Session

	Conclusion
	References

	Enhancing Tropos with Commitments A Business Metamodel and Methodology
	Introduction
	Metamodel and Methodology
	Step S1: Agent and Role Identification
	Step S2: Determine Goals and Dependencies
	Step S3: Determine Tasks and Dependencies
	Step S4: Identify Commitments

	Methodology Applied to a Real-World Case
	Insurance Claim Processing Scenario
	Step S1
	Step S2
	Step S3
	Step S4

	Verifying Agent Interactions
	Discussion
	References

	Implementations
	“Reducing” CLASSIC to Practice: Knowledge Representation Theory Meets Reality
	Introduction
	The Original classic
	Goals
	The Description Language
	Operations on {\sc classic} Knowledge Bases
	Inferences
	Other Theoretical Aspects of {\sc classic}
	Anticipating Implementation
	The Result

	The Transition to Practice
	Feedback from Practice
	Creating and Supporting a System
	Implementation Considerations
	Serving the General User Population
	Meeting the Needs of Particular Applications
	Revisiting What Looked Good on Paper
	Other Important Influences

	Modern {\sc classic}
	Lessons
	References

	The KBMS Project and Beyond
	Introduction
	The Knowledge Representation Language Telos
	Telos Implementations
	Research on Implementation Techniques

	Evolution of Knowledge Systems Since the KBMS Project
	Content Modeling
	Implemented Systems
	Measurement and Evaluation

	Summary and Conclusions
	References

	Using the ConGolog and CASL Formal Agent Specification Languages for the Analysis, Verification, and Simulation of i* Models
	Introduction
	Background
	The i* Framework and a Case Study
	The Formal Foundations: The Situation Calculus and ConGolog

	Using ConGolog for the Analysis, Simulation, and Verification of i* Models
	Annotated SR Diagrams
	Increasing Precision with ASR Models
	Mapping ASR Diagrams into ConGolog
	Simulation

	Modeling Mental States in Requirements Engineering
	Motivation
	The Cognitive Agents Specification Language
	The i*-CASL Notation and Process

	Discussion and Future Work
	Bibliography

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

