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Preface

These proceedings contain a selection of refereed papers presented at or re-
lated to the Annual Workshop of the TYPES project (EU coordination action
510996), which was held during March 26–29, 2008 in Turin, Italy. The topic
of this workshop, and of all previous workshops of the same project, was for-
mal reasoning and computer programming based on type theory: languages and
computerized tools for reasoning, and applications in several domains such as
analysis of programming languages, certified software, mobile code, formaliza-
tion of mathematics, mathematics education. The workshop was attended by
more than 100 researchers and included more than 40 presentations. We also
had three invited lectures, from A. Asperti (University of Bologna), G. Dowek
(LIX, Ecole polytechnique, France) and J. W. Klop (Vrije Universiteit, Ams-
terdam, The Netherlands). From 27 submitted papers, 19 were selected after
a reviewing process. Each submitted paper was reviewed by three referees; the
final decisions were made by the editors. This workshop is the last of a series
of meetings of the TYPES working group funded by the European Union (IST
project 29001, ESPRIT Working Group 21900, ESPRIT BRA 6435). The pro-
ceedings of these workshops were published in the Lecture Notes in Computer
Science series:

TYPES 1993 Nijmegen, The Netherlands, LNCS 806,
TYPES 1994 B̊astad, Sweden, LNCS 996,
TYPES 1995 Turin, Italy, LNCS 1158,
TYPES 1996 Aussois, France, LNCS 1512,
TYPES 1998 Kloster Irsee, Germany, LNCS 1657,
TYPES 1999 Lökeborg, Sweden, LNCS 1956,
TYPES 2000 Durham, UK, LNCS 2277,
TYPES 2002 Berg en Dal, The Netherlands, LNCS 2646,
TYPES 2003 Turin, Italy, LNCS 3085,
TYPES 2004 Jouy-en-Josas, France, LNCS 3839,
TYPES 2006 Nottingham, UK, LNCS 4502,
TYPES 2007 Cividale del Friuli, Italy, LNCS 4941.

ESPRIT BRA 6453 was a continuation of ESPRIT Action 3245, Logical Frame-
works: Design, Implementation and Experiments. TYPES 2008 was made pos-
sible by the contribution of many people. We thank all the participants of the
workshops, and all the authors who submitted papers for consideration for these
proceedings. We would like to also thank the referees for their effort in preparing
careful reviews.

March 2009 Stefano Berardi
Ferruccio Damiani

Ugo de’Liguoro
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Type Inference
by Coinductive Logic Programming�

Davide Ancona, Giovanni Lagorio, and Elena Zucca

DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy
{davide,lagorio,zucca}@disi.unige.it

Abstract. We propose a novel approach to constraint-based type in-
ference based on coinductive logic. Constraint generation corresponds to
translation into a conjunction of Horn clauses P , and constraint satis-
faction is defined in terms of the coinductive Herbrand model of P . We
illustrate the approach by formally defining this translation for a small
object-oriented language similar to Featherweight Java, where type an-
notations in field and method declarations can be omitted.

In this way, we obtain a very precise type inference and provide new
insights into the challenging problem of type inference for object-oriented
programs. Since the approach is deliberately declarative, we define in fact
a formal specification for a general class of algorithms, which can be a
useful road map to researchers.

Furthermore, despite we consider here a particular language, the
methodology could be used in general for providing abstract specifica-
tions of type inference for different kinds of programming languages.

Keywords: Type inference, coinduction, nominal and structural typing,
object-oriented languages.

1 Introduction

Type inference is a valuable method to ensure static guarantees on the execution
of programs (like the absence of some type errors) and to allow sophisticated
compiler optimizations. In the context of object-oriented programming, many
solutions have been proposed to perform type analysis (we refer to the recent
article of Wang and Smith [20] for a comprehensive overview), but the increasing
interest in dynamic object-oriented languages is asking for even more precise and
efficient type inference algorithms [3,14].

Two important features which have to be supported by type inference are
parametric and data polymorphism [1]; the former allows invocation of a method
on arguments of unrelated types, the latter allows assignment of values of unre-
lated types to a field. While most solutions proposed in literature support well
parametric polymorphism, only few inference algorithms are able to deal prop-
erly with data polymorphism; such algorithms, however, turn out to be quite
complex and cannot be easily described.
� This work has been partially supported by MIUR EOS DUE - Extensible Object

Systems for Dynamic and Unpredictable Environments.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 D. Ancona, G. Lagorio, and E. Zucca

In this paper we propose a novel approach to type inference, by exploiting
coinductive logic programming. Our approach is deliberately declarative, that
is, we do not define any algorithm, but rather try to capture a space of possible
solutions to the challenging problem of precise type inference of object-oriented
programs.

The basic idea is that the program to be analyzed can be translated into an
approximating logic program and a goal; then, type inference corresponds to find
an instantiation of the goal which belongs to the coinductive model of the logic
program. Coinduction allows to deal in a natural way with both recursive types
[11,12] and mutually recursive methods.

The approach is fully formalized for a purely functional object-oriented lan-
guage similar to Featherweight Java [16], where type annotations can be omitted,
and are used by the programmer only as subtyping constraints. The resulting
type inference is very powerful and allows, for instance, very precise analysis of
heterogeneous container objects (as linked lists).

The paper is structured as follows: Section 2 defines the language and gives an
informal presentation of the type system, based on standard recursive and union
types. In Section 3 the type system is reconsidered in the light of coinductive logic
programming, and the translation is fully formalized. Type soundness w.r.t. the
operational semantics is claimed (proofs are sketched in Appendix B). Finally,
Section 4 draws some conclusions and discusses future developments.

2 Language Definition and Types

In this section we present a simple object-oriented (shortly OO) language to-
gether with the definition of types. Constraint generation and satisfaction are
only informally illustrated; they will be formally defined in the next section, on
top of coinductive logic programming.

2.1 Syntax and Operational Semantics

The syntax is given in Figure 1. Syntactic assumptions listed in the figure are
verified before performing type inference. We use bars for denoting sequences:
for instance, em denotes e1, . . . , em, T x

n
denotes1 T1 x1, . . . ,Tn xn, and so on.

The language is basically Featherweight Java (FJ) [16], a small Java subset
which has become a standard example to illustrate extensions and new tech-
nologies for Java-like languages. Since we are interested in type inference, type
annotations for parameters, fields, and returned values can be omitted; further-
more, to make the type inference problem more interesting, we have introduced
the conditional expression if (e) e1 else e2, and a more expressive form of con-
structor declaration.

We assume countably infinite sets of class names c, method names m, field
names f , and parameter names x . A program is a sequence of class declarations

1 If not explicitly stated, the bar “distributes over” all meta-variables below it.
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prog ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

cn md
m } (c1 �= Object)

fd ::= T f ;
cn ::= c(T x

n
) {super(em); f = e ′;

k}
md ::= T0 m(T x

n
) {e}

e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2 | false | true
T ::= N | ε
N ::= c | bool
v ::= new c(vn) | false | true

Assumptions: n, m, k ≥ 0, inheritance is not cyclic, names of declared classes in a
program, methods and fields in a class, and parameters in a method are distinct.

Fig. 1. Syntax of OO programs

together with a main expression from which the computation starts. A class
declaration consists of the name of the declared class and of its direct superclass
(hence, only single inheritance is supported), a sequence of field declarations, a
constructor declaration, and a sequence of method declarations. We assume a
predefined class Object, which is the root of the inheritance tree and contains
no fields, no methods and a constructor with no parameters. A field declara-
tion consists of a type annotation and a field name. A constructor declaration
consists of the name of the class where the constructor is declared, a sequence
of parameters with their type annotations, and the body, which consists of an
invocation of the superclass constructor and a sequence of field initializations,
one for each field declared in the class.2 A method declaration consists of a re-
turn type annotation, a method name, a sequence of parameters with their type
annotations, and an expression (the method body).

Expressions are standard; boolean values and conditional expressions have
been introduced just to show how the type system allows precise typing in case
of branches. Integer values and the related standard primitives will be used in the
examples, but are omitted in the formalization, since their introduction would
only imply a straightforward extension of the type system. As in FJ, this is
considered as a special implicit parameter.

A type annotation T can be either a nominal type N (the primitive type bool
or a class name c) or empty.

Finally, the definition of values v is instrumental to the (standard) small steps
operational semantics of the language, indexed over the class declarations defined
by the program, shown in Figure 2.

For reasons of space, side conditions have been placed together with premises,
and standard contextual closure have been omitted. To be as general as possible,
no evaluation strategy has been fixed. Auxiliary functions cbody and mbody are
defined in Appendix A.

2 This is a generalization of constructors of FJ, whose arguments exactly match in
number and type the fields of the class, and are used as initialization expressions.
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(field-1)
cbody(cds , c) = (xn, {super(. . .); f = e ′;

k}) f = fi 1 ≤ i ≤ k

new c(en).f →cds e ′
i[e

n/xn]

(field-2)

cbody(cds , c) = (xn, {super(e ′m); f = . . . ;
k})

∀ i ∈ 1..k f �= fi class c extends c′ { . . .} ∈ cds
new c′(e ′

1[en/xn], . . . , e ′
m[en/xn]).f →cds e

new c(en).f →cds e

(invk)
mbody(cds , c,m) = (xn, e) ethis = new c(ek)
new c(ek).m(e ′n)→cds e[e ′n/xn][ethis/this ]

(if-1)
if (true) e1 else e2 →cds e1

(if-2)
if (false) e1 else e2 →cds e2

Fig. 2. Reduction rules for OO programs

Rule (field-1) corresponds to the case where the field f is declared in the same
class of the constructor, whereas rule (field-2) covers the disjoint case where
the field has been declared in some superclass. The notation e[en/xn] denotes
parallel substitution of xi by ei (for i = 1..n) in expression e.

In rule (invk), the parameters and the body of the method to be invoked are
retrieved by the auxiliary function mbody, which performs the standard method
look-up. If the method is found, then the invocation reduces to the body of the
method where the parameters are substituted by the corresponding arguments,
and this by the receiver object (the object on which the method is invoked).

The remaining rules are trivial.
The one step reduction relation on programs is defined by: (cds e)→ (cds e ′)

iff e →cds e ′. Finally, →∗ and →∗
cds denote the reflexive and transitive closures

of → and →cds , respectively.

2.2 Types

Types, class environments and constraints are defined in Figure 3.
Value types (meta-variable τ) must not be confused with nominal types (meta-

variable N ) in the OO syntax. Nominal types are used as type annotations by

τ ::= X | bool | obj (c, ρ) | τ1 ∨ τ2 | μX .τ (μX .τ contractive)
ρ ::= [f :τ

n
]

Δ ::= c:(c′, fts, ct ,mts)
n

fts ::= [f :T
n
]

ct ::= ∀Xn
.C ⇒ ((

∏
i=1..k X ′

i )→ obj (c, ρ)) ({X ′k} ⊆ {X n})
mts ::= [m:mt

n]
mt ::= ∀Xn

.C ⇒ ((
∏

i=1..k X ′
i )→ τ ) ({X ′k} ⊆ {X n}, n ≥ k ≥ 1)

C ::= {γn}
γ ::= inst of (τ,N ) | new(c, [τn], τ ) | fld acc(τ1, f , τ2)

| invk(τ0,m, [τn], τ ) | cond(τ1, τ2, τ3, τ )

Fig. 3. Definition of types, class environments and constraints
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programmers, whereas value types are used in the type system and are trans-
parent to programmers. Nominal types are approximations3 of the much more
precise value types. This is formally captured by the constraint inst of (τ,N )
(see in the following).

A value type can be a type variable X , the primitive type bool, an object type
obj (c, ρ), a union type τ1 ∨ τ2, or a recursive type μX .τ .

An object type obj (c, ρ) consists of the class c of the object and of a record
type ρ = [f :τ

n
] specifying the types of the fields. Field types need to be associated

with each object, to support data polymorphism; the types of methods can be
retrieved from the class c of the object (see the notion of class environment
below).

Union types [10,15] have the conventional meaning: an expression of type
τ1 ∨ τ2 is expected to assume values of type τ1 or τ2.

Recursive types are standard [2]: intuitively, μX .τ denotes the recursive type
defined by the equation X = τ , thus fulfilling the equivalences μX .τ ≡ τ [μX .τ/X ]
and μX .τ ≡ μX ′.τ [X ′/X ], where substitutions are capture avoiding. As usual, to
rule out recursive types whose equation has no unique solution4, we consider only
contractive types [2]: μX .τ is contractive iff (1) all free occurrences ofX in τ appear
inside an object type obj (c, ρ), (2) all recursive types in τ are contractive.

A class environment Δ is a finite map associating with each defined class name
c all its relevant type information: the direct superclass; the type annotations
associated with each declared field (fts); the type of the constructor (ct); the
type of each declared method (mts).

Constructor types can be seen as particular method types. The method type
∀X n

.C ⇒ ((
∏

i=1..k X ′
i ) → τ) is read as follows: for all type variables X

n
, if the

finite set of constraints C is satisfied, then the type of the method is a function
from

∏
i=1..k X ′

i to τ . Without any loss of generality, we assume distinct type
variables for the parameters; furthermore, the first type variable corresponds to
the special implicit parameter this , therefore the type ∀X n

.C ⇒ ((
∏

i=1..k X ′
i ) →

τ) corresponds to a method with k − 1 parameters. Finally, note that C and τ

may contain other universally quantified type variables (hence, {X ′k} is a subset
of {X n}).

Constructor types correspond to functions which always return an object type
and do not have the implicit parameter this (hence, k corresponds to the number
of parameters).

Constraints are based on our long-term experience on compositional type-
checking and type inference of Java-like languages [6,9,5,17,7]. Each kind of
compound expression comes with a specific constraint:

– new(c, [τn], τ) corresponds to object creation, c is the class of the invoked
constructor, τn the types of the arguments, and τ the type of the newly
created object;

– fld acc(τ1, f , τ2) corresponds to field access, τ1 is the type of the receiver, f
the field name, and τ2 the resulting type of the whole expression;

3 Except for the type bool .
4 For instance, μX .X or μX .X ∨ X .
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– invk(τ0,m, [τn], τ) corresponds to method invocation, τ0 is the type of the
receiver, m the method name, τn the types of the arguments, and τ the type
of the returned value;

– cond(τ1, τ2, τ3, τ) corresponds to conditional expression5, τ1 is the type of the
condition, τ2 and τ3 the types of the “then” and “else” branches, respectively,
and τ the resulting type of the whole expression.

The constraint inst of (τ,N ) does not correspond to any kind of expression, but
is needed for checking that value type τ is approximated by nominal type N .

As it is customary, in the constraint-based approach type inference is per-
formed in two distinct steps: constraint generation, and constraint satisfaction.

Constraint Generation. Constraint generation is the easiest part of type
inference. A program cds e is translated into a pair (Δ,C ), where Δ is obtained
from cds , and C from e. As we will formally define in the next section, Δ can
be represented by a set of Horn clauses, and C by a goal. To give an intuition,
consider the following method declaration:

c lass List extends Object {

altList(i,x){

i f (i<=0) new EList()

e l se new NEList(x, this .altList(i-1,x.succ ()))
}

}

The method type of altList is inferred by collecting all constraints generated
from its body:

∀This, I,X, R1, R2, R3, R4, R5.{
inst of (This,List), inst of (I, int),new (EList , [ ], R1), invk(X, succ, [ ], R2),
invk(This, altList , [int , R2], R3),new (NEList , [X, R3], R4), cond(bool , R1, R4, R5)

}
⇒ ((This × I ×X)→ R5)

For simplicity we have simplified the set of constraints, omitting the constraints
of i<=0 and i-1. The constraint inst of (This ,List) forces the receiver object
to be an instance of (a subclass of) List, since the method is declared in class
List. The other constraints derive from each compound subexpression in the
body of the method.

Constraint Satisfaction. After generating the pair (Δ,C ) from the program
cds e, to ensure that the execution of cds e is type-safe, one needs to prove
that the set of constraints C is satisfiable in the class environment Δ. Typically,
in constraint-based type inference of object-oriented programs, constraint satis-
faction is defined operationally: most approaches directly provide an algorithm,
or, at their best, a framework which can be instantiated by various algorithms
5 This constraint could be easily avoided in practice, but has been introduced to

show how a general methodology can be adopted, by associating with each kind of
compound expression a specific constraint.
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[20], but a declarative definition of constraint satisfaction is often missing. Even
though this operational approach guarantees that type inference is decidable,
providing a declarative definition of satisfiability based on a logical model allows
one to abstract away from any possible implementation, and to give a simpler
specification of the underlying type system. In this paper we take the opposite
approach, by defining constraint satisfaction in terms of coinductive logic. In
this way, we obtain a very powerful type system which, in fact, is not decidable,
but can be approximated by precise type inference algorithms [8,4].

In the last part of this section we provide just an example to show how coin-
ductive logic supports very precise typing. Let us add to the class List above
the following class declarations:

c lass EList extends List { c lass NEList extends List {

EList(){ super();} el; next;

NEList(e,n){super();
} el=e;next=n;}}

c lass A extends Object { c lass B extends Object {

A(){ super();} B(){ super();}
succ (){new B()} succ (){new A()}

} }

In such a program, the main expression new List().altlist(i,new A()) returns
an empty list if i ≤ 0; otherwise, a non empty list is returned whose length is i
and whose elements are alternating instances of class A and B (starting from an
A instance). Similarly, new List().altlist(i,new B()) returns an alternating
list starting with a B instance.

The results of these two expressions can be specified by the following two
precise types, respectively:

τA = μX .obj (EList , [ ])∨
obj (NEList , [el :obj (A, [ ]),next :obj (EList , [ ])∨

obj (NEList , [el :obj (B , [ ]),next :X ])])
τB = μX .obj (EList , [ ])∨

obj (NEList , [el :obj (B , [ ]),next :obj (EList , [ ])∨
obj (NEList , [el :obj (A, [ ]),next :X ])])

By unfolding and coinduction, the following two type equivalences hold:

τA ≡ obj (EList , [ ]) ∨ obj (NEList , [el :obj (A, [ ]),next :τB ])
τB ≡ obj (EList , [ ]) ∨ obj (NEList , [el :obj (B , [ ]),next :τA])

We show now that in the class environment corresponding to the example
program, the constraints

invk (obj (List , [ ]), altList , [int , obj (A, [ ])],XA)
invk (obj (List , [ ]), altList , [int , obj (B , [ ])],XB)

generated from the two expressions are satisfiable for XA = τA and XB = τB .
For the first constraint we have to prove that the constraints of the method type
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of altList are satisfiable for This = obj (List , [ ]), I = int , and X = obj (A, [ ]).
That is, the following set is satisfiable.⎧⎨⎩

inst of (obj (List , [ ]),List), inst of (int , int),new(EList , [ ], R1),
invk(obj (A, [ ]), succ, [ ], R2), invk (obj (List , [ ]), altList , [int , R2], R3),
new(NEList , [obj (A, [ ]), R3], R4), cond(bool , R1, R4, R5)

⎫⎬⎭
The two inst of constraints are trivially satisfied, whereas new(EList , [ ], R1)
and invk(obj (A, [ ]), succ, [ ], R2) are satisfiable for R1 = obj (EList , [ ]) and
R2 = obj (B , [ ]). Then, by coinduction, invk (obj (List , [ ]), altList , [int , R2], R3)
is satisfiable for R3 = τB . Consequently, new(NEList , [obj (A, [ ]), R3], R4) is sat-
isfiable for R4 = obj (NEList , [el :obj (A, [ ]),next :τB]), and cond(bool , R1, R4, R5)
for R5 = obj (EList , [ ]) ∨ obj (NEList , [el :obj (A, [ ]),next :τB]) ≡ τA. This last
equivalence can be proved by unfolding and coinduction. The proof for the other
constraint is symmetric.

3 Reconsidered Type Inference System

In this section we reconsider the type inference system described in the previous
section in the light of coinductive logic.

The first basic idea consists in representing a class environment as a conjunc-
tion of Horn clauses (that is, a logic program), a set of type constraints as a
conjunction of atoms (predicates applied to terms), and value types as terms. In
this way, constraint generation corresponds to a translation from an OO program
cds e to a pair (P ,B), where P is a logic program corresponding to the class
environment generated from cds , and B is a conjunction of atoms corresponding
to the constraints generated from e.

We assume two countably infinite sets of predicate p and function f symbols,
respectively, each one with an associated arity n ≥ 0, and a countably infinite
set of logical variables X . Functions with arity 0 are called constants. We write
p/n, f /n to mean that predicate p, function f have arity n, respectively. For
symbols we follow the usual convention: function and predicate symbols always
begin with a lowercase letter, whereas variables always begin with an uppercase
letter.

A logic program is a finite conjunction of clauses of the form A ← B , where
A is the head and B is the body. The head is an atom, while the body is a finite
and possibly empty conjunction of atoms; the empty conjunction is denoted by
true. A clause with an empty body (denoted by A ← true) is called a fact. An
atom has the form6 p(tn) where the predicate p has arity n and tn are terms.

For list terms we use the standard notation [ ] for the empty list and [ | ] for
the list constructor, and adopt the syntax abbreviation [tn] for [t1|[. . . [tn|[ ]]].

In coinductive Herbrand models, terms are possibly infinite trees. The def-
inition of tree which follows is quite standard [13,2]. A path p is a finite and

6 Parentheses are omitted for predicate symbols of arity 0; the same convention applies
for function applications, see below.



Type Inference by Coinductive Logic Programming 9

possibly empty sequence of natural numbers. The empty path is denoted by ε,
p1 ·p2 denotes the concatenation of p1 and p2, and |p| denotes the length of p. A
tree t is a partial function from paths to logical variables and function symbols,
satisfying the following conditions:

1. the domain of t (denoted by dom(t)) is prefix-closed and not empty;
2. for all paths p in dom(t) and for all natural numbers n,

p · n ∈ dom(t) iff t(p) = f /m and n < m.

If p ∈ dom(t), then the subtree t ′ of t rooted at p is defined by dom(t ′) =
{p′ | p · p′ ∈ dom(t)}, t ′(p′) = t(p · p′); t ′ is said a proper subset of t iff p �= ∅.

Note that recursive types defined with μ correspond to regular trees (see be-
low), while here we are considering also types corresponding to non regular trees,
therefore the set of types is much more expressive than that defined in the previ-
ous section, and, in fact, allows much more precise typings [4]. This is perfectly
reasonable for a declarative definition of type inference; implementations of the
system can only be sound approximations restricted to regular trees. A tree is
regular (a.k.a. rational) if and only if it has a finite number of distinct subtrees.
Regular terms can be finitely represented by means of term unification problems
[19], that is, finite sets of equations [13,2] of the form X = t (where t is a finite
term which is not a variable). Note that logic programs are built over finite
terms; infinite terms are only needed for defining coinductive Herbrand models
[19] (co-Herbrand models for short, see Section 3.4).

3.1 Restricted Co-herbrand Universe

Given an OO program prog , the co-Herbrand universe [19] of its logic counterpart
is the set of all terms built on [ ], bool, all constant symbols corresponding to
class, field, and method names declared in prog , and the symbols of arity 2 [ | ],
: , obj , and ∨ .
The co-Herbrand universe contains also terms which are non contractive types,

as that defined by X = X ∨ X . The definition of contractive type given in
Section 2 can be generalized in a natural way to non regular terms as follows.
A term t is contractive iff there exists no countable infinite sequence of natural
numbers s s.t. there exists n s.t. for all paths p which are prefixes7 of s, if |p| ≥ n,
then p ∈ dom(t), and t(p) = ∨/2.

3.2 Restricted Co-herbrand Base

Given an OO program prog , the restricted co-Herbrand base of its logical encod-
ing is the set of all ground atoms built on the contractive terms of the restricted
co-Herbrand universe and on the following predicate symbols:

– all symbols of the type constraints defined in Figure 3 with the corresponding
arity: inst of /2, new/3, fld acc/3, invk/4, cond/4;

7 Recall that paths are finite sequences.
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– class/1, where class(c) means that c is a defined class;
– ext/2, where ext(c1, c2) means that c1 extends c2;
– subclass/2, where subclass(c1, c2) means that c1 is equal to or is a subclass

of c2;
– has fld/3, where has fld(c, f ,T ) means that class c has field f with type

annotation T ;
– fld/3, where fld(ρ, f , τ) means that the record type ρ has field f of type τ ;
– dec fld/3, where dec fld(c, f ,T ) means that class c contains the declaration

of field f with type annotation T ;
– dec meth/2 where dec meth(c,m) means that c contains the declaration of

method m;
– meth/4 where meth(c,m, [τ0, τ

n], τ) means that class c has a method m
which returns a value of type τ when invoked on receiver of type τ0 and with
arguments of types τn.

These predicates are needed for translating class environments in logic programs
(see Figure 4).

3.3 Constraint Generation

Constraint generation is defined in Figure 4. For the translation we assume
bijections from the three sets of class, field and method names declared in the
program to three corresponding sets containing constants of the co-Herbrand
universe, and bijections from the two sets of parameter names and type variables
to two corresponding sets containing logical variables. Given a class name c, a
field name f , a method name m, a parameter name x , and a type variable X , we
denote with ĉ, f̂ , m̂ the corresponding constants in the co-Herbrand universe, and
with x̂ and X̂ the corresponding logical variables. For simplicity, we assume that
the implicit parameter this is mapped to the logical variable This (t̂his = This).

The rules define a judgment for each syntactic category of the OO language:

– prog � (P ,B): a program is translated in a pair where the first component is
a logic program, and the second is a conjunction of atoms which is satisfiable
in P iff prog is well-typed (see Section 3.4);

– fds in c � Cl , mds in c � P : a field declaration is translated in a clause,
whereas a method declaration is translated in a logic program (consisting
of two clauses); both kinds of translation depend on the name of the class
where the declaration is contained;

– cn in fds � Cl : a constructor declaration is translated in a clause and is
defined only if all fields in fds are initialized by the constructor in the same
order8 as they are declared in fds ;

– e in V � (t |B): an expression is translated in a pair where the first com-
ponent is a term corresponding to the value type of the expression, and the
second is a conjunction of atoms corresponding to the generated constraints.
Constraint generation succeeds only if all free variables of e are contained in
the set of variables V .

8 This last restriction is just for simplicity.
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(prog)
cd � P

n
e in ∅� (t |B)

cd
n

e � (Pdefault ∪ (∪i=1..nPi),B)
(field)

T f ; in c � dec fld(bc, bf , bT )← true.

(class)
fd in c1 � PF

n
cn in fd

n � Cl md in c1 � PM
m

PF = ∪i=1..nPF
i

PM = ∪i=1..mPM
i

class c1 extends c2 { fd
n

cn md
m }�

j
class( bc1 ) ← true.
ext( bc1 , bc2 )← true.

ff
∪ PF ∪ {Cl} ∪ PM

(constr-dec)
e in {xn}� (t |B)

m
e ′ in {xn}� (t ′ |B ′)

k

c(T x
n
) {super(em); f = e;

k} in T ′ f ;
k �

new(bc, [bxn
], obj (bc, [bf :t ′

k

|R])) ← inst of (bx , bT )
n

, B
m

, ext(bc, C),

new(C, [tm], obj (C, R)), B′, inst of (t ′, cT ′)
k

.

(meth-dec)
e in {This, bxn}� (t |B)

T0 m(T x
n
){e} in c �

dec meth(bc, bm) ← true.

meth(bc, bm, [This, bxn
], t)← inst of (This, bc), inst of (bx , bT )

n

,B , inst of (t , cT0).

(new)
e in V � (t |B)

n

new c(en) in V � (R |Bn
,new(bc, [tn], R))

R fresh

(var)
x in V � (bx | true)

x ∈ V (field-acc)
e in V � (t |B)

e.f in V � (R |B ,fld acc(t , bf , R))
R fresh

(invk)
e0 in V � (t0 |B0) e in V � (t |B)

n

e0.m(en) in V � (R |B0,B
n
, invk(t0, bm, [tn], R))

R fresh

(if)
e in V � (t |B) e1 in V � (t1 |B1) e2 in V � (t2 |B2)
if (e) e1 else e2 in V � (R |B ,B1,B2, cond(t , t1, t2, R))

R fresh

(true)
true in V � (bool | true)

(false)
false in V � (bool | true)

Fig. 4. Constraint generation

In rule (class), fd in c1 � PF
n

abbreviates fd1 in c1 � PF
1 , . . . , fdn in c1 �

PF
n (the abbreviation md in c1 � PM

m
has a similar meaning).

In rule (constr-dec), e1 in {xn} � (t1 |B1), . . . , em in {xn} � (tm |Bm) is
abbreviated by e in {xn} � (t |B)

m
(the same comment applies to the other

premises of the rule).
Most of the rules are self-explanatory; we comment only rules for programs

and for constructor and method declarations.
In rule (prog) Pdefault (see Figure 5) contains those clauses shared by any

program, whereas ∪i=1..nPi are the clauses obtained by translating the class
declarations of the program. Note that the type t of the main expression e is
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class(object)← true .
subclass(X ,X )← class(X ).
subclass(X , object)← class(X ).
subclass(X ,Y )← ext(X ,Z ), subclass(Z ,Y ).
inst of (bool , bool)← true .
inst of (obj (C1 ,X ),C2 )← subclass(C1 ,C2 ).
inst of (T1 ∨ T2 ,C )← inst of (T1 ,C ), inst of (T2 ,C ).
fld acc(obj (C ,R),F ,T )← has fld(C ,F ,TA),fld(R,F ,T ), inst of (T ,TA).
fld acc(T1 ∨ T2 , F ,FT1 ∨ FT2 )← fld acc(T1 , F ,FT1 ),fld acc(T1 , F ,FT1 ).
fld([F :T |R],F ,T )← true .
fld([F1 :T1 |R], F2 ,T )← fld(R,F2 , T ),F1 �= F2 .
invk(obj (C ,S),M ,A,R)← meth(C ,M , [obj (C ,S)|A], R).
invk(T1 ∨ T2 ,M ,A,R1 ∨ R2 )← invk(T1 ,M ,A,R1 ), invk(T2 , M ,A, R2 ).
new(object , [ ], obj (object , [ ]))← true .
has fld(C ,F ,T )← dec fld(C ,F ,T ).
has fld(C ,F ,T1 )← ext(C ,P), has fld(P ,F ,T1 ),¬dec fld(C ,F ,T2 ).
meth(C, M, [This|A], R)←

inst of (This, C), ext(C, P ),meth(P, M, [This|A], R),¬dec meth(C, M).
cond(T1 ,T2 , T3 ,T2 ∨ T3 )← inst of (T1 , bool).

Fig. 5. Clauses in Pdefault shared by all programs

discarded in the consequence of the rule, since only the constraints generated
from e are needed to check the type safety of the program.

Note that not all formulas in Figure 5 are Horn clauses; indeed, for brevity we
have used the negation of predicates dec fld and dec meth, and the inequality
for field names. However, since the set of all field and method names declared
in a program is finite, the predicates not dec fld , not dec meth and �= could be
trivially defined by conjunctions of facts, therefore all formulas could be turned
into Horn clauses.

A constructor declaration generates a single clause whose head has the form

new(ĉ, [x̂
n
], obj (ĉ, [f̂ :t ′

k

|R])), where c is the class of the constructor, xn are its

parameters, and obj (ĉ, [f̂ :t ′
k

|R]) is the type of the object created by the con-
structor. This is obviously an object type corresponding to an instance of c,
where the types associated with the fields f

k
declared in c are determined by

the initialization expressions e ′k (see the second premise), whereas the types
associated with the inherited fields are determined by the invocation of the
constructor of the direct superclass. Such invocation corresponds to the atom
new(C, [tm], obj (C, R)); indeed, the atom ext(ĉ, C) is satisfied only if C is instan-
tiated with the direct superclass of c, and the value types tm of the arguments
passed to the constructor of C are determined by the expressions em (see the
first premise). Hence, R is the record type associating types with all fields in-
herited from C. The remaining atoms of the body of the clause are generated
either from the expressions em and e ′k (conjunctions of atoms B

m
,B ′k), or from

the type annotations of the parameters xn and of the fields f
k

declared in c;
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for convenience, we define the translation ε̂ of the empty annotation to always
return a fresh variable so that in this case no constraint is actually imposed.

Finally, notice that the clause is correctly generated only if: (1) the free vari-
ables of the expressions contained in the constructor body are contained in the
set {xn} of the parameters (therefore, this cannot be accessed); (2) all fields
declared in the class are initialized exactly once and in the same order as they
are declared.

Rule (meth-dec) is quite similar to (constr-dec) except for: (1) two clauses
are generated, one for the predicate dec meth and the other for the predicate
meth. Notice that dec meth specifies just the names of all methods declared in c,
whereas meth specifies the names and the types of all methods (either declared
or inherited) of c; (2) the variable this can be accessed in the body of the method;
for this reason, This appears as the first parameter in the head of the clause for
the predicate meth, and this is in the set of free variables which can appear in
the body e of the method. Obviously, the variable this will always contain an
instance of (a subclass of) c (see the atom inst of (This , ĉ)).

3.4 Constraint Satisfaction

A substitution θ is a total map from the set of logical variables into the set of
contractive terms s.t. {X | θ(X ) �= X } is finite. The application of a substitution
θ to a term t returns the term tθ defined as follows:
– dom(tθ) =
{p | p ∈ dom(t) or p = p′ · p′′ with p′ ∈ dom(t), t(p′) = X , and p′′∈dom(θ(X ))}

– (tθ)(p) =
{

t(p) if p ∈ dom(t), t(p) is not a variable
θ(X )(p′′) if p = p′ · p′′, p′ ∈ dom(t), t(p′) = X , p′′ ∈ dom(θ(X ))

A ground instance of a clause A← A
n

is a ground clause Cl (that is, Cl does
not contain logical variables) s.t. Cl = Aθ ← Aθ

n
for a substitution9 θ.

Constraint satisfaction is defined in terms of restricted co-Herbrand models. A
restricted co-Herbrand model of a logic program P is a subset of the restricted
co-Herbrand base of P which is a fixed-point of the immediate consequence
operator TP from the restricted co-Herbrand base into itself, defined by

TP(S) = {A | A← A
n

is a ground instance of a clause of P ,A
n ∈ S}.

We have to show that for any program P , TP is well-defined, that is, is closed
w.r.t. contractive terms. This comes from the following proposition.

Proposition 1. If t is contractive, then tθ is contractive.

Proof. See Appendix B. �
Since TP is obviously monotonic w.r.t. set inclusion, by the Knaster-Tarski the-
orem there always exists the greatest fixed-point of TP , which is the greatest
restricted co-Herbrand model Mco(P) [19] of P .

We say that B is satisfiable in P iff there exists a substitution θ s.t. Bθ ⊆
M co(P).
9 Aθ

n
denotes A1θ, . . . ,Anθ.
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3.5 Soundness of the System

Soundness follows by progress and subject reduction theorems below; the former
states that a well-typed program cannot get stuck, the latter states that if a well-
typed program reduces, then it reduces to a well-typed program. The proofs of
these two theorems come directly from the main lemmas in Appendix B, whose
proofs are a generalization of those which can be found in a companion paper [8].

Theorem 1 (Progress). If cds e � (P ,B) and B is satisfiable in P, then
either e is a value or e →cds e ′ for some e′.

Theorem 2 (Subject reduction). If cds e � (P ,B), B is satisfiable in P,
and e →cds e ′, then cds e ′ � (P ,B ′), and B ′ is satisfiable in P.

We say that cds e is a normal form iff there exists no e ′ s.t. (cds e) → (cds e ′).
Soundness ensures that reduction of well-typed programs never gets stuck.

Theorem 3 (Soundness). If cds e � (P ,B), B is satisfiable in P, (cds e) →∗

(cds e ′), and cds e ′ is a normal form, then e′ is a value.

Proof. By induction on the number n of reduction steps. The claim for n = 0
holds by progress. If n > 0, then there exists e ′′ s.t. (cds e) → (cds e ′′),
and (cds e ′′) →∗ (cds e ′) in n − 1 steps. By subject reduction we have that
cds e ′′ � (P ,B ′) and B ′ is satisfiable in P , therefore we can conclude by induc-
tive hypothesis. �

4 Conclusion and Further Developments

We have defined a constraint-based type system for an object-oriented language
similar to Featherweight Java, where type annotations in class declarations can
be omitted. The type system is specified in a declarative way, by translating
programs in sets of Horn clauses and considering their coinductive Herbrand
models. This was made possible by our notion of constraints which has been
introduced in previous works on principal typing of Java-like languages [9,5].

To our knowledge, this is the first attempt to exploit coinductive logic pro-
gramming for type inference of object-oriented languages. The resulting type
system is very precise and supports well data polymorphism, by allowing pre-
cise type inference of heterogeneous container objects (for instance, linked lists
containing instances of unrelated classes).

We believe that this approach deserves further developments in several
directions.

One of the most interesting and challenging issue concerns the implementation
of the type inference defined here in a declarative way. Since the type system
is defined on infinite and non regular types, clearly it is not decidable. Never-
theless, devising algorithms restricted to regular types which are sound w.r.t.
the type system would represent an important advance in the topic. A possible
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implementation can be based on the recent results on the operational seman-
tics of coinductive logic programming [19,18]. We have followed this approach to
implement a prototype10 in Java and Prolog, which is an approximation of the
type system able to type the examples presented in this paper. We refer to the
companion paper [8] for more details on the implementation.

Scalability and applicability are two other important issues. For the former,
it would be interesting to study more complex translations able to deal with
flow sensitive analysis and imperative features. To prove that our approach is
applicable to other kinds of languages, a first step would consist in defining
type inference based on coinductive logic programming for a simple functional
language.
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A Auxiliary Functions

(mbody-1)
class c extends c′ { . . . T0 m(T x

n
){e} . . .} ∈ cds

mbody(cds, c,m) = (xn, e)

(mbody-2)

class c extends c′ { . . .mds } ∈ cds m �∈ mds
mbody(cds , c′,m) = (xn, e)

mbody(cds , c, m) = (xn, e)

(cbody)
class c extends c′ { . . . c(T x

n
) {super(em); f = e ′;

k} . . .} ∈ cds

cbody(cds , c) = (xn, {super(em); f = e ′;
k})

Fig. 6. Auxiliary functions

B Proofs of Claims of Section 3

Proposition 1. If t is contractive, then tθ is contractive.

Proof. By contradiction, let us assume that tθ is not contractive, hence, there
exists a countable and infinite sequence s of natural numbers and a natural
number n s.t. for all paths p which are prefixes of s if |p| ≥ n, then p ∈ dom(t ′),
and t ′(p) = ∨ /2, for t ′ = tθ. Let us consider the two following exhaustive and
disjoint cases:
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– If p ∈ dom(t) for all paths which are prefixes of s, then t does not contain
any variable along p for all finite prefixes p of s, therefore, by definition of
tθ, we have t(p) = t ′(p) for all finite prefixes p of s, but this contradicts the
hypothesis that t is contractive.

– Otherwise, let us consider the longest path p′ among all finite prefixes of s
s.t. p′ ∈ dom(t), and let l = |p′| (p′ exists since we are assuming that there
exists a finite prefix of s which does not belong to dom(t), and, by definition
of tree, dom(t) is not empty and prefix-closed). Then, by definition of tθ,
p′ ∈ dom(t) and t(p′) = X for a certain logic variable X , and for all finite
prefixes p of s, if |p| ≥ l, then there exists p′′ s.t. p = p′ · p′′, p′′ ∈ dom(t ′′),
and t ′′(p′′) = t ′(p), where t ′′ = θ(X ). Therefore, for all finite prefixes p
of s, if |p| ≥ max(0, n − l), then p ∈ dom(t ′′), and t ′′(p) = ∨ /2, which
contradicts the hypothesis that θ(X ) is contractive. �

Progress. To prove progress we need the following lemmas.

Lemma 1. If C[e] in V � (t |B), then e in V � (t ′ |B ′), with B ′ ⊆ B.

Proof. By case analysis on the contexts and by induction on their structure. �

Lemma 2. If cds � P, and invk(ĉ, m̂ , [t1, . . . , tn], t) is satisfiable in P, then
mbody(cds , c,m) = (xn, e) for some variables xn and expression e.

Proof. By induction on the height of the inheritance tree. �

Theorem 1 [Progress]. If cds e � (P ,B) and B is satisfiable in P , then either
e is a value or e →cds e ′ for some e ′.

Proof. A generalization of the proof which can be found in a companion pa-
per [8]. �

Subject Reduction. To prove subject reduction we need to introduce a sub-
typing relation ≤ between value types, since after a reduction step the inferred
type of the reduced expression may become more specific.

Consider for instance the following expression e = if true 1 else false. We
have e →cds 1, e in V � (X | cond(bool , int , bool ,X )) and 1 in V � (int | true).
Now cond(bool , int , bool ,X ) is satisfiable for X = int ∨ bool , but 1 in V �
(int ∨ bool | true) does not hold. However, the subtyping relation int ≤ int ∨bool
holds.

Since subtyping has to be defined on infinite terms, we adopt a coinductive
definition [11,12]. We define ≤ as the greatest binary relation defined on the
restricted co-Herbrand universe satisfying the following rules:
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(bool)
bool ≤ bool

(obj)
t1 ≤ t2

m

obj (c, [f :t1
n
]) ≤ obj (c, [f :t2

m
])

n ≥ m

(∨R1)
t ≤ t1

t ≤ t1 ∨ t2
(∨R2)

t ≤ t2
t ≤ t1 ∨ t2

(∨L)
t1 ≤ t t2 ≤ t

t1 ∨ t2 ≤ t

(distr)
obj (c, [f :t

n
, f :tf , f ′:t ′

m
]) ≤ t obj (c, [f :t

n
, f :t ′f , f ′:t ′

m
]) ≤ t

obj (c, [f :t
n
, f :tf ∨ t ′f , f ′:t ′

m
]) ≤ t

Lemma 3. If cds � P, e in V � (t |B), Bθ ⊆ Mco(P), and e →cds e ′, then
there exist t ′, B ′ and θ′ s.t. e ′ in V � (t ′ |B ′), B ′θ′ ⊆Mco(P), and t ′θ′ ≤ tθ.

Theorem 2 [Subject reduction]. If cds e � (P ,B), B is satisfiable in P , and
e →cds e ′, then cds e ′ � (P ,B ′), and B ′ is satisfiable in P .

Proof. A corollary of lemma 3. �
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Abstract. We discuss the formalization, in the Matita Interactive The-
orem Prover, of a famous result by Chebyshev concerning the distribu-
tion of prime numbers, essentially subsuming, as a corollary, Bertrand’s
postulate. Even if Chebyshev’s result has been later superseded by the
stronger prime number theorem, his machinery, and in particular the two
functions ψ and θ still play a central role in the modern development of
number theory. Differently from other recent formalizations of other re-
sults in number theory, our proof is entirely arithmetical. It makes use of
most part of the machinery of elementary arithmetics, and in particular
of properties of prime numbers, factorization, products and summations,
providing a natural benchmark for assessing the actual development of
the arithmetical knowledge base.

1 Introduction

Let π(n) denote the number of primes not exceeding n. The prime number
theorem, proved by Hadamard and la Vallé Poussin in 1896 states that π(n) is
asymptotically equal to n/ log(n), that is the ratio between the two functions
tends to 1 when n tends to infinity. In this paper we address a weaker result,
due to Chebyshev around 1850, stating that the order of magnitude of π(n) is
n/ logn, meaning that we can find two constants c1 and c2 such that, for any n

c1
n

log(n)
≤ π(n) ≤ c2

n

log n

Even if Chebyshev’s theorem is sensibly simpler than the prime number theo-
rem, already formalized by Avigad et al. in Isabelle [3] and by Harrison in HOL
Light [5], it is far form trivial (in Hardy and Wright’s famous textbook [7], it
takes pages 340-344 of chapter 22). In particular, our point was to give a fully
arithmetical (and constructive) proof of this theorem. Even if Selberg’s proof of
the prime number theorem is “elementary”, meaning that it requires no sophisti-
cated tools of analysis except for the properties of logarithms, a fully arithmetical
proof of this results looks problematics, considering that the statement involves
in an essential way the Naperian logarithm. On the other side, the logarithm
∗ On leave at INRIA-Microsoft Research Center, Orsay, France.
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in Chebyshev’s theorem can be in any base, and can be also essentially avoided
(at least from the statement), asserting the existence of two constants c1 and c2
such that, for any n

2c1n ≤ nπ(n) ≤ 2c2n

that is what we actually proved.
As an important byproduct, we also give the first purely arithmetical formal

proof of Bertrand’s postulate, stating that for any n, there exists a prime number
between n and 2n1.

The paper aims at providing a discussion of the subject in a form suitable
to its formalization, without actually entering in implementation details (hence
avoiding a direct discussion of the Matita system, but for a few descriptive
examples).

2 Primes and the Factorial Function

In the rest of the paper, all functions are defined on natural numbers. In partic-
ular, n/m denotes the integer part of the division between n and m, and loga n
denotes the maximum i such ai ≤ n.

Chebyshev’s approach to the study of the distribution of prime numbers con-
sists in exploiting the decomposition of the number n! as a product of prime
numbers. The idea is that the numbers 1, 2, . . . , n include just n

p multiples of p,
n
p2 multiples of p2, an so on. Hence (the variable bound by the product is written
in bold)

n! =
∏
p≤n

∏
i<logp n

pn/p
i+1

(1)

The previous one is a good example of a typical mathematical argumentation
(see e.g. [7], p. 342). Looking more carefully, you see that it provides you (almost)
no information, since it is essentially a mere rephrasing of the statement: it is a
gentle invitation to work it out by yourself, just a bit less unsympathetic than a
brutal “trivial”.

The formal proof requires a bit more work. The starting point is that every
integer n may be uniquely decomposed as the product of all its prime factors.
Le us write ordp(n) for the multiplicity of p in n; then

n =
∏
p≤n

pordp(n) =
∏
p≤n

∏
i < logp n

pi+1|n

p (2)

for p prime. At the time we started this work, the mathematical library of Matita
already contained the proof of the Fundamental Theorem of Arithmetic, namely
the existence and uniqueness of the decomposition in prime factors. This was
1 Providing a good upper bound to the search for the next prime, in systems based on

logics like the Calculus of Inductive Constructions, is essential to define a reasonably
efficient enumeration function for all primes.
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proved by giving a factorization function returning for each natural number n
a list of multiplicities of its prime factors (for a given factorization strategy), a
function computing the products of the elements in the list, and proving that
they are inverse of each other. However, passing from this result to the formu-
lation of equation 2 is not so evident. Since, on the other hand, all the needed
machinery was already in the library, we opted for a direct proof. The idea is
to work by induction on the upper bound of the product. However, we cannot
directly work on n, since this must be the constant argument of ordp(n). So have
to rephrase the statement in the form

∀m > c(n), n =
∏
p≤m

pordp(n)

Where c(n) is a suitable function of n. The naive idea to take c(n) = n does not
work: in fact, in order to ensure that the induction works properly, we must take
a minimum bound, that in this case is the largest prime factor of n. This is the
actual statement we proved:

theorem lt_max_to_pi_p_primeb:
\forall q,m.
O < m \to
max m (\lambda i.primeb i \land divides_b i m) < q \to
m = pi_p q (\lambda i.primeb i \land divides_b i m)

(\lambda p.exp p (ord m p)).

From the previous result we obtain equation 2 as a simple corollary. So,

n! =
∏

1≤m≤n

m

=
∏

1≤m≤n

∏
p≤m

∏
i < logp m

pi+1|m

p

=
∏
p≤n

∏
p≤m≤n

∏
i < logp m

pi+1|m

p

=
∏
p≤n

∏
i<logp n

∏
m ≤ n
pi+1|m

p

=
∏
p≤n

∏
i<logp n

pn/p
i+1

In, particular, for 2n we have:

(2n)! =
∏

p≤2n

∏
i<logp 2n

p2n/pi+1
(3)
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But
2n

pi+1 = 2
n

pi+1 +
(

2n

pi+1 mod 2
)

Moreover, if n ≤ p or logp n ≤ i we have

n

pi+1 = 0

Hence, if we define

B(n) =
∏
p≤n

∏
i<logp n

p(n/pi+1 mod 2)

equation (3) becomes
(2n)! = n!2B(2n) (4)

B(2n) is thus the binomial coefficient
(2n
n

)
.

2.1 Upper and Lower Bounds for B

For all n, (2n)! ≤ 22n−1n!2. For technical reasons, we need however a slightly
stronger result, namely,

(2n)! ≤ 22n−2n!2

that holds for any n larger than 4. The proof is by induction.
The base case amounts to check that 10! ≤ 285!2, which can be proved by a

mere computation (after some simplification).
In the inductive case

(2 · (n + 1))! = (2n + 2)(2n + 1)(2n)!
≤ (2n + 2)(2n + 1)22n−2n!2

≤ (2n + 2)(2n + 2)22n−2n!2

= 22n(n + 1)!2

So, by equation (4), we conclude that, for any n

B(2n) ≤ 22n−1 (5)

and when n is larger than 4,

B(2n) ≤ 22n−2 (6)

Similarly, we prove that, for any n > 0,

22nn!2 ≤ 2n(2n)!
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The proof is by induction on n. For n = 1 both sides reduce to 4. For n > 1,

22n+2(n + 1)!2 = 4(n + 1)222nn!
= 4(n + 1)22n(2n)!
= 4(n + 1)(n + 1)2n(2n)!
≤ 4(n + 1)(n + 1)(2n + 1)(2n)!
= 2(n + 1)(2n + 2)(2n + 1)(2n)!
= 2(n + 1)(2n + 2)!

By equation (4) we conclude that

22n ≤ 2nB(2n) (7)

and since for any n, 2n ≤ 2n,
2n ≤ B(2n) (8)

3 Chebyshev’s Ψ Function

Let us now consider the following function

Ψ(n) =
∏
p≤n

plogp n

where the product is over all primes less or equal to n. Chebyshev ψ function is
the naperian logarithm of Ψ , but as we mentioned in the introduction, we try
to avoid the use of logarithms as far as possible. The relation between Ψ and π
should be clear:

Ψ(n) =
∏
p≤n

plogp n ≤
∏
p≤n

n = nπ(n) (9)

Since moreover, n < aloga n+1 we also have n < a2 loga n, so that, easily,

nπ(n) ≤ Ψ(n)2 (10)

Let us now rewrite Ψ(n) in the following equivalent form:

Ψ ′(n) =
∏
p≤n

∏
i<logp n

p

It is then clear that, for any n,

B(n) ≤ Ψ ′(n) = Ψ(n)

Hence, the lower bound for B immediately gives a lower bound for Ψ , namely

2n ≤ 22n/2n ≤ Ψ(2n) (11)
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For the upper bound, let us first observe that

Ψ(2n) = Ψ(n)
∏

p≤2n

∏
i<logp 2n

pj(n,p,i) (12)

where j(n, p, i) is 1 if n < pi+1 and 0 otherwise. Indeed

Ψ(2n) =
∏

p≤2n

∏
i<logp 2n

p

=

⎛⎝ ∏
p≤2n

∏
i<logp 2n

pj(n,p,i)

⎞⎠⎛⎝ ∏
p≤2n

∏
i<logp 2n

p1−j(n,p,i)

⎞⎠
= Ψ(n)

∏
p≤2n

∏
i<logp 2n

pj(n,p,i)

Then observe that∏
p≤2n

∏
i<logp 2n

pj(n,p,i) ≤ B(2n) =
∏

p≤2n

∏
i<logp 2n

p(2n/pi+1 mod 2) (13)

since if n < pi+1 then 2n/pi+1 mod 2 = 1. So we may conclude that

Ψ(2n) ≤ B(2n)Ψ(n) (14)

and in particular, for any n

Ψ(2n) ≤ 22n−1Ψ(n) (15)

and for 4 < n
Ψ(2n) ≤ 22n−2Ψ(n) (16)

We may now use inductively these estimates to prove

Ψ(n) ≤ 22n−3 (17)

For the proof, we need the monotonicity of Ψ , that is easily proved:

Ψ(n) =
∏
p≤n

plogp n ≤
∏
p≤n

plogp(n+1) ≤
∏

p≤n+1

plogp(n+1) = Ψ(n + 1) (18)

Then we check that the property holds for any n ≤ 8, which can be done by
direct computation. If n is larger than 8 we distinguish two cases, according to n
is even or odd. We only consider the case n = 2m+1 that is the most interesting
one. Observe first that 8 < 2m + 1 implies 4 < m. Then we have:

Ψ(n) = Ψ(2m + 1)
≤ Ψ(2m + 2)
≤ 22mΨ(m + 1)
≤ 22m22(m+1)−3

≤ 22(2m+1)−3

In conclusion, we have

2n/2 ≤ Ψ(n) ≤ nπ(n) ≤ Ψ(n)2 ≤ 24n−6 ≤ 24n (19)
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4 Bertrand’s Postulate

Our approach to Chebyshev’s theorem, as most modern presentations of the
subject, essentially follows Chebyshev’s original idea, but in a rudimentary form
which provides a result that is numerically less precise, though of a similar
nature. In particular, Chebyshev was able to prove the asymptotic estimates

(c1 + o(1))
n

log n
≤ π(n) ≤ (c2 + o(1))

n

log n
(n →∞)

with

c1 = log(21/231/351/530−1/30) ≈ 0.92129
c2 = 6/5c1 ≈ 1.10555

In particular, since c2 < 2c1, this implies that

π(2n) > π(n)

for all large n. Actually, by direct computation, Chebyshev proved that the
inequality remains true for all n, confirming a famous conjecture known as
Bertrand’s postulate.

With our rough estimates, we could only prove the existence of a prime number
between n and 5n, for n sufficiently large. There exists however an alternative
approach to the proof of Bertrand’s postulate due to Erdös [4] (see also [7],
p. 344) that is well suited to a formal encoding in arithmetics2.
Let

k(n, p) =
∑

i<logp n

(n/pi+1 mod 2)

Then, B can also be written as

B(n) =
∏
p≤n

pk(n,p)

We now split this product in two parts B1 and B2, according to k(n, p) = 1 or
k(n, p) > 1. Suppose that Bertrand postulate is false, hence there is no prime
between n and 2n. Moreover, if 2n

3 < p ≤ n, then 2n/p = 2 and for i > 1 and
n ≥ 6 2n/pi = 0 since

2n ≤
(

2n

3

)2

≤ pi

2 Erdös’ argument was already exploited by Théry in his proof of Bertrand postulate
[11]; however he failed to provide a fully arithmetical proof, being forced to make use
of the (classical, axiomatic) library of Coq reals to solve the remaining inequalities.
Similarly, Riccardi’s formalization of Bertrand’s postulate in Mizar [8] makes an
essential use of real numbers.
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so k(2n, p) = 0. Summing up, under the assumption that Bertrand postulate is
false,

B1(2n) =
∏

p ≤ 2n
k(2n, p) = 1

p

=
∏

p≤2n/3

p

≤ Ψ(2n/3)
≤ 22(2n/3)

On the other side, note that k(n, p) ≤ logp n, so if k(2n, p) ≥ 2 we also have
logp 2n ≥ 2 that implies p ≤

√
2n. So

B2(2n) =
∏

p ≤ 2n
2 ≤ k(2n, p)

pk(2n,p)

≤
∏

p≤
√

2n

2n

= (2n)π(
√

2n)

For n ≥ 15, π(n) ≤ n/2− 1. Hence, for any n ≥ 27 > 152, we have

B2(2n) ≤ (2n)
√

2n/2−1

Putting everything together, supposing Bertrand’s postulate is false, we would
have, for any n ≥ 27

22n ≤ 2nB(2n)
= 2nB1(2n)B2(2n)

≤ 22(2n/3)(2n)
√

2n/2

Observe that
22n = 22(2n/3)22n/3

so, by cancellation,
22n/3 ≤ (2n)

√
2n/2

and taking logarithms
2n

3
≤
√

2n

2
(log(2n) + 1)

We want to find, by arithmetical means, an integer m such that for all values
larger than m the previous equation is false; moreover, the integer m must be
sufficiently small to allow to check the remaining cases automatically in a feasible
time.
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We must prove √
2n

2
(log(2n) + 1) <

2n

3
The strict inequality is the first source of trouble, so we prove instead

√
2n

2
(log(2n) + 1) ≤ 2n

4

using the fact that
n

m + 1
<

n

m

for any n ≥ m2 (in our case, n ≥ 8). By means of simple manipulations, it is
easy to transform the last equation in the following simpler form

2(log(2n) + 1) ≤
√

2n

or equivalently
2(log n + 2)2 ≤ n

We now use the fact that for any a > 0 and any n ≥ 4a

2an2 ≤ 2n

to get, for any n ≥ 28

2(log n + 2)2 ≤ 4(log n)2 = 22(log n)2 ≤ 2logn ≤ n

4.1 Automatic Check

To complete the proof, we have still to check that Bertrand’s postulate remains
true for all integers less then 28. This is very simple in principle: it is sufficient to

1. Generate the list of all primes up to the first prime larger than 28 (in reverse
order).

2. Check that for any pair pi, pi+1 of consecutive primes in such list, pi < 2pi+1.

Both the generation of the list and its check can be performed automatically.
All we have to do is to prove that our algorithm for generating primes is correct
and complete, and that the previous check is equivalent to Bertrand’s postulate,
on the given interval.

Since before this formalization, Matita has contained in its library the machin-
ery necessary to perform this check – particularly a function primeb capable of
deciding whether its argument is a prime number or not. primeb is implemented
in the trivial way: it computes the smallest factor of its argument n by repeat-
edly dividing it by any m ≤ n, and finally checks whether it equals n or not.
The proof of correctness is, of course, straightforward; however, this comes at
the cost of an inefficient algorithm, whose use is practical only for small values
of n.
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As it is often the case, to get better performance we must resort to a different
algorithm, whose proof of correctness is less trivial. The sieve of Eratosthenes
came as a good candidate, since it directly computes the list of the first primes up
to a given number, which is precisely what we need. Furthermore, it has a simple
implementation and an elementary, though a bit involved, proof of correctness,
which is also interesting in itself as a small case of software verification. This is
the actual code of the sieve, written in the Matita language:

let rec sieve_aux l1 l2 t on t \def
match t with
[ O => l1 (* this case is vacuous *)
| S t1 => match l2 with
[ nil => l1
| cons n tl => sieve_aux (n::l1)

(filter nat tl (\lambda x.notb (divides_b n x))) t1]].

definition sieve : nat \to list nat \def
\lambda m.sieve_aux [] (list_n m) m.

The function sieve_aux takes in input a list of primes (initially empty), a list
of integers yet to sieve (initially comprising all natural numbers between 2 and a
given number m), and an integer that is supposed to be larger than the length of
the second list (initially m). This last parameter is used as recursive parameter
to ensure termination. The algorithm simply takes the first element of the second
list, adds it to the first list, and removes from the second list all its multiples.

Here is the function checking that each element of the list is less than twice
its successor (we also check that the last element is 2):

let rec check_list l \def
match l with
[ nil \Rightarrow true
| cons (hd:nat) tl \Rightarrow
match tl with
[ nil \Rightarrow eqb hd 2
| cons hd1 tl1 \Rightarrow
(leb (S hd1) hd \land leb hd (2*hd1) \land check_list tl)

]
].

In order for these procedures to be useful, some properties must hold. First we
need to prove correctness and completeness of sieve, which in turn requires us
to understand and prove the recursion invariant of sieve_aux. Informally:

Given a natural number m and two lists l1 and l2, such that
– for any natural number p, p is contained in l1 if and only if it is

prime and less than any number contained in l2
– for any natural number x, x is contained in l2 if and only if 2 ≤ x ≤ m

and x isn’t multiple of any number contained in l1
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then, assuming l1 and l2 are respectively sorted decreasingly and in-
creasingly, and t is less than the length of l2, sieve aux l1 l2 t is a
sorted list of decreasing numbers and p is contained in sieve aux l1 l2
t if and only if p is prime and less than m.

The invariant is relatively complex, due to the mutual dependency of the prop-
erties of the two lists l1 and l2. A proof may be obtained by induction on t
and then by cases on l2. In the interesting part, for t = t′ + 1 and l2 = h :: l,
the statement is obtained by means of the induction hypothesis. The following
lemmata are also needed:

1. p is contained in h :: l1 if and only if it is prime, less or equal than m, and
less than any number contained in l′

2. x is in l′ if and only if it is greater or equal than 2, less or equal than m,
and it is not divisible by any number contained in h :: l1

3. length l′ ≤ t′

4. h :: l1 is sorted decreasingly
5. l′ is sorted increasingly

where l′ is l from which any number divisible by h has been removed, preserving
the order, that is filter nat l (\lambda x.notb (divides b h x)).

The tricky lemmata are 1 and 2. For the first one, we proceed by cases:

– if p = h, p is contained in h :: l (that is l2), therefore it is less than m and it
isn’t divisible by any number in l1; since h :: l is sorted, h is also less than
any number contained in l (and, in particular, less than any number in l′);
this implies p is also a prime number. The opposite direction of the logical
equivalence is trivial.

– if p �= h, the implication from left to right is trivial since, under this hypoth-
esis, if p is contained in h :: l1, it must be contained in l1: by the hypothesis
on l1, this implies the thesis. In the opposite direction, we must prove that
if p is prime, less than m and less than any number contained in l′, then p
is contained in l1. First, p < h, otherwise by the hypothesis on l and the
definition of l′ we could prove p is contained in l′, thus obtaining p < p,
which is absurd. Furthermore, for any x contained in h :: l, h ≤ x, because
h :: l is sorted increasingly by hypothesis. Thus we get, for all x in h :: l,
p < x, which implies by the hypothesis on l1 that p is contained in l1.

The second lemma is less complicated. In the left-to-right implication, the non-
trivial part is to see that, if x is contained in l′, then it isn’t a multiple of any
p contained in h :: l1. By cases, if p = h, the thesis follows by definition of l′; if
p is contained in l1, it is sufficient to apply the hypothesis on l1. The opposite
direction of the implication is obtained combining the hypotheses to show that
x must be in h :: l. Then, x must be different from h (otherwise, we could prove
that x doesn’t divide itself). Since x must be in l and h doesn’t divide x, x must
also be in l′.

Last, we prove that if checklist l = true, then for any number p contained
in l and greater than 2, there exists some number q contained in l, such that
q < p ≤ 2q. The proof is easy by induction.
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Combining the correctness and completeness of the sieve and this last prop-
erty, we finally get that Bertrand’s postulate holds for all integers less than
28, just by checking that check_list (sieve (S (exp 2 8))) = true, a test
which only takes some seconds.

5 Conclusions

In this paper we presented the formalization, in the Matita interactive theorem
prover, of some results by Chebyshev about the distribution of prime numbers.
Even if Chebyshev’s main result has been later superseded by the stronger prime
number theorem, his machinery, and in particular the two functions ψ and θ still
play a central role in the modern development of number theory.

As also testified by our own development, Matita is a mature system that
already permits the formalization of proofs of not trivial complexity (see . for
another recent formalization effort). Although the Matita arithmetical library
was already well developed at the time we started the work (see [2]), several
integrations were required, concerning the following subjects:

– logarithms, square root (632 lines)
– inequalities involving integer division (339 lines)
– magnitude of functions (255 lines)
– decomposition of a number n as a product of its primes (250 lines)
– binomial coefficients (260 lines)
– properties of the factorial function (303 lines)
– integrations to the library for

∑
and

∏
(148 lines)

– operations over lists (224 lines)

Apart from these prerequisites, the proofs of Chebyshev’s theorem and
Bertrand’s conjecture take respectively 2073 and 2389 lines (of which 1863 just
devoted to the validity check of the conjecture for integers less then 28). A good
amount of work was also spent in the investigation of related fields (Abel sum-
mations, properties of the Θ function, upper and lower bounds for Euler’s e
constant) that at the end have not been used in the main proof, but still have
an interest in themselves. The following table summarizes the dimension of the
development, and the total effort in time:

prereq. chebys. Bertrand check other total
lines 2411 2073 743 526 1863 7616
hours 54 51 21 16 48 190

In Hardy’s book [7], the proof of Bertrand’s postulate takes 42 lines, while Cheby-
shev’s theorem takes precisely three pages (90 lines): this gives a de Bruijn factor
of 20-25, that is in line with other developments in related subjects (see [3,2]).
The most interesting datum is however the average time required to formalize
a line of mathematical text, that in our case is about 1.5 hours (in [2], on a
different arithmetical subject, we gave an estimation of 2 hours per line). The
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impressive cost of the formalization is the main obstacle towards a larger diffu-
sion of automatic provers in the mathematical community, and all the research
effort in the area of formalized reasoning is finally aimed to reduce this cost.
Computing this value on large formalizations is an important an effective way
to measure the state of the art and to testify its advancement.
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Abstract. In Type Theory, definition by dependently-typed case anal-
ysis can be expressed by means of a set of equations — the semantic
approach — or by an explicit pattern-matching construction — the syn-
tactic approach. We aim at putting together the best of both approaches
by extending the pattern-matching construction found in the Coq proof
assistant in order to obtain the expressivity and flexibility of equation-
based case analysis while remaining in a syntax-based setting, thus mak-
ing dependently-typed programming more tractable in the Coq system.
We provide a new rule that permits the omission of impossible cases,
handles the propagation of inversion constraints, and allows to derive
Streicher’s K axiom. We show that subject reduction holds, and sketch
a proof of relative consistency.

1 Introduction

The Calculus of Inductive Constructions (CIC) [13,10] is an extension of the Cal-
culus of Constructions with inductive types and universes. Inductive types can
be added to the system by specifying their constructors (introduction rules). To
reason about inductive types, CIC includes a mechanism for performing pattern
matching. It allows to define a function on an inductive type by giving compu-
tation rules for the constructors, in a similar way as in functional programming
languages, such as Haskell or ML.

It is well known that dependent types add a new dimension to the pattern
matching mechanism. This was first observed by Coquand [2], and later studied
by other authors [5,7,3,8]. A simple example is provided by the definition of
lists indexed with their length, which we call here vectors. In CIC, given a
type X , vectors are introduced by a constant vector of type nat → Type, where
vectorn represents lists of n elements of type X . The constructors are nil : vector 0
for the empty vector, and cons : Π(n : nat).X → vector n → vector (S n) for
adding an element to a vector. One of the slogans of using inductive families
and dependently typed languages is the fact that functions can be given a more
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precise typing. The usual tail function, that removes the first element of a non-
empty vector can be given the type Π(n : nat).vector (S n) → vector n, thus
ensuring that it cannot be applied to an empty vector. In Coquand’s setting, we
could write the tail function as

tail n (cons k x t) = t .

Note the missing case for nil. This definition is accepted because the type system
can ensure that the vector argument, being a term of type vector (S n), cannot
reduce to nil.

In CIC, the direct translation of the above definition is rejected, because of
the missing case. Instead, we are forced to make an explicit proof that the nil
case is not necessary. This makes the function more difficult to write by hand,
and the reasoning necessary to rule out impossible cases hinders the intended
computational rules. As a consequence, CIC is not well suited to be the basis
for a programming language with dependent types.

Our objective is to adapt the work that has been done in dependent pat-
tern matching to the CIC framework, thus reducing the gap between current
implementations of CIC, such as Coq [1], and programming languages such as
Epigram [6,7] and Agda [8] — at least, in terms of programming facilities. In par-
ticular, we propose a new rule for pattern matching that automatically handles
the reasoning steps mentioned above (Sect. 4). The new rule, which allows the
user to write more direct and more efficient functions, combines explicit restric-
tion of pattern-matching to inductive subfamilies, (as independently investigated
by the second author for deriving axiom K and by the third and fifth authors
for simulating Epigram in Coq without computational penalty) and translation
of unification constraints into local definitions of the typing context (as investi-
gated by the first and fourth authors). At the end, we prove that the type system
satisfies subject reduction and outline a proof of relative consistency (Sect. 5).

2 A Primer on Pattern Matching in CIC

In this section, we study in detail how to write functions by pattern matching
in CIC. The presentation is intentionally informal because we want to give some
intuition on the problem at hand, and our proposed solution.

Let us consider the definition of tail. The naive solution is to write tailn v as

match v with | nil ⇒ ? | cons k x t⇒ t .

There are two problems with this definition. The first is that we need to complete
the nil branch with a term explicitly ruling out this case. The second is that the
body of the cons branch is not well-typed, since we are supposed to return a
term of type vectorn, while t has type vector k. Let us see how to solve them.

For the first problem, it should be possible to reason by absurdity: if v is a
non-empty vector (as evidenced by its type), it cannot be nil. More specifically,
we reason on the indices of the inductive families, and the fact that the indices
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can determine which constructors were used to build the term (the inversion
principle). In this case, v has type vector (S n), while nil has type vector 0. Since
distinct constructors build distinct objects (the “no confusion” property), we
can prove that 0 �= S n, and, as a consequence, v cannot reduce to nil. This
is translated to the definition of tail by generalizing the type of each branch
to include a proof of equality between the indices. The definition of tail looks
something like

match v with | nil ⇒ λ(H : 0 = S n). here a proof of contradiction from H
| cons k x t⇒ λ(H : S k = S n).t,

where, in the nil branch, we reason by absurdity from the hypothesis H .
We have solved the first problem, but we still suffer the second. Luckily, the

same generalization argument used for the nil branch provides a way out. Note
that, in the cons branch, we now have a new hypothesis H of type S k = S n.
From it, we can prove that k = n, since the constructor S is injective (again, the
no-confusion property). Then, we can use the obtained equality to build, from t,
a term of type vector n. In the end, the body of this branch is a term built from
H and t that changes the type of t from vector k to vectorn.

This solves both problems, but the type of the function obtained is S n =
S n → vector n, which is not the desired one yet. So, all we need to do is just to
apply the function to a trivial proof of equality for S n = S n.

It is important to notice that this function, as defined above, still has the de-
sired computational behavior: given a term v = consn h t, we have tail n v →+ t.
In particular, in the body of the cons branch, the extra equational burden neces-
sary to change the type of t collapses to the identity. However, the definition is
clouded with equational reasoning expressions that do not relate to the compu-
tational behavior of the function, but are necessary to convince the typechecker
that the function does not compromise the type correctness of the system.

Our proposition is a new rule for pattern matching that allows to write de-
pendent pattern matching in a direct way, avoiding pollution of the underlying
program with proofs of equality statements and confining the justifications of
the correctness of the dependencies to the typing rules. We would then be able
to write the tail function as

tail := λ(n : nat)(v : vector (S n)).match v with | cons k x t ⇒ t where k := n,

where some constructors are omitted (like nil above), and for the present con-
structors, some additional information is given (like k := n above). The typing
rules justify that the nil case is not necessary, and that the definition k := n is
valid to use in the typing of the cons branch.

In the general case, checking whether a pattern-matching branch is useless is
undecidable [2,11,7,9]. To remain in a decidable framework, we propose to only
address the detection of clauses whose inaccessibility is provable using a simple
evidence based on first-order unification of the inductive structure of the indices.
The idea is to generate, for each constructor in a pattern matching definition,
a set of equations between the indices of the inductive type in question, in the
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same way as shown at the beginning of this section. The goal is then to find a
unification substitution for these equations. In the case of tail, the unification
for nil fails, while the unification for cons succeeds. This approach is based on
work by McBride and McKinna [7] and Norell [8], and is described in detail in
Sect. 4.

3 The Calculus of Inductive Constructions

In this section, we give a (necessarily) short description of CIC, specially focusing
on inductive types and pattern matching.

The sorts of CIC are Set, Prop and Typei, for i ∈ N. The terms are variables,
λ-abstractions λx : T .M , applications M N , products Πx : T .U (we write T → U
if x is not used in U), local definitions1 [x := N : T ] M , and constructions related
to inductive types that are described below. We use FV(M) to denote the set of
free variables of M , and M [x := N ] to denote the term obtained by substituting
every free occurrence of x in M with N .

A context is a sequence of declarations, i.e., assumptions of the form (x : T )
or definitions of the form (x := M : T ); the empty context is denoted by []. We
use Dom (Γ ) to denote the ordered sequence of variables declared in Γ .

We use m, n, k, p, q, t, u, v, A, B, M, N, P, T, U, . . . to denote terms, x, y, z, . . .
to denote variables, Γ, Δ, Θ, . . . to denote contexts and the letter s and its vari-
ants to denote sorts. We use X to denote a sequence of X , ε to denote the empty
sequence, and # (X) to denote the length of the sequence X. We use de Bruijn
telescopes: the notation ΠΔ.T (resp. λΔ.T ) abbreviates the iterated expansion
of the declarations in Δ into products (resp. abstractions) or local definitions.

CIC comes equipped with a notion of convertibility between terms, written
Γ � T ≈ U and a notion of subtyping, written Γ � T ≤ U .

We consider two typing judgments:

– Γ � t : T means that, under context Γ , the term t has type T ;
– Γ � t : Δ means that, under context Γ , the terms t form an instance of Δ.2

Inductive Types. Terms of CIC also include names of inductive types, names
of constructors, fixpoint declarations fixn f : T := M , and pattern matching
match M as x in I p y return P with {Ci zi ⇒ ti}i. We use the letter I and
its variants to denote inductive types, and C to denote constructors.

Inductive definitions are declared in a signature. A signature Σ is a sequence
of declarations of the form

Ind(I[Δp] : ΠΔa.s := {Ci : ΠΔi.I Dom (Δp) ui}i)

where I is the name of the inductive type, Δp is the context of its parameters,
Δa is the context of its indices, s is a sort denoting the universe where the type is
1 Local definitions are not part of the usual definition of CIC. We have included them

here because they play an important part in the typing of pattern matching.
2 In particular, if f : ΠΔ.T then f t is well-typed.
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defined. In the general case, due to the dependency over parameters and indices,
I is an inductive family. The type of I is then ΠΔpΔa.s. To the right of the :=
symbol are names and types of the constructor. We assume in the sequel that
all typing rules are parameterized by a fixed signature Σ.

We describe in detail the pattern matching mechanism. In a term of the form
(matchM as x in I py return P with {Ci xi ⇒ ti}i), M is the term to destruct,
P is the return type (which depends on y and x), and ti represent the body of
the i-th branch, with xi the arguments of the i-th constructor, bound in ti. The
reduction rule associated, denoted ι, is

(match Cj tu as x in I p y return P with {Ci xi ⇒ ti}i) →ι tj [xj := u],

where, by typing invariants, t ≈ p and # (xj) = # (u).
Figure 1 shows the typing rules of pattern matching in CIC, where Δ∗

i =
Δi[Dom (Δp) := p], u∗

i = ui[Dom (Δp) := p], and Δ∗
a = Δa[Dom (Δp) := p].

To be accepted, a match construction has to satisfy the predicate Elim(I, s) that
restricts the class of objects that can be constructed using pattern matching; the
exact definition of Elim is not important in our context (see, e.g., [10]).

The typing rule for pattern matching is complicated by the fact that the
return type can depend on the term being destructed. When P does not depend
on x nor y, i.e. they are not used in P , then the typing reduces to something
close to non-dependent languages like Haskell or ML. But P can depend on x (of
type an instance of I), and, therefore, it should also depend on the indices of the
type of x (i.e. y). In each branch, we instantiate both x with the corresponding
constructor applied to the arguments of the branch, and y with the indices of
the inductive type corresponding to that constructor. Finally, the type of the
whole match is obtained by replacing x with M in P , and y accordingly.

Ind(I [Δp] : ΠΔa.s := {Ci : ΠΔi.I Dom (Δp) ui}i) ∈ Σ
Γ �M : I p u Γ (y : Δ∗

a)(x : I p y) � P : s
Elim(I, s) Γ (xi : Δ∗

i ) � ti : P [y := u∗
i ][x := Ci p xi ]

Γ � match M as x in I p y return P with {Ci xi ⇒ ti}i : P [y := u][x := M ]

Fig. 1. Typing rules for pattern matching in CIC

4 A New Elimination Rule

In this section we present the new rule for pattern matching. We modify the
syntax of terms with the construction

match M as x in [Δ] I p t where Δ := q return P with {Ci xi ⇒ bi}i
where the body of a branch (bi above) can be either the symbol ⊥ or a term
of the form N where d, with d a sequence composed of variables and variable
definitions (e.g. x := N). We write Dom (d) for the set of variables that are
declared in d, and refer to d as the definitions of the branch.
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The rôle of [Δ] I p t is to characterize the subfamily of I, with parameters in
Δ, over which the pattern matching is done. Some constructors may not belong
to that subfamily, so the body of the corresponding branches is simply ⊥. On
the other hand, some constructors may (partially) belong to the subfamily, so
the bodies of the corresponding branches are of the form N where d, where
N is the body proper and d defines some restrictions on the arguments of the
constructor that need to be satisfied in order to belong to the subfamily.

Before showing the typing rule for this new construction, that is more complex
than the one presented in the previous section, we show how to write our running
example, the tail function:

tail := λ(n : nat)(v : vector (S n)).

match v as x in [(n0 : nat)] vector (S n0) where n0 := n return vector n0

with | nil⇒ ⊥ | cons k x v′ ⇒ v′ where n0 := k

Comparing with the generic term above, M is v, Δ is (n0 : nat), and q is n. We
explain how to check that this definition is accepted. Note that we are targeting a
particular subfamily of the inductive type, [(n0 : nat)] vector (S n0), parametrized
by n0, which is the subfamily of non-empty vectors. We need to make sure that
v belongs to that family. In the general case, this means instantiating Δ with q
and checking that M has type I p (t[Dom (Δ) := q]). In the particular case of
tail, we check that v has type vector (S n0)[n0 := n].

Let us look at the return type. In the general case, the return type P depends
on x and Δ. Hence, we need to check that

ΓΔ(x : I p t) � P : s,

where Γ is the context where we are typing the whole match. In the particular
case of tail, the return type depends on n0 but not on x.

Finally, we look at the branches. In the nil case, it is clear that this constructor
does not belong to the subfamily [(n0 : nat)] vector (S n0), since its type is vector 0.
Hence, the branch is simply ⊥. We call this type of branch impossible. How do we
check that a branch is impossible? We try to unify the indices of the subfamily
under consideration (S n0 in this case) with the indices of the constructor (0 in
this case), for the variables in Dom (Δ). As we said, this problem is undecidable
in general, so we proceed by first-order unification with constructor theory. In
this case, S n0 and 0 are not unifiable (constructors are disjoint), and therefore,
the branch is effectively impossible.

In the cons case, we have the body proper v′ and the definition n0 := k. The
return type of this branch should be vector n0, where x is replaced by cons k x v′,
and n0 is replaced by k as dictated by the definition. To check this kind of
branch, we need to check that the given definition is correct. This is done, as
for impossible branches, by unification. In this case, unifying S n0 with S k (this
last value corresponds to the index of cons k x v′), for n0. Since S is injective,
the result is the substitution {n0 �→ k}. If the unification succeeds, we apply the
substitution obtained in the return type. In the case of the cons branch, its type
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should be vector (S n0)[n0 := k]. As we will see below, parts of the where clauses
can be omitted. In this particular case, the entire clause can be omitted.

Note that the procedure to check branches is similar for both kinds. First, we
unify the indices of the subfamily with the indices of the constructor. If they
are not unifiable, the branch is impossible. If the unification succeeds, we obtain
a substitution σ that is applied to the return type in order to check the body
proper of the branch. There is one third possibility, though. Since the unification
problem is undecidable, it is possible that the procedure gets stuck. In that case,
we simply give up, and the typechecking fails.

We now proceed to explain formally the typing rule for this match. The pre-
sentation is divided into three parts: first, we describe substitutions, then the
unification judgment, and finally, we show the typechecking of branches and put
everything together. Then, we discuss the associated reduction rule.

Substitutions. A pre-substitution is a function σ, from variables to terms, such
that σ(x) �= x for a finite number of variables x. The set of variables for which
σ(x) �= x is the domain of σ and is denoted Dom (σ). Given a term t and a
substitution σ, we write tσ to mean the term obtained by substituting every
free variable x of t with σ(x). The set of free variables of a pre-substitution σ is
defined as FV(σ) = ∪x∈Dom(σ)FV(xσ).

A substitution σ from Γ to Δ, denoted σ : Γ → Δ is a pre-substitution
with Dom (σ) ⊆ Γ , idempotent (i.e., FV(σ)∩Dom (σ) = ∅), such that for every
(x : T ) ∈ Γ , Δ � xσ : Tσ, and for every (x := t : T ) ∈ Γ , Δ � xσ ≈ tσ : Tσ.3 We
use σ, ρ, . . . to denote (pre-)substitutions. We sometimes write Γ � σ : Δ → Θ
to denote a substitution σ : ΓΔ→ ΓΘ, with Dom (σ) ⊆ Dom (Δ).

Substitutions can be composed: if σ : Γ → Δ and ρ : Δ → Θ, then σρ :
Γ → Θ, where (σρ)(x) = (xσ)ρ. Two substitutions σ, ρ : Γ → Δ are convertible,
written σ ≈ ρ, if for every x ∈ Dom (Γ ), Δ � xσ ≈ xρ.

Unification. We now describe in detail the unification judgment. A unification
problem is written

Γ ; Δ, ζ � [u = u′ : Θ],

meaning that u and u′ have type Θ under context ΓΔ, and ζ ⊆ Dom (Δ) is
the set of variables that are open to unification. Context Γ is intended to be the
“outer context”, i.e. the context where we want to type a match construction,
while context Δ is defined inside the match. We only allow to unify variables in
Δ, so that the unification is invariant under substitutions and reductions that
happen outside the match. This is important in the proofs of the Substitution
Lemma and Subject Reduction.

The unification judgment is defined by the rules of Fig. 2. These rules are
based on the unification given in [7,8], with a notation close to that in [8].
Trying to unify u and u′ may have one of three possible outcomes:

positive success. A derivation Γ ; Δ, ζ � [u = u′ : Θ] �→ Δ′, ζ′ � σ is obtained,
meaning that σ is a substitution (Γ � σ : Δ→ Δ′) that unifies u and u′ with
domain ζ \ ζ′ and ζ′ is the set of variables that are still open to unification;

3 The judgment Γ � t ≈ u : T is shorthand for Γ � t : T , Γ � u : T and Γ � t ≈ u.
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negative success. A derivation Γ ; Δ, ζ � [u = u′ : Θ] �→ ⊥ is obtained, mean-
ing that u and u′ are not unifiable;

failure. No rule is applicable, hence no derivation is obtained (the unification
problem is too difficult).

In the rules (U-VarL) and (U-VarR), a reordering of the context Δ may be
required in order to obtain a (well-typed) substitution. This is achieved by the
(partial) operation ΔΓ |x:=t defined as

(Δ0(x : T )Δ1)Γ |x:=t = Δ0Δ
t(x := t : T )Δt

where (Δt, Δt) = Strengthen(Δ1, t)

ΓΔ0Δ
t � t : T

ΓΔ0Δ
t(x : T ) � Δt

The Strengthen operation [7] is defined as

Strengthen([], t) = ([], [])

Strengthen((x : U)Δ, t) =

{
((x : U)Δ0, Δ1) if x ∈ FV(Δ0) ∪ FV(t)
(Δ0, (x : U)Δ1) if x /∈ FV(Δ0) ∪ FV(t)

where (Δ0, Δ1) = Strengthen(Δ, t)

We give some informal explanations of the unification rules. Rules (U-VarL)

and (U-VarR) are the basic rules, concerning the unification of a variable with
a term. As a precondition, the variable must be a variable open to unification
(i.e., it must belong to ζ) and the equation must not be circular (i.e., x does
not belong to the set FV(v)), although this last condition is also ensured by the
operation ΔΓ |x:=v.

Rules (U-Discr) and (U-Inj) codify the no-confusion property of inductive
types: rule (U-Discr) states that constructors are disjoint (negative success),
while rule (U-Inj) states that constructors are injective.

If the first four rules are not applicable, then the unification can succeed only
if the terms are convertible. This is shown in rule (U-Conv). Finally, rules
(U-Empty) and (U-Tel) concern the unification of sequence of terms. Missing
from Fig. 2 are the corresponding rules to (U-Inj) and (U-Tel) that propagate
a negative unification (i.e., ⊥).

The typing rule. In Fig. 3 we show the typing rule for the new elimination rule,
and introduce a new judgment for typechecking branches. This new judgment
has the form

Γ ; Δi; Δ; [u = v : Θ] � b : T

The intuition is that we take the unification problem Γ ; ΔiΔ, ζ � [u = v :
Θ] (where ζ depends on the kind of branch considered), and take the result
of the unification into account while checking the body of the branch. This
judgment is defined by the rules (B-⊥) and (B-Sub) in Fig. 3. In rule (B-⊥),
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(U-VarL)

x ∈ ζ x /∈ FV(v)
Γ ;Δ, ζ � [x = v : T ] 	→ ΔΓ |x:=v, ζ \ {x} � {x 	→ v}

(U-VarR)

x ∈ ζ x /∈ FV(v)
Γ ; Δ, ζ � [v = x : T ] 	→ ΔΓ |x:=v, ζ \ {x} � {x 	→ v}

(U-Discr)

C1 �= C2

Γ ; Δ, ζ � [C1 u = C2 v : T ] 	→ ⊥

(U-Inj)

Γ ; Δ, ζ � [u = v : Θ] 	→ Δ′, ζ′ � σ Type(C) = ΠΘ.I p t

Γ ;Δ, ζ � [C u = C v : T ] 	→ Δ′, ζ′ � σ

(U-Conv)

ΓΔ � u ≈ v

Γ ;Δ, ζ � [u = v : T ] 	→ Δ, ζ � id

(U-Empty)

Γ ; Δ, ζ � [ε = ε : []] 	→ Δ, ζ � id

(U-Tel)

Γ ; Δ, ζ � [u = v : T ] 	→ Δ1, ζ1 � σ1

Γ ; Δ1, ζ1 � [uσ1 = vσ1 : Θ[x := u]σ1] 	→ Δ2, ζ2 � σ2

Γ ; Δ, ζ � [u u = v v : (x : T )Θ] 	→ Δ2, ζ2 � σ1σ2

Fig. 2. Unification rules

that corresponds to impossible branches, we take ζ to be Dom (Δi) ∪Dom (Δ),
and we check that the unification succeeds negatively.

In rule (B-Sub), that corresponds to possible branches, we take ζ to be
Dom (Δ) together with the domain of the definitions of the branch (d in this
case). Context Δ corresponds to the variables that define the subfamily un-
der analysis. We check that the unification succeeds positively, leaving no vari-
ables open. We also check that the definitions d are valid using the judgment
ΓΔ′ � d ≤ σ; this means that, for every variable definition (x := N) of d, we
have ΓΔ′ � N ≈ xσ. Then, we typecheck the body proper of the branch using
the context given by the unification (Δ′).

Finally, in the rule (T-Match) we put everything together. We have Δ∗
i =

Δi[Dom (Δp) := p], u∗
i = ui[Dom (Δp) := p], and Δ∗

a = Δa[Dom (Δp) := p].
The subfamily under analysis is defined by [Δ] I p t, hence, we check that M

belongs to it by checking that Γ � u ≈ t[Δ := q]. We also check that q has
the correct type; and also that P is a type. The return type P depends on x
and Dom (Δ), similarly to the old rule, where P depended on x and y (indices
of the inductive type). In the branches, as in the old rule, x is replaced by the
corresponding constructor applied to the arguments. Here, in contrast with the
old rule where it was clear how to replace y, there are no obvious values we can
give to the variables in Dom (Δ). Therefore, we try the unification between t
(that defines the subfamily under analysis) and ui (the indices in the type of
x). Since, for possible branches, the unification does not leave open variables, we
effectively find a value for each variable in Dom (Δ).

Reduction. The reduction rule is the same as the original elimination rule of
CIC, except that it is only applicable to possible constructors.



A New Elimination Rule for the Calculus of Inductive Constructions 41

(B-⊥)

Γ ; ΔiΔ,Dom (Δi) ∪ Dom (Δ) � [u = v : Θ] 	→ ⊥
Γ ;Δi; Δ; [u = v : Θ] � ⊥ : P

(B-Sub)

Γ ; ΔiΔ,Dom (d) ∪ Dom (Δ) � [u = v : Θ] 	→ Δ′, ∅ � σ
ΓΔ′ � t : P ΓΔ′ � d ≤ σ

Γ ; Δi; Δ; [u = v : Θ] � t where d : P

(T-Match)

Ind(I [Δp] : ΠΔa.s := {Ci : ΠΔi.I Dom (Δp) ui}i) ∈ Σ
Γ �M : I p u Γ � u ≈ t[Δ := q] ΓΔ(x : I p t) � P : s

Γ � q : Δ Γ ; (zi : Δ∗
i ); Δ; [u∗

i = t : Δ∗
a] � bi : P [x := Ci p zi ]

Γ �
(
match M as x in [Δ] I p t where Δ := q
return P with {Ci zi ⇒ bi}i

)
: P [Δ := q][x := M ]

Fig. 3. Typing rules for the new elimination rule

(match Cj tu as x in I p y . . .with {Ci xi ⇒ bi}i) →ι tj [xj := u]

where bj = (tj where σj), # (t) = # (p) and # (xi) = # (u).
In the compatible closure of the reduction, we do not use the definitions of

each branch. Hence, we have the rule

Γ (zi : Δi) � tj → t′j
Γ � match . . .C zi ⇒ tj where dj → match . . . C zi ⇒ t′j where dj

Allowing the definitions as part of the context when reducing the body of the
branch tj would mean to break confluence on pseudoterms (although, in that
case, confluence remains valid for well-typed terms).

Remark 1. In a branch of the form N where d, only Dom (d) is needed to com-
pute the unification. The defined values of d, if there are any, are checked to be
valid with respect to the substitution given by the unification with the judgment
d ≤ σ. This is similar to the situation of inaccessible patterns in [3,8].

In the examples below, for the sake of readability, we sometimes omit defini-
tions that are inferred by the unification; in some other cases, the definitions are
“inlined” in the arguments of a constructor.

Remark 2. Note that the usual rule for pattern matching in CIC is a special
case of the new rule: we just set Δ to be the context of indices of the inductive
type, i.e. Δa, and t to be Dom (Δ). It is not difficult to see that the unification
succeeds positively for each branch.

4.1 Examples

We illustrate the new elimination rule with some examples. We have already
seen how to type the tail function. We show two sets of examples, one about
Streicher’s K axiom and heterogeneous equality, and the other about the less-
or-equal relation on natural numbers. To simplify the syntax, we assume that
missing constructors are impossible.



42 B. Barras et al.

Streicher’s K axiom and heterogeneous equality. Axiom K, also known as unique-
ness of reflexivity proofs, has type

Π(A : Set)(x : A)(P : eq Axx → Prop).P (refl Ax) → Π(p : eq Axx).P p .

It is not derivable in CIC, as shown by Hofmann and Streicher [4]. However, it
is no surprise that we can derive it using the new rule:

K := λ(A : Set)(x : A)(P : eqAxx → Prop)(H : P (refl Ax))(p : eq Axx).
match p as p0 in [] eq Axx return P p0 with refl ⇒ H .

Note the pattern [] eq Axx in the elimination. We fix the index of eq to be x,
therefore p0 has type eq Axx, i.e. a reflexivity proof, and P p0 is well typed. The
new rule allows us to restrict the analysis to reflexivity proofs.

In [5], McBride introduced the heterogeneous equality, defined by

Ind(Heq(A : Set)(x : A) : Π(B : Set).B → Prop := Hrefl : HeqAxAx) .

Note that the derived induction principle for this equality is not very useful.
Therefore, McBride proposed a more conservative elimination rule: only homo-
geneous equations can be eliminated. The elimination rule used for Heq, denoted
by Subst, has type

Π(A : Set)(x y : A)(P : A → Set).P x→ Heq AxAy → P y .

In [5] it is shown that this elimination rule is equivalent to axiom K; therefore,
it is not derivable in CIC. Using the new rule, we can derive it as:

Subst := λ(A : Set)(x y : A)(P : A → Set)(M : P x)(H : Heq AxAy).
match H as h0 in [(y0 : A)] Heq AxAy0 where y0 := y return P y0

with Hrefl ⇒M .

Similarly to axiom K, we use the new rule to restrict the subfamily under analy-
sis; in this case, we restrict to homogeneous equalities, expressed by the pattern
[(y0 : A)] Heq AxAy0. Note that the first index of Heq is fixed to be A.

Less-or-equal relation on natural numbers. We show two examples concerning
the relation less-or-equal for natural numbers defined inductively by

Ind(leq : nat→ nat→ Prop := leq0 : Π(n : nat).leq 0 n,

leqS : Π(m n : nat).leqm n → leq (S m) (S n)) .

First, we show that the successor of a number is not less-or-equal than the
number itself. That is, we want to find a term of type

Π(n : nat).leq (S n)n → False .
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One possible solution is to take

fix f : Π(n : nat).leq(S n)n → False :=
λ(n : nat)(H : leq(S n)n).

match H in [(n0 : nat)] leq(S n0)n0 where n0 := n return False with

| leqSx y H ⇒ f y H where (x := S y)(n0 := S y)

In the leq0 branch, the unification problem considered is

{x, n0} � [0, x = S n0, n0],

where x is a fresh variable that stands for the argument of leq0. Clearly, unifica-
tion succeeds negatively because of the first equation. On the leqS branch, the
unification problem is

{x, n0} � [S x, S y = S n0, n0],

which succeeds positively with the substitution {x �→ S y, n0 �→ S y}. Note that
the unification gives us the value for n0 that is necessary for the branch to
have the required type, but also finds a relation between the arguments of the
constructor x and y. Therefore, the body of the branch is typed in a context
containing the declarations

(y : nat)(x := S y : nat)(H : leqx y) .

Note the reordering of x and y. In this context, the recursive call to f is well
typed.

The second example shows that the relation leq is transitive. That is, we want
to find a term of type Π(x y z : nat).leq x y → leq y z → leq x z. One possible
solution is to take

fix trans : Π(m n k : nat).leq m n → leqn k → leqm k :=
λ(m n k : nat)(H1 : leq m n)(H2 : leqn k).

(match H1 in [(m1 n1 : nat)] leq m1 n1 return leqn1 k → leq m1 k with

| leq0x ⇒λ(h2 : leq xk). leq0 k

| leqSx y H ⇒ λ(h2 : leq (S y) k).

match h2 in [(k2 : nat)] leq (S y) k2 return leq (S x) k2 with

| leqS (x′ := y) y′ H ′ ⇒ leqS x y′ (trans H H ′) )H2

For the sake of readability, we have used implicit arguments (e.g., in the recursive
call to trans), and omitted definitions that can be inferred by unification.

Nevertheless, this definition looks complicated. It consists of a nested case
analysis on 〈H1, H2〉. However, to make the definition go through, we need to
generalize the type of the hypothesis H2 in the return type of the case analysis
of H1, so that we can match the common value n in the types of H1 and H2.
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The case 〈leq0, 〉 is simple; the case 〈leqS, leq0〉 is impossible; finally, the case
〈leqS, leqS〉 is the most complicated. Note however, that things are simplified by
stating that variable x′ should be unified. The unification then finds a value for
x′ and checks that is convertible with y. The body of the branch is typed in a
context containing the declarations

(x y : nat)(H : leqx y)(x′ := y : nat)(y′ : nat)(H ′ : leqx′ y′) .

It is easy to see that, in this context, the recursive call to trans is well typed.
Let us compare this definition with its counterpart in Agda. Transitivity of

leq can be defined in Agda as

trans : (m n k : nat)→ leq m n→ leq n k → leq m k

trans �0� �x� k (leq0x) = leq0 k

trans �S x� �S y� �S y′� (leqS x y H) (leqS �y� y′ H ′) = leqSx y′ (trans H H ′)

Besides writing the return types in both cases, and the fact that we gener-
alize the type of the second argument, our definition looks very much like a
direct translation of the Agda version to a nested case definition (compare the
highlighted parts).

5 Metatheory

In this section we state some metatheoretical properties about the system. We
prove Subject Reduction (Lemma 5), and sketch a translation into a simpler
theory (Lemma 6), from which consistency follows as a corollary.

The substitution lemma is still valid with the new rule.

Lemma 1. If Γ � t : T and σ : Γ → Δ, then Δ � tσ : Tσ.

The following lemmas formally state the intuitive meaning of the unification judg-
ment. If a unification succeeds positively, then the result is a unifier (Lemma 2);
moreover, in a sense, it is a most general unifier (Lemma 3). If a unification suc-
ceeds negatively, then there is no unifier (Lemma 4).

Lemma 2. Let Γ ; Δ, ζ � [u = v : Θ] �→ Δ′, ζ′ � σ be a unification judgment,
with ΓΔ � u : Θ, and ΓΔ � v : Θ. Then Γ � σ : Δ → Δ′, and ΓΔ′ � uσ ≈ vσ.

Lemma 3. Let Γ ; Δ, ζ � [u = v : Θ] �→ Δ′, ζ′ � σ be a unification judgment,
and ρ : ΓΔ → Γ a substitution such that Γ � uρ ≈ vρ. Then, there exists
ρ′ : ΓΔ′ → Γ such that ρ ≈ σρ′.

Lemma 4. Let Γ ; Δ, ζ � [u = v : Θ] �→ ⊥ be a unification judgment. Then,
there exists no ρ : ΓΔ→ Γ such that Γ � uρ ≈ vρ.

The proof of Subject Reduction proceeds by induction on the typing derivation.
The only difficult case is, of course, the new elimination rule.
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Lemma 5 (Subject Reduction). If Γ � M : T , and Γ � M → M ′, then
Γ �M ′ : T .

To prove consistency, we define a type-preserving translation of our system,
to the system CIC+Heq, which is CIC together with the elimination rule of
heterogeneous equality, i.e., the term Subst defined in Sect. 4.1.4 Therefore, our
consistency result is relative to the consistency of CIC+Heq. The translation is
similar to the translation described in [3].

The translation function is written � � and defined by structural induction on
the terms. The only interesting case is that of the new elimination rule. The
intuitive idea is to generate the term we usually build in CIC by generating
equalities between the indices of the inductive type, as described in Sect. 2.
Given a term

match M as x in [Δ] I p t where Δ := q return P with {Ci xi ⇒ bi}i

its translation along � � is (we use = to denote Heq omitting types for readability)

(match �M� as z in I �p� y
return Π�Δ�(x : I �p� �t�).y = �t�→ x = z → �P � with
{Ci zi ⇒ Bi}i) �q� �M� (Hrefl �t[Dom (Δ) := q]�) (Hrefl �M�)

Note that we generalize equalities between the indices, in the same way as shown
in Sect. 2. This is where we need heterogeneous equality (for instance, observe
that x and z have different types in x = z). We also generalize over Δ and x,
and then apply the resulting term to �q� (for Δ), �M� (for x), and trivial proofs
of equality (for the equalities between indices). Each branch Bi takes the form

λ�Δ�(x : I �p� �t�)(H : �ui� = �t�)(H : x = (Ci �p�zi)). . . .

We also define a translation of the unification judgment, that takes as input the
sequence of equalities H, and returns a sequence of terms whose type corresponds
to the substitution of the branch (if the unification succeeds positively); or a
proof of contradiction (if the unification succeeds negatively). In the latter case,
we are done, while in the former, we use the returned sequence of terms to rewrite
in the translation of the body proper, and obtain a term of the right return type.
We can prove that typing is preserved by this translation:

Lemma 6. If Γ � M : T , then �Γ � �CIC+Heq �M� : �T �.

Since �∀P : Prop.P � = ∀P : Prop.P , consistency of our system with respect to
consistency of CIC+Heq follows immediately.

Corollary 1. If CIC+Heq is consistent, then the new rule is consistent. That
is, there is no term M such that [] �M : (∀P : Prop.P ).

4 Recall that this rule is not derivable in CIC, while it is in our system.
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6 Related Work

Pattern matching and axiom K. Coquand [2] was the first to consider the prob-
lem of pattern matching with dependent types. He already observed that the
axiom K is derivable in his setting. Hofmann and Streicher [4] later proved that
pattern matching is not a conservative extension of Type Theory, by showing
that K is not derivable in Type Theory. Finally, Goguen et al. [3] proved that
pattern matching can be translated into a Type Theory with K as an axiom,
showing that K is sufficient to support pattern matching — this result was al-
ready discovered by McBride [5]. Given this series of results, it is not surprising
that axiom K is derivable with the rule we propose.

Epigram and Agda. Two modern presentations of Coquand’s work, which are
important inspirations for this work, are the programming languages Epigram [6]
and Agda [8].

The pattern matching mechanism of Epigram, described by McBride and
McKinna in [7], provides a way to reason by case analysis, not only on con-
structors, but using more general elimination principles. In that sense, it is more
general than our approach. It also defines a mechanism to perform case analysis
on intermediate expressions. This is not necessary in our case, where we have
a more primitive notion of pattern matching (we can simply do a case analy-
sis on any expression). Finally, it also defines a simplification method based on
first-order unification, that we have reformulated here.

Agda’s pattern matching mechanism, described in [8], allows definitions by
a sequence of (possibly overlapping) equations, and uses the with construct to
analyze intermediate expressions, in a similar way to [7]. The first-order unifica-
tion algorithm used in Agda served as basis of our own presentation. Internally,
pattern matching definitions are translated in Agda to nested case definitions,
which is what we directly write in our approach.

The with construct developed in Epigram and Agda does not increase the ex-
pressive power of those systems — internally, it is translated into more primitive
expressions. However, it does provide a concise and elegant way of writing func-
tions. In comparison, definitions written using our proposed rule are more verbose
and difficult to write by hand (cf. the example on transitivity of less-or-equal in
Sect. 4.1). On the other hand, since our rule handles much of the work necessary to
typecheck an Agda-style definition (e.g., unification of inversion constraints, elim-
ination of impossible cases), it should not be difficult to translate from an Agda-
style definition to a nested case definition using the new rule.

Coq. The current implementation of Coq [1] provides mechanisms to define
functions by pattern matching. The basic pattern-matching algorithm, initially
written by Cristina Cornes and extended by Hugo Herbelin, supports omission
of impossible cases by encoding the proofs of negative success of the first-order
unification process within the return predicate of the match expression (see Coq
version 8.2). Another algorithm of Coq, provided by the Program construction
of Matthieu Sozeau [12], allows to exploit inversion constraints using heteroge-
neous equality for typing dependent pattern-matching in a way similar to what
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is done in Epigram. Because Coq lacks the reduction rule of axiom K, not all def-
initions built by this algorithm are computable. Our rule not only simplifies the
underlying computational structure of programs typed using explicit insertion
of heterogeneous equalities but also removes the limitations in code execution
that the absence of reduction rule for K induces.

Other approaches. Oury [9] proposed a different approach to remove impossible
cases based on set approximations. His approach allows the removal of cases in
situations where unification is not sufficient. As mentioned in [9], it remains to
be seen if the combination of both techniques can be used to remove more cases.

7 Conclusions and Future Work

We have presented a new rule for performing pattern matching in CIC. Functions
on inductive families are simpler to write and more efficient using the new rule.
Also, the underlying theory is slightly increased by providing axiom K and its
reduction rule, which means that the new system is more amenable to use as the
basis for a programming language with dependent types.

For future work, the obvious first step is implementation. Since the new rule
is not much different from the current elimination rule, adapting it to existent
implementations, e.g. Coq, should not be difficult. However, taking full advantage
of the new possibilities would mean to redesign many tactics. Also, it could be
of interest to implement Agda-style definitions, on top of the new rule.

In another direction, there is lots of room for improving the unification. We
could add the treatment of circular equations, such as n = S n, that are provably
false in CIC. Also, it could be of interest to have a more general notion of injective
and discriminative constants, so that we are able to write functions by pattern
matching when the indices are not necessarily inductive objects.
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11. Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In: Basin,
D.A., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 120–135. Springer,
Heidelberg (2003)

12. Sozeau, M.: Subset coercions in coq. In: Altenkirch, T., McBride, C. (eds.) TYPES
2006. LNCS, vol. 4502, pp. 237–252. Springer, Heidelberg (2007)
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Abstract. The Java Micro Edition platform (JME), a Java enabled
technology, provides the Mobile Information Device Profile (MIDP) stan-
dard that facilitates applications development and specifies a security
model for the controlled access to sensitive resources of the device. The
model builds upon the notion of protection domain, which in turn can be
grasped as a set of permissions. An alternative model has been proposed
that extends MIDP’s by introducing permissions with multiplicities and
adding flexibility to the way in which permissions are granted by the
user of the device and used by the applications running on it. This paper
presents a framework, formalized using the proof-assistant Coq, suit-
able for defining and comparing the access control policies that can be
enforced by (variants of) those security models and to prove desirable
properties they should satisfy. The proofs of some of those properties are
also stated and discussed in this work.

Keywords: Access control models, mobile devices, formal proofs.

1 Introduction

Devices such as cell phones or personal digital assistants often have access to
sensitive personal information and are subscribed to paid services in order to
communicate with other entities. In addition to this, users are able to download
and install applications from unreliable sources at their will. Java Micro Edition
(JME) [10] is a version of the Java platform targeted at resource-constrained
devices which comprises two kinds of components: configurations and profiles.
The Mobile Information Device Profile (MIDP) [7, 6] defines an application
life cycle, a security model and APIs that offer the functionality required by
mobile applications, including networking, user interface, push activation and
persistent local storage. Many mobile device manufacturers have adopted MIDP
since the specification was made available. A formal specification of the JME-
MIDP 2.0 security model developed using the proof-assistant Coq is presented
and described in detail in [12].
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In [2], a security model for interactive mobile devices is put forward which can
be grasped as an extension of the JME-MIDP model. The work presented in that
paper has focused in developing a formal model for studying, in particular, inter-
active user querying mechanisms for permission granting for application execu-
tion on mobile devices. Like in the MIDP case, the notion of permission is central
to this model and MIDP is extended by introducing permissions with multiplic-
ities and by adding flexibility to the way in which permissions are granted by
the user and used by the applications.

One of the main objectives of the work reported here has been to build a
framework which would provide a formal setting to define and analyse the per-
mission models defined by MIDP and the one presented in [2]. This frame-
work, which is formally defined using the Calculus of Inductive Constructions
[4, 5], adopts, with variations, most of the security and programming construc-
tions defined in [2]. The principal difference is that most of those constructions
are now parameterized by a permission grant policy. In this paper it is shown
how the framework can be used to define a type of permission grant policies
and to represent the four user permission modes of MIDP and the policies de-
fined in [2] as objects of that type. The paper also presents the definition of
an order relation, based on a notion of safe programs, which can be used to
perform a comparative analysis of grant policies. In particular, it is described
the proof, which has been constructed using the proof-assistant Coq [11], of
the theorem that establishes how the grant policies mentioned above are re-
lated according to the defined order. The complete definition of the frame-
work as well as the statement and proof of the properties are available in
www.fing.edu.uy/inco/grupos/mf/projects/PermModel/ACM-Coq.zip

The structure of the rest of the paper is organized as follows. Section 2 provides
a brief account of the permission models that are the object of the analysis
presented in this work. Section 3 describes the formal setting and the security
concepts that constitute the basis of the access control mechanisms used to define
those models. In section 4 the grant policies and the order relation are formally
defined. A theorem that establishes the conditions that suffice to prove that
two grant policies are in the order relation is also discussed. In section 5 it is
presented the proof of the theorem that establishes how the concrete permission
grant policies studied in this work are related. Section 6 concludes and describes
further work.

2 Security Models for Interactive Mobile Devices

This section provides a brief account of the permission models that are the object
of the analysis presented in this work.

2.1 The JME–MIDP Security Model

In MIDP, applications (MIDlets) are packaged and distributed as suites. A MI-
Dlet suite can contain one or more MIDlets and is distributed as two files, an



A Framework for the Analysis of Access Control Models 51

application descriptor file and an archive file that contains the actual classes and
resources. A suite that needs access to protected APIs or functions must declara-
tively request the corresponding permissions in its descriptor. MIDlet suites may
request permissions either as required or as optional. In the first version of MIDP
[7], any application not installed by the device manufacturer or a service provider
runs in a sandbox that prohibits access to security sensitive APIs or functions of
the device. Although this sandbox security model effectively prevents any rogue
application from jeopardising the security of the device, it is excessively restric-
tive and does not allow many useful applications to be deployed after issuance
of the device.

Version 2.0 of MIDP [6] introduces a new security model based on the concept
of protection domain. A protection domain can be grasped as an abstraction of
the execution context of an application, and it determines the access rights to
the protected functions of the device. Each sensitive API or function on the
device may define permissions in order to prevent it from being used without
authorisation. A protection domain consists of both a set of permissions which
are granted unconditionally, without intervention of the device’s user (called
allowed permissions), and a set of permissions which require authorisation from
the user (called user). Permissions may be granted by the user to an active
MIDlet suite in either of the following three modes:

– blanket: the permission is granted for as long as the application remains
installed in the device

– session: the permission is granted for as long as the application is running
– one-shot: the permission is granted for only one use of the function

An installed MIDlet suite is bound to a unique protection domain. Untrusted
MIDlet suites are bound to a protection domain with permissions equivalent to
those in a MIDP 1.0 sandbox. Trusted MIDlet suites may be identified by means
of cryptographic signatures and bound to more permissive protection domains.
This security model enables applications developed by trusted third parties to
be downloaded and installed after issuance of the device without compromising
its security.

The set of permissions effectively granted to a suite is determined from its
protection domain, the permissions the suite request in its descriptor and the
authorisations granted by the user.

For a more detailed description of the mechanisms defined by the security
model the reader is referred to [7, 6]. A formal specification of the MIDP 2.0
security model is presented in [12] and a certified access controller for the en-
forcement of policies admitted by that model is described in details in [9].

2.2 An Alternative Model

In [2], a security model for interactive mobile devices is put forward which can
be grasped as an extension of that of MIDP. The work presented in that paper
has focused in developing a formal model for studying, in particular, interactive
user querying mechanisms for permission granting for application execution on
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mobile devices. Like in the MIDP case, the notion of permission is central to this
model. A generalisation of the one-shot permission described above is proposed
that consists in associating to a permission a multiplicity which states how many
times that permission can be used.

The proposed model has two basic constructs for manipulating permissions:
grant and consume. The grant construct models the interactive querying of
the user, asking whether he grants a particular permission with a certain multi-
plicity. The consume construct models the access to a sensitive function which is
protected by the security police, and therefore requires (consumes) permissions.

A semantics of the model constructs is proposed as well as a logic for reasoning
on properties of the execution flow of programs using those constructs. The basic
security property the logic allows to prove is that a program will never attempt
to access a resource for which it does not have a permission. The authors also
provide a static analysis that makes it possible to verify that a particular combi-
nation of the grant-consume constructs does not violate that security property.
For developing that kind of analysis the constructs are integrated into a program
model based on control-flow graphs. This model has also been used in previous
work on modelling access control for Java, see for instance [8, 3].

One of the main objectives of the work that is being reported here, has been
to build a framework which would provide a formal setting to define the permis-
sion models defined by MIDP and the one presented in [2] (and variants of it) in
an uniform way and to perform a formal analysis and comparison of those mod-
els. This framework, which is formally defined using the Calculus of Inductive
Constructions [4, 5], adopts, with variations, most of the security and program-
ming constructions defined in [2]. In particular it has been modified so as to be
parameterized by permission granting policies, while in the original work this
relation is fixed.

3 A Framework for Access Control Modeling

This section introduces the formal setting used to define the security concepts
that constitute the basis of certain access control mechanisms, to proceed then
to described how those mechanisms are used to define the permission granting
models which are object of analysis of this work.

3.1 The Formal Language Used

Standard notation is used for equality and logical connectives (∧,∨,¬,→, ∀, ∃).
Anonymous functions and predicates use standard lambda notation (e.g. λ (x :
T ) . x, λ (x : nat) . x > 10). In case there is more than one binder, the standard
abbreviation λ (x : nat) (y : nat) . x + y is used.

An inductive relation I is defined by giving introduction rules of the form:

P1 . . . Pm

I x1 . . .xn
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where the variables occurring free are implicitly universally quantified. Similarly,
inductive types are defined by giving constructors in the following form:

T
def
= | C1 : A1,1 → . . .A1,n1 → T

...
| Cm : Am,1 → . . . Am,nm → T

where C1 . . . Cn are the constructors of T .
A (dependent) record type R is defined as follows:

R
def
= {field1 : A1, . . . , f ieldn : An}

This definition generates a non-recursive inductive type with a single construc-
tor mkR : A1 → . . . An → R and projection functions fieldi : R → Ai. Ap-
plication of projection functions is abbreviated using dot notation: fieldi r =
r.fieldi. When the type is clear for the context 〈x1, . . . , xn〉 is written instead
of mkR x1, . . . , xn.

In the fomalization developed it has been used inductive types that have valid
and invalid cases. In the rest of this paper it is adopted the convention that
a type with the same name but prefixed with valid is the type consisting only
of the valid cases. Which are the valid constructors is usually clear from the
context, otherwise it is specified.

The following parametric inductive types are assumed to be predefined:

– option T with constructors None : option T and Some : T → option T ,
– finite lists over T, list T . The empty list is denoted by [] and the (infix)

constructor that inserts an element a at the front of a list s is denoted by
a � s. Finite snoc lists over T, snocList T , that is, lists that are constructed
by inserting elements at the back, are also used. [] denotes the empty snoc
list and s � a denotes the insertion of an element a at the back of the snoc
list s.

3.2 Permissions

Every (controlled) resource of the device is given a type. Let ResType be the
set of types of resources. If rt is a resource type, Resources rt and Actions rt
define the set of resources of type rt available on the device and the actions that
can performed over them, respectively. The permissions of a resource type are
defined as follows:

PermRes (rt : ResType)
def
=

| valid : list (Resources rt) → list (Actions rt) → PermRes rt

| invalid : PermRes rt

That is, given a resource type rt, an object of type PermRes rt is a set (rep-
resented by a list) of actions and resources over rt, or the constant invalid. A
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relation �PermRes is defined by applying set inclusion component-wise. This re-
lation defines a lattice structure where invalid is the bottom element ⊥PermRes

and �PermRes a lub operator which is obtained applying set union component-
wise.

As already mentioned, a notion of multiplicity of granted permission is intro-
duced in [2]. A multiplicity is defined to be either a natural number, a special
value ∞ that denotes an irrestricted permission, or an error value ⊥. A type
Mul is defined:

Mul
def
= | ⊥ : Mul
| val : nat→Mul
| ∞ : Mul

It is straightforward to see that a lattice can be constructed over Mul with ⊥
and ∞ as the bottom and top elements, respectively. The obvious extensions of
functions and predicates defined over naturals to functions and predicates over
Mul, such as �Mul, +Mul, −Mul, predMul, are also defined.

An accumulated permission for a resource type is comprised of two compo-
nents: the set of resources and actions allowed and a multiplicity. One such
permission (of resource type rt) is then grasped as an object of the following
record type:

PermMul (rt : ResType)
def
= {permRes : PermRes rt; mul : Mul}

The lattice of permissions of a resource type can be obtained by defining the
order �PermMul:

pm1 �PermMul pm2
def
= pm1.permRes �PermRes pm2.permRes

∧ pm1.mul �Mul pm2.mul

where pm1 and pm2 are objects of type PermMul rt. Now, the permission state
of the device is defined. One such state is ultimately a mapping that associates
a permission to each resource type. Therefore, it is defined as the following
dependent function type:

Perm
def
= ∀(rt : ResType), P ermMul rt

It is said that two permissions p1 and p2 are (extensionally) equal if for every
resource type rt it holds that p1 rt = p2 rt.

An order �Perm can be defined as the product-wise extension of �PermMul

as follows:

p1 �Perm p2
def
= ∀(rt : ResType), (p1 rt) �PermMul (p2 rt)

In order to model the operations that affect the state of the permissions an
update function is introduced:

update (p : Perm)(rt : ResType)(pres : PermRes rt)(m : Mul) : Perm
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The intended (and formalized) behaviour of this function is that of an usual store
updating operator: the permission state remains unchanged for every resource
type different from rt, and for rt yields 〈pres, m〉.

If rt is a resource type and p a permission state, then the following inductive
relation Error is defined

(p rt).permRes = invalid rt

Error p

(p rt).mul = ⊥
Error p

The intuition is that an error situation may occur when either there is an at-
tempt to perform an action over a resource of type rt and no valid permission
is associated to it (first rule) or when there are no granted permissions for that
resource (second rule).

3.3 Programs

A program in, among others, [2, 1] is represented by a control-flow graph that
captures the manipulations of permissions and the handling of method calls and
returns as well as exceptions.

A control-flow graph is a tuple G = (NO, EX, KD, TG, CG, EG, n0) where:

– NO is the set of nodes of the graph (one for each instruction),
– EX is the set of exceptions,
– KD is a function of type KD : NO → Instr that associates each node to

an instruction,
– TG : NO → NO → Prop is the propositional function that characterizes

the set of intra-procedural edges (i.e. n1 TG n2 if control can be transferred
from instruction at node n1 to instruction at node n2 within the currect
procedure),

– CG is the set of inter-procedural edges (which can be used to capture dy-
namic method calls),

– EG : EX → NO → NO → Prop are the intra-procedural exception edges,
– n0 : NO is the graph entry node.

The instructions are formally defined in the framework by means of the following
inductive type:

Instr
def
=
| Grant : ∀(rt : ResType), validPermRes rt →MulV alid→ Instr

| Consume : ∀(rt : ResType), validPermRes rt → Instr

| Call : Instr

| Return : Instr

| Throw : EX → Instr

where MulV alid is the type of valid multiplicities, that is, different from the
multiplicity ⊥. The definition of the operational semantics of programs strongly
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depends on those of the permission granting and consumption mechanisms. They
are briefly discussed and described in what follows.

In [2] two variants are discussed concerning the effect of the update operation
after a permission has been granted: either the permissions before the update in-
struction are discarded or they are accumulated. At a first sight these permission
granting policies have advantages and drawbacks. Furthermore, independently of
this particular discussion, it is at this point that the permission model proposed
by the authors introduces a generalization with respect to that of MIDP: the
multiplicity of a permission. One of the main objectives of the work presented
here has been to design a framework that would make it possible to provide a
uniform setting where those different permissions models could be formally de-
fined and compared. To that end, the constructions defined to provide semantics
to the computational behaviour of the programs as well as to reason over that
behaviour have been parameterized by permission granting policies. One such
parameter shall be formally represented by an object of the following type:

grantPolicy
def
= ∀(rt : ResType),

validPermRes rt → NZMulV alid→ Perm → Perm

where an object of type NZMulV alid is a valid multiplicity constructed with a
non-zero natural.

As to the consumption of permissions, the following is the definition of the
consume operation:

consume (rt : ResType)(pr : validPermRes rt)(p : Perm) : Perm
def
=

if (pr �PermRes (p rt).permRes)
then update p rt (p rt).permRes (predMul (p rt).mul)
else update p rt (invalid rt) (predMul (p rt).mul)

The consume operation is monotonic on permissions. This is stated (and proved)
in the following lemma:

Lemma 1

Lemma consumeMon :
∀(rt : ResType)(pr : validPermmRes rt)(p p′ : Perm),
p �Perm p′ → (consume rt pr p) �Perm (consume rt pr p′)

Following [2] the small-step operational semantics of a control-flow graph has
been defined basically as a relation that defines transitions between states con-
sisting of a standard control-flow stack of nodes enriched with the permissions
held at that point in the execution. This definition has been extended by making
it depend on a permission granting policy g. Formally, it has been defined as an
inductive propositional function �g whose rules are depicted in Fig. 1. An im-
portant property of this semantics is that it is non-intrusive, that is to say, the
permission state does not interfere with execution. In other words, a transition
will not be blocked by the absence of permissions. This is formally stated, and
proved, in the following lemma:
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KD n = Grant rt pr m TG n n′

(n � s) None p �g (n′ � s) None (g rt pr m p)

KD n = Consume rt pr TG n n′

(n � s) None p �g (n′ � s) None (consume rt pr p)

KD n = Call CG n n′

(n � s) None p �g (n′ � n � s) None p

KD r = Return TG n n′

(r � n � s) None p �g (n′ � s) None p

KD n = Throw ex EG ex n h

(n � s) None p �g (h � s) None p

KD n = Throw ex ∀(h : NO),¬EG ex n h

(n � s) None p �g (n � s) (Some ex) p

∀(h : NO),¬EG ex n h

(t � n � s) (Some ex) p �g (n � s) (Some ex) p
EG ex n h

(t � n � s) (Some ex) p �g (h � s) None p

Fig. 1. Semantics of instructions

Lemma 2

Lemma nonIntrusive :
∀(g : grantPolicy)(s s′ : list NO)(ex ex′ : option EX)(p p′ : Perm),
s ex p �g s′ex′p′ → ∀(p : Perm), (∃(p′ : Perm), s ex p �g s′ ex′ p′)

3.4 Traces

In [2] global results on the execution of programs are expressed on traces, which
in turn are defined in terms of the operational semantics described above (instan-
tiated for a particular grant policy) as follows: a partial trace of a control-flow
graph is a sequence (of type snocList (NO, option EX)) of nodes []�〈n0, None〉�
〈n1, e1〉 � · · · � 〈nk, ek〉 such that for all 0 ≤ i < k there exists ρ, ρ′ε Perm,
s, s′ε (list NO) and verifying ni � s, ei, ρ � ni+1 � s′, ei+1, ρ

′.
The stacks s and s′ in the above definition are existentially quantified because

they are not defined to be components of the elements of a trace. This quan-
tification however induces a loss of information w.r.t. the operational semantics.
An example1 should clarify this situation. Consider the control-flow graph:

NO = {A, B, C, D}, TG = {(B, C), (C, D)}, EX = CG = EG = {}, n0 = A
KD = {(A, Return), (B, x), (C, Consume rt y), (D, Return)}

where x : Instr, rt : ResType, y : validPermRes rt, and with initial per-
mission pinit = λ (rt : ResType) . 〈(valid rt [] []), (val 0)〉. Fig. 2 depicts
the control-flow graph in question. From this definition it can be noticed that
[] � 〈A, None〉 is the only admissible trace yielding a valid permission state. Ac-
cording to the definition of partial trace stated above, the object ([]�〈A, None〉�
〈C, None〉 � 〈D, None〉) is admitted as a partial trace of the defined control-flow
graph. This trace can be built using the transition rules for the Consume and
Return instructions (see Fig. 1). However, this latter trace yields an error situa-
tion, because the transition from node C to node D attempts to consume a not
available permission.
1 This example is due to Santiago Zanella.
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A B

C DTG

TG

Return x

Consume rt y Return

Fig. 2. Control-flow graph example

The definition of program execution traces that are proposed in the framework
presented here remedies the situation described above by including the node
stack as a component of the elements of the trace. This is formally represented
by the following type: Trace

def
= snocList {noT : NO, stT : list NO, exT :

option EX}.
The notion of parameterized partial trace is then inductively defined over

elements of type Trace as follows:

PTraceg [] PTraceg([] � 〈n0, [], None〉)

PTraceg (tr � 〈n, s, ex〉) ∃(p p′ : Perm), n � s ex p�g n′ � s′ ex′ p′

PTraceg (tr � 〈n, s, ex〉 � 〈n′, s′, ex′〉)
Let tr be a trace and g be a grant policy, if PTraceg tr holds then it shall be
said that tr is a valid trace according to g.

Given a trace tr and a grant policy g, the function PermsOfg : Perm →
Trace → Perm computes the permission state resulting from the execution of
the program that tr represents:

PermsOfg(pinit : Perm)(tr : Trace) : Perm
def
=

match tr with
|[]⇒ pinit
|tr′ � e ⇒ match KD e.noT with
|Consume rt pr ⇒ consume rt pr (PermsOfg pinit tr′)
|Grant rt pr m ⇒ g rt pr m (PermsOfg pinit tr′)
| ⇒ PermsOfg pinit tr′

end
end

Finally, given a grant policy g, a trace is said to be safe if none of its prefixes
yields a faulty permission state:

Safeg(tr : Trace)(pinit : Perm)
def
=

∀tr′ : Trace, (prefix tr′ tr) → ¬Error(PermsOfg pinit tr′)

4 Permission Grant Policies

Two kinds of grant policies are analysed in [2]: given a resource type rt, one of
the policies establishes that when a new permission is granted to resources of
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rt, all previous granted permissions are overwritten. This policy is called here
grantow. The another policy, called here grantac, establishes that new granted
permissions for rt are accumulated with the ones previously obtained for that
resource type. These policies are formally defined as follows:

grantow : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr m

grantac : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr �PermRes (p rt).permRes) (m +mul (p rt).mul)

The permission modes defined by MIDP are also defined below as grant poli-
cies. The grantbk term represents the blanket permission mode, which specifies
unrestricted access to a given resource type. The one-shot permission mode,
which specifies a single access to a given resource type, is represented by the
term grantos.

grantbk : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr �PermRes (p rt).permRes) ∞

grantos : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr 1

It should be noticed that both the allowed mode and the session permission
mode specified by MIDP 2.0 can be modeled as a blanket grant policy. In the
first case, the granted permission would hold for the rest of the life cycle of the
application to which is granted the permission and, in the second case, the scope
would be that of a session during which that application is active.

In order to perform a comparative analysis of grant policies of the kind of the
ones just defined, the following relation is defined:

g1 �g g2
def
= ∀(tr : Trace)(p : Perm),

P traceg1 tr → Safeg1 p tr → Safeg2 p tr

This order establishes that given a control-flow graph, for every valid trace of
the graph according to g1 and every initial set of permissions it holds that if the
trace is safe by granting the permissions using g1 as policy, then it must also be
safe if the permissions are granted using the policy g2. Intuitevely, g1 yields a
more restrictive permission model.

The following lemma states that the order relation between permission states
preserves error situations. It can also be proved that �g is a partial order (reflex-
ive, transitive and antisymmetric). These results shall be of help when relating
the grant policies described so far.
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Lemma 3

Lemma lePermError : ∀(p1 p2 : Perm), Error p1 → p1 �Perm p2 → Error p2

The relation �g defines a lattice structure with the policies grantos and grantbk
as the bottom and top elements respectively.

The following theorem states a sufficient condition (a criterion) to prove that
two permission granting policies, g1 and g2 say, are in the order relation (g1 �g

g2):

1. the error situations that arise using g2 as a policy are also error situations
if g1 is used, and

2. if a grant policy g1 is applied, then every permission available at the end of
a trace is also available if g2 is used instead of g1.

This theorem is important in order to compare different security policies.

Theorem 1

Theorem lePolicyCrit :
∀(g1 g2 : grantPolicy)
(Herrors : ∀(rt : ResType) (pr : validPermRes rt) (m : NZMulV alid)

(p : Perm), Error(g2 rt pr m p)→ Error(g1 rt pr m p))
(Hperms : ∀(p : Perm) (tr : Trace),

(PermsOfg1 p tr) �Perm (PermsOfg2 p tr)),
g1 �g g2

Proof. The proof proceeds by induction over (PTraceg1 tr), which is obtained
after unfolding g1 �g g2. If the trace tr is empty, then the theorem holds trivially.
In the case the trace is a singleton node, the proof uses hypothesis Herrors and
proceeds by doing case analysis on the instruction type associated with that
node; the interesting case corresponds to the Grant instruction, since consume
is monotonic w.r.t. �Perm and the rest of the instructions do not affect the
permission state.

The inductive step follows basically from the lemma lePermError, the hy-
pothesis Hperms, and the induction hypothesis. �

5 Relating Permission Grant Policies

Using the formal setting defined so far it is now possible to state and prove a
theorem that establishes how the four policies described in the previous section
are related according to the order relation �g.

Theorem 2.

Theorem grantPolicyRel : grantos �g grantow �g grantac �g grantbk
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Proof. The proof of this theorem proceeds first by proving the three inequalities
grantos �g grantow, grantow �g grantac and grantac �g grantbk, and then
applying the transitivy of the order �g. Each inequality is proved applying the
theorem that establishes the sufficient conditions to prove that two grant policies
are in the order relation (theorem lePolicyCrit), and following a similar strategy.
Here it shall be presented in detail the proof of the first inequality, indications
on how to proceed for the remainding two cases shall also be provided.

The application of the lemma lePolicyCrit to prove grantos �g grantow
generates in turn the following proof obligations:

1. ∀(rt : ResType) (pr : validPermRes rt) (m : NZMulV alid) (p : Perm),
Error(g2 rt pr m p)→ Error(g1 rt pr m p))

2. ∀(p : Perm) (tr : Trace), (PermsOfg1 p tr) �Perm (PermsOfg2 p tr))

The proof of (1) proceeds by first applying the lemma lePermError. This leads
to have to prove that (grantos rt pr m p) �Perm (grantow rt pr m p). Un-
folding the definition of grantow and grantos, and applying the lemmas that
characterize the function update, we have to prove 〈pr, 1〉 �PermMul 〈pr, m〉 and
(p rt) �PermMul (p rt). The latter follows directly because �PermMul is reflex-
ive. As to the former, as m : NZMulV alid so the least number it can be is 1,
in which case, since �PermMul is reflexive, the obligation is discharged.

For (2), the proof poceeds by induction on tr:

– tr = [], the inequality simplifies to p �Perm p and since �Perm is reflexive,
this obligation is discharged.

– tr = tr′ � 〈n, st, ex〉, the proof proceeds by case analysis on KD n. The
relevant cases are Grant and Consume, since the rest of the instructions do
not affect the permission state. The Consume case is straightforward since
the function consume is monotonic, and by induction hypothesis it is known
that (PermsOfgrantos p tr′) �Perm (PermsOfgrantow p tr′). The Grant
case is proved using transitivity of �Perm, the induction hypothesis and the
following two lemmas:
• ∀(rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p : Perm),

(grantos rt pr m p) �Perm (grantow rt pr m p)
• ∀(rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p p′ :

Perm), p �Perm p′ → (grantow rt pr m p) �Perm (grantow rt pr m p′).
The proofs of these lemmas are omitted due to space restrictions.

The structure of the proof of the two remaining inequalities are quite similar
to the one just described above. In both cases the bulk of the proof reduces to
prove auxiliary lemmas similar to the ones of the proof obligation (2) for the
involved grant policies. �
This theorem and its proof provide a formal evidence that, in the first place,
of the four policies, MIDP’s one-shot is the most restrictive policy and MIDP’s
blanket is the most permissive one. In addition to that, these two policies have
been formally related with the permission grant policies defined in [2]. Fur-
thermore, the theorem also formally relates these two latter granting policies,
showing that the accumulative one is more permissive than the overwriting one.
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The difference between accumulating permissions and overwriting permissions
is subtle. The problem with accumulating permissions is that at any program
point to approximate the permissions available for a given resource type it has
to be considered all the consumptions and all the permissions granted for that
resource type. Whereas in the overwriting grant policy it is enough to consider
the last grant operation and the subsequent consume operations. This suggest
that a static permission analysis might be simpler using the overwriting grant
policy.

6 Conclusion and Further Work

This paper reports work concerning the formal specification and analysis of
access control models for interactive mobile devices.

Here it has been presented an unprecedented framework, formalized using the
proof-assistant Coq, that provides a uniform setting to define and analyse ac-
cess control models which incorporate interactive permission requesting/granting
mechanisms. In particular, the work presented here has focused on two distin-
guished permission models: the one defined by version 2.0 of MIDP and the one
defined by Besson et al. in [2]. A drawback of MIDP permission model is that
the user is forced to decide between tedious continuous interruption in interac-
tive programs in order to grant a (one-shot) permission or otherwise to trust
applications and concede almost irrestricted permission for it to access sensible
resources. The model proposed in [2] is more flexible than MIDP’s, allowing
additional possibilities in the way permissions are granted. A characterization
of both models in terms of a formal definition of grant policy has also been
provided.

Another kind of permission policies can also be expressed in the framework.
In particular, it can be adapted to introduce a notion of permission revocation,
a permission mode not considered in MIDP. A revoke can be modeled in the
permission overwriting approach, for instance, by assigning a zero multiplicity
to a resource type. In the accumulative approach, revocation might be modeled
using negative multiplicities. To introduce revocations, in turn, enables, without
further changes to the framework, to model a notion of permission scope. One
such scope would be grasped as the session interval delimited by an activation
and a revocation of that permission.

An order relation �g on grant policies has also been presented in this work.
Two theorems have been established and their proofs discussed: one that states
a sufficient condition to prove that two permission granting policies are related
by that order, and another one that establishes a precise comparison of permis-
sion granting policies defined by the models. In particular it is formally proved
that the accumulative grant policy is more permissive than the overwriting one.
Furthermore, it has been shown that �g defines a lattice structure with the poli-
cies grantos and grantbk as the bottom and top elements respectively, providing
then a formal algebraic setting in which grant policies can be precisely related
and compared.
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Further work is the study and specification, using the formal setting provided
by the framework, of algorithms for enforcing the security policies derived from
different sort of permission models to control the access to sensitive resources
of the devices. Moreover, one main objective is to extend the framework so as
to be able to construct certified prototypes from the formal definitions of those
algorithms.
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Abstract. We investigate the notion of ‘infinitary strong normalization’
(SN∞), introduced in [6], the analogue of termination when rewriting in-
finite terms. A (possibly infinite) term is SN∞ if along every rewrite
sequence each fixed position is rewritten only finitely often. In [9], SN∞

has been investigated as a system-wide property, i.e. SN∞ for all terms
of a given rewrite system. This global property frequently fails for trivial
reasons. For example, in the presence of the collapsing rule tail(x:σ)→ σ,
the infinite term t = tail(0:t) rewrites to itself only. Moreover, in practice
one usually is interested in SN∞ of a certain set of initial terms. We give
a complete characterization of this (more general) ‘local version’ of SN∞

using interpretations into weakly monotone algebras (as employed in [9]).
Actually, we strengthen this notion to continuous weakly monotone al-
gebras (somewhat akin to [5]). We show that tree automata can be used
as an automatable instance of our framework; an actual implementation
is made available along with this paper.

1 Introduction

In first-order term rewriting a major concern is how to prove termination, or
in another terminology, originating in the tradition of the λ-calculus, how to
prove strong normalization (SN), i.e. the property that all rewrite sequences
must end eventually in a normal form. Numerous advanced techniques and tools
have been developed to prove SN, including interpretations of terms in monotone
algebras [7,8] and in weakly monotone algebras [4].

Another development in term rewriting, in line with the increased attention
for coalgebraic and coinductive notions and techniques, was concerned with the
generalization of finitary to infinitary rewriting, where normal forms are infinite
objects such as streams or infinite trees. Such trees need not be well-founded.
At first sight, termination is then no longer an issue. But a notion analogous to
strong normalization emerges, bearing in mind the same goal of reaching normal
forms. This is infinitary normalization, SN∞, stating that eventually always a
normal form will be reached, although, depending on the chosen rewriting strat-
egy, this may take an infinite or even a transfinitely infinite number of steps.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 64–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The property SN∞ has been investigated in Klop and de Vrijer [6], where it is
shown that it can be rephrased as: all transfinite rewrite sequences converge, or,
equivalently, along every transfinite rewrite sequence each fixed term position is
rewritten only finitely often.

Zantema [9] initiated the development of proof methods for infinitary normal-
ization by adapting the weakly monotone algebras to the infinitary setting. As a
matter of fact, Zantema also studies a weaker notion than SN∞, which he calls
SNω, and which states that all rewrite sequences of length ω are convergent,
in the sense that throughout the infinite reduction any position is rewritten at
most finitely often.1

The properties SN∞ and SNω can be viewed locally, as properties of individual
terms or of sets of terms in a TRS, or globally: the entire TRS is SN∞ (or SNω)
if all its terms are. In [9] only the global versions are investigated, obtaining
characterization theorems for the global properties SNω and SN∞.

The first objective of this paper is to adapt the method of weakly monotone
algebras for proving local versions of SN∞ and SNω, which means that we can
parametrize these properties to arbitrary sets S of finite or infinite terms. The
gain is that the global system-wide version may fail, whereas the local version
for a set S of intended terms may still succeed. Thus we are able to fine-tune the
infinitary termination result for just the terms we want, removing the spoiling
effect of unintended terms. Note that the global properties are special cases of
the local ones. In that sense our results generalize those of [9].

The characterization theorems in [9] impose a certain continuity requirement
on the algebras. However, we found that for the characterization of the stronger
property SN∞ that requirement does not suffice. In order to obtain a full char-
acterization of SN∞ we will strengthen the requirement to what we call below
continuous weakly monotone algebras. They appear to be connected to an early
study of continuous algebraic semantics by Goguen et al. [5].

The second contribution of this paper is the employment of tree automata
to actually prove SN∞ for a set S of infinite terms. Here the tree automaton
T plays a double role: first, it specifies the set S of intended terms, namely
as those infinite terms generated by T , and second, it provides a ‘termination
certificate’ for S. Moreover, and here is the bridge between this second part and
the first part described above, the tree automaton T gives rise to a continuous
weakly monotone algebra that guarantees the property SN∞ for S. Thus the tree
automata method is an ‘instance’ of the general set-up using continuous weakly
monotone algebras.

An explicit goal of our study is finding automatable methods to establish
infinitary normalization properties. Indeed, finding such a tree automaton can
be automated, and we provide and discuss the actual implementation of the
search process using SAT solvers. The implementation is available via the web
page: http://infinity.few.vu.nl/sni/

1 This property SNω does not imply that in ω many steps a normal form will always be
reached (see Remark 2.5). Therefore “ω-convergence” would seem a more appropriate
name. To keep consistency we stick here to the terminology used in [9].
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2 Infinitary Rewriting

We will consider a finite or infinite term as a function on a prefix-closed subset
of N∗ taking values in a first-order signature. A signature Σ is a finite set of
symbols each having a fixed arity �(f) ∈ N. We use Σn := {f ∈ Σ | �(f) = n}
for the set of n-ary function symbols.

Let X be a set of symbols, called variables, such that X ∩ Σ = ∅. Then,
a term over Σ is a partial map t : N∗ → Σ ∪ X such that the root is defined,
t(ε) ∈ Σ ∪X , and for all p ∈ N∗ and all i ∈ N we have t(pi) ∈ Σ ∪X if and only
if t(p) ∈ Σn for some n ∈ N and 1 ≤ i ≤ n. The set of (not necessarily well-
founded) terms over Σ and X is denoted by Ter∞(Σ,X ). Usually we will write
Ter∞(Σ) for the set of terms over Σ and a countably infinite set of variables,
which is assumed to be fixed as underlying the definition of terms.

The set of positions Pos(t) of a term t ∈ Ter∞(Σ) is the domain of t, that
is, the set of values p ∈ N∗ such that t(p) is defined: Pos(t) := {p ∈ N∗ | t(p) ∈
Σ ∪ X}. Note that, by the definition of terms, the set Pos(t) is prefix closed. A
term t is called finite if the set Pos(t) is finite. We write Ter (Σ) for the set of
finite terms. For positions p ∈ Pos(t) we use t|p to denote the subterm of t at
position p, defined by t|p(q) := t(pq) for all q ∈ N∗.

For f ∈ Σn and terms t1, . . . , tn ∈ Ter∞(Σ) we write f(t1, . . . , tn) to denote
the term t defined by t(ε) = f , and t(ip) = ti(p) for all 1 ≤ i ≤ n and p ∈ N∗.
For constants c ∈ Σ0 we simply write c instead of c(). We use x, y, z, . . . to range
over variables. We write s ≡ t for syntactic equivalence of terms s and t, that is,
if ∀p ∈ N∗. s(p) = t(p) and s ≡≤n t for syntactic equivalence up to depth n, that
is, if for all positions p with length |p| ≤ n we have s(p) = t(p).

A substitution is a map σ : X → Ter∞(Σ,X ). For terms t ∈ Ter∞(Σ,X ) and
substitutions σ we define tσ as the result of replacing each x ∈ X in t by σ(x).
Formally, tσ is defined, for all p ∈ N∗, by: tσ(p) = σ(t(p0))(p1) if there exist
p0, p1 ∈ N∗ such that p = p0p1 and t(p0) ∈ X , and tσ(p) = t(p), otherwise. Let
� be a fresh symbol, � �∈ Σ ∪X . A context C is a term from Ter∞(Σ,X ∪{�})
containing precisely one occurrence of �. By C[s] we denote the term Cσ where
σ(�) = s and σ(x) = x for all x ∈ X .

Dropping in the definition of terms the requirement that the number of sub-
terms coincides with the arity of the symbols, we obtain the general notion of
labelled trees. For trees we reuse the notation introduced above for terms.

Definition 2.1. An infinitary term rewrite system (TRS) is a set R of rewrite
rules over a first-order signature Σ (and a set of variables X ): a rewrite rule is
a pair 〈�, r〉 of terms �, r ∈ Ter∞(Σ), usually written as � → r, such that for
left-hand side � and right-hand side r we have �(ε) �∈ X and Var(r) ⊆ Var(�).

Restriction. In this paper we restrict attention to TRSs R in which for all rules
� → r ∈ R both � and r are finite terms.

Definition 2.2. On the set of terms Ter∞(Σ) we define a metric d by d(s, t) = 0
whenever s ≡ t, and d(s, t) = 2−k otherwise, where k ∈ N is the least length of
all positions p ∈ N∗ such that s(p) �= t(p).
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Definition 2.3. Let R be a TRS over Σ. For terms s, t ∈ Ter∞(Σ) and p ∈ N∗

we write s →R,p t if there exist � → r ∈ R, a substitution σ and a context C
with C(p) = � such that s ≡ C[�σ] and t ≡ C[rσ]. A step s →R,ε t is called a
root step. We write s →R t if there exists a position p such that s →R,p t.

A transfinite rewrite sequence (of length α) is a sequence of rewrite steps
(tβ →R,pβ

tβ+1)β<α such that for every limit ordinal λ < α we have that if
β approaches λ from below (i) the distance d(tβ , tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e. the length of the position pβ , tends to
infinity. The sequence is called strongly convergent if the conditions (i) and (ii)
are fulfilled for every limit ordinal λ ≤ α. In this case we write t0 ��R tα, or
t0 →α tα to explicitly indicate the length α of the sequence. Note that this
ordinal will always be countable (see [6,7]). In the sequel we will use the familiar
fact that countable limit ordinals have cofinality ω.

A transfinite rewrite sequence that is not strongly convergent will be called
divergent. Note that all proper initial segments of a divergent reduction are yet
strongly convergent.

Definition 2.4. A TRS R is infinitary strongly normalizing on S ⊆ Ter∞(Σ),
denoted SN∞

R (S), if every rewrite sequence starting from a term t ∈ S is strongly
convergent. We write SNω

R(S) if all rewrite sequences of length ≤ ω starting from
a term t ∈ S are strongly convergent. We write SN∞

R shortly for SN∞
R (Ter∞(Σ)),

that is, infinitary normalization on all terms. Likewise SNω
R. Furthermore, the

subscript R may be suppressed if it is clear from the context.

Remark 2.5. The notion SNω was introduced in [9]. Note that it does not imply
that every reduction of length ω converges to a normal form, as examplified by
a reduction f(a, b)→ω f(gω, gω) in the TRS {a→ g(a), b → g(b), f(x, x) → c}.
For the TRS R obtained by adding the extra rewrite rule c → c we will even have
SNω

R without SN∞
R . For this reason the terminology SNω seems a bit deceptive.

We suggest to call it ω-convergence. For rewrite systems with rules that are
left-linear and have finite left-hand sides the notions SNω and SN∞ coincide.

Infinitary strong normalization is related to root termination, as follows.

Definition 2.6. Let R be a TRS over Σ and S ⊆ Ter∞(Σ). The ω-family
Fω
R(S) of S is the set of all subterms of�R-reducts of terms t ∈ S. Likewise the
∞-family F∞

R (S) of S is the set of all subterms of ��R-reducts of terms t ∈ S.
We suppress the subscript R whenver R is clear from the context.

Definition 2.7. We call a term t ∈ Ter∞(Σ) root terminating if t admits no
rewrite sequence of length ≤ ω which contains infinitely many root steps. Like-
wise, t is called ∞-root terminating if t does not admit a transfinite reduction
containing infinitely many root steps.

We obtain the following lemma, a refinement of Theorem 2 in [6].

Lemma 2.8. A set of terms S ⊆ Ter∞(Σ) is SN∞
R (S) if and only if all ∞-

family members t ∈ F∞(S) are ∞-root terminating. Likewise we have SNω
R(S)

if and only if all ω-family members t ∈ Fω(S) are root terminating.
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Proof. For the ‘only if’-direction, assume there exists a term t ∈ F∞(S) which
admits a rewrite sequence t�� containing infinitely many root steps. Then there
exists a divergent rewrite sequence s�� C[t]�� for some s ∈ S.

For the ‘if’-direction, assume that SN∞
R (S) does not hold. Then there exists

a rewrite sequence σ : s �� for some s ∈ S which is not strongly convergent.
Then for some depth d ∈ N there are infinitely many rewrite steps at depth d in
σ; let d be minimal with this property. There are only finitely many steps above
depth d and therefore σ factors into σ : s �� s′ �� such that after s′ there are
no rewrite steps above depth d (but infinitely many steps at depth d). The term
s′ has only finitely many subterms at depth d, and by the Pigeonhole Principle
one of these subterms admits a rewrite sequence containing infinitely many root
steps. Hence there exists a term t ∈ F∞(S) which is not root terminating.

The proof for SNω
R(S) proceeds analogously. ��

3 Characterizations of Local SNω and Local SN∞

We give a complete characterization of the local version of SN∞, based on an
extension of the monotone algebra approach of [9].

Definition 3.1. A Σ-algebra 〈A, [·]〉 consists of a non-empty set A and for each
n-ary f ∈ Σ a function [f ] : An → A, the interpretation of f .

Let A = 〈A, [·]〉 be a Σ-algebra, and α : X → A be an assignment of variables.
The interpretation of finite terms t ∈ Ter(Σ) is inductively defined as follows:

[x]α := α(x) [f(t1, . . . , tn)]α := [f ]([t1]α, . . . , [tn]α)

For ground terms t ∈ Ter(Σ, ∅) we write [t] for short, since the interpretation
does not depend on α. We define the interpretation [t] of infinite terms t as the
limit of the interpretations of finite terms converging towards t. In the sequel we
assume (without loss of generality) that the signature Σ contains at least one
constant symbol; in case it does not, we add one. This ensures that every infinite
term is indeed the limit of a sequence of finite terms.

Let Ai, A be sets equipped with metrics. A function f : A1 × . . .×An → A is
continuous if whenever for i = 1, . . . , n the sequence ai,1, ai,2, . . . in Ai converges
with limit ai, then limj→∞ f(a1,j , . . . , an,j) exists and is equal to f(a1, . . . , an).

Definition 3.2. A Σ-algebra 〈A, [·], d〉 equipped with a metric d : A×A → R+
0

is called continuous if:

(i) for every f ∈ Σ the function [f ] is continuous, and
(ii) for every sequence {ti}i∈N of finite ground terms ti ∈ Ter(Σ, ∅) that is

convergent in Ter∞(Σ, ∅), the sequence {[ti]}i∈N is convergent.

Note that clause (ii) of Definition 3.2 is a necessary and sufficient condition for
the existence of a unique continuous extension [·] : Ter∞(Σ) → A to (possibly)
infinite terms of the interpretation [·] : Ter(Σ) → A. As a matter of fact this
observation motivates the definition.
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Lemma 3.3. Let A = 〈A, [·]〉 be a continuous Σ-algebra. Let t ∈ Ter(Σ,X ) be
a finite term, and σ : X → Ter∞(Σ, ∅) a ground substitution. We define the
map α : X → A for all x ∈ X by α(x) = [σ(x)]. Then we have [tσ] = [t]α.

Proof. We use induction on the term structure of t. The case of t being a variable
is trivial, hence assume t = f(t1, . . . , tn). For i = 1, . . . , n let {ti,j}j∈N be a
sequence of finite terms converging towards tiσ. Then we have:

[tσ] = limj→∞[f(t1,j , . . . , tn,j)] by continuity of [·]
= [f ](limj→∞[t1,j ], . . . , limj→∞[tn,j ]) by continuity of f

= [f ]([t1σ], . . . , [tnσ]) = [f ]([t1]α, . . . , [tn]α) = [t]α by IH ��

Let R be a binary relation on A. A function f : An → A is monotone with
respect to R if a R b implies f(. . . , a, . . .) R f(. . . , b, . . .) for every a, b ∈ A.

Definition 3.4. A weakly monotone Σ-algebra A = 〈A, [·],�, 〉 is a Σ-algebra
〈A, [·]〉 where � is a strict partial order, and  a quasi-order, on A such that:

(i) � is well-founded,
(ii) ∀xyz. (x � y  z ⇒ x � z) and ∀xy. (x � y ⇒ x  y) (compatibility), and
(iii) for every symbol f ∈ Σ the function [f ] is monotone with respect to  .

A weakly monotone Σ-algebra with undefined elements is a weakly monotone
Σ-algebra A = 〈A, [·],�, 〉 with a set Ω ⊆ A of undefined elements for which:

(iv) for every b ∈ Ω and a ∈ A \Ω we have b � a (maximality), and
(v) for every f ∈ Σ and b ∈ Ω we have [f ](. . . , b, . . .) ∈ Ω (strictness).

All of the results in this paper remain valid if instead of requiring � to be a strict
partial order and  a quasi-order we allow arbitrary binary relations fulfilling
conditions (i)–(v) of Definition 3.4.

Remark 3.5. The reason to consider weakly monotone algebras with more than
just one undefined element is the following. For every TRS R, we want to be
able to build a continuous weakly monotone algebra from the term algebra with
carrier-set Ter∞(Σ) by interpreting the terms t with SN∞

R ({t}) by themselves,
and the other terms by suitably chosen undefined objects. However, by just
dropping the terms t that are not SN∞

R , and replacing them by a single undefined
element usually a continuous algebra is not obtained.

For example, let Σ = {I, J, c}, where I, J are unary function symbols and c
a constant. Let R be the (orthogonal) TRS over Σ with the rules I(x) → x
and J(x) → x. Here the terms t ∈ Ter∞(Σ) with SN∞

R ({t}) are precisely the
finite terms, the terms t ∈ Ter(Σ). Now suppose that A = 〈A, [·], dA,�, 〉
is a continuous, weakly monotone algebra with A ⊇ Ter(Σ), an interpreta-
tion [·] : Σ → A with the property that [f ]([t1], . . . , [tn]) = [f(t1, . . . , tn)] for
all f ∈ Ter(Σ), and dA an extension of the metric in Definition 2.2. Then
we find that A \ Ter(Σ) contains more than one element (and in fact un-
countably many elements). Note that for the induced interpretation function
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[·] : Ter∞(Σ) → A it holds that [t] = t for all t ∈ Ter(Σ). We find that
[Iω] = [I(I(I(. . .)))] = [lim In(x)] = lim[In(x)] = lim In(x) ∈ A \ Ter(Σ), and
similarly, [Jω] = lim Jn(x) ∈ A \ Ter(Σ). From this we conclude that the inter-
pretations [Iω] and [Jω] of the infinite terms Iω and Jω are different elements in
A \ Ter∞(Σ): [Iω] �= [Jω] follows from dA([Iω ], [Jω]) = dA(lim In(x), lim Jn(x)) =
lim dA(In(x), Jn(x)) = lim d(In(x), Jn(x)) = 1.

Definition 3.6. Let A = 〈A, [·],�, 〉 be a weakly monotone Σ-algebra with
undefined elements Ω.

(i) A set S ⊆ Ter∞(Σ, ∅) is called defined w.r.t. Ω if, for all s ∈ S, [s] /∈ Ω.
(ii) A TRS R over Σ is called (weakly) decreasing w.r.t. Ω if for all � → r ∈ R

and every assignment α : X → A, [�]α �∈ Ω implies [�]α � [r]α ([�]α  [r]α).

Theorem 3.7. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ, ∅). Then the fol-
lowing statements are equivalent:

(i) SNω
R(S).

(ii) There exists a continuous weakly monotone Σ-algebra A = 〈A, [·], d,�, 〉
with a set Ω of undefined elements such that S is defined w.r.t. Ω, and R
is decreasing with respect to Ω.

Proof. For (i) ⇒ (ii) assume that SNω
R(S) holds. We define A := 〈A, [·], d,�, 〉

with A := Ter∞(Σ, ∅), equipped with the metric d on A from Definition 2.2,
and let Ω := A\Fω(S) be the set of undefined elements. We define the relations
� := (→R,ε · →∗) ∩ (Fω(S) × Fω(S)) and  := →∗, extended by s � t for all
s ∈ Ω, t ∈ Fω(S) and s  t for all s ∈ Ω, t ∈ A. The interpretation [·] is defined
for all f ∈ Σ by [f ](t1, . . . , tn) = f(t1, . . . , tn).

Clearly A is a continuous Σ-algebra; we check that A is a weakly monotone Σ-
algebra with undefined elements Ω. Assume that � would not be well-founded.
Then there exists a term t ∈ Fω(S) admitting an ω-rewrite sequence containing
infinitely many root steps, contradicting SNω

R(S). The compatibility � ·  ⊆ �
and � ⊆  holds by definition. For every b ∈ Ω and a ∈ A \Ω we have b � a by
definition. Furthermore b ∈ Ω implies [f ](. . . , b, . . .) = f(. . . , b, . . .) ∈ Ω, since
the family Fω(S) is closed under subterms. For monotonicity with respect to  ,
we consider f ∈ Σ and s, t ∈ A with s  t. If s ∈ Ω then [f ](. . . , s, . . .) ∈ Ω  
[f ](. . . , t, . . .). If s ∈ Fω(S), then [f ](. . . , s, . . .)  [f ](. . . , t, . . .) as a consequence
of the closure of rewriting →∗ under contexts.

We check the remaining requirements of the theorem. For all s ∈ S we have
[s] �∈ Ω by definition. Consider � → r ∈ R and α : X → AI such that [�]α �∈ Ω.
Then [�]α ∈ Fω(S) and hence α(x) ∈ Fω(S) for all x ∈ Var(�). Therefore we
obtain [�]α ≡ �α→R,ε rα ≡ [r]α and [r]α ∈ Fω(S), hence [�]α � [r]α.

For (ii) ⇒ (i) assume that A := 〈A, [·],�, 〉 and Ω fulfilling the requirements
of the theorem are given. We show the following auxiliary lemmas:

∀s, t ∈ Ter∞(Σ). [s] �∈ Ω ∧ s → t⇒ [t] �∈ Ω ∧ [s]  [t] (∗)
∀s. [s] �∈ Ω ⇒ ∀t ∈ Fω(s). [t] �∈ Ω (∗∗)
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Let s, t ∈ Ter∞(Σ) with [s] �∈ Ω and s → t. There exist a context C, a rule
� → r ∈ R and a substitution σ such that s ≡ C[�σ] → C[rσ] ≡ t. By Lemma 3.3
together with the assumptions we obtain [�σ] = [�]α � [r]α = [rσ] where the map
α : X → A is defined by α(x) = [σ(x)] for all x ∈ X . Since � ⊆  and [f ] is
monotone with respect to  for f ∈ Σ, we obtain [s]  [t]. Furthermore [t] �∈ Ω,
otherwise [t] ∈ Ω � [s]  [t] and hence [t] � [t], contradicting well-foundedness
of �. We obtain (∗∗) by induction together with ‘monotonicity’ of Ω.

Assume SNω
R(S) would not hold. By Lemma 2.8 there exists a term t0 ∈ Fω(S)

which admits an ω-reduction t0 → t1 → . . . containing infinitely many root steps.
Then t0 ∈ Fω(s) for some s ∈ S and by assumption [s] �∈ Ω, hence by (∗∗) we
obtain ti �∈ Ω for all i ∈ N. Furthermore by (∗) if follows [ti]  [ti+1] for all
i ∈ N. Moreover for root steps ti →R,ε ti+1 we get [ti] � [ti+1] since then the
context C in the proof of (∗) is empty. As a consequence we have infinitely often
a strict decrease � in the sequence [t0]  [t1] . . ., and by applying � ·  ⊆ � we
can remove all  between them; giving rise to an infinite decreasing �-sequence,
contradicting well-foundedness of �. ��

Remark 3.8. A close inspection of the above proof yields that for Theorem 3.7
the requirement on the algebra to be continuous can be weakened. It suffices to
require that for every infinite ground term t the sequence [trunc(t, n)] converges
for n → ∞. Here trunc(t, n) stands for the truncation of t at depth n defined
for all p ∈ N∗ by trunc(t, n)(p) is t(p) if |p| < n, ⊥ if |p| = n, and undefined,
otherwise; where ⊥ is an arbitrary, fixed constant symbol from the signature Σ.

However, we emphasise that for the characterization of SN∞
R (S) this weaker

condition is not sufficient. Continuity of [·] : Ter∞(Σ) → A is essential for the
correctness of Theorem 3.10. It guarantees that for the limit steps in transfinite
rewrite sequences, the limit of the interpretations coincides with the interpreta-
tion of the limit term.

We note that the weaker continuity condition used in [9, Theorem 3] does not
suffice; see Example 3.9. Strengthening the condition to full continuity of the
interpretation mapping would validate the theorem.

Example 3.9. We consider a TRS R which is SNω but not SN∞. Interestingly,
although the TRS is SNω, we display a term of which a normal form cannot be
reached in ω many steps. Let R be the TRS consisting of the following rules:

f(x, x) → f(A, B) A→ s(A) B → s(B) .

It is not difficult to verify that R is indeed SNω, but SN∞ does not hold:

f(A, B) → f(s(A), B) → f(s(A), s(B))�� f(sω, sω) → f(A, B)→ . . . .

Note that the TRS R forms a counterexample to [9, Theorem 3], as the fol-
lowing Σ-algebra A fulfills all requirements of the theorem, but SN∞ does not
hold. We choose the Σ-algebra A = {A, B, F, a, b, f} with A � a, B � b, F � f
and  := � ∪ =. The interpretation [·] is defined as follows:
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[A] = A

[B] = B

[s](A | a) = a [s](B | b) = b [s](F | f) = f

[f ](A | a, B | b) = f [f ](otherwise) = F

where | denotes ‘ or’ and as truncation symbol c we chose c := A. Furthermore,
for the metric we choose d(x, y) = 0 if x = y and 1 otherwise. Then for all
variable interpretations α : X → A we have:

[f(x, x)]α = F > f = [f(A, B)]α

[A]α = A > a = [s(A)]α

[B]α = B > b = [s(B)]α .

Thus all rules are strictly decreasing. It is straightforward to verify that all func-
tions [g] are continuous, for every infinite ground term t the sequence [trunc(t, n)]
converges (with limit in A) for n → ∞, and for every descending sequence
a1  a2  · · · for which limn→∞ ai exists we have a1  limn→∞ ai.

Let A be a set equipped with a metric d and let  be a binary relation on A.
We call the relation  compatible with limits if for every converging sequence
{ai}i∈N with a0  a1  . . . we have a0  limi→∞ ai.

Theorem 3.10. Let R be a TRS over Σ and S ⊆ Ter∞(Σ, ∅). Then the fol-
lowing statements are equivalent:

(i) SN∞
R (S).

(ii) There exists a continuous weakly monotone Σ-algebra A = 〈A, [·], d,�, 〉
with a set Ω of undefined elements such that S is defined w.r.t. Ω, R is
decreasing with respect to Ω, and  is compatible with limits.

Proof. We give the crucial steps for both directions. The remainder of the proof
proceeds analogously to the proof of Theorem 3.7.

For (i) ⇒ (ii) assume that SN∞
R (S) holds. We define A := 〈A, [·], d,�, 〉 with

A := Ter∞(Σ, ∅), d the metric from Definition 2.2, and Ω := A \ F∞(S); we
define the relations � := (→R,ε ·��)∩ (F∞(S)×F∞(S)),  :=��∩ (F∞(S)×
F∞(S)), extended by s � t for all s ∈ Ω, t ∈ F∞(S) and s  t for all s ∈ Ω, t ∈
A. The interpretation [·] is defined for all f ∈ Σ by [f ](t1, . . . , tn) = f(t1, . . . , tn).
Consider a sequence a0  a1  . . . with a0 ∈ F∞(S). Then a0 �� a1 �� . . . by
definition and by SN∞

R (S) we obtain that a := limi→∞ ai exists, a0 �� a and
a0  a. Hence  is compatible with limits.

For the implication (ii) ⇒ (i), the crucial step is to show that s �� t implies
s  t. We use induction on the length of the rewrite sequence s →α t. Note that
the length α of a reduction is a countable ordinal, c.f. [6]. For α = β+1 we obtain
s  t by induction hypothesis together with (∗) from the proof of Theorem 3.7.
Assume that α is a (countable) limit ordinal. Then there exists a non-decreasing
sequence {βi}i∈N of ordinals βi < α such that α = limi→∞ βi. Let sγ denote
the term before the γ-th rewrite step in s →α t. Then s �� sβ1 �� sβ2 . . .
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and t = limi→∞ sβi . Hence by induction hypothesis s  sβ1  sβ2 . . .; and by
compatibility of  with limits we obtain s  t. This gives us a handle for limit
steps; the rest of the proof is analogous to the proof of Theorem 3.7. ��

Finally, we generalize the Theorems 3.7 and 3.10 together with the concept of
‘root termination’ allowing for simpler, stepwise proofs of SN∞

R (S). This facility is
incorporated in our tool. The following definition and theorem allow for modular
proofs of SN∞ and root termination of infinite terms. This is reminiscent to
modular proofs of finitary root termination [1] (the dependency pairs method).

Definition 3.11. Let R1 and R2 be TRS over Σ, and S ⊆ Ter∞(Σ). We say
that R1 is ∞-root terminating relative to R2 on S, denoted RT∞

R1/R2
(S), if no

s ∈ S admits a →R1,ε ∪ →R2-reduction containing infinitely many →R1,ε-steps.
We say R1 is root terminating relative to R2 on S, denoted RTω

R1/R2
(S), if

the condition holds for rewrite sequences of length ≤ ω.

The following lemma is a direct consequence of Lemma 2.8 and Definition 3.11.

Lemma 3.12. (i) SN∞
R (S)⇔ RT∞

R/R(F∞(S)); (ii) SNω
R(S)⇔ RTω

R/R(Fω(S)).

For proving SN∞
R (S) using Theorem 3.10 we have to make all rules in R decreas-

ing at once. For practical purposes it is often desirable to prove SN∞
R (S) stepwise,

by repeatedly removing rules until no top-rules remain, that is, RT∞
∅/R(F∞(S))

trivially holds. The following theorem enables us to do this, we can remove all
decreasing rules, as long as the remaining rules are weakly decreasing.

Theorem 3.13. Let R1 ⊆ R2, R′
1 ⊆ R2 be TRS over Σ, and S ⊆ Ter∞(Σ, ∅).

Let A = 〈A, [·], d,�, 〉 be a continuous weakly monotone Σ-algebra with a set
Ω of undefined elements such that S is defined w.r.t. Ω and it holds:

(i) R1 ∪R2 is weakly decreasing with respect to Ω, and
(ii) R′

1 is decreasing with respect to Ω.

Then RTω
R1/R2

(Fω
R2

(S)) implies RTω
(R1∪R′

1)/R2
(Fω

R2
(S)). If additionally  is

compatible with limits, then RT∞
R1/R2

(F∞
R2

(S)) implies RT∞
(R1∪R′

1)/R2
(F∞

R2
(S)).

Proof. Minor modification of the proofs of Theorem 3.7 and 3.10, respectively. ��

4 Tree Automata

We now come to the second contribution of our note, consisting of an application
of tree automata to prove infinitary strong normalization, SN∞, and a connection
of tree automata with the algebraic framework treated above. For the notion of
tree automata the reader is referred to [2]. We repeat the main definitions, for
the sake of completeness, and to fix notations.

Definition 4.1. A (finite nondeterministic top-down) tree automaton T over a
signature Σ is a tuple T = 〈Q, Σ, I, Δ〉 where Q is a finite set of states, disjoint
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from Σ; I ⊆ Q is a set of initial states, and Δ ⊆ Ter(Σ ∪Q, ∅)2 is a ground
term rewriting system over Σ ∪Q with rules, or transitions, of the form:

q → f(q1, . . . , qn)

for n-ary f ∈ Σ, n ≥ 0, and q, q1, . . . , qn ∈ Q.

We define the notion of ‘run’ of an automaton on a term. For terms containing
variables, we assume that a map α : X → 2Q is given, so that each variable
x ∈ X can be generated by any state from α(x).

Definition 4.2. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton. Let t ∈ Ter∞(Σ,X )
be a term, α : Var(t) → 2Q a map from variables to sets of states, and q ∈ Q.
Then a q-run of T on t with respect to α is a tree ρ : Pos(t) → Q such that:

(i) ρ(ε) = q, and
(ii) ρ(p)→ t(p)(ρ(p1), . . . , ρ(pn)) ∈ Δ for all p ∈ Pos(t) with t(p) ∈ Σn, and
(iii) ρ(p) ∈ α(t(p)) for all p ∈ Pos(t) with t(p) ∈ X .

We define Qα(t) := {q ∈ Q | there exists a q-run of T on t with respect to α} .

For ground terms t the above notions are independent of α. Then we say T has
a q-run on a term t and write Q(t) in place of Qα(t). Moreover, we say that an
automaton T generates a ground term t if T has a q-run on t such that q ∈ I.
The language of an automaton is the set of ground terms it generates.

Definition 4.3. The language L(T ) of a tree automaton T is defined by:

L(T ) := {t ∈ Ter∞(Σ, ∅) | Q(t) ∩ I �= ∅} .

T is called complete if it generates all ground terms, i.e. if L(T ) = Ter∞(Σ, ∅).

Example 4.4. Consider the tree automaton T = 〈Q,Σ, I, Δ〉 with Q := {0, 1},

0 1
c

a
a

b I := {0}, and with Δ consisting of the rules:

0 → a(1) | c 1 → a(0) | b(1)

where �→ r1 | . . . | rn is shorthand for rules (� → ri)1≤i≤n.
The language of T is L(T ) = (a b∗a)∗c | (a b∗a)ω | (a b∗a)∗a bω.

The following lemma states a continuity property of tree automata.

Lemma 4.5. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton, q∈Q, and t∈Ter∞(Σ).
Then q ∈ Q(t) if and only if for all n ∈ N exists tn with q ∈ Q(tn) and t ≡≤n tn.

Proof. The ‘only if’-direction is trivial, take tn := t for all n ∈ N.
For the ‘if’-direction, we prove q ∈ Q(t) by constructing a q-run ρ : Pos(t)→ Q

of T on t. For ever i ∈ N there exists a q-run ρti of T on ti by assumption. Define
T0 := {ti | i ∈ N}. In case T0 is finite, then it follows that t ∈ T0 and q ∈ Q(t).
Hence assume that T0 is infinite.
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First we define a decreasing sequence T0 ⊇ T1 ⊇ T2 ⊇ . . . of infinite subsets
of T0 by induction as follows. Assume that Ti has already been obtained. By the
Pigeonhole Principle there exists an infinite subset Ti+1 ⊆ Ti such that for all
v1, v2 ∈ Ti+1 we have v1 ≡≤i v2 and ρv1 ≡≤i ρv2 .

We define the q-run ρ on t as follows. For each i ∈ N we pick a term si ∈ Ti+1
and define ρ(p) := ρsi(p) for all p ∈ Pos(t) with |p| = i. Note that the definition of
ρ does not depend no the choice of si. Furthermore note that for every i ∈ N the
term si coincides with the term si+1 on all positions p ∈ Pos(t) with |p| = i + 1.
Therefore the condition ρ(p) → t(p)(ρ(p1), . . . , ρ(pn)) ∈ Δ for every p ∈ Pos(t)
follows from s|p| fulfilling this condition. Hence ρ is a q-run on t and q ∈ Q(t). ��

Lemma 4.6. Each of the following properties imply completeness of a tree au-
tomaton T = 〈Q,Σ, I, Δ〉:

(i) there exists a single core state qc ∈ I such that:

∀n ∈ N. ∀f ∈ Σn. qc → f(qc, . . . , qc) ∈ Δ ;

(ii) there exists a set of core states Qc ∩ I �= ∅ such that for all core inputs
q ∈ Qc there exist a tuple of core outputs q1, . . . , qn ∈ Qc:

∀n ∈ N. ∀f ∈ Σn. ∀q ∈ Qc. ∃q1, . . . , qn ∈ Qc. q → f(q1, . . . , qn) ∈ Δ ;

(iii) there exists a set of core states Qc ⊆ I such that for all tuples of core
outputs q1, . . . , qn ∈ Qc there exists a core input q ∈ Qc:

∀n ∈ N. ∀f ∈ Σn. ∀q1, . . . , qn ∈ Qc. ∃q ∈ Qc. q → f(q1, . . . , qn) ∈ Δ .

Proof. Note that (i) is an instance of (ii). For (ii) let Δ′ ⊆ Δ be such that the set
Δ′ contains for every q ∈ Q exactly one transition of the form 〈q, f(q1, . . . , qn)〉.
We define ρ(t, q) coinductively: ρ(f(t1, . . . , tn), q) := q(ρ(t1, q1), . . . , ρ(tn, qn))
where 〈q, f(q1, . . . , qn)〉 ∈ Δ′. By construction ρ(t, q) is a q-run on t. For (iii) it
follows by induction that for every finite term t ∈ Ter(Σ, ∅) has a q-run for some
q ∈ Qc. For infinite terms t take a sequence {ti}i∈N of finite terms converging
towards t. By the Pigeonhole Principle there exists q ∈ Qc and a subsequence
{si}i∈N of {ti}i∈N such that every si has a q-run. Then by Lemma 4.5 we conclude
that t has a q-run. ��

5 Tree Automata as Certificates for SN∞

We are now ready to use tree automata as ‘certificates’ for SN∞.

Definition 5.1. Let R be a TRS over Σ, and let S ⊆ Ter∞(Σ). A certificate
for SN∞

R (S) is a tree automaton T = 〈Q,Σ, I, Δ〉 such that:

(i) T generates S, i.e. S ⊆ L(T ), and
(ii) Qα(�) � Qα(r) if Qα(�) �= ∅, for all � → r ∈ R, and α : Var(�)→ 2Q.



76 J. Endrullis et al.

Theorem 5.2. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). Then SN∞
R (S)

holds if there exists a certificate for SN∞
R (S).

The proof will be based on Theorem 3.10, the characterization of SN∞ in terms of
interpretability in a continuous algebra. For this purpose we establish a bridge
between tree automata certificates and continuous algebras. This bridge may
need some intuitive explanation first. This concerns our use of tree automata
states q decorated with a real numbers r ∈ [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}, to be
perceived as the degree of accuracy with which q can generate a certain term.
Here ‘accuracy’ refers to the distance d in Definition 2.2. An example may be
helpful.

Example 5.3. Consider the tree automaton T with the transitions

0 → a 1→ b 0 → c(0) 1 → c(1)

First we consider the ‘run’-semantics Q(·) from Definition 4.1. Then for all n ∈ N
we have Q(cn(a)) = {0}, meaning that cn(a) can be generated by state 0, and
likewise Q(cn(b)) = {1}. However, Q(cω) = {0, 1}, and since cω is both the limit
of cn(a) and cn(b), we face a problem if we aim at a continuous interpretation.

We redo this example, now with the accuracies r mentioned as superscripts of
states 0, 1. More precisely, we use the continuous Σ-algebra AT defined below.
Then [cn(a)] = {01, 11−2−n}, meaning that cn(a) can be generated from state 1
with accuracy 1, and also from state 0 but only with accuracy 1 − 2−n. Like-
wise, [cn(b)] = {01−2−n

, 11}. Furthermore [cω] = {01, 11}, which is indeed the
limit of both {01, 11−2−n} and {01−2−n

, 11}, thereby resolving the clash with the
continuity requirement.

Definition 5.4. Let T = 〈Q, Σ, I, Δ〉 be a tree automaton. We define a contin-
uous weakly monotone Σ-algebra AT = 〈A, [·], d,�, 〉 as follows. We let A :=
{γ | γ : Q → [0, 1]} with undefined elements ΩT := {γ ∈ A | ∀q ∈ Q. γ(q) < 1}.

For every f ∈ Σ with arity n we define the interpretation [f ] by:

[f ](γ1, . . . , γn) := λq. sup
{
0.5 + 0.5 ·min(γ1(q1), . . . , γn(qn)) |
q → f(q1, . . . , qn) ∈ Δ

}
where sup ∅ := 0.

For γ ∈ A define Q(γ) := {q ∈ Q | γ(q) = 1}. Then � and  on A are defined
by: γ1 � γ2 := Q(γ1) � Q(γ2) and γ1  γ2 := Q(γ1) ⊆ Q(γ2). As the metric d
on A we choose d(γ1, γ2) := max{|γ1(q)− γ2(q)| | q ∈ Q}.

The definition gives rise to a natural, continuous semantics associated with tree
automata.

Lemma 5.5. The algebra AT from Definition 5.4 is a continuous weakly mono-
tone Σ-algebra with undefined elements Ω.

Proof. We have � ·  ⊆ �, and � is well-founded since Q is finite. Consider a
state q ∈ Q for which [f ](γ1, . . . , γn)(q) = 1, then there is q → f(q1, . . . , qn) ∈ Δ
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such that γ1(q1) = 1,. . . ,γn(qn) = 1. Whenever additionally γj  γ′
j for some

1 ≤ j ≤ n, then γ′
j(qj) = 1 and therefore [f ](. . . , γ′

j , . . .)(q) = 1. Hence [f ] is
monotone with respect to  for all f ∈ Σ. Using the same reasoning it follows
that Ω fulfills both requirements imposed on undefined elements. Hence AT is
a weakly monotone Σ-algebra with undefine elements Ω.

For every f ∈ Σ with arity n and every γ1, γ
′
1, . . . , γn, γ′

n ∈ A we have

d([f ](γ1, . . . , γn), [f ](γ′
1, . . . , γ

′
n)) ≤ 0.5 ·max {d(γi, γ′

i) | 1 ≤ i ≤ n} .

As a consequence, for the interpretation [·] : Ter(Σ, ∅) → A of finite terms we
have d([s], [t]) ≤ d(s, t) for all s, t ∈ Ter(Σ, ∅). As a uniformly continuous map
on the metric space 〈Ter(Σ, ∅), d〉, this interpretation can be extended to a con-
tinuous function [·] : Ter∞(Σ, ∅)→ A on the completion space 〈Ter∞(Σ, ∅), d〉.
Hence AT is a continuous Σ-algebra. ��

The following lemma connects the standard semantics of tree automata with the
continuous algebra AT . Roughly, in the continuous algebra the automaton can
be found back, when considering only states with ‘accuracy’ 1 (γ(q) = 1).

Lemma 5.6. Let AT = 〈A, [·], d,�, 〉 be the Σ-algebra as in Definition 5.4.
Then for all t ∈ Ter∞(Σ, ∅), and α : Var(t) → 2Q, β : Var(t) → A such that
∀x ∈ Var(t). α(x) = Q(β(x)), it holds Qα(t) = Q([t]β).

Proof. For the case t ∈ X , there is nothing to be shown. Thus let t ≡ f(t1, . . . , tn).
For ‘⊇’, assume q ∈ Q([t]β). Then there exists q → f(q1, . . . , qn) ∈ Δ such that for
i = 1, . . . , n we have qi ∈ Q([ti]β). Applying this argument (coinductively) to the
subterms ti we obtain a q-run ρ := q(ρ1, . . . , ρn) of T on t (with respect to α) where
ρi is a qi-run of T on ti for i = 1, . . . , n. For ‘⊆’, we show that [t]β(q) ≥ 1 − 0.5d

for all t ∈ Ter∞(Σ), d ∈ N and q ∈ Q with q ∈ Qα(t). Assume contrary this claim
would not hold. Consider a counterexample with minimal d ∈ N. Since q ∈ Qα(t)
there exists q → f(q1, . . . , qn) ∈ Δ such that qi ∈ Qα(ti) for i = 1, . . . , n. This
implies d ≥ 1 and from minimality of d we obtain ∀i. [ti]β(qi) ≥ 1 − 0.5d−1. But
then [t]β(q) ≥ 0.5 + 0.5 ·min([ti]β(qi)) ≥ 1− 0.5d, contradicting the assumption.
Hence [t]β(q) = 1, and q ∈ Q([t]β). ��

Using AT we now give the proof of Theorem 5.2.

Proof (Theorem 5.2). Let T = 〈Q, Σ, I, Δ〉 be a certificate for SN∞
R (S). Let

AT = 〈A, [·], d,�, 〉 and Ω as defined in Definition 5.4. According to Lemma
5.5 AT is a continuous weakly monotone Σ-algebra with undefined elements Ω.
We prove that AT fulfills the requirements of Theorem 3.10.

As a consequence of Lemma 5.6 we obtain that [s] �∈ Ω for all s ∈ S, since by
assumption S ⊆ L(T ); and [�]α �∈ Ω implies [�]α � [r]α, for all rules �→ r ∈ R
and every α : X → A. Finally, we check compatibility of  with limits. Let
{γi}i∈N be a converging sequence with γ0  γ1  . . ., and define γ := limi→∞ γi.
Note that Q(γi) ⊆ Q(γi+1) for all i ∈ N. For every q ∈ Q with γ0(q) = 1 we
have γi(q) = 1 for all i ∈ N and therefore γ(q) = 1. Hence γ0  γ.

The algebra AT fulfills all requirements of Theorem 3.10, hence SN∞
R (S)

holds. ��
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Example 5.7. Let Σ := {a, b, c} and R := {a(c) → a(b(c)), b(b(c)) → c} where
a and b are unary symbols, and c is a constant. We are interested in SN∞

R , that
is, in infinitary normalization of R on the set of all (possibly infinite) terms.
Consider the tree automaton T = 〈Q,Σ, I, Δ〉 depicted below:

0 1 2
c c

a

b,a

b,a

b

a

where Q := {0, 1, 2}, I := Q and Δ consists of the following rules:

0 → a(1) | c 1→ a(0) | a(1) | a(2) | b(0) | b(2) 2 → b(1) | c

We show that T is a certificate for SN∞
R , by checking the conditions of Defini-

tion 5.1. Completeness of T follows from Lemma 4.6 (iii), take Qc = Q. Second,
as both rules of R have no variables, we do not have to consider assignments α.
We verify that Q(�) � Q(r) for both rules. For the rule a(c) → a(b(c)) we com-
pute Q(a(c)) = {1}, for only from state 1 we can generate a(c): 1→ a(2)→ a(c)
(or 1→ a(0)→ a(c)). From state 2 there is no ‘a-transition’, and from state 0 we
get stuck at a(1), for there is no rule 1→ c. Similarly we find Q(a(b(c))) = {0, 1},
hence Q(a(c)) � Q(a(b(c))). For the second rule of R we find Q(b(b(c))) = {2} �
{0, 2} = Q(c). Thus we have shown T to be a certificate, and by Theorem 5.2
we may conclude SN∞

R .

6 Improving Efficiency: Strict Certificates

The second requirement for an automaton to be a certificate for SN∞ (item (ii) of
Definition 5.1) is computationally expensive to check, since there are 2|Q|·|Var(
)|

different maps α : Var(�) → 2Q, leading to an exponential explosion in the
number of states when searching for such an automaton.

Remark 6.1. For Theorem 5.2 it is not sufficient to check that the second condi-
tion holds for maps from variables to single states, that is, maps α : Var(�)→ 2Q

with |α(x)| = 1 for all x ∈ X .
To see this, consider the TRS R := {f(x) → f(a(x))} with the tree automaton

T = 〈Q, Σ, I, Δ〉 where Q := I := {0, 1} and Δ consists of 0 → f(0), 1 → f(1),
0 → a(0), 0 → a(1), 1 → a(0), and 1 → a(1). Then L(T ) = Ter∞(Σ) and for
every map α := x �→ {q} with q ∈ Q we get Qα(�) = {q} � Q = Qα(r). Both
conditions seem to be fulfilled, however SN∞

R does not hold, since R admits an
infinite root rewrite sequence f(aω) →R,ε f(aω)→R,ε . . ..

For the purpose of efficient implementations and the envisaged SAT encoding,
we define the notion of ‘strict certificates’, and show that they have the same
theoretical strength while being easier to check.

Definition 6.2. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). A strict certificate
for SN∞

R (S) is a tree automaton T = 〈Q, Σ, I, Δ〉 with a strict total order
< ⊆ Q×Q such that:
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(i) S ⊆ L(T ), and
(ii) for every � → r ∈ R and α : Var(�) → 2Q with 1 ≤ |α(x)| ≤ #x(�), for all

x ∈ Var(�), where #x(�) ∈ N the number of occurrences of x in �, it holds:

Qα(�) �= ∅ =⇒ Qα(�) ⊆ Qα(r) and
∀q ∈ Qα(�). ∃q′ ∈ Qα(r). q′ < q .

That strict certificates are certificates, the next theorem, will be proved below.

Theorem 6.3. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). Then every strict
certificate for SN∞

R (S) is a certificate for SN∞
R (S).

In the search for certificates, the computational complexity is improved when
restricting the search to strict certicates, because the number of maps α which
have to be considered is reduced to:∏

x∈Var(
)(
∑#x(
)

i=1

(|Q|
i

)
)

which is polynomial in the number of states |Q|. In particular if � is linear then
we need to consider |Q||Var(
)| maps α.

Remark 6.4. Note that, in the definition of strict certificates, we cannot replace
the condition 1 ≤ |α(x)| ≤ #x(�) by |α(x)| = 1. To see this, we consider the non-
left-linear TRS R := {f(x, x) → f(a(x), a(x))} together with the tree automaton
T = 〈Q, Σ, I, Δ〉 where Q := I := {0, 1} and Δ consists of 1→ f(q, q), 0 → f(q, q)
and q → a(q′) for all q, q′ ∈ Q where q = 1− q. Then L(T ) = Ter∞(Σ) and for
every map α := x �→ {q} with q ∈ Q we get Qα(�) = {1} and Qα(r) = {0, 1};
thus Qα(�) ⊆ Qα(r) and 0 < 1 with 0 ∈ Qα(r). However R admits an infinite
root rewrite sequence f(aω, aω)→R,ε f(aω, aω) →R,ε . . ..

Note that the theorem holds even if one allows a partial order < in the defi-
nition of strict certificates. However, that would not make the notion of strict
certificates more general, because such a partial order can always be extended
to a total order. The advantage of the definition as it stands is that we get the
order for free. For every strict certificate with n states there exists an isomor-
phic automaton with states Q := {1, . . . , n} and < being the natural order on
integers. Thus, we can narrow the search for certificates to such automata.

Lemma 6.5. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton, s ∈ Ter∞(Σ) and
α : Var(s) → 2Q. Let B consist of all maps β : Var(s) → 2Q with β(x) ⊆ α(x)
and 1 ≤ |β(x)| ≤ #x(s) for all x ∈ Var(s). Then Qα(s) =

⋃
β∈B Qβ(s).

Proof. The part ‘⊇’ is trivial, all maps β ∈ B are a restriction of α. For ‘⊆’ let ρ
be a q-run with respect to α on s. Let β := λx.{ρ(p) | p ∈ Pos(s) with s(p) = x},
then ρ is also a q-run with respect to β and ∀x ∈ Var(s).1 ≤ |β(x)| ≤ #x(s). ��

Now we prove Theorem 6.3.
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Proof (Theorem 6.3). Let R be a TRS over Σ, S ⊆ Ter∞(Σ) a set of terms, and
T = 〈Q, Σ, I, Δ〉 a strict certificate for SN∞

R (S) with a strict total order < on the
states. We show that T satisfies the conditions of Definition 5.1. Let � → r ∈ R
and α : Var(�)→ 2Q with Qα(�) �= ∅. Let B consist of all maps β : Var(�)→ 2Q

with β(x) ⊆ α(x) and 1 ≤ |β(x)| ≤ #x(�) for all x ∈ Var(�). Then Qα(�) =⋃
β∈B Qβ(�) and Qα(r) =

⋃
β∈B Qβ(r) by Lemma 6.5. Note that we have Qβ(�) ⊆

Qβ(r) for all β ∈ B by assumption, hence Qα(�) ⊆ Qα(r). Take the least q ∈ Qα(�)
with respect to <. Then there exists β ∈ B with q ∈ Qβ(�) and by assumption
∃q′ ∈ Qβ(r). q′ < q. Hence q′ ∈ Qα(r) and Qα(�) � Qα(r). ��

The additional requirement of an ordering < on the states is not a weakening.
Indeed, we can show that any certificate can be transformed into a strict one.

Lemma 6.6. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). If there is a certificate
for SN∞

R (S) then there is a strict certificate for SN∞
R (S).

Proof. Let R be a TRS over Σ, S ⊆ Ter∞(Σ), and T = 〈Q,Σ, I, Δ〉 a certificate
for SN∞

R (S). We construct a tree automaton T ′ = 〈Q′, Σ, I ′, Δ′〉 and show that
it meets the requirements of Definition 6.2. Let Q′ := 2Q, and I ′ := {QI ⊆
Q | QI ∩ I �= ∅}. We define Δ′ to consist of all transitions of the form Q0 →
f(Q1, . . . , Qn) with f ∈ Σ, Q0, . . . , Qn ⊆ Q such that ∅ �= Q0 ⊆ Q′

0 where

Q′
0 := {q ∈ Q | exists q → f(q1, . . . , qn) ∈ Δ such that ∀i. qi ∈ Qi} .

Note that the construction is similar to the construction for making tree au-
tomata deterministic [2]. The main difference concerns the set Q0, which is
not uniquely defined as Q0 := Q′

0 in our setting (we allow subsets Q0 ⊆ Q′
0).

Therefore the automaton T ′ will in general not be deterministic. For all terms
s ∈ Ter(Σ) and maps α′ : Var(s) → 2Q

′
we have:

Q′
α′(s) = {Q′

0 ⊆ Qα(s) | α : Var(s) → 2Q with ∀x. α(x) ∈ α′(x)} (∗)

This follows from the above-mentioned analogy; we refer to [2] for a proof.
From (∗) it immediately follows that L(T ) = L(T ′).

We define the strict order > on Q′ as �, arbitrarily extended to a total order.
Let � → r ∈ R and α′ : Var(�) → 2Q

′
such that Q′

α′(�) �= ∅. We know that for
every α : Var(s) → 2Q it holds Qα(�) � Qα(r) by assumption. Then together
with (∗) it follows that Q′

α′(�) ⊆ Q′
α′(r). Finally let Q′

0 be the least element with
respect to > from Q′

α′(�). Then there exists a map α : Var(s) → 2Q such that
∀x.α(x) ∈ α′(x) and Q′

0 ⊆ Qα(�), even Q′
0 = Qα(�), since otherwise Q′

0 > Qα(�)
would contradict minimality of Q′

0. Then we have Qα(�) � Qα(r) and therefore
Qα(r) ∈ Q′

α′(r) with ∀q′ ∈ Q′
α′(�). Qα(r) < q′. ��

7 Examples and Tool

Here we consider a few illustrating examples. We have implemented our method
into a tool that aims at proving SN∞

R (S) automatically. Actually, all certificates
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in this section have been found fully automatically by our tool. The program
is available via http://infinity.few.vu.nl/sni/, it may be used to try ex-
amples online. The tool shows the interpretation of all symbols and rules (with
respect to all variable assignments) in the form of transition tables such that
decreasingness can be recognized easily. The start language S can be specified
by providing a tree automaton T that generates S; the program then searches
an extension of T which fulfills the requirements of Theorem 6.3.

Example 7.1. Consider the following TRS R defining the sequence morse:

morse → cons(0, zip(inv(morse), tail(morse)))
zip(cons(x, y), z) → cons(x, zip(z, y))

inv(cons(0, x)) → cons(1, inv(x))
inv(cons(1, x)) → cons(0, inv(x))
tail(cons(x, y)) → y

Our tool proves SN∞
R ({morse}) fully automatically. First it instantiates y in the

rule tail(cons(x, y)) → y with non-variable terms covering all ground instances,
and then it finds the tree automaton T = 〈Q,Σ, I, Δ〉 with I = Q = {0, 1, 2}
where the set Δ consists of: 2 → morse, 1 | 2 → 0, 1 | 2 → 1, 2 → tail(0 | 2),
1 | 2→ inv(1 | 2), 0 | 1 | 2 → cons(1, 1), 1 | 2→ zip(1 | 2, 1), and 1 | 2→ zip(1, 2).
Note that with the productivity tool of [3] we could already prove productivity
of this specification fully automatically.

Example 7.2. Consider the term rewriting system R consisting of the rules:

c → f(a(b(c))) f(a(x)) → f(x) f(b(x)) → b(f(x))

and the tree automaton T = 〈Q,Σ, I, Δ〉 with (initial) states I = Q = {0, 1, 2, 3}
over the signature Σ = {c, a, b, f} where the set Δ of transition rules is given by:

0 1 2 3 C

f

f
f

f
f

f

f

b

b

b
b

b

a

We show that T is a strict certificate for SN∞
R ({c}). Clearly, we have {c} ⊆ L(T ).

To verify condition (ii) of Definition 6.2 for the first rule of R, observe that
Q(c) = {3} � {2, 3} = Q(f(a(b(c)))), and 2 < 3. For the second rule, we only
have to consider the map α given by α(x) = {2}, for only then Qα(f(a(x))) �= ∅.
We observe Qα(f(a(x))) = {2, 3} � {1, 2, 3} = Qα(f(x)). For the third rule of R
we have to consider two assignments: α1 that maps x to {1}, and α3 that maps x
to {3}. We get that Qα1(f(b(x))) = {1, 2, 3} � Q = Qα1(b(f(x))) (and 0 < q for
all q ∈ {1, 2, 3}), and Qα3(f(b(x))) = {1, 2} � Q = Qα3(b(f(x))) (and 0 < 1, 2).
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First-Class Object Sets
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Abstract. Typically, an object is a monolithic entity with a fixed in-
terface. To increase flexibility in this area, this paper presents first-class
object sets as a language construct. An object set offers an interface
which is a disjoint union of the interfaces of its member objects. It may
also be used for a special kind of method invocation involving multiple
objects in a dynamic lookup process. With support for feature access and
late-bound method calls, object sets are similar to ordinary objects, only
more flexible. Object sets are particularly convenient as a lightweight
primitive which may be added to a mainstream virtual machine in order
to improve on the support for family polymorphism. The approach is
made precise by means of a small calculus, and the soundness of its type
system has been shown by a mechanically checked proof in Coq.

Keywords: Object sets, composition, multi-object method calls, types.

1 Introduction

In an object-oriented setting, the main concept is the object. It is typically a
monolithic entity with a fixed interface, such as a fixed set of messages that the
object accepts. This paper presents a language design where sets of objects are
first-class entities, equipped with operations that enable such object sets to work
in a way similar to monolithic objects. An object set offers an interface to the
environment which is a disjoint union of the interfaces of its members, and it
supports cross-member operations, known as object set method calls, which are
similar in nature to late-bound method calls on monolithic objects. The object
set thus behaves in a way which resembles the behavior of a monolithic instance
of a ‘large’ class that combines all the classes of the members of the object set,
e.g., by mixin composition or multiple inheritance.

Object sets are useful because they are more flexible than such a monolithic
instance of a large class: There are no restrictions on which classes may be put
together in the creation of an object set, and there is no need to declare a large,
composite class and refer to that class by name everywhere. In fact, object set
types are structural with member class granularity—the type of an object set is
a set of classes, and every subset is a supertype. Moreover, object sets could be
modified during their lifetime, which would correspond to a dynamic change of
class in the monolithic case.

On the other hand, access to a feature of an object set requires explicit selec-
tion of the member class which provides this feature, and the object set method

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 83–99, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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call mechanism is quite simple rather than convenient. This is because the em-
phasis in this language design has been put on expressing the required primitives
in order to support typed sets of objects with cross-object features, rather than
giving a proposal for convenient and pragmatic surface programming language
design.

In fact, ongoing work on the implementation of the language gbeta [1,2,3] on
.NET served as our starting point for the design of object sets. At the core of
the semantics and typing of this language is the feature known as family poly-
morphism [4], which involves dependent types in the sense that run-time object
identities are significant parts of the types of classes and objects. Mainstream
platforms like .NET and the Java Virtual Machine do not support dependent
types, which causes the insertion of many dynamic casts in bytecode in order to
support family polymorphism. Object sets maintain information which makes it
possible to avoid an entire category of such dynamic casts.

Objects in gbeta have a semantics which may be represented by collections
of instances of mixins, i.e., as multi-entity phenomena rather than monolithic
entities. Like object sets, they provide an interface which is a disjoint union of
the interfaces of the included mixins, but unlike object sets there is no need to
specify explicitly which mixin to use when accessing a feature. Like object sets,
gbeta objects can have cross-entity features (such as methods or inner classes,
which are then known as virtual), but, unlike object sets, these features are
accessed in exactly the same way as single-mixin features. Similarly, since all
gbeta objects are conceptually object sets there is no distinction (syntactically
or otherwise) between the usage of object sets and “ordinary objects.”

The language gbeta also supports dynamic change of class for existing objects
(to a subclass), and this corresponds to the replacement of the contents of the
gbeta object by a (larger) object set. In the context of the features included
in this paper, this operation is simple and safe, though of course it would re-
quire addition of mutable references to object sets to make it work as a dynamic
change of class. In the context of gbeta it is considerably more complex, because
dynamic specialization of an object may have effects that correspond to a dy-
namic replacement of actual type arguments of the class of the gbeta object by
some subtypes, which may cause a run-time error, e.g., because the value of an
instance variable may thus become type incorrect. Because of this, dynamic ob-
ject specialization in gbeta has been extended with restricted versions that are
safe, but it is beyond the scope of this paper to model these refinements of the
concept. Nevertheless, it is worth noting that it is possible to embody the object
set primitive presented in this paper in a full-fledged programming language in
such a way that it is convenient to use.

The contributions of this paper are the concept of object sets, and the precise
definition of their semantics and typing in a formal calculus, FJset. Moreover, a
mechanically checked proof of soundness [5] for this calculus has been constructed
using the Coq [6] proof assistant, and the experience of doing this is reflected by
a number of remarks throughout the paper.
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The rest of the paper is organized as follows: Section 2 presents the calculus
informally and discusses the design. Next, Sect. 3 gives the formal definitions,
and Sect. 4 describes the soundness result. Finally, Sect. 5 describes related work,
and Sect. 6 concludes.

2 An Informal Look at the FJset Calculus

The FJset calculus is derived from the Featherweight Java calculus [7] by adding
the object set related operations, allowing covariant method return types, and
removing casts. Covariant method return types are included because they are
useful and standard today, and casts are left out because they do not provide
extra benefits in this context.

The crux of this calculus is of course the ability to express and use object
sets. An object set is a set of objects collected into a single, typed entity. An
object set may be decomposed in order to use individual members of the set,
and used as a whole in a special kind of method call, the object set method call.
Each object set is associated with a set of classes, and each object in the set
is uniquely associated with one particular class in the set of classes. Another
way to describe this would be to say that each object in the set is labeled by a
class. The object is an instance of that class or a subclass thereof. This makes it
possible to access the object set members and to use each one of them according
to an interface that it is known to support.

The correspondence between objects and classes in an object set is maintained
by considering the set of objects and the set of classes as lists and pairing up the
lists element by element. This is possible for an object set creation expression
(a variant of the well-known new expression for monolithic objects) because
such an expression contains the two lists syntactically, and this ensures that
every object set from its creation has a built-in definition of the mapping from
classes to member objects. It also equips the members of the object set with an
ordering. This ordering is insignificant with respect to typing, but it is significant
with respect to the dynamic semantics, because it determines which method
implementation is most specific during an object set method call. In other words,
the ordering of the members of an object set is a server side issue rather than a
client side issue—crucial in the definition of its internal structure and behavior,
but encapsulated and invisible at the level of types.

An expression denoting an object set may by subsumption be typed with an
arbitrary subset of the associated classes, and they may be listed in an arbitrary
order in the type. It is therefore possible to forget some of the objects and
also to ignore the ordering of the objects. However, the dynamic semantics only
operates on an object set when it has been evaluated to such an extent that it
is an object set creation at top level. This ensures that the object set operations
are consistent because they are based on the built-in mapping.

Two operations are provided to decompose an object set. They both rely on
addressing a specific member of the set via its associated class. One operation
provides access to the object associated with the given class, and the other
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operation deletes that object and class from the object set, thus producing a
smaller object set.

The object set method call operation is provided in order to gather contri-
butions from all suitable objects in an object set, in a process that resembles a
fold operation on a list. The call is based on an ordinary method whose signa-
ture must follow a particular pattern, namely that it takes a positive number
of arguments and that the type of the first argument is identical to the return
type of the method. This makes it possible for the method to accept an arbitrary
list of “ordinary” arguments—the arguments number two and up—and also to
accept and return a value which plays the role as an accumulator of the final re-
sult. In this sense the object set method call supports iteration over the selected
members of the object set and collection of contributions to the final result, not
unlike a folding operator applied to a list. Note that an object set method call
does not require static knowledge about the type of any of the objects in the set.

The design of the object set method call mechanism was chosen to enable
iteration over a subset of the members of the object set supporting a specific
interface, without adding extra language mechanisms. Pragmatically, it might
be more natural to use actual iteration in an imperative setting, or to return a
data structure like an array containing the eligible object set members. But in
this context we prefer a minimal design, and hence we ended up choosing the
programmer convention driven approach based on ordinary nested method calls.

Figure 1 shows a small example program in FJset. This program shows how
to create objects and object sets, how to perform an object set method call, and
how to decompose an object set in order to use a feature of one of its members;
finally it indicates the result of the computation. In order to make the example
compact and readable, we use an extension of the calculus that includes a String
type, string literals, and concatenation of strings with the ‘+’ operator.

Lines 1–13 define three classes to support modeling a human being from two
different points of view in an object set; the only difference from standard Java
code is that there are no constructors, but the constructors in FJ style calculi
are trivial and somewhat of an anomaly, so we left them out. Note that the
signature of the print method is such that it can be used for object set method
calls: Its return type is also the type of the first (and only) argument.

The class Main has an instance variable (line 15) whose type is an object
set, { Printable }, which means that it is guaranteed that there is an object
labeled Printable in this object set, but there may be other objects as well.
The doPrint method (line 16–20) makes two object set method calls (line 17
and 19) and one ordinary method call (line 18), and returns the concatenation
of the results. The object set method call on line 17 involves only one member
of p, because only the first one is labeled by Agent or a subclass thereof. The
call on line 19 involves both objects in p. The expression p@Printable on line
18 extracts the object labeled as Printable in p, which is the Person object,
and calls its separator method, which by ordinary late binding returns " -- ".

Finally, note that subsumption makes it possible for the instance variable p
to refer to an object set of type { Agent, Printable}, and also that the usage of
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1 class Printable extends Object {
2 String print(String s) { return "Plain Printable"; }
3 String separator() { return ", "; }
4 }
5 class Agent extends Printable {
6 String id;

7 String print(String s) { return s+" "+id; }
8 }
9 class Person extends Printable {
10 String name;

11 String print(String s) { return name+" "+s; }
12 String separator() { return " -- "; }
13 }
14 class Main extends Object {
15 { Printable } p;

16 String doPrint() {
17 return p.print@Agent("The name is") +

18 p@Printable.separator() +

19 p.print@Printable("");

20 }
21 }
22

23 // the following yields "The name is Bond -- James Bond"

24 new Main(new {Agent, Printable}
25 (new Agent("Bond"), new Person("James"))).doPrint()

Fig. 1. A small example program in FJset

different classes in the object set method call can be used to filter the contributors
to such a call in various ways.

3 The FJset Calculus

We now proceed to present the syntax, the dynamic semantics, and the type
system of the FJset calculus, interspersed with short discussions about why the
calculus is designed the way it is. We also give some remarks on how the pre-
sentation in this paper and the accompanying Coq proof fit together, reflecting
the process of learning to use Coq, and based on the assumption that this kind
of knowledge is useful for the development of a strong culture of using proof
assistant software.

3.1 Syntax and Notation

A program is a class table and a main expression, and the semantics of a program
is to execute the main expression in the context of the given classes. As is
common, we assume the existence of a fixed, globally accessible class table, CT,
which lists all the class definitions in the program.
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Q ::= class C extends D { T f; M } class declarations
M ::= T m(T x) { return e; } method declarations

e ::= x | e.f | e.m(e) | e@C | e\C |
new C(e) | new {C} (e) | e.m@C(e) expressions

v ::= new C(v) | new {C} (v) values

T,U ::= C | {C} types

Object,this predefined names
C,D class names
f,g field names
x variable names
m method names
N any kind of name

Fig. 2. Syntax of FJset

fields(Object) = •
class C extends D {T f; M}

fields(D) = U g

fields(C) = U g, T f

class C extends D {U f; M}
T m(T x) {return e;} ∈ M

mBody(m, C) = x.e

class C extends D {U f; M}
m �∈ M mBody(m, D) = x.e

mBody(m, C) = x.e

class C extends D {U f; M}
T m(T x) {return e;} ∈ M

mType(m, C) = (T→ T)

class C extends D {U f; M}
m �∈ M mType(m, D) = (T→ T)

mType(m, C) = (T→ T)

distinct(•) N �∈ N distinct(N)
distinct(N N)

Fig. 3. Auxiliary functions for FJset

The syntax of the calculus from the level of classes and down is shown in
Fig. 2. Notationally, we use overbars to denote lists of terms, so C stands for the
list C1 C2...Cn for some natural number n; n=0 is allowed and yields the empty
list, ‘•’. There may be separators such as commas or semicolons between the
elements of such a list, but they are implicit and implied by the context.

Several constructs in the syntax are identical to the ones known from Feath-
erweight Java. Class and method definitions are standard, using the variant of
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class C extends D { T f; M }
� C �: D

� C �: C′′ � C′′ �: C′

� C �: C′

� C �: C
D ⊆ C distinct(D)

� {C} ⊂: {D}

� T �: U
� T <: U

� T ⊂: U
� T <: U

� Ci �: C
C ∈: {C}

Fig. 4. Subclassing and subtyping for FJset

� Object ok C ∈ CT

� C ok

distinct(C)
� {C} ok

Fig. 5. Wellformedness rules for FJset

Featherweight Java that omits explicit constructors. The standard expressions
are variables, field lookups, method calls, and new expressions.

The remaining expressions are concerned with object sets. A class selection
expression, e@C, provides the object labeled with the class C from the object set
e. A class exclusion expression, e\C, provides an object set from which the object
labeled with C as well as C itself has been deleted. The expression new {C} (e)
denotes creation of an object set which contains each of the objects denoted by
the expression list e, labeled by the list of classes C.

Finally, the expression e.m@C(e) denotes an object set method call, which
selects all objects from the object set e which are labeled with the class C or a
subclass thereof and calls a method m on each of them in the order they appear
in the class list of the built-in mapping of the object set e. The method m must
be defined in or inherited by the class C, and it must take a non-zero number
of arguments where the first argument has the same type as the method return
type, in order to enable the nested method call process mentioned in Sect. 1.

3.2 Auxiliary Methods, Subtyping, and Wellformedness

Figure 3 defines the auxiliary functions used for field lookup and similar tasks.
They are standard except for the function distinct , which simply expresses that
a given list of names (of any kind such as class names, method names, etc.) are
distinct. As is common, quoting a class definition as a premise of a rule indicates
the requirement that CT must contain that class definition.

The rules in Fig. 4 show subclassing (� C �: D), which is standard; subtyping
for object sets (� T ⊂: U), which corresponds to the superset relation among
the sets; and subtyping, which combines the two. Furthermore the judgement
C ∈: {C} holds whenever C is a superclass of one of the classes C; this is used in
the dynamic semantics of object set method calls.
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In the Coq formalization of the calculus, transitivity for subclassing includes
the requirement that the two pairs of classes are distinct, i.e., that C �= C′′ and
C′′ �= C′. An easy induction shows that each of the two definitions of subclassing
is able to derive all the subclass judgements of the other. However, in order to
show in Coq that subclassing is decidable, the addition of these requirements
solves a problem because they make it easy to see that a subtype judgment
derivation tree must have a limited size if it exists.

The requirement in the rule for object set subtyping that the classes D are
distinct is necessary in order to prevent duplicates in the class list of object set
types, which would be unsound. This is only required for the supertype, {D},
because distinctness for the subtype is ensured by other rules, in particular in
the typing of object set creation expressions shown below in Fig. 7.

The type wellformedness requirements are shown in Fig. 5. They state that a
class name is well-formed if there is a class of that name in the class table, and
that an object set type, {C}, is well-formed if it consists of distinct class names.
Finally, CT must satisfy Object �∈ CT. Note that the class names in an object set
type are not explicitly required to be defined in CT, because this requirement is
a consequence of other rules. In general, the wellformedness requirements in this
calculus are sufficient to enable the proof of soundness, but they are also minimal
in the sense that removing any of them invalidates the proof. We believe that the
use of proof assistant software may tighten the specification of well-formedness
requirements in calculi, which is an area that otherwise easily gets a slightly
imprecise treatment.

3.3 Expression Evaluation

The dynamic semantics of FJset is presented in Fig. 6. Selection of a redex
in a larger expression is defined in terms of evaluation contexts rather than
congruence rules; they are listed at the bottom of the figure, where E denotes an
expression with exactly one hole and E+ denotes a (non-empty) list of expressions
with exactly one hole. With respect to the evaluation order, this calculus follows
the tradition from FJ, whereby the evaluation order is restricted as little as
possible, and particular strategies like call-by-value are available as one of the
possible choices.

The rules for field lookup and method invocation are standard. The rule for
class selection, (R-Select), selects the member of the given object set labeled
with the specified class. This rule serves as an example of the evaluation order
issue mentioned above: evaluation has to proceed until the top level expression
is an object set creation expression (new {C} (...)) in order to reveal {C} and
thus the built-in mapping of the object set, but the arguments need not be fully
evaluated.

We stated earlier that an object set offers an interface which is a disjoint
union of the interfaces of its members. The class selection operation fulfills this
promise as follows: For a given object set, the classes used to label some members
of the object set are made explicit in its type (others may have been lost by
subsumption). The interface of the object set is the union of the interfaces of



First-Class Object Sets 91

fields(C) = T f

new C(e).fi � ei

(R-Field)

(new {C} (e))\Ci � new {C\#i} (e\#i)
(R-Drop)

mBody(m, C) = x.e0

(new C(e)).m(e′) �

[this/new C(e),x/e′]e0

(R-Invk)

� Ci �: C i = min{ j | � Cj �: C }
vi = new D(v′) mBody(m, D) = x.e0

e′0 = [this/new D(v′),x/ee]e0

(new {C} (v)).m@C(ee) �

(new {C\#i} (v\#i)).m@C(e′0e)
(R-SInvk)

(new {C} (e))@Ci � ei

(R-Select)

C �∈: {C}
(new {C} (v)).m@C(ee) � e

(R-SInvk-Done)

E ::= [ ] | E.f | E.m(e) | e.m(E+) | new C(E+) | new {C} (E+) | E@C |
E\C | E.m@C(e) | e.m@C(E+)

E+ ::= e E e′

Fig. 6. Evaluation rules and evaluation contexts for FJset

these classes, and thus the object set supports access to all these features of
all those members. There are no naming conflicts because the choice of class is
made explicit, i.e., it is a disjoint union. In a full-fledged language it is much
more convenient for the programmer if the explicit class selection is avoided,
but this is trivial in the cases where there is no naming conflict, and it should
be handled explicitly when a conflict exists; the language gbeta uses such an
implicit approach.

The rule for class exclusion, (R-Drop), deletes the requested class and the
corresponding member from the object set. This rule introduces notation for a
simple function that deletes the i’th element from a list, namely t\#i, where t
are terms of any kind, e.g., class names or expressions. Usage of this notation
implies that the list is long enough to contain the position to delete.

In the Coq formalization of this calculus the (R-Drop) rule zips the list of
classes and the list of expressions together to a list of pairs, then deletes the pair
which contains the specified class, and then unzips the shortened list of pairs to
get the resulting list of classes and list of expressions. The reason for this choice
is that it provides a direct correspondence between the classes and expressions,
whereas an alternative approach based on looking up the i’th element in both
lists causes a large number of extra conditions regarding the upper bound of
the index i. This is a typical situation where the convenient formalization in
Coq does not correspond exactly to a well-known or convenient notation for
presentation in a paper, but the deletion-by-position notation t\#i is a simple
and relatively readable way to bridge the gap.
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The object set method call semantics is specified by two rules, (R-SInvk)

and (R-SInvk-Done). As mentioned, an object set method call amounts to a
composite operation which includes a method call on each of the members of
the set labeled by a class supporting that method. The rule (R-SInvk) specifies
what to do when the object set contains a member supporting the requested
method m, and the rule (R-SInvk-Done) specifies what to do in the end when
all such objects have been processed.

Whether an object set member supports m is determined by requiring that the
member is associated with a subclass of the class C specified in the object set call.
This means that each selected objectwill be an instance of C or one of its subclasses,
and the method mwill be defined for that object, with a signature which is identical
to the signature of m in C, except for possible covariance in the return type. Objects
supporting unrelated methods with the same name m are ignored.

The rule (R-SInvk) specifies how to call one method m and provide the results
produced by this method call to the next method call. It requires that the list
of classes C associated with the object set contains a subclass Ci of the class
requested in the call, C, and selects the ‘first’ one (the one with the smallest
index i). It then removes the selected object from the receiver object set and
repeats the object set method call with the result of the invocation of m on
the selected object as its first argument. Note that the minimality of i is not
needed for soundness, it is needed in order to ensure that object set method calls
have a predictable semantics: it should accumulate the results from its members
according to their built-in ordering.

However, the first argument does not look like a method call, it is actually
given as [this/new D(v′),x/ee]e0, but inspection of the rule for method call,
(R-Invk), reveals that this is the result of taking one evaluation step after the
method invocation new D(v′).m(ee). It is necessary to express the rule in this
form in order to maintain the property that all rules are compositional.

A similar investigation shows that the receiver of the object set method call
after the step in (R-SInvk) is the result of taking one step after excluding the
selected class Ci from the receiver object set before the step. Compositionality
again forces the rule to take that step rather than expressing the result in terms
of an explicit class exclusion operation.

The semantics of an object set method call may thus seem to be expressible
in terms of other operations, but this is not the case because there is no way
to select the class Ci appropriately without this operation. A primitive could
be provided in order to make such a selection, but we have not found any such
primitive which enables the same functionality without requiring strictly more
static knowledge about the contents of object sets.

Finally, the rule (R-SInvk-Done) yields the first argument of the object set
method call in the situation where no object in the object set can be selected.

3.4 Typing

The type rules forFJsetare shown inFig.7.The rules for the typing ofvariables,field
lookups, ordinary method invocations, and ordinary object creation are standard.
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Γ (x) = T

Γ � x : T

(T-Var)

Γ � e : {C} � Ci ok

Γ � e@Ci : Ci

(T-Select)

Γ � e : C fields(C) = T f

Γ � e.fi : Ti

(T-Field)

Γ � e : {C}
Γ � e\Ci : {C\#i}

(T-Drop)

Γ � e : C mType(m, C) = (T→ T)
Γ � e : U � U <: T

Γ � e.m(e) : T

(T-Invk)

Γ � e : {C} Γ � e : T T
mType(m, C) = (T T→ T)

Γ � e.m@C(e) : T

(T-SInvk)

fields(C) = T f

Γ � e : U � U <: T
Γ � new C(e) : C

(T-New)

distinct(C)
Γ � e : U � U <: C
Γ � new {C} (e) : {C}

(T-SNew)

Fig. 7. Type rules for FJset

The rule (T-Select) specifies that the target must be typable as an object
set containing the requested class, and the resulting type is then that class. It
would be easy to change this rule and (R-Select) to select a subclass, i.e., to
allow for the selection of a class C as long as C ∈: {C}, but this could prevent
the selection of a class C′ from an object set that is also associated with some
subclass C′′ of C′ or make the operation ambiguous, and since there is no depth
subtyping for object set types it would not enhance the expressive power or the
flexibility of the language.

The rule (T-Drop) specifies that the target must be typable as an object set
that includes the class to exclude, which is then removed from the type of the ob-
ject set to produce the result type. For the same reasons as above it would not be
useful to allow the requested class to be a superclass of the excluded class. The
rule (T-SInvk) specifies how to type object set method calls. It requires that the
receiver is typable as an object set, but does not require anything about the set
of classes associated with this object set. On the other hand, the method m must
be defined or inherited in the class C, it must take at least one argument, and the
type of the first argument must be identical to the return type, which is also the
type of the entire object set method call. Finally, the rule (T-SNew) specifies
the typing of object set creations. It simply requires that the classes used as la-
bels are distinct and that each member has a subtype of its associated class.

It would be very easy to change the (T-SInvk) rule to require C ∈: {C} and
adapt the soundness proof accordingly, which would guarantee that the object
set method call would include at least one actual method call, but this is not
required for soundness. Similarly, it would be easy to relax the rule such that
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override(m, D, T, T) Γ ; this :C � e : U � U <: T � T, T ok distinct(x)
� T m(T x){ return e; } ok in C,D

(T-Method)

� D ok � T ok � M ok in C,D � D �<: C � D <: Object
distinct(fields(D) f) distinct(names(M))

� class C extends D { T f; M } ok

(T-Class)

mType(m, D) is undefined

override(m, D, T, T)
mType(m, D) = (T→ T′) � T <: T′

override(m, D, T, T)

Fig. 8. Class and method typing for FJset

the return type only has to be a subtype of the type of the first argument rather
than being identical to it, but it would be hard to exploit this information unless
the rule were modified to enforce that there is at least one actual method call.
Even then, the accumulation of contributions from several members of the object
set would have to start “from scratch” at each member, because the type of the
first argument is fixed. Hence, these variations do not seem to be worthwhile.

Finally, Fig. 8 shows the rules for class and method typing, i.e., rules that ap-
ply type checking to the entire program. As opposed to the traditional treatment,
these rules include all the requirements needed for programs to be well-formed—
for instance in order to avoid cyclic inheritance graphs.

The rule (T-Method) specifies that a method m defined in a class C with su-
perclass D must correctly override any definitions of m available in the superclass,
it must have a body whose type is a subtype of the declared return type, it must
have distinct argument names, and the specified types must be well-formed. The
only non-standard element here is the requirement that argument names must
be distinct.

The rules for override are given at the bottom of the figure; they are used to
specify when a definition of a method m with argument types T and return type
T is correct in relation to definitions available in the superclass D. It is standard
except that it allows for covariance in the return type, just like the Java language
of today.

The rule (T-Class) specifies the standard requirements that the superclass
D, all field types, and all methods must be well-formed. Moreover, the super-
class cannot be a subclass of C itself, which prevents cycles in the inheritance
graph; and the superclass must be a subclass of Object, which ensures that all
inheritance chains are finite. This finiteness ensures that subclassing is decidable,
which is used in the progress proof. Finally, there are distinctness requirements
for field and method names.

All in all, this is not much more involved or verbose than the usual class and
method typing rules, but it is complete in the sense that there are no additional
(informal and maybe even implicit) well-formedness rules about programs to
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worry about. We think that it would be useful to make program well-formedness
fully explicit, as we have done it here. It is, of course, a consequence of using
proof assistant software, because the proofs cannot be completed unless such
things are made precise and included in the specification.

4 Soundness

The FJset calculus is sound, which is shown via the standard preservation and
progress results:

Theorem 1 (Preservation). If the expression e in the environment Γ is ty-
pable by Γ � e : T and it can take the step e � e′, then Γ � e′ : U for some type
U such that � U <: T.

Theorem 2 (Progress). If e is an expression typeable by ∅ � e : T then either
e is a value or there exists an expression e′ such that e � e′.

A complete proof of these properties which has been mechanically checked by the
proof assistant Coq is is available for download [5]. It consists of approximately
6500 lines of Gallina code, divided into approximately 3500 lines specifically
on the calculus and approximately 3000 lines of standard language metatheory
facilities from the Coq tutorial given at POPL 2008 [8].

5 Related Work

Mixins [9] and traits [10,11] are language mechanisms which improve on the
flexibility of ordinary object-oriented inheritance. Usually a subclass is created
by extending one or more existing classes with a new class body, and this class
body cannot be reused in the extension of other classes; but mixins and traits
promote class bodies to a first class status, such that they can be reused. Mixins
are typically as general as class bodies, whereas traits leave out state and access
control in return for a more robust and flexible symmetric composition mecha-
nism with renaming, exclusion and similar operators. Object sets were conceived
as a useful primitive mechanism that supports a version of mixins that includes
cross-mixin-instance features (virtuals, in the family polymorphism sense) di-
rectly, thus enabling these features to be computed at runtime while maintain-
ing more precise type information than standard object-oriented platforms are
capable of.

Multiple inheritance, e.g., as in C++ [12] or Eiffel [13], is so semantically
different and so much more tied to compile-time that such a mechanism as object
sets is unlikely to provide any benefits as an implementation device. Object sets
might still be supported as a surface language feature, but in this case they
should be redesigned to emphasize convenient usage for programmers.

Dynamic languages like Self [14,15] support a very general and flexible style
of composite objects by means of parent slots and genuine delegation. Object
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sets are less flexible, but in return they are statically typed. Moreover, objects
sets provide features based on either explicit disambiguation of which member
to use, or by object set method calls which are used to enable collaboration
among the members of the object set; both of these are more low-level than
delegation in a language like Self, but they fit more smoothly as new primitives
in a standard, typed object-oriented context, and they are specifically optimized
for maintaining a kind of type information which is needed in order to support
family polymorphism.

The concept of roles [16] is related to inheritance mechanisms like mixins,
but it adds a dynamic element in that roles can be added and removed for
existing objects; the role and the role player may or may not have distinct object
identities. Gottlob et al. [17] describe a delegation based approach to support
roles in Smalltalk, i.e., in a dynamically typed context. Handling delegation or
roles in a statically typed context is a much greater challenge, but Kniesel [18]
shows how both static and dynamic delegation can be handled in a type safe
manner and used to support a kind of roles, and the support for dynamic re-
classification in Fickle [19] may be used similarly, especially in order to change
object behavior. Object sets fit into this context in the same way as they do for
delegation in general.

Featherweight Wrap Java [20] is an extension of Featherweight Java with mu-
table state and the ability to add extra behavior before or after the main behavior
of an object by means of a wrapper object which uses delegation or consultation
to the wrappee. It is statically typed and proved sound. It avoids much of the
complexity of, e.g., Kniesel’s approach by letting the wrapper be a subtype of
the declared wrappee interface of the wrapper class rather than a subtype of the
actual wrappee type, which means that interfaces cannot be not accumulated
from multiple extensions. Object sets are quite different from this approach be-
cause they do not support traditional delegation, but on the other hand they
enable accumulation of arbitrary types, require explicit disambiguation, and add
in object set method calls to allow cross-object behavior that includes objects
without requiring them to know about each other’s types.

Object sets are similar to extensible records in some ways. For instance, Gaster
and Jones [21] define polymorphic, extensible records and unions based on row
variables, i.e., mappings from labels to types. With object sets, the associated
classes work as labels and types combined; this reduces the flexibility because
there cannot be two labels with the same type, but given that object sets are
intended to model composite objects it would correspond to repeated inheritance
to have more than one member associated with the same class, and this would
preclude a surface level syntax where class selection is implicit, due to name
clashes. Object sets as presented here do not support extension; this is because
we consider a ‘lacks C’ construct which promises that there is no class C in
this object set to be unmanageable in real-world software development, and this
would probably affect languages built on object sets even if they are confined to
the virtual machine layer. On the other hand, extensible records do not have a
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late-bound operation that corresponds to our object set method calls; they only
use statically known components.

A well-established approach to extensible records is the Haskell HList li-
brary [22], where Kiselyov, Lämmel and Schupke use type level natural numbers
and a number of layers on top of that to support type safe heterogeneous lists.
Such lists are actually nested tuples, and the approach relies heavily on being
able to use large type expressions which are inferred and never show up in the
source code. If explicit typing is considered a valuable source of documentation
then object sets are more manageable because they abstract away from the or-
dering of elements, and they may provide access to an arbitary set of members
without depending on the internal structure, i.e., the order of known members
and the presence of unknown members.

Finally, other languages that include support for family polymorphism such as
Scala [23], CaesarJ [24], and ObjectTeams [25] could benefit from having support
for object sets in an underlying virtual machine, especially because this might
allow them to deviate from the implementation strategy whereby one surface
language object corresponds to exactly one virtual machine object. This could
increase the runtime flexibility of classes and objects, at a cost in performance
but with a more direct and complete support for typing at the virtual machine
level.

6 Conclusion

We have presented the concept of object sets as a first class language construct
which is capable of emulating the main features of traditional, monolithic objects:
access to the disjoint union of the features of all object set members in the type,
and support for a kind of method calls whereby the choice of methods to call is
made dynamically, corresponding to feature access and method calls for ordinary
objects. However, object sets are more flexible than ordinary objects, because
they combine the features of several classes (like mixins or multiple inheritance,
but without the name clashes), and they provide the machinery needed in order
to support dynamic metamorphosis of object sets. The mechanism is useful in
its own right, but it is likely to benefit from a pragmatic layer on top of the
operations shown in this paper, because this makes the syntax more compact and
convenient. An example of a language which does this is gbeta. The mechanisms
of this paper might then provide good service as primitives on main-stream
platforms such as .Net or JVM, which would make these platforms capable
of handling languages supporting family polymorphism, such as gbeta, with a
significantly reduced need for compiler generated dynamic casts.

Acknowledgments. The design of the object set method call mechanism owes
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POPL 2008 Coq tutorial. Finally, the anonymous reviewers provided very good
feed-back.
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Abstract. This paper proposes and analyses a monadic translation of
an intuitionistic sequent calculus. The source of the translation is a typed
λ-calculus previously introduced by the authors, corresponding to the
intuitionistic fragment of the call-by-name variant of λμμ̃ of Curien and
Herbelin, and the target is a variant of Moggi’s monadic meta-language,
where the rewrite relation includes extra permutation rules that may be
seen as variations of the “associativity” of bind (the Kleisli extension
operation of the monad).

The main result is that the monadic translation simulates reduction
strictly, so that strong normalisation (which is enjoyed at the target, as
we show) can be lifted from the target to the source. A variant transla-
tion, obtained by adding an extra monad application in the translation
of types, still enjoys strict simulation, while requiring one fewer extra
permutation rule from the target.

Finally we instantiate, for the cases of the identity monad and the con-
tinuations monad, the meta-language into the simply-typed λ-calculus.
By this means, we give a generic account of translations of sequent calcu-
lus into natural deduction, which encompasses the traditional mapping
studied by Zucker and Pottinger, and CPS translations of intuitionistic
sequent calculus.

1 Introduction

This paper is about a monadic translation of intuitionistic sequent calculus. By
the latter we mean the intuitionistic, call-by-name fragment of Curien-Herbelin’s
system for classical logic [1]. In the spirit of the Curry-Howard correspondence,
such a system is handled as an extension of the simply-typed λ-calculus, identi-
fied by the authors in [5], and named λJmse.

The target of the monadic translation is a variant of Moggi’s monadic meta-
language [12], named λM here. To recall, this is an extension of the simply-typed
λ-calculus where the type system includes a monad M , and the term language
includes constructions for the unit and the Kleisli extension (a. k. a. bind) op-
eration of the monad. The main point is that the set of reduction rules of the
meta-language is extended by two new rules, which can be seen as variations

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 100–116, 2009.
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of the usual “associativity” rule for bind, and which together with this “asso-
ciativity” rule can be seen as forming a variation of one single principle in the
ordinary λ-calculus, that we name assoc.

The monadic translation we introduce generalizes the ordinary monadic trans-
lation of the (call-by-name) λ-calculus [7], and, in particular, is based on the
principle that functions from A to B are interpreted as functions from MA
(computations of type A) to MB (computations of type B). The main result we
obtain is a strict simulation theorem (one reduction step in the sequent calculus
is mapped to one or more reduction steps in the monadic target). A variant of
the monadic translation, based on the interpretation of functions from A to B
as functions from MA to MMB, also enjoys strict simulation, and requires one
less of the new reduction rules from the target system.

One of the uses of the above results is in obtaining strong normalisation
for sequent calculus, i. e., the absence of an infinite sequence of proof transfor-
mations starting with a well-formed proof. Indeed, strong normalisation follows
immediately from strict simulation, since the target system is itself strongly nor-
malising. This fact, in turn, rests on the strong normalisability of the extension
of λ-calculus with the assoc reduction rule [3]. This emphasis on strict simulation
and strong normalisation follows the line of [5,6], but is in contrast with the uses
of the monadic language in the study of programming languages semantics and
compilation, where other kinds of relationship between source and target calculi,
like equational correspondence, or reflection, are often obtained [7,16].

On the other hand, we may regard the monadic translations and their prop-
erties, not as a goal in itself, but as a parametric means to analyse a family of
situations, via instantiation of the monad of the meta-language. In fact, we study
two such instantiations, one for the identity monad, the other for the continu-
ations monad, where by “instantiation” we mean composition of the monadic
translation with an interpretation of the monadic language into the λ-calculus.

Through this method we obtain a generic account of translations of sequent
calculus into natural deduction. The identity monad gives an analysis of what
in our framework is the traditional mapping studied by Zucker and Pottinger
[17,14], together with some of its variants. The continuations monad obtains an
analysis of a CPS translation of λJmse similar to the one at the basis of [5].

The methodology of this generic account should be contrasted with that of [7].
There, it is the monadic translation that varies, in order to capture a family of
situations (in the case of [7], several CPS translations), while the monad remains
instantiated to the continuations monad. Here, the monadic translation remains
fixed, while, by varying the monad, we uncover a common root to seemingly
unrelated translations of sequent calculus into natural deduction.

The paper is organised as follows. Section 2 presents sequent calculus λJmse.
Section 3 presents our version λM of the monadic meta-language. Section 4 de-
fines and proves the properties of the monadic translation and its optimized vari-
ant, and strong normalisation for λJmse is obtained. Section 5 gives the generic
account of translation into natural deduction. Finally, Section 6 concludes with
some remarks.
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2 Intuitionistic Sequent Calculus

The calculus λJmse that is used here has been proposed in [5] (whose journal
version is [6]). It corresponds to the intuitionistic fragment of the call-by-name
variant of λμμ̃-calculus of Curien and Herbelin [1]. We quite closely follow the
presentation of the definition of λJmse in [6].

There are three classes of expressions in λJmse:

(Terms) t, u ::= x |λx.t | {c}
(Co-terms) l ::= [] |u :: l | (x)c
(Commands) c ::= tl

Terms can be variables (of which we assume a denumerable set ranged over by
letters x, y, z), lambda-abstractions λx.t or coercions {c} from commands to
terms.

Co-terms provide means of forming lists of arguments, generalised arguments,
or explicit substitutions. A co-term of the form (x)c, binds variable x in c and
provides the generalised application facility. Operationally it can be thought
of as “substitute for x in c”. A co-term of the form [] or u :: l is called an
evaluation context and is denoted by E. Evaluation contexts of the form u :: l
allow for multiary applications and, when passed to a term, indicate that, after
consumption of argument u, computation should carry on with arguments in l.
The co-term [] marks the end of an evaluation context, while the expression (x)x
is just ill-formed and, in particular, not a co-term.

A command tl has a double role: if l is of the form (x)c, tl is an explicit
substitution; otherwise, tl is a general form of application.

In writing expressions, sometimes we add parentheses to help their parsing.
Also, we assume that the scope of binders λx and (x) extends as far as possible.
We follow usual practise in that names of bound variables are considered as
immaterial and that the binding occurrences on display are meant to be well-
chosen so that no unwanted effects arise. It is then straightforward to define what
it means to replace every free occurrence of variable x in a capture-avoiding way
by a term t in a term u, co-term l or command c, yielding term [t/x]u, co-term
[t/x]l and command [t/x]c, respectively.

The calculus λJmse has a form of sequent for each class of expressions:

Γ � t : A Γ |l : A � B Γ
c−→ B

Letters A, B, C are used to range over the set of types (=formulas), built from
a base set of type variables (ranged over by X) using the function type (that we
write A ⊃ B). In sequents, contexts Γ are viewed as finite sets of declarations
x : A, where no variable x occurs twice. The context Γ, x : A is obtained from
Γ by adding the declaration x : A, and will only be written if this yields again
a valid context, i. e., if x is not declared in Γ . We can think of a term (resp. co-
term) as an annotation for a selected formula in the rhs (resp. lhs). Commands
annotate sequents generated as a result of logical cuts, where there is no selected
formula on the rhs or lhs ; as such we write them on top of the sequent arrow.
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Γ |[] : A � A
LAx

Γ, x : A � x : A
RAx

Γ � u : A Γ |l : B � C

Γ |u :: l : A ⊃ B � C
LIntro

Γ, x : A � t : B

Γ � λx.t : A ⊃ B
RIntro

Γ, x : A
c−→ B

Γ |(x)c : A � B
LSel

Γ
c−→ A

Γ � {c} : A
RSel

Γ � t : A Γ |l : A � B

Γ
tl−→ B

Cut

Fig. 1. Typing rules of λJmse

The typing rules of λJmse are presented in Figure 1, stressing the parallel
between left and right rules.

The standard typing rules for substitution for each syntactic class are admis-
sible: replacing a variable of declared type A by a term of type A does not change
the type. We also have the usual weakening rules: If a sequent with context Γ
is derivable and Γ is replaced by a context Γ ′ that is a superset of Γ , then also
this sequent is derivable.

We consider the following base reduction rules on expressions:1

(β) (λx.t)(u :: l)→ u((x)tl) (μ) (x)xl → l, if x /∈ l
(π) {tl}E → t (l@E) (ε) {t[]} → t
(σ) t(x)c → [t/x]c,

where, in general, l@l′ is a co-term that represents an “eager” concatenation of
l and l′, viewed as lists, and is defined as follows2:

[]@l′ = l′ (u :: l)@l′ = u :: (l@l′) ((x)tl)@l′ = (x)t (l@l′)

Concatenation obeys to the following further admissible form of cut rule:

Γ |l : A � B Γ |l′ : B � C

Γ |l@l′ : A � C

The one-step reduction relation → is inductively defined as the term closure of
the reduction rules.

For detailed comments on the reduction rules, the subject reduction property
(that holds true), an analysis of normal forms and critical pairs (yielding local
1 Naming practise for binding occurrences excludes x as a free variable in u or l in the

left-hand side of rule β. The widening of the binding scope of x in the right-hand
side is noteworthy, but it is only meant to correspond to weakening.

2 Concatenation is “eager” in the sense that, in the last case, the right-hand side is
not (x){tl}l′ but, in the only important case that l′ is an evaluation context E, its
π-reduct. One immediately verifies l@[] = l and (l@l′)@l′′ = l@(l′@l′′) by induction
on l. Associativity would not hold with the lazy version of @.
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confluence) and the identification of λJmse as the intuitionistic fragment of CBN
λμμ̃, see [5,6].

We stress that the rule β does not execute any substitution. This makes a sim-
ulation of λJmse in another system more difficult, not only because substitution
is delayed, but also because the scope of the bound variable is enlarged.

3 Monadic Lambda-Calculus

The main result of [5,6] is a proof of strong normalization of λJmse that does not
refer to the strong normalization results by Lengrand [10] and Polonovski [13]
about λμμ̃, but by a syntactic transformation to simply-typed λ-calculus that
strictly simulates reduction. The technique is a variation of continuation-passing
style, called continuation-and-garbage-passing style [8]. CPS translations alone
do not suffice for a strict simulation of all reductions. In the present article,
we move from CPS translations to monadic translations, whose target we call
monadic lambda-calculus. Strong normalisation of the monadic lambda-calculus
itself does not rest any longer on simply-typed λ-calculus with only β-reduction;
instead the following rule has to be added:

s((λx.t)r) → (λx.st)r ,

where x is not free in s and s is a λ-abstraction. We call this rule assoc and the
extension of λ-calculus obtained by adding it λ[β, assoc].

Proposition 1. The calculus λ[β, assoc] is strongly normalizing, i. e., there is
no infinite reduction sequence t = t0 → t1 → t2 → . . . with a typable term t. 3

Proof. A proof by Lengrand may be found in [11]. A stronger result was stated
in [3], concerning the addition to the λ-calculus, not only of assoc (even with-
out the abstraction proviso), but also of another permutation rule, due to Reg-
nier [15], and named here perm. The “proof” of the strong result given in [3]
was incomplete. A complete proof may be found in [4]. Strong normalisation of
λ[β, assoc, perm] will be needed below in Section 5.1 for translation F . ��

Although our first aim is to give an alternative syntactic proof of strong nor-
malization of λJmse, we want to be able to interpret λJmse in as many monads
as possible, and not just the identity monad. Hence, we take as target calcu-
lus the extension of simply-typed λ-calculus where the type system includes a
monad—a type transformation called M as the single unary constant for build-
ing types—and the term language includes constructions for the unit and the
Kleisli extension (a.k.a. bind) operation of the monad M , as follows: the term
language is extended by the following clauses: If s is a term then ηs is a term,
and if r and t are terms, then bind(r, x.t) is a term. The variable x is considered
as bound by “x.” in t.

3 A term t is typable if there is a context Γ and a type A such that Γ � t : A.
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(βλ) (λx.t)s → [s/x]t
(βbind) bind(ηs, x.t) → [s/x]t
(πλ,λ) (λy.u)((λx.t)r)→ (λx.(λy.u)t)r

(πbind,λ) bind((λx.t)r, y.u) → (λx.bind(t, y.u))r
(πbind,bind) bind(bind(r, x.t), y.u) → bind(r, x.bind(t, y.u))

Fig. 2. Base reduction rules of λM

The usual typing rules of simply-typed λ-calculus are extended as follows:

Γ � s : A
Γ � ηs : MA

η
Γ � r : MA Γ, x : A � t : MB

Γ � bind(r, x.t) : MB
bind

The monadic language was introduced by Moggi [12] as an equational theory
and was used to interpret the computational lambda-calculus. Its corresponding
reduction theory is considered in [7] and [16] and includes rules for the 3 monadic
laws. Our monadic λ-calculus λM brings into play two more permutation rules.
The base reduction rules of λM are shown in Figure 2. The implicit proviso for
the three latter rules – the permutation rules – is that x is not free in λy.u.
Again, we write → for the term closure of the base reduction rules.

While βbind and πbind,bind correspond to two of the three monad laws, we do
not need the eta rule of the monad bind(r, x.ηx) → r.

Note that the rule πbind,λ orients the direct equational consequence of βλ,

bind((λx.t)r, y.u) =βλ
bind([r/x]t, y.u) =βλ

(λx.bind(t, y.u))r ,

in a specific way. Likewise, πλ,λ – which is just a different presentation of rule
assoc – directs an equational consequence of βλ. So, from a purely equational
point of view, our notion of λM is not stronger than the ordinary one that only
reflects the monad laws. Moreover, we even omitted the eta rule.

To the best of our knowledge, rules (πλ,λ) and (πbind,λ) have not been con-
sidered before in combination with the traditional monad rules. However as we
show below, the enriched system λM enjoys good properties, which would hold
even in presence of the monadic eta rule.

The λM-calculus can be interpreted in λ[β, assoc] so that strict simulation
of reduction is obtained. The translation corresponds to defining the identity
monad in λ[β, assoc]. The translation | | : λM → λ[β, assoc] is defined on types
by |X | := X , |A ⊃ B| := |A| ⊃ |B| and |MA| := A, and is defined on terms by
|x| := x, |λx.t| := λx.|t|, |tu| := |t||u|, |ηs| := |s| and |bind(r, x.t)| := (λx.|t|)|r|.
Evidently, this respects the typing rules.

Lemma 1. If Γ � s : A is derivable in λM, |Γ | � |s| : |A| is derivable in
λ[β, assoc], where |Γ | is the result of replacing each declaration x : A in Γ by
x : |A|.

Under these definitions, βλ and βbind become β (the usual rule of λ-calculus that
is βλ, but quantified over a different set of terms), and all three permutation
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rules become the assoc rule. (The ordinary eta rule of the monad would be just
mapped to one step of β.) Thus we have the strongest possible simulation result.4

Lemma 2. If t→ u in λM, |t| → |u| in λ[β, assoc].

From the above result and strong normalization of λ[β, assoc], we immediately
get the following result.

Corollary 1. The calculus λM is strongly normalizing.

Now, given that all critical pairs for the rules of λM are joinable, we also obtain
a confluence result.

Corollary 2. → is confluent for the typable terms of λM.

4 Translations of λJmse into Monadic λ-Calculus

Here, we show how to translate λJmse into λM such that one obtains strict
simulation and thus can infer strong normalization of λJmse from Corollary 1.
Hence, this is an alternative syntactic proof of strong normalization of λJmse.
While the translation in the following section works on the types in usual CBN
fashion [7], a more complicated type translation in Section 4.2 even yields strict
simulation within λM without the rule πλ,λ.

4.1 Main Monadic Translation

A type A of λJmse is translated to A = MA∗ of λM, with the type A∗ defined
by recursion on A (where the definition of A is used as an abbreviation):

X∗ = X and (A ⊃ B)∗ = A ⊃ B

Note that, for the identity monad, this trivializes to A = A∗ = A. Any term t of
λJmse is translated into a term t of λM, any command c of λJmse into a term
c and any pair of a co-term l of λJmse and a variable w of λM, with w not free
in l, into a term lw of λM.5 This is done so that the typing rules in Figure 3 are
derivable, where Γ is derived from Γ by replacing every x : C in Γ by x : C.

The definitions are in Figure 4, where it is understood that f , v and w are
fresh variable names. The definition of []w is given with the extra (λk.k) so as
to form an (administrative) redex which will guarantee strict simulation of ε
and of the initial cases of π, see the proofs of Lemma 4 and Theorem 1. Also
(λv.lv)(fu) is a redex for strict simulation purposes, and we will “monadically”
abstract away from it in the optimized translation in Section 4.2.
4 Strict simulation would just mean that one step in the source calculus is mapped to

at least one step of the target calculus, which would be sufficient to inherit strong
normalization of the source calculus from the target calculus.

5 Whenever we write lw (or Ew), it will be understood that w does not occur free in
the co-term l (or E).
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Γ � t : A

Γ � t : A

Γ
c−→ A

Γ � c : A

Γ |l : A � B

Γ , w : A � lw : B

Fig. 3. Derived typing rules for monadic translation of λJmse

x = x []w = (λk.k)w
λx.t = η(λx.t) (u :: l)w = bind(w, f.(λv.lv)(fu)) tl = [t/w]lw
{c} = c ((x)c)w = (λx.c)w

Fig. 4. Monadic translation of λJmse

Lemma 3. The translation satisfies [t/x]u = [t/x]u, ([t/x]l)w = [t/x](lw) and
[t/x]c = [t/x]c. The proviso for the second equation is that x is not w. ��

Lemma 4. For w /∈ E6, one has [lw/v]Ev →+ (l@E)w.

Proof. For E = [], we calculate

[lw/v]([]v) = [lw/v]((λk.k)v) = (λk.k)lw →βλ
lw = (l@[])w .

For E = u :: l′, do induction on l.
Case []: [(λk.k)w/v]Ev →βλ

[w/v]Ev = Ew (v once in Ev + renaming)
Case u′ :: l:

[(u′ :: l)w/v]Ev = bind(bind(w, g.(λv′.lv′)(gu′)), f.(λv.l′v)(fu))
→πbind,bind

bind(w, g.bind((λv′.lv′)(gu′), f.(λv.l′v)(fu)))
→πbind,λ

bind(w, g.(λv′.bind(lv′ , f.(λv.l′v)(fu)))(gu′))
= bind(w, g.(λv′.[lv′/w]Ew)(gu′))
→+ bind(w, g.(λv′.(l@E)v′)(gu′)) by IH for l
= (u′ :: (l@E))w = ((u′ :: l)@E)w

Case (y)c with c = t1l1:

[((y)c)w/v]Ev = bind((λy.c)w, f.(λv.l′v)(fu))
→πbind,λ

(λy.bind(c, f.(λv.l′v)(fu)))w
= (λy.[c/v]Ev)w
= (λy.[[t1/v′](l1)v′/v]Ev)w
= (λy.[t1/v′][(l1)v′/v]Ev)w
→+ (λy.[t1/v′](l1@E)v′)w by IH for l1
= ((y)t1(l1@E))w = (((y)c)@E)w ��

Theorem 1 (Simulation). If t → t′ in λJmse, then t →+ t′ in λM. If l → l′

in λJmse, then lw →+ l′w in λM. If c → c′ in λJmse, then c →+ c′ in λM.

6 By writing (l@E)w, we already implicitly assume that w /∈ E, but this condition is
not visible in the left-hand side of the statement, hence we indicate it.
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Proof. We only have to consider a rewrite step at the root since the cases corre-
sponding to the closure rules follow by routine induction. This is so because w
has one free occurrence in lw (it has only one occurrence), and so the definition
of tl is uncritical (t cannot be lost as a subterm through substitution into lw).

Case β: (λx.t)(u :: l)→ u(x)tl.

(λx.t)(u :: l) = bind(η(λx.t), f.(λv.lv)(fu))
→βbind

(λv.lv)((λx.t)u)
→πλ,λ

(λx.(λv.lv)t)u
→βλ

(λx.[t/v]lv)u = (λx.tl)u = u(x)tl

Case σ: t(x)c → [t/x]c:

t(x)c = (λx.c)t→βλ
[t/x]c = [t/x]c (Lemma 3)

Case ε: {t[]} → t: {t[]} = (λk.k)t →βλ
t

Case μ: (x)xl → l, if x /∈ l.

((x)xl)w = (λx.xl)w = (λx.[x/w]lw)w →βλ
[w/x][x/w]lw = lw

Case π: {tl}E → t (l@E). Apply substitution [t/w] to Lemma 4:

{tl}E = [tl/v]Ev = [[t/w]lw/v]Ev = [t/w][lw/v]Ev →+ [t/w](l@E)w = t(l@E) ,

using the usual substitution lemmas. ��
Corollary 3. The calculus λJmse is strongly normalizing.

Proof. Use the previous theorem, the preservation of typability expressed in
Figure 3 and Corollary 1. ��
We remark that πλ,λ would not have been necessary if rule β of λJmse were
already σ-reduced on the right-hand side, thus with [u/x]tl. The calculation
would be as follows:

(λx.t)(u :: l) = bind(η(λx.t), f.(λv.lv)(fu))
→βbind

(λv.lv)((λx.t)u)
→βλ

(λv.lv)([u/x]t)
= (λv.lv)[u/x]t (Lemma 3)
→βλ

[[u/x]t/v]lv = [u/x]tl

Our monadic translation when restricted to λ-calculus essentially captures
the usual CBN monadic translation [7], call it ( )◦. This translation for variables
and λ-abstraction behaves as our translation, and for applications does (tu)◦ :=
bind(t◦, f.fu◦). Our translation of a λ-calculus application tu, encoded in λJmse

as t(u :: []), reaches the expected term after two βλ-steps:

t(u :: []) = bind(t, f.(λv.[]v)(fu))→2
βλ

bind(t, f.fu)

We also notice that the property “t→β u in the λ-calculus ⇒ t◦ →βbind,βλ
u◦ in

the λM-calculus”, that holds of mapping ( )◦ (an easy, perhaps new result), is
also shared by our translation.
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x = x []w = (λk.k)w
λx.t = η(λx.ηt) (u :: l)w = bind(w, f.bind(fu, v.lv)) tl = [t/w]lw
{c} = c ((x)c)w = (λx.c)w

Fig. 5. Optimized monadic translation of λJmse

4.2 Optimized Translation

Now, a translation is given that allows simulation of λJmse even in λ−
M that

is obtained from λM by omitting the rule πλ,λ. The symbols of the previous
subsection will be reused, but their definition will be changed.

A type A of λJmse is translated to A = MA∗ of λM, with the type A∗ defined
by recursion on A (where the definition of A is used as an abbreviation):

X∗ = X and (A ⊃ B)∗ = A ⊃MB

Note that, for the identity monad, this again trivializes to A = A∗ = A. But the
crucial change is that an extra M is inserted on top of B in the translation of
A ⊃ B. For the special case of MA = ¬¬A, this is logically equivalent to the
translation used in [5,6].

Any term t of λJmse is translated into a term t of λM, any command c of
λJmse into a term c and any pair of a co-term l of λJmse and a variable w of
λM, with w not free in l, into a term lw of λM. This is done so that the typing
rules in Figure 3 are again derivable, where, obviously, all symbols have to be
interpreted according to the current definitions.

The definitions are in Figure 5, where the usual freshness assumptions are un-
derstood. Changes with respect to Figure 4 concern λ-abstraction with an extra
η and (u :: l)w where bind replaces the β redex. In fact, bind(fu, v.lv) is just the
monadic version of (λv.lv)(fu) that was used formerly. For the identity monad,
the translation thus agrees with that of Section 4.1. However, in the general
case, bind(fu, v.lv) would not be well-typed with the definitions of Section 4.1.
For Γ |u :: l : A ⊃ B � C, one would have w : A ⊃ B and hence f : (A ⊃ B)∗.
Therefore, fu would have type B and finally v : B∗, which is not enough. We
remark that one can base an alternative translation with A∗ as in Section 4.1
on the idea of enforcing the admissible rule Γ |l : A � B ⇒ Γ, w : A∗ � lw : B.
Simulation results for this alternative translation needed extensions of the η rule
bind(t, x.ηx) → t that did not seem to be well justified.

Lemma 3 also holds for the definitions of the present section.

Theorem 2 (Simulation). If t → t′ in λJmse, then t →+ t′ in λ−
M. If l → l′

in λJmse, then lw →+ l′w in λ−
M. If c → c′ in λJmse, then c →+ c′ in λ−

M.

Proof. As in the proof of Theorem 1, it suffices to consider the base cases of
reduction at the root. The cases σ, ε and μ can be copied verbatim from the
proof of Theorem 1. For β, one calculates that

(λx.t)(u :: l)→βbind
bind((λx.ηt)u, v.lv) →πbind,λ

(λx.bind(ηt, v.lv))u →βbind
u(x)tl
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Case π: {tl}E → t (l@E). The treatment of E = [] is immediate due to the extra
redex in the definition of []w.

Sub-case E = u :: l′. We have to show {tl}E →+ t(l@E), which is done by
induction on l, simultaneously for all t. ��

5 Generic Account of Translation into Natural Deduction

An instantiation of the monadic translation with a particular monad gives an in-
terpretation of the intuitionistic sequent calculus λJmse into natural deduction.
In this section we show that two such instantiations relate to known interpre-
tations, namely variants of both the Zucker-Pottinger translation and a CPS
translation. These interpretations receive, thus, a generic account through the
monadic translation.

5.1 Direct Translations

In this subsection we study certain “direct” translations of λJmse into the λ-
calculus. One of these, named N here, implements the traditional interpretation
of sequent calculus into natural deduction studied by Zucker [17] and Pottinger
[14]. The directness comes from the fact no translation of types is involved, and
also because these translations give a straightforward expression in terms of the
λ-calculus of the computational interpretations of λJmse-expressions. The direct
translations, as we will see, turn out to be related to the monadic translation,
when the latter is instantiated with the identity monad.

A direct translation. Let F be the mapping from λJmse to λ, based on the
idea of mapping, say, t(u1 :: u2 :: []) and t(u1 :: u2 :: (x)c) to

(λx.x)(rs1s2) and (λx.s)(rs1s2) ,

where r, si, and s are the translations of t, ui, and c, respectively. Formally, F
is given by

F (x) = x F (r, []) = (λx.x)r
F (λx.t) = λx.F (t) F (r, u :: l) = F (rF (u), l) F (tl) = F (F (t), l)
F ({c}) = F (c) F (r, (x)c) = (λx.F (c))r

We will need the target of F to be equipped not only with the assoc reduction
rule, but also with

(λx.t)rs → (λx.ts)r ,

for x not free in s (a proviso that, as for assoc, already follows from the variable
convention). This is a well-known permutation rule [15,9], which we name here
perm. Let λ[β, assoc, perm] be the λ-calculus equipped with both assoc and perm.

As mentioned in the proof of Proposition 1, normalisation of λ[β, assoc, perm]
holds as a consequence of a result stated in [3] and fully proved in [4].
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Proposition 2. If t→ u in λJmse then F (t)→+ F (u) in λ[β, assoc, perm].

Proof. A by-hand proof would be possible, but we give an indirect proof, joining
scattered results from the literature. The point is that F is the composition of
the following mappings

λJmse ( )◦−→ λJms ⊂ λGtz ( )∗−→ λs
( )�

−→ λ[βπ]

where ( )◦ : λJmse → λJms comes from [6], ( )∗ : λGtz → λs comes from [2],
and ( )� : λs→ λ[βπ] comes from [3]. λJms is the system preceding λJmse in the
“spectrum” of intuitionistic systems studied in [5,6]. The difference relatively to
λJmse is that there is neither a separate class of commands, nor co-terms [];
instead, selection has the general form (x)t. λGtz is identical to λJms, except
that it has a more general π reduction rule, in that the call-by-name restriction
is not imposed, and the concatenation operator is lazy; so each π step in λJms

corresponds to one or more π steps in λGtz . λs is λ plus a substitution con-
struction, equipped with rules for generating (β), executing (σ), and delaying
(π) substitution. λ[βπ] is identical to λ[β, assoc, perm], except that in λ[βπ] the
abstraction proviso in the assoc rule is not imposed. 7 Mapping ( )◦ erases the
coercion {−} and encodes [] as (x)x. Mapping ( )∗ has the same spirit as F , ex-
cept that tl is mapped to a substitution, instead of a β-redex. Finally mapping
( )� “raises” substitutions to β-redexes. The present proposition is corollary of
three simulation results: Proposition 3.6 of [6] concerning ( )◦, Proposition 1 of
[2] concerning ( )∗, and Proposition 7 of [3] concerning ( )�. All three state that
each reduction step of the source generates one or more reduction steps of the
target, except in one case: ( )� collapses β steps of λs. So, one has to supplement
Proposition 1 of [2] with the remark - useless for the purposes of [2], but needed
now - that ( )∗ always generates at least one reduction step different from β in
the target, when translating a reduction step of its source. Finally we observe
that the simulation property of ( )� still holds when one takes the assoc rule of
λ[βπ] with the abstraction proviso, and therefore the target of ( )� can be taken
as λ[β, assoc, perm]. ��
Identity-monadic translations. Let G be the composition of the monadic
translation with the mapping | | : λM → λ[β, assoc] from the end of Section 3. G
maps, say, t(u1 :: u2 :: []) and t(u1 :: u2 :: (x)c) respectively to

(λf.(λz.(λf ′.(λz′.(λx.x)z)(f ′s2))z′)(fs1))r
(λf.(λz.(λf ′.(λz′.(λx.s)z)(f ′s2))z′)(fs1))r

if we let again r, si, and s be the translations of t, ui, and c, respectively. A
recursive definition of G is:

G(x) = x []w = (λk.k)w
G(λx.t) = λx.G(t) (u :: l)w = (λf.(λv.lv)(fG(u)))w G(tl) = [G(t)/w]lw
G({c}) = G(c) ((x)c)w = (λx.G(c))w

7 The idea is that perm and the relaxed assoc (called π1 and π2 in [3] respectively) form
a coherent set of rules for “delaying” a “substitution” (λx.−)r surrounding a term
t, whenever this t occurs in the function or argument positions of an application.
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Proposition 3. If t→ u in λJmse then G(t) →+ G(u) in λ[β, assoc].

Proof. Immediate consequence of Theorem 2, and the 1-1 mapping of reduction
steps given by | |. ��
Comparison of translations. The previous proposition guarantees that, by
changing from the encoding of commands of F to the encoding of commands of
G, we dispense with perm in the target. For instance, consider

c1 = {t(u1 :: (x)c)}(u′
1 :: (y)c′) and c2 = t(u1 :: (x)v(u′

1 :: (y)c′))

with c = v[]. Then s = F (c) = (λz.z)F (v) and c1 →π c2 in λJmse. In the target
we have (if s1 = F (u1), s′ = F (c′), and s′1 = F (u′

1))

F (c1) =
(
λy.s′

)(
(λx.s)(rs1)s′1

)
and F (c2) =

(
λx.(λy.s′)(F (v)s′1)

)(
rs1

)
After reducing s to F (v) and performing one perm step, one obtains from F (c1)
the term (λy.s′)((λx.F (v)s′1)(rs1)), which in turn reaches F (c2) after one assoc
step. On the other hand,

G(c1) =
(
λf ′.(λz′.(λy.s′)z′)(f ′s′1)

)(
(λf.(λz.(λx.s)z)(fs1))r

)
G(c2) =

(
λf.

(
(λz.(λx.(λf ′.(λz′.(λy.s′)z′)(f ′s′1))G(v))z

)(
fs1

))
r

with s = G(c) = (λz.z)G(v), s1 = G(u1), s′ = G(c′), and s′1 = G(u′
1). Now

G(c1) reaches G(c2) after 3 assoc steps, provided s is first reduced to G(v).
The proximity between F and G becomes clearer if we give the definition of

F in the following style:

F (x) = x []w = (λk.k)w
F (λx.t) = λx.F (t) (u :: l)w = [wF (u)/v]lv F (tl) = [F (t)/w]lw
F ({c}) = F (c) ((x)c)w = (λx.F (c))w

So, the only difference between F and G is in the clause for (u :: l)w, where the
two β-redexes appearing in the clause for G are contracted in the clause for F .

F translates the left introduction u :: l as the traditional map between sequent
calculus and natural deduction does - through a combination of application and
substitution; but, because of the definitions of []w and ((x)c)w , F ’s translation
of a cut generates a β-redex whose contractum (a certain substitution) would
be the translation of that cut by the traditional mapping. So, if we let N denote
the traditional mapping, N is defined as F , except that now we put []w = w and
((x)c)w = [w/x]N(c). Notice that N also corresponds to taking the definition of
G and uniformly contracting all β-redexes in the clauses defining lw.

Proposition 4. If t→ u in λJmse, then Nt →∗
β Nu in the λ-calculus.8

8 In fact, all but β-steps are identified by N , meaning that only the reduction rule
corresponding to the key step of cut-elimination has a non-trivial translation. This
agrees with the properties of the map ( )� : LJ → λ studied in [3], a map imple-
menting the traditional translation of another sequent calculus, named LJ there.
Each β-step in the source of N is guaranteed to generate exactly one step in the
target only when it happens at root position. The same applies to ( )�, but is not
acknowledged in Proposition 10 of [3].
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Let us sum up in the following diagram, where double-headed arrows denote 0
or more steps of reduction, except for the two central, vertical arrows, which
denote 1 or more steps (a fact signaled by a little black triangle).

t G(t)
β

�� F (t)
β
�� N(t)

u
�

G(u)

β assoc

��

�

β
�� F (u)

β assoc perm

��

�

β
�� N(u)

β

��

The map G, obtained by instantiating the monadic map, has a sharper simulation
property than the previously known maps.

5.2 CPS Translation

In this subsection we introduce a CPS translation of λJmse, and compare it with
the monadic translation instantiated with the continuations monad.

A CPS translation. Let A∗ be given by X∗ = X and (A ⊃ B)∗ = Â ⊃ B̂,
where Â = ¬¬A∗. The CPS translation of t ∈ λJmse - denoted t̂ - is defined as
λk.(t : k), where the so-called colon-operation is given as follows:

(x : K) = xK ([] : K) = λw.wK

(λx.t : K) = K(λx.t̂) (u :: l : K) = λw.w(λf.(l : K)(fû))
({c} : K) = (c : K) ((x)c : K) = λx.(c : K)

(t[] : K) = (t : K)
(t(u :: l) : K) = (t : λf.(l : K)(fû))

(t(x)c : K) = ((x)c : K)t̂

This CPS translation is considered in [6]. In [5,6] a different CPS translation is
given, based on the definition (A ⊃ B)∗ = ¬B̂ ⊃ ¬Â, and a weak simulation
result for it is proved, stating that each reduction step in the source λJmse is
mapped to 0 or more β-reduction steps in the λ-calculus. A variant of the proof
sketched in [5,6] gives an even weaker result for the present CPS translation.

Proposition 5. If t→ u in λJmse, then t̂→∗ û in λ[β, assoc].

Indeed one needs assoc in the target, precisely for the simulation of β:

((λx.t)(u :: []) : K) = (λf.([] : K)(fû))(λx.t̂)
→β ([] : K)((λx.t̂)û)
→assoc (λx.([] : K)t̂)û
→2

β (λx.(t : K))û = (u(x)(t[]) : K)
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For this special case of β, the LHS also reduces to the RHS using β and perm.
However, it is no longer possible to replace assoc by perm if instead of the empty
list we have another list format.

Despite its weaker simulation properties, the CPS translation satisfying (A ⊃
B)∗ = Â ⊃ B̂ that we consider here is better suited for the purpose of comparing
with the monadic translation.

Continuation-monadic translation. We define the continuations monad in
the λ-calculus. Let MA := ¬¬A, so that A = Â. Put

ηt := λk.kt and bind(r, x.s) := λk.r(λx.sk)

We may see these definitions of M , η, and bind as giving an interpretation of λM

into λ. Under this interpretation, the reduction rules of λM hold as βη-equalities
in the λ-calculus.

The instantiation of the monadic translation (that is, the composition of the
monadic translation with the present interpretation of λM into λ) gives:

C(x) = x []w = (λk.k)w
C(λx.t) = λk.k(λx.C(t)) (u :: l)w = λk.w

(
λf.(λv.lv)(fC(u))k

)
C({c}) = C(c) ((x)c)w = (λx.C(c))w

C(tl) = [C(t)/w]lw

One immediately obtains that C maps each reduction step in λJms to a βη-
equality in the λ-calculus.

Comparison with CPS. C(t) is close to the CPS translation t̂. To see this,
we introduce the “colon-free” translation t̃, an intermediate point between C(t)
and t̂. t̃ is defined as λk.(t : −)k, where (t : −) is given by:

(x : −) = x []w = w

(λx.t : −) = λk.k(λx.t̃) (u :: l)w = λk.w(λf.(λv.lvk)(fũ)) (tl : −) = [t̃/w]lw

({c} : −) = (c : −) ((x)c)w = λk.(λx.(c : −)k)w

Then one proves: i) (t : −)K reduces to (t : K) - whence t̃ reduces to t̂;
ii) (c : −)K reduces to (c : K); iii) λw.lwK reduces to (l : K). The proof
is a simultaneous induction on t, c, and l. Here reduction means 0 or more
administrative β-steps. An administrative step is of one of two forms:

1. reduction of redexes (λk.t)K - pushing continuations inside;
2. λw.(λx.t)w →β λx.t, with w not in t - notice the implicit α-conversion.

If t → u in λJmse, then t̃ =β ũ. This follows from the remarks just made,
together with Proposition 5 and the fact assoc ⊆=β.

After the transfiguration of the CPS translations, it is perspicuous that: i)
C(t) reduces to (t : −) (which in turn η-expands to t̃; we let eta = η−1 and refer
to η-expansion as eta-reduction); ii) C(c) reduces to (c : −); iii) lw reduces to
lw. The proof is again a simultaneous induction on t, c, and l. Here reduction
means 0 or more steps of one of the following forms:
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1. β, for reducing the redex []w;
2. eta, needed to bridge (t : −) and t̃;
3. eta followed by perm, for reducing the generic (λx.C(c))w to the continu-

ations-monad-specific λk.(λx.C(c)k)w.
4. perm for bridging the change in the placement of variable k, when moving

from the clause for (u :: l)w to the clause for (u :: l)w.

Let us sum up with this diagram.

t C(t)
β eta perm

�� t̃
admin

�� t̂

u
�

C(u)

βη

���������
β eta perm

�� ũ

β

����������
admin

�� û

β assoc

��

These results show how close is the CPS translation t̂ of being a mere instantia-
tion of our monadic translation; and how the CPS translation helps explaining,
in terms of reduction, the equational relationship existing between C(t) and
C(u), when t and u are related by a reduction step in the source calculus.

6 Final Remarks

This paper raises two issues that deserve further consideration. The first issue
is whether the technique of “garbage-passing”, as used in the translation of λ-
calculus with control operators in [8] and later for translation of intuitionistic
sequent calculus [5,6], can be captured through some monad. Less ambitiously,
one would hope for a precise comparison that allows to see why there is no
need for extra rules such as assoc in the target of the garbage-passing transla-
tion. The second issue is the systematization of “associativity” principles in the
monadic meta-language; indeed, it is conspicuous that one principle is missing,
namely πλ,bind, which reads (λy.u)bind(r, x.t) → bind(r, x.(λy.u)t). The uses and
properties of this rule are not yet entirely clear.
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Abstract. We argue that it is high time that types had a beneficial impact in the
field of Answer Set Programming and in particular Disjunctive Datalog as exem-
plified by the DLV system. Things become immediately more challenging, as we
wish to present a type system for DLV-Complex, an extension of DLV with unin-
terpreted function symbols, external implemented predicates and types. Our type
system owes to the seminal polymorphic type system for Prolog introduced by
Mycroft and O’Keefe, in the formulation by Lakshman and Reddy. The most in-
novative part of the paper is developing a declarative grounding procedure which
is at the same time appropriate for the operational semantics of ASP and able to
handle the new features provided by DLV-Complex. We discuss the soundness of
the procedure and evaluate informally its success in reducing, as expected, the set
of ground terms. This yields an automatic reduction in size and numbers of (non
isomorphic) models. Similar results could have only been achieved in the current
untyped version by careful use of generator predicates in lieu of types.

Keywords: Answer set programming, type checking, grounding, many sorted
interpretation.

1 Introduction

The advantages of static type checking for programming languages are almost univer-
sally recognized and well-understood, although types managed to make it into logic
programming somewhat belatedly [21]. From the pioneering paper [18] advocating the
introduction of types in Prolog, different approaches emerged, belonging roughly to
two main camps: the descriptive and the prescriptive one. The former aims at captur-
ing some aspects of a program behavior, for example its success set, up to much more
complex static and dynamic properties as with CiaoPP [12].

We favor the prescriptive approach, where types are an integral part of the program’s
meaning, thus allowing the user to discard ill-formed elements at compile time. This
helps the developer to proceed in a more disciplined way, being able to receive early
feedback about mistakes that may be hard to find, especially in a purely declarative
setting in the non-infrequent case where the answer would be merely “no”.

The type theory of logic programming has significantly developed in the passing
years, following the ever-increasing role of types in the general theory of program-
ming languages – see the type system of Mercury [14] and λProlog [19] for a modern
take to prescriptive typing. Still, for the sake of this paper, we will adapt to disjunctive
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logic programing a rather elementary SML-like polymorphic discipline; in addition we
will enrich it semantically, following Lakshman & Reddy’s approach [15], where typed
logic programs are interpreted over first order many sorted structures, see also [13].

Our objective here is to advocate the usefulness of prescriptive typing for Answer Set
Programming (ASP) [9] in general. ASP is a form of declarative programming based
on the stable models semantics [10]. It has been proposed as a language for knowledge
representation and as a tool for formalizing and solving hard search problems [1]. The
main idea is to reduce a search problem encoded with a (disjunctive) logic program P
to the problem of computing stable models of P using an answer set solver, namely a
system for generating stable models, such as Smodels [22] and DLV [16]. In this sense
ASP’s operational semantics is very different from the usual SLD(NF)-resolution [17].
This is also why typing ASP is interesting and less banal that at first sight: the original
paper by Mycroft and O’Keefe was entirely syntactical and so the vast majority of the
ensuing research was intrinsically biased towards standard SLD(NF)-resolution.

Although some papers in the ASP literature use a many sorted language or deals with
object-oriented features — we refer to Sect. 6 for a detailed discussion — it is safe to say
that types have never been integrated into ASP; in fact the above papers do not consider
a many-sorted model theory, nor any form of parametric polymorphism. The present
paper introduces static type-checking in DLV-Complex [5], an extension of DLV with
uninterpreted function symbols – hence we are leaving the comfort of Datalog – as well
with external types and predicates requiring an oracle to be computable. In other terms,
one may exploit external sources of knowledge. To take into account this possibility, we
consider programs over grounding structures. The latter provide a declarative semantics
for grounding, as they play the role of pre-interpretations [17] in presence of an external
implementation of data types and related operations.

The paper is organized as follows: we begin in Section 2 by briefly illustrating the
role of typing in ASP through examples. Section 3 and 4 give a static semantics to the
language both in terms of types and many-sorted interpretations. In Section 5 we extend
the above analysis to DLV-Complex’s programs and offer a rational reconstruction of
type-driven grounding. After discussing related work and summing up the results in
Section 6, we add a short Appendix (A) explaining the basics of ASP for the reader
unfamiliar with this topic.

2 An Informal Introduction to Typed DLV

For the sake of this paper, an ASP program P is a set of rules (or clauses) of the form:

A1∨·· ·∨An ← B1, . . . ,Bk, not Bk+1, . . . , not Bm

where A1, . . . ,An,B1, . . . ,Bm are atoms, i.e., formulas of the form p(t), where t stands
for a sequence t1, . . . ,t j of terms. Usually not is referred to as “negation as failure” or
“default negation” and ∨ as “epistemic disjunction”.

Example 1. The following pencil problem is a simple non-typed ASP program,
which illustrates the meaning of default negation.



Towards a Type Discipline for Answer Set Programming 119

color(red). color(blue). pencil(p1). pencil(p2). % facts
nice(X) :- pencil(X), color(Y), not ugly(Y). % clause c1
ugly(Y) :- color(Y), pencil(X), not nice(X). % clause c2

By rule c1, we can infer that a pencil X is nice if we do not have evidence for ugly(Y)
(i.e., if we can assume not ugly(Y) as a default). Symmetrically, by rule c2, we
can infer ugly(Y) if we do not have evidence for nice(X). Let us assume that “not
ugly(Y)” holds. We infer that all the pencils are nice, i.e., we have the answer set
{nice(p1),nice(p2)}. Symmetrically, assuming “not nice(X)” we obtain the an-
swer set {ugly(red),ugly(blue)}.

As shown by the example, an ASP program P represents a problem that may have
multiple solutions, represented by its answer sets. The answer set semantics is defined
in terms of grounding: let grnd(C) be the set of the ground instances of a clause C,
obtained by substituting its variables with ground terms of the language underlying
P. We define grnd(P) = ∪C∈Pgrnd(C). An answer set is a set of ground literals. The
answer sets of P are the stable models of grnd(P) (see the Appendix for the formal
definitions).

An ASP solver computes the stable models in two stages: firstly it builds an op-
timized version of grnd(P), namely a set grnd•(P) of ground clauses with the same
semantics of grnd(P). Then it generates the answer sets of grnd•(P).

Example 2. In DLV, the pencil program of Example 1 grounds to:

% EDB facts:
color(red). color(blue). pencil(p1). pencil(p2).
% Residual ground instantiation of the program:
ugly(red) :- not nice(p1). ugly(red) :- not nice(p2).
ugly(blue) :- not nice(p1). ugly(blue) :- not nice(p2).
nice(p1) :- not ugly(red). nice(p1) :- not ugly(blue).
nice(p2) :- not ugly(red). nice(p2) :- not ugly(blue).

We point out that only 12 simplified clauses of the 36 of grnd(pencil)
are generated, called the residual ground instantiation. For example,
ugly(red) :- color(red), pencil(p1), not nice(p1) is simplified to ugly(red)
:- not nice(p1), because the facts color(red) and pencil(p1) are true in every
model. In contrast, the clause ugly(p1) :- color(p1), pencil(p1), not nice(p1)
has not been generated because the atom color(p1) in the body is false in every stable
model. We get the answer sets:

{color(red), color(blue), pencil(p1), pencil(p2), nice(p1), nice(p2)}
{color(red), color(blue), pencil(p1), pencil(p2), ugly(red), ugly(blue)}

Now we come to the main issue of this paper. Looking at the example, one easily recog-
nizes that the optimizations performed by the grounding algorithm, henceforth indicated
by GA, are related to the implicit presence of two types of objects: pencils and colors.
Such types are interpreted in the same way in all stable models. We believe that making
typing explicit has several advantages. In particular, the programmer has a better con-
trol on the grounding process, because a type-driven grounder will not generate clauses
corresponding to type information, thus yielding smaller grnd•(P) and smaller answer
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sets.1 Furthermore there is a clear-cut distinction between data base facts, which repre-
sent relevant pieces of information to be shown in answer sets, and typing constraints,
which only have the role of narrowing grounding, as exemplified next.

Example 3. A typed program is (informally) declared as a unit. We use a concrete syn-
tax inspired by [15]. The typed version of the program of Example 1 is:

unit pencils.
type pencil --> p1 ; p2. % Cf. SML’s datatype pencil = p1 | p2;
type color --> red ; blue.
pred nice(pencil), ugly(color).
prog

nice(X) :- not ugly(Y).
ugly(X) :- not nice(Y).

The enumerated type color is interpreted as the set of constants {red, blue}, and
pencil as {p1,p2}. The pred keyword introduces a set of predicate symbols and
their declared types. By nice(pencil) we indicate that nice requires an argument of
type pencil to be a well-typed predicate. Finally, we have the program section, whose
clauses are well-typed. Of course we do not need to declare the type of the variables, as
they can be inferred. In the example, the rules for clauses in Sect. 5 would yield these
well-typing judgments of the form Γ � H ← B : clause .

X : pencil, Y : color � nice(X) ← not ugly(Y ) : clause
X : color, Y : pencil � ugly(X) ← not nice(Y ) : clause

We will explicitly connect the concrete and abstract syntax in Example 6. A typed GA
will use the variable contexts X : color,Y : pencil instead of the predicates pencil(X)
and color(Y) in the untyped program. The difference is that the untyped GA cata-
logues color(red), color(blue),... as “external data base” (EDB) facts and puts
them in the answer sets, as shown in Example 2, since it has no mean to distinguish
type and data-base information. In contrast, a typed GA would generate only the resid-
ual grounding instantiation of Example 2, which has the more concise answer sets
{nice(p1), nice(p2)} and {ugly(red), ugly(blue)}.

We remark that our model-theory fix the interpretation of external types, functions as
well as of equality, but not of program predicates. The latter depends on the program
and may have a variety of models. In pure logic programming, types, functions and
equality are interpreted on term models. Equality is axiomatized by Clark’s Equality
Theory (CET) [17]. For the predicates defined in our example, CET includes the stan-
dard equality axioms and the freeness axioms ¬(red = blue) and ¬(p1 = p2). A set of
equations has a solution in CET iff a unifier exists. Thus standard unification is a sound
and complete decision method for CET. If we add non-free functions, we no longer
have pure term models and the unification algorithm cannot be applied as such.

Example 4. The following program uses the externally implemented type #int of in-
tegers, where we use the notation # to indicate external types and predicates, as in
DLV-Complex [5].

1 We remark that constructions such as #hide in Smodels, may not show the type information,
but the latter is still present during the generation of the model.
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unit usr.
type #int.
type usr --> john ; ted.
func age: usr -> #int.

age(john) = 12.
age(ted) = 15.

pred older(usr,usr,#int).
prog

older(P1,P2,A) :- age(P1) = age(P2)+A, A > 0.

The domain of the external type #int is predefined, together with the usual operations
on it. In our example, the function age is defined by two equations, although it could be
an arbitrarily complex computable function. Both age and the predefined +, = , > are
used in the body of the program rule. An ASP system should be able to solve constraint
problems, preferably at the grounding stage. If this were the case, the user would not
have to specify a #maxint and the older clause would not have to be grounded up to
that.

The next example uses parametric polymorphism. We adopt the usual Prolog notation
for lists [ | ] as well as using ’A for the (quantified) type variable α (following SML’s
notation).

Example 5. We assume that #list is an external type constructor, while rec is internal.

unit store.
type usr --> john ; ted.
type #int.
type rec(’A,’B) --> r(’A,’B).
type #list(’A).
pred is_user(usr), stored_at(#int,’A), store(#list(rec(#int,’A))).
prog

is_user(U) :- stored_at(K,U).
stored_at(K,E) :- store(S), #member(r(K,E),S).
store([r(1,john),r(2,ted)]).

Note that for every instantiation [T/’A], the constructor #list(T ) yields an external
implementation of finite lists with elements of type T , together with a set of pre-defined
operations such as #member(’A,#list(’A)).

Since the signature of a DLV-Complex program consists of two distinct parts, one
containing functions and (external) data predicates, the other (internal) predicates, we
present the type system, the abstract syntax and the intended model semantics in three
steps over the next three Sections. We firstly introduce a many-sorted first order data
signature Σ∗ induced by a polymorphic type system. Then we define the intended
data models as suitable Σ∗-interpretations. Finally, we introduce the program signature,
DLV-Complex programs and their intended models.

3 The Type and Term Language

We start from the type system. Types are defined inductively applying a type construc-
tors c (#c) to internal and external base types. Internal atomic types include a unit type
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and a constant “o” denoting the type of propositions. To stay inside first-order logic,
“o” can only appear at the right of an arrow type. Terms are obtained from logical
variables X and function symbols. Signatures give kinds to (any) type constructors and
types to internal function symbols and external predicates. The latter two can be used
polymorphically.

Base types T0 ::= α | o | unit | #int | #string . . .
Compound types Tn+1 ::= c(Tn) | #c(Tn)

Types T ::=
⋃

n≥0 Tn

Signature Σ ::= /0 | Σ,c : type→ type | Σ,#c : type→ type
| Σ, f : ∀α. T → T ′ | Σ,#p : ∀α. T → o

Contexts Γ ::= /0 | Γ, α : type | Γ, X : T
Terms t ::= X | fT (t)
Atoms A ::= #p(t) | t = t′

Before we discuss type checking for the above syntactic categories (Fig. 1), some com-
mon notation and conventions: tokens in bold such as T stand for a sequence, i.e.
T1, . . . ,Tn. We view Σ and Γ as sets and we use Γ,e for Γ∪ {e} with e �∈ Γ. We will
often write α instead of α : type. Γ �Σ J1, . . . ,Jn abbreviates Γ �Σ J1, . . . ,Γ �Σ Jn. We
often write Γ � J, leaving the signature Σ understood. In the rule s f , f is new in Σ. In
the rules for Declarations, Types, Terms and Atoms, Γ is assumed to be a well-formed
context.

In the rules f d and pd, [I/α] indicates the substitution of the variables α by the
types I. It is worth remarking that while in our type systems constants can be pa-
rameterized by type schemata, rather than closed (simple) types, we do not support
impredicative polymorphism. Indeed, we can think of this still as form of prenex poly-
morphism, where type schema can be seen as axiom schema in first-order logic.

Example 6. The concrete syntax of Example 5 corresponds to the signature:

usr : type, #int : type, john : usr, ted : usr, 0 : #int, + : #int,#int → #int, . . .
rec : type, type→ type, r : ∀α,β.α,β→ rec(α,β), #list : type→ type,
nil : ∀α.#list(α), cons : ∀α.α,#list(α)→ #list(α), #member : ∀α.α,#list(α)→ o . . .

The system in Fig. 1 is an extension with rules for external sources of knowledge of
the one presented in [15]. One difference however is in the judgments “ fI decl” and
“#pI decl”, which introduce indexed function and predicate declarations. In [15] in-
stead, indexes are only used at the semantic level, to provide a first-order interpretation
of polymorphic declarations. Indexes can be reconstructed as we will discuss in Sect. 4.

Some relevant admissible properties of the type system are listed below, where f v(J)
indicates the set of the variables occurring free in J and Γ| f v(J) the restriction of Γ to
terms containing variables in f v(J). Here we have J range over Decl, Typs, Trms and
Atms.

uq) Uniqueness of typing: Γ �Σ t : T and Γ �Σ t : T ′ implies T = T ′, modulo α-
conversion.

str) Strengthening: if Γ �Σ J then every variable free in J is declared in Γ. Moreover,
Γ| f v(J) �Σ J.
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Cntx cn0
/0 cntx

Γ cntx
cn1

Γ, α cntx

Γ cntx Γ �Σ T : type
cn2

Γ, X : T cntx
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sig s0
/0 sig

Σ sig
sc

Σ, (c : type → type) sig

Σ sig
sc#

Σ, (#c : type → type) sig

Σ sig α �Σ T , T : type
s f

Σ, f : ∀α.T → T sig

Σ sig α �Σ T : type
sp

Σ, #p : ∀α.T → o sig
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dcl
Γ �Σ I : type f : ∀α.T → T ∈ Σ

f d
Γ �Σ fI : T [I/α] → T [I/α] decl

Γ �Σ I : type #p : ∀α.T → o ∈ Σ
pd

Γ �Σ #pI : T [I/α] → o decl
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Typs Tu
Γ �Σ unit : type

T 0
Γ,α �Σ α : type

Γ �Σ T : type c : type → type ∈ Σ
Ti

Γ �Σ c(T ) : type
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Trms t0
Γ,X : T �Σ X : T

Γ �Σ t : T Γ �Σ fI : T → T decl
ti

Γ �Σ fI(t) : T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Atms
Γ �Σ t : T Γ �Σ #pI : T → o decl

pi
Γ �Σ #p(t) : o

Γ �Σ t : T Γ �Σ t′ : T
eq

Γ �Σ t = t′ : o

Fig. 1. Type checking rules

wk) Weakening: if Γ⊆ Γ′ and Γ �Σ J, then Γ′ �Σ J.
sbi) Substitution: we implicitly assume the α-conversions needed to avoid capture

and, for θ ≡ [T/α], Γθ is defined as: /0θ = /0,(Γ,α : type)θ = (Γθ), α : type and
(Γ, X : T ′)θ = (Γθ), X : (T ′θ).

Γ,α �Σ T : type Γ �Σ T ′ : type
sb1

Γ[T ′/α] �Σ T [T ′/α] : type

Γ,X : T ′ �Σ t : T Γ �Σ t ′ : T ′
sb2

Γ �Σ t[t ′/X ] : T

4 Grounding Structures

We firstly introduce a many-sorted first order signature Σ∗. Then we define grounding
structures as suitable Σ∗-interpretations. A polymorphic signature Σ yields an infinite
many sorted signature Σ∗ in the following way:

– Every ground type T is a sort in Σ∗;
– for every f : ∀α.T → T such that /0 �Σ fI : T [I/α]→ T [I/α] decl is provable,

fI : T [I/α]→ T [I/α] is a function declaration in Σ∗;
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– for every #p : ∀α.T → o such that /0 �Σ #pI : T [I/α]→ o decl is provable,
#pI : T [I/α]→ o is a predicate declaration in Σ∗.

Σ∗-interpretations are defined in a way similar to [13]:

Definition 1. A Σ∗-interpretation is a function ι such that:

– Every T in Σ∗ is mapped to a set ι(T ), called the domain of T .
– Every fI : T → T in Σ∗ is mapped to a function ι( fI) : ι(T )→ ι(T ).
– Every #pI : T → o in Σ∗ is mapped to a relation ι(#pI)⊆ ι(T ).

We are interested in a fixed interpretation G, called grounding structure or pre-
interpretation.2 The grounding structure of a program is defined by its type and function
sections and the predefined types thereby declared.

Example 7. Recall the signature Σ of Example 5. The intended grounding structure is
the interpretation G defined as follows.

– Base type usr: G(usr) = { john,ted}, G( john) = john, G(ted) = ted.
– Base type #int: it is interpreted according to its external implementation.
– Level 1 type rec(#int,usr): G(rec(#int,usr)) is the set generated by r#int,usr starting

from the interpretations of level 0 G(#int) and G(usr). A representation is:
- G(rec(#int,usr)) = {r#int,usr} × G(#int) × G(usr);
- G(r#int,usr) is the map 〈i ∈ G(#int), u ∈ G(usr)〉 �→ 〈r#int,usr, i, u〉.

By abuse of notation, we represent triples 〈r#int,usr, i,u〉 as “terms” r(i,u).
– Level 1 type #list(usr): G(#list(usr)) is the structure of the finite lists with ele-

ments from G(usr). The predefined operations are interpreted according to their
implementation.

– . . . and so on. We remark that the set-theoretic representation applies at each level.

We now move to the evaluation of a term with respect to an assignment in an interpre-
tation.

Definition 2. Let ι be a Σ∗-interpretation and Γ a context. An assignment a for Γ in
ι maps every β of Γ to a sort a(β) of Σ∗ and every X : T of Γ to a value v ∈ ι(T a),
where T a is the sort of Σ∗ obtained by grounding each variable β occurring in T by the
sort a(β).

Given ι, we denote by ass(Γ, ι) the set of all the assignments for Γ in ι. Take Γ �Σ t : T
and a ∈ ass(Γ, ι). The evaluation of t with respect to a, denoted t �a v, is performed
according to the following rules:

X �a a(X)
(ev1)

t �a v ΓΣ � fI : T → T decl
fI(t) �a ι( fI a)(v)

(ev2)

Theorem 1. Let Σ be a signature, ι a Σ∗-interpretation, a ∈ ass(Γ, ι) and Γ �Σ t : T .
Then there is a unique v ∈ ι(T a) such that t �a v.

2 Our notion of pre-interpretation generalizes Lloyd’s [17] interpreting #-predicates.
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Theorem 1 follows by the existence and uniqueness of the Γ �Σ fI : T → T decl judg-
ment and as such depends on the indexing of function symbols via a simple table look
up “modulo matching” over Σ.

Example 8. Let Σ be the signature of Ex. 5 and Γ = {α,β : type, X : α, Y : β}. We
have that Γ �Σ r(X ,Y ) : rec(α,β). Let G be the interpretation defined in Ex. 7 and
a ∈ ass(Γ,G) such that a(α) = #int, a(β) = usr, a(X) = 5 and a(Y ) = ted. Then
r(X ,Y ) �a 〈r#int,usr,5,ted〉.

Finally, the truth relation ι |=a A for a well-typed atom A in Γ and a∈ ass(Γ, ι) is defined
by cases on A:

– ι |=a #pI(t) iff t �a v and v ∈ ι(pI);
– ι |=a t1 = t2 iff t j �a v for j = 1,2.

5 Program Grounding

A program signature is of the form Σ∪Π where Π is a set of program predicate dec-
larations. We remark that Σ still accounts for the external predicates #p. As we saw
in Section 2, the latter are interpreted on top of the grounding structure G defined in
the type and function section of the program at hand. To formalize this, we resort
to G-expansions. We start with Σ∪Π as above: the associated many sorted signature
(Σ∪Π)∗ has the form Σ∗ ∪Π∗, where Π∗ contains the ground predicate declarations
pI : T → o. A grounding structure G is a Σ∗-interpretation and a G-expansion is a
(Σ∗ ∪Π∗)-interpretation ι such that ι|Σ∗ = G, i.e. the reduct of ι w.r.t. Σ∗. We can repre-
sent ι as the set

Hι = {〈pI ,v〉 | pI : T → o ∈Π∗ and v ∈ ι(pI)}

By abuse of notation, we write p(v) instead of 〈pI ,v〉 and call it a G-atom. We dub the
set of G-atoms the G-base, playing a role analogous to the Herbrand base. In this way,
Hι can be thought as a kind of “G-answer set”.

Example 9. Back to program of Example 5 and the related grounding structure of Ex-
ample 7. The following interpretation ι is the minimum model of the program (the unit
“store”), seen as a set of G-atoms:

{store( [r(1, john), r(2,ted)]), stored at(1, john), stored at(2,ted), is user( john), is user(ted)}

The loose notation store([r(1, john), r(2, ted)]), stored at(1, john),. . . means that

〈cons, 〈r,1, john,〉, 〈cons, 〈r,2,ted〉, nil〉〉 ∈ G(storeusr), 〈1, john〉 ∈ G(stored atusr), . . .

where cons = consrec(#int,usr) and nil = nilrec(#int,usr).

Now we can formally introduce programs and enrich the syntax judgments of the pre-
vious section. The form of a clause is A1 ∨ ·· · ∨ An ← B1, . . . ,Bm, where A1, . . . ,An

are program atoms and B1, . . . ,Bm are literals, i.e., atoms, external predicates, negated
atoms or negated external predicates. For the sake of simplicity, we do not consider here
classical negation, see the appendix.
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– Atom A ::= . . . (as before).
– Program Atom PA ::= p(t), with p defined in Π.
– Negated Atom NA ::= not A | not PA .
– Literal B ::= A | PA | NA .
– Head HD ::= A1∨·· ·∨An; for n = 0, HD≡ false.
– Body BD ::= B1, · · · ,Bm; for m = 0, BD≡ true.
– Clause C ::= HD← BD .

To distinguish external and internal program predicates, we split the judgment for well-
formed atoms p(t) : o+ and #q(t) : o#, where q is declared in Σ and p in Π. The cor-
responding rules are omitted, since they correspondingly split the rule pi in Fig. 1. We
introduce the judgments NA : o−, HD : head , BD : body and C : clause , where in Bi : osi ,
the superscript si may be +,−,#.

Γ �Σ∪Π A : o+

at−
Γ �Σ∪Π not A : o−

Γ �Σ∪Π A : o#

at−
Γ �Σ∪Π not A : o−

Γ �Σ∪Π A1 : o+, . . . , An : o+

h
Γ �Σ∪Π A1∨·· ·∨An : head

Γ �Σ∪Π B1 : os1 , . . . , Bm : osm

b
Γ �Σ∪Π B1, . . . ,Bm : body

Γ �Σ∪Π HD : head Γ �Σ∪Π BD : body
cl

Γ �Σ∪Π HD← BD : clause

Let Σ∪Π be a program signature, G a grounding structure and ι be a G-expansion. The
truth relation ι |=a A is extended to clauses as usual. Similarly, the standard properties
of the type system stated on Page 122 also hold.

Now, we aim to define the grounding of a program P with respect to the structure G,
notation grndG(P), where P consists of a set of clauses ∀α : type.∀X : T . C such that
α : type,X : T �C : clause . Let a∈ ass(Γ,G); if we write Γ�C, for “Γ �G C : clause ”,
we can define grounding on the structure of C:

grndG(Γ � p(t),a) = p(v) where t �a v

grndG(Γ � not A,a) = not grndG(Γ � A,a)
grndG(Γ � B1, . . . ,Bm, a) = grndG(Γ � B1,a), . . . ,grndG(Γ � Bm,a)

grndG(Γ � A1∨·· ·∨An,a) = grndG(Γ � A1,a)∨·· ·∨grndG(Γ � An,a)
grndG(Γ � H ← B,a) = grndG(Γ � H,a)← grndG(Γ � B,a)

grndG(Γ �C) =
⋃

a∈ass(Γ,G) {grndG(Γ �C,a)}
grndG(P) =

⋃
Γ�C∈P grndG(Γ �C)

We can see grndG(P) as a set of propositional clauses over the G-base. We have

Hι |=prop grndG(P) iff ι |= P (1)

where |=prop is propositional truth. By the equivalence (1), we can define the G-answer
sets of P as those of grndG(P). The latter are defined using the Gelfond-Lifschitz trans-
formation, as explained in the appendix.
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We now discuss the interaction between grounding and typing: this brings about
some immediate problems. The first one is ground type reconstruction, as illustrated by
the following example.

Example 10

pred p(#list(’A)), q(#list(’A)), r(#list(#char)), t(#nat).
prog

p([X|Y]) :- q(Y).
q(Z) :- r(Z).
r([]).
t(3).

Now, given the ground instance p([3]) ← q([ ]), the atom p([3]) is in the minimal model
of the program, which clearly violates the typing discipline. To overcome this problem,
we have to assign to [ ] the “right ground type” T . A solution is to assign an index to con-
stants, apparently similar to how constants are declared in the simply-typed λ-calculus
to recover a principal type, viz. inlB : A→ A∨B. In our case, /0 �Σ [ ]#int : T has solution
T = #list(#int). Using indexed terms, the above clauses become p([3]) ← q([ ]#int),
as well as q([ ]#char) ← r([ ]#char) and r([ ]#char). Now the standard ASP semantics
correctly works.

The reader may wonder whether function indexing can be avoided and thus recon-
structed. Interestingly enough, the dual of the property of transparency [11], for which
the type declaration of every (internal) function is such that every type variable occur-
ring in the domain also occurs in the range, ensures, in the absence of overloading,
index reconstruction. Space prevents us from providing a formal proof.

Any non-trivial type signature is a source of infinity. We draw our inspiration from
the way in which [5] deals with computable functions. We view type instantiation and
grounding of individual variables as two separate phases. The intuition is that poly-
morphic predicate definitions behave as open units, i.e., groups of clauses abstracting
type variables. During grounding an open unit is instantiated by grounding the type
variables over a finite number of ground types of its signature (tinst(P)). Subsequently
grnd•(tinst(P)) grounds individual variables. In the absence of a satisfactory notion of
modules and their instantiation in the ASP framework yet, we will not formally define
tinst(P). Rather, we directly illustrate a case where modularity and type instantiation do
not work properly. In this situation, the user has to provide the type instantiation with a
so-called “@with-directive”.

Example 11

unit choices.
#maxint=1.
type pencil --> p1 ; p2.
type color --> red ; blue.
func col : pencil -> color.

col(p1) = red.
col(p2) = blue.

pred choose(pencil), ok(#int), nice(’A), ugly(’B).
prog
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nice(X) v ugly(Y).
choose(X) :- nice(X), not ugly(col(X)).
@with ugly(#int):
ok(X+1) :- nice(X), X < 1.

Type inference yields:

poly: α,β : type, X : α, Y : β � niceα(X) ∨ uglyβ(Y ) : head

used by: i) X : pencil � choose(X) ← nicepencil(X), not uglycolor(col(X)) : clause

ii)X : #int � ok(X + 1) ← nice#int(X), X < 1 : clause

The type instantiation inferred from i) is [pencil/α,color/β], while ii) gives the partial
instantiation [#int/α]. The @with-directive provides [#int/β]. The result of the type
instantiation is:

c1 X : pencil,Y : color � nice(X) ∨ ugly(Y) : head
c2 X ,Y : #int � nice(X) ∨ ugly(Y) : head
c3 X : pencil � choose(X) ← nice(X), not ugly(col(X)) : clause
c4 X : #int � ok(X + 1) ← nice(X), X < 1 : clause

The inferred contexts will be relevant next, in Example 13. With the directive @with
ugly(#int), the instantiations of nice and of ugly in c1 and c2 do not interfere, i.e.
composition is modular. However, the directive @with ugly(color) would have set
[color/β]. Then the clauses c1 and c2 would have shared the same uglycolor predicate.

A sufficient condition to avoid interference is to impose that the head predicates have
different indexed names in different type instantiations. In our example, we could obtain
this by declaring a unit allNiceOrAllUgly(α,β) with nice,ugly : ∀α,β.α→ o.

Now we explain the grounding phase. We extend the notion of context so that it con-
tains everything related to the external predicates and operations, while the right-hand
side of � contains only the program and the free functions. Namely we transform a
clause Γ �C into an extended clause Γ′|Δ �C′, where Γ⊆ Γ′, Δ is a set of Σ-formulas,
which we call constraints, and C′ now contains only predicates from Π and function
symbols that are internal. This can be done by moving external predicates in the con-
straint context Δ and by introducing suitable equalities in the usual CLP’s way.

Example 12. The clauses c1,. . . ,c4 of Example 11 are transformed into the following
extended clauses e1, . . . , e4:

e1 X : pencil,Y : color | ( � nice(X) ∨ ugly(Y )
e2 X ,Y : #int | ( � nice(X) ∨ ugly(Y )
e3 X : pencil, U : color |U = col(X) � choose(X) ← nice(X), not ugly(U)
e4 X ,J : #int | J = X + 1, X < 1 � ok(J) ← nice(X)

In e3, the term col(X) occurring in c3 is replaced by a new special variable U : color
and U = col(X) is inserted in the constraints context. Similarly for J = X + 1 in e4.
Furthermore, the external predicate X < 1 has been moved to the constraints context.
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Finally, we explain how GA uses extended contexts. Take the signature Σ∪Π and ex-
tended clause Γ|Δ � C. Clearly, GA may access both the signature and the grounding
structure G. Take an assignment a such that a ∈ ass(Γ,G). Since Δ contains Σ-formulas
and G is a Σ-interpretation, GA can evaluate the truth relation G |=a Δ.

egrndG(Γ |Δ �C,a) =
{

grndG(Γ �C,a) if G |=a Δ
( otherwise

egrndG(Γ |Δ �C) =
⋃

a∈ass(Γ,G){egrndG(Γ |Δ �C,a)}

It has the following property. Let P be a (Σ∪Π)-program and Pe be the corresponding
extended program. The grounding egrndG(Pe) is the union of egrndG(Γ|Δ � C), for
Γ|Δ �C ∈ Pe. One can prove that the stable models of grndG(P) coincide with those of
egrndG(Pe).

Example 13. Take the clause e3 of Example 12. An assignment for its context is a1 =
[p1/X , red/U ]. Since G |=a1 U = col(X), we have

egrndG(e3,a1) = choose(p1) ← nice(p1), not ugly(red)

In contrast, for the assignment a2 = [p1/X , blue/U ], we have G �|=a2 U = col(X). Thus
egrndG(e3,a2) = (, which can be ignored. Since we have finite types, we generate all
the possible assignments and, at the end of the process, we obtain:

nice(p1) ∨ ugly(red) nice(p1) ∨ ugly(blue)
nice(p2) ∨ ugly(red) nice(p2) ∨ ugly(blue)
nice(0) ∨ ugly(0) nice(0) ∨ ugly(1)
nice(1) ∨ ugly(0) nice(1) ∨ ugly(1)
choose(p1) ← nice(p1), not ugly(red)
choose(p2) ← nice(p2), not ugly(blue)
ok(1) ← nice(0)

As the example shows, a type-driven grounder GA has the following features:

– In the grounding process, only well-typed instances are generated, viz. in Exam-
ple 13, nice(p1)∨ugly(p1), nice(p1)∨ugly(p2),. . . are excluded.

– If a variable X functionally depends on other variables Y , one value
is generated for it, depending on the values generated for Y . For in-
stance, in clause e3 of Ex. 12 the variable U functionally depends on X ,
thus in Ex. 13 only the clauses choose(p1) ← nice(p1), not ugly(red) and
choose(p2)← nice(p2), not ugly(blue) are added.

This should facilitate the generation of small ground instances. More importantly, types
give the user a better control of the grounding process.

In the previous example, the grounding structure is finite. To complete the picture, we
should consider the general case of possibly infinite grounding structures. We will not
introduce new ideas, but consider how types could be managed by existing approaches.
Specifically, we consider intelligent grounding w.r.t. the class of finitely ground pro-
grams [6], denoted by FG . Here we explain the idea informally. Intelligent grounding
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is performed starting from a modular decomposition 〈M1,M2, . . . ,Mn〉 of the program
P. The module M1 does not depend on any other modules and grounds to a G1 having
the same stable models as M1. We use G1 to build a G2 = ig(M2,G1), having the same
stable models of M1∪M2. We proceed in this way until we obtain Gn = ig(Mn,Gn−1),
which has the same models of P. If Gn is finite, one says that P is an FG -program.

Example 14. This contrived example shows a program that can be divided in two mod-
ules (we use a,b,... as constants of type #char).

unit show.
type #int, #char, #list(’A).
pred select(#list(’A)), show(#list(’A)).
prog
select([a]) v select([4]). %module m1
select([b,a]).
select([X]) :- select([X+X]).
show(M):- select(L),select(M), #reverse(L,M). %module m2

The module decomposition is 〈m1,m2〉. Note that m2 is polymorphic. Type inferences
yield the following extended clauses:

l1 � select([a]) ∨ select([4])
l2 � select([b,a])
l3 X , I : #int | I = X +X � select([X ]) ← select([I])
l4 L,M : #list(#char) | #reverse(L,M) � show(M) ← select(L), select(M)
l5 L,M : #list(#int) | #reverse(L,M) � show(M) ← select(L), select(M)

Now we proceed to the intelligent grounding phase, by applying the instantiation al-
gorithm given in [6] and using extended clauses. We firstly ground the module m1. We
assume that the grounding algorithm uses a,b,c, . . . as the internal representation for
characters, 0,1,2, . . . for numbers and [v1, . . . ,vn] for lists, so that we do not need to
distinguish between values and ground terms. Following [6], we start from the already
ground clauses:

� select([a]) ∨ select([4]) � select([b,a])

We consider the set G of atoms select([a]), select([4]), select([b,a]) occurring in the
head of the ground clauses of m1. We use G to instantiate l3 by looking for all the
grounding substitutions that unify select([I]) with one of the atoms in it. We get:

X : #int | 4 = X +X � select([X ]) ← select([4])

Differently from Example 13, the GA tries to instantiate clauses looking for body atoms
that match with atoms in the current G . In this way, the variable X is not instantiated.
It has to be grounded by solving the constraint 4 = X + X . The solution is of course
X = 2. The result of this step is:

� select([a])∨ select([4])
� select([b,a])
� select([2]) ← select([4])

X , I : #int | I = X +X � select([X ]) ← select([I])
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and the new G contains also select([2]). We iteratively apply the same process, which
yields the instantiation I = 2 and the equation 2 = X + X . We get:

� select([a]) ∨ select([4])
� select([b,a])
� select([2]) ← select([4])
� select([1]) ← select([2])

X , I : #int | I = X +X � select([X ]) ← select([I])

Now no new atom is added to G and we stop the grounding process for m1. The next
step is to use m1 to ground m2. We just consider one of the grounding operations acti-
vated in this phase, that is the instantiation and simplification of select(L), select(M) by
select([b,a]) in the first clause of m2. We get · · · | #reverse([b,a], [b,a]) � show([b,a]),
where the body has been simplified because select([b,a]) is true. The evaluation of
#reverse([b,a], [b,a]) fails and the result is (, i.e., no new clause is generated.

The main differences with respect to [6] are:

– Typing does not even consider ill typed substitutions.
– The treatment of external functions is shifted to the context. The context also con-

tains the external atoms. Thus, the problem of grounding a clause in presence of
predicates and operations defined in the grounding structure G is reduced to a con-
straint solving problem over G. The class of the groundable programs depends both
on the grounding strategy and on the class of the constraints that the grounder can
solve. For example, we could reconstruct value invention as treated in [5] in terms
of programs that guarantee the solvability of a special class of constraints.

6 Related Work and Conclusions

The introduction of polymorphism in logic programming has required some care: there
are predicate definitions that are semantically non-problematic, yet may lead to run-
time errors [15,11]. A sufficient condition is definitional genericity, which requires that
the type of a defining occurrence of a predicate must be a renaming of the assigned type
signature of the predicate. This ensures the type soundness result of [18], stating that if
a program and a goal are well-typed, then at each resolution step variables can only be
instantiated to terms consistent with their typing.

Although our system owes its static semantics to Mycroft and O’Keefe’s seminal
paper, the very different operational semantics of ASP allows us to dispense of those
restrictions – as a matter of fact a dual property to transparency is instrumental in infer-
ring type indexes that ensure ground type reconstruction.

Some papers in the ASP literature, e.g. [9, 2] use a many sorted language or deals
with object-oriented features. Sorts, however, are merely syntactic sugar, to be trans-
lated back into first-order logic, hence they are not given a semantics in terms of many
sorted first order signatures, not (polymorphic) type checking is addressed. W.r.t. object
orientation OntoDLV [8] has recently extended DLV-Complex, catering to the spec-
ification and reasoning on enterprise ontologies; it extends ASP with object-oriented
constructs, such as classes, objects, multiple inheritance, sets and lists. The semantics
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is based on a notion of well-defined interpretation of a program, which is defined over
the Herbrand Universe of the program. Differently from our approach, it lacks a formal
notion of “external” structure where to interpret external predicates, moreover “gener-
ics” are not considered.

Modern prescriptive types system for logic programming have significantly evolved
since the Eighties: for example, Mercury’s type system [14] is a fairly complex exten-
sion of [18], supporting higher order types as λProlog, but also type classes similar to
Haskell, in addition with a form of existential types. Moreover its mode system [20]
provides support for subtypes as well as for uniqueness, similar to linear types. We plan
to investigate how modes can be used in our approach to deal with grounding, as we
have touched upon in Example 13.

Finally we mention the extensive research about polymorphic type inference in re-
lation algebra and (object-oriented) databases, see [7, 4] for examples. However, this is
only loosely related to our efforts, as there the aim is to extend a ML-like type system
to capture the principal type of a program involving database operations or more in
general of an expression in relational algebra, where a type is seen as a set of attribute
names for a given schema.

In conclusion, we have presented a polymorphic types system for DLV-Complex
and developed a declarative semantics for grounding, while studied its impact on model
generation. Although our research is at an early stage, we believe that it shows the
potential of types in ASP. A fortiori this should hold true for ASP systems such as
Smodels [22] that implements a simpler logic. Beside the well-known advantages of
prescriptive typing, in the ASP setting one may reap significant benefits w.r.t. the size
of grounding; finally, we have shown that certain constraints can be directly codified
in terms of typing, further reducing the size of the search space. This fits with current
research aimed at finding a tighter relationship between ASP and constraint solving [2].
Directions for future research include:

– quantitatively evaluate the efficiency of type-driven grounding in terms of size and
number of non-isomorphic models;

– extend the type system with other constructs, such as aggregate types, subtyping,
etc., in order to account of other features of ASP, e.g. preference and cardinality
constraints [16]. In particular, we speculate that we can elegantly define aggregate
types using concrete data as in [3];

– From a practical standpoint, evaluate whether it is feasible to decompile the many-
sorted language into untyped first order logic so that the present systems can read-
ily be used or it is more effective to redesign grounding to take into full account
the typing discipline.
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A Syntax and Semantics of DLV

In this section we provide the bare minimum of definitions of the syntax and seman-
tics of DLV [16] (disjunctive Datalog) and we briefly describe its extension with func-
tions [5].

A term is either a variable or a constant. An atom a is an expression p(t1, . . . , tn),
where p is a predicate of arity n and t1, . . . , tn are terms. A classical literal is an atom of
the form a or ¬a, where ¬ is the classical negation. A literal l has the form l or not l,
where l is a classical literal and not represents the negation as failure [17]. A disjunctive
rule r is a formula of the form

A1 ∨ ·· · ∨ An ← B1, . . . ,Bk, not Bk+1, . . . ,not Bm

where A1, . . . ,An,B1, . . . ,Bm are classical literals, n ≥ 0 and m ≥ k ≥ 0. The disjunc-
tion A1 ∨ ·· · ∨ An is the head of r, the conjunction B1, . . . ,Bk,not Bk+1, . . . ,not Bm is
the body of r. We use the following notations: HD(r) = {A1, . . . ,An} (the head liter-
als), BD+(r) = {B1, . . . ,Bk} (the positive body), BD−(r) = {Bk+1, . . . ,Bm} (the nega-
tive body). A rule with empty head (i.e, n = 0) is called a constraint, a rule with empty
body (i.e., k = m = 0) is called a fact. A rule r is safe if any variable occurring in r also
appears in BD+(r). A DLV program is a finite set of safe rules. We recall some basics
of logic programming: The Herbrand Universe UP of P is the set of all constants occur-
ring in P (we assume UP �= /0). The Herbrand Base BP of P is the set of all the literals
constructible from the predicate symbols of P and the constants of UP. For every rule
r of P, grnd(r) denotes the set of rules obtained by applying all possible substitutions
from the variables in r to elements of UP; grnd(P) is the union of the sets grnd(r), for
every r of P. An interpretation I of P is a consistent subset of BP, i.e. I does not contain
pairs of classical literals of the form a and ¬a. Let P be a positive program (namely, for
every rule r of P, BD−(r) = /0) and let I ⊆ BP be an interpretation.

– I is closed under P if, for every r ∈ grnd(P), BD+(r)⊆ I implies HD(r)∩ I �= /0.
– I is an answer set for P if I is minimal under set inclusion among all the interpre-

tations closed under P.

The reduct or Gelfond-Lifschitz transformation of a ground program P with respect to
an interpretation I ⊆ BP is the positive ground program PI obtained from P by:

– deleting all rules r ∈ P such that BD−(r)∩ I �= /0;
– deleting the negative body from the remaining rules.

An answer set for a program P is an interpretation I ⊆ BP such that I is an answer set
of grnd(P)I .

Recently, DLV has been extended to DLV-Complex by introducing functions, sets
and lists. This is obtained through the concept of value invention [5], which is based on
the possibility of using externally defined predicates in the body of clauses. External
predicates must be (well) moded, e.g. #p(i,o) denotes a call to an external predicates
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p(c,X) with ground input c that will “invent” an output value for X. The semantics
of DLV programs has to be extended in order to treat external predicates, which are
interpreted by means of external oracles. A DLV-Complex program with external pred-
icates is required to be safe and VI-restricted [5]. In this case, it is guaranteed that the
grounding process will halt with a finite ground program whose answer sets are the
expected ones. A function symbol f(X) is introduced in DLV-Complex by associating
with it a constructor predicate #f(o,i) and a destructor predicate #f(i,o). Given a
value c, #f(V,c) invents a value v representing the ground term f(c), while #f(v,X)
reconstructs the value c.
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Abstract. We study the type inference problem for the Soft Type As-
signment system (STA) for λ-calculus introduced in [1], which is correct
and complete for polynomial time computations. In particular we design
an algorithm which, given in input a λ-term, provides all the constraints
that need to be satisfied in order to type it. For the propositional frag-
ment of STA, the satisfiability of the constraints is decidable. We con-
jecture that, for the whole system, the type inference is undecidable, but
our algorithm can be used for checking the typability of some particular
terms.

1 Introduction

In [1], we have introduced a type assignment system for λ-calculus, named STA
(Soft Type Assignment), inspired by the Soft Linear Logic of Lafont [2], which
characterizes the polynomial time computations, in the sense that a well typed
term can be reduced to normal form in a number of β-reduction steps which
is polynomial in its size, and moreover all polynomial time functions can be
represented by well typed terms, through an appropriate coding. In this paper we
approach the problem of type inference in STA. In the simple types setting, type
inference is decidable, and it corresponds to the property of having a principal
typing, i.e., a typing for a term from which all (and only) the types derivable
for the term itself can be built, through a substitution. STA has both modal
and second order types, so the type inference is more difficult to be studied in
this setting. We approach the problem in two steps, first for the propositional
fragment and then for the full system. In both cases we need the notion of type
scheme, which is an abstract representation of a set of types. Namely types can
be obtained from type schemes through an operation of substitution. A notion
of type scheme, for reasoning about type inference, was introduced first in [3]
in the setting of intersection types, and it has been used, in different forms, for
second order type inference [4], and for modal type inference [5]. We prove that,
in propositional case, the type inference for STA is decidable. We introduce an
algorithm which, given a term M, generates a triple Π(M) = 〈Ψ,U,H〉, where U is a
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type scheme, Ψ is a context assigning type schemes to the free variables of M, and
H = 〈P , C〉 is a pair of constraint sets. The constraint set P is a unification set of
type schemes while C is a set of (in)equalities between exponentials. Informally
P represents the conditions on the terms functionality, while C represents the
conditions on the modalities. A pair of constraint sets is satisfied if the unification
in P succeeds and moreover there is a substitution replacing exponentials by
natural numbers in C, in such a way that the (in)equalities become true. The
algorithm is correct and complete, in the sense that M can be typed only in case
the sets of constraints can be satisfied, and moreover all the typings for M can be
built from Ψ and U through substitutions satisfying them. Since the satisfiability
of the constraints is decidable in polynomial time, the type inference is decidable
in polynomial time too.

Then we extend our study to second order types. We define an algorithm show-
ing all the conditions that must be satisfied in order to type a term in the system.
Namely, when applied to a term M, the algorithmproduces as output a type scheme,
a type scheme context, and five sets of constraints G,F ,Q,P and C, where, P , C
are as in the propositional case, G is a semi-unification set of type schemes, and F
and Q represent the conditions on the quantified abstracted variables. Also in this
case the algorithm is correct and complete, but we conjecture that the satisfiabil-
ity of the second order constraints is undecidable. We think the proof of Wells of
undecidability of typability in System F adapts also in this case [6]. In any case, the
algorithm is quite useful for checking the typability in particular cases, and in fact
we use it for building two terms, the first one typable in System F but untypable
in STA, and the second one typable in STA and not typable in DLAL [7], which is
an alternative polynomial type assignment inspired by Light Affine Logic [8].

The paper is organized as follows. In Section 2 we introduce the type assign-
ment system STA, and we recall its properties. In Section 3 we present the type
inference algorithm for the propositional fragment and we prove it correct and
complete. Moreover in Section 4 we discuss its complexity. In Section 5 we extend
the analysis to second order types. Finally Section 6 contains a short conclusion.

2 The System STA

In this section we introduce the type assignment system STA, and we show its
properties. STA is presented in a version which is slightly different from the
presentation given in [1]. The difference is only in the management of contexts,
in [1] contexts were sets of type assignments, here instead they are multisets
of type assignments. This version is clearly equivalent to the original one [9],
preserving the complexity properties, but it makes easier the design of the type
inference algorithm.

Definition 1

i) The set T of soft types is defined as follows:

A,B,C ::= α | σ� A | ∀α.A (Linear Types) σ, τ ::= A |!σ
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Table 1. STA in the multiset version

x : A � x : A
(Ax) A � M : σ

A, x : A � M : σ
(w)

A, (x : τ)(r) � M : σ

A, x :!τ,� M : σ
(m)

A � M : σ� A B � N : σ A ≈ B

A,B � MN : A
(� E)

A � M : ∀α.A
A � M : A[B/α]

(∀E)

A, x : σ � M : A x /∈ dom(A)

A � λx.M : σ� A
(� I)

A � M : A α /∈ FTV(A)

A � M : ∀α.A
(∀I) A � M : σ

!A � M :!σ
(sp)

where α, β range over a countable set of type variables. ≡ denotes the syn-
tactical identity between types.

ii) A context A is a finite multiset of type assignments of the shape x : σ, such
that if x : σ1 ∈ A and x : σ2 ∈ A then there exists A ∈ T and n,m ∈ N
such that σ1 ≡ !...!︸︷︷︸

n

A and σ2 ≡ !...!︸︷︷︸
m

A. Contexts are ranged over by A,B,C.

When a context is a set we denote it by Γ,Δ.
iii) STA proves statements of the shape A � M : σ where A is a context, M is

a term of λ-calculus, and σ is a type. The rules of the system are given in
Table 1. The term M is typable in STA if there is a context A and a type σ
such that A � M : σ.

As usual � associates to the right and has precedence on ∀, while ! has prece-
dence on everything else. FTV(σ) denotes the set of free type variables of the
type σ. B[A/α] denotes the capture free substitution of all occurrences of the
type variable α by the linear type A: note that this kind of substitution preserves
the correct syntax of types. ∀α.A shortens ∀α1...αn.A for n ≥ 0. Two contexts
A and B are coherent, denoted A ≈ B, if and only if their multiset union
A,B is a context. Let A = {x1 : σ1, . . . , xn : σn} then dom(A) = {x1, . . . , xn},
!A = {x1 :!σ1, . . . , xn :!σn} and FTV(A) = {α ∈ FTV(σ) | x : σ ∈ A}.
Σ � A � M : σ denotes that there is a derivation Σ proving A � M : σ. |M|
denotes the number of sybols in M.

Hygiene condition. We assume that free and bound type variables have differ-
ent names, and also type variables bounded by different quantifiers are named
differently.

Theorem 2 (Complexity of STA [1])

i) (Soundness) If Π � Γ � M : σ, then M can be evaluated to normal form in
a number of β-reduction steps O(|M|(d(Π)+1)), where d(Π) is the maximum
nesting of rules (sp) in Π.

ii) (Completeness) Every polynomial time function can be encoded by a term
typable in STA.
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3 Type Inference for the Propositional Fragment

As we said in the introduction, if we restrict ourselves to consider just the propo-
sitional fragment, the type inference is decidable. In this section we will show
the type inference algorithm, which is based on the notion of type scheme and
a unification procedure for type schemes.

Table 2. Unification Algorithm

U(a, a) = 〈∅, ∅〉
(U1)

U(φ,ψ) = 〈P1, C1〉 U(U, V ) = 〈P2, C2〉
U(φ� U, ψ� V ) = 〈P1 ∪ P2, C1 ∪ C2〉

(U4)

a /∈ FV(U)

U(a, U) = 〈{a = U}, ∅〉
(U2)

U(φ� U, V ) = 〈P,C〉
U(φ� U, !pV ) = 〈P, C ∪ {p = 0}〉

(U5)

U(a, V ) = 〈P, C〉
U(a, !pV ) = 〈P, C ∪ {p = 0}〉

(U3)
U(ψ, φ) = 〈P, C〉
U(φ,ψ) = 〈P, C〉

(U6)
U(U, V ) = 〈P, C〉

U(!pU, !qV ) = 〈P, C ∪ {p = q}〉
(U7)

3.1 Type Schemes, Substitutions and Constraints

Definition 3. Linear type schemes and type schemes are respectively defined
by the grammars

U, V, Z ::= a | φ� U φ, ψ, ξ ::= U |!pU

where the exponential p, q, r belong to a countable set, a, b, c, d belong to a count-
able set of linear scheme variables. T denotes the set of type schemes.

FV(φ) is the set of all linear scheme variables and exponentials occurring in φ.
Two type schemes φ, ψ are disjoint if FV(φ) ∩ FV(ψ) = ∅.

A scheme substitution s is a total function mapping linear scheme variables
to linear types and exponentials to natural numbers. So a scheme substitution
maps type schemes to types. The application of s to a type scheme is defined as

s(a) = A if [a �→ A] ∈ s s(φ� U) = s(φ)� s(U)

s(!pU) = !...!︸︷︷︸
n

s(U) if [p �→ n] ∈ s

In what follows, s[a1 �→ τ1, . . . , an �→ τn] denotes the scheme substitution defined
as s except on variables a1, . . . , an to which it assigns τ1, . . . τn.

A type scheme can be seen as an abstract representation of the set of types
that can be obtained from it through a scheme substitution. For example, a
represents the set of all linear types, while !p(a� b) represents the set of types
{ !...!︸︷︷︸

n

(A� B) | A,B are linear types and n ≥ 0}.

Two type schemes φ and ψ can be unified if there is a scheme substitution s
such that s(φ) ≡ s(ψ).
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A type scheme context is a multiset of variable type scheme assignments of the
shape x : φ where x is a variable and φ is a type scheme. Type scheme contexts are
ranged over by Ψ, Φ. dom(Ψ) denotes the set of variables {x | x : φ ∈ Ψ}. Multiset
union of type scheme contexts is denoted by �. The expression Φ = Φ′�Ψ denotes
the fact that Φ = Φ′ � Ψ and dom(Φ′) ∩ dom(Ψ) = ∅. Scheme substitutions are
easily extended to type scheme contexts, i.e. if Ψ = x1 : φ1, . . . , xn : φn then
s(Ψ) = x1 : s(φ1), . . . , xn : s(φn).

A constraints sequence H is a couple 〈P , C〉 of constraints sets. The set of
scheme variable constraints P is a set of constraints of the shape a = U where a
is a linear scheme variable and U is a linear type scheme such that a /∈ FV(U).
The set of exponentials constraints C is a set of linear (in)equations of the shape
p = q, p ≥ q, p ≥ q1 + q2, p > q or p = 0. H1 � H2 denotes the component-wise
union of the constraints sequences H1 and H2. Sometimes we omit the empty
set of a constraints sequence, i.e. H � {p = q} denotes H� 〈∅, {p = q}〉.

A scheme substitution s satisfies H if and only if s(a) ≡ s(U), for every
equation a = U in P , and s(p) op s(q), for every p op q in C.

3.2 Unification Algorithm

In Table 2, we introduce the algorithm U, which allows to unify type schemes
under some assumptions. U proves judgments of the shape

U(φ, ψ) = H

where φ and ψ are two type schemes and H = 〈P , C〉 is a constraint sequence
representing the constraints under which φ and ψ can be unified. Namely P
represents the constraints on the structure of the type schemes, while C the
constraints on the number of modalities.

Note that rule (U6) keeps down the number of rules, nevertheless it can be
cause of non termination (infinite derivations). It is easy (but boring) to give
a different definition of the algorithm without the rule (U6), by making explicit
a symmetric version of all the rules. In what follows we assume to use such
an extended version of the algorithm. Note that some inputs does not admit a
derivation, by rule (U2), in such a cases the unification fails. The following easy
theorem assures a weak form of successful termination which will be useful in
the sequel.

Theorem 4 (U Termination). Let φ, ψ ∈ T be disjoint. Then, there exists H
such that U(φ, ψ) = H.

The algorithm U is correct and complete, as shown in the following.

Theorem 5 (U Correctness). Let φ, ψ ∈ T . If U(φ, ψ) = H then for every
scheme substitution s satisfying H

s(φ) ≡ s(ψ)

Proof. By induction on the derivation of U(φ, ψ) = 〈P , C〉. Note that the existence
of a scheme substitution satisfying the constraints in 〈P , C〉 is decidable. ��
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Theorem 6 (U Completeness). If s(φ) ≡ s(ψ) then there exists H such that
U(φ, ψ) = H and s satisfies H.

Proof. By induction on the shape of φ and ψ. ��

3.3 The Algorithm

The type inference algorithm defined in Table 3 proves statement of the shape

Π(M) = 〈Ψ,U,H〉

where Ψ is a type scheme context, U is a linear type scheme and H is a constraints
sequence. The type inference algorithm uses the procedure Unify, defined in
Table 4, that is just an extension of the unification algorithm U to type scheme
contexts and type schemes.

It is worth noticing the difference between this algorithm and the type infer-
ence algorithm for simple types. The latter generates a principal typing, which is
a typing for the input term, and for which all and only the typings derivable for
the same term are derivable, through substitutions. If the input term cannot be
typed, then the algorithm fails. In the current setting, our algorithm generates a
sort of an abstract representation of all the typings for the input term M, in the
sense that, if the constraint sequence H can be satisfied by a scheme substitution
s, then s(Ψ) � M : s(U) is a typing for M, and moreover all typings for M can be
built from Π(M) by a scheme substitution satisfying H, plus some applications
of rules dealing with the modality. If the constraints are not satisfiable, then M
cannot be typed.

Table 3. Type Inference Algorithm

Π(x) = let a, p be fresh in 〈{x :!pa}, a, {∅, ∅}〉

Π(λx.M) = let Π(M) = 〈Ψ,U,H〉 in

let Ψ = Ψ ′ � {x :!s1V1, . . . , x :!snVn}in let a, r be fresh in

if n = 0 then 〈Ψ ′, !ra� U,H〉
if n = 1 then 〈Ψ ′, !rV1 � U,H � {r ≥ s1}〉
if n > 1 then 〈Ψ ′, !rV1 � U,H � {r > s1, . . . , r > sn}〉

Π(MN) = let Π(M) = 〈ΨM, U,HM〉 and Π(N) = 〈ΨN, V,HN〉 be disjoint in

let a, qi, p be fresh in let Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN},

H = Unify(ΨM, Ψ
′
N , U, !

pV � a) in 〈ΨM � Ψ ′
N , a,HM � HN � H � {qi ≥ pi + p}〉

We need to prove that the type inference algorithm is well defined.

Theorem 7 (Π Termination). Let M ∈ Λ. Then there exist Ψ,U and H such
that Π(M) = 〈Ψ,U,H〉.

Proof. By induction on the structure of M, using Theorem 4.
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The use of multisets instead of sets as contexts in STA helps in the design of the
algorithm, maintaining the correcteness of typing. Note that in the definition of
Π, in the abstraction case we can freely take only the type scheme of the first
occurrence (if any) of the variable to be abstracted since all the type schemes
have already been unified. The same holds for the Unify procedure. We can now
finally prove the main theorems of this section.

Theorem 8 (Π Correctness). Let Π(M) = 〈Ψ,U,H〉. Then, for each scheme
substitution s satisfying H,

s(Ψ) � M : s(U)

Proof. By induction on the derivation proving Π(M) = 〈Ψ,U,H〉. We will show
just the most difficult case, when the term is of the shape PN. Consider the case
Π(PN) = 〈Ψ,U,H〉. By definition U is a scheme variable a, Π(P) = 〈ΨP, UP,HP〉,
Π(N) = 〈ΨN, UN,HN〉 and they are all disjoint. Let s be a scheme substitution
satisfying H. Since s clearly satisfies HP and HN then by induction we have both
s(ΨP) � P : s(UP) and s(ΨN) � N : s(UN). By definition U(UP, !pUN � a) = H′

with H′ ⊆ H, so since s satisfies H, by Theorem 5: s(UP) ≡ s(!pUN)� s(a). Let
Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN}. Then clearly s(Ψ) = s(ΨP � Ψ ′

N) = s(ΨP), s(Ψ ′
N).

So, let s(p) = k. Then, the following derivation can be built

s(ΨP) � P : s(!pUN)� s(a)

s(ΨN) � N : s(UN)

!ks(ΨN) � N :!ks(UN)
(sp)k

s(Ψ ′
N) � N :!ks(UN)

(m)∗

s(ΨP), s(Ψ ′
N) � PN : s(a)

(� E)
��

Table 4. Unify procedure

Unify(Φ, Ψ, φ, ψ) = let x1, . . . , xm = dom(Φ) ∩ dom(Ψ), ∀1 ≤ i ≤ m
Φ(xi) = {!s1a1, . . . , !snan}, Ψ(xi) = {!r1b1, . . . , !rkbk},
U(φ, ψ) = 〈P0, C0〉, U(a1, b1) = 〈Pi, Ci〉

in〈
m⋃

j=0

Pj ,
m⋃

j=0

Cj〉,

Theorem 9 (Π Completeness). Let Π(M) = 〈Ψ,U,H〉. If A � M : σ, then
there exists a scheme substitution s satisfying H such that

Σ � s(Ψ) � M : s(U)

Moreover, the sequent A � M : σ can be obtained from Σ by a (maybe empty)
sequence of applications of the rules (w), (m) and (sp).

Proof. By induction on the derivation Π proving A � M : σ. We will show just
the case where Π ends as

Σ′ � A � N : σ� A Θ′ � B � P : σ A ≈ B

A,B � NP : A
(� E)
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Let Π(NP) = 〈Ψ,U,H〉. Then, there are disjoint Π(N) = 〈ΨN, UN,HN〉, Π(P) =
〈ΨP, UP,HP〉. By induction, there are scheme substitutions sN and sP satisfying
respectively HN and HP, such that Σ′′ � sN(ΨN) � N : sN(UN) and Θ′′ � sP(ΨP) �
P : sP(UP) and Σ′ and Θ′ can be obtained respectively from Σ′′ and Θ′′ by some
applications of the rules (w), (m) and/or (sp).

Since HN and HP are disjoint, we can build a scheme substitution s′ satisfying
both, just acting as each one of the previous substitutions on the corresponding
domain. By definition of Π, Ψ = ΨN � Ψ ′

P where, if ΨP = x1 :!p1V1, . . . , xn :!pnVn,
then Ψ ′

P = x1 :!q1V1, . . . , xn :!qnVn for fresh q1, . . . , qn. Moreover, for fresh a
and p, if Unify(ΨN, Ψ

′
P, UN, !pUP � a) = H′ then U ≡ a, and H = HN � HP �

H′ � {qi ≥ pi + p}. Since a and p are fresh, we can choose s′ satisfying also
s′(UN) ≡ σ � A ≡ s′(!pUP � a). Hence in particular by Theorem 6 s′ satisfies
H′. Moreover, since q1, . . . , qn are fresh, it is easy to extend s′ to a scheme
substitution s = s′[q1 �→ s(p1) + s(p), . . . , qn �→ s(pn) + s(p)]. Clearly s satisfies
H. Let s(p) = k. Then we can build the following derivation

Σ′ � s(ΨN) � N : s(UN)

Θ′ � s(ΨP) � P : s(UP)

!ks(ΨP) � P :!ks(UP)
(sp)k

s(ΨN), !ks(ΨP) � NP : s(∀t.a)
(� E)

and A,B � NP : A can be obtained from it by a sequence of applications of the
rules (w), (m) and (sp). ��

In the following we will give some examples, and in the next section we will
discuss the constraints resolution in them. These example are useful both to
understand the behaviour of the algorithm and to compare the typability power
of STA and other type assignment systems. Namely the first term (2) is typable
in STA and in simple type assignment system, the second term (222) is typable
in the simple type assignment system but untypable in STA, and the third one
(2(yz)) is typable in STA but untypable in the propositional fragment of DLAL.

Example 10

1. Let 2 ≡ λs.λz.s(sz). Then Π(2) = 〈∅, U, 〈P , C〉〉 where

U = !r5a2 � (!r4a1 � b2)
P = {a2 =!q1a1 � b1, a3 =!q2b1 � b2, a2 = a3}
C = {r1 ≥ p1 + q1, r2 = p3, r2 ≥ p2 + q2, r3 ≥ r1 + q2, r4 ≥ r3, r5 > p3}〉

2. A more involved example is related to the term 222. Then, we obtain
Π(222) = 〈∅, U, 〈P , C〉〉 where

U = a′′

P = P0 ∪ P1 ∪ P2 ∪ {a1
2 =!r

2
5a2

2 � (!r
2
4a2

1 � b2
2), a

′ =!r
1
4a1

1 � b1
2,

a′ =!p
′′
(!r

0
5a0

2 � (!r
0
4a0

1 � b0
2))� a′′ }

C = C0 ∪ C1 ∪ C2 ∪ {p′ = r1
5}

and P i = {ai2 =!q
i
1ai1 � bi1, a

i
3 =!q

i
2bi1 � bi2, a

i
2 = ai3} while Ci = {ri1 ≥

pi1 + qi1, r
i
2 = pi3, r

i
2 ≥ pi2 + qi2, r

i
3 ≥ ri1 + qi2, r

i
4 ≥ ri3, r

i
5 > pi3}.
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3. Let us consider now the term 2(yz). The application of the algorithm pro-
duces: Π(2(yz)) = 〈{y :!rc, z :!sd}, U, 〈P∗, C∗〉〉, where:

U = f
P∗ = P ∪ {a2 = e, c =!td� e, f =!r4a1 � b2}
C∗ = C ∪ {r5 = t′, r ≥ r′ + t′, s ≥ s′ + t′, s′ ≥ t + s′′}

where P and C are defined as in point 1 of this example.

4 Constraints Resolution

Let Π(M) = 〈Ψ,U,H〉, where H = 〈P , C〉. The resolution of the constraints in
H is splitted in two phases. The first one is the application of the standard
Robinson resolution [10] to P , so obtaining a new set of constraints, that can be
in its turn splitted in a set P ′ of constraints on schemes, and C′ of constraints on
exponentials. Then the second phase is to find a scheme substitution satisfying
the constraints P ′ and C ∪ C′. Some examples can clarify the procedure.

Example 11

1. Let us continue Example 10.1, i.e., Π(2). Then, the application of the Robin-
son resolution to the set P and C generates P ′ = {a2 =!q1a1 � b1, a1 =
b1, b1 = b2, a2 = a3} and C′ = {q1 = q2} respectively. The substitution

s = s′[a1, b1, b2 �→ α; a2, a3 �→ α� α; p1, p2, p3, q1, q2, r1, r2, r3, r4 �→ 0; r5 �→ 1]

satisfies the constraints P ′, C, C′ for all s′, and generates the typing ∅ � 2 :
!(α� α)� α� α. Hence the term is typable.

2. Let us continue Example 10.2, i.e., Π(222). The application of the Robinson
resolution is boring but easy, applied to P it produces a solvable set of
constraints on type schemes and the final type is defined through the type
scheme equation

a′′ =!q
2
1 (!q

0
1a0

1 � a0
1)� (!q

0
1a0

1 � a0
1).

But Robinson algorithm changes also the set of constraints on exponentials
C into the set C′ = C ∪ {q0

1 = r0
4 , q

2
1 = r0

5 , r
1
4 = p′′, q2

1 = r2
4 , q

2
1 = q2

2 , q
1
1 =

q1
2 , q

0
1 = q0

2 , q
1
1 = r2

5} which can be simplified in C′′ = {r2
5 > r2

2 ≥ p2
2, r

1
1 ≥

p1
1 + q1

1 , p
′ > r1

2 ≥ p1
2 + q1

1 , r
1
4 ≥ r1

3 ≥ r1
1 + q1

1 , q
2
1 > r0

2 , q
2
1 = 0}. This set is

clearly not satisfiable since the last two constraints are contradictory, and so
the term is not typable.

3. Let us continue Example 10.3, i.e. Π(2(yz)). The application of Robinson
resolution to P∗ gives a set P∗∗ = P ′ ∪ {c =!td� e, a2 = e, f =!r4a1 � b2}
and the set of exponential constraints becomes C∗∗ = C′ ∪ C ∪ {r5 = t′, r ≥
r′ + t′, s ≥ s′ + t′, s′ ≥ t + s′′}, where P ′and C′ are defined as at point 1 of
this example while C is defined as in Example 10.1. Let s be the substitution
at point 1 of this example; then the substitution:

s∗ = s[c �→ (α� α)� α� α; d �→ α� α; r′, s′, t, s′′ �→ 0; r, s, t′ �→ 1]
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satisfies the constraints in P∗∗ and C∗∗ and generates the typing:

y :!((α� α)� α� α), z :!(α� α) � 2(yz) : α� α.

Note that the term 2(yz) is not typable in DLAL due to the presence of two
free variables that must be duplicated.

4.1 Type Inference Complexity

It can be shown that our algorithm works in polynomial time. In particular it
is easy to verify that the construction of Π(M) = 〈Ψ,U,H〉 can be done in time
polynomial in |M|.

Let H = 〈P , C〉. The application of Robinson resolution to P , generating P ′

and C′, is polynomial in the number of both the scheme variables and expo-
nentials in P . The solution of the constraints in P ′ can be done through the
standard algorithm working on the dag representation of schemes, and so it is
polynomial in the number of scheme variables in P ′, which coincides with the
number of scheme variables in P .

As far as the exponential resolution task, i.e., the problem of solving the con-
straints in C ∪ C′, is concerned, apparently it seems more difficult, since the
problem of solving integer inequalities is in general NP-complete [11]. Neverthe-
less, following the method shown in [12], we can solve the problem over rational,
which takes time polynomial in the number of exponentials. Clearly the set of
solutions is closed under multiplication by positive integers. Now an integer solu-
tion can be obtained simply multiplying a rational solution by a suitable integer.

It is easy to check that the number of symbols in the constraints generated
by Π is polynomial in |M|. So the type inference problem for the propositional
fragment can be decided in polynomial time in the size of the term.

5 Type Inference for the Full System

5.1 Schemes, Substitutions and Constraints

Definition 12. The grammar of type schemes T , given in Definition 1, is ex-
tended as follows

U, V, Z ::= a | φ� U | [t].a | [t].φ� U (Linear type schemes) φ, ψ ::= U |!pU

where t, u, v belong to a countable set of sequence variables.

The notation [t] does not introduce bound variables. Note that schemes of the
shape [t].[u].U are not allowed. FV(φ) now denotes the set of linear scheme
variables, exponentials and sequence variables occurring in φ. Two type schemes
φ, ψ are disjoint if FV(φ) ∩ FV(ψ) = ∅.



146 M. Gaboardi and S. Ronchi Della Rocca

A scheme substitution s is extended to map sequence variables to sequences
of type variables. Namely the application of s to a type scheme is extended by
the following rule

s([t].U) =
{

s(U) if [t �→ ε] ∈ s
∀α.s(U) if [t �→ α] ∈ s

As in the propositional case, a type scheme is an abstract representation of
all the types that can be obtained from it by a scheme substitution., e.g., the
type scheme [t].([u].b) � a represents the set {∀α.(∀β.A) � B, (∀β.A) �
B, ∀α.A� B | A,B ∈ T}. The notion of type scheme context and its notation
can be straightforwardly adapted from the one for the propositional fragment.

A constraints sequence H is a triple 〈P , C,Q〉 of constraints sets, where P and
C are as in Subsection 3.1, and Q is a set of equations of the shape t = u or
t = ε, where t, u are sequence variables. Q is satisfied by a scheme substitution
s if s(t) = s(u) (s(t) = ε), for every t = u (t = ε) in it.

Table 5. Unification Algorithm

U(a, a) = 〈∅, ∅, ∅〉
(U0)

U(a, b) = 〈{a = b}, ∅, ∅〉
(U1)

a /∈ FV(φ� U)

U(a, φ� U) = 〈{a = φ� U}, ∅, ∅〉
(U2)

U(a, U) = 〈P, C,Q〉
U(a, [t].U) = 〈P, C,Q ∪ {t = ε}〉

(U3)
U(a, V ) = 〈P, C,Q〉

U(a, !pV ) = 〈P,C ∪ {p = 0},Q〉
(U4)

U(φ, ψ) = 〈P1, C1,Q1〉 U(U, V ) = 〈P2, C2,Q2〉
U(φ� U,ψ� V ) = 〈P1 ∪ P2, C1 ∪ C2,Q1 ∪ Q2〉

(U5)

U(φ� U, V ) = 〈P, C,Q〉
U(φ� U, [t].V ) = 〈P, C,Q ∪ {t = ε}〉

(U6)
U(φ� U, V ) = 〈P, C,Q〉

U(φ� U, !pV ) = 〈P, C ∪ {p = 0},Q〉
(U7)

U(U, V ) = 〈P, C,Q〉
U([t].U, [u].V ) = 〈P,C,Q ∪ {t = u}〉

(U8)
U([t].U, V ) = 〈P, C,Q〉

U([t].U, !pV ) = 〈P, C ∪ {p = 0},Q〉
(U9)

U(ψ, φ) = 〈P, C,Q〉
U(φ, ψ) = 〈P, C,Q〉

(U10)
U(U, V ) = 〈P,C,Q〉

U(!pU, !qV ) = 〈P, C ∪ {p = q},Q〉
(U11)

5.2 Unification Algorithm

In Table 5 we present a unification algorithm U extending the one presented in
the propositional case. U proves judgments of the shape

U(φ, ψ) = 〈P , C,Q〉

where φ and ψ are the two schemes that must be unified and 〈P , C,Q〉 is a
constraint sequence. Since the notation [t] does not introduce bound variables
in type schemes, we can consider it as a first order symbol. Then the unification
problem we are considering is an instance of first order unification. As in the
propositional case we have the following easy results.



Type Inference for a Polynomial Lambda Calculus 147

Theorem 13 (U Termination). Let φ, ψ ∈ T be disjoint. Then, there exist
P , C and Q such that U(φ, ψ) = 〈P , C,Q〉.

Theorem 14 (U Correctness). Let φ, ψ ∈ T . If U(φ, ψ) = H then, for every
substitution s satisfying H

s(φ) ≡ s(ψ)

Proof. By induction on the derivation of U(φ, ψ) = 〈P , C,Q〉 noting that Q con-
tains equalities of the shape t = u or t = ε, hence the existence of a substitution
satisfying this kind of constraints is decidable. ��

We need now to prove that the algorithm U is also complete. The design of the
type inference algorithm will be such that we need just to prove the completeness
for the ≡ relation of types. This agrees with the fact proved in [13] that typing
in System F does not need the explicit use of α-rule.

Theorem 15 (U Completeness). If s(φ) ≡ s(ψ) then there exists H such that
U(φ, ψ) = H and s satisfies H.

Proof. By straighforward induction on the shape of φ and ψ. We will show just
the case when φ ≡ [t].U and ψ ≡ [u].V . Let s(ψ) ≡ s(φ) = ∀α.σ. Then s(U) ≡
s(V ), and by induction U(U, V ) = H′. By rule U8, U([t].U, [u].V ) = 〈H∪{t = u}〉.
So s′ = s[t �→ α, u �→ α] is the desired substitution. ��

Remark. Note that a stronger completeness property holds for U, namely if s(φ)
and s(ψ) are α-equivalent, then there exists H such that U(φ, ψ) = H and there
is a scheme substitution s′ satisfying H such that s′(φ) ≡ s′(ψ), and s′(φ) is
α-equivalent to both s(φ), s(ψ). In fact, if s(φ) and s(ψ) are α-equivalent, it is
always possible to build a substitution s′ such that s′(φ) ≡ s′(ψ), by renaming
the bound variables, and then Theorem 15 can be applied.

Table 6. Type Inference Algorithm

Π(x) = let u, t, a, b, p be fresh in 〈{x :!p[t].a}, [u].b, {([t].a, b)}, [u �→ {[t].a}], {∅, ∅, ∅}〉

Π(λx.M) = let Π(M) = 〈Ψ,U,G,F ,H〉 in

let Ψ = Ψ ′ � {x :!s1V1, . . . , x :!snVn} , I = range(Ψ ′) in let u, t, a, r be fresh in

if n = 0 then 〈Ψ ′, [u].!r([t].a)� U, G,F + [u �→ I],H〉
else if n = 1 then 〈Ψ ′, [u].!rV1 � U,G,F + [u �→ I],H � {r ≥ s1, }〉
else if n > 1 then 〈Ψ ′, [u].!rV1 � U,G,F + [u �→ I],H � {r > s1, . . . , r > sn}〉

Π(MN) = let Π(M) = 〈ΨM, U,GM,FM,HM〉 and Π(N) = 〈ΨN, V,GN,FN,HN〉 be disjoint in

let u, t, a, b, qi, p be fresh in let Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN},

I = range(ΨM � ΨN), H = Unify(ΨM, Ψ
′
N , U, !

pV � [t].a) in

〈ΨM � Ψ ′
N , [u].b,GM ∪ GN ∪ {([t].a, b)},FM + FN + [u �→ I],HM � HN � H � {qi ≥ pi + p}〉



148 M. Gaboardi and S. Ronchi Della Rocca

5.3 The Algorithm

The Type Inference Algorithm follows the same lines of the type inference al-
gorithm for System F designed by Ronchi Della Rocca and Giannini in [4]. In
order to define it, we need to introduce some further notions.

Definition 16. The containment relation ≤ between soft types is the relation
defined as follows ∀α.A ≤ A[B/α], for some B.

Note that σ ≤ τ corresponds to the fact that to a term M of type σ we can assign
also the type τ by some applications of the rule (∀E). The relation ≤ is clearly
decidable. Remembering that α could be an empty sequence, ≤ is obviously
reflexive. Moreover, it is transitive, hence a preorder. Note that ∀α.τ � σ ≤
τ1 � σ1 implies ∀α.τ ≤ τ1 and ∀α.σ ≤ σ1, while in general the converse does
not hold.

A scheme system G is a set of pairs of type schemes. A set of binding con-
straints F is a function from sequence variables to finite sets of schemes.

Definition 17. Let s be a scheme substitution.

– s satisfies a scheme system G = {(U1, V1), . . . , (Un, Vn)} if and only if
s(Ui) ≤ s(Vi), (1 ≤ i ≤ n).

– s satisfies a binding constraints F = {u1 �→ Γ1, . . . , un �→ Γn} if and only if
∀i ≤ n, ∀α ∈ s(ui), ∀U ∈ Γi : α /∈ FV(s(U))

The type inference algorithm defined in Table 6 proves statement of the shape

Π(M) = 〈Ψ,U,G,F ,H〉

where Ψ is a type scheme assignment context, U is a linear type scheme, G is a
scheme system, F is a set of binding constraints and H is a constraints sequence.
The type inference algorithm call the Unify procedure, defined in Table 7, on
contexts and schemes which need to be unified through the unification algorithm.

Theorem 18 (Π Termination). Let M ∈ Λ. Then Π(M) = 〈Ψ,U,G,F ,H〉

Proof. By induction on the structure of M. It is easy to verify that the schemes
which need to be unified by the algorithm are always disjoint, so Theorem 14
applies. ��

Table 7. Unify procedure

Unify(Φ,Ψ, φ, ψ) = let x1, . . . , xm = dom(Φ) ∩ dom(Ψ), ∀1 ≤ i ≤ m
Φ(xi) = {!s1V1, . . . , !snVn}, Ψ(xi) = {!r1U1, . . . , !rkUk},
U(φ, ψ) = 〈P0, C0,Q0〉, U(V1, U1) = 〈Pi, Ci,Qi〉

in〈
m⋃

j=0

Pj ,
m⋃

j=0

Cj ,
m⋃

j=0

Qj〉

Finally we can now prove the main theorems of this section.
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Theorem 19 (Π Correctness). Let Π(M) = 〈Ψ,U,G,F ,H〉. Then, for each
substitution s satisfying G, F and H

s(Ψ) � M : s(U)

Proof. By induction on the derivation proving Π(M) = 〈Ψ,U,G,F ,H〉. We will
show just the most difficult case, when the term M is of the shape PN.

Consider the case Π(PN) = 〈Ψ,U,G,F ,H〉. By hypothesis Π(P) =
〈ΨP, UP,GP,FP,HP〉, Π(N) = 〈ΨN, UN,G,FN,HN〉 and U ≡ [u].b. Let s be a substi-
tution satisfying G, F and H. By induction hypothesis since s clearly satisfies GP,
GN, FP, FN, HP and HN, then we have both s(ΨP) � P : s(UP) and s(ΨN) � N : s(UN).

Moreover by definition U(UP, !pUN � [t].a) = H′ with H′ ⊆ H, so since s
satisfies H by Theorem 14: s(UP) ≡ s(!pUN)� s([t].a). Let Ψ ′

N = {z :!qiVi | ∃z :
!piVi ∈ ΨN}. Then clearly s(Ψ) = s(ΨP � Ψ ′

N) = s(ΨP), s(Ψ ′
N). Moreover since by

hypothesis s satisfies G, then in particular s([t].a) ≤ s(b). So, let s(u) = α and
s(p) = k. Then, the conclusion follows by the derivation

s(ΨP) � P : s(!pUN)� s([t].a)

s(ΨN) � N : s(UN)

!ks(ΨN) � N :!ks(UN)
(sp)k

s(Ψ ′
N) � N :!ks(UN)

(m)∗

s(ΨP), s(Ψ ′
N) � PN : s([t].a)

(� E)

s(ΨP), s(Ψ ′
N) � PN : s(b)

(∀E)∗

s(ΨP), s(Ψ ′
N ) � PN : ∀α.s(b)

(∀I)∗

Note that we have freely applied the (∀I) rule over variables in α since s satisfies
the binding constraints F . ��

Theorem 20 (Π Completeness). Let Π(M) = 〈Ψ,U,G,F ,H〉. If A � M : σ
then there exists a substitution s satisfying G,F and H such that

Σ � s(Ψ) � M : s(U)

Moreover, the sequent A � M : σ can be obtained from Σ by a (maybe empty)
sequence of applications of the rules (w), (m) and (sp).

Proof. By induction on the derivation Π proving A � M : σ. We consider here
the two most difficult cases. Let Π ends as

Σ � A � N : σ� A Θ � B � P : σ A ≈ B

A,B � NP : A
(� E)

Let Π(NP) = 〈Ψ,U,G,F ,H〉, Π(N) = 〈ΨN, UN,GN,FN,HN〉 and Π(P) =
〈ΨP, UP,GP,FP,HP〉. By definition of Π, Ψ = ΨN � Ψ ′

P where, if ΨP = x1 :
!p1V1, . . . , xn :!pnVn, then Ψ ′

P = x1 :!q1V1, . . . , xn :!qnVn for fresh q1, . . . , qn. More-
over, for fresh u, t, a, b and p, if I = range(Ψ) and Unify(ΨN, Ψ

′
P, UN, !pUP �

[t].a) = H′ then U ≡ [u].b, G = GN ∪GP ∪ {([t].a, b)}, F = FN +FP + [u �→ I] and
H = HN �HP �H′ � {qi ≥ pi + p}.

By induction hypothesis there exists a scheme substitution sN satisfying GN,FN

and HN such that Σ′ � sN(ΨN) � N : sN(UN) and a substitution sP satisfying GP,FP
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and HP such that Θ′ � sP(ΨP) � P : sP(UP) and Σ and Θ can be obtained from
Σ′ and Θ′ by a sequence of applications of the rules (w), (m) and (sp). This
implies that UN and !pUP� [t].a are unifiable from Theorem 15.

Since Π(N) and Π(P) are disjoint we can build a substitution s′ acting as sN
on schemes in Π(N) and as sP on schemes in Π(P). Note that s′(UN) ≡ σ� A ≡
s′(!pUP� [t].a), where t and a are fresh. Hence in particular s′ satisfies H′.

Since u, b, q1, . . . , qn are fresh, it is easy to extend s′ to a substitution s =
s′[b �→ s([t].a), u �→ ε, q1 �→ s(p1) + s(p), . . . , qn �→ s(pn) + s(p)]. Clearly s
satisfies G,F and H. If s(p) = k, then the following derivation can be built

Σ′ � s(ΨN) � N : s(UN)

Θ′ � s(ΨP) � P : s(UP)

!ks(ΨP) � P :!ks(UP)
(sp)k

s(ΨN), !ks(ΨP) � NP : s([t].a)
(� E)

and A,B � NP : A can be obtained from it by a sequence of applications of the
rules (w), (m) and (sp).

Consider the case where Π ends as

Σ � A � N : ∀α.A
A � N : A[B/α]

(∀E)

Let Π(N) = 〈Ψ,U,G,F ,H〉. By induction hypothesis there is s satisfying G,F
and H such that Θ � s(Ψ) � N : s(U) and Σ is derivable from Θ by applying
a sequence of rule (w), (m) and (sp). So in particular we have s(U) ≡ ∀α.A
and by an inspection of the rules it is easy to verify that U ≡ [u].V for
some V and fresh u. Moreover A ≡ ∀β.C for some C. Hence in particu-
lar s = s′[u �→ αβ] for some substitution s′. Let a1, . . . , an be such that
s′(ai) = Ci[α], where Ci[α] denotes a type Ci, where α occurs free (1 ≤ i ≤ n).
Then s1 = s′[u �→ β, a1 �→ C1[B], . . . , an �→ Cn[B]] and s1 does the intended
work, since the Hygiene Condition. Moreover since u is fresh it is easy to verify
that s1 satisfies G,F and H. ��

5.4 Examples

Example 21

1. It is easy to verify that Π(λx.xx) = 〈∅, U,G,F ,H〉 where

U = [w].!r([t1].a1)� [v].c G = {([t1].a1, b1), ([t2].a2, b2), ([t].a, c)}
F = {u1 �→ {[t1].a1}, u2 �→ {[t2].a2}, v �→ {[t1].a1, [t2].a2}}
H = 〈{b1 =!q([u2].b2)� [t].a, a1 = a2}, {u1 = ε, t1 = t2},

{p1 = p3, p3 ≥ p2 + q, r > p1, r > p3}〉

The substitution s = s′[a1 �→ α, a2 �→ α, b1 �→ (∀β.β) � γ, b2 �→ β, c �→
γ, a �→ γ, t1 �→ α, t2 �→ α, u1 �→ ε, u2 �→ β, v �→ γ, w �→ ε, t �→ ε, p1 �→ 0, p2 �→
0, p3 �→ 0, q �→ 0, r �→ 1] satisfies G, F and H. Hence the term is typable.

2. It is boring but easy to obtain the constraints in Π((λx.xx)2) =
〈∅, U,G,F , 〈P , C,Q〉〉. Making the substitutions in P and Q we obtain
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U = [z].d G = {([t2].a2, c), ([tz ].az, bz), ([tsz ].asz, bsz), ([ts2z].as2z, bs2z),
([ts].as, !psz([uz].bz)� [tsz ].asz), ([z1].c, d),
([t1].(!s([ts].as)� ([v].!r([tz].az)� [us2z ].bs2z)), b2), (1)
([t1].(!s([ts].as)� ([v].!r([tz].az)� [us2z ].bs2z)), !q1 ([u2].b2)� [t2].a2), (2)
([ts].as, !p2([usz].bsz)� [ts2z].as2z) (3)}
F = {u1, u2, z1 �→ {[t1].!s([ts].as)� ([v].!r([tz ].az)� [us2z].bs2z)},

uz �→ {[tz].az}, usz, us2z �→ {[tz].az, [ts].as}, v �→ {[ts].as}}
C = {r1 > q1, r ≥ psz + p2, s > p2}

The equation (1) implies that b2 is of the shape

!s1 [w1].b1
2 � [w2].!s2 [w′

2]b
2
2 � [w3].b3

2

Moreover it implies that each substitution s satisfying the constraints must
be such that s(s1) = s(s), s(s2) = s(r) while equation (2) implies s(s) =
s(q1). Remembering that G is a semi-unification set, equations (1), (2) and
(3) imply that s(ts) = ε and s(as) =!s(p2)A � B. Substituting this in
equation (2) we have s(s) = s(p2) but this is in contrast with the constraints
in H. Note that this term is typable in System F.

3. Note that the term 2(yz) of Example 10.3 is also typable in the full STA
system and in System F but it is still not typable in DLAL due again to the
presence of the two free variables.

6 Conclusion

We proved that the type inference problem for STA is decidable in polynomial
time in the length of the input term if we restrict ourselves to consider just the
propositional fragment. For the whole system we conjecture that the problem
is undecidable since the presence of the second order quantifier. Nevertheless
we showed an algorithm generating all the constraints that need to be satisfied
in order to type a given term. It would be possible to follow the same method
as in [4] for System F. Namely, for every n ∈ N we can define a bounded type
containment relation ≤n

T such that ∀a.A ≤n
T C if and only if C ≡ A[B/α] and

the variables in α occur in the syntax tree of A at a depth less or equal to n.
Then, we can define a countable set of type assignment systems STAn which

is a complete stratification of the system STA. For each n ∈ N, the system STAn

is obtained by replacing the (∀E) rule in Table 1 by the following rule:

Γ � M : A A ≤n
T B

Γ � M : B
(n-∀E)

In every STAn the type inference problem is decidable. We leave the checking of
the undecidability of the conjecture and the design of the stratified system for
future investigations.
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Abstract. The proof assistant Isabelle has recently acquired a “local
theory” concept that integrates a variety of mechanisms for structured
specifications into a common framework. We explicitly separate a local
theory “target”, i.e. a fixed axiomatic specification consisting of parame-
ters and assumptions, from its “body” consisting of arbitrary definitional
extensions. Body elements may be added incrementally, and admit local
polymorphism according to Hindley-Milner. The foundations of our local
theories rest firmly on existing Isabelle/Isar principles, without having
to invent new logics or module calculi.

Specific target contexts and body elements may be implemented within
the generic infrastructure. This results in a large combinatorial space of
specification idioms available to the user. Here we introduce targets for
locales, type-classes, and class instantiations. The available selection of
body elements covers primitive definitions and theorems, inductive pred-
icates and sets, and recursive functions. Porting such existing definitional
packages is reasonably simple, and allows to re-use sophisticated tools in
a variety of target contexts. For example, a recursive function may be de-
fined depending on locale parameters and assumptions, or an inductive
predicate definition may provide the witness in a type-class instantiation.

1 Introduction

Many years ago, Isabelle locales were introduced [12] as a mechanism to orga-
nize formal reasoning in a modular fashion: after defining a locale as a context of
fixed parameters (fixes) and assumptions (assumes), theorems could be proved
within that scope, while an exported result (with additional premises) would be
provided at the same time. Such “theorem (in locale)” statements have become
popular means to organize formal theory developments. A natural extension of
results within a local context is “definition (in locale)”. Traditional locales
would support defines elements within the axiomatic specification, essentially
simulating definitions by equational assumptions, but this turned out to be un-
satisfactory. It is not possible to add further definitions without extending the
locale, and there is no support for polymorphism. Moreover, Isabelle/HOL users
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rightly expect to have the full toolbox of definitional packages available (e.g.
inductive predicates and recursive functions), not just primitive equations.

These needs are addressed by our local theory concept in Isabelle/Isar. A local
theory provides an abstract interface to manage definitions and theorems relative
to a context of fixed parameters and assumptions. This generic infrastructure
is able to support the requirements of existing module concepts in Isabelle,
notably locales and type-classes. Thus we integrate and extend the capabilities
of structured specifications significantly, while opening a much broader scope for
alternative module mechanisms.

Implementing such local theory targets is a delicate task, but only experts
in module systems need to do it. In contrast, it is reasonably easy to produce
definitional packages for use in the body of any local theory. Here we have been
able to rationalize the traditional theory specification primitives of Higher-Order
Logic considerably, such that the local versions are both simpler and more general
than their global counterparts.

Overview. We examine the flexibility of the local theory concept by an example
of type class specification and instantiation (§2). After a careful exposition of
the relevant foundations of Isabelle/Pure and Isabelle/Isar (§3), we introduce
the main local theory architecture (§4) and describe some concrete target mech-
anisms (§5).

2 Example: Type Classes

The following example in Isabelle/HOL [14] uses type-classes to model general
orders and orders that admit well-founded induction. Earlier [11] we integrated
traditional axiomatic type-classes with locales, now both theory structuring con-
cepts are also fitted into the bigger picture of local theories.

Basic Isabelle notation approximates usual mathematics, despite some bias
towards λ-calculus and functional languages like Haskell. The general syntax for
local theory specifications is “target begin body end”, where body consists of
a sequence of specification elements (definitions and theorems with proofs), and
target determines a particular interpretation of the body elements relative to a
local context (with parameters and assumptions).

The most common targets are locale and class. These targets are special
in being explicitly named, and allow further body additions at any time. The
syntax for this is “context name begin body end”, with the abbreviation of
“specification (in name)” for “context name begin specification end”. The
latter also integrates the existing “theorem (in locale)” into our framework.

Other targets, like the instantiation shown later, demand that the body is
a closed unit that provides required specifications, finishes proof obligations etc.

General Orders. We define an abstract algebra over a binary relation less-eq
that observes the partial ordering laws.
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class order =
fixes less-eq :: α ⇒ α ⇒ bool (infix � 50)
assumes refl : x � x
and trans: x � y =⇒ y � z =⇒ x � z
and antisym : x � y =⇒ y � x =⇒ x = y

begin

This class context provides a hybrid view on our abstract theory specification. The
term less-eq :: α ⇒ α ⇒ bool refers to a fixed parameter of a fixed type; the parameter
less-eq also observes assumptions. At the same time, the canonical type-class interpre-
tation [11] provides a polymorphic constant for arbitrary order types, i.e. any instance
of less-eq :: β::order ⇒ β ⇒ bool. Likewise, the locale assumptions are turned into
theorems that work for arbitrary types β::order.

Our class target augments the usual Isabelle type-inference by a separate type im-
provement stage, which identifies sufficiently general occurrences of less-eq with the
locale parameter, while leaving more specific instances as constants. By handling the
choice of locale parameters vs. class constants within the type-checking phase, we also
avoid extra syntactic ambiguities: the above mixfix annotation (infix � 50) is associ-
ated with the class constant once and for all. See §5.3 for further details.

end

Back in the global context, less-eq :: α::order ⇒ α ⇒ bool refers to a global
class operation for arbitrary order types α; the notation x � y also works as
expected. Global class axioms are available as theorems refl, trans, antisym.

The old axclass [17] would have achieved a similar effect. At this point we
could even continue with further definitions and proofs relative to this polymor-
phic constant only, e.g. less :: α::order ⇒ α ⇒ bool depending on the global
less-eq :: α::order ⇒ α ⇒ bool. But then the resulting development would be
more special than necessary, with the known limitations of type-classes of at
most one instantiation per type constructor. So we now continue within the hy-
brid class/locale context, which provides type-class results as expected, but also
admits general locale interpretations [2].
context order
begin

We now define less as the strict part of less-eq, and prove some simple lemmas.

definition less :: α ⇒ α ⇒ bool (infix ≺ 50)
where x ≺ y ↔ x � y ∧ ¬ y � x

lemma irrefl : ¬ x ≺ x 〈proof 〉
lemma less-trans: x ≺ y =⇒ y ≺ z =⇒ x ≺ z 〈proof 〉
lemma asym: x ≺ y =⇒ y ≺ x =⇒ C 〈proof 〉

end

Again this produces a global constant less :: α::order ⇒ α ⇒ bool, whose defini-
tion depends on the original class operation less-eq :: α::order ⇒ α ⇒ bool. The
additional variant order .less (rel :: α ⇒ α ⇒ bool) (x :: α) (y :: α) stems from
the associated locale context and makes this dependency explicit. The latter is
more flexible, but also slightly more cumbersome to use.
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Well-founded Induction and Recursion. Next we define well-founded orders
by extending the specification of general orders.

class wforder = order +
assumes less-induct : (

∧
x ::α. (

∧
y . y ≺ x =⇒ P y) =⇒ P x) =⇒ P x

begin

With this induction rule available, we can define a recursion combinator by means of
an inductive relation that corresponds to the function’s graph, see also [16].

inductive wfrec-rel :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ α ⇒ β ⇒ bool
for F :: (α ⇒ β) ⇒ α ⇒ β
where rec: (

∧
z . z ≺ x =⇒ wfrec-rel F z (g z)) =⇒ wfrec-rel F x (F g x)

definition cut :: α ⇒ (α ⇒ β) ⇒ α ⇒ β
where cut x f y = (if y ≺ x then f y else undefined)

lemma cuts-eq : cut x f = cut x g ↔ (∀ y . y ≺ x −→ f y = g y) 〈proof 〉

definition adm-wf :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ bool
where adm-wf F ↔ (∀ f g x . (∀ z . z ≺ x −→ f z = g z) −→ F f x = F g x)

lemma adm-lemma: adm-wf (λf x . F (cut x f ) x) 〈proof 〉

definition wfrec :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ α ⇒ β
where wfrec F = (λx . (THE y . wfrec-rel (λf x . F (cut x f ) x) x y))

lemma wfrec-unique: adm-wf F =⇒ ∃ !y . wfrec-rel F x y 〈proof 〉
theorem wfrec: wfrec F x = F (cut x (wfrec F )) x 〈proof 〉
This characterizes a polymorphic combinator wfrec that works for arbitrary types β,
relative to the locally fixed type parameter α. Thus wfrec (λf :: α ⇒ nat . body) or
wfrec (λf :: α ⇒ bool . body) may be used in the current context. THE is the definite
choice operator, sometimes written ι in literature; undefined is an unspecified constant.

end

Back in the global context, we may refer either to the exported locale operation
wforder .wfrec (rel :: α ⇒ α ⇒ bool) (F :: (α ⇒ β) ⇒ α ⇒ β) or the overloaded
constant wfrec (F :: (α::wforder ⇒ β) ⇒ α ⇒ β). Here α and β are again
arbitrary, although the class constraint needs to be observed in the second case.

Lexicographic Products. The product α × β of two order types is again an
instance of the same algebraic structure, provided that the less-eq operation is
defined in a suitable manner, such that the class assumptions can be proven. We
shall establish this in the body of the following instantiation target.

instantiation ∗ :: (order , order) order
begin

We now define the lexicographic product relation by means of a (non-recursive) induc-
tive definition, depending on hypothetical less-eq on fixed order types α and β.

inductive less-eq-prod :: α × β ⇒ α × β ⇒ bool
where less-eq-fst : x ≺ v =⇒ (x , y) � (v , w)
| less-eq-snd : x = v =⇒ y � w =⇒ (x , y) � (v , w)
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This definition effectively involves overloading of the polymorphic constant less-eq on
product types, but the details are managed by our local theory target context. Here we
have even used the derived definitional mechanism inductive, which did not support
overloading in the past.

The above specification mentions various type instances of less-eq, for α, β, and α ×
β. All of these have been written uniformly with the � notation. This works smoothly
due to an additional improvement stage in the type-inference process.

The outline of the corresponding instantiation proof follows. The instance element
below initializes the class membership goal as in the existing global instance command
[17], but the type arity statement is not repeated here.

instance
proof
fix p q r :: α × β
show p � p 〈proof 〉
{ assume p � r and r � q then show p � q 〈proof 〉 }
{ assume p � q and q � p then show p = q 〈proof 〉 }

qed

end

By concluding the instantiation, the new type arity becomes available in the
theory, i.e. less-eq (p :: α::order × β::order) (q :: α × β) can be used for arbitrary
α, β in order.

3 Foundations

Isabelle consists of two main layers: the logical framework of Isabelle/Pure for
higher-order Natural Deduction, and the architectural framework of Isabelle/Isar
for organizing logical and extra-logical concepts in a structured manner.

Our local theory concepts rely only on existing foundations. We refrain from
inventing new logics or module calculi, but merely observe pre-existent properties
carefully to employ them according to our needs. This principle of leaving the
logical basis unscathed is an already well-established Isabelle tradition. It enables
implementation of sophisticated tools without endangering soundness. This is
Milner’s “LCF-approach” in its last consequence, cf. the discussion in [19, §3].

3.1 The Pure Logical Framework

The logic of Isabelle/Pure [15] is a reduced version of Higher-Order Logic ac-
cording to Church [8] and Gordon [9]. This minimal version of HOL is used as
a logical framework to represent object-logics, such as the practically important
Isabelle/HOL [14].

Logical Entities. The Pure logic provides three main categories of formal
entities: types, terms, and theorems (with implicit proofs).

Types τ are simple first-order structures, consisting of type variables α or
type constructor applications (τ1, . . ., τn) κ, usually written postfix. Type prop
represents framework propositions, and the infix type α ⇒ β functions.
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Terms t are formed as simply-typed λ-terms, with variables x :: τ , constants c
:: τ , abstraction λx :: τ. t [x ] and application t1 t2. Types are usually left implicit,
cf. Hindley-Milner type-inference [13]. Terms of type prop are called propositions.
The logical structure of propositions is determined by quantification

∧
x :: α.

B [x ] or implication A =⇒ B ; these framework connectives express object-logic
rules in Natural Deduction style. Isabelle/Pure also provides built-in equality t1
≡ t2 with rules for αβη-conversion.

Theorems thm are abstract containers for derivations within the logical en-
vironment. Primitive inferences of Pure operate on sequents Γ � ϕ, where ϕ is
the main conclusion and Γ its local context of hypotheses. There are standard
introduction and elimination rules for

∧
and =⇒ operating on sequents.

This low-level inference system is directly implemented in the Isabelle infer-
ence kernel; it corresponds to dependently-typed λ-calculus with propositions
as types, although proof terms are usually omitted. It is useful to think of the-
orems as representing full proof terms, even though the implementation may
omit them: the formal system can be categorized as “λHOL” within the general
setting of Pure Type Systems (PTS) [3]. This provides a unified view of terms
and derivations, with terms depending on terms λx :: α. b[x ], proofs depending
on terms

∧
x :: α. B [x ], and proofs depending on proofs A =⇒ B.

Object-logic inferences are expressed at the level of Pure propositions, not
Pure rules. For example, in Isabelle/HOL the modus ponens is represented as
(A −→ B) =⇒ A =⇒ B, implication introduction as (A =⇒ B) =⇒ A −→ B.
Isabelle provides convenient (derived) principles of resolution and assumption
[15] to back-chain such object rules, or close branches within proofs, respectively.

This second level of Natural Deduction is encountered by Isabelle users most
of the time, e.g. when doing “apply (rule r)” in a tactic script. Thus the first
level of primitive inferences remains free for internal uses, to support local scopes
of fixed variables and assumptions. Both Isar proof texts [18] and locales [12,1,2]
operate on this primitive level of Pure, and the Isabelle/Isar framework ensures
that local hypotheses are managed according to the block structure of the text,
such that users never have to care about the Γ part of primitive sequents.

The notation 〈ϕ〉 shall refer to some theorem Γ � ϕ, where Γ is clear from the
context. The cIsabelle syntax ‘ϕ‘ references facts the same way but uses ASCII
back-quotes in the source instead of the funny parentheses.

Theories. Derivations in Isabelle/Pure depend on a global theory environment
Θ, which holds declarations of type-constructors (α1, . . ., αn) κ (specifying the
number of arguments), term constants c :: τ (specifying the most general type
scheme), and axioms a: A (specifying the proposition). The following concrete
syntax shall be used for these three theory declaration primitives:

type ∀α. (α) κ — type constructor κ
const c :: ∀α. τ [α] — term constant c
axiom a: ∀α. A[α] — proof constant a

These primitives support global schematic polymorphism, which means that type
variables given in the declaration may be instantiated by arbitrary types. The
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logic provides admissible inferences for this: moving from Γ � ϕ[α] to Γ � ϕ[τ ]
essentially instantiates whole proof trees.

We take the notational liberty of explicit type quantification ∀α. A[α], even
though the Pure logic is not really polymorphic. Type quantifiers may only occur
in global theory declarations and theorems, but never in hypothetical statements,
or the binding position of a λ-abstraction. This restricted type quantification
behaves like schematic type variables, as indicated by question marks in Isabelle:
results ∀α.

∧
x :: α. x ≡ x and

∧
x :: ?α. x ≡ x are interchangeable.

Unrestricted declarations of types, terms, and axioms are rarely used in prac-
tice. Instead there are certain disciplined schemes that qualify as definitional
specifications due to nice meta-theoretical properties. In the Pure framework,
we can easily justify the well-known principle of constant definition, which re-
lates a polymorphic term constant with an existing term:

constdef c :: ∀α. τ [α] where ∀α. c[α] ≡ rhs [α]

Here the constant name c needs to be new, and rhs needs to be a closed term
with all its type variables already included in its type τ . If these conditions hold,
constdef expands to corresponding const c :: ∀α. τ [α] and axiom ∀α. c[α] ≡
rhs [α].

This constant definition principle observes parametric polymorphism. Isabelle
also supports ad-hoc polymorphism (overloading) which can be shaped into a
disciplined version due to Haskell-style type-classes on top of the logic, see also
[17] and [11]. The latter concept of “less ad-hoc polymorphism” allows us to
reconstruct overloading-free definitions and proofs, via explicit dictionary terms.

We also introduce an explicit definition scheme for “proof constants”, which
gives proven facts an explicit formal status within the theory context:

thmdef ∀α. b = 〈B [α]〉

Moreover, the weaker variant of thm b = 〈B 〉 shall serve the purpose of casual
naming of facts, without any impact on the internal structure of derivations.

3.2 Isar Proof Contexts

The main purpose of the Isabelle/Isar infrastructure is to elevate the underlying
logical framework to a scalable architecture that supports structured reasoning.
This works by imposing certain Isar policies on the underlying Pure primitives. It
is important to understand, that Isar is not another calculus, but an architecture
to organize existing logical principles, and enrich them by non-logical support
structure. The relation of Pure vs. Isar is a bit like that of a CPU (execution
primitives) and an operating system (high-level abstractions via policies).

Isabelle/Isar was originally motivated by the demands for human-readable
proofs [18]: the Isar proof language provides a structured walk through the text,
maintaining local facts and goals, all relative to a proof context at each position.
This idea of Isar proof context has turned out a useful abstraction to organize
various advanced concepts in Isabelle, with locales [12,1,2] being the classic ex-
ample. A more recent elaboration on the same theme are LCF-style proof tools
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that work relative to some local declarations and may be transformed in a con-
crete application context later; [7] covers a Gröbner Base procedure on abstract
rings that may get used on concrete integers etc.

Subsequently we briefly review the main aspects of Isar proof contexts, as
required for our local theory infrastructure.

Logical Context Elements. The idea is to turn the Γ part of the primitive
calculus (§3.1) into an explicit environment, consisting of declarations for all
three logical categories: type variables, term variables, and assumptions:

type α — type variable α
fix x :: τ [α] — term variable x
assume a: A[α][x] — proof variable a

Strictly speaking there is no explicit type element in Isabelle/Isar, because type
variables are handled implicitly according to Hindley-Milner discipline [13]: when
entering a new term (proposition) into the context, its type variables are fixed;
when exporting results from the context, type variables are generalized as far as
possible, unless they occur in the types of term variables that are still fixed.

Exporting proven results from the scope of fix and assume corresponds to∧
/=⇒ introduction rules. In other words, the logical part of an Isar context may

be fully internalized into the Pure logic.
Isar also admits derived context elements, parameterized by a discharge rule

that is invoked when leaving the corresponding scope. In particular, simple (non-
polymorphic) definitions may be provided as follows:

vardef x :: τ [α] where x ≡ rhs [α]

Here the variable name x needs to be new, and rhs needs to be a closed term,
mentioning only previously fixed type variables. If these conditions hold, vardef
expands to corresponding fix and assume elements, with a discharge rule that
expands a local result 〈B [x ]〉 to 〈B [rhs ]〉, thanks to reflexivity of ≡.

Although vardef resembles the global constdef, it only works for fixed types!
In particular, vardef id :: α ⇒ α where id ≡ λx :: α. x merely results in
context elements type α fix id :: α ⇒ α assume id ≡ λx :: α. x, for the fixed
(hypothetical) type α. There is no let -polymorphism at that stage, because the
logic lacks type quantification.

Generic Context Data. The Isar proof context is able to assimilate arbi-
trary user-data in a type-safe fashion, using a functor interface in ML (see also
[19, §3]). This means almost everything can be turned into context data. Com-
mon examples include type-inference information (constraints), concrete syntax
(mixfix grammar), or hints for automated reasoning tools.

The global theory is only extended monotonically, but Isar contexts support
opening and closing of local scopes. Moving between contexts requires replacing
references to hypothetical types, terms, and proofs within user data accordingly.
The Isar framework cannot operate on user data due to ML’s type-safety, but a
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slightly different perspective allows us to transform arbitrary content, by passing
through an explicit morphism in just the right spot, cf. [7, §3–4].

So instead of transforming fully abstract data directly, the framework trans-
forms data declarations, i.e. implementation specific functions that maintain
the data in the context. The interface for this is the generic context element
“declaration d”, where d : morphism → context → context is a data operation
provided by some external module implementing context data. The morphism is
provided by the framework at some later stage, it determines the differences of
the present abstract context wrt. the concrete application environment, by pro-
viding mappings for the three logical categories of types, terms, and theorems.
The implementation of d needs to apply this morphism wherever logical entities
occur in the data; see [7, §2] for a simple example.

Using the Isabelle/Isar infrastructure on top of the raw logic, we can now
introduce the concept of constant abbreviations that are type-checked like global
polymorphic constants locally, but expanded before the logic ever sees them:

abbrev c :: ∀β. τ [α, β] where ∀β. c[β] ≡ rhs [α, β]

Here the type variables α need to be fixed in the context, but β is arbitrary.
In other words, we have conjured up proper let -polymorphism in the abstract
syntax layer of Isabelle/Isar, without touching the Pure logic.

4 Local Theory Infrastructure

We are now ready to introduce the key concept of local theory, which models the
general idea of interpreting definitional elements relatively to a local context.

Basic specification elements shall be explicitly separated into two categories:
axiomatic fix/assume vs. definitional define/note. Together with our implicit
treatment of types, this achieves an orthogonal arrangement of λ- and let -
bindings for all three logical categories as follows:

λ-binding let -binding
types fixed α arbitrary β
terms fix x :: τ define c ≡ t
theorems assume a: A note b = 〈B 〉

A local theory specification is divided into a target part, which is derived from
the background theory by adding axiomatic elements, and a body consisting
of any number of definitional elements. The target also provides a particular
interpretation of definitional primitives. Concrete body elements are produced
by definitional packages invoked within corresponding begin/end blocks (cf. §2).

The key duality is that of background theory vs. target context, but there is
also an auxiliary context that allows to hide the effect of the target interpretation
internally. So the general structure of a local theory is a sandwich of three layers:
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auxiliary context target context background theory

This allows one to make define appear like vardef and note like thm (cf. §3.2),
while the main impact on the target context and background theory is exposed
to the end-user only later. By fixing the body elements and their effect on the
auxiliary context once and for all, we achieve a generic programming interface
for definitional packages that work uniformly for arbitrary interpretations.

Canonical Interpretation via λ-Lifting. Subsequently we give a formal ex-
planation of local theory interpretation by the blue-print model of λ-lifting over
a fixed context type α fix x :: τ [α] assume a: A[α][x ]. Restricting ourselves
to a single variable of each category avoids cluttered notation; generalization to
multiple parameters and assumptions is straightforward.

The idea is that define a ≡ b[α, β][x ] relative to fixed α and x :: τ [α] becomes
a constant definition with explicit abstraction over the term parameter and gen-
eralization over the type parameters; the resulting theorem is re-imported into
the target context by instantiation with the original parameters. The illusion
of working fully locally is completed in the auxiliary context, by using hidden
equational assumptions (see below).

The same principle works for note a = 〈B [α, β][x ]〉, but there is an additional
dependency on assumption a: A, and the lifting over parameters is only partially
visible, because proof terms are implicit.

The following λ-lifting scheme works for independent define and note ele-
ments, in an initial situation where the target and auxiliary context coincide:

specification define a ≡ b[α, β][x ]
1. background theory constdef ∀α β. thy.a ≡ λx . b[α, β][x ]
2. target context abbrev ∀β. loc.a ≡ thy.a[α, β] x
3. auxiliary context vardef a ≡ thy.a[α, β] x
local result 〈a ≡ b[α, β][x ]〉

specification note a = 〈B [α, β][x ]〉
1. background theory thmdef ∀α β. thy.a = 〈

∧
x . A[α][x ] =⇒ B [α, β][x ]〉

2. target context thm ∀β. loc.a = 〈B [α, β][x ]〉
3. auxiliary context thm a = 〈B [α, β][x ]〉
local result 〈B [α, β][x ]〉

This already illustrates the key steps of any local theory interpretation. Step (1)
jumps from the auxiliary context right into the background theory to provide
proper foundation, using global primitives of constdef and thmdef. Step (2)
is where the particular target view is produced, here merely by applying fixed
entities to revert the abstractions; other targets might perform additional trans-
formations. Note that β is arbitrary in the target context. Step (3) bridges the
distance of the target and auxiliary context, to make the local result appear
literally as specified (with fixed β).
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Extra care is required when mixing several define and note elements, as sub-
sequent terms and facts may depend on the accumulated auxiliary parameters
introduced by vardef. Export into the background theory now involves defini-
tional expansion, and import into the auxiliary context folding of hypothetical
equations. Here is the interpretation of note a = 〈B [α, β][c, x ]〉 depending on
a previous define c ≡ b[α, β][x ]:

note a = 〈B [α, β][c, x ]〉
1. thmdef ∀α β. thy.a = 〈

∧
x . A[α][x ] =⇒ B [α, β][thy.c[α, β] x , x ]〉

2. thm ∀β. loc.a = 〈B [α, β][thy.c[α, β] x , x ]〉
3. thm a = 〈B [α, β][c, x ]〉

〈B [α, β][x ]〉

Each define element adds another vardef to the auxiliary context, to cater
for internal term dependencies of any subsequent define/note within the same
specification package (e.g. inductive). Thus package implementors need not care
about term dependencies, but work directly with local variables (and with fixed
types). Whenever a package concludes, our infrastructure resets the auxiliary
context to the current target context, so the user will continue with polymorphic
constant abbreviations standing for global terms. Only then, types appear in
most general form according to the Hindley-Milner discipline, as expected by
the end-user.

5 Common Local Theory Targets

5.1 Global Theories

A global theory is a trivial local theory, where the target context coincides with
the background theory. The canonical interpretation (§4) is reduced as follows:

define a ≡ b[β]
1. constdef ∀β. thy.a ≡ b[β]
2. (omitted)
3. vardef a ≡ thy.a[β]

〈a ≡ b[β]〉

note a = 〈B [β]〉
1. thmdef ∀β. thy.a = 〈B [β]〉
2. (omitted)
3. thm a = 〈B [β]〉

〈B [β]〉

Here we trade a fixed term variable a (with fixed type) for a global constant thy.a
(with schematic type). The auxiliary context hides the difference in typing and
name space details. This abstract view is a considerable advantage for package
implementations, even without using the full potential of local theories yet.

The Isabelle/Isar toplevel ensures that local theory body elements occurring
on the global level are wrapped into a proper target context as sketched above.
Thus a local theory package like inductive may be invoked seamlessly in any
situation.
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5.2 Locales

Locales [12] essentially manage named chunks of Isabelle/Isar context elements
(§3.2), such as locale loc = fixes x assumes A[x ], together with declaration
elements associated with conclusions. Locale expressions [1] allow to combine
atomic locales loc, either by renaming loc y or merge loc1 + loc2 of the underly-
ing axiomatic specifications. Results stemming from a locale expression may be
interpreted later, giving particular terms and proofs for the axiomatic part [2].

The key service provided by the locale mechanism is that of breaking up
complex expressions into atomic locales. Down at that level, it hands over to the
generic local theory infrastructure, by providing a target context that accepts
define and note according to the canonical λ-lifting again (§4). There is only
one modification: instead of working with primitive fixes and assumes of the
original locale definition, there is an additional indirection through a global
predicate definition constdef thy.loc ≡ λx . A[x ].

The Isabelle/Isar toplevel initializes a locale target for “context loc begin
body end” or the short version “specification (in loc)”; the latter generalizes the
traditional “theorem (in loc)” form [12] towards arbitrary definitions within
locales, including derived mechanisms like “inductive (in loc)”.

5.3 Type Classes

Type-class Specification. Logically a type class is nothing more than an
interpretation of a locale with exactly one type variable α, see [11]. Given such
a locale c[α] with fixed type α, class parameters g [α] and predicate thy.c, the
corresponding type class c is established by the following interpretation, where
the right column resembles the traditional axclass scheme [17]:

locale specification class interpretation
locale c = classdecl c =
fixes g :: τ [α] const c.g :: τ [γ::c]
assumes thy.c g :: τ [α] axiom thy.c c.g [γ::c]

The class target augments the locale target (§5.2) by a second interpretation
within the background theory where conclusions are relative to global constants
c.g [γ::c] and class axiom thy.c c.g [γ::c], for arbitrary types γ of class c.

specification define f ≡ t [α, β][g]
1. background theory constdef ∀α β. thy.f ≡ λx. t [α, β][x]
2a. locale target abbrev ∀β. loc.f ≡ thy.f [α, β] g
2b. class target constdef ∀ γ::c β. c.f ≡ thy.f [γ, β] c.g

3. auxiliary context vardef f ≡ thy.f [α, β] g

specification note a = 〈B [α, β][g]〉
1. background theory thmdef ∀α β. thy.a = 〈

∧
x. A[α][x] =⇒ B [α, β][x]〉

2a. locale target thm ∀β. loc.a = 〈B [α, β][g]〉
2b. class target thmdef ∀ γ::c β. c.a = 〈B [γ, β][c.g]〉
3. auxiliary context thm a = 〈B [α, β][g]〉
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The interpretation (2b) of fixes and define f [α, β] establishes a one-to-one
correspondence with class constants c.f [γ::c, β], such that f [α, β] becomes
c.f [γ::c, β]. When interleaving define and note elements, the same situation
occurs as described in §4 — hypothetical definitions need to be folded:

note a = 〈B [α, β][f , g]〉
1. thmdef ∀α β. thy.a = 〈

∧
x. A[α][x] =⇒ B [α, β][thy.f [α, β] g, g]〉

2a. thm ∀β. loc.a = 〈B [α, β][thy.f [α, β] g, g]〉
2b. thmdef ∀ γ::c β. thy.a = 〈B [γ, β][c.f [γ, β], c.g]〉
3. thm a = 〈B [α, β][f , g]〉

Type-class Instantiation. The instantiation target integrates type classes
and overloading by providing a Haskell-like policy for class instantiation: each
arity κ :: (s) c is associated with a set of class parameters c.g [(δ::s) κ] for
which specifications are given which respect the assumes of c. As auxiliary
means, at the begin of an instantiation, each of these c.g [(δ::s) κ] is associated
with a corresponding shadow variable κ.g [δ::s]. These are treated specifically in
subsequent define elements:

define κ.g [δ::s] ≡ t
1. constdef ∀ δ::s. c.g [(δ::s) κ] ≡ t
2. (omitted)
3. vardef κ.g [δ::s] ≡ c.g [(δ::s) κ]

In other words, define is interpreted by overloaded constdef. Further occur-
rences of define or note, unrelated to the class instantiation, are interpreted as
in the global theory target (§5.1). As an additional policy the instantiation tar-
get requires all class parameters to be specified before admitting the obligatory
instance proof before the end.

Target Syntax. As seen in §2 both the class and instantiation context allows
us to refer to whole families of corresponding constants uniformly. The idea is to
let the user write c.f unambiguously, and substitute this internally according to
the actual instantiation of the class type parameter [γ::c]. This works by splitting
conventional order-sorted type inference into three phases:

phase class target instantiation target
1. type inference with class constraint γ::c on c.f disregarded
2a. type improvement c.f [?ξ] � c.f [α] c.f [?ξ] � c.f [(δ::s) κ]
2b. substitution c.f [α] � f [α] c.f [(δ::s) κ] � κ.f [δ]
3. type inference with all constraints, fixing remaining inference parameters

To permit writing terms c.f [α] for α even without a class constraint, first
the class constraint γ::c on c.f is disregarded in phase (1) and is re-considered
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in phase (3); in between, types left open by type inference are still improvable
type inference parameters ?ξ.

Whenever c.f is used with a characteristic type parameter (α in class case,
(δ::s) κ in instantiation case), it is substituted by the appropriate parameter
(f for class or κ.f for instantiation) in phase (2b); more general occurrences
c.f [γ] are left unchanged. This allows to write c.f uniformly for both local and
global versions.

To relieve the user from cumbersome type annotations, a type improvement
step is carried out (2a): if c.f carries a type inference parameter ?ξ, this is
specialized to the characteristic type parameter. This step will hand over c.f
with completely determined type information.

As a particularity of the instantiation target, the substitution c.f [(δ::s) κ]
� κ.f [δ] is only carried out while no define κ.f [δ::s] ≡ t has occurred yet;
afterwards, occurrences of c.f [(δ::s) κ] are taken literally.

When printing terms, substitutions are reverted: f [α] � c.f [α] for class,
and κ.f [δ] � c.f [(δ::s) κ] for instantiation. Thus the surface syntax expected
by the end-user is recovered.

6 Conclusion

Related Work. Structured specifications depending on parameters and assump-
tions are closely related to any variety of “modular logic”, which may appear
in the guise of algebraic specification, little theories etc. Many module systems
for proof assistants have been developed in the past, and this is still a matter
of active research. Taking only Coq [4] as example, there are “structures” (a
variety of record types), “sections” (groups of definitions and proofs depending
on parameters and assumptions), and “modules” that resemble ML functors.

Our approach of building up specification contexts and the canonical inter-
pretation of body elements by λ-lifting is closely akin to “sections” in Coq. Here
we continue the original locale idea [12], which was presented as a “sectioning
concept for Isabelle” in the first place. There are two main differences to Coq
sections: our axiomatic target needs to be fixed once and for all, but the defini-
tional body may be extended consecutively. In Coq both parts are intermingled,
and cannot be changed later. Note that Coq sections vanish when the scope is
closed, but a local theory may be recommenced.

Beyond similarities to particular module systems our approach is different
in providing a broader scope. Acknowledging the existence of different module
concepts, we offer a general architecture for integrating them into a common
framework. After implementing a suitable target mechanism, a particular module
concept will immediately benefit from body specification elements, as produced
by existing definitional packages (inductive, primrec, function, etc.).

Fitting a module system into our framework requires a representation of its
logical aspects within Isabelle/Pure, and any auxiliary infrastructure as Isabelle/
Isar context. The latter is very flexible thanks to generic context data (covering
arbitrary ML values in a type-safe fashion), and generic “declarations” for main-
taining such data depending on a logical morphism. The Pure framework [15]
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supports higher-order logic, but only simple types without type quantification
[8]. The particular targets presented here demonstrate that non-trivial modular
concepts can indeed be mapped to the Pure logic, including an illusion of local
type-quantification (for definitions) according to Hindley-Milner [13].

In fact, there is no need to stay within our canonical interpretation of λ-
lifting at all. This template may be transcended by using explicit proof terms in
Pure, to enable more general “admissible” principles in the interpretation. For
example, the AWE tool [6] applies theory interpretation techniques directly to
global type constructors, constants and axioms. This allows one to operate on
polymorphic entities, as required for an abstract theory of monads, for example.
In AWE, definitions and theorems depending on such global axiomatizations
are transformed extra-logically by mapping the corresponding proof objects,
and replaying them in the target context. The present implementation needs to
redefine some common specification elements. Alternatively, one could present
this mechanism as another local theory target, enabling it to work with any local
definitional package, without requiring special patches just for AWE.

Implementation and Applications. Since Isabelle2008, local theories are the of-
ficial interface for implementing derived specification mechanisms within the
Isabelle framework. The distribution includes the general framework, with a cou-
ple of targets and definitional packages for the new programming interface. We
already provide target mechanisms for global theories, locales, type classes and
class instantiations as described above. There is another target for raw overload-
ing without the type-class discipline. Moreover, the following body specifications
are available:

– definition and theorem as wrappers for the define and note primitives
– primrec for structural recursion over datatypes
– inductive and coinductive for recursive predicates and sets (by Stefan

Berghofer)
– function for general recursive functions (by Alexander Krauss)
– nominal-inductive and nominal-primrec for specifications in nominal

logic (by Christian Urban and Stefan Berghofer)

Experience with such “localization” efforts of existing packages indicates that
conversion of old code is reasonably easy; package implementations can usually
be simplified by replacing primitive specifications by our streamlined local theory
elements. Some extra care is required since packages may no longer maintain
“global handles” on results, e.g. the global constant name of an inductively
defined predicate. Such references to logical entities need to be generalized to
arbitrary terms. Due to interpretation of the original specification in a variety
of targets, one cannot count on particular global results, but needs to work with
explicit Isar contexts and morphisms on associated data.

Acknowledgments. Tobias Nipkow and Alexander Krauss greatly influenced
the initial “local theory” design (more than 2 years ago), by asking critical
questions about definitions within locales. Early experiments with inductive
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definitions by Stefan Berghofer showed that the concept of “auxiliary context”
is really required, apart from the “target context”. Amine Chaieb convinced the
authors that serious integration of locales and type-classes is really needed for
advanced algebraic proof tools. Clemens Ballarin helped to separate general local
theory principles from genuine features of locales. Norbert Schirmer and other
early adopters helped to polish the interfaces.
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Abstract. Superdeduction and deduction modulo are two methods
designed to ease the use of first-order theories in predicate logic. Su-
perdeduction modulo combines both in a single framework. Although
soundness is ensured, using superdeduction modulo to extend deduc-
tion with awkward theories can jeopardize cut-elimination or complete-
ness w.r.t. predicate logic. In this paper our aim is to design criteria for
theories which will ensure these properties. We revisit the superdeduc-
tion paradigm by comparing it with the focusing approach. In particular
we prove a focalization theorem for cut-free superdeduction modulo: we
show that permutations of inference rules can transform any cut-free
proof in deduction modulo into a cut-free proof in superdeduction mod-
ulo and conversely, provided that some hypotheses on the synchrony of
reasoning axioms are verified. It implies that cut-elimination for deduc-
tion modulo and for superdeduction modulo are equivalent. Since sev-
eral criteria have already been proposed for theories that do not break
cut-elimination of the corresponding deduction modulo system, these cri-
teria also imply cut-elimination of the superdeduction modulo system,
provided our synchrony hypotheses hold.

Keywords: Proof theory, superdeduction, focusing, deduction modulo.

1 Introduction

The construction of formal proofs usually relies on a proof system containing the
discipline that the user has to follow. Deduction is also normally conducted with
respect to a theory (a set of axioms), which brings deductive as well as comput-
ing abilities to the system. In frameworks such as first-order natural deduction
or sequent calculus, the use of a theory is always uniform since the proofs only
express atomic steps, which correspond to decompositions of logical connectives.
Higher-level notions such as sets, induction or arithmetic have to be encoded
in the first-order language and handled through these atomic inference steps,
leading often to long, hardly-readable “assembly like” proofs. Deduction mod-
ulo [1] and superdeduction [2] are two approaches that propose to ease the use
of theories in predicate logic. The first has been designed to remove irrelevant
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computational arguments (such as 2 + 2 = 4) from proofs. These omitted com-
putations are meant to be redone during the proofchecking process. The second
proposes custom-made inference rules, similarly to Girard’s synthetic connectives
approach [3], devoted to specific axioms of the theory.

We believe that the superdeduction approach is closely related to Focusing,
introduced by Andreoli [4] and meant to remove irrelevant choices in backward
reasoning for sequent calculus: Syntactically different proofs can still be iden-
tical up to permutations or simplifications of the applications of the inference
rules. The superdeduction point of view is that the use of an axiom is usually
done through a destruction of its connectives, and that these steps are always
identical up to permutations or simplifications of the applications of the infer-
ence rules. In this paper we consequently propose to fill the gap between the two
approaches. We show that superdeduction systems as well as a specific focusing
system are instances of a more general paradigm, therefore obtaining an insight
of the similarities and differences between these systems.

Since awkward theories can break completeness w.r.t. predicate logic, cut-
elimination (admissibility of cuts) or normalisation (of a cut-elimination proce-
dure), one has to propose criteria for safe theories to be used in superdeduction
and deduction modulo. On the one hand, strong normalisation for deduction
modulo has been studied, using reducibility candidates [5] leading to the notion
of truth values algebras and superconsistency [6,7], and cut-elimination results
have been obtained using semantic methods [8,9] or abstract completion [10].
On the other hand superdeduction is provided with a proofterm language in
[2] together with criteria for its normalisation. In this context, our compari-
son between superdeduction and focusing will allow us to prove a focalization
theorem: cut-free deduction modulo proofs can be transformed into cut-free su-
perdeduction modulo proofs, provided some synchrony hypotheses are verified.
Then it implies that criteria for cut-elimination in deduction modulo also hold
for superdeduction modulo.

Several other paradigms propose ad hoc systems for specific theories. Let us
cite Huang’s Assertion level [11] motivated by the presentation of proofs in natu-
ral language. Another approach proposed by Negri and von Plato [12] expresses
first-order axioms through inference rules, which however only act on the left-
hand side of sequents and consequently poorly interact with an elimination of
cuts. Our approach is much closer to Definitional Reflection [13], extended with
induction [14], since it adds left and right introduction rules to an intuitionistic
sequent calculus in order to reflect some definitional clause, corresponding to
what we will call proposition rewrite rules. In addition, cut-elimination results
are proved for these logics with definitions and induction. However, working in
the classical sequent calculus allows us to add more general inference rules.

Superdeduction modulo can be an innovative foundation for proof assistants,
as argued in [2,15]. First it allows to naturally encode custom reasoning and
computational schemes, such as induction and arithmetic. Furthermore it is es-
pecially adapted to human interaction: Proofs constructed with existing proof-
assistants such as Coq or Isabelle usually consist in tactics or proofterms that
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may convince the user but not actually explain. Indeed the main steps are often
flooded with straightforward logical and computational arguments, which are
meant to be hidden by superdeduction modulo. In addition, the expressiveness
of this latter framework is promising: Higher-order logics can be formalized using
rewrite systems in deduction modulo [16,17,18]. PTS can be encoded in superde-
duction modulo [19] and deduction modulo is proved to admit unbounded proof
size speed-up [20]. Finally deduction modulo leads to interesting automated the-
orem proving procedures like ENAR [1] or TaMeD [21].

Superdeduction modulo is presented in Section 2. In this context, our con-
tributions are the following: In Section 3 we introduce an extension of sequent
calculus and show that superdeduction systems as well as a specific focusing sys-
tem are instances of this extension. It consequently leads to a clear comparison of
superdeduction with the focusing approach. Then in Section 4 we prove a focal-
ization theorem for superdeduction modulo, which states that a cut-free proof in
deduction modulo can be translated into a cut-free proof in raw superdeduction
modulo (the converse being obvious), and which leads to criteria for theories
that can extend deduction through the superdeduction modulo paradigm with-
out endangering cut-elimination. Detailed proofs of theorems are available in a
long version of this paper [22].

2 Superdeduction Modulo

In this section we define superdeduction modulo, which is the combination of
deduction modulo and superdeduction. We consider the following classical se-
quent calculus LKcore, which contains the deduction core of our superdeduction
modulo systems.

Ax

Γ, ϕ � ϕ,Δ
⊥L

Γ,⊥ � Δ
⊥R

Γ � Δ

Γ � ⊥, Δ
�R

Γ � �, Δ
�L

Γ � Δ

Γ,� � Δ

∧L

Γ, ϕ1, ϕ2 � Δ

Γ,ϕ1 ∧ ϕ2 � Δ
∧R

Γ � ϕ1, Δ Γ � ϕ2, Δ

Γ � ϕ1 ∧ ϕ2, Δ
∨L

Γ, ϕ1 � Δ Γ,ϕ2 � Δ

Γ,ϕ1 ∨ ϕ2 � Δ

⇒R

Γ, ϕ1 � ϕ2, Δ

Γ � ϕ1 ⇒ ϕ2, Δ
⇒L

Γ � ϕ1, Δ Γ, ϕ2 � Δ

Γ,ϕ1 ⇒ ϕ2 � Δ
∨R

Γ � ϕ1, ϕ2, Δ

Γ � ϕ1 ∨ ϕ2, Δ

∀R

Γ � ϕ,Δ

Γ � ∀x.ϕ,Δ
x /∈ FV(Γ,Δ) ∀L

Γ, ϕ[t/x] � Δ

Γ, ∀x.ϕ � Δ
∃L

Γ, ϕ � Δ

Γ, ∃x.ϕ � Δ
x /∈ FV(Γ,Δ)

CR

Γ � ϕ,ϕ,Δ

Γ � ϕ,Δ
CL

Γ, ϕ, ϕ � Δ

Γ,ϕ � Δ
Cut

Γ � ϕ,Δ Γ, ϕ � Δ

Γ � Δ
∃R

Γ � ϕ[t/x], Δ
Γ � ∃x.ϕ,Δ

A term rewrite rule rewrites first-order terms into first-order terms and a
proposition rewrite rule rewrites an atomic proposition into an arbitrary formula.
For instance plus(zero, x) → x is a term rewrite rule while a ⊆ b → ∀x.x ∈ a ⇒
x ∈ b is a proposition rewrite rule. We will consider two sets of rewrite rules:
Th1 will contain computational axioms, and will be used to extend the deduction
system through deduction modulo ; Th2 will contain deductive axioms, and will
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be used to enrich the deduction system through superdeduction. Th1 contains
both term and proposition rewrite rules while Th2 is a set of proposition rewrite
rules. We suppose that each rewrite rule P → ϕ of Th2 is associated with some
name R then denoted R : P → ϕ. For i ∈ {1, 2}, the one-step rewrite reduction
associated with Thi is denoted →i. The reflexive and transitive closure of →i is
denoted →∗

i . The symmetric, reflexive and transitive closure of →i is denoted
≡i. The notations →1,2, →∗

1,2, and ≡1,2 are used for Th1 ∪ Th2. The first-order
axiom associated with a proposition rewrite rule P → ϕ is ∀x̄.(P ⇔ ϕ), where
x̄ represents the free variables of P and ϕ, denoted FV(P, ϕ). The first-order
axiom associated with a term rewrite rule l → r is ∀x̄.(l = r), where x̄ represents
the free variables of l and r. This way of representing a term rewrite rule as a
first-order axiom supposes that the logic contains an equality symbol. If it does
not, one may add this predicate and the corresponding axioms in a conservative
way as detailed in [23]. Another way to proceed with the term rewrite rules of
Th1 is to use axioms of the form ∀x̄. P ⇔ Q for all P ≡1 Q. When writing
�+Th2
≡Th1

, Th1 and Th2 will represent the rewrite rules, and when writing Th1 � or
Th2 �, they will represent the first-order axioms. For some deduction system ��∗,
we will just write Γ ��∗ Δ instead of the sentence there is a proof of Γ ��∗ Δ.
The sequents in the corresponding cut-free deduction system will be denoted
Γ �cf�∗ Δ.

Superdeduction stands for the addition to LKcore of new superdeduction in-
ference rules that are computed from Th2 in the following way.

Definition 1 (Superdeduction rules computation [2]). Let Calc be the set
of inference rules formed of Ax, ⊥L, �R, ∨L, ∨R, ∧L, ∧R, ⇒L, ⇒R, ∀L, ∀R,
∃L, ∃R, �L and ⊥R. Let us suppose R : P → ϕ ∈ Th2. To get the right (resp.
left) rules associated with R, apply bottom-up the rules of Calc to the sequent
Γ � ϕ,Δ (resp. Γ, ϕ � Δ) until no connective of ϕ remain, collect the premises
and side conditions, and finally replace ϕ by P in the conclusion.

For instance, the rules associated with ⊆def : a ⊆ b → ∀x.x ∈ a ⇒ x ∈ b are

⊆defR

Γ, x ∈ a � x ∈ b, Δ

Γ � a ⊆ b, Δ
x /∈ FV(Γ, Δ) ⊆defL

Γ, t ∈ b � Δ Γ � t ∈ a, Δ

Γ, a ⊆ b � Δ

Since the propositional rules of Calc commute with any other rules, they may
be applied in any order to reach axioms. However the application order of rules
concerning quantifiers can be significant and the resulting side condition may
differ: Decomposing P → (∃x.A(x)) ⇒ (∃x.B(x)) on the right can lead to

Γ, A(x) � B(t),Δ

Γ � P, Δ
x /∈ FV(Γ, Δ)

or

Γ, A(x) � B(t), Δ

Γ � P, Δ
x /∈ FV(Γ, Δ, t)

depending on which existential quantifier is decomposed first. Although both
rules are sound, only the first is complete. Therefore when computing superde-
duction rules, one should give ∃L and ∀R a higher priority than the other rules,
consequently ensuring that a weakest side condition is obtained.
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Let us also remark that there may be several inference rules for introducing the
same proposition rewrite rule on the left or on the right. An anonymous referee
sagely pointed out the example of P → (∃x1.∀x2.A(x1, x2))∨(∃y1.∀y2.B(y1, y2))
whose most general superdeduction rules are

Γ � A(t, x2), B(u, y2), Δ
Γ � P,Δ

{
x2 /∈ FV(Γ, Δ, u)
y2 /∈ FV(Γ, Δ)

and
Γ � A(t, x2), B(u, y2), Δ

Γ � P,Δ

{
x2 /∈ FV(Γ, Δ)
y2 /∈ FV(Γ, Δ, t)

This is not problematic since all the obtainable rules are available any time. In
addition, let us remark that the hypotheses which imply our focalization theorem
forbid this to occur (see Hypothesis 1).

Definition 2 (Superdeduction modulo). The superdeduction modulo sys-
tem associated with (Th1, Th2) is formed of the rules of LKcore and the rules
built upon Th2, where each first-order term or proposition is considered modulo
rewriting through Th1. Sequents in this system are denoted Γ �+Th2

≡Th1
Δ, or simply

Γ �+2
≡1

Δ.

If Th2 is empty, then we are in raw deduction modulo and sequents are denoted
Γ �≡1 Δ. If Th1 is empty, then we are in raw superdeduction and sequents
are denoted Γ �+2 Δ. We may use two equivalent ways to present inferences
modulo ≡1: using explicit conversion rules, which rewrites part of the sequent
or including rewriting in the inference rules of the system, as presented in [1].
Let us recall that we allow rewriting on formulæ in Th1. This can lead to odd
situations such as a cut on a formula which is (rewrites to) both a conjunction
and a disjunction. In order to avoid these kind of situation, we will always
suppose that Th1 is confluent besides of only rewriting atoms.

Superdeduction modulo is sound w.r.t. predicate logic: Indeed it is proved in
[1] that Γ �≡1 Δ if and only if Th1, Γ � Δ. In addition, it is proved in [2] that
Γ �+2 Δ if and only if Th2, Γ � Δ. The soundness of superdeduction modulo is
then a direct consequence of the following lemma.

Lemma 1. If Γ �+2
≡1

Δ, then Γ �≡1,2 Δ. If Γ �cf+2
≡1 Δ, then Γ �cf≡1,2 Δ.

Proof. Superdeduction rules are replaced by rules of Calc and a step ϕ ≡2 P .

Theorem 1 (Soundness of �+2
≡1

). If Γ �+2
≡1

Δ, then Th1, Th2, Γ � Δ.

Proof. Using Lemma 1, the proof of Γ �+2
≡1

Δ is translated into a proof of Γ �≡1,2

Δ, then by soundness of deduction modulo into a proof of Th1, Th2, Γ � Δ.

Let us now demonstrate the use of superdeduction modulo through an example.
Deduction modulo is convenient for representing the computational part of some
theory. For instance one can define addition using 0 + y → y and S(x) + y →
S(x + y), and multiplication using 0 ∗ x → 0 and S(x) ∗ y → y + (y ∗ x).
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Let us also define sum(x) =
x−1∑
k=0

(2 ∗ k + 1) with the rules sum(0) → 0 and

sum(S(x)) → S(x+(x+sum(x))). We obtain a convergent rewrite system, which
is suitable for representing computation in deduction modulo. Superdeduction is
convenient for representing the deductive part of a theory. Let us define natural
numbers (and induction) using the rules N(n) → ∀P. 0 ∈ P ⇒ H(P ) ⇒ n ∈ P
and H(P ) → ∀k. k ∈ P ⇒ S(k) ∈ P 1. Let us also define Leibniz’s equality
with the rule x = y → ∀P. x ∈ P ⇒ y ∈ P . In the three latter rules, we wrote
x ∈ P instead of P (x), for some formula P . This is allowed if we use (in Th1) the
axiom x ∈ P̃ → P (x) coming from the theory of classes, where P̃ denotes fresh
constants associated with each formula P . The new inference rules for natural
numbers and equality are then

NR

Γ, 0∈P, H(P ) �+2≡1 n∈P, Δ

Γ �+2≡1 N(n), Δ
P /∈ FV(Γ,Δ)

NL

Γ �+2≡1 0∈P, Δ Γ �+2≡1 H(P ),Δ Γ, n∈P �+2≡1 Δ

Γ, N(n) �+2≡1 Δ

HL

Γ �+2≡1 m∈P,Δ Γ, S(m)∈P �+2≡1 Δ

Γ, H(P ) �+2≡1 Δ
HR

Γ, k∈P �+2≡1 S(k)∈P,Δ

Γ �+2≡1 H(P ),Δ
k /∈ FV(Γ,Δ)

=R

Γ, x ∈ P �+2≡1 y ∈ P, Δ

Γ �+2≡1 x = y, Δ
P /∈ FV(Γ,Δ) =L

Γ, y ∈ P �+2≡1 Δ Γ �+2≡1 x ∈ P, Δ

Γ, x = y �+2≡1 Δ

Besides, the system is considered modulo the rules for addition, multiplica-
tion and sum(x). Then one can easily prove in the system that N(n) implies
n−1∑
k=0

(2 ∗ k + 1) = n2. The proof is

NL

=R

Ax(0 ∈ A)

�+2≡1 0 = 0

HR

=L

=R

Ax(S(m + (m + sum(m))) ∈ A)

�+2≡1 S(m + (m + sum(m))) = S(m + (m + sum(m)))

Ax(S(m + (m + sum(m))) = S(m + (m + (m ∗m))))
·······

sum(m) = m ∗m �+2≡1 S(m + (m + sum(m))) = S(m + (m + (m ∗m)))

�+2≡1 H(P̃ )
···· Ax(sum(n) = n ∗ n)

N(n) �+2≡1 sum(n) = n ∗ n

where P̃ is the first-order constant associated with the formula sum(x) = x ∗ x

and Ax(ϕ) stands for the proof
Ax

ϕ �cf+2
≡1

ϕ . The premises of the rule =L are �
sum(m) ∈ Q̃ and m∗m ∈ Q̃ � S(m+(m+sum(m))) = S(m+(m+(m∗m))) where
Q̃ is the first-order constant associated with the formula S(m+(m+sum(m))) =
S(m+(m+x)). Let us notice that the proof uses only superdeduction rules and
Ax rules.

1 The intermediate predicate H(P ) is introduced to ensure completeness, as we will
see in Section 3. I also refer the reader to [2] for full explanations.
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3 Superdeduction and Focusing Systems

The aim of this section is to explore how focusing and superdeduction are related.
For example the distinction between the two kinds of sequents that focusing in-
troduces, namely unfocused and focused sequents, is very similar to the distinc-
tion between sequents used in the superdeduction toplevel and (meta)sequents
used during the superdeduction inference rules computation: In this latter case,
a specific formula ϕ appearing in a proposition rewrite rule P → ϕ replaces P
and is then focused until the complete decomposition of its connectives.

Let us propose an extension of classical sequent calculus based on this distinc-
tion between focused and unfocused sequents. We will see that superdeduction
systems as well as a specific focusing system for LKcore are instances of this
extension. Starting from LKcore, we add the following rules.

Γ (� ϕ)Δ
Γ � ψ, Δ

InR

Γ (ϕ �)Δ
Γ, ψ � Δ

InL

Γ, Γ ′ � Δ′, Δ

Γ (Γ ′ � Δ′)Δ
Out

Γ (Γ ′, A � A,Δ′)Δ
Ax

Γ (Γ ′,⊥ � Δ′)Δ
⊥L

Γ (Γ ′ � �, Δ′)Δ
�R

Γ (Γ ′ � Δ′)Δ
Γ (Γ ′ � ⊥, Δ′)Δ

⊥R

Γ (Γ ′ � Δ′)Δ
Γ (Γ ′,� � Δ′)Δ

�L

Γ (Γ ′ � ϕ1, Δ
′)Δ Γ (Γ ′ � ϕ2, Δ

′)Δ

Γ (Γ ′ � ϕ1 ∧ ϕ2, Δ
′)Δ

∧R

Γ (Γ ′, ϕ1, ϕ2 � Δ′)Δ

Γ (Γ ′, ϕ1 ∧ ϕ2 � Δ′)Δ
∧L

Γ (Γ ′ � ϕ1, ϕ2, Δ
′)Δ

Γ (Γ ′ � ϕ1 ∨ ϕ2, Δ
′)Δ

∨R

Γ (Γ ′, ϕ1 � Δ′)Δ Γ (Γ ′, ϕ2 � Δ′)Δ
Γ (Γ ′, ϕ1 ∨ ϕ2 � Δ′)Δ

∨L

Γ (Γ ′, ϕ2 � Δ′)Δ Γ (Γ ′ � ϕ1, Δ
′)Δ

Γ (Γ ′, ϕ1 ⇒ ϕ2 � Δ′)Δ
⇒R

Γ (Γ ′, ϕ1 � ϕ2, Δ
′)Δ

Γ (Γ ′ � ϕ1 ⇒ ϕ2, Δ
′)Δ

⇒L

∀R

Γ (Γ ′ � ϕ, Δ′)Δ

Γ (Γ ′ � ∀x.ϕ, Δ′)Δ
x /∈ FV(Γ, Γ ′, Δ, Δ′) ∀L

Γ (Γ ′, ϕ[t/x] � Δ′)Δ

Γ (Γ ′,∀x.ϕ � Δ′)Δ

∃R

Γ (Γ ′ � ϕ[t/x], Δ′)Δ
Γ (Γ ′ � ∃x.ϕ, Δ′)Δ

∃L

Γ (Γ,ϕ � Δ′)Δ
Γ (Γ,∃x.ϕ � Δ′)Δ

x /∈ FV(Γ, Γ ′, Δ, Δ′)

The system features then two kinds of sequents: Unfocused sequents denoted
Γ � Δ and focused sequents denoted Γ (Γ ′ � Δ′)Δ. Unfocused sequents are
handled by the rules of classical sequent calculus; focused sequents are handled
by the overlined rules; entering a focusing sequence is handled by rules InR and
InL; finally leaving a focusing sequence is handled by rule Out. In addition, the
obtained sequent calculus has the three following parameters: A condition CIn,
which is enforced when applying the rules InR and InL, a condition COut, which is
enforced when applying the rule Out, a condition CFocus, which is enforced when
applying any of the overlined rules and a condition CUnfocus, which is enforced
when applying any of the raw LKcore rules. Therefore the resulting deduction
system is denoted LK(CIn, COut, CFocus, CUnfocus). CIn and COut are meant to re-
spectively control the bottom-up entrance and exit of focusing phases; CFocus

and CUnfocus are meant to respectively control the deduction inside of focused
and unfocused phases. For instance if CTh1 is the condition that forces ϕ ≡1 ψ in
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the rules InR and InL, then LK(CTh1, true, false, true) is equivalent to deduction
modulo Th1: The overlined rules are simply discarded, and the InR and InL

rules are turned into conversion rules for Th1. Both focusing proofs and super-
deduction can also be formulated as instances of LK(CIn, COut, CFocus, CUnfocus).

Focusing. We will say that a (focused or unfocused) sequent is positive if the
head connectives of its non-atomic formulæ are ∀ on the left and ∃ on the right.
Then one can define the following focusing system for LKcore: F+ is the condition
that restricts the conclusion of the applied inference rule to be a positive sequent.
F− is the condition that restricts the conclusion of the applied inference rule not
to be a positive sequent. Then LK(F+∧ϕ = ψ,F−,F+,F−) is a focusing system
for LKcore. It is quite different from the focusing system LKF presented in [24],
in particular regarding our asynchronous treatment of propositional connectives.
However both systems only allow to focus on a single formula. It is syntactically
ensured in LKF, while ensured by F+ together with the shape of ∃R and ∀L (the
only overlined rules allowed by F+) in LK(F+ ∧ ϕ = ψ,F−,F+,F−). Focused
sequents, which are denoted �→ [Θ], P in [24], are denoted (� P )Θ here.

Superdeduction. The explicit superdeduction system associated with Th2 is
defined as LK(CTh2, Catoms, true, true) where CTh2 is the condition (for the ap-
plication of rules InR and InL) that states that ψ → ϕ is a rule of Th2 and
Catoms is the condition that restricts the focused part of the conclusion of the
rule Out to contain only atoms. LK(CTh2, Catoms, true, true) is equivalent to the
superdeduction system associated with Th2, since each focused phase exactly
corresponds with the computation of some superdeduction inference rule.

On the one hand, LK(CIn, COut, CFocus, CUnfocus), as the supremum of a spe-
cific focusing system for LKcore and superdeduction systems, makes clear the
similarities between these two approaches:

– Focused and unfocused sequents are syntactically identified.
– Focused sequents focus on a special part of the sequent.
– The system features three kinds of inferences, which either handle focused

sequents, handle unfocused sequents or controls the enter/exit of the focus.

On the other hand, it also underlines the dissimilarities:

– Focused sequents usually focus on a single formula in the focusing approach
(there are exceptions, such as multifocusing [25]), but they may focus on
several in the superdeduction approach.

– Focusing phases of superdeduction contain an unfolding step (In rules) be-
sides purely logical steps.

– In the focusing approach, the De Morgan dual of a positive connective is
usually negative and conversely. On the contrary, superdeduction locally
divides occurrences of connectives into toplevel occurrences (decomposed
in unfocused phases) and connectives appearing in axioms of Th2, but a
conjunction, for instance, can appear as a toplevel connective somewhere
and in the explicit decomposition of a superdeduction axiom.
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– In the focusing approach, F+ and F− state that the focusing phase is entered
(bottom-up) only when no negative connective remains (the latest possible),
and is left as soon as a negative connective is found (the soonest possible).
This aspect plays an important role in the completeness of the focusing
approach. In the superdeduction approach, CTh2 and Catoms state that the
focusing phase is entered anytime a superdeduction axiom is unfolded, and
is left only when no connective of the axiom remains (the latest).

More generally, let us stress the fact in the superdeduction approach, the focused
phases are directed by axioms of Th2 (therefore axiom directed focusing). In
particular these axioms direct when the focusing phases can be entered and
exited. They also direct which connectives will be decomposed during a single
focusing phase. Consequently one can propose syntactical criteria on Th2 to
ensure completeness or cut-elimination of the system (the later will be dealt
with in the next section). Bipoles, which come from the focusing approach and
whose definition is adapted from [26], may be seen as such a characterization of
which formulæ can be used in Th2 in order to obtain a complete superdeduction
system: If for some R : P → ϕ ∈ Th2, ϕ and ¬ϕ are both bipoles, then the
rules RR and RL are complete. The definition of bipoles strongly relies on the
non-permutability cases: As analysed by Kleene in [27], there are four cases for
which two steps of LKcore cannot be permuted:

∀R

∃R

Γ �cf+2≡1 A(x),B(x),Δ

Γ �cf+2≡1 A(x), ψ, Δ
ψ ≡1 ∃x.B(x) ∃L receives the variable x

Γ �cf+2≡1 ϕ, ψ, Δ
ϕ ≡1 ∀x.A(x) ∀R emits the variable x

and similarly where ∀R is replaced by ∃L and/or ∃R is replaced by ∀L. Kleene’s
analysis in [27] leads to strong results about the permutations of inferences in
proofs. This analysis transfered to deduction modulo already allowed Hermant
to prove cut-elimination results for deduction modulo in [8] and we will see in
Section 4 that transfering this analysis to superdeduction modulo allows to prove
cut-elimination results for superdeduction modulo. Before that, let us define
positive and negative connectives as well as bipoles and monopoles.

Definition 3 (Polarity of a subformula). The polarity polϕ(ψ) of ψ in ϕ
where ψ is an occurrence of a subformula of ϕ is defined as
true if ϕ = ψ;
polϕi(ψ) if ϕ = ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 or ∀x.ϕ1 or ∃x.ϕ1, and ψ occurs in ϕi;
¬polϕ1(ψ) if ϕ = ϕ1 ⇒ ϕ2 and if ψ occurs in ϕ1;
polϕ2(ψ) if ϕ = ϕ1 ⇒ ϕ2 and if ψ occurs in ϕ2.

Definition 4 (Neutral/Positive/Negative connectives). In a formula ϕ,
we will say that an occurrence of a connective is neutral if it is not a quanti-
fier, positive (or synchronous) if it is a universal quantifier of polarity true or
an existential quantifier of polarity false, negative (or asynchronous) if it is a
universal quantifier of polarity false or an existential quantifier of polarity true.

Definition 5 (Monopoles/Bipoles). Monopoles are formulæ built from
atoms with neutral and negative connectives. Bipoles are formulæ built from
monopoles with neutral and positive connectives.
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These pictures represent re-
spectively a bipole, a formula
whose negation is a bipole and a
bipole whose negation is also a
bipole. Minuses represent nega-
tive connectives, pluses represent
positive connectives and the grey
background represents neutral
connectives.

Theorem 2 (Completeness of superdeduction modulo)
If for all ϕ appearing in P → ϕ ∈ Th2, ϕ and ¬ϕ are both bipoles, then
Th1, Th2, Γ � Δ implies Γ �+2

≡1
Δ.

Proof. From the completeness of superdeduction, which is proved in [15], for all
ϕ ∈ Th2, there exists a proof of �+2 ϕ. From the completeness of deduction
modulo, for all ϕ ∈ Th1, there exists a proof of �≡1 ϕ. Starting from a proof of
Th1, Th2, Γ � Δ, using cuts with the proofs of �+2

≡1
ϕ for all ϕ ∈ Th1 ∪ Th2, we

get a proof of Γ �+2
≡1

Δ.

Then for the rest of the paper we make the same hypothesis as in [2,15]:

Hypothesis 1. If P → ϕ ∈ Th2, then ϕ and ¬ϕ are both bipoles.

Nevertheless, this hypothesis does not restrict the set of theories that superde-
duction can handle. Indeed a procedure, greatly inspired by Andreoli’s Bipo-
larisation [26], has been proposed in [2] to transform any set of proposition
rewrite rules into an equivalent one verifying this hypothesis, namely, for all
P → ϕ ∈ Th2, replacing ϕ by its greatest prefix that is a bipole and whose
negation is also a bipole; any subformula ψ of ϕ that is consequently separated
from ϕ is then replaced in the prefix by a fresh predicate symbol Q parametrised
by the free variables of ψ; finally the rule Q → ψ is recursively processed by
the procedure and then added to Th2. For instance the proposition rewrite rule
P → (∀xA(x) ⇒ (∀x.∃y.B(x, y)) is transformed into

P → (∀x.A(x)) ⇒ (∀x.Q(x)) and Q(x) → ∃y.B(x, y) .

Before going to the next section and proving cut-elimination results for super-
deduction modulo, we make another syntactic hypothesis on axioms of Th2.

Hypothesis 2. If P → ϕ ∈ Th2, then ϕ is in prenex normal form.

Let us notice that together with Hypothesis 1, it implies the following lemma.

Lemma 2. If P → ϕ ∈ Th2, then ϕ is either ∀x1 . . . xn.ψ or ∃x1 . . . xn.ψ for
some prop. formula ψ. We will resp. say that ϕ is right-handed and left-handed.

Hypothesis 2 does not restrict the set of theories that superdeduction can handle,
since the procedure proposed in [2] that turns any set of proposition rewrite rules
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into an equivalent one verifying Hypothesis 1 can easily be strengthened into a
procedure that turns any set of proposition rewrite rules into an equivalent one
verifying both Hypotheses 1 and 2.

Hypotheses 2 and 1 can be replaced by the following single hypothesis (which
we will call Hypothesis 3): For any ϕ appearing in P → ϕ ∈ Th2, either ϕ or its
negation is a monopole. Then the only quantifiers of ϕ are either positive ∀ and
negative ∃, or negative ∀ and positive ∃. Indeed in this case, one can always find
a prenex normal form ψ classically equivalent to ϕ that satisfies Hypotheses 2
and 1 and such as the inference rules associated with P → ϕ are the same as the
rules associated with P → ψ. The deduction system is consequently unchanged
and then our final result also holds if we just replace Hypotheses 2 and 1 by
Hypothesis 3. Let us illustrate this with an example: The proposition rewrite
rule R : P → (∀x.A(x)) ⇒ (∃y.B(y)) verifies Hypothesis 3 (which in turn implies
Hypothesis 1), but does not verify Hypothesis 2. However (∀x.A(x)) ⇒ (∃y.B(y))
is classically equivalent to ∃x.∃y.(A(x) ⇒ B(y)). Furthermore we obtain the
same superdeduction inference rules if we replace the proposition rewrite rule R
by R′ : P → ∃x.∃y.(A(x) ⇒ B(y)), namely

Γ, A(t1) � B(t2), Δ
Γ � P, Δ

Γ, B(y) � Δ Γ � A(x),Δ
Γ, P � Δ

x, y /∈ FV(Γ, Δ)

Finally R′ satisfies both Hypotheses 1 and 2.

4 Focalization in Cut-Free Superdeduction Modulo

Using awkard theories to extend deduction through deduction modulo or super-
deduction is known to jeopardize cut-elimination (completeness of the cut-free
deduction system) and normalisation (termination of a cut-elimination proce-
dure). For example if A ≡1,2 A ⇒ A, one can easily build a proof of �+2

≡1
A 2

that does not normalize. However cut-elimination and normalisation are well-
studied for deduction modulo. Several proofs and criteria have been presented
for cut-elimination and normalisation. Let us cite first the early work of Dowek
and Werner [5]. Using reducibility candidates they prove that the existence of
a pre-model3 for some rewrite system implies the normalisation of intuitionistic
natural deduction modulo this rewrite system. Then they transfer this result to
classical logic using light double negation3.

Theorem 3 ([5]). If the light double negation of a rewrite system R has a
premodel, cut-elimination holds for the classical sequent calculus modulo R.

Hermant used semantic methods to study cut-elimination for the intuitionistic
and classical sequent calculus in [9,28,8]. Among others, he proved the following
cut-elimination theorem for classical sequent calculus modulo.

2 The proof may be written (λx. x x) (λx. x x) in a λ-calculus style.
3 Both definitions of light double negation and pre-model can be found in [5].
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Theorem 4 ([8]). If R is a rewrite system compatible with a well-founded or-
der, if R+ is a positive rewrite system4 whose right-hand sides are R-normal
forms and if R ∪ R+ is confluent, then cut-elimination holds for the classical
sequent calculus modulo R∪R+.

Finally Burel and Kirchner proposed another approach in [10] where they use
abstract canonical systems and abstract completion in order to mechanically
transform a classical sequent calculus system into an equivalent one having the
cut-elimination property.

Theorem 5 ([10]). A sequent has a proof in classical sequent calculus modulo
some theory R if and only if it has a cut-free proof in the saturated theory
corresponding to R.

Our aim is now to relate superdeduction modulo to deduction modulo in or-
der to prove that all these criteria are extendible to superdeduction modulo.
We will only consider cut-free deduction systems and show that they allow to
prove exactly the same sequents: A sequent Γ �cf+2

≡1 Δ is provable if and only if
Γ �cf≡1,2 Δ is. The translation of a proof in superdeduction modulo into sheer
deduction modulo is already shown in Lemma 1. Now let us prove the converse:
If Γ �cf≡1,2 Δ, then Γ �cf+2

≡1 Δ. To achieve this goal, we will first consider some
proposition rewrite rule R : P → ϕ of Th2 and prove that if Γ �cf+2

≡1 ϕ,Δ, then
Γ �cf+2

≡1 P,Δ ; if Γ, ϕ �cf+2
≡1 Δ, then Γ, P �cf+2

≡1 Δ. This property then implies the

admissibility of rules ≡2R
Γ � ϕ,Δ

Γ � ψ,Δ
ϕ ≡2 ψ and ≡2L

Γ, ϕ � Δ

Γ,ψ � Δ
ϕ ≡2 ψ in cut-free

superdeduction modulo, which in turn implies that if Γ �cf≡1,2 Δ, then Γ �cf+2
≡1 Δ.

The proof of the property deals with permutability problems in classical sequent
calculus: Indeed the intuition is to unite the steps of the proof that decompose
ϕ into a one-step decomposition of P . Considering the permutability problems
that one can have when dealing with quantifiers (see Section 3), we can easily
build a proof of some sequent Γ �+2

≡1
ϕ,Δ where the three steps decomposing ϕ,

marked with the symbol ∗, cannot be united using sheer permutations:

⇒R

∀R

∀L

∃L

∀L

. . .

A(y0)⇒ B(x0), A(y0) � B(x0)
A(y0)⇒ B(x0), (∀x.A(x)) � B(x0)

∗

∃y.(A(y)⇒ B(x0)), (∀x.A(x)) � B(x0)

∀x.∃y.(A(y)⇒ B(x)), (∀x.A(x)) � B(x0)
∀x.∃y.(A(y)⇒ B(x)), (∀x.A(x)) � (∀x.B(x))

∗

∀x.∃y.(A(y)⇒ B(x)) � (∀x.A(x))⇒ (∀x.B(x))
∗

where ϕ is (∀x.A(x)) ⇒ (∀x.B(x)). Let us notice both ϕ and ¬ϕ are bipoles
(Hypothesis 1 is verified), but Hypothesis 2 is not verified. A solution is to
combine the permutations with contractions as follows.

4 The definition of a positive rewrite system can be found in [8].
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ContrR

⇒R

∀R

∀L

∀L

∃L

⇒R

∀L

∀R

. . .

A(y0)⇒B(x0), A(x0), A(y0)�B(x1), B(x0)

A(y0)⇒B(x0), A(x0), A(y0)�∀x.B(x),B(x0)
∗

A(y0)⇒B(x0), A(x0),∀x.A(x)�∀x.B(x),B(x0)
∗

A(y0)⇒B(x0), A(x0)�ϕ, B(x0)
∗

∃y.A(y)⇒B(x0), A(x0)�ϕ,B(x0)

∀x.∃y.A(y)⇒B(x), A(x0)�ϕ,B(x0)
∀x.∃y.A(y)⇒B(x),∀x.A(x)�ϕ,B(x0)

∗

∀x.∃y.A(y)⇒B(x),∀x.A(x)�ϕ,∀x.B(x)
∗

∀x.∃y.A(y)⇒B(x)�ϕ,(∀x.A(x))⇒ (∀x.B(x))
∗

∀x.∃y.(A(y)⇒B(x))� (∀x.A(x))⇒(∀x.B(x))

In this proof, all the steps decomposing (∀x.A(x)) ⇒ (∀x.B(x)) have been du-
plicated and then united. It seems that this manipulation allows to transform
any proof using several LK inference rules to decompose a formula ϕ into a
proof using several occurrences of a single superdeduction inference rule decom-
posing the corresponding predicate P (P → ϕ ∈ Th2). However proving that
this manipulation always solves the problem remains an open question to our
knowledge. In addition, the cunjonction of Hypotheses 1 and 2 prevents these
permutability problems to appear.

Now let us prove that �cf+2
≡1 is equivalent to �cf≡1,2 . Dealing with right-handed

formulæ on the right and left-handed formulæ on the left of a sequent needs the
following lemma, adapted from a central lemma in Hermant’s semantic proofs
of cut-elimination for deduction modulo [8].

Lemma 3 (Kleene’s lemma adapted to �+2
≡1

)
Let A1 ≡1 A2 ≡1 . . . An ≡1 ϕ be some propositions. Let Θ = A1, A2 . . . An.

– If ϕ = ¬A and Γ,Θ �cf+2
≡1 Δ then Γ �cf+2

≡1 A,Δ.
– If ϕ = A ∧ B and Γ,Θ �cf+2

≡1 Δ then Γ,A,B �cf+2
≡1 Δ.

– If ϕ = A ∨ B and Γ,Θ �cf+2
≡1 Δ then Γ,A �cf+2

≡1 Δ and Γ,B �cf+2
≡1 Δ.

– If ϕ = A ⇒ B and Γ,Θ �cf+2
≡1 Δ then Γ,B �cf+2

≡1 Δ and Γ �cf+2
≡1 A,Δ.

– If ϕ=∃x.Q and Γ,Θ�cf+2
≡1 Δ then Γ,Q[c/x]�cf+2

≡1 Δ for some fresh variable c.

– If ϕ = ¬A and Γ �cf+2
≡1 Θ,Δ then Γ,A �cf+2

≡1 Δ.
– If ϕ = A ∧ B and Γ �cf+2

≡1 Θ,Δ then Γ �cf+2
≡1 A,Δ and Γ �cf+2

≡1 B,Δ.
– If ϕ = A ∨ B and Γ �cf+2

≡1 Θ,Δ then Γ �cf+2
≡1 A,B,Δ.

– If ϕ = A ⇒ B and Γ �cf+2
≡1 Θ,Δ, then Γ,A �cf+2

≡1 B,Δ.
– If ϕ=∀x.Q and Γ �cf+2

≡1 Θ,Δ then Γ �cf+2
≡1 Q[c/x], Δ for some fresh variable c.

Proof. For each assertion, by induction. The proof is detailed in [22].

It implies the following lemma.

Lemma 4. Let us consider some R : P → ϕ ∈ Th2.

– If ϕ is right-handed and Γ �cf+2
≡1 ϕ,Δ, then there exist (cut-free) proofs of

each premise of RR. Therefore Γ �cf+2
≡1 P,Δ.
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– If ϕ is left-handed and Γ, ϕ �cf+2
≡1 Δ, then there exist (cut-free) proofs of each

premise of RL. Therefore Γ, P �cf+2
≡1 Δ.

Proof. By iteration of Lemma 3. The proof is detailed in [22]. The idea is to
unite the decomposition of ϕ at the root of the proof: All these steps can move
downward since ϕ is right-handed and decomposed on the right.

Lemma 5 deals with right-handed formulæ on the left and vice versa.

Lemma 5. Let us consider R : P → ϕ ∈ Th2.

– If ϕ is right-handed and Γ, ϕ �cf+2
≡1 Δ, then Γ, P �cf+2

≡1 Δ.
– If ϕ is left-handed and Γ �cf+2

≡1 ϕ,Δ, then Γ �cf+2
≡1 P,Δ.

Proof. The proof is detailed in [22]. The idea is to fully decompose ϕ, partially
eliminate contractions, and then to pull up the decomposition of ϕ.

Lemmas 4 and 5 are concentrated in the following theorem, which proves that
rewriting through Th1 ∪ Th2 preserves provability in superdeduction modulo.

Theorem 6. If ϕ ≡1,2 ψ, then
{

Γ �cf+2
≡1 ϕ,Δ if and only if Γ �cf+2

≡1 ψ,Δ

Γ, ϕ �cf+2
≡1 Δ if and only if Γ, ψ �cf+2

≡1 Δ

Proof. First by Lemmas 4 and 5, provability is preserved by one-step head re-
duction through Th2 (i.e. if ϕ = Pσ for some substitution σ and ψ = φσ and
P → φ ∈ Th2). By induction on ϕ, we prove that it extends to any one-step
reduction (ϕ →2 ψ). Then by induction on ϕ ≡1,2 ψ, we obtain the final result.

Lemma 6 (From �cf≡1,2 to �cf+2
≡1 ). If Γ �cf≡1,2 Δ, then Γ �cf+2

≡1 Δ.

Proof. By induction on the proof of Γ �cf≡Th1∪Th2
Δ: The raw deductive steps and

the steps modulo Th1 are unchanged. A step
Γ �cf≡1,2

ψ,Δ

Γ �cf≡1,2
ϕ,Δ

ψ ≡2 ϕ is translated

(by induction hypothesis) into a proof of Γ �cf+2
≡1 ψ,Δ, which is translated using

Theorem 6 into a proof of Γ �cf+2
≡1 ϕ,Δ.

The transformation from �cf≡1,2 to �cf+2
≡1 is called a focalization procedure in the

focusing terminology. It transforms (cut-free) unstructured proofs into (cut-free)
structured focusing proofs (superdeduction proofs here). In addition, using su-
perdeduction rules instead of atomic deduction steps gives intuitive informations
about the structure of proofs. We can therefore imagine building proofs only
through superdeduction rules, as in the proof of the example of Section 2. An
important difference with usual focalization is that in superdeduction, whenever
this transformation has to focalize a sequence of connectives on one side of se-
quents, then it also has to focalize it on the other side of sequents, potentially
in the same proof. Difficulties also arise from the fact that superdeduction mod-
ulo allows inferences to spawn new connectives from atoms. Finally we get that
cut-free deduction modulo and cut-free superdeduction modulo are equivalent.
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Theorem 7. Γ �cf≡1,2 Δ if and only if Γ �cf+2
≡1 Δ.

Proof. By Lemmas 1 and 6.

As a corollary we directly obtain that cut-elimination holds for deduction modulo
Th1 ∪ Th2 if and only if it holds for the superdeduction modulo system associ-
ated with (Th1, Th2). In particular it holds if (Th1, Th2) verifies the criterion of
Theorem 3, 4 or 5.

5 Conclusion

Superdeduction modulo is the combination of superdeduction and deduction
modulo with both inference rules systematically derived from an axiomatic the-
ory and the ability to conduct deduction modulo computation. In this paper,
we have filled the gap with the focusing approach by proposing an extension of
classical sequent calculus and by showing that superdeduction systems as well as
a specific focusing system are instances of this extension. Our analysis then indi-
cates that superdeduction stands in fact for introducing focusing phases that are
directed by the unfolding of axioms, and that are made explicit in the explicit su-
perdeduction system we have presented. Then we proved a focalization result for
superdeduction, namely that cut-free deduction modulo can be translated into
cut-free superdeduction modulo using permutations of the applications of the
inference rules, provided that some hypotheses on the synchrony of the super-
deduction axioms are verified. The inverse translation being trivial, we acquired
as a corollary that cut-elimination for superdeduction modulo is equivalent to
cut-elimination for deduction modulo, consequently obtaining that the numer-
ous criteria for cut-elimination in deduction modulo also hold for superdeduction
modulo.

Our comparison of superdeduction and focusing is meant to be carried for-
ward. In particular we believe that our focalization proof is rather complicated.
This is greatly due to the fact that our proof handles superdeduction modulo, con-
sequently allowing inference rules to spawn new connectives from atoms. However
we wish to compare our focalization proof with Andreoli’s original one and with
the elegant focalization graph technique introduced by Miller and Saurin in [25].
This analysis could lead us to simpler focalization proofs and weaker conditions
for deductive theories that can be safely used in superdeduction modulo.

Superdeduction modulo is a promising framework for proof engineering. In
particular a tableau method for superdeduction modulo, inspired from TaMeD
[21], is presented in [22]. Its completeness is a consequence of our cut-elimination
result. Besides let us notice that superdeduction modulo is already the core of a
small proof assistant named Lemuridæ, which can be downloaded at
http://rho.loria.fr/lemuridae.html. Superdeduction modulo is also used
in [19] in a restricted manner since modulo is only used on first-order terms (and
not first-order propositions). Its expressiveness is nevertheless demonstrated by
an encoding of functional PTS.
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Building bridges between superdeduction and deduction modulo is also done
in a related approach by Brauner and Dowek [29]. Whereas we proved the equiv-
alence of cut-elimination for superdeduction modulo and deduction modulo, they
proved the equivalence of normalisation for deduction modulo and supernatu-
ral deduction. Superdeduction and supernatural deduction stand for the same
paradigm applied to classical sequent calculus for the first and to intuitionistic
natural deduction for the second. However in this latter system, permutability
problems forbid the paradigm to handle disjunctions or existential quantifica-
tions. Therefore an interesting extension would be to apply their approach to
(classical sequent calculus) superdeduction.

Acknowledgements. The author thanks Claude Kirchner for his useful comments
and advices. Many thanks also to Richard Bonichon and Cody Roux for fertile
discussions, to anonymous referees for their comments on a previous version of
this paper, to the Modulo meetings and to the Pareo team for many interactions.
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Abstract. The aim of this article is to support component-based soft-
ware engineering by modelling exclusive and inclusive usage of software
components. Truong and Bezem describe in several papers abstract lan-
guages for component software with the aim to find bounds of the num-
ber of instances of components. Their language includes primitives for
instantiating and deleting instances of components and operators for se-
quential, alternative and parallel composition and a scope mechanism.
The language is here supplemented with the primitives use , lock and
free . The main contribution is a type system which guarantees the safety
of usage, in the following way: When a well-typed program executes a
subexpression use [x] or lock [x], it is guaranteed that an instance of x
is available.

Keywords: Component Software, Type System, Parallel Execution,
Component Usage, Process Model.

1 Introduction

The idea of “Mass produced software components” was first formulated by McIl-
roy [1] in an attempt to encourage the production of software routines in much
the same way industry manufactures ordinary, tangible products. The last two
decades “component” has got the more general meaning of a highly reusable
piece of software. According to Szyperski [2] (p. 3), “(. . . ) software components
are executable units of independent production, acquisition, and deployment
that can be composed into a functioning system”. We will model software that
is constructed of such components, and assume that during the execution of such
a program, instances of the components can be created, used and deleted.

Efficient component software engineering is not compatible with programmers
having to acquire detailed knowledge of the internal structure of components that
are being used. Components can also be constructed to use other components,
such that instantiating one component, could lead to several instances of other
components. This lack of knowledge in combination with nested dependencies
weakens the control over resource usage in the composed software.

The goal of this article is to guarantee the safe usage of components, such that
one can specify that some instances must be available, possibly exclusively to
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the current thread of execution. In [3,4,5], Truong and Bezem describe abstract
languages for component software with the aim of finding bounds of the number
of instances of components existing during and remaining after execution of a
component program. Their languages include primitives for instantiating and
deleting instances of components and have operators for sequential, alternative
and parallel composition and a scope mechanism. The first three operators are
well-known, and have been treated by for example Milner [6] (where alternative
composition is called summation). The scope mechanism works like this: Any
component instantiated in a scope has a lifetime limited to the scope. Further-
more, inside a scope, only instances in the local store of the same scope can be
deleted. The types count the maximum number of active component instances
during execution and remaining after execution of a component program.

The languages described by Truong and Bezem lack a direct way of specifying
that one or more instances of a component must exist at some point in the
execution. In this paper we have added the primitives use , lock and free in
order to study the usage of components. The first (use) is used for “inclusive
usage”, that is, when a set of instances must be available, but these instances may
be shared between threads. The other form (lock and free) is used when the
instances must exclusively be available for this execution thread. The difference
between exclusive and inclusive usage can be seen by comparing the expressions
newx(use [x] ‖ use [x]) and newx(lock [x]free [x] ‖ use [x]). The first expression
is safe to execute, while executing the latter expression can lead to an error if x
is locked, but not freed, by the left thread before it is used by the right thread.
Instances of the same component cannot be distinguished, such that locking and
freeing is not applied to specific instances, but to the number of instances of
each component.

The type system must guarantee that the instances that are to be used are
available. The system will not test whether the deletion of instances in local
stores is safe, as this can be tested using the type systems in [7,3,4,5] together
with an easy translation described in Section 7. Only non-recursive programs
are treated, but an extension with loops and simple recursion, described in [7],
can also be applied to this system.

Section 2 introduces an example using C++, which is applied to the type
system in Section 6. The language of component programs is defined in Section
3, and the operational semantics is defined in Section 4. The types and the
type system are explained in Section 5. Important properties of the type system
are formulated in Section 7, while the main results concerning correctness are
collected in Section 8. The article ends with a section on related work and a
conclusion.

2 Example: Objects on the Free Store in C++

We will introduce an example with dynamically allocated memory in C++ [8]. In
Section 6 we will apply the type system to the example. The example is inspired
by a similar one in [7].
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In the program fragment in Figure 1, so-called POSIX threads [9] are used for
parallelism. After creating an instance of the class C, the function pthread_create
launches a new thread calling the function which is third in the parameter list
with the argument which is fourth. This function call, either P1(C_instance) or
P2(C_instance), is executed in parallel to P3(C_instance), and the two threads
are joined in pthread_join before the instance of C is deleted.

The dynamic data type C and the functions P1, P2, P3 are left abstract. We
will assume the latter three functions use the instance of C in some way, and
that P2 needs exclusive access to the instance.

void EX(int choice) {

pthread_t pth;

C* C_instance = new C();

pthread_create(&pth, NULL, choice ? P1 : P2 , C_instance);

P3(C_instance);

pthread_join(pth, NULL);

delete C_instance;

}

Fig. 1. C++ code using threads and objects on the free store

The question in this example is whether we can guarantee that P2 gets ex-
clusive access to the instance of C. In this small example it is possible to see
that this is not the case. After the grammar is explained in the next section we
will model the program in the language as shown in Figure 2, and use the type
system to answer the question and correct the program.

3 Syntax

The language for components is parametrized by an arbitrary set C={a, b, c, . . .}
of component names. We let variables x, y, z range over C. Bags and multisets
are used frequently in this paper, and will therefore be explained here.

3.1 Bags and Multisets

Bags are like sets but allow multiple occurrences of elements. Formally, a bag with
underlying set of elements C is a mapping M : C→N. Bags are often also called
multisets, but we reserve the term multiset for a concept which allows one to
express a deficit of certain elements as well. Formally, a multiset with underlying
set of elements C is a mapping M : C→Z. We shall use the operations ∪,∩,+,−
defined on multisets, as well as relations ⊆ and ∈ between multisets and between
an element and a multiset, respectively. We recall briefly their definitions: (M ∪
M ′)(x) = max(M(x),M ′(x)), (M∩M ′)(x) = min(M(x),M ′(x)), (M +M ′)(x) =
M(x) + M ′(x), (M − M ′)(x) = M(x) − M ′(x), M ⊆ M ′ iff M(x) ≤ M ′(x) for
all x ∈ C. The operation + is sometimes called additive union. Bags are closed
under all operations above with the exception of −. Note that the operation ∪
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returns a bag if at least one of its operands is a bag. For convenience, multisets
with a limited number of elements are sometimes denoted as, for example, M =
[2x,−y], instead of M(x) = 2, M(y) = −1, M(z) = 0 for all z  = x, y. In this
notation, [ ] stands for the empty multiset, i.e., [ ](x) = 0 for all x ∈ C. We
further abbreviate M + [x] by M +x and M − [x] by M −x. Both multisets and
bags will be denoted by M or N (with primes and subscripts), it will always
be clear from the context when a bag is meant. For any bag, let set(M) denote
its set of elements, that is, M = {x ∈ C | M(x) > 0}. Note that a bag is
also a multiset, while a multiset is also a bag only if it maps all elements to
non-negative numbers.

3.2 Grammar

Component expressions are given by the syntax in Table 1. We let capital letters
A, . . . , E (with primes and subscripts) range over Expr . A component program
P is a comma-separated list starting with nil and followed by zero or more
component declarations, which are of the form x −≺ Expr , with x ∈ C (nil will
usually be omitted, except in the case of a program containing no declarations).
dom(P ) denotes the set of component names declared in P (so dom(nil) =
∅). Declarations of the form x −≺ nop are used for primitive components, i.e.,
components that do not use subcomponents.

Table 1. Syntax

Expr ::= Factor | Expr · Expr
Factor ::= newx | delx | lockM | freeM | useM | nop

| (Expr + Expr) | (Expr ‖ Expr) | ScExp
ScExp ::= {M,Expr}
M ::= bag of elements from C
Prog ::= nil | Prog, x−≺ Expr

We have two primitives new and del for creating and deleting instances of a
component, three primitives free , lock and use for specifying usage of instances
of components and four primitives for composition: sequential composition de-
noted by juxtaposition, + for choice (also called sum), ‖ for parallel and {. . .}
for scope. Note that instances of the same component cannot be distinguished.
The effect of lock is therefore to decrease the number of instances available for
usage, while free increases this number.

Executing the sum E1 + E2 means choosing either one of the expressions E1
or E2 and executing that one. Executing E1 and E2 in parallel, that is, executing
(E1 ‖ E2), means executing both expressions in some arbitrary interleaved order.
Executing an expression inside a scope, {[ ], E} means executing E, while only
allowing deletion of instances inside the same scope, and after the execution of
E, deleting all instances inside the scope.
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The grammatical ambiguity in the rule for Expr is unproblematic. Like in
process algebra, sequential composition can be viewed as an associative multi-
plication operation and products may be denoted as E E′ instead of E ·E′. The
operations + and ‖ are also associative and we only parenthesize if necessary to
prevent ambiguity. Sequential composition has the highest precedence, followed
by ‖ and then +. The primitive nop models zero or more operations that do not
involve component instantiation or deallocation.

In the third clause of the grammar we define scope expressions, used to limit
the lifetime of instances and the scope of deletion. A scope expression is a pair
of a bag, called the local store, and an expression. Scope expressions appearing
in a component declaration in a program are required to have an empty local
store. Non-empty local stores only appear during execution of a program.

Definition 1. By var(E) we denote the set of component names occurring in E,
formally defined by var(nop) = ∅, var(newx) = var(delx) = {x},var(useM) =
var(freeM) = var(lockM) = set(M), var(E1+E2) = var(E1 ‖ E2)=var(E1 E2)
= var(E1) ∪ var(E2) and var({M,E}) = set(M) ∪ var(E).

Definition 2. The size of an expression E, denoted σ(E), is defined by σ(newx)
= σ(delx) = σ(useN) = σ(lockN) = σ(freeN) = σ(nop) = 1, σ({M,E}) =
σ(E) + 1 and σ(A + B) = σ(AB) = σ(A||B) = σ(A) + σ(B) + 1. The size of
a program P , denoted σ(P ), is defined by σ(P, x −≺ A) = σ(P ) + 1 + σ(A) and
σ(nil) = 1.

3.3 Examples

We assume that a program is executed by executing newx, where x is the last
component declared in the program, starting with empty stores of component
instances. Examples of programs that will execute properly and will be well-
typed are

Example 1

x −≺ nop, y −≺ newx use [x] lock [x] free [x]
x −≺ nop, y −≺ newx newx {[ ], (use [x] ‖ lock [x])} free [x]

Examples of programs that can, for some reason, produce an error are:

Example 2

x −≺ nop, y −≺ newx newx {[ ], (use [x] ‖ lock[x])}
x −≺ nop, y −≺ newx lock [x] use [x] free [x]
x −≺ nop, y −≺ newx {[ ], (use [x] ‖ lock [x])} free [x]
x −≺ nop, y −≺ newx free [x] lock [x]
x −≺ nop, y −≺ newx {[ ], (use [x] + lock [x])} free [x]

The first program leaves one instance of x locked after execution. The second
will get stuck as no instance of x will be available for use by the use -statement.
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The third might also get stuck. Note that there exists an error-free execution
of the third program, where the left branch of (use [x] ‖ lock [x]) is executed
before the right one. But as we do not wish to make any assumptions about
the scheduling of the parallel execution, we consider this an error. The fourth
program tries to free a component instance that is not locked. The fifth program
has a run in which free [x] is executed, but no instance of x has been locked.

C++ Example. We now describe the model of the example program in
Figure 1. Functions (such as EX) as well as objects on the free store (such as
C_instance) are modelled as components. We let callf abbreviate newf delf
and use this expression to model a function call. Note that f is deleted auto-
matically by callf , which models the (automatic) deallocation of stack objects
created by f . However, the subcomponents of f are not deleted by delf . We
use small letters for the component names and model functions as components,
where the function body is given by the right hand side of the declaration. Since
P2 needs exclusive access to an instance of C we add lock [c] free[c] to the dec-
laration of p2. For p1 and p3 we indicate the non-exclusive usage by use [c].
Collecting all declarations we get the program in Figure 2.

c −≺ nop,
p1 −≺ use [c],
p2 −≺ lock [c] free [c],
p3 −≺ use [c],
ex −≺ newc ((callp1 + callp2) ‖ callp3) delc

Fig. 2. Program P , a model of the C++ program in Figure 1

4 Operational Semantics

A state, or state expression, is a pair (Mu, {M,E}) consisting of a bag Mu (called
the global store) with underlying set of elements C, and a scope expression
{M,E}. The store M in this scope expression is called the local store of the
expression. An initial state is of the form ([ ], {[ ], newx}), and a terminal state
is of the form (Mu, {M, nop}).

A state (Mu, {M,E}) expresses that we execute E with a local bag M and a
global bag Mu of instances of components. The operational semantics is given
in Table 2 as a state transition system in the style of structural operational
semantics [10]. The inductive rules are osPar1, osPar2, osScp and osSeq. The
other rules are not inductive, but osNew, osDel, osLock, osUse and osPop are
conditional with the condition specified as a premiss of the rule. The transition
relation with respect to a program P is denoted by �P , with transitive and
reflexive closure by �∗

P .
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Table 2. Transition rules for a component program P

(osNop)

(Mu, {M, nopE})�P (Mu, {M, E})
(osNew)

x−≺ A ∈ P

(Mu, {M, newx})�P (Mu + x, {M + x, A})

(osDel)
x ∈ (M ∩Mu)

(Mu, {M, delx})�P (Mu − x, {M − x, nop})
(osLock)

N ⊆ Mu

(Mu, {M, lockN})�P (Mu −N, {M, nop})

(osFree)

(Mu, {M, freeN})
�P (Mu + N, {M, nop})

(osUse)
N ⊆ Mu

(Mu, {M, useN})�P (Mu, {M, nop})

(osScp)
(Mu, {N, A})�P (M ′

u, {N ′, A′})
(Mu, {M, {N, A}})�P (M ′

u, {M, {N ′, A′}})

(osPop)
N ⊆ Mu

(Mu, {M, {N, nop}})
�P (Mu −N, {M, nop})

(osAlti)
i ∈ {1, 2}

(Mu, {M, (E1 + E2)})�P (Mu, {M, Ei})

(osSeq)
(Mu, {M, A})�P (M ′

u, {M ′, A′})
(Mu, {M, A E})�P (M ′

u, {M ′, A′ E})

(osParEnd)

(Mu, {M, (nop ‖ nop)})�P (Mu, {M, nop})

(osPar1)
(Mu, {M, E1})�P (M ′

u, {M ′, E′
1})

(Mu, {M, (E1 ‖ E2)})
�P (M ′

u, {M ′, (E′
1 ‖ E2)})

(osPar2)
(Mu, {M, E2})�P (M ′

u, {M ′, E′
2})

(Mu, {M, (E1 ‖ E2)})
�P (M ′

u, {M ′, (E1 ‖ E′
2)})

4.1 Unsafe States

A stuck state is usually defined as a state which is not terminal, and where there
is no possible next transition. We wish to use a different condition, because
we want to assure that all possible runs are error-free. This means that we do
not assume anything about the interleaving used in parallel executions. This
is more in line with how parallelism works by default in many environments,
for example with pthreads and C++ without mutex locking. Informally, we
call a state unsafe if there is at least one transition which cannot be used in
this state, but which would be possible with a larger global store. For example,
([ ], {[x], lock [x] ‖ free[x]}) is an unsafe state, because using osPar1 is only
possible with a larger global store.
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Definition 3 (Unsafe states). Given a component program P , a state (Mu,
{M,E}) is called unsafe if and only if there exist bags M ′

u, M and N and an
expression E′ such that (Mu + N, {M,E}) �P (M ′

u + N, {M ′, E′}), but not
(Mu, {M,E})�P (M ′

u, {M ′, E′})
It is also possible to characterize the unsafe states with the following inductive
rules parametrized by a program P and bags Mu and M : for all x and N , where
x  ∈ Mu and N  ⊆ Mu, (Mu, {M, lockN}), (Mu, {M, useN}), (Mu, {M, delx})
and (Mu, {M, {N, nop}}) are unsafe, and for all expressions E and F , if (Mu, {M,
E}) is unsafe then for all bags N , also (Mu, {N, {M,E}}), (Mu, {M,EF}),
(Mu, {M,E ‖ F}) and (Mu, {M,F ‖ E}) are unsafe. Recall that deletion of
component instances in the local store is assumed to always be safe, as this can
be assured by the system in [7]. A state which is not unsafe is called safe.

4.2 Valid States

For some state (Mu, {M,E}) in a run, Mu models all component instances avail-
able for usage. We must therefore have Mu no larger than the sum of N in all
subexpressions {N,A} of E. For example ([x], {[ ], nop}) should not appear in a
run because Mu ⊃ []. Conditions for this to be true will be stated later. However,
there are transitions where the states in the transition fulfil this condition, while
the derivation of the transition contains states which do not fulfil the condition.
An example is the transition ([x], {[x], {[], use [x]}})�P ([x], {[x], {[], nop}}), in
which both states fulfil this condition, while it is the result of applying osScp
to the premiss ([x], {[], use [x]})�P ([x], {[], nop}), where none of the two states
fulfil the condition.

To express this property more formally we need a way to sum all the local
stores in an expression. In doing so, however, one counts in instances that will
never coexist, such as in {M1, E1}+{M2, E2} and {M1, E1} {M2, E2}. Therefore
we also define the notion of a valid expression, in which irrelevant bags are empty.

Definition 4 (Sum of local stores). For any expression E, let ΣE be the sum
of all N in subexpressions {N,A} of E. More formally: Σ{M,E} = M+ΣE and
Σ(E1 ‖ E2) = Σ(E1 E2) = Σ(E1 + E2) = ΣE1 + ΣE2 and Σdelx = Σnewx =
ΣuseN = ΣlockN = ΣfreeN = Σnop = [ ]. An expression E is valid if for
all subexpressions of the form (E1 + E2) we have Σ(E1 + E2) = [ ], and for all
subexpressions of the form F E′, F a factor, we have ΣE′ = [ ].

Note that an expression is valid if and only if all its subexpressions are valid. We
will say that a state (Mu, {M,E}) is valid if and only if E is valid. The initial
state is valid by definition. In any declaration x−≺E, since only empty bags are
allowed to occur in E, E is obviously valid and ΣE = [ ].

5 Type System

5.1 Types

A type of a component expression is a tuple X = 〈Xu, Xn, X l, Xd, Xp, Xh〉,
where Xn, Xu and Xp are bags and X l, Xd and Xh are multisets. We use
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Table 3. The parts of the types

Xu: Minimum safe size of the global store.
Xn: Largest decrease of the global store during execution.
Xl: Lower bound of the net effect on the global store.
Xd: Net change in the difference between the local and the global store.

Xp:
Maximum increase, during execution, of the difference between
the global store and the sum of all local stores.

Xh:
Maximum net effect on the difference between
the global store and the sum of all the local stores.

U, . . . , Z to denote types. The properties of the different parts of the types are
summarized in Table 3, and will be explained below. The bag Xu (u for “usage”)
contains the minimum size the global store must have for an expression to be
safely executed.

Because of sequential composition, we also need a multiset X l. To run the
expression E1 E2, we must not only know the minimum safe sizes for executing E1
and E2 separately, but also how much E1 decreases or increases the global store.
The multiset X l therefore contains, for each x ∈ C, the lowest net increase in
the number of instances in the global store after the execution of the expression.
(Where a decrease is negative increase.) This implies that, if the type of E is X
and if (Mu, {M,E})�∗

P (M ′
u, {M ′, nop}), then X l ⊆ M ′

u − Mu.
The scope operator makes necessary the component Xd. When a scope is

popped with the rule osPop, the remaining bag in the scope is subtracted from the
global store. The difference between these two bags must therefore be controlled
by Xd. In addition, concerning the two alternatives joined in a choice expression,
the net effect on the difference between the global store and the local store
must be equal. An example of an invalid expression excluded by this rule is
(lockx + usex). If the latter expression was allowed in a program, it would not
be possible to give the guarantees needed for osPop to the number of instances of
x locked after execution. The multiset Xd therefore contains the exact change in
the difference between the local store and the global store made by execution of
the expression. This difference is independent of how the expression is executed.
This implies that, if the type of E is X and if (Mu, {M,E})�∗

P (M ′
u, {M ′, nop}),

then Xd = (M ′
u − M ′) − (Mu − M).

Parallel composition necessitates the bag Xn. The minimum safe size for exe-
cuting (E1 ‖ E2) depends not only on the minimum safe size for executing each
of E1 and E2, but also on how much each of them decreases the global store. For
example, both usex and lockx freex need one instance of x, but usex ‖ usex
also needs only one, whereas lockx freex ‖ lockx freex needs two instances
of x. Xn contains, for each x ∈ C, the highest negative net change in the number
of instances in the global store during the execution of the expression. This im-
plies that, if the type of E is X and if (Mu, {M,E})�∗

P (M ′
u, {M ′, E′}), then

−Xn ⊆ M ′
u − Mu.
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As seen in Example 2 in Section 3.3, there are grammatically correct
programs that “free” instances that are not locked. So far, we have not dis-
tinguished between free [x] lock [x] and lock[x] free [x]. Obviously, these ex-
pressions cannot be assigned the same type. For example, the program x −≺
nop, y−≺newx free [x] lock [x] is wrong, and should not be well-typed, while the
program x−≺nop, y−≺newx lock [x] free [x] is correct and should be well-typed.
There is a need for types concerned with the difference between the number of
instances in the sum of all local stores and the number of instances in the global
store. If (Mu, {M,E}) is a state during the execution of a component program,
then the value of (Mu − Σ{M,E})(x) for a component x is negative if an in-
stance of x is locked, but not yet freed, and positive if it has been freed without
being locked. The latter is seen as an error and should not occur in the run of
a well-typed program. The bag Xp and multiset Xh are used for keeping track
of the set Mu − Σ{M,E}, and contain, the highest positive net change during
execution and the highest net increase of this bag after execution. This implies
that if the type of E is X , then if (Mu, {M,E})�∗

P (M ′
u, {M ′, E′}) then Xp ⊇

(M ′
u−Σ{M ′, E′})−(Mu−Σ{M,E}), and if (Mu, {M,E})�∗

P (M ′
u, {M ′, nop}),

we get Xh ⊇ (M ′
u−M ′)−(Mu−Σ{M,E}). In the type of a well-typed program

these parts must be empty bags.

5.2 Typing Rules

The typing rules in Table 4 and Table 5 must be understood with the above
interpretation in mind. They define a ternary typing relation Γ � E : X and
a binary typing relation � P : Γ in the usual inductive way. Here Γ is usually
called a basis, mapping component names to the type of the expression in its
declaration. In the relation � P :Γ , Γ can be viewed as a type of P . An expression
of the form Γ � E :X or � P :Γ will be called a typing and will also be phrased
as ‘expression E has type X in Γ ’ or ‘program P has type Γ ’, respectively.

A basis Γ is a partial mapping of components x ∈ C to types. By dom(Γ ) we
denote the domain of Γ , and for any x ∈ dom(Γ ), Γ (x) denotes its type in Γ .
For a set S ⊆ dom(Γ ), Γ |S is Γ restricted to the domain S. For any x ∈ C and
type X , {x �→ X} denotes a basis with domain {x} and which maps x to X . An
expression E is called typable in Γ if Γ � E :X for some type X . The latter type
X will be proved to be unique and will sometimes be denoted by Γ (E).

Definition 5 (Well-typed program). A program P with at least one decla-
ration is well-typed if there are Γ and X such that � P :Γ , Γ � newx :X and
Xd = Xu = Xp = [], where x is the last component declared in P .

The condition in Definition 5 that parts Xd, Xu and Xp be empty deserves an
explanation. Xd must be empty, because the global and local store must be equal
in the final state, that is, no instances are still locked when the program ends.
Xu is the minimum safe size of the global store, and we assume the program is
executed starting with an empty global store, so Xu must be empty. Xp must
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Table 4. Typing Rules

(AxmP)

� nil :∅

(New)
Γ (x) = X

Γ � newx :〈Xu, Xn, Xl + x, Xd, Xp, Xh〉

(Axm)

Γ � nop :〈[ ], [ ], [ ], [ ], [ ], [ ]〉

(Del)
Γ (x) = X

Γ � delx :〈[x], [x], [−x], [ ], [ ], [ ]〉

(Lock)
set(N) ⊆ dom(Γ )

Γ � lockN :〈N, N,−N,−N, [ ],−N〉

(Use)
set(N) ⊆ dom(Γ )

Γ � useN :〈N, [ ], [ ], [ ], [ ], [ ]〉

(Free)
set(N) ⊆ dom(Γ )

Γ � freeN :〈[ ], [ ], N, N, N, N〉

(Prog)
Γ � E :X, � P :Γ, x �∈ dom(Γ )
� P, x−≺ E :Γ ∪ {x 	→ X}

be empty, because this is the only way to guarantee that, during execution, no
instance is freed, unless there already is a locked instance of the same component.

Type inference in this system is similar to [7,3,4,5]. In particular, the type in-
ference algorithm has quadratic runtime. An implementation of the type system
can be downloaded from the author’s website.

6 C++ Example Continued

Recall the C++ program in Figure 1 and the component program in Figure 2.
Type inference gives the following results:

callp1 :〈[c], [], [], [], [], []〉,
callp2 :〈[c], [c], [], [], [], []〉,
callp3 :〈[c], [], [], [], [], []〉,
callex :〈[c], [], [], [], [], []〉

This signals in the first multiset (·u) of the type of callex that one instance
of c is needed before execution of callex. This is caused by the possible choice
of callp2 instead of callp1 by ex, whereby there could be parallel calls to
p4 and p5. One way to fix this is to instantiate two instances of C instead of
just one. Then one instance could be passed to P1 or P2 and the second to P3.
This means that P is changed by changing ex into ex′ −≺ newc newc ((callp1 +
callp2) ‖ callp3) delc. The type of callex′ is 〈[], [], [c], [], [], []〉 which signals
that the expression now can be executed starting with an empty store. But
the third multiset (·l) signals that there is one instance of c left after execu-
tion. This can be fixed by deleting one more instance, that is, changing ex′ to
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Table 5. Typing Rules

(Par)
Γ � E1 :X1, Γ � E2 :X2

Γ � E1 ‖ E2 :
〈

(Xu
1 + Xn

2 ) ∪ (Xu
2 + Xn

1 ), Xn
1 + Xn

2 ,

Xl
1 + Xl

2, X
d
1 + Xd

2 , Xp
1 + Xp

2 , Xh
1 + Xh

2

〉
(Alt)

Γ � E1 :X1, Γ � E2 :X2, Xd
1 = Xd

2

Γ � E1 + E2 :〈Xu
1 ∪Xu

2 , Xn
1 ∪Xn

2 , Xl
1 ∩Xl

2, X
d
1 , Xp

1 ∪Xp
2 , Xh

1 ∪Xh
2 〉

(Seq)
Γ � E1 :X1, Γ � E2 :X2

Γ � E1 E2 :
〈

Xu
1 ∪ (Xu

2 −Xl
1), Xn

1 ∪ (Xn
2 −Xl

1),
Xl

1 + Xl
2, X

d
1 + Xd

2 , Xp
1 ∪ (Xp

2 + Xh
1 ), Xh

1 + Xh
2

〉
(Scope)

Γ � E :X, set(M) ⊆ dom(Γ )
Γ � {M, E} :〈Xu ∪ (M −Xd), Xn ∪ (M −Xd), Xd −M, Xd −M, Xp, Xh〉

ex′′ −≺newc newc ((callp1 +callp2) ‖ callp3 delc) delc. The type of callex′′

is 〈[], [], [], [], [], []〉.
Another way of solving the original problem is to remove the parallelism from

the program, such that ex is changed to ex′′′ −≺newc (callp1 +callp2) callp3
delc. The type of callex′′′ is also 〈[], [], [], [], [], []〉.

7 Properties of the Type System

This section contains several basic lemmas about the type system. Proofs in this
and the next section are omitted for space considerations. Contact the author
for a full version including proofs.

It should be noted again that the type systems in [7,3,4,5] can be used to test
whether the deletion of instances is safe, by first translating use , lock and free
to nop. We can therefore regard only the programs where deletion of instances
from the local store is safe.

Lemma 1 (Basics)

1. If Γ � E :X, then var(E) ⊆ dom(Γ ).
2. If � P : Γ and Γ � E :X, then dom(P ) = dom(Γ ) and −Xu ⊆ −Xn ⊆ X l

and Xh ⊆ Xp.

Lemma 2 (Associativity). If Γ � A : X, Γ � B : Y and Γ � C : Z, then the
two ways of typing the expression AB C by the rule Seq, corresponding to the
different parses (AB)C and A (B C), lead to the same type.
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The following lemma is necessary since the typing rules are not fully syntax-
directed. If, e.g., E1 = A ·B, then the type of E1 ·E2 could have been inferred by
an application of the rule Seq to A and B E2. In that case we apply the previous
lemma.

Lemma 3 (Inversion)

1. If � P :Γ and Γ (x) = X, then there exists a program P ′ and an expression
A such that P ′, x −≺ A is the initial segment of P and � P ′ :Γ |dom(P ′) and
Γ |dom(P ′) � A :X.

2. If Γ � newx :X, then X = 〈Γ (x)u, Γ (x)n, Γ (x)l + x, Γ (x)d, Γ (x)p, Γ (x)h〉.
3. If Γ � delx :X, then X = 〈[x], [x], [−x], [ ], [ ], [ ]〉.
4. If Γ � lockN :X, then X = 〈N,N,−N,−N, [ ],−N〉.
5. If Γ � freeN :X, then X = 〈[ ], [ ], N,N,N,N〉.
6. If Γ � useN :X, then X = 〈N, [ ], [ ], [ ], [ ], [ ]〉.
7. If Γ � nop :X, then X = 〈[ ], [ ], [ ], [ ], [ ], [ ]〉.
8. For ◦ ∈ {+, ‖, ·}, if Γ � (E1 ◦E2) :X, then there exists Xi such that Γ � Ei :

Xi for i = 1, 2. Moreover,
X = 〈Xu

1 ∪ Xu
2 , Xn

1 ∪ Xn
2 , X l

1 ∩ X l
2, X

d
1 , Xp

1 ∪ Xp
2 , Xh

1 ∪ Xh
2 〉 and Xd

1 = Xd
2

if ◦ = +,

X =
〈

(Xu
1 + Xn

2 ) ∪ (Xu
2 + Xn

1 ), Xn
1 + Xn

2 ,
X l

1 + X l
2, X

d
1 + Xd

2 , Xp
1 + Xp

2 , Xh
1 + Xh

2

〉
if ◦ = ‖, and

X =
〈

Xu
1 ∪ (Xu

2 − X l
1), X

n
1 ∪ (Xn

2 − X l
1),

X l
1 + X l

2, X
d
1 + Xd

2 , Xp
1 ∪ (Xp

2 + Xh
1 ), Xh

1 + Xh
2

〉
if ◦ = ·.

9. If Γ � {M,A} : X, then there exists a type Y , such that Γ � A : Y and
X = 〈Y u ∪ (M − Y d), Y n ∪ (M − Y d), Y d − M,Y d − M,Y p, Y h〉.

The last lemma in this section is concerned with three forms of uniqueness of
the types inferred in the type system. This is necessary in some of the proofs,
and for an algorithm for type inference.

Lemma 4 (Uniqueness of types)

1. If Γ1 � E :X, Γ2 � E :Y and Γ1|var(E) = Γ2|var(E), then X = Y .
2. If � P :Γ and � P :Γ ′, then Γ = Γ ′.
3. If � P1 : Γ1 and � P2 : Γ2 and P2 is a reordering of a subset of P1, then

Γ1|dom(P2) = Γ2.

8 Correctness

This section contains lemmas and theorems connecting the type system and the
operational semantics. Included are theorems comparable to what is often called
preservation and progress, for example in [11]. The following lemma implies that
all states in sequences representing the execution of a well-typed program are
valid, as defined in Definition 4.

Lemma 5. If � P :Γ , Γ � E :X, E is valid and (Mu, {M,E})�P (M ′
u, {M ′,

E′}) is a step in the operational semantics, then also E′ is valid.
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The next lemma fixes several properties of two states connected by a single step
in the operational semantics. This is used heavily in the main theorems below.
The first part is known under the names subject reduction and type preservation.
The remaining parts reflect the fact that every step reduces the set of reachable
states. Hence maxima do not increase and minima do not decrease.

Lemma 6 (Invariants). Let P be a component program, E a valid expression,
Γ a basis and U a type such that � P : Γ , Γ � E : U , and (Mu, {M,E}) �P

(M ′
u, {M ′, E′}) is a step in the operational semantics. Then we have for some

type V :

1. Γ � E′ :V .
2. M ′

u − V u ⊇ Mu − Uu, i.e., the safety margin of the global store does not
decrease.

3. M ′
u−V n ⊇ Mu−Un, i.e., the lower bound on the global store in all reachable

states does not decrease.
4. M ′

u +V l ⊇ Mu +U l, i.e., the lower bound on the global store in the terminal
state does not decrease.

5. M ′
u−M ′ +V d = Mu−M +Ud, i.e., the difference between the local and the

global store in the terminal state does not change.
6. M ′

u −Σ{M ′, E′}+ V p ⊆ Mu −Σ{M,E}+ Up, i.e., the upper bound on the
difference, in any reachable state, between the global store and the sum of the
local stores, does not increase.

7. M ′
u−Σ{M ′, E′}+ V h ⊆ Mu −Σ{M,E}+ Uh, i.e., the upper bound on the

net effect on the difference between the global store and the sum of the local
stores does not increase.

The following Theorem 1 is a combination of several statements which in com-
bination are often called soundness or safety. Items 1, 2 and 3 are similar to the
properties often called preservation, progress and termination, respectively. (See
for example [11]). Items 1, 4 and 5 assert that the parts of the types have the
meanings given in 5.1.

Theorem 1 (Soundness). If � P : Γ , Γ � E : X, E is valid and Xu ⊆ Mu,
then the following holds:

1. If (Mu, {M,E}) �P (M ′
u, {M ′, E′}) and Σ{M,E} − Mu ⊇ Xp, then there

is Y such that Γ � E′ : Y , M ′
u ⊇ Y u and Σ{M ′, E′} − M ′

u ⊇ Y p.
2. If E is not nop, we have (Mu, {M,E})�P (M ′

u, {M ′, E′}) for some (M ′
u,

{M ′, E′}).
3. All �P -sequences starting in state (Mu, {M,E}) are finite.
4. If (Mu, {M,E}) �∗

P (M ′
u, {M ′, nop}), then X l ⊆ M ′

u − Mu, Xd = (M ′
u −

M ′) − (Mu − M) and Xh ⊇ (M ′
u − M ′) − (Mu − Σ{M,E}).

5. If (Mu, {M,E}) �∗
P (M ′

u, {M ′, E′}) then −Xn ⊆ M ′
u − Mu and Xp ⊇

(M ′
u − Σ{M ′, E′}) − (Mu − Σ{M,E}).

6. All states reachable from (Mu, {M,E}) are safe.
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Finally, we summarize the properties of the type system for well-typed programs,
as defined in Definition 5 on page 195. The reader is referred to the paragraph
following Definition 5 for an explanation of the three bags required to be empty,
to Section 4.1 and Definition 3 for an explanation of safe states, and to Section
4.2 for an explanation of why it is important that M ′

u ⊆ Σ{M ′, E′}.

Corollary 1. If � P : Γ and Γ � newx : X, where x is the last component
declared in P and Xd = Xu = Xp = [ ], then

– All maximal transition sequences starting with ([ ], {[ ], newx}) end with
(M, {M, nop}) for some bag M .

– All states (M ′
u, {M ′, E′}) reachable from ([ ], {[ ], newx}) are safe, and such

that M ′
u ⊆ Σ{M ′, E′}.

The following theorem states that the types are sharp. Informally, this means,
they are as small as they can be, while still guaranteeing safety of execution.
The part Xd is not included as it is already stated in Theorem 1 to be exact.
The property is formulated differently for the part Xu because of its nature —
the other parts contain information about how some of the bags or the difference
between them change, while Xu only states the minimum safe size of the bag
Mu.

Theorem 2 (Sharpness). Assume some program P , bags M and Mu and valid
expression E such that � P :Γ and Γ � E :X and Mu ⊆ Σ{M,E}

1. If Mu  ⊇ Xu, then an unsafe state is reachable from (Mu, {M,E}).
2. If Mu ⊇ Xu:

n For every y ∈ C there exists a state (M ′
u, {M ′, E′}) such that

(Mu, {M,E}) �∗
P (M ′

u, {M ′, E′}) and (M ′
u − Mu)(y) = −Xn(y).

l For every y ∈ C there exists a terminal state (M ′
u, {M ′, nop}) such that

(Mu, {M,E})�∗
P (M ′

u, {M ′, nop}) and (M ′
u − Mu)(y) = X l(y).

p For every y ∈ C there exists a state (M ′
u, {M ′, E′}) such that

(Mu, {M,E}) �∗
P (M ′

u, {M ′, E′}) and (M ′
u − Σ{M ′, E′}) − (Mu −

Σ{M,E})(y) = Xp(y).
h For every y ∈ C there exists a terminal state (M ′

u, {M ′, nop}) such that
(Mu, {M,E})�∗

P (M ′
u, {M ′, nop}) and (M ′

u−M ′)−(Mu−Σ{M,E})(y)
= Xh(y).

9 Related Work and Conclusion

There is a large amount of work related to similar problems. Most approaches
differ from this article by using super-polynomial algorithms, by assuming more
on the runtime scheduling of parallel executions, or by treating only memory
consumption. For the functional languages, see e.g. [12,13,14,15]. Popea and
Chin in [16] also discuss usage in a related way. Their algorithm depends on
solving constraints in Presburger arithmetic, which in the worst case uses dou-
bly exponential time. Igarashi and Kobayashi in [17], analyse the resource usage
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problem for an extension of simply typed lambda calculus including resource
usage. The algorithm extracts the set of possible traces of usage from the pro-
gram, and then decides whether all these traces are allowed by the specification.
This latter problem is still computationally hard to solve and undecidable in the
worst case. Parallel composition is not considered. For the imperative paradigm,
which is closer to the system described here, e.g. [18,19,20] treat memory usage.
The problem of component usage in a parallel setting is related to prevention of
deadlocks and race conditions. Boyapati et al. describe in [21] an explicitly typed
system for verifying there are no deadlocks or race conditions in Java programs.
In addition to the higher level of detail, the main difference from the system
described in this article is the assumptions on the scheduling of parallel execu-
tions, namely the ability of a thread to wait until another thread frees/releases
a lock. This scheduling has of course a cost in terms of added runtime and of
complexity of the implementation.

We have defined a component language with a small-step operational seman-
tics and a type system. The type system combined with the system in [7] or the
system in [4] guarantees that the execution of a well-typed program will termi-
nate and cannot reach an unsafe state. The language described in this article is
an extension of the language first described in [5], and uses the results from [5,7].
The properties proved in the current article are new, though, and in some ways
orthogonal to those shown in [5,7]. The language we introduced is inspired by
CCS [6], with the atomic actions interpreted as component instantiation, deal-
location and usage. The basic operators are sequential, alternative and parallel
composition and a scope operator. The operational semantics is SOS-style [10],
with the approach to soundness similar in spirit to [22]. We have presented a
type system for this language which predicts sharp bounds of the number of in-
stances of components necessary for safe execution. The type inference algorithm
has quadratic runtime.
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Abstract. There are two different styles for writing natural deduction
proofs: the ‘Gentzen’ style in which a proof is a tree with the conclusion
at the root and the assumptions at the leaves, and the ‘Fitch’ style (also
called ‘flag’ style) in which a proof consists of lines that are grouped
together in nested boxes.

In the world of proof assistants these two kinds of natural deduction
correspond to procedural proofs (tactic scripts that work on one or more
subgoals, like those of the Coq, HOL and PVS systems), and declarative
proofs (like those of the Mizar and Isabelle/Isar languages).

In this paper we give an algorithm for converting tree style proofs to
flag style proofs. We then present a rewrite system that simplifies the
results.

This algorithm can be used to convert arbitrary procedural proofs to
declarative proofs. It does not work on the level of the proof terms (the
basic inferences of the system), but on the level of the statements that
the user sees in the goals when constructing the proof.

The algorithm from this paper has been implemented in the ProofWeb
interface to Coq. In ProofWeb a proof that is given as a Coq proof script
(even with arbitrary Coq tactics) can be displayed both as a tree style
and as a flag style proof.

1 Introduction

Proof assistants are computer programs for constructing and checking proofs.
In these systems one can distinguish between two quite different kind of entities
that both might be considered the ‘proofs’ that are being checked:

– First there are the low level proofs of the logic of the system. In type the-
oretical systems these are the proof terms. In other systems they are built
from tiny proof steps called basic inferences. Generally such proof objects
are huge and constructed from a small number of basic elements.

– Then there also are the high level proof texts that the user of the system
works with. Often these texts are scripts of commands from the user to the
proof assistant. These texts are of a size comparable to traditional mathe-
matical texts, and contain a much larger variety of proof steps. For instance
both the Coq and HOL systems have dozens of tactics that can occur in this
kind of proof.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 203–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The proof assistant does two things for the user. First it translates high level
proofs into low level proofs, and secondly it checks the low level proofs obtained
in this way with respect to the rules of the logic of the system.

As an example, the following ‘high level’ Coq proof script:

Lemma example : forall n : nat, n <= n.

intros.

omega.

Qed.

is translated to the following ‘low level’ proof term:
fun n : nat => Decidable.dec_not_not (n <= n) (dec_le n n) (fun H : ~ n <= n =>

ex_ind (fun (Zvar1 : Z) (Omega5 : Z_of_nat n = Zvar1 / (0 <= Zvar1 * 1 + 0)%Z) =>
and_ind (fun (Omega3 : Z_of_nat n = Zvar1) (_ : (0 <= Zvar1 * 1 + 0)%Z) =>
let H0 := eq_ind_r (fun x : Z => (0 <= x + -1 + - Z_of_nat n)%Z -> False)
(eq_ind_r (fun x : Z => (0 <= Zvar1 + -1 + - x)%Z -> False)
(fast_Zopp_eq_mult_neg_1 Zvar1 (fun x : Z => (0 <= Zvar1 + -1 + x)%Z -> False)
(fast_Zplus_comm (Zvar1 + -1) (Zvar1 * -1) (fun x : Z => (0 <= x)%Z -> False)
(fast_Zplus_assoc (Zvar1 * -1) Zvar1 (-1) (fun x : Z => (0 <= x)%Z -> False)
(fast_Zred_factor3 Zvar1 (-1) (fun x : Z => (0 <= x + -1)%Z -> False)
(fast_Zred_factor5 Zvar1 (-1) (fun x : Z => (0 <= x)%Z -> False)
(fun Omega4 : (0 <= -1)%Z => Omega4 (refl_equal Gt))))))) Omega3) Omega3 in

H0 (Zgt_left (Z_of_nat n) (Z_of_nat n) (inj_gt n n (not_le n n H))))
Omega5) (intro_Z n))

which then is type checked and found to be correct.
A good proof assistant should hide low level proofs from the user of the system

as much as possible. Just like a user of a high level programming language should
not need to be aware that the program internally is translated into machine
code or bytecode, the user of a proof assistant should not have to be aware that
internally a low level proof is being constructed.

It depends much on the specific proof assistant what the high level proofs look
like. There are two basic groups of systems, as first introduced in [7]:

The procedural systems such as Coq, HOL and PVS. These systems gener-
ally are descendants of the LCF system. The proofs of a procedural system
consist of tactics operating on goals. This leads to proofs that can natu-
rally be represented as tree shaped derivations in the style of Gentzen. For
instance, the example Coq proof then looks like:

The above is a screenshot from the display of our ProofWeb system. In
practice it is more useful to have ProofWeb display the tree without contexts:
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The declarative systems. The main two systems of this kind are Mizar and
Isabelle (when used with its declarative proof language Isar), but also au-
tomated theorem provers like ACL2 and Theorema can be considered to
be declarative. There are experimental declarative proof languages, like the
ones by Pierre Corbineau for Coq and by John Harrison for HOL Light.

The proofs of a declarative system are block structured. They basically
consist of a list of statements, where each statement follows from the previous
ones, with the system being responsible for automatically constructing the
low level proof that shows this to be the case. Apart from these basic steps
declarative proofs have other steps, like the assume step which introduces an
assumption.

In declarative systems these proof steps are grouped into a hierarchical
structure of blocks, just like in block structured programming languages. In
declarative proofs these blocks are delimited by keywords like proof and qed.

Some systems might be considered not to be fully declarative in the
sense that they still require the user to indicate how a statement follows
from earlier statements. For instance this holds for Isabelle, where the user
can (and sometimes must) give explicit inference rules. Indeed, it is common
among the users of Isabelle to refer to the Isar proofs not as ‘declarative’ but
‘structured’. However, for the purposes of this paper this distinction does not
matter. In fact, the declarative proofs that we generate with our ProofWeb
system also have the property that they contain an explicit tactic at each
step in the proof.

Mathematicians generally think of their proofs in a declarative way. Declarative
proofs are similar (although more precise and, with current technology, much
more fine-grained) to the language that one finds in mathematical articles and
textbooks.

The contribution of this paper is a generic method for converting a procedural
proof to a declarative proof. For Coq this method has been implemented in
the ProofWeb system. ProofWeb can display a high level Coq proof as a block
structured list of statements. Here is how it will display the example proof:

1 n: nat   assumption
2  n <= n   omega
3 ∀n:nat, n <= n  intros 1-2

The rest of the paper details the algorithms used for this.
In 2006–2008 we ran a project called Web deduction for education in formal

thinking, in which we built a system for logic education. Our system allows
students to practice natural deduction proofs. It has the following design choices:

– Our system runs on a web server. This means that students do not need to
install anything, can access their work from anywhere (as long as they have
Internet access), and that teachers can easily keep track of the progress of
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their students. Our ProofWeb server is at http://proofweb.cs.ru.nl/. It can
be tried using the guest login, with no registration.

– The system uses the Coq proof assistant, and the Coq proof language is not
hidden from the user. Students are typing actual Coq proof scripts that use
a restricted set of custom tactics to make their proofs correspond exactly
to the proofs from their textbook. The use of Coq makes ProofWeb espe-
cially attractive for teachers who want their students to work on non-trivial
examples.

– The system allows the students to both work in Gentzen style as well as in
Fitch style. Proofs are displayed in (almost) exactly the same way that they
are shown in the textbook. We decided to have our system be compatible
with a popular logic textbook by Michael Huth and Mark Ryan [8].

The ProofWeb system can present the tree shaped proof that corresponds to the
Coq proof script as a Fitch style proof. This means that it converts a procedural
proof (the Coq script) to a declarative proof (the Fitch display). The method
that it uses to do this is generic. It will work for converting any procedural
proof to any declarative proof text, independent of the specific proof assistants
involved or their logical foundations.1

We decided against presenting the conversion method that we used generi-
cally. In this paper we present just the method for the very specific situation
of natural deduction proofs for first order predicate logic with equality. How-
ever, the method is perfectly generic. Also, our implementation already is not
restricted to the small set of tactics that the users of ProofWeb are supposed to
use. It will work with any Coq proof, providing a block structured Fitch style
display of that proof.

The specifics of the first order logics that ProofWeb uses can be found in the
ProofWeb manual [9]. We here just show an example for both logics in Figure 1.
In ProofWeb flags are rendered as boxes (like in Huth and Ryan), with the right
hand border of the boxes omitted to conserve space.

Declarative proofs are much more robust than procedural proofs, and for
this reason can be expected to have a longer useful lifetime than procedural
proofs. For this reason, development of the technology presented here might
mean current formalizations get a longer useful lifetime. A current version of the
procedural system can be used to export a formalisation declaratively. Keeping
the declarative proof instead of the procedural one gives a much higher chance
of the proof being accepted by future versions of the proof assistant.

The conversion algorithm presented here also works on proofs that have not
been completed yet. In that case one gets a declarative proof with gaps. For
instance in ProofWeb, the Fitch style display of the proof before the omega tactic
is executed will be:

1 The proof might contain some statements that have no good equivalent in the target
system, and the automation of the target system might not always be able to bridge
the gaps between the steps, but apart from those issues, a good starting point for a
formalization in the target system can always be generated.
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1 n: nat   assumption
 ...  

2  n <= n  
3 ∀n:nat, n <= n  intros 1-2

ProofWeb users often use the system through this feature. They do not look
at the Coq proof state (which is also available to them), but just think in terms
of the incomplete Fitch style proof.

This leads us to propose a new kind of prover interface. We call it a luxury
declarative proof assistant (after a suggestion by Henk Barendregt). In a luxury
system, the user does not see goals, but works on an incomplete declarative
proof. This proof then can be modified in two ways:

– Either the user just edits the text, the common way to work in a declarative
proof assistant. This is flexible but gives the user no help in writing the proof.

– Alternatively the user executes a tactic at a step in the proof that has not
been sufficiently justified yet, i.e., for which the system has not yet generated

[∃x(P (x) ∨ ¬Q(a))]H1
[P (b) ∨ ¬Q(a)]H3

[P (b)]H4

∃x P (x)
∃i

[¬Q(a)]H5 [Q(a)]H2

⊥ ¬e

∃x P (x)
⊥e

∃x P (x)
∨e [H4, H5]

∃x P (x)
∃e [H3]

Q(a)→ ∃x P (x)
→i [H2]

∃x(P (x)∨ ¬Q(a))→ Q(a)→ ∃x P (x)
→i [H1]

1 ∃x(P (x)∨ ¬Q(a))

2 Q(a)

3 b P (b) ∨ ¬Q(a)

4 P (b)

5 ∃x P (x) ∃i 4

6 ¬Q(a)

7 ⊥ ¬e 6,2

8 ∃x P (x) ⊥e 7

9 ∃x P (x) ∨e 3,4–5,6–8

10 ∃x P (x) ∃e 1,3–9

11 Q(a)→ ∃x P (x) →i 2–10

12 ∃x(P (x)∨ ¬Q(a))→ Q(a)→ ∃x P (x) →i 1–11

Fig. 1. Example derivation in Gentzen’s and Fitch’s systems
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a low level proof. The ‘goal’ that this tactic sees has the statement of this
step as the conclusion, and all the statements before it that are in scope as
the assumptions. The tactic then will generate subgoals, which will be added
to the proof text as new steps in, if needed, new sub-blocks.

Modifying a proof in this style (by executing a tactic at a not yet jus-
tified step), needs exactly the same algorithms that the conversion from a
procedural proof to a declarative proof needs.

If one ‘grows’ a declarative proof in such a way, it basically will consist of
a merged version of all the subgoals that the proof would have gone through
in the procedural system.

It is important that in a luxury system both ways of working are available si-
multaneously. It should not be required to use tactics to modify a proof.

A simple version of this luxury concept is the following. In a declarative prover
the user has to formulate the appropriate assume steps himself, while in a pro-
cedural prover he just can type intros. However in a luxury prover, the intros

command will be available, which then will generate all the needed assume steps
automatically. Similarly, appropriate statements in the case of an induction or
application of a lemma can be generated automatically by the system.

The conversion from a tree style proof to a block structured proof is straight-
forward. It consists of two phases:

– First the tree is converted to a series of nested blocks in a naive way. This
is trivial. However, it does not lead to a proof that a user will want to see,
as there are many duplicate lines and boxes that are not necessary.

– The second phase is to reduce the proof. We use a rewrite system for this
that eliminates various unwanted structures from the proof:
• If a subproof has no new assumptions nor new variables, the block for it

is not needed and can be flattened into the main proof.
• Lines that are copies of earlier lines can generally be removed, as refer-

ences to those lines can be replaced by references to the earlier lines.
• ‘Cuts’ also can be removed from the proofs, as the declarative proofs

really have a cut (in the Gentzen sense) at every line.

Below we will give the details of this rewrite system for proofs for the specific
case of first order logic. We prove it to be terminating and confluent.

Our method is designed to convert proofs preserving the level of detail present
in the original proof. When building a proof using automated tactics (decision
procedures), the user might be curious after the proof that those tactics con-
structed internally. This is analogous to the rare occasion that a compiler user
wants to see the machine code that was generated by the compiler. Our method
does not work well for obtaining information on this level. However, Coq allows
decomposition of tactics into smaller tactics using the info prefix, which means
that getting such information is possible even when using our approach.

There have been various projects for translating proofs from a procedural
proof assistant into a declarative presentation, most notably the HELM system
by Asperti et al., which was further developed in the MoWGLI project [1,2].
However, those systems almost always work on the level of proof terms and not
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on the level of tactics. For this reason the declarative proofs that these systems
produced tend to be too convoluted for human consumption.

An exception is the system by Guilhot, Naciri and Pottier where Coq proofs
are considered on the level of the tactics, by converting Coq proof trees just
like we do [6]. However in this work the generated text is only considered a
presentation – they call it an explanation – and not a proof in a formal system
like Fitch-style natural deduction in its own right.

Geuvers and Nederpelt [4] define a translation of natural deductions in Fitch
style to simply typed λ-terms (i.e., their translation goes the opposite way from
ours). They present reduction relations for Fitch-style deductions that allow
simpler λ-terms to be obtained. These reductions remove unnecessary subproofs,
remove repeats and unshare shared subproofs. They prove that Fitch deductions
are mapped to the same λ-term if and only if they are equal under these relations;
which shows that there is an isomorphism between these classes.

Proof nets [5] allow representing proofs in a geometrical way where the or-
der of the application of rules as well as irrelevant features of regular natural
deduction proofs can be eliminated. Geuvers and Loeb [3] show the correspon-
dence between deduction graphs and proof nets and give translations from min-
imal propositional logic to proof nets via context nets. They also shows how
an operation of cut elimination in deduction graphs can be performed after the
translation to a context net.

2 Translating Minimal Logic Tree Style Proofs to Flag
Style Proofs

We first will restrict ourselves to minimal propositional logic. We introduce a
translation operation (�→) that translates a tree style proof G of a proposition
A to a flag style proof F. An example of such a translation is:

∅ :
[A]x

B → A
→i[y]

A → B → A
→i[x] �→

1 A

2 B

3 A copy 1

4 B → A →i 2–3

5 A → B → A →i 1–4

This operation always preserves the conclusion, and the conclusion will be most
often the part of the proof that we match, so we write it explicitly:

Γ : (
...G
A

�→
...F

A
)

The translation operates in a context Γ . This context is a list of assumptions
accompanied by labels that can be used in the proofs G and F. The assump-
tions that are discharged in the proof are no longer in the context. Sometimes
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Γ, [A]x : [A]x �→ A copy x

Γ, [A]x :

...G
B �→

...F

B

Γ :

([A]x)
...G
B

A→ B
→i[x]

�→

x A
...F

n B

A → B →i x–n

Γ :

...G1

A→ B �→
...F1

A → B
Γ :

...G2

A �→
...F2

A

Γ :

...G1

A → B

...G2

A

B
→e

�→

...F1

i A → B
...F2

j A

B →e i, j

Fig. 2. The translation rules for minimal propositional logic

for clarity we will mark assumptions available in particular branches of proofs
and discharged after by additional brackets. Below we give an example of a
translation of proof styles in a non-empty context:

[A]x, [B]y :
[A]x [B]y

A ∧B
∧i �→ A ∧B ∧i x, y

We define the translation operation inductively via the translation rules in
Figure 2. The translation rules match the conclusion and the rule used and
give a rule to build the flag style proof. All new labels introduced by the transla-
tion operation are fresh identifiers. The usual presentation of flag style proofs is
with line numbers and rules that reference those numbers, but in our translation
we will use identifiers. An implementation may render such proofs with lines
numbered in the customary way, and we do indeed provide this in our ProofWeb
implementation as described in Section 6.
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The first rule translates the use of an assumption. We replace the use of an
assumption with a copy line, and label this line with the name of the assumption
variable.

If the derivation ends with implication introduction we translate it to the
implication introduction rule in the flag style. We use the name of the introduced
assumption in the tree style as the label of assumption line in the flag style. The
assumption [A] is not in the context since it is discharged, but for readability
we mark it in brackets in the tree style proof. This means that the proof G can
use this assumption. We provide fresh identifiers for new lines.

Implication elimination is analogous. We do not need to introduce a flag for
the subtree of the tree style proof. This is what makes the depth of flag proofs
much lower then the depth of tree style proofs.

3 Translating Proofs in More Complicated Logical
Systems

To translate a proof in tree style of an arbitrary deduction system we will first
translate it to a non-optimized proof.

We often need to open a number of flags depending on a list of assumptions.
This is why we introduce a shorthand notation. We will write flags with a list
above the assumption line to denote opening a number of flags. The last flag is
opened with the rule provided in the shorthand notation, while all other flags
are introduced one by one using implication introduction:

i A1, A2, . . . , An

...F

j B

C R i–j

This stands for:

i A1

j A2

. . .

k An

...F

l B

An → B →i k–l

m . . .

n A2 → A3 → . . . → An → B →i j–m

C R i–n
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Γ
,S

1
:

. . .G
1

A
1

�→
. . .F

1

A
1

Γ
,S

2
:

. . .G
2

A
2

�→
. . .F

2

A
2

..
.

Γ
,S

n
:

. . .G
n

A
n

�→
. . .F

n

A
n

Γ
:

([
S

1
])

. . .G
1

A
1

([
S

2
])

. . .G
2

A
2

..
.

([
S

n
])

. . .G
n

A
n

B
R

[S
1
∪

..
.
∪

S n
]
�→

i 1
S

1 . . .F
1

j 1
A

1

i 2
S

2 . . .F
2

j 2
A

2

. . .
i n

S
n . . .F
n

j n
A

n

B
R

i 1
–j

1
,i

2
–j

2
,.

..
,i

n
–j

n

Fig. 3. The general schema for translating a rule of the logic

For a list with just one assumption this is equivalent to opening one flag with
just the given rule. For a flag with an empty list of assumptions no flags need to
be opened:

i ∅
...F

j B

C R i–j

stands for:

...F

i B

C R i
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We show the translation of a given tree style proof in terms of a general schema.
This schema will be instantiated for every rule of the logic. Given a rule R
that proves the formula B from the tree style proofs G1, G2, . . . , Gn that have
conclusions A1, A2, . . . , An, which discharge assumption lists (possibly empty)
S1, S2, . . . , Sn we recursively translate all subproofs to generate the final flag
style proof (Figure 3). The subproofs A1, . . . , An can use the assumptions from
their appropriate lists and this is marked in the schema by brackets. An example
of instantiation of the schema for a rule for is given in Figure 4.

Γ :

...G1

A ∨B �→
...F1

A ∨ B
Γ, A :

...G2

C �→
...F2

C
Γ, B :

...G3

C �→
...F3

C

Γ :
...G1

A ∨ B

([A]x)
...G2

C

([B]y)
...G3

C

C
∨e[x, y]

�→

...F1

i A ∨B

j A
...F2

k C

l B
...F3

m C

C ∨e 1,2–3,4–5

Fig. 4. Example of the general schema instantiated for ∨-elimination

4 Simplification of Obtained Proofs

We can remove many of the copy lines by ‘path compression’, i.e., if a copy line
is not the last line under a flag, the copy line can be removed and all further
references should be renumbered to refer to the line that was copied:

i A
...

j A copy i
...
... . . . j

�

i A
...
...
... . . . i
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If the copy line is the only line under a flag and is the copy of the assumption
introduced under this flag, the copy line can be removed. This creates proofs
that resemble customary Fitch deduction drawing style:

i A

A copy i
� A

Theorem 1. The use of the translation followed by performing the above sim-
plifications on a correct Gentzen style natural deduction proof results in a flag
style proof that is a correct Fitch style natural deduction proof with the same
conclusion and the same rules.

Proof (Sketch). The conclusion and the rules are preserved by all steps of trans-
lation and simplification. The simplifications do not change any of the rules or
lines they operate on. The translation of any correct Gentzen rule is a correct
Fitch rule. The proof proceeds by verifying the correctness of the translation of
all natural deduction rules from [9]. ��

5 Simplification of Forward Proofs

One of the main advantages of flag style proofs over tree style proofs, is that
the flag proof is typically almost linear, with very little nesting and therefore
much easier to present on paper. For completed natural deduction derivation the
proof that we obtain by translation is mostly flat, with nesting introduced only
for assumptions. Our translation is also able to work with incomplete proofs. For
incomplete proofs done in a backwards manner (starting from the conclusion)
the tree style proof corresponds naturally to the flag style proof. This is not the
case for forward proofs. For example in tree style:

i A

j B

k A ∧ B ∧i i, j
...

C

The line labeled k is obtained by ∧-introduction from lines i and j. To represent
this proof in Gentzen style natural deduction we need a cut with a branch where
A ∧B is an assumption:

[A] [B]
A ∧ B

∧i

([A ∧ B]x)
...
C

A ∧B → C
→i[x]

C
→e
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...
i A

j A
...

k B

l A → B →i j–k

B →e i, l

�

...
i A . . .

...
B . . .

Fig. 5. Rewrite rule for eliminating explicit cuts from a Fitch deduction

            ...

∃x, P x                  [∀x, ∃y, (P x ∨ P y)]F
i[F1] ∀e

(∃y, (P x0 ∨ P y)) ∃x, P x ∃y, (P x0 ∨ P y)
e

∃x, P x
i[F]

∀x, ∃y, (P x ∨ P y) ∃x, P x

1 F: ∀x, ∃y, (P x ∨ P y)   assumption
2 F1: ∃y, (P x0 ∨ P y)   ∀e 1
 ...  

3 ∃x, P x  
4 ∀x, ∃y, (P x ∨ P y) ∃x, P x i 1-3

Fig. 6. An incomplete proof in Gentzen natural deduction and its translation to a Fitch
deduction, as rendered by the implementation

The cut in the above proof cannot be eliminated until the proof is completed.
However, this is not the case for flag style proofs, where this kind of cut can be
eliminated without influence on the rest of the proof (assuming the rest of the
proof is translated as well).

We want to give a mechanism that allows translating the above tree style
proof with a cut to a flag style proof without a cut. The use of cut is a general
technique; it is often used for inserting a subgoal that can be used further in
the proof. This is why we will eliminate all the implication cuts that could have
been obtained in this way. To do this we present the rewrite rule in Figure 5,
which can be applied only if line l is not used further in the proof.

Theorem 2. The rewrite system including the above rewrite rule terminates.

Proof (Sketch). By induction on the number of flags. ��
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Theorem 3. The rewrite system including the above rewrite rule is confluent.

Proof (Sketch). If it is possible to apply a rule at two places in a proof, the two
places are associated with two flags. Either one of the flags is under the other or
they are in separate parts of the proof and thus independent. If one of the flags
is under the other, it has to be inside the incomplete proof part of the rewrite
rule. In that case the rewrite only moves the whole incomplete proof and thus
the rewrites also are independent. ��
We see in Figure 6, how the application of this rewrite rule makes the translation
of a Coq proof from a Gentzen tree style proof into a flag style proof with a small
number of nested flags.

6 Implementation for Coq Proofs

The implementation of Coq keeps a proof tree. This is a recursive OCaml struc-
ture, that holds a goal, a rule to obtain this goal from the subgoals, and the
subgoals themselves. It is not just a tree structure, since a rule can be a com-
pound rule that contains other proof states. Tactics and tacticals modify the
proof state. Coq includes commands for inspecting the proof state. Show Tree
shows the succession of conclusions, hypotheses and tactics used to obtain the
current goal and Show Proof displays the CIC term (possibly with holes). The
output of these commands was not sufficient to transform the proof state in
other formats. We added a new command Dump Tree to Coq that allows export-
ing the whole proof state in an XML format. An example of the output of the
Dump Tree command for the Coq example from Section 1 is:

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<cmpdrule><tactic cmd="intros"/>

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<cmpdrule><tactic cmd="intros"/>

<tree><goal><concl type="forall n : nat, n <= n"/></goal>

<rule text="intro n"/>

<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree></cmpdrule>

<tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>

</cmpdrule><tree><goal><concl type="n <= n"/><hyp id="n" type="nat"/>

</goal></tree></tree>

This is the proof tree that corresponds to the incomplete Fitch proof on page
207.

The communication between ProofWeb and Coq is very narrow. The Dump

Tree command is all that had to be added to Coq to allow our system to convert
proofs, and its implementation only took a small amount of OCaml code. This
code has now been integrated into the Coq code base, which means that the
Dump Tree command will be standardly available in Coq from version 8.2.

Our system is intended to be used with simple tactics that correspond to the
inference rules of first order logic, so currently we forget the information gener-
ated by automated tactics (the content of compound rules). We first transform
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the tree to a non-optimized flag proof. For every node of the Coq tree we create
a new flag. This flag first contains all the assumptions. The notation presented
in the previous sections where a flag is allowed to have an arbitrary number of
assumptions is also used in the implementation; at a later step this gets trans-
lated according to the meaning of the notation. Then if a tree has subgoals, the
transformed subgoals are attached. Otherwise, if the goal is not proved ellipses
are attached. Finally the flag contains a line for the conclusion of the Coq node.

When rendering a flag style proof that was translated from a tree style proof
done with the Coq tactics, the tactic names are printed in a special way. For tac-
tics that match natural deduction rules, the names are changed to their natural
deduction names. Furthermore we add the consecutive line numbers on the left
of assumption lines and conclusion lines. We then replace references to labels
with the appropriate numbers.

As an example of a flag style version of a serious Coq proof, consider the
following proof from the Coq standard library:

Lemma leb_complete : forall m n:nat, leb m n = true -> m <= n.

Proof.

induction m. trivial with arith.

destruct n. intro H. discriminate H.

auto with arith.

Qed.

This proof is rendered by ProofWeb as:
 
1   ∀n:nat, leb 0 n = true → 0 <= n   trivial[with,arith]
2  m: nat   assumption
3  IHm: ∀n:nat, leb m n = true → m <= n   assumption
4  H: leb (S m) 0 = true   assumption
5   S m <= 0   discriminate[H]
6   leb (S m) 0 = true → S m <= 0   intro[H] 4-5
7  n: nat   assumption
8   leb (S m) (S n) = true → S m <= S n   auto[with,arith]
9   ∀n:nat, leb (S m) n = true → S m <= n   destruct[n] 6,7-8

10   ∀m:nat, ∀n:nat, leb m n = true → m <= n  induction[m] 1,2-9

7 Conclusion

The future work of this paper is to develop a luxury proof interface, as described
in Section 1, for a serious proof assistant. The main difference with the ProofWeb
system will then be that the system can also input a declarative proof. The
declarative proofs then becomes the text that the user works on.

We implemented a rough prototype of a luxury proof language for the HOL
Light system, and the approach seems to work quite well there. Currently we are
redoing this system in a more systematic and structured manner. This experi-
ment shows that our approach for converting procedural proofs into declarative
proofs is not tied to any Coq specifics. It works just as well, and in exactly the
same way, in a HOL environment.
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A difference with ProofWeb will be to have one further rewrite rule for proofs.
In the declarative language of the Mizar system there exists the consider state-
ment that is used for existential elimination. If one knows that there exists an x
that satisfies P [x], one can write:

proof

. . . 1

consider x being A such that P [x] by . . . 2;

. . . 3

thus Q by . . . 4;

end;

This can be seen as a condensed version of

proof

. . . 1

proof

let x be A;

assume P [x];
. . . 3

thus Q by . . . 4;

end;

thus Q by . . . 2;

end;

In the case of the ProofWeb system we did not want the system to rewrite the
latter to get the structure the former, as it would not leave Fitch-style proofs
the way that student users would expect them to be. However, in a system for
significant formalizations, an optimization like this will be essential.

We claim that a luxury proof interface – that is, an interface in which the user
edits a declarative proof, but also can ask the system to extend that proof by
executing tactics – combines the best of the procedural and declarative worlds.
We expect that it will be straight-forward to implement such an interface using
the methodology presented in this paper.
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MFCS 2006. LNCS, vol. 4162, pp. 39–57. Springer, Heidelberg (2006)

4. Geuvers, H., Nederpelt, R.: Rewriting for Fitch Style Natural Deductions. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 134–154. Springer, Heidelberg
(2004)



Merging Procedural and Declarative Proof 219

5. Girard, J.Y.: Linear Logic. Theor. Comput. Sci. 50, 1–102 (1987)
6. Guilhot, F., Naciri, H., Pottier, L.: Proof explanations: using natural language and

graph view, Slides for a talk at a MoWGLI presentation (2003)
7. Harrison, J.R.: Proof Style. In: Giménez, E., Paulin-Möhring, C. (eds.) TYPES
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Abstract. We propose a (limited) solution to the problem of construct-
ing stream values defined by recursive equations that do not respect
the guardedness condition. The guardedness condition is imposed
on definitions of corecursive functions in Coq, AGDA, and other
higher-order proof assistants. In this paper, we concentrate in particular
on those non-guarded equations where recursive calls appear under
functions. We use a correspondence between streams and functions over
natural numbers to show that some classes of non-guarded definitions
can be modelled through the encoding as structural recursive functions.
In practice, this work extends the class of stream values that can be
defined in a constructive type theory-based theorem prover with induc-
tive and coinductive types, structural recursion and guarded corecursion.
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tive types, Guarded Corecursion, Coq.

1 Introduction

Interactive theorem provers with inductive types [27,28,20,16] provide a re-
stricted programming language together with a formal meta-theory for reason-
ing about the language. This language is very close to functional programming
languages, so that the verification of a program in a conventional functional
programming language can often be viewed as a simple matter of adapting the
program’s formulation to a theorem prover’s syntax, thus obtaining a faithful
prover-level model. Then one can reason about this model in the theorem prover.
This approach has inspired studies of a large collection of algorithms, starting
from simple examples like sorting algorithms to more complex algorithms, like
the ones used in the computation of Gröbner bases, the verification of the four-
colour theorem, or compilers.

However, the prover’s programming language is restricted, especially concern-
ing recursion. For instance, structural restriction ensures that all programs termi-
nate, so that values are never undefined; we give details in Section 2. Approaches
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to cope with potentially non-terminating programs are available, especially by
encoding domain theory as in HOLCF [24], but these approaches tend to make
the description of programs more cumbersome, because the exceptional case
where a computation may not terminate needs to be covered at every stage. An
alternative is to manage a larger class of terminating functions, mainly using
well-founded recursion [22,26], and this approach is now widely spread among
all interactive theorem provers.

A few theorem provers [27,28,20] also support coinduction. Coinductive
datatypes provide a way to look at infinite data objects. In particular, streams
of data can be viewed as infinite lists. Coinductive datatypes also provide room
for a new class of recursive objects, known as corecursive objects.

Termination is not required anymore for these functions, but termination still
plays a role, since every finite value should still be computable in finite time,
even if the computation involves an interaction with a corecursive value. This
constraint boils down to a concept of productivity. Roughly speaking, infinite
sequences of recursive calls where no data is being produced must be avoided.
For recursive programs, productivity is undecidable for the same reason that
termination is. For this reason, a more restrictive criterion is used to describe
corecursive functions that are legitimate in theorem provers.

A theorem prover like Coq provides two kinds of recursion: terminating recur-
sion, initially based on structural recursion for inductive types, which can also
handle well-founded recursion; and productive corecursion, based on “guarded”
corecursion [10,15]. Efforts have been made to extend the basic guarded corecur-
sion in the same spirit that well-founded recursion extends the basic structural re-
cursion. We can mention [14] and [4,7], which basically incorporate well-founded
recursion to make sure several non-productive recursive calls are allowed as long
as they ultimately become productive. In particular, [14] introduces a gener-
alization of the concept of well-founded relation that uses an extra dimension
to cover at the same time recursive or co-recursive functions; since there is an
extra dimension, two notions of limits can be used and recursive values can mix
terminating recursive and productive co-recursive aspects in a seamless fashion.

One essential characteristic of well-founded induction and the complete or-
dered families of equivalences in [14] is that the well-founded relation or families
of equivalences must be given as extra data to make it possible to start the
definition process. In the alternative approach described in this paper, we want
to avoid this extra burden imposed on the user, and we attempt to develop a
methodology that remains syntactic in nature.

We will concentrate on a class of recursive definitions where mapping functions
interfere in the recursive equation, thus preventing the recursive equation to
be recognised as guarded by constructors. The infinite sequences of Fibonacci
numbers (considered e.g., in [1]) and of natural numbers (see Example 5) are
famous representatives of the class. Many of the corecursive values studied, for
example, in [25,12,13] fail to satisfy the guardedness condition, precisely because
functions like map interfere in the recursive definition. A very elegant method of
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lazy differentiation [19] also gives rise to a function of multiplication for infinite
streams of derivatives in the same class of definitions.

A simple example is the following recursive equation (studied later as
Example 5):

nats = 1::map S nats

A quick analysis shows that we can use this equation to infer the value of each
element in the stream: the first value is given directly, the second element is
obtained from the first one through the behaviour of the map function, and so
on. This recursive equation is a legitimate specification of a stream, and it can
actually be used as a definition in a conventional lazy functional programming
language like Haskell.

Thus the question studied in this article is: given a recursive equation like the
one concerning nats, can we build a corecursive value that satisfies this equa-
tion, using only structural recursion and guarded corecursion? We will describe
a partial solution to this problem. We will also show that this solution can in-
corporate other interfering functions than map. In Section 3, we briefly overview
the class of the functions we target.

Our proposed approach is to map every stream value to a function over natural
numbers in a reversible way: a stream s0::s1::· · · is mapped to the function �s� :
i �→ si, and the reverse map is an easily defined guarded corecursive function. It
appears that all legitimate guarded corecursive values are mapped to structurally
recursive functions and that the question of productivity is transformed into a
question of termination. We discuss it in Section 5.

Moreover, uses of the map function and similar operations are transformed
into program fragments that still respect the constraints of structural recursion.
Thus, there are stream values whose recursive definitions as streams are mapped
to structural recursive definitions, even though the initial equations did not re-
spect guardedness constraints. For these stream values, we propose to define the
corresponding recursive function using structural recursion, and then to produce
the stream value using the reverse map from functions over natural numbers to
streams. We present this method in Section 6.

2 Structurally Recursive Functions

We start with defining the notions of inductive and coinductive types, and recur-
sive/corecursive functions. We will use the syntax of Coq throughout. For a more
detailed introduction to Coq, see [5]. One can also handle inductive and coin-
ductive types within HOL (proof assistant Isabelle) [23], and within Martin-Löf
type theory (proof assistant AGDA) [27].

Inductive data types are defined by introducing a few basic constructors that
generate elements of the new type.

Definition 1. The definition of the inductive type of natural numbers is built
using two constructors O and S:

Inductive nat : Set := O : nat | S : nat -> nat.
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This definition also implies that the type supports both pattern-matching and
recursion: on the one hand, all values in the type are either of the form O or of
the form (S x); on the other hand, all values are finite and a function is well
defined when its value on O is given and the value for S x can be computed from
the value for x.

After the inductive type is defined, one can define its inhabitants and functions
on it. Most functions defined on the inductive type must be defined recursively,
that is, by describing values for different patterns of the constructors and by
allowing calls to the same function on variables taken from the patterns.

Example 1. The recursive function below computes the n-th Fibonacci number.

Fixpoint fib (n:nat) : nat :=
match n with
| O => 1
| S O => 1
| S (S p as q) => fib p + fib q
end.

There is one important property we wish every function defined in Coq to pos-
sess: it is termination. To guarantee this, Coq uses a syntactic restriction on
definitions of functions, called structural recursion. A structurally recursive def-
inition is such that every recursive call is performed on a structurally smaller
argument. The function fib is structurally recursive: all recursive calls are made
on variables (here p and q) that were obtained through pattern-matching from
the initial argument.

There are many useful functions and algorithms that are not structurally
recursive, but general recursive. They are not accepted by Coq or similar proof
assistants directly, but they can be defined using various forms of well-founded
induction or induction with respect to a predicate [5,8].

It is perhaps worth mentioning that there exists an approach to termination
called “type-based termination” [1,3,17]. The essence of different methods pro-
posed under this name is rejection of the structural recursion as being a too
restrictive and narrow method for guaranteeing termination. Instead, this job is
delegated to sized higher-order types. The type-based termination promises to be
a powerful tool, but it is not easy to implement it. As for today, the major proof
assistants still rely on structural recursion. Some non-guarded functions we for-
malise in this paper, can also be handled by methods of type-based termination.
However, yet it gives little from the point of view of practical programming and au-
tomated proving. Therefore the value of this paper, as well as (e.g.) [5,7,8] is in the
technical elegance and practical implementation in the existing proof assistants.

3 Guardedness

We now consider corecursion.
The following is the definition of a coinductive type of infinite streams, built

using one constructor Cons.
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Definition 2. The type of streams is given by

CoInductive Stream (A:Set) : Set :=
Cons: A -> Stream A -> Stream A.

In the rest of this paper, we will write a::tl for Cons a tl, leaving the argu-
ment A to be inferred from the context.

While a structurally recursive function is supposed to rely on an inductive
type for its domain and is restricted in the way recursive calls are using this
input, a corecursive function is supposed to rely on a co-inductive type for its
co-domain and is restricted in the way recursive calls are used for producing the
output.

Definition 3 (Guardedness). A position in an expression is pre-guarded if
it occurs as the root of the expression, or if it is a direct sub-term of a pattern-
matching construct or a conditional statement, which is itself in a pre-guarded
position.

A position is guarded if it occurs as a direct sub-term of a constructor for the
co-inductive type that is being defined and if this constructor occurs in a pre-
guarded position or a guarded position. A corecursive function is guarded if all
its corecursive calls occur in guarded positions.

Example 2. The coinductive function map applies a given function f to a given
infinite stream.

CoFixpoint map (A B :Type)(f: A -> B)(s: Stream A): Stream B :=
match s with x::s’ => f x::map A B f s’ end.

In this definition’s right-hand side the match construct and the expression f
x::... are in pre-guarded positions, the expression map A B f s’ is in guarded
position, and the definition is guarded.

Example 3. The coinductive function nums takes as argument a natural number
n and produces a stream of natural numbers starting from n.

CoFixpoint nums (n: nat): Stream nat := n::nums (S n).

In this definition’s right-hand side, the expression n::nums (S n) is in a pre-
guarded position, the expression nums (S n) is in a guarded position.

Example 4. The following function zipWith is guarded:

CoFixpoint zipWith (A B C: Set)(f: A -> B -> C)
(s: Stream A)(t: Stream B) : Stream C :=

match (s, t) with (x :: s’, y :: t’) =>
(f x y):: (zipWith A B C f s’ t’)
end.

Informally speaking, the guardedness condition insures that

* each corecursive call is made under at least one constructor;
** if the recursive call is under a constructor, it does not appear as an argument

of any function.
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Violation of any of these two conditions makes a function non-guarded. Ac-
cording to the two guardedness conditions above, we will be talking about the
two classes of non-guarded functions - (*) and (**).

A more subtle analysis of the corecursive functions that fail to satisfy the
guardedness condition * can be found in [14,4,21,7]. In particular, the mentioned
papers offer a solution to the problem of formalising productive corecursive func-
tions of this kind.

Till the rest of the paper, we shall restrict our attention to the second class
of functions. To the extent of our knowledge, this paper is the first attempt to
systematically formulate the functions of this class in the language of a higher-
order proof assistant with guarded corecursion.

Example 5. Consider the following equation:

nats = 1::map S nats

This definition is not guarded, the expression map S nats occurs in a guarded
position, but nats is not; see the guardedness condition **. Despite of this, the
value nats is well-defined.

Example 6. The following definition describes the stream of Fibonacci numbers:

fib = 0 :: 1 :: (zipWith nat nat plus (tl fib) fib).

Again, this recursive equation fails to satisfy **.

Example 7. The next example shows the function dTimes that multiplies the
sequences of derivatives in the elegant method of lazy differentiation of [19,9].

dTimes x y = match x, y with
| x0 :: x’, y0 :: y’ =>
(x0 * y0) :: (zipWith Z Z plus (dTimes x’ y) (dTimes x y’))
end.

Again, this function fails to satisfy **.

In the next section, we will develop a method that makes it possible to express
Examples 5 - 7 as guarded corecursive values.

Values in co-inductive types usually cannot be observed as a whole, because of
their infiniteness. To prove some properties of infinite streams, we use a method
of observation. For example, to prove that the two streams are bisimilar, we
must observe that their first elements are the same, and continue the process
with the rest.

Definition 4. Bisimilarity is expressed in the definition of the following coin-
ductive type:

CoInductive EqSt: Stream A -> Stream A -> Prop :=
| eqst : forall (a : A) (s s’ : Stream A), EqSt s s’ ->

EqSt (a::s)(a::s’).
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In the rest of this paper, we will write a==b for EqSt a b. The definition of
a==b corresponds to the conventional notion of bisimilarity as given, e.g. in [18].
Lemmas and theorems analogous to the coinductive proof principle of [18] are
proved in Coq and can be found in [5].

Bisimilarity expresses that two streams are observationally equal. Very often,
we will only be able to prove this form of equality, but for most purposes this
will be sufficient.

4 Soundness of Recursive Transformations for Streams

In this section, we show that streams can be replaced by functions. Because there
is a wide variety of techniques to define functions, this will make it possible to
increase the class of streams we can reason about. Our approach will be to start
with a (possibly non-guarded) recursive equation known to describe a stream, to
transform it systematically into a recursive equation for a structurally recursive
function, and then to transform this function back into a stream using a guarded
corecursive scheme.

As a first step, we observe how to construct a stream from a function over
natural numbers:

Definition 5. Given a function f over natural numbers, it can be transformed
into a stream using the following function:

Cofixpoint stroff (A:Type)(f:nat->Type) : Stream A :=
f 0 :: stroff A (fun x => f (1+x)).

This definition is guarded by constructors. In the rest of this paper, we will write
〈s〉 for stroff s leaving the argument A to be inferred from the context.

The function stroff has a natural inverse, the function nth which returns
the element of a stream at a given rank:

Definition 6. The function nth1 is defined as follows:

Fixpoint nth (A:Type) (n:nat) (s: Stream A) {struct n}: A :=
match s with a :: s’ =>
match n with | O => a | S p => nth A p s’ end

end.

In the rest of this paper, we will omit the first argument (the type argument) of
nth, following Coq’s approach to implicit arguments. We will use notation �s�
when talking about (fun n => nth n s).

It is easy to prove that �·� and 〈·〉 are inverse of each other. Composing these
two functions is the essence of the method we develop here. The lemmas below
are essential for guaranteeing the soundness of our method.

1 In Coq’s library, this function is defined under the name Str nth.
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Lemma 1. For any function f over natural numbers, ∀n, nth n 〈f〉 = f n.

Lemma 2. For any stream s, s == 〈�s�〉.

Proof. Both proofs are done in Coq and available in [6].

We now want to describe a transformation for (non-guarded) recursive equations
for streams. A recursive equation for a stream would normally have the form

a = e (1)

where both a and e are streams, and a can also occur in the expression e; see
Examples 5 - 7. We use this initial non-guarded equation to formulate a guarded
equation for a of the form:

a = 〈e′〉 (2)

where e′ is a function extensionally equivalent to �e�. As we show later in this
section, we often need to evaluate nth only partially or only at a certain depth,
this is why the job cannot be fully delegated to nth.

The definition of e′ will have the form

e′ n = E (3)

where e′ can again occur in the expression E.

Example 8 (zeroes). For simple examples, we can go through steps (1)-(3) in-
tuitively. Consider the corecursive guarded definition of a stream zeroes that
contains an infinite repetition of 0.

CoFixpoint zeroes := 0 :: zeroes.

We can model the body of this corecursive definition as follows:

Fixpoint nzeroes (n:nat) : nat :=
match n with 0 => 0 | S p => nzeroes p end.

This is a legitimate structurally recursive definition for a function that maps
any natural number to zero. Note that the obtained function is extensionally
equal to �zeroes�.

Lemma nth_zeroes: forall n, nth n zeroes = nzeroes n.

Thus, a stream that is bisimilar to zeroes can be obtained by the following
commands:

Definition zeroes’ := stroff _ nzeroes.

By Lemma nth zeroes and Lemma 2, zeroes and zeroes’ are bismilar, see [6]
for a proof.

The main issue is to describe a systematic transformation from the expression e
in the equation 1 to the expression E in the equation (3). This ”recursive” part
of the work will be the main focus of the next section.
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5 Recursive Analysis of Corecursive Functions

We continue to systematise the steps (1)-(3) of the transformation for a recursive
equation a = e.

The expression e can be seen as the application of a function F to a. In this
sense, the recursive definition of a expresses that a is fixpoint of F . The type of
F is Stream A → Stream A for some type A. We will derive a new function
F ′ of type (nat → A) → (nat → A); the recursive function a′ that we want
to define is a fixed point of F ′. We obtain F ′ from F in two stages:

Step 1. We compose F on the left with 〈·〉 and on the right with �·�. This
naturally yields a new function of the required type. In practice, we do not use
an explicit composition function, but perform the syntactic replacement of the
formal parameter with the 〈·〉 expression everywhere.

Example 9. For instance, when considering the zeroes example, the initial func-
tion

Definition zeroes_F (zeroes:Stream nat) := 0::zeroes

is recursively transformed into the function:

Definition zeroes_F’ (nzeroes : nat -> nat) :=
nth n (0::stroff nzeroes).

The corecursive value we consider may be a function taking arguments in types
t1, . . . , tn, that is, the function F may actually be defined as a function of
type (t1 → · · · → tn → StreamA) → (t1 → · · · → tn → StreamA). The reformu-
lated function F ′ that is obtained after composition with 〈·〉 and �·� has the
corresponding type where Stream A is replaced with nat → A. Thus, it is the
first argument that incurs a type modification. When one of the types ti is itself
a stream type, we can choose to leave it as a stream type, or we can choose to
replace it also with a function type. When replacing ti with a function type, we
have to add compositions with �·� and 〈·〉 at all positions where the first argu-
ment f of F is used, to express that the argument of f at the rank i must be
converted from a stream type to a function type and at all positions where the
argument of the rank i + 1 of F is used, to express that this argument must be
converted from a function type to a stream type.

We choose to perform this transformation of a stream argument into a function
argument only when the function being defined is later used for another recursive
definition. In this paper, this happens only for the functions map and zipWith.

Example 10. Consider the function map from Example 2. The function F for this
case has the following form:

Definition map_F
(map : forall (A B:Type)(f: A -> B), Stream A -> Stream B) :=
fun A B f s => match s with a::s’ => f a::map A B f s’ end.

The fourth argument to map and the fifth argument to map F have type Stream A
and we choose to replace this type with a function type. We obtain the following
new function:
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Definition map_F’
(map : forall (A B:Type)(f:A -> B), (nat -> A) -> nat -> B :=

fun A B f s => �match 〈s〉 with a::s’ => f a::〈map A B f �s’�〉 end�.

Step 2. We go on transforming the body of F ′ according to rewriting rules that
express the interaction between 〈·〉, �·�, and the usual functions and constructs
that deal with streams.

The Table 1 gives a summary of the rewriting rules for the transformation.

Table 1. Transformation rules for function representations of streams

1. nth n 〈f〉 = f n,
2. nth n (a::s′) = match n with 0 => a | S p => nth p s′ end,
3. hd 〈f〉 = f 0,
4. tl 〈f〉 = 〈fun n => f (S n)〉,
5. match 〈f〉 with a::s => e a s end = e (f 0) 〈fun n => f (S n)〉,
6. β-reduction.

All these rules can be proved as theorems in the theorem prover [6]: this
guarantees soundness of our approach. However, this kind of rewriting cannot
be done directly inside the theorem prover, since rewriting can only be done
while proving statements, while we are in the process of defining a function.
Moreover, the rewriting operations must be done thoroughly, even inside lambda-
abstraction, even though an operation for that may not be supported by the
theorem prover (for instance, in the calculus of constructions as it is implemented
in Coq, rewriting does not occur inside abstractions).

The rewriting rules make the second argument of nth decrease. When the re-
cursive stream definition is guarded, this process ends with a structural function
definition.

Example 11. Let us continue with the definition for map.

map_F’ map A B f s n =
nth n match 〈s〉 with a:: s’ => f a::〈map A B f �s’�〉end

= nth n (f(s 0)::〈map A B f �s’�〉) end
= match n with

0 => f(s 0) | S p => nth p 〈map A B f �〈fun n => s (S n)〉�〉
end

= match n with 0 => f(s 0)| S p => map A B f �〈fun n => s (S n)〉� p end
= match n with 0 => f(s 0)| S p => map A B f (fun n => s (S n)) p end

When considered as the body for a recursive definition of a function map’, the
last right-hand side is a good structural recursive definition with respect to the
initial parameter n. We can use this for a structural definition:
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Fixpoint map’ (A B : Type) (f : A -> B) (s: nat -> A)
(n : nat) {struct n} :=

match n with 0 => f a|S p => map’ A B f (fun n => s (S n)) p end.

This function models the map function on streams, as a function on functions. It
enjoys a particular property, which plays a central role in this paper:

Lemma 3 (Form-shifting lemmas)

∀ f s n, nth n (map f s) = f (nth n s)

∀ f s n, �map� f s n = f (s n).

Proof. See [6].

Thanks to the second statement of the lemma, s can be moved from an argument
position to an active function position, as will later be needed for verifying
structural recursion of other values relying on map.

Now, we show the same formalisation for the function zipWith:

Example 12 (Zip). The function zipWith can also be transformed, with the
choice that both stream arguments are transformed into functions over natu-
ral numbers.

Definition zipWith_F
(zipWith : forall (A B C : Type), (A -> B -> C) ->

Stream A -> Stream B -> Stream C)
(A B C : Type)(f : A -> B -> C)(a : Stream A)(b : Stream B) :=
match a, b with
x :: a’, y :: b’ => f x y :: zipWith A B C f a’ b’

end.

Viewing arguments a and b as functions and applying the rules from Table 1 to
this definition yields the following recursive equation:

zipWith_F’ zipwith’ A B C f a b n =
match n with
0 => f (a 0) (b 0)

| S p => zipwith’ (fun n => a (S n)) (fun n => b (S n)) p
end

Here again, this leads to a legitimate structural recursive definition on the fourth
argument of type nat. We also have form-shifting lemmas:

Lemma 4 (Form-shifting lemmas)

∀ f s1 s2 n, nth n (zipWith f s1 s2) = f (nth n s1) (nth n s2)

∀ f s1 s2 n, �zipWith� f s1 s2 n = f (s1 n) (s2 n).
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Proof. See [6].

The second statement also moves s1 and s2 from argument position to function
position.

Unfortunately, we do not know the way to automatically discover the Form-
shifting lemmas; although the statements of these lemmas follow the same generic
pattern and once stated, the proofs for them do not tend to be difficult. Instead,
as we illustrate in the Conclusion, we sometimes can give a convincing argument
showing that a form-shifting lemma for a particular function cannot be found;
and this provides an evidence that our method is not applicable to this function.
That is, existence or non/existence of the form-shifting lemmas can serve as a
criterion for determining whether the function can be covered by the method.

6 Satisfying Non-guarded Recursive Equations

Form-shifting lemmas play a role when studying recursive equations that do not
satisfy the guardedness condition **, that is, when the corecursive call is made
under functions like map or zipWith. To handle these functions, we simply need
to add one new rule, as in Table 2, which will handle occurrences of each function
that has a form-shifting lemma.

Table 2. Rule for recursive transformation of non-guarded streams

7. Let f be a function and C be a context in which arguments of F appear. If a form
shifting lemma has the following shape:

∀a1 · · · ak s1 · · · sl n, �f�a1 · · · ak s1 · · · sl n = C[a1, . . . , ak, s1 n, . . . , sl n],

then this equation should be used as an extra rewriting rule.

The extended set of transformation rules from Tables 1 and 2 can now be
used to produce functional definitions of streams that were initially defined by
non-guarded corecursive equations. The technique is as follows:

(a) Translate the equation’s right-hand-side as prescribed by the rules in Tables 1
and 2,

(b) Use the equation as a recursive definition for a function,
(c) Use the function 〈·〉 to obtain the corresponding stream value,
(d) Prove that this stream satisfies the initial recursive equation, using bisimi-

larity as the equality relation.

For the last step concerning the proof, we rely on two features provided in the
Coq setting:
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– For each recursive definition, the Coq system can generate a specialised
induction principle, as described in [2],

– A proof that two streams are bisimilar can be transformed into a proof that
their functional views are extensionally equal, using the theorem ntheq eqst:

ntheq_eqst :
∀A (s1 s2:Stream A), (∀n, nth n s1 = nth n s2) -> s1 == s2

Using these two theorems and combining them with systematic rewriting with
Lemma 1 and the form-shifting lemmas, we actually obtain a tactic we called
str eqn tac in [6] which proves the recursive equations automatically.

We illustrate this method using our running examples.

Example 13. Consider the corecursive non-guarded definition of nats from Ex-
ample 5. Here is the initial equation

nats = 1::map S nats

After applying all transformation rules we obtain the following equation between
functions:

�nats� = fun n => if n = 0 then 1 else S (�nats� (n - 1)).

This is now a legitimate structurally recursive equation defining �nats�, from
which we define nats as nats = 〈�nats�〉. The next step is to show that nats
satisfies the equation of Example 5.

nats == 1::map S nats

Using the theorem ntheq eqst and Lemma 1 on the left-hand-side this reduces
to the following statement:

∀ n, �nats� n = nth n (1::map S 〈�nats�〉)

We can now prove this statement by induction on the structure of the function
�nats�, as explained in [2]. This gives two cases:

1 = nth 0 (1::map S �nats�)

S (�nats� p) = nth (S p) (1 :: map S 〈�nats�〉)

The first goal is a direct consequence of the definition of nth. The second goal
reduces as follows:

S (�nats� p) = nth p (map S 〈�nats�〉)

Rewriting with the first form-shifting lemma for map yields the following goal:

S (�nats� p) = S (nth p 〈�nats�〉)

Rewriting again with Lemma 1 yields the following trivial equality.

S (�nats� p) = S (�nats� p).



Using Structural Recursion for Corecursion 233

Example 14. The sequence of Fibonacci numbers can be defined by the following
equation:

fib = 1::1::zipWith plus fib (tl fib)

When processing the left-hand side of this equation using the rules from Tables
1, 2 and the form-shifting lemma for zipWith, we obtain the following code:

�fib� = fun n =>
match n with
| 0 => 1
| S p => match p with 0 => 1 | S q => �fib� q + �fib� (1+q) end
end

This is still not accepted by the Coq system because (1+q) is not a variable term,
however it is semantically equivalent to p, and the following text is accepted:

�fib� = fun n =>
match n with
| 0 => 1
| S p => match p with 0 => 1 | S q => �fib� q + �fib� p end
end

Again, by Definition 5, we can define a stream fib = 〈�fib�〉, and fib is proved
to satisfy the initial recursive equation automatically.

It is satisfactory that we have a systematic method to produce a stream value
for the defining recursive equation, but we should be aware that the imple-
mentation of fib through a structural recursive function does not respect the
intended behaviour and has a much worse complexity —exponential— while the
initial equation can be implemented using lazy data-structures and have linear
complexity.

Finally, we illustrate the work of this method on the function dTimes from
Example 7:

Example 15. For the function dTimes, we choose to leave the two stream ar-
guments x and y as streams. We recover the structurally recursive function
�dTimes� from Example 7:

�dTimes� (x y:Stream nat) (n:nat){struct n} =
match x, y with
| x0 :: x’, y0 :: y’ =>
match n with
| 0 => x0 * y0
| S p => (�dTimes� x’ y p) + (�dTimes� x y’ p)
end

end.

It remains to define the stream 〈�dTimes�〉, which is a straightforward application
of Definition 5, and to prove that it satisfies the initial recursive equation from
Example 7. In [6], the proof is again handled automatically.
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7 Conclusions

The practical outcome of this work is to provide an approach to model core-
cursive values that are not directly accepted by the “guarded-by-constructors”
criterion, without relying on more advanced concepts like well-founded recursion
of ordered families of equivalences. With this approach we can address formal
verification for a wider class of functional programming languages. The work
presented here is complementary to the work presented in [7], since the method
in that paper only considers definitions where recursive calls occur outside of any
constructor, while the method in this paper considers definitions where recursive
calls are inside constructors, but also inside interfering functions.

The attractive features of this approach is that it is systematic and simple.
It appears to be simpler than, e.g., related work done in [14,7,11] that involved
introducing particular coinductive types and manipulating ad-hoc predicates.
Although the current state of our experiments relies on manual operations, we
believe the approach can be automated in the near future, yielding a command
in the same spirit as the Function command of Coq recent versions.

The Coq system also provides a mechanism known as extraction which pro-
duces values in conventional functional programming languages. When it comes
to producing code for the solution of one of our recursive equations on streams,
we have the choice of using the recursive equation as a definition, or the ex-
tracted code corresponding to the structurally recursive model. We suggest that
the initial recursive equation, which was used as our specification, should be used
as the definition, because the structural recursive value may not respect the in-
tended computational complexity. This was visible in the model we produced
for the Fibonacci sequence, which does not take advantage of the value re-use as
described in the recursive equation. We still need to investigate whether using
the specification instead of the code will be sound with respect to the extracted
code.

The method presented here is still very limited: it cannot cope with the ex-
ample of the Hamming sequence, as proposed in [12]. A recursive definition of
this stream is:

H = 1::merge (map (Zmult 2) H) (map (Zmult 3) H)

In this definition, merge is the function that takes two streams and produces a
new stream by always taking the least element of the two streams: when the input
streams are ordered, the output stream is an ordered enumeration of all values
in both streams. Such a merge function is easily defined by guarded corecursion,
but merge interferes in the definition of H in the same way that map interfered
in our previous examples. This time, we do not have any good form-shifting
lemma for this function. The hamming sequence can probably be defined using
the techniques of [14] and we were also able to find another syntactic approach
for this example, this new approach is a subject for another paper.
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3. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science 14,
97–141 (2004)

4. Bertot, Y.: Filters and co-inductive streams, an application to Eratosthenes’ sieve.
In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Hei-
delberg (2005)
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Abstract. Manifest fields in a type of modules are shown to be express-
ible in intensional type theory without strong extensional equality rules.
These intensional manifest fields are made available with the help of
coercive subtyping. It is shown that, for both Σ-types and dependent
record types, the with-clause for expressing manifest fields can be intro-
duced by means of the intensional manifest fields. This provides not only
a higher-order module mechanism with ML-style sharing, but a power-
ful modelling mechanism in formalisation and verification of OO-style
program modules.

1 Introduction

A type of modules may be expressed in type theory as a Σ-type or a dependent
record type. A field in such a type is usually abstract (of the form ‘v : A’) in the
sense that the data in that field can be any object of a given type. In contrast,
a field is manifest (of the form ‘v = a : A’) if the data in that field is not only
of a given type but the ‘same’ as some specific object of that type. Intuitively,
manifest fields allow internal expressions of definitional entries and are hence very
useful in expressing various powerful constructions in a type-theoretic setting.
For example, one can use Σ-types or dependent record types with manifest fields
to express the powerful module mechanism with the so-called ML-style sharing
(or sharing by equations) [31,20].

For a manifest field v = a : A, the ‘sameness’ of the data as object a may
be interpreted as judgemental equality in type theory, as is done in all of the
previous studies on manifest fields in type theory [16,37,13]. If so, this gives rise
to an extensional notion of judgemental equality and such manifest fields may
be called extensional manifest fields. In type theory, such extensional manifest
fields may also be obtained by means of other extensional constructs such as the
singleton type [5,17] and the extensional equality [32,11]. It is known, however,
such an extensional notion of equality is meta-theoretically difficult (in the cases
of the extensional manifest fields and the singleton types) or even lead to outright
undecidability (in the case of the extensional equality).
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As shown in this paper, the ‘sameness’ in a manifest field does not have to
be interpreted by means of an extensional equality. With the help of coercive
subtyping [25], manifest fields are expressible in intensional type theories such as
Martin-Löf’s intensional type theory [35] and UTT [23]. The idea is very simple:
for a of type A, a manifest field v = a : A is simply expressed as the shorthand
of an ordinary (abstract) field v : 1(A, a), where 1(A, a) is the inductive unit
type parameterised by A and a. Then, with a coercion that maps the objects
of 1(A, a) to a, v stands for a in a context that requires an object of type A.
This achieves exactly what we want with a manifest field. Such a manifest field
may be called an intensional manifest field (IMF) and, to distinguish it from an
extensional manifest field, we use the notation v ∼ a : A to stand for v : 1(A, a).

Manifest fields may be introduced using the with-clause that intuitively ex-
presses that a field is manifest rather than abstract. For both Σ-types and depen-
dent record types, with-clauses can be introduced by means of IMFs and used
as expected in the presence of the component-wise coercion that propagates
subtyping relations. For Σ-types, it is shown that the employed coercions are
coherent together and that the IMF-representation of with-clauses is adequate.

Our work on IMFs in record types is based on a novel formulation of de-
pendent record types (without manifest fields), which is different from those in
the previous studies [16,37,13] and has its own merits. Among other things, our
formulation is independent of structural subtyping (as in [37]), allowing more
flexible subtyping relations to be adopted in formalisation, and introduces kinds
of record types, giving a satisfactory solution to the problem of how to ensure
label distinctness in record types.

Intensional manifest fields can be used to express definitional entries and
provide not only a higher-order module mechanism with ML-style sharing1 but
also a powerful modelling mechanism in formalisation and verification of OO-
style programs. Using the record macro in Coq [12], we give examples to show,
with IMFs, how ML-style sharing can be captured and how classes in OO-style
programs can be modelled. Since intensional type theories are implemented in
the current proof assistants, many of which support the use of coercions, the
module mechanism supported by IMFs can also be used for modular development
of proofs and dependently-typed programs.

The following subsection briefly describes the logical framework LF and co-
ercive subtyping, establishing the notational conventions. In Section 2, we in-
troduce manifest fields and explain how they may be expressed in extensional
type theories. The IMFs in Σ-types are studied in Section 3. In Section 4, we
formulate dependent record types, introduce the IMFs in record types, and il-
lustrate their uses in expressing the module mechanism with ML-style sharing
and in modelling OO-style classes in formalisation and verification. Some of the
related and future work is discussed in the conclusion.

1 Historically, expressing ML-style sharing is the main motivation behind the studies
of manifest fields [16,20,37]. In fact, it has long been believed that, to express ML-
style sharing in type theory, it is essential to have some construct with an extensional
notion of equality. As shown in this paper, this is actually unnecessary.
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1.1 The Logical Framework and Coercive Subtyping

The Logical Framework LF. LF [23] is the typed version of Martin-Löf’s
logical framework [35]. It is a dependent type system for specifying type theories
such as Martin-Löf’s intensional type theory [35] and the Unifying Theory of
dependent Types (UTT) [23]. The types in LF are called kinds, including:

– Type – the kind representing the universe of types (A is a type if A : Type);
– El(A) – the kind of objects of type A (we often omit El); and
– (x:K)K ′ (or simply (K)K ′ when x  ∈ FV (K ′)) – the kind of dependent

functional operations such as the abstraction [x:K]k′.

The rules of LF can be found in Chapter 9 of [23]. We sometimes use M [x]
to indicate that x may occur free in M and subsequently write M [a] for the
substitution [a/x]M .

When a type theory is specified in LF, its types are declared, together with
their introduction/elimination operators and the associated computation rules.
Examples include inductive types such as Nat of natural numbers, inductive
families of types such as V ect(n) of vectors of length n, and families of inductive
types such as Π-types Π(A,B) of functions λ(x:A)b and Σ-types Σ(A,B) of
dependent pairs (a, b).2 In a non-LF notation, Σ(A,B), for example, will be
written as Σx:A.B(x). A nested Σ-type can be seen as a type of tuples/modules.

Notation. We shall use
∑

[x1 : A1, x2 : A2, ..., xn : An] to stand for Σx1 :
A1Σx2 : A2 ... Σxn−1 : An−1. An, where n ≥ 1. (When n = 1,

∑
[x:A] =df A.)

Similarly, (a1, a2, ..., an) stands for (a1, (a2, ..., (an−1, an)...)). Furthermore,
for any a of type

∑
[x1 : A1, x2 : A2, ..., xn : An],

– a.i =df π1(π2(...π2(π2(a))...), where π2 occurs i − 1 times (1 ≤ i < n), and
– a.n =df π2(...π2(π2(a))...), where π2 occurs n − 1 times.

For instance, when n = 3, a.2 ≡ π1(π2(a)) and a.3 ≡ π2(π2(a)). ��
Types can be parameterised. For example, the unit type 1(A, x) is parameterised
by A : Type and x : A and can be formally introduced by declaring:

1 : (A:Type)(x:A) Type

∗ : (A:Type)(x:A) 1(A, x)
E : (A:Type)(x:A) (C : (1(A, x))Type)(c : C(∗(A, x))(z : 1(A, x))C(z)

with the computation rule E(A, x,C, c, ∗(A, x)) = c.

Remark 1. The type theories thus specified are intensional type theories as those
implemented in the proof assistants Agda [3], Coq [12], Lego [29] and Matita
[33]. They have nice meta-theoretic properties including Church-Rosser, Subject
Reduction and Strong Normalisation. (See Goguen’s thesis on the meta-theory
of UTT [15].) In particular, the inductive types do not have the η-like equality
rules. As an example, the above unit type is different from the singleton type [5]
in that, for a variable x : 1(A, a), x is not computationally equal to ∗(A, a). ��
2 We use A → B and A×B for the non-dependent Π-type and Σ-type, respectively.

Also, see Appendix A for a further explanation for the notation of untyped pairs.
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Coercive Subtyping. Coercive subtyping for dependent type theories was first
considered in [2] for overloading and has been developed and studied as a general
approach to abbreviation and subtyping in type theories with inductive types
[24,25]. Coercions have been implemented in the proof assistants Coq [12,39],
Lego [29,6], Plastic [9] and Matita [33]. Here, we explain the main idea and
introduce necessary terminologies. For a formal presentation with complete rules,
see [25].

In coercive subtyping, A is a subtype of B if there is a coercion c : (A)B,
expressed by Γ � A ≤c B : Type.3 The main idea is reflected by the following
coercive definition rule, expressing that an appropriate coercion can be inserted
to fill up the gap in a term:

Γ � f : (x:B)C Γ � a : A Γ � A ≤c B : Type

Γ � f(a) = f(c(a)) : [c(a)/x]C

In other words, if A is a subtype of B via coercion c, then any object a of type
A can be regarded as (an abbreviation of) the object c(a) of type B.

Coercions may be declared by the users. They must be coherent to be em-
ployed correctly. Essentially, coherence expresses that the coercions between any
two types are unique. Formally, given a type theory T specified in LF, a set R
of coercion rules is coherent if the following rule is admissible in T [R]0:4

Γ � A ≤c B : Type Γ � A ≤c′ B : Type

Γ � c = c′ : (A)B

Coherence is a crucial property. Incoherence would imply that the extension
with coercive subtyping is not conservative in the sense that more judgements of
the original type theory T can be derived. In most cases, coherence does imply
conservativity (e.g., the proof method in [40] can be used to show this). When the
employed coercions are coherent, one can always insert coercions correctly into
a derivation in the extension to obtain a derivation in the original type theory.
For an intensional type theory, coercive subtyping is an intensional extension.
In particular, for an intensional type theory with nice meta-theoretic properties,
its extension with coercive subtyping has those nice properties, too.

Remark 2. Coercive subtyping corresponds to the view of types as consisting of
canonical objects while ‘subsumptive subtyping’ (the more traditional approach
with the subsumption rule) to the view of type assignment [28]. Coercive subtyp-
ing can be introduced for inductive types in a natural way [28,27], but this would
be difficult, if not impossible, for subsumptive subtyping. Furthermore, coercive
3 In this paper, we use ≤c, rather than the strict relation <c, for coercion judgements

and assume that the identity is always a coercion: if Γ � A : Type, then Γ �
A ≤idA

A : Type, where idA ≡ [x:A]x. This does not make an essential difference
but simplifies the component-wise coercion rules in Sections 3.1 and 4.2.

4 T [R]0 is an extension of T with the subtyping rules in R together with the congru-
ence, substitution and transitivity rules for the subtyping judgements, but without
the coercive definition rule. See [25] for formal details.
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subtyping is not only suitable for structural subtyping, but for non-structural
subtyping. The use in this paper of the coercion concerning the unit type is such
an example. ��

2 Manifest Fields via Extensional Constructs

Σ-types or dependent record types can be used to represent types of modules.
For instance, a type of some kind of abstract algebras may be represented as

M ≡
∑

[S : U, op : S → S, ...],

where S stands for (the type of) the carrier set with U being a type universe.
(For simplicity, we omit the details such as the equality over S etc.) Sometimes,
one may use manifest fields [20] to specify that the data in a field is not only of
a given type, but a specific object of that type. For instance, for m : M , we want
to define a subtype of M the carrier set of whose objects must be the same as
that of m (i.e., m.1 – see Section 1.1). This module type can be defined as∑

[S = m.1 : U, op : S → S, ...],

which is the same as M except that the first field is manifest, specifying that
the data in that field must be the same as m.1.

Traditionally,whenmanifest fields are considered, they introduce an extensional
notion of equality: in the above example, (the variable) S and m.1 are judgemen-
tally equal and, in particular, they are interchangeable in type-checking. Such ex-
tensional manifest fields can be introduced directly [16,37,13] and the associated
notion of equality is a strong form of η-like equalitywhich makes the meta-theoretic
studies rather difficult.

Manifest fields can be coded by means of other extensional constructs, in-
cluding the extensional equality Eq, which was first introduced in Martin-Löf’s
extensional type theory (ETT) [32] and adopted by NuPRL [10]. In ETT, the
propositional equality Eq(A, a, b) is equivalent to the judgemental equality: Γ �
p : Eq(A, a, b) if and only if Γ � a = b : A. With Eq, one may express a manifest
field v = a : A with two fields: ‘v : A, x : Eq(A, v, a)’, where the second guaran-
tees that v is judgementally equal to a [11]. As is known, because of the strength
of Eq, the judgemental equality and type checking in ETT are undecidable.

Another extensional construct that can be used to express manifest fields
is the singleton type [5,17]. For a : A, M is an object of the singleton type
{a}A if and only if M and a are judgementally equal. With this, a manifest
field v = a : A can simply be represented as the field v : {a}A. The singleton
types also introduce a strong form of η-like equality (among other things such
as subtyping) and are difficult in meta-theory. (See [14] for a sophisticated proof
of strong normalisation of a simple type system with singleton types.)

It has been thought that it would be difficult, if not impossible, to have
manifest fields in type theory without such extensional constructs. This is partly
because that, in an intensional type theory, the propositional equality is not
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equivalent to the computational (judgemental) equality in a non-empty context
and, therefore, to express v = a : A, it is not enough to just have a proof that v
is propositionally equal to a; we would need a way to make them judgementally
equal (for example, for type-checking).

However, we shall show that manifest fields can be expressed in an intensional
type theory, with the help of coercive subtyping.

3 Intensional Manifest Fields in Σ-Types

An intensional manifest field (IMF) in a Σ-type is a field of the form

x : 1(A, a),

where 1(A, a) is the unit type parameterised by A : Type and a : A. It will be
written by means of the following notation:

x ∼ a : A.

In other words, we write
∑

[... x ∼ a : A, ...] for
∑

[... x : 1(A, a), ...].
The IMFs (and the Σ-types involved) are well-defined and behave as intended

with the help of the following two coercions:

– ξA,a, associated with 1(A, a), maps the objects of 1(A, a) to a. In a context
where an object of type A is required (e.g., in the Σ-type but after the field
v ∼ a : A), v is coerced into a and behaves as an abbreviation of a.

– The component-wise coercion dΣ propagates subtyping relations, including
those specified by ξ, through Σ-types so that the IMFs can be used properly
in larger contexts.

Example 1. Here is an example of how the coercion ξ is used to support IMFs.
Consider the module type M in Section 2, repeated here:

M ≡
∑

[S : U, op : S → S, ...].

For m : M , we can change its first field into an IMF by specifying that the carrier
set must be ‘the same’ as (or, more precisely, abbreviate) the carrier set of m:

Mw ≡
∑

[S ∼ m.1 : U, op : S → S, ...].

Note that S is now of type 1(U,m.1) and is not a type. The reason that S → S
is well-typed is that S is now coerced into the type ξU,m.1(S) = m.1. ��

3.1 Coercions ξ and dΣ and Their Coherence

The coercion rule for ξ concerning the unit type is:

(ξ)
Γ � A : Type Γ � a : A

Γ � 1(A, a) ≤ξA,a
A : Type

where ξA,a(x) = a for any x : 1(A, a).
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The component-wise coercion expresses the idea that the subtyping relations
propagate through the module types. For Σ-types, if A is a subtype of A′ and
B is a ‘subtype’ of B′, then Σ(A,B) is a subtype of Σ(A′, B′). Formally, this is
formulated by means of the following rule:

(dΣ)

Γ � B : (A)Type Γ � B′ : (A′)Type
Γ � A ≤c A′ : Type Γ, x:A � B(x) ≤c′[x] B′(c(x)) : Type

Γ � Σ(A,B) ≤dΣ
Σ(A′, B′) : Type

where dΣ maps (a, b) to (c(a), c′[a](b)) and is formally defined as dΣ(z) =
(c(π1(z)), c′[π1(z)](π2(z))), for any z : Σ(A,B).

Remark 3. In the literature, the component-wise rules for Σ-types are usually
formulated by means of <c, rather than ≤c. Similar rules can be recovered. For
instance, when B ≡ B′ ◦ c and c′[x] ≡ idB′(c(x)) and if we omit the coercion
judgement for the identity coercion c′[x], the above rule becomes

Γ � B′ : (A′)Type Γ � A ≤c A′ : Type

Γ � Σ(A,B′ ◦ c) ≤d1 Σ(A′, B′) : Type

where d1 maps (a, b) to (c(a), b). ��

Proposition 1 (Coherence). Let R = {(ξ), (dΣ)}. Then R is coherent.

Proof. By induction on derivations, we prove the more general statement:

– if Γ � A ≤c B : Type and Γ � A′ ≤c′ B′ : Type, where Γ � A = A′ : Type
and Γ � B = B′ : Type, then Γ � c = c′ : (A)B.

For example, in the case that the last rules to derive A ≤c B and A′ ≤c′ B′ are
both (ξ) with c ≡ ξC,a and c′ ≡ ξC′,b, we have that 1(C, a) ≡ A = A′ ≡ 1(C′, b).
Then, by Church-Rosser, C = C′, a = b, and ξC,a(x) = a = b = ξC′,b(x) for any
x : 1(C, a). Therefore, ξC,a = ξC′,b by the ξ-rule and η-rule in LF (see Chapter
9 of [23]). ��

3.2 with-Clauses and Properties

Manifest fields can be introduced by means of the with-clauses (see, e.g., [37]).
Usually, they introduce extensional manifest fields with new computation rules.
We shall instead consider them with the intensional manifest fields.

Intuitively, given a Σ-type with a field v : A, a with-clause modifies it into
the same Σ-type except that the corresponding field becomes manifest: v ∼ a :
A (i.e., v : 1(A, a)). For instance, the module type Mw in Example 1 can be
obtained from M as follows: Mw = M with field 1 as m.1.

Definition 1 (with-clause for Σ-types). Let M ≡
∑

[x1 : A1, ..., xn : An],
i ∈ {1, ..., n} and x1 : A1, ..., xi−1 : Ai−1 � a : Ai. Then,

M with field i as (x1, ..., xi−1)a
=df

∑
[ x1 : A1, ..., xi−1 : Ai−1, xi ∼ a : Ai, xi+1 : Ai+1, ..., xn : An ].
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When xj  ∈ FV (a) (j = 1, ..., i − 1), we omit the variables xj and simply write
(M with field i as a) for (M with field i as (x1, ..., xi−1)a). ��

The fields in tuples (objects of Σ-types) can be modified similarly.

Definition 2 (|-operation for Σ-types). Let M ≡
∑

[x1 : A1, ..., xn : An]
and m : M . Then m|i =df (m.1, ...,m.(i − 1), ∗(A′

i,m.i), m.(i + 1), ...,m.n),
where A′

i ≡ [m.1, ...,m.(i − 1)/x1, ..., xi−1]Ai. ��

Remark 4. It is obvious that with-clauses can be nested. For instance, M
with (field i as a and field j as b) is (M with field i as a) with field j as b.
This is similar for |-operations. E.g., m|i,j is (m|i)|j . ��

The above definitions are adequate as the following proposition shows.

Proposition 2. Let M ≡
∑

[x1 : A1, ..., xn : An] and m : M . Then,

1. For i = 1, ..., n, if Mi ≡ (M with field i as m.i) is well-typed, then
m|i : Mi, and

2. If x1, ..., xi−1  ∈ FV (a), thenm.i = a if and only ifm|i : (M with field i as a).

Proof. (1) is proved by induction on n, using the coercion ξ. (2) is a corollary of
(1) and proved using the fact that, by type uniqueness, m.i = a if and only if
M with field i as m.i = M with field i as a. ��
The following proposition shows that, if we modify a Σ-type by a with-clause
appropriately, we obtain a subtype and, therefore, Σ-types with IMFs can be
used adequately in any context.

Proposition 3. Let M and Mw ≡ (M with field i as a) be Σ-types. Then,
Mw ≤ M (i.e., Mw ≤c M for some c).

Proof. The proof uses both coercions ξ and dΣ . ��

4 Dependent Record Types and Intensional Manifest
Fields

Dependent record types are labelled Σ-types. For instance, 〈n : Nat, v : V ect(n)〉
is the dependent record type with objects (called records) such as 〈n = 2, v =
[5, 6]〉, where the dependency has to be respected: [5, 6] must be of type V ect(2). It
can be argued that record types are more natural than Σ-types to be considered
as types of modules.

In this section, we shall give a new formulation of dependent record types, study
intensional manifest fields in record types and illustrate their uses in expressing the
module mechanism with ML-sharing and in modelling OO-programs.
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Formation rules

Γ valid

Γ � 〈〉 : RType[∅]
Γ � R : RType[L] Γ � A : (R)Type l �∈ L

Γ � 〈R, l : A〉 : RType[L∪ {l}]
Introduction rules

Γ valid

Γ � 〈〉 : 〈〉
Γ � 〈R, l : A〉 : RType Γ � r : R Γ � a : A(r)

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Elimination rules

Γ � r : 〈R, l : A〉
Γ � [r] : R

Γ � r : 〈R, l : A〉
Γ � r.l : A([r])

Γ � r : 〈R, l : A〉 Γ � [r].l′ : B l �= l′

Γ � r.l′ : B

Computation rules

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Γ � [〈r, l = a : A〉] = r : R

Γ � 〈r, l = a : A〉 : 〈R, l : A〉
Γ � 〈r, l = a : A〉.l = a : A(r)

Γ � 〈r, l = a : A〉 : R Γ � r.l′ : B l �= l′

Γ � 〈r, l = a : A〉.l′ = r.l′ : B

Fig. 1. The main inference rules for dependent record types

4.1 Dependent Record Types

Formally, we formulate dependent record types as an extension of the intensional
type theory such as Martin-Löf’s type theory or UTT, as specified in the logical
framework LF. The syntax is extended with record types 〈〉 and 〈R, l : A〉 and
records 〈〉 and 〈r, l = a : A〉, where we overload 〈〉 to stand for both the empty
record type and the empty record. Records are associated with two operations:
restriction (or first projection) [r] that removes the last component of record r
and field selection r.l that selects the field labelled by l.

For every finite set of labels L, we introduce a kind RType[L], the kind of the
record types whose (top-level) labels are all in L. We shall also introduce the kind
RType of all record types. These kinds obey obvious subkinding relationships:

Γ � R : RType[L] L ⊆ L′

Γ � R : RType[L′]
Γ � R : RType[L]
Γ � R : RType

Γ � R : RType

Γ � R : Type

Equalities are also inherited by superkinds in the sense that, if Γ � k = k′ : K
and K is a subkind of K ′, then Γ � k = k′ : K ′. The obvious rules are omitted.

The main inference rules for dependent record types are given in Figure 1.
Note that, in record type 〈R, l : A〉, A is a family of types, indexed by the
objects of R, and this is how dependency is embodied in the formulation.

Notation. For record types, we write 〈l1 : A1, ..., ln : An〉 for 〈〈〈〉, l1 :
A1〉, ..., ln : An〉 and often use label occurrences and label non-occurrences
to express dependency and non-dependency, respectively. For instance, we write
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〈n : Nat, v : V ect(n)〉 for 〈n : [ :〈〉]Nat, v : [x:〈n : [ :〈〉]Nat〉]V ect(x.n)〉 and
〈R, l : V ect(2)〉 for 〈R, l : [ :R]V ect(2)〉.

For records, we often omit the type information to write 〈r, l = a〉 for either
〈r, l = a : [ :R]A(r)〉 or 〈r, l = a : A〉. Such a simplification is available thanks
to coercive subtyping. A further explanation is given in Appendix A. ��
The notion of equality between records is weakly extensional in the sense that
two records are equal if their components are. This is reflected in the following
two rules (similar rules are used in [7]):

Γ � r : 〈〉
Γ � r = 〈〉 : 〈〉

Γ � r : 〈R, l : A〉 Γ � r′ : 〈R, l : A〉
Γ � [r] = [r′] : R Γ � r.l = r′.l : A([r])

Γ � r = r′ : 〈R, l : A〉
For example, for any r : 〈R, l : A〉 (r can be a variable), we have, by the second
rule above, that r = 〈[r], l = r.l : A〉 : 〈R, l : A〉.

There are also congruence rules for record types and their objects, which we
omit here. However, it is worth remarking that we pay special attention to the
equality between record types. In particular, record types with different labels
are not equal. For example, 〈n : Nat〉  = 〈n′ : Nat〉 if n  = n′.

Remark 5. These remarks are mainly for people who are familiar with previous
work on dependent records. First, it is worth pointing out that, as in [37], our for-
mulation of record types is independent of structural subtyping; this is different
from the other previous formulations [16,7,13], which have all made an essen-
tial use of structural subtyping. We consider this independence as a significant
advantage, mainly because it allows one to adopt more flexible subtyping rela-
tions in formalisation and modelling. We also comment that, although it might
have its own advantages (e.g., the economy in some rule formulations), mixing
subtyping with dependent records is not an easy matter: it is meta-theoretically
difficult and sometimes may lead to undecidability [16].

Our formulation is different from that in [37] which allows label repetitions
(‘label shadowing’). We have introduced kinds RType[L] and this gives a satisfac-
tory solution to the problem of how to ensure label distinctness (or to avoid label
repetition) in record types. For example, this is used essentially in Appendix A
when notational coercions are defined. Also, ensuring label distinctness makes it
possible for us to employ structural coercions such as projections coherently in
some applications such as OO-modelling discussed in Section 4.3.

Note that we have formulated record types, not record kinds. In the termi-
nology used in this paper, both [7] and [13] study record kinds – their ‘record
types’ are studied at the level of kinds in the logical framework. Since kinds have
a much simpler structure than types, it is easier to add record kinds (e.g., to
ensure label distinctness) than record types, while the latter is more powerful.

Finally, we should mention that, in the context of extensional type theory,
people have studied encodings of record types by means of other constructs. For
example, in NuPRL, ‘very dependent function types’ and intersection types have
been studied to encode dependent record types [11,4]. However, it is difficult to
see how this can be done in intensional type theories. ��
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4.2 Intensional Manifest Fields in Record Types

Intensional manifest fields can be defined for record types similarly as we did for
Σ-types in Section 3. In record types, for A : (R)Type and a : (r:R)A(r),

l ∼ a : A stands for l : [r:R]1(A(r), a(r)).

In the simpler situation, for A : Type and a : A, l ∼ a : A stands for l : 1(A, a).
In records, for b : B,

l ∼B b stands for l = ∗(B, b).

Example 2. For R = 〈S : U, op : S → S〉 and r : R, the S-field of the record
type 〈S ∼ r.S : U, op : S → S〉 is manifest; intuitively, it insists that, for any
record of this type, its S-field must be the same as the S-field of r. ��

The component-wise coercion dR for record types is given by the rule

Γ � R : RType[L] Γ � R′ : RType[L] Γ � R ≤c R′ : RType
Γ � A : (R)Type Γ � A′ : (R′)Type Γ, x:R � A(x) ≤c′[x] A′(c(x)) : Type

Γ � 〈R, l : A〉 ≤dR
〈R′, l : A′〉 : RType

(l �∈ L)

where dR maps 〈r, l = a〉 to 〈c(r), l = c′[r](a)〉 and is formally defined as, for
any r′ : 〈R, l : A〉, dR(r′) =df 〈c(r0), l = c′[r0](r′.l)〉, where r0 ≡ [r′].

Remark 6. Note that a component-wise coercion only exists between the record
types that have the same corresponding labels. For example, if l  = l′, there is
no component-wise coercion between 〈l : A〉 and 〈l′ : B〉 even if A ≤c B. ��

Note that different applications employ different coercions and, thanks to the
independence of the formulation of record types with subtyping, it is flexible to
use different coercions. For example, in OO-modelling as illustrated in Section 4.3
below, we also employ the projections as coercions, with the following rules:

Γ � 〈R, l : A〉 : RType

Γ � 〈R, l : A〉 ≤[ ] R : RType

Γ � A : Type Γ � 〈R, l : A〉 : RType

Γ � 〈R, l : A〉 ≤Snd 〈l : A〉 : RType

where, in the second rule, A is a type, 〈R, l : A〉 stands for 〈R, l : [ :R]A〉, and the
kind of the second projection Snd is the non-dependent kind (〈R, l : A〉)〈l : A〉.5

Remark 7. Assuming that the extension with dependent record types has nice
meta-theoretic properties such as Church-Rosser, we can show that the coer-
cions ξ, dR, [ ] and Snd are coherent together. It is worth remarking that the
5 In general, Snd : (r:〈R, l : A〉)〈l : A([r])〉 maps r to 〈l = r.l〉. First, note that

the kind of Snd is different from that of field selection: the codomain of Snd is
〈l : A([r])〉, rather than simply A([r]). This makes an important difference: Snd
is coherent with the first projection and the component-wise coercion, while field
selection is not. Secondly, only non-dependent coercions (and, in this case, the non-
dependent second projection) are studied in this paper. (Dependent coercions, where
the codomain of a coercion may depend on its argument, are studied in [30].)
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labels in record types play an important role for this coherence – the projections
together are not coherent coercions for Σ-types [21]. Also, if one allowed label
repetitions in record types, as in [37], the projection coercions [ ] and Snd would
be incoherent together. ��

As for Σ-types, we can modify a record type by means of a with-clause. For
R ≡ 〈l1 : A1, ..., ln : An〉, i ∈ {1, ..., n} and a : (x : Ri−1)Ai(x), where Ri−1 ≡
〈l1 : A1, ..., li−1 : Ai−1〉,

R with li as a

=df 〈 l1 : A1, ..., li−1 : Ai−1, li ∼ a : Ai, li+1 : Ai+1, ..., ln : An 〉.

And, for r : R,

r|li =df 〈l1 = r.l1, ..., li−1 = r.li−1, li ∼Ai(ri−1) r.li, li+1 = r.li+1, ..., ln = r.ln〉,

where ri−1 ≡ 〈l1 = r.l1, ..., li−1 = r.li−1〉.

Remark 8. Similar propositions as Propositions 2 and 3 would show that the
above definitions are adequate. It is also easy to see that the with-clauses and
the |-operations can be nested. ��

4.3 Modules and OO-Modelling in Intensional Type Theory

In this subsection, we show how to use the module types with intensional man-
ifest fields to capture ML-style sharing [31,20] and to model classes in OO-style
programs. We shall use record types in our examples.

Modules with ML-Style Sharing. In the language design for programming
and formalisation, the topic of developing a suitable and powerful module mech-
anism has been attracting a lot of interests. A module mechanism that supports
structure sharing has been of particular interest. For example, one may want
to share a point of a circle and a point of a rectangle in developing a facility
for bit-mapped graphics or to share the carrier set of a semigroup and that of
an abelian group when constructing rings in a formal development of abstract
mathematics.

For functional programming languages, two approaches to sharing have been
studied: one is sharing by parameterisation or the Pebble-style sharing [8,19]
and the other sharing by equations or the ML-style sharing [31,34]. Both have
been studied in the context of formalisation of mathematics as well, especially
in designing and using type theory based proof assistants.

It is known that ML-style sharing cannot be captured in an intensional type
theory by the propositional equality, since it is not equivalent to the compu-
tational equality in a non-empty context [22]. Contrary to the common belief
(cf., Section 2), however, ML-style sharing can be captured using the IMFs in
intensional type theory, as the following example illustrates.
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class inc_cell is subclass re_inc_cell of inc_cell is

var contents : Integer; var backup : Integer;

method get(): Integer is method restore() is

return contents end; contents := backup end;

method set(n:Integer) is override set(n:Integer) is

if get() < n if get() < n

then contents := n end; then { backup := contents;

end; contents := n } end;

end;

Fig. 2. The class inc cell and its subclass re inc cell

Example 3. A ring R is composed of an abelian group (R,+) and a semigroup
(R, ∗), with extra distributive laws. One can construct a ring from an abelian
group and a semigroup. When doing this, one must make sure that the abelian
group and the semigroup share the same carrier set. One of the ways to specify
such sharing is to use an ‘equation’ to indicate that the carrier sets are the same.
This example shows that this can be done by means of the IMFs.

The signature types of abelian groups, semigroups and rings can be repre-
sented as the following record types, respectively, where U is a type universe:

AG ≡ 〈A : U, + : A → A → A, 0 : A, inv : A → A〉
SG ≡ 〈B : U, ∗ : B → B → B〉

Ring ≡ 〈C : U, + : C → C → C, 0 : C, inv : C → C, ∗ : C → C → C〉

Note that an abelian group and a semigroup do not have to share their carrier
sets. In order to make this happen, we introduce the following record type, which
is parameterised by an AG-signature and defined by means of a with-clause that
specifies an IMF to ensure the sharing of the carrier sets:

SGw(ag) = SG with B as ag.A

= 〈B ∼ ag.A : U, ∗ : B → B → B〉,

where ag : AG. Then, the function that generates the Ring-signature from those
of abelian groups and semigroups can now be defined as:

ringGen(ag, sg)
=df 〈C = ag.A, + = ag.+, 0 = ag.0, inv = ag.inv, ∗ = sg.∗〉,

where the arguments ag : AG and sg : SGw(ag) share their carrier set. ��

Modelling OO-Style Classes. Since definitional entries can be specified by
means of IMFs, record types can be used to model the modular entities like
classes in an object-oriented language, where methods are modelled as IMFs.

Example 4. Consider the class inc_cell in Figure 2, representing a memory cell
whose content only increases. inc_cell can be interpreted as:

Cell0 = 〈 c : Scell, get ∼ fg : Tg, set ∼ fs : Ts 〉
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where

– Scell ≡ 〈 contents : Int 〉 interprets the states of inc_cell;
– fg ≡ λ(s:Scell)s.contents, of type Tg ≡ Scell → Int, interprets get; and
– fs ≡ λ(n:Int, s:Scell) if get(s) < n then 〈contents = n〉 else s, of type

Ts ≡ Int → Scell → Scell, interprets set.

Note that, in fs, get can be applied to s : Scell because that it is coerced into
ξTg,fg (get) = fg of type Tg ≡ Scell → Int. ��

The interpretation in the above example follows the basic idea in functional
interpretations of OO-languages [18,36]. In particular, when a method is in-
terpreted, the type of states (Scell in the above example) is used as argument
and result types to model the effect of retrieving from and modifying the mem-
ory. There is a known problem with such a way of using state types in the
interpretation when subclasses are considered [1]: the contravariance of sub-
typing does not lead to the natural subtyping relations between the interface
types. For instance, if the subclass re_inc_cell in Figure 2 is interpreted sim-
ilarly as in Example 4, the states of re_inc_cell would be interpreted as
Srecell ≡ 〈 contents : Int, backup : Int 〉 and, for example, the method set
as a function of type T ′

s ≡ Int → Srecell → Srecell. Although Srecell ≤ Scell (via
projection coercions), T ′

s is not a subtype of Ts (‘the problem of contravariance’).
As a consequence, the interface type of re_inc_cell is not a subtype of that of
its superclass inc_cell. However, this would be very desirable and the problem
can be solved in our setting by introducing a notion of universal state.

The universal state Ω. Given an object-oriented program, its classes form a DAG
(directed acyclic graph), where an arrow from C to C’ means that C’ is a subclass
of C. Let C1, ..., Cn be the leaves of the DAG and their states be interpreted as
types S1, ..., Sn, respectively. Then, the universal state (or, more precisely, the
universal type of states) Ω is defined as the following (non-dependent) record
type:

Ω =df 〈 s1 : S1, ..., sn : Sn 〉.
Now, with Ω, a method is interpreted as a function that takes a value from

Ω and, if it modifies the state, returns a value to Ω. For instance, the method
set in inc_cell is interpreted as a function of type Int → Ω → Ω (rather than
Int → Scell → Scell) and set in re_inc_cell as a (different) function of the
same type. Therefore, the subtyping relationships between the interface types of
inc_cell and re_inc_cell are as expected.

In general, the model enjoys desirable subtyping relationships between classes
and their interface types. If a class C is interpreted as C = 〈 c : SC , m1 ∼ a1 :
A1, ..., mn ∼ an : An 〉, where SC interprets the states of C, its interface type
I_C is interpreted as IC = 〈 c : SC , m1 : A1, ..., mn : An 〉. Therefore, we
have C ≤c IC , where the coercion c is derived from ξ and dR. Furthermore, if C’
is a subclass of C, then SC′ is a subtype of SC (via projection coercions), and:
IC′ ≤c IC , where the coercion c is derived from the structural coercions (the
projection and component-wise coercions) for record types.
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Remark 9. In the model construction of OO-classes as sketched above, subtype
polymorphism is correctly captured and methods are invoked according to dy-
namic dispatch. We omit the detailed explanations here. ��

Experiments in Proof Assistants. Experiments on the above applications
have been done in the proof assistants Plastic [9] and Coq [12], both supporting
the use of coercions. In Plastic, one can define parameterised coercions such as
ξ and coercion rules for the structural coercions: we only have to declare ξ and
the component-wise coercion (and the projection coercions for the application of
OO-modelling), then Plastic obtains automatically all of the derivable coercions,
as intended. However, Plastic does not support record types; so Σ-types were
used for our experiments in Plastic, at the risk of incoherence of the coercions!

Coq supports a macro for dependent record types6 and a limited form of
coercions. In Coq, we have to use the identity ID(A) = A on types to force
Coq to accept the coercion ξ and to use type-casting as a trick to make it
happen. Also, since Coq does not support user-defined coercion rules, we cannot
implement the rule for the component-wise coercion; instead, we have to specify
its effects on the record types individually. The Coq code for the Ring example
in Example 3 can be found in Appendix B.

In the proof assistants such as Coq, verification of object-oriented programs
can be done based on the formalisation of the model sketched above. For instance,
one can show that, for the class re_inc_cell, it is an invariant that the backup
value is always smaller than or equal to the contents value; formally, we prove
in Coq, for every method m,

∀s : Ω. Pre(m) ⇒ s.(backup) ≤ s.(contents)
⇒ S(m, s).(backup) ≤ S(m, s).(contents),

where Pre(m) stands for the precondition of m, S(m, s) for the resulting state
obtained from executing m with the initial state s, and s.( ) is the Coq-notation
for field selection. Currently, we can only do small examples in formalisation and
verification, partly because the manual encoding is rather tedious (and error-
prone). We are working on the automated translations that will generate the
Coq models of object-oriented programs and the Coq propositions of the speci-
fications, and this will hopefully make the whole process much easier.

5 Conclusion

We have shown that manifest fields can be expressed in intensional type theory
with the help of coercive subtyping. The intensional manifest fields strengthen

6 It is a macro in the sense that dependent record types are actually implemented
as inductive types with labels defined as global names (and, therefore, the labels of
different ‘record types’ must be different). Coq [12] also supports a preliminary (but
improper) form of ‘manifest fields’ by means of the let-construct, which we do not
use in our experiments.
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the module types such as record types and provide higher-order module mecha-
nisms for modular development of proofs and dependently-typed programs and
powerful representation mechanisms for, for example, formalisation and verifi-
cation of OO-style programs.

Recently, it has come to our attention that, studying formalisation of math-
ematical structures, Sacerdoti-Coen and Tassi [38] have attempted to represent
R with l as a by means of Σr : R. (r.l = a), where = is the Leibniz equal-
ity, and to employ the so-called ‘manifesting coercions’ in order to approximate
manifest fields. We remark that using an equality relation in this way is not
completely satisfactory and seems unnecessarily complicated. Our notion of in-
tensional manifest field is simple and desirable and, coupled with the record
types as formulated in this paper, provides us a powerful tool in intensional type
theory.

As to future work, we mention that our formulation of dependent record types
forms a promising basis for investigations on the meta-theory of dependent record
types. We also hope that the proof assistants will implement dependent record
types properly so that they can be used effectively in practice.

Acknowledgement. I am grateful to Robin Adams who, among other things,
has suggested the phrase ‘intensional manifest field’ to me.
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32. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
33. The Matita proof assistant (2008), http://matita.cs.unibo.it/
34. Milner, R., Harper, R., Tofts, M., MacQueen, D.: The Definition of Standard ML

(revised). MIT, Cambridge (1997)
35. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
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A Untyped Notations for Pairs and Records

Coercive subtyping can be used to explain and facilitate overloading [25,6,26].
The adoption of the untyped notations for pairs and records is a typical example.

Formally, the notations for pairs in Martin-Löf’s type theory or UTT and for
records in Section 4.1 are fully annotated with type information: they are of the
‘typed’ forms pair(A,B, a, b) and 〈r, l = a : A〉, rather than the ‘untyped’ (a, b)
and 〈r, l = a〉, respectively. A reason for this is that, in a dependent type theory,
a pair or a record without type information may have two or more incompatible
types. For example, the record 〈n = 2, v = [5, 6]〉 has both 〈n : Nat, v : V ect(2)〉
and 〈n : Nat, v : V ect(n)〉 as its types. The presence of the type information in
the typed forms allows a straightforward algorithm for type-checking, but it is
clumsy and impractical.

Can we use the simpler untyped notations instead? The answer is yes: this
can be done with the help of coercive subtyping. We illustrate it for records (see
Section 5.4 of [25] for a treatment of pairs). Let r′ be the ‘intended typed version’
of r. We want to use 〈r, l = a〉 to stand for either of the following records:

r1 ≡ 〈r′, l = a : [ :R]A(r′)〉 : 〈R, l : [ :R]A(r′)〉
r2 ≡ 〈r′, l = a : A〉 : 〈R, l : A〉

and to be able to decide which it stands for in the context. This can be done as
follows. Let L be any finite set of labels such that l  ∈ L. Consider the family

UL : (R : RType[L])(A : (R)Type)(x : R)(a : A(x))Type

of inductive unit types UL(R,A, x, a) with the only object uL(R,A, x, a). We
then declare coercions δL1 and δL2 :

UL(R,A, x, a) ≤δL
1
〈R, l : [ :R]A(x)〉

UL(R,A, x, a) ≤δL
2
〈R, l : A〉

inductively defined as: δL1 (uL(R,A, x, a)) = 〈x, l = a : [ :R]A(x)〉 and
δL2 (uL(R,A, x, a)) = 〈x, l = a : A〉. Then the notation 〈r, l = a〉 can be used
to denote the object uL(R,A, r′, a) and, in a context, it will be coerced into the
appropriate record r1 or r2 according to the contextual typing requirement.

B Coq Code for the Ring Example

The following is the Coq code for the Ring example – the construction of rings
from abelian groups and semi-groups that share the domains. Note that we have
only formalised the signatures of the algebras, omitting their axiomatic parts.

(* The parameterised unit type -- Unit/unit for 1/* *)

Inductive Unit (A:Type)(a:A) : Type := unit : Unit A a.

(* Coercion for the unit type; Use ID as trick to define it in Coq *)
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Definition ID (A:Type) : Type := A.

Coercion unit_c (A:Type)(a:A)(_:Unit A a) := a : ID A.

(* Abelian Groups, Semi-groups and Rings -- signatures only *)

Record AG : Type := mkAG

{ A : Set; plus : A->A->A; zero : A; inv : A->A }.

Record SG : Type := mkSG

{ B : Set; times : B->B->B }.

Record Ring : Type := mkRing

{ C : Set; plus’ : C->C->C; zero’ : C; inv’ : C->C; times’ : C->C->C }.

(* Domain-sharing semi-groups; type-casting to make unit_c happen in Coq *)

Record SGw (ag : AG) : Type := mkSGw

{ B’ : Unit Set ag.(A); times’’ : let B’ := (B’ : ID Set) in B’->B’->B’ }.

Implicit Arguments B’. Implicit Arguments times’’.

(* function to generate rings from abelian/semi-groups with shared domain *)

Definition ringGen (ag : AG)(sg : SGw ag) : Ring :=

mkRing ag.(A) ag.(plus) ag.(zero) ag.(inv) sg.(times’’).
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Abstract. As a case-study in machine-checked reasoning about the
complexity of algorithms in type theory, we describe a proof of the
average-case complexity of Quicksort in Coq. The proof attempts to fol-
low a textbook development, at the heart of which lies a technical lemma
about the behaviour of the algorithm for which the original proof only
gives an intuitive justification.

We introduce a general framework for algorithmic complexity in type
theory, combining some existing and novel techniques: algorithms are
given a shallow embedding as monadically expressed functional pro-
grams; we introduce a variety of operation-counting monads to capture
worst- and average-case complexity of deterministic and nondeterministic
programs, including the generalization to count in an arbitrary monoid;
and we give a small theory of expectation for such non-deterministic
computations, featuring both general map-fusion like results, and spe-
cific counting arguments for computing bounds.

Our formalization of the average-case complexity of Quicksort includes
a fully formal treatment of the ‘tricky’ textbook lemma, exploiting the
generality of our monadic framework to support a key step in the proof,
where the expected comparison count is translated into the expected
length of a recorded list of all comparisons.

1 Introduction

Proofs of the O(n log n) average-case complexity of Quicksort [1] are included
in many textbooks on computational complexity [9, for example]. This paper
documents what the authors believe to be the first fully formal machine-checked
version of such a proof, developed using the Coq proof assistant [2].

The formalisation is based on the “paper proof” in [9], which consists of three
parts. The first part shows that the total number of comparisons performed
by the algorithm (the usual complexity metric for sorting algorithms) can be
written as a sum of expected comparison counts for individual pairs of input
list elements. The second part derives from the algorithm a specific formula for

� Research carried out as part of the Radboud Master’s programme in “Foundations”.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 256–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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this expectation. The third and last part employs some analysis involving the
harmonic series to derive the O(n log n) bound from the sum-of-expectations.

Of these three parts, only the first two involve the actual algorithm itself—
the third part is strictly numerical. While the original proof provides a thorough
treatment of the third part, its treatment of the first two parts is informal in
two major ways.

First, it never actually justifies anything in terms of the algorithm’s formal
semantics. Indeed, it does not even formally define the algorithm in the first
place, relying instead on assertions which are taken to be intuitively true. While
this practice is common and perfectly reasonable for paper proofs intended for
human consumption, it is a luxury we can not afford ourselves.

Second, the original proof (implicitly) assumes that the input list does not
contain any duplicate elements, which significantly simplifies its derivation of
the formula for the expected comparison count for pairs of individual input list
elements. We take care to avoid appeals to such an assumption.

The key to giving a proper formal treatment of both these aspects lies in
using an appropriate representation of the algorithm, capable of capturing its
computational behaviour—specifically, its use of comparisons—in a way suit-
able for subsequent formal reasoning. The approach we take is to consider such
operation-counting as a side effect, and to use the general framework of monads
for representing side-effecting computation in pure functional languages. Ac-
cordingly we use a shallow embedding, in which the algorithm, here Quicksort,
is written as a monadically expressed functional program in Coq. This definition
is then instantiated with refinements of operation-counting monads to make the
comparison count observable.

The embedding is introduced in section 2, where we demonstrate its use by
first giving a simple deterministic monadic Quicksort definition, and then in-
stantiating it with a simple operation counting monad that lets us prove its
quadratic worst-case complexity.

For the purposes of the more complex average-case theorem, we then give
(in section 3) a potentially-nondeterministic monadic Quicksort definition, and
compose a monad that combines operation counting with nondeterminism, sup-
porting a formal definition of the notion of the expected comparison count, with
which we state the main theorem in section 4.

The next two sections detail the actual formalised proof. Section 5 corre-
sponds to the first part in the original proof described above, showing how the
main theorem can be split into a lemma (stated in terms of another specialized
monad) giving a formula for the expected comparison count for individual pairs
of input elements, and a strictly numerical part. Since we were able to fairly di-
rectly transcribe the latter from the paper proof, using the existing real number
theory in the Coq standard library with few complications and additions, we
omit discussion of it here and refer the interested reader to the paper proof.

Section 6 finishes the proof by proving the lemma about the expected com-
parison count for individual input list elements. Since this is the part where
the original proof omits the most detail, and makes the assumption regarding
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duplicate elements, and where we really have to reason in detail about the be-
haviour of the algorithm, it is by far the most involved part of the formalisation.

Section 7 ends with conclusions and final remarks.
The Coq source files containing the entire formalisation can be downloaded

from http://www.eelis.net/research/quicksort/. We used Coq version 8.2.

Related work. In his Ph.D thesis [12], Hurd presents an approach to formal
analysis of probabilistic programs based on a comprehensive formalisation of
measure-theoretic constructions of probability spaces, representing probabilistic
programs using a state-transforming monad in which bits from an infinite supply
of random bits may be consumed. He even mentions the problem of proving the
average-case complexity of Quicksort, but leaves it for future work.

In [11], Audebaud and Paulin-Mohring describe a different monadic approach
in which programs are interpreted directly as measures representing probability
distributions. A set of axiomatic rules is defined for estimating the probability
that programs interpreted this way satisfy certain properties.

Compared to these approaches, our infrastructure for reasoning about non-
deterministic programs is rather less ambitious, in that we only consider finite
expectation based on näıve counting probability, using a monad for nondeter-
minism which correctly supports weighted expectation. In particular, we do not
need to reason explicitly with probability distributions.

A completely different approach to type-theoretic analysis of computational
complexity is to devise a special-purpose type theory in which the types of terms
include some form of complexity guarantees. Such an approach is taken in [4],
for example.

2 A Shallow Monadic Embedding

As stated before, the key to giving a proper formal treatment of those parts of
the proof for which the original contents itself with appeals to intuition, lies in
the use of an appropriate representation of the algorithm. Indeed, we cannot
even formally state the main theorem until we have both an algorithm definition
and the means to denote its use of comparisons.

Since we are working in Coq, we already have at our disposal a full functional
programming language, in the form of Coq’s CIC [3]. However, just writing
the algorithm as an ordinary Coq function would not let us observe its use
of comparisons. We can however see comparison counting as a side effect. As
is well known and standard practice in functional languages such as Haskell,
side effects can be represented using monads : a side-effecting function f from
A to B is represented as a function A → M B where M is a type constructor
encapsulating the side effects. “Identity” and “composition” for such functions
are given by ret (for “return”) of type A → M A and bind (infix: >>=) of type
M A → (A → M B) → M B satisfying certain identities (the monad laws). For
a general introduction to monadic programming and monad laws, see [5].

http://www.eelis.net/research/quicksort/
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Furthermore, we use Haskell’s “do-notation”, declared in Coq as follows

Notation "x <- y ; z" := (bind y (λx : ⇒ z ))

and freely use standard monadic functions such as:

liftM : ∀ (M : Monad) (A B : Set), (A → B) → (M A → M B)
filterM : ∀ (M : Monad) (A : Set), (A → M bool ) → list A → M (list A)

Here, the Coq type Monad is a dependent record containing the (coercible)
carrier of type Set → Set , along with the bind and ret operations, and proofs of
the three monad laws.

We now express Quicksort in this style, parameterizing it on both the monad
itself and on the comparison operation. A deterministic Quicksort that simply
selects the head of the input list as its pivot element, and uses two simple filter
passes to partition the input list, looks as follows:

Variables (M : Monad) (T : Set) (le : T → T → M bool ).
Definition gt (x y : T ) : M bool := liftM negb (le x y).
Program Fixpoint qs (l : list T ) {measure length l } : M (list T ) :=

match l with
| nil ⇒ ret nil
| pivot :: t ⇒

lower ← filterM (gt pivot) t >>= qs ;
upper ← filterM (le pivot) t >>= qs ;
ret (lower ++ pivot :: upper )

end.

We use Coq’s Program Fixpoint facility [7] to cope with Quicksort’s non-
structural recursion, specifying list length as an input measure function that is
separately shown to strongly decrease for each recursive call. For this definition
of qs , these proof obligations are trivial enough for Coq to prove mostly by itself.

For recursive functions defined this way, Coq does not automatically define
corresponding induction principles matching the recursive call structure. Hence,
for this qs definition as well as the one we will introduce in section 3, we had
to define these induction principles manually. To make their use as convenient
as possible, we further customized and specialized them to take advantage of
specific monad properties. We will omit further discussion of these issues in this
paper, and will henceforth simply say: “by induction on qs , ...”.

By instantiating the above definitions with the right monad, we can transpar-
ently insert comparison-counting instrumentation into the algorithm, which will
prove to be sufficient to let us reason about its complexity. But before we do so,
let us note that if the above definitions are instead instantiated with the identity
monad and an ordinary elementwise comparison on T , then the monadic scaf-
folding melts away, and the result is equivalent to an ordinary non-instrumented,
non-monadic version, suitable for extraction and correctness proofs (which are
included in the formalisation for completeness). This means that while we will
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instantiate the definitions with less trivial monads to support our complexity
proofs, we can take some comfort in knowing that the object of those proofs is,
in a very concrete sense, the actual Quicksort algorithm (as one would write it in
a functional programming language), rather than some idealized model thereof.

For reasons that will become clear in later sections, we construct the monad
with which we will instantiate the above definitions using a monad transformer
[8] MMT (for “monoid monad transformer”), which piggybacks a monoid onto
an existing monad by pairing.

Variables (monoid : Monoid) (monad : Monad).

Let CMMT (T : Set) : Set := monad (monoid ×T ).

Let retMMT (T : Set) : T → CMMT T := ret ◦ pair (monoid zero monoid).

Let bindMMT (A B : Set) (a : CMMT A) (ab : A → CMMT B) : CMMT B :=
x ← a; y ← ab (snd x); ret (monoid mult monoid (fst x) (fst y), snd y).

Definition MMT : Monad := Build Monad CMMT bindMMT retMMT .

(In the interest of brevity, we omit proofs of the monad laws for MMT and all
other monads defined in this paper. These proofs can all be found in the Coq
code.)

We now use MMT to piggyback the additive monoid structure on N onto
the identity monad, and lift elementwise comparison into the resulting monad,
which we call SP (for “simply-profiled”).

Definition SP : Monad := MMT (N, 0,+) IdMonad .

Definition leSP (x y : N) : SP bool := (1, le x y).

When instantiated with this monad and comparison operation, qs produces the
comparison count as part of its result.

Definition qsSP := qs SP leSP .

Eval compute in qsSP (3 :: 1 :: 0 :: 4 :: 5 :: 2 :: nil).
= (16, 0 :: 1 :: 2 :: 3 :: 4 :: 5 :: nil)

Defining cost and result as the first and second projection, respectively, we triv-
ially have identities such as cost (retSP x ) = 0, cost (leSP x y) = 1, and
cost (x >>=SP f ) = cost x + cost (f (result x )). This very modest amount
of machinery is sufficient for a straightforward proof of Quicksort’s quadratic
worst-case complexity.

Proposition. qs worst : ∀ l , cost (qsSP l) � (length l)2.1

Proof. The proof is by induction on qs . For l = nil , we have cost (qsSP nil) =
cost (ret nil) = 0 � (length l)2. For l = h :: t , the cost decomposes into

1 We do not use big-O notation for this simple statement, as it would only obfuscate.
Big-O complexity is discussed in section 4.
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cost (filter (le h) t) + cost (qsSP (result (filter (le h) t))) +
cost (filter (gt h) t) + cost (qsSP (result (filter (gt h) t))) +
cost (ret (result (qsSP (result (filter (le h) t))) ++

h :: result (qsSP (result (filter (gt h) t))))).

The filter costs are easily proved (by induction on t) to be length t each. The
cost of the final ret is 0 by definition. The induction hypothesis applies to the
recursive qsSP calls. Furthermore, by induction on t , we can easily prove

length (result (filter (le h) t)) + length (result (filter (gt h) t)) � length t ,

because the two predicates filtered on are mutually exclusive. Abstracting the
filter terms as flt and flt ′, this leaves

length flt + length flt ′ � length t →
length t + (length flt)2 + length t + (length flt ′)2 + 0 � (S (length t))2,

which is true by elementary arithmetic. ��

We now extend the technique to prepare for the average-case proof.

3 Nondeterminism and Expected Values

The version of Quicksort used in the average-case complexity proof in [9] differs
from the one presented in the last section in two ways. This is also reflected in
our formalisation.

First, the definition of qs is modified to use a single three-way partition pass,
instead of two calls to filter , thus avoiding the pathological quadratic behaviour
which can arise when the input list does not consist of distinct elements.

Second, and more significantly, we use nondeterministic pivot selection, thus
avoiding the pathological quadratic behaviour from which any deterministic
pivot selection strategy inevitably suffers. While this means that we have proved
our result for a subtly different presentation of Quicksort, this nevertheless fol-
lows the textbook treatment, in line with common practice.

These two modifications together greatly simplify the formalisation, because
they remove the need to carefully track input distributions in order to show
that ‘good’ inputs (for which the original deterministic version of the algorithm
performs well) sufficiently outnumber ‘bad’ inputs (for which the original version
performs poorly). They further ensure that the O(n log n) average-case bound
holds not just averaged over all possible input lists, but for each individual input
list as well. In particular, it means that once we prove that the bound holds for
an arbitrary input, the global bound immediately follows.

This also means that for a key lemma near the end of our proof, we can use
straightforward induction over the algorithm’s recursive call structure, without
having to show that given appropriately distributed inputs, the partition step
yields lists that are again appropriately distributed. Such issues are a major tech-
nical concern in more ambitious approaches to average-case complexity analysis
[10, for example] and to the analysis of probabilistic algorithms.
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The second modification is based on a new monad (again defined using MMT ,
but this time transforming a nondeterminism monad) with which the new defi-
nition can be instantiated, capturing the expected comparison count.

The first modification is relatively straightforward. Instead of calling filterM ,
which uses a two-way comparison operation producing a monadic bool , we define a
function partition . It takes a three-way comparisonoperationproducing amonadic
comparison , which is an enumeration with values Lt , Eq, and Gt . We represent the
resulting partitioning by a function of type comparison → list T rather than a
record or tuple type containing three lists, because in the actual formalisation, this
saves us from having to constantly map comparison values to corresponding record
field accessors or tuple projections. This is only a matter of minor convenience; a
record or tuple could have been used instead without problems.

Variables (T : Set) (M : Monad) (cmp : T → T → M comparison).
Fixpoint partition (t : T ) (l : list T ) : M (comparison → list T ) :=

match l with
| nil ⇒ ret (const nil)
| h :: l ′ ⇒

c ← cmp h t ; f ← partition t l ′;
ret (λc′ ⇒ if c = c′ then h :: f c′ else f c′)

end.

Next, we redefine qs to use partition , and have it take as an additional parameter
a pick operation, representing nondeterministic selection of an element of a non-
empty list of choices. An ne list T is a non-empty list of T ’s, inductively defined
in the obvious way.

Variable pick : ∀ A : Set ,ne list A → M A.

Program Fixpoint qs (l : list T ) {measure length l } : M (list T ) :=
match l with
| nil ⇒ ret nil
| ⇒

i ← pick [0 ... length l − 1];
let pivot := nth l i in
part ← partition pivot (remove l i);
low ← qs (part Lt);
upp ← qs (part Gt);
ret (low ++ pivot :: part Eq ++ upp)

end.

The functions nth and remove select and remove the nth element of a list,
respectively.

Note that the deterministic Quicksort definition in section 2 could also have
been implemented with a partition pass instead, which might well have made
the worst-case proof even simpler. We chose not to do this, in order to emphasise
that the properties the average-case proof demands of the algorithm rule out the
näıve but familiar implementation using filter passes.
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Nondeterminism can now be emulated by instantiating these definitions with
a suitable monad and pick operation. A deterministic, non-instrumented version
can still be obtained, simply by using the identity monad and any deterministic
pick operation, such as head or ‘median-of-three’ (not considered here).

Let us now consider what kind of nondeterminism monad would be suitable
for reasoning about the expected value of a nondeterministic program like

x ← pick [0, 1]; if x = 0 then ret 0 else pick [1, 2 ].

When executed in the list monad (commonly used to emulate nondeterministic
computation), this program produces [0, 1, 2 ] as its list of possible outcomes.
Unfortunately, the information that 0 is a more likely outcome than 1 or 2 has
been lost. Such relative probabilities are critical to the notion of an expected
value: the expected value of the program above is avg [0, avg [1, 2 ] ] = 3

4  = 1 =
avg [0, 1, 2 ]. This makes list nondeterminism unsuitable for our purposes.

Using tree nondeterminism instead solves the problem: we introduce the type
ne tree of non-empty trees, building on ne list :

Inductive ne tree (T : Set) : Set :=
| Leaf : T → ne tree T
| Node : ne list (ne tree T ) → ne tree T .

Definition retne tree {A : Set } : A → ne tree A := Leaf .
Fixpoint bindne tree (A B : Set)

(m : ne tree A) (k : A → ne tree B) : ne tree B :=
match m with
| Leaf a ⇒ k a
| Node ts ⇒ Node (ne list .map (λx ⇒ bindne tree x k) ts)
end.

Definition Mne tree : Monad := Build Monad ne tree bindne tree retne tree .

Definition pickne tree (T : Set) : ne list T → Mne tree T
:= Node ◦ ne list .map Leaf .

We use non-empty trees because we do not consider partial functions, and using
potentially empty trees would complicate the definition of a tree’s average value
below. This is also why we used ne list for pick .

With this monad and pick operation, the same program now produces the tree
Node [Leaf 0,Node [Leaf 1,Leaf 2 ] ], which preserves the relative probabilities.
The expected value now coincides with the weighted average of these trees:

Definition ne tree.avg : ne tree R → R := ne tree.fold id ne list .avg .

Relative probabilities are also the reason we use an n-ary choice primitive
rather than a binary one, because correctly emulating (that is, without skewing
the relative probabilities) an n-ary choice by a sequence of binary choices is only
possible when n is a power of two.

To denote the expected value of a discrete measure f of the output of a
program, we define
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Definition expec (T : Set) (f : T → N) : ne tree T → R
:= ne tree.avg ◦ ne tree.map f .

Thus, given a program P of type Mne tree (list bool), expec length P denotes
the expected length of the result list, if we interpret values of type Mne tree T
as nondeterministically computed values of type T .

The function expec gives rise to a host of identities, such as

0 ≤ expec f t
expec (λx ⇒ f x + g x ) t = expec f t + expec g t

expec ((∗c) ◦ f ) = (∗c) ◦ expec f
(∀ x ∈ t → f x � g x ) → expec f t ≤ expec g t

(∀ x ∈ t → f x = c) → expec f t = c

(∀ x ∈ t → f x = 0) ↔ expec f t = 0
expec f (t >>= (ret ◦ g)) = expec (f ◦ g) t

expec (f ◦ g) t = expec f (ne tree.map g t) (1)

To form the monad with which we will instantiate qs for the main theorem,
we now piggyback the additive monoid on N onto Mne tree using MMT , and call
the result NDP (for “nondeterministically profiled”):

Definition MNDP : Monad := MMT (N, 0,+) Mne tree .

Definition cmpNDP (x y : T ) : MNDP bool := retne tree (1, cmp x y).
Definition qsNDP := qs MNDP cmpNDP (lift pickne tree).

We can now denote the expected comparison count for a qsNDP application by
expec cost (qsNDP l), and will use this in our statement of the main theorem in
the next section.

But before we do so, we define a slight refinement of expec that specifically
observes the monoid component of computations in monads formed by trans-
forming Mne tree using MMT (like NDP).

Definition monoid expec (m : Monoid ) (f : m → N) {A : Set }
: (MMT m Mne tree A) → R := expec (f ◦ fst).

Since cost = fst , we have expec cost t = monoid expec id t .
In addition to all the identities monoid expec inherits from expec, it has some

of its own. One identity states that if one transforms Mne tree using a monoid
m, then for a monoid homomorphism h from m to the additive monoid on N,
monoid expec h distributes over bind , provided that the expected monoid value
of the right hand side does not depend on the computed value of the left hand
side:

monoid expec plus : ∀ (m : Monoid) (h : m → (N, 0, +)),
monoid homo h → ∀ (A B : Set)
(f : MMT m Mne tree A) (g : A→ MMT m Mne tree B) :
(∀ x y ∈ f → monoid expec h (g (snd x)) = monoid expec h (g (snd y))),
monoid expec h (f >>= g) =

monoid expec h f + monoid expec h (g (snd (ne tree .head f ))).
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Since id is a monoid homomorphism, monoid expec plus applies to NDP and
expec cost . In section 5, we will use monoid expec plus with another monoid and
homomorphism.

4 The Statement

The last thing needed before the main theorem can be stated, is the notion
of big-O complexity. We use the standard textbook definition, except that we
make explicit how we measure inputs to f , namely with respect to a measure
function m:

Definition bigO (X : Set) (m : X → N) (f : X → R) (g : N → R) : Prop
:= ∃ c n, ∀ x ,n � m x → f x � c ∗ g (m x ).

Notation “wrt m, f = O (g)” := bigO m f g.

We now state the main theorem.

Theorem qs avg : wrt length, expec cost ◦ qsNDP = O (λn ⇒ n ∗ log2 n).

Thanks to the property discussed at the start of the previous section, qs avg
follows as a corollary from the stronger statement

qs expec cost : ∀ l , expec cost (qsNDP l) � 2 ∗ length l ∗ (1 + log2 (length l)),

the proof of which is described in the next two sections.

5 Reduction to Pairwise Comparison Counts

As described in the introduction, the key ingredient in the proof is a lemma
giving a formula for the expected comparison count for individual pairs of input
list elements, indexed a certain way. More specifically, if X ≡ XI0 . . . XIn−1 is
the input list, with I a permutation of [0 ...n − 1] such that X0 . . . Xn is sorted,
then the expected comparison count for any Xi and Xj with i < j is at most
2/(1 + j − i). In other words, the expected comparison count for two input list
elements is bounded by a simple function of the number of list elements that
separate the two in the sort order. We prove this fact in the next section, but
first show how qs expec cost follows from it.

Combined with the observation that the total expected comparison count
ought to equal the sum of the expected comparison count for each individual
pair of input elements, the property described above suggests breaking up the
inequality into

expec cost (qsNDP l) �
∑

(i,j)∈IJ

ecc i j � 2 ∗ length l ∗ (1 + log2 (length l)),

where IJ := {(i, j) ∈ [0, length l) | i < j}, and ecc i j := 2 / (1 + j − i).
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The right-hand inequality is a strictly numerical affair, requiring a bit of
analysis involving the harmonic series. As stated before, this part of the proof
was fairly directly transcribed from the paper proof, with few complications and
additions, and so we will not discuss it.

The left inequality is the challenging one. To bring it closer to the index
summation, we first write l on the left-hand side as map (nth (sort l)) li ,
where sort may be any sorting function (including qs itself), and where li is a
permutation of [0 ... n − 1] such that map (nth (sort l)) li = l (such an li can
easily be proven to exist).

Next, we introduce a specialized monad and comparison operation that go
one step further in focusing specifically on these indices.

Definition MonoidU : Monoid := (list (N × N),nil ,++).
Definition U : Monad := MMT MonoidU Mne tree .

Definition lookup cmp (x y : N) : comparison :=
cmp (nth (sort l) x ) (nth (sort l) y).

Definition unordered nat pair (x y : N) : N × N :=
if x � y then (x , y) else (y, x ).

Definition cmpU (x y : N) : U comparison :=
ret (unordered nat pair x y :: nil , lookup cmp x y).

Definition qsU : list N → list N := qs U cmpU pickU .

The function qsU operates directly on lists of indices into sort l . Comparison of
indices is defined by comparison of the values they denote in sort l . Furthermore,
rather than producing a grand total comparison count the way NDP does, U
records every pair of indices compared, by using MMT with MonoidU , the free
monoid over N×N pairs, instead of the additive monoid on N we used until now.

We now rewrite
expec cost (qsNDP (map (nth (sort l)) li))

= monoid expec length (qsU li) = expec (length ◦ fst) (qsU li).

The first equality expresses that the expected number of comparisons counted
by NDP is equal to the expected length of the list of comparisons recorded by
U . In the formalisation, this is a separate lemma proved by induction on qs . The
second equality merely unfolds the definition of monoid expec.

After rewriting with identity 1 in section 3 on page 264, the goal becomes

expec length (ne tree.map fst (qsU li)) �
∑

(i,j)∈IJ

ecc i j .

We now invoke another lemma which bounds a nondeterministically computed
list’s expected length by the expected number of occurrences of specific values
in that list. More specifically, it states that

∀ (X : Set) (fr : X → R) (q : list X ) (t : ne tree (list X )),
(∀ x ∈ q, expec (count x ) t � fr x ) →
(∀ x /∈ q, expec (count x ) t = 0) → expec length t �

∑
x∈q

fr x .
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We end up with two subgoals, the first of which is

∀ (i , j ) /∈ IJ , expec (count (i , j )) (ne tree.map fst (qsU li)) = 0.

Rewriting this using identity 1 from section 3 in reverse, then rewriting the expec
as a monoid expec, and then generalizing the premise, results in

∀ i j li , (i /∈ li ∨ j /∈ li) → monoid expec (count (i , j )) (qsU li) = 0 (2)

which can be shown by induction on qs , although we will not do so in this paper.
We will use this property again in the next section.

The second subgoal, expressed with monoid expec, becomes

∀ (i , j ) ∈ IJ ,monoid expec (count (i , j )) (qsU li) � ecc i j (3)

which corresponds exactly to the property described at the beginning of this
section. We prove it in the next section.

6 Finishing the Proof

Again, the proof of (3) is by induction on qs . But to get a better induction
hypothesis, we drop the (i , j ) ∈ IJ premise (because as was shown in the last
section, the statement is also true if (i , j ) /∈ IJ ), and add a premise saying li is
a permutation of a contiguous sequence of indices.

∀ i j , i < j → ∀ (li : list N) (b : N),Permutation [b ... b + length li − 1] li →
monoid expec (count (i , j )) (qsU li) � ecc i j .

In the base case, li is nil , and the left-hand side of the inequality reduces to 0.
In the recursive case, qs unfolds:

monoid expec (count (i , j )) (
pi ← pick [0 ... n − 1];
let pivot := nth li pi in
part ← partitionU pivot (remove li pi);
lower ← qsU (part Lt);
upper ← qsU (part Gt);
ret (lower ++ pivot :: part Eq ++ upper)
) � ecc i j .

Since cmpU is deterministic, partitionU is as well. Furthermore, since we know
exactly what monadic effects partitionU has, we can split those effects off and
revert to simple effect-free filter passes. Finally, we rewrite using the following
monoid expec identity:

monoid expec f (pick l >>= m) = avg (map (monoid expec f ◦ m) l).

This way, the goal ends up in a form using less monadic indirection:
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avg (map (monoid expec (count (i , j )) ◦ (λpi ⇒
let pivot := nth li pi in
let rest := remove li pi in
let flt := λc ⇒ filter ((= c) ◦ lookup cmp pivot) rest in
ne tree.map (map fst (++map (unordered nat pair pivot) rest)) (

lower ← qsU (flt Lt);
upper ← qsU (flt Gt);
ret (lower ++ pivot :: flt Eq ++ upper)

))) [0 ... n − 1]) � ecc i j .

Here, map fst applies a function to a pair’s first component.
We now distinguish between five different cases that can occur for the nonde-

terministically picked pivot (which, because we are in the U monad, is an index).
It can either be less than i , equal to i , between i and j , equal to j , or greater than
j . Each case occurs a certain number of times, and has an associated expected
number of (i , j ) comparisons (coming either from the map fst term representing
the partition pass, or from the two recursive qsU calls). To represent this split,
we first rewrite the right-hand side of the inequality to

ecc i j ∗ (i − b) + 1 + 0 + 1 + ecc i j ∗ (b + n − j)
n

.

This form reflects the facts that

– the case where pivot is less than i occurs i − b times, and in each instance,
the expected number of (i , j ) comparisons is no more than ecc i j ;

– the case where the pivot is equal to i occurs once, and in this case no more
than a single (i , j ) comparison is expected;

– in the case where pivot lies between i and j , the number of expected (i , j )
comparisons is 0, and hence it does not matter how often this case occurs;

– the case where the pivot is equal to j occurs once, and in this case no more
than a single (i , j ) comparison is expected;

– the case where the pivot is greater than j occurs b +n− j times, and in each
instance, the expected number of (i , j ) comparisons is no more than ecc i j .

With the right-hand side of the inequality in this form, we unfold the avg appli-
cation on the left into sum (...) / n, and then cancel the division by n on both
sides. Next, to actually realize the split, we apply a specialized lemma stating
that

∀ b i j X f n (li : list N)
(g : [0 ... n − 1] → U X ),Permutation [b ... b + length li − 1] li →
b � i < j < b + S n → ∀ ca cb, 0 � ca → 0 � cb →
(∀ pi ,nth li pi < i → expec f (g pi) � ca) →
(∀ pi ,nth li pi = i → expec f (g pi) � cb) →
(∀ pi , i < nth li pi < j → expec f (g pi) = 0) →
(∀ pi ,nth li pi = j → expec f (g pi) � cb) →
(∀ pi , j < nth li pi → expec f (g pi) � ca) →

sum (map (expec f ◦ g) [0 . .n ]) �
ca ∗ (i − b) + cb + 0 + cb + ca ∗ (b + n − j ).
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Five subgoals remain after applying this lemma—one for each listed case. The
first one reads

∀ pi ,
let pivot := nth li pi in
let rest := remove li pi in

pivot < i →
monoid expec (count (i , j ))

(ne tree .map (map fst (++map (unordered nat pair pivot) rest)) (
foo ← qsU (filter ((= Lt) ◦ lookup cmp pivot) rest);
bar ← qsU (filter ((= Gt) ◦ lookup cmp pivot) rest);
ret (foo ++ (pivot :: filter ((= Gt) ◦ lookup cmp pivot) rest) ++ bar)))
� ecc i j .

Since count (i , j ) is a monoid homomorphism, we may rewrite using another
lemma saying that

∀ (m : Monoid) (h : m → (N, 0,+)),monoid homo h →
∀ (g : m) (A : Set) (t : MMT m Mne tree A),

monoid expec h (ne tree.map (map fst (monoid mult m g)) t) =
h g + monoid expec h t .

This leaves

count (i , j ) (map (unordered nat pair pivot) rest) +
monoid expec (count (i , j ))

(foo ← qsU (filter ((= Lt) ◦ lookup cmp pivot) rest);
bar ← qsU (filter ((= Gt) ◦ lookup cmp pivot) rest);
ret (foo ++ (nth v pi :: filter ((= Eq) ◦ lookup cmp pivot) rest) ++ bar))
� ecc i j .

From pivot < i and i < j , we have pivot < j . Since each of the comparisons in
map (unordered nat pair pivot) rest involves the pivot element, it follows that
none of them can represent comparisons between i and j . Hence, the first term
vanishes. Furthermore, monoid expec plus lets us distribute monoid expec over
the bind applications. Since the ret term does not produce any comparisons
either (by definition), its monoid expec term vanishes, too. What remains are
the two recursive calls:

monoid expec (count (i , j )) (qsU (filter ((= Lt) ◦ lookup cmp pivot) rest)) +
monoid expec (count (i , j )) (qsU (filter ((= Gt) ◦ lookup cmp pivot) rest))
� ecc i j .

All indices in the first filtered list denote elements less than the element denoted
by the pivot. Since the former precede the latter in sort l , it must be the case
that these indices are all less than pivot . And since pivot < i , it follows that the
first qsU term will produce no (i , j ) comparisons (using property (2) at the end
of section 5 on page 267). Hence, the first monoid expec term vanishes, leaving

monoid expec (count (i , j ))
(qsU (filter ((= Gt) ◦ lookup cmp pivot) rest)) � ecc i j .
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We now compare nth (sort l) i with nth (sort l) pivot .

– If the two are equal, then i will not occur in the filter term, and so (again)
no (i , j ) comparisons are performed.

– If nth (sort l) i<nth (sort l) pivot , then we must have i<pivot , contradicting
the assumption that pivot < i .

– If nth (sort l) i >nth (sort l) pivot , then we apply the induction hypothesis.
For this, it must be shown that filtering the list of indices preserves contiguity,
which follows from the fact that the indices share the order of the elements
they denote in sort l .

This concludes the case where pivot < i . The case where j < pivot is symmetric.
The other three cases use similar arguments. The proof is now complete.

7 Final Remarks

In the interest of brevity, we have omitted lots of detail and various lemmas in
the description of the proof. Still, the parts shown are reasonably faithful to the
actual formalisation, with two notable exceptions.

First, we have pretended to have used ordinary natural numbers as indices
into ordinary lists, completely ignoring issues of index validity that could not be
ignored in the actual formalisation. There, we use vectors (lists whose size is part
of their type) and bounded natural numbers in many places instead. Using these
substantially reduces the amount of i < length l proofs that need to be produced,
converted, and passed around, but this solution is still far from painless.

Second, using the Program facility to deal with Quicksort’s non-structural
recursion is not completely as trivial as we made it out to be. Since the re-
cursive calls are nested in lambda abstractions passed to the bind operation of
an unspecified monad, the relation between their arguments and the function’s
parameters is not locally known, resulting in unprovable proof obligations. To
make these provable, we Σ-decorated the types of filter and partition in the
actual formalisation with modest length guarantees.

The formalised development successfully adopted from the original proof the
idea of using a nondeterministic version of the algorithm to make the O(n log n)
bound hold for any input list, the idea of taking an order-indexed perspective
to reduce the problem to a sum-of-expected-comparison-counts, and the use of
the standard bound for harmonic series for the strictly numerical part. How-
ever, for the actual reduction and the derivation of the formula for the expected
comparison count, the intuitive arguments essentially had to be reworked from
scratch, building on the monadic representation of the algorithm and the various
comparison counting/nondeterminism monads.

The shallow monadic embedding provides a simple but effective representa-
tion of the algorithm. Being parameterized on the monad used, it allows a single
definition to be instantiated either with basic monads (like the identity monad
or bare nondeterminism monads) to get a non-instrumented version suitable for
extraction and correctness proofs, or with MMT -transformed monads to support
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complexity proofs. Furthermore, since this approach lets us re-use all standard
Coq data types and facilities, including the powerful Program Fixpoint com-
mand, the actual algorithm definition itself is reasonably clean.

We have shown that it is straightforward to give a fully formal treatment in
type theory of a classical result in complexity theory. This clearly shows the
utility and applicability of the general monadic approach we have developed.
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Abstract. In this work we present a modular theory of the coalgebras
and bisimulation in the intensional type theory implemented in Coq . On
top of that we build the theory of weakly final coalgebras and develop the
λ-coiteration scheme, thereby extending the class of specifications defin-
able in Coq . We provide an instantiation of the theory for the coalgebra
of streams and show how some of the productive specifications violating
the guardedness condition of Coq can be formalised using our library.

Keywords: Coinduction Coalgebra Bisimulation Coiteration Coq.

1 Introduction

Coinduction is a method for proving properties of infinite objects such as streams
and infinite trees. It is dual to the usual approach of using induction both for
computation and reasoning and can be studied from a category theoretical [20] or
type theoretical point of view [12]. Coinduction provides a verification paradigm
for programs written in a lazy functional programming e.g. Haskell , and hence
it is implemented in many theorem proving tools. Among the many tools used
for coinductive reasoning are the ones based on constructive type theory such as
Coq and Agda where coinductive types serve this purpose.

The invocation of coinductive types in these tools is quite similar (at least
on surface) to the functional programming syntax, these types are defined using
their constructors akin to the general recipe for defining algebraic data types.
However, type theories where termination is crucial for finite objects enforce sim-
ilar restrictions for ensuring productivity. These restrictions are syntactic tests
and will inevitably exclude some legitimate productive definitions. Thus not all
Haskell programs, even those describing total functions, are accepted in coin-
ductive type theories. Several workarounds exist such as [10] where topological
properties of fixed points are used, [5] where advanced type theoretic techniques
are used or [1] where type theory is extended and refined with type-based ter-
mination to facilitate dealing with the productivity issues.

� Supported by a VENI grant from the Netherlands Organisation for Scientific Re-
search (NWO).

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 272–288, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Coalgebraic Reasoning in Coq: Bisimulation and the λ-Coiteration Scheme 273

One approach that deserves more attention is the direct formalisation of var-
ious categorical schemes from the theory of coalgebras.1 The present work indi-
cates that this is a relatively low-cost and generic approach and by formalising
a single scheme a large class of total functions can be programmed in coinduc-
tive type theory. The scheme we choose is the λ-coiteration scheme of Bartels [3]
which is one in a family of schemes intended to expand the basic iteration scheme
of final coalgebras. This is a scheme i.e., it allows the formalisation of a class of
specifications (or Haskell -like programs) satisfying a specific syntactic form.

Coalgebraic semantics is so close to coinductive types that in many situa-
tions the proof techniques are identical, making coinductive reasoning merely
a translation of coalgebras. However in the case of intensional type theories
this is not the case. In intensional type theory the two objects being provably
equal does not entail that they are convertible. This restriction is necessary for
the decidability of type checking and although it is not a theoretical obstacle
for programming, it can be practically inconvenient. In particular, formalising
category theory is susceptible to this inconvenience, as proving the uniqueness
of arrows in universal properties of limits adheres to extensional properties of
functions. The main workarounds for working extensionally in intensional type
theories, is to use setoids and work modulo an extensionally defined equality.
We will partly follow this through our use of bisimulation equivalence though
we will not directly use setoids because we still prefer to benefit from convenient
computational properties of intensional equality. The present work shows how
one may exploit the intensional equality to the maximum and meanwhile tackle
the difficulties through two important tools: (1) working (if necessary) modulo
bisimulation equivalence, (2) requiring the functors to satisfy some sort of exten-
sionality. Note that (1) is specific to coalgebras while (2) is applicable to general
categorical constructions.

We use the machinery of the proof assistant Coq to present the formalisation,
but the article is applicable to other intensional incarnations of coinductive types
(such as Agda). Coinductive types themselves will only be used in Section 7 when
we instantiate the theory. Throughout the article we use a syntax loosely based
on Coq’s syntax, adapted for presenting in an article. In particular we use the
uncurried version of the functions when they are presented in mathematical
formulae. A complete Coq formalisation of the material in this paper can be
found in [19].

Related Work. McBride [16] and Matthes [15] use extensional functors for
formalising category theoretical notions in the intensional type theory. Hancock
and Setzer develop the weakly final coalgebra and bisimulation for a very pow-
erful functor capable of representing interactive IO programs in intensional type
theory [12]. Their work is formalised in Agda by Michelbrink [18] but the latter
formalisation uses inductive–recursive universe which is beyond the CIC. Nei-
ther of [12, 18] study various definition schemes but their work is so expressive

1 In this respect Anton Setzer’s proposals advocating coalgebraic alternative to coin-
ductive types are very promising and should be mentioned.
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that a development of schemes for their functor would considerably extend the
class of specifications definable in Coq. Our work can be seen as a first step in
the formalisation of [12, 18] in Coq while along the way extending the class of
definition for basic polynomial functors such as streams.

The work by Bertot and Komendantskaya [5] and more recently in [6] uses
advanced type theoretic techniques to bypass the guardedness condition of Coq
for a larger class of functions than those covered by syntactic schemes, including
partial functions. Especially in [6] the stream functions that we define in Ex-
amples 1–4 (Section 7) are formalised in Coq by viewing them as functions on
natural numbers and using structural recursion.

2 Coinductive Types

The Coq proof assistant [8] is an implementation of the Calculus of Inductive
Constructions (CIC) extended with coinductive types. Coinductive types were
added to Coq by Giménez [11]. Their implementation follows the same philos-
ophy as that of inductive types in CIC, namely there is a general scheme that
allows for formation of coinductive types if their constructors are given, and if
these constructors satisfy a strict positivity condition. For example, the type of
streams of elements of a set A can be defined using2 its constructor Cons as

CoInductive Streams (A : Set) : Set :=
| Cons : A → Streams A → Streams A.

From now on we shall use Aω to denote the type Streams A.
After a coinductive type is defined one can introduce its inhabitants and func-

tions. Such definitions are given by a cofixed point operator cofix. This operator,
when given a well-typed definition that satisfies a guardedness condition, will in-
troduce an inhabitant of the coinductive type. Assuming that I is a coinductive
type, when defining a function f : T −→ I this condition requires each recursive
occurrence of f in the body of f to be the immediate argument of a constructor
of some inductive or coinductive type [9, 11]. Finally there is a reduction (in fact
expansion) rule corresponding to the cofix operator that allows the expansion of
a cofixed point only when a case analysis of the cofixed point is done.

Like other syntactic criteria, the guardedness condition of Coq excludes some
productive functions. An example is the shuffle product of streams of numbers
defined as:

(x :: xs) ⊗ (y :: ys) := x · y :: (xs ⊗ (y :: ys)) ⊕ ((x :: xs) ⊗ ys) (2.1)

with ⊕ being the pointwise addition:

(x :: xs) ⊕ (y :: ys) := x + y :: xs ⊕ ys

2 Note that, as it is the case with algebraic and inductive data types, the type Stream

and its constructor Cons are defined simultaneously.
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This is a type of convolution product that corresponds to the lazy computa-
tion of the product of two power series in Maclaurin form [17]. Symbolically it
corresponds to the derivation of power series and plays an important role in the
stream calculus of [21]. We give a Coq formalisation of this and another type
of convolution product in Section 7. We do this by developing the λ-coiteration
scheme of [4] that when applied to streams is completely definable in terms of
cofix. This is due to the fact that the guardedness condition captures the coitera-
tion scheme of weakly final coalgebras [12]. However, we do not restrict ourselves
to streams; we take a more generic approach that is reusable for other similar
functors.

3 Extensional Functors and Coalgebras

We are interested in endofunctors on Set.3 For this we need a type of Set-functors
inhabiting a dependent pair4 of operations F : Set −→ Set (on objects) and
lFX,Y : (X→Y )→F (X)→F (Y ) (on arrows) satisfying the following properties
(ignoring the subscripts X,Y in lF when there is no risk of confusion).

lF id : ∀X (x : F (X)), x = lF (λz.z) x.

lF compose : ∀XY Z (g :X→Y ) (f :Y →Z) x,
(λz.lF f (lF g z)) x = lF (λz.f (g z)) x.

lF ext : ∀XY (f g :X→Y ) x, (∀z, f z = g z) → lF f x = lF g x.

The first two conditions are standard functorial properties; while lF ext will
be very helpful in dealing with extensional properties of functor compositions.
A functor satisfying lF ext is called an extensional functor [15]. Obviously if one
is working in a setting where functional extensionality holds i.e.,

∀XY (fg : X→Y ), (∀z, fz = gz) →f = g , (Ext)

then all functors, in fact all operations on sets, are extensional. So in CIC +Ext

trivially all functors are extensional. But in CIC this is not the case. It is unclear
whether the assumption that all functors are extensional is a weaker axiom than
Ext, but we can prove that assuming extensionality of some specific functors is
tantamount to Ext in the presence of η which is the rule:

∀XY (f : X→Y ), λz.(fz) = f . (η)

3 This is the type Set of Coq which corresponds to constructive sets and computations.
It can be identified with any categorical model of type theory.

4 In fact in our work these are formalised as module types in Coq (see [19]). Matthes
gives two different formalisations using record types and type classes [15].
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Proposition 1. Assume η. For a given set A the functor F (X) := XA is ex-
tensional if and only if for all X all functions A→X satisfy Ext.

Proof. (⇐) is trivial, for (⇒) assume lF ext and let f, g : A −→ A be given s.t.

∀z, fz = gz . (3.1)

Then by applying lFA,X ext to f, g, x := λz.z : F (A) and (3.1) we have λz.fz =
λz.gz. Now by (η) we obtain f = g, so f and g satisfy Ext. ��

It is well-known that CIC+η is weaker than CIC+Ext [13] and hence the above
shows that F (X) := XA cannot be proven to be an extensional functor inside
CIC. On the other hand each functor composed of finite sums and products
seems to be extensional in CIC. In fact we can prove the following lemma in
CIC.

Lemma 1

(i) The constant functor, sending every set to a fixed set U and each arrow to
the identity on U is extensional.

(ii) The identity functor, identity on objects and arrows, is extensional.
(iii) Disjoint sum of two extensional functors obtained by case analysis on ar-

rows is extensional.
(iv) Product of two extensional functors obtained by pairing on arrows is ex-

tensional.
(v) Composition of two extensional functors obtained by composition on arrows

is extensional.
(vi) For each n ∈ N the n-th iteration of an extensional functor is extensional.

This lemma also appears in [15]. A proof in the form of parametric modules
can be found in [19]. This lemma ensures the extensionality of most polynomial
functions used in practice bar those based on exponential. In particular it holds
for functors used in Examples 1–4.

The main advantage of lF ext is that it eliminates the need for Ext without
having to resort to setoids functors and hence leaving us with a lightweight
formalisation. This is in contrast with the formalisation of category theory in [14]
where setoids are used.

After this we define the notion of F -coalgebra for extensional functors as a
set together with a transition structure.

Record F coalg : Type := { st : Set ;
tr : st → F st }

Then we need to define the lifting of a relation R on the image of functor F ;
this will later be used for expressing the commutativity of diagrams involving
the weakly final coalgebra.
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Definition lRel(F ) (S1 S2 : F coalg) (R : S1.st→S2.st→Prop)
(zx : F S1.st) (zy : F S2.st) : Prop :=
∃xy, R x y ∧ zx=S1.tr x ∧ zy=S2.tr y.

Here Prop is the CIC’s universe of propositions which is a subtype of Set.
The Set-Prop distinction is not essential in our work; Prop could be replaced by
Set everywhere. However, exploiting the distinction we can consider bisimilarity
as a computationally irrelevant object akin to the other forms of equality.

4 Bisimulation

Bisimulation is the basic tool for studying the elements in a coalgebra. First
we recall the usual categorical definition of F -bisimulation [20]: given two sets
X,Y , a relation R ⊆ X ×Y is a bisimulation between X and Y if there is a map
γ : R −→ F (R) s.t. both squares in this diagram commute (by πi we denote the
i-th projection of a tuple):

X

αX

��

�� π1
R

γ

��

Y��
π2

αY

��
F (X) ��

Fπ1
F (R) F (Y )��

Fπ2

In CIC though, where we use dependent types for subsets, there is a dis-
tinction between a Prop-valued relation R : X→Y →Prop and the set of pairs
in {(x, y) ∈ X × Y |Rxy}. The latter is a set of dependent pairs also called a
Σ-type. Because we will be composing Σ-types built on a relation in Prop with
Σ-types built on other Σ-types we need to fix the notation. By {∃x : X,φ(x)} we
denote the set of elements of X satisfying φ : X→Prop, and by {Σx : X, f(x)}
we denote the set of elements X for which f(x) is inhabited (here f : X→Set is
an X-indexing of sets). We shall use variable R for Prop-valued and variable ρ
for Set-valued ones, i.e., ρ : X→Y →Set. Given a relation R (resp. ρ) we write
{∃(R)} (resp. {Σ(ρ)} as a shorthand for {∃u : X × Y, R π1(u) π2(u)} (resp.
{Σu : X × Y, ρ π1(u) π2(u)} ). Note that an element of {∃(R)} is a 3-tuple
consisting a pair from X × Y and a proof that they satisfy R.

With the above notation an F -bisimulation for an extensional functor F will
be determined by the existence of γ : {∃(R)}→F{∃(R)}. Set theoretically this is
equivalent toγ : R→F (R)but inCIC thedistinction isnecessary.Butthis isnot the
onlydiscrepancy: the above diagram for bisimulation is an existential statement. In
order to formalise the existence of the γ in a way that can be later used as a witness,
in CIC we have to define the set of all F -bisimulations between X and Y .

Following the above we define two predicates; first when a Prop-valued relation
is bisimulation and second for a Set-valued relation:
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Definition F bisim? (S1 S2 : F coalg) (R : S1.st→S2.st→Prop) : ={
Σγ : {∃R}→F{∃R}, ∀y : {∃R},

lF π1 γ(y) = S1.tr (π1(y))
∧

lF π2 γ(y) = S2.tr (π2(y))
}
.

Definition F σbisim? (S1 S2 : F coalg) (ρ : S1.st→S2.st→Set) : ={
Σγ : {Σρ}→F{Σρ}, ∀y : {Σρ},

lF π1 γ(y) = S1.tr (π1(y))
∧

lF π2 γ(y) = S2.tr (π2(y))
}
.

We usually ignore the first two arguments of F bisim? and F σbisim? and
simply write F bisim?(R). Now we can define when a bisimulation is maximal.

Definition F max bisim? (S1 S2 : F coalg) (R : S1.st→S2.st→Prop) :=
F bisim?(R) ∧ ∀ρ, F σbisim?(ρ)→∀s1s2, ρ s1 s2→R s1 s2.

As we will see later the subtle occurrence of a Set-valued relation ρ is crucial
in the proof of the fact that bisimulation is closed under composition.

It is well-known that the maximal bisimulation between any two F -coalgebras
exists [20]. In our theory we assume the existence of a maximal bisimulation.
Later on for each concrete functor we have to build a concrete relation which
should be proven to satisfy F max bisim?. This can always be built using as a
coinductive type [12], as we shall see for streams in Section 7.

It is known that for bisimulation to be closed under composition functor F
should satisfy some additional property, e.g. in [20] F is required to preserve
weak pullbacks. We require a similar albeit weaker restriction. First we define
the carrier set of the weak pullback of f : X −→ Z and g : Y −→ Z to be the set

WP(f, g) := {∃u : X × Y, f(π1(u)) = g(π2(u))} .

Subsequently we require that a function

iwpF : WP(lF (f), lF (g)) −→ F (WP(f, g))

satisfying the following property exist.

WP→
F : ∀XY Z (f : X→Z) (g : Y →Z) (u : WP(lF (f), lF (g))),

lF π1 iwpF (u) = π1(u)
∧

lF π2 iwpF (u) = π2(u).

Evidently this is weaker than the assumption that F preserves weak pullbacks
because we only require the preservation of the pullback arrows, and even then
up to the existence of a one-way map iwpF which is not required to be an
isomorphism.

Given the above requirements, i.e., a maximal F -bisimulation between coal-
gebras S1 and S2 and a map iwpF satisfying WP→

F we can develop a theory of
bisimulation. First we need the following properties.5

5 This theorem and all the following ones are all formalised in Coq and available in [19].
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Lemma 2

i) F bisim?(S1, S2, R) =⇒ F σbisim?(S1, S2, R).
ii) F bisim?(S, S,=), i.e., propositional equality is a bisimulation relation.
iii) F bisim?(S1, S2, R) =⇒ F bisim?(S2, S1, λxy.Ryx).
iv) F bisim?(S1, S2, R12) ∧ F bisim?(S2, S3, R23) =⇒

F σbisim?
(
S1, S3, λxz.{∃y,R12xy ∧ R23yz}

)
, i.e., bisimulation preserves

composition.

Note that in (i) the subtyping relation between Prop and Set is used. The only
technical part of the proof Lemma 2 is part (iv). The relation R12◦R23 :=
λxz.{∃y,R12xy ∧ R23yz} is the counterpart of the set-theoretic composition of
two relations λxz.∃y,R12xy ∧ R23yz. For the rest we follow the proof in [20],
defining the maps in the following diagram. Here X := WP(πR12

2 , πR23
1 ) i.e., the

weak pullback for πR12
2 : {∃(R12)} −→ S2 and πR23

1 : {∃(R23)} −→ S2.

{Σ(R12◦R23)}
ı

��

π2

��

π1

��
S1.st

S1.tr

��

�� π1 {∃(R12)}
γ12

��

�� π1
X

γX

��

{∃(R23)}
γ23

��

��π2
S3.st��π2

S3.tr

��
F (S1.st) ��

F π1
F{∃(R1)} ��

F π1
F (X) F{∃(R23)}��

F π2
F (S3.st)��

F π2

F{Σ(R12◦R23)}
��
F j

F π1 ◦ π1 ◦ ı

��

F π2 ◦ π2 ◦ ı

��

In this diagram j is the map sending an element 〈s1, s2, φ12, s
′
2, s3, φ23, φ=〉 of

X to 〈s1, s3, s2, φ123〉, where φ’s are proof obligations and in particular φ= is a
proof that s2 = s′2. Likewise ı is the ‘inverse’ of j and

ı〈s1, s3, s2, φ123〉 := 〈s1, s2, φ12, s2, s3, φ23, φrefl〉 .

The main part is defining a coalgebraic structure on X to obtain the transition
map γX . For this we use the map p : X −→ WP(lF (πR12

2 ), lF (πR23
1 )) defined as

p〈s1, s2, φ12, s
′
2, s3, φ23, φ=〉 := 〈γ12〈s1, s2, φ12〉, γ23〈s′2, s3, φ23〉, φlF 〉

where φlF is the proof that

lF (πR12
2 )

(
γ12〈s1, s2, φ12〉

)
= lF (πR23

1 )
(
γ23〈s′2, s3, φ23〉

)
,

and is obtained by φ= and the commutativity of the bisimulation diagrams
for {∃(R12)} and {∃(R23)}. Now taking γX := iwpF ◦ p we can prove that γX
is indeed a homomorphism of coalgebras i.e., the small squares in the above
diagram commute. Subsequently the entire diagram above commutes. Which
means that Fj ◦ γX ◦ ı is the map making {Σ(R12◦R23)} an F -bisimulation and
thus completing the proof.
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Using Lemma 2 we can easily derive the following theorem.

Theorem 1. For any coalgebra S the maximal bisimulation on S is an equiva-
lence relation.

Theorem above is the main tool for a generic definition of bisimulation as an
extensional equality on coalgebras: due to our modular formalisation in CIC,
each time we instantiate the theory of this section with an extensional Set-functor
satisfying WP→

F and a maximal bisimulation relation we get this theorem for free.
As a final remark we note that all the machinery based on weak pullbacks

and Σ-types is necessitated by the proof of transitivity which in turn is based on
Lemma 2.iv. In other words, the reflexivity and the symmetry of maximal bisim-
ulation holds for any extensional functor and for the weaker notion of maximality
obtained by replacing F σbisim? by F bisim? in the definition of F max bisim?.

5 Weakly Final Coalgebras

Continuing the set-up so far we assume F is a weak pullback preserving exten-
sional functor so that the bisimulation theory of the previous section is derivable.
First we define when a coalgebra is weakly final :

Definition F wfin? (S0 : F coalg) := ∀ (S1 : F coalg),
{∃unfldF : S1.st→S0.st, ∀s1, S0.tr (unfldF s1) = lF unfldF (S1.tr s1)}.

If Ω satisfies the above property we call the maximal bisimulation on Ω the
bisimilarity and we denote it by ∼=. According to the above definition the ex-
istence of a coalgebra homomorphism originating from any other coalgebra is
enough. For concrete functors S0.st can be taken to be a suitably chosen coin-
ductive type with S0.tr being the inverse of the constructors. In each concrete
case we cannot prove the uniqueness of unfldF (S1) up to intensional equality
without assuming Ext as an axiom. However, the following form of uniqueness
can be proven for concrete functors that we deal with (for streams see Lemma 4).

Ωunique : ∀ (S : F coalg) (f g : S.st→Ω.st),
(∀s0, Ω.tr (f s0) = lF (f) (S.tr s0) ) →
(∀s0, Ω.tr (g s0) = lF (g) (S.tr s0) ) → ∀s, f s ∼= g s.

Finally, we need another requirement that is needed when proving commuta-
tivity of diagrams up to bisimilarity (cf. Section 6).

l
∼=
F ext : ∀X (f g : X→Ω.st) (y : F X),

(
∀x, f(x) ∼= g(x)

)
→

lRel(F )
(
Ω,Ω,∼=, lF (f)(y), lF (g)(y)

)
.

Note that here we take as argument an arbitrary set X which does not need
to have a coalgebraic structure. It allows us to use this property in more general
situations, e.g. in next section we use this on a bi-algebraic structure.
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So far we have always used the (intensional)6 propositional equality to use the
commutativity of diagrams. However it is well-known that for weakly final coal-
gebras the natural equality is the bisimilarity [12] which can be used for proofs
based on coinduction principle. The coinduction principle states that maximal
bisimulation is the equality. In CIC this may be stated as ‘the maximal bisimu-
lation on weakly final coalgebra is propositional equality’, but it is not provable.
I.e., for concrete functors we cannot prove that ∼= and = coincide. But given
Theorem 1 we know that any weakly final coalgebra can be turned into a setoid
with a corresponding coinduction proof principle. And thus, finding bisimulation
will result in equality in that setoid. This enables us to translate and verify in
CIC the proofs by coinduction principle.

6 λ-Coiteration Scheme

Our theory so far has the coiteration scheme which is the existence of the arrow in
F wfin?. The scheme of λ-coiteration was developed in order to extend the class
of Haskell -like specifications beyond coiteration [4]. Our purpose is to develop
the λ-coiteration scheme inside CIC in the theory of previous sections.

First we sketch the scheme given in [4]. Let B, T be two extensional functors
and Ω be a weakly final B-coalgebra. Let Λ : TB=⇒BT be a natural transfor-
mation. Given a map g : X −→ BTX if the diagram below commutes then f is
called λ-coiterative arrow induced by g.

X

g

��

f �� Ω.st

Ω.tr

��
BT (X)

BT (f)
�� BT (Ω)

B(β)
�� B(Ω.st)

Here β := π1(φ S0) where φ is a proof of F wfin?(Ω) and S0 the coalgebra with
carrier T (Ω) and transition function ΛΩ ◦T (Ω.tr) : T (Ω) −→ BT (Ω).

In [4] it is proven that if the ambient category possesses countable coproducts
then given g, Λ a unique λ-coiterative arrow exists. In CIC a countable coprod-
uct is an N-indexed family of sets and always exists (see T ∗ below), and thus
we can prove the existence of λ-coiterative arrow for B and T without further
assumptions.

Our proof follows the one in [4] with some simple modifications with respect
to equality. For presenting the λ-coiterative arrow we need to formalise several
structures of [4] in CIC. The translation of these structures is straightforward.
Let T ∗ := λX.{Σj : N, T j(X)} where T j is the recursively defined j-th iteration
of T . We can prove that T j (by induction) and T ∗ are extensional Set-functors.7

6 Propositional equality of CIC in the empty context is indistinguishable from the
intensional equality of the conversion rules of the type theory [2].

7 Extensionality of T ∗ is not needed. One of the referees suggested simplifying the
definition of T ∗ in the original manuscript to this extensional functor.
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For each j and any set Y with y ∈ T j(Y ) let

ıjY : T j(Y ) −→ T ∗(Y )
ıjY (y) := 〈j, y〉 .

Furthermore, for a sets Y, Z and N-indexed family of functions fj : T jY −→ Z
let [fj]∞0 : T ∗(Y ) −→ Z be

[fj]∞0 := λx.fπ1(x)(π2(x)) .

Next let χX := [ı(j+1)X ]∞0 . We define the iteration of Λ recursively as:

Λ0
X = λx.x

Λj+1
X = λx : T j(TB(X)).ΛT (X)(lT j ΛX x) .

Finally let Λ∗
X : T ∗B(X) −→ BT ∗(X) be

Λ∗
X := [λx : T j(X). lB ıjX (Λj

X(x))]∞0 .

Now we can define the function making the above diagram commute.

Definition 1. Given Λ and g as above let S1 be the coalgebra with carrier T ∗(X)
and the transition function

λx : T ∗(X). lB χX

(
Λ∗
T (X)(lT∗ g x)

)
.

Let h := π1(φ S1) be the map given by weak finality of Ω (where φ is a proof of
F wfin?(Ω)). Then we define coitΛXg : X −→ Ω.st as

coitΛXg := λx : X. h
(
ı0X(x)

)
.

In our setting we should state the commutativity using bisimilarity.

Theorem 2. The map coitΛXg is the λ-coiterative arrow induced by g up to
bisimilarity, i.e., for all x : X

lRel(F )

(
Ω,Ω,∼=, Ω.tr

(
coitΛXg(x)

)
, lB β (lB (lT (coitΛXg)) (g(x)))

)
.

The proof of Theorem 2 is quite technical and can be found in the Coq formali-
sation [19]. It follows to a great extent the paper proof in [4]. However working
in CIC results in some minor differences. As we mentioned above in CIC we
have T ∗ for free, on the other hand we must explicitly assume that the functor B
is extensional and satisfies l

∼=
B ext. Another technical difference is that for each

j we need a map !jX : T j(T (X)) −→ T (T j(X)) recursively defined as

!0X = λx.x

!(j+1)X =!jT (X) .
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The role of this map is to replace the reasoning steps that rely on the inten-
sional equality T j(T (X)) = T (T j(X)). This is because although this equality
is provable in CIC as a propositional equality, the two sides when considered
as types are not convertible.8 Such non-convertibility would be an obstacle in
proving the commutativity of diagrams by naturality laws, which are otherwise
automatically proven by the conversion mechanism of Coq. Our use of !jX is a
workaround that, although making proofs more tedious, works suitably.

7 Streams

In this section we show that the theory of Sections 3–6 can be instantiated by the
important case of streams, and hence the requirements that we put on functors
are reasonable. Note that in those sections we did not use coinductive types,
while in this section we will use the coinductive types of Coq.

Fix a set B. Already from Lemma 1 we know that the stream functor defined
as F (X) := B×X with lB×(f)〈b, x〉 = 〈b, f(x)〉 is an extensional functor. This
allows us to build the coalgebra B× coalg of the functor above with the obvious
components of the transition map:

hdS : S.st→B := λs.π1(S.tr(s)) , tlS : S.st→S.st := λs.π2(S.tr(s)).

Now we need a maximal bisimulation between any two B×-coalgebras. This
will be a coinductive type defined as:

CoInductive maxS1S2
B× bisim (s1 : S1.st) (s2 : S2.st) : Prop :=

| maxB× bisim0 : hdS1(s1) = hdS2(s2) → maxS1S2
B× bisim tl(s1) tl(s2) →

maxS1S2
B× bisim s1 s2.

Subsequently we can prove this lemma:

Lemma 3. Let S1, S2 be two B×-coalgebras. Then

B× max bisim?(S1, S2,maxS1S2
B× bisim)

Proof. The proof has two parts. First to prove that maxS1S2
B× bisim is a bisimulation

take
γ := λx.〈hdS1(π1(x)), 〈tlS1(π1(x)), tlS2(π2(x)), φ〉〉

where φ is a proof that

〈hdS1(π1(x)), tlS1(π1(x))〉 = S1.st(π1(x)) ,

〈hdS1(π1(x)), tlS2(π2(x))〉 = S2.st(π2(x)) .

In the second part for each ρ satisfying F σbisim?(ρ) and each s1, s2 for which
the set ρs1s2 is inhabited, we ought to build an element of the coinductive type
8 Obviously there are two possible ways to define T j . No matter which of the two ways

we take we will always need !jX or its inverse.
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maxS1S2
B× bisim(s1, s2). That means we employ the constructor maxB× bisim0 and

use the facts that hdS1(s1) = hdS2(s2) and maxS1S2
B× bisim

(
tl(s1), tl(s2)

)
. Both of

these are provable using the commutativity of bisimulation for ρ. The latter also
uses the fact that

ρ tl1(s1) tl2(s2)  = ∅ . ��

Next we define the map iwpB× as follows (again φ’s are proof obligations).

iwpB×〈〈b0, s0〉, 〈b1, s1〉, φ01〉 := 〈b0, 〈s0, s1, φrefl〉〉 .

With this definition we can prove WP→
B× and hence the ingredients of the bisim-

ulation theory are all supplied. This means that we get Theorem 1 for free.
At this point we focus on weakly final coalgebra of streams. Consider the

coinductively defined set Bω of streams over B introduced in Section 2. Taking
νB× := 〈Bω, 〈hdBω , tlBω〉〉 to be the coalgebra of streams, it is easy to prove
that B× wfin?(νB×) holds: the witness is the unfold map for streams which is
easily defined using the cofix operator of Coq:

CoFixpoint unfldB× (S1 : B × coalg) (s1 : S1.st) : Bω :=
Cons hdS1(s1)

(
unfldB× S1 tlS1(s1)

)
.

Proving the uniqueness νB×unique needs the following lemma.

Lemma 4. Let be a B×-coalgebra. Then

i) unfldB× S s = Cons hdS(s)
(
unfldB× S tlS(s)

)
.

ii) Let f : S.st −→ Bω be such that

∀s : S.st, f(s) = Cons hdS(s) f
(
tlS(s)

)
.

Then for all s in S we have

unfldB× S s ∼= f(s) .

Part (i) is trivial (see definition of unfldB×), while part (ii) uses constructor
of the coinductive type max

νB×νB×
B× bisim and the cofix operator of Coq to build the

bisimilarity [19].
Finally the proof of l∼=B× ext is a routine use of properties of ∼= as an equivalence

relation.
Then we can apply the scheme developed in the previous section to define

streams and functions on streams. We illustrate this by some examples. For
each example we mention which parameters for the λ-coiteration scheme should
be taken. All the choices for functor T in these examples are extensional by
Lemma 1. Some of the examples require B to be a semi-ring. Each example
contains a Haskell -like specification; applying Theorem 2 and replacing the def-
inition of lRel(F ) enables us to derive the specifications as a bisimilarity.
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Example 1. For shuffle product defined in Section 2 choose:

T := λX.X × X

ΛX := λx.〈π1(x) + π3(x), 〈π2(x), π4(x)〉〉
g := λx : Bω × Bω.〈hdBω

(
π1(x)

)
· hdBω

(
π2(x)

)
,

〈tlBω

(
π1(x)

)
, π2(x), π1(x), tlBω

(
π2(x)

)
〉〉 .

Then given two streams xs, ys we can define xs ⊗ ys as coitΛXg〈xs, ys〉. In this
case Theorem 2 leads to the following bisimilarity for ⊗ which is the counterpart
of (2.1) in the intensional setting of Coq.

xs ⊗ ys ∼= Cons
(
hdBω(xs) · hdBω(ys)

) (
tlBω (xs) ⊗ ys ⊕ xs ⊗ tlBω(ys)

)
Here xs ⊕ ys := β〈xs, ys〉 can also be proven, by Lemma 4.(i), to satisfy

xs ⊕ ys = Cons
(
hdBω (xs) + hdBω(ys)

) (
tlBω (xs) ⊕ tlBω(ys)

)
Note that for⊕we get an equality,whichbyLemma2.(ii) leads to a bisimilarity. ��

Example 2. The ordinary convolution product that is used for computing the
product of formal power series is definable as

(x :: xs) × (y :: ys) := x · y :: (xs × (y :: ys)) ⊕ ((x :: 0̄) × ys)

with 0̄ the constant zero stream [21]. For the λ-coiteration scheme this a trivial
variant of the shuffle product; with T,Λ as in Example 1 we redefine g:

g := λx : Bω × Bω.〈hdBω

(
π1(x)

)
· hdBω

(
π2(x)

)
,

〈tlBω

(
π1(x)

)
, π2(x), Cons hdBω

(
π1(x)

)
0̄, tlBω

(
π2(x)

)
〉〉 . ��

Example 3. The stream of natural numbers with the specification

nats := 0:: map λn.n+1 nats

is a well-known example of a stream definition not accepted by the guardedness
condition of Coq [11]. This is definable in Coq by taking B := N and

T := λX.X × NN × X

ΛX := λx.〈π1(x)
(
π2(x)

)
, 〈π1(x), π3(x)〉〉

g := λx :1.〈0, 〈λn.n+1, ∗〉〉
nats := coitΛXg(∗) ��

Example 4. The Fibonacci specification studied in [6] can also be defined using
the λ-coiteration scheme but the specification should be slightly unwound as

fibs := 0:: ⊕3 (1, fibs, fibs) (7.1)
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where ⊕3 is a ternary unwinding of ⊕:

⊕3(x0, x :: xs, y :: ys) := x0 + y :: ⊕3 (x, xs, ys)

We define this by putting a coalgebraic structure on the unit set 1 = {∗}:

T := λX.B × X × X

ΛX := λx.〈π1(x) + π4(x), 〈π2(x), π3(x), π5(x)〉〉
g := λx :1.〈0, 〈1, ∗, ∗〉〉
fibs := coitΛXg(∗)

Again Theorem 2 gives us (7.1) up to bisimilarity. Furthermore we can prove
the following bisimilarity which corresponds to the specification used in [6] as a
definition of stream of Fibonacci numbers.

fibs ∼= Cons 0
(
Cons 1 ( tlBω(fibs) ⊕ fibs )

)
.

Note that we are using ⊕ from Example 1. The proof of this bisimilarity is based
on the following properties of ⊕ and ⊕3.

⊕3 (x, xs, ys) ∼= (Cons x xs) ⊕ ys ;
xs ⊕ ys ∼= ys ⊕ xs .

We can prove both bisimilarities in two different ways [19], either by using
cofix to build an inhabitant of the coinductive type max

νB×νB×
B× bisim, or by explicitly

providing the bisimulation relations and using Lemma 3. In the latter case the
two bisimulation relations are given respectively by:

R1στ := ∃x xs ys, σ = ⊕3(x, xs, ys) ∧ τ = (Cons x xs) ⊕ ys ;
R2στ := ∃xs ys, σ = xs ⊕ ys ∧ τ = ys ⊕ xs . ��

As seen in these examples Theorem 2 provides the bisimilarity equation to recover
the specification that was used to forge the parameters T , Λ and g. In general if we
want to prove a bisimilarity in Coq we have several additional tools:

(i) using the properties of bisimilarities as an equivalence relations and perform
equational reasoning;

(ii) using ‘type theoretic coinduction’, i.e., using cofix and the constructors of
coinductive type of max

νB×νB×
B× bisim;

(iii) using the conventional coinduction principle and explicitly providing a
bisimulation relation between the two sides of the bisimilarity.

We usually apply a combination of the above techniques, but each has charac-
teristics that make it suitable in specific contexts. For example (i) is especially
useful when dealing with bisimilarity as a setoid equality, and in combination
with other reasoning tools for setoids. Technique (ii) seems to be more suitable
for mechanisation as it follows the shape of specifications and leads to smaller
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Coq proof scripts while (iii) is usually more verbose. On the other hand apply-
ing (ii) entails that one has to be wary of the guardedness condition as one is
using cofix operator of Coq, while in (iii) no guardedness check is performed.

As we see the λ-coiteration scheme considerably extends the class of functions
definable in Coq, giving their behavioural equations for free. However, like all
syntactic schemes, there is limitation to this scheme, e.g. in [3] it is shown that a
specification for the stream of Hamming numbers is not accepted by this scheme.

8 Conclusions and Further Work

We have provided a modular theory of coalgebras in the intensional setting of
CIC which can be instantiated for specific functors built out of finite sums and
products. Each instantiation will give us a theory of bisimilarity which can then
be used to build a setoid and work extensionally. Furthermore we showed the
usefulness of our coalgebraic setting by developing the λ-coiteration scheme in
it and thus extending the class of productive specifications definable in Coq.
We demonstrated this by an instantiation of our theory for streams and showed
some concrete specifications refused by the guardedness condition but accepted
using the λ-coiteration scheme in Coq.

Our work eases future coalgebraic developments in Coq. It is a good evi-
dence that once some technicalities with respect to dependent types are handled
most categorical schemes can be translated into intensional type theory. On the
other hand it shows that the schemes from category theory can provide suitable
workarounds for the restrictions of the guardedness condition without changing
the underlying type theory.

The future work would be to build a larger library of results on weakly final
coalgebras and developing more powerful definition schemes. Immediate would
be the schemes obtained by adding monadic, pointed or cofree structure on the
bi-algebraic nature of λ-coiteration [4, 7]. The long-term challenge would be to
extend the formalisation to the powerful functor of Hancock–Setzer [12, 18] and
investigating the various schemes there.
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Abstract. We use �inProc (i.e. a typed process calculus based on the
calculus of solos) in order to express computational processes generated
by S�PCF−, namely a simple programming language conceived in or-
der to program only linear functions. We define a faithful translation of
S�PCF− on �inProc which enables us to process redexes of S�PCF− in
a parallel way. Afterward, we prove that a suitable observational equiv-
alence between processes is correct w.r.t the operational semantics of
S�PCF−, via our interpretation.

1 Introduction

Harold Abelson, Gerald Jay and Julie Sussman, in their famous book “Structure
and Interpretation of Computer Programs” [1, Ch.1] state:

“We are about to study the idea of a computational process. Compu-
tational processes are abstract beings that inhabit computers. As they
evolve, processes manipulate other abstract things called data. The evo-
lution of a process is directed by a pattern of rules called a program.
People create programs to direct processes. In effect, we conjure the
spirits of the computer with our spells.”

In the first chapter, they introduce a programming language and a simple
way to describe the dynamical becoming of the evaluation of applications of pro-
grams to inputs. The dynamic of process evolution is represented by sequences
of programs related by means of rewriting rules. Fingerprints of λ-calculus per-
vade the book and, indeed, we are interested in a model of processes conjured
by a typed λ-calculus. Unfortunately, λ-calculus lacks a satisfactory descrip-
tion of interaction between processes cooperating, competing and synchronizing
between themselves. To overcome such limitations, many calculi have been pro-
posed which focus on dynamical aspects of computation with particular regards
for interaction, see for instance [8, 15, 27]. Such calculi are more intensional than
λ-calculus, which instead focuses on functional aspects of computation. Although
a main motivation for the comparison between lambda and process calculi has
been to study the expressiveness of process calculi, another worthy motivation
is to study theories induced by equivalences in the world of processes conjured
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by programs, see [16, 17, 25]. The main results presented in this paper are set
in the latter research-line.

The interaction is the key idea behind the introduction of game semantics for
programming language [2, 11], more precisely interaction between a program and
the environment (where the program itself is intended to be executed). A seminal
work exploring correspondences between process-calculi and game semantics has
been presented in [10], where Hyland-Ong strategies are represented by processes
of an appropriately sorted polyadic π-calculus. More recently, such result has
been improved by introducing an elaborate type discipline for the π-calculus in
[4], where the use of linear modalities [12, 13] is crucial. A game-independent
process-based language for game strategies has been formalized, where strategies
are normalized processes. Programs of PCF can be directly interpreted on such
processes in a fully abstract way.

Our purpose is to deepen and advance such explorations by proposing a
process-model, namely a syntactical model, built on a suitable process-calculus,
inducing a corresponding semantics for a typed λ-calculus..

We are convinced that a key aspect of such explorations is linearity in many
respects, moreover linearity make analysis simpler and clearer. Accordingly, we
tackle the construction of a process-model for S�PCF−, namely a simple pro-
gramming language conceived in order to program “linear” functions between
coherence spaces. The least full sub-category of coherence spaces, including the
infinite flat domain (representing natural numbers) and the coherence spaces
representing linear functions between domains in the model itself (by avoiding
the use of exponential domain constructors) forms a fully abstract model for
such programming language [20]. In order to build a process model for S�PCF−,
we introduce �inProc, namely a process calculus based on a typed calculus of
Solos [14]. The calculus of Solos is a modification of the asynchronous π-calculus
where explicit causal dependency is forbidden by avoiding prefixes and bind-
ing guards. We give an encoding of S�PCF− in �inProc which respects the op-
erational equivalence between programs, i.e. it does not equate operationally
different programs.

We note that the semantic nature of strategies in [4, 10] is explicitly reflected
by the use of an infinitary syntax for the π-processes, on which no parallel reduc-
tions can be performed. Since we want to study processes induced by programs,
our interpretation is actually given on finite processes. Moreover, we introduce
some simplifications in the linear typing discipline. Hence, we break with the
classical game semantic approaches, for another classical computer science ap-
proach: translation of programs (finite terms) of a language in finite terms of
another language.

A translation of a calculus into another calculus is faithful whenever a reduc-
tion in the source calculus can be mimicked by some reductions in the target
calculus. The encodings given in [4, 10] impose deterministic reduction strategies,
so they are not faithful. This means that, there are programs M, N translated, re-
spectively, by processes P, Q such that M →β N, but P cannot be process-reduced
to Q (although P and Q are observationally equivalent). �inProc enables us to
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simulate the reduction of all redexes of S�PCF−, giving us a faithful encoding.
Thus, no evaluation strategy is determined in advance and reduction can be ac-
tually done in an asynchronous way1. Questions on which λ-calculus reduction
strategies can be encoded in process calculi has been posed in [17, Sect.8]. More-
over, a minimal requirement of λ-models is to induce a congruence equivalence
which contains the β-equivalence, see [24]. This latter requirement is trivially
induced by faithful embedding of λ-calculus. Also, we note that in [27, (p.467)]
and [28] in order to faithful mimic the β-reduction, the usual reduction-rules for
replication and prefixes of process calculi are extended.

There are several motivations behind this paper. From a programming lan-
guage point of view we provide a tool for study both parallel evaluation strategies
and equivalence of programs. From a process calculus point of view we give a
fine representation of a sequential language where the redexes can actually be
reduced in parallel. From a game-semantics point of view, we suggest a parallel
description of strategies by avoiding useless causality.

The results of this paper are the starting points for many further develop-
ments. We are characterizing the relevant contexts of �inProc (i.e. contexts that
are able to separate processes corresponding to different programs) in order to
tackle the full abstraction of our syntactical model. We are working on a char-
acterization of processes corresponding to the interpretation of programs, by
adapting the proof-nets correctness criterion. We are already able to extend our
results on the pair S�PCF and �inProc at the price of some additional tech-
nicalities due to pairing-projections codifications. However, we plan to explore
process-languages inducing similar results for language more complex languages
such as PCF [23] or StPCF [19]. We plan to interpret processes directly on lin-
ear coherence spaces, following techniques developed for proof-nets and proof-
structures. We plan to define a new kind of game semantics with a more flexible
structure, where useless sequentialization is relaxed. Moreover, we want to ex-
plore the application of Levy’s optimality theory to the evaluation of programs
inside �inProc. In particular, to tackle the relations between that theory with
the notion of operational linearity.

Outline of the Paper. In Section 2, we recall S�PCF− i.e. a linear program-
ming language. In Section 3, we present �inProc, i.e. a process language based
on the calculus of Solos. In Section 4, we formalize a faithful translation of
S�PCF− into �inProc. In Section 5, we prove the correctness of the obtained
process-model.

2 A Semantically Linear λ-Calculus

S�PCF− is the fragment of the language S�PCF presented in [20] avoiding the use
of which? . We remark that S�PCF− is a Turing-complete syntactical restriction

1 Gordon Plotkin in [22] remarked that the call-by-value parameter passing is hardly in
accord with a strategy on (call-by-name) λ-calculus, thus he introduced λβv-calculus.
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Table 1. Type assignment system for S�PCF−

� 0 : ι � succ : ι� ι � pred : ι� ι
x ∈ Varι

� x : ι fσ�τ � f : σ� τ

� ∈ SVarσ�τ

� � : σ� τ

� M : σ � ∈ SVarσ

� μ�.M : σ

Γ, fσ � M : τ

Γ � λfσ.M : σ� τ
Γ � M : τ

Γ � λxι.M : ι� τ

ΓM ∩ ΓN = ∅ ΓM � M : σ� τ ΓN � N : σ

ΓM ∪ ΓN � MN : τ

ΓM ∩ Γ = ∅ ΓM � M : ι Γ � L : ι Γ � R : ι

ΓM ∪ Γ � �if M L R : ι

of PCF [23] and it is fully abstract with respect to the model of linear function
between coherence spaces considered in [20] (as noted just in page 104 of [20],
just before Theorem 4). Hence S�PCF− is denotationally linear.

A (paradigmatic) programming language rests on a syntax together with an
evaluation strategy and a notion of observables on which the evaluation eventu-
ally stops. We abuse the name of a programming language even by meaning its
syntax and its related calculus.

Truth-values of S�PCF− are encoded as integers (zero encodes “true” while
any other numeral stands for “false”). The set T of types is defined as follows,
σ, τ ::= ι | (σ � τ) where ι is the only ground type (i.e. natural numbers)
and σ, τ, ... are meta-variables ranging over types. As customary � associates
to right. Hence σ1 � σ2 � σ3 is an abbreviation for σ1 � (σ2 � σ3). It is easy
to see that all types τ have the shape τ1 � ...� τn � ι, for some type τ1, ..., τn
where n ≥ 0.

Let Varσ, SVarσ be denumerable sets of variables of type σ. The set of ground
variables is Varι, the set of higher-order variables is HVar =

⋃
σ,τ∈T

Varσ�τ ,
and the whole set of variables is Var = Varι ∪ HVar ∪ SVar. Letters xσ range
over variables in Varσ, letters yι, zι, . . . range over variables in Varι, letters
fσ�τ , gσ�τ , . . . range over variables in HVar, while �σ

0 , �σ
1 , �σ

2 , . . . range over
stable variables, namely variables in SVarσ. Latin letters M, N, L, . . . range over
terms.

Definition 1. Let Γ ⊆ HVar. Typed terms of S�PCF are defined by using a type
assignment proving judgment of the shape Γ � M : σ, in Table 1.

Note that only higher-order variables are subject to syntactical constraints. Ex-
cept for the �if construction typed by an additive rule doing an implicit con-
traction, higher-order variables are treated linearly. Ground and stable variables
belong to distinct kinds only for sake of simplicity. Their free use implies that
S�PCF− is not syntactically linear (in the sense of [20]).

Sometimes types will be omitted when they are clear from the context or un-
interesting. Note that given types of all variables of a term M, there is a unique
σ such that M has type σ (sometimes denoted with Mσ). Sometimes, parenthe-
ses are omitted, always by respecting the following conventions: application as-
sociates to the left and application binds more tightly than abstraction, i.e.
λx.MNL = (λx.((MN)L)). Free variables of terms are defined as expected. A term
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M is closed if and only if FV(M) = ∅, otherwise M is open. Terms are considered
up to α-equivalence, namely a bound variable can be renamed provided no free
variable is captured. Moreover, M[n/y], M[N/f] and M[N/�] denote the expected
capture-free substitutions. We define n to be succ(· · · (succ(0)) · · · ) where succ
is applied n-times to 0. Let P = {Mι ∈ S�PCF | FV(Mι) = ∅} be the set of
programs and let N = {0, . . . , n, . . .} be the set of numerals.

Definition 2. We denote � the firing (without any context-closure) of one of
the following rules:

(λfσ�τ .M)N �β M[N/f] (λzι.M)n �ι M[n/z] μ�.M �Y M[μ�.M/�]
pred (succ n) �δ n �if 0 L R �δ L �if n+1 L R �δ R

We call redex each term or sub-term having the shape of a left-hand side of rules
defined above. We denote →S
 the contextual closure of �. Moreover, we denote
→∗

S
 the reflexive and transitive closure of →S
. Let M ∈ P; we write M ⇓ n when
M →∗

S
 n according to lazy leftmost strategy2.

We remark that �β formalizes a call-by-name parameter passing in case of an
higher-order argument. On the other hand, �ι formalize a call-by-value parame-
ter passing, namely the reduction can fire only when the argument is a numeral.
As done in [5], it is easy to prove properties as subject-reduction, post-position
of δ-rules in a sequence of reductions, the confluence and a standardization
theorem.

Let [σ] be a special constant of type σ. The set of σ-contexts Ctxσ is gen-
erated by the following grammar: C[σ] ::= [σ] | xτ | �τ | 0 | succ | pred
| �if C[σ] C[σ] C[σ] | (λx.C[σ]) | (C[σ]C[σ]) | μ�.C[σ]. So, C[Nσ] denotes the result
obtained by replacing all the occurrences of [σ] in the context C[σ] by the term
Nσ and by allowing the capture of free variables in Nσ. Clearly Nσ ∈ S�PCF and
C[σ] ∈ Ctxσ doesn’t imply that C[Nσ] ∈ S�PCF, because of our linear constraints.

Let Mσ, Nσ be terms of S�PCF− such that M � N and C[M], C[N] ∈ P, for a
context C[σ]. It is easy to check that, if C[N] ⇓ n then C[M] ⇓ n.

Theorem 3. M ⇓ n if and only if M →∗
S
 n, for all term M.

Proof. M ⇓ n implies M →∗
S
 n straightforwardly. The other direction follows by

induction on the number of reduction steps of M →∗
S
 n. The case of zero steps is

immediate. The inductive case follows by remark just before this Theorem. ��

Now, let us define the theory induced by the operational semantics. If Mσ, Nσ ∈
S�PCF then M �σ N whenever ∀C[σ] s.t. C[M], C[N] ∈ P, if C[M] ⇓ n then C[N] ⇓ n.
Moreover, M ≈σ N if and only if M �σ N and N �σ M.

We put Ωι = μ�ι.�ι and if σ0 = μ1� ...� μm� ι, for some m ∈ N, then
Ωσ0�...�σn�ι = λxσ0

0 . . . xσn
n .�if(Ωσ1�...�σn�ιxσ1

1 . . . xσn
n )(x0Ωμ1 . . .Ωμm)(x0Ωμ1 . . . Ωμm).

2 The lazy reduction strategy reduces first the leftmost redex which is not un-
der a λ-abstraction. For instance the term (λxι.((λzι.z) 5))(pred 3) reduces to
(λxι.((λzι.z) 5)) 2 according to such a strategy.
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By using Ωσ it is possible to define approximants of a fix-point μ�.Mσ as follows,

μ0�.Mσ = Ωσ, μn+1�.Mσ = M[μn�.M/�].

Lemma 4. Let Mσ0

0 , ..., Mσm
m be a sequence of closed terms (m ≥ 0).

1. Ωσ0�...�σm�ιM0...Mm is a program and there is no n such that
Ωσ0�...�σm�ιM0...Mm ⇓ n.

2. Let (μ�.Pσ)M0...Mm be a program.
(μ�.Pσ)M0...Mm ⇓ n if and only if (μk+1�.Pσ)M0...Mm ⇓ n , for some k ∈ N.

3 A Linear Process Calculus

�inProc is a typed process calculus, based on Solos calculus [14] and extended to
treat explicit constants. In this calculus we give the possibility to communicate
names as well as ground values (i.e. integers). Since, �inProc is conceived in
order to model S�PCF, some notations of the previous Section are overloaded.

We use two sets of names, Q for question-names and A for answer-names.
Letters p, q, u, v, w, f, g, . . . range over question-names and a, b, c, . . . range over
answer-names. For sake of simplicity, when useful we use κ to denote all kinds of
names. We write !κ for a (possible empty) finite sequence κ1, . . . , κn of names and
|!κ| for its length. In order to treat ground information we use a set of variables
Var ranged over by x, y, z, . . .. Last, we use a set H of process variables ranged
over by �. �inProc is based on three syntactical categories.

Expressions: E ::= n | x | succ(E) | pred(E)
Solos s ::= q〈!p, a〉 | q〈!p, a〉
Processes P ::= s | a(x).(q〈!p, b〉; P) | a〈E〉 | 0 | P‖Q | (νκS)P | ,P E⊕ Q- | �q	 | rec�.P‡

‡ We assume that P contains exactly one free question-name, as a constraint on rec�.P construction.

The Solos calculus has been introduced in [14] as a simplification of the asyn-
chronous π-calculus replacing prefixes by solos (not binding actions) and main-
taining the restriction as unique binder3. The name q is the subject and !p, a are
the objects of both solos q〈!p, a〉 and q〈!p, a〉. Parallel composition of processes
P‖Q is as usual, commutative, associative and it has the termination 0 as neutral
element. The restriction (νκS)P limits the scope of the name κ to P. Here S is
a syntactical type annotation, that will be formalized ahead in this section. We
avoid the type annotations when they are clear from the context or uninteresting.

3 In process calculi, the purpose of a prefixing α.P is to freeze the continuation agent
P until the action α has been consumed in a reduction. In other words, reductions
involving P causally depends on the reduction involving the prefix α. Apart from this
explicit causal dependency, mobile calculi possess another, implicit form of causal
dependency, which relies on the scope (or restriction) operator (causal dependencies
in the π-calculus have been studied in several works, see [26, 6, 7]). Consider, for
instance, the following agent: (νv)(u〈v〉‖v〈y〉). In this agent, the subprocess v〈y〉 can
in no way react before the solo u〈v〉 because the subject name v is bound. When
u〈v〉 reacts, the scope of v is extended, possibly enabling a reaction with v〈y〉.
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We denote with FN(P) the set of free names of P, defined in the standard way.
�inProc extends the Solos Calculus, in order to manipulate also ground entities
and recursion. Expressions are build on numerals, ground variables, successor
and predecessor. The ground-output process a〈E〉 will be used to send numerals.
The ground-input process a(x).(s; P) consists of a prefix a(x) that both binds
the occurrences of the ground variable x in its body P, and freezes the solo s
(by forbidding its interaction). The solo will be unfrozen only after a reduction
involving the corresponding prefix, while reductions in the body P are allowed,
even if a value on a has not been received yet. The set of ground free variables
GFV(P) of a process P is defined as expected. We remark that the ground-prefix
is the only binder acting on variables. Such a prefix allows the control of causal
dependencies needed for modelling a call-by-value parameter passing policy on
ground values. We emphasize that, ground-input makes us able to express an
explicit constant-driven causality: a ground value reception enables a (potential)
solo communication. The ground-driven sum ,P E⊕ Q- is used to model the con-
ditional. It acts like P, if E evaluates to 0, while it acts like Q, if E is evaluated
to a numeral different from 0. We denote �q	 a hold-place for a process, namely
a process variable bringing the free question name q with it. Last, the recursion
rec�.P binds all the free occurrences of the process variable � in P. We remark
that as a syntactical constraint, it is assumed that P contains exactly one free
question-name. The set of free process variables FPV(P) is defined as expected.
The substitution of a process P to a process hold-place �q	 will be done by an
higher-order process-substitution.

Linearity for process calculi has already been studied in [4, 12, 13, 28], mainly
to ensure properties like determinism and strong normalization. A bounded name
occurs exactly once in “input” and exactly once in “output”. The main idea is
to use a very elementary form of typing for names in processes, namely action
modalities, denoted with ε: + is the output modality, − is the input modality
and . is the neutral modality (meaning the use of a name in both input and
output mode). Each name can possess a unique modality in a process. A duality
operation (denoted by an over-line) is defined on modalities as follows + = − and
− = +. Remark that . is undefined. A partial match operator � on modalities
is defined as

+ �− = −� + =. .

Sorting [18] together with an action modality are ingredients to indicate pos-
sible usages of names in �inProc. We denote ι̊ the atomic sorting for name
delivering ground data, i.e. the sort related to answer-names. Since we want
model a programming language, following [2, 11], our sortings will ask questions
and will receive an unique answer. Thus, composite sortings are defined by [!φ, ι̊],
where !φ is a list (possibly empty) of composite sortings. Composite sortings
are associated to question-names. The sorting shape respects straightforwardly
S�PCF type. Sorting (denoted with S) and channel types (denoted with α)
are generated by the following grammars:

Sorting. S ::= ι̊ | [!φ, ι̊] Channel Type. α ::= Sε
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Table 2. Typing rules for �inProc

Γ � 0 �
(z)

Γ � P � A Γ � Q � B j(A, B)
Γ � P‖Q � A B

(par)
Γ � P � A Γ � Q � A

Γ � !P E⊕ Q# � A
(sum)

�p, a distinct

Γ � q〈�p, a〉 � q : [�φ, ι̊]−,�p : �φ−, a : ι̊−
(in)

�p, a distinct

Γ � q〈�p, a〉 � q : [�φ, ι̊]+,�p : �φ+, a : ι̊+
(out)

Γ � q〈�p, b〉 � B Γ � P � A j(a : ι̊−, A, B)

Γ � a(x).(q〈�p, b〉; P) � (a : ι̊−) A B
(gi)

Γ � a〈E〉 � a : ι̊+
(go)

Γ � P � A

Γ � P � A, κ : S�
(w)

Γ, � : φ � �q	 � q : φ− (pv)
Γ, � : φ � P � q : φ−

Γ � rec�.P � q : φ− (rec)
Γ � P � A, κ : S�

Γ � (νκS)P � A
(res)

Sorting and (non-neutral) modalities are straightforwardly related to the
game-semantic notions of arenas and player/opponent of game semantics as for-
malized in [4, 10]. If φ is a composite sorting then φε is a question type while ι̊ε

is an answer type. A dual of a type α = Sε, is defined by α = Sε. Differently to
systems presented in [4, 12, 13, 28] our modalities do not occur inside sorting,
for sake of simplicity.

In order to define our typing system we need two kinds of environments,
respectively bringing type-information of free names and process variables in a
process. An action type is a finite set of pairs name plus channel type, in which
each name appears at most once. We remark that question names are paired with
question types while answer names are paired with answer types. A, B, . . . range
over action types and, as usual, A, v : α denotes the action type A∪{(v : α)}, with
(v : α)  ∈ A. It can be seen as partial function from names to types. We define
FN(A) as the set of names appearing in A and if A = v : α, A′ we define A(v) = α.
We define an extension of the match operator � to action types. Intuitively, the
operation performs the union of action types and it manages the match of the
names that appear in both action types. More formally, let A, B such that for all
v ∈ FN(A) ∩ FN(B), A(v) = B(v). Under this hypothesis, we define A � B = C
where FN(C) = FN(A) ∪ FN(B) and given v ∈ FN(C)

C(v) =

⎧⎨⎩
A(v) if v ∈ FN(A) \ FN(B)
B(v) if v ∈ FN(B) \ FN(A)
S� if v ∈ FN(A) ∩ FN(B) ∧ A(v) = Sε

It is easy to show that � is a partial commutative associative operator. We write
j(A, B) when A�B is defined. A process environments is a set of pairs process
variables plus composite sorting, in which each variable appears at most once.
It is denoted by Γ and we apply to it similar conventions as those introduced
for action types. Valid typing judgments have the shape Γ � P " A where Γ is a
process environment, P is a process and A is an action type.

Definition 5. A typing judgment is valid when it is conclusion of a derivation
respecting the typing rules in Table 2.

We allow weakening and contraction on process environments, while we treat lin-
early action types. The rules (z), (in) , (out) and (go) impose correct modalities
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on our typing. The key rules are (par) and (gi) that check composability of sub-
processes, ensuring the linearity policy. In (gi) we choose that the solo frozen by
the ground prefix has to be an output. The only further rule composing different
subprocesses is (sum) which is managed in an additive way. Rules (res) and
(w) manage neutral names. Process environments bring the type information of
process variables, then (pv) and (rec) impose the use of � by respecting the
chosen type. In (rec) we allow rec-abstraction of a process variable �, on a
process having q as unique free name.

Given a process P, a slice of P is the process obtained from P by replacing
to each summation construct one of its branches. Intuitively a slice should be
thought as a possible evolution of the process. Linearity guarantees that for each
slices, names are used exactly once in input or in output way.

Proposition 6 (Linearity). If Γ � P " A, κ : Sε then

1. ε ∈ {+,−} implies that κ occurs exactly once in all slices of P,
2. ε =. implies that κ occurs either zero times or twice in all slices of P,
3. ε =. if and only if Γ � (νκS)P " A,
4. �  ∈ Γ implies that Γ, � : φ � P " A,
5. Γ = Γ′, � : φ and �  ∈ FPV(P) imply that Γ′ � P " A.

3.1 �inProc Reductions and Congruences

We need three different substitutions: ground substitution, name substitution and
process substitution. We denote P[!n/!x] the expected substitution of integers to
variables in a process P. Recall that the ground-prefix is the only variable binder
of �inProc and note that no free variable can be captured in such substitution.
We denote P[!κ/!κ′] the expected substitution of names to names in a process, in
a capture-free way. Last, process substitution is a straightforward adaptation of
higher-order π-calculus substitution [27]. The process substitution of a process
P in another process to all occurrences of � is defined as follows, s{P/�} = s,
(Q0‖Q1){P/�} = Q0{P/�}‖Q1{P/�}, ((νκ)Q){P/�} = (νκ)Q{P/�}, (,Q0 E⊕ Q1-)
{P/�}=,(Q0){P/�} E⊕ (Q1){P/�}-, (a(x) Q){P/�}=a(x) Q{P/�}, (a〈E〉){P/�}
= a〈E〉, if �0  = � then �0

p	{P/�} = �0
p	, if FN(P) = {q′} then �q	{P/�} =

P{q/q′} and (rec�′.P′){P/�} =
{
rec�′.P′ if �′ = �,
rec�′.(P′{P/�}) otherwise.

Definition 7. The structural congruence ≡ between expressions and pro-
cesses is the least congruence containing α-equivalences on variables, names and
process-variable, and satisfying the following laws

1. pred(succ n) ≡ n
2. P‖0≡P, P‖Q ≡ Q‖P, (P‖Q)‖R ≡ P‖(Q‖R), (νκ)0 ≡ 0 , rec�.P≡P{rec�.P/�},

(νκ1)(νκ2)P ≡ (νκ2)(νκ1)P, (νκ)(P‖Q) ≡ P‖(νκ)Q if κ  ∈ FN(P).

3. ,0 E⊕ 0- ≡ 0, P‖,Q E⊕ R- ≡ ,P‖Q E⊕ P‖R-, (νκS),P E⊕ Q- ≡ ,(νκS)P E⊕ (νκS)Q-,
a(x).(s; ,P E⊕ Q-) ≡ ,a(x).(s; P) E⊕ a(x).(s; Q)- if x  ∈ GFV(E).
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Table 3. Operational Semantics of �inProc

∀k ≤ n {uk, u′k} = {pk, p′k} and {b, b′} = {a, a′}
(νu1, ..., un, b)(q〈p1, ..., pn, a〉‖q〈p′1, ..., p′n, a′〉‖R) →� R[u′1/u1, ..., u′n/un, b′/b]

P→� P′

a(x).(s; P)→� a(x).(s; P′) a(x).(s; P)‖a〈n〉 −→ s‖P[n/x]
P→� P′

(νκ)P→� (νκ)P′
P ≡ P′ →� Q′ ≡ Q

P→� Q

P→� P′

P‖Q→� P′‖Q
P→� P′

rec�.P→� rec�.P′

!P 0⊕ Q# →� P

n �= 0

!P n⊕ Q# →� Q

Q→� Q′

!P E⊕ Q# →� !P E⊕ Q′#
P→� P′

!P E⊕ Q# →� !P′ E⊕ Q#

4. (νκ)
(
a(x).(s; P)

)
≡ a(x).(s; (νκ)P) if κ  ∈ {a} ∪ FN(s)

Q‖a(x).(s; P) ≡ a(x).(s; Q‖P) if x  ∈ GFV(Q)
a(x).

(
s; b(y).(s′; P)

)
≡ b(y).

(
s′; a(x).(s; P)

)
if x  = y

The structural congruence axioms presented above deserve some explanation.
Rules in (1) are the usual axioms dealing with the evaluation of ground ex-
pressions. Rules in (2) are the usual structural rules of π-calculus, plus the rule
dealing with recursion. Rules in (3) are the structural rules dealing with the
sum. They impose the distributive property of the sum with respect to parallel
composition, restriction and ground input prefix. These laws allow us to derive
congruences like P ≡ ,P E⊕ P-. Similar laws were introduced in [3]. Rules in (4)
are the structural rules dealing with our ground prefix, which is not as the usual
input-prefix. Such rules leave untouched the solo s of the prefix a(x).(s; P) and
they formalize that the body P is in parallel with the prefix itself, taking care
only of potential occurrences of x. The implicit causality coming from the un-
derlying calculus of solos, together with rules in (4) will give us the possibility
to mimic all reduction strategies of S�PCF inside our �inProc.

Definition 8. We endow �inProc of a reduction relation →�, namely the least
relation →� satisfying the rules of Table 3. As usual, we define →∗

� to be the
reflexive transitive closure of →�.

The rules describing the interaction between solos is a simplification (valid only
under our linear constraints) of a more general rule4 presented in [14] which
exploit the unification in a very clever way. Some example can help the reader,
4 We write θ for a total endo-function on Q∪A such that κ �= θ(κ) for finitely many

names κ. We use Dom(θ) = {κ|θ(κ) �= κ} and Ran(θ) = {θ(κ)|κ �= θ(κ)}. Let
{�v = �w} be the smallest equivalence relation on Q ∪ A relating each vi with wi and
let us assume a name substitution θ agrees with the equivalence ϕ if for every v, w,
vϕw iff θ(v) = θ(w). The general rule presented in [14] is

| �κ1| = | �κ2| θ agrees with { �κ1 = �κ2} Ran(θ) ∩ �κ∗ = ∅ Dom(θ) = �κ∗

(ν�κ∗)(u〈 �κ1〉‖u〈 �κ2〉‖R)→� Rθ .
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(νp0, p1, a)(q〈q0, q1, a〉‖q〈p0, p1, b〉‖R) →� R[q0/p0, q1/p1, b/a] ,
(νp0, q1, b)(q〈q0, q1, a〉‖q〈p0, p1, b〉‖R) →� R[q0/p0, p1/q1, a/b] ,

but (νp)(q〈p, p, a〉‖q〈p0, p1, b〉‖R) cannot be reduced. We observe a difference be-
tween the managing of name passing and the managing of ground-values pass-
ing. The communication of names uses the unification mechanism, which is usual
both in solos calculus and in the calculus of fusion [21]; there is a perfect symme-
try between name-emission and name-reception. The communication of ground
values instead is asymmetric; when two answer names synchronize, all the occur-
rences of the ground variable bounded by the prefix-construct, are substituted
with the corresponding value.

Theorem 9 (Subject Reduction). Let Γ � P " A. If P →� Q then Γ � Q " A.

Proof. The proof is by induction on the derivation proving P →� Q. ��

Linearity implies that the reduction in our calculus is confluent.

Lemma 10 (Confluence). Let Γ � P " A.
If P →� Qi for all i ∈ {0, 1}, then either Q0 ≡ Q1 or there is Q such that Qi →� Q.

Proof. The proof is by induction on the derivation proving P →� Q0. The base
case essentially follow by Proposition 6 (1). All the inductive steps are easy. ��

Since we are interested in the extensional behavior of terms, we define a Morris
like contextual equivalence as basic equality over processes.

Definition 11 (Observability). Let Γ � P " a : ι̊+. We use Γ � P ⇓a〈n〉 to
denote that P →∗

� P′ ≡ (ν!κ)(a〈E〉‖P′′) where E ≡ n and a  ∈ !κ.

A relation ∼= is a typed congruence when ≡⊆∼= and it is a typed equality closed
under typed contexts. Moreover, Γ � P ∼= Q " A is an abbreviation for Γ � P " A,
Γ � Q " A and P ∼= Q. We use ρ to denote a total function from the set of ground
variables to the set of numerals. Given a process P, we denote Pρ to be the
process obtained applying the substitution ρ to ground free variables of P.

Definition 12. ∼=E is the greatest typed congruence on processes such that, Γ �
P ∼=E Q " A and Γ � Pρ ⇓a〈n〉 imply Γ � Qρ ⇓a〈n〉, for all ρ.

Following [9,28],we canprove that∼=E is consistent (i.e.doesnot equate allprocess),
it is reduction closed, it is maximally consistent (i.e. the only typed congruence
which strictly includes∼=E is not consistent) and it equates all insensitive processes
(i.e. processes that does not produce any observation) with the same type.

4 Processing Programs

The encoding of S�PCF into �inProc is an adaptation of the encoding presented
by Hyland and Ong in [10]. First of all, types can be translated in sortings as
follows, �τ1 � . . .� τk � ι� = [�τ1�, . . . �τk�, ι̊] (k ≥ 0). Before formalizing the
translation of programs, we give some hints.
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Table 4. Translation of S�PCF− on �inProc

To lighten the notation, from now on, we do not annotate type explicitly on processes
and we denote q(q1, . . . , qn, a) P = (νq1, . . . , qn, a)(q〈q1, . . . , qn, a〉‖P).
�predι�ι�qε = qε(q1, aε)

(
q1(a1)(νq) a1(x).

(
q〈aε〉; q(a) a〈pred(x)〉

))
�nι�qε = qε(aε)aε〈n〉

�succι�ι�qε = qε(q1, aε)
(
q1(a1)(νq) a1(x).

(
q〈aε〉; q(a) a〈succ(x)〉

))
�xι�qε = qε(aε) aε〈x〉

�λxι.Mσ1�...�σn�ι�qε = qε(q0, q1, . . . , qn, aε) q0(a0) (νq) a0(x).
(
q〈q1, . . . , qn, aε〉; �M�q

)
�fσ1�...�σn�ι�qε = qε(q1, . . . , qn, aε) f〈q1, . . . , qn, aε〉
�Mσ1�...�σn�ιNσ1�qε = qε(q2, . . . , qn, a) (νp, q1)(p〈q1, . . . , qn, a〉‖�M�p‖�N�q1 )
��if Mι

1 Mι
2 Mι

3 �qε = qε(aε)(νq1)
(
�Mι

1�
q1‖q1(a1) (νq2) a1(x).

(
q2〈aε〉; !�M2�q2 x⊕ �M3�

q2#))
�λfτ .Mσ1�...�σn�ι�qε = qε(f, q1, . . . , qn, a) (νp)(p〈q1, . . . , qn, a〉‖�M�p)
��σ1�...�σn�ι�qε = qε(q1, . . . , qn, a) (νp)(p〈q1, . . . , qn, a〉‖�p	) �μ�σ.Mσ�qε = rec�.�M�qε

Let M be a S�PCF term such that Γ � M : σ1 � . . . � σn � ι where n ≥ 0.
Encoding exploits overloads of symbols for variables of S�PCF and symbols for
names and variables of �inProc. The interpretation of M is given on a process
P such that GFV(P) = FV(M) ∩ Varι, SFV(P) = FV(M) ∩ SVar and FN(P) =
(FV(M)∩HVar)∪{q} where q is a fresh name, called access-name. Channel type
of free names of P, but the access-name, is obtained by translating the type of
corresponding variable in M in a sorting together with positive modality. Channel
type of the access-name is the translation of the type of M together with a negative
modality. The sorting associated to process variables is obtained by translating
the type of corresponding stable variable. More formal details are in Theorem
14. If M is closed then P contains a unique free name, namely the access-name
q typed by negative modality and the sorting [�σ1�, . . . �σn�, ι̊] corresponding to
the type of M. The translation of M can be questioned by the solo q〈p1, ..., pn, a〉
communicating a list of n question-names p1, ..., pn where processes mimicking
“actual arguments” can be questioned in its turn by P, and an answer-name a
where P can communicate the computation result.

Definition 13. We denote by �M�q the process encoding a program Γ � M : σ on
the access-name q. The recursive definition of the translation from S�PCF− to
�inProc is given in Table 4.

We use the ground-prefix in order to model the causal dependency needed
in order to respect call-by-value computations. As instances, we remark that
qε(aε)aε〈n〉 is an abbreviation for (νaι̊ε)(qε〈aε〉‖aε〈n〉) and the translation of
predι�ι is an abbreviation for

(νq[ι̊]
1 )(νaι̊

ε)
(
qε〈q1, aε〉‖(νaι̊

1)
(
q1〈a1〉‖(νq[ι̊]) a1(x).(q〈aε〉‖(νaι̊)(q〈a〉 a〈pred(x)〉)))).

Theorem 14 (Typing soundness). Let f1 : σ1, . . .fn : σn � M : σ be a
term of S�PCF− such that FV(M) ∩ SVar = {�τ1

1 , . . . , �τm
m } and FV(M) ∩ Varι =

{x1, . . . , xh}. Then �1 : �τ1�, . . . , �m : �τm� � �M�q " q : �σ�−, f1 : �σ1�
+, . . . , fn :

�σn�
+ where GFV(�M�q) = {x1, . . . , xh}.

Proof. By induction on the derivation of Γ � M : σ. ��
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We say that a translation from a calculus to another is faithful whenever each
reduction on the first calculus can be mimicked by some reductions in the second
one. We can prove that our translation is faithful, more precisely M →S
 N implies
�M�q →∗

� �N�q.

Lemma 15

1. �pred (succ n)�q →∗
� �n�q.

2. Let Γ � �L�q2 , �R�q2 " q2 : �ι�−, A.
Both ��if 0 L R�q →∗

� �L�q and ��if n+1 L R �q →∗
� �R�q.

Proof

1. �succ n�qS = qs(as)(νq′s, qn)
(
q′s(q

′
n, a

′
s) q

′
n(a

′
n) (νq) a′n(x).

(
q〈a′s〉; q(a) a〈succ(x)〉

)
‖

q′s〈qn, as〉‖qn(an)an〈n〉

)
,

�pred(succ n)�qε = qε(aε) (νq∗p , qs)
(
q∗p(q

∗
s , a

∗
p) q

∗
s(a

∗
s) (νq) a∗s(y).

(
q〈a∗p〉; q(a) a〈pred(y)〉

)
‖

q∗p〈qs, aε〉‖�succ n�qS
)

→∗
� qε(aε) aε〈n〉 = �n�qε

2. ��if 0 L R �qε = qε(aε) (νq1)
(
q1(a1) a1〈0〉

∥∥∥q1(a1) (νq2) a1(x)
(
q2〈aε〉; ,�L�q2 x⊕ �R�q2-

))
→∗
� �L�qε .

The other case is similar to the previous one. ��

Ground substitution and stable substitution does not present particular prob-
lems with respect to faithful translation.

Lemma 16. If Γ � M : σ1 � . . . σn� ι (n ≥ 0) then
qε(q1, . . . , qn, a) (νp)(p〈q1, . . . , qn, a〉‖�M�p) →∗

� �M�qε

Proof. The proof is by cases on the definition of interpretation. All cases are
straightforward, except the one dealing with recursion. In fact, for all M, the
process �M�p always start with a question on p, except for the case M = μ�.M′.
Thus let us consider the case M = μ�1 . . . μ�m.M′ (m ≥ 1) where M′  = μ�.M′′.
We can check, by induction on m, that for an opportune process P we have
�μ�1 . . . μ�m.M′�p ≡ p(q1, . . . , qn, a) P. So, we get

qε(q1, . . . , qn, a) (νp)(p〈q1, . . . , qn, a〉‖�μ�1 . . . μ�m.M′�p) ≡
qε(q1, . . . , qn, a) (νp)(p〈q1, . . . , qn, a〉‖p(q1, . . . , qn, a) P)

→� qε(q1, . . . , qn, a) P ≡ �μ�1 . . . μ�m.M′�qε . ��

Lemma 17. If Γ � (λxι.M)n : σ then �(λxι.M)n�q →∗
� �M[n/x]�q.

Proof. �M�q[n/x] ≡ �M[n/x]�q follows easily by interpretation, hence

�(λxι.M)n�qε = qε(!κ, aε) (νpM, q)
(
pM〈q, !κ, aε〉‖q(a) a〈n〉
pM(q, !κ, aε) q(a) (νp′M) a(x).

(
p′M〈!κ, aε〉; �M�p

′
M

))
→∗
� qε(!κ, aε)(νp′M)(p

′
M〈!κ, aε〉‖�M�p

′
M [n/x]) →∗

� �M�qε [n/x] →∗
� �M[n/x]�qε

where the second reduction follows by Lemma 16. ��

Lemma 18. Let Γ � M : σ.

1. If � ∈ SFVτ (M) and � N : τ then �M�q{�N�q/�} →∗
� �M[N/�]�q.

2. If M �Y N then �M�q →∗
� �N�q.



302 L. Paolini and M. Piccolo

Proof

1. By induction on the derivation of Γ � M : σ and by Lemma 16.
2. Let M = μ�.M′, thus �μ�.M′�q ≡ �M′�q{�μ�.M′�q/�} →∗

� �M′[μ�.M′/�]�q. ��

To mimic substitutions of programs to higher-order variables, we need to use the
ground prefix together with its structural rules.

Lemma 19. Let Γ, f : σ� τ � M : σ′ and Δ � N : σ� τ two S�PCF−-terms.

1. (νf)(�M�q‖�N�f) →∗
� �M[N/f]�q.

2. If (λfσ�τ .M)N �β M[N/f] then �(λfσ�τ .M)N�q →∗
� �M[N/f]�q.

Proof

1. The proof is by induction on the derivation of Γ � M : τ . For the base case
M = f, we make use of Lemma 16. For the inductive step, there are two
non-trivial cases, that are the ground λ-abstraction case and the �if-case.
In case of ground λ-abstraction, we need only to use the structural rule
P‖a(x).(q〈!κ〉; Q) ≡ a(x).(q〈!κ〉; P‖Q) providing that x  ∈ GFV(P). In case of
�if, it is necessary to use also the distributive laws for the sum. All further
cases are straightforward.

2. �(λfσ�τ .M)N�qε =
qε(!κ, aε) (νq, f)

(
q〈f, !κ, aε〉

∥∥ q(f, !κ, a)(νp)(p〈!κ, a〉‖�M�p)
∥∥ �N�f

)
→∗
�

(νf)(�M�qε‖�N�f) →∗
� �M[N/f]�qε . ��

Note that our translation actually maps a calculus (i.e. S�PCF− with →S
-
reduction) into another calculus (i.e �inProc with →�-reduction).

Theorem 20. Our translation is faithful, i.e. if M →S
 N then �M�q →∗
� �N�q.

Proof. Note that →� is closed under all context, by Table 3. Thus, the proof
follows by previous lemmas. ��

The result established by Theorem 20 is very strong and it overcomes the tradi-
tional encodings from programs to processes [27]: in our encoding no reduction
strategy is determined in advance. Gordon Plotkin in [22] remarked that the call-
by-value parameter passing is hardly in accord with a strategy on (call-by-name)
λ-calculus.

Corollary 21. If M ⇓ n then �M�p ∼=E �n�p.

Proof. Since →�⊆∼=E by Lemma 10, the proof follows by Definition 12. ��

5 Soundness and Correctness

An interpretation is said to be adequate when �M� ∼=E �n� and M ⇓ n are logically
equivalent for any program M, numeral n. Actually, we prove a stronger form of
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adequacy result, namely that M →∗
S
 n, �M� →∗

� �n� and �M� ∼=E �n� are logically
equivalent, for any program M and numeral n.

In order to complete the proof of adequacy for our interpretation, we straight-
forward adapt the Tait’s computability argument likewise to that done in [19, 23]
for denotational semantics. In the following, we use X to denote a generic vari-
ables of S�PCF− (ground, high-order or stable variable of S�PCF−).

Definition 22. The “computability predicate” is defined by the following cases.

– Case FV(M) = ∅.
• Subcase σ = ι. Comp(Mι) if and only if �M�q ∼=E �n�q implies M →∗

S
 n.
• Subcase σ = μ � τ . Comp(Mμ�τ ) if and only if Comp(Mμ�τNμ) for

each closed Nμ such that Comp(Nμ).
– Case FV(Mσ) = {X τ1

1 , . . . ,X τn
n }, for some n ≥ 1.

Comp(Mσ) if and only if Comp(M[N1/X1, . . . , Nn/Xn]) for each closed Nτi

i such
that Comp(Nτi

i ).

Lemma 23 states a standard equivalent formulation of computability predicate.

Lemma 23. Let Mτ1�...�τm�ι ∈ S�PCF and FV(M) = {Xμ1
1 , ...,Xμn

n } (n,m ∈ N).
Comp(M) if and only if �M[N1/X1, . . . , Nn/Xn]P1 . . . Pm�q ∼=E �n�q implies
M[N1/X1, . . . , Nn/Xn]P1 . . . Pm →∗

S
 n for each closed terms Nμi

i and P
τj

j such that
Comp(Ni) and Comp(Pj) where i ≤ n, j ≤ m.

The proof is an adaptation of the proof given by Plotkin in [23].

Lemma 24. If Mσ ∈ S�PCF then Comp(Mσ).

Proof. The proof is by induction on the “untyped syntax shape” of M. ��

Corollary 25 (Strong adequacy). Let M be a program and n be a numeral.
�M�q ∼=E �n�q, M →∗

S
 n and �M�q →∗
� �n�q are logically equivalent.

Proof. �M�q ∼=E �n�q implies M →∗
S
 n by Lemma 24. Moreover, M →∗

S
 n implies
�M�q →∗

� �n�q by Theorem 20. Thus, since �M�q →∗
� �n�q implies �M�q ∼=E �n�q the

proof is done. ��

Consequently, �inProc give us a syntactical model where we can study the
operational equivalence between S�PCF-programs. Motivations are the game-
semantics goals. To provide tools for proving properties of our language and
programs. But also, to provide rigorous definitions of implementation instance
with good parallel and optimal evaluation features.

Theorem 26 (Correctness). If �Mσ�q ∼=E �Nσ� then M ≈σ N.

Proof. Let B � M : σ and B � N : σ such that �M�q ∼=E �N�q. If C[σ] is a closing
context such that both C[M] and C[N] are programs and C[M] →∗

S
 n for some value
n, then �C[M]� →� �n� by Corollary 25. So �C[N]�q ∼=E �C[M]� ∼=E �n�q, implies
�C[N]�q →∗

� �n�q by Corollary 25, which implies C[N] →∗
S
 n by strong adequacy.

By definition of operational equivalence the proof is done. ��
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As a final remark, we proposed a process model of S�PCF showing that, as a
consequence of faithfulness, all evaluation strategies of S�PCF-programs can be
represented by our �inProc-processes. Furthermore, we show that our process
model is adequate w.r.t. the operational equivalence of S�PCF.

One of the key point to obtain faithfulness is the introduction of ground-input
prefix in �inProc, in order to model the call-by value computation. In this way,
we got a translation from a calculus (S�PCF with →S
-reduction) into an other
calculus (�inProc with →�-reduction). A reviewer asked whether it is possible
to take a modification of S�PCF with absolutely no constraint on β-reduction,
i.e. a language where both ground and high-order arguments are treated using a
call-by name policy, and get a faithfulness result w.r.t. an opportune process lan-
guage. We can answer positively to such a question; it is not difficult to see that a
suitable process calculus could be a modified version of �inProc in which ground-
input prefix is replaced with a completely asynchronous construct. However we
should observe that the so obtained source language does not enjoy denotational
linearity in the sense of [20]. Our purpose includes in fact to use processes to
relate the classical denotational models focussing on functional aspects of com-
putation and the new game models focussing on the dynamical (operational)
aspects of computation. In particular, the proposed source language does not
have a clear denotational status; however it could be an interesting example of
functional calculus whose reduction can be mimicked by a fully asynchronous
process calculus.

Acknowledgements. We would like to thank the anonymous reviewers for the
useful suggestions they pointed out.
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Abstract. We introduce a multimodal stratified framework MS that generalizes
an idea hidden in the definitions of Light Linear/Affine logical systems: “More
modalities means more expressiveness”. MS is a set of building-rule schemes that
depend on parameters. We interpret the values of the parameters as modalities.
Fixing the parameters yields deductive systems as instances of MS, that we call
subsystems. Every subsystem generates stratified proof nets whose normalization
preserves stratification, a structural property of nodes and edges, like in Light
Linear/Affine logical systems. A first result is a sufficient condition for determin-
ing when a subsystem is strongly polynomial time sound. A second one shows
that the ability to choose which modalities are used and how can be rewarding.
We give a family of subsystems as complex as Multiplicative Linear Logic —
they are linear time and space sound — that can represent Church numerals and
some common combinators on them.

Keywords: Implicit Computational Complexity, Structural Proof-theory, Linear
Logic, Polynomial Time Computations.

1 Introduction

This work relates to Implicit Computational Complexity (ICC), an area of Theoretical
Computer Science that explores machine-independent characterizations of complexity
classes.

Motivations. We are interested in polynomial time computations and in their charac-
terizations by means of restrictions of Linear Logic (LL) [1]. Specifically, we focus on
Light Affine Logic (LAL) [2], a simplification of Light Linear Logic (LLL) [3]. LAL
is: (i) strongly polynomial time sound, and (ii) polynomial time complete, under the
Curry-Howard (CH) correspondence. (i) means that every derivation Π of LAL normal-
izes in a time bounded by a polynomial in the size |Π | of Π , under any normalization
strategy. (ii) says that every polynomial time Turing machine can be represented as a
derivation of LAL.

Stratification is the key feature to obtain the bound in (i). Stratification is a property
of nodes and edges, invariant under cut elimination, and follows from a careful interplay
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of bang (!) and paragraph (§) boxes. !-boxes are those we know since the introduction
of LL, while §-boxes are specific to LAL. Operationally, both kinds of boxes can merge.
In particular, !-boxes can merge into §-boxes. As usual, !-boxes are the sub-proof nets
that can be duplicated. The key role of merging ! and §-boxes is twofold. On one side,
merging realizes the stratification: the number of boxes enclosing a node/edge cannot
change under cut elimination. On the other side, it gives expressiveness to the logical
system. Without §-boxes Church numerals, used as iterators, could not exist in LAL.

Contributions. This work should be viewed as a first step towards making the slogan:
“More modalities, more expressiveness” effective. We introduce the framework MS, a
set of proof nets building-rule schemes that compose nodes to obtain proof nets. The
edges labelling these formulæ, besides the usual LL connectives�,⊗, ∀, may contain
logical operators to be interpreted as modalities. The choice of which modalities using
is, in principle, arbitrary. So, we can have many more than the two ones of LAL inside
our formulæ. This is why we dub MS as being “multimodal”.

Part of the nodes of MS are standard, corresponding to axiom, cut, linear implica-
tion, tensor and universal quantification of LL proof nets. Instead, the modal nodes serve
to contract or weaken modal formulæ and to build boxes relatively to all the modali-
ties we might be interested to deal with, in some fixed set of multimodal proof nets.
Indeed, modal nodes and building-rule schemes of MS depend on parameters to be in-
stantiated with modalities. For example, the contraction node of MS is Yq(n,m), with
q, n,m modalities. If we let q, n,m = 1, its instance Y1(1, 1) represents the contrac-
tion node of LAL, under the assumption that !1 is ! inside MS. Analogously, we can
represent the rule that builds “bang” boxes of LAL inside MS. Indeed, MS has a Promo-
tion building-rule scheme Pq(m1, . . . ,mk), with q,m1, . . . ,mk arbitrary modalities.
Pq(m1, . . . ,mk) can be applied to every proof net Π : A1, . . . , Ak � B of MS, with
assumptions of type A1, . . . , Ak and conclusion of type B. Its application yields a new
proof net Π ′ : !m1A1, . . . , !mkAk � !qB. If we set k ≤ 1, and q,mk = 1, then both
P1(1), P1() represent the !-box building-rules of LAL in MS. In particular, since we
have Pq(m1, . . . ,mk), which puts a modality in front of all A1, . . . , Ak, B of any Π ,
and since we do not have nodes corresponding to dereliction and digging, the sets of
proof nets, generated by instantiating the schemes of MS, is stratified. This is why,
besides “multimodal”, we dub MS also as “stratified”.

Our goal is to propose MS as a generator of strong polynomial time sound systems,
obtained as subsystems of MS by instances of node and building-rule schemes. The
subsystems would generate stratified proof nets, typed with formulæ whose modalities
control the normalization complexity.

It should not be surprising that not every subsystem P of MS can be polynomial
time sound. We shall prove that both the use of a finite number of modalities and a
bounded number of spindles in the proof nets of P , assures P is strongly polynomial
time sound. “Spindle” is a technical notion pinpointing the proof net structure that, if
iteratively composed an unbounded number of times, yields unsound polynomial time
normalizations. The proof of strong polynomial time soundness exploits the Context
Semantics in [4].

We conclude by showing how MS may be potentially useful to discover systems
with interesting complexity bounds, just “playing” with modalities. We show how to
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instantiate the schemes of MS to obtain a family {PM
LTS

|M ∈ N} of systems such that
every PM

LTS
is linear time-space sound subsystem: every proof net Π ∈ PM

LTS
both nor-

malizes in linear time and in linear space. So PM
LTS

belongs to the same complexity
class as Multiplicative Linear Logic (MLL), but it extends MLL, since some Church
numerals and some common combinators on them exist as proof nets of PM

LTS
, for

every M .

Related works. Our multimodal framework for polynomial time computations may re-
call ramified systems [5,6]. The formal relation is still officially unclear, even though the
results claimed in [7] support the idea that modalities will result in a formal, logically
founded, refinement of ramification.

[8] introduces a by-levels analysis of elementary and polynomial time computations
with a motivation orthogonal to ours: levels, in the spirit of 2-Sequents [9,10], rule out
the stratified structure of boxes. The effect seems analogous to the one we obtain with
MS, since the resulting logical systems generalize the original ones. The relation among
levels in [8] and our multimodalities has to be clarified.

Acknowledgments. We thank Ugo Dal Lago and Marco Gaboardi for the useful dis-
cussions leading to this work and the three referees for their high quality comments and
suggestions.

Paper outline. We introduce MS in Section 2, the sufficient geometrical condition to
determine which are the polynomial time subsystems of MS in 3, and the linear time-
space subsystem of MS, strictly extending MLL, in 4. Conclusions, and further work,
are in Section 5.

2 The Framework MS

We proceed by: (i) giving the logical formulæ that label the edges of the proof nets, (ii)
introducing the nodes and the inductive process to build the proof nets, (iii) defining
some static measures on the proof nets, (iv) fixing the main normalization steps on the
proof nets, and (v) setting the dynamic measures to assess the normalization cost.

Formulae of MS. Let M ∈ N and V be a countable set of propositional variables,
ranged over by x, y, w, . . .. For every fixed M , FM is the set of the formulæ generated
by

F : : =L | E L : : =x | F ⊗ F | F � F | ∀x.F E : : = !nF (n ∈ {1, 2, . . . ,M})

using F as start symbol.F is
⋃
M∈N

FM . E is the start symbol of modal formulæ; L the
one of linear or non-modal formulæ. A,B,C, . . . will range over formulæ belonging to
F , and Γ,Δ,Φ, Ψ over multisets of formulæ. A

[
B/y

]
will denote substitution of B for

y in A.

The nodes for the proof nets of MS. They are in Figure 1 together with their abbrevi-
ated and long names, respectively. u, v, w, . . . will range over (occurrences) of nodes.
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Left Tensor Right Tensor Left Quant. Right Quant. Left Impl. Right Impl. Contraction

Fig. 1. The nodes, with M, m,n, q ∈ N

The proof nets of MS. The nodes i, I, and o, connected as in the leftmost graph of
Figure 2 form a proof net. Moreover, if the two rightmost graphs in Figure 2 are proof
nets, then all the graphs in Figure 3 are proof nets as well, built using the associated
building-rule scheme. Namely, we build the proof nets as we were using a sequent
calculus rule schemes. For example, “Yq(n,m) building-rule scheme with m,n, q ∈
N” says that we build a new proof net starting from the leftmost generic proof net in
Figure 2, eliminating two of its i nodes, plugging the two outgoing edges of a Yq(n,m)
node into the two dangling edges of Π , labeled !nA and !mA.

o

I

i

A

A

o o

Π Σ

i i i i i i

C D

A1
...

Ar B1
...

Bl

I building-rule scheme Two generic proof nets

Fig. 2. The basic proof net and two generic proof nets

Another example is “Pq(m1, . . . ,mr) building-rule scheme with q,m1, . . . ,mr, r ∈
N”. It simultaneously introduces exactly a single Po(m) node and a, possibly empty,
sequence of Pi(m) nodes, to form a (modal) box, starting from the leftmost generic
proof net in Figure 2. The notation Pq(m1, . . . ,mr) summarizes the parameters of the
box it introduces: q is the (index of the) modality of the edge outgoing Po(m), and
every mi, with 0 ≤ i ≤ r, is the (index of the) modality associated to the edge incoming
the ith instance of Pi(m), counting from the left. We shall tend to identify the unique
instance of Po(m), used by Pq(m1, . . . ,mr), with the box it introduces. Namely, we
shall call box that instance of Po(m). Finally, we want to remark that the WM (n)
building-rule scheme only operates on a modal formula !nA. This choice simplifies the
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building-rule scheme with

q,m1 , . . . ,mr, r ∈N

Fig. 3. The building-rule schemes that inductively define the proof nets

presentation of MS. However, we could relax the building scheme-rule of WM (n) to
any A, without affecting our results, concerning the complexity. Now, let Π be a proof
net. VΠ is the set of its nodes. EΠ is the set of its edges. BΠ is the set of its Po(m)
nodes. Moreover, PΠ : BΠ → N counts the premises of a box.
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Static measures. Let Π be a proof net. ∂(u) denotes the depth, or level, for every
u ∈ VΠ ∪ EΠ . Specifically, ∂(u) is the greatest number of (nested) boxes that contain
u. ∂(Π) denotes the depth of Π , the greatest ∂(u), for every u ∈ VΠ ∪ EΠ .

VΠ , EΠ , and BΠ can be made relative to a given level 0 ≤ d ≤ ∂(Π). Namely, V d
Π

is the set of nodes at level d. Analogous definitions hold for Ed
Π , Bd

Π .
s(Π) denotes the size of Π . It counts the number of the nodes in Π . sd(Π) denotes

the size of Π at level d. It counts the number of nodes that occur at level d. Finally,
bd(Π) counts the number of boxes, or, equivalently, of occurrences of Po(m) nodes, at
level d.

For example, for the net, say Π , in Figure 9(b) ∂(Π) = 1, s0(Π) = 15 since the
occurrences of Pi(m) and Po(m) are not inside the box they delimit. s(Π) = 21 and
b0(Π) = 1.

Subsystems of MS. We call subsystems of MS all the sets of instances of the building
rules in Figure 2 and 3. P ⊆ MS denotes that P is a subsystem of MS. Two examples are
P = {⊗L, I,Y3(1, 2), P1(1, 1)} andP ′ = {⊗L, I,Y1(1, 2), P1(1), P1(2, 3)}. We also
use regular expressions to identify sets of scheme instances. Pq(a?,m1, . . ., mr) de-
notes {Pq(m1, . . . ,mr), Pq(a,m1, . . . ,mr)}, while Pq(a∗,m1, . . . ,mr) denotes the
infinite set {Pq(m1, . . . ,mr), Pq(a,m1, . . . ,mr), Pq(a, a,m1, . . . ,mr), . . .}. Finally,
the number of modalities of any P ⊆ MS is the number of modalities occurring in the
instances of building rule-schemes that form P .

Normalization. The normalization steps (norm. step) on the proof nets of MS
are identified by: [⊗R/⊗L], [�R / �L], [∀R/∀L], [Pq(m1, . . . ,mr)/WM (q)],
[Pn(n1, . . . , nl)/Pq(n,m1, . . ., mr)], [Pq(m1, . . . ,mr)/Yq(n,m)], [I/ ],[ /I]. The
first three norm. steps are the standard ones, relative to the logical operators that oc-
cur in the name. The fourth one corresponds to a standard box erasure by a weak-
ening node. The fifth norm. step merges two boxes in the obvious way. Figure 4
shows the details of the remaining two norm. steps. Also, the linear norm. steps are
[⊗R/⊗L], [�R / �L], [∀R/∀L], [I/ ], [ /I]. The polynomial ones are [Pn(n1, . . .,
nl)/Pq(n,m1, . . . ,mr)], [Pq(m1, . . . ,mr)/Yq(n,m)], [I/ ], [ /I]. The garbage steps
are [Pq(m1, . . . ,mr)/WM (q)], [I/ ], [ /I]. In particular, the underscore of [I/ ] and
[ /I] stands for any logical operator or building scheme-rule. → will be the contextual
closure of ", so that Π → Σ whenever Π rewrites to Σ. →∗ is the reflexive and transi-
tive closure of →, Π →n Σ denotes exactly n steps of Π →∗ Σ, Π →d Σ is a norm.
step at depth d, and, finally, Π →n

d Σ denotes exactly n steps of Π →∗ Σ at depth d.
A proof net Π is normal when none of the above norm. steps rewrites it.

Notice that [Pq(m1, . . . ,mr)/Yq(n,m)] implies that, in general, → is not deter-
ministic. Nevertheless, every reduction always terminates. It is enough to consider the
forgetful map from proof nets of MS to proof nets of ELL that transforms every modal-
ity !n into !. Under that mapping, every norm. step in MS becomes a cut elimination
step in ELL.

We observe that the instances of the norm. steps [Pn(n1, . . . , nl)/Pq(n,m1, . . .,
mr)], and [Pq(m1, . . . ,mr)/Yq(n,m)], induced by fixing some P in MS, may not
lead to a proof net of P , starting from a proof net of P . This is why the set of norm.
steps we can consider as valid for any given P in MS, are those ones that map a proof
net of P to a proof net of P .
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Fig. 4. The norm. steps [I/ ] and [Pq(m1, . . . , mr)/Yq(n, m)]

Focusing on any given Π → Σ we can see that every node x of Σ different from a
cut can be mapped back to its (unique) source node y: x is the residual of y. Conversely,
not every node has a residual. Finally, we remark that both the structure of proof nets
and the behavior of the norm. steps make MS stratified: the residual x of any node y at
level d different from a cut in a given proof net Π keeps being at level d.

Dynamic measures. Let Π be a proof net. [Π ] is the reduction time of Π . It is defined
as maxΠ→nΣ n. ‖Π‖ is the used space of Π . It is defined as maxΠ→∗Σ s(Σ). If 0 ≤
i, d ≤ ∂(Π), then [Π ]d = maxΠ→n

dΣ
n, ‖Π‖d = maxΠ→∗

dΣ
s(Σ) and ‖Π‖di =

maxΠ→∗
d
Σ si(Σ).

3 Polynomial Time and MS

We proceed by: (i) defining what a polynomial time sound subsystem of MS is, (ii)
recalling Context Semantics [4], (iii) defining the notion of spindle, and (iv) using (ii)
and (iii) to assess the normalization cost.

Strong polynomial time sound subsystems. Let P ⊆MS. P is strongly polynomial step
whenever for every d ∈ N there is a polynomial pd(n) such that, for every Π ∈ PN(P),
with ∂(Π) ≤ d, [Π ] ≤ pd(s(Π)).

P is strongly polynomial size whenever for every d ∈ N there is a polynomial pd(n)
such that, for every Π ∈ PN(P), with ∂(Π) ≤ d, ‖Π‖ ≤ pd(s(Π)).

P is strongly polynomial time sound (or ptime) if it is both polynomial step and size.
PMS denotes the class of the ptime subsystems of MS. This distinction is meaningful
since, for example, the multiplicative and exponential fragment of Elementary Affine
Logic is a subsystem of MS. Our goal is to give a sufficient condition to say when any
P ⊆ MS belongs to PMS.

Context Semantics. We recall and simplify Context Semantics in [4], developed for
quantitative analysis of Linear Logic. The simplification works because we rule out
both digging and dereliction, and we perform the reductions level-by-level. This is the
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reason why we need just one stack instead of the traditional two stacks. Multimodality
is harmless because we manage all the modalities as they were equal.

Exponential signatures are generated by t : : = e | r(t) | l(t). E is their set. A stack
element belongs to S = {a, o, f, s, x} ∪ E . A stack s is a finite non empty sequence
of stack elements, i.e. s ∈ S+. A polarity is an element of B = {+,−}. If c is a
polarity, we denote c ↓ the other one. If Π is a proof net, a context of Π is an element
of CΠ = EΠ ×S+ ×B. If C,C′ ∈ CΠ we write C �→Π C′ if C′ can be obtained from
C through the rewriting relation in Figure 5.

�R

h
e

g

(g,U,+) �→Π (h,U · o,+)

(e,U,−) �→Π (h,U · a,+)

(h,U · o,−) �→Π (g,U,−)

(h,U · a,−) �→Π (e,U,+)

�L

h

e g

(g,U,+) �→Π (e,U · a,−)

(h,U,−) �→Π (e,U · o,−)

(e,U · a,+) �→Π (g,U,−)

(e,U · o,+) �→Π (h,U,+)

⊗R

h

e g

(e,U,+) �→Π (h,U · f,+)

(g,U,+) �→Π (h,U · x,+)

(h,U · f,−) �→Π (e,U,−)

(h,U · x,−) �→Π (g,U,−)

⊗L

e g

h

(h,U · f,+) �→Π (e,U,+)

(h,U · x,+) �→Π (g,U,+)

(e,U,−) �→Π (h,U · f,−)

(g,U,−) �→Π (h,U · x,−)

∀R

g

e

(e,U,+) �→Π (g,U · s,+)

(g,U · s,−) �→Π (e,U,−)

∀L

g

e

(e,U · s,+) �→Π (g,U,+)

(g,U,−) �→Π (e,U · s,−)

Yc(a,b)

e g

h

(h,U · l(t),+) �→Π (e,U · t,+)

(h,U · r(t),+) �→Π (g,U · t,+)

(e,U · t,−) �→Π (h,U · l(t),−)

(g,U · t,−) �→Π (h,U · r(t),−)

I

g

e

or Cut

g

e

(e,U,+) �→Π (g,U,+)

(g,U,−) �→Π (e,U,−)

Po(q)

Σ

Pi(m1) ...

. . .

h

l

gg

e

(e,U,+) �→Π (h,U,+)

(h,U,−) �→Π (e,U,−)

Fig. 5. Rewriting Relation among contexts. Notice that if (e, U, b) 	→Π (e′, U ′, b′) then also
(e′, U ′, b′ ↓) 	→Π (e,U, b ↓).

We say that: (i) (e, t · U, b) is canonical if t is an exponential signature, U does not
contain exponential signatures, and whenever U contains an even number of a’s, then b
is +, otherwise, whenever U contains an odd number of a’s, then b is −, (ii) an initial
context is (e, t,+) where t is an exponential signature, and (iii) a context C is final if
�D (C �→Π D).

Canonical, initial and final contexts compose paths to travel along the edges of a
proof net. A path simulates the annihilation of pairs of nodes by a normalization step .
The goal is to use paths to walk through a net from any box root to either a weakening
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node, erasing it, or to the terminal node of the whole net or of a proof net inside the
box. Many canonical paths from the same box root means many contraction nodes that,
possibly, will duplicate the box. An example of maximal path is in Figure 6.

Definition 1 (Paths and Maximal Paths). Let Π ∈ PN(MS), u0 ∈ BΠ , un ∈ VΠ .
A path from u0 to un is a finite sequence of contexts τ = (C1, . . . , Cn) ∈ CΠ

∗ such
that (i) C1 = ((u0, u1), U1, b1) is initial, (ii) Cn = ((un−1, un), Un, bn), and (iii)
Ci �→Π Ci+1, for every 1 ≤ i ≤ n − 1. Moreover, we say that τ is maximal whenever
Cn is final.

Also, τ will denote the sequence (u0, u1 . . . , un−1, un) of nodes a path of contexts
passes through. Notice that all the contexts in a path are canonical.

o

I

�L

�L

Cut I I

�R Y

�R Po

Po ∀R

I Π

�L

∀L I

Pi Pi

(e,+)

(e,+)

(e a,−)(e o,+) (e,+)

(e a o,−)(e o o,+)

(e a o,−)(e o o,+) (e,+)

(e a,−)(e o,+) (r (e),+)

(e,+)

(e,+)

Fig. 6. An example of maximal path

Definition 2 (Number of Paths). Let Π ∈ PN(MS), and b ∈ BΠ . RΠ(b) is the
number of maximal paths from b to some v ∈ VΠ . It is called number of paths of b.

Lemma 1 (Number of Copies). Let Π →∗
d Σ, b ∈ Bd

Π and Θ the proof net inside b at
depth d + 1. Then, in Σ, there are at most RΠ(b) equal residuals (“copies”) of Θ.

So, sometimes we will call number of copies of Π the number RΠ(b). The proof gen-
eralizes the work of [4].
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Canonical Reductions. A reduction sequence Π = Π0 →∗ Π ′
0 →∗ Π1 →∗ Π ′

1 →∗

. . . →∗ Π ′
∂ →∗ Π∂+1 →∗ Σ is canonical if ∂ = ∂(Π), Πi →∗

i Π ′
i , reducing all the

linear norm. steps at level i, Π ′
i →∗

i Πi+1, reducing all the polynomial norm. steps at
level i, and Π∂+1 →∗ Σ, reducing all the garbage steps. The coming lemmas will imply
Proposition 1. Firstly, a generalization of the polynomial soundness in [2], provable by
induction on l, is:

Lemma 2 (Canonical Reductions Are The Worst Ones). Let Π be a proof net. For
every reduction σ : Π = Π0 → Π1 → . . . → Πl = Σ there exists another reduction
τ : Π = Π ′

0 → Π ′
1 → . . . → Π ′

l′ = Σ such that (i) τ is canonical, (ii) l′ ≥ l, and (iii)
max{s(Π ′

i) | i ≤ l′} ≥ max{s(Πj) | j ≤ l}. Moreover, if σ is a reduction performed
in some subsystem P , then also τ is performed in P .

Lemma 3 (A Condition for Polynomiality). Let P ⊆ MS. Let us assume that for
every ∂ ∈ N there exist two polynomials p∂(x), q∂(x) such that, for every Π ∈ PN(P)
with ∂(Π) ≤ ∂ and for every d ≤ ∂(Π), [Π ]d ≤ p∂(s(Π)) and ‖Π‖d ≤ q∂(s(Π)).
Then P ∈ PMS.

Proof. The result holds for canonical reductions because iterating ∂ times a polynomial
still gives a polynomial. Then, Lemma 2 implies the thesis. �

Weight for the proof nets. Td(Π) is
∑

u∈V d
Π

Td(Π,u), where1:

Td(Π,u) def=

⎧⎪⎨⎪⎩
1 u ∈ {I, Cut, WM (n),Pi(m), i,o}
3 u ∈ {⊗L,⊗R,∀L, ∀R,�L,�R,Yq(m, n)}
2 · (PΠ(u) + 1) ·RΠ(u)2 u ∈ {Po(m)}.

Lemma 4 (The Weight bounds Time and Space). Let Π be a proof net. (i) [Π ]d,
‖Π‖dd ≤ Td(Π), and (ii) ‖Π‖di ≤ si(Π) · Td(Π). So, we also have ‖Π‖d ≤ s(Π) ·
Td(Π).

Proof

(i) Let us consider a reduction Π →n
d Σ. A case analysis on cuts shows that Td(·)

strictly decreases during reduction. So n ≤ Td(Π). Since every node has weight at
least 1, sd(Π) ≤ Td(Π). So ‖Π‖dd ≤ Td(Π).

(ii) Let us consider a reduction Π →∗
d Σ and fix a level i > d. For every u node

at level i, inside a box b ∈ Bd
Π , at most RΠ(b) copies of u will appear in Σ

(Lemma 1). Let b1, . . . , bk be all the boxes at level d, and S1, . . . , Sk their sizes at
level i. Then, ‖Π‖di ≤ S1 · RΠ(b1) + . . . + Sk · RΠ(bk) ≤ si(Π) · Td(Π), since
RΠ(bi) ≤ Td(Π, bi). �

Proposition 1 (Polynomially bounded RΠ implies Ptime). Let P ⊆ MS. Let us as-
sume there exists a polynomial r(x) such that, for every proof net Π of P and for every
box b ∈ BΠ , RΠ(b) ≤ r (s(Π)). Then, P ∈ PMS.

1 We adapt the modified weight in [4]. We notice that we might have chosen a simpler definition
of weight, for example with Td(Π,u) = 1, for every node, but Po(m). However, we plan to
generalize MS with unconstrained wakening. So, we adopt a more flexible definition than the
one strictly required.
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Proof. Algebraic manipulations show that Td(Π) ≤ 3 sd(Π)+2 sd(Π)·
∑

b∈Bd
Π

RΠ(b)
≤ 3 s(Π) + 2 s2(Π) · r(s(Π)). Lemma 4 and Lemma 3 imply the statement. �

The sufficient condition for ptime we prove relies on the technical notion of spindle, a
particular configuration of nodes. Too many spindles composed in a proof net of some
P ⊆ MS may lead to exponential blow up.

Definition 3 (Spindles). Let Π ∈ PN(P), u ∈ VΠ be a contraction, b be a Box Out
node, and d another node (possibly b = d), with ∂(u) = ∂(b) = ∂(d). Let τ, ρ, χ
be three paths such that: (i) both τ and ρ connect u to b, (ii) τ starts from one of the
conclusions of u, and ρ from the other one, (iii) no other paths exist connecting u to b,
(iv) χ (possibly empty) is between b and d. The subgraph Σ that contains all and only
the nodes of τ, ρ, χ is a spindle between u and d.2

Definition 4 (Chains of Spindles). Let u1, . . . , ur be contractions and d1, . . . , dr other
nodes of Π ∈ PN(P), all at the same depth. Let us assume that, for every i ≤ r, both
there is a spindle Σi between ui and di, and di is connected through an edge to ui+1. The
subgraph Σ that contains all the nodes and edges of Σ1, . . . , Σr is a chain of spindles
between u1 and dr of length |Σ| = r. Σ is dangerous if its initial and final edges are
labeled by two formulae !iA and !iB.

d Box-in or Y

Y

b

Y

Y

!nB

u

!mA

τ ρ

χ

d

Y

Y

Y

u

Fig. 7. An example: a spindle and a chain of spindles, both between u and d

If Σ is a dangerous chain of r spindles with both initial and final edges labeled by !iA,
using the Cut building-rule scheme, Σ can compose with itself an arbitrary number L
of times, yielding a chain ΘL of spindles with length r · L.

2 Point (iii) is equivalent to “τ and ρ share only the node u and the box b, up to linear reduc-
tions.”
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Lemma 5 (Bounding the Chains limits the Number of Paths). Let P ⊆ MS. Let us
assume that every chain of spindles inside a proof net Π ∈ PN(P) cannot be longer
than L, for some fixed L ∈ N. Then, there is a polynomial p(x) such that RΠ(b) ≤
p (s(Π)), for every Π ∈ PN(P), and b ∈ BΠ .

Proof. Let b be a fixed box at depth d in Π .
1. We want to classify the links u ∈ V d

Π in classes that we call class-0, class-1, class-2,
. . . according to how many consecutive spindles there are between b and u. Let us
consider all the possible paths τ between b and u. Let us call Σu

b the sub-graph
that contains all the nodes of all the τ ’s. Let us consider all the possible chains
of spindles Φu

b , Ψ
u
b , . . . , Ωu

b whose nodes are among the nodes of Σu
b . u is class-

i if i = max {|Φu
b | , |Ψu

b | , . . . , |Ωu
b |}. Notice that there are at most L + 1 classes

(0, . . . , L) by hypothesis. Also, notice that some links may remain unclassified (e.g.
the links that cannot be reached from u).

2. Let mi be the number of Contractions of class-i (they are all at depth d), and m =
m0 + . . . + mL. We observe that m ≤ sd(Π).

3. For 0 ≤ i ≤ L, let Πi be the sub-graph containing all and only the class-j nodes,
for every j ≤ i.

4. By definition, a path τ starting from b is maximal relatively to Πi if there exists a
maximal path τ ′ starting from b whose intersection with Πi is exactly τ .

5. We call Ri, for 0 ≤ i ≤ L, the number of paths starting from b and maximal
relatively to Πi. The definitions imply RΠ(b) = RL.

We prove that Ri ≤
∏i

j=0 (mj + 1) by induction on i. Two paths separate when we
traverse a contraction node, but never crossing ⊗L or ⊗R nodes, which, instead, force
to go in one specific direction. In Π0 there are no spindles, meaning R0 ≤ m0 + 1. By
induction, let Ri−1 ≤

∏i−1
j=0 (mj + 1). Then, the paths maximal relatively to Πi are at

most Ri ≤ Ri−1 · (mi + 1) ≤
∏i

j=0 (mj + 1). So, RΠ(b) = RL ≤
∏L

j=0(mi + 1) ≤
s(Π)L+1. �

Some comments on the strategy we use to prove Lemma 5 are worth doing. Let b ∈ Bd
Π

be the box and Σ be the graph we deal with in the proof just concluded. The goal of
the proof is to find a bound on the number of copies of b, produced by Π →∗

d Σ. The
intuition driving the proof strategy lies on the observation that the number of copies
of b depends, essentially, on both a vertical and a horizontal component. The vertical
component is the number of consecutive spindles that we can have moving upward in
Σ, starting from b. Instead, if a spindle exists between b and some node u, then the
horizontal component counts all the paths from b to u external to any spindle from b
to u. Specifically, the proof of Lemma 5 shows that the reduction time is more affected
by the vertical component than by the horizontal one. The reason is that the horizontal
component can be bounded by sd(Π), at least restricting to some right u’s, as we do.

Proposition 1 and Lemma 5 imply:

Proposition 2 (Bounded Chains imply Ptime). Let P ⊆ MS. Let us assume that every
chain of spindles inside a proof net Π ∈ PN(P) cannot be longer than L, for some
fixed L ∈ N. Then P ∈ PMS.



318 L. Roversi and L. Vercelli

Proposition 3 (The absence of Dangerous Chains imply Ptime). If the number of
modalities that occur in the instances of the building-rule schemes that define P ⊆ MS
is finite, and no dangerous chain of spindles can occur in any Π ∈ PN(P), then
P ∈ PMS.

Proof (of Proposition 3). Let M be the number of modalities of P . Proposition 2
implies the thesis, if we prove P only builds chains of spindles at most M long. By
contradiction, let P build a chain of r > M spindles, whose spindles begin with the
contractions u1, . . . , ur. By the pigeons-hole principle, at least two contractions ui and
uj share the same input label. If Σ is the chain of spindles between ui and uj , Σ is
dangerous, yielding a contradiction. �

4 Linear Time and Space Subsystems in MS

Here we want to usefully exploit MS. We define a partial order (LTS,≤LTS), and a
family

{
PM

LTS
| M ∈ N

}
of subsystems of MS, such that, for every fixed M : (i) PM

LTS

has at most M modalities, (ii) PM
LTS

contains proof nets that normalize in linear time
and space, and (iii) the first M Church numerals together with a successor, a sum and a
function which, essentially, is a predecessor exist as proof nets of PM

LTS
. So, every PM

LTS

strictly extends the expressiveness of Multiplicative Linear Logic (MLL), whose proof
nets, recall, have linear time and space complexity as well.

The partial order (LTS,≤LTS). (LTS,≤LTS) is a partial order with LTS as carrier and
≤LTS as order relation. The antireflexive restriction of ≤LTS is <LTS. We write x  
LTS y

whenever x, y cannot be compared under ≤LTS. x ↑z y means both that x  
LTS y and
that x, y <LTS z. x � y denotes the greatest lower bound (glb) of x, y ∈ LTS under
≤LTS. (LTS,≤LTS) is such that, for every x, y ∈ LTS: (i) there is ⊥ ∈ LTS such that
⊥ ≤LTS x, and (ii) if x ↑z y, for some z, then x � y = ⊥.

The family
{
PM

LTS
| M ∈ N

}
. Let x0 = ⊥, x1, . . . , xM be distinct elements of LTS.

PM
LTS

is a subsystem of MS whose modal rules, in Figure 8, only use the modalities
!0 = §, !1, . . . , !M .

The structure of (LTS,≤LTS) might look somewhat “overdimensioned” w.r.t. the sys-
tem we finally obtain. However, intuitively, a system which is linear time and space
sound, and which is not the multiplicative fragment of Linear Logic, necessarily re-
quires a careful control over the ways we can compose structure, the goal being forbid-
ding any situation where the size grows too much. Specifically, (LTS,≤LTS) rules out
chains of spindles of length > 1. So, every PM

LTS
is ptime thanks to Proposition 2. The

more, we can prove:

P0(0∗) Pm0 (m1, . . . ,mk) whenever ⊥ � xm0 ≤LTS xm1 , . . . , xmk

Yk(0, j) whenever xj <LTS xk Yk(i, j) whenever xi ↑xk xj

W(i) for every xi ∈ LTS

Fig. 8. The modal rules of PM
LTS, with m0, . . . , mk ∈ {1, . . . , M}
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Proposition 4 (Linear Time and Space Soundness of PM
LTS

.). Let PM
LTS

be given.
There exist k1, k2 such that, for every Π ∈ PN

(
PM

LTS

)
, ‖Π‖ ≤ k1 · s(Π) and [Π ] ≤

k2 · s(Π).

Proof. Let b be a box at depth d in Π . We recall that the paths outgoing b split only in
Contraction nodes. Also, we observe that they can build only spindles entering a §-box,
and that paths, entering a §-box, cannot split anymore, since § never labels the premise
of a contraction. So, the paths form a binary tree rooted at b. Finally, the modalities
labelling edges along a path decrease. So, no more than M contractions may lie on a
single path, and we get RΠ(b) ≤ 2M ($). Now, we recall that Td(Π) strictly decreases
during the normalizations at level d. So:

Td(Π) ≤ 3 s(Π)+2
∑

b∈Bd
Π

(PΠ(b) + 1)·RΠ(b)2 ≤ 3 s(Π)+2·22M
∑

b∈Bd
Π

(PΠ(b) + 1) ≤ s(Π)
(
3 + 22M+1

)

the first and third inequalities holding thanks to algebraic manipulations, and the second
one thanks to ($). So, [Π ]d, ‖Π‖dd are linear in s(Π) because of Lemma 4.(i). However,
for i > d, the bound ‖Π‖di ≤ si(Π) · Td(Π) implied by Lemma 4.(ii) is too high. To
lower it, recall that if u is a link at level i > d, inside a box b at level d, u can be copied
at most RΠ(b) ≤ 2M times: ‖Π‖di ≤ 2M · si(Π) is linear, as well as ‖Π‖d. The final
statement follows from composing, level by level, the obtained bounds. We obtain the
constants k1, k2 that depend on M and ∂(Π). �

Concerning Proposition 4, M limits the height of the chains we build, level by level, in
the course of the normalization. An arbitrary M would yield a polynomial size bound,
because the (level by level) size of the proof net would replace M as bound on the
length of consecutive contractions.

Church numerals. The type of a Church numeral n can be iCN ≡ ∀α.!i(α� α)�
§(α� α), for every i ∈ {0, . . . ,M}. The spine in Figure 9(a) is the usual key structure
to represent a Church numeral m as a proof net, like, for example, in LAL.

The sums. A type for the sum can be jCN � iCN � kCN, whenever xj ↑xk xi.
Figure 9(b) shows its proof net. It takes m and n to yield m + n. A further type for the
proof net summing two Church numerals can be jCN� iCN� kCN, for every j, i
such that xj ≤LTS xi, or xi ≤LTS xj , and xj , xi <LTS xk. The final proof net would be
analogous to the one in Figure 9(b).

A “moral” Predecessor. Every i ∈ PM
LTS

contains a proof net with type iCN �
(∀α.!i(α� α) � §(α� ((α� α) ⊗ α))), taking n to yield a proof net of type
(∀α.!i(α� α) � §(α� ((α� α) ⊗ α))). The second element of the pair in the
result would essentially correspond to n − 1. We cannot get exactly n − 1 because we
lack the unconstrained weakening. Like in LAL, weakening would allow to erase the
first element. Recall that we have ruled out unconstrained weakening from PMS, in
order to keep this introductory work as simple as possible.
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WM (i1)

Y

Y

Y

§(α�α)

!i1 (α�α)

§(α�α)

§(α�α) !
im−1 (α�α)

!im (α�α)

(a)

o

�R

�R

∀R

�R

§R

�R

I

�L I

�L I

§L §L

�L �L

∀L I ∀L I

Y

jCN�iCN�kCN (xj↑xk xi)

iCN�kCN

kCN

!k(α�α)�§(α�α)

§(α�α)

α�α

α

α

α

α

α�α

!j(α�α) !i(α�α)

!j(α�α)�§(α�α) !i(α�α)�§(α�α)

!k(α�α)

(b)

Fig. 9. (a) A spine of contractions inside a Church numeral. (b) The Sum between two Church
numerals.

5 Conclusions and Further Work

We introduce MS, that we want to use as a framework to find deductive systems that,
under the proof-as-programs analogy, only develop strongly polynomial time com-
putations, and that, thanks to their multimodal nature, can be reasonably expressive.
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Concerning strong polynomial time soundness, currently, we can supply a sufficient
condition on subsystems of MS. Concerning expressiveness, we can show how to ex-
ploit multimodality to set a linear time and space sound subsystem of MS, which strictly
extends MLL.

Active and future work can develop in many directions.
Certainly, it will be necessary to investigate the conditions under which the subsys-

tems we can obtain from MS enjoy good computational properties, like confluence, for
example.

However, we think that, currently, the most stimulating directions are the following
ones.

We look for a ptime soundness criterion. In fact, we expect that the inverse of Propo-
sition 3 holds as well.

Also, we want to exploit the expressiveness that seems implicitly supplied by the
multimodality. “Playing” with the modalities, we are currently defining subsystems
whose iteration schemes are more expressive that those we can represent in LAL. The
least goal is to reformulate, at least in part, the results claimed in [7], or, symmetrically,
to extend the results of [11].

We want to characterize maximal subsystems of MS. The intuition can be given
by a simple example. The relevant fragment of LAL corresponds to a subsystem PLAL

with K = {Y1(1, 1), P1(1?), P2(1∗, 2∗)} as modal rules. We can extend K as K ∪
{Y1(1, 2),Y1(2, 2)}, which, interestingly enough, is still strongly ptime thanks to
Proposition 3. Namely, PLAL is not maximal w.r.t. ptime.

Finally, we want to relate the class
{
PM

LTS
| M ∈ N

}
with the polynomial time and

non-size-increasing system in [12]. The conjecture is that we can embed (at least) an
additive-pair free fragment of it, with only boolean lists, simultaneously giving a proof-
theoretical meaning to the type 1.

References

1. Girard, J.Y.: Linear Logic. Theo. Comp. Sci. 50, 1–102 (1987)
2. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Trans. Comput. Log. 3(1),

137–175 (2002)
3. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
4. Dal Lago, U.: Context semantics, linear logic and computational complexity. In: LICS 2006,

pp. 169–178. IEEE, Los Alamitos (2006)
5. Leivant, D., Marion, J.Y.: Lambda-calculus characterisations of polytime. Fund. Inf. 19, 167–

184 (1993)
6. Leivant, D.: Predicative recurrence and computational complexity i: word recurrence and

poly-time. Feasible Mathematics II, 320–343 (1994)
7. Roversi, L.: Weak Affine Light Typing is complete with respect to Safe Recursion on Nota-

tion. Technical Report 104/08, Dipartimento di Informatica, Torino, C.so Svizzera, n.185 —
10149 Torino — Italy (April 2008)

8. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Technical report
(January 2008), http://arxiv.org/abs/0801.1253v1

9. Masini, A.: 2-Sequent Calculus: Intuitionism and Natural Deduction. J. Log. Comput. 3(5),
533–562 (1993)

http://arxiv.org/abs/0801.1253v1


322 L. Roversi and L. Vercelli

10. Martini, S., Masini, A.: On the fine structure of the exponential rule. In: Girard, J.Y., Lafont,
Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 197–210. Cambridge University Press,
Cambridge (1995)

11. Murawski, A.S., Ong, C.H.L.: On an interpretation of safe recursion in light affine logic.
Theor. Comput. Sci. 318(1-2), 197–223 (2004)

12. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Inf. and
Comp. 183, 57–85 (2003)



Author Index

Ancona, Davide 1
Asperti, Andrea 19

Barras, Bruno 32
Bertot, Yves 220
Betarte, Gustavo 49

Corbineau, Pierre 32
Crespo, Juan Manuel 49

de Vrijer, Roel 64

Endrullis, Jörg 64
Ernst, Erik 83
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