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Preface

It is our great pleasure to introduce the proceedings of the 20th anniversary
edition of the Annual Symposium on Combinatorial Pattern Matching (CPM).
The meeting was held in Lille, France, hosted by the Laboratoire d’Informatique
Fondamentale de Lille (LIFL) affiliated with the Université de Lille 1 and the
French Centre National de Recherche Scientifique (CNRS), as well as by INRIA
Lille - Nord Europe.

Started in 1990 as a summer school with about 30 invited participants, CPM
quickly evolved into a representative annual international conference. Principally
motivated by combinatorial algorithms for search problems in strings (texts,
sequences), the scope of CPM extended to more complex data structures such
as trees, graphs, two-dimensional arrays, or sets of points. Those studies resulted
in a rich collection of algorithmic techniques and data structures, making bridges
to other parts of the theory of discrete algorithms and algorithm engineering.
Today, the area of combinatorial pattern matching is a well-identified active
subfield of algorithmic research.

Importantly, this development has been fertilized by a number of major ap-
plication areas providing direct motivations and fruitful feedback to the CPM
problematics. Those applications include data compression, computational biol-
ogy, Internet search, data mining, information retrieval, coding, natural language
processing, pattern recognition, music analysis, and others. On the one hand, all
these areas make use of combinatorial pattern matching techniques and, on the
other hand, raise new pattern matching problems. For example, the fast progress
in computational molecular biology, triggered in the 1990s by the availability of
mass genomic data, considerably influenced the combinatorial pattern matching
field: as an illustration, about one-third of the papers presented in this volume
deal with problems related to bioinformatics applications.

In 2009, the Combinatorial Pattern Matching symposium celebrated its 20th
anniversary. Previous CPM meetings were held in Paris, London (UK), Tuc-
son, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick,
Montreal, Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London
(Canada), and Pisa. Starting from the third meeting, proceedings were published
in the LNCS series, volumes 644, 684, 807, 937, 1075, 1264, 1448, 1645, 1848,
2089, 2373, 2676, 3109, 3537, 4009, 4580, and 5029. Selected papers from the first
meeting in 1990 appeared in volume 92 of Theoretical Computer Science, from
the 2000 meeting in volume 2 of Journal of Discrete Algorithms, from the 2001
meeting in volume 146 of Discrete Applied Mathematics, from the 2003 meeting
in volume 3 of Journal of Discrete Algorithms, from the 2004 meeting in volume
368 of Theoretical Computer Science and from the 2005 meeting in volume 5
of Journal of Discrete Algorithms. Selected papers from the 2008 edition are to
appear in Theoretical Computer Science.



VI Preface

To mark the 20th anniversary of CPM, all Program Committee (Co-)Chairs
of previous editions of CPM were invited to serve on the 2009 Program Com-
mittee. This resulted in a committee of 31 members including many prominent
researchers in the area. Moreover, the proceedings open with a special invited
contribution entitled “CPM’s 20th Anniversary: A Statistical Retrospective,”
tracing the history of the symposium and providing a collection of statistical
data and factual information about all the 20 editions of CPM and the pre-
sented contributions.

The Program Committee received 63 valid submissions. Each submission was
reviewed independently by three committee members, possibly assisted by ex-
ternal reviewers. About 70 external reviewers provided their expertise; they are
listed on the pages that follow. The selection process resulted in 27 accepted
papers, corresponding to an acceptance rate of about 43%. The Program Com-
mittee decided to grant two awards to selected papers: a Best Paper Award and
a new Best Student Paper Award. We would like to thank the members of the
Program Committee who worked very hard to ensure the timely review of all
the submitted manuscripts and participated in the selection process.

The conference program also included three invited talks by Christos Falout-
sos (Carnegie Mellon University), Roberto Grossi (University of Pisa), and Ravi
Kumar (Yahoo! Research), who graciously accepted the Program Committee’s
invitation.

We are indebted to the members of the Steering Committee for their advice
and tremendous help in different issues. On behalf of the entire CPM commu-
nity, we would like to express our gratitude to the institutional sponsors who
provided support to CPM 2009. These include the Laboratoire d’Informatique
Fondamentale de Lille (UMR CNRS 8022), Université Lille 1, Région Nord-Pas
de Calais, GDR Bioinformatique Moléculaire, INRIA Lille - Nord Europe, Ya-
hoo! Research, and the University of Helsinki. The whole submission and review
process was carried out with the help of the EasyChair system. Finally, we thank
the local organization team headed by Hélène Touzet for carrying out all the la-
borious work that made the meeting possible.

March 2009 Gregory Kucherov
Esko Ukkonen
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Dan Gusfield University of California, Davis, USA
Daniel Hirschberg University of California, Irvine, USA
Costas Iliopoulos King’s College London, UK
John Kececioglu University of Arizona, USA
Gregory Kucherov (Co-chair) CNRS, France
Gad Landau University of Haifa, Israel
Moshe Lewenstein Bar-Ilan University, Israel
Stefano Lonardi University of California, Riverside, USA
Bin Ma University of Waterloo, Canada
S. Muthukrishnan Google Inc., New York, USA
Eugene Myers Howard Hughes Medical Institute, USA
Kunsoo Park Seoul National University, Korea
Mike Paterson University of Warwick, UK
Wojciech Rytter Uniwersytet Warszawski, Poland
S. Cenk Sahinalp Simon Fraser University, Canada
David Sankoff University of Ottawa, Canada
Masayuki Takeda Kyushu University, Japan
Hélène Touzet Université Lille 1 and INRIA, France
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CPM’s 20th Anniversary: A Statistical Retrospective

Elena Yavorska Harris1, Thierry Lecroq2,
Gregory Kucherov3, and Stefano Lonardi1

1 Dept. of Computer Science – University of California – Riverside, CA, USA
2 University of Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

3 CNRS (LIFL, Lille and J.-V.Poncelet Lab, Moscow) and INRIA Lille – Nord Europe

1 Introduction

This year the Annual Symposium on Combinatorial Pattern Matching (CPM) celebrates
its 20th anniversary. Over the last two decades the Symposium has established itself as
the most recognized international forum for research in combinatorial pattern match-
ing and related applications. Contributions to the conference typically address issues of
searching and matching strings and more complex patterns such as trees, regular ex-
pressions, graphs, point sets, and arrays. Advances in this field rely on the ability to
expose combinatorial properties of the computational problem at hand and to exploit
these properties in order to either achieve superior performance or identify conditions
under which searches cannot be performed efficiently. The meeting also deals with com-
binatorial problems in computational biology, data compression, data mining, coding,
information retrieval, natural language processing and pattern recognition.

The first edition of CPM was held in Paris in July 1990, and gathered about thirty
participants. Since then the conference has been held every year, usually in June or
July. Thirteen countries, over three continents, have hosted it (see Table 1). The “seed”
of CPM can be traced back to a NATO-ASI Workshop in Maratea, Italy organized
by Z. Galil and A. Apostolico. The volume collecting the contributions presented at
the workshop [1] defined perhaps for the first time the scope of this research area,
sometimes referred to as “stringology”. The intent of the first two editions of CPM was
to reconnect with the participants and to the spirit of the NATO-ASI meeting in Maratea.
CPM’90 and CPM’91 were organized like schools with neither submission/refereeing
process nor proceedings. For CPM’92, however, NSF funding was contingent upon
having a Program Committee and printed proceedings, so the Symposium was born.

Selected papers from the 1990 meeting were published in a special issue of Theo-
retical Computer Science [2]. Since 1992, submitted papers have been peer-reviewed
and accepted contributions have been published in Lecture Notes in Computer Science
(Springer-Verlag). CPM proceedings have been published in the LNCS series, volumes
644 [8], 684 [9], 807 [10], 937 [11], 1075 [12], 1264 [13], 1448 [14], 1645 [15], 1848
[16], 2089 [17], 2373 [18], 2676 [19], 3109 [20], 3537 [21], 4009 [22], 4580 [23], and
5029 [24].

The practice of inviting a selected subset of the accepted papers for journal publi-
cation was resumed with the 11th meeting which appeared in volume 2 of Journal of
Discrete Algorithms [5]. Then again, papers from the 12th meeting in volume 146 of
Discrete Applied Mathematics [3], from the 14th meeting in volume 3 of Journal of

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 1–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 E.Y. Harris et al.

Table 1. Locations, dates, program chairs, and number of PC members for all CPM editions

Date Location Chair(s) |PC|
1990, July 9-13 Paris, France M. Crochemore N/A
1991, April 17-19 London, UK C.S. Iliopoulos N/A
1992, April 29 - May 1 Tucson, AZ, USA U. Manber 10
1993, June 2-4 Padova, Italy A. Apostolico 10
1994, June 5-8 Asilomar, CA, USA M. Crochemore, D. Gusfield 10
1995, July 5-7 Helsinki, Finland Z. Galil, E. Ukkonen 10
1996, June 10-12 Laguna Beach, CA, USA D. Hirschberg, Z. Galil 12
1997, June 30 - July 2 Aarhus, Denmark A. Apostolico, J. Hein 12
1998, July 20-21 Piscataway, NJ, USA M. Farach, U. Manber 15
1999, July 22-24 Warwick, UK M. Crochemore, M. Paterson 15
2000, June 21-23 Montréal, Canada R. Giancarlo, D. Sankoff 14
2001, July 1-4 Jerusalem, Israel A. Amir, G. Landau 20
2002, July 3-5 Fukuoka, Japan A. Apostolico, M. Takeda 17
2003, June 25-27 Morelia, Michocán, Mexico R. Baeza-Yates, E. Chavez,

M. Crochemore
19

2004, July 5-7 Istanbul, Turkey U. Dogrusoz, S. Muthukrish-
nan, S. C. Sahinalp

16

2005, June 19-22 Jeju Island, Korea A. Apostolico, M.
Crochemore, Kunsoo Park

20

2006, July 5-7 Barcelona, Spain M. Lewenstein, G. Valiente 19
2007, July 9-10 London, Ontario, Canada K. Zhang, B. Ma 26
2008, June 18-20 Pisa, Italy G. M. Landau, P. Ferragina 27
2009, June 22-24 Lille, France G. Kucherov, E. Ukkonen 31

Discrete Algorithms [4], from the 15th meeting in volume 368 of Theoretical Computer
Science [7] and from the 16th meeting in volume 5 of Journal of Discrete Algorithms
[6]. Selected papers from CPM’08 are expected to appear this year in Theoretical Com-
puter Science.

A total of 127 individuals has served in the 18 program committees (including 2009).
The size of the PC has increased from ten in the first few years to a record thirty-one
for 2009. For the twentieth anniversary of CPM all previous PC chairs were invited to
serve as PC members.

2 Submitted Papers and Acceptance Rates

A total of 460 peer-reviewed papers have been published in the conference proceedings
up to 2008 (including the TCS special issue for CPM’90). While the number of accepted
papers has been relatively stable over the years, the number of submitted papers to the
Symposium varied greatly (see Table 2). The maximum number of submission (129)
was recorded for CPM’05 held in Korea, and the minimum (26) was reached in 1999.
From 1992 to 2009, a total 988 papers have been submitted to CPM.
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Table 2. Number of accepted and submitted papers, acceptance ratio, number of authors, number
of new authors, and average number of authors per paper

Accepted Submitted Ratio % Authors New Avg authors/paper
1992 22 39 56.4 43 38 2.04
1993 19 34 55.9 33 16 1.89
1994 26 41 63.4 52 38 2.15
1995 29 44 65.9 52 35 2.03
1996 28 48 58.3 61 34 2.28
1997 20 32 62.5 51 33 2.6
1998 17 49 34.7 42 22 2.52
1999 21 26 80.8 44 27 2.43
2000 29 44 65.9 64 38 2.03
2001 22 35 62.9 46 23 2.5
2002 23 37 62.2 58 33 2.78
2003 28 57 49.1 63 36 2.36
2004 36 79 45.6 95 62 2.94
2005 37 129 28.7 98 63 2.73
2006 33 88 37.5 82 38 2.67
2007 32 64 50 84 36 2.91
2008 25 78 32.1 67 27 2.84
2009 27 63 42.9 84 35 3.11

While the average acceptance rate is about 56%, the spread of the distribution is
quite wide. The lowest acceptance rate (29%) was recorded in 2005, the highest (81%)
was reached in 1999. Table 2 shows the number of submitted papers and the acceptance
rates over the years.

3 Conference Proceedings: An Analysis of Authorship

A total of 597 distinct authors have published peer-reviewed papers in the conference
proceedings (including the TCS special issue for CPM’90). Out of these, 393 authors
have published only once in the proceedings. There are 97 authors that published twice,
40 authors with three papers, and 25 authors with four. Authors that published more
than five papers in CPM are listed in Table 3. While every effort was made to normalize
the names of the author throughout the years, inaccuracies might be still present which
might bias the statistics.

Table 2 reports the average number of authors for each CPM edition with proceed-
ings published in LNCS. Note that the average is clearly increasing – it was about two
authors/paper in the early nineties, and it is currently approaching an average of three
authors. The increase in the number of authors is a general trend in the Sciences and
has been observed in several disciplines.

We have also carried out an analysis of new authors in each CPM edition. We counted
an author to be “new” if he or she had never published in CPM before. Table 2 shows
that each year a large fraction of the authors publishing papers in CPM are first-timers.
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Table 3. Authors with more than five papers in the CPM proceedings

Author CPM papers Author CPM papers
Gonzalo Navarro 25 Tao Jiang 7
Kaizhong Zhang 15 Dong Kyue Kim 6
Amihood Amir 12 Ely Porat 6
Gad Landau 12 Jens Stoye 6
Kunsoo Park 12 John Kececioglu 6
Leszek Ga̧sieniec 10 Jorma Tarhio 6
Masayuki Takeda 10 Juha Kärkkäinen 6
Wojciech Rytter 10 Mathieu Raffinot 6
Bin Ma 9 Ming Li 6
Costas Iliopoulos 9 William Smyth 6
Veli Makinen 9 Wojciech Szpankowski 6
Maxime Crochemore 9 Eugene Myers 6
Ayumi Shinohara 8 Dekel Tsur 5
Michal Ziv-Ukelson 8 Mireille Régnier 5
Setsuo Arikawa 8 Rolf Backofen 5
Lusheng Wang 8 S. Muthukrishnan 5
Esko Ukkonen 7 Stéphane Vialette 5
David Sankoff 7 Tak-Wah Lam 5
Moshe Lewenstein 7 Tatsuya Akutsu 5
Pavel Pevzner 7 Wojciech Plandowski 5
Ricardo Baeza-Yates 7 Dan Gusfield 5

To evaluate the dependency between geographic location and contributions to CPM,
we looked at the country of affiliation of authors over the years. More specifically, we
counted how many papers have at least one author for a given country of affiliation.
The resulting graph is shown in Figure 1. It is interesting to note that some countries
have kept a somewhat steady stream of papers, e.g., Canada, France, UK, Chile. In
contrast, contributions from the US are showing a clear decline from the early nineties.
The number of papers from Israel have been showing a significant increase since 2002.

In order to further analyze the relationships between authors, we built the collabo-
ration network G = (V, E) where nodes in V correspond to authors, and (u, v) ∈ E
if u and v co-authored a paper in CPM. The graph has a total of 597 nodes and 946
edges, which results in an average degree of 3.18 edges. The resulting network has 114
connected components, of which 40 are single nodes, 39 are components of size 2, 17
of size 3, 10 of size 4 and one/two of size 5,6,7,9 and 11.

The largest connected component of the collaboration network is composed of 348
nodes (see Figure 2). In the figure, nodes and label sizes have been drawn proportional
to the node degree. There are four nodes with the degree 20 or more: Costas Iliopou-
los with 23 links, Amihood Amir with 21, Gonzalo Navarro with 21 and Gad Landau
with 20. A high resolution picture of the graph can be downloaded from http://
www.cs.ucr.edu/˜stelo/cpm/. We computed the graph diameter which is the
longest shortest path in the graph, the average clustering coefficient which measures the
extent to which vertices linked to any given vertex are also linked to each other, and the
characteristic path length which is the average shortest path distance between pairs of

http://www.cs.ucr.edu/~stelo/cpm/
http://www.cs.ucr.edu/~stelo/cpm/
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Fig. 1. Fraction of CPM papers which have at least one authors for a given country of affiliation

Fig. 2. The largest connected component of the CPM collaboration network. The size of each
node/label is proportional to its degree. A high resolution picture of this network can be down-
loaded from http://www.cs.ucr.edu/˜stelo/cpm/

vertices. The diameter of the largest connected component of the collaboration network
is 17 edges, the average clustering coefficient is 0.8, and the characteristic path length
is 6.49.

We have also computed central nodes for the largest connected component. Cen-
tral nodes are the ones which have the smallest average shortest path length to all the
other nodes. The top five central nodes are Maxime Crochemore (average shortest path
length 3.95389), Wojciech Rytter (4.04323), Costas Iliopoulos (4.12392), Wojciech
Plandowski (4.12392) and Leszek Ga̧sieniec (4.22767).
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Fig. 3. Frequency analysis of CPM paper titles using Wordle (http://www.wordle.net/)

4 Conference Proceedings: An Analysis of Titles

We carried out a simple analysis of the most frequent words contained in the titles over
the years. We considered only one occurrence of each term per title, and merged counts
for singular and plural. Not surprisingly, “matching”, ”algorithm” and “string” are the
most frequent terms, with 118, 92 and 81 occurrences, respectively. The word “pattern”
appears less frequently (56 times), but not as rarely as “combinatorial” which occurs
only three times! Figure 3 illustrates the frequency analysis using Wordle (http://
www.wordle.net/).

Other words that appear more than twenty times in titles are: tree (53), approximate
(48), problem (44), sequence (36), alignment (36), suffix (35), common (29), efficient
(27), distance (27), fast (26), time (24), compressed (23), text (22), linear (22), two (21),
multiple (21), and dimensional (20).

When searching for patterns composed by two words, the pairs “string-matching”
(50), “pattern-matching” (41) and “approximate-matching” (37) are the most frequent.
Other pairs that occur at least ten times are: algorithm-matching (28), approximate-
string (26), algorithm-string (22), suffix-tree (17), array-suffix (16), algorithm-tree
(16), common-subsequence (15), fast-matching (14), dimensional-matching (14),
dimensional-two (13), compressed-text (13), common-longest (13), matching-two
(12), linear-time (12), dimensional-pattern (12), alignment-multiple (12), algorithm-
problem (12), algorithm-pattern (12), algorithm-fast (12), algorithm-approximation
(12), longest-subsequence (11), alignment-sequence (11), algorithm-efficient (11),
expression-regular (10), compressed-matching (10), and algorithm-alignment (10).

We also looked at patterns composed by three words. Six patterns occurs at least ten
times, namely “approximate-matching-string” (24), “algorithm-matching-string” (12),
“dimensional-matching-two” (11), “dimensional-matching-pattern” (11), “common-
longest-subsequence” (11) and “algorithm-matching-pattern” (10). The most frequent
pattern composed of four terms is “dimensional-matching-pattern-two” (8). The two
most frequent patterns composed of five terms are “dimensional-matching-pattern-
rotation-two” (4) and “compressed-Lempel-matching-text-Ziv” (4).

http://www.wordle.net/
http://www.wordle.net/
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5 Conference Proceedings: An Analysis of Citations

Several papers that appeared in proceedings of CPM had a significant impact on the
field of computer science, and some are consider to be seminal works. We carried out
an analysis of the citation count for each of the 460 published articles using Google
Scholar. We should point out that Google Scholar provides merely an approximation
for the exact number of citations, and by no means our analysis or ranking should be
taken literally.

Table 4. Most cited CPM papers according to Google Scholar, as of Feb 2009. The counts are
the sum of the citations to the conference version and the corresponding journal version, if there
is one with the exact same title. ∗ refers to the journal version appeared in JCB 2001, with an
additional author (D. Sokol).

Author(s) Title Citations CPM Year
Esko Ukkonen Approximate string-matching with q-grams and maximal matches 235 1990
Eugene Myers A Fast Bit-Vector Algorithm for Approximate String Matching Based on

Dynamic Programming
172 1998

Pang Ko, Srinivas Aluru Space Efficient Linear Time Construction of Suffix Arrays 148 2003
Tao Jiang, Lusheng Wang, Kaizhong Zhang Alignment of Trees - An Alternative to Tree Edit 138 1994
Gad M. Landau, Jeanette P. Schmidt An Algorithm for Approximate Tandem Repeats 137∗ 1993
Toru Kasai, Gunho Lee, Hiroki Arimura, Set-
suo Arikawa, Kunsoo Park

Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications

135 2001

Esko Ukkonen Approximate String-Matching over Suffix Trees 125 1993
Dong Kyue Kim, Jeong Seop Sim, Heejin
Park, Kunsoo Park

Linear-Time Construction of Suffix Arrays 114 2003

Ricardo A. Baeza-Yates, Walter Cunto, Udi
Manber, Sun Wu

Proximity Matching Using Fixed-Queries Trees 113 1994

Anne Bergeron A Very Elementary Presentation of the Hannenhalli-Pevzner Theory 111 2001
John Kececioglu, David Sankoff Exact and Approximation Algorithms for the Inversion Distance Between

Two Chromosomes
108 1993

Udi Manber A Text Compression Scheme That Allows Fast Searching Directly in the
Compressed File

99 1994

Lucas Chi Kwong Hui Color Set Size Problem with Application to String Matching 93 1992
Sridhar Hannenhalli Polynomial-time Algorithm for Computing Translocation Distance between

Genomes
93 1995

John Kececioglu, David Sankoff Efficient Bounds for Oriented Chromosome Inversion Distance 92 1994
Vineet Bafna, Eugene L. Lawler, Pavel A.
Pevzner

Approximation Algorithms for Multiple Sequence Alignment 90 1994

Dominique Revuz Minimisation of acyclic deterministic automata in linear time 87 1990
Jotun Hein, Tao Jiang, Lusheng Wang,
Kaizhong Zhang

On the Complexity of Comparing Evolutionary Trees 86 1995

Dan Gusfield Haplotype Inference by Pure Parsimony 83 2003
John Kececioglu The Maximum Weight Trace Problem in Multiple Sequence Alignment 82 1993
Stefan Burkhardt, Juha Kärkkäinen Better Filtering with Gapped q-Grams 79 2001
William I. Chang, Jordan Lampe Theoretical and Empirical Comparisons of Approximate String Matching

Algorithms
78 1992

Ricardo A. Baeza-Yates, Chris H. Perleberg Fast and Practical Approximate String Matching 77 1992
Vineet Bafna, S. Muthukrishnan, R. Ravi Computing Similarity between RNA Strings 75 1995
William I. Chang, Thomas G. Marr Approximate String Matching and Local Similarity 74 1994
Archie L. Cobbs Fast Approximate Matching using Suffix Trees 69 1995
Gonzalo Navarro, Mathieu Raffinot A General Practical Approach to Pattern Matching over Ziv-Lempel Com-

pressed Text
69 1999

Jens Stoye, Dan Gusfield Simple and Flexible Detection of Contiguous Repeats Using a Suffix Tree 69 1998
Juha Kärkkäinen Suffix Cactus: A Cross between Suffix Tree and Suffix Array 67 1995
Steffen Heber, Jens Stoye Finding All Common Intervals of k Permutations 66 2001
Erkki Sutinen, Jorma Tarhio Filtration with q-Samples in Approximate String Matching 65 1996
Tzvika Hartman A Simpler 1.5-Approximation Algorithm for Sorting by Transpositions 65 2003
Gonzalo Navarro, Erkki Sutinen, Jani Tanni-
nen, Jorma Tarhio

Indexing Text with Approximate q-Grams 62 2000

Vincent A. Fischetti, Gad M. Landau,
Jeanette P. Schmidt, Peter H. Sellers

Identifying Periodic Occurrences of a Template with Applications to Protein
Structures

62 1992

Chia-Hsiang Chang, Robert Paige From Regular Expressions to DFA’s Using Compressed NFA’s 61 1992
Gautam Das, Rudolf Fleischer, Leszek
Ga̧sieniec, Dimitrios Gunopulos, Juha
Kärkkäinen

Episode Matching 60 1997
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Table 4 shows papers cited at least sixty times as of February 2009, according to
Google Scholar. We note that Google Scholar merges citations of both conference and
journal version of the same paper when both manuscripts share the same title. The
number of citations in the table reflects both conference version and the corresponding
journal version (if there is one). However, if the journal version was published with a
different title the citation counts are not added, which introduces a bias. The table also
includes the number of citations for the journal version of a paper by G. Landau and
J. Schmidt initially appeared in CPM’93, and later published with the same title but
with an additional author (D. Sokol) in J. Computational Biology.

The list in Table 4 includes 36 contributions ranging from CPM’90 to CPM’03. The
top ten most cited articles include two very recent papers on the construction of suffix
arrays in linear time. A cursory inspection of the titles in the table reveals a number
of contributions related to approximate string matching, selected problems in computa-
tional biology (genome rearrangement, haplotyping, multiple sequence alignment, and
repeat analysis), and tree matching/alignment, among others.

6 CPM Invited Speakers

Each year, two to five distinguished scientists are invited to deliver lectures at the con-
ference in a variety of fields. The list of speakers includes Alfred V. Aho (1990), Esko
Ukkonen (1990 and 2005), Alberto Apostolico (1990 and 1991), Maxime Crochemore
(1990 and 1991), Zvi Galil (1990, 1991 and 2001), Uzi Vishkin (1995 and 2001), H.
W. Mewes (1995), David Lipman (1996), Richard Arratia (1996), A. Dress (1997), J.
B. Kruskal (1997), Ken Church (1998), Mick Noordewier (1998), Joan Feigenbaum
(1999), David Jones (1999), Andrei Broder (2000), Fernando Pereira (2000), Ian H.
Witte (2000), Aviezri Fraenkel (2001), Rao Kosaraju (2001), Shinichi Morishita (2002),
Hiroki Arimura (2002), Vladimir Levenshtein (2003), J. Ian Munro (2003 and 2008),
Evan Eichler (2004), Martin Farach-Colton (2004), Paolo Ferragina (2004), Piotr Indyk
(2004), Eugene Myers (2004), Ming Li (2005), Naftali Tishby (2005), Amihood Amir
(2006), Eran Halperin (2006), Steven Skiena (2006), Tao Jiang (2007), S. Muthukr-
ishnan (2007), Frances Yao (2007), Daniel M. Gusfield (2008), Prabhakar Raghavan
(2008), Christos Faloutsos (2009), Roberto Grossi (2009), Ravi Kumar (2009).

7 CPM Funding

CPM has received support from a variety of sources, including Laboratoire d’Informati-
que Fondamentale de Lille, INRIA Lille Nord Europe, Université Lille 1, CNRS, Uni-
versity of Pisa, Yahoo! Research, University of Western Ontario, Fields Institute,
Department of Software - Technical University of Catalonia, Spanish Ministry of Edu-
cation and Science, Yahoo! Research Barcelona, Ministry of Science and Technology,
Korea, Seoul National University, SIGTCS of the Korea Information Science Society,
MNG, Center for Computational Genomics, DIMACS, Consejo Nacional de Ciencia y
Tecnologia, Universidad Michoacana, The Caesarea Edmond Benjamin de Rothschild
Foundation, Bar Ilan University, Haifa University, Université de Montréal, MATHFIT,
DIMACS, University of Aarhus, BRICS, National Research Foundation of Denmark,
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Fig. 4. Group photo of CPM’92 participants. Standing back (right to left): G. Benson, R. Baeza-
Yates, A. Hume, J. Knight, C. Burks, H. Berghel, A. Ehrenfeucht, D. Roach, U. Manber, M. Wa-
terman, R. Idury, A. Amir, G. Lawler, E. Port, W. Chang, M. Vingron, P. Pevzner, E. Ukkonen,
F. Olken, X. Xu, A. Apostolico, T. Lecroq, and G. Havas. Standing first row: B. Pittel, M. Jain,
D. Revuz, E. Myers, A. Schaffer, S. Seiden, D. Mehta, T. Choudhary, T. Cheung Ip, L. J. Cum-
mings, R. Irving, S. Kannan, J. Kececioglu, P. Kilpelainen, K. Zhang, S. Wu, L. Hui, T. Warnow,
and Y. D. Lyuu. Sitting second row: R. Paige, L. Rostami, J.Yong Kim, M. Farach, H. Wolfson,
G. Landau, J. Schmidt, G. Herrmannsfeldt, D. Sankoff, R. Hariharan, L. Toniolo, C. Soderlund,
D. Gusfield, and W. Szpankowski. Sitting first row: M. Crochemore, D. Joseph, X. Huang,
M. Régnier, D. Hirschberg, M. McClure, G. Lewandowski, T. Vasi, B. Baker, C. Fraser, and
P. Jacquet. On the floor: J. Oommen, G. Jacobson, and K. Phong Vo.

Fig. 5. Group photo of CPM’93 participants. Standing (left to right): A. Apostolico, T. Akutsu,
G. Landau, D. Breslauer, K. Zhang, O. Delgrange, J. Tarhio, ?, ?, M. Waterman, E. Norel, ?,
?, L. Toniolo, S. Muthukrishnan? , M. Crochemore, G. Gonnet, J. Kececioglu, H. Wolfson, ?,
M. Régnier, M. Frigo, W. Plandowski?, C. Iliopoulos, A. Lesk, L. Rostami, R. Baeza-Yates,
W. Szpankowski, P. Pevzner, E. Ukkonen , L. Ga̧sienec, ?. Sitting (left to right): ?, L. Colussi,
D. Naor, J. Schmidt, R. Giancarlo, ?, G. Bilardi, U. Manber, ?, ?, R. Irving, F. Tahi, E. Myers,
S. Abdeddaı̈m
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University of California – Irvine, Department of Information and Computer Science -
UCI, Irvine Research Unit on Computer Systems Design, Academy of Finland, Min-
istry of Education of Finland, University of Helsinki, National Science Foundation,
University of California – Davis, Padova Ricerche Consortium, National Science Foun-
dation, University of Arizona, PRC Mathématiques et Informatique.

8 Concluding Remarks

The twentieth edition of CPM in Lille provides an opportunity to reflect on CPM’s his-
tory and the impact of its research contributions to Computer Science. Most of scientists
that shaped the discipline of Combinatorial Pattern Matching are still very active in this
research area (see Figures 4 and 5 for a group photo of CPM’92 and CPM’93 par-
ticipants). At the same time, the community around CPM has grown enough to make
it a self-sustaining event, both financially and scientifically. We are certainly looking
forward to the next twenty years!
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Abstract. In this paper, the optimality proof of Lempel-Ziv coding is
re-studied, and a much more general compression optimality theorem is
derived. In particular, the property of quasi-distinct parsing is defined.
This property is much weaker than distinct parsing required in the origi-
nal proof, yet we show that the theorem holds with this weaker property
as well. This provides a better understanding of the optimality proof of
Lempel-Ziv coding, together with a new tool for proving optimality of
other compression schemes. To demonstrate the possible use of this gen-
eralization, a new coding method – the APT coding – is presented. This
new coding method is based on a principle that is very different from
Lempel-Ziv’s coding. Moreover, it does not directly define any parsing
technique. Nevertheless, APT coding is analyzed in this paper and us-
ing the generalized theorem shown to be asymptotically optimal up to a
constant factor, if APT quasi-distinctness hypothesis holds. An empirical
evidence that this hypothesis holds is also given.

1 Introduction

Theoretical analysis of compression schemes is a fundamental task, albeit not an
easy one. Even compression schemes that are efficient in practice are not always
fully understood from the theoretical point of view. Sometimes, the search is for
an appropriate measure of the compression efficiency/optimality (e.g. [4,10]).
This task seems to incorporate knowledge of both the well experienced and
studied properties of the specific compression scheme, and the behavior of the
theoretical compression efficiency measure.

A common measure of compression optimality is asymptotical optimality. A
well-known compression scheme achieving asymptotical optimality regarding the
Shannon Entropy is the Lempel-Ziv coding [15,16]. The parsing algorithm for
this encoding was first introduced by Lempel and Ziv in 1976 [8] and was proved
to achieve the entropy rate by Ziv [14]. A number of different variations of the

� Partly supported by ISF grant 35/05.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 12–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Quasi-distinct Parsing and Optimal Compression Methods 13

basic Lempel-Ziv algorithm are described in [3]. The algorithm considered in
this paper is known as LZ78 and was first described in [16]. A more transparent
proof for this algorithm was provided by Wyner and Ziv in 1989 [12]. For the
more powerful 1977 version of the Lempel-Ziv scheme [15], known as LZ77, a
later proof of optimality was presented in 1994 by Wyner and Ziv [13].

In this paper, the LZ78 optimality proof of [12] is re-studied, and a more
general compression-optimality theorem is derived. The advantages of such a
result are two-fold:

1. Providing a generalized theorem that can serve to prove optimality of other
compression schemes.

2. Better understanding the conditions that allow asymptotic optimality.
Such an improved understanding can help develop other optimal compres-
sion schemes with special behavioral properties pertaining to specific
applications.

Indeed, several approaches to generalize the parsing scheme of LZ78 were sug-
gested over the years. Louchard and Szpankowski [9] study a generalization of
the LZ parsing scheme with respect to the growth of the number of phrases,
which is precisely the notion of asymptotically distinct parsing discussed in the
full version of this paper. A different approach is grammar-based codes. The
first significant contribution in this approach was the practical algorithm SE-
QUITUR [11]. This algorithm had excellent compression performance relative
to other dictionary-based schemes. The first important theoretical contribution
was in [7], which presented a class of grammar-based codes that includes LZ78
and is asymptotically optimal.

Our generalization take the approach of Louchard and Szpankowski, but give a
much richer generalization. To demonstrate the possible use of our generalization,
a new coding method – the APT coding – is presented. This coding method is
based on a principle that is very different from the LZ-family codes. Moreover, it
does not directly define any parsing technique. Nevertheless, the APT coding is
analyzed and using our generalized theorem shown to be asymptotically optimal
up to a constant factor, if APT quasi-distinctness hypothesis holds. An empirical
evidence that this hypothesis holds is also given.

The APT algorithm was first introduced by [2] as a tool for convolutions of
strings which avoids the use of FFT. [2] present a preliminary comparison be-
tween the number of phrases in LZ78 and the number of nodes in the APT on
randomly built binary strings. Their comparison shows an advantage to APT.
This preliminary result motivates a further study of the potential of APT as a
compression algorithm. Our theoretical analysis further demonstrates this po-
tential, though a more strict theoretical analysis as well as practical tests should
be done on the APT coding in order to determine if, when and how it could be
used as a compression scheme.

The rest of the paper is organized as follows. In Sect. 2 we give the basic
definitions and the statement of the generalized theorem. In Sect. 3 we give its
proof. Finally, in Sect. 4, we present the APT code and then use our generalized
theorem to analyze it. Omitted proofs will appear in the full version of the paper.



14 A. Amir et al.

2 Distinct and Quasi-distinct Parsings

2.1 Preliminaries

The Shannon Entropy Measure. Assuming the source is generated by a
random process represented by a random variable X with mass function p(x),
the entropy of the variable X is defined by1

H(X) = −
∑

p(x) log2 p(x).

The Asymptotic Equipartition Property (AEP). This property is the
information theory analog of the well known law of large numbers. It is formalized
in the following theorem:

Theorem 1. (AEP) [5] If X1, X2, . . . are independent, identically distributed
random variables drawn according to probability mass function p(x), then2

− 1
n

log p(X1, X2, . . . , Xn) → H(X).

Entropy Rate of Stochastic Processes. The entropy rate is used to measure
information of a series of variables that are not independent, but rather form a
stochastic process.

Definition 1. [5] The entropy rate of a stochastic process {Xi} is defined by

H(χ) = lim
n→∞

1
n

H(X1, X2, . . . , Xn)

when the limit exists.

Ergodic Sources. An ergodic process is the most general dependent source for
which the strong law of large numbers holds. We do not give a precise definition
of an ergodic source, to avoid unnecessary technical details from probability
theory. The important fact is that the AEP theorem holds for stationary ergodic
processes and Markov approximations (see [5]).

Without loss of generality, we will assume that the source alphabet, χ, is
binary. Thus, χ = {0, 1}, throughout this paper.

2.2 Distinct Parsing and Optimal Compression

Parsing methods are directly connected to creation of a vocabulary of recurrent
sub-words within a string. Therefore, understanding parsing techniques better
may improve compression schemes or suggest others.

1 We use logarithms to base 2. The entropy is then measured in bits.
2 The limit can be with probability not necessarily 1.
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Definition 2. [5] A parsing S of a binary string x1x2 . . . xn is a division of the
string into phrases, separated by commas. A distinct parsing is such that no two
phrases are identical.

Example. Consider the following parsing method. Given a string X , for every
1 ≤ i define the i-th phrase to be the next i bits of X . Since all phrases have
different length, they are obviously all distinct. Therefore, this parsing method
is a distinct parsing.

The well-known LZ78 compression scheme3 defines a distinct parsing of the
source sequence. Let c(n) denote the number of phrases in a parsing of a se-
quence of length n. Of course, c(n) depends on the specific values of the variables
sequence X1, X2, . . . , Xn generated by the source. The compressed sequence in
LZ78 scheme consists of a list of c(n) pairs of numbers, each pair consisting of
a pointer to the previous occurrence of the prefix of the phrase and the last bit
of the phrase. Each pointer requires log c(n) bits, and hence the total length of
the compressed sequence is c(n)(log c(n) + 1) bits. The asymptotic optimality
of LZ78 coding is an immediate corollary of Theorem 2, which unites Theorem
12.10.1 and Theorem 12.10.2 given in [5].

Theorem 2. Let {Xi}∞−∞ be a stationary ergodic stochastic process. Let S be
a distinct parsing of the string X1, X2, . . . , Xn. Let l(X1, X2, . . . , Xn) be the
codeword length associated with X1, X2, . . . , Xn defined on the phrases created
by S, such that l(X1, X2, . . . , Xn) = c(n)(log c(n)+1), where c(n) is the number
of phrases in the parsing. Then

lim sup
n→∞

l(X1, X2, . . . , Xn)
n

≤ H(χ)

with probability 1, where H(χ) is the entropy rate of the process.

Remark. Theorem 2 specifies two conditions for a code to be optimal. The
first condition focuses on the distinct parsing method producing the phrases to
be coded. The second condition is a bound on the total length of the coded
(distinct) phrases produced by the parsing. Note that the parsing does not
specify how to efficiently code the produced phrases. Consider, for example,
the following trivial parsing: the sequence x1x2 . . . xn is parsed into one phrase
p1 = x1x2 . . .xn. Clearly, this is a distinct parsing, however, this does not de-
fine any scheme for generating the codeword length. The trivial way of tak-
ing the original string gives l(x1 . . . xn) = n, which, obviously, does not satisfy
Theorem 2. Therefore, this trivial parsing and coding does not define any com-
pression scheme.

3 Following [5], modifications and implementation details of this basic scheme are dis-
regarded. These do not affect the asymptotic efficiency of the algorithm as considered
in this paper.
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2.3 Quasi-distinct Parsing

In this paper, a much weaker property is defined and surprisingly proven to be
equivalent, regarding the optimality of a compression method that uses it, to
the strong property of distinct parsing.

Definition 3. Let p1, . . . , p� be a parsing of a binary string x1x2 . . . xn. Let
D = {pi|1 ≤ i ≤ �}, i.e. the set of all distinct phrases in the parsing. A quasi-
distinct parsing is a parsing where �− |D| = o(n/ log n).

Example. Consider the following parsing method. Given a string X , for ev-
ery 1 ≤ i define the next i phrases by i times taking the next i bits of X .
For example, if X = 1111111 . . ., then this parsing method gives the phrases:
1, 11, 11, 111, 111, 111, 1111, 1111, 1111, 1111, . . . This is clearly not a distinct
parsing, since the list of phrases contains repetitions of the same phrase. More-
over, let E be the multi-set that contains all the phrases that are not in D, then,
the size of E grows to infinity as the length of X grows. However, this parsing
method is a quasi-distinct parsing method, since

∑
(i − 1)i <

∑
i2 ≤ n, and

therefore, |E| = O(n2/3) = o(n/ logn), where n is the length of X .

The following much stronger theorem is proved in this paper.

Theorem 3. Let {Xi}∞−∞ be a stationary ergodic stochastic process. Let S be a
quasi-distinct parsing of the string X1, X2, . . . , Xn. Let l(X1, X2, . . . , Xn) be the
codeword length associated with X1, X2, . . . , Xn defined on the phrases created
by S, such that l(X1, X2, . . . , Xn) = c(n)(log c(n)+α), where c(n) is the number
of phrases in the parsing and α is any positive constant. Then

lim sup
n→∞

l(X1, X2, . . . , Xn)
n

≤ H(χ)

with probability 1, where H(χ) is the entropy rate of the process.

Since the quasi-distinct parsing property is much weaker compared to the distinct
parsing property, this result is surprising and leads to a better understanding of
the asymptotic optimality proof. Note that the condition on the codeword length
is slightly generalized in Theorem 3 relative to Theorem 2. However, as can be
deduced from the proof of Theorem 3 we present, Theorem 2 can be also restated
for distinct parsing using this generalized condition. Therefore, Theorem 3 can
be interpreted as showing an equivalence regarding the optimality of compres-
sion methods between the strong property of distinct parsing and the much
weaker property of quasi-distinct parsing. The LZ78 compression scheme uses
a distinct parsing method together with a ”self-reference” method to efficiently
store the vocabulary (phrases) produced by the parsing. The distinct parsing
property, which does not allow repetitions of phrases, is crucial in proving that
the produced vocabulary is compact, i.e., its size can be efficiently bounded. This
property is also used to bound the probabilities of the phrases produced by the
parsing. Yet, we show that the distinct parsing condition in the optimality proof
can be relaxed to the much weaker condition of quasi-distinct parsing, which
allow many (even growing to infinity) repetitions of phrases.
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3 Equivalence of Quasi-distinct Parsing to Distinct
Parsing

In this section we show that a quasi-distinct parsing method has the same rel-
evant properties that a distinct parsing method has. These properties are used
in the proof of Theorem 2 (see [5]). Moreover, the distinctness condition is only
used in proving these properties. The first property is a bound on the number of
phrases possible in a quasi-distinct of a binary sequence of length n, and is an
immediate corollary of the quasi-distinctness definition and the following lemma.

Lemma 1. [Lempel and Ziv] The number of phrases in a distinct parsing of a
binary sequence X1, X2, . . . , Xn satisfies

c(n) ≤ n

(1− εn) log n

where εn → 0 as n →∞.

Corollary 1. The number of phrases in a quasi-distinct parsing of a binary
sequence X1, X2, . . . , Xn satisfies

c(n) ≤ n

(1− εn) log n
+ o(n/ log n)

where εn → 0 as n →∞.

The next very important property is the quasi-distinct version of Ziv’s inequality
(see [5,14]). Let {Xi}∞i=−∞ be a stationary ergodic process with probability mass
function P (x1, x2, . . . , xn). For a fixed integer k, define the kth order Markov
approximation to P as

Qk(x−(k−1), . . . , x0, x1, . . . , xn) � P (x0
−(k−1))

n∏
j=1

P (xj |xj−1
j−k)

where xj
i � (xi, xi+1, . . . , xj), i ≤ j, and the initial state x0

−(k−1) will be a
part of the specification of Qk. Since P (Xn|Xn−1

n−k) is itself an ergodic pro-
cess, we have 1

n log Qk(X1, X2, . . . , Xn|X0
−(k−1)) = 1

n

∑n
j=1 log P (Xj |Xj−1

j−k) →
−E log P (Xj |Xj−1

j−k ) = H(Xj|Xj−1
j−k ).

We will bound the rate of a code by the entropy rate of the kth order
Markov approximation for all k. The entropy rate of the Markov approxima-
tion H(Xj |Xj−1

j−k) converges to the entropy rate of the process as k → ∞ and
this will prove the result.

Suppose Xn
−(k−1) = xn

−(k−1), and suppose that xn
1 is parsed into c quasi-

distinct phrases, y1, y2, . . . , yc. Let vi be the index of the start of the i-th phrase,
i.e., yi = x

vi+1−1
vi . For each i = 1, 2, . . . , c, define si = xvi−1

vi−k. Thus si is the k bits
preceding yi. Of course, s1 = x0

−(k−1).
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Let cls be the number of phrases with length l and preceding state si = s for
l = 1, 2, . . . and s ∈ χk. We then have∑

l,s

cls = c (1)

and ∑
l,s

lcls = n (2)

We now prove the following upper bound on the probability of a string based on
the parsing of the string.

Lemma 2. For any quasi-distinct parsing of the string x1, x2, . . . , xn, we have

log Qk(x1, x2, . . . , xn|s1) ≤ −
∑
l,s

cls log cls + o(n).

Proof. As in Ziv’s inequality proof [14,5], we begin by writing

Qk(x1, x2, . . . , xn|s1) = Qk(y1, y2, . . . , yc|s1) =
c∏

i=1

P (yi|si),

or

logQk(x1, x2, . . . , xn|s1) =
c∑

i=1

log P (yi|si)

=
∑
l,s

∑
i:|yi|=l,si=s

log P (yi|si)

=
∑
l,s

cls

∑
i:|yi|=l,si=s

1
cls

log P (yi|si)

≤
∑
l,s

cls log(
∑

i:|yi|=l,si=s

1
cls

P (yi|si)),

where the inequality follows from Jensen’s inequality and the concavity of the
logarithm.

Now, we split the phrases into two (multi-)sets: the first is the maximal set
of distinct phrases, and the second contains the rest of the phrases. For the first
set, since we know the yi are distinct, we have

∑
i:|yi|=l,si=s P (yi|si) ≤ 1. The

size of the second set, by the definition of quasi-distinct parsing, is o(n/ log n).
Thus,

log Qk(x1, x2, . . . , xn|s1) ≤
∑
l,s

cls log
1
cls

+ o(
n

log n
log

n

log n
)

or
log Qk(x1, x2, . . . , xn|s1) ≤

∑
l,s

cls log
1
cls

+ o(n).



Quasi-distinct Parsing and Optimal Compression Methods 19

Since by ( 1),
∑

l,s cls = c, and by Corollary 1 we know that c ≤ n
log n (1+o(1))+

o( n
log n ), we get the lemma.

Using the above properties, a sufficient condition for a quasi-distinct parsing to
be an optimal compression method can be proved exactly as in the original proof
for distinct parsing. This gives Theorem 3.

4 Application: Analysis of APT Coding Method

In this section we present a new lossless coding method – the arithmetic pro-
gressions tree (APT). We then use Theorem 3 to analyze the possible use of
APT coding as a compression method. Following the framework of Theorem 3
the analysis of APT coding is done in two stages. First, we show a parsing that
the APT coding defines and refer to its quasi-distinctness. Then, we analyze the
APT code length.

4.1 The Arithmetic Progressions Tree

The APT coding method is based on finding arithmetic progressions in the given
binary string. An arithmetic progression can then be expressed by three values:
the index of its start point in the string, the difference between the elements in
the progression and its length. By grouping progressions with the same difference
and length parameters and applying the search recursively we get a coding of the
original string. Given the APT, the original string can be reconstructed by fol-
lowing the paths from each leaf, which defines a starting index for a progression.
The path defines the (recursive) structure of this progression. The description
of APT construction follows.

APT Construction Algorithm. There can be many possible progressions to
be chosen, and the choices may overlap. We are interested in a cover by dis-
joint arithmetic progressions of the ones4 in the binary string, where by disjoint
we mean that an element participating in one progression cannot participate in
another. Our algorithm for choosing the progressions uses a very simple greedy
criterion: find the least difference between ones in the string, then choose progres-
sions of this difference (with possibly different length) first. All ones participating
in a chosen progression are turned to zero, and the process of finding the least
difference in the string continues until the string is all zeroes. The collection
of progressions with the same difference is partitioned into sub-collections ac-
cording to their length. All progressions in a sub-collection share the difference
and length parameters, and differ in their start positions. Representation of the
start positions in a sub-collection is done by recursively applying the algorithm
until there is only one starting point to represent, which then becomes a leaf. A
detailed description of the algorithm is given in Fig. 1.
4 Zeroes can be taken instead if they are less frequent. For simplicity we assume that

only indices of ones are taken.
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APT Construction Algorithm

Input: L a list of 1’s indices in X ∈ {0, 1}n, root the APT root
1 while L is not empty do
2 if L contains a single index i then
3 allocate new leaf
4 leaf.index ← i
5 leaf.parent ← root
6 else
7 find, d, the least difference between consecutive elements in L
8 remove from L the list Cd of all progressions with difference d
9 split progressions in Cd by length l into sub-lists Cd,l

10 for each sub-list Cd,l do
11 allocate new node
12 node.difference ← d
13 node.length ← l
14 node.parent ← root
15 run APT algorithm on Cd,l and node
Output: root

Fig. 1. A recursive version of the algorithm for constructing arithmetic progressions
tree

Example. Consider the string X = 01101100101011.APT algorithm constructs
the tree with a root and two children nodes. The root does not contain any
internal information. The first (it is constructed first, but it does not matter)
child of the root contain the information difference = 1, length = 2, and has
two children; a leaf containing index = 13 and an internal node with information
difference = 3, length = 2, which has a leaf containing index = 2. The second
child of the root contains the information difference = 2, length = 2, and
has a leaf containing index = 9. Note that X can be fully reconstructed given
the APT, by following the three paths from the three leaves to the root and
reconstructing the (possibly recursive) arithmetic progressions they define.

Properties of APT. The following definition and lemmas are key properties
of the APT structure.

Definition 4. A node in the APT tree which is not a leaf is called an internal
node. An internal node with degree at least 2 is called branching, denoted B.
Non-branching nodes are denoted NB. A root of a path of length at least 2 of
NB nodes is called non-branching head, denoted NBH.

Lemma 3. In a binary tree, if there are k NBH nodes, then there must be k−1
B nodes.

Lemma 4. If the APT of a string X ∈ {0, 1}n has k nodes then X contains at
least k zeroes.
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4.2 APT Quasi-distinctness

The Parsing Definition. The first step is to show how the APT defines a
parsing of the original string. Note that each APT leaf provides a starting index
of an arithmetic progression (possibly recursive) in the original string. We call
this index a start point. The sorted list of start points indices naturally define
the following parsing: The first phrase starts at the beginning of the string, and
each phrase starts with the next start point and ends with the last bit before
the following start point. If there are zeroes after the rightmost bit, they define
the last phrase. We call this parsing the APT parsing.

Bounding Repetitions in the APT Parsing. We do not have a combinato-
rial proof that the APT parsing is indeed a quasi-distinct parsing. Nevertheless,
an empirical evidence for that is presented.

Testing the APT Parsing Quasi-Distinctness. The tests were done on three data
types:

1. A string generated by a pre-specified recursion relation. This type of string
represents the case of highly compressible strings (at least in the Kolmogorov-
Chaitin sense). The specific sequence was chosen to be Thue-Morse se-
quence, defined as follows: x0 = 0, xn+1 = xn(xn)c, where the c operator
is the binary complement. For example, the first bits of this sequence are:
0010110011010010110100110010110 . . ..

2. A string generated by srand() function in C++-shell, which gets as an input
the system time, (unsigned) time(0). This string represents a data built
sequentially at random5.

3. A string representing common texts. For this type the file enwiki8, which is
the first 108 pages of Wikipedia, was taken. This file was downloaded from [1].
Since the current version of APT algorithm is built for binary strings the
binary representation of this text is considered.

We run the APT algorithm for each of this strings for sizes 1,000,000 bits up to
205,000,000 bits by jumps of 1,000,000 bits. In each run the number of repetitions
in the APT parsing were counted. The results are presented in Table 1 and Fig. 2.
Table 1 shows that the APT size (in nodes not in bits) is negligible compared to
the input size n and also shows the relation between internal nodes and leaves
in the APT. Fig. 2 clearly shows that the number of repetitions in all these
tests is o(n/ log n). APT parsing quasi-distinctness is therefore referred to as the
following hypothesis.

The APT Parsing Quasi-Distinctness Hypothesis. The number of repetition of
phrases in the APT parsing is o(n/ log n).

5 This is surely not a random string, because APT coding can compress it and random
strings cannot be compressed. Nevertheless, it passed simple tests for randomness.
We, therefore, call it random.
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Table 1. The APT size for different data types. All numbers were multiplied by 10−6.

input enwiki8: enwiki8: enwiki8: Thue- Thue- Thue- random: random: random:
size Morse: Morse: Morse:

inter. leaves repet. inter. leaves repet. inter. leaves repet.
nodes nodes nodes

1 0.01 0.04 0.02 1.695E-3 1.691E-3 1.636E-3 8.235E-3 8.157E-3 2.903E-3
20 0.09 0.68 0.44 9.851E-3 9.827E-3 9.745E-3 8.235E-3 8.151E-3 2.900E-3
40 0.16 1.32 0.88 13.195E-3 17.468E-3 17.376E-3 8.235E-3 8.145E-3 2.906E-3
60 0.23 1.93 1.31 19.250E-3 20.953E-3 20.863E-3 8.235E-3 8.128E-3 2.891E-3
80 0.26 2.23 1.53 22.140E-3 22.060E-3 21.971E-3 8.235E-3 8.174E-3 2.911E-3
100 0.36 3.13 2.17 22.140E-3 29.950E-3 29.850E-3 8.235E-3 8.064E-3 2.890E-3
120 0.42 3.71 2.60 23.732E-3 33.037E-3 32.944E-3 8.235E-3 8.179E-3 2.909E-3
140 0.48 4.30 3.03 24.131E-3 37.095E-3 36.999E-3 8.235E-3 8.113E-3 2.910E-3
160 0.54 4.88 3.45 29.641E-3 39.249E-3 39.152E-3 8.235E-3 8.173E-3 2.900E-3
180 0.60 5.45 3.87 32.426E-3 43.609E-3 43.506E-3 8.235E-3 8.143E-3 2.907E-3
200 0.66 6.03 4.30 41.218E-3 37.356E-3 37.254E-3 8.235E-3 8.072E-3 2.889E-3

Fig. 2. (a) The number of repetitions of phrases in APT parsing of enwiki8 compared
to n/ log n. (b) The number of repetitions of phrases in APT parsing of Thue-Morse
sequence and random sequence.
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Applying to All APT Nodes. Note that the APT parsing does not refer to
APT internal nodes. We use the analysis of the APT structure to get bounds on
all APT nodes.

Lemma 5. Let c(n) be the number of APT leaves for a string X. Under the
APT parsing quasi-distinctness hypothesis, the number of APT internal nodes
is at most d · c(n) + o(n/ log n), where d > 0 is a constant.

Proof. Given a fixed number of leaves, the number of branching internal nodes
in a tree is maximized in a binary tree. Also, in a binary tree it is known that
the number of B nodes is at most 2c(n)− 1, where c(n) is the number of leaves.
Therefore, by Lemma 3 the number of NBH nodes is at most 2c(n). We now
show that all other NB nodes are o(n/ log n) if the quasi-distinct property (q.d.p.
for short) holds on the APT parsing. If q.d.p. holds then by the APT parsing
definition and Corollary 1, we have c(n) = O(n/ log n). Therefore, the number
of NBH nodes is also O(n/ log n). Assume to the contrary that there are also
Ω(d(n) ·n/ log n) NB nodes, where d(n) is any function of n growing to infinity.
The NB nodes must all be on paths of NB nodes starting with NBH nodes.
Therefore, the number of such paths is bounded by the number of NBH nodes,
which is O(n/ log n). Thus, the average path length is Ω(d(n)). Since the number
of ones reduces by at least half in each level of the APT, a path of length Ω(d(n))
indicates that X has at least 2d(n) one bits. Therefore, the total number of
one bits in X is Ω(n/ log n · 2d(n)). However, since the APT has in this case
Ω(d(n) · n/ log n) nodes, by Lemma 4, X has at least d(n) · n/ logn zeroes.
We get: 2d(n) · n/ logn + d(n) · n/ logn = n, which has no solution for d(n),
contradiction.

4.3 The APT Code Length

We now deal with the representation of the information in the APT. First,
note that the tree hierarchy can be stored efficiently with only 2 bits per tree
node by using parenthesis notation [6]. Thus, we can compute the length of the
representation of the information within the APT nodes and then add 2 bits per
node for the tree hierarchy. The information in the APT nodes is: two values for
an internal node (the difference and length), and one value for a leaf node (the
starting index of a progression).

We now explain how to use a ”reference” (but not exactly ”self-reference”)
method to represent these values. Let Y ∈ {0, 1}n be a string with all zeroes
except the indices with values that appear in the nodes of the APT of the original
string X ∈ {0, 1}n. We call Y the APT reference string of X . By Lemma 5 if
c(n) is the number of leaves in the APT of X , then Y contains O(c(n)) one
bits. Now, each value in an APT node can be represented as a reference to the
sequential order of the appropriate one bit in Y , i.e., the first one bit, the second
one bit, etc. To represent these reference values only log c(n)+α bits are needed,
where α is a constant. The key property is the following:
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Lemma 6. Let {Xi}∞−∞ be a stationary ergodic stochastic process. Let X be
the string X1, X2, . . . , Xn. Then, H(Y ) ≤ H(X), where Y is the APT reference
string of X.

Proof. We use the chain rule for the mutual information H(X, Y ). By the chain
rule: H(X, Y ) = H(X) + H(Y |X) and H(X, Y ) = H(Y ) + H(X |Y ). Thus,
H(Y ) ≤ H(Y ) + H(X |Y ) = H(X, Y ) = H(X) + H(Y |X) = H(X), since Y is
completely determined when X is given, therefore, H(Y |X) = 0.

We can now prove that APT coding is an almost asymptotically optimal com-
pression scheme.

Theorem 4. If the APT parsing quasi-distinctness hypothesis holds then APT
coding is asymptotically optimal up to a constant factor.

Proof. Let {Xi}∞−∞ be a stationary ergodic stochastic process. Let X be the
string X1, X2, . . . , Xn. Let l(X1, X2, . . . , Xn) be the APT code length. Let c(n)
denote the number of phrases in the APT parsing of X . Then, by the discussion
above, l(X1, X2, . . . , Xn) = βc(n)(log c(n)+α)+l′(Y1, Y2, . . . , Yn), where α, β are
constants and Y = Y1, Y2, . . . , Yn is the APT reference string. If the APT q.d.p.
hypothesis holds then by Theorem 3, we have lim sup 1

nc(n)(log c(n)+α) ≤ H(χ).
By using any asymptotically optimal compression method (such as LZ78) to
represent Y , we get: lim sup 1

n l′(Y1, Y2, . . . , Yn) ≤ H(Y) (where, H(Y) is the
entropy rate of Y ), which by Lemma 6 is at most H(χ). The theorem then
follows.

5 Conclusions

In this paper, two conditions together are proven to be sufficient for a code to
define an optimal compression:

– Having a vocabulary produced by a quasi-distinct parsing method.
– The total length of the coded phrases in the vocabulary is bounded by

c(n)(log c(n) + α), where c(n) is the number of phrases produced by the
parsing and α is any positive constant.

These conditions are more general than the conditions met by the Lempel-Ziv
code. The strength of this generalization is demonstrated by analyzing the new
APT coding method. We show that this generalization is capable of handling
even the APT code that is very different from the LZ-scheme, and does not
even directly define a parsing. Indeed, we ’lost’ constants in this analysis, and
were only able to prove asymptotical optimality up to a constant factor (if APT
quasi-distinctness hypothesis holds), which is a weaker notion of optimality. Nev-
ertheless, this analysis demonstrates the flexibility that our generalization gives
to the analysis of compression schemes. It also contributed to understanding the
APT coding, giving a theoretical explanation for its promising behavior in the
preliminary tests of its vocabulary size. A called for challenge is, therefore, to
design an APT compressor and test its practical performance against existing
schemes.
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Abstract. In substring compression one is given a text to preprocess
so that, upon request, a compressed substring is returned. Generalized
substring compression is the same with the following twist. The queries
contain an additional context substring (or a collection of context sub-
strings) and the answers are the substring in compressed format, where
the context substring is used to make the compression more efficient.

We focus our attention on generalized substring compression and
present the first non-trivial correct algorithm for this problem. In our al-
gorithm we inherently propose a method for finding the bounded longest
common prefix of substrings, which may be of independent interest. In
addition, we propose an efficient algorithm for substring compression
which makes use of range searching for minimum queries.

We present several tradeoffs for both problems. For compressing the
substring S[i . . j] (possibly with the substring S[α . . β] as a context), best
query times we achieve are O(C) and O

(
C log

(
j−i
C

))
for substring com-

pression query and generalized substring compression query, respectively,
where C is the number of phrases encoded.

1 Introduction

While the topic of string compression has been a viable research topic for
decades, few works have been done concerning the problem of substring com-
pression. The topic was introduced in [4], where a set of problems concerning
substring compression focusing on the compression algorithm of Lempel and
Ziv [17] was presented. They deal mainly with two variants of this topic, namely,
given a string, what is the compressibility of different substrings of that string,
both in the sense of the actual compression of the substrings and in the sense of
comparing which of the substrings is the least or most compressible.

We address the following problems: in the substring compression query (SCQ)
problem, we wish to compress a given substring of the string S, denoted by start
and end location. Note that we preprocess S so that we are able to answer this
query for any substring in S in an online manner. In its generalized and more
powerful version, the generalized substring compression query (GSCQ) problem,
we wish to compress the substring according to a given context taken from S as
well. In both problems, our goal is to provide query times which are proportional
to the size of the compressed substring as opposed to the size of the substring
in its non-compressed form.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 26–38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The issue of substring compression has interesting implications on a variety of
practical applications. Recent works use compression of biological sequences as a
basis of comparison between different sequences, and their information content.
Compression of sub-sequences can therefore be used to perform such comparisons
in a more efficient and accurate manner. Various other applications arise in the
context of substring compression, such as data storage and extraction, and data
transfer in a network setting.

1.1 Our Results

1. Our main result is providing an efficient and innovative algorithm for the
generalized substring compression query, introduced in [4]. There an algo-
rithm was suggested. However, this algorithm is incorrect [14]: it overlooked
the inherent added difficulty of the generalized problem, dismissing it as triv-
ial, while it is in fact the essence of the generalized problem. Therefore, the
solution provided in [4] in fact does not solve the problem. Our solution for
this problem is based on a solution to finding the bounded longest common
prefix (BLCP) of two substrings, which is a notion we will introduce shortly.

2. In addition, we improve results shown for the substring compression query.
Our result is based mainly on an improved solution for finding the inter-
val longest common prefix (ILCP) of two substrings. This is done using an
efficient solution for the problem of range searching for minimum [11], and
not on the more classical range reporting problem (see, for instance [1]), used
by [4] and numerous other indexing-related papers [7,2,8,12]. This constitutes
a totally different method in order to reduce the substring compression query
problem to the geometric problem.

Our solutions are based on a variety of tools, such as suffix trees, lowest com-
mon ancestor queries, level ancestor queries, and several kinds of range searching
structures. As a result, solutions to both SCQ and GSCQ constitute tradeoffs
between query times, space, and preprocessing times, due to the choice of range
searching structures to be used. A comparison of the results is presented in
Table 1.

Table 1. Results

Prob. Query Time Space Preprocessing Time Source

GSCQ O
(
Cα,β(i, j) log

( j−i
Cα,β (i,j)

))
O(n1+ε) w.c. O(n1+ε) new

O
(
Cα,β(i, j) log

( j−i
Cα,β (i,j)

)
log log n

)
O(n log n) exp. O(n log n log log n) new

O
(
Cα,β(i, j)

(
log

( j−i
Cα,β (i,j)

)
log log n + log n

))
O(n logε n) exp. O(n log n) new

O
(
Cα,β(i, j) log

( j−i
Cα,β (i,j)

)
log n

)
O(n) w.c. O(n log n) new

SCQ O(C(i, j)) O(n1+ε) w.c. O(n1+ε) new
O(C(i, j) log log n) O(n log n) exp. O(n log n log log n) new
O(C(i, j) log n) O(n) w.c. O(n log n) new
O(C(i, j) log n log log n) O(n logε n) exp. O(n log n) [4]
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The rest of our paper is organized as follows: in Sect. 2, we give some pre-
liminaries and problem definitions. In Sects. 3 and 4, we describe our solutions
for finding the BLCP and ILCP accordingly. In Sect. 5, we present the outline
of the query algorithm’s main loop, which is roughly common to both the SCQ
and GSCQ problems. In Sects. 6 and 7, we present the solutions and analysis
for SCQ and GSCQ.

2 Problem Definitions and Preliminaries

2.1 Preliminary Definitions and Notations

Given a string S, |S| is the length of S. Throughout this paper we denote n = |S|.
An integer i is a location or a position in S if i = 1, . . . , |S|. The substring S[i . . j]
of S, for any two positions i ≤ j, is the substring of S that begins at index i and
ends at index j. Concatenation is denoted by juxtaposition. The suffix Si of S
is the substring S[i . . n].

The suffix tree [16,15,6,13] of a string S, denoted ST(S), is a compact trie
of all the suffixes of S$ (i.e., S concatenated with a delimiter symbol $ �∈ Σ,
where Σ is the alphabet set). Each of its edges is labeled with a substring of
S (actually, a representation of it, e.g., the start location and its length). The
“compact” property is achieved by contracting nodes having a single child. The
children of every node are sorted in the lexicographical order of the substrings on
the edges leading to them. Consequently, each leaf of the suffix tree represents
a suffix of S, and the leaves are sorted from left to right in the lexicographical
order of the suffixes that they represent. ST(S) requires O(n) space. Algorithms
for the construction of a suffix tree enable O(n) preprocessing time when |Σ| is
constant, and O(n log min(n, |Σ|)) time when |Σ| is not. In fact, the suffix tree
can be constructed in linear time even for alphabets drawn from a polynomially-
sized range, see [6].

In addition, our algorithms make use of elements from the field of compu-
tational geometry; let P = {(x1, y1), . . . , (xn, yn)} be a set of n points on an
[n]× [n] grid. The following query types are defined on P , for various types of a
two-dimensional range R:

rangeminy(R = [x, x′]×[y,∞]): reports the single point of P that is included in
the range and has a minimal y-coordinate, i.e., the point arg min(x,y)∈P∩R y.

rangeminx(R = [x,∞]× [y, y′]): reports the point argmin(x,y)∈P∩R x.
rangemaxx(R = [−∞, x′]× [y, y′]): reports the point argmax(x,y)∈P∩R x.
emptiness(R = [x, x′]× [y, y′]): returns “true” iff P ∩R = ∅.

An Overview of the Lempel-Ziv Algorithm. The LZ77 variation of the
Lempel-Ziv algorithm works as follows: given an input string S of length n, the
algorithm encodes the string in a greedy manner from left to right. At each step
of the algorithm, suppose we have already encoded S[1 . . k − 1], we search for
the location t, such that 1 ≤ t ≤ k − 1, for which the longest common prefix of
S[k . . n] and the suffix St, is maximal. Once we have found the desired location,
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suppose the aforementioned longest common prefix is the substring S[t . . r], a
phrase will be added to the output which will include the encoding of the distance
to the substring (i.e., the value k − t) and the length of the substring, (i.e., the
value r − t + 1). The algorithm continues by encoding S[k + (r − t + 1) . . n].
Finally, we denote the output of the LZ77 algorithm on the input S as LZ(S).
The size of LZ(S), denoted |LZ(S)|, is the length of LZ(S) in bits.

The string S may be encoded within the context of the string T . We denote
this by LZ(S | T ). The practical meaning of this is that the result is as if the
algorithm was performed on the concatenated string T $S, where $ is a symbol
that does not appear in neither S nor T , however, only the portion of LZ(T $S)
which represents the compression of S is outputted by the algorithm. Some
exceptions apply to this rule. They will be described later.

2.2 Problem Definitions

Given a string S of length n, we wish to preprocess S in such a way that allows
us to efficiently answer the following queries:

Substring Compression Query (SCQ(i, j)): given any two indices i and j,
such that 1 ≤ i ≤ j ≤ n, we wish to output LZ(S[i . . j]).

Generalized Substring Compression Query (GSCQ(i, j, α, β)): given any
four indices i, j, α, and β, such that 1 ≤ i ≤ j ≤ n and 1 ≤ α ≤ β ≤ n, we
wish to output LZ(S[i . . j] | S[α . . β]).

Query times for both of the above query types will be strongly dependent on the
number of phrases actually encoded. We denote these as C(i, j) and Cα,β(i, j)
for SCQ and GSCQ, respectively. Our results will rely on the two following
primitives:

Bounded Longest Common Prefix (BLCP(k, l, r)): given k, and given posi-
tions l and r which induce the context substring S[l . . r], we look for the longest
common prefix of S[k . . j] and a substring which starts at some location l ≤ t ≤ r
within the context. The substring chosen must not exceed the end of context. In
other words, it must be a prefix of some substring S[t . . r].
Interval Longest Common Prefix (ILCP(k, l, r)): given k, l, r,this time we
look for the longest common prefix of S[k . . j] and a substring which starts at
some location l ≤ t ≤ r, without further constraints.

While it may not seem so at first glance, BLCP queries constitute several
problematic implications, and therefore are much more difficult to implement,
in comparison to ILCP. For example, consider two suffixes St1 and St2 , such that
l ≤ t1 < t2 ≤ r, for which |LCP(Sk, St1)| < |LCP(Sk, St2)| (where LCP(S1, S2),
for two strings S1 and S2, stands for the longest common prefix of S1 and S2).
Some portion of the last characters of LCP(Sk, St2) may not be eligible for con-
sideration. Namely, if |LCP(Sk, St2)| exceeds r− t2 +1 characters, LCP(Sk, St2)
exceeds location r, and therefore literally “grows out of context”. In that case,
it may be that St1 will eventually be the suffix to be preferred. One should take
into account that such a cut-off may pertain to LCP(Sk, St1) as well. (Note: in
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the case i − 1 ≤ r < j, if desired, one can allow a substring taken from the
context to exceed r. This is a trivial extension to the algorithm for ILCP.)

3 Answering BLCP Queries

3.1 Preprocessing Motivation

We begin the preprocessing by constructing the suffix tree of S, ST(S). In the
suffix tree, each leaf � is associated with a suffix of S$ and is therefore marked
with an integer y(�) which is the start location of that suffix. We also mark
each leaf � with an integer x(�) which is the lexicographical rank of the suffix
associated with � within the set of all suffixes of T (this is done by using one
depth-first traversal, in which we number the leaves from left to right). We
then preprocess the set P = {(x(�), y(�)) | � is a leaf in ST(S)} ⊆ [n + 1]2 for
emptiness and rangeminy queries.

Suppose we search ST(S) for some substring S[l . . r], and let v be the node
in which the search ended. All the leaves in the subtree rooted at v, denoted
Tv, correspond to occurrences of S[l . . r] in S. Hence the set Yv = {y(�) |
� is a leaf in Tv} is the set of all occurrence positions of S[l . . r] in S. From the
properties of the suffix tree it follows that the set Xv = {x(�) | � is a leaf in Tv}
forms a consecutive range of values in [n + 1]. This is exactly the range Xv =
[x(lv), x(rv)], where lv and rv are the leftmost and rightmost leaves in Tv, respec-
tively. It therefore holds that for a leaf �, x(�) ∈ [x(lv), x(rv)] iff S[l . . r] appears
in S at location y(�).

Notice that each node u in the suffix tree has two different notions of depth:
the ordinary perception of depth of a node in a tree, denoted depth(u), and
the length of the string u represents denoted length(u). Now let Si and Sj be
two suffixes of S, and consider the longest common prefix of Si and Sj , denoted
LCP(Si, Sj). Let �i and �j be the leaves corresponding to Si and Sj , respectively
(i.e., i = y(�i) and j = y(�j)). Then |LCP(Si, Sj)| = length(LCA(�i, �j)), where
LCA(�i, �j) is the lowest common ancestor of �i and �j .

3.2 Definitions and Notations

We start with the following definition:

Definition 1. A suffix St is said to be relevant to a range [l, r] if l ≤ t ≤ r.

Before showing how to implement BLCP queries, we define the notion of eligibil-
ity, which forces us to define the contribution given by a specific relevant suffix
properly, and is depicted in the following definition:

Definition 2. Given a location r and a node u of the suffix tree, a relevant
suffix St is said to be eligible (w.r.t. r) at node u of the suffix tree if:

1. u is on the path from the root to �t (Equivalently, �t is a leaf in Tu)
2. t + length(u)− 1 ≤ r.
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In other words, we do not want to consider any portion of the suffix St which ex-
ceeds the position r, as such a portion is irrelevant to us. The notion of eligibility
allows us to formalize the idea of a bounded prefix.

3.3 Implementing BLCP Queries

Consider the suffix Sk represented by the path from the root to �k. As suffixes
St with greater |LCP(Sk, St)| values branch out of this path at a later stage (i.e.,
leave this path at nodes of greater depth), we are interested in suffixes which
share a large portion of this path. However, we are restricted by the eligibility of
those suffixes. Therefore, for a suffix St, define uk,r(t) to be the node u having
maximal depth such that

1. u is on the path from the root to �k (i.e. �k is a leaf in Tu).
2. St is eligible at u.

As we wish to find the location t, for which the portion of LCP(Sk, St) which
is fully included in S[l . . r] is maximal, we are actually interested in the relevant
suffix(es) St for which length(uk,r(t)) is maximal.

This supplies the intuition for our algorithm. Given k, we consider Sk, repre-
sented by the path from the root to �k. We search this path for the lowest node
v for which there exists t such that St is relevant and is eligible at v.

Notice that the notion of eligibility satisfies the property that for a node u, if
u is eligible for some relevant suffix, all of its ancestors are eligible for this suffix
as well. In addition, if the suffix tree had been preprocessed for answering level-
ancestor queries, by the methods of, for example, [3], we can find the ancestor
of �k of a specific depth d in O(1) time. We conclude that we can perform a
binary search on the depth of nodes on this path: in each node u we probe,
we efficiently test whether some relevant suffix is eligible at u, by querying for
emptiness([x(lu), x(ru)] × [l, r − length(u) + 1]). The x-axis range [x(lu), x(ru)]
assures us that we consider only suffixes for which the string represented by u is a
prefix, and the y-axis range [l, r− length(u)+1] assures us we consider only such
suffixes which are relevant and are eligible at node u (see Definition 2). However,
instead of the ordinary O(log n)-time binary search, we use a mixed “galloping”
and ordinary binary search approach: we conduct the search by iterations, where
in the i-th iteration we probe the node on the path whose depth is 2i−1 − 1 and
conduct the proper range emptiness query on it, repeating this process until
the first node whose emptiness query returned a positive result is encountered.
Denote this node as q and denote the last node probed before q as p. Now we
find v by direct binary searching on the sub-path between p and q.

Assume we have found the node v described before, i.e., v is the lowest node
on this path for which emptiness([x(lv), x(rv)] × [l, r − length(v) + 1]) returned
a negative result, and let w be its child on the path. If there is only a single
point (which corresponds to a single suffix) which exists in [x(lv), x(rv)]× [l, r−
length(v)+1], the start location of the corresponding suffix will be the location to
be chosen. However, this may not be the case: there might be several relevant and
eligible suffixes whose corresponding grid points are in that range. In this case,
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since v is the node uk,r(t′) for each such suffix St′ , there might be an additional
eligible portion of those suffixes on the edge (v, w) (figuratively speaking; we
mean of course that the additional eligible portion is a prefix of the substring
represented by the label of (v, w)). Furthermore, this additional portion may be
of a different length for each relevant suffix which is eligible at v. Choosing the
right suffix in this case is performed using a range searching for minimum query:
we prefer the suffix that has the minimal (i.e. leftmost) start location of the
above, as its additional eligible portion on (v, w) will be the longest. This is done
by querying rangeminy([x(lv), x(rv)]× [l,∞]). Let (x, y) be the point returned by
the query. We return y as the start location and min{length(LCA(Sk, Sy)), r −
y + 1} as the phrase length.

4 Answering ILCP Queries

Here our primary goal is to obtain an efficient way of finding ILCP(k, l, r). Re-
call that in this case we are allowed to exceed location r when searching for
ILCP(k, l, r). This is the equivalent of finding the location l ≤ t ≤ r, for which
the longest common prefix of S[k . . j] and the suffix St, is maximal.

Consider the suffix Sk. Clearly, it is sufficient to find the suffix St for which
|LCP(Sk, St)| is maximized;

In the following methods to be described, we will constantly assume the suffix
St is lexicographically smaller than Sk. The process for the case where St is
lexicographically greater than Sk is symmetric. Therefore, all we are required
is to choose the best of both, i.e., the option yielding the greater |LCP(Sk, St)|
value.

Once the aforementioned location t is found, we compute |LCP(Sk, St)|.
Therefore, to summarize, we have two steps: (1) finding the location t, and
(2) computing |LCP(Sk, St)|.

4.1 Finding the Start Location t

We use a reduction to the problem of range searching for minimum on a grid, as
opposed to range reporting used in [4].

Consider the suffix Sk, and consider the set of suffixes Γ = {Sl, . . . , Sr}. Since
|LCP(Sk, St)| = maxt′∈[l,r]|LCP(Sk, S′

t)|, St is in fact the suffix lexicographically
closest to Sk, out of all the suffixes of the set Γ . Since we have assumed w.l.o.g.
that St is lexicographically smaller than Sk, we had actually assumed x(�t) <
x(�k), or equivalently, that �t appears to the left of �k in the suffix tree. Incorpo-
rating the lexicographical ranks of Sk and St into the expression, t is actually the
value which maximizes the expression max{x(�t) | l ≤ t ≤ r and x(�t) < x(�k)}.
Notice that t = y(�t).

Now consider the set P = {(x(�), y(�)) | � is a leaf in ST(S)}. Assuming
indeed x(�t) < x(�k), we are interested in finding the maximal value x(�t),
such that x(�t) < x(�k), and l ≤ y(�t) ≤ r. It immediately follows that the
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point (x(�t), y(�t)) ∈ P is the point in the range [−∞, x(�k) − 1]× [l, r] having
maximal x-coordinate, and therefore can be obtained efficiently by querying
rangemaxx([−∞, x(�x)− 1]× [l, r]). Once we have found the point (x(�t), y(�t)),
we can locate �t, as it is the x(�t)-th leaf from the left. The leaf �t will be of
importance in the next section.

4.2 Computing |LCP(Sk, St)|
Consider �k and �t as described above. Since |LCP(Si, Sj)| = length(LCA(�i, �j))
for any i and j, it is sufficient to find the node w = LCA(�k, �t) and then to
compute length(w). Using the methods of Harel and Tarjan [9], an LCA query
can be answered in constant time. If the value length(u) for each node u has
been stored in u beforehand, we conclude the value length(w) is obtainable in
O(1) time.

The entire process for suffixes St′ , t′ ∈ [l, r], which are lexicographically
greater then St is symmetric. For those, the proper query which will be per-
formed is rangeminx([x(�k) + 1,∞]× [l, r]).

5 Outline of Substring Compression Query Algorithms

Given locations i and j which induce the substring S[i . . j] to be compressed,
we describe the outline of our methods, in an inductive manner:

– For the first location i, two cases exist, according to query type:
SCQ: write the encoded representation of S[i].
GSCQ: set k ← i and calculate BLCP(k, α, β). For convenience, we denote

|LCP| = |BLCP(k, α, β)|.
– For a general location, assume S[k . . j] is left to be compressed. Again two

cases exist:
SCQ: the LZ method revolves around finding ILCP(k, i, k − 1). For conve-

nience, we denote |LCP| = |ILCP(k, i, k − 1)|.
GSCQ: here we calculate both ILCP(k, i, k − 1) and BLCP(k, α, β), and

choose the longest of both. For convenience, this time we denote |LCP| =
max{|ILCP(k, i, k − 1)|, |BLCP(k, α, β)|}.

It is important to note that in all cases we need not find the LCP itself, but rather
it is sufficient to find its starting position t and its length. Once the proper |LCP|
value is obtained, if k + |LCP| − 1 > j, we truncate its last characters, leaving
only the first j − k + 1.

If no such LCP exists (e.g., |ILCP| = 0 and, if applicable, |BLCP| = 0), we
revert to writing the encoded representation of the current character, i.e., S[k].
Otherwise, we write the encoded representation of the distance to the starting
position t (i.e., the value k − t) and length of LCP, and set k ← k + |LCP|. If
k ≤ j, we repeat this process, otherwise, we stop.
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6 Substring Compression Query

Given a string S[1 . . n], it will be preprocessed to efficiently answer queries of the
form SCQ(i, j), in which we are asked to find the compression of the substring
S[i . . j]. The compression of S[i . . j] will then be computed by performing ILCP
queries in the manner described above until the compressed representation of
the entire substring has been found.

6.1 Analysis

Our running times and space used are heavily affected by the choice of the
range searching structure used. If we choose to use the range searching structure
capable of answering range searching for minimum/maximun queries, as it is
described by Lenhof and Smid [11], and modified to work on an [n] × [n] grid
in [10]. The analysis is depicted in the following theorem:

Theorem 1. SCQ(i, j) can be answered in worst-case O(C(i, j) log log n) time,
using a structure which employs O(n log n) space, and can be built in expected
O(n log n log log n) time.

Proof. The range searching for minimum (maximum) structure used [10], sup-
ports queries in worst-case O(log log n) time, uses O(n log n) space, and can be
built in overall expected O(n log n log log n) time.

Preprocessing Time. Consists of: O(n log min(n, |Σ|)) for the suffix tree con-
struction; O(n) time for a depth-first traversal in order to mark each node
u and each leaf � with length(u) and x(�), respectively; O(n) time for the
preprocessing in order to answer future LCA queries [9]; O(n log n log log n)
expected preprocessing time for the range searching structure [10]. We con-
clude the preprocessing time is overall expected O(n log n log log n).

Space. Consists of: O(n) for the suffix tree, augmented with the additional
x(�) and length(u) values, and LCA information; O(n log n) for the range
searching structure. We conclude the space used is O(n log n).

Query Time. For each of the C(i, j) phrases encoded, we use: O(log log n)
for range searching for maximum (resp. minimum) queries made in order
to find �t1 (resp. �t2); O(1) in order to compute both |LCA(�k, �t1)| and
|LCA(�k, �t2)|, and choose the maximum of both. We conclude the query
time is overall O(C(i, j) log log n). 
�

Theorem 2. For any ε > 0, SCQ(i, j) can be answered in worst-case O(C(i, j))
time, using a structure which employs O(n1+ε) space, and can be built in worst-
case O(n1+ε) time.

Proof. Notice that our range queries are performed on x(�) and y(�) values. A
unique property of these values is that no x(�) or y(�) value occurs twice in P , i.e.,
the sequence of point x-coordinates, and the sequence of point y-coordinates, are
both permutations of [n+1]. Using the range next value structure of [5] allows us
to obtain the following tradeoff: preprocessing time and space used are dominated
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by the preprocessing time and space used by the range searching structure. For
the query time, since a single range searching for minimum/maxiumum query
can now be answered in O(1) time, the overall query time is now worst-case
O(C(i, j)). 
�

As mentioned, we offer a tradeoff which is based upon replacing the range search-
ing structure with the one of Mäkinen and Navarro [12]. This structure can
support range searching for minimum/maxiumum in O(log n) time. While this
functionality does not appear explicitly in [12], it can be inferred using stan-
dard techniques and is not presented here due to lack of space. Furthermore,
this structure requires space of only O(n), and can be constructed in O(n log n)
time. The analysis therefore follows:

Theorem 3. SCQ(i, j) can be answered in worst-case O(C(i, j) log n) time,
using a structure which employs O(n) space, and can be built in worst-case
O(n log n) time.

Proof. Again, preprocessing time and space used are dominated by the prepro-
cessing time and space used by the range searching structure. For the query time,
since a single range searching for minimum/maxiumum query can now be an-
swered in O(log n) time, the overall query time is now worst-case O(C(i, j) log n).


�

7 General Substring Compression Query

For GSCQ, in addition to the two locations i and j, which denote the substring
S[i . . j] to be compressed, we receive two more indices α and β, which induce
a context substring S[α . . β]. This time we are asked to provide LZ(S[i . . j] |
S[α . . β]).

Here, when trying to compress S[k . . j] for some i ≤ k ≤ j, we have two
options: for the first we consider phrases having a start position i ≤ t ≤ k − 1.
This option is the one solved in Sect. 6, using ILCP queries. The second, is to
consider phrases taken from S[α . . β]. This will be done using a BLCP query.

7.1 Analysis

The analysis is depicted in the following theorem:

Theorem 4. GSCQ(i, j, α, β) can be answered in worst-case

O

(
Cα,β(i, j)

(
log

(
j − i

Cα,β(i, j)

)
Qempt + Qrmin

))
time, using a structure which takes O(Sempt + Srmin) space, and is built in
O(n log min{n, |Σ|}+Pempt+Prmin) time, where Qempt, Pempt, and Sempt (resp.
Qrmin, Prmin, and Srmin) are the query time, preprocessing time and space of the
range emptiness (resp. range searching for minimum) structure, respectively.
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Proof. As follows:

Preprocessing Time. Consists of: O(n log min(n, |Σ|)) for the suffix tree con-
struction; O(n) time for a depth-first traversal in order to mark each node
u with x(lu), x(ru), and length(u); O(n) time for the preprocessing in or-
der to answer future LCA queries [9]; O(n) time for the preprocessing in
order to answer future level-ancestor queries [3]. In addition we have the
preprocessing times associated with the range searching structures.

Space. Consists of: O(n) for the suffix tree, augmented with the additional
x(lu), x(ru) and length(u) values, LCA and level-ancestor structure infor-
mation. These bounds will be dominated by the range searching structures
chosen.

Query Time. Consider the query’s main loop described in Sect. 5 and
Consider the d-th iteration of the query algorithm main loop, and let lend

be the length of the phrase encoded in this iteration (d = 1, . . . , Cα,β(i, j)).
Assume S[k . . j] is the portion left to be compressed at before this iteration,
and let nodes v, p, and q be as defined before. It holds that depth(p) ≤
length(p) ≤ length(v) ≤ |BLCP(k, α, β)|. Node q was found one iteration
after node p. Therefore:

depth(q) ≤ 2(depth(p) + 1) ≤ 2(|BLCP(k, α, β)|+ 1) . (1)

We conclude that finding q was done by performing O(log|BLCP(k, α, β)|)
node accesses, and the following binary search, was supported by performing

O(log(depth(q)− depth(p))) = O(log|BLCP(k, α, β)|) (2)

node accesses. Since

|BLCP(k, α, β)| ≤ max{|ILCP(k, i, k − 1)|, |BLCP(k, α, β)|} = lend , (3)

and when accessing each node, a range emptiness query was conducted,
overall time for the mixed search described is O(log(lend) · Qempt), where
Qempt is the query time used for the emptiness query. We conclude that a
BLCP(k, α, β) query can be answered in O(log(lend) ·Qempt +Qrmin), where
Qrmin is the time required for the final range searching for minimum query
performed. Recall that an ILCP(k, i, k − 1) query is also made — however,
since the time for this query is only O(Qempt), it is dominated by the time
used for the BLCP(k, α, β) query.
We conclude that GSCQ can be answered in overall

O

⎛⎝Qempt

Cα,β(i,j)∑
d=1

log(lend) + Cα,β(i, j)Qrmin

⎞⎠ (4)
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time. {lend}Cα,β(i,j)
d=1 is a partition of |S[i . . j]| = j − i + 1, therefore the

above expression is maximized when len1 = · · · = lenCα,β(i,j) = j−i+1
Cα,β(i,j) . We

conclude that GSCQ(i, j, α, β) can be answered in time.

O

(
Cα,β(i, j)

(
log

(
j − i

Cα,β(i, j)

)
Qempt + Qrmin

))

�

Table 2. GSCQ tradeoffs

empt rmin Query Time Space Preproc. Time

[5] [5] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

))
O(n1+ε) O(n1+ε)

[12] [12] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
log n

)
O(n) O(n log n)

[1] [12] O
(
Cα,β(i, j)

(
log

( j−i
Cα,β(i,j)

)
log log n + log n

))
O(n logε n) O(n log n)

[1] [10] O
(
Cα,β(i, j) log

( j−i
Cα,β(i,j)

)
log log n

)
O(n log n) O(n log n log log n)

The choice of range emptiness and range searching for minimum structures
will determine the time bounds for their respective queries. Tradeoff results are
given in Table 2, where the column labeled “empt” denotes the range emptiness
structure used, and the column labeled “rmin” denotes the range searching for
minimum structure used.
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Techniques

Roberto Grossi
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Abstract. The talk is a guided tour on text indexing data structures,
suffix sorting, and data compression. We discuss how they share common
problems on text suffixes, showing the interplay among some of the algo-
rithmic techniques that have been devised so far. In the following, given
a text T = T [1, n] of n symbols, we denote by si its suffix si = T [i, n]
for 1 ≤ i ≤ n.

A text indexing data structure stores the suffixes s1, s2, . . . , sn of T
at preprocessing time, in a suitable format that can support pattern
matching queries over T . For example, given a pattern string P of m
symbols, one type of query is that of computing how many times P
appears in T , whose O(m + log n) time complexity in the comparison
model compares favorably with the O(m + n) cost required by full text
scanning [8]. Notable examples of text indexing data structures are suffix
trees [10,14] and suffix arrays [9] for usage in main memory, string B-
trees [4] and cache-oblivious string B-trees [1] for usage in external and
hierarchical memory, to name a few.

Suffix sorting requires to arrange the suffixes s1, s2, . . . , sn in lexico-
graphic order. This is the major computational bottleneck in suffix-based
algorithms, and can be solved in O(n log n) time in the comparison model
(e.g. [7]). Having sorted the suffixes, it is not difficult to build a text in-
dexing data structure in (nearly) linear time. Suffix sorting is crucial also
in data compression, as witnessed by the importance of the Burrows-
Wheeler transform [3]. The techniques adopted in the aforementioned
topics converged in several ways into the rich fields of compressed text
indexing [5,6,11,13] and succinct data structures [2,12], with some old
and new open problems.
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Abstract. We address the problem of finding the locations of all in-
stances of a string P in a text T , where of T is allowed to facilitate the
queries. Previous data structures for this problem include the suffix tree,
the suffix array, and the compact DAWG. We modify a data structure
called a sequence tree, which was proposed by Coffman and Eve for hash-
ing, and adapt it to the new problem. We can then produce a list of k
occurrences of any string P in T in O(||P || + k) time. Because of prop-
erties shared by suffixes of a text that are not shared by arbitrary hash
keys, we can build the structure in O(||T ||) time, which is much faster
than Coffman and Eve’s algorithm. These bounds are as good as those
for the suffix tree, suffix array, and the compact DAWG. The advantages
are the elementary nature of some of the algorithms for constructing
and using the data structure and the asymptotic bounds we can give for
updating the data structure when the text is edited.

1 Introduction

In this paper, we consider the problem of finding occurrences of a pattern string
P in a text T , where preprocessing of T is allowed in order to create a data
structure that speeds up the search.

Let m denote the length ||P || of P , let n denote the length ||T || of T , and let
k be the number of positions in T where P occurs as a substring. For simplicity,
we assume for the moment that the size of the alphabet Σ is fixed.

Previous data structures for this problem include the suffix tree [1], the compact
directed acyclic word graph (compact DAWG) [2], and the suffix array [3]. The first
two approaches take O(n) time to build the data structure, and O(m+k) time to
find the k positions where the pattern string occurs.

The suffix array can be constructed in O(n) time, and takes O(m + log n)
time to produce a pointer to a list of occurrences of of P in T . A slightly slower
approach takes O(m log n) time, and this approach is of practical interest because
of its simplicity.

In this paper, we describe an alternative to these data structures, which we
call a contracted suffix tree. It can also be constructed in O(n) time, and
takes O(m + k) time to find the k occurrences of the pattern string. Unlike the
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suffix array, it does not give a pointer to a list of occurrences, but it can be
made the basis of a data type that takes O(m) time to input P and O(1) time
to produce an occurrence each time one is requested, even if the user does not
ask for all occurrences. This is just as good as producing a list, since it provides
what amounts to a list iterator. (The suffix tree can also be augmented with
extra pointers to provide such an interface.)

A special case of the contracted suffix tree, called the position heap can be
made the basis of a list interface that takes O(m) time to input P and produces
a list iterator that gives the positions in left-to-right order of the occurrences
in the text, at a cost of O(log k) time per element. The previous approaches give
the occurrences in an order that has no relation to their left-to-right order in
the text.

Like the suffix tree and the compact DAWG, and unlike the suffix array, our
bounds must be increased by a log |Σ| factor when the size of the alphabet, Σ,
is introduced as a variable. This factor comes from the time required to find
the child of a node on the child edge labeled b. This can be improved to O(1)
expected time with a hash table that returns the child given a hash key consisting
of the parent and a letter. This is nevertheless a disadvantage when compared
to suffix arrays.

The proposed approach has the advantage that it has a good time bound for
modifying the data structure after arbitrary text edits on T . The generalized
suffix tree allows search for a pattern string in a collection of texts. In [4], it
is shown that it is possible to implement it to allow insertion and removal of
any text X in the collection in O(||X ||) time. However, X must be inserted or
removed in its entirety and smaller edits on X are not supported. Very recently,
Salson et. al. have given an approach that takes O(n) worst-case time to modify
a variant of the suffix array after an arbitrary edit operation on T [5]. This
is as bad as the cost as discarding the suffix array and rebuilding it from the
beginning. However, they argue that their approach is much more efficient in
practice, and support this with empirical studies on benchmarks.

Except when T has very low entropy, our proposed data structure can be
updated efficiently when the text T is modified. Let h(T ) be the length of the
largest substring X of T that is repeated more than ||X || times in T . A few
moment’s consideration reveals that h(T ) can be expected to be quite small for
most practical applications. The expected value of h(T ) is O(log n) when T is
a randomly-generated string. Since few applications deal with random strings,
a more important observation is that long repeated substrings in T have little
impact on the value of h(T ) unless they are repeated an inordinate number of
times.

Updating the proposed structure after deletion or insertion of a consecutive
block of b characters takes O((h(T )2+bh(T ))) time. The tradeoff of implementing
it in this way is that searches take O(m log k + k) time, rather than O(m + k)
time, to produce the k occurrences of the pattern string. In the worst case, as
when T = an, h(T ) = Θ(n), and one can resort to the O(n) bound obtained
by discarding and rebuilding the structure. However, the bound is a stronger
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one than O(n) because it characterizes analytically the relationship between the
running time and an easily-understood property of the text.

We can give a somewhat stronger bound as follows. Let h(T, i) be the length of
the longest string X that has more than ||X || occurrences in T and an occurrence
containing a pointer to position i in T . We can update the structure after deletion
of a block of b characters in O((h′2 + bh′) log n) time, where h′ is the maximum
of h(T, i) and h(T ′, i) over the positions i that were affected by the insertion or
deletion and T ′ is the final string. Thus, the update is efficient unless it occurs
inside a very large section of the text that is repeated very many times. Updates
only take significant time when they occur in regions of the text that have very
low entropy. Indeed, the proposed structure has a relationship to a structure
used in the Lempel-Ziv data compression algorithm [6].

An even stronger result is that moving a consecutive block of b characters
from one place to another in the text takes O((h(T )2) time, independently of
the number b of characters in the block. This is a common editing operation and
the correction to a common type of error in databases of genetic sequences.

2 Preliminaries

Let λ be the null string. If X = x1x2...xk is a string, we let ||X || denote the
length k of x. The reverse of X is the string XR = xkxk−1...x1. If Y is a prefix
x1x2...xi of X , let X − Y be the result xi+1...xk of removing Y from the front
of X .

For reasons that will become clear shortly, we adopt the convention of num-
bering the positions of the text T from right to left, so T = tntn−1...t1. Let
Ti denote the suffix titi−1 . . . t1 beginning at position i. Let us distinguish a
substring P = p1p2...pm of a T from an instance (P, i) of P in T , where
P = titi−1...ti−m+1. The null substring, λ, is considered to occur at every
position.

Definition 1. A trie on alphabet Σ denotes a rooted tree T with the following
properties:

1. Each edge is labeled with a character;
2. For each node u and letter b ∈ Σ, there is at most one edge with label b from

u to a child of u.

Given a trie, let us say that the label of a path from the root to a node u is the
string given by the sequence X of characters that occur on edges of the path. This
is the path label of u. Because of the second property, the path label uniquely
identifies u. We therefore adopt the convention of treating the node and its path
label as interchangeable objects. For example, we may consider whether a string
X is a node of the trie, or whether one node is a substring of another. Note that
one node is a prefix of another if and only if it is an ancestor in the trie.

A basic operation on a trie takes an input string P = p1p2...pm and finds the
largest prefix P ′ of P that is a node of the trie. Since |Σ| is fixed, this is easily
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accomplished in O(||P ′||) time by starting at the root and iteratively taking
edges labeled with the sequence of letters from P , until P is exhausted or a node
is encountered that doesn’t have a child on the next letter of P . Let us call this
operation indexing into the trie.

3 Sequence Hash Trees

A data structure of Coffman and Eve [7], called a sequence hash tree, was
designed for the problem of implementing hash tables (dictionaries) whose keys
are strings. It consists of a trie for indexing into the table. The structure of the
tree depends on the order in which the strings are inserted. We describe a small
variant that is easier to adapt to our substring matching problem, below.

Let S = (S1, S2, . . . Sn) be a given ordering of the strings. Without loss of
generality for our purposes, we may assume that no string is S is a prefix of any
other. The trie that they construct is defined by induction, as follows. If i = 1,
the trie H1 is just a root node with a pointer to S1. If i > 1, then Hi is obtained
from Hi−1 by finding the shortest prefix Xb of Si that is not already a node of
the trie. A new node Xb is added as the child of node X on edge labeled b, and
a pointer is installed from it to Si.

Figure 1 gives an example. To find an occurrence of a string S in the hash
table, they index into the trie Hn = H on the longest prefix X of S that is a
node of H . For each node on the path from the root to X , they check whether
the hash-table entry the node points to matches S.

1.  aaab

2.  abaa

3.  bab

4.  aaaa

5.  bbaa

3

5

b

a

b

a b b

a
1

2

6

a

4

7.  baa

8.  abbb

9.  abbab

9

8

7

6.  abbaa

Fig. 1. The sequence hash tree of a set of strings. Each string is installed at the shortest
prefix that isn’t already a node of the sequence hash tree. The shape of the tree depends
on the order in which the strings are inserted.

Their algorithm for deleting string from the tree consists of finding a leaf
descendant Y of the node X that points to the string, copying Y ’s pointer to
X , and deleting Y . The insertion algorithm indexes into the new string S until
it reaches a null pointer, creates a new leaf child X on that pointer, and makes
it point to S. Both of these operations take time proportional to the depth of
the tree.



Contracted Suffix Trees 45

4 Contracted Suffix Trees

We consider how to apply Coffman and Eve’s sequence hash trees to our problem
of finding all occurrences of P in T . We build the sequence hash tree for the set
of suffixes of T , and record, in the node generated by each suffix, a pointer to
where the suffix begins in T . P occurs at location i in T if and only if it is a
prefix of suffix Ti. We append a special character $ to the end of T to ensure
that no suffix of T is a prefix of another. Instead of looking for an entry that P
matches, we look for all entries that P is a prefix of; the locations where these
suffixes begin in T gives the locations where P occurs.

Coffman and Eve’s paper has received little attention since it was published
in 1970, due, in no doubt, to the existence of superior ways of implementing a
hash table. In the present paper, we show that this data structure is a much
richer when considered in the context of the new problem. The structure of the
set of suffixes of a text T allows us to derive interesting and algorithmically
useful properties that do not apply in the general case addressed by Coffman
and Eve. In particular, we show that it has height at most h(T ), and show that
if the suffixes are inserted in ascending order of length, it is now possible to
build the data structure in time that is linear in n = ||T ||, that is, in O(1) time,
amortized, per hash key. We show how the tree can be augmented with maximal
reach pointers so that finding all k entries that have P as a prefix takes O(m+k)
worst-case time, independently of the height of the tree.

The h(T ) height bound gives an O(h(T )) bound for Coffman and Eve’s op-
erations for inserting and deleting a suffix. This gives the O((b + h(T ))h(T ))
bound for updating the data structure when a consecutive block of b characters
is deleted and the O((h(T ))2) bound for moving a block of b characters from one
place in T to another.

To distinguish this special case of their structure, we will call it the con-
tracted suffix tree; in contrast to the suffix tree, which has a path for each
suffix, the contracted suffix tree only has paths for prefixes of the suffixes.

4.1 A Naive Query Algorithm for Contracted Suffix Trees

In this section, we give the naive query algorithm, which determines the k
occurrences of P in T in O(m2 + k) time, where m is the length of P . Below,
we show how to improve this to O(m + k). As explained below, the O(m2)
component is overly pessimistic in practice, however, and the naive approach
takes O(m + k) expected time on random strings. It may be competitive with
the O(m + k) worst-case approach for many applications, due to its simplicity
and lower space requirements.

Lemma 1. If P is not a node of a contracted suffix tree of T , it has fewer than
||P || occurrences in T .

Proof. Every suffix of T that has P as a prefix results in a new node of the tree
that is either a proper prefix of P or that has P as a prefix. Since P does not
occur in the tree, it is not a prefix of any node in the tree. Therefore, the number
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of suffixes of T that have P as a prefix, hence the number of occurrences of P ,
is bounded by the number of proper prefixes of P .

Lemma 2. The height of a contracted suffix tree of T is at most h(T ).

Proof. Let X = xkxk−1 . . . x1 be a deepest leaf of the tree. Let Xi denote the
prefix xkxi−1 . . .xi of X . For each i from 1 through k, Xi occurs at least i times
in T because it has at least i descendants, {Xi, Xi−1, . . .X1}, and each of these
points to an occurrence of a substring of which Xi is a prefix. Therefore, X�k/2�
has length �k/2 and occurs at least �k/2� times in T . It must be that k/2 is a
lower bound on h(T ), so the height k is O(h(T )).

A node X contains a pointer to a position i where X occurs. It follows that if P
is a node of the contracted suffix tree, the positions in T pointed to by ancestors
of P may or may not be occurrences of P , while the positions pointed to by
descendants of n are all occurrences of P . This gives a simple algorithm for a
special case of the query:

– Case 1. P is a node in H.
The applicability of the case is detected by indexing into H on P . For each
ancestor (prefix) X ′ of P , determine whether P occurs at the position i
pointed to by X ′. In addition to these, report positions contained in all
descendants of P . (See Figure 2.)

For each ancestor X ′ of P , it takes O(m) time in the worst case to check
whether P occurs at the position pointed to by X ′. There are at most m ancestors
of P , so the total time spent on these checks is O(m2). Finding the k′ descendants
of x takes O(k′) time, since no checking is required. The total is O(m2 + k).

– Case 2. P is not a node in H .
Let X be the longest prefix of P that is a node in H . For each ancestor
(prefix) X ′ of X , determine whether P occurs at the position i pointed to
by X ′, and report the ones that do. (See Figure 2.)

Since Case 2 applies, X is a proper prefix of P . Let b be the character that
follows this instance of X in P . Since X has no child on edge labeled b, any
descendant of X contains a pointer to a position that is an occurrence of Xc for
c �= b. Therefore, no descendant of X is an occurrence of P , and we may drop
the k from the O(m2 + k) bound we got in Case 1 to get an O(m2) bound.

4.2 A Naive Construction Algorithm

Coffman and Eve’ algorithm for inserting an entry to the sequence hash tree
takes O(h) time, where h is the height of the tree. By Corollary 2, we may
use this algorithm to insert each suffix of T , yielding a contracted suffix tree in
O(nh(T )) time.
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Searching for aba and abab

$

Fig. 2. The string aba is the node labeled with a pointer to position 11, so it falls
into Case 1. The position labels of ancestors of this node, {1, 3, 6} may or may not
be occurrences of aba, and this must be checked. A naive approach checks whether
the occurrence of ab at position 6 is followed by an a and the occurrence of a at
position 3 is followed by ba, and the occurrence of the null string at position 1 is
followed by aba. This approach takes O(m) time per ancestor. This can be improved to
O(1) time per ancestor by checking whether the maximal-reach pointer of the ancestor
(dashed arrows) points to a descendant of node aba (Section 5). The position labels of
descendants of aba {11, 15} must be occurrences of aba, and do not have to be checked.
The string abab falls into Case 2. Node aba is the largest prefix that is a node of the
tree. Only the ancestors {1, 3, 6} of this node can be occurrences of abab. This can
be checked by verifying that the maximal reach pointer points to aba, indicating an
occurrence of aba not followed by a, and, if so, checking whether the occurrence is
followed by b.

5 An O(m + k) Bound for Searches

At a node X pointing to position i of T , let Y be the longest prefix of Ti that is
a node of a contracted suffix tree H of T . Clearly, X is a prefix of Y , though it
is possible that it is not a proper prefix. We install a maximal reach pointer
from node X to node Y . (See figure 2.)

Lemma 3. The position i in an ancestor X of P is an occurrence of P if and
only if X’s maximal reach pointer points to a (not necessarily proper) descendant
of P .

Proof. The nodes of the tree that have P as a prefix are the descendants of P .
If X ’s maximal reach pointer points to a descendant of P , then Ti has P as a
prefix, and P occurs at position i. If X ’s maximal reach pointer does not point
to a descendant of P , then since P is a node of the tree, P is not a prefix of Ti,
which means that P does not occur at position i.

The naive algorithm for installing the maximal-reach pointers is to revisit each
position i of T after the suffix heap tree H has been built, indexing into H on the
suffix beginning at i, passing through the node containing i, and stopping when
a node encountered that has no child on the next letter of T . This is the node
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that must be pointed to by the node containing position i. Since the height of
H is O(h(T )) this gives an O(nh(T )) algorithm for installing the maximal-reach
pointers, which adds nothing to the asymptotic time bound for building H with
the naive construction algorithm.

After we construct the tree, we perform a depth-first search of the tree to
label each node with a discovery and finishing time, as described in [8]. These
are essentially preorder and postorder numbers. Their purpose is to allow us to
determine, given nodes X and Y , whether X is an ancestor of Y ; this is the case
if and only if X has an earlier discovery time and a later finishing time than
Y does. We also keep a pointer from each position in T to the node of H that
points to it.

Case 1 queries. As before, to find the k′ occurrences of P listed in descendants
of P , we visit P ’s subtree in O(k′) time. The difference now is that we can
determine at each ancestor X ′ of P whether the position i it contains is an
occurrence of P by checking whether the maximal reach pointer of X ′ points
to a (not necessarily proper) descendant of P . This test takes O(1) time using
the preorder and postorder numbers, giving the O(m) bound for finding the
remaining occurrences of P that its ancestors point to.

Case 2 queries. For Case 2, there are O(m) occurrences of P by Lemma 1.
We partition P into substrings by finding the maximal prefix P1 of P that is a
node of H , then the maximal prefix of P −P1 that is a node of H , etc., yielding
(P1, P2, . . . , Pk).

Since we are in Case 2, there are k ≥ 2 strings in this sequence. Since ||P1|| is
the longest prefix of P that is a node of the tree, any proper descendant X of P1
fails to be a prefix of P , hence the position at X is not an occurrence of P . Only
(not necessarily proper) ancestors of P1 can contain pointers to occurrences of
P . Since P1 is a prefix of P , only nodes that point to an occurrence of P1 are
candidates to be occurrences of P . An ancestor is a candidate if and only if its
maximal-reach pointer points to P1; if its maximal reach pointer points to a
proper descendant of P1, it points to a node that is not a prefix of P .

By induction on j, we now find which candidate locations are occurrences
of P1P2 . . . Pj , and show that there are O(||Pj ||) of them, as follows. If j = 1,
the candidate positions are the O(||P1||) candidates described above. If 1 < j <
k−1, the candidate positions are the positions of P1P2 . . . Pj , and we assume by
induction that there are O(||Pj ||) of them. We test for each candidate position i
whether i is an occurrence of Pj+1 by checking whether i′ = i−||P1P2 . . . Pj || is an
occurrence of Pj+1 that’s followed by Pj+2Pj+3 . . .Pk. We do this by determining
whether i′ occurs at a (not-necessarily proper) ancestor Y of Pj+1 and Y ’s
maximal reach pointer points to a (not-necessarily proper) descendant of Pj+1.
This takes O(||Pj ||) time using the preorder and postorder numbers, and since
there are O(||Pj+1||) ancestors of Pj+1, it yields O(||Pj+1 ||) positions. If j = k−1,
Pj+2Pj+3 . . . Pk is empty, so we also test whether i′ occurs in a descendant of
Pj+1 = Pk.

The time bound for finding all occurrences of P = P1P2 . . . Pk is thus
O(||P1||+ ||P2||+ . . . + ||Pk||) = O(m).
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6 Building a Contracted Suffix Tree in O(n) Time

We begin by installing the text in an array of characters in O(n) time, so that
we can access the letter in any position number i in O(1) time.

Let H(T ) denote the unique result of inserting the suffixes of T into the
contracted suffix tree in ascending order of their length. This special case of the
contracted suffix tree is called the position heap [9].

One advantage of the position heap is that it can be used to produce in O(||P ||)
time an iterator on a list of positions in order in which they occur in the text,
at a cost of spending O(log k), rather than O(1), for returning the next element
of the list. The positions are in heap order, that is, the position at each node is
smaller than the positions at its children. In Case 1, the positions in ancestors of
P therefore occur in sorted order, and for the descendants, a priority queue can
be used to manage the topmost descendants that haven’t already been returned.
In Case 2, the candidate positions are found at ancestors of P1, which occur in
sorted order, and elements are subsequently deleted from this list to give the list
of occurrences of P . This gives them in right-to-left order; if left-to-right order
is desired, the position heap for the reverse of the text can be used.

Let the dual D(T ) of the position heap H(T ) be the trie where for each node
X of H(T ), the reverse XR of X is a node of D(T ) (see Figure 3).

It is tempting to think that the dual is just the position heap of the reverse
of the text, but it is easily verified that this is not the case.
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Fig. 3. The position heap and its dual for the text abbabbb. The labels of the path
leading to a node in the dual is the reverse of the labels of the path leading to it in the
position heap.

Let us say that a set of S of strings is hereditary if, whenever X ∈ S, every
substring of X is also in S.

Lemma 4. The nodes of the position heap are a hereditary family of strings.

Proof. Let us show this by induction on the length of Ti = titi+1...t1. The
lemma is trivially true for H(T1), which has only one node, the empty string.
Otherwise, we adopt as the induction hypothesis that the nodes of H(Ti−1) have
the hereditary property. Since H(Ti) differs from H(Ti−1) only by the addition
of a node X , H(Ti) can only fail to have the hereditary property if some proper
substring of X fails to be a node of Ti.
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This can’t be the case if ||X || < 2, since λ is a node of H(Ti). Suppose
||X || ≥ 2. We can then write X as aX ′b. The parent of aX ′b is aX ′, hence it
is a node of H(Ti−1). Since aX ′ is longer than X ′, X ′ is a node in Ti−2. Also,
X ′b is a prefix of Ti−1, and since X ′ is a node of Ti−2, X ′b is either added at
step i − 1 or is already a node of Ti−2. In either case, it is a node of H(Ti−1).
We conclude that aX ′ and X ′b are nodes of Ti−1. By the induction hypothesis,
every substring of aX ′ and X ′b is a node of Ti−1, hence of Ti, and these are
every proper substring of the new node X = aX ′b.

The lemma is not true for sequence hash trees: the substring bba of the node
abba labeled 9 in Figure 1 is not a node of the tree.

Corollary 1. The set of nodes of D(T ) is the same as the set of nodes of H(T ).

Proof. By definition, every node of H(T ) is a node of D(T ). It remains to show
that every node of D(T ) is a node of H(T ). Let X be an arbitrary node of H(T ).
By Lemma 4, not only is every prefix of a node X of H(T ) a node of H(T ), but
so is every suffix. This implies that every ancestor of X in D(T ) is a node of
H(T ). There are no nodes on any path of D(T ) that fail to be a node of H(T ).

We implement H(T ) and D(T ) on the same set of nodes, so that each node has
a parent in H(T ) and a parent in D(T ). We continue to refer to each node by its
path label X in H(T ), even when considering it as a node of D(T ). Equivalently,
each node of D(T ) is denoted by the sequence X of labels on edges from the
node to the root of D(T ).

We get an O(n) time bound for constructing the position heap by simultane-
ously constructing the position heap and its dual. During construction, we need
the edges to go from child to parent in the position heap and from parent to
child in the dual. After the tree is constructed, the dual heap can be discarded
and the edges of the position heap can be reversed in O(n) time, to go from
parent to child, by bucket sorting edges according to destination vertex.

When going from H(Ti−1) to H(Ti), a new node must be added to hold a
pointer to position i. Let a be the first letter of Ti and let X be the node added
at step i−1. If position i is the first time a was encountered, we add a new child
of the root on edge labeled a in both the position heap and the dual. Otherwise,
let aX ′ be the longest prefix of Ti that is a node of H(Ti−1). Because X was
added at step i− 1, it follows from the hereditary property that aX was not a
node of H(Ti−1). Therefore, X ′ is a proper prefix of X . We find X ′ by ascending
through proper ancestors (prefixes) of X in the position heap. X ′ is the first one
that has a child on edge labeled a in the dual.

Let b = ti−||aX′||. Since the text is in an array of characters, we may look up
b in O(1) time. According the constructive definition of H , the new node in H is
aX ′b. In H , this is the child of aX ′ on edge labeled b. According to the definition
of the dual, aX ′b is also the new node of the dual. It must be the child of X ′b
on edge labeled a. X ′b is already known: it was the child of X ′ encountered on
the path from X to X ′.

Let us now show that iterating this procedure from 1 through n gives an O(n)
time bound for finding H(T ) and D(T ). We use an amortized analysis to bound
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this cost over all iterations. The only difficulty is bounding the amount of time
traversing the path from X up to X ′. Let the current depth be the depth of
the last node added. The key to the analysis is that each node traversed on this
path decreases the current depth by one, and adding the new node aX ′b then
increases the depth by two. Since the initial depth is 0, the total number of
times the depth decreases is bounded by the number of times it increases, which
is O(n).

The procedure for adding the maximal-reach pointers to H(T ) in O(n) time is
similar. We install maximal reach pointers in nodes in the same order in which
those nodes were added to H(T ). This time, we let the current depth be the
depth of the node X pointed to by the next node’s maximal reach pointer. The
next node pointed to is obtained by searching upward from X to find the lowest
ancestor X ′ such that aX ′ is a node; this is the node pointed to by the next
maximal-reach pointer. The amortized analysis of the running time is the same
as it is for the construction.

7 Dynamic Texts

When T changes dynamically, we can no longer assume that the characters of T
are in an array.

The nodes of the contracted suffix tree were previously labeled with discovery
and finishing times in a depth-first search on the tree. We replace these with
pointers into a data structure for dynamic ordered lists that is suitable for looking
up in O(log n) time which of two elements is earlier in the list. The order of
elements in this list are the discovery and finishing times of nodes in the current
tree. A balanced binary tree where the elements appear in inorder suffices, for
example. Each node points to the two elements corresponding to its discovery
and finishing times. When a new node is created, its discovery-time element is
inserted immediately after the finishing-time element of its left neighbor, or of its
parent if it has no left neighbor. Its finishing element is handled symmetrically.
When it is deleted, its discovery- and finishing-time elements are simply removed
from the list. This list allows one to determine whether one node is an ancestor
of another in O(log n) time, rather than O(1) time. This raises the worst-case
time bound for finding which ancestors of P point to occurrences of P from O(1)
to O(log n). This increases the worst-case bound for finding all k occurrences of
P from O(m + k) to O(m log n + k).

Similarly, the text must be implemented with a data structure that allows
insertion and deletion of blocks of text in O(log n), and indexing the character
that is currently in position i. This can be carried out with similar schemes; one
simple scheme which takes O(log n), amortized, is based on splay trees, and is
described in [10]. If this structure is used, finding all k occurrences of P takes
O(m log n + k), amortized.

Figure 4 shows how to modify the tree when a single character is deleted,
in the case the b at position p6. Each underline under the text represents the
occurrence of a node X pointed to X . We can remove p6 with Coffman and
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Fig. 4. Modifying a contracted suffix tree when a character is deleted from T

Eve’s deletion operation, which replaces it with a leaf descendant, in this case
p12. However, p7 is at node aba, which indicates that there is an occurrence of
aba, represented by an underline, which extends from position p7 to p5. This is
no longer the case, because the middle letter of aba is the b that was deleted
at position p6. We must therefore remove p7, because it is at a node that is no
longer a prefix of the suffix that begins at p7. Similarly, we must remove p8,
which resides at aab, whose last letter is the deleted one. Let us call positions
such as p7 and p8 that are not deleted but must be moved to a new location the
affected positions.

The middle tree of Figure 4 shows the tree after the deleted and affected
positions have been removed. We then reinsert the new suffixes beginning at the
affected positions with Coffman and Eve’s insertion operation.

Since each node is a string of length O(h(T )), there are O(h(T )) affected
positions, and each one takes O(h(T ) + log n) amortized time to remove. The
log n time comes from the need to remove and insert its discovery and finishing
times in the dynamic lists (and the O(log n) amortized bound comes if you use
the splay-tree data structure in [10] for representing the text). O(h(T ) + log n)
amortized is O(h(T )), amortized, since log n = O(h(T )). Similarly, each affected
position takes O(h(T ′)) amortized time to insert, where T ′ is the revised text.
An easy way to see that h(T ′) is O(h(T )) is to observe that the insertion of the
h(T ) positions can add at O(h(T )) to the height of the middle tree. This gives
a total of O([h(T )]2) time to delete a character. Insertion of a character works
similarly and has the same time bound.

When a consecutive block of b characters is deleted, there are still O(h(T ))
affected characters that precede the b characters of the block. Each of the b
deleted characters and the O(h(T )) affected characters takes O(h(T )) amor-
tized time to process, so the time to delete b consecutive characters from T is
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O((b+h(T ))h(T )), amortized. Similarly, the insertion of b consecutive characters
takes O((b + h(T ′))h(T ′)) amortized time, where T ′ is the new text that results
from the insertion.

To get the O([h(T )]2) amortized bound for moving a consecutive block of b
characters from one position to another in the text, we observe that we only
need to move affected positions. These are O(h(T )) positions at the end of the
block, O(h(T )) positions preceding the initial location of the block, and O(h(T ))
positions preceding the new location of the block. The remaining positions in
the block are at nodes that continue to be prefixes of the suffixes that they point
to, so they don’t need to be moved.
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Abstract. In this paper we present in detail a new efficient linear time
and space suffix array construction algorithm(SACA), called the
D-Critical-Substring algorithm. The algorithm is built upon a novel con-
cept called fixed-size D-Critical-Substrings, which allow us to compute
suffix arrays through a balanced combination of the bucket-sort and the
induction sort. The D-Critical-Substring algorithm is very simple, a fully-
functioning sample implementation of which in C++ is embodied in only
about 100 effective lines. The results of the experiment that we con-
ducted on the data from the Canterbury and Manzini-Ferragina corpora
indicate that our algorithm outperforms the two previously best-known
linear time algorithms: the Kärkkäinen-Sanders (KS) and the Ko-Aluru
(KA) algorithms.

1 Introduction

Background

Suffix arrays were first proposed by Manber and Myers in their seminal SODA’90
paper [1] as a memory efficient alternative data structure to suffix trees. While
a suffix tree physically contains all the suffixes of the text, a suffix array is only
an integer array consisting of specially arranged indexes which references all the
suffixes of the text in their lexicographically ascending order. Due to their light-
weighted nature, suffix arrays have been used in large-scale indexing, compress-
ing and pattern matching applications, e.g., internet-scale searching and genome
sequence databases, where the magnitudes of data are measured often in billions
of characters [2,3]. The original suffix array construction algorithm introduced
in [1] is superlinear, it, however, has well stimulated several attempts in design-
ing linear time suffix array construction algorithms during the past two decades.
Among them are three well-known linear SACAs contemporarily reported in
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2003. They are attributed to Kim, Sim, Park and Park (KSP) [4], Kärkkäinen
and Sanders (KS) [5], and Ko and Aluru (KA) [6] respectively. While KSP is
an array version of Farach’s work [7] on suffix trees, the KA and KS algorithms
share a same recursive framework but employ two different block compressing
schemes and two different sorting methods: the KA algorithm compresses the
text using varying length substrings at induction sorting friendly positions, but
the KS algorithm compresses the text using fixed size substrings without utiliz-
ing induction sort at all. Yuta Mori has independently evaluated the KS and KA
algorithms [8] to demonstrate that the KA is over one time faster than the KS.
However, the implementation of the KS algorithm is dramatically simpler than
that of the KA. This is well evidenced by the sample implementations of the
two algorithms from their respective original inventors (The KS can be coded
using about 100 lines of C code while the KA uses much more than 1000 lines).
The reason is that the fixed size substrings used in the KS algorithm can be
easily sorted by the bucket-sort, while the KA has to use very involved logics to
maintain S-list in its crucial substring renaming phase.

Our Contributions

We proposed a new algorithm to combine the benefits of both fixed size sub-
strings and the induction sort. The algorithm is called the D-Critical Substring
algorithm and has been outlined in our poster at DCC’08 [9]. In this paper, we
further extend it by including a detailed analysis and evaluation of the D-critical
substring algorithm. The key idea of our D-Critical algorithm is to compress the
original string using fixed D-Critical substrings (hence the name of the algo-
rithm), which in turn are defined based on D-Critical characters. As will be seen
in the following sections, D-critical characters are induction sort friendly and
D-critical-substrings are fixed size. As a result, this new algorithm outperforms
both the KA and the KS algorithms.

2 Preliminary

Unless explicitly specified otherwise, the following notations will be used
throughout the paper.

– S: a string with n characters consecutively arranged as an array with the
index starting from 0.

– S[i..j]: the consecutive substring starting at ith position and ending at jth
position of S, where i ≤ j.

– $: The size-n input string S is terminated by a sentinel $, which is the unique
lexicographically smallest character in S.

– suf(S, i): the suffix in S starting at S[i] and running into the last character.
– Σ(S) and SA(S): the alphabet and the suffix array of S, respectively.
– Type-S or type-L suffix: a suffix suf(S, i) is of type-S (type-L respectively)

if suf(S, i) < suf(S, i + 1) (suf(S, i) > suf(S, i + 1) respectively). The last
suffix suf(S, n− 1) consisting of only the single character $ (the sentinel) is
specifically defined as type-S.
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– Type-S or type-L character: a character S[i] is of type-S or type-L if suf(S, i)
is type-S or type-L, respectively.

– Leftmost type-S (LMS) character: S[i] is a LMS character if S[i] is type-S
and S[i− 1] is type-L, where i ∈ (0, n− 1].

– Leftmost type-S (LMS) suffix: suf(S, i) is a LMS suffix if S[i] is a LMS
character.

– t: let t(S, i) be the LS-type function of S[i], defined as t(S, i) = 1 for S[i] is
type-S or else t(S, i) = 0. For simplicity, t(S, i) is also denoted as t[i].

– ω: let ω(S, i) be the ω-weighting function of S[i], defined as ω(S, i) = 2S[i]+
t[i].

– Sω: the ω-weighted string of S, where Sω[i] = ω(S, i).

3 D-Critical Substring Algorithm

3.1 Algorithm Framework

Our proposed D-Critical substring algorithm, which we simply refer to as the
DCS algorithm, is outlined in Fig. 1. Lines 1-3 first produce the reduced problem,
which is then solved recursively by Lines 4-8. From the solution of the reduced
problem, Line 9 induces the final solution for the original problem. The time
and space bottleneck of this algorithm resides at reducing the problem in Lines
1-3, which is O(n), achieved by using D-Critical substrings to re-represent the
original text.

3.2 Critical Characters

Definition 1. (Critical Character) A character S[i] is D-Critical, where d ≥ 2,
iif (1) S[i] is a LMS character; or else (2) S[i − d] is a D-Critical character,
S[i+1] is not a LMS character and no character in S[i−d+1..i−1] is D-Critical.

Definition 2. (Neighboring Critical Characters) A pair of D-Critical characters
S[i] and S[j] are said to be two neighboring D-Critical characters in S, if there
is no other D-Critical characters between them.

Definition 3. (Critical Substring) The substring S[i..i + d + 1] is a D-Critical
substring for the D-Critical character S[i] in S. For i ≥ n−(d+1), S[i..i+d+1] =
S[i..n−2]{S[n−1]}d+1−(n−2−i), where {S[n−1]}x denotes that S[n−1] is repeated
x times.

From the above definitions, we have the following immediate observations.

Proposition 1. In S, (1) all LMS characters are D-Critical characters, (2) the
last character must be a D-Critical character, and (3) the first character must
not be a D-Critical character.

Proposition 2. If S[i] is a D-Critical character, neither S[i− 1] nor S[i+1] is
a D-Critical character.



Linear Time Suffix Array Construction Using D-Critical Substrings 57

Lemma 1. The distance between any two neighboring D-Critical characters S[i]
and S[j] in S must be in [2, d + 1], i.e., j − i ∈ [2, d + 1], where d ≥ 2 and i < j.

Proof. From Proposition 2, given S[i] is a D-Critical character, S[i + 1] must
not be a D-Critical character. In other words, the first d-character on the right
hand of S[i] may be any in S[i + 2, i + d + 1], but must not be S[i + 1].

DCS-Sort(S, SA)
� S is the input string;
� SA is the output suffix array of S;
P1, S1: array [0..n1] of integer;
bkt: array [0..‖Σ(S)‖ − 1] of integer;

1 Find the sample pointer array P1 for all the fixed-size D-Critical substrings in S;
2 Bucket sort all the fixed-size D-Critical substrings in P1;
3 Name each D-Critical substring in S by its bucket index to get

a new shortened string S1;
4 if ‖S1‖ = Number of Buckets
5 then
6 Directly compute SA1 from S1;
7 else
8 DCS-Sort(S1, SA1);
9 Induce SA from SA1;

10 return

Fig. 1. Our DCS algorithm

3.3 Reducing the Problem

To simplify the discussion, we use ΨC−d(S) to denote the D-Critical substring
array for S, which contains all the D-Critical substrings in S, one substring per
item, consecutively arranged according to their original positional order in S.

Definition 4. (Sample Pointer Array) The array P1 contains the sample point-
ers for all the D-Critical substrings in S preserving their original positional or-
der, i.e. S[P1[i]..P1[i] + d + 1] is a D-Critical substring.

From the definitions of P1 and ΨC−d, immediately we can conclude ΨC−d =
{S[P1[i]..P1[i] + d + 1]|i ∈ [0, n1)}, where n1 denotes the size (or cardinality)
of ΨC−d. Hereafter, we simply consider P1 at pointer level, but the underneath
comparisons for its items lie in the substrings in ΨC−d. To compute P1 from
S, we need to know the LS-type of each character in S. This can be done by
scanning S once from right to left in O(n) time, by utilizing these properties: (i)
S[i] is type-S if (i.1) S[i] < S[i + 1] or (i.2) S[i] = S[i + 1] and suf(S, i + 1) is
type-S; and (ii) S[i] is type-L if (ii.1) S[i] > S[i + 1] or (ii.2) S[i] = S[i + 1] and
suf(S, i + 1) is type-L. Provided with the LS-type of each character is known,
we can traverse S once from right to left to compute P1 in O(n) time.
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Definition 5. (Siblings) P1[i] and S[P1[i]..P1[i] + d + 1] are said as a pair of
siblings.

Let’s bucket sort all the items of P1 by their ω-weighted siblings
(i.e. Sω[P1[i]..P1[i] + d + 1] for P1[i]) in increasing order, where all the buck-
ets are indexed from 0. Then we can replace each item of P1 with the index
of its bucket to obtain a new string S1. Notice this process is equivalent to a
1-to-1 mapping relationship between a D-Critical string and a unique integer. It
is the so-called renaming (or simply naming) step. Here, we have the following
observations on S1.

Lemma 2. (Sentinel) The last character of S1 must be the unique smallest char-
acter in S1.

Proof. From Proposition 1, we know that S[n−1] must be a D-Critical character
and the D-Critical substring starting at S[n − 1] must be the unique smallest
among all sampled by P1.

Lemma 3. (1/2 Reduction Ratio) ‖S1‖ is at most half of ‖S‖, i.e. n1 ≤ �n/2.

Proof. From Proposition 1, S[0] must not be a D-Critical character. We know
from Lemma 1 the distance between any two neighboring D-Critical character
is at least 2, which immediately completes the proof.

The above two lemmas state that, S1 is at least half smaller than S and termi-
nated by an unique smallest sentinel too.

Theorem 1. (Coverage) For any two characters S1[i] = S1[j], there must be
P1[i + 1]− P1[i] = P1[j + 1]− P [j] ∈ [2, d + 1], where d ≥ 2, i.e., P1[i + 1] and
P1[i] are at distance no more than d + 1, and so do P1[j + 1] and P1[j].

Proof. Given S1[i] = S1[j], from the definition of S1, there must be (1)
S[P1[i]..P1[i+1]] = S[P1[j]..P1[j+1]] and (2) t[P1[i]..P1[i+1]] = t[P1[j]..P1[j+1]].
Given (1) and (2) are satisfied, let i′ = P1[i] + 1 and j′ = P1[j] + 1, we have the
below observations:

– Any in S[i′..i′ + d + 1] is a LMS character. In this case, given S1[i] = S1[j],
we must have P1[i + 1] = P1[j + 1].

– None in S[i′..i′ + d + 1] is a LMS character. In this case, both i′ + d and
j′ + d must be in P1.

In either case, we have P1[i + 1]− P1[i] = P1[j + 1]− P [j].

Theorem 2. (Order Preservation) The relative order of any two suffixes
suf(S1, i) and suf(S1, j) in S1 is the same as that of suf(S, P1[i]) and
suf(S, P1[j]) in S.
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Proof. The proof is due to the following consideration on two cases:

– Case 1: S1[i] �= S1[j]. This case can be further split into two cases in respect
to whether the two critical substrings in S starting at S[P1[i]] and S[P1[j]]
are equal or not. If they are different, the statement is obviously correct. If
they are identical, we must have t[P1[i] + d +1] �= t[P1[j] + d + 1] (or else we
must have S1[i] = S1[j]), which implies that the statement is correct too.

– Case 2: S1[i] = S1[j]. In this case, the order of suf(S1, i) and suf(S1, j)
is determined by the order of suf(S1, i + 1) and suf(S1, j + 1). The same
argument can be recursively conducted on S1[i + 1] = S1[j + 1], S1[i + 2] =
S1[j + 2],...S1[i + k − 1] = S1[j + k − 1] until a k is reached that makes
S1[i + k] �= S1[j + k]. Because that S1[i..i + k − 1] = S1[j..j + k − 1], from
Theorem 1, we must have P1[i + k] − P1[i] = P1[j + k] − P1[j], i.e., the
substrings S[P1[i]..P1[i + k]] and S[P1[j]..P1[j + k]] are of the same length.
This suggests that sorting S1[i..i + k] and S1[j..j + k] is equal to sorting
S[P1[i]..P1[i+k]+d+1] and S[P1[j]..P1[j +k]+d+1]. Hence, the statement
is correct in this case, too.

This theorem suggests that in order to find the orders for all D-Critical suffixes
in S, we can sort S1 instead. Because S1 is at least 1/2 smaller than S, the
computation on S1 can be done within about one half the complexity for S. In
the following subsections, we show how to bucket sort and name the items of
P1, i.e. the two crucial subtasks of computing S1.

3.4 Sorting and Naming P1

To bucket sort and name all the items of P1, intuitively, we need at least three
integer arrays of at most 2n1 + n integers in total: two size-n1 used as the alter-
nating buffers for bucket sorting P1, and another size-n for the bucket pointers,
where 2n1 ≤ n. The array of bucket pointers needs a size of n because each char-
acter of P1 is in the range [0, n− 1]. The space needed for sorting P1 constitutes
the space bottleneck for our algorithm. To further improve the space efficiency,
we can use the following γ-weighting scheme for bucket sorting P1 instead.

Definition 6. (γ-Weighted Substring) The γ-weighted substring Sγ [i..j] in S is
defined as Sγ [i..j] = S[i..j − 1]Sω[j].

For any two γ-weighted substrings, we immediately have the below result.

Lemma 4. Given Sγ [i..i + k] < Sγ [j..j + k] and S[i..i + k] = S[j..j + k], we
must have t(S, i + x) ≤ t(S, j + x) for any x ∈ [0, k].

By replacing Sω[i..j] with Sγ [i..j] as the weight of P1[i] for bucket sorting P1 to
produce S1, we have the following result.

Theorem 3. (γ-Order Equivalence) (1) Given Sγ [P1[i]..P1[i] + d + 1] =
Sγ [P1[j]..P1[j] + d + 1], there must be Sω[P1[i]..P1[i] + d + 1] = Sω[P1[j]..P1[j] +
d+1]; and (2) Given Sγ [P1[i]..P1[i]+d+1] < Sγ [P1[j]..P1[j]+d+1], there must
be Sω[P1[i]..P1[i] + d + 1] < Sω[P1[j]..P1[j] + d + 1].
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Proof. Let i′ = P1[i] and j′ = P1[j]. If Sγ [i′..i′ + d + 1] = Sγ [j′..j′ + d + 1], we
must have S[i′..i′ + d+1] = S[j′..j′ + d+1] and t(S, i′ + d+1) = t(S, j′ + d+1),
i.e., Sω[i′..i′ +d+1] = Sω[j′..j′ +d+1]. Further, if Sω[i′ +d+1] = Sω[j′ +d+1]
and S[i′ + d] = S[j′ + d], we must have t(S, i′ + d) = t(S, j′ + d) as well as
Sω(i′ +d) = Sω(j′ +d), and so on for the other characters in the two substrings.
Therefore, we must have Sω[i′..i′ + d + 1] = Sω[j′..j′ + d + 1]. When Sγ [i′..i′ +
d + 1] < Sγ [j′..j′ + d + 1], we consider these two cases:

– If S[i′..i′ +d+1] �= S[j′..j′ +d+1], given Sγ [i′..i′ +d+1] < Sγ [j′..j′ +d+1],
there must be S[i′..i′ + d + 1] < S[j′..j′ + d + 1] from the definition of γ-
weighted substring (Definition 6), which immediately yields Sω[i′..i′+d+1] <
Sω[j′..j′ + d + 1] from the definition of Sω.

– If S[i′..i′ + d + 1] = S[j′..j′ + d + 1], we must have t(S, i′ + d + 1) = 0 and
t(S, j′+d+1) = 1. Further, from Lemma 4, we have t(S, i′+x) ≤ t(S, j′+x)
for any x ∈ [0, d + 1], resulting in Sω[i′..i′ + d + 1] < Sω[j′..j′ + d + 1].

Hence, we complete the proof.

Theorem 3 suggests that, to determine the order of two ω-weighted D-Critical
substrings, we can use their γ-weighted counterparts instead. As a result, we need
to compare the characters’ types only for the last characters of the D-Critical
substrings. Therefore, sorting all the items of P1 according to the last characters
of their γ-weighted siblings can be decomposed into two passes sequentially:
(1) bucket sort according to the types of these characters; and (2) bucket sort
according to these characters themselves. Using this method, we only need an
array of Σ(S) or n1 integers for maintaining the bucket information at the 1st
or 2nd iterations, respectively.

Now, provided with P1, t and S, we can compute S1, i.e. the reduced problem,
using the two-step algorithm described below.

– Step 1: Bucket sort all the elements of P1 into another array P ′
1 by their

corresponding siblings (i.e. fixed-size D-Critical substrings) in S, with Σ(S)
buckets. The sorting is done through d + 2 passes, in a manner of least-
significant-character-first. This step requires a time complexity of O(dn1) =
O(n1), for d = O(1).

– Step 2: Compute the names for all elements in P ′
1 (as well as P1). This job

can be done by a simple algorithm described as following: (i) allocate a size-n
array tmp, where each item is an integer in [0, n−1]; (ii) initialize all items of
tmp to be −1; (iii) scan P ′

1 once from left to right to compute all the names
for the items of P ′

1, by setting tmp[P ′
1[i]] with the index of bucket that P ′

1[i]
belonging to; (iv) pack all non-negative elements in tmp into the buffer of
P ′

1, by traversing tmp once. Now, the buffer of P ′
1 stores the string of S1.

One problem with Step 2 in the above algorithm is that in addition to P ′
1 and

S1, it uses a large space of n integers (each integer is of �log n� bits) for tmp.
Alternatively, we can use another space-efficient algorithm for this by reusing
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tmp for P ′
1 and S1, described as following. Let’s define a logical array ˜tmpe =

{tmp[i]|i%2 = 0} for the first n1 even items of tmp, where ˜tmpe is said to be a
logical array for its physical buffer is distributed into the first n1 even items of
tmp, i.e., its physical buffer is not spatially continuous.

Suppose that P ′
1 is initially stored in the first n1 items of tmp, we first copy

P ′
1 into ˜tmpe and set tmp[j] = −1 for any tmp[j] /∈ ˜tmpe, i.e., distribute P ′

1 into
the first even items of tmp. Next, we scan ˜tmpe from left to right to compute
the names for all the the items of ˜tmpe. For each ˜tmpe[i], we record its name
as following: (1) if ˜tmpe[i] is even, set tmp[ ˜tmpe[i] − 1] with the name; or else
set tmp[ ˜tmpe[i]] with the name. Now, all the items of S1 are stored in the non-
negative odd items of tmp in their correct relative positional orders. Last, we
traverse tmp once to compact all the non-negative odd items into S1. Using this
method for Step 2, tmp is reused for accommodating both P ′

1 and S1, resulting
in that only one n-integer array is required for all of them.

3.5 Inducing SA from SA(S1)

For denotation simplicity, let SA0 = SA(S) and SA1 = SA(S1). Further-
more, let SAlms = {SA0[i]|S[SA0[i]] is a LMS character} and similarly SAl =
{SA0[i]|S[SA0[i]] is a type− L character}. From SA1, we can derive SAlms and
then induce SAl from SAlms and SA0 from SAl, as described below. The al-
gorithm for inducing SA0 from SA1 consists of four sequential stages in O(n)
time/space:

1. Initialization: (1) Set all the items of SA0 to be negative. (2) Scan S at most
twice to find the buckets in SA0 for all the suffixes in S according to their
first characters.

2. Deriving SAlms from SA1: (1) Initialize all the buckets in SA0 as empty by
setting the start of each bucket as its end. (2) Scan SA1 once from right to
left, if S[P1[SA1[i]]] is a LMS character then put P1[SA1[i]] to the current
start of its bucket in SA0 and move the bucket start one item to the left.

3. Inducing SAl from SAlms: (1) For each bucket in SA0, set the end as its
start. (2) Scan SA0 from left to right, for each non-negative item SA0[i], if
S[SA0[i]− 1] is type-L then put SA0[i]− 1 to the current end of its bucket
and move the bucket end one item to the right.

4. Inducing SA from SAl(S): (1) For each bucket in SA0, set the start as its
end. (2) Scan SA0 from right to left, for each item SA0[i], if S[SA0[i]− 1] is
type-S then put SA0[i] − 1 to the current start of its bucket and move the
bucket start one item to the left.

In the above algorithm, in addition to SA0, we need another array bkt for
maintaining the start/end of each bucket on-the-fly in each stage, where bkt has
‖Σ(S)‖ items and each item is of �log n� bits.

We now consider the correctness of the inducing algorithm for the stages 2-4.
The correctness of stage 4, i.e. inducing SA from SAl(S), has been proven in [6]
(Lemma 3), which is quoted and re-stated in this paper’s terms as below.
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Lemma 5. [6] Given all the type-L (or type-S) suffixes of S sorted, all the
suffixes of S can be sorted in O(n) time.

From the above lemma, it is trivial for us to have the below corollary for our
previous work [10]. This corollary supports the correctness of stage 3 and re-
stated here.

Corollary 1. Given all the LMS suffixes of S sorted, all the type-L suffixes of
S can be sorted in O(n) time.

Proof. From Lemma 5, we know that given SAs, we can induce SA as well as
SAl in O(n) time, by traversing SA once from left to right. Notice that not every
type-S suffix is needed for sorting SAl (here we use SAl to denote all type-L
suffixes); instead a type-S suffix is needed only when it is also a LMS suffix. In
order words, knowing the order of all the LMS suffixes, we can traverse once
from left to right to populate the order of SAl in O(n) time.

Given SA1, the correctness of stage 2 is obvious, for we just simply copy all
LMS items of SA1 into the ends of their corresponding buckets (notice that in a
bucket, a type-L suffix is less than a type-S suffix), keeping their relative orders
unchanged.

4 Practical Strategies

We propose some techniques to further improve the time/space efficiencies of our
algorithm in practice. Without loss of generality, we assume a 32-bit machine
and each integer consumes 4 bytes.

General Strategy: Reusing the Buffer for SA(S)

From our algorithm framework in Fig.1, we see that the algorithm consists of
three steps in sequence: (1) sorting P1; (2) naming P1 to obtain S1; and (3)
inducing SA(S) from SA(S1). Notice that SA(S) is an array of n integers, and
both P1 and S1 have n1 integers, where 2n1 ≤ n, we can re-use the buffer for
SA(S) for the steps (1) and (2) too. For more details, the reader is referred to
the sample codes in the appendix.

Strategy 1: Storing the LS-Type Array

Each element of the LS-type array for S is one-bit and a total of at most
n(1+1/2+1/4+ ...+log−1 n) < 2n bits are required by the LS-arrays for all re-
cursions. Hence, we can use the two most-significant-bits (MSBs) of SA(S)[i] for
storing the LS-type of S[i]. Recalling that the space for each integer is allocated
in units of 4-byte instead of bits, the two MSBs of an integer is always available
for us in this case. This is because that to compute SA(S), our algorithm run-
ning on a 32-bit machine requires at least 5n bytes, where 4n for the items (each
is a 4-byte integer) in SA(S) and n for the input string (usually one byte per
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character). Therefore, the maximum size nmax of the input string must satisfy
5nmax < 232, resulting in nmax < 232/5 and log nmax < 30. In order words,
30 bits are enough for each item of SA(S). However, for implementation conve-
nience, we can simply store the LS-type arrays using bit arrays of maximum 2n
bits in total, i.e. 0.25n bytes.

Strategy 2: Bucket Sorting P1

Given the buffers for P1 and S1, to bucket sort P1, we can use another array
bkt in Fig. 1 for maintaining the buckets, where the size of bkt is determined by
the alphabet size of the input string S. Even the original input string S is of a
constant alphabet, after the first iteration, we will have S1 as the input S for
the next iteration. Since S1 has an integer alphabet that can be as large as n1 in
the worst case, bkt may require a maximum space up to n1 ≤ �n/2 integers. To
prevent bkt from growing with n1, instead of sorting characters—each character
is of 4 bytes—in each pass of bucket sorting the d-critical substrings, we simply
sort each character with two passes, i.e., the bucket sorting is performed on
units of 2-byte. The time complexity for bucket sorting all the fixed-size d-
critical substrings at each iteration is linear proportional to the total number of
characters for these substrings. Since each d-critical substring is of fixed-size d+2
characters and the number of substrings decreases at least half per iteration,
the total number of characters sorted at each iteration is upper bounded by
O((d + 2)(1/2 + 1/4 + ... + log−1 n)) = O(dn), which is O(n) given d = O(1).
Hence, the time complexity for bucket sorting in this way remains linear O(n).
For n ≤ 232, the entire bucket sorting process will be half slowed down. However,
the space for bkt can be fixed to 65536 integers, i.e. O(1).

Strategy 3: Inducing the Final Result

In the inducing algorithm we described before, a buffer bkt is needed for dy-
namically recording the current start/end of each bucket. However, in order to
save more space, we can use an alternative inducing algorithm which requires
only the buffer for SA(S1) and needs no bkt when inducing SA(S1). This idea
is to name the elements of P1 in a different way: once all the items of P1 have
been sorted into their buckets, we can name each item of P1 by the end of of its
bucket to produce S1. To be more precise, this is because the MSB of each item
in SA1 and S1 is unused (when the strategy 1 is not applied). Given that each
item of S1 points to the end of its bucket in SA1, the inducing can be done in
this way: when an empty bucket in SA1 is inserted the first item S1[i] at SA1[j],
we set SA1[j] = i and S1[i] = j, and mark the MSBs of SA1[j] and S1[i] by 1 to
indicate they are borrowed for maintaining the bucket end. At the end of each
inducing stage, we can restore the items in S1 and SA1 to their correct values
in this way: scan SA1 from left to right, for each SA1[i] with its MSB as 1, let
S1[SA[i]] = i and and reset the MSBs of SA1[i] and S1[SA1[i]] as 0.
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5 Main Results

Theorem 4. (Time/Space Complexities) Given S is of a constant or integer
alphabet, the time and the space complexities for the algorithm DCS in Fig. 1 to
compute SA(S) are O(n) and O(n�log n�) bits, respectively.

Proof. Because the problem is reduced at least 1/2 at each recursion, we have
the time complexity governed by Eq. 1, where the reduced problem is of size at
most �n/2. The first O(n) in the equation accounts for reducing the problem
and inducing the final solution from the reduced problem.

T (n) = T (�n/2) + O(n) = O(n) (1)

The space complexity is obvious O(n�log n�) bits, for the size of each array used
at the first iteration is upper bounded by n�logn� bits, and decreases at least a
half for each iteration thereafter.

Theorem 5. The DCS algorithm can construct the suffix array for a size-n
string with a constant or integer alphabet using O(n) time and a working space
of only 0.25n + O(1) bytes.

Proof. (Sketch) The key technique is to design the algorithm DCS with the gen-
eral strategy and the strategies 2-3 in Section 4, the details of which are omitted
here due to the limited space. We have coded in C++ a sample implementation
for this (i.e. the DCS2 algorithm in the experiment section). Interested readers
are welcome to contact us for the details/codes.

In [2], a working space of 0.03n bytes was reported for the algorithm proposed
by Manzini and Ferragina, as a statistical result from experiments. Compared
to this, our worst-case result of 0.25n + O(1) is approaching the existing best
result for working space required by suffix array construction algorithms.

6 Experiments

For comparison convenience, we adopt some data sets from the Canterbury and
the Manzini-Ferragina [2] corpora that are widely used for performance evalu-
ations of various suffix array algorithms. All the input strings are of constant
alphabets smaller than 256, and one byte is consumed by each character. The
experiments were performed on a machine with AMD Athlon(tm) 64x2 Dual
Core Processor 4200+ 2.20GHz and 2.00GB RAM, and the operating system is
Linux (Sabayon Linux distribution).

The algorithms investigated in our experiments are limited to linear algo-
rithms only, i.e. DCS1, DCS2, KS and KA, where DCS1 and DCS2 are the
DCS algorithm with d = 3 and enhanced by the practical strategies proposed
in Section 4. Specifically, the algorithms DCS1 and DCS2 use different settings
of strategies: DCS1 uses the general strategy only, while DCS2 uses the strate-
gies 2-3 in addition to the general strategy. The KS algorithm was downloaded
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Table 1. Data Used in the Experiments

Data ‖Σ‖ Characters Description
world192.txt 94 2 473 400 CIA world fact book
bible.txt 63 4 047 392 King James Bible
chr22.dna 4 34 553 758 Human chromosome 22
E.coli 4 4 638 690 Escherichia coli genome
sprot34.dat 66 109 617 186 Swissprot V34 protein database
etext99 146 105 277 340 Texts from Gutenberg project
howto 197 39 422 105 Linux Howto files

from Sanders’s website [11], and the KA algorithm was downloaded from Ko’s
website [12]. All the programs were compiled by g++ with the -O3 option. The
performance measurements to be investigated are: the time/space complexities,
the recursion depth and the mean reduction ratio. The time for each algorithm
is the mean of 3 runs; and the space is the heap peak measured by using the
memusage command to fire the running of each program. The total time (in sec-
onds) and space (in million bytes, MBytes) for each algorithm are the sums of
the times and spaces consumed by running the algorithm for all the input data,
respectively. The mean time (measured in seconds per MBytes) and space (in
bytes per character of the input string) for each algorithm are the total time and
space divided by the total number of characters in all input data. The recursion
depth is defined as the number of iterations, and the mean reduction ratio is the
sum of reduction ratios for all iterations divided by the recursion depth.

Table 2. Time, Space, Recursion Depth and Reduction Ratio

Data Time (Seconds) Space (MBytes) Recursion Depth Reduction Ratio
DCS1 DCS2 KS KA DCS1 DCS2 KS KA DCS KS KA DCS KS KA

world 1.61 2 4.8 1.9 12.91 12.50 55.24 21.24 7 6 6 .37 .67 .42
bible 3.11 3.9 8.9 3.51 21.50 20.30 90.40 34.45 6 6 6 .37 .67 .45
chr22 31.5 39.6 92.8 33.41 184.44 171.41 819.25 289.97 10 12 8 .36 .67 .43
E.coli 3.53 4.3 10 3.98 25.15 23.23 105.93 40.01 8 7 8 .36 .67 .42
sprot 111.59 139.6 356 132.89 560.44 543.26 2591.62 930.06 8 9 9 .37 .67 .45
etext 123.2 150.4 428.1 149.67 559.55 521.85 2369.92 907.34 12 12 12 .37 .67 .45
howto 36.3 44.05 130.4 42.85 208.08 195.55 932.07 331.54 10 11 13 .36 .67 .45
Total 310.84 383.85 1031 368.21 1572.07 1488.08 6964.44 2554.61 61 63 62 - - -
Mean 1.09 1.34 3.60 1.29 5.49 5.20 24.34 8.93 8.71 9.0 8.85 0.366 0.67 0.438
Norm. 1 1.23 3.32 1.18 1 0.95 4.43 1.63 1 1.03 1.02 1 1.83 1.19

We show in Table 2 the statistic results collected from the experiments, where
the best results are styled in the italic fonts. For comparison convenience, we nor-
malize all the results by that from the DCS1 algorithm. In the program for the
KS algorithm, each character of the input string S is stored as a 4-byte integer,
and the buffer for SA(S) is not reused for the others. To be fair, we subtract
7n bytes from the space results we measured for the KS algorithm in the exper-
iments, for we are sure 7n space can be trivially saved using some engineering
tricks. From these results, we see that the best time and space performances are
achieved by our algorithms DCS1 and DCS2, respectively. Specifically, the DCS1
algorithm is the fastest, which in average is more than twice (232%) faster than
the KS, and 9% faster than the KA. The best space performance is achieved
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by the DCS2, which is 23% slower than the DCS1, however, still more than 1.5
times ((3.32-1.23)/1.23=169%) faster than the KS algorithm. The mean space
of 24.34n for the KS algorithm in our experiments is about twice of the 10-13n
for another space efficient implementation of the KS algorithm by Puglisi [13].
Even suppose the better 10-13n space, the KS algorithm still uses a space more
than twice of that for our algorithms DCS1 and DCS2. Similar to the observa-
tions from the others [13,14], the KA algorithm in our experiments is more space
efficient than the KS algorithm, however, which uses about 60-70% more space
than our algorithms DCS1 and DCS2, respectively.

The results for recursion depths and reduction ratios are machine-independent
and deterministic for each given input string. Obviously, the smaller the reduc-
tion ratio is, the faster the algorithm is. For an overall comparison, we also
give the total for the recursion depth and the reduction ratio for each algorithm
and the mean for both, where the former is the sum of all corresponding results
and the later is the former divided by the number of individual input data, i.e.
7 for the DCS and the KS algorithms and 5 for the KA algorithm in this case,
respectively in this case. In this table, clearly, the DCS algorithm achieves the
best reduction ratio for all the input data. The DCS algorithm has a mean re-
duction ratio about a half ((0.67-0.366)/0.67=45%) smaller than that of the KS
algorithm. This well coincides with their time results. where the DCS1 algorithm
is more than twice faster than the KS algorithm.

7 Closing Remarks

In this paper, we have analyzed the D-Critical substring algorithm [9], a new
linear time/space SACA which uses a novel concept called D-Critical Substrings
to encode the original text. The implementation of our algorithm is as intuitive
as that of the KS algorithm and our algorithm runs even faster than the KA
algorithm. The complete C++ source code (around 100+ effective lines) of the
sample implementation of the proposed algorithms used in our experiments is
available upon readers’ request.

Recently, after the development of the D-Critical-Substring algorithm, we pro-
posed another SA algorithm using the almost pure induced sorting technique (i.e.
the SA-IS algorithm in [15]), and both algorithms are running in linear time.
Currently, the two algorithms have been investigated under the assumption that
the whole input string is completely stored in the main memory. However, as we
have noticed that, there are increasing needs for building the SAs of huge cor-
pora, e.g., the ever growing genome databases. When the input string demands
more space than the main memory can provide, we have to seek for help from
using the slower but far more larger external memory such as flash memory or
harddisk. Our recent study on using external memory for our proposed linear SA
algorithms indicated that, compared with the SA-IS algorithm, the D-Critical-
Substring algorithm has greater potentials to be improved for using external
memory, due to its distinct advantage of sorting fixed-size d-critical substrings,
in contrast to sorting variable-size substrings in the SA-IS algorithm.
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Abstract. We study whether, when restricted to using polylogarithmic
memory and polylogarithmic passes, we can achieve qualitatively better
data compression with multiple read/write streams than we can with
only one. We first show how we can achieve universal compression using
only one pass over one stream. We then show that one stream is not
sufficient for us to achieve good grammar-based compression. Finally,
we show that two streams are necessary and sufficient for us to achieve
entropy-only bounds.

1 Introduction

Massive datasets seem to expand to fill the space available and, in situations
when they no longer fit in memory and must be stored on disk, we may need
new models and algorithms. Grohe and Schweikardt [15] introduced read/write
streams to model situations in which we want to process data using mainly se-
quential accesses to one or more disks. As the name suggests, this model is like
the streaming model (see, e.g., [22]) but, as is reasonable with datasets stored
on disk, it allows us to make multiple passes over the data, change them and
even use multiple streams (i.e., disks). As Grohe and Schweikardt pointed out,
sequential disk accesses are much faster than random accesses — potentially by-
passing the von Neumann bottleneck — and using several disks in parallel can
greatly reduce the amount of memory and the number of accesses needed. For
example, when sorting, we need the product of the memory and accesses to be
at least linear when we use one disk [21,14] but only polylogarithmic when we
use two [7,15]. Similar bounds have been proven for a number of other problems,
such as checking set disjointness or equality; we refer readers to Schweikardt’s
survey [26] of upper and lower bounds with one or more read/write streams,
Heinrich and Schweikardt’s recent paper [17] relating read/write streams to clas-
sical complexity theory, and Beame and Huỳnh-Ngo.c’s recent paper [3] on the
value of multiple read/write streams for approximating frequency moments.

Since sorting is an important operation in some of the most powerful data
compression algorithms, and compression is an important operation for reducing
massive datasets to a more manageable size, we wondered whether extra streams
could also help us achieve better compression. In this paper we consider the
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problem of compressing a string s of n characters over an alphabet of size σ when
we are restricted to using logO(1) n bits of memory and logO(1) n passes over the
data. In Section 2, we show how we can achieve universal compression using only
one pass over one stream. Our approach is to break the string into blocks and
compress each block separately, similar to what is done in practice to compress
large files. Although this may not usually significantly worsen the compression
itself, it may stop us from then building a fast compressed index [11] (unless we
somehow combine the indexes for the blocks) or clustering by compression [8]
(since concatenating files should not help us compress them better if we then
break them into pieces again). In Section 3 we use a vaguely automata-theoretic
argument to show one stream is not sufficient for us to achieve good grammar-
based compression. Of course, by ‘good’ we mean here something stronger than
universal compression: we want the size of our encoding to be at most polynomial
in the size of the smallest context-free grammar than generates s and only s.
We still do not know whether any constant number of streams is sufficient for
us to achieve such compression. Finally, in Section 4 we show that two streams
are necessary and sufficient for us to achieve entropy-only bounds. Along the
way, we show we need two streams to find strings’ minimum periods or compute
the Burrows-Wheeler Transform. As far as we know, this is the first paper on
compression with read/write streams, and among the first papers on compression
in any streaming model; we hope the techniques we have used will prove to be
of independent interest.

2 Universal Compression

An algorithm is called universal with respect to a class of sources if, when a string
is drawn from any of those sources, the algorithm’s redundancy per character
approaches 0 with probability 1 as the length of the string grows. The class most
often considered, and which we consider in this section, is that of stationary,
ergodic Markov sources (see, e.g., [9]). Since the kth-order empirical entropy
Hk(s) of s is the minimum self-information per character of s with respect to
a kth-order Markov source (see [25]), an algorithm is universal if it stores any
string s in nHk(s) + o(n) bits for any fixed σ and k. The kth-order empirical
entropy of s is also our expected uncertainty about a randomly chosen character
of s when given the k preceding characters. Specifically,

Hk(s) =

{
(1/n)

∑
a occ(a, s) log n

occ(a,s) if k = 0,

(1/n)
∑

|w|=k |ws|H0(ws) otherwise,

where occ(a, s) is the number of times character a occurs in s, and ws is the
concatenation of those characters immediately following occurrences of k-tuple
w in s.

In a previous paper [13] we showed how to modify the well-known LZ77
compression algorithm [27] to use sublinear memory while still storing s in
nHk(s) + O(n log log n/ logn) bits for any fixed σ and k. Our algorithm uses
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nearly linear memory and so does not fit into the model we consider in this
paper, but we mention it here because it fits into some other streaming models
(see, e.g., [22]) and, as far as we know, was the first compression algorithm to do
so. In the same paper we proved several lower bounds using ideas that eventually
led to our lower bounds in Sections 3 and 4 of this paper.

Theorem 1 (Gagie and Manzini, 2007). We can achieve universal com-
pression using one pass over one stream and O

(
n/ log2 n

)
bits of memory.

To achieve universal compression with only polylogarithmic memory, we use a
recent algorithm due to Gupta, Grossi and Vitter [16]. Although they designed
it for the RAM model, we can easily turn it into a streaming algorithm by
processing s in small blocks and compressing each block separately.

Theorem 2 (Gupta, Grossi and Vitter, 2008). In the RAM model, we can
store any string s in nHk(s) +O

(
σk log n

)
bits, for all k simultaneously, using

O(n) time.

Corollary 1. We can achieve universal compression using one pass over one
stream and O

(
log1+ε n

)
bits of memory.

Proof. We process s in blocks of �logε n� characters, as follows: we read each
block into memory, apply Theorem 2 to it, output the result, empty the memory,
and move on to the next block. (If n is not given in advance, we increase the block
size as we read more characters.) Since Gupta, Grossi and Vitter’s algorithm
uses O(n) time in the RAM model, it uses O(n log n) bits of memory and we
use O

(
log1+ε n

)
bits of memory. If the blocks are s1, . . . , sb, then we store all of

them in a total of

b∑
i=1

(
|si|Hk(si) +O

(
σk log log n

))
≤ nHk(s) +O

(
σkn log log n/ logε n

)
bits for all k simultaneously. Therefore, for any fixed σ and k, we store s in
nHk(s) + o(n) bits. 
�

A bound of nHk(s)+O
(
σkn log log n/ logε n

)
bits is not very meaningful when k

is not fixed and grows as fast as log log n, because the second term is ω(n). Notice,
however, that Gupta et al.’s bound of nHk(s)+O

(
σk log n

)
bits is also not very

meaningful when k ≥ log n, for the same reason. As we will see in Section 4,
it is possible for s to be fairly incompressible but still to have Hk(s) = 0 for
k ≥ log n. It follows that, although we can prove bounds that hold for all k
simultaneously, those bounds cannot guarantee good compression in terms of
Hk(s) when k ≥ log n.

By using larger blocks — and, thus, more memory — we can reduce the
O

(
σkn log log n/ logε n

)
redundancy term in our analysis, allowing k to grow

faster than log log n while still having a meaningful bound. In the full version
of this paper we will prove the resulting tradeoff is nearly optimal. Specifically,
using an argument similar to those we use to prove the lower bounds in Sections 3



Read/Write Streams for Data Compression 71

and 4, we will prove that the product of the memory, passes and redundancy
must be nearly linear in n. It is not clear to us, however, whether we can modify
Corollary 1 to take advantage of multiple passes.

Open Problem 1. With multiple passes over one stream, can we achieve better
bounds on the memory and redundancy than we can with one pass?

3 Grammar-Based Compression

Charikar et al. [6] and Rytter [24] independently showed how to build a context-
free grammar APPROX that generates s and only s and is an O(log n) factor
larger than the smallest such grammar OPT, which is Ω(log n) bits in size.

Theorem 3 (Charikar et al., 2005; Rytter, 2003). In the RAM model, we
can approximate the smallest grammar with |APPROX| = O

(
|OPT|2

)
using O(n)

time.

In this section we prove that, if we use only one stream, then in general our ap-
proximation must be superpolynomially larger than the smallest grammar. Our
idea is to show that periodic strings whose periods are asymptotically slightly
larger than the product of the memory and passes, can be encoded as small
grammars but, in general, cannot be compressed well by algorithms that use
only one stream. Our argument is based on the following two lemmas.

Lemma 1. If s has period �, then the size of the smallest grammar for that
string is O(� + log n log log n) bits.

Proof. Let t be the repeated substring and t′ be the proper prefix of t such that
s = t	n/�
t′. We can encode a unary string X	n/�
 as a grammar G1 with O(log n)
productions of total size O(log n log log n) bits. We can also encode t and t′ as
grammars G2 and G3 with O(�) productions of total size O(�) bits. Suppose S1,
S2 and S3 are the start symbols of G1, G2 and G3, respectively. By combining
those grammars and adding the productions S0 → S1S3 and X → S2, we obtain
a grammar with O(� + log n) productions of total size O(� + log n log log n) bits
that maps S0 to s. 
�

Lemma 2. Consider a lossless compression algorithm that uses only one stream,
and a machine performing that algorithm. We can compute any substring from

– its length;
– for each pass, the machine’s memory configurations when it reaches and

leaves the part of the stream that initially holds that substring;
– all the output the machine produces while over that part.

Proof. Let t be the substring and assume, for the sake of a contradiction, that
there exists another substring t′ with the same length that takes the machine
between the same configurations while producing the same output. Then we can
substitute t′ for t in s without changing the machine’s complete output, contrary
to our specification that the compression be lossless. 
�
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Lemma 2 implies that, for any substring, the size of the output the machine pro-
duces while over the part of the stream that initially holds that substring, plus
twice the product of the memory and passes (i.e., the number of bits needed to
store the memory configurations), must be at least that substring’s complexity.
Therefore, if a substring is not compressible by more than a constant factor (as
is the case for most strings) and asymptotically larger than the product of the
memory and passes, then the size of the output for that substring must be at
least proportional to the substring’s length. In other words, the algorithm cannot
take full advantage of similarities between substrings to achieve better compres-
sion. In particular, if s is periodic with a period that is asymptotically slightly
larger than the product of the memory and passes, and s’s repeated substring
is not compressible by more than a constant factor, then the algorithm’s com-
plete output must be Ω(n) bits. By Lemma 1, however, the size of the smallest
grammar that generates s and only s is bounded in terms of the period.

Theorem 4. With one stream, we cannot approximate the smallest grammar
with |APPROX| ≤ |OPT|O(1).

Proof. Suppose an algorithm uses only one stream, m bits of memory and p
passes to compress s, with mp = logO(1) n, and consider a machine performing
that algorithm. Furthermore, suppose s is periodic with period �mp log n� and its
repeated substring t is not compressible by more than a constant factor. Lemma 2
implies that the machine’s output while over a part of the stream that initially
holds a copy of t, must be Ω(mp log n−mp) = Ω(mp log n). Therefore, the ma-
chine’s complete output must be Ω(n) bits. By Lemma 1, however, the size of the
smallest grammar that generates s and only s is O(mp log n + log n log log n) ⊂
logO(1) n bits. Since n = logω(1) n, the algorithm’s complete output is superpoly-
nomially larger than the smallest grammar. 
�

As an aside, we note that a symmetric argument shows that, with only one
stream, in general we cannot decode a string encoded as a small grammar. To
prove this, instead of considering a part of the stream that initially holds a copy of
the repeated substring t, we consider a part that is initially blank and eventually
holds a copy of t. We can compute t from the machine’s memory configurations
when it reaches and leaves that part, so the product of the memory and passes
must be greater than or equal to t’s complexity. Also, we note that Theorem 4
has the following corollary, which may be of independent interest.

Corollary 2. With one stream, we cannot find strings’ minimum periods.

Proof. Consider the proof of Theorem 4. If we could find s’s minimum period,
then we could store s in logO(1) n bits by writing n and one copy of its repeated
substring t. 
�

In fact, a more careful argument shows we cannot even check whether a string
has a given period. In the full version of this paper, we will give proper proofs
of lower bounds for decoding grammars and checking periodicities.
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Unfortunately, as we noted in the introduction, our results for this section
are still incomplete, as we do not know whether multiple streams are helpful for
grammar-based compression.

Open Problem 2. With O(1) streams, can we approximate the smallest gram-
mar well?

4 Entropy-Only Bounds

Kosaraju and Manzini [19] pointed out that proving an algorithm universal does
not necessarily tell us much about how it behaves on low-entropy strings. In other
words, showing that an algorithm encodes s in nHk(s) + o(n) bits is not very
informative when nHk(s) = o(n). For example, although the well-known LZ78
compression algorithm [28] is universal, |LZ78(1n) = Ω(

√
n) while nH0(1n) =

0. To analyze how algorithms perform on low-entropy strings, we would like
to get rid of the o(n) term and prove bounds that depend only on nHk(s).
Unfortunately, this is impossible since, as the example above shows, even nH0(s)
can be 0 for arbitrarily long strings.

It is not hard to show that only unary strings have H0(s) = 0. For k ≥ 1,
recall that Hk(s) = (1/n)

∑
|w|=k |ws|H0(ws). Therefore, Hk(s) = 0 if and only

if each distinct k-tuple w in s is always followed by the same distinct character.
This is because, if a w is always followed by the same distinct character, then
ws is unary, H0(ws) = 0 and w contributes nothing to the sum in the formula.
Manzini [20] defined the kth-order modified empirical entropy H∗

k (s) such that
each context w contributes at least �log |ws|+ 1 to the sum. Because modified
empirical entropy is more complicated than empirical entropy — e.g., it allows
for variable-length contexts — we refer readers to Manzini’s paper for the full
definition. In our proofs in this paper, we use only the fact that

nHk(s) ≤ nH∗
k (s) ≤ nHk(s) +O

(
σk log n

)
.

Manzini showed that, for some algorithms and all k simultaneously, it is pos-
sible to bound the encoding’s length in terms of only nH∗

k (s) and a constant that
depends only on σ and k; he called such bounds ‘entropy-only’. In particular, he
showed that an algorithm based on the Burrows-Wheeler Transform (BWT) [5]
stores any string s in at most (5 + ε)nH∗

k (s) + log n + gk bits for all k simulta-
neously (since nH∗

k(s) ≥ log(n − k), we could remove the log n term by adding
1 to the coefficient 5 + ε).

Theorem 5 (Manzini, 2001). Using the BWT, move-to-front coding, run-
length coding and arithmetic coding, we can achieve an entropy-only bound.

The BWT sorts the characters in a string into the lexicographical order of the
suffixes that immediately follow them. When using the BWT for compression,
it is customary to append a special character $ that is lexicographically less
than any in the alphabet. For a more thorough description of the BWT, we
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again refer readers to Manzini’s paper. In this section we first show how we can
compute and invert the BWT with two streams and, thus, achieve entropy-only
bounds. We then show that we cannot achieve entropy-only bounds with only
one stream. In other words, two streams are necessary and sufficient for us to
achieve entropy-only bounds.

One of the most common ways to compute the BWT is by building a suffix
array. In his PhD thesis, Ruhl introduced the StreamSort model [23,1], which
is similar to the read/write streams model with one stream, except that it has
an extra primitive that sorts the stream in one pass. Among other things, he
showed how to build a suffix array efficiently in this model.

Theorem 6 (Ruhl, 2003). In the StreamSort model, we can build a suffix
array using O(log n) bits of memory and O(log n) passes.

Corollary 3. With two streams, we can compute the BWT using O(log n) bits
of memory and O

(
log2 n

)
passes.

Proof. We can compute the BWT in the StreamSort model by appending $
to s, building a suffix array, and replacing each value i in the array by the
(i − 1)st character in s (replacing either 0 or 1 by $, depending on where we
start counting). This takes O(log n) bits of memory and O(log n) passes. Since
we can sort with two streams using O(log n) bits memory and O(log n) passes
(see, e.g., [26]), it follows that we can compute the BWT using O(log n) bits of
memory and O

(
log2 n

)
passes. 
�

Now suppose we are given a permutation π on n + 1 elements as a list π(1), . . . ,
π(n + 1), and asked to rank it, i.e., to compute the list π0(1), . . . , πn(1). This
problem is a special case of list ranking (see, e.g., [2]) and has a surprisingly long
history. For example, Knuth [18, Solution 24] described an algorithm, which he
attributed to Hardy, for ranking a permutation with two tapes. More recently,
Bird and Mu [4] showed how to invert the BWT by ranking a permutation.
Therefore, reinterpreting Hardy’s result in terms of the read/write streams model
gives us the following bounds.

Theorem 7 (Hardy, c. 1967). With two streams, we can rank a permutation
using O(log n) bits of memory and O

(
log2 n

)
passes.

Corollary 4. With two streams, we can invert the BWT using O(log n) bits of
memory and O

(
log2 n

)
passes.

Proof. The BWT has the property that, if a character is the ith in BWT(s), then
its successor in s is the lexicographically ith in BWT(s) (breaking ties by order of
appearance). Therefore, we can invert the BWT by replacing each character by
its lexicographic rank, ranking the resulting permutation, replacing each value
i by the ith character of BWT(s), and rotating the string until $ is at the end.
This takes O(log n) memory and O

(
log2 n

)
passes. 
�

Since we can compute and invert move-to-front, run-length and arithmetic cod-
ing using O(log n) bits of memory andO(1) passes over one stream, by combining
Theorem 5 and Corollaries 3 and 4 we obtain the following theorem.
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1 0
0 1

1 1

1 0 0 0 0 1
1 0
1 0
1 0 1 0 1 1

Fig. 1. Examples of 3rd-order and 4th-order De Bruijn cycles

Theorem 8. With two streams, we can achieve an entropy-only bound using
O(log n) bits of memory and O

(
log2 n

)
passes.

To show we need at least two streams to achieve entropy-only bounds, we use De
Bruijn cycles in a proof similar to the one for Theorem 4. A kth-order De Bruijn
cycle [10] is a cyclic sequence in which every possible k-tuple appears exactly
once. For example, Figure 1 shows a 3rd-order and a 4th-order De Bruijn cycle.
(In this paper we need consider only binary De Bruijn cycles.) Our argument
this time is based on Lemma 2 and the following results about De Bruijn cycles.

Lemma 3. If s ∈ d∗ for some kth-order De Bruijn cycle d, then nH∗
k (s) =

O
(
2k log n

)
.

Proof. By definition, each distinct k-tuple is always followed by the same distinct
character; therefore, nHk(s) = 0 and nH∗

k(s) = O
(
2k log n

)
. 
�

Theorem 9 (De Bruijn, 1946). There are 22k−1−k kth-order De Bruijn
cycles.

Corollary 5. We cannot store most kth-order De Bruijn cycles in o(2k) bits.

Since there are 2k possible k-tuples, kth-order De Bruijn cycles have length
2k, so Corollary 5 means that we cannot compress most De Bruijn cycles by
more than a constant factor. Therefore, we can prove a lower bound similar to
Theorem 4 by supposing that s’s repeated substring is a De Bruijn cycle, then
using Lemma 3 instead of Lemma 1.

Theorem 10. With one stream, we cannot achieve an entropy-only bound.

Proof. As in the proof of Theorem 4, suppose an algorithm uses only one stream,
m bits of memory and p passes to compress s, with mp = logO(1) n, and consider
a machine performing that algorithm. This time, however, suppose s is periodic
with period 2�log(mp log n)� and that its repeated substring t is a kth-order De
Bruijn cycle, k = �log(mp log n)�, that is not compressible by more than a con-
stant factor. Lemma 2 implies that the machine’s output while over a part of the
stream that initially holds a copy of t, must be Ω(mp log n−mp) = Ω(mp log n).
Therefore, the machine’s complete output must be Ω(n) bits. By Lemma 3, how-
ever, nH∗

k (s) = O
(
2k log n

)
= O

(
mp log2 n

)
⊂ logO(1) n. 
�

Notice Theorem 10 implies a lower bound for computing the BWT: if we could
compute the BWT with one stream then, since we can compute move-to-front,
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run-length and arithmetic coding using O(log n) bits of memory and O(1) passes
over one stream, we could thus achieve an entropy-only bound with one stream,
contradicting Theorem 10.

Corollary 6. With one stream, we cannot compute the BWT.

In the full version of this paper we will show that computing the BWT of a
ternary string is at least as hard as sorting n/ logn numbers; therefore, it takes
Ω(log n) passes with O(1) streams.

In another paper [12] we improved the coefficient in Manzini’s bound from
5 + ε to 2.7, using a variant of distance coding instead of move-to-front and
run-length coding. We conjecture this algorithm can also be implemented with
two streams.

Open Problem 3. With O(1) streams, can we achieve the same entropy-only
bounds that we achieve in the RAM model?

Acknowledgments. Many thanks to Giovanni Manzini, Ferdinando Cicalese,
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supported by the Italy-Israel FIRB Project “Pattern Discovery Algorithms in
Discrete Structures, with Applications to Bioinformatics”.

References

1. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model
augmented with a sorting primitive. In: Proceedings of the 45th Symposium on
Foundations of Computer Science, pp. 540–549 (2004)

2. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An op-
timal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal on Computing 36(6), 1672–1695 (2007)
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Abstract. A reoptimization problem describes the following scenario:
Given an instance of an optimization problem together with an optimal
solution for it, we want to find a good solution for a locally modified
instance.

In this paper, we deal with reoptimization variants of the shortest
common superstring problem where the local modifications consist of
adding or removing a single string. We show NP-hardness of these re-
optimization problems and design several approximation algorithms for
them.

1 Introduction

In classical algorithmics, one is interested in finding good feasible solutions to
input instances about which nothing is known in advance. Unfortunately, many
practically relevant problems are computationally hard, and so different ap-
proaches such as approximation algorithms or heuristics are used for computing
good approximations for optimal solutions. In the real world, however, some ex-
tra knowledge about the instance at hand might be already known. The concept
of reoptimization employs a special kind of additional knowledge: Under the
assumption that we are given an instance of an optimization problem together
with an optimal solution for it, we want to efficiently compute a good solution
for a locally modified input instance.

This concept of reoptimization was mentioned for the first time in [13] in the
context of postoptimality analysis for some scheduling problem. Postoptimality
analysis deals with the related question of how much an instance may be altered
without changing the set of optimal solutions, see, e. g., [17]. Since then, the
concept of reoptimization has been successfully applied to various problems like
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the traveling salesman problem [3, 1, 7, 10], the Steiner tree problem [4, 8, 11],
the knapsack problem [2], and various covering problems [5]. A survey of reop-
timization problems can be found in [9].

In this paper, we investigate some reoptimization variants of the shortest com-
mon superstring problem, SCS for short. Given a substring-free set of strings, the
SCS asks for a shortest common superstring of S, i. e., for a minimum-length
string containing all strings from S as substrings. The SCS is one of the most
prominent hard problems in stringology with many applications, e. g., in com-
putational biology where it is used for modeling certain aspects of the DNA
fragment assembly problem (see, for instance, [14, 6] for more details). The SCS
is known to be NP-hard [12] and even APX-hard [18]. Many approximation algo-
rithms have been devised for the SCS, the best-known being a greedy algorithm
proposed by Tarhio and Ukkonen [16] which can be proven to achieve an ap-
proximation ratio of 4, but is conjectured to be 2-approximative. The currently
best known approximation algorithm achieves a ratio of 2.5 [15].

In this paper, we deal with reoptimizing the SCS under the local modifications
of adding or removing a single string. Our main results are the following. We
show that both reoptimization versions of the SCS are NP-hard and propose
some approximation algorithms for them. First, we devise an iteration technique
for improving the approximation ratio of any SCS algorithm in the presence of
a long string in the input which might be of independent interest. Then, we use
this iteration technique to design an algorithm for SCS reoptimization which
gives an approximation ratio arbitrarily close to 1.6 for adding a string and a
ratio arbitrarily close to 13/7 for removing a string. This algorithm uses some
known approximation algorithm for the original SCS (without reoptimization),
and its approximation ratio depends on the ratio of this SCS algorithm. Thus,
any improvement over the best known ratio of 2.5 for the SCS immediately
yields also an improvement of these reoptimization results. Since the running
time of this iterative algorithm is rather high, we also analyze a simple and fast
reoptimization algorithm for adding a string and prove an approximation ratio
of 11/6 for it.

The paper is organized as follows. In Section 2, we formally define the re-
optimization variants of the SCS and fix our notation. Section 3 is devoted to
the hardness results, in Section 4, we present the iterative reoptimization algo-
rithms, and Section 5 contains the analysis of the fast approximation algorithm
for adding a string.

2 Preliminaries

We start with defining some notations for dealing with strings that we will use
throughout the paper. By λ we denote the empty string. The concatenation of
two strings s and t will be written as s · t, or as st for short. Let s, t, x, and
y be some (possibly empty) strings such that t = xsy. Then s is a substring of
t, we write s � t, and t is a superstring of s. If x is empty, we say that s is a
prefix of t, if y is empty, then s is a suffix of t. We say that a set S of strings is
substring-free if s �� t, for all s, t ∈ S.
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For two strings s1 and s2, the overlap ov(s1, s2) of s1 and s2 is the maximum-
length proper suffix of s1 which is also a proper prefix of s2, i. e., we additionally
require that s1, s2 �� ov(s1, s2). The corresponding prefix of s1, i. e., the string p
such that s1 = p · ov(s1, s2), is denoted by pref(s1, s2). The merge of s1 and s2
is defined as merge(s1, s2) := pref(s1, s2) · s2. We inductively extend this notion
of merge to more than two strings by defining

merge(s1, . . . , sm) = merge(merge(s1, . . . , sm−1), sm).

We call a string s periodic with period π, if there exist a suffix π and a prefix
π of the string π and some k ∈ N such that s = π · πk · π. In this case, we also
write s � π∞.

The problem we are investigating in this paper is to find the shortest common
superstring for a given set S = {s1, . . . , sm} of strings. If S is substring-free,
then the shortest common superstring can be unambiguously described by the
order in which the strings appear in it: If si1 , . . . , sim is the order of appearance
in a shortest superstring t, then t = merge(si1 , . . . , sim). This observation leads
to the following formal definition of the problem.

Definition 1. The shortest common superstring problem, SCS for short, is
the following optimization problem: Given a substring-free set of strings S =
{s1, . . . , sm}, the feasible solutions are all permutations (si1 , . . . , sim) of S. For
any feasible solution Sol = (si1 , . . . , sim), the cost is |Sol| = |merge(si1 , . . . , sim)|,
i. e., the length of the shortest superstring for S containing the strings from S
in the order as given by Sol. The goal is to find a permutation minimizing the
length of the corresponding superstring.

In this paper, we deal with two reoptimization variants of the SCS. The local
modifications we consider here are adding a string to our set of input strings or
deleting one string from it. The corresponding reoptimization problem can be
formally defined as follows.

Definition 2. The input for the SCS reoptimization problem with adding a
string, SCS+ for short, consists of a substring-free set SO = {s1, . . . , sm} of
strings, an optimal SCS-solution OptO for it, and a string snew such that also
SN = SO ∪ {snew} is substring-free.

Analogously, the input for the SCS reoptimization problem with removing a
string, SCS– for short, consists of a substring-free set of strings SO = {s1, . . . ,
sm}, an optimal SCS-solution OptO for it, and a string sold ∈ SO. In this case,
SN = SO \ {sold}. For both problems, the goal is to find an optimal SCS-solution
OptN for SN .

In addition to the maximum overlap and merge as defined above, we also consider
the overlap and merge inside a given solution. Let Sol be some solution for
an SCS instance given by a set of strings S and let s and t be two strings
from S which are not necessarily overlapping in Sol. Then ovSol(s, t) denotes
the overlap of s and t in Sol, and we use mergeSol(s, t) = merge(s, . . . , t) as
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an abbreviation for the merge of s and t together with all input strings lying
between them in Sol. By prefMSol(s, t), we denote the prefix of mergeSol(s, t)
such that prefMSol(s, t) · t = mergeSol(s, t). Note that s may be a proper prefix
of prefMSol(s, t). For Sol = OptO, we use the notations ovO, mergeO, and prefMO

for ovOptO
, mergeOptO

, and prefMOptO
, respectively. Analogously, we use ovN ,

mergeN , and prefMN for Sol = OptN . Note that, for two consecutive strings
s and t inside some solution Sol, mergeSol(s, t) = merge(s, t), but this equality
does not necessarily hold for non-consecutive strings.

3 Hardness Results

In this section, we show that the considered reoptimization problems are NP-
hard. Similarly to [9], we use a polynomial-time Turing reduction since we rely
on repeatedly applying reoptimizations.

Theorem 1. The problems SCS+ and SCS– are NP-hard.

Proof. We split the reduction into several steps. Given an input instance I for
SCS, we define a corresponding easily solvable instance I ′. Then we show that I ′

is indeed solvable in polynomial time. Finally, we show how to use polynomially
many reoptimization steps in order to transform the optimal solution for I ′ into
an optimal solution for I.

For any SCS+ instance I, the easy instance I ′ consists of no strings. Obviously,
the empty vector is an optimal solution for I ′. Now, I ′ can be transformed into
any instance I by adding all strings from I one after the other. Thus, SCS+ is
NP-hard.

Now, let us consider the local modification of removing strings. Let I be an
instance for SCS that consists of m strings s1, s2, . . . , sm. For any i, let sf

i be
the first symbol of si, let sl

i be its last symbol, and let sc
i be si without the first

and last symbol. Without loss of generality, we exclude strings of length 1 since
they cannot significantly increase the hardness of any input instance.

Now, we construct I ′ as follows. Let #0, #1, . . . , #m be m + 1 special sym-
bols that do not appear in I. Then, we introduce the set of strings S′ :=
{s′0, s′1, . . . , s′m}, where s′0 := #0s

f
1sc

1, s′m := sc
msl

m#m, and s′i := sc
is

l
i#is

f
i+1s

c
i+1,

for each i ∈ {1, . . . , m− 1}. Let the instance I ′ be the set of the strings from I
together with the strings from S′. It is clear that m+1 local modifications, each
removing one of the new strings, transform I ′ into I. Thus, it only remains to

s1 s2

sf
2 sc

2
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2

s3
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3

s4

sc
1 sc

3
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3 sc

4sf
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1 sl
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2 #2

sl
3 #3
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1#0

Fig. 1. An optimal solution for the easily solvable instance I ′
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show that I ′ is efficiently solvable. To this end, we claim that no algorithm can
do better than alternating the new and the old strings as depicted in Fig. 1.

We now formally prove the correctness of the construction above. First, ob-
serve that the constructed instance is substring-free. Now, let us only consider
the strings from S′. We will show that at each position of any common super-
string at most two of these strings can overlap. Suppose, conversely, that more
than two of the strings overlap. Then there are pairwise disjoint numbers i,j, and
k between 0 and m such that s′i, s′j , and s′k overlap in at least one symbol. Let,
without loss of generality, s′i be the leftmost string and let s′k be the rightmost
string in an overlapping setting. But then each symbol of the middle string, s′j ,
is overlapped by at least one of the other strings — a contradiction, because the
symbol #j only appears in s′j .

Following the construction of S′, the overall length
∑m

i=0 |s′i| of the strings
from S′ is m+1+2 ·

∑m
i=1(|si|−1). Since only non-special symbols can overlap,

any shortest superstring is at least m+1+
∑m

i=1(|si|−1) symbols long; otherwise,
there would be some position in the superstring that overlaps with three strings
from S′. Finally, we have to include the strings from I. To this end, we will show
that adding m strings not containing special symbols to S′ results in a lower
bound of m + 1 +

∑m
i=1 |si| on the length of any common superstring.

Note that, given a substring-free set of k strings, where w is the longest one,
it cannot have a common superstring t1 that is shorter than |w|+ (k − 1), i. e.,

|t1| ≥ |w| + k − 1. (1)

Similarly, given a substring-free set of k + 2 strings exactly two of which con-
tain special characters, namely wl = ul#uur and wr = vl#vvr, any common
superstring starting with wl has at least |wl|+ k symbols and, analogously, any
common superstring ending with wr has at least |wr|+ k symbols.

Given a common superstring t2 which starts with wl and ends with wr, we
have

|t2| ≥ |ul|+ 1 + |vr|+ 1 + max{|ur|, |vl|}+ k. (2)

Now let us consider I ′. Let t be a common superstring for I ′. We decompose
t into w0w

′
0w1w

′
1w

′
2w2 . . . wmw′

mwm+1 such that each w′
i consists of exactly one

special symbol. Therefore, each string from I is contained in at least one of the
strings between the special symbols. Let ki be the number of strings from I that
is contained in wi. Then, according to (1) and (2), wi is at least ki symbols
longer than the longer end of the two special strings belonging to w′

i and w′
i+1.

Due to the estimation of the length of a shortest common superstring above,
and since all m strings of I have to appear somewhere, i. e.,

∑m+1
i=0 ki ≥ m, the

length of t is at least

m∑
i=1

(|si| − 1) + m + 1 +
m+1∑
i=0

ki ≥
m∑

i=1

(|si| − 1) + m + 1 + m =
m∑

i=1

|si|+ m + 1.

But this is exactly the length of our constructed common superstring. There-
fore, we conclude that SCS– is NP-hard.
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4 Iterative Algorithms for Adding or Removing a String

Consider any polynomial approximation algorithm A for SCS with approxima-
tion ratio γ. We show how to construct a polynomial reoptimization algorithm
for SCS+ with approximation ratio arbitrarily close to (2γ−1)/γ. Furthermore,
we show a similar result for SCS– with approximation ratio (3γ − 1)/(γ + 1).
Since the best known polynomial approximation algorithm for SCS gives γ = 2.5,
see [15], we obtain an approximation ratio arbitrarily close to 8/5 = 1.6 for SCS+
and an approximation ratio arbitrarily close to 13/7 < 1.86 for SCS–.

The core part of our reoptimization algorithms is an approximation algorithm
for SCS that works well if the input instance contains at least one long string.
More precisely, let S = {s1, . . . , sm} be an instance of SCS such that µ0 ∈ S is
a longest string in S, and let |µ0| = α0|Opt|, for some α0 > 0, where Opt is an
optimal solution of S.

The algorithm A1 guesses the leftmost string l1 and the rightmost string
r1 which overlap with µ0 in the string corresponding to Opt, together with
the respective overlap lengths. Afterwards, it computes a new instance S1 by
eliminating all substrings of mergeOpt(l1, µ0, r1) from the instance S, calls the
algorithm A on S1 and appends l1, µ0, r1 to the approximate solution returned
by A.

Now we generalize A1 by iterating this procedure k times. For arbitrary k, we
construct a polynomial-time approximation algorithm Ak for SCS that computes
a solution of length at most(

1 +
γk(γ − 1)

γk − 1
(1− α0)

)
|Opt|.

For every i ∈ {1, . . . , k}, we define strings li, ri, and µi as follows: Let li be
the leftmost string that overlaps with µi−1 in Opt. If there is no such string,
li := µi−1. Similarly, let ri be the rightmost string that overlaps with µi−1 in
Opt. We define µi as mergeOpt(li, µi−1, ri).

The algorithm Ak uses exhaustive search to find strings li, ri and µi for every
i ∈ {1, . . . , k}. This can be done by assigning every possible string of S to li and
ri, and trying every possible overlap between li, µi−1 and ri. For every feasible
candidate set of strings and for every i, the algorithm computes the candidate
solution Soli corresponding to the string merge(ui, µi), where ui is the string
corresponding to the result of algorithm A on the input instance Si obtained
by removing all substrings of µi from S. Algorithm Ak then outputs the best
solution among all candidate solutions.

Theorem 2. Let n be the total length of all strings in S, i. e., n =
∑m

j=1 |sj |.
Algorithm Ak works in time O(m2kn2k(kmn+ kT (m, n))), where T (m, n) is the
time complexity of algorithm A on an input instance with at most m strings of
total length at most n.

Proof. Algorithm Ak needs to test all O(m2k) possibilities for choosing 2k strings
l1, r1, . . . , lk, rk from the m strings of S. For every such possibility, it must test
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all possible overlaps between the strings in order to obtain strings µ1, . . . , µk.
Hence, the lengths of 2k overlaps must be tested. As the length of each overlap
can be in the range from 0 to n, there are O(n2k) possibilities. For each of
the O(m2kn2k) possibilities, Ak tests if it is feasible (this can be done in time
O(n)) and computes the corresponding k candidate solutions. To compute one
candidate solution Soli, the instance Si is prepared in time O(mn) and algorithm
A is executed in time T (m, n). 
�
Theorem 3. Algorithm Ak finds a solution of S of length at most(

1 +
γk(γ − 1)

γk − 1
(1− α0)

)
|Opt|.

Proof. Assume that Ak outputs a solution of length greater than (1 + β)|Opt|,
for some β > 0. In the analysis, we focus on the part of the computation of
Ak where the correct assignment of strings li, ri, and µi is analyzed. By our
assumption, every candidate solution Soli has length greater than (1 + β)|Opt|.
The solution Soli corresponds to the string merge(ui, µi), where |µi| = αi|Opt|,
for some αi > 0, and ui is the result of algorithm A on the input instance Si.
Hence, |Soli| ≤ |ui|+ |µi|.

It is not difficult to check that, if we remove all substrings of µi from Opt, we
obtain a feasible solution for Si of length at most |Opt|−|µi−1| = (1−αi−1)|Opt|:
By definition of µi, we have removed every string that overlapped with µi−1.
Hence, |ui| ≤ γ(1− αi−1)|Opt|, and

(1 + β)|Opt| < |Soli| ≤ (γ(1− αi−1) + αi)|Opt|. (3)

Inequality (3) implies
αi > 1 + β − γ + γαi−1. (4)

Solving the system of recurrent equations (4) yields

αk > (1 + β − γ)
γk − 1
γ − 1

+ γkα0. (5)

Since µi is a substring of Opt for every i, it holds that αk ≤ 1. Putting this
together with (5) yields

β ≤ γk(γ − 1)
γk − 1

(1− α0).


�

4.1 Reoptimization of SCS+

We now employ the iterative SCS algorithm described above for designing an
approximation algorithm for SCS+. For every k, we define the algorithm A+

k for
SCS+ as follows. Given an input instance SO, its optimal solution OptO, and
a new string snew, the algorithm A+

k returns the solution Sol1 corresponding to
merge(OptO, snew) or the solution Sol2 computed by Ak for the input instance
SN := SO ∪ {snew}, whichever is better.
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Theorem 4. Algorithm A+
k yields a solution of length at most

2γk+1 − γk − 1
γk+1 − 1

|OptN |.

Proof. Let |snew | = α|OptN |. Then |Sol1| ≤ (1 + α)|OptN |. Since SN contains a
string of length at least α|OptN |, Theorem 3 ensures that

|Sol2| ≤
(

1 +
γk(γ − 1)

γk − 1
(1 − α)

)
|OptN |.

Hence, the minimum of |Sol1| and |Sol2| is maximal if

(1 + α)|OptN | =
(

1 +
γk(γ − 1)

γk − 1
(1− α)

)
|OptN |,

which happens if

α =
γk+1 − γk

γk+1 − 1
.

In this case, A+
k yields a solution of length at most

(1 + α)|OptN | =
2γk+1 − γk − 1

γk+1 − 1
|OptN |. 
�

By choosing k sufficiently large, the approximation ratio of A+
k can be made

arbitrarily close to (2γ − 1)/γ. Algorithm A+
k is polynomial for every k, but the

degree of the polynomial grows with k.

4.2 Reoptimization of SCS–

Similarily as for the case of SCS+, we define algorithm A−
k for SCS– as follows.

Given an input instance SO, its optimal solution OptO and a string sold ∈ SO

to be removed, A−
k returns the solution Sol1 obtained from OptO by leaving out

sold, or the solution Sol2 computed by Ak for input instance SN := SO \ {sold},
whichever is better.

Theorem 5. Algorithm A−
k yields a solution of length at most

3γk+1 − γk − 2
γk+1 + γk − 2

|OptN |.

Proof. Let l ∈ SO (r ∈ SO) be the string that immediately precedes (follows)
sold in OptO, respectively. We focus on the case where both l and r exist, the
other cases are analogous. It is easy to see that

|Sol1| ≤ |OptO| − |sold|+ |ov(l, sold)|+ |ov(sold, r)|.

Since augmenting OptN with sold yields a feasible solution for SO, we have
|OptO| ≤ |OptN |+ |sold|.
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Without loss of generality, assume that |ov(sold, r)| ≤ |ov(l, sold)| = α|OptN |.
Hence, |Sol1| ≤ (1 + 2α)|OptN |. Furthermore, SN contains the string l of length
at least α|OptN |, so Theorem 3 ensures that

|Sol2| ≤
(

1 +
γk(γ − 1)

γk − 1
(1 − α)

)
|OptN |.

The minimum of |Sol1| and |Sol2| is maximal if

(1 + 2α)|OptN | =
(

1 +
γk(γ − 1)

γk − 1
(1− α)

)
|OptN |,

which happens if

α =
γk+1 − γk

γk+1 + γk − 2
.

In this case, A−
k yields a solution of length at most

3γk+1 − γk − 2
γk+1 + γk − 2

|OptN |. 
�

Similarly as in the case of SCS+, the approximation ratio of A−
k can be made

arbitrarily close to (3γ − 1)/(γ + 1) by choosing k sufficiently large.

5 One-Cut Algorithm for Adding a String

In this section, we present a simple and fast algorithm OneCut for SCS+ and
prove that it achieves an 11/6-approximation ratio. The algorithm cuts OptO at
all positions one by one. Recall that the given optimal solution OptO is repre-
sented by an ordering of the input strings, thus cutting OptO at some position
yields a partition of the input strings into two sub-orderings. The two corre-
sponding strings are then merged with snew in between. The algorithm returns
a shortest of the strings obtained in this manner, see Algorithm 1.

Algorithm 1. OneCut

Input: A set of strings S = {s1, . . . , sm}, an optimal solution OptO = (s1, . . . , sm) for
S, and a string snew

1: for i ∈ {0, . . . , m} do
2: Let Solutioni := (s1, . . . , si, snew, si+1, . . . , sm).

Output: A best of the obtained solutions Solutioni, for 0 ≤ i ≤ m

Theorem 6. The algorithm OneCut is an 11/6-approximation algorithm for
SCS+ running in time O(n ·m) for inputs consisting of m strings of total length
n over a constant-size alphabet.
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Proof sketch. We first analyze the running time of OneCut. Using suffix trees,
we can compute all pairwise overlaps of {snew, s1, . . . , sm} in time O(n · m),
see e. g. [16]. Using these precomputed overlaps, each of the m + 1 iterations of
OneCut can be performed in constant time. Thus, the overall running time of
OneCut is also in O(n ·m).

We now show that OneCut provides an approximation ratio of 11/6 for
SCS+. The proof is constructed in the following manner. One by one, we elim-
inate cases in which we can prove a ratio of 11/6 for OneCut, until all cases
are covered. Each time we prove a ratio of 11/6 under some condition, we can
deal in the following with the remaining cases under the assumption that this
condition does not hold. In this way, we construct a list of assumptions which
eventually lead to some final case. Due to the space limitations, the proofs of
the lemmas are omitted in this extended abstract.

snew
r

l

. . .

. . .
L1

γL prefMN (L1, l) prefMN (l, snew)

(a) The new optimal solution OptN (in the case that L1 precedes l)

l
L1

L2 . . .
Li . . .

. . .
Lj+1

Lj

Lm−1

(b) The old optimal solution OptO (in the case that Li �= λ)

Fig. 2. The new and old optimal solution

Lemma 1. If |snew| ≤ 5
6 |OptN |, then the algorithm OneCut provides an 11/6-

approximation ratio.

Lemma 1 shows that the desired approximation ratio can be reached whenever
the string snew is short. This leads to the first assumption.

Assumption 1. |snew| > 5
6 |OptN |.

Let l be the string directly preceding snew in OptN and let r be the direct
successor of snew in OptN (see Fig. 2 (a)). Lemma 2 proves that we may assume,
without loss of generality, that l and r almost completely cover the string snew .

Lemma 2. If OneCut returns an 11/6-approximation for all instances where
there is at most one letter from snew not covered in OptN by either l or r, then
it returns an 11/6-approximation in general.
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Assumption 2. In OptN , at most one letter of the string snew is not covered
by either l or r.

Lemma 3. Assumption 2 implies that either |snew | ≤ 1
2 |OptN | + |ov(l, snew)|

or |snew| ≤ 1
2 |OptN |+ |ov(snew, r)|.

By Lemma 3 and Assumption 2, without loss of generality, we may assume the
following.

Assumption 3. |snew| ≤ 1
2 |OptN |+ |ov(l, snew)|.

We now enumerate the strings in OptO according to the position of l as shown
in Fig. 2 (b):

OptO = (Lj+1, . . . , Lm−1, l, L1, . . . , Li, . . . , Lj)

Thus, let L1 be the direct successor of l in OptO. If l has no successor in OptO,
let L1 = λ be the empty string. In this case, the strings preceding l in OptO are
L2, . . . , Lm, and we may assume that L1 is located at the end of OptO.

In Lemma 4, we resolve the case where L1 follows snew in OptN .

Lemma 4. Under Assumptions 1 and 3, if L1 is located after snew in OptN ,
then OneCut returns an 11/6-approximation.

If L1 = λ, we may assume that it follows l in OptN . Thus, we can add the
following assumption.

Assumption 4. L1 �= λ and L1 precedes snew in OptN .

We define πL = AB, where A = prefMN (L1, l) and B = prefMO(l, L1) =
pref(l, L1). Note that L1 = (AB)gp1 and l = (BA)hp2 for some natural numbers
g, h, where p1 and p2 denote some prefixes of AB and BA, respectively (see
Fig. 3). Thus, L1, l � π∞

L . Now let Li be the first string after L1 in OptO which
is not periodic with period πL, i. e., Li �� π∞

L . If there is no such string, let
Li = λ be the empty string. Let L = mergeO(l, Li−1). Let γL denote the prefix
of OptN preceding L1 (see Fig. 2 (a)).

Lemma 5. Assumption 4 and |πL| ≥ 1
6 |OptN | − |γL| give approximation ratio

11/6 for OneCut.

In Lemma 5, we have handled the case that the period πL is relatively long,
yielding the following assumption for the rest of the proof.

Assumption 5. |πL|+ |γL| ≤ 1
6 |OptN |.

The 11/6-approximation is proven in Lemma 6 for the case where Li follows
snew in OptN .

Lemma 6. Under Assumptions 1, 2, 3, 4, and 5, and if Li follows snew in
OptN , OneCut is an 11/6-approximation algorithm for SCS+.
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L1
OptN

{

OptO

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

BB A B A

l

. . .Li

L2

L1

. . .

A

p2

p1

p1

Fig. 3. Periodicity of l and L1

Thus, we can make the following assumption for our final case. (In the case
where Li = λ, we may assume that Li follows snew in OptN .)

Assumption 6. Li �= λ and Li precedes snew in OptN .

In the final case of the proof, as presented in Lemma 7, we will use Assumptions
1 to 6 to prove our claim for all remaining situations not previously dealt with.

Lemma 7. Under Assumptions 1, 2, 3, 4, 5, and 6, OneCut provides an 11/6-
approximation ratio for SCS+.

This completes the proof of Theorem 6. 
�

We now show that the analysis in the proof of Theorem 6 is tight.

Theorem 7. Algorithm OneCut cannot achieve an (11
6 −ε)-approximation, for

any ε > 0.

Proof. For any n ∈ N, we construct an input instance that consists of the fol-
lowing strings:

SO = {�, xan+2x, an+1xan+1, anxan+1xan,

bnybn+1ybn, bn+1ybn+1, ybn+2y,�}.

Obviously, arranging the strings in the order as presented forms an optimal
solution OptO of length 6n + O(1):

an x an+1 x an bn y bn+1 y bn

an+1 x an+1 bn+1 y bn+1

x an+2 x y bn+2 y
� �

The corresponding superstring is �xan+2xan+1xanbnybn+1ybn+2y�. Let

snew := bn−1ybn+1ybn#anxan+1xan−1.

It is easy to see that there is a solution for SN = SO ∪{snew} which has asymp-
totically the same length as OptO:
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bn−1 y bn+1 y bn # an x an+1 x an−1

bn y bn+1 y bn an x an+1 x an

bn+1 y bn+1 an+1 x an+1

y bn+2 y x an+2 x
� �

This new optimal solution OptN is obviously unique (except for the placement of
the symbols � and � at the beginning or the end). Applying algorithm OneCut

for inserting snew into the instance when OptO is given, however, does not find
a common superstring that is shorter than 11n + O(1) symbols.

Here, the crucial observation is that all strings in SO need to be rearranged
to construct OptN from OptO (which then means that no information is gained
by the given additional knowledge). To be optimal, 7 cuts are necessary. Being
allowed to only cut once, however, cannot yield a solution better than 11n+O(1).
Finally, we easily verify that |OptN | = 6n +O(1). 
�

6 Conclusion

In this paper, we have investigated the reoptimization of SCS according to
two different local modifications. Besides the results presented here, there is
a straight-forward generalization of the algorithm OneCut. For any constant
k, we can also allow k cuts. We expect that additional cuts lead to improved
approximation ratios. It is not hard, however, to show some lower bounds on the
approximation ratio for k cuts. Using the same hard instance as in the proof of
Theorem 7, we can show that two cuts do not improve the approximation ratio.
In general, for any ε > 0 and k ≥ 3, we have constructed a hard input instance
such that the approximation ratio of the k-cut algorithm is bounded from below
by 1 + 2/(k + 1)− ε.
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Abstract. A classical measure of similarity between strings is the length
of the longest common subsequence(LCS) between the two given strings.
The search for efficient algorithms for finding the LCS has been going
on for more than three decades. To date, all known algorithms may take
quadratic time (shaved by logarithmic factors) to find large LCS. In this
paper the problem of approximating LCS is studied, while focusing on
the hard inputs for this problem, namely, approximating LCS of near-
linear size in strings over relatively large alphabet (of size at least nε

for some constant ε > 0, where n is the length of the string). We show
that, any given string over relatively large alphabet can be embedded
into a local non-repetitive string. This embedding has a negligible ad-
ditive distortion for strings that are not too dissimilar in terms of the
edit distance. We also show that LCS can be efficiently approximated in
locally-non-repetitive strings.

1 Introduction

Measuring similarity plays an important role in data analysis. As strings are a
common data representation, similarity measures defined on strings are widely
used. A classical measure of similarity between strings is the length of the
longest common subsequence (LCS) between the two given strings. The search
for efficient algorithms for finding the LCS has been going on for more than
three decades. The classical dynamic programming algorithm takes quadratic
time [21,22] and this complexity matches the lower bound in comparison model
[1]. Many other algorithms have been suggested over the years [12,13,19,4,5,16,
18,9] (see also [11]). However, the state of the art is still not satisfying. To date,
all known algorithms may take near-quadratic time to find large LCS. None of
the known algorithms can find LCS of linear size in time polynomially smaller
than quadratic. Analysis of large data bases storing very long strings cannot
settle with such methods.

A possible approach is to trade accuracy for speed and employ faster algo-
rithms that approximate the LCS. In fact, for measuring similarity a sufficiently
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long common subsequence as an evidence of similarity might be as good as the
LCS itself. Thus, a good approximation of the LCS that can be found fast is of
great importance.

Approximating LCS in Strings Over Small Alphabet. Strings over small
alphabet have large LCS. Thus, LCS in strings over small alphabet can be triv-
ially approximated to a factor of 1/|Σ|, where Σ is the alphabet, by just picking
the letter that has the highest frequency. If the alphabet size is o(nε) for every
constant ε > 0, this trivial algorithm achieves sub-polynomial approximation
ratio, which is roughly the best known approximation ratio for the closely re-
lated edit distance [20]1. However, when the alphabet of the strings gets larger
this approximation becomes useless. Therefore, our goal is to design efficient
algorithms approximating LCS over strings with relatively large alphabet, i.e.,
alphabet of size at least nε.

Sparse vs. Large LCS. Relatively large alphabet may reduce the number of
matching symbols between the two given strings. In such cases the sparse LCS
techniques of Hunt-Szymanski can be used to give efficient exact solutions that
depend on the matchings set size [13, 5]. However, the input strings may have
a quadratic size of matching pairs of symbols even if the alphabet is relatively
large. In these cases, these sparse LCS algorithms take quadratic time. Other
methods for finding sparse LCS quickly are known. Specifically, LCS of size
O(nα), where n is the string size and 0 < α < 1 is a constant, can be found by
algorithms that take time O(n1+α) [12, 16, 18]. However, these algorithms take
quadratic time for finding LCS of linear size. Thus, the focus of this paper is on
efficiently approximating large LCS, typically, LCS of near linear size, in strings
over relatively large alphabet.

Related Work. LCS is closely related to the edit distance (ED). The edit dis-
tance is the number of insertions, deletions, and substitutions needed to trans-
form one string into the other. This distance is of key importance in several
fields such as text processing, Web search and computational biology, and con-
sequently computational problems involving ED have been extensively studied.
The ED is the dissimilarity measure corresponding to the LCS similarity mea-
sure. The ED can also be computed by a quadratic time dynamic programming
procedure. In fact, using the methods of Landau and Vishkin [17], ED can be
computed in time max{k2, n}, where k is the bound on ED and n the length
of the strings. Thus, a fast algorithm can find if the ED is small or not. Ap-
proximating ED efficiently has proved to be quite challenging [3]. Currently, the
best quasi-linear time algorithm due to Batu, Ergün and Sahinalp [7], achieves
approximation factor n1/3+o(1), where n is the length of the strings.

1 [20] show an embedding into �1, which is stronger than an approximation algorithm.
However, the time complexity of the embedding is high. It can, therefore, be used
for various tasks such as sketching and nearest neighbor search, but not as an edit-
distance approximation algorithm.
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Results. In this paper it is shown that large LCS can be efficiently approx-
imated in strings with relatively large alphabet if the ED is not too large. In
particular, LCS of linear size can be approximated to a constant factor, if the
edit distance is o(n|Σ|

t ln t ), where |Σ| is the alphabet size and t is the period size
(t = n in aperiodic strings). It is important to note, that our algorithm does not
need to verify that the requirement on the ED is indeed fulfilled. A large LCS
detected by the algorithm is an evidence of similarity. For alphabet of size at
least nε, our algorithm complexity is always O(n2−ε log log n) but can be much
better (for some parameters it is O(n log log n)). Our contribution to the com-
putation of large common subsequences is, therefore, a strictly sub-quadratic
time algorithm (i.e., of complexity O(n2−ε) for some constant ε) which can find
common subsequences of linear (and near linear) size that cannot be detected
efficiently by the existing tools.

The approximation ratio of our algorithm depends on the size of the LCS. It is
better as the LCS is longer. Table 1 demonstrates the worst case performance of
our algorithm for LCS of different sizes. The complexity guarantees presented in
the table are a result of combining the theorems proved in this paper (Theorem 1
and Corollary 2 combined with Theorems 2 and 3 and Theorem 5). We stress
that these are worst case performances also in the sense that they demonstrate
the worst case parameters for given LCS size, alphabet size and period length,
but the true parameters for a given pair of strings can be much better. The
complexity of our method is superior compared to sparse LCS techniques when
LCS of near-linear size is concerned, as the first 6 lines of the table indicate.
Moreover, even for strictly sub-quadratic size LCS, our method gives a faster
approximation algorithm if the alphabet is large enough. As lines 7 and 9 of
the table indicate, for LCS of size Θ(n3/4) we get a faster algorithm for every
ε > 1/2. Line 8 of the table represents a case where our technique should not
be used due to the requirement on the edit distance. In such a case, sparse LCS
techniques should be preferred.

Our method works well for strings A and B where the ED is o(LCS(A, B) ·
|Σ|
t ln t ), where Σ is the alphabet size and t depends on the periodicity of the input
strings (can be of size n in aperiodic strings). The effect of these parameters is
also demonstrated in Table 1. Note that, if the edit distance is Θ(nε), the exact
LCS can be found in time max{n2ε, n}, by finding the edit positions and taking
the complement positions. However, for edit distance that is Ω(n/ logc n), for
some c > 1, our algorithm is strictly sub-polynomial, while computing the ED
yields a near-quadratic time algorithm. Moreover, even for edit distance that is
Θ(nε), our algorithm complexity is always superior when ε > 2/3 and can be
superior also for smaller ε, depending on the parameters of the strings.

Techniques. We exploit low distortion embedding of strings over relatively
large alphabet into local non-repetitive strings. Local non-repetitiveness has been
used for approximating ED [6] and for embedding ED [8]. In [6] and [8], efficient
algorithms for input strings that are non-repetitive or locally-non-repetitive with
good parameters are designed. Here, we show that any string over relatively
large alphabet can be embedded into a locally non-repetitive string. We prove
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Table 1. Worst Case Performance of Our Algorithm: Examples

LCS Alphabet Period ED Approximation Complexity
Size Length Ratio

Θ(n) Θ(n) Θ(n) o(n/ ln n) Θ(1) O(n log n)
Θ(n) Θ(nε) Θ(n) o(nε/ ln n) Θ(1) O(n2−ε log log n)
Θ(n) Θ(nε) Θ(nε) o(n/ ln n) Θ(1) O(n2−ε log log n)

Θ(n/ logc n) Θ(n) Θ(n) o(n/ logc+1 n) Θ(1/ logc n) O(n log n)
Θ(n/ logc n) Θ(nε) Θ(n) o(nε/ logc+1 n) Θ(1/ logc n) O(n2−ε log log n)
Θ(n/ logc n) Θ(nε) Θ(nε) o(n/ logc+1 n) Θ(1/ logc n) O(n2−ε log log n)

Θ(n3/4) Θ(n) Θ(n) o(n3/4// ln n) Θ(1/n1/4) O(n log n)
Θ(n3/4) Θ(nε) Θ(n) o(nε−1/4/ ln n) Θ(1/n1/4) O(n2−ε log log n)
Θ(n3/4) Θ(nε) Θ(nε) o(n3/4/ ln n) Θ(1/n1/4) O(n2−ε log log n)

that this embedding has an additive negligible (contraction) distortion, if ED =
o(LCS(A, B) · |Σ|

t ln t ). We then show that local non-repetitiveness can be used
to significantly speed-up LCS approximation. The speed-up in the efficiency of
our algorithm depends on the local non-repetitiveness parameters of the given
strings. We show that local non-repetitiveness can be efficiently sketched so that
the best parameters for any two strings can be found by looking at a poly-
logarithmic sketch.

The paper is organized as follows. Sect. 2 presents basic definitions and proper-
ties. Sect. 3 presents the embedding of strings over relatively large alphabet into
locally-non-repetitive strings, namely, (1,n/c)-non-repetitive strings, for some c.
In Sect. 4 we present approximation algorithms for this special case of (1,n/c)-
non-repetitive strings, where c is a parameter. Finally, in Sect. 5 we show that
the best parameters for a given pair of strings can be quickly found by looking at
local non-repetitiveness sketches (LNR-sketches) of the strings. It is shown that
our LNR-sketch size matches the lower bound, and a lower bound on the space
needed by a LNR-sketching algorithm in the streaming model is also given.

2 Preliminaries

In this section we give the basic definitions and properties used in this paper.

Problem Definition. Let A and B be two strings of length n over alphabet
Σ. The longest common subsequence problem is to find the longest subsequence,
denoted by LCS(A, B), appearing in both A and B. We will abuse notation
throughout the paper by letting LCS(A, B) denote both the longest common
subsequence and its length. It will be clear from the context which is referred
to. The well-known Property 1 specifies the relation between the LCS and ED.

Property 1. Let A, B be two n-long strings, then

n− LCS(A, B) ≤ ED(A, B) ≤ 2 · (n− LCS(A, B)).
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Definition 1. (LCS preserving embedding) Let X and Y be two classes
of n-long strings. A LCS preserving embedding of X into Y with distortion
ρ, is an injective mapping f : X �→ Y, such that for every pair A, B ∈ X,
ρ · LCS(A, B) ≤ LCS(f(A), f(B)) ≤ LCS(A, B), where ρ ≤ 1.

Note that we require the embedding to be non-expanding. It is only allowed to
have a bounded contraction factor.

Periodicity and Non-Repetitiveness. Periodicity and non-repetitiveness are
two basic properties of a given string that, as we formally state in the sequel,
are closely related.

Definition 2. Let S be a string of length n. S is called periodic if S = P iP ′,
for some 2 ≤ i ≤ n, where P is a prefix of S such that |P | ≤ n/2, and P ′ is
a prefix of P . The smallest such prefix P is called the period of S. If S is not
periodic it is called aperiodic.

Definition 3. (A t-substring). Let S be a string of length n. The t-substring
of S starting at position i, i ≤ n− t + 1, is the string S[i]S[i + 1] . . .S[i + t− 1].

Definition 4. (Locally non-repetitive strings). A string S is called (t, w)-
non-repetitive if every w successive t-substrings in S are distinct, i.e., for each
interval {i, . . . , i + w− 1}, the w substrings of length t that start in this interval
are distinct. If t = 1 then S is simply called locally-non-repetitive.

In the next definition of non-repetitiveness it is required that t-substrings in
the range are not only distinct, but also different enough with respect to an
additional parameter d.

Definition 5. (Locally strong non-repetitiveness). A string S is called
(t, w, d)-non-repetitive if for each interval {i, . . . , i + w − 1} every pair of t-
substrings si, sj in S starting in this interval have H(si, sj) ≥ d, where H(si, sj)
is the hamming distance between si and sj (i.e. the number of indices in which
si differ from sj).

Remark. Throughout the paper we refer to a wrap-around of the given string S,
i.e. indices are taken modulo n, the length of the string. Thus, all t-substrings
are well-defined for every t. If S is periodic then the wrap-around is defined as
to continue the period from the point it is cut in the string S.

Property 2. Let S be a (t, w)-non-repetitive string, then:

1. S is a (t′, w)-non-repetitive string, for every t′ > t.
2. S is a (t, w′)-non-repetitive string, for every w′ < w.

Property 3. Let S be a string of length n, then:

1. If S is a periodic string with period length p then S is a (p, p)-non-repetitive
string.

2. If S is aperiodic then S is a (n, w)-non-repetitive string, where n/2 ≤ w ≤ n.
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Lemma 1. Let S be a n-long string over alphabet Σ with period length p,
then S is a (p, |Σ|/2, |Σ|/2)-non-repetitive string. If S is aperiodic then S is
a (n, |Σ|/2, |Σ|/2)-non-repetitive string.

Note that, Lemma 1 gives a guarantee for worst case parameters of locally strong
non-repetitiveness. For a given pair of strings, the best parameters, i.e., the larger
parameters w and d for which the t-substrings are strongly non-repetitive, can
be much better. For example, consider a n-long string over alphabet nε, with
period p > nε. The lemma only assures that it is (p, nε/2, nε/2)-non-repetitive,
however, it can actually be (p, p, d)-non-repetitive, for d ≥ nε/2.

3 Embedding Strings over Relatively Large Alphabet
into Local Non-repetitive Strings

By Lemma 1, relatively large alphabet assures the existence of a large enough
parameter w and a parameter t such that the t-substrings are locally strong
non-repetitive, for a large enough parameter d. We will exploit this to define an
embedding into (1,n/c)-non-repetitive strings, for which the solutions of Sect. 4
are applicable. This embedding has only an additive negligible distortion, if
the ED is asymptotically negligible compared to the LCS size and the ratio
between the alphabet size and the periodicity parameter of the string. Thus, it
enables approximating large LCS in general strings over relatively large alphabet
with effectively the same approximation ratio as the algorithms for (1,n/c)-non-
repetitive strings, provided that the ED is not large. For clarity of exposition, a
simple idea of an embedding that may have an unbearable distortion is described
first. After analyzing its weaknesses it is shown how these can be overcome by
defining our embedding. Finally, we discuss the algorithmic applications of this
embedding.

A Naive Embedding. The idea is to exploit Property 3, namely, that every
n long string S over alphabet Σ is a (t, w)-non-repetitive string for some |Σ| ≤
t ≤ n, |Σ| ≤ w ≤ n. Each new t-substring defines a new symbol (overall, a linear
number of new symbols). This embedding yields a (1,n/c)-non-repetitive string
where c ≤ 2n

|Σ| , and since |Σ| is relatively large the algorithms of Sect. 4 are
efficient.

We now analyze the distortion of this embedding. Given the original n-long
strings A and B, denote by A′, B′ the strings after employing the embedding.
Clearly, LCS(A′, B′) ≤ LCS(A, B) because positions with different symbols
remain different. Also, each of the n−LCS(A, B) symbols that do not participate
in LCS(A, B) affects only t substrings, thus,

LCS(A′, B′) ≥ n− t(n− LCS(A, B)) = LCS(A, B)− (t− 1)(n− LCS(A, B)).

By Property 1 we get

LCS(A′, B′) ≥ LCS(A, B)− t− 1
2

·ED(A, B).
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Thus, this embedding has an additive distortion affected both by t and ED(A, B),
which can both be Ω(n).

The Embedding f. Fix a random binary vector v of length t − 1, where each
coordinate is 1 with probability 2d ln t

|Σ| for an arbitrarily chosen constant d > 2,
and 0 otherwise. Note that v is well defined for relatively large alphabet, since
for |Σ| ≥ nε and t ≤ n, 2d ln t

|Σ| = o(1). Given an n-long string S over alphabet Σ

define f(S) as follows. Each location i is given a symbol σ(i) which identifies the
string Si, Si1 , . . . , Sik

, where Si1 , . . . , Sik
are the locations in the (t−1)-substring

starting at position i + 1 in S for which the corresponding coordinates in v are
1. Note, that there is no assumption whatsoever on any property of the original
string S. Lemma 2 and Corollary 1 give the local non-repetitiveness guarantee
on the string produced by the embedding f . Lemma 3 bounds the distortion of
the embedding f .

Lemma 2. Let S be a n-long string over alphabet Σ then, there exists a pa-
rameter t, |Σ| ≤ t ≤ n such that f(S) is (1, |Σ|/2)-non-repetitive string with
probability at least 1− 1/td−2.

Proof. By Lemma 1, there exists a t, |Σ| ≤ t ≤ n, such that S is a (t, |Σ|/2,
|Σ|/2)-non-repetitive string. Let i, j be any indices in S such that |i−j| < |Σ|/2,
and let si be the t-substring starting at position i in S. By Lemma 1 we have
H(si, sj) ≥ |Σ|/2. We first claim that

Prob[H(f(si), f(sj)) = 0] ≤ 1/td.

This is because Prob[H(f(si), f(sj)) = 0] = (1− 2d ln t
|Σ| )|Σ|/2, if none of the |Σ|/2

coordinates in which si and sj differ are chosen. Thus, by the union bound

Prob[∃i, j : H(f(si), f(sj)) = 0] ≤ 1/td−2.

The lemma follows.

The resulting string f(S) can be checked if it is indeed a locally non-repetitive
string in linear time. If it is not, the choice of v can be repeated until the result
is a locally non-repetitive string. The expected number of vectors v that should
be chosen is less than 2. Corollary 1 follows.

Corollary 1. Let S be a string over alphabet Σ then, there exists a deterministic
embedding f such that f(S) is (1, |Σ|/2)-non-repetitive string.

Lemma 3. Let A, B be n-long strings over alphabet Σ, then

LCS(A, B) ≥ LCS(f(A), f(B)) ≥ LCS(A, B)− d(t− 1) ln t

|Σ| · ED(A, B)

Proof. First note that LCS(A, B) ≥ LCS(f(A), f(B)), because positions with
different symbols in A and B remain different in f(A) and f(B). We now bound
the contraction factor of f . Since by the definition of the randomized embedding
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f the first symbol of the i-th t-substring is always taken and the rest i+1, . . . , i+
t − 1 locations of the i-th t-substring are taken with probability 2d ln t

|Σ| for a
constant d > 2, we have:

LCS(f(A), f(B)) ≥ n− (1 +
2(t− 1)d ln t

|Σ| )(n− LCS(A, B))

= LCS(A, B)− 2(t− 1)d ln t

|Σ| · (n− LCS(A, B))

≥ LCS(A, B)− d(t− 1) ln t

|Σ| ·ED(A, B),

where the last inequality is due to Property 1.

Let RL(n, Σ) be the class of n-long strings over alphabet Σ, |Σ| ≥ nε, for
some ε > 0. Let LNR(n) be the class of locally-non-repetitive n-long strings.
Theorem 1 follows.

Theorem 1. There exists an embedding f : RL(n, Σ) �→ LNR(n) such that
for every A, B ∈ RL(n, Σ), there exists a parameter t, |Σ| ≤ t ≤ n, such
that f(A), f(B) ∈ LNR(n) and if ED(A, B) = o(LCS(A, B) · |Σ|

t ln t ) then f has
distortion 1− o(1).

Implementation and Algorithmic Application. The discussion of efficient
algorithms for computing the embedding f is postponed to Sect. 5, since the
algorithms we present are also sketching algorithms, and therefore, require the
relevant study from this point of view. Denote by γ(n), the time for computing f .
In Sect. 5 it is shown that γ(n) = Õ(n). Corollary 2 is the algorithmic application
of the embedding f .

Corollary 2. Let A,B be two n-long strings over alphabet Σ. Then, there exists
a parameter t, |Σ| ≤ t ≤ n, such that if ED(A, B) = o(LCS(A, B) · |Σ|

t ln t ), any
algorithm approximating LCS(f(A), f(B)) to a factor of α in O(β(n)) steps,
can be used to approximate LCS(A, B) to a factor of α−o(1) in O(β(n))+Õ(n)
steps.

4 Approximating LCS in (1,n/c)-Non-repetitive Strings

In this section we present efficient algorithms to approximate the LCS if both
strings are (1,n/c)-non-repetitive strings. The algorithms framework is based on
the observation that a (1,n/c)-non-repetitive string for small values of parameter
c is sufficiently close to being a permutation string (i.e., a string with distinct
characters). Finding the LCS in n-long permutation strings is actually finding the
Longest Increasing Subsequence (LIS) of a string over the alphabet {1, . . . , n},
which can be done fast.
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4.1 Θ(1/c)-Approximation Algorithm

The algorithm first divides both input strings A and B into c blocks of size
O(n/c). Since A and B are (1,n/c)-non-repetitive, each of their blocks is a per-
mutation string. Therefore, the LCS between any block of A and any block of B
can be found fast using the LIS algorithm. Our algorithm exploits this fact by
finding the LIS between all c2 pairs of block of A and block of B, and chooses
the pair with the best score. A detailed description of the algorithm is given in
Fig. 1. Lemma 5 and Corollary 3 assure the approximation ratio of this algo-
rithm. Lemma 4 gives its complexity guarantee. Theorem 2 follows.

Algorithm Approx1LCS

Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′

i, B′
j containing only the joint alphabet symbols.

4 �i,j ← LIS(A′
i, B

′
j)

5 Lalg ← max �i,j

Output:
6 Lalg

Fig. 1. Θ(1/c)-Approximation Algorithm for LCS in (1,n/c)-Non-Repetitive Strings

Lemma 4. Algorithm Approx1LCS runs in O(cn log log(n/c) + c2) steps.

Proof. It is a well-known fact that LIS can be computed in (n log log n) time
for n-length strings. Algorithm Approx1LCS computes c2 times LIS on strings
of size n/c. Therefore, the total time for steps 2-4 is O(cn log log(n/c)). Step 5
takes another c2 steps. The lemma then follows.

Lemma 5. Let A and B be two strings of length n, then there exists a pair of
blocks Ai, Bj such that li,j ≥ Θ(1/c) · LCS(A, B).

Corollary 3. The approximation ratio of algorithm Approx1LCS is Θ(1/c).

Theorem 2. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A, B) can
be approximated to a factor of Θ(1/c) in O(c · n log log(n/c) + c2) steps.

4.2 Θ(k/c)-Approximation Algorithm

The Θ(1/c) approximation ratio of algorithm ApproxLCS1 is quite well if c
is constant. However, as c grows it gets worse. In fact, for c =

√
n it gives

nothing but a trivial approximation. We thus give another algorithm with the
same framework as algorithm ApproxLCS1, in which additional work is done
(but asymptotically takes the same time) in order to improve the approximation
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ratio. This new algorithm does not choose only one pair of blocks with best score,
but rather gather a legal sequence of pairs of blocks with total best score. A legal
sequence does not contain crossing pairs. Clearly, any legal sequence defines a
common subsequence of A and B. Fortunately, such a legal sequence of pairs
can be found by a dynamic programming procedure in O(c2) time. We refer to
this procedure by MaximumWeightLegalSequence. A detailed description of
the algorithm is given in Fig. 2. Lemma 7 assures the approximation ratio of
this algorithm. Lemma 6 gives its complexity guarantee. Theorem 3 follows.

Algorithm Approx2LCS

Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′

i, B′
j containing only the joint alphabet symbols.

4 �i,j ← LIS(A′
i, B

′
j)

5 construct a weighted bipartite graph G =< V 1 ∪ V 2, E > with weight function
W : E → N , where:
V 1 = {i | Ai is a block in A}
V 2 = {j | Bj is a block in B}
E = {(i, j) | i ∈ V 1 and j ∈ V 2}
W (i, j) = �i,j

6 Lalg ← MaximumWeightLegalSequence(G, W )
Output:
7 Lalg

Fig. 2. Θ(k/c)-Approximation Algorithm for LCS ≥ kn/c in (1,n/c)-Non-Repetitive
Strings

Lemma 6. Algorithm Approx2LCS runs in O(cn log log(n/c) + c2) steps.

Lemma 7. Algorithm Approx2LCS approximates LCS(A, B) ≥ kn/c to a fac-
tor of Θ(k/c).

Theorem 3. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A, B) ≥
kn/c can be approximated to a factor of Θ(k/c) in O(c ·n log log(n/c)+c2) steps.

5 Sketching Local Non-repetitiveness

Since the performance of our method for approximating LCS rely on the extent
of local non-repetitiveness parameters of the given strings, it is natural to ask
how quickly can these parameters be found. The almost linear time algorithms
presented in this section do not require any pre-computed information on the
strings (e.g., the periodicity), and approximate the best parameters to a factor
of 2. For our method of approximating the LCS of two given strings this is



102 G.M. Landau, A. Levy, and I. Newman

sufficient. However, the strength of these algorithms lies in the fact that they are
sketching algorithms, i.e., they are only used once for a given string and produce
a small (poly-logarithmic) size information from which the best parameters can
be deduced. This use is valuable for data-bases applications, in which a query
string is typically compared with many stored strings to find a similar (or the
most similar) stored string. Short one-time pre-computed sketches of the stored
strings save many repeated linear time scans, and thus speed-up computations.

In this section, we show that the best parameters t and w for a given pair of
strings can be found by looking at O(log2 n) size independently pre-computed
local non-repetitiveness sketches (LNR-sketch) of the strings. The LNR-sketch
gives the exact parameter w for which the best t parameter is approximated to
a factor of 2. The implementation of the embedding f from Sect. 3 using the
construction of strong local non-repetitiveness sketches (SLNR-sketch) is then
described. We also show that our LNR-sketch size matches the lower bound.
Finally, a lower bound on the space needed by a LNR-sketching algorithm in the
streaming model is also given.

5.1 The LNR-Sketching Algorithms

If both t and w are given in advance, a trivial sketch of one bit can be built.
Simply, keep the one bit answer of the check if S is a (t, w)-non-repetitive string.
This check can obviously be done in time O(tn), and therefore the sketching
algorithm is efficient (i.e., has a polynomial time complexity). In the sequel, we
assume that the t and w parameters are unknown when the sketching is done,
which is the interesting case. We explain the algorithms for a given t parameter,
and then use them for the case that t is not given.

Sketching with a Given t. The sketching algorithms are based on finding the
minimum distance between any repeating t-substrings. This distance is returned
as the w parameter. The correctness of this returned value is ensured by Prop-
erty 2. The number of bits needed to store this value is O(log n). Finding the
minimum distance between any repeating t-substrings can be found either by
a O(n log2 t) time deterministic algorithm or by a O(n) time randomized al-
gorithm. The deterministic algorithm uses a renaming process as in the string
matching algorithm of Karp-Miller-Rosenberg [14]. It is usually assumed, for
convenience, that t is a power of 2. This assumption can be removed by using
standard splitting techniques, while adding only a O(log t) factor to the O(n log t)
complexity. The randomized algorithm uses the Rabin-Karp string matching al-
gorithm [15] to produce a distinct polynomial representing each t-substring with
high probability. In both the deterministic and the randomized algorithm after
the ”names” representing the n t-substrings are determined all is needed is a
linear scan to find the minimum distance between repeating ”names”.

Sketching with Unknown t. In order to have the w for every t, we find the exact
parameter w for every t = 2i, 0 ≤ i ≤ log n. For each such t we use the algorithms
described above for a given t. Since we only do that for O(log n) values of t, and
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for each the sketch size is O(log n) we get a total O(log2 n) sketch size. For each
value t , the w parameter is the one stored for the closest power of two that is
less than or equal to t. The correctness of this value is ensured by Property 2.

Theorem 4. Let A, B be n long strings, then, there exist (almost) linear al-
gorithms giving LNR-sketch of size O(log2 n) enabling finding the maximum w
and approximating to a factor of 2 the minimum t for which A and B are both
(t, w)-non-repetitive.

5.2 Sketching Strong Local Non-repetitiveness

The embedding from strings over relatively large alphabet into (1,n/c)-non-
repetitive strings described in Sect. 3 requires local non-repetitiveness under
the choices of the randomized vectors v, which is not detected by the algorithms
described in Sect. 5.1. Nevertheless, we show that the ideas of the sketching al-
gorithms described in Sect. 5.1 can be used also for this case. We call it strong
local non-repetitiveness sketch (SLNR-sketch)2. By Corollary 1, a constant num-
ber of vectors v are enough so that two given strings can be compared using the
same vector v. Therefore, in the sequel we ignore the fact that the algorithm is
repeated for each choice of v and keep each of the resulting sketches3.

To this end, the substrings as defined by the binary vector v (defined in
Sect. 3), are considered. Observe that both the deterministic and randomized
sketching algorithms described in Sect. 5.1 work as well for non-contiguous
strings. Such non-standard use of the KMR algorithm also appears in [2]. Note
that the binary vector v depends only on Σ and t and is independent of S. Thus,
the definition of the vector can be done in the sketching time. Also, note that in
order to be able to compare any two strings (with possibly different size of joint
alphabet and different t parameter) we must define a v vector for each possible
pair. To cover all possible values of Σ, for each t a power of two, O(log2 n) vec-
tors v (for each Σ a power of two and t a power of two) are computed. Once
a specific vector v is defined, the sketch for non-repetitiveness can be done as
explained in Sect. 5.1. This would take O(n log t) because here t is a power of 2.
Since O(log2 n) sketches of size O(log n) are used, Theorem 5 follows.

Theorem 5. (The embedding implementation) Let A, B be n long strings,
then, there exist (almost) linear algorithms giving SLNR-sketch of size O(log3 n)
enabling finding the maximum w and approximating to a factor of 2 the minimum
t for which f(A) and f(B) are both (1, w)-non-repetitive.

5.3 Lower Bound on LNR-Sketch Size

Note that the w parameter as a function of t is a nondecreasing monotone
function that take values on the range {1, . . . , n}. We show a feasible set of
2 Should not be confused with the local strong non-repetitiveness.
3 A data-base application requires another logarithmic factor in the size of the

database to assure that every pair of strings can be compared using the same vector
v.
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monotone sequences, i.e., monotone sequences that represent w as a function of
t for some string. The size of this set gives a lower bound on the number of bits
needed to represent a LNR-sketch.

Lemma 8. The size of the feasible set is at least ( n
log n )log n.

The next theorem is an immediate corollary of Lemma 8.

Theorem 6. Any LNR-sketch of n-length string requires Ω(log2 n) bits.

5.4 A Ω(n/ log n) Space Lower Bound of LNR-Sketching
Algorithms in Streaming Model

We now show that LNR-sketch cannot be done in streaming model. Consider
the following one-round two-party communication setting for the problem. Alice
has a string S1 of length n and Bob has a string S2 of length n. Alice and Bob
should decide whether there exists a t-substring in S1 repeating in S2 while Alice
may pass at most k bits to Bob. We call this setting the repeating t-substring
problem. Lemma 9 shows that k = Ω(n). Theorem 7 follows.

Lemma 9. The repeating t-substring problem requires passing Ω(n) bits.

Theorem 7. Any LNR-sketching deterministic algorithm in streaming model
requires Ω(n/ log n) space.

6 Conclusions

We show how embedding strings over relatively large alphabet into local non-
repetitive strings can be exploited for approximating LCS in strictly sub-quadra-
tic time. An important contribution of the paper is also conceptual in suggesting
a different point of view that make the problem algorithmically easier. Our
technique works well provided that the dissimilarity in terms of the edit distance
of the given strings is not too large. It is still an open question wether LCS
can be well-approximated in strings over relatively large alphabet with large
dissimilarity.
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Abstract. We present a new efficient algorithm for exact matching in
encoded DNA sequences and on binary strings. Our algorithm combines
a multi-pattern version of the Bndm algorithm and a simplified version
of the Commentz-Walter algorithm. We performed also experimental
comparisons with the most efficient algorithms presented in the liter-
ature. Experimental results show that the newly presented algorithm
outperforms existing solutions in most cases.
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1 Introduction

In this article we consider the problem of searching for all exact occurrences of a
pattern p, of length m, in a text t, of length n, where p and t are both bitstreams.
In particular we consider the cases where each character of p and t consists in a
single bit (binary sequences) or a couple of bits (encoded DNA sequences).

Matching binary data is an interesting problem in computer science, since
binary data are omnipresent in telecom and computer network applications.
Many formats for data exchange between nodes in distributed computer systems
as well as most network protocols use binary representations. Binary images often
arise in digital image processing as masks or as the results of certain operations
such as segmentation, thresholding and dithering. Moreover some input/output
devices, such as laser printers and fax machines, can only handle binary images.

Also DNA sequences can be handled as bitstreams. Since a DNA sequence is
constructed with four bases (A, C, T, and G), an efficient fixed-length encoding
method [7] can be used, where only two bits for each character are needed.

In molecular biology, DNA sequences are the fundamental information for
each species and a comparison between DNA sequences is an interesting and
basic problem. There are various kinds of comparison tools which provide ap-
proximate matching. However most of them are based on exact matching in
order to speed up the process. Moreover because the total number of sequences
is rapidly increasing, efficient methods are needed, not only for fast matching but
also for efficient sequences storage. Thus the need for fast matching algorithms
on encoded sequences.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 106–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The first non trivial algorithm for searching on bitstreams was presented in [8]
by Klein and Ben-Nissan. They proposed an efficient variant of the Boyer-

Moore [2] algorithm for the binary case without referring to bits. The algorithm
is projected to process only entire blocks such as bytes or words and achieves a
significantly reduction in the number of text character inspections.

Recently in [5] two efficient algorithms have been presented for the problem
adapted to completely avoid any reference to bits allowing to process pattern and
text byte by byte. The first solution, called Binary-Hash-Matching algorithm,
is an adaptation of the q-Hash family [10] for exact pattern matching to the case
of binary strings. The second solution, called Binary-Skip-Search algorithm,
extends the Skip-Search algorithm [3] for the single exact pattern matching
problem. Experimental results conducted in [5] on various conditions showed
that the proposed algorithms perform better than existing solutions and even
than the most effective algorithms for standard pattern matching.

All previous solutions have been proposed for searching on binary data but
can be easily adapted to the case of encoded DNA sequences with minor changes.

The Fed algorithm [7] (Fast matching with Encoded DNA sequences) is a
string matching algorithm specifically tuned for matching DNA sequences com-
pressed using a fixed-length encoding. Specifically, the Fed algorithm combines a
multi-pattern version of the Quick-Search algorithm [12] and a simplified ver-
sion of the Commentz-Walter algorithm [4]. However, its strategy is general
enough to be adapted also for matching binary sequences.

In this article we present a new efficient algorithm for matching on binary
strings and encoded DNA sequences which, despite its O(nm) worst case time
complexity, obtains very good results in practical cases.

The rest of the paper is organized as follows. In Section 2, we describe in
details the new solution tuned for binary data. Next, in Section 3, we explain
how to handle also encoded DNA sequences. Experimental data obtained by
running under various conditions all the algorithms reviewed are presented and
compared in Section 4. Finally, we draw our conclusions in Section 5.

2 A New Efficient Algorithm

Before entering into details, we need a bit of notations and terminology. A string
p of length m ≥ 0 is represented as a finite array p[0 .. m− 1] of characters from
a finite alphabet Σ. In particular, for m = 0 we obtain the empty string, also
denoted by ε. By p[i] we denote the (i + 1)-th character of p, for 0 ≤ i < m.
Likewise, by p[i .. j] we denote the substring of p contained between the (i+1)-th
and the (j + 1)-th characters of p, for 0 ≤ i ≤ j < m. A substring of p of length
� is called a �-substring of p.

A string p over the binary alphabet Σ = {0, 1} is said to be a binary string
and is represented as a binary vector p[0 .. m − 1], whose elements are bits.
Binary vectors are usually structured in blocks of k bits, typically bytes (k = 8),
halfwords (k = 16) or words (k = 32), which can be processed at the cost of a
single operation. If p is a binary string of length m we use the symbol P [i] to
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indicate the (i + 1)-th block of p and use p[i] to indicate the (i + 1)-th bit of
p. If B is a block of k bits we indicate with symbol Bj the j-th bit of B, with
0 ≤ j < k. Thus, for i = 0, . . . , m− 1 we have p[i] = P [�i/k]i mod k.

In this section we present a new efficient algorithm, called Bfl algorithm
(Binary-Faro-Lecroq), for searching on binary strings and encoded DNA
sequences. The proposed algorithm exploits the block structure of text and pat-
tern to speed up the searching phase avoiding to work with bitwise operations.
The core of the algorithm is based on a multiple-pattern version of the Bndm

algorithm [11] (Backward Nondeterministic Dawg Match) for the single exact
pattern matching problem, which makes use of bit-parallelism [1]. Moreover the
algorithm implements also an efficient shift strategy based on a simplified version
of the Commentz-Walter algorithm [4].

During the preprocessing phase the algorithm constructs a set of tables that
can be accessed later, during the searching phase, in order to speed up the overall
performances. The procedures used in the preprocessing phase are presented in
Figure 2. Specifically the algorithm computes: (1) a table of several copies of
p, in order to process text and pattern block by block (as in [8]); (2) a bit
mask-vector used to implement a multi-pattern version of the Bndm algorithm;
(3) an index-list table, λ, in order to identify candidate alignments during the
searching phase; (4) a shift table ls, based on the bad-character heuristic, with
the aim of increasing the shift advancements.

In what follows we suppose that the block size k is fixed, so that all references
to both text and pattern will only be to entire blocks of k bits. We refer to a
k-bit block as a byte, though larger values than k = 8 could be supported as
well. Moreover we suppose that T [i] and P [i] denote, respectively, the (i + 1)-th
byte of the text and of the pattern, starting for i = 0 with both text and pattern
aligned at the leftmost bit of the first byte. Since the lengths in bits of both
text and pattern are not necessarily multiples of k, the last byte may be only
partially defined. In particular if the pattern has length m then its last byte is
that of position �m/k� and only the leftmost (m mod k) bits of the last byte
are defined. We suppose that the undefined bits of the last byte are set to 0.

Finally we notice that the following description of the algorithm is tuned for
processing binary data where each character consists in a single bit. In the next
section we explain how to handle also encoded DNA sequences.

Preprocessing of the pattern

In the preprocessing phase we define several copies of the pattern, identified by
a set of indexes P, and memorized in the form of a matrix of bytes, Patt , of size
k× (�m/k�+ 1). Each index i ∈ P refers to a row of the matrix Patt containing
a copy of the pattern shifted by i position to the right. In each pattern Patt[i],
for i ∈ P, the i leftmost bits of the first byte remain undefined and are set to 0.
Similarly the rightmost ((k− ((m + i) mod k) mod k) bits of the last byte are
set to 0. Formally the j-th bit of the byte Patt [i, h] is defined by

Patt [i, h]j =
{

p[kh− i + j] if 0 ≤ kh− i + j < m
0 otherwise .
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Patt 0 1 2 3
i 0 11001011 00101100 10110000

1 01100101 10010110 01011000
2 00110010 11001011 00101100
3 00011001 01100101 10010110
4 00001100 10110010 11001011 00000000
5 00000110 01011001 01100101 10000000
6 00000011 00101100 10110010 11000000
7 00000001 10010110 01011001 01100000

mi si m′
i

2 0 2
2 1 1
2 1 1
2 1 2
3 1 2
3 1 2
3 1 2
3 1 2

F1
11111111
01111111
00111111
00011111
00001111
00000111
00000011
00000001

F2
11111000
11111100
11111110
11111111
10000000
11000000
11100000
11110000

Fig. 1. Precomputed tables for a pattern p =110010110010110010110 of length m = 21
and block size k = 8. Blocks containing a k-substring of p are presented with light gray
background color.

for 0 ≤ j < k, 0 ≤ h < �(m + i)/k� and i ∈ P.
For binary strings we have P = {i | 0 ≤ i < k}. Observe that each k-substring

of the pattern appears once in the table Patt . In particular, the k-substring
starting at position j of p is memorized in Patt [k − (j mod k), �j/k�].

We indicate with symbol mi, for each i ∈ P, the index of the last byte of
the pattern Patt[i], i.e., mi = �(m + i)/k� − 1. Moreover we define the values
si and m′

i which represent, respectively, the position of the first byte in Patt[i]
containing a k-substring of p and the number of bytes in Patt[i] containing
k-substrings of p. Observe that si = 0 if i = 0, while si = 1 when i > 0.

The Bfl algorithm uses bytes in the matrix Patt to compare the pattern
block by block against the text, for any possible alignment of the pattern. How-
ever when comparing the first or the last byte of P against its counterpart in
the text, the bit positions not belonging to the pattern have to be neutralized.
For this purpose we define two vectors, F1 and F2, containing binary masks of
length k. Formally, for each i ∈ P,

F1[i]j =
{

1 if i ≤ j < k
0 otherwise , F2[i]j =

{
1 if 0 ≤ j ≤ (m + i− 1) mod k
0 otherwise .

Figure 1 shows the precomputed tables defined above for a pattern of length
m = 21 and k = 8.

Definition of the NFA and construction of the bit mask vector

The Bfl algorithm uses bit-parallelism to simulate the behavior of a nondeter-
ministic finite state automaton constructed over the set of patterns identified by
P. However, in order to let the automaton fit in a single machine word of size
ω, only the substrings Patt[i][si . . . si + m′ − 1] are handled by the automaton,
for each i ∈ P, where m′ = min({m′

i | i ∈ P} ∪ {ω}).
Specifically the NFA constructed by the Bfl algorithm has m′ + 1 different

states, say Q = {0, 1, 2, 3, . . . , m′}, and m′ different transitions. In particular
each state q, with 0 < q ≤ m′, has a transition towards state q − 1 labeled with
the class of characters {Patt[i][si + q] | i ∈ P}. State m′ is the initial state.

In order to simulate the NFA the algorithm initializes a bit mask M [B] of
dimension ω, for each block B ∈ {0 . . .2k−1}. In particular the j-th bit of M [B]
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Preprocess (Patt, k)

1. for i ← 0 to k − 1 do
2. if i = 0 then si ← 0 else si ← 1
3. mi ← �(m + i)/k� − 1
4. for h ← 0 to mi do
5. Patt [i, h] ← (P [h]  i)
6. if h > 0 then
7. Patt [i, h] ← Patt [i, h] | (P [h − 1] � (k − i))
8. F1[i] ← 1k  i

9. F2[i] ← 1k � k − ((m + i) mod k)
10. if F2[i] = 1k then m′

i ← mi − si + 1
11. else m′

i ← mi − si

12. return (Patt, Mask)

Initialize-Bit-Mask(Patt, k)

1. for B ← 0 to 2k − 1 do M [B] = 0
2. for i ← 0 to k do
3. A ← 10ω−1

4. for j = 0 to m′ − 1 do
5. B ← Patt [i, si + m′ − j − 1]
6. M [B] ← M [B] | A
7. A ← A  1
8. return M

Compute-Long-Shift(Patt, k)

1. for B ← 0 to 2k − 1 do
2. ls[B] = 2m′ − 1
3. i ← 0
4. h ← 0
5. for j ← 0 to m − k do
6. ls[Patt [i, h]] ← si + 2m′ − h − 2
7. i ← i − 1
8. if i < 0 then
9. i ← 7

10. h ← h + 1
11. return ls

Compute-Index-List(Patt, k)

1. for B ← 0 to 2k − 1 do
2. λ[B] = ∅
3. i ← 0
4. h ← 0
5. for i ← 0 to k do
6. B ← Patt [i, si + m′ − 1]
7. λ[B] ← λ[B] ∪ {i}
8. return λ

Fig. 2. Procedures in the preprocessing phase of the Bfl algorithm for binary strings

is set to 1 if the block B appears at position si + m′ − j − 1 in, at least, one of
the patterns Patt[i], with i ∈ P. Otherwise the j-th bit of M [B] is set to 0.

For each block B ∈ {0 . . .2k − 1}, the definition of the bit mask M [B] can be
done in two steps. First we define, for each i ∈ P, a bit mask Mi[B] where, for
0 ≤ j < ω,

Mi[B]j =
{

1 if j < m′ and Patt[i, si + m′ − j − 1] = B
0 otherwise.

Then the j-th bit of the mask M [B], with 0 ≤ j < ω, is defined as

M [B]j = (M0[B]j | M1[B]j | ... | Mk−1[B]j) .

Construction of the index list

The automaton defined above recognizes also words that are not substrings of
the pattern. Formally the automaton recognizes any block sequence x, of length
� ≤ m′, of the form x = x0.x1...x�−1 where, for 0 ≤ j < �,

xj ∈ {Patt[i][si + m′ − � + j] | i ∈ P}.

Despite this fact, the automaton can be used to search for a pattern in a text.
In particular when a candidate substring is found, the algorithm could naively
check for the occurrence of any pattern Patt[i], with i ∈ P.

However, in order to make a filter the algorithm maintains, for each block
B ∈ {0 . . .2k − 1}, a linked list λ which is used to find candidate patterns.
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In particular, for each block B ∈ {0 . . . 2k−1}, the entry λ[B] is a set of indexes,
defined by λ[B] = {i | i ∈ P and P [i][si + m′ − 1] = B}.

Thus, when a block sequence is recognized by the automaton, ending at block
position j of the text, the algorithm naively checks for the occurrence of any
pattern Patt[i], with i ∈ λ[T [j]].

In practical cases each set in the table can be implemented as a linked list.

Construction of the shift table

The Bfl algorithm makes also use of a long shift rule which is a multi-pattern
version of the original bad-character shift heuristic, improved with an efficient
look-ahead. The shift rule defined here is used by the algorithm when no sub-
string is recognized while scanning the window of the text from right to left. In
such a case the current window of the text can be safely advanced by m′ − 1
positions to the right.

Observe that, if j is the ending position of the current window of the text,
the block at position j + m′ − 1 is always involved in the next alignment. Thus
we can use it to compute the next window alignment.

Specifically the algorithm computes a long shift table ls() : {0, . . . , 2k − 1} →
{m′ − 1, . . . , 2×m′ − 1}, whose definition can be done in two steps.

First, for each pattern Patt[i], with i ∈ P, we compute a shift table sh[i, B],
where, for each B ∈ {0 . . . 2k − 1},

sh[i, B] = min({m′} ∪ {si + m′ − h− 1 | Patt[i, h] = B and si ≤ h < si + m′}).

Then, for each B ∈ {0 . . . 2k − 1}, the long shift table ls is defined by

ls[B] = min{sh[i, B] | i ∈ P}+ m′ − 1.

Thus the next alignment to be processed in the text is that ending at position
j + ls[T [s + m′ − 1]].

The searching phase

The searching phase of the Bfl algorithm can be divided into two parts: a match
phase and a shift phase. The pseudocode of the algorithm is shown in Figure 3.

The NFA is represented by a state vector D of size m′ (the first state of
the automaton is not represented). Like in the SBndm algorithm [6], the Bfl

algorithm starts each iteration with a test of two consecutive text characters and
implements a fast-loop to obtain better results on average (line 7). Such a fast
loop makes use of the long shift table to compute the next window alignment.

In the match phase the same kind of right to left scan in a window of size
m′, ending at position j in the text, is performed as in the Bndm algorithm
(line 9). The state vector is updated in a similar fashion as in the Shift-And

algorithm [1]. If the state vector D is equal to 0 after � + 1 updates of D,
then a word of length � has been recognized by the automaton. If � = m′ a
candidate alignment has been found (line 12) and the algorithm naively checks
the occurrence of any pattern contained in the index list λ[T [j]] (line 13).
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Bfl (P, m, T, n)

1. Patt ← Preprocess(P , m, k)
2. M ← Initialize-Bit-Mask(Patt, k)
3. λ ← Compute-Index-List(Patt, k)
4. ls ← Compute-Long-Shift(Patt, k)
5. j ← 	m/k

6. while j < �n/k� do
7. while ((M [T [j]] � 1) & M [T [j − 1]]) = 0 do j ← j + ls[T [j + m′ − 1]]
8. pos ← j
9. D ← (M [T [j]] � 1) & M [T [j − 1]]

10. while D ← (D � 1) & M [T [j − 2]] do j ← j − 1
11. j ← j + m′

12. if j = pos then
13. for each i ∈ λ[T [j]] do
14. h ← 1, s ← j − m′ − si + 1
15. while h < mi and Patt[i, h] = T [s + h] do h ← h + 1
16. if h = mi and
17. Patt[i, 0] = (T [s] & F1[i]) and
18. Patt[i, h] = (T [s + h] & F2[i])
19. then Output(s)

Fig. 3. The searching phase of the Bfl algorithm

In all cases, after the match phase, the index j is advanced of m′ − � + 1 to
the right and the algorithm restarts its computation with the shift phase.

If a candidate alignment is found for a text position j, for each index i ∈
λ[T [j]], the algorithm uses the precomputed table Patt[i] to check whether
s = j −m′ − si + 1 is a valid shift. Specifically the algorithm reports a match if
the following three conditions hold (lines 13-18):

1. Patt [i, h] = T [s + h], for h = si, ..., si + mi − 1 and
2. Patt [i, 0] = T [s] & F1[i] and
3. Patt [i, mi] = T [s + mi] & F2[i].

After the matching phase the algorithm restarts with the shift phase.

Complexity issues

In this section we analyze the time complexity of the newly presented algorithm:
(1) Procedure Preprocess requires O(k × �m/k�) = O(m) time and O(m)
extra-space; (2) procedure Initialize-Bit-Mask, used to initialize the vector
of bit masks M , requires O(2k +km) time and O(2k) extra-space; (3) procedure
Compute-Index-List, used to construct the index list λ, requires O(2k + k)
time and O(2k) extra-space; (4) procedure Compute-Long-Shift, used to
construct the long shift table ls, requires O(2k +m) time and O(2k) extra-space;
finally (5) the searching phase, shown in Figure 3, takes O(�n/k��m/k�k) =
O(nm) time. Thus the Bfl algorithm has a O(2k +nm) overall time complexity
and requires O(2k) extra-space in the worst case.
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3 Handling Encoded DNA Sequences

In a fix-length encoded DNA sequence each base is represented by a couple of
bits. Specifically we define a map ζ which associates to any character in the set
{A, C, G, T} an element in the set {00, 01, 10, 11}. Thus a DNA sequence γ can
be represented with a bitstream t = ζ(γ) of (2 × |γ|) bits.

Due to the structure of the encoded sequence t, any occurrence of a given
encoded pattern p, starts at an even position of the text. This suggests that only
even alignments of the pattern have to be processed.

The only change to be applied, when handling encoded DNA sequences, is in
the preprocessing of the set of patterns. Specifically the set P is defined by

P = {i | 0 ≤ i < k and (i mod 2) = 0}

For instance, if each block consists of k = 8 bits, we have P = {0, 2, 4, 6}.

4 Experimental Results

Here we present experimental data which allow to compare, in terms of running
time, the following string matching algorithms on binary strings and encoded
DNA sequences: the Binary-Boyer-Moore algorithm (BBM) [8] by Klein and
Ben-Nissan, the Binary-Hash-Matching algorithm (BHM) [5], the Binary-

Skip-Search algorithm (BSKS) [5], Fed algorithm (FED) [7] and the new Bfl

(BFL) algorithm. All algorithms have been implemented in the C programming
language and were used to search for the same binary strings in large fixed
text buffers on a PC with Intel Core2 processor of 1.66GHz with 1GB memory.
Moreover we use a word size ω = 32 and a block size k = 8.

To simulate the different conditions which can arise when processing binary
data the algorithms have been tested on two Rand(1/0)γ problems, with a dif-
ferent distribution of zeros and ones. For the case of compressed strings it is
quite reasonable to assume a uniform distribution of characters. For compres-
sion scheme using Huffman coding, such randomness has been shown to hold
in [9]. In contrast when processing binary images we expect a non-uniform dis-
tribution of characters. For instance in a fax-image usually more than 90% of
the total number of bits is set to zero.

In particular each Rand(1/0)γ problem consists of searching a set of 1000
random patterns of a given length in a random binary text of 4× 106 bits. The
distribution of characters depends on the value of the parameter γ: bit 0 appears
with a percentage equal to γ%.

The genome we used for tests on encoded DNA sequences is a sequence of
4, 638, 690 base pairs of Escherichia coli. We used the encoded version of the file
E.coli of the Large Canterbury Corpus1.

Searching have been performed for patterns, of length m from 25 to 500, which
have been taken as substring of the text at random starting positions.
1 http://www.data-compression.info/Corpora/CanterburyCorpus/
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In the following tables, running times are expressed in hundredths of seconds.
Best results are bold faced.

m BBM BSKS BHM BFL FED
25 161.905 19.484 28.625 12.014 13.107
50 90.109 11.047 14.671 4.344 7.000
75 70.718 8.846 10.220 2.828 4.936
100 65.797 7.720 8.094 2.264 3.968
125 58.780 7.016 6.939 1.938 3.406
150 52.593 6.375 6.171 1.798 3.032
200 42.032 5.484 5.171 1.609 2.625
250 50.751 4.875 4.563 1.485 2.500
300 47.564 4.327 4.375 1.498 2.375
350 45.498 4.079 4.094 1.546 2.328
400 42.502 3.702 3.904 1.564 2.253
450 45.344 3.562 3.800 1.562 2.234
500 44.345 3.311 3.658 1.497 2.267
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Experimental results for a Rand(0/1)50 problem

m BBM BSKS BHM BFL FED
25 188.469 29.842 33.110 14.095 20.219
50 112.720 20.031 17.860 5.142 11.125
75 88.953 16.299 13.251 3.624 8.390
100 82.360 13.909 10.938 2.797 6.938
125 74.671 12.531 9.686 2.358 6.032
150 69.875 11.531 8.641 2.218 5.389
200 58.952 9.967 7.452 1.843 4.641
250 64.921 9.093 6.690 1.689 4.406
300 61.219 8.283 6.218 1.671 4.063
350 58.141 7.921 5.908 1.670 3.796
400 54.420 7.595 5.563 1.624 3.718
450 57.402 7.284 5.423 1.642 3.594
500 55.296 7.077 5.281 1.625 3.405
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Experimental results for a Rand(0/1)70 problem

m BBM BSKS BHM BFL FED
16 41.266 8.062 19.407 6.594 8.249
32 28.955 5.046 10.046 2.814 4.422
64 29.485 3.813 5.420 1.641 2.533
96 26.764 3.375 4.031 1.453 2.032
128 26.436 3.047 3.422 1.361 1.766
160 24.577 2.859 2.862 1.347 1.701
192 25.624 2.592 2.733 1.469 1.578
224 33.170 2.438 2.641 1.373 1.623
256 28.595 2.453 2.517 1.372 1.608
288 26.421 2.299 2.421 1.377 1.593
320 27.596 2.234 2.374 1.407 1.703
352 24.251 2.235 2.281 1.391 1.625
384 23.593 2.221 2.359 1.327 1.734
448 24.063 2.626 2.343 1.294 1.830
496 24.659 2.891 2.362 1.452 1.906
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Experimental results for an encoded DNA sequence

Experimental results show that the Bfl algorithm obtains the best run-time
performance in all cases. In particular it turns out that the Bfl algorithm is two
times faster than the Fed algorithm when searching on binary data.

In the case of encoded DNA sequences such a difference is less evident and
the Bfl algorithm turns out to be 15% faster than the Fed algorithm which is
specifically tuned for matching encoded DNA sequences.
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Finally we report that, in most cases, the Fed algorithm turns out to be
more efficient than the Binary-Skip-Search and Binary-Hash-Matching

algorithms, for both binary data and encoded DNA sequences.

5 Conclusion

An efficient algorithm for exact matching on binary strings and encoded DNA
sequences has been presented. The algorithm combines a multi-pattern version
of the Bndm algorithm with a simplified shift strategy of Commentz-Walter

algorithm. Moreover it exploits the block structure of the binary strings and
process text and pattern with no use of any bit manipulations. From our exper-
imental results it turns out that the presented algorithm is the most effective
in practical cases and outperforms existing solutions especially in the case of
binary data.
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Abstract. Given strings P and Q the (exact) string matching prob-
lem is to find all positions of substrings in Q matching P . The classical
Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string
matching problem in linear time which is optimal if we can only read one
character at the time. However, most strings are stored in a computer in
a packed representation with several characters in a single word, giving
us the opportunity to read multiple characters simultaneously. In this
paper we study the worst-case complexity of string matching on strings
given in packed representation. Let m ≤ n be the lengths P and Q,
respectively, and let σ denote the size of the alphabet. On a standard
unit-cost word-RAM with logarithmic word size we present an algorithm
using time

O

(
n

logσ n
+ m + occ

)
.

Here occ is the number of occurrences of P in Q. For m = o(n) this
improves the O(n) bound of the Knuth-Morris-Pratt algorithm. Further-
more, if m = O(n/ logσ n) our algorithm is optimal since any algorithm
must spend at least Ω( (n+m) log σ

log n
+ occ) = Ω( n

logσ n
+ occ) time to read

the input and report all occurrences. The result is obtained by a novel au-
tomaton construction based on the Knuth-Morris-Pratt algorithm com-
bined with a new compact representation of subautomata allowing an
optimal tabulation-based simulation.

1 Introduction

Given strings P and Q of length m and n, respectively, the (exact) string match-
ing problem is to report all positions of substrings in Q matching P . The string
matching problem is perhaps the most basic problem in combinatorial pattern
matching and also one of the most well-studied, see e.g. [5, 7, 12, 14] for clas-
sical textbook algorithms and the surveys in [11, 17]. The first worst-case O(n)
algorithm (we assume w.l.o.g. that m ≤ n) is the classical Knuth-Morris-Pratt
algorithm [14]. If we assume that we can read only one character at the time
this bound is optimal since we need Ω(n) time to read the input. However, most
strings are stored in a computer in a packed representation with several charac-
ters in a single word. For instance, DNA-sequences have an alphabet of size 4 and
are therefore typically stored using 2 bit per character with 32 characters in a
� Supported by the Danish Agency for Science, Technology, and Innovation.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 116–126, 2009.
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64-bit word. On packed strings we can read multiple characters in constant time
and hence potentially do better that the Ω(n) lower bound for string matching.
In this paper we study the worst-case complexity of packed string matching and
present an algorithm to beat the Ω(n) lower bound for almost all combinations
of m and n.

1.1 Setup and Results

We assume a standard unit-cost word RAM with word length w = Θ(log n)
and a standard instruction set including arithmetic operations, bitwise boolean
operations, and shifts. The space complexity is the number of words used by
the algorithm, not counting the input which is assumed to be read-only. All
strings in this paper are over an alphabet Σ of size σ. The packed representation
of a string S is obtained by storing Θ(log n/ log σ) characters per word thus
representing S in O(|S| log σ/ logn) = O(|S|/ logσ n) words. If S is given in the
packed representation we simply say that S is a packed string. The packed string
matching problem is defined as above except that P and Q are packed strings.
In the worst-case any algorithm for packed string matching must examine all
of the words in the packed representation of the input strings. The algorithm
must also report all occurrences of P in Q and therefore must spend at least
Ω

(
n

logσ n + occ
)

time, where occ denotes the number of occurrences of P in Q.
In this paper we present an algorithm with the following complexity.

Theorem 1. For packed strings P and Q of length m and n, respectively, with
characters from an alphabet of size σ, we can solve the packed string matching
problem in time O

(
n

logσ n + m + occ
)

and space O(nε + m) for any constant ε,
0 < ε < 1.

For m = o(n) this improves the O(n) bound of the Knuth-Morris-Pratt algo-
rithm. Furthermore, if m = O(n/ logσ n) our algorithm matches the lower bound
and is therefore optimal. In practical situations m is typically much smaller than
n and therefore this condition is almost always satisfied.

1.2 Techniques

The KMP-algorithm [14] may be viewed as simulating an automaton K ac-
cording to the characters from Q in a left-to-right order. At each character in
Q we use K to maintain the longest prefix of P matching the current suffix
of Q. Improvements of automaton-based algorithms can often be obtained by
partitioning the automaton into many small subautomata, tabulate relevant in-
formation for the subautomata, and use the tables to speed-up the simulation
in each subautomaton [15, 16, 21]. This idea is also known as the “Four Russian
Technique” after Arlazarov et al. [4].

However, if we attempt to apply this idea to the KMP-algorithm two ma-
jor problems appear. First, the structure of the transitions in K does not in
general allow us to partition K into subautomata such that a simulation does
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not change subautomata too often. Indeed, for any partition we might be forced
to repeatedly change subautomaton after every group of O(1) characters of Q
and hence end up using Ω(n) time. Secondly, even if we could design a suitable
partition of K into subautomata we have to compactly encode the transitions
of the subautomata in order for the tabulation to be efficient. An explicit list of
such transitions will not suffice to achieve the bound of Theorem 1. The main
contribution of this paper are two new ideas to overcome these problems.

First, we present the segment automaton, C, derived from K. In C, the states
of K are grouped into overlapping intervals of r = Θ(log n/ logσ) states from
K such that (almost all of) the states in K are duplicated in C. We show how
to selectively “copy” the transitions from K to C such that the total number
of transitions between subautomata never exceeds O(n/r) in the simulation on
Q. Secondly, we show how to exploit structural properties of the transitions to
represent subautomata optimally. This allows us to tabulate paths of transitions
for all subautomata of size < r using O(σr + m) = O(nε + m) space and pre-
processing time for a suitably chosen r. The simulation can then be performed
in time O(n/r + occ) = O(n/ logσ n + occ) leading to Theorem 1.

This main contribution of this paper is theoretical, however, we believe that
both the segment automaton and the compact representation of automata may
prove very useful in practice if combined with ideas from other algorithms for
packed matching.

1.3 Related Work

Exploiting packed string representations to speed-up string matching is not a
new idea and is even mentioned in the early papers by Knuth et al. and Boyer
and Moore [7, 14]. More recently, several packed string matching algorithms have
appeared [6, 8, 9, 10, 13, 19]. However, none of these improve the worst-case O(n)
bound of the classical KMP-algorithm.

It is possible to extend the “super-alphabet” technique by Fredriksson [9, 10]
to obtain a simple trade-off for packed string matching. The idea is to build an
automaton that, similar to the KMP-automaton, maintains the longest prefix of
P matching the current suffix of Q but allows Q to be processed in groups of
r characters. Each state has σr outgoing transitions corresponding to all com-
binations of r characters. This algorithm uses O(n/r + mσr) time and O(mσr)
space. Choosing r = ε logσ n this is O(n/ logσ n + mnε) time and O(mnε) space.
Compared to Theorem 1 this is a factor Θ(m) worse in space and only improves
the O(n) time bound of the KMP-algorithm when m = o(n1−ε).

Packed string matching is closely related to the area of compressed pattern
matching introduced by Amir and Benson [1, 2]. Here the goal is to search for a
uncompressed pattern in a compressed text without decompressing it first. Fur-
thermore, the search should be faster than the naive approach of decompressing
the text first and then using the fastest algorithm for the uncompressed problem.
In fully compressed pattern matching the pattern is also given in compressed
form. Several algorithms for (fully) compressed string matching are known,
see e.g., the survey by Rytter [18]. For instance, if Q is compressed with the
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Ziv-Lempel-Welch scheme [20] into a string Z of length z, Amir et al. [3] showed
how to find all occurrences of P in time O(m2 + z). The packed representation
of a string may be viewed as the most basic way to compress a string. Hence, in
this perspective we are studying the fully compressed string matching problem
for packed strings. Note that our result is optimal if the pattern is not packed.

1.4 Outline

In Section 2 we first review the KMP-algorithm before presenting the segment
automaton in Section 3. In Section 4 we show how to compactly represent and
efficiently tabulate subautomata and finally, in Section 5 we present the complete
algorithm.

2 The Knuth-Morris-Pratt Automaton and String
Matching

In this section we briefly review KMP-algorithm [14], which will be the starting
point of our new algorithm.

Let S be a string of length |S| on an alphabet Σ. The character at position i
in S is denoted S[i] and the substring from position i to j is denoted by S[i, j].
The substrings S[1, j] and S[i, |S|] are the prefixes and suffixes of S, respectively.

The Knuth-Morris-Pratt automaton (KMP-automaton), denoted K(P ), for P
consists of m+1 states identified by the integer {0, . . . , m} each corresponding to
a prefix of P . From state s to state s+1, 0 ≤ s < m there is a forward transition
labeled P [s]. We call the rightmost forward transition from m − 1 to m the
accepting transition. From state s, 0 < s ≤ m, there is a failure transition to a
state denoted fail(s) such that P [1, fail(s)] is the longest prefix of P matching
a proper suffix of P [1, s]. Fig. 1(a) depicts the KMP-automaton for the pattern
P = ababca.

The failure transitions form a tree with root in state 0 and with the property
that fail(s) < s for any state s. Since the longest prefixes of P [1, s] and P [1, s+1]
matching a suffix of P can increase by at most one character we have the following
property of failure transitions.

Lemma 1. Let P be a string of length m and K(P ) be the KMP-automaton for
P . For any state 1 < s < m, fail(s + 1) ≤ fail(s) + 1.

We will exploit this property in Section 4.1 to compactly encode subautomata of
the KMP-automaton. The KMP-automaton can be constructed in time
O(m) [14].

To find the occurrences of P in Q we read the characters of Q from left-
to-right while traversing K(P ) to maintain the longest prefix of P matching a
suffix of the current prefix of Q as follows. Initially, we set the state of K(P ) to
0. Suppose that we are in state s after reading the k−1 characters of Q, i.e., the
longest prefix of P matching a suffix of Q[1, k−1] is P [1, s]. We process the next
character α = Q[k] as follows. If α matches the label of the forward transition
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a b ca b a
1 2 3 4 5 60

a b a c a
0, 0 0, 1 0, 2 0, 3 2, 0 2, 1 2, 2

ca b
1, 0 1, 1 1, 2 1, 3

b
2, 22, 12, 00, 30, 20, 10, 0

1, 31, 21, 11, 0

a

(a)

(b)

(c)

Fig. 1. (a) The Knuth-Morris-Pratt automaton K(P ) for the pattern P = ababca. Solid
lines are forward transitions and dashed lines are failure transitions. (b)-(c) The corre-
sponding segment automaton C(P, 4) for P consisting of 3 segments with 4, 4, and 3
states. The light transitions are shown in (b) and the heavy transition transitions in (c).

from s the next state is s + 1. Furthermore, if this transition is the accepting
transition then k + 1 is the endpoint of a substring of Q matching P and we
therefore report an occurrence. Otherwise, (α does not match the label of the
forward transition from s to s + 1) we recursively follow failure transitions from
s until we find a state s′ whose forward transition is labeled α in which case the
next state is s′ + 1, or if no such state exist we set the next state to be 0. We
define the simulation of K(P ) on Q to be sequence of transitions traversed by
the algorithm.

Each time the simulation on Q follows a forward transition we continue to the
next character and hence the total number of forward transitions is at most n.
Each failure transition strictly decrease the current state number while forward
transitions increase the state number by 1. Since we start in state 0 the number of
failure transition is therefore at most the number of forward transitions. Hence,
the total number of transitions is at most 2n and therefore the searching takes
O(n) time. In total the KMP-algorithm uses time O(n + m) = O(n).
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3 The Segment Automaton

In this section we introduce a simple automaton called the segment automaton.
The segment automaton for P is equivalent to K(P ) in the sense that the sim-
ulation on Q at each step provides the longest prefix P matching a suffix of the
current prefix of Q. The segment automaton allows to easily decompose K(P )
into subautomata of a given size r such that the simulation on Q passes through
at most O(n/r) subautomata.

Let K = K(P ) be the KMP-automaton for P . For a even integer parameter
r, 1 < r ≤ m + 1 we define the segment automaton with parameter r, denoted
C(P, r), as follows. Define a segment S to be an interval S = [l, r], 0 ≤ l ≤ r ≤ m,
of states in K(P ) and let |S| = r − l + 1 denote the size of S. Divide the
m + 1 states of K into a set of z = �(m + 1)/r� overlapping segments, denoted
SS = {S0, . . . , Sz−1}, where Si = [li, ri] is defined by

li = i · r

2
ri = min(li + r − 1, m).

Thus, each segment in SS consists of r consecutive states from K, except the
last segment, Sz−1, which may be smaller. Any state s in K appears in at most
2 segments and adjacent segments share r/2 states.

The segment automaton C = C(P, r) is obtained by adding |S| states for
each segment S ∈ SS and then selectively “copying” transitions from K to C.
Specifically, the states of C is the set of pairs given by

{(i, j) | 0 ≤ i < z, 0 ≤ j < |Si|}.

We view each state (i, j) C as the jth state of the ith segment, i.e., state (i, j)
corresponds to the state li + j in K. Hence, each state in K is represented by 1
or 2 states in C and each state in C uniquely corresponds to a state in K.

We copy transitions from K to C in the following way. Let t = (s, s′) be a
transition in K. For each segment Si such that s ∈ [li, ri] we have the following
transitions in C:

– If s′ ∈ [li, ri] there is a light transition from (i, s− li) to (i, s′ − li).
– If s′ �∈ [li, ri] there is a heavy transition from (i, s− li) to (i′, s′ − li′), where

either Si′ is the unique segment containing s′ or if two segments contain
s, then Si′ is the segment such that s′ ∈ [li′ , li′ + r/2], i.e., the segment
containing s′ in the leftmost half.

If t is a forward transition with label α ∈ Σ it is also a forward transition in C
with label α, if t is a failure transition it is also a failure transition in C, and if t
the accepting transition it is also an accepting transition in C. The segment au-
tomaton with r = 4 corresponding to the KMP-automaton of Fig. 1(a) is shown
in Fig. 1(b) and (c) showing the light and heavy transitions, respectively. From
the correspondence between C and K we have that each accepting transition in
a simulation of C on Q corresponds to an occurrence of P in Q. Hence, we can
solve string matching by simulating C instead of K.

We will use the following key property of the C.
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Lemma 2. For a string P of length m and even integer parameter 1 < r ≤
m + 1, the simulation of the segment automaton, C(P, r), on a string Q of
length n contains at most O(n/r + occ) heavy and accepting transitions.

Proof. Consider the sequence T of transitions in the simulation of C = C(P, r)
on Q. Let Naccept denote the number of accepting transitions, and let Nhforward
and Nhfail denote the number of heavy forward and heavy failure transitions,
respectively. Each accepting transition in T corresponds to an occurrence and
therefore Naccept = occ. For a state (i, j) in C we will refer to i as the segment
number. Since a forward transition in K increases the state number by 1 in K a
heavy forward transition increases the segment number by 1 or 2 in C. A heavy
failure transition strictly decrease the segment number. Hence, since we start
the simulation in segment 0, we can have at most 2 heavy failure transitions for
each heavy forward transition in T and therefore

Nhfail ≤ 2Nhforward. (1)

If Nhforward = 0 the results trivially follows. Hence, suppose that Nhforward > 0.
Before the first heavy forward transition in T there must be at least r − 1
light transitions in order to reach state (0, r − 1). Consider the subsequence
of transitions t in T between an arbitrary heavy transition h and a forward
heavy transition f . The heavy transition h cannot end in segment z − 1 since
there is no heavy forward transition from here. All other heavy transitions have
an endpoint in the leftmost half of a segment and therefore at least r/2 light
transitions are needed before a heavy forward transition can occur. Recall that
the total number of transition in T is at most 2n and therefore the number of
heavy forward transitions in T is bounded by

Nhforward ≤ 2n/(r/2) = 4n/r. (2)

Combining the bound on Naccept with (1) and (2) we have that the total number
of heavy and accepting transitions is

Nhforward + Nhfail + Naccept ≤ 3Nhforward + occ = O(n/r + occ). 
�

4 Representing Segments

4.1 A Compact Encoding

Let S be a segment with r states over an alphabet of size σ. We show how to
compactly represent all light transitions in S using O(r log σ) bits. To represent
forward transitions we simply store the labels of the r−1 light forward transitions
in S using (r−1) log σ = O(r log σ) bits. Next consider the failure transitions. A
straightforward approach is to explicitly store for each state s ∈ S a bit indicating
if its failure pointer is light or heavy and, if it is light, a pointer to fail(s). Each
pointer requires �log r� bits and hence the total cost for this representation is
O(r log r) bits. We show how to improve this to O(r) bits in the following.
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First, we locally enumerate the states in S to [0, r − 1]. Let I = {i1, . . . , i�},
0 ≤ i1 < · · · < i� < r, be the set of states in S with a light failure transition
and let F = {fi1 , . . . , fi�

} be the set of failure pointers for the states in I. We
encode I as a bit string BI of length r such that BI [j] = 1 iff j ∈ I. This uses
r bits. To represent F compactly we encode f1 and the sequence of differences
between consecutive elements D = di2 , . . . , di�

, where dij = fij − fij−1 . We
represent f1 explicitly using �log r� bits. Our representation of D consists of
2 bit strings. The first string, denoted BD, is the concatenation of the binary
encoding of the numbers in D, i.e., BD = bin(di2 ) · · · bin(di�

), where bin(·)
denotes standard two’s complement binary encoding (the differences may be
negative) and · denotes concatenation. Each number dj uses at most 1 + log |dj |
bits and therefore the size of the BD is at most

|BD| ≤
∑
j∈I′

(| log(dj)|+ 1) < r +
∑
j∈I′

| log(dj)|, (3)

where I ′ = I\{i1}. The second bit string, denoted BD′ , represents the boundaries
of the numbers in BD, i.e., BD′ [k] = 1 iff k is the start of a new number in BD.
Thus, |BD′ | = |BD|. Note that with f1, BD, and BD′ we can uniquely decode
F . The total size of the representation is �log r�+ 2|BD| bits.

To bound the size of the representation we show that |BD| = O(r) imply-
ing that the representation uses �log r� + 2 · O(r) = O(r) bits as desired. We
first bound the sum

∑
j∈I′ |dj |. Recall from Lemma 1 that the failure function

increases by at most 1 between consecutive states in K. Hence, over the subse-
quence F of < r of failure pointers in the range [0, r−1] the total increase of the
failure function can be at most r. Hence,

∑
j∈I′ dj ≤ r. Furthermore, if f1 = x,

for some x ∈ [0, r − 1], the total decrease of F over a segment of r states is at
most x plus the total increase and therefore

∑
j∈I′ dj ≥ −(x+ r) ≥ −2r. Hence,∑

j∈I′
|dj | ≤ 2r (4)

Combining (3) and (4) we have that

|BD| < r +
∑
j∈I′

log |dj | = r + log

⎛⎝∏
j∈I′

|dj |

⎞⎠ ≤ r + log
(
(2r/|I ′|)|I′|

)
< r + log ((2r/r)r) = O(r).

Thus, we have shown the following result.

Lemma 3. All light forward and failure transitions of a segment of size r can
be encoded using O(r log σ) bits.

4.2 Simulating Light Transitions

Let C = C(P, r) be the segment automaton, and consider the path p of states in
the simulation on C from a state (i, j) on some string q. Then, the longest light
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path from (i, j) on q is defined as the longest prefix of p consisting entirely of
light non-accepting transitions in segment i. For example, consider state (1, 1)
in segment 1 in Fig. 1. The longest light path on the string q = bac is the path
p = (1, 1), (1, 2), (1, 0), (1, 1). The transition on c from state (1, 1) is heavy and
therefore not included in p.

We show how to quickly compute the length and endpoint of longest light
paths. Let Senc be the compact encoding of a segment S as described above
including the label of the forward heavy transition from the rightmost state in
S (if any) and a bit indicating whether or not the rightmost light transition is
accepting or not. Furthermore, let j be a state in S, let q be a string, and define

Next(Senc, j, q): Return the pair (l, j′), where l and j′ is the length and fi-
nal state, respectively, of the longest light path in S from j
matching a prefix of q.

We can efficiently tabulate Next for arbitrary strings q of length r as follows.
Let b be the total number of bits needed to represent the input to Next. The
string q uses r �log σ� bits and by Lemma 3 Senc uses O(r log σ + log σ + 1) =
O(r log σ) bits. Furthermore, the state number j uses �log r� bits and hence
b = O(r log σ + log r) = O(r log σ). Using a table T with 2b entries we can store
all results of Next. Each entry is computed using a standard simulation in O(r)
time and therefore we can construct T in 2b ·O(r) = 2O(b) time and space. Hence,
if we have t < 2w space available for T we may set r = 1

c ·
log t
log σ , where c > 0 is

an upper bound on the constant appearing in the 2O(b) expression above. Hence,
the total space and preprocessing time now becomes 2O(b) = 2

1
c

c log t
log σ log σ = O(t).

With T precomputed and stored in memory we can now answer arbitrary
Next queries for arbitrary encoded segments and strings of length at most q in
constant time.

5 The Algorithm

We now put the pieces from the previous sections together to obtain our main
result of Theorem 1. Assume that we have t < 2w space available and choose r =
Θ(log t/ logσ) as above for the tabulation. We first preprocess P by computing
the following information:

– The segment automaton C(P, r) with parameter r and z = �m + 1/r� seg-
ments SS = {S0, . . . , Sz−1}.

– The compact encoding Senc for each segment S ∈ SS.
– The tabulated Next function for segments with r states and input string of

length r.

We compute the segment automaton and the compact encodings in O(m) time
and space. The tabulation for Next uses O(t) time and space and hence the
preprocessing uses O(t + m) time and space.

We find the occurrences of P in Q using the algorithm described below. The
main idea is to simulate the segment automaton using the tabulated Next
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function with the segment automaton. At each iteration of the algorithm we
traverse light transitions until we either have processed r characters from Q or
encounter a heavy or accepting transition. We then follow the next transition
reporting an occurrence if the transition is accepting and repeat until we have
read all of Q.

Algorithm S (Packed String Search). Let P be a string of preprocessed for
parameter r as above. Given a string Q of length n this algorithm finds all
occurrences of P in Q.

S1. [Initialize] Set (i, j) ← (0, 0) and k ← 1.
S2. [Do light transitions] Compute (l, j′) ← Next(Senc

i , j, Q[k, min(k + r, n)]).
At this point (i, j′) is the state in the traversal of C on Q after reading
the prefix Q[1, k + l]. All transitions on the string Q[k, k + l] are light and
non-accepting by the definition of Next.

S3. [Done?] If k = n the algorithm terminates.
S4. [Do next transition] Compute (i∗, j∗) by following the transition from (i, j′)

on character Q[k + l + 1]. If the transition is a failure transition we set
k∗ ← k+ l and otherwise set k∗ ← k+ l+1. If this is the accepting transition
report an occurrence ending at position k∗.

S5. [Repeat] Update (i, j) ← (i∗, j∗) and k ← k∗ and repeat from step S2.

It is straightforward to verify that Algorithm S simulates C(P, r) on Q and
reports occurrences whenever we encounter an accepting transition. In each it-
eration we either read r character from Q and/or perform a heavy or accepting
transition. We can process r characters from Q on light transitions at most
�n/r� and by Lemma 2 the total number of heavy and accepting transitions
is O(n/r + occ). Hence, the total number of iterations is O(n/r + occ). Since
each iteration takes constant time this also bounds the running time. Adding
the preprocessing time and plugging in r = Θ(log t/ logσ) the time becomes

O
(n

r
+ t + m + occ

)
= O

(
n

logσ t
+ t + m + occ

)
with space O(t + m). Hence we have the following result.

Theorem 2. Let P and Q be packed strings of length m and n, respectively.
For a parameter t < 2w we can solve the packed string matching problem in time
O

(
n

logσ t + t + m + occ
)

and space O(t + m).

Note that the tabulation is independent of P and we therefore only need to com-
pute it once for multiple searches. If we plugin t = nε, for 0 < ε < 1, we obtain
an algorithm using time O

(
n

logσ(nε) + nε + m + occ
)

= O
(

n
logσ n + m + occ

)
and space O(nε + m) thereby showing Theorem 1.
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Abstract. The problem of image matching under rotation is to find for
two given digital images A and B a rotation that converts image A as
close as possible to B. The research in combinatorial pattern matching
led to a series of improving algorithms which commonly attack this prob-
lem by searching the complete set R(A) of all rotations of A. We present
the first optimal algorithm of this kind, i.e, one that solves image match-
ing in O(|R(A)|) = O(n3) time for images of size n × n. Subsequently,
for image matching under compositions of rotation and scaling we show
a new lower bound Ω(n6/ log n) on the cardinality of SR(A), the set of
rotated and scaled transformations of A. This bound almost matches the
upper bound O(n6).

1 Introduction

In general, the image matching problem (IMP, for short) is to find for two given
digital images A and B an admissible transformation f that changes A closest
to B. If F is a fixed set of admissible transformations f : R2 → R2 then let
DF(A) denote the set of all images f(A) which result from transformations
of image A according to f ∈ F . So, the image matching problem is that of
finding in the data base DF(A) the image most close to B. In this paper we
investigate IMP for two basic subsets of linear transformations, namely rotations
Fr and compositions of rotation and scalingFsr. For simplification of notation we
write R(A) instead of DFr

(A) and SR(A) instead of DFsr
(A). Image matching

applied to these transformations has a wide range of applications in various
image processing settings e.g. in computer vision ([19]), medical imaging (see,
for example [7,23,24]), pattern recognition, digital watermarking ([8]), etc.

The image matching problem was intensively studied both experimentally
and theoretically. In the image processing community a common approach to
solve the problem uses techniques based on continuous analysis. Though the
used techniques guarantee achieving satisfactory local optima, the disadvantage
of such methods is the high complexity to find the global optimum (for more
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discussion, see e.g. [14]). Another approach is to use discrete methods and mod-
els. Prominent examples of this are feature based techniques (see e.g. [1,21])
which consist in extracting salient features (points, lines, regions etc. in the real
plane) from images A and B and subsequently, in finding a transformation f
which transforms the geometrical objects of A closest to those of B. But, this
technique relies heavily on the quality of feature extraction and feature match-
ing, two highly non-trivial tasks. Feature matching, e.g., remains difficult even
for points (see [17] for a survey and [20,27] for some related problems). In fact,
known algorithms for this problem give only approximate solutions and partic-
ularly they do not guarantee to find the global optimum, even for such a simple
class of transformations as compositions of rotation and translation [18].

Recently, discretization techniques developed in the combinatorial pattern
matching research (CPM, for short) have been used successfully for IMP. Apart
from algorithmic achievements, this led to improved techniques for the analysis of
the problem. Essentially, all algorithms developed in CPM for computing a best
match f(A) with B share the same plane idea to perform exhaustive search of the
entire set DF (A). Surprisingly, the fastest known methods which determine the
provably best image match under rotations and under combinations of rotation
and scaling come from this simple approach. In fact, the main challenge here
is to find a discretization of F to get DF(A). Although CPM research (see e.g.
[22,13,12,2,5,4,3]) concentrates mainly on the problem of locating an exact match
f(A) in B rather than on computing the best one like in IMP, the developed
discretization techniques form a convenient start point for our research on IMP.
In particular, Amir et al. [2] have proven that the cardinality of R(A), the set of
different possible rotated images, is Θ(n3) and subsequently they have provided
a pattern matching algorithm working in time O(n2m3) for images A and B
of size n × n and m × m, respectively. Using this approach one can get that
the image matching problem for rotations is solvable in time O(n5). Roughly
speaking, this corresponds to the complexity of a method which searches all
Θ(n3) rotated images f(A) in R(A) and evaluates in O(n2) time the distortions
between f(A) and B to find the closest image.

However, one can improve this naive method of searching all rotated images in
R(A) in an appropriate way. Based on the techniques by Amir et al. Nouvel and
Rémila [26] describe a method which computes incrementally all the rotated im-
ages of A in time O(n3 log n). Thus, applying the incremental rotation algorithm
we get that image matching allowing rotations can be done in time O(n3 log n).
Using a new discretization method for R(A) we provide in [16] an algorithm
for IMP of the same time complexity. In both algorithms the sorting of values
corresponding to rotation angles plays a crucial role and causes the log n factor
in the computational complexity. One of the main contributions of this paper is
an improvement of the algorithm presented in [16] which allows getting rid of
the log n factor. In this way we get the first algorithm for the image matching
problem under rotations that runs in O(n3) time, which is optimal in the sense
that all Θ(n3) elements of R(A) are computed in O(n3) steps.
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In [15,16] we have investigated image matching also for the class Fsr of com-
positions of rotation and scaling. For these transformations we have managed to
provide an image matching algorithm which works in time linear in the cardi-
nality of SR(A), the set of all possible rotated and scaled images. But, it has
been left as an open question what is the exact estimation of this number. In
[15,16] we show that the cardinality is |SR(A)| = O(n6) ∩Ω(n5).

Achieving a more exact estimation of the cardinality of SR(A) seems to be an
interesting new task in combinatorial geometry. Due to Amir et al. [2] we know
that |R(A)| = Θ(n3). On the other hand |S(A)| – the number of all possible
scaled images – is Θ(n2) (see e.g. [3] or [16]). Thus, a natural conjecture would
be that the corresponding cardinality of SR(A) is Θ(n5). But using a straightfor-
ward approach to get all images in SR(A) combining either S(R(A)) orR(S(A))
does not work. Neither the set of all images obtained by scaling all rotated im-
ages nor the set obtained by rotating all scaled images does coincide with the
set SR(A). In contrast to the continuous compositions of scaling and rotation,
their compositions on digital images are neither commutative nor transitive. In
this paper we continue the research of IMP in the combinatorial setting using
the algebraic approach we introduced in [14] and refined in [15,16] and give a
new, rather surprising, lower bound on the cardinality: |SR(A)| = Ω(n6/ log n).

This paper presents results which heavily build on previous papers [14,15,16].
We organize the presentation as follows: We start with technical preliminaries.
Next, in Section 3 we briefly provide the basics of our approach introduced
in [14,15,16] which are necessary to understand the new results of this paper.
In Section 4 we provide an O(n3) time algorithm for image matching under
rotations and next in Section 5 we prove the Ω(n6/ logn) lower bound on the
cardinality |SR(A)|.

2 Technical Preliminaries

Through the whole paper, an image is a two-dimensional array of pixels, i.e., of
unit squares covering a certain area of the real plane R2. The pixels of a size-n
image A are indexed over the set N = {(i, j) | − n ≤ i, j ≤ n}, which we call
the support of A. The pixel with index (i, j) has its geometric center point at
coordinates (i, j). Each pixel (i, j) has a color A〈i, j〉 that is an element from
a finite set Σ = {0, 1, . . . , σ} of color values. To simplify the dealing with A’s
borders we let A〈i, j〉 = ⊥ if (i, j) �∈ N , where ⊥ is a special color marking the
exterior of A. We measure the distortion between two given size-n images A and
B by ∆(A, B) =

∑
(i,j)∈N δ(A〈i, j〉, B〈i, j〉) where δ(a, b) is a function charging

mismatches, for example, δ(a, b) = |a− b| if a �= ⊥ and b �= ⊥ and 0 otherwise.
In the general case, image transformations are injective functions f : R2 → R2.

Applying a transformation f to A we get a transformed image f(A), a new two-
dimensional array of pixels with support N . To define a color value for any
pixel (i, j) in f(A), let f−1 be the inverse function of f . Then we define the
color value f(A)〈i, j〉 as the color A〈i′, j′〉 of the pixel (i′, j′) = [f−1(i, j)], where
[(x, y)] := ([x], [y]) denotes rounding both components of a vector (x, y) ∈ R2.
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Hence, to determine f(A)〈i, j〉 we choose the pixel of A which geometrically
contains the point f−1(i, j) in its square area. With this setting we model nearest-
neighbor interpolation, commonly used in image processing.

Now, for any image A and set F we may define the set DF (A) = {f(A) | f ∈
F} that contains all possible image transformations of A with respect to F .
Subsequently, we are ready to give the definition of the image matching problem
under F : For given images A and B with support N find in the set DF(A) an
image A′ minimizing the distortion ∆(A′, B). For the analysis of the structural
complexity aspects of this problem we apply the unit cost model for arithmetic
operations, a complexity measure which is sometimes referred to as arithmetic
complexity. Therefore, we assume that mathematical basic integer operations
like addition, subtraction and multiplication can be done in constant time.

In this paper we are basically interested in two transformation classes, namely
Fr which contains all rotations and Fsr the transformations combining scaling
and rotation. Any transformation f in Fsr can be uniquely described by

f(x, y) =
(

s cos φ s sin φ
−s sin φ s cos φ

)
· ( x

y ) (1)

for some s, φ ∈ R, with s �= 0. Since Fr ⊂ Fsr all rotations can be represented
accordingly with the restriction to s = 1.

3 Previous Results

In our previous works [15,16] we presented a new algorithmic approach to solve
image matching under Fsr in time linear with respect to the cardinality |SR(A)|.
However, using our methods for rotations we get a time complexity asymptot-
ically bigger than the cardinality of R(A) by a log n factor. In this section we
will briefly discuss some basics of our approach which will be extended in this
paper to give a more precise estimation on |SR(A)| and to get rid of the log n
factor for solving the IMP with rotations.

By equation (1) all transformations in Fsr can be characterized by the two
parameters p = s cosφ and q = s sin φ. Hence, each such transformation f can
be described by a point (p, q)T in the two-dimensional parameter space R2. Note
that (0, 0)T is the only point in R2 which corresponds to a non-injective trans-
formation and by this it does not characterize a transformation in Fsr. However,
for convenience we will simply ignore this exception. The transformations in Fr

are represented by the points (p, q)T with p2 + q2 = 1 and lie on the unit circle
denoted here by C, which is a non-linear one-dimensional subspace of R2.

The central concept of our approach is a new discretization technique for Fsr.
We introduce a subdivision of the parameter space R2 into a finite number of
subspaces ϕ1, . . . , ϕt such that any pair of transformations f1, f2 ∈ Fsr gives
the same transformed image f1(A) = f2(A) if their inverses f−1

1 and f−1
2 are

represented by points (p1, q1)T , resp. (p2, q2)T contained in the same subspace ϕi

for some i ∈ {1, . . . , t}. This means that each of the t subspaces represents one
transformed image in SR(A). In this way we provide a discrete characterization
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of the uncountable set Fsr which characterizes SR(A) exactly. In the case of
rotations an analogous property holds for a subdivision of C into segments.

In the basic principle of searching the whole set SR(A) our approach is consis-
tent with the common practice in the CPM. However, the used new discretization
method enables a very fast enumeration of the set. We use our geometric char-
acterization to traverse all the subspaces ϕ1 to ϕt of the parameter space. With
each subspace we find one of the possible transformed images A′ in SR(A). Sub-
sequently, the distortion between such A′ and B is evaluated to eventually find
the best match.

For images of size n the subdivision of the parameter space into the spaces ϕ1
to ϕt is determined by a set Hn of straight lines. Each line in Hn is described
by one or more equations from the set Hn which we define as follows:

Hn = {hijk : ip + jq = k − 0.5 | (i, j) ∈ N , k ∈ {−n, . . . , n + 1}}
To describe a line, let for an equation hijk ∈ Hn and for any point (p, q) ∈ R2,
hijk(p, q) = ip + jq− (k− 0.5). Then we say that hijk describes the line 	 which
contains all the points (p, q) ∈ R2 satisfying the equation hijk(p, q) = 0, i.e., we
get 	 = {(p, q) ∈ R2 | hijk(p, q) = 0}. Note the difference: hijk is an algebraic
expression whereas 	 is a subspace of R2.

The set of straight lines Hn plays a crucial role in our approach. The meaning
of hijk and the described line 	 can be understood as follows: Suppose we have
a continuous arbitrarily formed path Π of points in R2 which starts at P (0)
and ends at P (1). Let us describe the points forming the path Π as P (t) for
t ∈ [0, 1]. Consider the transformation fP (t) which is obtained by taking the
inverse of the transformation described by the point P (t). Now imagine a walk
from P (0) to P (1) by the continuous increment of t. Due to the discrete nature of
images it turns out that fP (t)(A) undergoes abrupt changes while fP (t) changes
continuously with t. The crucial property is that fP (t)(A) remains unchanged as
long as Π does not cut a straight line from Hn. Particularly, at the moment t
when P (t) ∈ 	, i.e, when Π crosses 	, then fP (t)(A) changes at the pixels (i, j)
and (j,−i). Thereby, the pixel of the input image A which is responsible for
the new color value of fP (t)(A)〈i, j〉, resp. fP (t)(A)〈j,−i〉, can be derived from
parameter k. Notice in this context that the constant 0.5 in the equations is due
to the rounding used for the realization of nearest-neighbor interpolation.

Hence, the straight lines of Hn cut the parameter space into the pieces ϕ1 to
ϕt. To describe this partition we need the following additional subspaces of R2

for all hijk ∈ Hn:
	+ = {(p, q) | hijk(p, q) > 0} and 	− = {(p, q) | hijk(p, q) < 0}.

In geometry the subspaces 	+∪	 and 	− are called half-planes. Now we are ready
to define the partition of R2 by the set of equations Hn:

A(Hn) = {ϕ ⊆ R2 | ϕ =
⋂

�∈Hn

	sw for some s1, . . . , s|Hn| ∈ {+,−, 0}, ϕ �= ∅},

where 	0 denotes just 	. For an example see Figure 3. In literature the set A(Hn)
is called the line arrangement given by the lines Hn. For detailed information on
line arrangements see [9]. Accordingly, Hn partitions the circle C into segments:
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AC(Hn) = {ϕ | ∃ϕ′ ∈ A(Hn), ϕ = ϕ′ ∩ C �= ∅}
We call the elements of A(Hn) and AC(Hn) faces. A face is called a d-face if
its dimension is d for d ∈ {0, 1, 2}. Thus, a 0-face is a point, a 1-face is a line
(segment) or curve (segment), and a 2-face is a convex region on the plane given
by the intersection of a finite number of half-planes. A face ϕ′ is a subface of
another face ϕ if the dimension of ϕ′ is one less than of ϕ and ϕ′ is contained
in the boundary of ϕ. We also say that ϕ and ϕ′ are incident and that ϕ is a
superface of ϕ′. The relation between A(Hn) and SR(A) is our most important
property which we formulated as a main result in [15,16]:

Theorem 1 ([15,16]). For all n and every image A of size n there exist sur-
jective mappings Γn,sr : A(Hn) → SR(A) and Γn,r : AC(Hn) →R(A).

Thus, Theorem 1 reduces the enumeration of SR(A), a set with no obvious
structure, to the enumeration of A(Hn). Respectively, R(A) can be obtained by
the set of unit circle segments AC(Hn). In turn, the efficient enumeration of all
faces in A(Hn), resp. AC(Hn), can be realized easily. We conveniently use the
incidence graph I(Hn), which contains a node v(ϕ) for each face ϕ ∈ A(Hn)
and two nodes v(ϕ) and v(ϕ′) are connected by an edge if the faces ϕ and ϕ′

are incident. For a detailed description of incidence graphs for line arrangements
and the complexity of computing them see [9] and [10]. For the partition of the
circuit C one can construct analogously the incidence graph IC(H) that is just a
cyclic list of vertices v(ϕ) faces. The image matching algorithm for Fsr proposed
in [15,16] works as follows

The IM Algorithm
1. Construct the incidence graph I(Hn);
2. Perform depth first searching to traverse all nodes v(ϕ) in I(Hn);
3. For each enumerated face ϕ apply Γn,sr(ϕ) to compute f(A);
4. Return f which induces the minimum distortion ∆(f(A), B).

For rotations we proceed analogously using the incidence graph IC(H) instead of
I(Hn) and the mapping Γn,r(ϕ) instead of Γn,sr(ϕ). Ragnar Nevries [25] studied
the practical realization and applications of this approach in his diploma thesis.

The enumeration of transformed images implied by the geometrical incidence
between the corresponding faces allows that successively enumerated trans-
formed images differ only in few pixels. Hence, our algorithm holds the cur-
rent transformation A′ of A and with every traversing step on I(Hn), rep. on
IC(Hn) it updates A′ on a constant number of pixels in average. The coordi-
nates of pixels to be updated are computed in advance and are stored as a label
Update(v) to each node v. This enables that our algorithm finds the best image
match under Fsr in O(|A(Hn)|) time plus the complexity needed to compute
the incidence graph that is linear with respect to O|A(Hn)|, too. For rotations
the time complexity is made up similarly. However, in contrast to I(Hn) the
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Fig. 1. The parameter space R2 partitioned by Hn, with n = 2, i.e. for images of
52 = 25 pixels. The points in R2 represents compositions of real scaling and rotation.
For P, P ′ ∈ R2 representing f and f ′, respectively, the transformed images f(A) and
f ′(A) are equal if P and P ′ belong to the same face. The unit circle represents all
rotations or equivalently all compositions with scaling factor s = 1.

computation of IC(Hn) needs asymptotically more time than O(|AC(Hn)|), i.e.,
in the previous solution it is higher by a log n factor. In [15] we were able to give
the following estimations:

Theorem 2 ([15]). The cardinality |A(Hn)| grows in n by Ω(n5) ∩O(n6) and
|AC(Hn)| grows in n by Θ(n3). As a consequence IM for Fsr can be done in
time bounded by O(n6) and for Fr in time bounded by O(n3 log n).

Through the rest of this paper we will show how to eliminate the additional log n
term for rotations using a more sophisticated approach and next we will improve
the lower bound on the number of rotated and scaled images to Ω(n6/ logn).
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4 Fast Computation of the Incidence Graph for Rotations

Figure 3 presents an optimal (i.e., output-linear time) algorithm for the com-
putation of the incidence graph IC(Hn) needed for IMP with rotations. The
structure of IC(Hn) is simply cyclic and given by the alternating sequence of
0- and 1-faces on C which arises from intersections of lines in Hn with C (cf.
Figure 3). To compute IC(Hn) our algorithm determines all Θ(n3) intersection
points and sorts them according to their order on C. The problem is that every
intersection point has irrational components. We provide that the right order of
them can already be obtained by the highest O(log n) bits of each coordinate.
Moreover, we show that the needed bits can be evaluated in O(1) time with
respect to the unit cost model for basic integer operations. Due to this short
representations the algorithm finds the order of the intersection points in lin-
ear time O(n3) by the use of Radix Sort. Subsequently, the incidence graph is
computed from the obtained structural information.

We first establish equations for the two intersection points (pijk± , qijk±) be-
tween a line 	 determined by hijk ∈ Hn and C,

pijk± = i(k−0.5)±j
√

i2+j2−(k−0.5)2

i2+j2 and qijk± = j(k−0.5)∓i
√

i2+j2−(k−0.5)2

i2+j2 .

Here ± and ∓ symbols stand for signs + or −. Through the rest of this section we
will always assume that i2+j2 ≥ (k−0.5)2. Otherwise the line determined by hijk

does not cut C and so we do not need to consider it at all. Since we are working
on the unit circle an order-preserving unique representation of intersection points
is given by only pijk± and the sign of qijk± that we will denote by σijk± . We will
now show that every two successive intersection points on C have a minimum
discrepancy of at least Ω(n−10) in their pijk± components.

Lemma 1. For all (i, j), (i′, j′) ∈ N , k, k′ ∈ {−n, . . . , n+1} and ±,±′ ∈ {+,−}
it is true that the value |pijk±−pi′j′k′±′ | is either zero or greater than 2−14n−10.

Proof (Sketch). Let P = (pijk±, qijk±) and P ′ = (pi′j′k′±′ , qi′j′k′±′) be two dif-
ferent intersection points between the unit circle and lines 	, given by hijk,
and 	′, given by hi′j′k′ , such that the distance between their p-coordinates, i.e.,
∆p = |pijk± − pi′j′k′±′ |, is minimum. The proof finds a lower bound on ∆p by
the help of a lower bound on the angle α between the vectors P and P ′.

Because P and P ′ are situated on the unit circle it becomes evident that α
is at least d = ‖P − P ′‖, the distance between P and P ′. To approximate d we
have to consider the three possible relations between 	 and 	′ which are depicted
in Figure 2). In each case we show that d ≥ 1

68n5 .

Case 1: 	 and 	′ are identical. We can assume that i = i′, j = j′, k = k′

and that ± is opposite to ±′. Since 4i2 + 4j2 ≥ (2k − 1)2 > 0 we get:

d = ‖P − P ′‖ =

√
4i2 + 4j2 − (2k − 1)2

i2 + j2 ≥
√

1
2n2 ≥

1√
2n

.

In this simple case d is huge compared to Ω(n−5).
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Fig. 2. Three cases for the relative positions of two lines � and �′ cutting the unit circle
at points P = (pijk±, qijk±) and P ′ = (pi′j′k′±′ , qi′j′k′±′). The minimum distance
∆p = |pijk± − pi′j′k′±′ | is estimated using the angle α between P and P ′ which is in
turn bounded from below by d. In Case 1 d can be determined directly. Case 2 applies
the minimum distance d′ between parallel lines as lower bound on d. Finally, Case 3
estimates d by the minimum distance d0 of the unit circle to the intersection P0 of �
and �′ as well as the minimum angle β between � and �′.

Case 2: 	 and 	′ are parallel. The second case immediately leads to d ≥ d′,
the distance between parallel lines 	 and 	′. To find the minimum (but non
zero) distance d′ we choose an arbitrary point on the second line 	′, e.g.,
let (p0, q0) =

(
0, 2k′−1

2j′

)
, and measure the distance between (p0, q0) and 	.

Assuming that (p0, q0) is not on 	 we get:

d ≥ d′ =
|ip0 + jq0 − (k − 0.5)|√

i2 + j2
=

∣∣∣∣∣ j(2k′ − 1)− j′(2k − 1)

2j′
√

i2 + j2

∣∣∣∣∣ ≥ 1√
8n2

.

Thus, in Case 2, d is again huge with respect to Ω(n−5).
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Case 3: 	 and 	′ intersect in exactly one point P0. In the most complicated
case a lower bound on d is found by the minimum distance d0 between P0
and circle C as well as the minimum angle β between 	 and 	′. It can be
shown that d0 ≥ 1

34n4 for both P0 inside and outside of C. Moreover, one
can prove that the angle β ≥ 1

n . If β ≥ π
2 then it can be shown directly that

d ≥ Ω(n−4) and thus, we assume that the opposite inequality: β < π
2 is true.

Then, in the worst case it happens that the triangle determined by P , P ′

and the base point P0 is isosceles. It P0 is outside of C this leads easily to:

d ≥ 2h tan
β

2
≥ 2

34n4 tan
1
2n

≥ 1
34n5

where h < d0 is the height of the triangle. If P0 is inside C and if β < π
2 ,

then h < d0
2 and it follows that d ≥ 1

68n5 .

The lower bound on d gives that α ≥ 1
68n5 which provides the necessary require-

ments to estimate the minimum nonzero gap ∆p between p-coordinates. In worst
case situation one of the values pijk± or pi′j′k′±′ is either 1 or −1 and it follows:

∆p = 1−cosα ≥ 1−cos
(

1
68n5

)
≥ 2−14n−10. 
�

According to the previous lemma it is sufficient to compute the p-coordinates
with an precision of at most Ω(n−10). Since the p-components are between −1
and 1 our algorithm thus evaluates only O(log n)-bits-representations, though
the exact values are even non-rational. In particular, 14 + 10 log2 n bits and
one sign bit are enough. The following lemma argues that this short number
representations can even be computed by a constant number of basic arithmetic
integer operations and thus, in constant time.

Lemma 2. Let b = �log2 n�. Then for all (i, j) ∈ N , k ∈ {−n, . . . , n + 1} and
± ∈ {+,−} a 25b-bit approximation p̃ijk± of pijk± can be computed by a constant
number of integer addition and multiplication operations.

It remains to show that the algorithm in Figure 3 works correctly in time O(n3),
which is quite trivial now.

Theorem 3. The incidence graph IC(Hn) can be computed in time O(n3).

Proof. Let b = �log2 n�. The algorithm computes the 25b-bit representations
p̃ijk± and the signs σijk± for all (i, j) ∈ N , k ∈ {−n, . . . , n+1} and ± ∈ {+,−}.
Lemma 1 guarantees that maintaining the 25b-bit precision is sufficient to dif-
ferentiate between the intersection points since 25b ≥ 14 + 10 log2 n. Moreover
by Lemma 2 the representations can be computed in time O(|AC (Hn)|). Next,
according to the signs σijk±, the algorithm splits the representations p̃ijk± into
two subsets R+ and R−. This can be done in O(|AC(Hn)|) time, too.

Subsequently, R+ and R− are sorted individually by Radix Sort. The algo-
rithm uses the radix 2b and thus, iterates 25 times over all elements of R+ and
R−, respectively. Hence, the whole sorting takes O(|AC(Hn)|) time.
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Algorithm ComputeRotationIncidenceGraph /* Computation of IC(Hn) */

Input: Integer number n.
Output: The incidence graph IC(Hn).

1. begin /* Main( ) for Computation of IC(Hn) */

2. R− = ∅; R+ = ∅;
3. for all (i, j) ∈ N , k ∈ {−n, . . . , n + 1},± ∈ {+,−} do begin

4. p̃ijk± ≈ i(k−0.5)±j
√

i2+j2−(k−0.5)2

i2+j2
; /* get 25b-bit representation */

5. if (j(k − 0.5) < ∓i
p

i2 + j2 − (k − 0.5)2) then /* compute σijk± */

6. R− = R− ∪ {(p̃ijk±, i, j, k)} else R+ = R+ ∪ {(p̃ijk±, i, j, k)};
7. end;
8. call RADIXSORT(R−, n); call RADIXSORT(R+, n);
9. append list REVERSE(R−) to list R+ and obtain sorted list R;

10. V = {v0}; E = ∅; p̃prev = ∞; w = 1;
11. for (p̃, i, j, k) in R do begin
12. if (p̃ �= p̃prev) then begin
13. V = V ∪ {uw, vw}; /* add u for 0-face and v for 1-face */

14. add (i, j, k) to the Update set of vw;

15. E = E ∪ {(vw−1, uw), (uw, vw)}; p̃prev = p̃; w = w + 1;
16. end else add (i, j, k) to the Update set of vw;

17. end;
18. unify v0 and vw−1; return IC(Hn) = (V, E);
19. end.

Fig. 3. The algorithm computing IC(Hn). Firstly, all intersection points between lines
and C are determined. Then the method RADIXSORT sorts the lists of intersection points
by the use of 2b buckets where b = �log2 n�. Finally the incidence graph is generated
from the sorted lists.

Finally, the graph IC(Hn) is generated from traversing the two sorted lists
which takes again time linear in |AC(Hn)|. This completes the proof because
|AC(Hn)| ∈ O(n3) by [2]. 
�

5 The Lower Bound on the Number of Different
Compositions of Scaling and Rotation

In [15] we presented an image matching algorithm under combinations of scaling
and rotation which essentially tries out all possible transformations of an image
A by traversing all faces in the set A(Hn). Although we performed this searching
strategy optimally, i.e., in time linear in |A(Hn)|, we could not tell what is the
exact time complexity (as a function of the input size) of our algorithm. Since
we have shown that |A(Hn)| ∈ O(n6) ∩Ω(n5) we claimed a worst case running
time of O(n6). However it was open whether its time complexity is asymptotically
smaller than n6. In this section we provide strong evidence that this upper bound
is very accurate and that in the worst case no exhaustive search of SR(A) could
work significantly faster.



138 C. Hundt and M. Lískiewicz

Theorem 4. The cardinality of |A(Hn)| grows with n ∈ N by at least
Ω(n6/ logn).

Proof (Sketch). To prove the theorem we show that there are at least Ω(n6/ log n)
1-faces in A(Hn). Though this would already be enough to complete the proof
the application of planar graph properties deduces shortly that there are also
Ω(n6/ logn) 0- and 2-faces in A(Hn). This is in particular useful when esti-
mating |SR(A)| since at least every 2-face of A(Hn) corresponds to a unique
transformation of image A (though not necessarily to some unique transformed
image A′, which heavily depends on A).

We will now outline how to establish the given number of 1-faces in A(Hn). We
assume that n ≥ 100 and for convenience we let m = �0.01n�. Note that 1-faces
are created by the mutual intersections of lines in Hn. Let consider two subsets
of Hn, namely Ha

n and Hb
n, which contain all lines given by the equations in

Ha
n = {hijk : ip + jq = k − 0.5 | 0.5n < i,−j ≤ n, 1 ≤ k ≤ m, gcd(i,−j) = 1}

Hb
n = {hijk : ip + jq = k − 0.5 | (i, j) ∈ N , 1 ≤ k ≤ m}.

Subsequently let An be the set of all one-dimensional subspaces which are gained
from cutting a line in Ha

n by lines in Hb
n. Clearly, the cardinality |An| must be

less than the number of all 1-faces because any 1-face is either a subspace of
exactly one ϕ ∈ An and thus, counted only once, or not a subspace of any line
in Ha

n and then not counted at all.
To get |An| we look at every line 	 ∈ Ha

n and determine the number of
subspaces it is cut into by the lines 	′ ∈ Hb

n (for an illustration, see Figure 4).
This number is greater (by one) than the number of intersection points on 	.
All relevant intersection points (p, q) on line 	, given by equation hijk ∈ Ha

n, are
created by some line 	′, given by equation hi′j′k′ ∈ Hb

n, and have the form

p =
j′(2k − 1)− j(2k′ − 1)

2ij′ − 2i′j
and q =

i(2k′ − 1)− i′(2k − 1)
2ij′ − 2i′j

.

The following lemma plays a crucial role in our proof.

Lemma 3. For every line 	 ∈ Ha
n the number of intersections with lines in Hb

n

is Ω(n3/ logn).

To show the lemma, note that since 	 is not vertical it is sufficient to estimate the
number of different p-coordinates. For this purpose we estimate a lower bound on
how many lines 	′ ∈ Hb

n give a fraction s
t where (1) s = j′(2k−1)−j(2k′−1), (2)

t = 2ij′−2i′j, (3) t = 2x with x a prime number and (4) s < x. Firstly, on basis of
gcd(i,−j) = 1 we get that x can become any prime number in {4mn, . . . ,−jn}.
Secondly, we provide that for any choice of t we can still get m different numer-
ators s with s < x. Obviously it is true that all fractions constructed like this
correspond to some intersection point on 	 and are mutually not equal.

Thus we derive the Ω(n3/ logn) bound on the number intersection points
for every 	 ∈ Ha

n. Summed over all Ω(n3) lines in Ha
n we obtain Ω(n6/ log n)

elements in An. This completes the proof. 
�
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p

q

hijk

Fig. 4. The intersection points between the line � described by hijk ∈ Ha
3 and all lines

in Hb
3, where (i, j, k) = (2,−2, 1). For clearness of presentation we let m = 1 instead of

m = �0.01n� as has been assumed in the proof.
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15. Hundt, C., Lískiewicz, M.: Two-dimensional pattern matching with combined
scaling and rotation. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS,
vol. 5029, pp. 5–17. Springer, Heidelberg (2008)
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Abstract. A black box method was recently given that solves the prob-
lem of online approximate matching for a class of problems whose dis-
tance functions can be classified as being local. A distance function is said
to be local if for a pattern P of length m and any substring T [i, i+m−1]
of a text T , the distance between P and T [i, i + m − 1] is equal to
Σj∆(P [j], T [i + j − 1]), where ∆ is any distance function between indi-
vidual characters. We extend this line of work by showing how to tackle
online approximate matching when the distance function is non-local.
We give solutions which are applicable to a wide variety of matching
problems including function and parameterised matching, swap match-
ing, swap-mismatch, k-difference, k-difference with transpositions, over-
lap matching, edit distance/LCS, flipped bit, faulty bit and L1 and L2

rearrangement distances. The resulting unamortised online algorithms
bound the worst case running time per input character to within a log
factor of their comparable offline counterpart.

1 Introduction

A great deal of progress has been made in finding fast algorithms for a variety
of important forms of approximate matching in the last few decades. The most
common computational model in which these algorithms have been analysed
assumes that the text and pattern are to be held in fast primary storage and that
each query to the data has constant cost. However, increasingly it has become
apparent that new applications such as those found in telecommunications or
monitoring Internet traffic require a fresh approach. It may no longer be possible
to store the entirety of the text and the worst case time per input character is
often more important than the overall running time of any algorithm.

The model that we consider is a deterministic variant of data streaming where
we assume we are given a pattern in advance and the text to which it is to be
matched arrives one character at a time. The overall task is to report matches
between the pattern and text as soon as they occur and to bound the worst case
time per input character. Previous work in this model showed how to convert
offline algorithms for approximate pattern matching problems with simple dis-
tance functions into efficient online ones using a black box approach [8]. It is an
important feature of both our approach and the previous work that the running
time of the resulting algorithms is not amortised.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 142–153, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The main restriction for this black box solution was that the distance function
defined by the approximate matching problem had to have the property of being
local. A local distance function is defined to be one where the distance between a
pattern P and a substring of the text T can be written as Σj∆(P [j], T [i+j−1]),
where ∆ is any distance function between individual characters in the input al-
phabet. In other words, the distance was simply measured as the sum of the
distances between individual symbols. Although a number of interesting prob-
lems including exact matching with wildcards, matching under the Hamming
norm and numerical measures such as the L2 and L1 norm have distance func-
tions which are local, this left open the problem of how to handle the many
matching problems with more sophisticated distance measures.

To appreciate the challenges that arise in online pattern matching when the
distance function is non-local, consider for example the problem of function
matching [3]. There is a function match between pattern P and T [i, i+m− 1] if
there exists a function f (possibly distinct for each i) from the input alphabet
Σ to itself such that T [i+ j] = f(P [j]) for all 0 ≤ j < m. For example aba has a
function match with T = xyx but not T ′ = xyy as a can not be mapped to two
different letters. In the previous black box approach to creating online algorithms
which we briefly describe in Section 2, distances would be found independently
for different substrings of the pattern and the results combined. However, in this
case whether P [3] = a matches T ′[3] = y depends on the function chosen to
map the characters in P [1, 2] and vice versa. By definition only one choice of
function is permitted for the whole of the pattern. As a result any matchings
for the substrings of P would appear to have to depend on the results for all
other substrings. In general for non-local distance functions, we must find a way
efficiently to handle the dependencies between different parts of the pattern.

Our contribution is to present three general methods which can be applied
successfully to convert a wide variety of non-local approximate matching prob-
lem into efficient unamortised online ones. We will refer to such algorithms as
pseudo-realtime (PsR) throughout the paper by analogy to the realtime model
for linear time algorithms. The techniques are necessarily no longer ‘black box’,
depending in detail on the specific offline algorithm being considered. As with the
previous work for local distance functions, the running time per input character
is guaranteed to be within a log factor of its offline counterpart.

2 Preliminaries and Previous Work

Throughout the paper, T and P will be used to denote the text and pattern
strings respectively. By convention, |T | = n and |P | = m. For any other strings,
a lowercase letter is used to denote length, for example |A| = a. A||B denotes
the concatenation of strings A and B. The character alphabet is denoted Σ (and
ΣP for the pattern alphabet). When discussing the alignment of the pattern and
text we will often refer to right alignments. Right alignment i of P and T aligns
the final character of P with the ith character of T . This is a natural way to
discuss alignments when the text is being streamed. The usual offline notion
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m/4 m/2 3m/4 m 5m/4 3m/2

1st partition for S1

2nd partition for S1

3rd partition for S1

4th partition for S1

Computation Starts

Computation Ends

Fig. 1. Partitioning of the text for subpattern S1

where the first character of the pattern is aligned at a position in the text will
be termed left alignment to avoid confusion.

The ideas we present build on the black box algorithm of [8] for local distance
functions which we briefly describe here. The basic idea is to split the pattern
into O(log m) consecutive subpatterns each having half the length of the previous
one. The first subpattern S1 = P [1, m/2] and subpattern Sj has length m2−j for
1 ≤ j < s where s = log2(m)+1. Ss is set to be the last character of the pattern.
The offline algorithm is then run for each subpattern against the whole of the
text with the distances found added to an auxiliary array C. In this way, for
any subpattern starting at position j of the pattern, its distance to a substring
starting at position i of the text will be added to the count at C[i− j + 1]. At
the end of this step C will contain ∆(P, T [i, i + m− 1]) for every location i in t.

To ensure that the work for each subpattern is completed before its result is
needed to report a match, the text was partitioned into overlapping substrings.
Each of the O(log m) subpatterns has a different length and induces a different
and independent partitioning of the text. Each partition of the text is set to be of
size to 3|Sj |/2, with an overlap of length |Sj |. For each subpattern, the work of a
search does not have to be completed until |Sj |/2 characters after it starts and so
we can set this work to be performed over the period between arrival of T [i] and
T [i + |Sj |/2] as shown in Figure 1. This gives a space requirement of O(m). Let
T (n, m) be the time complexity of the offline algorithm used as a black box. The
running time per text input character was shown to be O(Σlog2 m

j=1 T (n, 2j−1)/n))
which is bounded above by O(T (n, m) log(m)/n).

3 Our Results

We present an overview of problems that we solve in pseudo-realtime and the
methods developed. Due to space restrictions we are not able to discuss each
problem in detail, but to explain the main ideas we present examples for each
of the main techniques.
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– Some approximate matching problems with non-local distance functions
translate immediately to the pseudo-realtime setting with no asymptotic
time penalty and minimal modification. For example, edit distance and
Longest Common Subsequence (LCS) where the offline algorithm completes
the full dynamic programming table and faulty bits and L1 rearrangement
distance, where the offline solutions considers each alignment of the pattern
and text separately are all naturally pseudo-realtime. As another example,
the algorithm of Amir et al. [6] for the parameterised matching problem
is a modification of KMP that allows a direct translation by applying the
realtime modifications of Galil [9].

– Many pattern matching algorithms rely heavily on cross-correlations imple-
mented via the fast Fourier transform (FFT). We show in Section 4.1 how
these problems can be made pseudo-realtime efficiently by application of a
PsR cross-correlation algorithm, using the L2 rearrangement distance prob-
lem as an example.

– We next develop a method we call ‘Split and Correct’ in Section 4.2. The
aim is to split the pattern into subpatterns as in Section 2 and then correct
for the non-local effects that occur across the boundaries between adjacent
subpatterns. Pseudo-realtime swap-mismatch is given as an example.

– Finally we present a method we call ‘Split and Feed’ in Section 4.3. This
method is applied to problems where matching a subpattern to the text
can affect the alignment of other subpatterns with the text. We explain this
method using the k-differences problem as an example. We also comment
that the k-difference with transpositions problem can be solved by combining
this technique with that of Split and Correct.

Table 1. Summary of main pseudo-realtime pattern matching results

Problem
Offline Online/PsR

Method
per char time penalty

local matching various O(log m) Splitting [8]
function various [3] O(log m) PsR Cross-correlations

parameterised O(log |Σ|) [6] O(1) Realtime KMP
edit distance/LCS O(m) [11] O(1) Immediate

k-differences O(k) [10] O(log m) Split & Feed
swap-mismatch O(

√
m log m) [5] O(1) Split & Correct

swap O(log m log |Σ|) [4] O(log m) Split & Correct
overlap O(log n) [4] O(log m) Split & Correct

k-diff with transpositions O(k) [10] O(log m) Split & Correct + Feed
self normalised O(log m) [7] O(log m) PsR Cross-correlations

faulty bits O(m log m) [2] O(1) Immediate
flipped bits O(log m) [2] O(log m) PsR Cross-correlations

L1 rearrangement O(m) [1] O(1) Immediate
L2 rearrangement O(log m) [1] O(log m) PsR Cross-correlations
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A brief summary of these results along with the multiplicative time penalty
incurred for the corresponding online/PsR algorithms is given in Table 1. This
list is intended to be exemplary rather than comprehensive and in particular
we anticipate that our methods can be applied equally successfully to a larger
range of problems we have yet to consider. In each case we require at most O(m)
space. Note that in the case of edit distance there also exists an O(n(1 + m

log n ))
time offline solution for finite alphabets [12].

4 Algorithms for Pseudo-realtime Translation

We now give an overview of each method along with examples of their application.

4.1 Pseudo-realtime Cross-Correlation Method

The cross-correlation is an important technique in pattern matching and lies at
the heart of many of the fastest algorithms known. We discuss a class of non-local
problems that can be made pseudo-realtime simply and efficiently by using as its
main tool the replacement of the offline cross-correlation with a pseudo-realtime
version. Lemma 1 gives the running time per input character.

Lemma 1 (Pseudo-realtime Cross-correlation). Let X be an array re-
ceived online and Y an array received in advance. For any i, when character
X [i] arrives, we can compute (X ⊗ Y )[i−m + 1] =

∑y−1
j=0 X [i + j −m + 1]Y [j]

in O(log2 m) time. As the cross-correlation is local, this is immediate from ap-
plication of the black box method of [8].

For the function matching problem, Amir et al.[3] give a solution for small pat-
tern alphabets in O(n|ΣP | log m) and a randomised solution to the general prob-
lem that runs in O(n log m) time with failure probability 1/n of declaring a false
positive. Both algorithms can be made pseudo-realtime in O(|ΣP | log2 m) and
O(log2 m) time per character respectively using PsR cross-correlations and by
reordering the computation of the offline algorithms.

The L2 rearrangement distance problem first introduced by Amir et al. [1]
allows us to describe a slightly more sophisticated application of this general
method. At right alignment i, consider all permutations π so that T [i−m+ j] =
P [π(j)] for all j and define cost(π) =

∑
j |j − π(j)|2. The L2 rearrangement

distance is defined to be the minimum cost over all such permutations (or ∞ if
no such permutation exists). It is clear from the definition that this is a highly
non-local problem. Analysis of the offline O(n log m) solution shows that the
main challenge lies in its cross-correlation stage but that the remaining work
still requires careful scheduling for the overall technique to be successful. We
present a pseudo-realtime version of their algorithm which runs in O(log2 m)
time per character using O(m) total space, equalling the space requirements for
the offline solution.
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For all a ∈ Σ, let ψa(X) be an array of the indices of all occurrences of
character a in X ; further we define occa(X) = |ψa(X)|. Consider the following
functions:

Fx(P ′, T ′)[i′] =
|P ′|−1∑

j=0

(P ′[j]− T ′[i′ + j − |P ′|] + x)2 . (1)

Gx(P, T )[i] =
∑
a∈Σ

Fx(ψa(P ), ψa(T ), a)[occa(T [1, i])] . (2)

Amir et al. show that if we set x = (i−m) then G(i−m)(P, T )[i] is exactly the
distance between T [i−m+1, i] and P . This assumes that the distance is less than
∞ which can be checked in O(log m) time per character. Further, it is shown
that if we can calculate Gx(P, T )[i] for fixed x = 0, 1, 2 then G(i−m)(P, T )[i]
can be computed by polynomial interpolation in constant time per character.
Therefore, in the remainder we need only consider a fixed x.

Observe that the sums, Gx(P, T )[i−1] and Gx(P, T )[i] differ only at the term
where a = T [i]. Thus, if we can update the corresponding Fx when we receive
T [i] in pseudo-realtime, a sliding window approach will allow us to compute
Gx(P, T )[i]. To compute the Fx terms in pseudo-realtime we split the data and
computation by symbol. When a symbol T [i] = a arrives we consider this as the
arrival of a new index for the array ψa(T ). In this way we create one array of
indices per character in the input alphabet and can consider each separately. It
is important for the pseudo-realtime algorithm that when a symbol a arrives,
the only work that is carried out relates to the array ψa(T ) and no others. The
computation of Fx can therefore be computed independently for each symbol.
The classification of the arriving character can be handled using a binary search
tree in O(log m) time.

It remains to show how to compute Fx(P ′, T ′)[i′] efficiently in pseudo-realtime.
By multiplying out Fx observe that it can be computed using PsR cross-correla-
tions and a sliding window. Applying Lemma 1 the resulting pseudo-realtime
algorithm runs in O(log2(|P ′|)) time per character and O(|P ′|) space. How-
ever, |P ′| ≤ m so O(log2(|P ′|)) ∈ O(log2 m) time per character and this domi-
nates the overall time complexity. The total space is dominated by the working
space of computing each Fx. For each a, |P ′| = occa(P ) giving a total space of∑

a O(occa(P )) ∈ O(m). Theorem 1 summarises the result.

Theorem 1. The L2 rearrangement distance problem can be solved in pseudo-
realtime in O(log2 m) time per character and O(m) space.

4.2 Split and Correct

The ‘Split and Correct’ method we develop in this Section can most easily be
applied to non-local pattern matching problems where the distance function
between the pattern and substrings of the text can be expressed as the cost of
a sequence of moves. In the pseudo-realtime setting, a non-local move is defined
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to be one which changes characters in more than one of the subpatterns in the
split pattern. We consider in particular, problems where the number of possible
non-local moves with respect to a given subpattern is bounded by a constant. For
this class of problems, we split the pattern into subpatterns as before and create
a set of transformed subpatterns by applying all valid combinations of non-local
moves to each subpattern. Matches of all of these patterns with the text can be
found with no effect on time complexity as the number of such moves is constant
per subpattern. For each boundary between two adjacent subpatterns, we will
now need to compute the number and type of non-local moves that would occur
in a globally optimal alignment between pattern and text. This allows us to select
the appropriate transformed subpatterns at each alignment and recombine the
results.

To make the explanation concrete, we show how this general method can be
applied to the Swap-Mismatch problem. The related Swap matching and Overlap
matching problems, first addressed by Amir et al. [4] can also be solved by the
method detailed above although in the latter case a slight generalisation of the
notion of a move is required.

Swap-Mismatch. Swap-Mismatch distance between equal length strings is the
minimum number of moves required to transform P into T (referred to as
cost(P, T )). The valid moves are swap (swap two adjacent characters) and mis-
match (replace a character). As overlapping swap and mismatch operations can
always be replaced by two mismatches at no extra cost, the minimal cost transfor-
mation need never apply two moves to the same character. On non-equal length
strings, at right alignment i, the distance is defined to be cost(P, T [i−m+1, i]).
The solution we present gives an O(

√
m log m) time per character solution if

applied to the best known offline method of Amir et al. [5].
Let lj and rj be the leftmost and rightmost indices of subpattern Sj respec-

tively (split as before). Following the Split and Correct method, we define a set of
‘boundary indicators’ for all 0 < j < s: bij = 1 if P [rj ] and P [lj+1] are swapped
in some minimal cost transformation of P into T [i−m + 1, i] and 0 otherwise.
Trivially, we let bi0 = bis = 0 for all i. The remainder of the section explains
first how to use these indicators and secondly, how to compute them efficiently.

A black box solution using boundary indicators. For any subpattern Sj , the
valid non-local moves are swaps at each end, giving a total of four transformed
subpatterns. For x, y ∈ {0, 1}, let S

(x)(y)
j = P [lj + x, rj − y] represent these

transformed subpatterns. We ignore the swapped characters at the boundaries
at this stage as the costs incurred by them will be accounted for by the boundary
indicators. Recall that in the black box method of [8] there is a final stage
of accumulation of the distances found between subpatterns and the different
substrings of the text into an auxiliary array C. To compute the swap-mismatch
distance from S

(x)(y)
j to T for all j and all x, y we apply this method to an

offline swap-mismatch algorithm but modify this final stage. Having computed
the distances for each S

(x)(y)
j , we use the boundary indicators to pick which

S
(x)(y)
j to include in the sum at each alignment and therefore to add to C.
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Lemma 2 shows that we are therefore able to calculate cost(P, T [i −m + 1, i])
at each right alignment i with additive O(log m) time per alignment.

Lemma 2. At right alignment i, the distance from P to T is equal to
∑(s−1)

j=1 bij

plus for each j, the distance from S
(bi(j−1))(bij)
j to T at right alignment i−m +

rj − bij.

Computing the boundary indicators. Lemma 3 allows us to find the boundaries
across which swaps will occur in an optimal transformation. Both conditions can
readily be checked in constant time per character. In the overall algorithm, we
wish to compute boundary indicators for O(log m) different boundaries, requiring
O(log m) time per text character. We define y(xy)∗ to be a “y” followed by zero
or more copies of “xy”.

Lemma 3. If n = m, there is an optimal swap-mismatch transformation of P
into T where a swap occurs across the boundary between P [i] = x and P [i+1] = y
iff

1. P [i] = T [i + 1] and P [i + 1] = T [i]
2. There exists an odd 	 such that T [i−	+1..i] = y(xy)∗, P [i−	+1..i] = x(yx)∗

and P [i− 	] �= y or T [i− 	] �= y

Overall, the algorithm performs three steps, all in pseudo-realtime:

1. Calculate matches of T against S00
j , S01

j , S10
j and S11

j for all j at all align-
ments. This is done using the black box method applied to the offline method
of Amir et al. in O(

√
m log m) time per character.

2. Calculate the boundary indicators at all alignments. This is computed using
the method above in O(log m) time per character.

3. Combine the results of steps one and two using the relation stated in Lemma
2. This is computed directly and requires O(log m) time per character.

Theorem 2 gives the running time for pseudo-realtime swap-mismatch.

Theorem 2. The swap-mismatch problem can be solved pseudo-realtime in
O(
√

m log m) time per character and O(m) space.

4.3 Split and Feed

The final technique that we discuss is termed ‘Split and Feed’. Here we con-
sider pattern matching problems where the non-local nature of the distance
function affects the alignment of subpatterns. Where the distance function is
local, the positions of alignments of all subpatterns is fixed for a given align-
ment of the whole pattern and text. However for problems where insertion and
deletion are permitted, for example, this no longer holds and we can no longer
apply the previously described Split and Correct method. Consider matching a
pattern P = A||B against some text T where A and B are substrings. Under
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such distance functions, optimal matches of P against T may be composed of
sub-optimal matches of A and B. Edit distance and the k-differences problem
have this property. Therefore, we cannot compute matches of P by separately
computing matches of its sub-patterns.

As before the method splits the pattern, P , into sub-patterns,
P = S1||S2||S3 . . . ||Ss. The overall idea of the method is to iteratively use the
distances from Rj−1 = S1||S2|| . . . ||Sj−1 to T to compute the distances from
Rj = S1||S2|| . . . ||Sj−1||Sj to T 1. We refer to this process as ‘feeding’ the re-
sults from distances to Rj−1 into the input of the computation of distances
to Rj . The computation associated with Rj is termed level j. Note that level
s computes distances against Rs = P as required. This feeding of results en-
sures that optimal matches composed of sub-optimal sub-pattern matches are
computed correctly. We motivate the Split and Feed method by considering a
pseudo-realtime solution for the k-difference problem.

k-differences. The edit distance between two strings is the minimum number of
moves required to transform P into T . We refer to this distance as cost(P, T ).
The valid moves are insert (insert a character), delete (delete a character) and
mismatch (replace a character). In the pattern matching case, we define an array
Cost: at right alignment i, the distance Cost(P, T )[i] = min�<i cost(P, T [	, i]).
The k-difference problem is to output the distance at all positions i where
Cost(P, T )[i] ≤ k, we call this a match. We also refer to a match of P as short-
hand for a substring of T that P can be transformed into in ≤ k moves. Observe
that both insert and delete operations are non-local and affect alignment of
other characters.

A straightforward approach to solving this problem would split the pattern
into halving lengths and consider each separately. However, even if a solution for
the previously mentioned problems were found, there is an added difficulty we
have to consider. Subpatterns much shorter than k still require text partitions
that are Θ(k), increasing the overall time complexity of the algorithm. As a
result we insist that the smallest subpattern has size larger than k. However
we are now required to carry out extra work in order to find the distances that
include this final subpattern. We assume throughout that k ≤ m/8. If this is not
the case then the direct dynamic programming solution runs in O(m) ∈ O(k)
time per character without modification.

Our solution splits the pattern into subpatterns of halving length S1, S2, S3 . . .
Ss so that P = S1||S2||S3 . . . ||Ss. In this case s is selected to be largest integer
so that |Ss| ≥ 4k. The final subpattern, Ss, is therefore of size 4k ≤ |Ss| < 8k.
As discussed in the method overview, computation occurs in levels where level
j computes the distances from Rj = Rj−1||Sj to T using the distances from
Rj−1 = S1||S2|| . . . ||Sj−1 to T .

Level j can also be viewed as computing distances from Sj to T but incorpo-
rating a starting cost array. The starting cost array for level j gives the cost of
beginning a match of Sj at each left alignment (remembering that the output is
in terms of right alignments). We let the starting cost at left alignment i equal
1 Where R1 = S1.
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the distance from Rj−1 to T at right alignment (i− 1). The distances computed
from Sj to T using this starting cost array can be shown to equal the distances
from Rj to T . Intuitively, this states that a match of Sj must be proceeded
directly by a match of Rj .

A modification to the hybrid dynamic programming solution of [10] allows us
to compute these distances offline in O(|Sj |k) time if the portion of the text we
are considering is of length O(|Sj |). We will use this modified offline algorithm
as a tool in our pseudo-realtime algorithm, distributing its work over the time
taken for portions of the text to arrive. Details of the modification are left for
the full version of the paper.

We are now able to describe the structure of the pseudo-realtime k-difference
algorithm.

Feeding one level into another. For all levels j < s, we split T into partitions of
length 7|Sj |/4 with overlap 3|Sj |/2. We will ensure that Cost(Rj , T )[i] has been
computed when T [i+5|Sj|/8] arrives. As k < 4|Sj|, if a match of Rj = Rj−1||Sj

ends in T [y−|Sj|/2+1, y] for some partition ending at y then the corresponding
match of Rj−1 must end in T [y−7|Sj|/4+1, y−3|Sj|/4]. This splits the partition
into two disjoint sections marked in Figure 2 as matches start and matches end.
To compute distances from Rj in the matches end section using the modified
hybrid algorithm we only need the distances from Rj−1 in the matches start
section. Computing Rj distances in the matches end section is sufficient as the
text partitions overlap.

(y + |Sj |/8)

y(y − |Sj |/2)

(y − 3|Sj |/4)

(y − 7|Sj |/4)

matches start matches end

Computation begins
Computation ends

Fig. 2. The structure of a text partition for subpattern Sj ending at position y

Using Cost(R(j−1), T )[y−7|Sj|/4+1, y−3|Sj|/4] as the starting cost array, text
partition, T [y− 7|Sj |/4+ 1, y] and pattern Sj we can compute Cost(Rj , T )[(y−
|Sj |/2+1, y] in O(|Sj | k) time (offline) using the modified hybrid method above2.

We begin computation as soon as the last text character of the partition is
received. However, we distribute the work over the time allocated to the next
|Sj |/8 character arrivals. As we only process one partition at a time, we use O(k)
time per text character (per level). This computation requires that level j − 1
has outputted Cost(R(j−1), T )[y − 7|Sj|/4 + 1, y − 3|Sj |/4] before character y
is received. In the worst case, a level j partition ending at y needs the output
of the level j − 1 partition ending at y − |Sj |/2 as shown in Figure 3. This
partition will finish computing after |Sj−1|/8 = |Sj |/4 characters arrive which is

2 For j = 1, we let R0 = ∅ (the empty string) so that Cost(R0, T )[x] = 0 for all x.
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matches start . . . end

level i computation begins
level i computation ends

matches start matches end

level i − 1 computation ends

Fig. 3. Alignment of a level i − 1 partition (above) and a level i partition (below)

before character y is received. As a result, computation of the relevant section
of Cost(T, R(j−1)) completes before it is needed by level j.

The final level of computation. The aim of this stage is to produce the bottom
|Ss| + 1 rows of the dynamic programming table for the edit distance between
P and T so that we can output Cost(P, T )[i] when T [i] arrives. Level (s − 1)
provides us with the top row of this table in the form of Cost(R(s−1), T ). If
a match of P ends at right alignment i, in the worst case, the corresponding
match of prefix R(s−1) ends at position i − |Ss| − k ≤ i − 5|Ss|/4, for example
where there are k inserts into Ss. Therefore, we only need Cost(R(s−1), T )[x] for
x < i− 5|Ss|/4 to compute Cost(P, T )[i] which we have before T [i] arrives from
level s − 1. Use of this fact, coupled with careful work scheduling allows us to
fill the dynamic table a constant number of columns per text character so that
column i is filled as T [i] is seen. Cost(P, T )[i] is then the value of the bottom cell
of column i. Each column is of height O(Ss) ∈ O(k) as |Ss| ≤ 8k, so we perform
O(k) work per character as required.

Theorem 3. The time complexity for the pseudo-realtime k-differences algo-
rithm is O(k log m) per character. Each level requires O(|Sj |) space, giving a
total of O(m) space.

Combining Split and Feed and Split and Correct. The k-difference problem with
transpositions allows an additional move, transposition; a restricted swap which
can only occur before all other moves types. This problem can be solved offline in
O(kn) time by a simple modification of the method of Landau and Vishkin [10].
Although no single method we have discussed will convert this algorithm to be
pseudo-realtime, by applying the Split and Feed and Split and Correct methods
simultaneously an O(k log m) time per character algorithm results.
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Abstract. In the approximate dictionary search problem we have to
construct a data structure on a set of strings so that we can answer to
queries of the kind: find all strings of the set that are similar (according
to some string distance) to a given string. In this paper we propose the
first data structure for approximate dictionary search that occupies op-
timal space (up to a constant factor) and able to answer an approximate
query for edit distance “1” (report all strings of dictionary that are at
edit distance at most “1” from query string) in time linear in the length
of query string. Based on our new dictionary we propose a full-text index
for approximate queries with edit distance “1” (report all positions of all
sub-strings of the text that are at edit distance at most “1” from query
string) answering to a query in time linear in the length of query string
using space O(n(lg(n) lg lg(n))2) in the worst case on a text of length n.
Our index is the first index that answers queries in time linear in the
length of query string while using space O(n · poly(log(n))) in the worst
case and for any alphabet size.

1 Introduction

In this paper we are interested in solving the problem of approximate search
queries on dictionaries of strings. In this problem, we are given an input string
and we must report all the strings of the dictionary that are similar to that
string in some specified string distance. In our paper we are interested in the
most commonly used distance for this problem which is the edit distance. The
edit distance between a string x and a string y is the minimal number of edit
operations that must be applied to string x in order to obtain string y (or
equivalently edit operations that permit to transform string x into string y). In
the so-called Levenstein distance three operations are considered: deletion of a
character, insertion of a character and substitution of a character by another. In
the variant known as the Damerau-Levenshtein distance an additional operation
is considered which is the swap of two consecutive characters. Another edit error
that occurs frequently in queries involving multiple words consists in merging
two consecutive words into a single one.

The main contribution of this paper is a dictionary construction that effi-
ciently supports queries where we have to report all strings that are at edit

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 154–167, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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distance at most “1” from a given query string. Our dictionary could handle all
the five edition errors mentioned above. However for lack of space and ease of
presentation, we will limit the presentation only to the three first errors.

As far as we know our solution is the first solution for this problem that
answers to queries in time proportional to query string length while using space
that is only a constant factor larger than space occupancy of a raw dictionary.
Both query time and space usage of our dictionary are worst case bounds and
do not include an extra factor depending on alphabet size.

Based on our dictionary for edit distance “1”, we build an index for approx-
imate search on a text of length n with edit distance “1”. The index occupies
space O(n(lg(n) lg lg(n))2) and answers queries in time proportional to query
string length.

1.1 Preliminaries

Our model is the RAM model with word size w. We assume that pointers to
manipulated elements (manipulated elements can be strings, characters or inte-
gers) fit in a machine word. That is if N is the number of manipulated elements,
then lg(N) < w. We also assume that standard operations like shifts, division
and multiplication all take constant time.

In our problem, we have a collection S of n strings of characters (elements of
S are sometimes referred as keys) where each character occupies b bits and we
assume that b = O(w) (we note the size of alphabet by α where α = 2b). This
assumption is made so that we can manipulate a character in O(1) time. However
character length can be as small as 1 bit. The total number of characters in all
strings is denoted by m.

1.2 Our Results

Our main result is the following theorem which is proved in section 3.

Theorem 1. For any set S of n strings of total length m characters where each
character is of length b bits, we can construct a dictionary occupying space O(mb)
bits and supporting approximate queries that return all strings of S that are at
edit distance at most “1” from a string p in time O(k + occ) where k = |p| and
occ is number of reported strings. Expected construction time of our dictionary
is O(m). Additionally our dictionary supports the counting of number of strings
at distance at most “1” in time O(k).

The following theorem is proved in section 4.

Theorem 2. For any text of n characters each of length b bits, we can build
an index occupying space O(n(lg(n) lg lg(n))2b) bits and supporting queries that
return all positions of all sub-strings of the text that are at edit distance at most
“1” from a string p in time O(k + occ) where k = |p| and occ is the number of
reported strings.
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1.3 Related Work

The problem of approximate string matching has been extensively studied. We
only describe most significant results with close to optimal query times. For
the approximate dictionary search over edit distance “1”, we mention the work
in paper [4] which proposes two solutions to solve the problem of approximate
dictionary search over hamming distance with one error. The first solution solves
the problem only over binary alphabet (alphabet of length 1 bit) in time O(|p|+
occ) while using space O(m) words. The solution consists essentially in using a
compacted trie that stores all strings that are at hamming distance “1” from
the strings of the original dictionary. While this solution answers to queries in
the same time as our solution, it has no known construction algorithm that runs
in reasonable time. When extended naively to alphabets of size α, query time
will remain the same, but the space usage becomes O(mα) words which will be
prohibitive for very large alphabets. The second solution of [4] answers to queries
in time O(|p|+occ+lg(n)) for binary alphabets. This solution has some similarity
with our work in that it uses two tries to solve the problem. Similarly to the first
solution, the second solution presented in [4] deals only with hamming distance,
but it can easily be extended to work with edit distance. Its space usage is O(m)
words while we use only O(mb) bits. If b is constant, space usage of that solution
will thus be a factor lg(n) away from optimal. Additionally the second solution
presented in [4] answers to queries in time O(|p| + occ + lg(n)) only for binary
alphabet (alphabet {0, 1}). For non binary alphabets of size 2b = α, the query
time becomes O(|p| · b + occ + lg(n)). Peter Brass suggests in [3, section 8.2], the
use of hashing instead of the binary search used to answer queries in the second
solution of [4]. With this modification, query time becomes O(|p|α + occ) which
is the same as our solution for constant time alphabets, but prohibitive for large
alphabets.

Another solution for binary alphabet is presented in [5]. The solution pre-
sented there deals also with Hamming distance but strings have fixed length L.
Query time of the solution is better than ours in that it is only O(L/w). How-
ever unlike our solution, the space usage is not optimal as it uses O(Ln lg(L))
bits supposing that all strings are of same length L. By contrast our solution
uses only O(Ln) bits of space on a binary alphabet. Moreover the solution in [5]
can only return a single matching string from the dictionary while our solution
returns all matching strings.

Another way to solve approximate dictionary search problem is through the
use of solutions for the more general problem of approximate full-text indexing.
All known solutions for approximate full-text indexing for edit distance “1” incur
at least a factor Ω(lg(n)) in space usage and/or an additive Ω(lg(n)) term in
query time. We can conclude that those solutions are not competitive with our
solution for approximate dictionary search problem.

We now compare those solutions with our solution for full-text indexing prob-
lem with edit distance “1”. The only solution (we are aware about) for that
problem with query time O(|p|+occ) that uses reasonable space is the solution de-
scribed in [11] which uses O(n(α lg(n))) words of space which for small alphabets
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is lower than space used by our solution which is O(n(lg(n) lg lg(n))2b) bits. How-
ever in solution of [11] either the query time or the space bound hold only on
average. By contrast our bounds are both worst case bounds.

2 Tools

We now present the tools that will be used for our construction.

2.1 Minimal Perfect Hashing

Given a set S of n elements, a minimal perfect hash function is a function that
maps every element of the set S to a distinct number in interval [0, n−1]. It is a
well known result that a minimal perfect hash function occupying O(n) bits can
be constructed in O(n) expected time so that a query takes time O(1). Examples
of optimal theoretical and practical solutions are presented in [10] and [2].

2.2 Exact String Dictionary with Minimal Perfect Hashing

Given a set S of n strings of total length m, using minimal perfect hashing
we can construct a dictionary (for exact lookups) that uses optimal space and
supports exact lookups in time proportional to the length of input string. That
is, the exact dictionary occupies O(mb) bits of space and an exact lookup for
a string of length k takes time O(k). The first step of our construction consists
in building a minimal perfect hash function on the set S. This minimal perfect
hash function (which we note by mphf ) will map each string of S to a distinct
number in interval [0, n−1] (usually construction of mphf involves a preliminary
step that consists in the use of a hash function that maps the strings to integers
of O(w) bits). We store the strings one after another in a consecutive array T in
the order given by the mphf. If we note by si the string mapped to the number
i by the mphf, then the first character of string si in T will be given by the
formulae

Position[si] =
j<i∑
j=0

|sj |

The space used by the array T is mb bits. In order to recover the position of
a string in T , we use a prefix-sum data structure that will give for any i the
sum of lengths of all strings mapped to numbers below i by the mphf. The data
structure we use is the one described in papers [8] and [9] which will use space
n(�lg(m/n)� + 2 + o(1)) = O(mb) bits and will permit to recover position of
string si in constant time.

2.3 Retrieval Lists Dictionary

We have a set S′ = {x1, x2, . . . , xn′} of n′ keys. We also have a collection of
non empty lists L = {l1, l2, . . . , ln′} where each li is a list of elements that we
associate with the key xi from S′. The total number of elements stored in the
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lists is m′ and each element is of length b bits. We wish to construct a data
structure that uses space O(m′b) bits while supporting the following operations
in constant time:

– list element(x, i). This operation returns element number i (elements of the
lists are numbered from 1) of the list associated with key x if x ∈ S′. The
returned element is undefined If x /∈ S′.

– size of(x). This operation returns number of elements in the list associated
with x if x ∈ S′. The result of operation is undefined if x /∈ S′.

We call this problem by retrieval lists dictionary problem as we aim to retrieve
elements of a list associated with a key x without the ability to check whether
x ∈ S′. We will give a simple construction for the retrieval lists dictionary occu-
pying O(m′b) bits of space. This solution is based on prefix sum data structure
and perfect hashing and supports the two operations in constant time. The solu-
tion has some similarity to the solution for exact string dictionary described in
subsection 2.2. The first step is to construct a minimal perfect hash function on
the set S′. We note by xi the element of S′ mapped by mphf to position i. We
store elements of each list contiguously in an array T ′. The position of element
number j of the list associated with key xi will be given by

Position(i, j) = (
k<i∑
k=0

|xk|) + j

The space used by the array T ′ is of course m′b bits. Similarly to 2.2, we also use
a prefix-sum data structure in order to recover the position of the first element
of each list in the array T ′. This prefix-sum data structure will thus use space
n′(�lg(m′/n′)�+ 2 + o(1)) bits. The total space is thus O(m′b). The traversal of
the list associated with a key q will begin by querying the mphf which will give
a number i. By querying the prefix-sum data structure we will obtain a position
pi. The element number j of the list associated with q will thus be located at
position T [pi + j]. To get the number of elements in the list associated with key
q, we simply query prefix-sum data structure with the numbers i and i+1 giving
the numbers pi and pi+1. The number of elements in the list associated with q
will simply be pi+1 − pi.

2.4 Succinctly Encoded Tries

We now describe another standard tool that will be used for our solution. Given a
collection of strings S of total length m characters (mb bits), we wish to construct
a trie on S that occupies space O(m) characters (O(mb) bits) and that can be
traversed in time O(|p|) for a given pattern p. For a query on a pattern p we
require that the trie returns a unique integer identifier for each node traversed
during the lookup for the pattern |p|. This identifier must occupy O(w) bits of
space. This problem can be solved through the use of a data structure described
in [1]. The solution for cardinal trees presented in [1] is perfectly suitable for our
purpose as our trie can be considered as a cardinal tree. The space usage and
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traversal time for the trie from solution in [1] are both optimal. Additionally
the data structure is able to return a unique integer in the range [1, c] for each
traversed node where c is the total number of nodes. We note that the numbers
in the range [1, c] fit in O(w) bits (This is implied by the fact that c < m and
lg(m) = O(w)).

3 Data Structure

We are given a collection S of n strings (keys) of total length m characters. We
note the query string by q and we note its length by k = |q|. The straightforward
solution to answer approximate queries on a string q is to query exhaustively for
all strings that can be obtained by one edit operation on the string q. We notice
that we have k candidate strings that can be obtained by deleting one character
from q. We also have kα and (k + 1)α strings that can be obtained through
substitutions and insertions respectively. If an exact dictionary were used we
would spend time O(k) time to answer each query and thus a total time O(k2α)
to answer queries for all candidate strings.

The first trick that we use to reduce query time consists in reducing the
number of candidate strings for insertions and substitution from O(kα) to O(k),
by using a retrieval lists dictionary that gives us a candidate character for each
possible position of insertion or substitution in the string q.

Now that we have reduced number of candidate strings to just O(k), we will
exploit the fact that candidate strings are only slightly different from string q in
order to get query time O(k). Our approach will consist in doing a preprocess-
ing step that involves the string q, taking time O(k), after which, querying for
each candidate string will take time O(1). Checking for each candidate string
involves two steps: computing a hash value that points to a string s of the dictio-
nary and comparing that pointed string with candidate string. We will see that
using standard string hash functions, the computation of the hash value of each
candidate string can be done in time O(1) using some arrays that have been
initially computed on string q. What remains is to improve query time of the
second step which is to compare candidate string to the string s located (by the
hash value) in the dictionary. One potential solution would be to use string hash
functions that produce long hash values and store the hash value associated with
each string of dictionary. Then a comparison of candidate string with string s
would be reduced to the comparison of their respective hash values. However this
would only work with high probability as there is still some probability that the
candidate string and the string s have the same hash value without being equal.
The idea we use to improve comparison time in a deterministic way relies on the
observation that we can compare two blocks of u characters where ub = O(w) in
just O(1) time. This implies that strings of less than u characters can be com-
pared in time O(1). What remains is thus to improve comparison time for long
strings. Our solution for that is to compute signatures of all prefixes and suffixes
of strings in the dictionary whose lengths are multiple of u. Those signatures will
occupy less than w bits, and thus total space used by signatures will be of the
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same order as the space occupied by the strings. The comparison of a candidate
string will involve comparison of signatures of a prefix and a suffix of q with
signatures of a prefix and a suffix of s along with a constant number of compar-
isons involving blocks of less than 2u characters. In order to get deterministic
signatures for prefixes and suffixes, we will use a trie and a reverse tries built
on the set of strings in the dictionary, which will be able to return deterministic
signatures for any prefix and suffix of every string in the dictionary.

Our data structure will use the following components:

– A trie Tr built on the set S using data structure from [1]. The main role
of this trie is to permit to compare prefixes of keys in S with prefix of any
string q just by comparing the identifiers returned by the trie for the two
strings. This is the essential part of our algorithm that permits to achieve a
O(1) query time bound for each candidate string.

– A trie Tr built on the set S using data structure from [1]. The set S is the
set of all strings of S written in reversed order. The main role of this trie is
to permit to compare suffixes of keys in S with suffix of any string q just by
comparing the identifiers returned by the trie for the two strings.

– A retrieval lists dictionary constructed using the data structure described
in 2.3. This retrieval lists dictionary will associate a list of characters with
pairs of integers (l, r) both in the range [0, m].

– A dictionary based on minimal perfect hashing constructed according to
general ideas described in subsection 2.2. The details of the construction of
this dictionary will be given in next subsection.

3.1 Construction

Construction of the tries. The construction of the trie Tr and reversed trie
Tr will both take time O(m). The two tries will both use O(mb) bits which is
optimal. We note that traversing the trie or the reverse trie for a pattern p will
return at most |p| identifiers in the range [1, m] (the maximal number of nodes
in the trie is m) corresponding to the traversed nodes.

Construction of the lists dictionary. We now turn out to the construction
of the retrieval lists dictionary. We process successively every string s of S. Let k
be the length of string s. We will store two temporary arrays L[0..k] and R[0..k]
of integers in the range [0, m]. We set L[0] = R[0] = 0. We first traverse the trie
Tr for the string s. The traversal will take time O(k). During the traversal of the
trie, we store in the cell L[i] the identifier of the node reached at step i (steps
are numbered from one). We do a symmetric processing to generate elements
R[1..k]. We traverse the reverse trie Tr for the string s (the reverse of string s)
and then we store the identifier of the node reached at step i in the cell R[i].
The construction of the retrieval lists dictionary will proceed in the following
way: for each string s of length k for which we have computed arrays L and R
we add the character s[i] to the list corresponding to the pair (L[i− 1], R[k− i])
for each i such that 1 ≤ i ≤ k. In fact we insert elements in a lists dictionary
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implemented using a temporary dynamic hash table (implemented using some
dynamic hashing technique that supports insertions in constant expected time)
and linked lists. The temporary storage of the dynamic hash table and associated
linked lists will be O(m) words of space. Later we can construct our retrieval
lists dictionary from the temporary hash table and linked lists using the method
described in 2.3 which will take expected O(m) time. The space occupied by the
retrieval lists dictionary will then be optimal O(mb) bits.

Construction of perfect hashing based dictionary. We finally turn out
to the implementation of perfect hashing based dictionary. The first step in our
construction is to map our set S of n strings to distinct hash values in the range
[0, P − 1] for a prime P such that P > mn2 and P > 2b. To that end we will
use a hash function h parametrized with a randomly chosen integer t such that
t ∈ [0, P − 1]. For a given string s of S of length k, we compute the hash value
associated with s using the following formulae: h(s) = (s[1]⊗t)⊕(s[2]⊗t2)⊕· · ·⊕
(s[k]⊗ tk) where additions and multiplications are done modulo P (characters of
string s are considered as integers in the range [0, P − 1]). Computation of hash
values for all strings will thus take time O(m) (we can compute each hash value
in optimal time using Horner scheme). Once we have computed the hash values
associated with all strings of S, we check whether we have collisions between
the hash values generated for the keys of the set S (we have at least one pair of
strings with the same hash value) which will happen with probability at most
1/2 (see appendix A for justification). If this is the case, we repeat computation
of the set of hash values associated with keys of the set S using new randomly
chosen value for t until we have no collision. The probability that a given t
maps keys without collisions is at last 1/2, which means that we will have to
do an expected O(1) attempts before succeeding. The expected total time for
generating the hash values without collisions will thus be O(m) as each attempt
takes O(m) time and we do expected O(1) attempts. Once we have mapped all
strings of S to distinct numbers, we will use those numbers as keys to build our
mphf.

The final detail that we have to deal about is how to store our strings in the
dictionary. We will deal differently with short and long strings (the reason for
this distinction will become clear in next subsection). Short strings (strings of
length ≤ w) will be stored unmodified in the dictionary. For a long string s of
length k > w we will store a modified string s′ of length 3k characters (3kb bits).
We divide the string s′ into three consecutive parts s′1,s

′
l and s′r each of length

kb bits. The string s′1 will contain a copy of the string s. We now describe how
we set the strings s′l and s′r. To that end we first set a value u = � lg(m)

b �. We
consider the strings s′l and s′r as arrays of k′ = �k/u elements of ub bits each
(note that lg(m) ≤ ub < lg(m)+ b) ignoring the padding bits (the last kb− k′ub
bits). We set s′l[i] (elements of s′l and s′r are numbered from 1) to the value L[ui]
(the identifier of the node reached at the step ui when traversing the trie Tr
for the string s) and we set s′r[i] to the value R[ui] (the identifier of the node
reached at the step ui when traversing the trie Tr for the string s).
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Of course we will store our strings (both short unmodified and long modified
strings) in a contiguous array in the order given by the mphf, and we use prefix-
sum data structure to store locations of each string.

Satellite data. In many applications we may need to associate a satellite data
with each string of the dictionary. This can easily be done in our case, simply
by adding a table of n cells indexed by mphf used for the dictionary.

3.2 Queries

We are given on input a string q of length k. We first compute the string q which
is the reverse of string q. Then we compute the arrays L[0..k] and R[0..k]. We
first set L[0] = R[0] = 0. We traverse the trie Tr for the string q and we put in
cell L[i] the identifier of the node reached at step i. If the search stops at step
i we will set to the special value ⊥ every cell L[j] for j ∈ [i + 1, k]. Likewise we
set cells of array R by traversing the trie Tr for the string q and putting in cell
R[i] the identifier of the node reached at step i. If the search stops at step i we
will set to the special value ⊥ every cell R[j] for j ∈ [i + 1, k].

We also compute three arrays noted by At[0, k + 1], F [0..k] and G[1..k + 1]:

1. The array At will store all powers of t up to tk+1. We first set At[0] = 1.
Then we set At[i] = At[i− 1]⊗ t for each i in interval [1, k + 1].

2. To generate F we first set F [0] = 0. Then we set F [i] = F [i−1]⊕(q[i]⊗At[i])
for each i in the interval [1..k].

3. To generate G we first set G[k+1] = 0. Then we set G[i] = (G[i+1]⊕q[i])⊗t
for each i in the interval [1..k].

It can easily be seen that time required for computing each of the five arrays is
O(k). We have four kinds of strings in dictionary that could match a query string:
a string that is at distance “0” (exact match) and strings of the dictionary that
can be obtained with just one of the three errors. We only describe matching of
strings obtained by one kind of error (insertion). The remaining types of errors
which are quite similar to the one we describe here are deferred to the appendix:

1. String at edit distance “0”. In this case we simply probe the dictionary for
the string q. We know that h(q) = (q[1]⊗At[1])⊕· · ·⊕(q[k]⊗At[k]) = F [k] =
G[1]. Probing the dictionary will return a string s′. If it is a short string (s′

is a short string if its length is less than w) we set s to to s′, otherwise (s′

is a long string and it length is at least 3w) we set s to be the first |s′|/3
bits of s′. Now we return the string s as a match if and only if we find that
s = q′. Comparison between s and q′ takes O(k) time.

2. Strings obtained by inserting one character in q. We will do k + 1 steps for
i ∈ [0, k]. At each step i we probe the retrieval lists dictionary for the list
associated with pair (L[i], R[k−i]) if and only if L[i] �=⊥ and R[k−i] �=⊥ (we
suppose we are inserting a character after position i). To check for validity
of returned list, we only need to check for its first element. If first element is
valid we conclude that the list really exists and that all remaining elements
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are also valid. Let c be the first element of the list associated with pair
(L[i], R[k−i])(c is of course a character). We should now probe the dictionary
for the string q′ = q[1..i]cq[i + 1..k]. We have h(q′) = F [i]⊕ (c⊕G[i + 1])⊗
At[i+1]. As previously we use h(q′) in order to query the mphf. Then we use
the position returned by the mphf to probe the dictionary. If the returned
string s′ is a short string, we can directly compare it with q′ in O(1) time
and return a match in case they are equal (this comparison takes O(1) time
as the two strings are of length O(w)). If it is a long string, we divide s′ into
three equal parts s′1, s′l and s′r. What we need now is to be able to compare
strings s′1 and q′. However we can not compare s′1 and q′ in O(1) time as
they do not fit in a constant number of words. In order to compare s′1 and
q′ in constant time we will use the strings s′l and s′r which are considered as
vectors of elements of length ub ≥ lg(m) bits each. We set the two variables
lq′ = � i

u and rq′ = �k−i
u . We will return a match if and only if the following

conditions are all met:
– Length of s′ is 3(k + 1).
– lq′ = 0∨ s′l[lq′ ] = L[lq′ ]. This test is used to check whether the first u · lq′

characters of s′1 and q are the same. This test takes O(1) time. It can
easily be seen that s′l[lq′ ] = L[lq′ ] will hold if and only if the identifier
returned from the trie Tr is the same for the first u · lq′ characters of
s′1 and the first u · lq′ characters of q which can only happen if those
characters are the same.

– q[u · lq′ + 1..i] = s′1[u · lq′ + 1..i]. This test can be done in O(1) time as
we are comparing two strings of length at most (u− 1)b = O(w) bits.

– s′1[i + 1] = c. This test clearly takes O(1) time.
– q[i + 1..k − u · rq′ ] = s′1[i + 2..k + 1 − u · rq′ ]. This test takes O(1) time

as we are comparing two strings of length O(w) bits.
– rq′ = 0∨s′r [rq′ ] = R[rq′ ]. This test is used to check whether the last u ·rq′

characters of s′1 and q are the same. This test takes O(1) time. It can
easily be seen that s′r[rq′ ] = R[rq′ ] will hold if and only if the identifier
returned from the trie Tr is the same for the last u · rq′ characters of
s′1 and the last u · rq′ characters of q which can only happen if those
characters are identical.

We emphasize that at each step i, we need only to check for the string obtained
by inserting at position i the first character of the list returned by retrieval lists
dictionary. If we have a match, we can continue to retrieve strings obtained
by inserting remaining characters from the list at position i and we are sure
to have a match for those obtained strings. That is because the fact that the
first returned character was valid means that there exists a list associated with
the pair (L[i], R[k − i]) and so all elements of the list are valid. Reporting each
additional element of the list takes O(1) time.

Checking for the two remaining types of errors will also take O(k) time. The
procedure for checking those errors is similar to the procedure for checking for
insertion. For completeness the procedure for checking for those two kinds of
errors is described in appendix B. Reporting valid strings for each error takes
additional O(1) time per element. Thus the total query time is O(k + occ).
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Counting queries. Counting the number of matching occurrences can be done
in time O(k). This is done by summing up the count of matching strings from
each kind of error. For deletions, we can have at most k matching strings and
checking for each candidate string takes O(1) time. For insertions and substitu-
tions we need to do k + 1 and k steps. At each step we need only to check first
element of a list returned by retrieval lists dictionary and if this element is a
matching element, we add the size of the list (obtained using size of operation)
to the total count of matching strings.

4 Approximate Full-Text Indexing with Edit Distance
“1”

In the approximate full-text indexing problem, we have to build a data structure
on a text of length n so that we can answer to queries of the kind: find all loca-
tions in the text of strings that are at prescribed distance from a string q. Our
data structure for approximate dictionary lookups for edit distance “1” can be
used to get an improved solution for full-text indexing with edit distance “1”. For
that we combine our approximate dictionary with solution from [6]. We construct
the index of [6] which uses O(n lg(n)) words of space (which is O(n lg(n)2) bits as
we have w = Θ(lg(n)) with query time O(|q|+ lg(n) lg lg(n)+ occ). We select all
sub-strings of the text of lengths up to lg(n) lg lg(n) characters, and store them
in our approximate dictionary which will thus store at most n(lg(n) lg lg(n))
strings. Strings that appear more than once in the text are stored only once in
the dictionary. We associate with each string (as satellite data) in the dictio-
nary a pointer to a vector that stores all locations where string appears in the
text. Each vector pointer occupies lg(n) bits and each string occupies at most
lg(n) lg lg(n) characters making a total space usage of O(n(lg(n) lg lg(n))2b) bits
for the dictionary. We can pack vectors of locations of strings into a single con-
tiguous array of O(n lg(n) lg lg(n)) pointers occupying a total O(n lg(n)2 lg lg(n))
bits of space. Summing up space usage of all components of our data structure
we get a total space usage of O(n(lg(n) lg lg(n))2b) bits of space.

To make a query for a string q, we simply check whether |q| > lg(n) lg lg(n)
in which case we use data structure from [6] to solve the query. Otherwise, we
use our dictionary to solve the query.

5 Concluding Remarks

We have described a dictionary that answers approximate queries with edit dis-
tance “1”, in time proportional to length of query strings, while using space that
is only a constant factor away from the raw dictionary. The space usage of our
dictionary is optimal up to a constant factor, but the query time is only optimal
for alphabets of lengths Θ(w) bits. Ideally query time should be proportional to
length of query string expressed in terms of memory words and not in terms of
number of characters. Thus, in the case of constant sized alphabets query time
of our dictionary is a factor Θ(w) larger than a hypothetical optimal.
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We can cite few open questions for future work:

– Is it possible to devise a data structure that runs in time O(k/B) in the
cache oblivious model or in the I/O model where B is the block size. A
direct adaptation of our data structure would give queries that run in time
Θ(k). This is the consequence of the fact that a query in our dictionary uses
Θ(k) non contiguous memory probes.

– Is it possible to devise a dynamic version of our data structure with reason-
able update times.

– Is our query time the best possible for data structures that use optimal space.

We now briefly discuss the practicality of our dictionary. The space usage of
our dictionary is upper bounded by 6mb + O(m) bits. We remark that the trie,
reverse trie and the arrays s′l and s′r computed for each long string s are only
used in order to permit checking candidate strings in time O(1). However directly
comparing candidate strings with strings of the dictionary would involve access
to characters that are stored contiguously in memory. This implies that such
comparisons could be done quickly on modern architectures provided that strings
are not too long. This is the case because on modern architectures, execution time
is often dominated by number of probes to non consecutive memory locations. We
can conclude from that,that unless strings are extremely long, we can eliminate
the trie, reverse trie and the arrays s′l and s′r, reducing space to about 2mb+O(m)
bits. This reduces our data structure to just two elements: an exact dictionary
based on minimal perfect hashing and retrieval lists dictionary. We remark that
the lists dictionary will only be useful for large alphabets as for very short
alphabets, we have so few candidates for insertions and substitutions that using
the lists dictionary will not asymptotically reduce query time. We can conclude
from that, that the dictionary presented in this paper is mostly useful for strings
over relatively large alphabets like natural languages or ASCII alphabets.
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A Hash Function for Strings

We now give a brief analysis of the string hash function used for our dictionary.
The reader can refer to [7] for more detailed analysis. The total length of the n
strings of our collection is m, which means that the length of the longest string
is at most m−n+1. The computation of our hash function uses multiplications
and additions modulo P , where P is a prime number chosen such that P > mn2

and P > α. For a string s of S of length k, the hash function is computed
by the formulae h(s) = (s[1] ⊗ t) ⊕ (s[2] ⊗ t2) ⊕ · · · ⊕ (s[k] ⊗ tk), where t is a
number randomly chosen from interval [0, P−1]. For the purpose of hash function
computation, we can consider our strings as polynomials of degree d = m−n+1
over a finite field. It is well known that polynomials over finite field of degree d
can have at most d roots. Thus two distinct strings can hash to the same value
for at most d = m − n + 1 choices of t. Our set has n distinct strings which
means that we have n(n− 1)/2 pairs of distinct strings and each pair of strings
hash values collide for at most m − n + 1 choices of t. Thus we have at most
n(n − 1)(m − n + 1)/2 choices of t that generate at least one collision. So the
probability of having at least one collision for a t randomly chosen from [0, P−1]
is at most n(n−1)(m−n+1)/2

P < n(n−1)(m−n+1)/2
mn2 < 1/2.

B Dictionary Queries for Deletion and Substitution

For completeness, we describe in this section how the dictionary is checked for
strings resulting from one deletion or one substitution:



Faster and Space-Optimal Edit Distance “1” Dictionary 167

1. Strings obtained by deleting one character from q. In this case we will try
to probe the dictionary with every possible string that can be obtained by
deleting one of the characters of q. We have exactly k such strings which
means that we need to spend only O(1) time for each probe to check whether
there is a match or not. More concretely if we wish to probe the dictionary
for string q′ obtained by deleting character number i from q (q′ = q[1..i −
1]q[i + 1..k]), we do the following steps: we first check that L[i − 1] �=⊥
and R[k − i] �=⊥. If this is not true, we immediately conclude that we do
not have a match for the string q′. Otherwise we compute the hash value
h(q′) = F [i−1]⊕G[i+1]⊗At[i−1] in constant time. We can now query the
mphf using the hash value h(q′). Using the position returned by the mphf,
we query the dictionary which will return a string s′. If it is a short string we
can directly compare s′ and q′ in O(1) time (before comparing the strings
we compare their lengths) and return a match in case they are equal. If s′

is a long string, we divide the string s′ into three equal parts s′1,s
′
l and s′r.

What we need now is to compare s′1 with q′ and return a match if s′1 = q′

(recall that s′1 is a copy of a string of S). We set lq′ = � i−1
u  and rq′ = �k−i

u .
We will return a match if and only if the following conditions are all met:
– Length of s′ is 3(k − 1).
– lq′ = 0 ∨ s′l[lq′ ] = L[lq′ ].
– q[u · lq′ + 1..i− 1] = s′1[u · lq′ + 1..i− 1].
– q[i + 1..k − u · rq′ ] = s′1[i..k − 1− u · rq′ ].
– rq′ = 0 ∨ s′r[rq′ ] = R[rq′ ].

It is clear that testing for the candidate string for each i takes O(1) time.
2. Strings obtained by substituting one of the characters of q. The case of

substitution is very similar to that of insertion. First, we check the retrieval
lists dictionary for each pair (L[i− 1], R[k− i]) for i ∈ [1, k] at the condition
that L[i − 1] �=⊥ and R[k − i] �=⊥. Let c be the first element of the list
associated with (L[i − 1], R[k − i]). We let q′ = q[1..i − 1]cq[i + 1..k]. We
have h(q′) = F [i− 1]⊕ (c⊕G[i + 1])⊗ At[i]. We now probe the dictionary
using h(q′). If the returned string s′ is a short one, we directly compare
it with q′ in O(1). Otherwise we decompose s′ into three equal parts s′1,s

′
l

and s′r. We now need to compare s′1 with q′. For that, we first set the two
variables lq′ = � i−1

u  and rq′ = �k−i
u . We will return a match if and only if

the following conditions are all met:
– Length of s′ is 3k.
– lq′ = 0 ∨ s′l[lq′ ] = L[lq′ ].
– q[u · lq′ + 1..i− 1] = s′1[u · lq′ + 1..i− 1].
– s′1[i] = c.
– q[i + 1..k − u · rq′ ] = s′1[i + 1..k − u · rq′ ].
– rq′ = 0 ∨ s′r[rq′ ] = R[rq′ ].

It is clear that checking every condition takes time O(1). Similarly to the
case of insertions, we need to do the check only for first element of the list. If
we do not have a match for the first element, we conclude that the list does
not exist and we stop immediately. Otherwise, we report the first element
and continue to traverse remaining elements of the list without checking in
O(1) time per element and we report each element as a match.
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Abstract. In this paper, we consider a commonly used compression
scheme called run-length encoding (abbreviated rle). We provide lower
bounds for problems of approximately matching two rle strings. Specif-
ically, we show that the wildcard matching and k-mismatches problems
for rle strings are 3sum-hard. For two rle strings of m and n runs, such
a result implies that it is very unlikely to devise an o(mn)-time algorithm
for either problem. We then propose an O(mn+p log m)-time sweep-line
algorithm for their combined problem, i.e. wildcard matching with mis-
matches, where p ≤ mn is the number of matched or mismatched runs.
Furthermore, the problem of aligning two rle strings is also shown to
be 3sum-hard.
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1 Introduction

Run-length encoding (rle) is a very simple and efficient coding scheme of data
compression. It compresses a string into several runs, each run consisting of
identical symbols. A run can be represented by a pair, usually denoted by σi,
where σ is an alphabet symbol and i is its repetition times. For example, string
bbcccddaaaaa can be compressed into the rle format as b2c3d2a5. The most
well-known application of rle is perhaps the fax transmission since most faxed
documents are composed of a great portion of white space and a small portion
of black space [23]. This coding is also widely used in optical character recog-
nition and image compression where the contents usually contain large scales
of identically valued pixels [9]. In 1992, Amir and Benson [2] considered a new
paradigm of accessing the compressed data directly without decompression. In
particular, they considered the pattern matching problem in rle texts. Since
then this has been an active research field, and several papers have been de-
voted to designing efficient algorithms for problems of matching or comparing
the rle strings [2,4,5,6,10,14,16,17,20,21,22,24]. In this paper, we work in the
other direction by providing lower bounds for the approximate matching and
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alignment problems for rle strings. Specifically, we show that the two funda-
mental problems, the wildcard matching and k-mismatches problems, for rle

strings are 3sum-hard.
The 3sum problem is to decide whether there exists a triple a, b, c in a set

of n integers such that a + b + c = 0. Currently, the fastest known algorithms
for 3sum require Θ(n2) time. The 3sum problem serves as a base problem of a
class of problems conjectured to require Ω(n2) time to solve. We say problem
pr is 3sum-hard if every instance of 3sum can be reduced to a constant number
of instances of pr in o(n2) time. Many fundamental problems in computational
geometry are proved to fall in the class of 3sum-hard problems [8,15]. Recently,
Baran et al. [7] show that the 3sum problem on integers and rationals can be
solved in expected o(n2) time in several models of computation.

In this paper, we investigate the following problems. Note that, we assume
the alignment problem is in the linear-gap model with arbitrary scoring matrix.

1. The wildcard matching problem for rle strings (abbreviated
rle-wildcard).

2. The k-mismatches problem for rle strings (abbreviated rle-mismatch).
3. The local and global alignment problems for rle strings (abbreviated rle-

alignment).

We begin, in Section 3, by considering a 3sum-hard problem, called discrete seg-
ment containing points (abbreviated discrete-scp) [8]. We adopt the notation
used in [15]. Given problems pr1 and pr2, we say pr1 ≪f(n) pr2 if every in-
stance of pr1 of size n can be solved by using an instance of pr2 of size O(n)
with additional f(n) time. Thus, problem pr is 3sum-hard if 3sum ≪f(n) pr,
where f(n) = o(n2). In Sections 3, 4 and 6, we basically establish 3sum’ ≪n

discrete-scp ≪n log n rle-wildcard ≪n rle-alignment and discrete-

scp ≪n log n rle-mismatch, where 3sum’ is a variant of the 3sum problem. As
a result, the problems listed above all exist an Ω(mn) barrier, where m and n
are the number of runs of the two input rle strings. In Section 5, we give an
upper bound of O(mn log m) for the combined problem of rle-wildcard and
rle-mismatch. It should be noted that when we prove the lower bounds we
assume that the input strings are over a finite alphabet, whereas the algorithm
we give is capable of handling input strings over an infinite alphabet. Moreover,
our algorithm runs in the extremely weak model, as that of [18], in which the
alphabet is unordered and only equality of symbols can be tested.

2 Related Work and Previous Results

Given two rle strings P and T of m and n runs, respectively. Let M and N
denote the uncompressed string lengths of P and T . The existing fastest algo-
rithms for both the wildcard matching and k-mismatches problems all rely on
the technique of fast Fourier transforms (FFTs). The fastest algorithm for the
wildcard matching problem runs in O(N log M) time [11,13], while the fastest
algorithm for the k-mismatches problem runs in O(N

√
k log k) time [2], which is
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O(N
√

M log M) in the worst case. As for their combined problem, i.e. wildcard
matching with mismatches, there exists an O(N

√
M log M)-time solution by ex-

tending the algorithms given in [1,19]. Very recently, Clifford et al. [12] proposed
an O(Nk log2 M(log2 k + log log M))-time algorithm which is more efficient for
small k. For these problems, we propose in Section 5 a compressed matching
algorithm running in O(mn + p log m) time, where p ≤ mn is the number of
matched or mismatched runs. The advantage of our approach is two-fold. First,
it is a “fully” compressed matching algorithm, meaning that it can cope with
rle strings directly without any decompression. Second, since given two uncom-
pressed strings, one can always compress them into the rle format in O(M +N)
time and then run our algorithm, our result implies an O(M +N +mn+p logm)-
time algorithm, p ≤ mn, for uncompressed strings. For cases where the compres-
sion ratio is good enough, i.e. when O(mn + p log m) is close to O(M + N), our
algorithm is close to the trivial lower bound of O(M +N)-time, and thus outper-
forms all the existing algorithms mentioned above. Furthermore, we give 3sum

reductions to demonstrate that there exists an Ω(mn) barrier in these problems.
On the other hand, for the problem of aligning two rle strings, Mäkinen et

al. [22] and Crochemore et al. [14] independently proposed an upper bound of
O(mN +Mn). A recent work improved the bound to O(min{mN, Mn}) [16]. In
this paper, we give the 3sum-hardness result of the problem, which also suggests
an Ω(mn) barrier.

3 Segments Containing Points on Discrete Lines

The 3sum’ problem defined below is a variant of 3sum, and both problems are
proved linearly reducible to each other [15]. In what follows, we use this problem
as the base problem of our reductions.

Problem 1. 3sum’: Given three sets of integers A, B, and C, each of size n, are
there a ∈ A, b ∈ B, and c ∈ C with a + b = c?

Now we introduce a problem called discrete segment containing points
(discrete-scp), defined formally as below.

Problem 2. discrete-scp: Given a set U of m integers and a set V of n pairwise-
disjoint intervals of integers, where m = O(n), is there an integer number (trans-
lation) u such that U + u ⊆ V ? Here, an interval, denoted by [i, j], i ≤ j, is a
set of consecutive integers {i, i + 1, . . . , j}.

Note that this problem is a discrete version of scp given in [8]. Following the
same paradigm as [8], we show that discrete-scp is 3sum-hard.

Theorem 1. 3sum’ ≪n discrete-scp.

Proof. Let (A, B, C) be an instance of 3sum’, where |A| = |B| = |C| = n.
Assume without loss of generality that A∪B∪C contains only positive numbers.
(Observe that a + b = c if and only if (a + u) + (b + u) = (c + 2u) for any
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integer number u, thus we can perform translations to sets A, B, and C.) Let
d = max{x | x ∈ A ∪B ∪ C}+ 1. We then create two sets U and V , taken as a
corresponding instance of discrete-scp:

U = {10id, 10id + 3d− ci | ci ∈ C, i = 1, . . . , n}.

V = [−10nd + 9d,−5d] ∪A ∪ {3d− b | b ∈ B} ∪ [9d, 10nd− 5d].

As you can see, each number c ∈ C corresponds to a pair of integers in U with
difference 3d − c. And each pair a ∈ A, b ∈ B corresponds to a pair of integers
in V with difference 3d − (a + b). The two intervals [−10nd + 9d,−5d] and
[9d, 10nd− 5d] in V are carefully designed such that (1) there does not exist an
integer u such that U + u ⊆ [−10nd + 9d,−5d]∪ [9d, 10nd− 5d] and (2) if there
exists a translation u such that {10id+u, 10id+3d−ci+u} ⊆ A∪{3d−b | b ∈ B}
for some i, the rest 2n−2 points of U +u will be contained by the two intervals.
Thus, whether there exists a triple a ∈ A, b ∈ B, c ∈ C with a + b = c can be
seen as whether there exists a translation such that segments in V contain all
the points of U + u. 
�

4 Approximate Matching for Run-Length Encoded
Strings

The approximate matching problem is, given a pattern P and a text T , to
locate the positions of all “approximate” occurrences of P in T . There are two
commonly used criteria for “approximation”: (1) introducing wildcard symbols
into the pattern or the text and (2) allowing small mismatches between an
occurrence and the pattern. The former is known as the wildcard matching
problem, and the latter is known as the k-mismatches problem. In this section,
we show that these two problems for rle strings are 3sum-hard.

4.1 The Wildcard Matching Problem

The wildcard matching problem is defined as follows. Let Σ denote the alphabet
and ∗ denote a wildcard symbol (sometimes called a don’t care symbol) which
can match any symbol in Σ. Let pattern P = p1p2 . . . pM and text T = t1t2 . . . tN
be two strings over Σ ∪{∗}. The pattern P is said to occur at position i in T if,
for every position j in the pattern, either pj = ti+j−1 or at least one of pj and
ti+j−1 is a wildcard symbol. In the following, we define the wildcard matching
problem for rle strings.

Problem 3. rle-wildcard: Assume that pattern P and text T are strings over
Σ ∪ {∗}. Let P and T be the rle strings of P and T , respectively. The problem
is to, given P and T , locate all occurrences of P in T .

Suppose that P = X1X2 . . . Xm and T = Y1Y2 . . . Yn, where Xi and Yj are the i-
th and j-th runs of P and T , respectively. If there is no run of wildcard symbols in
either string, we can solve the problem optimally in O(m+n) time. First observe
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that if P occurs at some position in run Yj , run X1 (resp., Xm) is not necessarily
identical to run Yj (resp., Yj+m−1). But runs X2X3 . . .Xm−1 of P must be
identical to runs Yj+1Yj+2 . . . Yj+m−2 of T , respectively. By viewing a run as a
symbol from Σ × N, we can adopt any linear-time string matching algorithm
whose running time independent of the alphabet size like kmp algorithm [18], to
identify all the occurrences of X2X3 . . .Xm−1 in T in O(m + n) time. For each
occurrence candidate, we need an extra examination of run X1 (resp., Xm) with
run Yj (resp., Yj+m−1). This gives a linear-time solution for matching two rle

strings without wildcard symbols. We now show that when the input contains
some runs of wildcard symbols, even when they only appear in the pattern, the
problem becomes 3sum-hard, suggesting an Ω(mn) time barrier. Specifically, we
reduce discrete-scp to a special case of rle-wildcard, in which the alphabet
is binary, i.e. Σ = {0, 1}, and wildcard symbols appear only in the pattern.

Theorem 2. discrete-scp ≪n log n rle-wildcard.

Proof. We show that the decision problem of rle-wildcard, i.e. whether there
exists an occurrence of P in T , is 3sum-hard. Given an instance U and V of
the discrete-scp problem with sizes m and n, we construct in the following
two rle strings P and T of at most 2m − 1 and 2n − 1 runs respectively,
taken as an instance of the rle-wildcard problem. We first sort U and V
in O(n log n) time. Let U ′ = 〈p1, p2, . . . , pm〉 be the sorted sequence of U , i.e.
pi < pi+1, and V ′ = 〈[q1, r1], [q2, r2], . . . , [qn, rn]〉 be the sorted intervals of V ,
i.e. qi ≤ ri < qi+1 ≤ ri+1. We then construct two rle strings P = 11 ∗p2−p1−1

11 ∗p3−p2−1 . . . 11 ∗pm−pm−1−1 11, and T = 1r1−q1+10q2−r1−11r2−q2+10q3−r2−1 . . .
0qn−rn−1−11rn−qn+1. Here, run 0qi−ri−1−1 is absent if qi− ri−1 − 1 = 0 for some
i, and run ∗pj−pj−1−1 is absent if pj − pj−1 − 1 = 0 for some j. Let P and T be
the uncompressed strings of P and T . It is easily seen that there is a translation
u such that U + u ⊆ V if and only if there is an occurrence of P in T . 
�

4.2 The k-Mismatches Problem

Given two strings A = a1a2 . . . a� and B = b1b2 . . . b� of equal length, the Ham-
ming distance of A and B is defined as dH(A, B) = 	−|S|, where S = {(i, i) | ai =
bi, 1 ≤ i ≤ 	}. Note that dH(A, B) = ∞ if |A| �= |B|. Now we define the k-
mismatches problem for rle strings.

Problem 4. rle-mismatch: Assume that pattern P and text T are strings over
alphabet Σ. Let P and T be the rle strings of P and T , respectively. The
problem is to, given P , T and a threshold number K, locate all substrings T ′ of
T such that dH(P , T ′) ≤ K.

Theorem 3. discrete-scp ≪n log n rle-mismatch.

Proof. Given an instance U and V of discrete-scp, we construct two rle

strings P and T like Theorem 2 except that all the wildcard symbols in P are
replaced by θ, where θ is an extra symbol not appearing in T . Note that the
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number of symbol θ in P is |P| − m. Thus, there is a translation u such that
U + u ⊆ V if and only if there is an approximate occurrence of P in T with at
most |P| −m mismatches. 
�

5 A Sweep-Line Algorithm for Wildcard Matching with
Mismatches

In this section, we give an upper bound for the combined problem of rle-

wildcard and rle-mismatch. Assume that pattern P and text T are strings
over Σ ∪ {∗}, where Σ is the alphabet (possibly infinite). Let P = X1X2 . . . Xm

and T = Y1Y2 . . . Yn be the rle strings of P and T , respectively. Given P , T
and a threshold number K, below we show how to find all substrings T ′ of T
such that dH(P , T ′) ≤ K.

Let P [i] (resp., T [i]) denote the i-th symbol of P (resp., T ), and let M and N
be the lengths of P and T , respectively. We define matrix D[i, j] = δ(P [i], T [j]),
i = 1, 2, . . . , M and j = 1, 2, . . . , N , where δ(a, b) = 1 if symbol a matches
symbol b and δ(a, b) = 0 otherwise. For those entries D[i, j] with j − i = d, they
are said to be on diagonal d. To see if P occurs at position i in T , for some
i = 1, . . . , N − M + 1, one can accumulate the entries of D on diagonal i − 1,
since dH(P [1 . . .M ], T [i . . . i + M − 1]) = M −

∑M
j=1 δ(P [j], T [i + j − 1]). Thus,

our goal becomes to identify those diagonals on which the number of 1’s is no
less than M −K.

Each run pair Xi and Yj corresponds a sub-matrix Bi,j of D. All entries in
Bi,j are 1’s if Xi and Yj encode the same symbol or either one encodes the
wildcard symbol, and are 0’s otherwise, so we can partition matrix D into black
blocks (of 1’s) and white blocks (of 0’s). See Figure 1 for an example. Instead

Fig. 1. The matrix D of pattern P = a3b5c2a4 and text T = a6b2a10b4. The matrix D
is partitioned into black and white blocks. As you can see, diagonals 2 and 5 contain
nine and four entries 1’s, respectively.
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of accumulating the number of 1’s diagonal by diagonal, we compute how many
1’s a black block contributes to each diagonal of D.

We define µ(Bi,j , d) to be the number of entries in Bi,j on diagonal d. Let
(x1, y1) and (x2, y2) denote the positions of the upper-left and lower-right corners
of Bi,j , respectively. The following formula calculates µ(Bi,j , d). To simplify the
presentation, we assume that there exists two dummy diagonals −M and N .

– Case I: Suppose y1 − x1 ≤ y2 − x2.

µ(Bi,j , d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for d = −M, . . . , y1 − x2 − 2;
d− y1 + x2 + 1, for d = y1 − x2 − 1, . . . , y1 − x1 − 1;
x2 − x1 + 1, for d = y1 − x1, . . . , y2 − x2 − 1;
y2 − x1 − d + 1, for d = y2 − x2, . . . , y2 − x1;
0, for d = y2 − x1 + 1, . . . , N .

– Case II: Suppose y1 − x1 > y2 − x2.

µ(Bi,j , d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for d = −M, . . . , y1 − x2 − 2;
d− y1 + x2 + 1, for d = y1 − x2 − 1, . . . , y2 − x2 − 1;
y2 − y1 + 1, for d = y2 − x2, . . . , y1 − x1 − 1;
y2 − x1 − d + 1, for d = y1 − x1, . . . , y2 − x1;
0, for d = y2 − x1 + 1, . . . , N .

Given a black block Bi,j , if we plot points (d, u(Bi,j , d)) on a plane for each d =
−M, . . . , N , the points will be contained in at most five adjacent line segments
of slopes 0, 1, 0, -1, 0, from left to right, respectively. Note that some horizontal
line segments may be absent if y1 − x1 = y2 − x2 or y1 − x2 − 1 = −M or
y2−x1 = N . For the correctness of our algorithm, in these cases we assume that
there exists a line segment of length 0 therein. The resulting diagram formed by
these line segments is in shape of a hat. We call the intersections of two adjacent
line segments the turning points. Algorithm FindChange (Figure 2) computes
all the turning points of diagrams generated by the black blocks.

If we depict the diagrams generated by every black block on the same plane,
what we need to do is to “accumulate” those diagrams, see Figure 3. The ac-
cumulated diagram is also composed of adjacent line segments. We propose a

Algorithm FindChange

Input: Two rle strings, P = X1X2 . . . Xm and T = Y1Y2 . . . Yn.
Output: A set S of pairs (x, �), where x denotes the x-coordinate of a turning point

and � denotes the slope change.
Initialization: S ← φ;
1 for each i,j such that B[i, j] is a black block do
2 Compute the positions of the upper-left corner (x1, y1) and the lower-right
3 corner (x2, y2) of B[i, j];
4 S ← S ∪ (y1 − x2 − 1, 1) ∪ (y1 − x1,−1) ∪ (y2 − x2,−1) ∪ (y2 − x1 + 1, 1);
5 end for
6 Output S;

Fig. 2. Finding all turning points in diagrams generated by the black blocks
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Fig. 3. The solid lines are the diagrams generated by the black blocks. The dashed
lines are the result of accumulating them.

Algorithm Accumulating

Input: Set S from algorithm FindChange.
Output: A list L of points.
Initialization: pos ← −M − 1; slope ← y ← 0;
1 Sort S according to the first attribute. Let S′ be the sorted list;
2 while S′ is not exhausted do;
3 Retrieve the next pair (x, �) from list S′;
4 if x �= pos then
5 y ← y + (x − pos) × slope;
7 Insert (x, y) into the end of list L;
6 pos ← x;
8 end if
9 slope ← slope + �;
10 end while
11 Output L;

Fig. 4. A sweep-line algorithm for accumulating the number of matches on each diag-
onal

sweep-line algorithm, Accumulating (Figure 4), for computing the intersec-
tions of these line segments. Once the intersections are computed, the number
of matches at each position can be computed in constant time using linear in-
terpolation.

Theorem 4. There exists an O(mn + p logm)-time algorithm for the combined
problem of rle-wildcard and rle-mismatch, where p ≤ mn is the number
of matched or mismatched runs.

Proof. By an O(mn)-time preprocessing, one can retrieve all matched runs
(black blocks) efficiently. Thus, the for-loop in algorithm FindChange is ex-
ecuted p times, where p is the number of matched runs. For line 2 of algorithm
FindChange, since x1 =

∑i−1
k=1 |Xk|+ 1, y1 =

∑j−1
k=1 |Yk|+ 1, x2 =

∑i
k=1 |Xk|,

and y2 =
∑j

k=1 |Yk|, it is easy to compute their positions in a total of O(m+n+p)
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time. The sorting procedure in algorithm Accumulating requires O(p log p),
which leads to a total running time of O(mn + p log p) for our algorithm, which
is O(mn log mn) in the worst case. To further improve the running time to
O(mn + p log m), one can observe that the output of FindChange, list S, is
partially sorted, and sorting S is essentially merging at most m sorted lists
of total size O(p). Moreover, an alternative choice is to count the number of
mismatches instead of the number of matches. Thus, p can be the number of
mismatched runs (white blocks). 
�

6 Alignment for Run-Length Encoded Strings

Given two strings P and T over a finite alphabet Σ. An alignment of P and T
is obtained by inserting spaces, denoted by −, into or at the ends of P and T
such that the two resulting strings, P ′ and T ′, have an identical length, say 	.
Moreover, if we place P ′ and T ′ one upon the other, getting a sequence of aligned
pairs, there are no two spaces aligned together. Let A be the aligned sequence

of P ′ and T ′, denoted by A = 〈P
′[1] P ′[2] . . . P ′[	]

T ′[1] T ′[2] . . . T ′[	] 〉. We say A is an alignment

of P and T , and the score of A is defined by score(A) = Σ�
i=1δ(P ′[i], T ′[i]),

where δ : (Σ∪{−})× (Σ∪{−}) → R is a scoring function, sometimes called the
scoring matrix. The global alignment problem aims at finding an alignment of P
and T such that the alignment score is maximized. The local alignment problem
aims at finding an alignment of a substring of P and a substring of T such that
the alignment score is maximized. The two alignment problems are known to be
solvable in subquadratic time [14]. In what follows, we consider the compressed
optimal alignment problems in which only the compressed forms of P and T are
given.

Problem 5. rle-alignment: Assume that P and T are strings over a finite
alphabet Σ. Given P and T , which are the rle strings of P and T , the problem
is to find the optimal local (global) alignment of P and T .

Given two rle strings of m and n runs, one can always decompress them and then
run the subquadratic algorithm of [14]. Thus, for cases where the compression
ratio is constant, i.e. the length of the decompressed string is proportional to
number of runs, we can solve the rle alignment problems in o(mn) time. In the
following, we show that the rle alignment problems are actually 3sum-hard,
suggesting that any algorithm for these problems may require Ω(mn) time.

We will show that computing the score of an optimal alignment is 3sum-
hard. Let scoreL(P , T ) and scoreG(P , T ) denote the scores of an optimal local
alignment and an optimal global alignment of P and T , respectively, and let M
and N be the lengths of P and T .

Theorem 5. rle-wildcard ≪n rle-alignment.

Proof. An instance P and T of rle-wildcard is taken as an instance of rle-

alignment without any modification. The alphabet of both the rle-wildcard
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and rle-alignment problems are the same, i.e. Σ ∪ {∗}. We define the scoring
matrix δ : (Σ ∪ {∗,−})× (Σ ∪ {∗,−}) → R as follows. For symbols x, y ∈ Σ, let
δ(x, y) = 1 if x = y and δ(x, y) = −1, otherwise. Let δ(x, ∗) = δ(∗, x) = 1 for
every symbol x ∈ Σ. Let δ(x,−) = δ(−, x) = −1 for every symbol x ∈ Σ ∪ {∗}.

We want to show that there exists an occurrence of P in T if and only if
scoreL(P , T ) = M . First observe that scoreL(P , T ) ≤ M since only match
pairs can get a positive score of 1 and there are at most M matches between
P and T . If there exists an occurrence T [i . . . i + M − 1] of P in T , we can

construct a local alignment A = 〈P [1] P [2] . . . P [M ]
T [i] T [i + 1] . . . T [M + i− 1] 〉 of score M .

Thus, we have scoreL(P , T ) ≥ M , which leads to scoreL(P , T ) = M . On the
other hand, if scoreL(P , T ) = M , we know that an optimal local alignment
must contain exactly M match pairs and no gap or mismatch pair, for otherwise
scoreL(P , T ) would be strictly less than M . Thus, an optimal local alignment
corresponds to an exact occurrence of P in T .

To see the reduction holds for the global alignment problem, we introduce
a redundant symbol ε into the alphabet. That is, the alphabet of the rle-

alignment becomes Σ ∪ {∗, ε}. An instance P and T of rle-wildcard is
replaced by P ′ and T . Here, P ′ is obtained by appending two runs of redundant
symbols ε to both ends of P . More specifically, let P ′ = εN−M ·P ·εN−M , an rle

string of m+2 runs, where · denotes a concatenation. Let P ′ be the decompressed
string of P ′. The scoring function δ : (Σ ∪ {ε, ∗,−})× (Σ ∪ {ε, ∗,−})→ R is de-
fined in the same way as before with additional mapping of δ(ε, x) = δ(x, ε) = 0
for every symbol x ∈ Σ∪{∗,−}. We know scoreG(P ′, T ) ≤ M since there are at
most M matches. If there exists an occurrence of P in T , say T [i . . . i + M − 1],
we can construct a global alignment

A=〈 ε . . . ε ε . . . ε P [1] . . . P [M ] ε . . . ε ε . . . ε
− . . . − T [1] . . . T [i− 1] T [i] . . . T [M + i− 1] T [M + i] . . . T [n] − . . . −〉

of score M . Thus, scoreG(P ′, T ) = M . On the other hand, suppose
scoreG(P ′, T ) = M . An optimal global alignment of P ′ and T must contain
exactly M match pairs, which implies that there exists an exact occurrence of
P in T . 
�

7 Concluding Remarks

In this paper, we give a lower bound and an upper bound for rle-wildcard and
rle-mismatch. There exists a log-factor gap between the bounds. Moreover, the
gap between the existing upper bound and our lower bound of rle-alignment

is still large. Bridging the gaps between the bounds remains open.
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Abstract. The longest-common-prefix (LCP) array is an adjunct to the
suffix array that allows many string processing problems to be solved in
optimal time and space. Its construction is a bottleneck in practice, tak-
ing almost as long as suffix array construction. In this paper, we describe
algorithms for constructing the permuted LCP (PLCP) array in which
the values appear in position order rather than lexicographical order.
Using the PLCP array, we can either construct or simulate the LCP ar-
ray. We obtain a family of algorithms including the fastest known LCP
construction algorithm and some extremely space efficient algorithms.
We also prove a new combinatorial property of the LCP values.

1 Introduction

The suffix array (SA) [13] is a lexicographically sorted list of all the suffixes in a
string. The longest-common-prefix (LCP) array stores the lengths of the longest-
common-prefixes of adjacent suffixes in SA. Augmenting SA with LCP allows
many problems in string processing to be solved in optimal time and space. In
particular the LCP array is key for: efficiently simulating traversals of the suffix
tree [22,5] (top-down, bottom up, suffix link walks) with the suffix array [1];
pattern matching on the suffix array in attractive theoretical bounds [13,1]; fast
disk based suffix array arrangements [3,21]; and compressed suffix trees [4].

Various methods for suffix arrays have been extensively investigated but the
LCP array has received much less attention. Several very fast SA construction al-
gorithms have been developed in recent years [17], but there has been no improve-
ment in LCP construction time since the original LCP-from-SA algorithm [8].
Furthermore, the fastest SA construction algorithms are also space economical,
which is not the case with LCP construction. This is a problem since space is
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an even bigger concern than time. For large documents, full representations of
the text, the SA, and the LCP array cannot be stored (simultaneously) in RAM.
There are many methods for SA addressing this problem, including compressed
representations [15], external storage [21], and external and semi-external con-
struction [2,6]. The few LCP related improvements have been concerned with
the space too (see Section 2).

In this paper we show that a natural and effective way to reduce the time and
space costs of LCP computation is the use of a simple alternative representation
of LCP values. Instead of storing them in the classical LCP array we store them
in the permuted LCP (PLCP) array in which the values appear in position order,
rather than lexicographical order. The PLCP array has played a role in previous
algorithms implicitly (see Lemma 1) or even explicitly [19,11], but we bring it
to the center stage. We use the PLCP array as the central piece that connects a
number of techniques (old and new) into a family of algorithms.

One advantage of the PLCP array over the LCP array is that it supports
compact representation — in two different ways, in fact: sparse array [11] and
succinct bitarray [19]. Each representation can be used for simulating the LCP
array. The properties of the representations are summarized in Table 1.

Table 1. Properties of PLCP representations. The construction space does not include
the space for the text and the SA which are the input to the construction algorithms.

Space LCP random Construction Construction
access Time Space

Full array n words O(1) O(n) n words
Sparse array n/q words O(q) amortized O(n) n/q words
Succinct bitarray 2n + o(n) bits O(1) O(n) n words + 2n bits

O(n log n) 3n bits

The other advantage of the PLCP array over the LCP array is faster con-
struction. The main contribution of this paper are efficient and space econom-
ical construction algorithms. The first one (called Φ in Section 5) is a linear
time algorithm that is extremely fast in practice. It constructs the full PLCP ar-
ray roughly 2.2 times faster than the fastest LCP array construction algorithm.
Futhermore, combining the algorithm with an LCP-from-PLCP construction
yields the fastest known algorithm for computing the LCP array. More space
efficient variants of the algorithm (called Φip and Φx in Section 5) are also faster
than other comparable algorithms.

Another contribution of the paper is a novel, non-trivial combinatorial prop-
erty of the (P)LCP array (Theorem 1), which leads to another PLCP construc-
tion algorithm (called IB in Section 5). It enables the construction of the succinct
bitarray representation with a peak space usage of only 3n bits in addition to
the text and the SA. Although the algorithm runs in O(n log n) time, it is quite
fast in practice.
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The speed of the algorithms comes from their mostly sequential access pat-
terns, which enable prefetching and avoid cache misses. In particular, the Φ
algorithm accesses only one array non-sequentially in any stage. The sequen-
tial access patterns help in reducing space, too. With the exception of Φip, all
our construction algorithms process SA in sequential order and can produce the
LCP array in sequential order. Thus, as in [18], we can keep SA and LCP on
disk without an excessive slow-down obtaining semi-external algorithms that
need RAM only for the text and the PLCP representation, which is only 3n bits
for the bitarray and even less for the sparse array.

2 Background and Related Work

Throughout we consider a string t = t[0..n] = t[0]t[1] . . . t[n] of n + 1 symbols.
The first n symbols of t are drawn from a constant ordered alphabet, Σ. The
final character t[n] is a special “end of string” character, $, distinct from and
lexicographically smaller than all the other characters in Σ.

For i = 0, . . . , n we write t[i..n] to denote the suffix of t of length n− i + 1,
that is t[i..n] = t[i]t[i + 1] · · · t[n]. For convenience we will frequently refer to
suffix t[i..n] simply as “suffix i”. Similarly, we write t[0..i] to denote the prefix
of t of length i + 1. We write t[i..j] to represent the substring t[i]t[i + 1] · · · t[j]
of t that starts at position i and ends at position j.

The suffix array of t, denoted SAt or just SA when the context is clear, is
an array SA[0..n] which contains a permutation of the integers 0..n such that
t[SA[0]..n] < t[SA[1]..n] < · · · < t[SA[n]..n]. In other words, SA[j] = i iff t[i..n]
is the jth suffix of t in ascending lexicographical order.

The lcp array LCP = LCP[0..n] is an array defined by t and SAt. Let
lcp(y, z) denote the length of the longest common prefix of strings y and z. For
every j ∈ 1..n,

LCP[j] = lcp(t[SA[j−1]..n], t[SA[j]..n]),

that is, LCP[j] is the length of the longest common prefix of suffixes SA[j−1]
and SA[j]. LCP[0] is undefined.

The permuted lcp array — PLCP[0..n − 1] — has the same contents as
LCP but in different order. Specifically, for every j ∈ 1..n,

PLCP[SA[j]] = LCP[j]. (1)

The LCP array first appeared in the original paper on suffix arrays [13], where
Manber and Myers show how to compute the LCP array as a byproduct of their
O(n log n) time SA construction algorithm. The linear time SA construction
algorithm of Kärkkäinen and Sanders can also be modified to produce the LCP
array [7]. Other SA construction algorithms could probably be modified so too,
but a more attractive approach was introduced by Kasai et al. [8], who gave a
simple algorithm to construct the LCP array from an already constructed SA in
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Θ(n) time using 2n words of extra space1. In the rest of the paper we follow this
approach and assume that we compute lcp values knowing the text and SA.

The first improvements to Kasai et al.’s algorithm reduced the extra space to
n words by eliminating the need for an extra working array through essentially
reordering computation. Two different ways to achieve this have been described
by Mäkinen [12] and Manzini [14]. Manzini also gives another algorithm that
saves space by overwriting SA with LCP, which is not possible with earlier
algorithms. It needs n bytes plus n words of extra space in the worst case but
usually significantly less than that.

Recently, Puglisi and Turpin [18] gave another algorithm that can overwrite
SA with LCP, using O(nv) time and O(n/

√
v) extra space, where v is a parame-

ter that controls a space-time tradeoff. The algorithm accesses SA and produces
LCP in a strictly left to right manner allowing SA and LCP to reside on disk
without a large penalty in speed. This is the first semi-external LCP construction
algorithm. In practice, it needs less than twice the size of the text in primary
memory.

The PLCP array first appeared in its succinct bitarray form in [19], where
Sadakane introduced it as a concise representation of the LCP array, but he did
not address the problem of constructing it. The full or sparse PLCP array is used
in the LCP construction algorithm by Khmelev, which has not been published
in literature but an implementation is available [11].

3 Storing and Using the PLCP Array

The standard way of storing the PLCP array is an array of integers —
PLCP[0..n − 1]. This full array representation takes n words of storage and
because of (1) supports random access to LCP values in O(1) time.

Two concise representations of the PLCP array are based on the following
key property of the PLCP array.

Lemma 1. For every i ∈ 1..n− 1, PLCP[i] ≥ PLCP[i− 1]− 1. 
�

The lemma was proven by Kasai et al. [8] in a slightly different form. All efficient
(P)LCP construction algorithms (including ours) rely on this property.

The sparse PLCP array — PLCPq — of �n/q� integers contains only every
qth entry of the PLCP array, i.e., PLCPq[i] = PLCP[iq]. Lemma 1 allows us to
estimate the missing PLCP entries as follows.

Lemma 2. For any i ∈ 0..n− 1, let a = �i/q and b = i mod q, i.e., i = aq + b.
If (a + 1)q ≤ n − 1, then PLCPq[a] − b ≤ PLCP[i] ≤ PLCPq[a + 1] + q − b. If
(a + 1)q > n− 1, then PLCPq[a]− b ≤ PLCP[i] ≤ n− i ≤ q. 
�

Using these bounds, we can compute the actual value of PLCP[i] by doing at
most q + PLCPq[a + 1] − PLCPq[a] comparisons (or at most q comparisons if

1 Throughout we will use “extra space” to mean space in addition to t and SA, in-
cluding the n words required to hold LCP, unless otherwise stated.
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(a + 1)q > n − 1). This requires an access to the text and the SA (or Φq, see
Section 4). The number of comparisons can be close to n for some i but the
average number, over all LCP array entries, is at most O(q) as shown by the
following lemma.

Lemma 3. Assuming the text and the SA are available, the sparse PLCP array
PLCPq supports random access to LCP values in O(q) amortized time.

Proof. For 1 ≤ i ≤ n it is LCP[i] = PLCP[SA[i]]. Hence, if SA[i] = qk then
LCP[i] = PLCPq[k] and computing it takes O(1) time. Otherwise let SA[i] =
aq + b, with 0 ≤ b < q. By Lemma 2 we can compute LCP[i] comparing at most
q+PLCPq[a+1]−PLCPq[a] symbols of the suffixes t[SA[i−1]..n] and t[SA[i]..n]
(or at most q symbols if (a + 1)q > n − 1). For i = 1, . . . , n let c(i) denote the
number of comparisons needed for computing LCP[i]. We prove the lemma by
showing that

1
n

n∑
i=1

c(i) ≤ (q − 1) + q2/n.

Let a′ = �(n− 1)/q so that n′ = a′q is the largest multiple of q smaller than n.
For the above observation, the indexes i such that SA[i] ≥ n′ contribute to the
sum

∑n
i=1 c(i) by at most q2. To complete the proof we show that∑

i: SA[i]<n′
c(i) ≤ (q − 1)n.

Since for k = 1, . . . , a′−1 there are exactly q−1 indexes i such that kq < SA[i] <
(k + 1)q we have

∑
i: SA[i]<n′

c(i) ≤ (q − 1)
a′−1∑
k=0

(q + PLCPq[k + 1]− PLCPq[k]). (2)

Define w(k) = PLCPq[k] + kq. Then, (2) can be rewritten as

∑
i: SA[i]<n′

c(i) ≤ (q − 1)
a′−1∑
k=0

(w(k + 1)− w(k))

= (q − 1)(w(a′)− w(0))
≤ (q − 1)(PLCPq[a′] + a′q)
= (q − 1)(PLCP(n′) + n′)
≤ (q − 1)n.

and the lemma follows. 
�

The succinct bitarray representation of the PLCP array [19] consists of a bit
array B[0..2n− 1], where the B[j] = 1 if and only if j = 2i + PLCP[i] for some
i ∈ [0..n− 1]. Note that due to Lemma 1, 2i + PLCP[i] has a different value for
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each i. Then PLCP[i] = select1(B, i + 1) − 2i, where select1(B, j) returns the
position of the jth 1-bit in B. The select-query can be answered in O(1) time
given an additional data structure of o(n) bits. Several such select-structures are
known in the literature, the most practical of these for our purposes is probably
the darray [16]. Summing up, the succinct bitarray representation takes 2n+o(n)
bits and supports random access to LCP values in O(1) time.

We have implemented our own optimized variant of the darray structure using
the fact that we do not need support for the rank operation. The data structure
consists of the bitvector B (modified as described below) and a sparse PLCP
array, PLCPq. The PLCPq entries indicate the positions of every qth 1-bit in
B, dividing B into n/q blocks (of varying sizes). The select operation finds the
position of the jth 1-bit. Locating the correct block is easy with PLCPq. If the
block is small, we simply scan the block bitvector to find the correct bit. A
bitvector of O(log n) bits can be scanned in O(1) time using appropriate lookup
tables (of size o(n)). If the block is large enough, we replace the bitvector for the
block with a full PLCP array for that block, i.e., with an array of q− 1 integers
pointing to all the 1-bits within the block. A single lookup is enough to locate
the bit we want. The main difference to the darray is that the full PLCP arrays
for large blocks are stored over the bitvector B overwriting the bits there.

There are several ways of using the PLCP array depending on the application.
For some applications, the PLCP array is just as good as the LCP array. Com-
puting the average LCP value is an example. Most applications, though, need
the LCP array. We have two options in this case. First, we can simulate the LCP
array using (1). Second, we can compute the LCP array from the PLCP array,
which is then discarded.

When turning the PLCP array into the LCP array, there are some space
saving techniques worth mentioning. First, it is possible to do this by an in-place
permutation, i.e., by using a single array that contains the PLCP array at start
and the LCP array at finish. In addition to this array, the in-place permutation
needs the SA and n bits used as markers. Second, it is possible to store the LCP
array and the SA on disk memory. All our PLCP construction algorithms do
just a single sequential scan over the SA. Similarly, constructing the LCP array
from the PLCP array can be done in sequential order with respect to the LCP
and SA. Thus, in main memory we only need to keep the text and the PLCP
array, the latter possibly using a compact representation.

4 Constructing the PLCP Array

4.1 Computing PLCP Using the φ Array

Our first PLCP construction algorithm uses another array Φ[0..n−1].2 For every
j ∈ 1..n,

Φ[SA[j]] = SA[j − 1].

2 The Φ array is so named because it is in some way symmetric to the Ψ array [20].
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— Compute Φq

1: for i ← 0 to n − 1 do
2: if SA[i] mod q = 0 then
3: Φ[SA[i]/q] ← SA[i−1]

— Turn Φq into PLCPq

4: � ← 0
5: for i ← 0 to �(n − 1)/q� do
6: j ← Φq [i]
7: while t[iq+�] = t[j+�] do
8: � ← �+1
9: PLCPq [i] ← �
10: � ← max (� − q, 0)

(a)

— Compute irreducible lcp values
1: for i ← 1 to n do
2: j ← SA[i − 1]
3: k ← SA[i]
4: if t[j − 1] �= t[k − 1] then
5: � ← lcp(t[j..n], t[k..n])
6: k′ ← �k/q� · q
7: if PLCPq[k′] < �−k′+k then
8: PLCPq[k′] ← �−k′+k

— Fill in the other values
9: for i ← 1 to �(n − 1)/q� do
10: if PLCPq [i] < PLCPq [i−1]−q then
11: PLCPq[i] ← PLCPq[i−1]−q

(b)

Fig. 1. Algorithms for computing Sparse PLCP with sample rate q. The algorithm in
(a) uses Φ; the one in (b) uses Irriducible LCPs and assumes t[−1] = t[n] = $. Setting
q = 1 produces the Full PLCP representation.

Clearly, the Φ array can be computed easily with a scan of the suffix array. The
Φ array is also used in [11], though differently from the way we use it.

The Φ array is closely related to the PLCP array: for every i ∈ [0..n− 1],

PLCP[i] = lcp(i, Φ[i]).

Thus to compute PLCP[i] we just need to compare the suffixes i and Φ[i], and
similar to the algorithm of Kasai et al., Lemma 1 allows us to skip the first
PLCP[i− 1]− 1 characters in the comparison. Also note that we can save space
by overwriting Φ with PLCP.

The technique generalizes easily to computing the sparse PLCP array by using
the sparse version of the Φ array — Φq. The full algorithm is given in Fig. 1(a).
We can also easily compute the bitarray B this way. The technique is not very
space efficient, though, since we need the full Φ array.

4.2 Computing PLCP Using Irreducible LCPs

Our second technique of computing the PLCP array is based on the concept
of irreducible lcp values. We say that PLCP[i] = lcp(i, φ[i]) is reducible if
t[i−1] = t[φ[i]−1]. Reducible values are easy to compute via the next lemma.

Lemma 4. If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

In essence the same result appeared as Lemma 1 in [14].
The idea of the algorithm is to first compute the irreducible lcp values and

then use Lemma 4 to fill in the reducible values. The irreducible lcp values are
computed naively, i.e., by comparing the suffixes i and Φ[i] from the beginning.
The efficiency of the algorithm is based on the following surprising property of
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the irreducible lcp values. The property is a conjecture by Dmitry Khmelev [10],
but we provide the first proof for it.

Theorem 1. The sum of all irreducible lcp values is ≤ 2n logn.

Proof. Let 	 = PLCP[i] = lcp(i, j) (i.e., j = Φ[i]) be an irreducible lcp value,
i.e., t[i− 1] �= t[j − 1], t[i..i + 	 − 1] = t[j..j + 	− 1] and t[i + 	] �= t[j + 	]. For
every k ∈ 0..	− 1, the matching pair of characters t[i + k] = t[j + k] contributes
to the lcp value and we account for it as follows.

Consider the suffix tree of the reverse of t, and let vi+k and vj+k be the leafs
corresponding to the prefixes t[0..i + k] and t[0..j + k]. The nearest common
ancestor u of vi+k and vj+k represents the reverse of t[i..i+k] (because t[i−1] �=
t[j − 1]). If vi+k is in a smaller subtree of u than vj+k, the cost of the pair
t[i + k] = t[j + k] is assigned to vi+k, otherwise to vj+k.

Now we show that each leaf v carries a cost of at most 2 logn. Whenever v
is assigned a cost, this is associated with an ancestor u of v and another leaf w
under u. We call u a costly ancestor of v and w a costly cousin of v. We will
show that (a) each leaf v has at most log n costly ancestors, and that (b) for
each costly ancestor, there is at most two costly cousins.

To show (a), we use the “smaller half trick”. Consider the path from v to
the root. At each costly ancestor u, the size of the subtree at least doubles with
the addition of the subtree containing w. Thus there are at most log n costly
ancestors. Let v be leaf, u a costly ancestor of v and w a corresponding costly
cousin representing the reverse of the strings t[0..i+ k], t[i..i + k] and t[0..j + k],
respectively. Then either i = Φ[j] or j = Φ[i]. Suppose the former and assume
there is another costly cousin w′ �= w of v with the same costly ancestor. Then
w′ must represent t[0..j′ + k] for j′ = Φ[i]. Adding a third costly cousin is then
no more possible, which proves (b). 
�

The theorem is asymptotically tight as shown by the next lemma.

Lemma 5. For a binary de Bruijn sequence of order k, the sum of all irreducible
lcp values is (k− 1)2k−1−Θ(1). As n = 2k + k− 1 is the length of the sequence,
the sum of irreducible lcp values is (n/2) log n−O(n).

Proof. Let x be any sequence on Σ = {0, 1} of length k − 1. x0 and x1 both
appear in the de Bruijn sequence so they are in contiguous positions of the suffix
array. The symbols preceding x0 and x1 cannot be identical, otherwise the de
Bruijn sequence would contain two identical length-k subsequences. Thus, we
have an irreducible lcp value lcp(x0, x1) = k− 1. The lemma follows since there
are 2k−1 such x’s. 
�

The notion of irreducible lcp can be used to compute all our PLCP represen-
tations with the same idea: first compute the irreducible lcp values naively and
then fill in the rest using Lemma 4. When computing the full PLCP array the
algorithm is trivial and by Theorem 1 requires O(n log n) time. With the sparse
PLCP array, we use the following fact

PLCP[i] = max{PLCP[j]− (i− j) : j ≤ i and PLCP[j] is irreducible.}
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Table 2. Data files used for empirical tests, sorted in ascending order of average LCP

Name Mean LCP Max LCP Size (bytes) Description
sprot 89 7,373 109,617,186 Swiss prot database
rfc 93 3,445 116,421,901 RFC text files
linux 479 136,035 116,254,720 Linux kernel 2.4.5 source
jdk13 679 37,334 69,728,899 html/java files from JDK 1.3
etext 1,109 286,352 105,277,340 Gutenberg etext99/*.txt files
chr22 1,979 199,999 34,553,758 Human chromosome 22
gcc 8,603 856,970 86,630,400 gcc 3.0 source files
w3c 42,300 990,053 104,201,579 HTML files from w3c.org

The first stage updates the nearest sparse entry following each irreducible lcp
value and the second stage fills in the rest. The full algorithm is in Fig. 1(b).

With the bitarray representation, we need a second bit array C[0..n − 1] to
store the positions of the irreducible entries. For each irreducible entry PLCP[i],
we set the bit i in C and the bit PLCP[i] + 2i in B. Once done, setting the bits
for reducible values is easy. This algorithm needs only 3n bits in addition to the
text and the suffix array and requires O(n log n) time to construct.

5 Experimental Results

For testing we used the files listed in Table 23. All tests were conducted on a
3.0 GHz Intel Xeon CPU with 4Gb main memory and 1024K L2 Cache. The
operating system was Fedora Linux running kernel 2.6.9. The compiler was g++
(gcc version 3.4.4) executed with the -O3 option. Times given are the minima of
three runs and were recorded with the standard C getrusage function.

Experiments measured the time to compute various PLCP representations,
and the classical LCP array. All methods tested take as input t and SA, which are
not modified. All data structures reside in primary memory. The algorithms and
their space requirements are described in Table 3. Included are three previous
approaches. For consistency we modified the ptx code to produce LCP in a
separate array, not overwriting SA as in [18].

Runtimes for PLCP and LCP array construction are given in Table 4. The
runtime of a fast SA construction algorithm4, is included as a reference. Of the
PLCP/LCP algorithms there are several interesting pairings to consider.

Φ vs. klaap. Overall, Φ is clearly the fastest route to the LCP array, being
around 1.5 times faster than klaap on all inputs, and roughly 2.2 times faster if
one stops at the PLCP. This is no doubt due better locality of memory refer-
ence: at any time Φ only access one array in a non-sequential fashion, whereas
klaap makes random accesses to two arrays throughout its execution. Φ also
consistently shades method I.
3 Available at http://web.unipmn.it/~manzini/lightweight/corpus/
4 Available at http://www.michael-maniscalco.com/msufsort.htm

http://web.unipmn.it/~manzini/lightweight/corpus/
http://www.michael-maniscalco.com/msufsort.htm
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Table 3. Algorithms and their space requirements. The space requirements do not
include arrays that all algorithms share, i.e., text and SA for PLCP construction and
text, SA and LCP for LCP construction.

PLCP LCP PLCP
Alg. Space Space representation Description
Φ n words n words full Φ algorithm
Φx n/x words n/x words sparse (q = x) Φ algorithm
Φip n words 0 full Φ using in-place permuta-

tion in LCP construction
I n words n words full Irreducible lcp algorithm
IB 3n bits 3n bits bitarray Irreducible lcp algorithm
klaap n words Kasai et al [8]
m9 0 Manzini’s Lcp9 [14]
ptx 3n/

√
x words Puglisi and Turpin [18]

Table 4. Runtimes (in milliseconds) for the various LCP construction algorithms

Alg. sprot rfc linux jdk13 etext chr22 gcc w3c Avg.
Φ PLCP 13.57 14.22 13.12 6.64 15.86 4.89 9.41 9.98 10.96
I PLCP 20.46 20.85 18.64 10.52 23.24 7.91 13.37 15.37 16.30
Φ16 PLCP 3.11 3.58 3.17 1.66 3.41 1.11 2.32 2.47 2.60
Φ32 PLCP 2.45 2.64 2.55 1.45 2.47 0.81 1.88 2.14 2.05
Φ64 PLCP 2.16 2.27 2.23 1.33 2.06 0.67 1.65 1.98 1.79
IB PLCP 17.78 18.40 16.33 6.41 23.91 9.51 10.84 9.68 14.11
Φ LCP 20.55 21.39 19.99 10.62 23.21 6.87 14.24 15.93 16.60
Φip LCP 37.25 39.11 38.31 20.80 37.93 10.88 26.93 32.03 30.41
Φ16 LCP 35.71 41.25 33.01 17.66 43.93 13.94 23.69 25.45 29.33
Φ32 LCP 33.90 37.87 31.36 17.64 36.75 11.77 22.48 25.87 27.21
Φ64 LCP 36.77 37.53 32.07 20.54 34.36 10.55 23.23 29.75 28.10
IB LCP 104.93 108.83 89.27 46.48 123.60 31.22 57.74 63.51 78.20
klaap 34.10 32.70 28.67 16.01 38.29 10.94 21.24 26.23 26.02
m9 54.59 53.86 44.34 27.11 59.76 16.63 32.95 43.02 41.53
pt64 56.50 53.40 46.11 42.45 42.22 11.14 35.03 62.05 43.61
pt256 49.96 47.59 42.10 45.48 41.26 9.96 33.60 67.64 42.20
SA 42.42 38.31 36.09 24.85 44.22 12.83 26.52 35.08 32.54

Φip vs. m9. These algorithms use no extra space for LCP construction. The
significantly faster speed of Φip can be largely attributed to an optimization that
exploits the out-of-order execution capabilities of the CPU. When performing
the in-place permutation, Φip follows multiple chains simultaneously. Execution
alternates between the active chains allowing the CPU to proceed with one chain
while waiting for a cache miss on another.

Φx and IB vs. ptx. These algorithms use very little extra space. Φx is clearly
the fastest of these algorithms, nearly as fast as klaap, in fact. On the other
hand, IB is quite slow when computing the LCP array due to the slowness of the
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select structure. We have not spent much time optimizing the implementation
and a significant speed-up may be possible.

Φx, IB and ptx can effectively work with disk resident SA and LCP. Then only
the text and the space in Table 3 need to reside in primary memory. We have
implemented such semi-external versions of the Φx algorithms. Similar to results
in [18] we found that the sequential access to SA and LCP of these algorithms
meant that runtimes increased by at most 10% (from those in Table 4). For
brevity, we do not report actual times here. However, we remark that the semi-
external version of Φ64 constructs the LCP array for a 1Gb prefix of the Human
Genome in 526 seconds (ie. under 10 minutes) on our test machine, and allocates,
including the space for the text, just 1.06Gb of RAM. For the same file pt64
requires 595 seconds and allocates 2.72Gb.

6 Concluding Remarks

In this paper we have investigated the PLCP array, a simple alternative repre-
sentation of lcp values in which the values appear in position order, rather than
lexicographical order, as they do in the LCP array. The PLCP array is very fast
to construct, offers interesting space/time tradeoffs and can be used to simulate
the LCP array or efficiently construct a full representation of it.

A drawback of current LCP construction algorithms, including those we de-
scribe here, is that they require primary memory at least equal to the size of the
input text, so that the random accesses to it do not become expensive disk seeks.
An I/O efficent algorithm for LCP array construction is an important direction
for future work. I/O efficient algorithms for SA construction are described in [2].

Acknowledgements. Some of the key ideas in this paper were originated by
Dmitry Khmelev who tragically died at young age in 2004 [9]. In particular,
Theorem 1 is his conjecture [10] and the idea of using the sparse PLCP array
comes from his algorithm [11].
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Abstract. In our previous work, we introduced the concept of semi-
local string comparison, and developed for it an efficient method called
the seaweed algorithm. In the current paper, we introduce its extension,
called the periodic seaweed algorithm. The new algorithm allows efficient
exploitation of the periodic structure in one of the input strings. By
application of the periodic seaweed algorithm, we obtain new algorithms
for the tandem LCS problem and the tandem cyclic alignment problem,
improving on existing algorithms in running time.

1 Introduction

In [14,15], we introduced the concept of semi-local string comparison, and devel-
oped for it an efficient method called the seaweed algorithm. For completeness,
we give a summary of our approach in Sections 2–6.

Algorithms on periodic strings is an important sub-area of string algorithms,
motivated in part by applications to computational molecular biology. In the
current paper, we introduce an extension of the seaweed algorithm, called the
periodic seaweed algorithm. The new algorithm, described in Section 7, allows
efficient exploitation of the periodic structure in one of the input strings.

Two particular algorithmic problems in periodic string comparison are the
tandem LCS problem and the tandem cyclic alignment problem. We give full
definitions of these problems in Section 8. By application of the periodic seaweed
algorithm, we obtain new algorithms for these problems, improving on existing
algorithms in running time, and answering a question by Landau [6].

Due to space constraints, we omit some proofs, which can be found in the full
version of this paper [16].

2 Terminology and Notation

In addition to integers {. . . ,−2,−1, 0, 1, 2, . . .}, we will use odd half-integers{
. . . ,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , . . .

}
. For ease of reading, odd half-integer variables will

be indicated by hats (e.g. ı̂, ĵ). Ordinary variable names (e.g. i, j, with possi-
ble subscripts or superscripts), will normally indicate integer variables, but can
sometimes indicate a variable that may be either integer, or odd half-integer.
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We denote integer and odd half-integer intervals by

[i : j] = {i, i + 1, . . . , j − 1, j}
〈i : j〉 =

{
i + 1

2 , i + 3
2 , . . . , j − 3

2 , j − 1
2

}
Note that in this notation, both an integer and an odd half-integer interval is
defined by integer endpoints. To denote infinite intervals of integers and odd
half-integers, we will use −∞ for i and +∞ for j where appropriate, so e.g.
[−∞ : +∞] denotes the set of all integers, and 〈−∞ : +∞〉 the set of all odd
half-integers.

When dealing with pairs of numbers, we will often use geometrical language
and call such pairs points. When visualising points, we use the matrix indexing
convention: the first coordinate in a pair increases downwards, and the second
coordinate rightwards. We say that a point (i0, j0) dominates point (i, j), if
i0 < i and j < j0. Visually, the dominated point is “below and to the left” of
the dominating point.

We will make extensive use of finite and infinite matrices, with integer ele-
ments, and with integer or odd half-integer indices. Unless indicated otherwise,
all definitions below apply to both finite and infinite matrices. Given finite or
infinite index ranges I, J , a matrix over I × J is indexed by i ∈ I and j ∈ J . A
matrix is nonnegative, if all its elements are nonnegative.

We will use parenthesis notation for indexing matrices, e.g. A(i, j). We will use
straightforward notation for selecting subvectors and submatrices; for example,
given a matrix A over [−∞ : +∞]2, we denote by A[i0 : i1, j0 : j1] the submatrix
defined by the given intervals. A star ∗ will indicate that for a particular index,
its whole range is selected implicitly, e.g. A[∗, j0 : j1] = A[−∞ : +∞, j0 : j1].

The matrices we consider (in particular, infinite matrices) can be implicit, i.e.
represented by a compact data structure that allows access to every element in
a specified (not necessarily constant) time.

Definition 1. Let D be a matrix over 〈i0 : i1〉×〈j0 : j1〉. Its distribution matrix
DΣ over [i0 : i1]× [j0 : j1] is defined by

DΣ(i, j) =
∑

ı̂>i,ĵ<j
D(̂ı, ĵ)

for all i ∈ [i0 : i1], j ∈ [j0 : j1], ı̂ ∈ 〈i0 : i1〉, ĵ ∈ 〈j0 : j1〉.

Definition 2. Let A be a matrix over [i0 : i1]× [j0 : j1]. Its density matrix A�

over 〈i0 : i1〉 × 〈j0 : j1〉 is defined by

A�(̂ı, ĵ) = A
(
ı̂ + 1

2 , ĵ− 1
2

)
−A

(
ı̂− 1

2 , ĵ− 1
2

)
−

A
(
ı̂ + 1

2 , ĵ + 1
2

)
+ A

(
ı̂− 1

2 , ĵ + 1
2

)
for all ı̂ ∈ 〈i0 : i1〉, ĵ ∈ 〈j0 : j1〉.

The definitions of distribution and density matrices extend naturally to matrices
over an infinite index range, as long as the sum in Definition 1 is always defined.
This will be the case for all matrices considered in this work.
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Definition 3. Matrix A will be called simple, if
(
A�)Σ = A.

Definition 4. Matrix A is called a Monge matrix, if A� is nonnegative.

3 Permutation and Unit-Monge Matrices

A permutation matrix is a (finite or infinite) square zero-one matrix, containing
exactly one nonzero in every row and every column. Typically, permutation
matrices will be over odd half-integer intervals. An identity matrix is a (finite or
infinite) permutation matrix Id , such that Id (̂ı, ĵ) = 1, iff ı̂ = ĵ. Further, given
an h ∈ [−∞ : +∞], we define an infinite offset identity matrix as a permutation
matrix Idh, such that Idh (̂ı, ĵ) = 1, iff ĵ − ı̂ = h. We have Id0 = Id . Clearly, a
finite or infinite identity or offset identity matrix, can be represented implicitly
in constant space and with constant query time.

An infinite permutation matrix P over 〈−∞ : +∞〉2 has core 〈i0 : i1〉×〈j0 : j1〉
and offset h, for given i0, i1, j0, j1, h ∈ [−∞ : +∞], if

i1 − i0 = j1 − j0

j0 − i0 = j1 − i1 = h

P (̂ı, ĵ) = Id (̂ı− h, ĵ) = Id (̂ı, ĵ + h)

for all ı̂ ∈ 〈−∞ : i0〉 ∪ 〈i1 : +∞〉, ĵ ∈ 〈−∞ : j0〉 ∪ 〈j1 : +∞〉. In particular, an
offset identity matrix Idh has empty core and offset h. Clearly, a permutation
matrix with a finite core can be represented implicitly in finite space and with
constant query time.

From now on, instead of “index pairs corresponding to nonzeros”, we will
write simply “nonzeros”, where this does not lead to confusion. We will normally
assume that a permutation matrix is given by an efficient data structure that
allows random access to the nonzeros both by rows and by columns.

Given a permutation matrix P over I ×J , and a set I ′ ⊆ I, we will denote by
P (I ′, ·) the permutation submatrix row-induced by I ′, i.e. the permutation sub-
matrix obtained by deleting from P all columns in I \ I ′, and then deleting from
the remaining submatrix all zero rows. A column-induced permutation subma-
trix P (·, J ′) is defined analogously. Both these operations can be implemented
in linear time by a sweep of the nonzeros of matrix P .

Definition 5. A square matrix A is called a unit-Monge matrix, if A� is a
permutation matrix.

Matrices that are both unit-Monge and simple will be our main tool for the rest
of this work. Note that a square matrix A is simple unit-Monge, if and only if
A = PΣ, where P is a permutation matrix. The value A(i0, j0) = PΣ(i0, j0)
is the number of (odd half-integer) nonzeros that the (integer) point (i0, j0)
dominates in matrix P .

A permutation matrix P of size n can be regarded as an implicit representation
of the simple unit-Monge matrix PΣ . An individual element of PΣ can be queried
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in time O(n) by a single sweep of the nonzeros of P , counting those that are
dominated. Thinking of the nonzeros of P as odd half-integer points in the plane,
this procedure is known as geometric dominance counting.

Existing methods of computational geometry allow us to answer dominance
counting queries much more efficiently than by a direct linear sweep, as long
as a preprocessing of the point set is allowed. In this work, we will deal with
incremental queries, which are given an element of an implicit simple unit-Monge
matrix, and return the value of an adjacent element. This kind of query can be
answered directly from the permutation matrix, without any preprocessing.

Theorem 1. Given a permutation matrix P of size n, and the value PΣ(i, j),
i, j ∈ [0 : n], the values PΣ(i±1, j), PΣ(i, j±1), where they exist, can be queried
in time O(1).

Proof. Consider a query of the type PΣ(i+1, j); other query types are obtained
by symmetry. Let ĵ ∈ 〈0 : n〉 be such that P (i+ 1

2 , ĵ) = 1; value ĵ can be obtained
from the permutation representation of P in time O(1). We have

PΣ(i + 1, j) = PΣ(i, j)−
{

1 if ĵ < j

0 otherwise

�

Incremental queries described by Theorem 1 can be used to answer batch queries ,
returning a set of elements in a row, column or diagonal of the implicit simple
unit-Monge matrix. In particular, all elements in a given row, column or diagonal
of matrix PΣ can be obtained by a sequence of incremental queries in time O(n),
and a subset of r consecutive elements in time O

(
r + log2 n

)
.

4 Semi-Local LCS and Highest-Score Matrices

We will consider strings of characters taken from an alphabet. Two alphabet
characters α, β match, if α = β, and mismatch otherwise. We extend the al-
phabet by a special wildcard character ‘?’, which by definition matches all the
other characters in the alphabet. We denote by � (respectively, ∼) a string of
wildcard characters extending infinitely to the left (respectively, right).

It will be convenient to index strings by odd half-integer, rather than integer
indices, e.g. a = α 1

2
α 3

2
. . . αm− 1

2
. We will index strings similarly to matrices,

writing e.g. a(̂ı) = αı̂, a〈i : j〉 = αi+ 1
2

. . . αj− 1
2
. String concatenation will be

denoted by juxtaposition.
Given a string, we distinguish between its contiguous substrings, and not

necessarily contiguous subsequences. Special cases of a substring are a prefix and
a suffix of a string.

Definition 6. Given strings a, b, the longest common subsequence (LCS) prob-
lem asks for the length of the longest string that is a subsequence of both a and
b. We will call this length the LCS score of strings a, b.
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Fig. 1. Alignment dag Ga,b and a highest-scoring path

Definition 7. Given strings a, b, the semi-local LCS problem asks for the LCS
scores as follows:

• a against every substring of b (the string-substring LCS problem);
• every prefix of a against every suffix of b (the prefix-suffix LCS problem);
• symmetrically, the substring-string LCS problem and the suffix-prefix LCS

problem, defined as above but with the roles of a and b exchanged.

Definition 8. An alignment dag is a weighted dag, defined on the set of nodes
vl,i, l ∈ [l0 : l1], i ∈ [i0, i1]. The edge and path weights are called scores. For all
l ∈ [l0 : l1], l̂ ∈ 〈l0 : l1〉, i ∈ [i0, i1], ı̂ ∈ 〈i0 : i1〉, the alignment dag contains:

• the horizontal edge vl,ı̂− 1
2
→ vl,ı̂+ 1

2
and the vertical edge vl̂− 1

2 ,i → vl̂+ 1
2 ,i,

both with score 0;
• the diagonal edge vl̂− 1

2 ,ı̂− 1
2
→ vl̂+ 1

2 ,ı̂+ 1
2

with score either 0 or 1.

An alignment dag can be viewed as an (l1−l0)×(i1−i0) grid of cells. An instance
of the semi-local LCS problem on strings a, b corresponds to an m×n alignment
dag Ga,b; a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉 is called a match cell, if
a(l̂) = b(̂ı), and a mismatch cell otherwise. The diagonal edges in match cells
have score 1, and in mismatch cells score 0. Clearly, the diagonal edges with score
0 do not affect maximum node-to-node scores, and can therefore be ignored.
Figure 1 shows the alignment dag corresponding to strings a = “baabcbca”,
b = “baabcabcabaca” (an example borrowed from [1]).

A particular example of an alignment dag is the full-match dag, which consists
entirely of match cells.

The solution to the semi-local LCS problem is equivalent to finding the highest-
scoring paths in the alignment dag.

Definition 9. Consider an m × ∞ alignment dag Ga,�b∼. The corresponding
highest-score matrix is a matrix over [−∞ : +∞]2, defined by

Ha,�b∼(i, j) = max score(v0,i � vm,j)
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Fig. 2. Alignment dag Ga,b and nonzeros of Pa,�b∼ as seaweeds

where i, j ∈ [−∞ : +∞], and the maximum is taken across all paths between the
given endpoints. If i = j, we have Ha,�b∼(i, j) = 0. By convention, if j < i, then
we let Ha,�b∼(i, j) = j − i < 0.

In Figure 1, the highlighted path has score 5, and corresponds to the value
Ha,�b∼(4, 11) = 5, which is equal to the LCS score of string a against substring
b〈4 : 11〉 = “cabcaba”.

Theorem 2 ([14,15]). Consider an m × ∞ alignment dag Ga,�b∼ Its corre-
sponding highest-score matrix Ha,�b∼ is unit-anti-Monge. In particular, we have

Ha,�b∼(i, j) = j − i− PΣ
a,�b∼(i, j)

where Pa,�b∼ is a permutation matrix over 〈−∞ : +∞〉2.

The key idea of our approach is to regard the highest-score matrix Ha,�b∼ as
implicitly represented by the permutation matrix Pa,�b∼.

Figure 2 shows a graphical representation of the implicit highest-score ma-
trix, given directly on the alignment dag. Nonzeros of Pa,�b∼ are represented
by seaweeds, laid out as paths in the dual graph. In particular, every nonzero
Pa,�b∼(i, j) = 1, where i, j ∈ 〈0 : n〉, is represented by a seaweed originating be-
tween the nodes v0,i− 1

2
and v0,i+ 1

2
, and terminating between the nodes vm,j− 1

2
and vm,j+ 1

2
. The remaining seaweeds, originating or terminating at the sides of

the dag, correspond to nonzeros Pa,�b∼(i, j) = 1, where either i ∈ 〈−m : 0〉
or j ∈ 〈n : n + m〉 (or both). In particular, every nonzero Pa,�b∼(i, j) = 1,
where i ∈ 〈−m : 0〉 (respectively, j ∈ 〈n : m + n〉) is represented by a seaweed
originating between the nodes v−i− 1

2 ,0 and v−i+ 1
2 ,0 (respectively, terminating be-

tween the nodes vm+n−j− 1
2 ,n and vm+n−j+ 1

2 ,n). For the purposes of this section,
the specific layout of the seaweeds between their endpoints is not important.
However, this layout will become meaningful in the context of the algorithms
described in the following sections.
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5 Weighted Scores and Edit Distances

The concept of LCS score is generalised by that of weighted alignment score (see
e.g. [5]). An alignment of strings a, b is obtained by putting a subsequence of
a into one-to-one correspondence with a (not necessarily identical) subsequence
of b, character by character and respecting the index order. The corresponding
pair of characters, one from a and the other from b, are said to be aligned. A
character not aligned with a character of another string is said to be aligned
with a gap in that string. Hence, four types of character alignment arise, each
of which is given a real weight :

• a pair of matching characters, with weight w=;
• a pair of mismatching characters, with weight w#;
• a gap against a character, with weight w�;
• a character against a gap, with weight w�.

Some of these weights may be negative. Aligning a matching pair of charac-
ters is considered to be better than aligning a mismatching pair of characters,
which in its turn is not worse than aligning each of the two characters against
a gap. Therefore, we assume w= > w# ≥ w� + w�. In particular, the LCS score
corresponds to taking w= = 1, w# = w� = w� = 0.

Definition 10. The alignment score for strings a, b is the maximum total
weight of character alignments in an alignment of a and b.

Clearly, the alignment score corresponds to a shortest path in a generalised
alignment dag, where diagonal match, diagonal mismatch, horizontal and vertical
edges have weight w=, w#, w�, w�, respectively.

We show that without loss of generality, we can restrict ourselves to alignment
scores with w= = 1, w� = w� = 0. Indeed, given general weights, we solve the
alignment score problem with normalised weights

w∗
= = 1 w∗

# =
w# − w� − w�
w= − w� − w�

w∗
� = w∗

� = 0

Then the score w of any alignment with the original weights can be found from
the score w∗ of the corresponding alignment with normalised weights as

w = w∗ · (w= − w� − w�) + m · w� + n · w�

In this work, we restrict ourselves to alignment scores that satisfy the following
rationality condition.

Definition 11. A set of alignment score weights will be called rational if the
corresponding normalised weights (in particular, w∗

#) are rational numbers.

Given a rational set of normalised weights, the semi-local alignment score prob-
lem on strings a, b can be easily reduced to the semi-local LCS problem. For
details, see [16].
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6 The Seaweed Algorithm

A classical solution to the global LCS problem is given by the dynamic program-
ming algorithm, discovered independently by Needleman and Wunsch (without
an explicit analysis) [11], and by Wagner and Fischer [17]. The dynamic pro-
gramming algorithm runs in time O(mn). Based on the ideas of Schmidt [12],
Alves et al. [1] gave an algorithm for the string-substring LCS problem, also
running in time O(mn).

In [15], we gave a simple algorithm for the semi-local LCS problem, that
matches the above algorithms in and asymptotic running time, and improves
on them in functionality. We call it the seaweed algorithm, since it has a simple
interpretation in terms of seaweeds (paths in the dual graph, see Figure 2).

Algorithm 1 (Semi-local LCS: the seaweed algorithm [15]).
Input: strings a, b of length m, n, respectively.
Output: implicit highest-score matrix PA on strings a, b.
Description. The output permutation matrix Pa,�b∼ has core 〈−m : n〉 × 〈0 :
m + n〉 and offset m. We will maintain a variable matrix P with the same core
and offset. Let initially P ← Idm. We sweep the cells of the alignment dag in
an arbitrary order compatible with the top-to-bottom and left-to-right partial
order of the cells. For each cell, we perform an update on matrix P . At the end
of the sweep, we will have P = Pa,�b∼.

Consider a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉. We define the cell’s
parameters to be characters a(l̂), b(̂ı). Let i∗ = ı̂+m− l̂. The update is performed
on a 2× 2 induced permutation submatrix of P as follows:

P 〈·, i∗ − 1 : i∗ + 1〉 ←{(
0 1
1 0

)
if a(l̂) �= b(̂ı) and P 〈·, i∗ − 1 : i∗ + 1〉 =

(
1 0
0 1

)
unchanged otherwise

(1)

The current cell can be regarded as an automaton, performing the update on
the submatrix from an input state into the output state.

The sequence of updates on matrix P can be interpreted as the following
sequence of updates on the alignment dag. We start with a trivial full-match
dag, which consists entirely of match cells. We then sweep the cells in the order
described above. In each step, we transform a match cell into a mismatch cell,
if the corresponding characters mismatch in the input strings. By Theorem 2,
the algorithm maintains the invariant “current state of matrix P is the implicit
highest-score matrix for the current state of the alignment dag”. Therefore, at
the end of the sweep, we have P = Pa,�b∼.

Cost analysis. For every cell, the 2×2 column-induced submatrix P 〈·, i∗−1 :
i∗ + 1〉 can be obtained from matrix P in time O(1). The cell update also runs
in time O(1). Therefore, the overall running time is O(mn). 
�

In the course of the computation by Algorithm 1, the semi-local LCS problem is
solved implicitly for all prefixes of a against all prefixes of b. The algorithm can
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Fig. 3. A snapshot of Algorithm 1 (the seaweed algorithm)

be interpreted in terms of seaweeds as follows. Each seaweed is traced across the
alignment dag in the top-to-bottom or left-to-right direction. A seaweed runs
in a straight line by default; however, its direction may be affected by match
cells, and by other seaweeds. Every cell has two seaweeds passing through it, one
entering across the top edge and another across the left-hand edge. In a match
cell, both seaweeds “bend away” from each other, so the seaweed entering at the
top exits on the right, and the seaweed entering on the left exits at the bottom.
In a mismatch cell, the two seaweeds keep straight and cross each other, if and
only if this pair of seaweeds have not previously crossed; otherwise, they bend
away as in a match cell. Therefore, any given pair of seaweeds are only allowed
to cross at most once in the course of the computation. Notice that the same
property of crossing at most once also holds for any pair of highest-scoring paths
in the dag.

Figure 3 shows a snapshot of Algorithm 1. The dag area that has already
been processed is shown by the dark border; the cell currently being processed
is shaded. Since the two seaweeds crossing in the current cell have previously
crossed, the current step will leave the implicit highest-score matrix unchanged,
so that the second crossing is not allowed. The final layout of the seaweeds is the
one given in Figure 2, which describes the full sequence of states of the implicit
highest-score matrix in Algorithm 1.

7 The Periodic Seaweed Algorithm

In many string comparison applications, one or both of the input strings may
have periodic structure. In this section, we show how to exploit such structure
efficiently, using a variant of the seaweed method.

Consider the problem of comparing a finite string a of length m against a string
b, which is infinite in both directions and periodic: b = u±∞ = . . . uuuu . . . The
period string u is finite of length p.

Definition 12. Given strings a, u, the periodic string-substring LCS problem
asks for the LCS score of a against every finite substring of b = u±∞.
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Without loss of generality, we assume that every character of a occurs in u
at least once. Clearly, the length of the substring of b in Definition 12 can be
restricted to be at most mp.

The definition of the alignment dag (Definition 8) extends naturally to the
periodic string-substring LCS problem. The alignment dag is itself periodic: the
edges vl,ı̂− 1

2+kp → vl,ı̂+ 1
2+kp (respectively, vl̂− 1

2 ,i+kp → vl̂+ 1
2 ,i+kp, vl̂− 1

2 ,ı̂− 1
2 +kp →

vl̂+ 1
2 ,ı̂+ 1

2 +kp) have equal scores for all l ∈ [l0 : l1], l̂ ∈ 〈l0 : l1〉, i ∈ [i0, i1],
ı̂ ∈ 〈i0 : i1〉, k ∈ [−∞ : +∞]. Such an alignment dag can also be regarded as a
horizontal composition of an infinite sequence of period subdags, each of which
is isomorphic to the m× p alignment dag Ga,u.

Consider the highest-score matrix Ha,b and its implicit representation Pa,b;
note that, since string b is already infinite, it does not require any extension by
wildcards. Matrices Ha,b, Pa,b are again periodic: we have Ha,b(i, j) = Ha,b(i +
p, j + p) for all i, j ∈ [−∞ : ∞], and Pa,b(̂ı, ĵ) = Ha,b(̂ı + p, ĵ + p) for all ı̂, ĵ ∈
〈−∞ : ∞〉. To represent such matrices, it is sufficient to store the p nonzeros of
the horizontal period submatrix Pa,b〈0 : p, ∗〉, or, symmetrically, of the vertical
period submatrix Pa,b〈∗, 0 : p〉. The nonzero sets of the two period submatrices
can be obtained from one another in time O(p); we will be using both of them
simultaneously where necessary.

The periodic string-substring LCS problem can be solved by a simple exten-
sion of the seaweed algorithm (Algorithm 1). Following the periodic structure of
the highest-score matrix, the seaweed pattern is also periodic. Hence, the sea-
weeds only need to be traced within a single period subdag, with appropriate
wraparound.

Algorithm 2 (Periodic string-substring LCS: the periodic seaweed al-
gorithm).
Input: strings a, u of length m, p, respectively.
Output: implicit highest-score matrix Pa,b, represented by nonzeros of (say)
vertical period submatrix Pa,b〈∗, 0 : p〉, where b = u±∞.
Description. The output matrix is periodic with period p. We will maintain
a variable matrix P with the same period. We let initially P ← Idm (which is
a periodic matrix). Then, we sweep the cells of the period subdag as follows. In
the outer loop, we run through the rows of cells top-to-bottom. For the current
row l̂ ∈ 〈0 : m〉, we start the inner loop at an arbitrary match cell ı̂0 ∈ 〈0 : p〉, so
we have a(l̂) = b(̂ı). Such a match cell is guaranteed to exist by the assumption
that every character of a occurs in u at least once. Then, we sweep the cells from
ı̂ = ı̂0 left-to-right, wrapping around from ı̂ = p − 1

2 to ı̂ = 1
2 , and continuing

the sweep left-to-right up to ı̂ = ı̂0 − 1. For each cell, we perform an update on
matrix P . At the end of the sweep, we will have P = Pa,b.

Consider a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : p〉. We define the cell’s
parameters to be characters a(l̂), b(̂ı). Let i∗ = ı̂ + m − l. As in Algorithm 1,
the update is performed on a 2 × 2 column-induced permutation submatrix of
P by (1). Note that the first update in an inner loop is always trivial: we have
a(l̂) = b(̂ı0), therefore P remains unchanged.
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Fig. 4. A snapshot of Algorithm 2 (the periodic seaweed algorithm)

The sequence of updates on matrix P can be interpreted as a sequence of
updates on the alignment dag, as described in Algorithm 1, but now including
the wraparound. Therefore, at the end of the sweep, we have P = Pa,b.

Cost analysis. As in Algorithm 1, the total running time is O(mp). 
�

Figure 4 shows a snapshot of Algorithm 2, using the same conventions as
Figure 3.

Note that the cell updating order in Algorithm 2 is significantly more re-
stricted than in Algorithm 1, due to the extra data dependencies caused by the
wraparound. This seems to rule out the possibility of a micro-block version of the
algorithm, that would be analogous to the micro-block seaweed algorithm [16].

8 Tandem Alignment

The periodic LCS problem has many variations that can be solved by an appli-
cation of the periodic seaweed algorithm.

The first such variation is the tandem LCS problem. The problem asks for the
LCS score of a string a of length m against a tandem k-repeat string b = uk

of length n = kp. As before, we assume that every character of a occurs in u
at least once. We may assume that k ≤ m (since for k ≥ m, every character
of a can be matched to a different copy of u in b, and therefore the LCS score
between a and b is equal to m).

The tandem LCS problem can be solved naively by considering the LCS prob-
lem directly on strings a and b, ignoring the periodic structure of string b. The
standard dynamic programming algorithm [11,17] solves the problem in time
O(mn) = O(mkp). This running time can be slightly improved by the micro-
block precomputation method [9].

The tandem LCS problem can also be regarded as a special case of the
common-substring LCS problem [8,3]. Using this technique, the problem can
be solved in time O

(
m(k + p)

)
. The techniques of Landau et al. [3,7] give an

algorithm for the tandem LCS problem, parameterised by the LCS score of the
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input strings; however, the worst-case running time of this algorithm is still
O

(
m(k +p)

)
. Landau [6] asked if the running time for the tandem LCS problem

can be improved to O
(
m(log k + p)

)
.

We now give an algorithm that improves on the current algorithms in time
and functionality, and even exceeds Landau’s expectation. First, we call Algo-
rithm 2 on strings a and u. Then, we count the number of nonzeros dominated
by point (0, n), i.e. nonzeros in the submatrix Pa,b〈0 : +∞,−∞ : n〉. Given the
(say) horizontal period submatrix Pa,b〈0 : p, ∗〉, this can be done by a sweep
of its p nonzeros, counting every nonzero with appropriate multiplicity. More
precisely, every nonzero Pa,b(i, j) = 1, i ∈ 〈0 : p〉, j ∈ 〈−∞ : ∞〉, is counted with
multiplicity k − �j/p, if j ∈ 〈0 : n〉, and is skipped (counted with multiplic-
ity 0) otherwise. The solution to the tandem LCS problem is then obtained by
Theorem 2. The overall running time is dominated by the call to Algorithm 2,
which runs in time O(mp).

Another set of variations on the periodic LCS problem was introduced by
Benson [2] as the tandem alignment problem. Instead of asking for all string-
substring LCS scores of a against b = u±∞, the tandem alignment problem asks
for a substring of b that is closest to a in terms of alignment score (or edit
distance), under different restrictions on the substring. In particular:

• the pattern global, text global (PGTG) tandem alignment problem restricts
the substring of b to consist of a whole number of copies of u, i.e. to be of
the form uk = uu . . . u for an arbitrary integer k;

• the tandem cyclic alignment problem restricts the substring of b to be of
length kp for an arbitrary integer k (but it may not consist of a whole
number of copies of u);

• the pattern local, text global (PLTG) tandem alignment problem leaves the
substring of b unrestricted.

All three versions of the tandem alignment problem can be regarded as spe-
cial cases of the approximate pattern matching problem on strings a of length
m and b′ = um of length n = kp (but with the roles of the text and the pattern
reversed). Therefore, the tandem LCS problem can be solved naively by con-
sidering the approximate pattern matching problem directly on strings a and
b′, ignoring the periodic structure of string b′. Given an arbitrary (real) set of
alignment weights, the classical algorithm by Sellers [13] solves the problem in
time O(mn) = O(mkp). For a rational set of weights, the running time can again
be slightly improved by the micro-block precomputation method.

The PGTG and PLTG tandem alignment problems can be solved more effi-
ciently by the technique of wraparound dynamic programming [10,4] (see also [2])
in time O(mp). For the tandem cyclic alignment problem, Benson [2] modified
this technique to give an algorithm running in time O(mp log p) and memory
O(mp).

We now give a new algorithm for the tandem cyclic alignment problem, which
improves on the existing algorithm in running time, assuming a rational set of
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alignment weights. The running time of the new algorithm matches the current
algorithms for the PGTG and PLTG tandem alignment problems.

Given input strings a, u, we first solve the periodic string-substring problem
by calling Algorithm 2. This gives us a period submatrix of matrix Pa,b, where
b = u±∞. Then, for each k, 0 < k < m, we perform independently the following
procedure. We solve the tandem LCS problem for strings a and uk by the method
described earlier in this section, counting every nonzero in the period submatrix
Pa,b with an appropriate multiplicity. This gives us the LCS score for a against uk

for every k. We then update this score incrementally, obtaining the LCS score for
string a against a window of length p in b, sliding through p successive positions.
This is equivalent to querying p successive elements in a diagonal of matrix
Pa,b, which can be achieved by 2p incremental dominance counting queries. By
Theorem 1, every one of these queries can be performed in time O(1).

More precisely, let PΣ
a,b(i, i+kp), i ∈ [0 : p], be the current query element. Let

ı̂0 = i + 1
2 , ĵ1 = i + kp + 1

2 . Let ĵ0, ı̂1 be such that Pa,b(̂ı0, ĵ0) = Pa,b(̂ı1, ĵ1) = 1.
The value ĵ0 (respectively, ı̂1) can be obtained from the horizontal (respectively,
vertical) period submatrix of Pa,b in time O(1). Then the next query element is

PΣ
a,b(i + 1, i + kp + 1) =

PΣ
a,b(i, i + kp)−

{
1 if ĵ0 < i + kp

0 otherwise
+

{
1 if ı̂1 > i + 1
0 otherwise

The call to Algorithm 2 runs in time O(mp); its output is shared by the
tandem LCS computation for all k. For each k, the running time of both the
remaining part of the tandem LCS computation and the sliding window (batch
query) computation is O(p); therefore, the combined running time for all values
of k is m ·O(p) = O(mp). Overall, the algorithm runs in time O(mp).

9 Conclusions

In this work, we have introduced a new method for periodic string-substring
comparison. By application of the new method, we have obtained improved al-
gorithms for the tandem LCS problem and the tandem cyclic alignment problem.
Since string periodicity is a fundamental concept in many areas of computer sci-
ence and computational molecular biology, it is likely that our method will have
other interesting applications.
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Abstract. The NP-hard Interval Constrained Coloring problem
appears in the interpretation of experimental data in biochemistry deal-
ing with protein fragments. Given a set of m integer intervals in the
range 1 to n and a set of m associated multisets of colors (specifying for
each interval the colors to be used for its elements), one asks whether
there is a “consistent” coloring for all integer points from {1, . . . , n} that
complies with the constraints specified by the color multisets. We initi-
ate a study of Interval Constrained Coloring from the viewpoint of
combinatorial algorithmics, trying to avoid polyhedral and randomized
rounding methods as used in previous work. To this end, we employ the
method of systematically deconstructing intractability. It is based on a
thorough analysis of the known NP-hardness proof for Interval Con-

strained Coloring. In particular, we identify numerous parameters
that naturally occur in the problem and strongly influence the problem’s
practical solvability. Thus, we present several positive (fixed-parameter)
tractability results and, moreover, identify a large spectrum of combina-
torial research challenges for Interval Constrained Coloring.

1 Introduction

Althaus et al. [1, 2] recently identified the Interval Constrained Coloring

problem as an important combinatorial problem in the context of automated
mass spectrometry and the determination of the tertiary structure of proteins.
It builds the key to replace a manual interpretation of exchange data for peptic
fragments with computer-assisted methods, see Althaus et al. [2] for more on the
biochemical background and further motivation. The decision problem Inter-

val Constrained Coloring (ICC) deals with matching color multisets with
integer intervals and can be formalized as follows.1 To this end, for two positive
integers i, j with i ≤ j, let [i, j] := {k ∈ N | i ≤ k ≤ j}. Further, for i ≥ 1 let [i]
denote the interval [1, i].
� Supported by a PhD fellowship of the Carl Zeiss Foundation.
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1 Note that, compared with Althaus et al. [1, 2], we choose a somewhat different but

equivalent formalization here; this problem definition turns out to be more suitable
for our subsequent studies.
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Input: A positive integer n, a set of m integer intervals F = {F1, . . . ,
Fm}, all within [n], a multiset of m multisets of colors C = {C1, . . . , Cm}
over k different colors.
Question: Is there a coloring c : [n]→ [k] such that for each interval Fi ∈
F it holds that Ci = c(Fi)?

Herein, c(Fi) denotes the multiset of colors assigned by c to the integer points
in the interval Fi. Concerning the biochemical background, the intervals cor-
respond to (typically overlapping) fragments of a protein with n residues, and
the k colors correspond to k different exchange rates that need to be assigned
consistently to the n residues [1, 2]. The color multisets correspond to experi-
mentally found bulk information that needs to be matched with the residues and
can be interpreted as constraints that describe a set of valid colorings of the in-
terval [n] or, alternatively, a set of strings of length n over the “color alphabet”.
Note that from an applied point of view it is also important to investigate the
corresponding optimization problems where one wants to maximize the number
of requirements (that is, intervals that completely match with a given color mul-
tiset) that can be fulfilled [1]. However, in this paper we focus on analyzing the
complexity of the decision problem.

Known results. To our knowledge, so far ICC has only been studied in the
two papers by Althaus et al. [1, 2]. It has been shown to be NP-complete by a
reduction from the Exact Cover problem [1]. In the more applied paper [2],
besides first introducing and formalizing the problem, an algorithm based on
integer linear programming and branch-and-bound was presented that enumer-
ates all valid (fulfilling all constraints) color mappings c. In particular, it was
shown that in the case of k = 2 colors a direct combinatorial algorithm leads to
polynomial-time solvability; the computational complexity of the case k = 3 was
left open. Finally, successful experiments with real-world instances with n < 60,
m ≤ 50, k = 3 and randomly generated instances with n ≤ 1000, m = n/2,
and k = 3 have been performed. In the more theoretical paper [1], besides the
NP-completeness proof, the preceding work [2] has been continued by provid-
ing results concerning polynomial-time approximability. In particular, there is
an algorithm producing a coloring where all requirements are matched within
a mere additive error of one if the LP-relaxation of the presented integer pro-
gram for ICC has a feasible solution. This algorithm is based on a sophisticated
polyhedral approach combined with recent randomized rounding techniques.

Our contributions. This work proposes a fresh view on ICC and the de-
velopment of exact algorithms for NP-hard combinatorial problems in general.
The fundamental starting point here is to deconstruct proofs of NP-hardness
in order to obtain new insights into the combinatorial structure of problems.
More specifically, the point is to analyze how different parameters occurring in
a problem contribute to its computational complexity. Having identified (some
of) these parameters, the next step is to determine the complexity behavior in
dependence on these parameters and combinations thereof. This is where pa-
rameterized algorithmics [5, 6, 8] comes into play. In case of ICC, there is an
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enormous number of useful parameterizations, all naturally deduced from decon-
structing the known NP-hardness proof. In this line, for instance, we can show a
fixed-parameter tractability result with respect to the parameter “maximum in-
terval length”. Whereas we do not know whether the problem is fixed-parameter
tractable with respect to the color parameter k alone, it is with respect to the
combined parameter (n, k), that is, there is an algorithm with time complexity
of the form O∗((k − 1)n).2 These algorithms are of practical interest when the
corresponding parameter values are sufficiently small. For instance, note that
all experiments of Althaus et al. [2] were performed having k = 3 and n ≤ 60
for real-world instances. Indeed, in case of k = 3 we can further improve the
running time to O∗(1.89n). In this spirit, in Section 3 we investigate a number
of “single parameterizations”, and in Section 4 we consider an even larger num-
ber of “combined parameterizations”. Moreover, whereas ICC is NP-complete
for “cutwidth” three [1], we present a combinatorial polynomial-time algorithm
for cutwidth two. Tables 1 and 2 in Sections 3 and 4 survey the current state
of the art and our new results concerning (combinatorial) algorithms that can
efficiently solve ICC in case of favorable parameter constellations.

Due to the lack of space, several proofs are deferred to the long version of this
paper.

2 Parameterization and Deconstruction of NP-Hardness

Parameterized algorithmics [5, 6, 8] aims at a multivariate complexity analysis
of problems. The hope lies in accepting the seemingly inevitable combinatorial
explosion for NP-hard problems, but to confine it to some parameter p. In this
paper, p always is a positive integer or a vector of positive integers. A given
parameterized problem (I, p) is fixed-parameter tractable (FPT) with respect to
the parameter p if it can be solved within running time f(p) · poly(|I|) for some
computable function f only depending on p.

A standard question of people unfamiliar with parameterized algorithmics is
how to define respectively find “the” parameter for an NP-hard problem. There
are the following (partly overlapping) “standard answers” to this question:
1. The standard parameterization typically refers to the size of the solution set
of the underlying problem (whenever applicable).
2. A parameter describes a structural property of the input; for instance, the
treewidth of a graph or the number of input strings.
3. Finding useful parameters to some extent is an “art” based on analyzing what
typical real-world instances could look like.

Perhaps the most natural and constructive answer, however, is to look at
the corresponding proof(s) of NP-hardness and what “parameter assumptions”
they (do not) make use of. Indeed, this is nothing but what we mean by de-
constructing NP-hardness proofs for parameter identification. In this work, we
deconstruct the (only known) NP-hardness proof of ICC and gain a rich scenario
of combinatorially and practically interesting structural parameterizations.
2 The O∗-notation suppresses polynomial-time factors [9].
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Let us now take a closer look at ICC. We first have to briefly review the known
NP-hardness reduction from Exact Cover due to Althaus et al. [1]: The input
of Exact Cover is a set S of subsets of a ground set U := {1, 2, . . . , u} and a
positive integer t, and the question is whether there are t subsets from S such
that every element from U is contained in exactly one such subset. Althaus et
al.’s polynomial-time many-one reduction (using an approach by Chang et al. [4])
from Exact Cover to ICC works as follows.

1. The number of colors k is set to s := |S|.
2. The interval range n is set to (u + 1) · s− t.
3. For each element from U , there are exactly three corresponding integer in-

tervals. Indeed, one can speak of three types of intervals, and all intervals of
one type can be placed consecutively into one interval [n] without overlap.
(a) Type 1: Intervals of the form [(i− 1)s + 1, is] for all 1 ≤ i ≤ u.
(b) Type 2: Intervals of the form [is− t + 1, (i + 1)s− t] for all 1 ≤ i ≤ u.
(c) Type 3: Intervals of the form [is− t− fi + 1, is− t + 1] for all 1 ≤ i ≤ u,

where fi denotes the number of occurrences of i in the sets of S.
4. Every type-1 and every type-2 interval is assigned the color set {1, . . . , k}.

A type-3 interval corresponding to i ∈ U is assigned the color set consisting
of the colors associated with the subsets in S that contain i.

After having described the construction behind the NP-hardness proof, the
deconstruction begins by making several observations about its properties:

1. The interval range n and the number m of intervals both are unbounded.
2. The number of colors k is s, hence unbounded, but all color multisets indeed

are sets. That is, no interval shall be assigned the same color twice.
3. The maximum interval length is s, hence unbounded.
4. The maximum overlap between intervals is max{t, s− t}, hence unbounded.
5. Only three different surrounding intervals [n] are needed for comprising all

intervals without overlap, hence the cutwidth of the constructed instance is
bounded by three.

From the fifth observation we can conclude that there is no hope for fixed-
parameter tractability with respect to the parameter “cutwidth” unless P=NP.
On the positive side, we will show that ICC is polynomial-time solvable for
cutwidth two. However, from the other four observations we directly obtain the
following questions concerning a parameterized complexity analysis of ICC.

1. Is ICC fixed-parameter tractable with respect to the parameters n or m?
2. Is ICC fixed-parameter tractable with respect to k, or is it already NP-hard

for constant k-values? Indeed, the complexity for the practically relevant case
k = 3 is still unsettled. How does the parameter “maximum number of dif-
ferent colors per color multiset” influence the complexity? In the constructed
instance this parameter is unbounded.

3. Is ICC fixed-parameter tractable with respect to the parameter “maximum
interval length”?

4. Is ICC fixed-parameter tractable with respect to the parameter “maximum
overlap between intervals”?
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The central point underlying the above derived algorithmic questions is that
whenever a quantity (that is, parameter) in an NP-hardness proof is unbounded
(non-constant), then this evokes the quest to know what happens if this quantity
is constant or considered to be small compared to the overall input size. Clearly,
one way to answer is to provide a different proof of NP-hardness where this
quantity is bounded. Otherwise, the main tool in answering such questions is
parameterized algorithmics. Indeed, the story goes even further by combining
different parameterizations. More specifically, it is, for instance, natural to ask
whether ICC is fixed-parameter tractable when parameterized by both cutwidth
and the number of colors k (the answer is open), or whether it is fixed-parameter
tractable when parameterized by both n and k (the answer is “yes”) and what
the combinatorial explosion f(n, k) then looks like. In this way, one ends up
with an extremely diverse and fruitful ground to develop practically relevant
combinatorial algorithms.

In the remainder of this paper, besides the already defined parameters n
(range), m (number of intervals), and k (number of colors), we will consider the
following parameters and combinations thereof:

– maximum interval length l;
– cutwidth c := max1≤i≤n |{F ∈ F : i ∈ F}|;
– maximum pairwise overlap between intervals o := max1≤i<j≤m |Fi ∩ Fj |;
– maximum number of different colors ∆ in the color multisets.

Note that one of the integer linear programs devised by Althaus et al. [2]
has O(m · k) variables. Using Lenstra’s famous result [7] on the running time of
integer linear programs with a fixed number of variables then implies that ICC is
fixed-parameter tractable with respect to the (combined) parameter (m, k). Due
to the huge combinatorial explosion in Lenstra’s theorem, however, this result is
of purely theoretical interest and more efficient combinatorial algorithms are of
big interest.

In the next two sections, we present several fixed-parameter tractability results
with respect to the above parameters (Section 3) and combinations of each time
two of them (Section 4).

Let us spot some challenges for future research concerning the multivariate
complexity analysis of ICC. The complexity behavior with respect to the com-
bined parameter (c, k) is widely open. A breakthrough would be to show the
tractability with respect to k—note that we have intractability with respect to c.
Basically along the same lines as k, also ∆ gives an interesting parameterization
with almost no results so far. The parameter m also seems of particular interest.
The fixed-parameter tractability with respect to m is completely open and with
respect to the combined parameter (m, k) the running time needs improvement.

We close this section with some simple observations about a helpful “normal
form” that one may assume without loss of generality for all ICC input instances.
More precisely, based on simple and efficient preprocessing rules, one can perform
a data reduction that yields this normal form.
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Table 1. Complexity of ICC for 1-dimensional parameterizations. Herein, “P” means
that the problem is polynomial-time solvable, “NPc” means that the problem is NP-
complete, and “?” means that the complexity is unknown. For fixed-parameter algo-
rithms, we only give the function of the exponential term, omitting polynomial factors.
The results for k = 2 and c = 3 are due to Althaus et al. [1, 2], the rest is new.

Parameter k ∆ l c m n o

Complexity
k = 2: P
k ≥ 3: ? ∆ ≥ 2: ? l!

c = 2: P
c = 3: NPc ? n!

o = 1: P
o ≥ 2: ?

Proposition 1 (Normal form for ICC)
In O(lmn) time, one can transform every ICC instance into an equivalent one
such that

1. at every position i ∈ [n], there is at most one interval starting at i and at
most one interval ending at i, and

2. if the maximum interval length is l, then every position i ∈ [n] is contained
in at most 2l intervals.

3 Single Parameters

In Section 2, we identified various parameters as meaningful “combinatorial
handles” to better assess the computational complexity of ICC. Concerning
cutwidth c, whereas c = 3 is known to be NP-complete [1], here we show that
c = 2 is polynomial-time solvable. Obviously, l ≤ n, so the fixed-parameter
tractability with respect to l (as we will prove subsequently) implies the fixed-
parameter tractability with respect to n. Table 1 surveys known and new results
with respect to single parameters.

Theorem 1. ICC can be solved in O(l! · lmn) time.

Proof. We present a dynamic programming algorithm. We use the following no-
tation. First, let A denote the set of intervals contained in some other intervals,
that is, A := {F ∈ F | ∃F ′∈F : F ⊆ F ′}, and B := F \ A. Let K = {1, . . . , k}
denote the set of all colors. We say that a coloring c′ satisfies an input inter-
val Fi ∈ F if c′(Fi) = Ci. For an interval [s, t], a coloring is represented by
a vector in Kt−s+1. For an input interval Fi ∈ F , the set Ki of all satisfying
colorings is given by Ki := {c′ ∈ K|Fi| | c′ satisfies Ci}. In the worst case that
every color occurs at most once in the multiset Ci, there are |Ci|! satisfying
colorings of an input interval Fi. In the following, we assume that the intervals
in B are ordered in increasing order of their start points (and, hence, also in
increasing order of their endpoints). Let B = {B1, . . . , Bm′} and Bj = [sj , tj ]
for all 1 ≤ j ≤ m′. The intervals in B cover [n], that is,

⋃m′

j=1 Bj = [n]. For
every Bj , the algorithm maintains a table Tj with an entry for every satisfying
coloring of Bj . More specifically, for every coloring c′ = (c′1, . . . , c

′
|Bj |) ∈ Kj
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we set Tj(c′) = true iff there exists a coloring c′′ = (c′′1 , . . . , c′′tj
) ∈ Ktj of the

interval [tj ] with (c′′sj
, . . . , c′′tj

) = c′ such that c′′ satisfies each interval F ∈ F
with F ⊆ [tj ].

For j = 1 and for every c′ ∈ K1, this is achieved by setting T1(c′) := true iff c′

satisfies every interval [s, t] ∈ F with [s, t] ⊆ [s1, t1].
We say that a coloring c′ = (c′1, . . . , c

′
|Bj|) ∈ Kj for Bj is consistent with a

coloring c′′ = (c′′1 , . . . , c′′|Bj−1|) ∈ Kj−1 for Bj−1 if c′ and c′′ agree in Bj−1 ∩ Bj ,
that is, (c′′sj−sj−1+1, . . . , c

′′
|Bj−1|) = (c′1, . . . , ctj−1−sj+1). We write c′|c′′ to denote

that c′ is consistent with c′′.
For j = 2, . . . , n and for every c′ = (c′1, . . . , c′|Bj |) ∈ Kj, we set

Tj(c′) = true ⇐⇒ c′ satisfies all F ∈ F with F ⊆ Bj and
∃c′′∈Kj−1, c′|c′′ : Tj−1(c′′) = true.

The correctness can be seen as follows. The “⇒”-direction follows directly
by definition. For the “⇐”-direction, observe the following. A coloring of [tj ],
composed of a coloring of [tj−1] satisfying all F ∈ F with F ⊆ [tj−1] and a
coloring c′ of [sj , tj ] satisfying all F ∈ F with F ⊆ [sj , tj ], satisfies all F ∈ F
with F ⊆ [tj ]; clearly, all F ∈ F with F ⊆ [tj−1] are satisfied. Moreover, all
other F ∈ F with F ⊆ [tj ] are satisfied since for every fragment [s, t] ∈ F
with tj−1 < t ≤ tj it holds that [s, t] ⊆ [sj , tj ].

As to the running time, there are at most |Bj |! satisfying colorings of Bj ;
at most one for every permutation of the associated color multiset. Hence, one
has to consider at most l! colorings for every Bj . For every j = 1, . . . , m′ − 1,
the algorithm works as follows. When building the table Tj for every c′ =
(c′1, . . . , c

′
|Bj |) ∈ Kj, the algorithm computes an auxiliary table Qj with an en-

try Qj(c′r, c′r+1, . . . , c
′
|Bj |), where r := sj+1 − sj + 1, indicating whether Tj(c′) =

true. Herein, in order to ensure that the size of Qj does not exceed l! and to
allow fast access to its elements, table Qj can for example be realized as an array
of size |Bj |! where the entry for cs = (c′r, c

′
r+1, . . . , c

′
|Bj |) is stored at the posi-

tion corresponding to the number of the lexicographically smallest permutation
of Cj with “prefix” cs. Then, to check whether ∃c′′∈Kj−1, c′|c′′ : Tj−1(c′′) = true
for a c′ = (c′1, . . . , c

′
|Bj|) ∈ Kj , the algorithm can check whether Qj−1(c′1, . . . ,

c′|Bj |) = true in O(l) time. Hence, for every position 1 ≤ j ≤ m′, it needs at
most O(l! ·(l+ lm)) time, where the factor lm is due to checking whether c′ satis-
fies all F ∈ F with F ⊆ [sj , tj]. In summary, the total running time is O(l! · lmn)
since m′ ≤ n. 
�

Next, we show that ICC is solvable in O(n2) time in case the cutwidth c = 2.
This contrasts the case c = 3 shown to be NP-complete [1]. Our algorithm is
based on four data reduction rules that are executable in polynomial time. The
application of these rules either leads to a much simplified instance that can be
colored without violating any interval constraints or shows that the instance is
a no-instance.
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Reduction Rule 1. For any two intervals Fi and Fj,

– if |Fi ∩ Fj | = |Ci ∩Cj |, then set c(Fi ∩ Fj) = Ci ∩ Cj;
– if |Fi ∩ Fj | > |Ci ∩Cj |, then return “No”.

Rule 1 is obviously correct: if two intervals “share” more positions than colors,
then there is no coloring that satisfies both intervals, and if the number of shared
positions is equal to the number of shared colors, then we have to color the
overlapping intervals exactly with these colors.

Note that when we set c(i) = cx for some position i, we can simplify the
instance as follows. For all Fj = [s, t] with s ≤ i ≤ t, we set Cj := Cj \ {cx}
and t := t − 1. For all Fj = [s, t] with i < s, we set s := s − 1 and t := t − 1.
“Empty” intervals Fj with Cj = ∅ are removed from the input. After Rule 1
and this subsequent reduction of the instance, we can assume that no interval is
completely contained in any other interval.

In the following, assume that the intervals are ordered with respect to their
startpoints, that is, for Fi = [si, ti] and Fj = [sj , tj ] with i < j we have si < sj .
Let t be the endpoint of the first interval Fj = F1 that overlaps only with one
other interval. Clearly, we can color [t] independently from [t + 1, n]. Together
with Rule 1, and the fact that c = 2, we can thus assume that all intervals
except for F1 and Fm overlap with exactly two other intervals. Hence, we can
partition each interval Fj , 1 < j < m, into at most three subintervals: the first
subinterval overlaps with Fj−1, the second (possibly empty) subinterval does not
overlap with any other interval, and the third subinterval overlaps with Fj+1.
The following notation describes this structural property. For an interval Fj , 1 <
j < m, define F 1

j := Fj ∩ Fj−1, F 3
j := F 1

j+1, and let F 2
j := Fj \ (F 1

j ∪ F 3
j ). For

a coloring c′ of all intervals, let C1
j := c′(F 1

j ). Define C2
j and C3

j accordingly.
For F1, define F 3

1 := F 1
2 , and F 2

1 := F1 \ F 3
1 ; for Fm define F 1

m := Fm ∩ Fm−1
and F 2

m := Fm \ F 1
m; C3

1 , C2
1 , C1

m, and C2
m are defined analogously. Whether a

coloring violates an interval Fj only depends on the sets C1
j ,C2

j , and C3
j . Hence,

when we know that a color cx must belong to some Cl
j , 1 ≤ l ≤ 3, then we can

color an arbitrary i ∈ F l
j with cx. Finally, let occ(x, C) denote the multiplicity

of an element x in a multiset C.
The next rule reduces intervals Fj that have no “private” middle interval F 2

j

but more elements of a color cx than the previous interval.

Reduction Rule 2. For any interval Fj, if F 2
j = ∅ and there is a color cx such

that occ(cx, Cj−1) < occ(cx, Cj), then set c(i) = cx for some arbitrary i ∈ F 3
j .

The rule is obviously correct. After its application, for every interval Fj with F 2
j =

∅, we have |Fj−1| > |Fj |. Next, we reduce triples of intervals Fj−1, Fj , Fj+1 that
have identical color multisets in case F 2

j = ∅.

Reduction Rule 3. For intervals Fj−1, Fj, and Fj+1 such that Cj−1 = Cj =
Cj+1 and F 2

j = ∅, remove Fj−1 and Fj from the input and for all intervals Fj+l =
[s, t] with l ≥ 1 set Fj+l = [s′, t′], where s′ := s− |Fj | and t′ := t− |Fj |.

The correctness proof for Rule 3 is omitted.
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The following is our final data reduction rule.

Reduction Rule 4. Let I be an instance that is reduced with respect to Rules
1, 2, and 3, and let Fj be the first interval of I such that there is a color cx with
occ(cx, Cj) > occ(cx, Cj+1). Do the following:

– if j = 1, then set c(i) = cx for some i ∈ F 2
1 ;

– if j > 1 and cx /∈ Cj−1, then set c(i) = cx for some k ∈ F 2
j in case F 2

j = ∅
and otherwise return “No”;

– if j > 1 and cx ∈ Cj−1, then set c(i) = cx for some i ∈ F 1
j .

Lemma 1. Rule 4 is correct.

Proof. Let I be an instance, reduced with respect to Rules 1, 2, and 3, to which
Rule 4 is applied, and let I ′ be the resulting instance. We only show that if I
is a yes-instance, then I ′ is a yes-instance, since the reverse direction trivially
holds.

If j = 1, this is easy to see: since cx occurs more often in F1 than in F2 one
of the positions in F1 \ F2 must be colored with cx.

If j > 1 and cx /∈ Cj−1, then it is clear that one of the positions in F 2
j must

be colored with cx. We either perform this forced coloring or return “No” if this
is not possible.

Finally, if j > 1 and cx ∈ Cj−1, the situation is more complicated. Let c′ be a
coloring that fulfills the interval constraints of I, we call such a coloring proper.
If there is a position i ∈ F 1

j such that c′(i) = cx, then the claim obviously holds.
Otherwise, we show that we can transform c′ into an alternative coloring c′′ that
is proper and there is an i ∈ F 1

j such that c′′(i) = cx. Whether coloring c′′

is proper depends only on the multisets C1
l , C2

l , and C3
l , 1 ≤ l ≤ m, that

are defined by the coloring function c′. Hence, we describe the transformation
applied to c′ with respect to these multisets. Note that we do not modify the
sets Cy

l for any l > j.
We face the following situation: cx /∈ C1

j , but since c′ is a coloring that does
not violate any interval constraints and by the precondition of Rule 2, cx ∈ C2

j .
By the precondition of Rule 4, we have C1 ⊆ C2 ⊆ . . . ⊆ Cj . We show that we
can always find a series of exchange operations such that the resulting coloring
is proper and cx ∈ C1

j . We perform a case distinction. Due to the lack of space,
we show only some cases, the other cases are similar, albeit more complicated.

Case 1: F 2
j−1 = ∅. There are three subcases of this case.

Case 1.1: cx ∈ C2
j−1. In this case, we exchange cx ∈ C2

j−1 and some arbi-
trary cl ∈ C1

j . Furthermore, we remove cx from C2
j and add cl to C2

j . The ex-
change is shown in Fig. 1a; the resulting coloring is clearly proper and cx ∈ C1

j .
Case 1.2: cx ∈ C1

j−1 and F 2
j−2 = ∅. Clearly, Cj−2 must be involved in the

exchange. We choose an arbitrary element cl ∈ C2
j−2. Since Cj−2 ⊆ Cj−1, we

also have cl ∈ Cj−1 \ Cj−2. We distinguish two subcases.
Case 1.2.1: cl ∈ C3

j−1. We perform a direct exchange of cl and cx between C2
j−2

and C1
j−1 and also between C1

j and C3
j . The exchange is shown in Fig. 1b; the

resulting coloring is clearly proper and cx ∈ C1
j .
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Fj

Fj

Fj

Fj−1

Fj−1

Fj−1
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Fj−2

cx cx

cxcx

cx

cx cx

cf

cf

cl

cl

clcl

clcl

a)

b)

c)

Fig. 1. Exchange operations used in the proof of Lemma 1

Case 1.2.2: cl ∈ C2
j−1. We remove cl from C2

j−2 and add cx to C2
j−2. Further-

more, we perform a circular exchange between C1
j−1, C2

j−1, and C3
j−1: move cx

from C1
j−1 to C3

j−1, move an arbitrary element cf from C3
j−1 to C2

j−1, and move cl

from C2
j−1 to C1

j−1. Finally, we remove cx from C2
j and add cf to C2

j . The ex-
change is shown in Fig. 1c; the resulting coloring is clearly proper and cx ∈ C1

j .
The correctness of the final two cases is deferred to a long version of this

paper.
Case 1.3: cx ∈ C1

j−1 and F 2
j−2 = ∅.

Case 2: F 2
j−1 = ∅.

In all cases, we can construct an alternative coloring that is proper and cx ∈
C1

j , which means that we can assume that if I is yes-instance, then there is
some i ∈ C1

j such that c′(i) = cx. In summary, this shows that I is a yes-
instance iff I ′ is a yes-instance. 
�

With these four reduction rules at hand, we can describe a simple quadratic-time
algorithm for ICC with cutwidth two.

Theorem 2. ICC can be solved in O(n2) time when the input has cutwidth two.

Proof. The algorithm starts with exhaustively applying Rules 1 to 4. Note that
the rules have to be applied in the correct order, that is, after each reduction
step, we always check first whether Rule 1 can be applied, then whether Rule 2
can be applied, and so on. The rules either return “No” or we obtain an instance
that is reduced with respect to all data reduction rules. In such an instance we
have C1 ⊆ C2 ⊆ . . . ⊆ Cm. Otherwise, Rule 4 would apply, because there would
be some Fi ∈ F and a color cx such that occ(cx, Ci) > occ(cx, Ci + 1) . This
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instance can be easily colored as follows. For the first interval F1, we choose an
arbitrary coloring that does not violate C1. Clearly, this also does not violate C2
since C1 ⊆ C2. Then we remove the colored parts from the input, adjust the color
multisets accordingly, and choose an arbitrary coloring that does not violate C2.
Clearly, this does not violate C3, since C2 ⊆ C3. After this, we again reduce the
colored parts and continue with coloring F3. This is repeated until all positions
are colored and clearly produces a coloring that does not violate any interval
constraints. This proves the correctness of the algorithm.

For the running time of the algorithm consider the following. First, since
the input has cutwidth two, we have m = O(n). For each data reduction rule,
checking whether it can be applied and the application itself can be performed
in O(n) time. Furthermore, the application of any of the reduction rules removes
at least one position from the interval [n]. Hence, each rule can be applied at
most n times. Together with the O(n) time that is clearly sufficient for coloring
any instance reduced with respect to the reduction rules, this leads to a total
running time of O(n2). 
�

Using the previous algorithm, we also obtain polynomial-time solvability in case
the maximum overlap o between fragments is at most one. This follows from the
observation that after achieving the normal form of the instance, each instance
with overlap at most one also has cutwidth at most two, which can be seen
as follows. Suppose an instance that has the normal form has overlap one and
cutwidth at least three. Then there must be an interval Fi that overlaps with
two other intervals Fj , Fl at some position x. Since at each position at most
one interval starts, at most one of Fj and Fl, say Fj , starts at position x. This,
however, means that Fl starts at some position u < x and hence it has overlap
at least two with Fi, leading to a contradiction.

Corollary 1. ICC can be solved in O(n2) time when the input has overlap one.

4 Combined Parameters

In the following, as already indicated in Section 2, we turn to the study of some
relevant pairs of single parameters which form a “combined parameter”. Table 2
summarizes our current knowledge about combined parameterizations of ICC—
there are many questions left open. Here, we study the three different combined
parameters (l, k), (l, c), and (n, k) that seem to be of immediate practical interest
and all allow for fixed-parameter tractability results. The proof of Theorem 3 is
somewhat similar to the proof of Theorem 1 and therefore omitted.

Theorem 3. ICC can be solved in O(kl · (k + lm)n) time.

Theorem 4. ICC can be solved in (c + 1)l · poly(n, m) time.

Proof. We present a dynamic programming algorithm. We use the following
notation. For every position i, 1 ≤ i ≤ n, let Fi = {Fi1 , . . . , Fini

} denote the
input intervals containing i. Further, let Ci = {Ci1 , . . . , Cini

} denote the color
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Table 2. Complexity of ICC for combined parameters. We only give the function
of the exponential term, omitting polynomial factors. Herein, (k, ∗) and (k, ∗, ∗) refer
to combined parameters that feature k and one or two additional parameters, (l, ∗)
refers to combined parameters that feature l and one additional parameter. Note that
for k = 3, we achieve an improvement from 2n to 1.89n. The result for parameter (k, m)
is due to Althaus et al. [2], the rest is new.

Parameter Running times

(k, ∗) kl, (k − 1)n, f(k, m) (ILP)
(k, ∗, ∗) lc·(k−1), nc·(k−1)

(l, ∗) ∆l, (c + 1)l

multisets associated with the intervals in Fi, where Cij is the color multiset
associated with Fij , 1 ≤ j ≤ ni. Note that ni ≤ c. Further, let Fij = [sij , tij ]
for all 1 ≤ j ≤ ni. By K = {1, . . . , k} we refer to the set of all colors. Further, a
tuple (M1, . . . , Mq) of (multi)sets is called a chain if there exists a permutation π
of {1, . . . , q} such that Mπ(1) ⊆ Mπ(2) ⊆ . . . ⊆Mπ(q).

For every position i, the algorithm maintains a table Ti with a Boolean entry
for every possible tuple of color multisets (A1, . . . , Ani) with Aj ⊆ Cij and |Aj | =
i− sij + 1 for all 1 ≤ j ≤ ni. More specifically, Ti(A1, . . . , Ani) is true iff there
exists a coloring c′ : [i]→ K such that c′([sij , i]) = Aj for all 1 ≤ j ≤ ni and for
every Fl ∈ F with Fl ⊆ [i] it holds that c′(Fl) = Cl. Note that an instance is a
yes-instance iff there is a true entry in Tn. The goal of the dynamic programming
is to compute the tables Ti to fulfill this definition.

According to Proposition 1, at each position in [n] there starts at most one
input interval and ends at most one input interval. Hence, there is exactly one
interval in F1. Let F1 = {F} and let C be the color multiset associated with F .
We set T1({c′}) = true for every c′ ∈ C.

For every position i, 2 ≤ i ≤ n, there is at most one interval in Fi−1 \
Fi and at most one in Fi \ Fi−1. Thus, assume that Fi−1 = {F ′, F1, . . . , Fq}
and Fi = {F1, . . . , Fq, F

′′}, that is, Fi−1 ∩ Fi = {F1, . . . , Fq} (if Fi−1 \ Fi = ∅
or Fi \Fi−1 = ∅, then skip F ′ or F ′′ in the following formulas). Let Fj = [sj , tj ]
for all 1 ≤ j ≤ q.

For every tuple (A1, . . . , Aq, A
′′) that forms a chain and fulfills Aj ⊆ Fj ,

|Aj | = i− sj + 1 for 1 ≤ j ≤ q and A′′ ⊆ F ′′, |A′′| = 1, set

Ti(A1, . . . , Aq, A
′′) = true ⇐⇒

∃x∈(
⋂q

j=1 Aj)∩A′′ : Ti−1(F ′, A1 \ {x}, . . . , Aq \ {x}). (I)

The correctness of this recursion can be seen as follows. On the one hand, if
Ti(A1, A2, . . . , Aq, A

′′) = true, that is, if there exists a coloring c′ : [i] → K
fulfilling the above conditions, then clearly c′ restricted to [i − 1] fulfills the
above properties for i− 1 and F ′, A1 \ {c′(i)}, . . . , Aq \ {c′(i)}.
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On the other hand, if ∃x∈(
⋂q

j=1 Aj)∩A′′ : Ti−1(A′, A1\{x}, . . . , Aq\{x}) = true,
that is, if there exists a coloring c′′ : [i − 1] → K fulfilling the above properties
for i−1 and A′, A1\{x}, . . . , Aq\{x}, then the extension c′ of c′′ with c′(j) = c′′(j)
for 1 ≤ j < i and c′(i) = x fulfills the above properties for i and A1, . . . , Aq, A

′′.
Finally, note that we only consider tuples (A1, . . . , Aq, A

′′) that form chains.
This is correct, since for a coloring c′ : [i] → K it clearly holds that the tu-
ple (c′([s1, i]), . . . , c′([sj , i]), {c(i)}) forms a chain.

In accordance with the equivalence (I), the algorithm computes the tables Ti

for increasing values of i (starting with i = 2). Finally, it outputs “Yes” if Tn

contains a true entry and “No”, otherwise.
As to the running time, for every position there are at most (c + 1)l tuples of

color multisets (A1, . . . , Ani) with Aj ⊆ Cij and |Aj | = i− sij + 1, 1 ≤ j ≤ ni,
that form a chain. This can be seen as follows. Let Fl denote the interval in Fi

with the smallest starting point. Clearly, a tuple of color multisets (A1, . . . , Ani)
that forms a chain corresponds to a partition of Cj into (c + 1) subsets. Since,
for every color in Fj there are (c + 1) choices, there are at most (c + 1)l such
partitions. 
�

For a multiset M that contains k different colors and for an integer q ≥ 1 there
are at most qk−1 size-q submultisets of M . This is true since if we have chosen
the occurrence number of the first k − 1 colors in a size-q subset (there are at
most qk−1 choices), then the occurrence number of the kth color is fixed. With
this observation, the running time of the algorithm presented in the proof of
Theorem 4 can also be bounded by O∗(lc·(k−1)).

Corollary 2. ICC can be solved in lc·(k−1) · poly(n, m) time.

Trivially, we can solve any instance in O(kn) time by trying all k colors for all
n positions. Now, we use the fact that for two colors the problem is polynomial-
time solvable [2]. Hence, we need to “guess” only k − 2 colors and the positions
that have one of the two remaining colors. For these positions, we then use the
polynomial-time algorithm for ICC with two colors, giving the following result.

Theorem 5. ICC can be solved in O((k − 1)n · g(n, m)) time, where g(n, m) is
the time needed to solve ICC for k = 2.

For the practically relevant case where k = 3 [2], we can achieve a speed-up
by the following simple observation: At least one of the colors appears at most
on n/3 positions.

Theorem 6. For k = 3, ICC can be solved in O(1.89n · g(n, m)) time, where
g(n, m) is the time needed to solve ICC for k = 2.

Beigel and Eppstein [3] gave a thorough study of exact exponential-time algo-
rithms for the NP-complete 3-Coloring problem. It is tempting to investigate
whether some of their tricks can be applied to ICC with three colors; in partic-
ular, a simple randomized strategy presented by Beigel and Eppstein might be
promising.
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5 Conclusion

Conceptually, we presented a systematic development of the method of “de-
constructing intractability”. We exhibited this approach using the NP-complete
ICC problem as a particularly fertile application case. Through deconstruction
and using methods of parameterized algorithmics, we started a diverse multi-
variate complexity analysis of ICC. Refer to Tables 1 and 2 in Sections 3 and 4
for an overview and numerous challenges for future research. There remain many
challenges for future work: Even combinations of three or more parameters may
be relevant. Besides that, already for pairs of two single parameters there are
several qualitatively different fixed-parameter tractability results one can strive
for and which typically are independent from each other. For instance, for a com-
bined parameter (p1, p2) combinatorial explosions such as pp2

1 , pp1
2 , 2p1·p2 etc. all

can be useful for solving specific real-world instances. Finally, we focussed atten-
tion on the decision version, but the investigations should clearly be extended to
the optimization variants. Summarizing, the research challenges offered by ICC

and, more generally, the deconstructive approach to intractability, seem to be
(almost) inexhaustible.

Acknowledgment. We thank Michael R. Fellows for early discussions about the
deconstructive approach to NP-hard problems and Nadja Betzler for pointing
us to the ICC problem.
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1 Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi Culturali
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Abstract. Searching for motifs in graphs has become a crucial problem
in the analysis of biological networks. In this context, different graph
motif problems have been considered [13,7,5]. Pursuing a line of research
pioneered by Lacroix et al. [13], we introduce in this paper a new graph
motif problem: given a vertex colored graph G and a motif M, where
a motif is a multiset of colors, find a maximum cardinality submotif
M′ ⊆ M that occurs as a connected motif in G. We prove that the
problem is APX-hard even in the case where the target graph is a tree
of maximum degree 3, the motif is actually a set and each color occurs
at most twice in the tree. Next, we strengthen this result by proving that
the problem is not approximable within factor 2logδ n, for any constant
δ < 1, unless NP ⊆ DTIME(2poly log n). We complement these results
by presenting two fixed-parameter algorithms for the problem, where
the parameter is the size of the solution. Finally, we give exact fast
exponential-time algorithms for the problem.

1 Introduction

Searching for motifs in graphs has become a crucial problem in the analysis of
biological networks (e.g. protein-protein interaction, regulatory and metabolic
networks). Roughly speaking, there exist two different views of graph motifs.
Topological motifs (patterns occurring in the network) are the classical view
[11,17,18,16,12] and computationally reduce to graph isomorphism, in the broad
meaning of that term. These motifs have recently been identified as basic mod-
ules of molecular information processing. By way of contrast, functional motifs,
introduced recently by Lacroix et al. [13], do not rely on the key concept of topol-
ogy conservation but focus on connectedness of the network vertices sought.
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This latter approach has been considered in subsequent papers [7,5,2,3]. For-
mally, searching for a functional motif reduces to the following graph problem
(referred hereafter as Graph Motif) [13]: Given a target vertex-colored graph
G = (V, E) and a multiset of colors M of size k, find a subset V ′ ⊆ V , |V ′| = k
(= |M|) such that (i) the vertex induced subgraph G[V ′] is connected and (ii)
there exists a color-preserving bijective mapping from M to V ′.

Graph Motif is NP-complete even if G is a tree with maximum degree 3
and M is actually a set [7]. NP-completeness has also been shown in case G
is a bipartite graph with maximum degree 4 and M is built over two colors
only [7]. The seemingly intractability of Graph Motif has naturally led to
parameterized complexity considerations [6]. Graph Motif can be solved in
O(4.32k k2 m) randomized time [2], where m is the number of edges in G, and
in O(n2cω+2) time [7], where ω is the tree-width of G and c is the number of
distinct colors in M. When the number of distinct colors in the motif is taken
as a parameter, Graph Motif is, however, W[1]-hard even in case G is a tree.

Aiming at accurate models, several variants of Graph Motif have been
considered. Dondi et al. [5] introduced the problem of minimizing the number
of connected components in G[V ′], i.e., finding an occurrence of M in G that
results in as few connected components as possible. This problem was referred
as Min-CC. It turns out that Min-CC is APX-hard even in the extremal case
where the motif is a set and the target graph is a path and is not approximable
within ratio c log n for some constant c > 0, where n is the order of the target
graph. From a parameterized point of view, Min-CC is fixed-parameter tractable
when the parameter is the size of the motif but becomes W[2]-hard when the
parameter is the number of connected components in the occurrence of the motif
(the problem is, however, only known to be W[1]-hard for paths [2]). Betzler et
al. [2] replaced connectedness demand by more robust requirements, and proved
the problem of finding a biconnected occurrence ofM in G to be W[1]-complete
when the parameter is the size of the motif. This result is important as it sheds
light on the fact that a seemingly small step towards motif topology results in
parameterized intractability. In this paper, we consider the Maximum Motif

problem which is a natural dual variant of Graph Motif. This problem is
concerned with finding a maximum cardinality submotif M′ ⊆ M that occurs
as a connected motif in G. Notice that the problem is an optimization problem
whereas Graph Motif is a pure decision problem.

This paper is organized as follows. We recall basic definitions in Section 2. In
Section 3, we present inapproximability results forMaximumMotif. In Section 4,
wepresent twoexactexponential algorithms forMaximumMotif,whenthe target
graph is a tree. In Section 5,we give twofixed-parameter algorithms, parameterized
by the size of the solution, when the target graph is a tree and when it is a general
graph. Due to space constraints, some proofs are omitted.

2 Preliminaries

We assume readers have basic knowledge about graph theory [4] and we shall
only recall basic notations. Let G = (V, E) be a graph. For any V ′ ⊆ V , we
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denote by G[V ′] the subgraph of G induced by V ′, that is G[V ′] = (V ′, E′) and
{u, v} ∈ E′ iff u, v ∈ V ′ and {u, v} ∈ E(G). Let v ∈ V , we denote by N(v), the
set of vertices u ∈ V such that {u, v} ∈ E. Let V ′ ⊆ V ; we denote by N(V ′)
the set of vertices u ∈ (V \V ′) such that {u, v} ∈ E, for some v ∈ V ′. A coloring
of G is a mapping λ : V → C, where C is a set of colors. For any subset V ′

of V , we let C(V ′) stand for the multiset of colors assigned to the vertices in
V ′. A motif M is a multiset of colors built over a set of colors C. In case M is
actually a set, we call it a colorful motif. An occurrence of M in G is a subset
V ′ ⊆ V such that (i) G[V ′] is connected, and (ii) C(V ′) = M. A tree where a
root has been specified is called a rooted tree. In a rooted tree with root r, for
every non-root node x, let ex be the unique edge incident to x that lies on the
path from x to r. Then ex can be thought of as connecting each node x to its
parent. Two vertices with the same parent are said to be siblings. Rooted trees
can also be considered as directed in the sense that all edges connect parents to
their children. Given this parent-child relationship, a descendant of a node in a
directed tree is defined as any other node reachable from that node.

We can now define the Maximum Motif problem we are interested in. Max-

imum Motif asks for a connected component G′ = (V ′, E′) of maximum car-
dinality in G such that C(V ′) ⊆ M (taking the number of occurrences of each
color into account).

Maximum Motif

• Input : A target vertex colored graph G and a colored motif M.

• Output : A maximum cardinality connected component G′ = (V ′, E′)
of G such that C(V ′) ⊆M.

Intuitively, Maximum Motif thus asks for the largest submotif M′ ⊆ M
that occurs in G (as a connected component). Being a mere restriction of Graph

Motif, Maximum Motif is NP-complete as well [13].

3 Hardness of Approximation

We prove APX-hardness of Maximum Motif. Recall that, given a graph G =
(V, E), the maximum independent set problem (Independent Set) seeks for a
maximum cardinality subset V ′ ⊆ V such that no two vertices in V ′ are joined
by an edge. Independent Set is known to be APX-hard even when restricted
to cubic graphs [15].

Proposition 1. Maximum Motif is APX-hard even if the motif is colorful
and the target graph is a tree with maximum degree 3.

Proof. The proof is by reduction from Independent Set for cubic graphs.
Let G = (V, E) be an instance of Independent Set for cubic graphs. Write



224 R. Dondi, G. Fertin, and S. Vialette

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. For each vi ∈ V , let us de-
note by E(vi) the three edges of E that are incident to vi. Furthermore, de-
note by e(vi, j) the j-th edge of E(vi), 1 ≤ j ≤ 3, where the order is ar-
bitrary. We show how to construct the corresponding instance of Maximum

Motif. This instance consists in a vertex-colored tree T = (VT , ET ) of max-
imum degree 3 and a colorful motif M. The tree T is defined as follows:
VT = {ai, bi, xi,I , xi,C , li : 1 ≤ i ≤ n} ∪ {di,j , fi,j , ei,j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}
and ET = {{ai, bi}, {bi, xi,I}, {bi, xi,C}, {xi,C , di,1}, {xi,I , fi,1} : 1 ≤ i ≤ n} ∪
{{ai, ai+1} : 1 ≤ i < n} ∪ {{di,j , di,j+1}, {fi,j, fi,j+1} : 1 ≤ i ≤ n ∧ 1 ≤ j <
3} ∪ {{di,j , ei,j} : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3}{{fi,3, li} : 1 ≤ i ≤ n}. Refer to
Figure 1 for a schematic representation of the tree T . Vertex ai, 1 ≤ i ≤ n, is
colored c(ai), vertex bi, 1 ≤ i ≤ n, is colored c(bi), the two vertices xi,C and
xi,I , 1 ≤ i ≤ n, are colored c(xi), vertex li, 1 ≤ i ≤ n, is colored c(li), the two
vertices di,j and fi,j, 1 ≤ i ≤ n and 1 ≤ j ≤ 3, are colored c(i, j), and vertex
ei,j , 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is colored c(ek), where ek = e(vi, j). Write C for
the set of all colors that occur in T (notice that each color in C occurs at most
twice in T ). The motif M is defined by M = C, and is hence colorful.

T
a1

b1

x1,C

d1,1 e1,1

d1,2 e1,2

d1,3 e1,3

x1,I
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a2

b2

x2,C
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Fig. 1. Schematic representation of the tree T described in the proof of Proposition 1

Suppose there exists an independent set V ′ of size k in G. For each e =
{vi, vj} ∈ E, define min(e) to be

min(e) =

{
vi if (vj ∈ V ′) ∨ (vi /∈ V ′ ∧ vj /∈ V ′ ∧ i < j),
vj otherwise.

Consider the subset V ′
T ⊆ VT defined by V ′

T = {ai, bi : 1 ≤ i ≤ n} ∪
{xi,I , fi,1, fi,2, fi,3, li : vi ∈ V ′} ∪ {xi,C , di,1, di,2, di,3 : vi /∈ V ′} ∪ {ei,j : e ∈
E ∧ min(e) = e(vi, j)}. Observe that V ′

T induces a connected component in T .
Furthermore, C(V ′

T ) = M′ ⊆ M, contains all colors from M except those c(li)
with vi /∈ V ′.
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Conversely, suppose that there exists a motif M′ ⊂M, |M′| ≥ 7, that occurs
in T . Fix one occurrence of M′ in T and write V ′

T ⊆ VT for the vertices of
T involved in this occurrence. Without loss of generality, suppose that T ′ is
maximal for inclusion (adding any adjacent vertex to T ′ results in a subtree
that is not an occurrence of a submotif of M). Observe first that ai, bi ∈ V ′

T ,
1 ≤ i ≤ n, since adding any of these missing vertices would result in a larger
connected component T ′′ of T , such that C(T ′′) ⊆M, thereby contradicting the
maximality of T ′. Then it follows that c(ai), c(bi) ∈ M′, 1 ≤ i ≤ n. Moreover,
since M is colorful, V ′

T contains at most one of xi,C and xi,I , 1 ≤ i ≤ n; they
indeed both have the same color. Therefore, by maximality of T ′, V ′

T contains
exactly one of xi,C and xi,I , 1 ≤ i ≤ n, and hence M′ contains color c(xi),
1 ≤ i ≤ n. Pursuing our maximality argument, if xi,C ∈ V ′

T then V ′
T also contains

the three vertices di,j , 1 ≤ i ≤ n and 1 ≤ j ≤ 3, and if xi,I ∈ V ′
T then V ′

T also
contains the three vertices fi,j, 1 ≤ i ≤ n and 1 ≤ j ≤ 3. Therefore,M′ contains
colors c(i, j), 1 ≤ i ≤ n and 1 ≤ j ≤ 3. In case xi,I , fi,1, fi,2, fi,3 ∈ V ′

T , 1 ≤ i ≤ n,
li ∈ V ′

T , and hence M′ contains in addition color c(li), 1 ≤ i ≤ n. We now claim
that we may assume that c(e) ∈ M′ for all e ∈ E, i.e., submotif M′ contains
the color associated with each edge of G. Indeed, suppose that for some color
c(e) ∈M, say e = {vi, vj}, T ′ has no vertex colored c(e), i.e., c(e) /∈ M′. Then,
by maximality of T ′ (and M′), it follows that {xi,I , fi,1, fi,2, fi,3, li} ⊆ V ′

T and
{xj,I , fj,1, fj,2, fj,3, lj} ⊆ V ′

T , and hence that {xi,C , di,1, di,2, di,3} ∩ V ′
T = ∅ and

{xj,C , dj,1, dj,2, dj,3} ∩ V ′
T = ∅. Therefore, V ′′

T = (V ′
T − {xi,I , fi,1, fi,2, fi,3, li}) ∪

{xi,C , di,1, di,2, di,3} ∪ ei,p, with c(ei,p) = c(e), induces a subtree in T , and this
subtree is an occurrence of M′′ = (M′ − {c(li)}) ∪ {c(e)}. Applying the above
procedure will eventually result in a submotif that contains the color associated
with each edge of G. Then it follows that {vi : xi,C ∈ V ′

T } is a vertex cover of
G, and hence {vi : xi,I ∈ V ′

T } is an independent set in G.
We have thus shown that there is an independent set of size k in G if and

only if there exists a submotif of size 6n + m + k that occurs in T . But G is a
cubic graph, and hence k ≥ n

4 and m = 3
2n. Then it follows that the described

reduction is indeed an L-reduction [15] from Independent Set for cubic graphs
to Maximum Motif for trees, which proves the proposition. 
�

We now strengthen the inapproximability of Maximum Motif for trees and
colorful motifs. More precisely, we show that, for any constant δ < 1, Maximum

Motif cannot be approximated within factor 2logδ n in polynomial-time unless
NP ⊆ DTIME[2poly log n]. The proof is by the self-improvement technique (see
for example [8,9,10]). For the sake of clarity, let us introduce Maximum Level

Motif which is the restriction of Maximum Motif to colorful motifs and rooted
trees in which two vertices can have the same color only if they are at the same
level (i.e., at the same distance to the root) in the target tree. It is easily seen
that Proposition 1 can be modified to prove the following result.

Proposition 2. Maximum Level Motif is APX-hard.
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The following easy lemma will prove useful in the sequel.

Lemma 1. Let I = (T,M) be an instance of Maximum Level Motif and T ′

be a solution for instance I. One can compute in polynomial-time a solution T ′′

for I, such that (i) |T ′′| ≥ |T ′| and (ii) T ′′ contains the root of T .

Proof. Let T ′ = (V ′, E′) be a solution of Maximum Level Motif for instance
I, and assume that T ′ does not contain the root r of T . Notice that T ′ must be
a rooted subtree of T , and let y ∈ V ′ be the root of T ′. Now consider the unique
path P = (r, x′

1, . . . , x
′
p = y), from the root r to y. Two vertices x′

i and x′
j of

P , 1 ≤ i = j ≤ p, have distinct colors, since they belong to different levels of
T . Moreover, each vertex x′

i, with 1 ≤ i ≤ p− 1, has a distinct color from each
vertex v ∈ V ′, since vertices x′

i and v belong to different levels of T . Define T ′′

as the subtree of T induced by the set of vertices V ′′ = V ′ ∪
⋃p−1

i=1 xi. Notice
that T ′′ contains the root r of T , and by construction |V ′′| ≥ |V ′|. 
�

Aiming at applying the self-improvement technique we need to precisely de-
fine the product of two instances I1 and I2 of Maximum Level Motif. Let
I1 = (T1,M1) and I2 = (T2,M2) be two instances of Maximum Level

Motif, where T1 = (V1, E1) and T2 = (V2, E2) are vertex-colored trees
rooted at r1 and r2, respectively. The product I1 × I2 is defined to be the
instance (T1,2,M1,2) where T1,2 = (V1,2, E1,2) is a rooted tree defined by
V1,2 = {vi(vj) : vi ∈ V1 ∧ vj ∈ V2} and E1,2 = {{vi(vj,1), vi(vj,2)} : {vj,1, vj,2} ∈
E2 ∧ vi ∈ V1} ∪ {{vi(r2), vj(r2)} : {vi, vj} ∈ E1}, and M1,2 is a motif defined
by M1,2 = {c1(c2) : c1 ∈ M1 ∧ c2 ∈ M2}. The tree T1,2 is rooted at vertex
r1(r2). Informally, T1,2 is obtained by replacing each vertex vi ∈ V1 by a copy of
T2, connecting these copies through their roots. As for the color of each vertex
of T1,2, if vi ∈ Vi is colored ci and vj ∈ Vj is colored cj then vertex vi(vj) ∈ T1,2
is colored ci(cj). Denote by vi[T2] the subtree of T1,2 isomorphic to T2 rooted
at vi(r2). Write V1,2,r = {vi(r2) : vi ∈ V1}. Observe that, by construction, the
subtree of T1,2 induced by V1,2,r is isomorphic to T1.

Lemma 2. Let I1 = (T1,M1) and I2 = (T2,M2) be two instances of Maximum

Level Motif. Then I1 × I2 is an instance of Maximum Level Motif.

Proof. Write T1 = (V1, E1) and T2 = (V2, E2) and assume that T1 and T2
are rooted at r1 and r2, respectively. Let I1 × I2 = (T1,2,M1,2) and write
T1,2 = (T1,2, E1,2). First, we show that T1,2 is a rooted tree. Indeed, T1,2[V1,2,r]
is isomorphic to T1 and each vertex in V1,2 − V1,2,r belongs to a subtree rooted
at some vi(r2) ∈ V1,2,r. Furthermore, T1,2 is rooted by definition.

Now, we show that two vertices of T1,2 have the same color only if they are
at the same level in T1,2. Let u1(u2) and v1(v2) be two vertices of T1,2 such
that c(u1(u2)) = c(v1(v2)) = ca(cb). If u1 = v1 we are done so that we may
now assume u1 = v1. Therefore, we must have c(u1) = c(v1) = ca. Furthermore,
observe that, by construction, all vertices in u1[T2] and v1[T2] are colored ca(cx)
for some color cx ∈M. Consider the subtree T1,2[V1,2,r] induced by V1,2,r. Since
T1,2[V1,2,r] is isomorphic to T1, each vertex xi(r2) ∈ V1,2,r has color c(xi)(c(r2)).
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Now, since all vertices of u1[T2] and v1[T2] are colored ca(cx), it follows that the
root xi(r2) of u1[T2] and the root xj(r2) of v1[T2] have the same color ca(c(r2)).
Then it follows that xi(r2) and xj(r2) must be at the same level l1 of T1,2, since
they both belong to V1,2,r and T1,2[V1,2,r] is isomorphic to T1, where xi and xj

must be both at level l1.
Now, consider the subtrees u1[T2] and v1[T2] isomorphic to T2. Recall, that

vertices u1(u2) and v1(v2) of T1,2 are both colored ca(cb). As previously observed,
all vertices u1(uj) in u1[T2] and v1[T2] are associated with colors ca(c(uj)) for
some uj ∈ V2. Since I2 = (T2,M2) is an instance of Maximum Level Motif,
vertices u2 and v2 must be at the same level l2 in T2 since c(u2) = c(v2) = cb.
Then, since u1[T2] and v1[T2] are both isomorphic to T2, u1(u2) and v1(v2) are
both at level l2 in u1[T2] and v1[T2], respectively. It follows that both u1(u2) and
v1(v2) are at level l1 + l2 in T1,2.

Finally, let us consider the motif M1,2. By construction, M1,2 is a set, hence
it is colorful. 
�

For any instance I of Maximum Level Motif, write I1 = I and Ik = I× Ik−1

for all k ≥ 2. According to Lemma 2, it follows by induction that Ik, k ≥ 1, is
an instance of Maximum Level Motif.

Lemma 3. Let I = (T,M) be an instance of Maximum Level Motif and let
TS be a solution for I. Then there exists a solution TSk for instance Ik such that
|TSk | ≥ |TS|k, for all k ≥ 1.

Proof. We prove the lemma by induction on k. The result is certainly valid for
k = 1. Let k ≥ 2 and assume that the lemma holds for all 1 ≤ k′ ≤ k − 1. Let
TS = (VTS , ETS ) be a solution of Maximum Level Motif for instance I, with
VTS = {v1, v2, . . . , vz}. Observe that TS is a subtree of T and that all vertices in
VTS have distinct colors since M is colorful. By Lemma 1, we can assume that
the root r of T is part of VTS . We now construct a solution TSk for instance Ik

as follows.
First, consider the subtree of T k which consists of the set VTS ,r′ of vertices

v1(r′), v2(r′), . . . , vz(r′), where each vi(r′) is the root of a subtree of T k isomor-
phic to T k−1. Observe that, by construction, the set of vertices VTS ,r′ induces
a subtree T k[VTS ,r′ ] of T k. Since vertices v1, v2, . . . , vz all have distinct colors
in T , then it follows that v1(r′), v2(r′), . . . , vz(r′) have distinct colors as well.
Let vi[T k−1] and vj [T k−1], 1 ≤ i < j ≤ z, be two subtrees of T isomorphic
to T k−1 rooted at vi(r′) and vj(r′), respectively. Observe that any two vertices
x ∈ vi[T k−1] and y ∈ vj [T k−1] cannot have the same color, since c(vi) = c(vj).
Now, consider a subtree rooted at vi(r′), with 1 ≤ i ≤ z. By induction hy-
pothesis, there is a solution TSk−1 of Maximum Level Motif over instance
Ik−1 = (T k−1,Mk−1), such that |TSk−1 | ≥ |TS|k−1. Notice that, by Lemma 1,
we can assume that TSk−1 contains the root of T k−1. Now we build solution
TSk , by adding, for each vi(r′), 1 ≤ i ≤ z, a subtree of vi[T k−1] isomorphic to
TSk−1 . Since T k

S consists of |TS| such subtrees, it follows immediately that the
inequality holds.
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Finally, notice that the solution we have built is a feasible solution for Max-

imum Level Motif for instance Ik. First, T k
S is connected by construction.

Furthermore, each vertex of T k
S has a distinct color. Indeed, we have shown

that this holds for any two vertices that are not in the same subtree vi[T k−1].
By induction hypothesis, since TSk−1 is a feasible solution of Maximum Level

Motif over instance Ik−1, it follows that two vertices that belong to the same
subtree vi[T k−1] must have distinct colors. 
�

Lemma 4. Let TSk be a solution of Maximum Level Motif for instance Ik =
(T k,Mk). Then, one can compute in polynomial-time a solution TS for instance
I such that |TS |k ≥ |TSk |.

Proof. We prove the lemma by induction on k. The result is certainly valid for
k = 1. Let k ≥ 2 and assume that the lemma holds for each 1 ≤ k′ ≤ k − 1.
Let TSk = (VSk), ESk be a solution for Maximum Level Motif over in-
stance Ik. According to Lemma 1, there is no loss of generality in assuming
that the root of T k is part of VSk . Then it follows that VSk contains ver-
tices x1, . . . xp of T k, with p ≤ |T |, so that at least one vertex in subtree
xi[T k−1] isomorphic to T k−1 belongs to TSk . For each xi, 1 ≤ i ≤ p, denote
by xi[T k−1

S ] the subtree of xi[T k−1] which is part of TSk . Let xmax[T k−1
S ] be a

subtree of maximum size among the subtrees xi[T k−1
S ], 1 ≤ i ≤ p. Let T k−1

S

be a subtree of T k−1 isomorphic to xmax[T k−1
S ]. Notice that T k−1

S is a solu-
tion of Maximum Level Motif over instance Ik−1. By induction hypothe-
sis, we can compute in polynomial time a solution TS′ over instance I such
that |TS′ |k−1 ≥ |xmax[T k−1

S ]|. Denote now by Tp the subtree of TSk induced by
{x1 . . . xp}. Now |TSk | ≤ |Tp||xmax[T k−1

S ]| ≤ |Tp||TS′ |k−1. If |TS′ | ≥ |Tp| , then
TS = T ′

S and the lemma holds, since |TS′ ||TS′ |k−1 ≥ |Tp||TS′ |k−1| ≥ |TSk |. Oth-
erwise, if |TS′ | < |Tp|, let TS be the subtree of T isomorphic to Tp. It follows
that |Tp||Tp|k−1 > |Tp||TS′ |k−1 ≥ |TSk |.

Observe that TS is a feasible solution of Maximum Level Motif over in-
stance I. In the former case, when TS is equal to TS′ , TS is feasible by induc-
tion hypothesis. Consider the latter case, when TS is equal to Tp. Let x1, . . . xp

be the vertices of Tp. Vertex xi of Tp, 1 ≤ i ≤ p, is associated to color
ci(c(r), c(r), . . . , c(r)), where c(r) is the color associated to the root of T and
ci ∈ M. Observe that, since Mk is colorful, ci = cj , when i = j, hence the
vertices of TS all have distinct colors. 
�

We are now in position to state the main results of this section.

Theorem 1. For any constant δ < 1, Maximum Level Motif can-
not be approximated within ratio 2logδ n in polynomial-time unless NP ⊆
DTIME[2poly log n].

Proof. Assume that there exists a constant δ < 1 such that Maximum

Level Motif can be approximated within ratio 2logδ n in O(nc) time, for some
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constant c. For any fixed ε > 0, let k = �( logδ n
log(1+ε) )

1
(1−δ) �. Given an instance I of

Maximum Level Motif of size n, let Ik be the instance obtained by applying
the product k times. Now, since the problem can be approximated within ratio
2logδ n in O(nc) time, it follows that there is an algorithm for Maximum Level

Motif for instance Ik with performance ratio 2logδ nk

that runs in O(nck) =
O(2poly log n) time. But, according to Lemmas 3 and 4, there is an algorithm
for instance I with performance ratio (2logδ nk

)1/k ≤ (1 + ε), and hence we have
designed a PTAS algorithm for Maximum Level Motif. The result now follows
from Proposition 2. 
�

Notice that Maximum Level Motif is a special case of Maximum Motif,
and hence Theorem 1 holds for Maximum Motif.

Substituting the complexity hypothesis NP ⊆ DTIME[2poly log n] by the clas-
sical P = NP yields the following result (proof - similar to that of Theorem 1 -
omitted): no polynomial-time algorithm achieves a constant approximation ratio
for Maximum Level Motif (i.e., Maximum Level Motif is not in APX),
unless P = NP. The same result holds also for the Maximum Motif problem.

4 Exponential-Time Algorithms

We give here two exact branch-and-bound algorithms for Maximum Motif in
case the target graph is a tree. Let I = (T,M) be an instance of Maximum

Motif problem, where the target graph is a tree T = (V, E).

Lemma 5. Maximum Motif for trees of size n can be solved in
O(1.62n poly(n)) time. In case the motif is colorful, the time complexity reduces
to O(1.33n poly(n)).

We briefly present the main ideas of the proof. First, both algorithms choose a
vertex r ∈ V (we assume w.l.o.g. that r is part of the optimal solution), and
the tree T is rooted at r. Both algorithms rely on the fact that, once we have
computed a set of vertices V ′ ⊆ V that are part of the optimal solution, we can
compute in polynomial time the maximum cardinality subset L′ ⊆ N(V ′), such
that C(V ′)∪ C(L′) ⊆M. Hence, we can assume that a branching occurs only at
an internal vertex.

The first algorithm considers a candidate internal vertex vx and branches in
two sub-cases associated with vx: (1) vx is added to the solution, or (2) vx is not
added to the solution, and the subtree rooted at vx is removed.

WhenM is colorful, we can assume that there exist two vertices that have the
same color c. Indeed, if vx is the only vertex colored c(vx), then the algorithm
never branches on vx. The algorithm branches in two sub-cases associated with
vertex vx: (1) vx is added to the solution, and, for each vy ∈ V ′ colored c(vx),
the subtree rooted at vertex vy is removed, or (2) vx is not added to the solution
TS, and then the subtree rooted at vx is removed.
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5 Parameterized Complexity

Fixed-parameter tractability plays a central role in parameterized complexity
[6,14]. In this section we present two fixed-parameter tractable algorithms for
Maximum Motif. We first describe the perfect family of hash functions used
in both algorithms. Newt, we give an FPT algorithm in case the target graph is
a tree and finally present a (slower) algorithm for the general case.

Consider an instance I = (G,M) of Maximum Motif, where G = (V, E) is a
graph andM is a multiset of colors. For a color ci ofM and a subset V ′ ⊆ V , we
denote by mM(ci) the number of occurrences of ci inM and by mV ′(ci) the num-
ber of vertices in V ′ colored ci. In the sequel, we assume that mM(ci) ≤ mV (ci)
since an occurrence of M in G has at most min{mM(ci), mV (ci)} occurrences
of color ci. For a subset of vertices V ′ ⊆ V and a submotif M′ ⊆ M, we say
that V ′ violates M′ if mM′(ci) < mV ′(ci) for some ci ∈ M.

Both algorithms are based on the color-coding technique [1]. We recall the
basic definition of perfect hash functions. For a set S, a family F of functions from
S to {1, 2, . . . , k} is perfect if for any S′ ⊆ S of size k, there exists an injective
function f ∈ F from S′ to {1, 2, . . . , k}. In the sequel, k denotes the size of a
solution for Maximum Motif. Consider a family H of perfect hash functions
from M to the set {1H , 2H , . . . , kH} (we use the subscript H to emphasis that
this set is related to the family H). Let M′ be a submotif of size k and let
G′ = (V ′, E′) be the occurrence of M′ in G. Since H is perfect, there exists
an injective function h ∈ H that assigns to each occurrence of a color in M′ a
distinct label in {1H , 2H , . . . , kH}.

Fix some function h ∈ H . For any ci ∈ M, denote by SH(ci) ⊆
{1H , 2H , . . . , kH} the set of labels associated with occurrences of color ci by func-
tion h. Furthermore, we associate with each vertex v colored ci the set of labels
SH(v) = SH(ci). Let V ′ ⊆ V , LH ⊆ {1H , . . . , kH}, then C(SH , V ′, LH) is defined
as the family of sets SH(v) ∩ LH , with v ∈ V ′. Notice that C(SH , V ′, LH) may
contain more occurrences of the same set of labels. For example, if v1, v2 ∈ V ′ and
c(v1) = c(v2), then (SH(v1)∩LH) = (SH(v2)∩LH). In case LH = {1H, . . . , kH},
we abbreviate C(SH , V ′, LH) by C(SH , V ′).

Definition 1. Let C(SH , V ′, LH) be a family of sets SH(v) with v ∈ V ′ and
LH ⊆ {1H , . . . , kH}, then C(SH , V ′, LH) is feasible if and only if there exists
an injective function p from the sets of C(SH , V ′, LH) to LH , so that, for each
SH(v) ∈ C(SH , V ′, LH), p(SH(v)) is a label of SH(v) ∩ LH.

Consider now a family C(SH , V ′) of sets associated with V ′. Let ci be a color
of M, then by construction |SH(ci)| ≤ mM(ci). Hence, if C(SH , V ′) is feasible,
then V ′ does not violate M.

We now present an FPT algorithm for the case the target graph is a tree
T = (V, E). Let r ∈ V , and we want to compute a solution T ′ = (V ′, E′) of
Maximum Motif, so that |V ′| = k and r ∈ V ′ (we run the algorithm for each
r ∈ V .) Define r as the root of T and, for each internal vertex v of V , define a
left-to-right ordering on the children of v. Assume that r is colored c(r). Observe
that, since r must belong to T ′, we can safely remove an occurrence of color c(r)
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from M. Furthermore, we assume that function h assigns to this occurrence of
c(r) label 1H and that SH(r) = {1H}. Observe that there is no other vertex
u ∈ V − {r}, so that SH(u) contains 1H . We can now give the definition of the
rightmost vertex of a subtree T ′ of T .

Definition 2. Let T ′ = (V ′, E′) be a subtree of T . A vertex v ∈ V ′ is defined to
be the rightmost vertex of T ′ if and only if (i) v has no children in V ′ and (ii)
for each vertex u ∈ V ′ on the path from r to v, V ′ does not contains the right
sibling of u.

Now, consider a vertex v ∈ V and a subset LH of labels in {1H , . . . , kH}. Define
Pr[v, LH ] as follows:

Pr[v, LH ] =

⎧⎪⎨⎪⎩
1 if there exists a subtree T ′ = (V ′, E′) of T with r ∈ V ′ and with

rightmost vertex v and such that C(SH , V ′, LH) is feasible,
0 otherwise.

The recurrence to compute Pr[v, LH ] is as follows.

Pr[v, LH ] =
∨

u,L′
H

Pr[u, L′
H ], (1)

where u is either a descendant of a left sibling of v or the parent of v, and
L′

H = LH − {iH}, for some iH ∈ Sh(v) ∩ LH . Notice that Pr[v, {1H}] = 0,
for each v ∈ V − {r}, Pr[r, {1H}] = 1, and that Pr[r, {iH}] = 0 for each iH ∈
{2H , . . . , kH}.

Lemma 6. Given a labelling h of the motif M, we can compute in O(n22k)
time if there is a subtree T ′ of T of size k that matches a submotif M′ of M.

Proof. We have to show that Pr[v, LH ] = 1 if and only if there exists a subtree
T ′ = (V ′, E′) of T having root r, which is an occurrence of a submotif M′ of M
of size |LH |. Since T ′ must contain r, we assume that LH contains 1H .

First, consider a subtree T ′ = (V ′, E′) with root r. Let v be the rightmost
vertex of T ′. From the definition of rightmost vertex, it follows that there is no
child of v in V ′ and that there is no vertex in T ′ which is a right sibling of a
vertex on the path from r to v. Denote by T ′′ = (V ′′, E′′) the tree obtained from
T ′ by removing v. Let u be the rightmost vertex of T ′′. By definition of rightmost
vertex, u is either the parent of vertex v, denoted by p(v), or a descendant of a
child v′ of p(v) in T ′′ (with v′ a left sibling of v in T ′ by definition of rightmost
vertex).

Let M′ = C(V ′) be the multiset of colors associated with the vertices of T ′.
Consider C(SH , V ′, LH), the collection of sets of labels in LH assigned to V ′.
Notice that C(SH , V ′, LH) is feasible, as T ′ is a solution of Maximum Motif

problem. It follows that there is an injective function p that assigns to each
set SH(u), with u ∈ V ′, a label iH in SH(u). But then, function p assigns
label iH ∈ SH(v) to the set SH(v). It follows that the family of sets SH(u) with
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u ∈ (V ′−{v}) must be feasible when p assigns a label in set {1H , . . . , kH}−{iH}
to each set SH(u), with u ∈ (V (T ′)− {v}). Hence Pr[v, LH ] = 1.

Assume now that Pr[v, LH ] = 1. We will prove the results by induction. Since
Pr[v, LH ] = 1, by Recurrence (1) it follows that there must exists a vertex u ∈ V ′

and a label iH ∈ SH(v), so that Pr[u, LH −{iH}] = 1. By induction hypothesis,
it follows that there is a subtree of T ′′ = (V ′′, E′′) of T having root r, so that
T ′′ has size |LH | − 1, u is the rightmost vertex of T ′′ and C(SH , V ′′, LH −{iH})
is feasible. Hence, by construction, also C(SH , V ′, LH) is feasible. We will show
that v is adjacent to a vertex of T ′′. By definition of rightmost vertex, u is either
the parent of vertex v, denoted by p(v), or a descendant of a child v′ of p(v)
in T ′′ (with v′ a left sibling of v in T ′). In the former case clearly u and v are
adjacent. In the latter case, that is u is not p(v), since T ′′ must be rooted at r,
p(v) belongs to T ′′, hence v is adjacent to a vertex of T ′′.

Observe that, if P [v, {1H , . . . , kH}] = 1, it follows that there is a subtree
T ′ = (V ′, E′) containing the root of T , so that each C(V ′) is assigned a distinct
label in {1H , . . . , kH}. By construction V ′ does not violate M, hence C(V ′) is a
submotif of M of size k.

Now, we consider the time complexity of the algorithm. Observe that there
existO(n2k) values of the form P [v, K ′], with v ∈ V (T ) and L′

H ⊆ {1H, . . . , kH}.
Now, in order to compute value P [v, K ′], we have to check at most O(nk) other
values P [u, K ′′]. Hence the time complexity is O(n2k2k). 
�

Observe that we have to choose O(n) possible roots. Furthermore, since the fam-
ily of perfect hash functions has size O(log n) 2O(k), it follows that the algorithm
is O(k2kn3 log n) 2O(k) time.

Next we describe a parameterized algorithm when the instance of Maximum

Motif consists in a graph G = (V, E) and a motifM. The algorithm for this case
consists in combining two perfect families of hash functions, and then applying
a strategy similar to that presented in [7,5].

Consider two different perfect families of hash functions: a family H from M
to {1H , . . . , kH}, as we have previously introduced in this section, and a family
F from the set V to {1F , . . . , kF }. By the property of the family of perfect
hash functions, we know that there is a function f ∈ F such that the vertices
of G that belong to a solution of size k are associated with distinct labels of
{1F , . . . , kF }. Similarly, we know that there is a function h ∈ H such that the
occurrences of colors of M that belong to an optimal solution, are associated
with different labels of {1H , . . . , kH}. Observe that each family of perfect hash
functions consists of O(log n) 2O(k) functions. Hence, we can combine all the
possible pairs (f, h) of functions, with f ∈ F and h ∈ H , in O(log2 n) 4O(k)

time.
Recall that, for each color ci ∈M, SH(ci) denotes the set of labels associated

with occurrences of color ci by function h, and that, given v is colored ci, SH(v) =
S(ci). Now, for each v ∈ V and for each subset L ⊆ {1F , . . . , kF }, define ML(v)
as the family of all sets of labels H ′ ⊆ {1H , . . . , kH} so that there exists an
occurrence V ′, with v ∈ V ′, where the set of labels in {1F , . . . , kF } that f
assigns to V ′ is exactly L and such that C(SH , V ′, H ′) is feasible. Now, we
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present a method called Batch procedure for computing ML(v), similar to that
introduced in [7,5]. Assume that we have computed the family of sets ML′(v),
with L′ ⊆ L \ f(v), we apply the following procedure.

Batch Procedure(L, v):

– Define CH to be the family of all pairs (H ′, L′) such that H ′ ⊆
{1H , . . . , kH}−{iH} for some iH ∈ SH(vi), L′ ⊆ L\{f(v)}, and H ′ ∈ML′(u)
for some u ∈ N(v).

– Run through all pairs of (H ′, L′), (H ′′, L′′) in CH and determine whether
H ′ ∩H ′′ = ∅ and H ′ ∪H ′′ ⊆ {1H , . . . , kH} − {iH}, for some iH ∈ SH(vi),
and whether L′ ∩ L′′ = ∅. If there is such a pair, add (H ′ ∪H ′′, L′ ∪ L′′) to
CH and repeat this step. Otherwise, continue to the next step.

– Set ML(v) to be all the sets of labels H ′ ∪ {iH}, where iH ∈ SH(vi) −H ′,
(H ′, L′) ∈ CH and L′ = L ⊆ −{f(v)}.

Lemma 7. Given a vertex v ∈ V and L ⊆ {1F , . . . , kF }, the batch procedure
computes correctly ML(v), assuming ML′(u) is given for each u adjacent to v
and for each L′ ⊆ L \ {f(v)}.

Notice that function h assigns a distinct label in {1H , . . . , kH} to each oc-
currence of a color in a submotif M′, with |M′| = k. Consider ML(v) =
{1H , 2H , . . . , kH} with L = {1F , 2F , . . . , kF }. The set of vertices in V ′ asso-
ciated with labels {1F , 2F . . . , kF } are then associated with colors having labels
in {1H , 2H . . . , kH}. Hence, C(V ′) does not violate M.

Lemma 8. Given labeling functions h : M → {1, . . . , k} and f : V →
{1, . . . , k}, the batch procedure determines in O(25kkn2) time whether there ex-
ists a solution of Maximum Motif of size k.

Proof. First, we will show that a set ML(v) is computed by batch procedure in
O(24kkn) time. The first step of batch procedure searches at most 2kn families of
subsets H ′ of labels in {1H , . . . , kH}, for each iH ∈ SH(v). Notice that |SH(v)| ≤
k. Each family consists of at most 2k sets. Hence, the first step requiresO(22kkn).

For the second step of the batch procedure, observe that there are at most
22k set of label-subset pairs H ′ and L′, so the second step is repeated 22k times.
Each iteration of this step can be computed in O(2kn) time, hence the second
step require O(24kkn) time. Accounting also for the third step, the overall time
complexity for of one invocation of the batch procedure is O(24kk + 22kkn) =
O(24kkn).

According to Lemma 7, the batch procedure must be invoked at most 2kn
times in order to obtain ML(v) for every v ∈ V and every label subset L′ ⊆
{1F , . . . , kF }, hence the overall time complexity is O(25kkn2). 
�
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Since each perfect family of hash functions has size O(log n) 2O(k), the overall
time complexity of the algorithm is O(25kkn2 log2 n) 4O(k).
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Abstract. The complexity of pairwise RNA structure alignment de-
pends on the structural restrictions assumed for both the input struc-
tures and the computed consensus structure. For arbitrarily crossing
input and consensus structures, the problem is NP-hard. For non-crossing
consensus structures, Jiang et al’s algorithm [1] computes the alignment
in O(n2m2) time where n and m denote the lengths of the two input
sequences. If also the input structures are non-crossing, the problem
corresponds to tree editing which can be solved in O(m2n(1 + log n

m
))

time [2]. We present a new algorithm that solves the problem for d-
crossing structures in O(dm2n log n) time, where d is a parameter that
is one for non-crossing structures, bounded by n for crossing structures,
and much smaller than n on most practical examples. Crossing input
structures allow for applications where the input is not a fixed structure
but is given as base-pair probability matrices.

Keywords: RNA, sequence structure alignment, simultaneous align-
ment and folding.

1 Introduction

With the recent focus on non-protein-coding RNA (ncRNA) genes, interest in
detecting novel ncRNAs has rapidly emerged. A recent screen on ncRNAs has
detected more than 30000 putative ncRNAs in human genome [3], most of them
with unknown function. Since the structure of RNA is evolutionarily more con-
served than its sequence, predicting the RNA’s secondary structure is the most
important step towards its functional analysis [4].

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 236–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Fast RNA Structure Alignment for Crossing Input Structures 237

The secondary structure of an RNA molecule can be calculated from its nu-
cleotide sequence by determining a folding with minimal free energy [5,6,7,8,9].
Albeit this so-named thermodynamic approach is a success story in the analysis
of RNA, it is known that predicting the secondary structure from a single se-
quence is error-prone, where the best available approaches can correctly predict
only up to 73% of the base-pairs [10]. This situation can be improved by taking
phylogenetic information into account, i.e., by predicting a common consensus
structure from a whole set of evolutionary related RNA sequences.

There are several approaches for this problem (see [11] for an overview) which
increase both in computational complexity as well as in the average quality. The
simplest and fastest approach is to align the RNA sequences using a multiple
sequence alignment, and then to fold the complete alignment using approaches
like RNAalifold [12] and Petfold [13]. This has time complexity of O(k2n2) for
the pairwise alignment, and O(n3) for the final folding, which has to be applied
only once on the complete alignment, where k is the number of sequences.

The second approach is to predict for all k sequences the minimum free-energy
structure (with complexity O(n3)), and then to perform progressive sequence-
structure alignment whose complexity is dominated by the pairwise alignment
steps. For a long time, the best complexity known for the pairwise alignment
step was O(n3 log(n)) as given by the seminal work of Klein [14]. Just recently
this has been improved to O(n3) [2]. However, this approach crucially depends
on the quality of the initial structure prediction, which is error-prone.

Hence, the gold standard are Sankoff-like approaches [15, 16, 17, 18, 19] which
simultaneously align and fold the sequences. However, as stated in [11], the
Sankoff-approach requires “extreme amounts of memory and space” with a space
complexity of O(n4) and a time complexity of O(n6). In [19], we improved this
complexity to O(n4) time by aligning base-pair probability matrices. Basically,
one is given two sets of weighted base-pairs that are possibly crossing, and the
goal is to find the best common nested consensus structure for both sets, taking
both base-pair weights and the associated RNA sequences into account.

In this work, we want to shorten the gap between sequence-structure align-
ment methods (with a complexity of O(n3)), and the Sankoff-like approaches
(with a complexity of O(n4) for alignment of base-pair probability matrices)
for a practical application scenario. Basically, sequence-structure alignment ap-
proaches use exactly one structure per sequence as an input, whereas Sankoff-like
approaches use all possible structures as an input. However, in many practical
cases, one has a mixture of both, namely a main structure that allows for a small
deviation. As shown in the example in Fig. 1, the alternative structures together
form a crossing input structure, where the offset between crossing arcs is small.
In this paper, we introduce a measurement for this deviation (d-crossing), and
introduce an efficient algorithm with complexity O(n3 log(n)) given that the de-
viation is small (i.e., that the input base-pair probability matrix is d-crossing for
a small constant d). Note that the crossing structure in Fig. 1 forms a two-page
embedding (or is 2-colorable, as it is called in [20]), but our approach is not
restricted to this class of structures.
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Fig. 1. (a) Two structures for the sequence AAACAAACACAGGGGUUUUUGUUUUGUU with sim-
ilar free energy. The stem in the second sequence is shifted by 5 nucleotides. (b) associ-
ated base-pair probability matrix (upper triangle) and minimum free energy structure
(lower triangle). The shifted stem is indicated by two parallel diagonals, a pattern often
seen in RNA-structures. (c) both nested structures together form a crossing input. The
outermost arcs of both structures are d-crossing for d = 5.

The fast available sequence structure alignment methods for non crossing
input structures as in Klein [14] (a formal definition of non-crossing is given in
Section 2) rely on a heavy path decomposition which was so far only available
for tree-like structures. Our approach generalizes this to d-crossing structures.

2 Preliminaries

An arc-annotated sequence is a pair (S, P ), where S is a string over the set of
bases {A, U, C, G} and P is a set of arcs (l, r) with 1 ≤ l < r ≤ |S| representing
bonds between bases. We allow more than one arc to be adjacent to one base,
but require that |P | ∈ O(|S|), that is, on average each base is adjacent to only
a constant number of arcs. We denote the i-th symbol of S by S[i] and the
substring from symbol i to symbol j with S[i . . . j]. For an arc p = (l, r), we
denote its left end l and right end r by pL and pR, respectively. The span of p is
defined as span(p) = pR − pL + 1.

Two arcs p1 and p2 in an arc-annotated sequence (S, P ) are crossing if pL
1 ≤

pL
2 ≤ pR

1 ≤ pR
2 or pL

2 ≤ pL
1 ≤ pR

2 ≤ pR
1 . Two crossing arcs p1 and p2 are d-

crossing if |pL
1 − pL

2 | < d and |pR
1 − pR

2 | < d. An arc p1 is nested in an arc
p2 if pL

2 < pL
1 < pR

1 < pR
2 . An arc p1 precedes an arc p2 if pR

1 < pL
2 . For

every two arcs, either the two arcs are crossing, one of the arc is nested in the
other, or one of the arc precedes the other. An arc-annotated sequence (S, P )
containing crossing arcs is called crossing, otherwise non-crossing or nested. A
d-crossing sequence is a crossing sequence in which every two crossing arcs are
d-crossing.
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3 Problem Definition

An alignment A of two arc-annotated sequences (S1, P1) and (S2, P2) is a set
A = Amatch �Agap. The set Amatch ⊆ [1, n]× [1, m] of match edges satisfies that
for all (i, j), (i′, j′) ∈ A, (1) i > i′ implies j > j′, and (2) i = i′ if and only
if j = j′. Given Amatch, the set of gap edges is implied as Agap := { (i,−)| i ∈
[1, n]∧�j.(i, j) ∈ Amatch }∪{ (−, j)| j ∈ [1, m]∧�i.(i, j) ∈ Amatch }. A consensus
structure for an alignment A is a matching P ⊆ P1 × P2 that satisfies (p1, p2) ∈
P ⇒ (pL

1 , pL
2 ) ∈ A ∧ (pR

1 , pR
2 ) ∈ A. We require a consensus structure to be non-

crossing (formally {(p1, p2), (p′1, p
′
2)} ⊆ P ⇒ p1 and p′1 do not cross) and such

that each base is adjacent to at most one arc (i.e. {(p1, p2), (p′1, p′2)} ⊆ P ⇒
(pL

1 = p′L1 ⇔ pR
1 = p′R1 )).

Each alignment together with some consensus structure has an associated cost
based on functions γ1 ∈ [1, n] → N, γ2 ∈ [1, m] → N, β ∈ [1, n] × [1, m] → N,
and α ∈ ([1, n])2 × ([1, m])2 → N. γk(i) denotes the cost to align position i of
sequence k to a gap, β(i, j) the cost for a base match, i.e. cost to align position i
of the first sequence to position j of the second sequence, provided arcs adjacent
to i and j are not contained in the consensus structure, and α(pa, pb) denotes the
cost to match arcs pa, pb in the consensus structure. The cost of an alignment A
with consensus structure P , denoted CP (A), is∑

(i,−)∈A

γ1(i) +
∑

(−,j)∈A

γ2(j) +
∑

((i,j),(i′,j′))∈P

α((i, j), (i′, j′)) +
∑

(i,j)∈A′
β(i, j),

where A′ is the set of all edges (i, j) ∈ A such that there is no edge (i′, j′) ∈ A for
which ((i, j), (i′, j′)) ∈ P or ((i′, j′), (i, j)) ∈ P . Note that this scoring scheme
can easily be instantiated with the edit distance scoring scheme of Jiang et
al [1] if each base is adjacent to at most one arc. For this case we set γ1(i) =
wd +ψ1(i)(wr

2 −wd), γ2(j) = wd +ψ2(j)(wr

2 −wd), β(i, j) = χ(i, j)wm +(ψ1(i)+
ψ2(j))wb

2 , and α((i, j), (i′, j′)) = (χ(i, j)+χ(i′, j′))wam

2 where ψ1, ψ2, χ, wd, wr ,
wm, wb, and wam are defined as in [1]. However, we formulate the algorithm with
the more general scoring scheme, since α((i, j), (i′, j′)) can be used to encode base
pair weights which is more suitable in the presence of several adjacent arcs per
base that represent alternative structures.

The RNA structure alignment problem is given two arc-annotated sequences
(S1, P1) and (S2, P2), to find an alignment A and a consensus structure P such
that CP (A) is minimal. For the remainder of this paper we fix two arc-annotated
sequences (S1, P1) and (S2, P2) with |S1| = n, |S2| = m, |P1| ∈ O(n) and
|P2| ∈ O(m) and assume that (S1, P1) is d−crossing. We assume w.l.o.g. that P1
contains an arc (1, n).

Arc annotated sequences are often classified as plain, nest, cross or un-

lim, as originally proposed in [21]. We solve for our scoring scheme the edit
problem for a class that fully contains edit(nest,nest) and partially contains
edit(unlim,unlim) (namely those instances where one structure is d−crossing
and where on average each base is adjacent to only a constant number of arcs).
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4 The Algorithm Recursion

The algorithm consists of two stages. The first stage computes the optimal costs
to align certain fragments that are required for the second stage.

4.1 Stage 1

In the first stage, we compute a table M analogously to the recursion of Jiang
et al. [1]. The entry M [i, i′, j, j′] represents the minimal cost of an alignment
between (S1[i . . . i′], P1 ∩ [i, i′]2) and (S2[j . . . j′], P2 ∩ [j, j′]2).

The base cases where i′ = i − 1 and j′ = j − 1 are initialized with M [i, i −
1, j, j − 1] = 0, the other entries are computed recursively as defined in Fig. 2.
In the recursive computation, cases that rely on invalid items (i.e. where any of
i, i′, j, j′ are not within their allowed range) are implicitly skipped. While Jiang
et al’s algorithm computes the entire alignment based on this recursion, we only
compute entries of M for short fragments of the first sequence that have a length
of at most 2d + 2, i.e. for 1 ≤ i ≤ n, i− 1 ≤ i′ ≤ min(i + 2d + 1, n), 1 ≤ j ≤ m,
and j − 1 ≤ j′ ≤ m.

M [i, i′, j, j′] =

min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M [i, i′ − 1, j, j′] + γ1(i′) I
M [i, i′, j, j′ − 1] + γ2(j′) II
M [i, i′ − 1, j, j′ − 1] + β(i′, j′) III
for all p1 = (i0, i′) ∈ P1, p2 = (j0, j′) ∈ P2 with i ≤ i0, j ≤ j0 IV

M [i, i0 − 1, j, j0 − 1] + M [i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

Fig. 2. Recursion for the table M

4.2 Stage 2

For non-crossing input structures, the correspondence of these structures to trees
allows for alignment methods that are asymptotically faster than the recursion
used in the first stage [14,2]. In our approach we apply a similar technique, but
since our input structures do not correspond to trees, we select a subset PT ⊆ P1
of the arcs.

The arcs in PT do not cross and at most one of them is adjacent to each
base. Hence, the arcs in PT form a tree structure that guides the recursive
decomposition during the computation of the alignment.

Construction of PT . Define the inner d-range of p as Id(p) = [pL + 1, pL +
d− 1]× [pR − d + 1, pR − 1]. For a set of arcs P ⊆ P1, the set tree (P ) is defined
recursively as follows. If P = ∅ or all arcs in P have span at most 2d then
tree (P ) = ∅. Otherwise, let p be some arc in P with maximum span (ties are
broken arbitrarily), and
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tree (P ) ={p} ∪ tree
(
P ∩ [1, pL − 1]2

)
∪ tree

(
P ∩ [pR + 1, n]2

)
∪

tree
(
(P ∩ [pL + 1, pR − 1]2) \ Id(p)

)
.

Lemma 1. Every arc in P crosses at most one arc in tree (P ).

Proof. Let p1 and p2 be two arcs in tree (P ), and assume w.l.o.g. that pL
1 < pL

2 .
We have that either p2 is nested in p1 or p1 precedes p2.

If p2 is nested in p1 then by the definition of tree (P ), either pL
2 − pL

1 ≥ d or
pR
1 − pR

2 ≥ d. Suppose w.l.o.g. that pL
2 − pL

1 ≥ d. Let p be an arc that crosses p1.
If pL ≤ pL

1 then |pL − pL
2 | ≥ pL

2 − pL
1 ≥ d, so p does not cross p2. If pL > pL

1 then
pL ≤ pL

1 + d − 1 < pL
2 and pR ≥ pR

1 > pR
2 . Therefore, p2 is nested in p, and in

particular, p does not cross p2.
If p1 precedes p2 then pL

2 > pR
1 = pL

1 + span(p1)− 1 ≥ pL
1 + 2d. Therefore, for

every arc p, either |pL − pL
1 | ≥ d, or |pL − pL

2 | ≥ d. We conclude that p cannot
cross both p1 and p2. 
�

Lemma 2. An arc p ∈ P satisfies p ∈ Id(p′) for at most one arc p′ ∈ tree (P ). If
p does not cross an arc in tree (P ) then p ∈ Id(p′) for a unique arc p′ ∈ tree (P ).

Proof. To prove the first part of the lemma, let p1 and p2 be two arcs in tree (P )
with pL

1 < pL
2 . Either p2 is nested in p1 or p1 precedes p2. If p2 is nested in

p1 then either pL
2 − pL

1 ≥ d or pR
1 − pR

2 ≥ d. In the former case, the intervals
[pL

1 + 1, pL
1 + d− 1] and [pL

2 + 1, pL
2 + d− 1] are disjoints, and therefore Id(p1) ∩

Id(p2) = φ. Similarly, Id(p1)∩ Id(p2) = φ when pR
1 −pR

2 ≥ d or when p1 precedes
p2. Thus, p cannot be both in Id(p1) and Id(p2).

We prove the second part of the lemma using induction on |P |. Let P ⊆ P1 be
a nonempty set of arcs, and let p be some arc in P that does not cross an arc in
tree (P ). Let p′ be the maximum span arc in P that is chosen when computing
tree (P ). Recall that tree (P ) = {p′}∪tree

(
P 1

)
∪tree

(
P 2

)
∪tree

(
P 3

)
where P 1 =

P ∩ [1, p′L−1]2, P 2 = P ∩ [p′R +1, n]2, and P 3 = (P ∩ [p′L +1, p′R−1]2)\ Id(p′).
If p ∈ Id(p′) we are done. Otherwise, since p does not cross p′ and p /∈ Id(p′),
we have that p is in some set P i. Since |P i| < |P |, by the induction hypothesis
there is an arc p′′ ∈ tree

(
P i

)
such that p ∈ Id(p′′). 
�

We define PT = tree (P1), and we call the arcs in PT tree arcs. For every p ∈ P1
we define T (p) to be the unique tree arc p′ such that p crosses p′, if such arc
exists. Otherwise, T (p) is the unique tree arc p′ such that p ∈ Id(p′).

Lemma 3. For every p ∈ P1, |pL − T (p)L| < d and |pR − T (p)R| < d.

Proof. If p crosses T (p) then the inequalities of the lemma are satisfied since
(S1, P1) is d-crossing. Otherwise, from Lemma 2, p ∈ Id(T (p)), and the inequal-
ities of the lemma are satisfied by the definition of Id(·). 
�

Lemma 4. Let p ∈ P1 and let p′ ∈ PT such that p′ = p and p′ is nested in T (p).
Then, p′ is nested in p.
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Proof. Let p and p′ be two arcs satisfying the conditions of the lemma. From
the definition of T (·), p cannot cross p′. Moreover, from Lemma 3 and the fact
that span(p) > 2d, p′ cannot precede p, or vice versa. 
�

For every tree arc p ∈ PT we select a tree arc denoted hchild(p) such that
hchild(p) is nested in p and span(hchild(p)) is maximum (if there is such an
arc). For p ∈ PT and p = (1, n), define parent(p) to be the minimum span tree
arc that p is nested in. We define parent((1, n)) = (1, n).

Recursion. For each p ∈ PT we build two tables Lp and Rp. Intuitively, one
obtains the optimal alignments of the area below p or any arc crossing p by first
extending the optimal alignments of hchild(p) or any arc crossing hchild(p) to
the left (with Lp) and then to the right (with Rp). We compute the tables in an
order such that for each p, Lp is computed before Rp and such that the tables
of all p′ ∈ PT that are nested in p are computed before the tables of p.

The table entries Lp[i, i′, j, j′] and Rp[i, i′, j, j′] have the same semantics as
M [i, i′, j, j′] and only differ in the domains of the indices i, i′, j, j′ and the recur-
sions according to which they are computed. Let us first assume that hchild(p)
is defined for p. Then, Lp[i, i′, j, j′] is defined for

max(pL − d, parent(p)L) ≤ i ≤ hchild(p)L

hchild(p)R ≤ i′ ≤ min(hchild(p)R + d, pR)
1 ≤ j ≤ m

j − 1 ≤ j′ ≤ m.

and for Rp[i, i′, j, j′] the domains of j and j′ are the same, but i and i′ must
satisfy

max(pL − d, parent(p)L) ≤ i ≤ min(pL + d, hchild(p)L)

hchild(p)R ≤ i′ ≤ min(pR + d, parent(p)R).

If hchild(p) is not defined for p, no Lp table is computed and the Rp tables
contain entries for

max(pL − d, parent(p)L) ≤ i ≤ pL + d

pL + d ≤ i′ ≤ min(pR + d, parent(p)R)

and j, j′ restricted as in the table Rp in the case where hchild(p) is defined. The
domains of i and i′ for the different cases are visualized in Fig. 3.

Computation of Lp. All entries Lp[i, i′, j, j] with i ≥ max(hchild(p)L−d, pL) are
initialized as Lp[i, i′, j, j′] = Rhchild(p)[i, i′, j, j′]. All other entries are computed
according to the recursion shown in Fig. 5. Again cases relying on invalid items
are implicitly skipped. The last three cases of the recursion are visualized in
Fig. 4.
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Fig. 3. Visualization of the domains for the different tables
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Fig. 4. Visualization of the recursion cases. The arc bounding the gray area denotes
hchild(p)

Computation of Rp. The computation of the Rp tables is similar to the com-
putation of the Lp tables, only that the fragments are extended to the right
instead of to the left. If hchild(p) is defined, we initialize all entries with i′ ≤
min(hchild(p)R + d, pR) as Rp[i, i′, j, j′] = Lp[i, i′, j, j′]. All other items are com-
puted according to the recursion shown in Fig. 6. If hchild(p) is not defined, we
initialize all items with i′ = pL + d as Rp[i, i′, j, j′] = M [i, i′, j, j′]. The recursion
for Rp in this case includes lines I, II, III, and V from Fig. 6.

Once the tables are computed, the actual alignment can be constructed using
the usual backtrace technique.
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Lp[i, i′, j, j′] =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lp[i + 1, i′, j, j′] + γ1(i) I
Lp[i, i′, j + 1, j′] + γ2(j) II
Lp[i + 1, i′, j + 1, j′] + β(i, j) III

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,
and hchild(p) is nested in p1 IV

Lp[i + 1, i0 − 1, j + 1, j0 − 1] + M [i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,
hchild(p) is not nested in p1, and span(p1) ≤ 2d V

M [i + 1, i0 − 1, j + 1, j0 − 1] + Lp[i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,
hchild(p) is not nested in p1, and span(p1) > 2d VI

RT (p1)[i + 1, i0 − 1, j + 1, j0 − 1] + Lp[i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

Fig. 5. The recursions for the table Lp

Rp[i, i′, j, j′] =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rp[i, i′ − 1, j, j′] + γ1(i) I
Rp[i, i′, j, j′ − 1] + γ2(j) II
Rp[i, i′ − 1, j, j′ − 1] + β(i, j) III

for all p1 = (i0, i′) ∈ P1, p2 = (j0, j′) ∈ P2 with i ≤ i0, j ≤ j0,
and hchild(p) is nested in p1 IV

M [i, i0 − 1, j, j0 − 1] + Rp[i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

for all p1 = (i0, i′) ∈ P1, p2 = (j0, j′) ∈ P2 with i ≤ i0, j ≤ j0,
hchild(p) is not nested in p1, and span(p1) ≤ 2d V

Rp[i, i0 − 1, j, j0 − 1] + M [i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

for all p1 = (i0, i′) ∈ P1, p2 = (j0, j′) ∈ P2 with i ≤ i0, j ≤ j0,
hchild(p) is not nested in p1, and span(p1) > 2d VI

Rp[i, i0 − 1, j, j0 − 1] + RT (p1)[i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

Fig. 6. The recursions for the table Rp

4.3 Correctness

Let (A, P ) be an optimal alignment and consensus structure for the fragments
corresponding to some table entry M [i, i′, j, j′], Lp[i′, i, j′, j], or Rp[i, i′, j, j′]
(note the swapped indices in the entry of Lp). In all recursions, lines I and II
cover the cases where A aligns i′ or j′ to a gap. Line III covers the cases where
(i′, j′) ∈ A and no arcs of P are adjacent to i′ or j′. Furthermore i′ and j′ can
never be adjacent to arcs of the consensus structure whose other end is outside of
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the current fragment (due to the semantics of the table entries). Hence, the case
that remains is where i′ and j′ are one end of some arc of the consensus structure
whose other end is also contained in the current fragment. In the recursion for
M , this case is covered in line IV, and in the recursions for L and R this case is
further decomposed into subcases corresponding to lines IV to VI. In all those
cases, the fragment is decomposed in the arc match (p1, p2), the fragment below
the arc match and the fragment before it (or behind it, in the case of the table
L). This decomposition is correct since the consensus structure is nested and
hence cannot contain other arc pairs whose arcs cross p1 and p2 to connect the
fragments before and below (p1, p2). It remains to show that in each case the
table entries we recursively descend to exist.

Fix an arc p ∈ PT for which hchild(p) is defined (the case where hchild(p) is
not defined is similar). Let p1 = (i0, i′) be an arc considered in lines IV to VI of
the recursion for Rp.

Lemma 5. p1 does not cross hchild(p).

Proof. Since the case i′ ≤ min(hchild(p)R+d, pR) is handled by the initialization
of Rp, we have i′ > min(hchild(p)R +d, pR). Therefore, either i′ > hchild(p)R +d
or i′ > pR. In the former case we have from the assumption that (S1, P1) is
d-crossing that p1 does not cross hchild(p). In the latter case we also have that
p1 does not cross hchild(p) since otherwise, p1 would also cross p, contradicting
Lemma 1. 
�

By Lemma 5, either hchild(p) is nested in p1 or hchild(p) precedes p1. The case
where hchild(p) is nested in p1 is handled in line VI of the recursion. In this
case we have that either T (p1) = p or p is nested in p1. In both cases we have
that i0 ≤ pL + d − 1 (due to Lemma 3). From this inequality we obtain that
(i0− 1)− i = (i0− pL) + (pL − i)− 1 ≤ 2d− 2, so the entry M [i, i0− 1, j, j0− 1]
exists. Moreover, from the inequality i0 ≤ pL + d − 1 and the assumption that
hchild(p) is nested in p1 we obtain that the entry Rp[i0 + 1, i′ − 1, j0 + 1, j′ − 1]
exists.

Now consider the case where hchild(p) precedes p1 which is handled in lines V
and VI of the recursion. In both lines, the common entry Rp[i, i0 − 1, j, j0 − 1]
exists.

If span(p1) ≤ 2d then the entry M [i0 +1, i′− 1, j0 +1, j′− 1] exists since (i′−
1)− (i0 +1) = span(p1)−3 ≤ 2d−3. If span(p1) > 2d then we need to show that
the entry RT (p1)[i0, i′, j0, j′] exists. We have that pR

1 − pR > span(hchild(p)) >
2d, and therefore p1 does not cross p and p1 /∈ Id(p). It follows that T (p1) =
p. Therefore, T (p1) is nested in p, so the table RT (p1) was already filled by
the algorithm when the table Rp is filled. From Lemma 3 and Lemma 4 we
conclude that the entry RT (p1)[i0, i′, j0, j′] exists. The correctness arguments for
the recursion for Lp are analogous.

4.4 Time Complexity

Let dR
k (i) (resp., dL

k (i)) denote the number of arcs p in Pk with pR = i (resp.,
pL = i). Let dk(i) = dR

k (i) + dL
k (i) + 1. In stage 1, the time complexity for
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computing an entry M [i, i′, j, j′] is O((1+dR
1 (i′))(1+dR

2 (j′))) = O(d1(i
′)d2(j

′)).
For fixed i′ and j′, the number of entries of the form M [i, i′, j, j′] that are
computed by the algorithm is O(dm). Therefore, the time complexity of stage 1
is O

(∑n
i′=1

∑m
j′=1 dm · d1(i

′)d2(j
′)

)
= O

(
dm

∑n
i′=1 d1(i

′)
∑m

j′=1 d2(j
′)

)
= O(dnm2).

For p ∈ PT , the time complexity of computing an entry Lp[i, i′, j, j′] is O((1+
dL
1 (i))(1 + dL

2 (j))) = O(d1(i)d2(j)), and the time complexity of computing an
entry Rp[i, i′, j, j′] is O((1 + dR

1 (i′))(1 + dR
2 (j′))) = O(d1(i

′)d2(j
′)). Consider

some fixed arc p and fixed indices i and j. Let cp
i,j denote the number of com-

puted entries of the form Lp[i, i′, j, j′] or Rp[i′, i, j′, j]. Then stage 2 requires
O

(∑
p∈PT

∑n
i=1

∑m
j=1 cp

i,j · d1(i)d2(j)
)

time.

For every p ∈ PT , cp
i,j ∈ O(dm) for all i and j. Assuming i and j are fixed, we

now count the number of arcs p ∈ PT for which cp
i,j > 0. Let p0 be the minimum

span tree arc such that i ∈ [pL
0 , pR

0 ]. If p is a tree arc with cp
i,j > 0 then p satisfies

one of the following:

1. p is nested in p0, pR < i, and pR is maximal among all tree arcs that satisfy
the previous two conditions.

2. p is nested in p0, pL > i, and pL is minimal among all tree arcs that satisfy
the previous two conditions.

3. p0 is nested in p and i /∈ [hchild(p)L, hchild(p)R].

There are at most two arcs of types 1 and 2 above. Let p0, p1, . . . , pk be all
the tree arcs of the third type, such that pi is nested in pi+1 for all i. Since
span(pi) ≤ span(hchild(pi+1)), we have span(pi+1) > 2 · span(pi) for all i
and therefore k < log2 n. Thus, the time complexity of stage 2 is
O

(∑n
i=1

∑m
j=1 dm log n · d1(i)d2(j)

)
= O(dm2n logn).

5 Conclusion

We presented an algorithm that computes the optimal sequence structure align-
ment for a nested consensus structure and crossing input structures. In practice,
crossing input structures can be used to represent several suboptimal structures
simultaneously, from which the alignment effectively selects the most appropri-
ate one. On the theoretical side, we generalized the optimizations developed by
Klein [14] to crossing input structures. In future work, we will try to incorporate
also the space optimization and the optimization of Demaine et al [2].
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Sparse RNA Folding: Time and Space Efficient
Algorithms
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Abstract. The classical algorithm for RNA single strand folding re-
quires O(nZ) time and O(n2) space, where n denotes the length of the
input sequence and Z is a sparsity parameter that satisfies n ≤ Z ≤ n2.
We show how to reduce the space complexity of this algorithm. The
space reduction is based on the observation that some solutions for sub-
problems are not examined after a certain stage of the algorithm, and
may be discarded from memory. This yields an O(nZ) time and O(Z)
space algorithm, that outputs both the cardinality of the optimal fold-
ing as well as a corresponding secondary structure. The space-efficient
approach also extends to the related RNA simultaneous alignment with
folding problem, and can be applied to reduce the space complexity of the
fastest algorithm for this problem from O(n2m2) down to O(nm2 + Z̃),
where n and m denote the lengths of the input sequences to be aligned,
and Z̃ is a sparsity parameter that satisfies nm ≤ Z̃ ≤ n2m2.

In addition, we also show how to speed up the base-pairing maxi-
mization variant of RNA single strand folding. The speed up is achieved
by combining two independent existing techniques, which restrict the
number of expressions that need to be examined in bottleneck compu-
tations of these algorithms. This yields an O(LZ) time and O(Z) space
algorithm, where L denotes the maximum cardinality of a folding of the
input sequence.

Additional online supporting material may be found at:
http://www.cs.bgu.ac.il/ zakovs/RNAfold/

CPM09 supporting material.pdf

1 Introduction

The structure of RNA is evolutionarily more conserved than its sequence and is
thus key to its functional analysis [1]. Unfortunately, although massive amounts
of sequence data are continuously generated, the number of known RNA struc-
tures is still very limited since experimental methods, such as NMR and
Crystallography, require expertise and long experimental time. Therefore, com-
putational methods for predicting RNA structures are of great value [2,3,4].
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RNA is typically produced as a single stranded molecule, which then folds
upon itself to form a number of short base-paired stems. This base-paired struc-
ture is called the secondary structure of the RNA. The secondary structure al-
most always does not contain pseudoknots (i.e. crossing base pairs). Under the
assumption that the structure does not contain pseudoknots, a model was pro-
posed by Tinoco et al. [5] to calculate the stability (in terms of free energy) of a
folded RNA molecule by summing all contributions from the stabilizing, consecu-
tive base pairs and from the loop-destabilizing terms in the secondary structure.
Based on this model, dynamic programming algorithms were suggested for com-
puting the most stable structures [6,7,8,9,10], applying various scoring criteria
such as the maximal number of base pairs [7] or the minimal free energy [8]. This
optimization problem is formally denoted RNA single strand folding, and the
time and space complexities of the classical algorithms for solving it are O(n3)
and O(n2), respectively, where n denotes the length of the input RNA sequence.
Recently, these were sped up to yield O(nZ) time and O(n2) space [10] algo-
rithms, where Z is a sparsity parameter that satisfies n ≤ Z ≤ n2. We note that
these algorithms are practical in the sense that the hidden constants are small.
On a more theoretical front, Akutsu suggested an O(D(n)) algorithm for this
problem [9], where D(n) is the time for computing the distance product of two
n× n matrices. The best current bound on D(n) is O(n3 log3 log n/ log2 n) [11].

Another approach to RNA folding is the simultaneous alignment with folding
(SAF for short) [12,13,14,15,16]. This approach consists of finding an optimal
alignment between a set of RNA sequences, where an alignment score is evaluated
with respect to some common folding of the input sequences. However, as stated
in [17], even for the simple case where the input consists of only two sequences,
this approach requires “extreme amounts of memory and space” with complex-
ity of O(n2m2) space and O(n3m3) time, where n and m are the lengths of the
input RNA sequences to be aligned. Thus, most existing practical implementa-
tions of this algorithm [13,14,16] use restricted versions of the original problem.
Since these restrictions introduce another source of error, it is of utmost prac-
tical importance to the research on RNA to improve both the space and time
complexities of the full version of SAF. A first non-heuristic speedup, which does
not sacrifice the optimality of results, was recently described in [15]. This work
extends the approach of [10] and yields an O(nmZ̃) time and O(n2m2) space
algorithm for the SAF problem, where Z̃ is a sparsity parameter that satisfies
nm ≤ Z̃ ≤ n2m2. However, experimental analysis of this algorithm indicates
that the high memory requirements pose a major bottleneck in practice, both
in constraining the lengths of the input sequences, as well as in exhausting the
benchmark machine’s memory, which in turn results in a page-fault slowdown.

Our contribution

(1.) Reducing the space requirements of RNA folding problems. In this work
we focus on improving the space complexity of the base-pairing maximization
variant of the RNA single strand folding problem [6,7,9]. The space requirement
reduction is based on the observation that some solutions for subproblems are
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Table 1. Time and space complexities of RNA folding algorithms

Previous results New results
Time Space Time Space

Single strand
base-paring maximization

O(n3)[7]
O(nZ)[10]
O(D(n))[9]

O(n2) O(LZ) O(Z)

Single strand
energy minimization

O(n3)[8]
O(nZ)[10] O(n2) O(nZ) O(Z)

Simultaneous alignment
with folding

O(n3m3)[12]
O(nmZ̃) [15]

O(n2m2) O(nmZ̃) O(nm2 + Z̃)

not examined after a certain stage of the algorithms, and may be discarded from
memory. This yields an O(nZ) time and O(Z) space algorithm for this problem.
In addition to the optimal folding cardinality computation, we show a trace-back
procedure which outputs a corresponding secondary structure. Note that it is
an interesting challenge on its own to recover an optimal folding within the time
and space complexity bounds of the space-reduced algorithm, since due to the
sparse representation only partial information is kept. The presented strategy
may also be extended to the score computation of a family of RNA folding
algorithms, which includes algorithms for the energy minimization variant of
the single strand folding problem [8,10] (improving the space complexity from
O(n2) to O(Z)), as well as algorithms for SAF [12,15] (improving the space
complexity from O(n2m2) to O(nm2 + Z̃)).

(2.) A sparse RNA single strand folding algorithm. We also describe a fast al-
gorithm for the base pairing maximization variant of RNA single strand folding
that exploits an additional sparsity parameter, based on the cardinality of the op-
timal folding. This is achieved by combining two independent techniques, which
were previously used to reduce the number of sub-instance pairs that need to be
considered by the algorithm. This combination yields the simultaneous exploita-
tion of two key properties emerging from the formal definitions of these folding
problems: the triangle inequality property, previously exploited in [10] and [15],
as well as the monotonicity and unit-step properties, previously utilized in [18]
for a related problem. The result is an O(LZ) time and O(Z) space algorithm,
where L denotes the maximum cardinality of a folding of the input sequence and
n ≤ Z ≤ n(L + 1).

We note that the algorithms described here are practical in the sense that the
hidden constants are small. In the context of practical contribution, we also point
out that our space complexity improvements are more significant than the time
complexity improvements, since while the expected value of L is Θ(n) (assum-
ing uniform character distribution), both Z and Z̃ were experimentally shown
to be significantly less than n2 and n2m2, respectively [10,15]. Furthermore,
reducing the space complexity of the SAF problem is a key result in practice,



252 R. Backofen et al.

as in the previous results the space complexity was typically the computational
bottleneck [17,15].

Due to space constrains, figures, pseudocode and some omitted proofs are dif-
fered to an online supporting material document at http://www.cs.bgu.ac.il/
~zakovs/RNAfold/CPM09_supporting_material.pdf.

2 Preliminaries

An RNA sequence is a sequence over the alphabet {A, C, G, U}. Each letter in an
RNA sequence is also called a base. The bases A and U are called complementary
bases, and so are the bases C and G1. For a base σ ∈ {A, C, G, U}, denote by σ
the complementary base of σ. Fix henceforth an RNA sequence S = s1s2 · · · sn.
Denote by Si,j the subsequence si · · · sj of S, where Si,i−1 is defined to be an
empty sequence.

Definition 1. A folding F of a subsequence Si,j is a set of index pairs that
satisfies the following:
1. For every (k, l) ∈ F , i ≤ k < l ≤ j, and sl = sk.
2. There are no (k, l), (k′, l′) ∈ F , such that k ≤ k′ ≤ l ≤ l′.

A pair (k, l) ∈ F is called a base-pair. Say that index k is paired in a folding
F if k appears in a base-pair in F , otherwise k is unpaired in F . Call an index
q a branch point with respect to F if for all (k, l) ∈ F , either l < q or k ≥ q.
We distinguish between two kinds of foldings of Si,j : co-terminus foldings are
foldings that include the base-pair (i, j), and partitionable foldings are those who
do not include the base-pair (i, j). Note that for j > i, F is partitionable if and
only if F has a branch point i < q ≤ j. Denote by |F | the size of a folding F ,
i.e. the number of base-pairs in F . The single strand base-pairing maximization
problem was first addressed in [7]. The formal problem definition is given below.

Problem 1. Compute the maximum size of a folding of the instance sequence S.

Definition 2. For a subsequence Si,j, denote:
1. L (i, j) is the maximum size of a folding of Si,j.
2. Lp (i, j) is the maximum size of a partitionable folding of Si,j .
3. Lc (i, j) is the maximum size of a co-terminus folding of Si,j, or −∞ if there

is no such folding (if j ≤ i or sj = si).

Call a folding F of Si,j for which |F | = L (i, j), an optimal folding of Si,j . In the
rest of this paper, we use L instead of L (1, n) whenever the context is clear.

3 RNA Folding via Base-Pairing Maximization

In this section we describe a recursive solution for the single strand base-pairing
maximization problem, and present a technique for reducing its space complexity.
1 For the sake of clarity, we disregard the possible ”wobble” pairing between G and

U . All presented results may be easily extended to include G − U pairing as well.

http://www.cs.bgu.ac.il/~zakovs/RNAfold/CPM09_supporting_material.pdf
http://www.cs.bgu.ac.il/~zakovs/RNAfold/CPM09_supporting_material.pdf
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This technique also extends to the single-strand RNA folding algorithms that
are based on a thermodynamic model [2,3,4]. In addition, we suggest how to
extend the space-reduction technique and apply it to the SAF problem [12,15].

3.1 A Recursive Solution

For a subsequence Si,j such that j ≤ i, the only possible folding is the empty
folding, and therefore L (i, j) = 0. The following equations show how to recur-
sively compute L (i, j) when j > i:

L (i, j) = max {Lp (i, j) , Lc (i, j)} . (3.1)

Lc (i, j) =
{

L (i + 1, j − 1) + 1, sj = si,
−∞, sj = si.

(3.2)

Lp (i, j) = max
i<q≤j

{L (i, q − 1) + L (q, j)} . (3.3)

Note that the time complexity bottleneck in algorithms which implement the
recursive computation of Equations 3.1 to 3.3 is due to the consideration of O(n)
branch points q in the computation of Lp (i, j), according to Equation 3.3. In the
rest of this section, as well as in Section 4, we describe techniques that reduce
the number of branch points that need to be examined in this computation,
and thus improve the time complexity of such algorithms. Due to Equations 3.1
and 3.3, the following (inverse) triangle inequality is sustained in the base-paring
maximization problem:

Observation 1 (triangle inequality). For every subsequence Si,j and for ev-
ery i < q ≤ j, L (i, j) ≥ L (i, q − 1) + L (q, j) .

Based on the triangle inequality, Wexler et al. [10] observed that it is sufficient
to examine only a subset of the branch points in order to compute Lp (i, j). We
present here a slightly different notation for the same concept.

Definition 3 (OCT). A subsequence Si,j is optimally co-terminus (OCT) if
i = j, or if every optimal folding of Si,j is co-terminus (that is, if L (i, j) =
Lc (i, j) > Lp (i, j)).

Call an index q for which Lp (i, j) = L (i, q − 1)+L (q, j) an optimal branch point
with respect to Si,j .

Lemma 1 (Wexler et al. [10]). For every subsequence Si,j, there is an optimal
branch point q with respect to Si,j such that Sq,j is an OCT.

Define the following subset of branch points with respect to Si,j :

Qi,j = {i < q ≤ j : Sq,j is an OCT} .

The following equation restates Equation 3.3, based on Lemma 1, by restrict-
ing the branch points considered by the maximization term to those in Qi,j .

Lp (i, j) = max
q∈Qi,j

{L (i, q − 1) + L (q, j)} . (3.4)
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We define the following sparsity measure of RNA sequences.

Definition 4. For a subsequence Si,j, Z(i, j) is the number of subsequences of
Si,j which are OCTs.

In the rest of this paper, we use Z instead of Z(1, n) whenever the context is
clear. In the sparse case, only a small portion of the O(n2) subsequences of S are
OCTs. In Section 4.1 we show that, in the base pairing maximization variant of
the problem, Z is bounded by n(L + 1). For the minimum free energy problem
variant, an estimation of the expected value of a parameter related to Z, based
on a probabilistic model for polymer folding and measured by simulations, which
shows that that Z is significantly smaller than O(n2), can be found in [10].

Previous algorithms for the base-pairing maximization problem were pre-
sented by Nussinov and Jacobson [7] and by Wexler et al. [10]2. Both algorithms
are dynamic programming algorithms that perform a bottom-up computation of
the recurrence described in this section, where the Nussinov-Jacobson algorithm
uses Equation 3.3 for the computation of Lp (i, j), and the Wexler et al. algo-
rithm improves it by using Equation 3.4. These algorithms compute the upper
triangle of a table Mn×n, where each cell M [i, j] stores the value L (i, j). The
entries of M are traversed in an order which guarantees that all values that are
needed for the computation of M [i, j] = L (i, j), according to the recurrence for-
mula, are computed and stored in M prior to the computation of M [i, j]. Upon
termination, M [1, n] holds the value L. The time complexity of the algorithm
by Nussinov and Jacobson is O(n3), whereas that of the algorithm by Wexler et
al. is O(nZ). Both algorithms use O(n2) space.

3.2 A Space Efficient Algorithm

Our space reduction strategy is based on the observation that some of the values
stored by the algorithm of Wexler et al. [10] are not necessary throughout the
complete run of the algorithm. In the following lemma we characterize the values
that need to be maintained in memory for the computation of L (i, j).

Lemma 2. For a subsequence Si,j, it is possible to compute L (i, j) by examining
only those values L (a, b), where i ≤ a < b ≤ j and b − a < j − i, which sustain
that either a = i, a = i + 1, or Sa,b is an OCT.

Proof. Immediate from Equations 3.1, 3.2 and 3.4. 
�

Consider a dynamic programming algorithm which fills the table M by traversing
its entries row by row from bottom to top, and each row from left to right.
Lemma 2 implies that at the stage where M [i, j] is computed, it is sufficient
to keep only the values in the currently computed i-th row, the values in the
recently computed (i + 1)-th row, and values in entries which correspond to

2 [10] deals with the more realistic energy minimization variant of the problem. For
clarity, we project their notions on the simpler base-paring maximization variant
discussed here.
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OCT subsequences of S. Thus, there is no need to maintain the complete table
M in memory, rather, at each stage, entries which are guarantied not to be
further examined by the algorithm may be discarded. This yields a total space
complexity of O(n+Z) = O(Z). Note that the computation of each entry M [i, j]
requires O(|Qi,j |) operations, due to the consideration of the branch point set
Qi,j (these sets are maintained as lists in order to allow an efficient traversal,

as explained in [10]). Since
n−1∑
i=1

n∑
j=i+1

|Qi,j | ≤
n−1∑
i=1

n∑
j=i+1

|Q1,j| ≤
n−1∑
i=1

Z < nZ, the

running time of the algorithm is O(nZ). Fig. 2 and Alg. 1 in the online supporting
material illustrate and give the pseudo code of the above described algorithm.
Its time and space complexities are summarized in the following lemma.

Lemma 3. Given an RNA sequence S of length n, there is an algorithm which
computes L (1, n) in O(nZ) time and O(Z) space.

3.3 Folding Reconstruction

In addition to computing the optimal folding score of a given RNA sequence,
it is often of interest to report at least one optimal folding. Some well known
standard techniques for reporting an optimal folding apply trace-back procedures
over the folding score matrix M , in O(n2) time [19]. In this section we show
how to reconstruct one optimal folding, without exceeding the time and space
complexities of our folding algorithm. Note that this is a challenging task, as the
classical trace-back algorithm requires the availability of the full table M , while
our algorithm stores only partial information.

Assume that the full table M is given, with annotated OCT subsequences.
The basic recursive folding reconstruction algorithm [19] could be modified as
follows to utilize the OCT subsequences:
1. For j ≤ i, the only (optimal) folding of Si,j is the empty folding, and the

algorithm halts without reporting any base-pair.
2. For j > i, if Si,j is an OCT, the algorithm reports the pair (i, j) and is called

recursively on the subsequence Si+1,j−1.
3. Otherwise, Si,j is partitionable, and therefore the algorithm finds an index

q ∈ Qi,j for which M [i, j] = M [i, q − 1] + M [q, j] and then continues by
computing an optimal folding of Si,q−1 and of Sq,j . An optimal folding of
Si,q−1 is obtained by calling the algorithm recursively with the sub-instance
Si,q−1. As for computing an optimal folding of Sq,j , note that Sq,j is an
OCT, and consider the two cases, where either q = j or q < j. If q = j,
then there is no need for another recursive call. Otherwise q < j, and an
optimal folding of Sq,j is obtained by first reporting the base-pair (q, j) and
then calling the algorithm recursively with the sub-instance Sq+1,j−1.

Time complexity analysis of the trace-back algorithm on the full table M . When
calling the above algorithm to compute the folding traceback of Si,j , recur-
sive calls with three different subsequences could be initiated at the top level:
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Si−1,j−1, Sq+1,j−1 and Si,q−1, thus index j is eliminated from further considera-
tion as an end index. Therefore, each recursive call is performed with a different
end index j, and altogether there are at most n recursive calls in the whole com-
putation. For a recursive call in which the end index is j, at most O (|Q1,j |) oper-
ations are preformed in finding a q ∈ Qi,j for which M [i, j] = M [i, q−1]+M [q, j].
Since

∑
1≤j≤n

|Q1,j | ≤ Z, the total running time is O(Z).

We next turn to address the challenge of reconstructing an optimal folding
from the sparse table M computed in Section 3.2. The above described algorithm
cannot be applied directly in this case, due to the fact that when the algorithm
needs to find q ∈ Qi,j for which M [i, j] = M [i, q−1]+M [q, j], the values M [i, j]
and M [i, q − 1] may have been discarded from memory (while M [q, j] is main-
tained in memory since Sq,j is an OCT). In order to overcome this difficulty we
adopt a similar approach as of the algorithm of Hirschberg [20], namely perform-
ing on-demand value re-computations of discarded entries. Thus, it remains to
show how to recover such deleted entries.

Lemma 4. Given the sparse table M that contains folding scores for OCT sub-
sequences, there is an algorithm which recovers the set of entries M [i, i + 1],
M [i, i + 2], . . . , M [i, j], for a pair of given indices i and j, in O(Z) time.

Proof. The entries of the form M [i, j′] which have been discarded from mem-
ory correspond to partitionable subsequences, where L (i, j′) = Lp (i, j′), and
thus may be recomputed based solely on Equation 3.4. Observe that this com-
putation examines only entries of the form M [i, q] for q < j′, and M [q, j′] for
OCT subsequences Sq,j′ . Re-computing the entries of the ith row from left to
right guaranties that upon computing M [i, j′], all necessary values for the com-
putation of Lp (i, j′) are already stored in M . For each i < j′ ≤ j, there are
O(|Q1,j′ |) operations performed along this computation, due to the considera-
tion of branch points in the set Qi,j′ . As before, summing this expression over
all i < j′ ≤ j accumulates to O(Z). 
�

We next show that, throughout the full run of the algorithm, the process of
restoring row entries is applied to O(L) distinct start indices. Consider the case
where the trace-back algorithm is applied on Si,j and assume that the set of
entries M [i, i + 1], M [i, i + 2], . . . , M [i, j] was already previously restored. Note
that a recursive call with a sub-instance of the form Si,q−1 does not require
the restoration of the entries M [i, i + 1], M [i, i + 2], . . . , M [i, q − 1], as (by the
assumption) they have already been restored and are maintained in M . The other
two possible recursive calls with sub-instances of the form Si+1,j−1 or Sq+1,j−1,
do require re-computation of entries in M (in rows i+1 or q+1, correspondingly).
However, observe that each call of the latter kind is preceded by a detection of
a base-pair. Since throughout the full run of the algorithm only L base pairs are
detected, we get that the row entry recovery only needs to be executed L times
(in addition to the recovery of M [1, 1], M [1, 2], . . . , M [1, n] during initialization).
Thus, according to Lemma 4, the entry value recovery contributes an additional
O(LZ) factor to the total time complexity of the trace-back algorithm.
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Furthermore, note that upon performing such a re-computation of an en-
try set, there is no need to further maintain the values in M [i, i + 1], M [i, i +
2], . . . , M [i, j] in the case where Si,j is co-terminus, nor to keep the values in
M [i, q], M [i, q+1], . . . , M [i, j] in the case where Si,j is partitionable. This allows
to discard these values from memory before the re-computation of the entry set
for the corresponding sub-instance, guaranteeing that at each stage, at most n
recovered entries are maintained in the sparse table M , in addition to the al-
ready existing OCT corresponding entries. Therefore, the space complexity of
the trace-back algorithm remains O(Z + n) = O(Z).

Alg. 2 in the online supporting material implements the efficient trace-back
scheme.

Lemma 5. There is an algorithm which, given the sparse table M that contains
folding scores for all OCT subsequence of S, computes an optimal folding of S
in O(LZ) time and O(Z) space.

3.4 Extending the Space Reduction to Simultaneous Alignment
with Folding

The goal of the SAF problem is to find a multiple sequence alignment and a
common folding of the aligned sequences, which optimizes some score function.
For simplicity, we assume the problem instance consists of two sequences. Simi-
larly to single RNA strand folding algorithms, the basic dynamic programming
algorithm for the SAF problem [12] computes the scores for all sub-instances of
its input instance, and then combines these values to resolve the score of the full
input instance. Given an instance of the problem - a pair of RNA sequences S
and T , the algorithm maintains the scores of sub-instances (Si,j , Ti′,j′) in a four-
dimensional table N (see Fig. 3). For |S| = n and |T | = m, we depict N as an
n×n ”super table”, in which each entry Ni,j corresponds to an internal table of
size m×m, where the combined alignment-with-folding score of the sub-instance
(Si,j , Ti′,j′) is stored in the entry Ni,j [i′, j′]. The time-complexity of the basic
dynamic programming algorithm for the SAF problem is dictated by the need
to compute all O(n2m2) sub-instances, where each such computation involves
the consideration of a set of O(nm) competing branch point index pairs (i.e. all
(q, q′) such that i < q ≤ j and i′ < q′ ≤ j′). This yields a total time complexity
of O(n3m3).

Recently, [15] extended the approach of [10] and applied it to speed up SAF

by reducing the number of branch points that need to be considered in the
main recursion for the SAF score computation. Similarly to the concept of
OCT sequences, it is possible to define OCT-aligned sequence pairs, where the
pair (Si,j , Ti′,j′) is OCT-aligned if, in every optimal alignment-with-folding of
(Si,j , Ti′,j′) the bases si and ti′ are aligned to each other, the bases sj and tj′

are aligned to each other, and the common folding is co-terminus. Using this
formulation to describe the results of [15], it was shown that it is sufficient
to examine branch point pairs (q, q′) such that the sequences Sq,j and Tq′,j′ are
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OCT-aligned, thus reducing the number of examined branch points and improv-
ing the running time of the algorithm. This extension yields an O(nmZ̃) time
and O(n2m2) space algorithm for the SAF problem, where Z̃ is the number of
OCT-aligned sub-instances, and nm ≤ Z̃ ≤ n2m2 (in practice, Z̃ is expected to
be significantly smaller than O(n2m2) [15]).

Applying an observation similar to Observation 2, an algorithm is suggested
here which, upon the computation of entry Ni,j [i′, j′], queries only those entries
which correspond to OCT-aligned sub-instances, in addition to entries in rows i
and i+1 of the ”super table” N . The space complexity of SAF is thus reduced to
O(nm2 + Z̃) (w.l.o.g. m ≤ n). In the extended version of this paper we describe
in detail how to extend the space-reduction technique described in Section 3.2 to
the four-dimensional matrix computed by the SAF algorithm [15]. An intuitive
explanation can be found in Fig. 3.

Lemma 6. There is an algorithm that computes the simultaneous alignment
with folding of two RNA sequences S and T in O(nmZ̃) time and O(nm2 + Z̃)
space, where n = |S|, m = |T |, and w.l.o.g. m ≤ n.

4 Utilizing Step Characterization

In this section we take advantage of a step characterization of the single strand
base-pairing maximization problem in order to improve the running time of
the algorithms which compute it. Based on this approach, in Section 4.1 we
describe an improvement to Alg. 1 which reduces its running time from O(nZ)
to O

(
n2 + LZ

)
, and then in Section 4.2 we further reduce it to O(LZ). Both

algorithms have the same space complexity as Alg. 1, which is O(Z).
Let Si,j be a subsequence of S. For L′ = L (i + 1, j) or L′ = L (i, j − 1), it

is straightforward to show that L′ ≤ L (i, j) ≤ L′ + 1. Therefore, we get the
following observation:

Observation 2. For every 1 ≤ k ≤ n, the sequence L (k, k) , L (k, k + 1) , . . . ,
L (k, n), as well as the sequence L (k, k) , L (k − 1, k) , . . . , L (1, k) are monoton-
ically non-decreasing with unit steps in the range 0− L.

The above observation implies a bound on Z, as follows.

Lemma 7. The value of Z satisfies n ≤ Z ≤ n(L + 1).

Proof. Every OCT subsequence Si,j satisfies that either i = j, or L (i, j) >
L (i + 1, j). Hence, according to Observation 2, there are at most L+1 OCT sub-
sequences that end with a given index j, and at therefore there are most n(L+1)
OCT subsequences of S. 
�

4.1 An O(n2 + LZ) Algorithm

Similarly to the previously presented technique for restricting the set of ex-
amined branch points in the computation of Lp (i, j), we next show another
dominance relation which can be utilized to further constrain the set of branch
points examined in Equation 3.3.
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Definition 5 (step sequence). Call a subsequence Si,j a step sequence if in
every optimal folding of Si,j the base i is paired.

Observe that Si,j is a step sequence if and only if q = i+1 is not a branch point
in any of the optimal foldings of Si,j , i.e. L(i, j) > L(i, i)+L(i+1, j) = L(i+1, j)
(hence the term “step”). Also note that any OCT subsequence of length greater
than 1 is a step sequence, though the opposite is not necessarily true. In the
following Lemma we further restrict the branch points which need to be examined
in a recursive computation of Lp (i, j).

Lemma 8. For any subsequence Si,j such that j > i, there is an optimal branch
point q with respect to Si,j such that either q = i + 1, or Si,q−1 is a step se-
quence and Sq,j is an OCT.

Proof. If q = i+1 is an optimal branch point with respect to S, the lemma holds.
Otherwise, Lp (i, j) > L (i, i)+L (i + 1, j) = L (i + 1, j). According to Lemma 1,
there is an optimal branch point i + 1 < q ≤ j such that Sq,j is an OCT. There-

fore, L (i, q − 1)+L (q, j) = Lp (i, j) > L (i + 1, j)
Obs. 1
≥ L (i + 1, q − 1)+L (q, j).

It follows that L (i, q − 1) > L (i + 1, q − 1), hence Si,q−1 is a step sequence. 
�

Define the following subset of branch points with respect to Si,j :

Pi,j = {i + 1} ∪ {i + 1 < q ≤ j : Si,q−1 is a step sequence and Sq,j is an OCT} .

The following equation restates Equation 3.4, based on Lemma 8.

Lp (i, j) = max
q∈Pi,j

{L (i, q − 1) + L (q, j)}. (4.1)

We next show a bottom-up algorithm that computes L according to
Equations 3.1, 3.2, and 4.1. The presented algorithm is similar to Alg. 1, where a
forward dynamic programming technique is applied in order to efficiently com-
pute Lp (i, j) (forward dynamic programming was also applied by Jansson et
al. [18] to a related problem).

The new algorithm also scans and computes the entries of M in decreasing row
index and increasing column index. It maintains the following invariant: upon
reaching entry M [i, j], the entry contains the value Lp (i, j). Before computing
row i in M , the entries M [i, i − 1] and M [i, i] are initialized with zeros, and
all entries M [i, j] for i < j ≤ n are initialized with the corresponding values
M [i + 1, j]. This initialization is equivalent to examining the branch point q =
i + 1 in the computation of Lp (i, j) according to equation 4.1 for all j > i (the
branching at q = i + 1 is handled separately from other branch points in Pi,j

since it does not follow the step sequence-prefix-OCT-suffix rule as the rest of
the group). Note that in this stage the invariant is sustained for the first entry in
the row which is traversed by the algorithm - M [i, i + 1], since Pi,i+1 = {i + 1}.

Based on the invariant, upon reaching M [i, j], the entry contains the value
Lp (i, j), and the value L (i, j) can be computed by resolving the maximum
between the current entry value and the value of Lc (i, j), which is obtained
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from Equation 3.2. If Lc (i, j) > Lp (i, j), Si,j is classified as an OCT. Then, if
M [i, j] > M [i + 1, j], Si,j is classified as a step sequence, and the branch point
q = j + 1 is considered and forward-reflected to the computation of Lp (i, j′),
for all j′ > j such that Sj+1,j′ is an OCT, by updating the value of M [i, j′]
to be the maximum among its current value and that of M [i, j] + M [j + 1, j′],
thus accumulating the maximum according to Equation 4.1, and guaranteeing
the maintenance of the invariant.

Alg. 5 in the online supporting material implements the forward dynamic pro-
gramming approach described above, combined with the space-efficient approach
described in Section 3.2. An illustration of its run is given in Fig. 4. The speedup
obtained by this algorithm is due to the fact that branch points are examined
by Equation 4.1 only if both the sequence prefix before the branch point is a
step-sequence and its suffix, as from the branch point on, is an OCT. Note that,
for each one of the Z OCT subsequences Sq,j which are examined as suffices by
Equation 4.1, Observation 2 shows that there are at most L sequences Si,q−1
which may be corresponding step-sequence prefixes, and thus the total run-time
contribution due to computation of values of the form Lp (i, j) is O(LZ). Since
the table M has O(n2) entries, where for each entry O(1) operations are per-
formed in addition to the operations involved in the computations of Lp (i, j),
the total running time is O(n2 + LZ). The space complexity remains O(Z), as
the space complexity of Alg. 1.

Lemma 9. Given an RNA sequence S of length n, there is an algorithm which
computes L (1, n) in O(n2 + LZ) time and O(Z) space.

4.2 An O(LZ) Algorithm

In this section we further reduce the running time of the folding algorithm from
O(n2 + LZ) to O(LZ). We do so by applying a step encoding [21] to M , repre-
senting each of its rows by its O(L) steps (see Fig. 5). Hence, in what follows
we give corresponding step-encoding formulations, where a typical instance is
composed of a suffix Si,n of S and a folding cardinality x, which will be denoted
by the pair (Si,n, x). The goal is to compute the minimum index i− 1 ≤ j ≤ n
such that there is a folding of Si,j whose cardinality is x. The next definition
gives the step-encoding equivalents of the entities L (i, j) , Lp (i, j), and Lc (i, j).

Definition 6. For 1 ≤ i ≤ n, 1 ≤ x, and α ∈ {ε, p, c} (where ε denotes the
empty word), define βα (i, x) to be the minimum index j such that Lα (i, j) ≥ x,
or ∞ if there is no such j.

Note the relation between the step-encoding formulation and the standard for-
mulation, where L (i, j) is the maximum x such that β (i, x) ≤ j. Say that a
sub-instance (Si,n, x) is a β-OCT if β (i, x) = βc (i, x) < βp (i, x). The set Yi,x

is the step-encoding equivalent of Pi,j :

Yi,x = {i + 1} ∪
{

i + 1 < q ≤ β (i + 1, x − 1) :
Si,q−1 is a step sequence, and

(Sq,n, x − L(i, q − 1)) is a β-OCT

}
.
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The following auxiliary function will be used in the computation of βc (i, x).

Definition 7. For σ ∈ {A, C, G, U} and 1 ≤ r ≤ n, define next(r, σ) to be the
minimum index r′ > r such that sr′ = σ, or ∞ if there is no such index r′.

We now convert Equations 3.1, 3.2 and 4.1 to their equivalent forms in the step
encoding. For all 1 ≤ i ≤ n and 1 ≤ x:

β (i, x) = min {βc (i, x) , βp (i, x)} . (4.2)
βc (i, x) = next (β (i + 1, x− 1) , si) . (4.3)

βp (i, x) = min
{

min
q∈Yi,x

{β (q, x− L(i, q − 1))} , βc (i, x) + 1
}

. (4.4)

Formal proofs of the correctness of Equations 4.2 to 4.4, as well as the pseu-
docode of an algorithm that implements them, are included in the online sup-
porting material. This algorithm, denoted Alg. 6, adopts a forward dynamic
programming approach, similarly to that of Alg. 5. This allows for efficient com-
putation of Equation 4.4, where the number of sub-instances, as well as the
dimensions of the data structure that stores solutions for these sub-instances, is
O(Ln) (instead of O(n2)).

Lemma 10. Given an RNA sequence S of length n, there is an algorithm that
computes L (1, n) in O(LZ) time and O(Z) space.
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Abstract. Recent experimental progress is once again producing a huge
quantity of data in various areas of biology, in particular on protein
interactions. In order to extract meaningful information from this data,
researchers typically use a graph representation to which they apply
network alignment tools. Because of the combinatorial difficulty of the
network alignment problem, most of the algorithms developed so far are
heuristics, and the exact ones are of no use in practice on large numbers
of networks. In this paper, we propose a unified scheme on the question of
network alignment and we present a new algorithm, C3Part-M, based
on the work by Boyer et al. [2], that is much more efficient than the
original one in the case of multiple networks. We compare it as concerns
protein-protein interaction networks to a recently proposed alignment
tool, NetworkBLAST-M [10], and show that we recover similar results,
while using a different but exact approach.

Keywords: multiple graph alignment, biological network comparison,
protein-protein interactions.

1 Introduction

The recent advances in high-throughput experiments have fueled the research
for an automated characterisation of biological networks such as protein-protein
interactions (PPI) networks [21], metabolic pathways [13], or gene regulation
networks [1]. A central question to the analysis of this kind of data is to align
the networks in order to extract conserved subnetworks across multiple species
or data sources. This information is of primary importance to study both the
evolution and function of the proteins.

The network alignment question shares some similarities with the classical
case of sequence alignment. Indeed, network alignment approaches can be local
[2, 7, 10, 11, 12, 16] or global [6, 17, 18], pairwise [11, 12, 17, 20] or multiple [6, 7,
10, 16, 18]. In addition, just like with sequence symbols, one must also address
the question of defining a similarity between the vertices of different networks.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 263–273, 2009.
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However, a specific question that arises only in network alignments is to define
which topological similarity to enforce on the aligned subnetworks.

A key concept, used in most of the studies [2,11,12,15,16], is that of a merged
representation of the networks, which is called network alignment graph [16] or
correspondence multigraph [2] in the literature. Given n networks G1, G2, . . .Gn,
with Gi = (Vi, Ei), and a correspondence relation S between the vertices of

⋃
i Vi,

the idea is to select n-tuples (alternatively called n-spines [10]) of vertices, one
from each Vi, and to connect them with edges taken from the original Ei.

As we shall see later, an explicit construction of this representation is not
always needed (nor desirable) but it turns out to be very useful to understand
the differences between the algorithms or the biological questions to be solved.
This can be summarised in three main questions:

– how to select the n-tuples (i.e. how to aggregate the vertices from the differ-
ent sets Vi using S);

– which edges (from the different sets Ei) to keep;
– which topological condition(s) should be satisfied by the solution subgraphs.

Of course, the algorithmic difficulty of a network alignment greatly depends upon
the answers to these questions and in most cases one has to resort to heuristics.
In addition, several authors introduced scoring models at different levels of such
heuristics. This will not be discussed here and we instead treat the question from

Table 1. Different methods for PPI network alignment and the corresponding assump-
tions. The n-tuples column gives the scheme used to gather homologuous proteins ac-
cording to similarity edges. CC stands for connected components. The edges column
details which edges from the PPI networks are taken into account. ”conserved” means
that only edges that appear in every single network are conserved. The topology column
tells which kind of subgraphs the method is recovering, for instance the Network-

BLAST method recovers clusters and paths of the network alignment graph, whereas
NetwokBLAST-M maximises a sum of scores, one for each network, ensuring the
subgraphs are dense on each network.

Method n-tuples edges
construction construction

topology reference

PathBLAST pairs (n=2) conserved paths [11]
NetworkBLAST CC (n ≤ 3) conserved clusters / paths [16]

NetworkBLAST-M
dense clusters

paths all edges on each network [10]

GRAEMLIN 1.0
non-overlap-

-ping CC conserved user-defined [7]

CAPPI
non-overlap- all edges >

-ping CC threshold CC [5]

HopeMap pairs conserved CC [20]
MaWISH pairs conserved max-weight subgraph [12]

PHUNKEE pairs all edges max shared-edges ratio [3]
C3PART cliques or stars all edges common CC [2]
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a purely combinatorial point of view. We also focus on the more general question
of a multiple alignment.

Table 1 summarises some important cases found in the literature.
For example, in the study by Sharan et al. [16] , the n-tuples are connected

components for the correspondence relation S, the edges are those from Ei con-
served in all the networks, and the enforced topologies are “dense” clusters,
whereas in Boyer et al. [2] the n-tuples are cliques of S, all the edges in all the
Ei’s are kept (therefore giving rise to a multigraph instead of a graph) and the
topological condition is simply the connectivity.

It is important to note that when the correspondence relation S is not one-to-
one, the size of the network alignment graph may grow exponentially with both
the number of vertices (n-tuples) and of edges, making it difficult to handle more
than three networks. A general question thus appears: how to avoid the explicit
construction of the network alignment graph ?

Several methods have been proposed to address this difficulty, among them the
Graemlin algorithm [7] which avoids this construction by using a progressive
alignment approach, and NetworkBLAST-M [10] which builds a set of n-tuple
seeds with maximum score and then extends them greedily.

In this paper, we propose a non-heuristic approach to avoid the explicit con-
struction of the network alignment graph and yet recover a pertinent and well-
defined alignment. This work is based on the general framework proposed by
Boyer et al. [2], which uses a correspondence multigraph formalism to extract
connected components conserved in multiple networks. Our algorithm is an im-
provement of Boyer’s original algorithm, C3Part, in order to avoid the explicit
construction of the network alignment multigraph, and thus to be able to deal
with a greater number of networks or a more degenerate correspondence relation
across the networks. We illustrate this approach on the example of PPI networks,
but all algorithmic concepts presented here can be applied on other kind of data
as well.

The paper is organised as follows: Sections 2.1 to 2.3 define the layered data
graph and the network alignment multigraph. Section 2.4 gives a brief overview
of the C3Part algorithm and its limits. Section 2.5 presents our improvement of
this algorithm, that builds on the fly the parts of the network alignment multi-
graph that are really needed for the alignment. And finally, Section 3 provides
some results in the case of PPI networks, allowing us to compare the efficiency
of our method with other similar approaches.

2 Methods

2.1 Layered Data Graph

The layered data graph (also called layered alignment graph in [10]) provides
the simplest representation of the data at hand.

Definition 1. (adapted from [10]) Given a set of n networks Gi = (Vi, Ei),
i ∈ [|1, n|] (hereafter called primary networks) and a correspondence relation
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S between the elements of distinct sets Vi, the layered data graph is the graph
D = (V, E) with
– V =

⋃
i Vi

– E = (
⋃

i Ei) ∪ {(u, v) ∈ Vi × Vj �=i/u S v}

Observe that there are two kinds of edges in E: one corresponds to the original
sets Ei (hereafter called intra-layer edges) and the other one connects vertices
from different layers (hereafter called inter-layer edges) (see Figure 1).

2.2 Correspondence n-Way, and n-Tuples

As mentioned before, for n > 2 networks, one has to define formerly how the
layered data graph vertices are aggregated to form n-tuples.

Definition 2. An n-way correspondence between elements of V1, V2, . . . Vn is
defined as a restriction R of the cartesian product, denoted by R(V1×V2× . . .×
Vn).

There are three main interesting practical cases of such an aggregation.
1. The clique aggregator :

(v1, . . . vn) ∈ R(V1 × V2 × . . .× Vn) ⇔ ∀i, j ∈ [|1, n|], vi S vj

ie we require that all elements of the tuple are pairwise related.
2. The centered-star aggregator :

(v1, . . . vn) ∈ R(V1×V2× . . .×Vn)⇔ ∃i ∈ [|1, n|]/∀j ∈ [|1, n|], j = i, vi S vj

ie we require a “star” topology of the relations between elements of the tuple.
3. The connected component aggregator :

(v1, . . . vn) ∈ R(V1 × V2 × . . .× Vn) ⇔ (v1, . . . vn) is a connected component
of S.
A particular and important case of connected component aggregator is the
path aggregator [16] which requires the vertices to be connected by a path.
Among the path aggregators, the tree-guided path aggregator [10] requires
the path to be compatible with a given phylogenetic tree.

2.3 Network Alignment MultiGraph

A network alignment multigraph is a graph data structure that summarises both
the n-way correspondence and the connectivity in the primary networks.

Definition 3. The network alignment multigraph is the multigraph M = (V, E′
1,

. . . , E′
n) such that:

– V = R(V1 × V2 × . . .× Vn)
– ∀u = (u1, u2, . . . , un) ∈ V and v = (v1, v2, . . . , vn) ∈ V ,

(u, v) ∈ E′
i ⇔ (ui, vi) ∈ Ei ∨ (vi = ui)

In other words, the vertices of the multigraph are n-tuples and there is an edge
between two vertices if the ith elements (vertices) of the tuples are connected in
the primary network Gi, for all i ∈ [|1, n|]. In the following, we refer to such an
edge as an edge of colour i.
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Fig. 1. Example of a layered data graph (a) and the corresponding network alignment
multigraph (b) with 3 connectons. The correspondence relation S is represented by
dotted lines. The restriction R is defined by the couples of vertices linked by S edges.
Observe that the whole multigraph is not a connecton since (c1, c2) is not reachable
by both colours. Also observe that connectons do not correspond to the intersection of
the connected components.

2.4 Defining Connectons in the Network Alignment Multigraph

With this definition of the network alignment multigraph at hand, there are
several possible definitions of the property we want to look for (see Table 1),
and therefore of the conserved subgraphs we want to recover. Here we choose
the definition formalised by Boyer et al. [2] which presents several advantages
that will be discussed later.

Definition 4. A connecton is a maximal set of vertices in the network align-
ment multigraph which are connected components for each E′

i, i ∈ [|1, n|].

An example of connecton is given in Figure 1. An important property is that
the sets of connectons form a partition of the vertices of the multigraph. This
property, which is usually not satisfied with other definitions (e.g. dense clusters
[10]), allows the use of exact algorithms instead of heuristics to enumerate them.
Moreover, the connecton condition is weaker than would be a condition on dense
clusters, and, provided that connectons are not too numerous, they can be further
post-processed to satisfy a stronger constraint. Also observe that to speed up the
algorithm, we can restrict ourselves in the definition of connectons to connected
components above a fixed size.

The algorithm used by Boyer et al. [2] to find connectons in the network
alignment multigraph computes iteratively the partition, starting with a single
class containing all the vertices and refining the partition at each step. The
refinement procedure used in C3Part works as follows:

1. start with one single class containing all the vertices in the network alignment
multigraph;



268 Y.-P. Deniélou et al.

2. compute
⋂

i(CCi), the intersection of all connected components on all
colours, this gives rise to a new partition where each class is a potential
connecton;

3. iterate -2- on each class until the partition does not change.

The worst-case time complexity is O((N + M)×N) where N is the number
of vertices and M the number of edges in the multigraph. This comes from the
fact that each iteration requires O(N +M) operations to compute the connected
components and that, in the worst-case one will have to perform O(N) iterations
(this corresponds to the case where there are O(N) classes at the end and each
class has been extracted at each iteration).

This complexity can actually be improved. In 2003, Gai et al. [8] proposed
a more sophisticated algorithm combining the dynamic maintenance of a span-
ning forest together with an Hopcroft-like partitioning approach. This algorithm
achieves an O((N + M × logN)× logN) complexity. Furthermore, in the case of
interval graphs, the complexity reduces to O((N + M) × logN) [9]. This latter
particular case is important to handle questions related to chromosomal synte-
nies [14] where the primary networks are interval graphs.

In practice, neither C3Part nor those algorithms are usable on large numbers
of networks, since their prerequisite is the construction of the network alignment
multigraph, whose size is exponential with the number of networks when the
correspondence relation S is not a one-to-one correspondence.

The objective of this work is to apply the same approach but to avoid the
initial construction of the multigraph. The general idea is to build the multigraph
on the fly, starting with a connected component on the first primary graph,
expanding it on the second one, then splitting it on those two colours, and
expanding recursively the results on the third graph, etc.

2.5 On the Fly Construction of the Network Alignment Multigraph

Although the original C3Part algorithm adopted a Breadth-First-Search pre-
sentation, is is easy to transform it into a Depth-First-Search by observing that
the split of a class can actually be conducted on each colour in turn. This is made
possible by the fact that if two vertices are disconnected by two or more colours,
only one is actually needed to split the class. With a DFS approach, all classes
are therefore refined independently. The next observation is that, since colours
are now considered in turn, when we split a class on a colour i, we may not need
the information about the (n − i) remaining colours that will be used later on.
This therefore makes it possible to add the new colours only when necessary.

The new algorithm, C3Part-M, will use two different operations.

– SPLIT1−i that splits a class on colours 1 to i;
– EXPANDi+1 that adds the (i+1)th colour to the current network alignment

multigraph.

A stable class is a class C such that SPLIT1−n(C) = C and is therefore a
connecton.
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The SPLIT1−i operation computes the connected components on each colour
in turn. If, for a colour, the class is split, then it returns the split parts.

When a class C is such that SPLIT1−i(C) = C then it is stable for colours 1
to i and needs expansion to the (i + 1)th colour.

The pseudocode of the algorithm is given hereafter.

Algorithm: C3Part-M.
Input: Set of vertices class /* class to refine: initialised with all vertices from
the first network */
Colour Index i /* current colour index: initialised to 1 */
Variables: Partition of vertices split

(1) begin
(2) split← SPLIT1→i(class);
(3) if (|split| = 1)then
(4) for s ∈ split do
(5) C3Part-M(s, i)
(6) end for
(7) else if (i = maxcolour)then
(8) newclass← EXPAND(class, i + 1);
(9) C3Part-M(newclass, i + 1);
(10) else
(11) /* class is stable */
(12) print(class)
(13) end if
(14) end

The expansion is done by the EXPAND operation that works in two steps.
Starting from the current class C (i.e. a reduced multigraph defined on colours
1 to i), we:
1. expand each vertex v = (v1, v2, . . . vi) of size i to new vertices of size i + 1

(EXPAND V ERTEX);
2. add edges between these new vertices (EXPAND EDGES).

EXPAND V ERTEX works as follows. For each vertex v = (v1, v2, . . . vi) in the
current class C, we first collect all vertices vi+1 of the (i + 1)th primary graph
such that (v1, v2, . . . , vi, vi+1) ∈ R(V1 × V2 × . . . × Vi × Vi+1). These vertices
are called the terminals of v. Then for each of these terminals, a new vertex
v′ = (v1, v2, . . . vi+1) is created. This new vertex v′ is hereafter called a son of v
and v is called its father.

Observe that how all terminals of a given vertex v are collected depends upon
the chosen aggregator. For the clique aggregator (resp. star aggregator), this
is a simple task since, by construction v = (v1, v2, . . . vi) is already a clique
(resp. star) of S, then one has just to collect the terminals vi+1 that are S-
connected to each vi (resp. to the center star). For the connected component
aggregator, the task is more demanding since vertices vi+1 may form a connected
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component with v = (v1, v2, . . . vi) only once all colours have been considered
(i.e. colours greater than i + 1). The complexity therefore strongly depends upon
the degeneracy of S.

Once all the new vertices have been added, one should add the new edges
as well (EXPAND EDGES). There are actually three kinds of such edges,
connecting two new vertices (u1, u2, . . . ui, ui+1) and (v1, v2, . . . vi, vi+1). The first
kind is simply the edges already existing in the class C, i.e. connecting fathers,
that should be restored with their previous colours. The second kind is edges
connecting sons of the same father. Those edges have all colours from 1 to i
since the father is the same ((u1, u2, . . . ui) = (v1, v2, . . . vi)). Finally, one has to
add new edges of colour i + 1 corresponding to the terminals ui+1 and vi+1, i.e.
connecting all new vertices such that (ui+1, vi+1) ∈ Ei (or ui+1 = vi+1).

The worst case complexity of this new algorithm (C3Part-M) is the same as
the one of C3Part. It corresponds to the case where there is no split on the first
n−1 colours, thus giving rise to the full alignment multigraph that is eventually
splitted on the last nth colour. For all practical cases we have tested so far, this
never happens and the new version turns out to be several order of magnitude
faster than the previous one (see [4] for an example on syntenies). Moreover, one
can observe that since the result does not depend upon the order in which the
colours are chosen, it is possible to avoid this worst case either by choosing an
order more likely to be favourable at the beginning or, better, by reordering the
colours dynamically during the recursive split. Several heuristic optimisations
have been tested but will not be further described in this extended abstract.

3 Results and Discussion

In order to evaluate the new algorithm, we selected the benchmark set of 10 mi-
crobial PPI networks used in previous similar studies [7,10]. Those networks are
not experimental but were actually produced by an inference algorithm (called
SRINI) described in [19]. Briefly, SRINI generates a probabilistic interaction
network by integrating several sources of information such as co-expression, co-
evolution or chromosomal co-location. Unlike experimental PPIs, the output of
SRINI is a complete graph where each pair of vertices is labelled by an inter-
action probability. In order to be used in any algorithm, these networks should
therefore be thresholded.

As for the correspondence relation S, we used the same data as in [7, 10],
i.e. a sequence similarity relation determined by BlastP. We selected a Blast

threshold of 10−10 and limited the number of hits per protein to 5. The restriction
R was defined by cliques of S (clique aggregator i.e. all proteins are similar one
to the other).

The sizes of the obtained layered data graphs are given in Table 2 for different
numbers of selected species (3, 5, 7 and 10; the selected species are the same as
in [10]).

The first observation we can make is that C3Part-M was able to cope with
these large networks whereas the explicit computation of the alignment multi-
graph is intractable by C3Part (and NetworkBLAST) for more than 3 species.



Multiple Alignment of Biological Networks 271

Table 2. Comparison of C3Part-M and NetworkBlast-M on 10 microbial species.
NetworkBlast-M running times are given both for the relaxed mode (1) and for
the tree-guided-path mode (2) (comparisons of other results are given for the relaxed
mode). #Spine corresponds to the number of different n-tuples found by the various
algorithms. #Prot corresponds to the number of different proteins involved in these
n-tuples.

n
PPI # #Edges #Edges Time (s) Time (s) Time (s) #Spine #Spine #Spine #Prot #Prot #Prot

Thresh. Prot Simil. PPI NBM (1) NBM (2) C3P-M NBM C3P-M Common NBM C3P-M Common

3
0.7 3751 1526 7450 1 1 4 91 194 76(84%) 235 339 207(88%)
0.5 5322 2739 18511 2 2 6 169 457 128(76%) 413 628 354(86%)
0.3 7826 4606 66484 9 5 12 291 972 195(67%) 679 1128 557(82%)

5
0.7 5910 4444 13061 12 2 6 82 261 58(71%) 337 370 266(79%)
0.5 8169 7422 38645 34 3 9 168 566 73(43%) 599 656 390(65%)
0.3 11404 11805 134437 175 12 19 201 1432 104(52%) 794 1231 562(71%)

7
0.7 8416 8721 18707 166 2 7 31 190 19(61%) 206 252 156(76%)
0.5 12354 16897 60517 478 5 12 119 531 54(45%) 602 640 394(65%)
0.3 16579 26452 211368 2832 17 38 193 2500 77(40%) 1002 1284 601(60%)

10
0.7 15411 21995 47340 9038 3 60 24 853 18(75%) 240 292 210(88%)
0.5 23370 50758 173881 39644 10 74 111 2062 45(41%) 798 729 472(59%)
0.3 30534 74126 616307 N/A 33 1143 N/A 13250 N/A N/A 1613 N/A

We then compared our results with those obtained using NetworkBlast-

M [10], that is the multiple version of the NetworkBlast algorithm [16]. As
mentioned before, NetworkBlast-M is a heuristic algorithm that relies on
different assumptions concerning the construction of the vertices and edges of
the alignement multigraph and on the required topology of the subnetworks
(see Table 2). We ran NetworkBlast-M both in “relaxed” mode (where n-
spines are paths) and in the tree-guided-path mode that was shown to be much
quicker [10]. The running time of C3Part-M compares well with the tree-guided-
path mode and could in most case retrieve the connectons within a few minutes.

A more interesting comparison with NetworkBlast-M is in terms of the
results found. Since the assumptions are not the same, we cannot compare di-
rectly the complexes found. We therefore decided to compare the results in terms
of the different constructed n-tuples and different proteins involved. Interest-
ingly, despite their different asumptions, it turns out that the two algorithms
recover essentially the same objects, both in terms of spines and proteins. For
3 species, this was somehow expected since the clique and the path conditions
are quite similar, and up to 84% of the spines and 88% of the proteins reported
by NetworkBlast-M were also found by C3Part-M. Of course, this overlap
decreases with the number of species but remains remarkably high even for 10
species. An explanation for this comes from the observation done by Kalaev et
al. [10] that most of the recovered spines actually are cliques.

4 Conclusion

We addressed the problem of multiple network alignment with an exact and
generic approach based on the work by Boyer et al. [2]. By avoiding the explicit
construction of the network alignment multigraph, we were able to deal with a
large number of networks.



272 Y.-P. Deniélou et al.

A comparison of our algorithm to NetworkBlast-M [10] led to very simi-
lar results, with reasonable execution times. Furthermore, our definition of con-
nectons as subgraphs corresponding to connected components on each network
allows us to cleanly separate the heuristic choices of biologically-relevant scoring
functions from the alignment procedure itself. Our approach can consequently
be used as a pre-filter to other more specialised tools.

Many important challenges remain. For instance the introduction of weaker
aggregators would help to recover conserved subgraphs in the case of missing
proteins. One idea would be to introduce a species quorum i.e. to look for spines
not necessarily containing all the species.
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Abstract. How do graphs look like? How do they evolve over time?
How can we generate realistic-looking graphs? We review some static
and temporal ’laws’, and we describe the “Kronecker” graph genera-
tor, which naturally matches all of the known properties of real graphs.
Moreover, we present tools for discovering anomalies and patterns in
two types of graphs, static and time-evolving. For the former, we present
the ’CenterPiece’ subgraphs (CePS), which expects q query nodes (eg.,
suspicious people) and finds the node that is best connected to all q of
them (eg., the master mind of a criminal group). We also show how to
compute CenterPiece subgraphs efficiently. For the time evolving graphs,
we present tensor-based methods, and apply them on real data, like the
DBLP author-paper dataset, where they are able to find natural research
communities, and track their evolution.

Finally, we also briefly mention some results on influence and virus
propagation on real graphs, as well as on the emerging map/reduce ap-
proach and its impact on large graph mining.
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Abstract. For a given dense triplet set T , there exist two natural ques-
tions [7]: Does there exist any phylogenetic network consistent with T ?
In case such networks exist, can we find an effective algorithm to con-
struct one? For cases of networks of levels k = 0, 1 or 2, these questions
were answered in [1,6,7,8,10] with effective polynomial algorithms. For
higher levels k, partial answers were recently obtained in [11] with an
O(|T |k+1) time algorithm for simple networks. In this paper, we give a
complete answer to the general case, solving a problem proposed in [7].
The main idea of our proof is to use a special property of SN-sets in a
level-k network. As a consequence, for any fixed k, we can also find a
level-k network with the minimum number of reticulations, if one exists,
in polynomial time.

1 Introduction

The goal of phylogenetics is to reconstruct plausible evolutionary histories from
biological data of currently living species. Normally, the standard model to de-
scribe the derivation is a tree in which each leaf is labeled by a species, and
in which each node having descendants represents the most recent common an-
cestor of its descendants. However in reality, if we count on the hybridizations,
recombinations and lateral gene transfer events, the model will be a network in
which we allow the fact that a species can have more than one parent. Such a
node is called an hybrid node or a reticulation. To study general phylogenetic
networks, a way to classify them using levels has been introduced in [3], based
on the number of reticulations in its biconnected components. Under this classi-
fication, a phylogenetic tree is considered as a level-0 phylogenetic network. This
view gives an approach to analyze networks by decomposing them into several
sub-networks having the same level. Besides the level, the most basic descrip-
tion of a phylogenetic evolution is a triplet which gives us the information on
the relation of 3 species: which 2 species are closer than the last. Therefore, a
fundamental problem is to construct a phylogenetic network consistent with a
set of triplets. If there is no constraint on the triplet set, the problem is NP-
hard with networks of levels higher than 0 [6,10,12]. However if we impose the
density on the triplet set, that is if we require that there is at least one triplet
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for each three species, then the species set has a better structure. Using this
structure, [6,7,8] constructed a level-1 network, if one exists, in polynomial time,
and [10] extended the result to level-2 networks. The following question was first
asked in [7]: Does the problem remain polynomial for level-k network with any
fixed k? We present here an affirmative answer to this question. The algorithmic
paradigm that we use is closed to those used for the one of level-1 and level-2
networks. However, we prove a new property of level-k networks which allows us
to bound the number of all possible solutions. As a consequence, for any fixed
k, we can also find a level-k network with the minimum number of reticulations,
if one exists, in polynomial time.

Related works. Aho, Sagiv, Szymanski, and Ullman [1] presented an O(|T |.n)-
time algorithm for determining whether a given set T of triplets on n leaves is
consistent with some rooted, distinctly leaf-labeled tree, i.e. a level-0 network,
and if so, returning such a tree. Later, improvements were given in [4,5]. But the
problem has been proved to be NP-hard for all other levels [6,10,12]. Similarly
the problem of finding a network consistent with the maximum number of triplets
is also NP-hard for all levels [6,12]. The approximation problem which gives a
factor on the number of triplets that we can construct a network consistent with,
is also studied in [2] for level-0, level-1, and level-2 networks.

Concerning the particular case of dense triplet sets, there are following results.
For level-1, [6,7] give an O(|T |)-time algorithm to construct a consistent network,
and [11] gives an O(n5)-time algorithm to construct the consistent one with
the minimum number of reticulations. For level-2, [10] gives an O(|T | 83 )-time
algorithm to construct a consistent network, and [11] presents an O(n9)-time
algorithm to construct the consistent one with the minimum number of reticu-
lations. For level-k networks with any fixed k, there is only a result constructing
all simple consistent networks with an O(|T |k+1)-time algorithm [11]. The prob-
lem of finding a network consistent with the maximum number of triplets is also
NP-hard for all levels in this case [12]. However, it is still unknown if we can find
a consistent network with the minimum level in polynomial time.

There are also studies on the version of extremely dense triplet sets, that
is when T is considered to contain all triplets of a network. In this case, an
O(|T |k+1) time algorithm was given in [11] for level-k networks. But even in this
case, the problem of minimizing the level of consistent networks is still open.

2 Notations

Let L be a set of n species. A phylogenetic network N on L is a connected,
directed, acyclic graph which has:

- a unique vertex of indegree 0 and outdegree 2 (root).
- vertices of indegree 1 and outdegree 2 (speciation vertices).
- vertices of indegree 2 and outdegree 1 (hybrid vertices or reticulation

vertices).
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- n vertices labeled distinctly by L of indegree 1 and outdegree 0 (leaves). So
L is also called the leaf set.

We denote u � v if there is a path in N from u to v (u and v may be the
same vertex).

A simple (without multiple edges) undirected graph G = (X, E) is biconnected
iff for ∀x, y ∈ X , there exist two vertex-disjoint paths in G from x to y. A bicon-
nected component of a graph is a maximal biconnected subgraph, by convention
a graph reduced to one vertex is considered biconnected. Therefore one can con-
sider the decomposition of G into its biconnected components. Let U(N) be the
underlying undirected graph of N , obtained by replacing each directed edge of
N by an undirected edge. Let us denote by cut-arc an arc in N whose removal
disconnects N . A cut-arc a = (u, v) is highest if there is no cut-arc a′ = (u′, v′)
such that v′ � u. A highest cut-arc is always a cut-arc starting from a vertex of
the biconnected component which contains the root.

A phylogenetic network is simple if it has only one non trivial biconnected
component which is the one containing the root, and every its cut-arc, which
is also a highest cut-arc, connects a vertex of this biconnected component to a
leaf. A network N is called of level-k if each biconnected component of U(N)
contains at most k hybrid vertices.

A triplet x|yz is a rooted binary tree on the leaves x, y and z such that x and
the parent of y and z are children of the root. A set T of triplets is dense if for
any set {x, y, z} ⊆ L, at least one triplet on these three leaves belongs to T . A
triplet x|yz is consistent with a network N if N contains two vertices u = v and
pairwise internally vertex-disjoint paths u � x, u � v, v � y, and v � z.

Let P be a partition of the leaf set L: P = {P1, . . . , Pq}. We denote by T ∇P
the induced triplet set PiPj |Pk such that there exist x ∈ Pi, y ∈ Pj , z ∈ Pk with
xy|z ∈ T and i, j and k are distinct.

Let L be a subset of the leaf set L. We denote the restriction of T to L by
T |L = {x|yz ∈ T such that x, y, z ∈ L}.

a

b

c
d

u1
u2

v2v1

1N 2N

a bc

a ed f gc b

Fig. 1. The triplet c|ab is consistent with N1, but not with N2. N1 is a simple level-1
network, N2 is also a level-1 network but not simple. In N2, (u1, v1) is a highest cut-arc,
(u2, v2) is also a cut-arc but not highest. Note that, as with all figures in this paper,
all arcs are directed downwards, away from the root.
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3 Construction of a Level-k Phylogenetic Network from
a Dense Triplet Set

In this section we show that, for any fixed positive integer k, it is possible to
construct in polynomial time a level-k phylogenetic network from a dense triplet
set, if such a network exists. Let us start with some properties of level-k networks.

Let N be a level-k network. Then:
i) We can decompose N into a finite number of sub-networks as follows (see

figure 2(a)): let C be the biconnected component which contains the root. Each
highest cut-arc of N connects a vertex of C to a sub-network. Theses sub-
networks, which are denoted by N1, . . . , Nm, are all level-k and pairwise vertex-
disjoint.

ii) For any j = 1, . . . , m, let Pj be the leaf set of Nj . So P = {P1, . . . , Pm} is
a partition of L. We call each part Pi of the partition a leaf set below a highest
cut-arc. By replacing each Ni by a representing leaf, also called Pi, we obtain
a simple level-k network Ns (see figure 2(b)). Assuming that for any j, Nj is
consistent with T |Pj (the restriction of T to Pj). So, N is consistent with T if
and only if Ns is consistent with T ∇P .

N1

N2

3N

N4

N8
N7

N6

N5
a

b

c

d
e

f

g

j k
m

n o
p

h i

l

a

(a) Decompose a network: the biconnected
component C is in bold, each sub-network Nj

is framed by a dotted bold rectangle, each
highest cut-arc connects a vertex of C to a
sub-network.

P1

P5

P4

P2

P6

P8

3P

P7

(b) Reduce to a simple network:
each leaf Pj represents the leaf
set of the sub-network Nj .

Fig. 2. Decompose a level-k network into several level-k sub-networks and reduce it to
a simple level-k network

Using these properties, the following algorithm was introduced in [6,7,8], to
construct a network. This algorithm enumerates all the possible decompositions:
i.e. it considers how the leaf set can be partitioned below the highest cut-arcs and
computes a simple network on each part of the partition (i.e. leaves correspond
to parts of the partition). Then it recurses and for each part of the partition
it computes a consistent sub-network using the same method. [11] propose a
method to construct all simple level-k networks consistent with a dense triplet
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set T in O(|T |k+1) time. So it remains to know the number of possible partitions
of the leaf set L below the highest cut-arcs. We will show in the remaining of
this section that, for any fixed k, the number of the possible partitions can be
bound by a polynomial in n.

We know that each part of the partition is a leaf set below a highest cut-
arc. Hence, the question is answered by exploring the leaf sets below cut-arcs.
Remark that if A is a leaf set below a cut-arc, then for any z ∈ L\A, x, y ∈ A, the
only triplet on {x, y, z} that can be consistent with the network is z|xy. Based
on this property, we define a family of leaf sets, called CA-sets, for CutArc-sets,
as follows.

Definition 1. Let A ⊆ L. We say that A is a CA-set if either it is a singleton or
the whole L, or if it satisfies the following property: For any z ∈ L\A, x, y ∈ A,
the only triplet on {x, y, z} in T , if there is any, is z|xy.

As remarked, the set of all leaves below a cut-arc is a CA-set, but the converse
claim is not always true. Let us recall that [7] presented a variation of these CA-
sets, namely the notion of SN-set. A SN-set is defined by a closure operation
as follows. Let A be a subset of L, the SN-set of A, denoted SN(A), is the set
recursively defined as SN(A∪{z}) if there exists some z ∈ L\A and x, y ∈ A such
that x|yz ∈ T , and as A otherwise. The following lemma states the equivalence
between these two definitions.

Lemma 1. CA-sets = SN-sets.
(i) For any A ⊆ L, SN(A) is a CA-set.
(ii) For any CA-set A, there exists B, a subset of L, such that SN(B) = A.

Proof. All claims are obviously true for singletons. Let us now consider only the
non trivial sets.

(i) For any non trivial A ⊆ L, ∀z ∈ L\SN(A), ∀x, y ∈ SN(A), neither x|yz
nor y|xz is in T because if one of them is, following the definition of SN-set,
SN(A) will be SN(A∪ {z}), and will contain z. So, the only triplet on {x, y, z}
in T , if there is any, is z|xy. In other words, SN(A) is a CA-set, according to
the definition 1.

(ii) For any CA-set A, there can exist severalB such that SN(B) = A. We take,
for example, B equals to A. We have to show that SN(A) = A. Indeed, as A is a
CA-set, there does not exist any z ∈ L\A and x, y ∈ A such that x|yz ∈ T . It
means that SN(A) is exactly A, according to the recursive definition of SN-set. �

Therefore, the family of SN-sets is exactly the family of CA-sets and we will
stick to the notation of SN-set for any CA-set determined by the definition 1.

It was proved in [7] that if T is dense, then the collection of its SN-sets is
a laminar family [9]. It means that two SN-sets are either disjoint or one of
them contains the other, hence the family is tree structured under inclusion. So
all SN-sets are representable by a tree, called SN-tree. Each node of the SN-tree
corresponds to a SN-set. The root corresponds to L, and the leaves correspond to
the singletons. The SN-tree can be calculated in O(n3) time [6]. In the remaining
of this section, T is always a dense triplet set.



280 T.-H. To and M. Habib

Let A, a be two SN-sets. We say that a is a child of A if in the SN-tree, the
vertex which represents a is a child of the vertex which represents A.

The next notion is used for a SN-set of T , and is related to a network which
is consistent with T .

Definition 2. Let A be a SN-set of T , and let N be a network consistent with
T . We say that A is split in N if its children are hung below different highest
cut-arcs of N (see figure 4).

a2
a1 a3

A

(a) The SN-tree of T

u2

a3

a2

a1

v1

v3

u3

v2

u1

(b) a network N consistent with T in
which A is split.

Fig. 3. The SN-set A of T is split in N , a consistent network of T . Each SN-set ai,
child of A, is hung below a highest cut-arc (ui, vi) of N .

A SN-set can be split in some network but not-split in another network both
consistent with the same triplet set. So when we say that A is split, we have to
be precise in which network. A leaf of a SN-tree, which is always a singleton, is
not split in any network because it does not have any children. In every level-1
network, there is only one SN-set which is split: the total leaf set L. Indeed, each
leaf set below a highest cut-arc of a level-1 network is a maximal SN-set [6,8],
i.e a child of L as defined in [8].

It should be noticed that the meaning of split defined by definition 2 is
more restricted than the usual meaning of the word ”split”. Naturally, we say
that A is split if it is split into several disjoint subsets, and each one is hung
below a different cut-arc. However, by definition 2, in order that A is split, we
demand two further conditions: each subset must be a child of A, and it must
be hung below a highest cut-arc. So, for the example in the figure 3, if a1, a2, a3
are hung below three different cut-arcs but one of them is not highest, we will
not say that A is split. Another example is the one in the figure 4, the root does
not represent a split SN-set because there are subsets below highest cut-arcs
which are its grandchildren or grand-grandchildren, although it is really split
into several subsets by normal sense. Hence, if A is split by definition 2, none of
its descendants can be split.

Therefore with our definition 2, the set of all SN-sets which are split in a
network can represent the partition of the leaf set below the highest cut-arcs of
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this network. Let us see an example of a SN-tree in the figure 4, the black square
nodes represent the SN-sets split in a certain network which is not stated here, we
have three such sets. The children of these three sets, together with the maximal
SN-sets that do not contain any of these three sets are the SN-sets below the
highest cut-arcs. In the figure 4, these sets are marked by the black round nodes,
they create a partition of the leaf set.

Fig. 4. The black square nodes represent the split SN-sets. The black round nodes
represent the SN-sets below the highest cut-arcs.

Next, we will define a new function f on a network N consistent with T . This
function gives a relation between a SN-set of T which is split in a network and a
set of hybrid vertices of this network. Let N be a level-k network consistent with
T . Denote by NS the simple network of N , by H the set of the hybrid vertices
of NS , so |H | ≤ k, and by A the set of all SN-sets split in N . In the figure 4, A
is the set of SN-sets corresponding to the square nodes. Let H be the set of all
subsets of H . We define a function f from A to H as follows.

Definition 3. Given A ∈ A and a1, . . . am the children of A in the SN-tree. As
A is split in N , each ai is hung below a highest cut-arc (ui, vi) of N . We define:

f(A) = {h ∈ H |∃i so that ui � h and the path from ui to h does not contain
any internal hybrid vertex (if ui is a hybrid vertex, then h = ui)} (see figure 5).

Lemma 2. The function f has the following properties:
(i) ∀A ∈ A, f(A) = ∅.
(ii) ∀h ∈ H, there are at most three pairwise disjoint sets of A so that their

image by f contains h.

Proof. (i) For any A ∈ A, we will prove that ∀ui, ∃h ∈ H such that ui � h
and the path from ui to h does not contain any internal hybrid vertex. This fact
implies f(A) = ∅.

Indeed, if ui is a hybrid vertex, then we have h = ui.
If ui is not a hybrid vertex, then there are two arcs starting from ui: one is

(ui, vi) and let the second be (ui, v
′
i). Assuming that there is no hybrid vertex of

NS that is reachable from ui, so both (ui, vi) and (ui, v
′
i) are cut-arcs. We infer
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u2

a3

a2

a1

v1

v3

u =3

v2

h’1

h1

u1

h =2 h3

Fig. 5. f(A) = {h1, h
′
1, u3} where A is the split SN-set which has three children

a1, a2, a3. The paths, which are in bold, u1 � h1, u1 � h′
1, and u2 � u3 do not

contain any internal hybrid vertex.

that the arc coming to ui is also a cut-arc, so (ui, vi) is not a highest cut-arc, a
contradiction.

(ii) Assuming that there are four pairwise disjoint sets A1, A2, A3, A4 ∈ A
so that ∃h ∈ f(A1) ∩ f(A2) ∩ f(A3) ∩ f(A4). According to the definition of f ,
∀i ∈ {1, 2, 3, 4}, there is at least a child ai of Ai such that no internal vertex of
the path from ui to h is hybrid.

As the four ai’s are distinct, there is at most one ui that can be equal to h.
Hence, there are at least three u′

is that are strictly above h. As h has only two
parents, and the path from ui to h does not contain any internal hybrid vertex,
so there exist i1, i2 ∈ {1, 2, 3, 4} so that ui2 is placed on the path from ui1 to h.

The following proof is illustrated by the figure 6.

a’i1

ui1

ui2 ui3u’i1

v’i1

vi1

vi2
a i1

a i2

a i3

vi3

v

u

h

Fig. 6. The triplets ai2|ai1a
′
i1 can not be consistent with the network: all paths from

u to ai2 have to pass ui1

For convenience, we use the notation ai|ajak for the set of all triplets x|yz
where x ∈ ai, y ∈ aj and z ∈ ak.

Let a′
i1 be another child of Ai1. As Ai1 is a SN-set, and ai2 is not included

in Ai1, by definition of SN-set, ai2|ai1a
′
i1 ⊂ T . By definition of consistence,
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there exist two vertices u = v and pairwise internally vertex-disjoint paths u �

ai2, u � v, v � ai1, v � a′
i1. We remark that all paths starting from a vertex

above ui1 that come to ai2 have to pass ui1 because there is no hybrid vertex
on the path from ui1 to ui2. As u is a vertex above ui1, the path from u to ai2
has to pass ui1. The path from v to ai1 has to pass ui1 too. So the two paths
u � ai2 and v � ai1 are not internally vertex-disjoint, a contradiction. �

With the precedent lemma, we have the following lemma which allows us to
bound the number of SN-sets which are split in a level-k network.

Lemma 3. (Fundamental) Let T be a dense triplet set. For any level-k network
N consistent with T , if A is the set of all SN-sets of T which are split in N ,
then |A| ≤ 3k.

Proof. Firstly, we observe that all elements of A are pairwise disjoint. Actually,
for any two SN-sets, they are either disjoint or included one in another. However,
if a SN-set A is split in a network, its children are not. It means that if A is in A,
its subsets are not. Then, the two sets of A can not be included one in another.
They are disjoint.

Let H ′ ⊆ H be the image of f . For any A ∈ A, and h ∈ H ′, we say that
A corresponds to h, and h corresponds to A if f(A) contains h. We infer from
the lemma 2 that each element of A corresponds to at least one element of
H ′, and each element of H ′ corresponds to at most three elements of A. So
|A| ≤ 3|H ′| ≤ 3|H | ≤ 3k. �

Moreover, if we are only interested in finding a certain consistent network, we
can have a better bound using the following lemma. The idea is to modify an
arbitrary consistent network in such a way that does not increase the level, and
such that the resulted network is still consistent with T and has a particular
property. However the class of modified networks may not contain the one with
the minimum number of reticulations.

Lemma 4. Let T be a dense triplet set, let N be a level-k network consistent
with T . If the simple network of N has level greater than 1, then there exists
another level-k network N ′ consistent with T such that: for any SN-set A which
is split in N ′, |f(A)| ≥ 2.

Proof. Assuming that there exists a SN-split A of N such that |f(A)| = 1.
Denote f(A) = {h}. In NS, there are 2 paths leading to h. So there are 2 cases
that can happen.

In the first case (figure 7(a)), ui’s are all placed on one path leading to h, for
example on the left one. Let u1 be the highest and uf be the lowest vertex on all
ui. There are two possible positions for uf : either it is right above h, i.e (uf , h)
is an arc, or it is equal to h. Let GA be the sub-network of N on A.The network
N ′ is obtained from N by the following modifications: delete all vertices ui’s,
highest cut-arcs connecting with ui’s and sub-networks on ai’s; at the position
of uf , add a new arc which connects to GA at u1 (figure 7(b)).
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In the second case (figure 7(c)), ui’s are placed on the two paths leading to
h. We remark that the leaf set below h has to be also a child of A. Let GA be
the sub-network of N on A, and let G′

A be the network obtained from GA by
gluing the top of the two branches of GA into one vertex u. The network N ′ is
obtained from N by the following modifications: delete all vertices ui’s, highest
cut-arcs connecting with ui’s and sub-networks on ai’s; at the position of h, add
a new arc which connects to G′

A at u (figure 7(d)).
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Fig. 7. The modified networks are level-k, still consistent with T , and have all leaves
of A hung below a highest cut-arc

In both two cases, we can verify that the modifications do not increase the
level of the network, the new network is still consistent with all triplets of T , and
A is no longer split in the new network: it is now hung below a highest cut-arc.
The fact that the simple network of N has level greater than 1 assures that the
new network does not contain any two parallel arcs with the same extremities.

By modifying the network for any split SN-set whose image by f contains
only one element, we obtain finally a network in which there is no longer such
split SN-set. In addition, the lemma 2 says that the image by f of any split
SN-sets is not empty. Then we have a new network in which |f(A)| ≥ 2 for any
split SN-set A. �

Lemma 5. Let T be a dense triplet set. If T is consistent with a level-k network
N , then there exists a level-k network N ′ consistent with T which satisfies: let
A be the set of SN-sets of T which are split in N ′, then |A| ≤ � 3k

2 �.

Proof. If the simple network of N is of level-1, we choose N ′ = N . As comment
after the definition 2, in this case, there is only one split SN-set: L. Hence
|A| = 1 ≤ � 3k

2 �, and the lemma is obviously true in this case.
Otherwise, by lemma 4, there exists a level-k network N ′ consistent with T

which satisfies: for any SN-set A split in N ′, |f(A)| ≥ 2. Let H ′ ⊆ H be the
image of f . For any A ∈ A, and h ∈ H ′, we say that A corresponds to h, and
h corresponds to A if f(A) contains h. So each element of A corresponds to at
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least two elements of H ′ (lemma 4), and each element of H ′ corresponds to at
most three elements of A (lemma 2). Then |A| ≤ � 3

2 |H ′|� ≤ � 3
2 |H |� ≤ �

3k
2 �. �

Theorem 1. Given a dense triplet set T , and a fixed positive integer k, it
is possible to construct a level-k network consistent with T , if one exists, in
O(|T |k+1n	 3k

2 
+1) time.

Proof. The algorithm, which is described in the algorithm 1, constructs from
each SN-set A, in small-big order, a level-k sub-network consistent with T |A, if
there is any. So the leaf set of such sub-network corresponds to a SN-set. And
the final constructed sub-network whose the leaf set is the biggest SN-set, i.e L,
is the wanted one.

Now, we will show how to construct a sub-network on a SN-set A, knowing a
sub-network on each descendant of A. By the lemma 5, each sub-network must
have ≤ � 3k

2 � split SN-sets. Each split SN-set is a descendant of A, and A has
totally O(n) non-singleton descendants. So there are O(n	 3k

2 
) possibilities of A,
the set of all SN-sets split in the sub-network. For each choice of A, we calculate
the corresponding partition P , and then (T |A)∇P . After that, we search for
a simple network consistent with (T |A)∇P . Theorem 3 in [11] says that it is
possible to construct all simple level-k networks consistent with a dense triplet
set T in O(|T |k+1) time. Remind that each leaf of the simple network corresponds
to a part of the partition P , which is also a SN-set descendant of A. Therefore,
to obtain the sub-network on A, we replace each leaf of the simple network by
the sub-network on the corresponding descendant of A, which is already found
before. If for all choices of A, there is always no simple network consistent with
(T |A)∇P , then there is not any consistent sub-network on A. In this case we
can conclude immediately that there is no network consistent with T , and the
algorithm returns null. Indeed, if there exists a network consistent with T , then
for any A ⊆ L there exists also a network consistent with T |A.

So, it takes totally O(|T |k+1n	 3k
2 
) time to find a sub-network on A, knowing

a sub-network on each descendant of A.
As there are only O(n) non-singleton SN-sets, and we retain only one sub-

network on each SN-sets, we have to construct only O(n) sub-networks. There-
fore, the complexity will be multiplied by n. The construction of SN-tree takes
O(n3), all other operations take a negligible time compared with the time to find
all possible decompositions. So, the total complexity is O(|T |k+1n	 3k

2 
+1). �

As a consequence, using a recursive property of the network with minimum num-
ber of hybrid vertices, we can solve the problem of finding the consistent level-k
network, for any fixed k, which minimizes the number of hybrid vertices in poly-
nomial time. The only difference from the algorithm 1 is that, in this algorithm,
each sub-network constructed on a SN-set A is always the consistent one with
the minimum number of reticulations among those who are consistent with T |A.
So, instead of searching a certain simple network consistent with (T |A)∇P , we
search for the one such that the corresponding sub-network minimizes the num-
ber of reticulations. As we can find all simple network in polynomial time, the
complexity remains polynomial.
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Algorithm 1. Level-k network
Require: A dense triplet set T and a fixed positive integer k.
Ensure: A level-k network consistent with T , if one exists; otherwise, null.

Let R be the SN-tree of T .
For every singleton u of L, define Nu to be the network containing only one leaf u.
for (each non-singleton SN-set A of R, in bottom-up order) do

Let T ′ = T |A.
found = false;
for (i = 1; i ≤ 3k

2
and !(found);i + +) do

for (each i disjoint non-singleton SN-sets, descendants of A) do
Consider these i SN-sets as the split SN-sets, to calculate the partition P of
the leaf set A. Then, calculate T ′∇P .
if (there exists a simple network NsA consistent with T ′∇P) then

NA is obtained by replacing each leaf of NsA by the sub-network already
found on the corresponding descendant of A.
found = true; break.

end if
end for

end for
if found = false then

return null.
end if

end for
return NL.

Theorem 2. Given a dense triplet set T , and a fixed positive integer k, it is
possible to construct a level-k network consistent with T which minimizes the
number of hybrid vertices, if one exists, in O(|T |k+1n3k+1) time.

Proof. Let N be a level-k network consistent with T , let N1, . . . , Nm be the sub-
networks of N below the highest cut-arcs of N , and let Pi be the leaf set of Ni.
The number of hybrid vertices of N is equal to the sum of the number of hybrid
vertices of each Ni and the number of hybrid vertices of the simple network of N .
So if N is the network that minimizes the minimum number of hybrid vertices,
then each Ni has to be also the network which minimizes the number of hybrid
vertices among those who are consistent with T |Pi. This property allows us to
have a recursive construction as the algorithm 1. Indeed, in the algorithm 1, when
we construct a sub-network on a SN-set A, instead of taking any simple network
consistent with (T |A)∇P , we take the one such that the corresponding network
minimizes the number of hybrid vertices. The construction, which is described in
the algorithm 2, stays in polynomial time because we can find all simple level-k
networks in O(|T |k+1) time, and all possible partitions of the leaf set in O(n3k)
time. Finally, the construction of O(n) sub-networks on O(n) SN-sets makes the
total complexity O(|T |k+1n3k+1). �
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Algorithm 2. Level-k network with the minimum number of hybrid vertices
Require: A dense triplet set T and a fixed positive integer k.
Ensure: A level-k network consistent with T that minimizes the number of hybrid

vertices, if one exists; null otherwise.
Calculate the SN-tree of T .
For every singleton u of L, define Numin to be the network containing only one leaf
u.
for (each non-singleton SN-set A of T , in small-big order) do

Let T ′ = T |A.
NAmin = null;min = n.
for (i = 1; i ≤ 3k;i + +) do

for (each i disjoint non-singleton SN-sets descendants of A) do
Consider these i SN-sets as the split SN-sets, to calculate the partition P of
the leaf set A. Then, calculate T ′∇P .
for (each simple network NsA consistent with T ′∇P) do

NA is obtained by replacing each leaf of NsA by the sub-network already
found on the corresponding descendant of A.
m = the number of hybrid vertices of NA.
if (m < min) then

min = m;NAmin = NA.
end if

end for
end for

end for
if (NAmin = null) then

return null ;
end if

end for
return NLmin .

4 Conclusion and Perspectives

To any triplet set T we can define its treerank(T ) as the minimum k for which
there exists a level-k network which represents T . This measures the distance
from T to a tree in term of number of hybrid vertices. We proved in the previous
section that for dense triplets, and for any fixed k, checking if treerank(T ) ≤ k
can be done in polynomial time. Therefore this new parameter is analogous to
treewidth for graphs and we conjecture that its computation is also NP-hard
for dense triplet set or extremely dense triplet set. However, compared with the
complexity of the existing efficient algorithms for the cases k = 0, 1, 2, the results
given here could be improved for level-k networks. Another interesting question is
under which conditions on the triplet set T there is only one network consistent
with T . It would be interesting to know whether the condition of density on
the triplet set can be relaxed so that there is still a polynomial algorithm to
construct a consistent level-k network, if there any, with any fixed k.
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Abstract. Evolution is usually described as a phylogenetic tree, but
due to some exchange of genetic material, it can be represented as a
phylogenetic network which has an underlying tree structure. The notion
of level was recently introduced as a parameter on realistic kinds of
phylogenetic networks to express their complexity and tree-likeness. We
study the structure of level-k networks, and how they can be decomposed
into level-k generators. We also provide a polynomial time algorithm
which takes as input the set of level-k generators and builds the set of
level-(k+1) generators. Finally, with a simulation study, we evaluate the
proportion of level-k phylogenetic networks among networks generated
according to the coalescent model with recombination.

1 Introduction

Networks have been introduced in phylogenetics to generalize the tree model of
evolution which can only represent speciation events. In a phylogenetic network,
additional branches join vertices already connected by a path, hence defining
reticulations. This enables to represent hybridization [13, 24], recombination [15,
34] or lateral gene transfer events [14, 26]. Phylogenetic networks are a very
active field of computational molecular biology and a number of algorithms have
been developed recently to reconstruct such objects or parts thereof from various
kinds of input: sequences, splits, distances, quartets, rooted or unrooted trees,
or networks (see [16, 9] for a comprehensive list of papers).

The fact that networks are generally hard to handle gave rise to many dif-
ferent restrictions on their structure in order to get tractable algorithms. These
restrictions are mostly described in terms of combinatorial patterns allowed or
forbidden in the various restrictions. We examine here the broad class of net-
works called explicit networks or reticulate networks, in which reticulations are
interpreted as precise biological events. In this context, a network is a rooted
directed acyclic graph whose vertices have degree at most 3 – speciation vertices
have indegree 1 and outdegree 2 and reticulation vertices have indegree 2 and
outdegree 1. To cover all such explicit phylogenetic networks, the level-k hier-
archy was introduced in [5]. In this setting, a phylogenetic network is viewed
as a blobbed-tree [11], that is a network with tree-like parts and non reticulate
ones called blobs. The level of a network reflects the complexity of its blobs: it
is defined as the maximum number of reticulations inside a blob of the network.
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Level-1 networks correspond to a class of explicit networks, first studied in
1998 [29] and later named galled trees [34, 12], for which many polynomial algo-
rithms have been found [12, 4, 30, 20, 21, 6]. The level-k hierarchy can be seen as
a promising framework to generalize these algorithms to all explicit phylogenetic
networks.

Although level-k networks have recently attracted a lot of attention in the
context of reconstruction from triplets [3, 17, 18, 19, 33] or maximum agreement
subnetwork [5], their combinatorial structure has not yet been studied in detail.
A notable exception is the work of [17], who introduced combinatorial patterns
called level-k generators from which simple level-k networks [17] can be char-
acterized. Yet, complete lists of generators were not easy to obtain for the first
levels of the hierarchy: level-2 generators were only obtained by a case analysis,
while the 65 level-3 generators were obtained by a brute force algorithm [22].

In this paper, we generalize these results. In Section 2, we give explicit rules to
build, for all k, all level-(k+1) generators from level-k generators. On this basis,
we provide an algorithm that builds level-(k+1) generators in time that is poly-
nomial in the number of level-k generators. We use this algorithm to compute the
1993 level-4 generators. These generators can be downloaded as supplementary
material from http://www.lirmm.fr/~gambette/ProgGenerators.php. We
also provide lower and upper bounds on the number of level-k generators.
Section 3 focuses on the structure of level-k networks. We show how they decom-
pose into level-k generators. Finally, in Section 4, we consider the relevance of
networks with a small level in the context of the coalescent model with recom-
bination. For this purpose, we measure the proportion of level-k phylogenetic
networks among networks generated according to this model.

2 Construction of Level-k Generators

2.1 Definitions

A phylogenetic tree is a rooted binary tree with directed arcs and distinctly
labeled leaves. A phylogenetic network is a generalization of a phylogenetic tree,
defined as a directed acyclic graph in which exactly one vertex has indegree 0 and
outdegree 2 (the root) and all other vertices have either indegree 1 and outdegree
2 (split vertices), indegree 2 and outdegree ≤ 1 (hybrid vertices) or indegree 1
and outdegree 0 (leaves). The leaves have distinct labels. Note that in this graph,
we allow multiple arcs, as is shown by the blob containing r1 in Fig. 1. Choosing
whether to allow this configuration (an “empty” cycle in the network) in the
definition of a phylogenetic network is just a technical point (here we allow it to
be able, later, to define level-k generators as level-k phylogenetic networks).

A directed acyclic graph is biconnected if it contains no vertex whose removal
disconnects the graph. A biconnected component, or blob, of a pylogenetic net-
work, is a maximal biconnected subgraph. An arc is a cut-arc if removing it
disconnects the graph. For any arc (u, v) of a phylogenetic network N , u is a
parent of v, and v a child of u. We say that u is over v, or v is under u in N , if
N contains a directed path from u to v.

http://www.lirmm.fr/~gambette/ProgGenerators.php
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A phylogenetic network is called a level-k phylogenetic network [5] (or just
level-k network) if each biconnected component contains at most k hybrid ver-
tices. A level-k network which is not a level-(k − 1) network is called a strict
level-k phylogenetic network. A level-0 phylogenetic network is a phylogenetic
tree, and a level-1 network is commonly called a galled tree. Many hard prob-
lems can be solved in polynomial time on these classes of networks. However,
these networks only cover part of the practical networks – see section 4, which
motivates the study of upper levels.

Fig. 1. A level-2 network N with root ρ and leaf set {a, b, c, d, e, f, g, h, i, j, k}. All
unlabeled vertices are split vertices. The gray area is a biconnected component with
two hybrid vertices, namely r3 and r4. The arc from r2 to its child is a cut-arc. All arcs
are directed downward but orientation is not displayed for the sake of readability, as
in the next figures.

Definition 2.1 ([17]). A level-k generator (see Fig. 2) is a biconnected strict
level-k network. Vertices of outdegree 0 and arcs of a level-k generator are called
its sides, they are empty if no subtree is hanging from them. We call Sk the set
of generators of level at most k, and S∗

k the set of level-k generators.

Phylogenetic networks have been defined above such that a level-k generator is
a level-k phylogenetic network (contrary to [17] we allow phylogenetic networks
to contain hybrid vertices of outdegree 0). In particular, level-k generators and
level-k networks are not allowed to contain vertices whose indegree and outdegree
both equal 1.

G0 G1 G2
a G2

b G2
c G2

d

Fig. 2. Level-0 generator G0, level-1 generator G1, and level-2 generators: G2
a, G2

b , G2
c

and G2
d

2.2 Construction Rules

The level-0, respectively level-1, generator is called G0, respectively G1). In [17],
the level-2 generators are found by a case analysis which can also be applied
to compute the 65 level-3 generators [22]. Here we provide rules to compute all
level-(k + 1) generators from level-k generators.
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Definition 2.2. Let N be is a level-k generator. We define the following partial
order �N on its sides: for two sides X and Y of N , Y �N X if the source of
arc Y (or Y itself, if Y is a vertex) can be reached from the target of arc X (or
X itself, if X is a vertex).

The network R1(N, X, Y ) is obtained by choosing two sides X and Y of N ,
such that if X = Y then X is not a hybrid vertex, and hanging a new hybrid
vertex under X and Y (see Fig. 3).

The network R2(N, X, Y ) is obtained by choosing a side X of N and an arc
Y �N X of N , and putting an arc from X to Y , which creates a new hybrid
vertex “inside” arc Y .

Note that sides X and Y have a symmetric role for rule R1 but not for rule R2.
When we build R1(N, X, Y ) from N , we say that we apply rule R1 on X and Y
(and the same for R2). Note also that in the definition of R1(N, X, X), we only
allow X to be an arc, or, in the particular case of N = G0, to be its only node.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3. Results of applying rules R1 and R2 on a level-2 generator N (a) depend-
ing on the type of side (arc or hybrid vertex) where it is applied: R1(N, h1, h2) (b),
R1(N, e1, h2) (c), R1(N, e1, e1) (d), R1(N, e1, e2) (e), R2(N, h2, e1) (f), R2(N, e1, e1)
(g), R2(N, e2, e1) (h). In each case, a new hybrid node, h3 is created.

Proposition 2.1. Let N be a level-k generator and X and Y two sides of N
such that N1 = R1(N, X, Y ), resp. N2 = R2(N, X, Y ), is well-defined. Then N1,
resp. N2, is a level-(k + 1) generator.

Sketch of proof. It is easy to check that applying rule R1 or R2 adds, in all cases,
exactly one reticulation node, and indeed provides a level-(k + 1) generator. 
�
We have seen in Proposition 2.1 that we can build level-(k + 1) generators from
level-k generators, it remains to be proved that any level-(k + 1) generator can
be obtained in this way.
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Proposition 2.2. For any level-(k + 1) generator N , there exists a level-k gen-
erator N ′, and some sides X and Y of N ′ such that N = R1(N ′, X, Y ) or
N = R2(N ′, X, Y ).

Sketch of proof. The proof works by “reversing the rules” and finding an appro-
priate target vertex to remove by the reversed rule. 
�

2.3 Bounding the Number of Generators

The rules we have defined can be used to obtain lower and upper bounds on the
number of level-k generators.

Proposition 2.3. For k ≥ 1, a level-k generator has at most 3k − 1 vertices
and 4k − 2 arcs.

Proof. The unique level-1 generator has two vertices and two arcs. By Propo-
sition 2.2, each level-k generator is obtained by applying rule R1 or R2 to a
level-(k − 1) generator, hence by k applications of rules R1 or R2. We then
notice that each application of rule R1 or R2 just adds at most three vertices
and four arcs. The bounds are reached when R2 is repeatedly applied on two
different arcs as in Fig. 3(e). 
�

Proposition 2.4. The number gk of level-k generators is at least 2k−1.

Proof. The property is true for k = 0, so we fix k ≥ 1. We define an injection
Gk between the set of integers [0..2k−1 − 1] and a set of level-k generators. The
generator Gk(a) is build from the binary representation of a using only rule R1.
The construction process is illustrated in Fig. 4. Let a =

∑k−2
i=0 ai2i ∈ [0..2k−1−1]

such that ai ∈ {0, 1}. We start with the level-1 generator G1, then for i from 0
to k − 2:

– let hi be the lowest hybrid vertex of the currently built generator G.
– let ei be the edge from the highest parent of hi (a simple proof by induction

shows that there always exists one parent of hi under the other).
– change G into R1(G, ei, hi) if ai=1, into R1(G, ei, ei) if ai = 0.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Construction of 2k−1 non-isomorphic level-k generators : we start from genera-
tor G1 (a) and apply R1(G1, e0, h0) to get G2(0) (b), G2(1) = R1(G1, e0, e0) (c), G3(0) =
R1(G2(0), e1, h1) (d), G3(1) = R1(G2(1), e1, h1) (e), G3(2) = R1(G2(0), e1, e1) (f),
G3(3) = R1(G2(1), e1, e1) (g)
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This way, we get for Gk(a) a digraph whose structure is a chain of cycles which
encodes the binary representation of a. Proposition 2.1 ensures that Gk(a) is a
level-k generator. Thus, for each k, we can build a set {Gk(a), a ∈ [0..2k−1− 1]}
of 2k−1 level-k generators. These generators are obviously non isomorphic, since
they are each composed by a specific chain of two kinds of cycles. 
�

Proposition 2.5. The number gk of level-k generators is lower than k!250k.

Proof. Proposition 2.3 ensures that the number of arcs of a level-k generator is
less than 4k, and its number of hybrid vertices is k, so its number of sides is
less than 5k. When applying the kth rule R1 or R2, we choose a pair of sides,
that is hybrid vertices or arcs, so there are less than (5k)2 possibilities. Thus
gk+1 ≤ 2(5k)2gk < 50k2gk, so finally gk < k!250k. 
�

Note that although these bounds are not tight, they give useful information on
level-k generators. The lower bound shows that there is an exponential number
of level-k generators, which implies, by the decomposition Theorem of Section 3,
a great complexity inside the blobs of a network of high level. The upper bound
for gk+1 from gk and the fact that g3 = 65 [22] shows that it seems realistic to
generate automatically level-4 and 5 generators at least.

2.4 The Generator Construction Algorithm

We now study how to use rules R1 and R2 in practice to build level-(k + 1)
generators knowing the set of level-k generators. Note that different sequences
of rules may produce isomorphic level-k generators. Hence, isomorphic level-k
generators have to be removed in the process.

Theorem 2.1. There exists a polynomial algorithm which takes as input the set
S∗

k of all level-k generators and outputs the set of all level-(k + 1) generators.

Sketch of proof. The algorithm, BuildGenerators, detailed below, works by
simply trying to apply rules R1 and R2 on any generator in S∗

k , then removing
the isomorphic ones. To prove the polynomial complexity, the main point is
the fact that the isomorphism test which is Graph Isomorphism-complete on
general digraphs [35], can be done, in our case, in polynomial time [25, 27] in
the size of the graph which is polynomial in |S∗

k | by propositions 2.3 and 2.4. 
�

Though graph isomorphism is decidable in polynomial time for graphs of bounded
maximum degree, there exists no implementation of this algorithm, which seems
difficult to use in practice [23]. Instead, to actually build all level-4 generators
from the 65 level-3 generators, we used an exponential time backtracking algo-
rithm which tests isomorphism by trying to identify corresponding vertices by go-
ing through both input graphs at the same time. Among the 8501 level-4 genera-
tors built by applying rule R1 or R2, a total of 1993 are non-isomorphic. The list
of these generators, the program to build them, its source and implementation
notes are available at http://www.lirmm.fr/~gambette/ProgGenerators.php.
Note that the sequence 1,4,65,1993 is not present in the On-Line Encyclopedia of
Integer Sequences [31].

http://www.lirmm.fr/~gambette/ProgGenerators.php


The Structure of Level-k Phylogenetic Networks 295

Algorithm 1. BuildGenerators builds the set S of level-(k +1) generators
from the set S∗

k of level-k generators in polynomial time
BuildGenerators(S∗

k : set of level-k generators)
S ← ∅
forall level-k generators g in S∗

k do
forall pairs (X, Y ) of sides of g do

if rule R1 can be applied on sides X and Y then
g′ ← R1(g,X, Y )
forall level-(k + 1) generators h in S do

if g′ is not isomorphic to h then S ← S ∪ {g′}
if rule R2 can be applied on sides X and Y then

g′ ← R2(g,X, Y )
forall level-(k + 1) generators h in S do

if g′ is not isomorphic to h then S ← S ∪ {g′}

return S

3 Generating Level-k Phylogenetic Networks

The concept of generator was introduced in [17] to build restrictions of level-k
phylogenetic networks, called simple, which contain no cut-arc except the trivial
ones leading to leaves. We give an explicit composition theorem which shows
how generators can be used to build any level-k network, and exhibits the link
with the blobbed-tree structure of phylogenetic networks.

Definition 3.1. Given a set Sk of generators of level at most k, and a phyloge-
netic network N , we define the following rules, illustrated in Fig. 5:
– MergeRootk(G0, G1) is obtained by hanging generators G0 and G1 ∈ Sk

under a root.
– Attachk(v, G, N) is the network obtained by adding an arc from hybrid vertex

v ∈ N of outdegree 0 to a copy of a generator G ∈ Sk.
– Attachk(a, G, N) is the network obtained by subdividing arc a (i.e. adding a

vertex of indegree 1 and outdegree 1 inside a) and adding an arc from the
created vertex to a copy of G ∈ Sk.

Note that rule MergeRootk can be used only once, and that it is used for level-k
networks that are disconnected when removing their root.

Theorem 3.1. N is a level-k network iff there exists a sequence of r ∈ N loca-
tions (arcs or hybrid vertices) (
j)j∈[1,r] and a sequence of generators (Gj)j∈[0,r]
in Sk, such that:

N = Attachk(
r, Gr, Attachk(. . .
Attachk(
2, G2, Attachk(
1, G1, G0)) . . .)),

or N = Attachk(
r, Gr, Attachk(. . .
Attachk(
2, G2, MergeRootk(G1, G0)) . . .)).

Sketch of proof. The proof works by induction. 
�
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(a) (b) (c) (d)

Fig. 5. Rules for building a level-k network from generators of level at most k: a
phylogenetic network N (a); the network obtained by applying MergeRootk(G0, G1)
(b), Attachk(v, G0, N) (c), and Attachk(a,G0, N) (d)

Fig. 6. A level-2 phylogenetic network and its canonical decomposition tree: each node
of the tree contains a generator of level ≤ k; each arc of the tree is linked to a side of
the generator at the source node, and labeled by an integer showing in which order it
is attached to the side, if the side is an arc

Theorem 3.1 characterizes level-k networks by a sequence of rules on a finite
set of generators. In this form, the characterization does not yield canonicity:
two different sequences of rule applications may lead to the same phylogenetic
network (typically, by just changing the order in which rules are applied).

Table 1. Number of simulated networks falling in each class as a function of the
recombination rate r = 0, 1, 2, 4, 8, 16, and 32 for sample size n = 10 or n = 50

n r Tree Level-1 Level-2 Level-3 Level-4 Level-5
10 0 1000 1000 1000 1000 1000 1000
10 1 139 440 667 818 906 948
10 2 27 137 281 440 582 691
10 4 1 21 53 85 136 201
10 8 0 1 1 6 7 12
10 16, 32 0 0 0 0 0 0
50 0 1000 1000 1000 1000 1000 1000
50 1 34 198 373 557 709 811
50 2 0 15 54 117 200 292
50 4 0 1 1 2 9 17
50 8, 16, 32 0 0 0 0 0 0
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(a)

(b)

Fig. 7. Level-k phylogenetic networks and the coalescent model with recombination:
for recombination rates r =1, 2, 4, 8, 16, 32, the number of phylogenetic networks of
level-k is shown, for simulations on 10 leaves (a) or 50 leaves (b)

However, this characterization is deeply based on a canonical tree decomposi-
tion of level-k networks which by lack of space cannot be detailed here, but is
illustrated in Figure 6. It enters the framework of graph grammars [7, 10]. Such
a canonical representation is a first step towards counting or efficient exhaus-
tive generation of level-k phylogenetic networks, which would extend currently
known results on the number of unicyclic networks and galled trees [32].

4 Level-k Networks and the Coalescent Model with
Recombination

In [2], Arenas et al conducted a simulation study to generate a number of
realistic phylogenetic networks, according to the coalescent model with
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Fig. 8. Number of reticulations and level of the simulated networks for n = 10 and
r = 1. The size of the dot at position (x, y) reflects the number of strict level-x networks
with y hybrid vertices.

recombination, and measure the proportion of these networks contained in dif-
ferent subclasses of phylogenetic networks, among which trees and galled trees,
i.e. level-0 and level-1 phylogenetic networks. We extend their study by com-
puting the level of a sample of phylogenetic networks generated by the program
Recodon [1]. The Java implementation of a simple biconnected component de-
composition algorithm to compute the level is also available at http://www.
lirmm.fr/~gambette/ProgGenerators.php.

For small levels, the results we obtained are shown in Table 1, and an in-
sight on upper levels is given in Fig. 7. We observe that phylogenetic networks
with a small level, like restricted phylogenetic networks formerly studied (reg-
ular, tree-sibling and tree-child, see [2]), cover a small portion of the networks
corresponding to the coalescent model with high recombination rates. Still, the
proportion of level-2 phylogenetic networks for 10 leaves is greater than the pro-
portion of tree-child networks, but to get similar proportions on 50 leaves we
have to consider level-3 networks.

In fact, our results show that level-k phylogenetic networks do not have a
blobbed-tree structure in the context of the coalescent model. Instead, most of
the simulated networks have all their hybrid vertices inside one same blob. This
phenomenon even appears with a small recombination rate, as shown in Fig. 8.
Thus, for this context, new structures and algorithmic techniques have to be
found.

The coalescent model is not suitable to describe all cases of reticulate evolu-
tion. For example, a simple model of horizontal gene transfer based on inserting
transfer events according to a Poisson distribution, respecting time constraints
was given in [8]. The use of phylogenetic networks of bounded level may be more
appropriate for this model, or others [28].

http://www.lirmm.fr/~gambette/ProgGenerators.php
http://www.lirmm.fr/~gambette/ProgGenerators.php
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Abstract. A tandem duplication random loss (TDRL) operation dupli-
cates a contiguous segment of genes, followed by the loss of one copy of
each of the duplicated genes. Although the importance of this operation
is founded by several recent biological studies, it has been investigated
only rarely from a theoretical point of view. Of particular interest are
sorting TDRLs which are TDRLs that, when applied to a permutation
representing a genome, reduce the distance towards another given per-
mutation. The identification of sorting genome rearrangement operations
in general is a key ingredient of many algorithms for reconstructing the
evolutionary history of a set of species. In this paper we present meth-
ods to compute all sorting TDRLs for two given gene orders. In addition,
a closed formula for the number of sorting TDRLs is derived and fur-
ther properties of sorting TDRLs are investigated. It is also shown that
the theoretical findings are useful for identifying unique sorting TDRL
scenarios for mitochondrial gene orders.

1 Introduction

Genomic rearrangement operations are useful to infer the phylogenetic relation-
ship of gene orders representing species. Especially the mitochondrial gene orders
became a fruitful source for such investigations, as the number of genes on mi-
tochondrial genomes is small and for more than 1000 species the mitochondrial
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gene order is known. The most often studied rearrangement operations are inver-
sions and transpositions [2,9]. Especially from a theoretical point of view these
operations have been investigated thoroughly. In recent biological studies it has
been shown that the so called tandem duplication random loss (TDRL) opera-
tion is a genomic rearrangement operation that can be found several times in
the mitochondrial gene order evolution, e.g., in millipedes [11] and eels [10]. A
TDRL duplicates a contiguous segment of genes, followed by the loss of one copy
of each of the duplicated genes. This operation is considered by some authors as
“being the most important rearrangement operation in vertebrate” mitochon-
drial genomes ([12] and furthermore [4,10]). Although there are some studies
that use rearrangement models which are based on inversions, translocations,
chromosome fissions and chromosome fusions, that also try to include gene du-
plications and losses (e.g. [8,15,16]), the properties of TDRLs have only rarely
been investigated.

In [7] TDRL operations were studied formally for the first time and a dis-
tance measure between gene orders that is based on TDRLs has been defined.
A radix sort inspired algorithm to compute a sequence of TDRLs between gene
orders that realizes the minimum distance has been presented. Furthermore the
asymmetry of TDRLs and the corresponding distance measure was pointed out.
Additionally the TDRL median problem, i.e. finding a gene order which has a
minimum TDRL distance to two input gene orders, was studied. In [5] a variant
considering TDRLs of limited size is studied.

For phylogenetic inference it is important to identify so-called sorting genomic
rearrangement operations, i.e., operations that reduce the distance towards a
given gene order, when applied to another gene order. One reason is that rear-
rangement scenarios for two gene orders with a minimum number of operations
satisfy the minimum parsimony principle and might therefore be considered more
likely than non sorting operations. Hence, in order to find a realistic scenario
for describing the rearrangement relation between two gene orders it is helpful
to know all possible sorting operations. The use of all equally good solutions in
algorithms has often a positive effect on the solution quality, as already shown
in the context of genome rearrangements [3]. In this case it is possible to se-
lect a sorting operation that satisfies certain properties, e.g. smallest number of
involved genes. Note that such problems have been investigated for example in
[14,1,6] in the context of inversions. But to the best of our knowledge for TDRLs
no method for computing all sorting TDRLs between two gene orders has been
published.

Here we present methods to enumerate all sorting TDRLs for two given gene
orders, derive closed formulas to compute the number of sorting TDRLs, and
derive some theoretical properties of sorting TDRLs. For the example of mito-
chondrial gene order analysis we show the relevance of our results1.

1 The proofs of all lemmas, propositions, and theorems are given in the Appendix.
Due to space limitations, the Appendix can not be included in the proceedings and
is given for reviewing purposes only.
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2 Basic Definitions

A permutation of size n is a permutation of the elements in {1, 2, . . . , n}. πi is
the element of π at the i-th position. The inverse permutation π−1 is defined
such that π−1

e is the index of element e in π, i.e. π−1
e = i iff πi = e. An interval

of a permutation π is a set of consecutive elements of the permutation π.
A binary string s is a string over an alphabet Σ of size two. A binary string

is defined by specifying the elements for the positions. A pair of consecutive
elements (si, si+1) is called a transition at position i if si = si+1. A transition is
an xy-transition with x, y ∈ Σ if si = x and si+1 = y.

A tandem duplication random loss (TDRL) rearrangement τ transforms a
permutation (genome) by a tandem duplication of an interval of the permutation
and subsequent random loss of one of the copies of the duplicated elements
(genes). A TDRL is regarded as an atomic operation, i.e., the tandem duplication
and the random loss of the copied genes are not separable. The set of elements of
the permutations before and after the application of a TDRL are equal. Formally,
a TDRL applied to a permutation π is defined as τ(F, S), where F specifies the
set of elements which are kept in the first copy and S defines the set of elements
kept in the second copy. If the context is clear we simply write τ for τ(F, S).
The following two conditions must hold for a TDRL τ(F, S): i) F ∪ S is an
interval in π, and ii) F ∩ S = ∅. Let for example π = (3 7 1 5 8 2 6 4) be
a permutation and let τ({3, 7, 5, 2}, {1, 8, 6, 4}) be a TDRL applied to π, then
π ◦ τ(F, S) = (3 7 5 2 1 8 6 4).

W.l.o.g. we assume in this paper F ∪ S = {1, . . . , n}. TDRLs duplicating
only a subset of the genes can obviously be represented by a TDRL duplicating
all genes. Two TDRLs leading to the same permutation are considered to be
identical. To identify if an element is kept in the first or in the second copy,
we define a function Cτ : {1, . . . , n} �→ {1, 2} with Cτ (e) = 1 if e ∈ F and
Cτ (e) = 2 for e ∈ S. Using the definition of TDRLs we can immediately define a
distance measure as follows. Let π1 and π2 be two permutations. The minimum
number of TDRLs needed to transform π1 into π2 is called the (TDRL)-distance
of π1 and π2, denoted as d(π1, π2). The set S(π1, π2) of all sorting TDRLs is the
set of all TDRLs for which the distance from π1 towards π2 is decreased, i.e.
S(π1, π2) := {τ |d(π1 ◦ τ, π2) < d(π1, π2)}.

3 TDRLs and Chains

In this section the notion of chains of elements in a permutation is introduced.
Chains serve as the key ingredient to compute all sorting TDRLs in this paper.

3.1 Definition and Computation of Chains

The sorting problem is the problem of transforming a permutation π1 into a
permutation π2 with as few rearrangement operations as possible. W.l.o.g. the
sorting problem is typically considered for π2 being the identity permutation
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(a) (b)

Fig. 1. a) The 3 chains of permutation π = (5 3 4 1 6 2): c1 = (1, 2), c2 = (3, 4), and
c3 = (5, 6); b) chain for the identity permutation

denoted by ι (an exception is [7] where π1 = ι was used). With the notion of
chains of elements in a permutation the sorting by TDRLs can be described as
transforming a given permutation into the identity permutation.

Definition 1. A chain of a permutation π is a list (e1, . . . , ek) of elements of π
with maximal length, where either k = 1 or ei + 1 = ei+1 and π−1

ei
< π−1

ei+1
holds

for all i ∈ [1 : k − 1], k > 1.

A chain connects an element e with element e + 1 iff e + 1 is located to the right
of e in π. Obviously, each element of π belongs to exactly one chain. An example
of how a permutation is divided into its chains is depicted in Figure 1(a). We
say a chain is included in a set of elements (e.g., in a set F of elements kept in
the first copy of a TDRL), if all elements of the chain are included in this set of
elements.

Let ρ(π) be the number of chains of permutation π. We define an indexing
scheme for the chains of a permutation in a straightforward manner: Let c and
c′ be two chains of a permutation π. We define a strict total order for chains
as follows: c < c′ iff ∀e ∈ c, ∀e′ ∈ c′ : e < e′. Let c1 < . . . < cρ(π) be the total
order of all chains of permutation π. Then ci is said to be the i-th chain of π.
Furthermore we define a function Cπ : {1, . . . , n} �→ {1, . . . , ρ(π)} for which the
index of the chain can be determined for an element in π, i.e. Cπ(e) = i iff e is
an element of chain ci. The straightforward algorithm for computing the chains
of a permutation has the overall runtime O(n).

3.2 Basic Properties of Chains

As noted above, we can assume w.l.o.g. that sorting is done towards the identity
permutation ι. Then sorting by TDRLs corresponds to merging of chains in order
to obtain a permutation with only one chain, which is the identity permutation
(see Figure 1(b)). Note that the identity permutation is the only permutation
which has only one chain. A TDRL moves the elements of the first copy to the
left and the elements of the second copy to the right, such that the order of
elements kept in the same copy is not changed. Formally, this is stated in the
following proposition. The very easy proof is omitted.

Proposition 1. Let τ(F, S) be a TDRL, let π be a permutation, and let e1 and
e2 be two elements of π.
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– If e1 ∈ F and e2 ∈ S, then (π ◦ τ)−1
e1

< (π ◦ τ)−1
e2

.
– If Cτ (e1) = Cτ (e2) and π−1

e1
< π−1

e2
, then (π ◦ τ)−1

e1
< (π ◦ τ)−1

e2
.

Changes in the order of the elements of a permutation due to a TDRL have
implications on the chains, some chains might be split whereas others might be
merged. This is formally described in the following two propositions in more
detail.

Proposition 2. Let π be a permutation and e1 and e2 be two successive elements
(i.e. e2 = e1 + 1) in the same chain c of π. Let τ(F, S) be a TDRL applied to
π. Chain c is split into a chain ending with e1 and another starting with e2 in
π ◦ τ iff e1 ∈ S and e2 ∈ F .

Proposition 3. Let π be a permutation and e1 and e2 be two successive elements
(i.e. e2 = e1 + 1) of π which are in different chains. Let τ(F, S) be a TDRL
applied to π. Elements e1 and e2 are in the same chain in π ◦ τ iff e1 ∈ F and
e2 ∈ S.

Summarizing propositions 2 and 3 a single TDRL operation can merge chains
and split others at the same time depending on which elements are selected in
the first copy and which are kept in the second copy.

3.3 TDRL Distance

In [7] it was shown that the TDRL distance d(ι, π) = �log2(�(π))�, with �(π)
being the number of maximal increasing substrings in π, i.e., a substring of
maximal length with increasing consecutive elements (In [7] a permutation π
is seen as a string with elements of the permutation as letters). The following
proposition clarifies the relation of maximal increasing substrings and chains.

Proposition 4. Let π be a permutation of length n. s = (πi πi+1 . . . πk) is a
maximal increasing substring of π iff c = (i, i + 1, . . . , k) is a chain in π−1.

By simply renaming all elements in π it is clear that d(ι, π) = d(π−1, ι). Using
the fact that there is a one to one correspondence between maximal increasing
substrings in π and chains in π−1 as shown in Proposition 4 it follows that the
TDRL distance can be computed by d(π, ι) = �log2(ρ(π))�, where ρ(π) is the
number of chains in π. Note that the TDRL distance is not symmetric.

4 All Sorting TDRLs

In this section we show how to compute all sorting TDRLs. First, we discuss a
restricted case where only TDRLs are considered for which any existing chain in
a permutation is completely included either in the first or in the second copy of
the TDRL. Such TDRLs will be referred to as restricted TDRLs. Interestingly,
it can be shown that the number of restricted TDRLs which is needed to sort a
permutation is the same as in the general case, i.e., the minimum distance of two
permutations is not changed by the restriction. Nevertheless, the set of sorting
TDRLs is usually smaller for the restricted case. Note that the sorting TDRL
scenarios infered by the algorithm of [7] consist of resticted TDRLs only.
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4.1 The Restricted Case

The following two propositions are used to show that the distance of two per-
mutations is unchanged when only restricted TDRLs are allowed.

Proposition 5. Let τ(F, S) be a TDRL applied to π and let ci and cj be chains
of π. τ(F, S) merges ci and cj iff i + 1 = j and ci ∈ F and cj ∈ S.

While the Proposition 5 is valid for restricted and unrestricted TDRLs, the
following proposition is only valid for restricted TDRLs.

Proposition 6. Three chains ci, ci+1, and ci+2 can not be merged with one
restricted TDRL.

Using Propositions 5 and 6 the following theorem shows that the restricted
TDRL distance is identical to the general TDRL distance.

Theorem 1. The restricted TDRL distance d(π, ι) = �log2(ρ(π))� for a permu-
tation π.

A sorting restricted TDRL has to reduce the distance by one. Thus the number
of chains ρ(π) has to be reduced at least to the next smaller value, that is
a power of 2. Formally, the number of chains has to be reduced at least by
ρ(π)− 2�log2(ρ(π))�−1. The maximal reduction of the number of chains is �ρ(π)

2 �,
as chains can be merged only pairwise.

The problem of computing the number of sorting restricted TDRL for a per-
mutation π (toward ι) can be rephrased as a combinatorial problem of binary
strings over the alphabet Σ = {1, 2}. Let τ(F, S) be a restricted TDRL for a
permutation π. Let t = t1 . . . tρ(π) be a binary string of length ρ(π) with ti = 1
if ci ∈ F and ti = 2 if ci ∈ S. That is, the string t corresponds to a TDRL,
such that ti indicates if the chain ci is kept in the first or in the second copy of
τ . The number of sorting restricted TDRLs for a permutation π corresponds to
the number of binary strings for which the number of 12-transitions is at least
k with k = ρ(π) − 2�log2(ρ(π))�−1. This is because the number of 12-transitions
in t is identical to the chain decrementation due to τ . The following lemma is
needed to derive the number of sorting restricted TDRL.

Lemma 1. The number of binary strings t = t1 . . . tn of length n over alphabet
Σ = {1, 2} which have k 12-transitions is(

n + 1
2k + 1

)
A restricted TDRL τ for a permutation π is sorting when the reduction of
the number of chains due to τ is between ρ(π) − 2�log2(ρ(π))�−1 and �ρ(π)

2 �. In
Corollary 1 the number of sorting restricted TDRL is given.



Finding All Sorting Tandem Duplication Random Loss Operations 307

Corollary 1. For a permutation π with ρ(π) chains there are

	 ρ(π)
2 
∑

i=ρ(π)−2�log2(ρ(π))�−1

(
ρ(π) + 1
2i + 1

)
=

2�log2(ρ(π))�−ρ(π)∑
i=0

(
ρ(π)

i

)

sorting restricted TDRLs.

Corollary 1 shows that the number of sorting TDRLs corresponds to a prefix sum
in the ρ(π)-th row of the Pascal’s triangle. Note that this sum does only depend
on the number of chains and not on the length of the chains, their position in the
permutation, or the length of the permutation. An algorithm for enumerating
all sorting restricted TDRL can be obtained by enumerating all strings t with
a number of 12-transitions as given in the sum of Corollary 1 and inferring the
corresponding TDRLs.

Interestingly, if the number of chains ρ(π) is equal to a power of 2, then there
exist only one sorting restricted TDRL. Also there is only one possible sorting
sequence towards ι, as after applying the TDRL the number of chains is halved
and is therefore still a power of 2. If the number of chains is ρ(π) = 2k − 1 for
some k, then there exist several sorting restricted TDRLs, but the subsequent
TDRLs towards ι are predetermined as �(2k − 1)/2� = 2k−1. Assume that a
variable is initialized by an integer ρ > 1 and let an operation reduce the value
of the variable from ρ to ρ′ with �ρ/2� ≤ ρ′ ≤ 2log2(ρ)−1 (Observe, this is what
a TDRL does with the number of existing chains). Then the operation has to
be repeated

⌈
log2(2�log2(ρ)� − ρ + 1)

⌉
times, such that the resulting number is

a power of 2. The easy but technical proof for this is omitted. The following
Corollary follows.

Corollary 2. Let π be a permutation with ρ(π) chains. After the application of⌈
log2(2�log2(ρ(π))� − ρ(π) + 1)

⌉
sorting restricted TDRLs, the number of remain-

ing chains is a power of 2, and therefore the remaining sorting sequence towards
ι has no alternatives.

4.2 The General Case

For the general case of computing all sorting TDRLs the problem is formulated as
a problem of finding binary strings with certain properties and some definitions
are needed. Let π be a permutation of length n. Let τ(F, S) be a TDRL applied
to π. Let p = p1 . . . pn−1 be a binary string of length n − 1 over the alphabet
{φ, θ} defined by the chains of π as follows. If Cπ(e) = Cπ(e+1) (i.e., if element
e and e + 1 are in the same chain), then pe = θ otherwise pe = φ, e ∈ [1 : n− 1].
String p is called transition string of π. Let u = u1 . . . un be a binary string of
length n over the alphabet {1, 2} defined by a TDRL τ(F, S) as follows. If e ∈ F
then ue = 1, otherwise ue = 2, i.e., the string u corresponds to a TDRL, such
that ue indicates if the corresponding element e of π is kept in the first or in the
second copy of τ .
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(a) (b)

Fig. 2. a) Permutation π having three chains c1, c2, c3; the corresponding string
p = θφθφθ, e.g. p3 = θ as Cπ(3) = Cπ(4) = 2; one of the sorting TDRLs is
τ ({1, 2, 4}, {3, 5, 6}) where the elements from F are boxed and elements from S not; the
corresponding u = 112122; b) Permutation π ◦ τ : elements 2 and 3 are connected due
to τ , as u2 = 1, u3 = 2, and p2 = φ induce a 12φ-transition. Furthermore τ connects
elements 4 with 5 and destroys chain c2 = (3, 4).

The effects of a TDRL τ(F, S) on the chains of a permutation π can be defined
by the corresponding strings u and p. If ue = 2, ue+1 = 1, and pe = θ (denoted
as a 21θ-transition), then the chain with index Cπ(e) is split after element e
and the number of chains is increased by one. If ue = 1, ue+1 = 2, and pe = φ
(12φ-transition) then the number of chains is decreased by one as the element e
gets connected to element e + 1. See Figure 2 for an illustration.

Let Φ be the number of 12φ-transitions in u, and let Θ be the number of
21θ-transitions in u. Applying a TDRL τ (that corresponds to a binary string
u) to a permutation π with transition string p, reduces the number of chains by
Φ and increases it by Θ. Therefore the overall reduction in the number of chains
due to τ is k = Φ− Θ. The computation of the number of sorting TDRLs for a
given permutation π is equivalent to the computation of the number of strings u
(corresponding to a TDRL τ) such that k is between ρ(π) − 2�log2(ρ(π))�−1 and
�ρ(π)

2 �.
Let a transition string p be given. Let a k-sorting string be a string u, for

which the number of 12φ-transitions is Φ, the number of 21θ-transitions is Θ,
and k = Φ − Θ. The number of TDRLs for a permutation π, that reduce the
number of chains by k, is equivalent to the number of k-sorting strings u with p
being the transition string of π.

For the computation of the number of sorting TDRLs we apply a dynamic
programming scheme as follows. Let p = p1 . . . pn−1 be the transition string
for a permutation π of length n. Let ax

j,k be the number of k-sorting strings
u of length j ending with x ∈ {1, 2}. All values of the dynamic programming
matrix are initialized with 0 except for a1

1,0 = 1 and a2
1,0 = 1. With the following

recursion ax
n,k can be computed.

a1
j+1,k =

{
a1

j,k + a2
j,k+1 if pj = θ

a1
j,k + a2

j,k else
(1)

a2
j+1,k =

{
a1

j,k−1 + a2
j,k if pj = φ

a1
j,k + a2

j,k else
(2)

Note that ax
j,k should be interpreted as the number of sorting TDRLs only if

j = n because strings u of size j < n do not define valid TDRLs. An illustration of
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(a) (b)

Fig. 3. a) Illustration of the recursion in the dynamic programming matrix for pj =
φ (top) and pj−1 = θ (bottom); arrows indicate which values are used to compute
the sums of the recursion; b) the dynamic programming matrix for the example in
Figure 2; values in circles correspond to ax

j,k; the sum of all values in grey filled circles
corresponds to the number of all sorting TDRLs; the dashed path corresponds to the
TDRL τ ({1, 2, 4}, {3, 5, 6}).

the recursion for the dynamic programming is given in Figure 3(a). The reduction
of the number of chains due to τ has to be between ρ(π) − 2�log2(ρ(π))�−1 and
�ρ(π)

2 � in order to be a sorting TDRL. Thus, the sum

	 ρ(π)
2 
∑

i=ρ(π)−2�log2(ρ(π))�−1

a1
n,i + a2

n,i

gives the number of sorting TDRLs. Figure 3(b) shows the dynamic programming
matrix for the example as given in Figure 2. Interestingly, this sum can again be
reduced to a closed formula, where the number of sorting TDRLs corresponds
to the prefix sum of the Pascal’s triangle. This is formalized in the following
Theorem.

Theorem 2. For a permutation π of length n with ρ(π) chains the number of
sorting TDRLs is

2�log2(ρ(π))�−ρ(π)∑
i=0

(
n

i

)
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Similar as for sorting restricted TDRLs the number of sorting TDRLs is nei-
ther dependent on the length of the chains nor on their position in the permuta-
tion. But in contrast to the case of sorting restricted TDRLs the number depends
on the length of the input permutation. In the case of ρ(π) being a power of 2,
there exists only one possible sorting sequence for π towards ι. Similar as in the
restricted case an algorithm for enumerating all sorting TDRLs can be inferred
directly by an enumeration of the corresponding strings u.

5 Experiments

In this section we show the relevance of our theoretical findings for the analysis
of mitochondrial gene orders. First, we investigate the number of sorting TDRLs
for the restricted and the general case. Then, we apply random TDRLs to the
identity permutation and present the number of resulting chains in order to
estimate how likely certain numbers of chains are. The result is then used to
support scenarios of a sequence of TDRLs. Such a very likely scenario is presented
for mitogenomes.

In Table 1 the number of sorting TDRLs is given for permutations of length n
having |ρ(π)| ∈ {2, . . . , 16} chains. Note that it is not relevant if the permutations

Table 1. Number of sorting TDRLs for different number of chains ρ(π) ∈ {2, . . . , 16};
|Sr|: restricted case; |Sg

n|: general case with permutation length n ∈ {10, 37}

ρ(π) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|Sr | 1 4 1 26 22 8 1 502 848 1,024 794 378 106 16 1
|Sg

10| 1 38 1 8474 704 38 1 13,130,672 2,835,200
|Sg

37| 1 101 1 166,751 5,051 101 1 814,947,389 555,600,013 79,375,496 4,087,976 166,751 5,051 101 1
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Fig. 4. Number of chains of 10,000 permutations Πk for each k ∈ {2, 3, 4, 5, 6, 8, 12, 16};
k is the number of TDRLs applied to the identity permutation to obtain a permutation
π ∈ Πk; for the line denoted with random each π is a random permutation
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are mitogenomes or random permutations, as only the number of chains and the
length of the permutation are relevant. Let Sr be the number of sorting TDRLs
in the restricted case and let Sg

n be the number of sorting TDRLs in the general
case. Recall that the number of sorting TDRLs is dependent on n only in the
general case. For the general case we analyze the cases n = 10 and n = 37, where
the latter is the length of mitochondrial gene orders. While for some values of
|ρ(π)| the number of TDRLs is immense (e.g., more than 800 millions in the
general case with n = 37 and |ρ(π)| = 9) it is 1 if the number of chains is a
power of 2. This fact can be used to identify sequences of TDRLs for which no
alternative sorting scenario exist. Figure 4 shows the results for the case that
k ∈ {2, 3, 4, 5, 6, 8, 12, 16} TDRLs have been applied to the identity permutation
of length 37 resulting in permutation π. For each k this has been repeated 10,000
times resulting in a set of permutations Πk. The histograms for the number of
resulting chains for Πk are depicted in Figure 4. Additionally the case when π
is chosen to be a random permutation is shown. If, for example, the number of
chains for a pair of permutations of length 37 is 4, it is very likely that this is
due to 2 unique TDRL operations.

Based on these results all pairs of existing complete mitochondrial gene orders
from the NCBI database have been analyzed and sequences of TDRLs have been
identified that can be considered as biologically likely. An example which shows
the potential of our results is given in Figure 5 for species Salvelinus fontinalis
(which has the typical vertebrate gene order) and Porichthys myriaster. The
TDRL-scenario is supported by the following observations. Scenarios consider-
ing other rearrangements are much longer, e.g., the reversal distance is 15 and the
transposition distance is at least 7 (computed with the lower bound given in [2]).
The given scenario is the only parsimonious sorting scenario based on TDRLs.
That is i) the TDRL scenario in the given direction is unique, ii) the TDRL
distance in the other direction of length 3 is not parsimonious, and iii) there
exists no ancestral permutation of S. fontinalis and P. myriaster, such that
the two genomes can be reached with two or less TDRLs (this was checked by
a computationally expensive brute force algorithm). Due to the histograms as
presented in Figure 4, it is clear that the 4 chains indeed occurred very likely
due to 2 TDRLs. Furthermore, according to [13] duplications and losses are sup-
ported by fragments of nucleotide sequences in the mitogenomes. Summarizing,
there is very strong support that the S. fontinalis gene order is the ancestral
gene one of S. fontinalis and P. myriaster, and there are strong indications that
the 2 presented TDRLs have changed the gene order. Note that the genomic

Fig. 5. The unique TDRL scenario from Salvelinus fontinalis (top row) to Porichthys
myriaster (bottom row); genes kept in the first copy are boxed
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rearrangement events for the gene orders of this example have not yet been de-
scribed in the literature. An evaluation of TDRL scenarios for a larger number
of mitochondrial genomes will be presented elsewhere.

6 Conclusion

Tandem duplication random loss (TDRL) events are important gene order re-
arrangement operation especially in mitochondrial gene orders. Methods were
presented to derive sorting TDRLs, i.e., TDRLs that cause a permutation to
become closer to another given permutation. An interesting restricted case of
the problem has been analyzed which leads also to an analysis of the general
case. A closed formula for the number of sorting (restricted) TDRLs has been
presented. Algorithms for enumerating all sorting TDRLs have been obtained by
an enumeration of binary strings with certain properties. We have shown that
the theoretical findings are relevant when identifying sequences of TDRLs for
real biological data, e.g., mitochondrial gene orders.
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Abstract. A sequence of reversals that takes a signed permutation to
the identity is perfect if it preserves all common intervals between the
permutation and the identity. The problem of computing a parsimonious
perfect sequence of reversals is believed to be NP-hard, as the more gen-
eral problem of sorting a signed permutation by reversals while preserv-
ing a given subset of common intervals is NP-hard. The only published
algorithms that compute a parsimonious perfect reversals sequence have
an exponential time complexity. Here we show that, despite this worst-
case analysis, with probability one, sorting can be done in polynomial
time. Further, we find asymptotic expressions for the average length and
number of reversals in commuting permutations, an interesting sub-class
of signed permutations.

1 Introduction

The sorting of signed permutations by reversals is a simple combinatorial prob-
lem with a direct application in genome arrangement studies. Different sorting
scenarios provide estimates for evolutionary distance and can help explain the
differences in gene orders between two species (see [9] for example). Initially, the
shortest (parsimonious) sequences of reversals were sought, and polynomial time
algorithms to find such sequences were described [14,8,20]. Recently, biologically
motivated refinements have been considered, specifically accounting for groups
of genes that are co-localized with the different homologous genes (genes having
a single common ancestor) in the genomes of different species. It is then likely
that such groups of genes were contiguous in the common ancestral genome, and
were not disrupted during evolution, hence, we expect them to appear together
at every step of the evolution. In terms of our combinatorial model, a group of
co-localized genes is modeled by a common interval, and the prefectness condi-
tion implies that common intervals are preserved by reversals. This constraint
leads to the following algorithmic problem:

What is the smallest number of reversals required to sort a signed per-
mutation into the identity permutation without breaking any common
interval?

� Supported by ANR project GAMMA BLAN07-2_195422.

G. Kucherov and E. Ukkonen (Eds.): CPM 2009, LNCS 5577, pp. 314–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Average-Case Analysis of Perfect Sorting by Reversals 315

These scenarios are called perfect [12]. Because of the additional constraint, it
is possible that the shortest perfect sorting scenario is longer that the shortest
scenario.

It is known that the refined problem of preserving a given subset of all common
intervals is NP-hard [12]. However, several authors have described classes of
instances which can be solved in polynomial time [3,4,11], and fixed parameter
algorithms exist [4,5]. For example, commuting permutations form a class of
instances such that the property of a reversal scenario being perfect is preserved
even when the sequence of reversals is reordered arbitrarily. A central concept in
the theory of perfect sorting by reversals is the “strong interval tree” associated
to a permutation [4].

Recently, several works have investigated expected properties of combinatorial
objects related to genomic distance computation, such as the breakpoint graph
[24,22,23,19]. We explore this route here, but focusing on the strong interval
tree, to conduct an average-case analysis of perfect sorting by reversals. First,
in Section 3, we prove that for large enough n, with probability 1, computing
a perfect reversal sorting scenario for signed permutations can be done in time
polynomial in n, despite the fact that this is NP-hard. Secondly, in Section 4, we
show that, in a parsimonious perfect scenario for a commuting permutation of
length n, the average number of reversals is asymptotically 1.2n, and the average
length of a reversal is 1.02

√
n. We conclude by describing future research avenues,

both theoretical and applied.

2 Preliminaries

We first summarize the combinatorial and algorithmic frameworks for perfect
sorting by reversals. For a more detailed treatment, we refer to [4].

Permutations, reversals, common intervals and perfect scenarios. A signed
permutation on [n] is a permutation on the set of integers [n] = {1, 2, . . . , n}
in which each element has a sign, positive or negative. Negative integers are
represented by placing a bar over them. We denote by Idn (resp. Idn) the identity
(resp. reversed identity) permutation, (1 2 . . . n) (resp. (n . . . 2 1)). When the
number n of elements is clear from the context, we will simply write Id or Id.

An interval I of a signed permutation σ on [n] is a segment of adjacent ele-
ments of σ. The content of I is the subset of [n] defined by the absolute values
of the elements of I. Given σ, an interval is defined by its content and from now,
when the context is unambiguous, we identify an interval with its content.

The reversal of an interval of a signed permutation reverses the order of the
elements of the interval, while changing their signs. If σ is a permutation, we
denote by σ the permutation obtained by reversing the complete permutation
σ. A scenario for σ is a sequence of reversals that transforms σ into Idn or Idn.
The length of such a scenario is the number of reversals it contains. The length
of a reversal is the number of elements in the interval that is reversed.

Two distinct intervals I and J commute if their contents trivially intersect,
that is either I ⊂ J , or J ⊂ I, or I ∩J = ∅. If intervals I and J do not commute,
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they overlap. A common interval of a permutation σ on [n] is a subset of [n] that
is an interval in both σ and the identity permutation Idn. The singletons and the
set {1, 2, . . . , n} are always common intervals called trivial common intervals.

A scenario S for σ is called a perfect scenario if every reversal of S commutes
with every common interval of σ. A perfect scenario of minimal length is called
a parsimonious perfect scenario.

A permutation σ is said to be commuting if there exists a perfect scenario
for σ such that for every pair of reversals of this scenario, the corresponding
intervals commute. In such a case, this property holds for every perfect scenario
for σ [4].

The strong interval tree. A common interval I of a permutation σ is a strong
interval of σ if it commutes with every other common interval of σ.

The inclusion order of the set of strong intervals defines an n-leaf tree, de-
noted by TS(σ), whose leaves are the singletons, and whose root is the interval
containing all elements of the permutation. The strong interval tree of σ can be
computed in linear time and space (see [7] for example). We call the tree TS(σ)
the strong interval tree of σ, and we identify a vertex of TS(σ) with the strong
interval it represents. In a more combinatorial context, this tree is also called
substitution decomposition tree [1]. If σ is a signed permutation, the sign of every
element of σ is given to the corresponding leaf in TS(σ). (See Fig. 1.)

{1} {2} {3}{4} {5̄} {6̄} {7}{8̄} {9} {10} {1̄1}{12} {13}{1̄4} {15} {16}{1̄7} {18}

{2, 3, 4, 5} {6, 7}

{2, 3, 4, 5, 6, 7, 8, 9}

{13, 14} {16, 17}

{10, 11, 12, 13, 14}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

Fig. 1. The strong interval tree TS(σ) of the permutation σ =
(1 8̄ 4 2 5̄ 3 9 6̄ 7 12 10 1̄4 13 1̄1 15 1̄7 16 18). Prime and linear vertices are
distinguished by their shape. There are three non-trivial linear vertices, the rectan-
gular vertices, and three prime vertices, the round vertices. The root and the vertex
{6, 7} are increasing linear vertices, while the linear vertices {16, 17} and {13, 14} are
decreasing.

Let I be a strong interval of σ and I = (I1, . . . , Ik) the unique partition of the
elements of I into maximal strong intervals, from left to right. The quotient per-
mutation of I, denoted σI , is the permutation of size k defined as follows: σI(i)
is smaller than σI(j) in σI if any element of Ii is smaller (in absolute value if σ
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is a signed permutation) than any element of Ij . The vertex I, or equivalently
the strong interval I of σ, is either: increasing linear, if σI is the identity permu-
tation, or decreasing linear, if σI is the reversed identity permutation, or prime,
otherwise. For exposition purposes we consider that an increasing vertex is posi-
tive and a decreasing vertex is negative. The strong interval tree as computed in
the algorithm of [7] contains the nature – increasing/decreasing linear or prime
– of each vertex. It can easily be adapted to compute also in linear time the
quotient permutation associated to each strong interval.

For a vertex I of TS(σ), we denote by L(I) the set of elements of σ that label
the leaves of the subtree of TS(σ) rooted at I.

The strong interval tree as a guide for perfect sorting by reversals. We describe
now important properties, related to the strong interval tree, of the algorithm
described in [4] for perfect sorting by reversals a signed permutation. Let σ be a
signed permutation of size n and TS(σ) its strong interval tree, having m internal
vertices, called I1, . . . , Im, including p prime vertices:

Theorem 1. [4]

1. The algorithm described in [4] can compute a parsimonious perfect scenario
for σ in worst-case time O(2pn

√
n log(n)).

2. σ is a commuting permutation if and only if p = 0.
3. If σ is a commuting permutation, then every perfect scenario has for reversals

set the set {L(Ij)|Ij has a sign different from its parent in TS(σ)}.
Remark 1. The strong interval tree of an unsigned permutation is equivalent
to the modular decomposition tree of the corresponding labeled permutation
graph (see [4] for example). Also commuting permutations have been investi-
gated, in connection with permutation patterns, under the name of separable
permutations [15].

3 On the Number of Prime Vertices

Motivated by the average-time complexity of the algorithm described in [4] for
computing a parsimonious perfect scenario, we first investigate the average shape
of a strong interval tree of a permutation of size n. Such a tree is characterized
by the shape of the tree along with the quotient permutations labeling internal
vertices. For prime vertices, those quotient permutations correspond to simple
permutations as defined in [2]. We first concentrate on enumerative results on
simple permutations. Next, we derive from them enumerative consequences on
the number of permutations whose strong interval tree has a given shape. Ex-
hibiting a family of shapes with only one prime vertex, we can prove that nearly
all permutations have a strong interval tree of this special shape.

3.1 Combinatorial Preliminaries: Strong Interval Trees and Simple
Permutations

Let TS(σ) be the strong interval tree of a permutation σ of length n. From a
combinatorial point of view it is simply a plane tree (the children of a vertex are
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totally ordered) with n leaves and its internal vertices labeled by their quotient
permutation: an internal vertex having k children can be labeled either by the
permutation (1 2 . . . k) (increasing linear vertex), the permutation (k k−1 . . . 1)
(decreasing linear vertex) or a permutation of length k whose only common
intervals are trivial (prime vertex). Due to the fact that TS(σ) represents the
common intervals between σ and the identity permutation, it has two important
properties.

Property 1. 1. No edge can be incident to two increasing or two decreasing
linear vertices.

2. The labeling of the leaves by the integers {1, . . . , n} is implicitly defined by
the permutations labeling the internal vertices.

Permutations whose common intervals are trivial are called simple permutations.
The shortest simple permutations are of length 4 and are (3 1 4 2) and (2 4 1 3).
The enumeration of simple permutations was investigated in [2]. The authors
prove that this enumerative sequence is not P-recursive and there is no known
closed formula for the number of simple permutations of a given size. However,
it was shown in [2] that an asymptotic equivalent for the number sn of simple
permutations of size n is

sn =
n!
e2 (1− 4

n
+

2
n(n− 1)

+O(
1
n3 )) when n →∞. (1)

3.2 Average Shape of Strong Interval Trees

A twin in a strong interval tree is a vertex of degree 2 such that each of its two
children is a leaf. A twin is then a linear vertex. The following result, that applies
both to signed permutations and unsigned permutations, is the main result of
this section.

Theorem 2. Asymptotically, with probability 1, a random permutation σ of size
n has a strong interval tree such that the root is a prime vertex and every child
of the root is either a leaf or a twin. Moreover the probability that TS(σ) has
such a shape with exactly k twins is 2k

e2k! .

The proof follows from Lemma 1 and Equation (1).

Lemma 1. If p′n,k denotes the number of permutations of length n which contain
a common interval I of length k then for any fixed positive integer c:

n−c∑
k=c+2

p′n,k

n!
= O(n−c)

Proof. The proof is very similar to Lemma 7 in [2]. We have p′n,k ≤ (n − k +
1)k!(n− k + 1)!. Indeed, the right hand side counts the number of permutations
of {1 . . . k} corresponding to I (k!), the possible values of the minimal element
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of I (n− k + 1) and the structure of the rest of the permutation with one more
element which marks the insertion of I ((n−k+1)!). Only the extremal terms of
the sum can have magnitude O(n−c) and the remaining terms have magnitude
O(n−c−1). Since there are fewer than n terms the result of Lemma 1 follows.

Proof (Proof of Theorem 2). Lemma 1 with c = 1 gives that the proportion of
non-simple permutations with common intervals of size greater than or equal to
3 is O(n−1). But permutations whose common intervals are only of size 1, 2 or n
are exactly permutations whose strong interval tree has a prime root and every
child is either a leaf or a twin.

Then the number of permutations whose strong interval tree has a prime root
with k twins is sn−k

(
n−k

k

)
2k. From Equation (1) the asymptotics for this number

is n!2k

e2k! , proving Theorem 2. 
�

3.3 Average Time Complexity of Perfect Sorting by Reversals

Corollary 1. The algorithm described in [4] for computing a parsimonious per-
fect scenario for a random permutation runs in polynomial time with probability
1 as n →∞.

Proof. Direct consequence of point 1 in Theorem 1 and of Theorem 2, applied
on signed permutations. 
�

This result however does not imply that the average complexity of this algorithm
is polynomial, as the average time complexity is the sum of the complexity on
all instances of size n divided by the number of instances. Formally, to assess
the average time complexity, we need to prove that as n grows, the ratio

pn =

∑
p 2pTn,p

Tn

is bounded by a polynomial in n, where Tn is the number of strong interval trees
with n leaves and Tn,p the number of such trees with p prime vertices. The factor
2p comes from the complexity given in Theorem 1.

Let T (x, y) be the bivariate generating function T (x, y) =
∑

k,n Tn,px
nyp

Then pn = [xn]T (x,2)
[xn]T (x,1) . Let moreover P (x) be the generating function of simple

permutations P (x) =
∑

n≥0 snxn (whose first terms can be obtained from entry
A111111 in [18]). Using the specification for strong interval trees given in Section
3.1 and techniques described in [13] for example, it is immediate that T (x, y)
satisfies the following system of functional equations:{

T (x, y) = x + yP (T (x, y)) + 2 B(x,y)2

1−B(x,y)

B(x, y) = x + yP (T (x, y)) + B(x,y)2

1−B(x,y)

By iterating these equations, we computed the 25 first values of pn (Fig. 2)
that suggest that pn is even bounded by a constant close to 2 and lead us to
Conjecture 1.
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Fig. 2. pn, up to n = 25

Conjecture 1. The average-time complexity of the algorithm described in [4]
for computing a parsimonious perfect scenario is polynomial, bounded by
O(n

√
n logn).

4 Average-Case Properties of Commuting Permutations

We now study the family of commuting (signed) permutations and more pre-
cisely the average number of reversals in a parsimonious perfect scenario for a
commuting permutation and the average length of a reversal of such a scenario.
These questions are motivated by two problems. First, from a more theoretical
point of view, understanding strong interval trees with no prime node is a first
step towards more general results on strong interval trees with few prime nodes,
that are common with real data. Second, from an applied point of view, in the
strong interval trees computed from real data, it is common to find large genome
segments corresponding to a subtree that contains only linear nodes. Hence, the
results of this section can be applied to such subtrees to detect genome segments
with non-random evolution scenarios. Also the results in this section

Let σ be a commuting permutation of size n, i.e. a signed permutation whose
strong interval tree TS(σ) has no prime vertex. It follows from the combinatorial
specification of strong interval trees given in Section 3.1 that TS(σ) is simply
a plane tree with internal vertices having at least two children and a sign on
the root (from Property 1, that defines implicitly the signs of the other internal
vertices, and the labels {1 . . . n} of the leaves). These trees are then Schröder
trees (entry A001003 in the On-Line Encyclopedia of Integer Sequences [18])
with a sign on the root.
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Theorem 3. The average length of a parsimonious perfect scenario for a com-
muting permutation of length n is asymptotically

1 +
√

2
2

n  1.2n.

Proof. We now sketch the main steps of the proof. From the previous section and
points 2 and 3 in Theorem 1, the problem of computing the expected number
of reversals of a parsimonious perfect scenario reduces to computing the ex-
pected number of internal vertices of TS(σ) other than the root (because, from
Property 1.1, two adjacent linear vertices cannot have the same sign) and the
expected number of leaves whose sign in σ differs from the sign of its parent in
TS(σ).

The expected number of leaves whose sign in σ is different from its parent in
TS(σ) is obviously n/2, as the sign of the leaf and of its parent are independent.

To compute the average number of internal vertices in a Schröder tree, we use
symbolic methods as defined in [13]. Let us define the bivariate generating func-
tion S(x, y) =

∑
k,n Sn,kxnyk where Sn,k denotes the number of Schröder trees

with n leaves and k internal vertices. The average number of internal vertices in
a Schröder tree with n leaves is∑

k kSn,k∑
k Sn,k

=
[xn]∂S(x,y)

∂y |y=1

[xn]S(x, 1)
.

A Schröder tree can be recursively described as a single leaf, or a root having at
least two children, which are again Schröder trees. Consequently, S(x, y) satisfies
the equation

S(x, y) = x + y
S(x, y)2

1− S(x, y)
,

and solving this equation gives

S(x, y) =
(x + 1)−

√
(x + 1)2 − 4x(y + 1)
2(y + 1)

. (2)

The number [xn]S(x, 1) of Schröder trees ([18, entry A001003]) is asymptoti-
cally equivalent to √

3
√

2− 4
4

(3 + 2
√

2)n 1√
πn3

.

From Equation (2) we obtain an equivalent of the coefficients [xn]∂S(x,y)
∂y |y=1

when n→∞ :

[xn]
∂S(x, y)

∂y
|y=1 ∼

3− 2
√

2

4
√

3
√

2− 4
(3 + 2

√
2)n 1√

πn
.

An equivalent of the average number of internal vertices in a Schröder tree
with n leaves is now easily derived as

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
∼ 3− 2

√
2

3
√

2− 4
n ∼ n√

2
.
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Combined with the average number n/2 of leaves whose sign is different from
its parent in TS(σ), and correcting for having counted the root in the internal
vertices (by substracting 1, which does not count asymptotically), this leads to
Theorem 3. 
�

Remark 2. It is interesting to note the large representation of reversals of
length 1, that composes almost half of the expected reversals. A similar property
was observed in [17] on datasets of bacterial genomes.

Theorem 4. The average length of a reversal in a parsimonious perfect scenario
for a commuting permutation of length n is asymptotically

27/4
√

3− 2
√

2
1 +

√
2

√
πn  1.02

√
n

Proof. We want to compute the ratio between the average sum of the lengths of
the reversals of a parsimonious perfect scenario for a commuting permutation and
the average length of such a scenario. The later was obtained above (Theorem 3),
and we concentrate on the former.

A reversal defined by a vertex x of the strong interval tree TS(σ) is of length
L(x) (it reverses the segment of the signed permutation that contains the leaves
of the subtree rooted at x, see [4]). We first focus on the average value of the sum
of the sizes of all subtrees in a Schröder tree. For simplicity in the computation,
we will also count the whole tree and the leaves as subtrees (obviously of size 1),
which will give the same quantity we want to compute, up to subtracting 3/2 ·n
to the final result. We first define the bivariate generating function (that we call
again S, but which is slightly different)

S(x, y) =
∑
k,n

Sn,kxnyk

where Sn,k denotes the number of Schröder trees with n leaves and sizes of
subtrees (including leaves and the whole tree) that sum to k. The average value
of the sum of the sizes of every subtree in a Schröder tree with n leaves is∑

k kSn,k∑
k Sn,k

=
[xn]∂S(x,y)

∂y |y=1

[xn]S(x, 1)
.

S(x, y) satisfies the functional equation

S(x, y) = xy +
S(xy, y)2

1− S(xy, y)
. (3)

which leads to

∂S(x, y)
∂y

|y=1 =
x

(1− C)2
, where C =

2S(x, 1)− S(x, 1)2

(1− S(x, 1))2
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and then to

[xn]
∂S(x, y)

∂y
|y=1 ∼

3− 2
√

2
2

(3 + 2
√

2)n

An equivalent of the average value of the sum of the sizes of all subtrees in a
Schröder tree with n leaves is now easily derived as

[xn]∂S(x,y)
∂y |y=1

[xn]S(x, 1)
∼ 23/4

√
3− 2

√
2
√

πn3.

The above result does take into account the whole tree and all leaves, that
should not be counted but these terms are negligible asymptotically. Hence, the
average sum of the lengths of the reversals of a parsimonious perfect scenario for
a commuting permutation of size n is asymptotically

23/4
√

3− 2
√

2
√

πn3.

Dividing by the average number of reversals of such a scenario (Theorem 3),
we obtain Theorem 4. 
�

5 Conclusion and Perspectives

We showed that perfect sorting by reversals, although an intractable problem, is
very likely to be solved in polynomial time for random signed permutations. This
result relies on a study of the shape of a random strong interval tree that shows
that asymptotically such trees are mostly composed of a large prime vertex
at the root and small subtrees. As the strong interval tree of a permutation
is equivalent to the modular decomposition tree of the corresponding labeled
permutation graph [4], this result agrees with the general belief that the modular
decomposition tree of a random graph has a large prime root. We were also able
to give precise asymptotic results for the expected lengths of a parsimonious
perfect scenario and of a reversal of such a scenario for random commuting
permutations.

Our research leaves open several problems. The most natural theoretical prob-
lem is to prove that computing a parsimonious perfect scenario can be done in
polynomial time on the average. It would also be interesting to see if our approach
can be extended to the perfect rearrangement problem for the Double-Cut-and-
Join model that has been introduced recently [6] and has the intriguing property
that instances that were hard to solve for reversals can be solved in polynomial
time in the DCJ context and conversely. From a more applied point of view, our
results can be applied to the general problem of detecting genome segments that
evolve under non-random evolutionary pressure, or more generally whose evolu-
tion differs from what would be expected for random permutations. This could
be done by detecting subtrees of strong interval trees obtained from real data
whose properties differ from the properties of random subtrees. It then would be
useful to extend them to more general trees, such as trees with small number of
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prime nodes. Finally, we plan to apply our techniques to find precise properties of
random PQ-trees. PQ-trees lie between strong interval trees with no prime nodes
and unrestricted strong interval trees. They have been widely used in genomics,
for physical mapping [21], comparative genomics [16] and paleogenomics [10],
but very little is known about their random properties [21].
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Abstract. Factor and suffix oracles have been introduced in [1] in order
to provide an economic and efficient solution for storing all the factors
and suffixes respectively of a given text. Whereas good estimations exist
for the size of the factor/suffix oracle in the worst case, no average-case
analysis has been done until now. In this paper, we give an estimation
of the average size for the factor/suffix oracle of an n-length text when
the alphabet size is 2 and under a Bernoulli distribution model with
parameter 1/2. To reach this goal, a new oracle is defined, which shares
many of the properties of a factor/suffix oracle but is easier to study and
provides an upper bound of the average size we are interested in. Our
study introduces tools that could be further used in other average-case
analysis on factor/suffix oracles, for instance when the alphabet size is
arbitrary.

Keywords: indexing structure, average-case analysis, factor recognition,
suffix recognition.

1 Introduction

Finding a given pattern inside a given text is a classical problem (the pattern
matching problem) for which many solutions have been proposed until now. A
very important class of solutions relies on the use of indexing structures, i.e. data
structures that allow to store the text, to have a fast access to it and to quickly
execute certain operations on data. Suffix arrays, suffix automata, suffix trees
are classical structures which can be implemented in linear time with respect to
the text size.

Still, these structures require a too important (although linear) amount of
space. Several techniques for reducing the memory space needed by index im-
plementation were developed (see [4] for a survey). Language approximation is
one of these techniques, and factor/suffix oracles (introduced in [1]) are one way
to illustrate it. Whereas suffix arrays, suffix automata and suffix trees owe their
efficacity to their perfect accuracy when answering to the question “Is the word
w a suffix (or a factor) of the stored text?”, the factor/suffix oracles are only
accurate when they provide the negative answer. The language each of them
recognizes is larger or equal to the set of factors/suffixes (respectively) of the
text, but their size is very small. The words accepted by a factor/suffix oracle
which are not factors/suffixes of the stored text will be termed by-products.
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A simple, space economical and linear on-line algorithm to build oracles is
given in [1], together with some applications to pattern matching. Other appli-
cations to pattern matching, finding maximal repeats and text compression can
be found in [8], [9], [10] and [11]. A linear compression algorithm, improving
the previous quadratic algorithms proposed in [2] and [3], to transform a suffix
tree into an oracle can be found in [16]. Another algorithm, based on Ukkonen’s
algorithm to build a suffix tree, is given in [5].

Two ideas come easily out from these applications. On the one hand, oracles
should be reasonably envisaged when one has to deal with a text mining prob-
lem. On the other hand, evaluating precisely the performances of an application
that uses oracles is a hard task, especially in the average case. Although the-
oretical studies have been performed for the maximum number of transitions
[1] and the maximum number of by-products [12] for the oracles of an n-length
text, no theoretical study exists in the average case (An experimental study was
realized in [12] for the number of by-products). As a consequence, no theoretical
average-case running-time or memory space analysis exists for any algorithm
based on oracles. Moreover, experimentally supported conjectures are still open.
This is the case, for instance, for the conjecture claiming that the BOM pattern
matching algorithm presented in [1] is optimal in the average.

In this paper, we estimate the average number of transitions (i.e. the average
space occupancy) of the factor/suffix oracle of an n-length text, when the alphabet
size is 2 and under a Bernoulli distribution model with parameter 1/2. In this way,
we answer another one of the questions raised in the seminal paper [1] (and raised
again in [5]). The first of these questions, concerning the characterization of the
language recognized by the factor/suffix oracle, was answered in [13].

The paper is organized as follows. In Section 2 we define the factor/suffix
min-oracle (which is the classical factor/suffix oracle) and present its main prop-
erties. In Section 3, the factor/suffix short-oracle is introduced and is briefly
compared to the factor/suffix min-oracle. In section 4, we investigate local prop-
erties of the min- and short-oracles and deduce probabilistic results, that we use in
Section 5 to estimate the average space occupancy of a short-oracle, and thus of
a min-oracle. Section 6 is the conclusion.

2 Factor and Suffix (min-)Oracles

Let w = w1w2 . . . wn be a sequence of length |w| = n on a finite alphabet Σ.
Given integers i, j, 1 ≤ i, j ≤ n, we denote w[i . . . j] = wiwi+1 . . . wj and we
call this word a factor of w (notice that when j < i the resulting factor is
by convention the empty word ε). A suffix of w is a factor of w one of whose
occurrences ends in position n. The i-th suffix of w, denoted Suffw(i), is the
suffix w[i . . . n] and has length n + 1 − i. A prefix of w is a factor of w one of
whose occurrences starts in position 1. The i-th prefix of w, denoted Prefw(i),
is the prefix w[1 . . . i]. By convention, the empty word ε is both a suffix and a
prefix of w. Say that a suffix of w is maximal if it is not identical to w and it is
not the prefix of another suffix of w. Say that a suffix of w is repeated if it is a



328 J. Bourdon and I. Rusu

0 1 2 3 4 5 6 7 8 9 10
b

b

b

b

b b b ba

a

a a

a

a

Fig. 1. The suffix min-oracle Omin(w) for w = baabbababb. The final states are grey.

factor of w[1 . . . n − 1], and non-repeated in the contrary case. It is easy to see
that a maximal suffix is always a non-repeated suffix, whereas the viceversa is
true only for non-repeated proper suffixes, i.e. distinct from w.

The factor/suffix oracle of w is a deterministic automaton which has n + 1
states denoted 0, 1, 2, . . . , n, one internal transition (i, wi+1, i+1) for each state i
except n, and at most n−1 external transitions denoted (i, wj , j), for some pairs
i, j with i + 1 < j. Consequently, the factor/suffix oracle of w is homogeneous,
that is, all the transitions incoming to a given state have the same label. Each
state is final in the factor oracle, while only the states ending the spelling of a
suffix of w (including the empty one) are final in the suffix oracle (see Figure 1
for the suffix oracle of w = baabbababb).

The factor/suffix oracle was introduced in [1] and can be built using an on-line
linear algorithm. The algorithm Build Oracle we give here (also proposed in
[1]) is quadratic, but more intuitive. In the algorithm, Omin(w) denotes indif-
ferently the factor or suffix oracle.

Figure 1 shows that the factor/suffix oracle can accept words that are not
factors/suffixes, e.g. baabb which is not a suffix of w = baabbababb but is accepted
in the final state 4 of its suffix oracle. These words are called by-products.

Algorithm Build Oracle [1]
Input: Sequence w.
Output: Omin(w).

1. for i from 0 to n do
2. create a new state i;
3. for i from 0 to n − 1 do
4. build a new transition from i to i + 1 by wi+1;
5. for i from 0 to n − 1 do
6. let x be a minimum length word whose reading ends in state i;
7. for all γ ∈ Σ, γ �= wi+1 do
8. if xγ is a factor of w′ = w[i − |x| + 1 . . . n] then
9. let j be the end position of the first occurrence of xγ in w′;

10. build a transition from i to j by γ
11. endif
12. endfor
13. endfor

Several important results on oracles have been proved in [1]. Here are the ones
which will be needed in the rest of the paper. We denote poccur(v, w) the ending
position of the first occurrence of v in w, for each factor v of w.
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Lemma 1. [1] Let w be a word of length n on the alphabet Σ. Then we have:

(i) For each state i of Omin(w), there is a unique minimum length word ac-
cepted in i, that we note minw(i).

(ii) For each state i of Omin(w), we have i = poccur(minw(i), w). In addition,
minw(i) is a suffix of every other word accepted in state i.

(iii) If i < j are two states of Omin(w) and γ ∈ Σ, then there exists a transition
(i, γ, j) in Omin(w) if and only if we have j = poccur(minw(i)γ, w).

(iv) Each factor v of w is recognized by Omin(w) in a state j such that j ≤
poccur(v, w).

For a word u on Σ, let min(u) = minu(|u|) and notice that if we denote
u =Prefi(w), then min(u) = minw(i) and all the properties in Lemma 1 may be
formulated using min(u) instead of minw(i).

Remark 1. The algorithm Build Oracle may be seen as a generic algorithm
where the function used to define the word x in step 6 acts as a generator of
external transitions. From this perspective, the factor/suffix oracle is the au-
tomaton defined by this generic algorithm using the precise function min() as
a generator. This is why, in the rest of the paper, the factor/suffix oracle will
be called the factor/suffix min-oracle (or simply the min-oracle) and will be
denoted (as we already did) Omin(w).

The best (to the date) estimation of the maximum number of external transitions
in a min-oracle was proved in [16].

Lemma 2. [16] The number of external transitions ETmin(w) of the oracle
Omin(w) is upper bounded by the number of maximal suffixes of w.

3 Factor and Suffix short-Oracles

Provided a word u on Σ, denote short(u) the shortest non-repeated suffix of u (by
convention, short(ε) = ε). Then, consider the generic algorithm Build Oracle
in which the generator is now the fonction short(). Or, equivalently, step 6
now reads x = short(Prefi(w)), instead of the affectation x = min(Prefi(w))
performed to obtain Omin(w). The resulting homogeneous automaton is denoted
Oshort(w) and is called the short-oracle of w. Its factor and suffix versions are
obtained as for the min-oracle.

Remark 2. For some sequences w, Omin(w) and Oshort(w) are identical, but
this is not always the case, since short(u) and min(u) may be different, as
is the case for u = baabbab: short(u) = bab and min(u) = bbab. Then Oshort
(baabbababb) has one external transition labeled b leaving state 7 (see
Figure 3) because of the occurrence of babb ending in state 10. In opposition,
Omin(baabbababb) has no such transition since bbabb has no occurrence ending
in a state j > 7.
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Fig. 2. The suffix short-oracle Oshort(w) for w = baabbababb. The final states are grey.
The supplementary transition with respect to Omin(w) is dotted.

Although possibly different, the min- and short-oracles share many good prop-
erties, as shown by the following claim, very close to Lemma 1.

Claim 1. Let w be a word of length n on the alphabet Σ. Then we have:

(i) For each word u, there is a unique shortest non-repeated suffix of u. Con-
sequently short(u) is well-defined.

(ii) For each state i of Oshort(w), we have i = poccur(short(u), w) where
u =Prefi(w). In addition, short(u) is a suffix of every other word accepted
in state i.

(iii) If i < j are two states of Oshort(w) and γ ∈ Σ, then there exists a transition
(i, γ, j) in Oshort(w) if and only if we have j = poccur(short(u)γ, w),
where u =Prefi(w).

(iv) Each factor v of w is recognized by Oshort(w) in a state j such that j ≤
poccur(v, w).

It is worth noticing here that, although the external transitions of the min- and
short-oracles are built according to similar rules and satisfy similar properties
(items (iii) in Lemma 1 and Claim 1), it is however much easier to find short(u)
than min(u). Indeed, short(u) is simply obtained by considering every suffix of
u and testing whether it occurs elsewhere in u, whereas finding min(u) needs to
build the min-oracle. As a consequence, it is much easier as well to estimate the
number of external transitions in Oshort(w) than in Omin(w). This is why the
following result is essential.

Claim 2. Let w be a sequence and let ETmin(w), ETshort(w) be the number
of external transitions in Omin(w) and Oshort(w) respectively. Then we have
ETmin(w) ≤ ETshort(w).

4 Probabilities that an External Transition Exists for
Binary Alphabets

We now focus on random binary sequences issued from an unbiased Bernoulli
model B, in which a sequence w on Σ = {a, b} is produced with probability
pw = 1/2|w|. We denote by Bn the restriction of B to sequences w of length n.

The two parameters below are of great relevance for our study:
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• pmini→j , where 0 ≤ i < j ≤ n, is the probability that there exists a transi-
tion from state i to state j in Omin(w).

• pmini, where 0 ≤ i < n, is the probability that an external transition leaving
state i exists in Omin(w). Obviously, the equality pmini =

∑n
j=i+2 pmini→j

holds.

We first provide exact expressions for the probabilities pmini→j and pmini

when i = 0 or i = 1. In these simple cases, it is possible to characterize pre-
cisely the language of sequences whose min-oracle possesses a transition from
state i to state j, when two states i and j are given. An exact formula for the
expected probability is then derived. In the general case, such a characterization
is no longer possible and we use a method based on Guibas-Odlyzko’s equa-
tions together with a generating functions methodology to obtain the desired
probabilities, as well as their equivalents in the short-oracle.

4.1 Languages Viewpoint

Leaving state i = 0. First, we study the case of transitions that leave state 0.
Let w be a sequence of length n and let j (1 < j ≤ n) be an integer. It is obvious
that the min-oracle of w possesses a transition from 0 to j if and only if j is the
position of first occurrence of a new letter. In the binary case, this means that
w is any sequence of one of the languages aj−1b(a + b)n−j or bj−1a(a + b)n−j . It
is easy to show the following:

Claim 3. Let j (1 < j ≤ n) be an integer. Under the Bernoulli model Bn, we
have pmin0→j = 1

2j−1 and pmin0 = 1− 1
2n−1 .

Leaving state i = 1. Let j (3 < j ≤ n) be an integer. Two cases must be
considered with respect to the two first letters of the sequence w.

If they are equal, say aa, then there is a transition from state i = 1 to state j
if, and only if, j is the position of the first occurrence of b in w. The probability
of such an event is 1/2j−1.

If they are distinct, say ab, then there exists a transition from state i = 1 to
state j if, and only if, the first occurrence of aa ends at position j. This implies
that j > 4 and w must belong to one of the two languages La = ab[(b + ab)� ∩
(a + b)j−4]aa(a + b)n−j and Lb = ba[(a + ba)� ∩ (a + b)j−4]bb(a + b)n−j . In order
to deduce the probability for w to belong to La or Lb, we first give the following
result.

Claim 4. The number of sequences of size J ≥ 0 of the form (b + ab)� equals
the (J + 1)-th Fibonacci number FJ+1 defined recursively by F0 = F1 = 1, and
for all h > 1, Fh = Fh−1 + Fh−2.

Previous lemma together with Binet’s formula on Fibonacci numbers (FJ =
(φJ+1 − φ

J+1
)/
√

5, where φ = 1+
√

5
2 ≈ 1.618 is the Golden ratio and φ =

1−√
5

2 ≈ −0.618 its conjugate), allows us to prove the following result.
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Claim 5. Let j, 3 < j ≤ n be an integer. Under the Bernoulli model Bn, we
have

pmin1→j =
Fj−3 + 1

2j−1 =
1

2j−1

[
1 +

1√
5
(φj−2 − φ

j−2
)
]

(1)

pmin1 = 1− Fn−1 + 1
2n−1 .

We now focus on obtaining asymptotic expressions when i is arbitrary, and
need to apply a classical study involving generating functions.

4.2 Generating Functions Methodology

This section is devoted to a brief presentation of some essential tools from the
generating function theory. The reader can refer to [17] for details and supple-
mentary material. After a general approach using an alphabet with an arbitrary
number of symbols that is randomly generated by a Bernoulli probabilistic pro-
cess, we focus on the simpler case of a binary alphabet whose symbols are pro-
duced uniformly at random. In this section, Σ is a finite alphabet, Σ� is the set
of all possible words of any length and Σ+ is the set of all possible words of any
length except the empty word ε. For two sequences x and u in Σ�, the function
occ(x, u) counts the number of occurrences of motif x in the text u.

Generating functions are very useful tools to study average-case problems
on languages. Let L be a language. The generating function L(z) associated to
language L is defined by L(z) =

∑
u∈L puz|u|, where pu is the probability of

word u to be produced. In the sequel, we denote by [zk]L(z) =
∑

u∈L∩Σk pu the
coefficient of zk in L(z), that equals the probability for a word of length k to
belong to L.

Consider the following three sets

Sx = {u ∈ Σ�, occ(x, u) = 0},
Tx = {u ∈ Σ�, u = v · x and occ(x, u) = 1},
Cx = {u ∈ Σ�, ∃v, v′ ∈ Σ+, v · u = v′ · v = x},

where v · u denotes the concatenation of the two words u and v in this order.
These sets are very classical in the so-called Guibas-Odlyzko [6] methodology.
The first one, Sx, is the set of words that do not contain x as a factor. The
second one, Tx, is the set of words that contain x only as a suffix. Finally, Cx is
the set of suffixes u of x such that x is a suffix of x ·u. Set Cx is commonly called
the autocorrelation set of x.

In the same vein, we define the correlation set Cx,y between two words x and
y by Cx,y = {u ∈ Σ�, ∃v ∈ Σ�, v′ ∈ Σ+, x = v · v′ and y = v′ · u}.

Sets Sx, Tx and Cx are related by the following equalities

Sx ×Σ + ε = Sx + Tx and Sx × x = Tx × Cx.
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By using decomposition properties of memoryless sources, such algebraic decom-
positions on sets directly translate into equations involving generating functions.
By solving the resulting system of equations, one obtains:

Lemma 3 (Guibas-Odlyzko [6]). The generating functions, denoted respec-
tively Sx(z), Tx(z) and Cx(z), of the sets Sx, Tx, Cx satisfy

Sx(z) =
Cx(z)/px

Dx(z)
and Tx(z) =

z|x|

Dx(z)
,

where px is the probability of word x to be produced and Dx(z) = z|x| + (1 −
z)Cx(z)/px is a polynom of degree |x|.

Thus Sx(z) and Tx(z) are rational functions whose dominant singularities
(i.e., the dominant roots of Dx(z)) dictate the main order asymptotic term of
[zk]Sx(z) and [zk]Tx(z). The following lemma may be found in [15].

Lemma 4 (Szpankowski-Regnier [15]). The coefficients of [zk] (with k > 0)
in Sx(z) and Tx(z) satisfy

[zk]Sx(z) = Kxρ−(k+1)
x + O(µ−k

x ) and [zk]Tx(z) = K ′
xρ−(k−|x|+1)

x + O(µ−k
x ),

where ρx is the root of Dx(z) of smallest modulus, Kx = −Cx(1)
pxD′

x(ρx) , K ′
x = −1

D′
x(ρx)

and µx is the second modulus of roots of Dx(z).

As an example, it is easy to get the main order term of pmin1→j. In this case,
pmin1→j and the generating function of Taa are related by pmin1→j = 1

2j−1 +
2[zj]Taa(z). The denominator Daa(z) = z2+4(1−z)(1+z/2) of Taa(z) possesses
ρaa = 2/φ as dominant root and µaa = |2/φ| ≈ 3.236. Applying Lemma 4 leads
to the expected asymptotic expression of pmin1→j given in equation (1).

In the case of binary Bernoulli unbiased sources, the root ρw can be approxi-
mated by a quantity depending only on the word length |x|.

Claim 6. Let x be a binary word of length k > 1, sk = ρak and rk = ρak−1b.
We have:

(i) sk ≤ ρw ≤ rk;
(ii) rk+1 = sk;
(iii) if |x| = k > 2, ρx = 1 + 1

2k + o(1/2k).

4.3 Probabilities of an External Transition : General Case

Define the two parameters pshorti→j and pshorti similarly to pmini→j and
pmini, but for Oshort(w).

Now, coming back to the binary case we show how transition probabilities
(pmini→j , pmini, pshorti→j and pshorti) can be related to Guibas-Odlyzko
languages Sx and Tx defined in previous section.
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Remark 3. For the sake of simplicity, we deduce in this subsection general ex-
pressions only for pmini→j and pmini. However, the reader will easily notice that
the only property of Omin(w) used in this section is Lemma 1 (iii), and that this
property has an equivalent for Oshort(w), namely Claim 1 (iii). Consequently,
the reasoning and the results in this part are easily transfered to Oshort(w)
(just by replacing min(u) by short(u) appropriately), so as to obtain similar
expressions for pshorti→j and pshorti.

For each letter m ∈ {a, b}, notation m designates the opposite letter (e.g.,
a = b and b = a). We now prove the two following claims.

Claim 7. Let i < j − 1. The set Pi→j,n of all binary words of length n whose
oracle possesses an external transition from state i to state j is

Pi→j,n =
⋃

u∈Σi,m∈Σ

u ·m ·
((
Tmin(u)·m ∪ Cmin(u)·m,min(u)·m

)
∩Σj−i−1) ·Σn−j .

In the same vein, it is possible to obtain a similar expression for the transitions
leaving a given state.

Claim 8. The set Pi,n of all binary words of length n whose factor oracle pos-
sesses an external transition leaving state i equals

Pi,n =
⋃

u∈Σi,m∈Σ u ·m ·
((

cSmin(u)·m ∪

(Smin(u)·m ∩ (Cmin(u)·m,min(u)·m ·Σ�))
)
∩Σn−i−1

)
,

where cX = Σ� \X denotes the complementary set of X.

Formulas for pmini→j and pmini. It is now obvious to derive expressions
for pmini→j and pmini by means of dominant roots of Guibas-Odlyzko’s gen-
erating functions. Indeed, pmini→j =

∑
w∈Pi→j,n

pw and pmini =
∑

w∈Pi,n
pw.

Then, Claims 7 and 8 allow to express these probabilities as particular coefficients
of generating functions Tmin(u)·m(z), Smin(u)·m(z) and Cmin(u)·m,min(u)·m(z). The
following claim providing asymptotic approximations for the transition proba-
bilities is a direct consequence of Lemma 4.

Claim 9. Under Bn, the probabilities that an external transition exists satisfy

pmini→j =
1

2i+1

∑
u·m∈Σi+1

K ′
min(u)·mρ

−j+i+|min(u)|+1
min(u)·m + O(1/2j−i),

pmini =
1

2i+1

∑
u·m∈Σi+1

(
1−Kmin(u)·mρ−n+i

min(u)·m
)

+ O(1/2n−i−1),

where ρx, Kx and K ′
x are quantities defined in Lemma 4.
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Simpler approximations. The two previous expressions are quite ineffective
because they involve sums over all possible words of a given length. Now, we show
that it is possible to obtain computable approximation formulas for pmini→j and
pmini. The approximation involves the probability distribution of the minimum
length words, which is defined as follows. Let M(u) = |min(u)| be the function
that associates with any word u the length of its minimum length word. The
restriction of M(u) to Bi is itself a random variable denoted by Mi. Its probabil-
ity distribution, called in the sequel probability distribution of minimum length
words is defined by Prob{Mi = k} =

∑
u∈Σi,M(u)=k

1
2i .

Claim 10. Let Prob{Mi = k} be the probability distribution of minimum length
words, αk = 1

2k and λk = 1+ 1
2k . The transition probabilities pmini→j and pmini

satisfy

pmini→j =
i∑

k=1

Prob{Mi = k}αk+1λ
−j+i+k+1
k+1 + O(1/2j−i),

pmini = 1−
i∑

k=1

Prob{Mi = k}λ−n+i
k+1 + O(1/2n−i−1).

Remark 4. According to Remark 3, pshorti→j and pshorti satisfy the same
equalities as pmini→j and pmini in Claim 10, up to Prob{Mi = k} which is
replaced by Prob{Si = k}, where S(u) = |short(u)| is the size of the minimum
length non repeated suffix of u and Si its restriction to Bi.

5 Average Space Occupancy

The memory requirement for storing the min-oracle of w is the sum of the number
of states of Omin(w) (fixed and equal to n+1), the number of internal transitions
(fixed and equal to n) and the number of external transitions. As an application
of our results, we present now an estimation of the average space occupancy
(in terms of external transitions) E [ETminn], where ETmin(w) is the function
that counts the number of external transitions of Omin(w) and ETminn is its
restriction on Bn. This estimation is computable in linear time.

Theorem 1. Under Bn (the set of random independently and identically dis-
tributed binary words of length n), the average space occupancy E [ETminn] in
terms of external transitions of a min-oracle for a word of length n satisfies

E [ETminn] ≤ pmin0 + pmin1 + (n− 3)−
n−2∑
k=2

γk−1
k λk−n

k+1 − γn−2
k λ−1

k+1

1− γkλk+1

−
n−2∑
k=2

γk−1
k−1λk−n

k+1 − γn−2
k−1 λ−1

k+1

1− γk−1λk+1

with γk = 1− 1
2k and λk = 1 + 1

2k .



336 J. Bourdon and I. Rusu

Proof. First notice that the average space occupancy equals the sum of all prob-
abilities of leaving states,

E [ETminn] =
n−2∑
i=0

pmini.

It is thus of great interest to obtain a tractable formula for pmini and con-
sequently for Prob{Mi = k}, the distribution probability of minimum length
words. It is still a challenge to obtain such formulas for min-oracles. Claim 2
proves that the average number E [ETshortn] of external transitions of short-
oracles provides an upper bound for the expectation E [ETminn]. Then we con-
centrate on computing E [ETshortn] =

∑n−2
i=0 pshorti, where the expression of

pshorti is obtained using Remark 4. We then study the probability distribution
of Si. Then, considering the prefix tree built using all the prefixes of the mirror
wi · · ·w1 of word w = w1 · · ·wi, |short(w)|−1 exactly equals the insertion depth
of the i-th prefix in the tree. In [14], Park et al. study the probability distribution
of insertion depth in the case of random words built by an i.i.d. binary source. Ap-
plying their results to Si yields Prob {Si = k} = γn−1

k −γn−1
k+1 , with γk = 1−2−k.

Next, we use exact formulas for pshort0 = pmin0 and pshort1 = pmin1 and ap-
proximations for other probabilities. Finally, it is possible to invert the double
sum

∑n−2
i=2

∑i
k=2 into

∑n−2
k=2

∑n−2
i=2 which involves geometric sums leading to the

expected result. 
�

6 Conclusion

In this paper, we provide precise approximations for the probabilities that an
external transition exists in the min- and short-oracles. These approximations
allow us to study the average space occupancy of these oracles. The main goal
of such results is to allow comparing the factor/suffix oracle with other indexing
structures such as suffix trees, whose space occupancy closely depends on the
number of its internal edges, that is known to be of order n/ log 2 (see [7]).
Figure 3 compares our bound on the average number of external transitions
to the average number of edges of suffix trees. This latter figure suggests a
conjecture of n/3 + 1 for the average number of external transitions of short-
oracles.

Notice that one of the main open questions arising when studying oracles
concerns the number of words, recognized by an oracle, that are not factor or
suffixes. Our results should certainly be helpful since the total number of words
recognized by a factor oracle expresses as a sum

∑n
k=0 Nk, where Ni is the

expected number of words recognized in state i. They satisfy N0 = 1 and for
all 0 < j ≤ n, Nj =

∑j
i=0 pmini→jNi. It is still a challenge to solve this latter

recurrence. Nevertheless, it is quite easy to design a dynamical programming
algorithm yielding an upper bound for the expected number of words recognized
by a min-oracle, in the same vein of our bound for the expected number of
external transitions.
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Fig. 3. A comparison of the space occupancy of short-oracles and suffix trees
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Abstract. The haplotype inference problem (HIP) asks to find a set of
haplotypes which resolve a given set of genotypes. This problem is of
enormous importance in many practical fields, such as the investigation
of diseases, or other types of genetic mutations. In order to find the hap-
lotypes that are as close as possible to the real set of haplotypes that
comprise the genotypes, two models have been suggested which by now
have become widely accepted: The perfect phylogeny model and the pure
parsimony model. All known algorithms up till now for the above prob-
lem may find haplotypes that are not necessarily plausible, i.e. very rare
haplotypes or haplotypes that were never observed in the population.
In order to overcome this disadvantage we study in this paper, for the
first time, a new constrained version of HIP under the above mentioned
models. In this new version, a pool of plausible haplotypes H̃ is given
together with the set of genotypes G, and the goal is to find a subset
H ⊆ H̃ that resolves G. For the constrained perfect phylogeny haplo-
typing (CPPH) problem we provide initial insights and polynomial-time
algorithms for some restricted cases that help understanding the com-
plexity of that problem. We also prove that the constrained parsimony
haplotyping (CPH) problem is fixed parameter tractable by providing a
parameterized algorithm that applies an interesting dynamic program-
ming technique for solving the problem.

1 Introduction

Genetic information in living organisms is encoded in DNA sequences that are
organized into chromosomes. Diploid organisms such as humans have two copies
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of every chromosome, which are not necessarily identical, with each copy called
a haplotype. Identifying the common genetic variations that occur in humans are
valuable in understanding diseases [1]. The genetic sequences of the population
are almost totally identical, except from some bases that differ from one person
to another with a frequency of more than some threshold (1% for example).
Those differences are the common genetic variations and they are known as
single nucleotide polymorphisms (SNPs).

The data described in each haplotype may be the full DNA, but it is more
common to consider only the data of the SNPs since the other sites are assumed
to be identical. A genotype is the description of the two copies (haplotypes)
together. When the two haplotypes agree, the site in the genotype has the agreed
base. Such a site is called a homozygous site. When the two haplotypes disagree,
the genotype has both bases, yet it does not tell which base occur in which
haplotype. This type of site is called heterozygous.

Current biological technologies give us an easier and cheaper way to obtain
genotype data in comparison to haplotype data. However, the haplotype infor-
mation is the one of greater use [14]. For this reason, it is necessary to computa-
tionally infer the haplotype information from the genotype data. An important
biological fact is that almost always there are only two bases at a SNP, which
can be marked as 0 and 1. A genotype will have 0 or 1 if the two haplotypes
both have 0 or 1 in the same site respectively, or 2 otherwise.

In view of that, a set of genotypes and a set of haplotypes can be represented
as matrices. A genotype matrix is a matrix over {0, 1, 2} where each row is a
genotype and each column represents SNP, and a haplotype matrix is a matrix
over {0, 1}, where each row is a haplotype and each column represents SNP.

For the rest of the paper, let g(i) represent the data at site i of genotype g,
and h(i) the data at site i of haplotype h.

Definition 1 (Resolution). A pair of haplotypes {h, h′} is said to resolve g if
for each i: g(i) = h(i) where h(i) = h′(i), and g(i) = 2 otherwise. We extend
this and say that a set of haplotypes H resolves a set of genotypes G, if for each
g ∈ G, there is a pair {h, h′} ∈ H which resolves g. The pair {h, h′} is called a
resolution of g, and H is resolution of G.

Definition 2 (Haplotype Inference Problem (HIP)). Given a set of n
genotypes G, each of length m, find a resolution of G.

Note that if a genotype has d ≤ m heterozygous sites (sites marked with 2),
then the number of possible resolving pairs is 2d−1. The goal is to find the set
of pairs which as close as possible to the real set of haplotypes that created the
genotype. Currently, there are two models used in practice that give two different
biologically motivated heuristics on how to determine this:

1. Perfect Phylogeny: The perfect phylogeny model is a coalescent model
which assumes no recombination. This means that the history of the hap-
lotypes is represented as a tree where two haplotypes from two individuals
have at most one recent common ancestor [14] (see [12,14,19,27] for further
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information). Formally, a set of haplotypes (binary sequences) of length m
defines a perfect phylogeny if the haplotypes appear as labels of a rooted tree
which obeys the following properties [8]:

– Each vertex of the tree is labeled by a binary sequence of length m
representing a possible haplotype;

– Every edge (u, v) is marked with i, where the base at site i in sequence
u is different from the one in sequence v. Every coordinate i labels at
most one edge.

A common way of checking whether a set of haplotypes defines a perfect phy-
logeny is to check whether it obeys the four gamete test, i.e. the correspond-
ing haplotype matrix does not contain, in any two columns, the forbidden
gamete submatrix : (

0 1
1 0
0 0
1 1

)
.

See Figure 1 for an example of a perfect phylogenetic tree, and the cor-
responding haplotype matrix. The Perfect Phylogeny Haplotyping (PPH)
problem is the problem of finding for a given set of genotypes a resolution
which defines a perfect phylogeny, if such resolution exists.
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Fig. 1. Example of a perfect phylogenetic tree for the haplotypes h1 = (01000), h2 =
(01010), h3 = (10100), h4 = (10001). H is the haplotype matrix of the above haplo-
types, which obeys the four gamete test.

2. Pure Parsimony: The pure parsimony model seeks the minimum set of
haplotypes that resolves a given set of genotypes. The biological motivation
behind this is the statistical observation that the number of distinct haplo-
types in the population is vastly small [13,14]. The Parsimony Haplotyping
(PH) problem is the problem of finding a resolution of smallest size possible
for a given set of genotypes.

In [12], Gusfield showed that the PPH problem is solvable in O(nmα(nm))
time, where α is the inverse Ackerman function. Gusfield also showed a linear-
time algorithm to build, once the first solution is found, a linear-space data
structure that represents all PPH solutions. However, his work is based on com-
plex graph-theoretic algorithms which are difficult to implement [14]. In [2,8],
algorithms fine-tuned to the actual combinatorial structure of the PPH problem
were shown. These algorithms run in O(nm2) time and are easy to understand
and implement. They also give a representation of all PPH solutions. More recent
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work developed O(nm) time algorithms: In [6], the algorithm is graph-theoretic
and uses a directed rooted graph called a “shadow tree”, and in [25], the algo-
rithm is based on interdependencies among the pairs of SNPs, and builds a data
structure called “FlexTree” to represent all PPH solutions. Other works have
researched different variations of PPH [3,5,9,18].

The parsimony haplotyping (PH) problem was first suggested and proved to be
NP-hard by Earl Hubell (unpublished). Gusfield formally introduced the prob-
lem in [13], and proposed an integer linear programming solution. More integer
linear programming solutions following this were proposed in [4,13,16,22]. Ap-
proximation algorithms for the problem were presented in [22,23], and in [28], a
branch-and-bound algorithm was proposed. Other theoretical results were shown
in [20,22,26]. Most notably is the work of Sharan et. al [26], who characterized
restricted instances of PH under the term (α, β)−bounded, where α and β stand
for the maximum number of heterozygous sites per row and column of the geno-
type matrix. Sharan et al. also showed that the PH problem is fixed parameter
tractable (see [7] for formal definition) when parameterized by the number of
k haplotypes in the resolution of G. Many other works have researched other
variations of the haplotyping problem [10,11,15,17,21,24].

All known algorithms up till now for haplotype inference under the perfect
phylogeny model find resolutions for a given set of genotypes from the super-
set of all possible haplotypes (i.e. all m-length binary vectors). However, these
algorithms may find resolutions that include binary vectors representing haplo-
types that do not actually occur in the population, or are otherwise very rare.
It is therefore biologically interesting to force the resolving haplotypes to be
chosen only from a specific pool that contains only plausible haplotypes, i.e.
haplotypes which have already been observed in relatively high frequencies in
previous experiments. This pool can be determined by empirically setting up
some statistical threshold, or by any other reasonable method.

In view of all this, we study here for the first time, a new constrained variant
of the haplotype inference problem, in which a pool of plausible haplotypes H̃
is given alongside the set of genotypes G, and the goal is to find a resolution of
G which is a subset of H̃ .

Definition 3 (Constrained Haplotype Inference Problem (CHIP)).
Given a set of 
 distinct genotypes G, each of length m, and a pool of n dis-
tinct plausible haplotypes H̃ for G, each of length m, find a resolution H ⊆ H̃
of G.

The constrained perfect phylogeny haplotyping (CPPH) problem and the con-
strained parsimony haplotyping (CPH) problem are defined accordingly. Note
that if 
 > n(n − 1) in the above definition, there is no solution automatically,
since taking the entire pool of n plausible haplotypes we can resolve at most
n(n− 1) genotypes. On the other hand, there is no inequality necessarily in the
other direction. We therefore assume 
 ≤ n(n− 1) throughout the paper.

In this paper, we provide an initial insight to determining the complexity of
CPPH. We present a framework which helps partially answer this question, and
allows polynomial-time solutions for the CPPH (α, β) bounded cases of (*,1),
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(2,*), (5,2), and (3,3). As is the case for the PH problem [8,26] these cases can
be very useful for speeding up implementations of CPPH, but they also give a
glimpse into the complexity of the problem. For example, while it was proved
in [8] that MPPH and PH for (3,3)-bounded genotype matrices are both APX-
hard, we show that CPPH is polynomial-time solvable in this case.

In the second part of the paper we turn to consider CPH. We show that like
PH [8], CPH is fixed-parameter tractable when parameterized by the number of
haplotypes k in a minimum resolution H ⊆ H̃ of G. The parameterized algorithm
for CPH, is however much more involved than the one for PH, and it applies an
interesting dynamic programming technique for solving the problem. Proofs are
omitted due to space considerations.

2 Constrained Perfect Phylogeny Haplotyping

In this section we describe polynomial-time algorithms for CPPH with genotype
matrices of specific structures. In [26], bounded cases of genotype matrices were
introduced in order to explore the complexity of PH. The bounded cases were
defined as follows:

Definition 4 ((α,β)-bounded [26]). A genotype matrix G is (α,β)-bounded
if it has at most α 2’s per row and at most β 2’s. α and β might be * which
means there is no bound on the number of 2s per row or column, respectively.

Here we use the same term of (α,β)-bounded to present polynomial-time algo-
rithms for special cases of CPPH. We will present algorithms for the following
cases: (*,1), (2,*), (5,2) and (3,3).

We begin with the following lemma which lists ten matrices that we can
assume G does not include, since including any one of them implies that all
resolutions of G necessarily include the forbidden gamete submatrix. Its proof is
left to the reader.

Lemma 1. If G includes one of the following 2× 3 submatrices:(
2 0
0 2
1 1

)
,
(

2 1
1 2
0 0

)
,
(

2 0
1 2
0 1

)
,
(

2 1
0 2
1 0

)
,
(

2 1
0 0
1 0

)
,
(

1 2
0 0
0 1

)
,
(

2 0
1 1
0 1

)
, or

(
0 2
1 1
1 0

)
,

or one of the following 2× 2 submatrices: ( 2 0
2 1 ) or ( 0 2

1 2 ) , then G does not have
a perfect phylogenic resolution.

As in Eskin et al. [8], we will be working with pairs of columns in G. Pairs of sites
of a genotype can be split into two types, according to the data in those sites.
Type I includes the pairs of sites that have only one possible resolution. Those
pair of sites are (00), (01), (10), (11), (20), (21), (02) and (12). The resolutions
of those sites are described in the following list:

1. (00)→ ( 0 0
0 0 ) 2. (01)→ ( 0 1

0 1 ) 3. (10)→ ( 1 0
1 0 )

4. (11)→ ( 1 1
1 1 ) 5. (20)→ ( 0 0

1 0 ) 6. (21)→ ( 0 1
1 1 )

7. (02)→ ( 0 0
0 1 ) 8. (12)→ ( 1 0

1 1 )



344 M.R. Fellows et al.

Type II includes pairs of sites with (22) (22-columns). A 22-columns have two
potential resolutions: (22) → ( 0 0

1 1 ), which will be called equal resolution, or
(22)→ ( 0 1

1 0 ), which will be called unequal resolution.
Determining whether there is a perfect phylogenic resolution of G boils down

to deciding the resolution type, equal or unequal, for any pair of 22-columns.
For some 22-columns, the type of the resolution is determined by the given set
of genotypes, for others it determined by the given set of haplotypes, and for the
rest we need algorithms that will find the proper resolution.

2.1 Preprocessing

We next present a preprocessing stage which is performed before all algorithms
regardless of the specific structure of the input sets of genotypes or haplotypes.

A 22-columns ij must be resolved equally if the given set of geno-
types G includes at least one of the following submatrices in columns ij:
( 0 0

1 1 ) , ( 2 0
1 2 ) or ( 2 1

0 2 ) , since any resolution of G must include the combinations
”00” and ”11” in this case. For the same reason columns ij must be resolved
unequally when G includes at least one of the submatrices ( 0 1

1 0 ) , ( 2 0
0 2 ) or ( 2 1

1 2 ) .
We will call this type of constraints on the resolution type genotypes constraints.
In addition, a 22-columns ij must be resolved equally (unequally) if the haplo-
types set includes for some genotype only equal (unequal) resolutions. This type
of constraints will be called haplotypes constraints.

The preprocessing ensures that haplotype-pairs which violate the above
constraints will not be chosen. For each genotype gi ∈ G, we use H̃(gi)
to denote all possible resolutions of gi in H̃ , i.e. H̃(gi) = {{h, h′} |h, h′ ∈
H̃, h and h′ resolve gi}. The preprocessing step includes the following four steps:

1. Check whether the genotype matrix G can be resolved in a perfect phylogenic
way (use any algorithm from [2,6,8,25]). If not, report there is no solution.

2. For each genotype gi ∈ G, 1 ≤ i ≤ 
, go over all pairs of haplotypes from H̃
and compute H̃(gi).

3. For each genotype constraint, delete from the sets H̃(g1), . . . , H̃(g
) all hap-
lotype pairs that violate the constraint, i.e. resolve the relevant sites in a
different way than the constraint indicates.

4. For each haplotype constraint, delete from the sets H̃(g1), . . . , H̃(g
) all the
haplotype pairs that violate it. Note that the deletion of haplotypes may
create a new haplotype constraints. Repeat Step 4 until there is no change
in the haplotype constraints.

After each step of steps 2 to 4 in the preprocessing stage, if one of the hap-
lotypes sets H̃(g1), . . . , H̃(g
) becomes empty, it means there is no solution and
we done. Once the preprocessing is complete, our goal is to find a resolution
H ⊆ H̃ of G, by selecting one pair of haplotypes from each H̃(g), g ∈ G. From
here on out, we will only be concerned with resolutions of this type. Note that
even after the preprocessing stage, not all resolutions of this type will define a
perfect phylogeny. This is because we are still left with 22-columns that have yet
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been resolved, as there might be two different genotypes g and g′ which share a
common pair of 22-columns ij, and H̃(g) and H̃(g′) includes both resolutions for
ij (i.e. equally and unequally). Such a pair of resolution is said to be conflicting,
and more generally, any pair of resolutions {h1, h

′
1} and {h2, h

′
2} are conflicting

if {h1, h
′
1, h2, h

′
2} does not define a perfect phylogeny. We have the following two

important lemmas:
Lemma 2. After the preprocessing stage, {h1, h

′
1}, . . . , {hr, h

′
r} are pairwise

non-conflicting resolutions of r genotypes in G iff H =
⋃

1≤i≤r{hi, h
′
i} defines a

perfect phylogeny.

Proof. Let G′ ⊆ G denote the subset of r genotypes which H resolves. If H
defines a perfect phylogeny, then clearly {h1, h

′
1}, . . . , {hr, h

′
r} are pairwise non-

conflicting. To prove the other direction of the lemma, it suffices to show that any
four haplotypes in H define a perfect phylogeny. Suppose in way of contraction
that this is not the case. Then there are four haplotypes ha,hb,hc, and hd in
H , such that {ha, hb, hc, hd} do not define a perfect phylogeny. This means that
there is a pair of sites i, j ∈ {1, . . . , m} such that {ha, hb, hc, hd} will have the
forbidden gamete matrix at ij. There are three possible cases:
i) The four haplotypes belong to two different resolutions in
{h1, h

′
1}, . . . , {hr, h

′
r}. But this contradicts the assumption that

{h1, h
′
1}, . . . , {hr, h

′
r} are pairwise non-conflicting.

ii) The four haplotypes belong to three different resolutions in
{h1, h

′
1}, . . . , {hr, h

′
r}. Then, w.l.o.g., {ha, hb} is resolution of some

genotype g ∈ G′, and ij is a pair of 22-columns in g, since ha(i) = hb(i) and
ha(j) = hb(j). Suppose w.l.o.g. (the other case is symmetric) that ha and hb

resolve ij equally, i.e. ha(i) = ha(j) and hb(i) = hb(j), and let g′, g′′ ∈ G′

be the two genotypes that hc and hd resolve. Then it is not hard to verify
that G must include one of the following five submatrices at rows g′g′′ and
columns ij:

( 0 1
1 0 ) , ( 2 0

0 2 ) , ( 2 1
1 2 ) , ( 2 0

2 1 ) , or ( 0 2
1 2 ) .

If G includes the last two submatrices, then G does not have a perfect phylo-
genic resolution in the first place (Lemma 1), and so the preprocessing stage
would have reported “no solution”. If G includes the first three submatrices,
then there is a genotype constraint on ij stating that it must be resolved
unequally, and so {ha, hb} would have been removed from H̃ at step 3 of the
preprocessing stage. In both cases we reach a contradiction.

iii) The four haplotypes belong to four different resolutions in
{h1, h

′
1}, . . . , {hr, h

′
r}. Consider the four genotypes ga, gb, gc, gd ∈ G′

that ha,hb,hc, and hd resolve. If ij is a pair of 22-columns in one of these
genotypes, then this case is similar to the previous case. Otherwise, it is not
difficult to verify that G must include one of the forbidden submatrices of
Lemma 1, and so the preprocessing stage would have halted at its first step.
Therefore, contradiction.

In all three cases we have reached a contradiction, and so the lemma is proven.

�

Lemma 3. The preprocessing stage takes O(m4n2 + m2n4) time.
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2.2 The Dependency Graph

This brings us to the notion independency and dependency between genotypes.
Loosely speaking, a dependency between two genotypes g, g′ ∈ G arises when
the decision on how to resolve g affects the decision on how to resolve g′. This
obviously happens when there is a resolution {h1, h

′
1} ∈ H̃(g) conflicting with

a resolution {h2, h
′
2} ∈ H̃(g′). In this case we say that g and g′ are directly

dependent. If there is no resolution in H̃(g) conflicting with a solution in H̃(g′),
we say that g and g′ are independent.

We next introduce the dependency graph DG(G) of our given set of genotypes
G, after they have been preprocessed by the algorithm in the previous section.
Later on, we will use the properties of the dependency graph in our polynomial
algorithms.

Definition 5 (dependency graph). The dependency graph DG(G) of a set
of genotypes G is a graph which has a vertex for each genotype g ∈ G, and edge
between vertices representing directly dependent genotypes.

Lemma 4. After the preprocessing stage, two genotypes that do not have any
pair of 22-columns in common are independent.

Proof. Consider two genotypes g, g′ ∈ G that don’t have any common pair of 22-
columns. Suppose by way of contradiction that there is a resolution {hx, hy} ∈
H̃(g) conflicting with a {hx′ , hy′} ∈ H̃(g′). This means that there is a pair of
columns ij of {hx, hy, hx′ , hy′} that has the forbidden gamete matrix. But this
can only happen when G includes (in the rows gg′, and in columns ij) one of
the two 2× 2 forbidden submatrices of Lemma 1. 
�

Lemma 5. Let G1 and G2 be two connected components in DG(G). If H1 ⊆ H̃

and H2 ⊆ H̃ are perfect phylogenic resolutions of G1 and G2 respectively, then
H1 ∪H2 is a perfect phylogenic resolution of G1 ∪G2.

Proof. Consider any pair of resolutions in H1 ∪ H2 of two genotypes g, g′ ∈
G1 ∪ G2. If g and g′ are not both in G1, nor in G2, then there is no edge
between them in DG(G), meaning that they are independent. Hence, the pair
of resolutions is non-conflicting by definition. If g, g′ ∈ G1 or g, g′ ∈ G2, then by
Lemma 2, the pair of resolutions is non-conflicting as both H1 and H2 define a
perfect phylogeny. It follows that all resolutions in H1 ∪ H2 are pairwise non-
conflicting, and so again by Lemma 2, H1 ∪H2 defines a perfect phylogeny. 
�

In view of lemma 5, every connected component can be resolved individually,
and the union of the chosen haplotypes will give the desirable resolution of G.

2.3 (*,1)- and (2,*)-Bounded Cases

We next turn to show how to use the properties of the dependency graph DG(G)
to solve various bounded-cases of CPPH. We begin with the simple cases of (1,*)-
bounded and (*,2)-bounded genotype matrices.
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Lemma 6. Any pair of genotypes g1 and g2 in a (*,1)-bounded genotype matrix
are not directly dependent.

According to Lemma 6, if G is a (*,1)-bounded genotype matrix, then the de-
pendency graph DG(G) has no edges, and its connected components are of size
one. The algorithm will choose for H ′ one pair of haplotypes from every set Hi,
1 ≤ i ≤ n, and H ′ will define a perfect phylogeny according to Lemma 5.

Lemma 7. If g1 and g2 are two genotypes in a (2,*)-bounded genotype matrix,
then w.l.o.g. they are not directly dependent.

Theorem 1. CPPH with (*,1)- or (2,*)-bounded genotype matrices is
polynomial-time solvable.

2.4 (5,2)-Bounded Case

It is convenient to mark every edge {g, g′} in the dependency graph DG(G) with
the indices of the 2-columns g and g′ share. Observe that in the (*,2)-bounded
case, a specific index will appear only on one edge of the dependency graph,
since there are no more than two genotypes that have 2 in the same column.
Thus, for the (5,2)-bounded case, we have the following important property:

Lemma 8. If G is a (5,2)-bounded genotype matrix then DG(G) has maximum
degree 2.

The lemma above implies, that if G is a (5,2)-bounded genotype matrix then
every connected component in DG(G) is either a path or a cycle. Furthermore,
in the first case of the lemma, the connected component is of size 2, and all
solutions for it can be determined trivially. We therefore focus on the second
case of the lemma, where each edge in a given component is marked with at
most 3 indices. We will initially assume that the component is a path with all
edges labeled by two indices, and then show how to easily extend our ideas to
the case of edges labeled by three indices, and to the case of a cycle.

Consider a connected component G′ in DG(G) which is a path comprised
of r genotypes g1, . . . , gr, where g1 and gr are vertices of degree 1, and gi is
connected to gi+1, 1 ≤ i < r, by an edge which is marked with two indices. We
partition the internal genotypes of the path G′ into three types, depending on
the number of possible resolutions available for them. Let gi ∈ G′ be genotype in
G′ for some 1 < i < r, where {gi−1, gi} is labeled with two indices ab in DG(G),
1 ≤ a < b ≤ m, and {gi, gi+1} is labeled with two indices cd, 1 ≤ c < d ≤ m:

– Genotypes of type I have all four possible resolutions of ab and cd in H̃(gi).
– Genotypes of type II have only three out of four possible resolutions of ab

and cd in H̃(gi).
– Genotypes of type III have only two out of four possible resolutions of ab

and cd in H̃(gi).
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Note that these are the only possible cases, since we assume that any pair of
columns label an edge can be resolved either equally or unequally, otherwise
there is only one way to resolve it and we can remove this edge from the graph.

We next show how to find a perfect phylogenic resolution in H̃ for the case of a
path. Furthermore, we show that the path represents all legal perfect phylogenic
resolutions.

Lemma 9. In the case of a component which is a path with all edges labeled by
two different indices there is always a perfect phylogenic resolution in H̃.

We next show how to extend the above path algorithm to the case where some
edges are labeled with three indices in the (5,2)-bounded case. Consider an edge
{g, g′} labeled with three indices abc, 1 ≤ a < b < c ≤ m in DG(G). First we
check that H̃(g) includes only pairs of haplotypes that have a non-conflicting
resolution in H̃(g′) and vice versa. We do so by checking all possible resolutions
for columns abc in H̃(g) and H̃(g′) and deleting the resolutions that appear
only in one of those sets. This step ensures that if neither of the sets remains
empty (which means there is no solution), then the algorithm will choose for abc
a perfect phylogenic resolution. Note that the deletion of haplotype pairs may
require deletion of other haplotype pairs in H̃(g1), .., H̃(g
). Since that we will
repeat step 4 of the preprocessing described in section 2.1. Observe that in the
(5,2)-bounded case, the other edges connected to g and g′ are labeled with at
most two indices (since g and g′ have at most five 2s each). According to that
there are at most eight possible resolutions available for g and g′, which means
we can use the same path algorithm from lemma 9 while this time the algorithm
may have more resolution options to choose from for the three indices edges.

We are left to show how to extend the path algorithm to the case of a cycle.
Consider a cycle of r genotypes. The extension can be easily done by pulling
out one edge from the cycle, for example, w.l.o.g., the edge {gr, g1} what leaves
us with a path comprises of r genotypes g1, g2, ..., gr−1, gr. We now check what
are the possible resolutions for that path according to the way they resolve the
columns label the edges {g1, g2} and {gr−1, gr}. Note that there are exactly four
types of possible resolutions according to this definition. The way of checking
whether there exist any resolution of a specific type, for example the type that
resolves the columns label {g1, g2} and {gr−1, gr} equally, is to run the path
algorithm twice, in the first time starting from g1 by choosing an equal resolu-
tion to the columns label {g1, g2} and continue until reaching an edge with two
possible resolutions. The second run will start from gr and do the same on the
opposite direction. If any of those runs reach the end of the path with the wrong
resolution that means there is no resolution of the specific type. After knowing
what types of resolutions exists, it is only left to check whether the columns
label the removed edge {gr, g1} have a resolution that does not conflict with any
of those types.

Theorem 2. CPPH with (5,2)-bounded genotype matrices is polynomial-time
solvable.
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2.5 (3,3)-Bounded Case

In a (3,3)-bounded genotype matrix there are three cases of direct dependency
for every genotype g.

1. g is directly dependent with two other genotypes sharing the same 22-
columns. In this case any genotype of the three cannot be dependent with
any other genotype since it left with at most one 2 to share, and so the
corresponding connected component in DG(G) is of size 3.

2. g is directly dependent with three other genotypes. In this case all four
genotypes cannot be dependent with any other genotypes since they have at
most one 2 to share, and so the corresponding connected component is of
size 4.

3. g is directly dependent with exactly one other genotype g′, and they have
exactly one pair of 22-columns in common. In this case, g′ can be directly
dependent with another genotype g′′, and so forth. The corresponding con-
nected component in this case is a path, where each edge is labeled with two
indices.

In the first two cases, all perfect phylogeny solutions can be determine whether
the connected component has a prefect phylogeny resolution in H̃ by simple
exhaustive search. In the last case, we know by lemma 9 that the connected
component necessarily has a perfect phylogenic resolution in H̃ , and we can use
the algorithm described in that lemma for finding an actual solution. Observe
that the algorithm will work correctly since in the third case described above,
any pair of columns labels at most one edge across the path.

Theorem 3. CPPH with (3,3)-bounded genotype matrices is polynomial-time
solvable.

3 Constrained Parsimony Haplotyping

We next consider the CPH problem. In [26], Sharan et al. showed that PH is
fixed parameter tractable (see [7] for a formal definition) when parameterized
by the size k of the resolution of G (i.e.there are k distinct haplotypes in the
resolution). Here, we show an analogous result for CPH. Our algorithm will
perform relatively efficiently (in comparison to brute-force type algorithms) in
cases of 
 << n. Our approach involves solving a dynamic program to determine
whether there is any H ′ ⊆ H of size κ ≤ k which resolves G. Throughout the
section we use Gi, 1 ≤ i ≤ 
, to denote the subset of genotypes {g1, . . . , gi} ⊆ G.

Probably the first dynamic-programming solution to come to mind, is to com-
pute all possible resolutions H ′ ⊆ H of Gi from the resolutions of Gi−1. How-
ever, the number of κ-subsets resolving Gi might be Ω(nk), which is too much.
We therefore take an alternative route. Instead of computing the actual sub-
sets which resolve Gi, we will compute abstract “blueprints” of these subsets,
formally defined in the following definition:
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Definition 6 (κ-plan). Let κ be an integer in {1, . . . , k}. A κ-plan is a string
of length i ≤ 
 over the alphabet {{x, y} | 1 ≤ i ≤ j ≤ κ}.

Let H ′ = {h1, . . . , hκ} be a resolution of Gi = {g1, . . . , gi}, with some of the
haplotypes in H ′ possibly equal. A κ-plan p is associated with H ′ if when {x, y}
is the j’th letter in p, 1 ≤ x ≤ y ≤ κ and 1 ≤ j ≤ i, then hx and hy resolve gj .
We will say that p is valid for Gi if there is a resolution of Gi associated with
p. In this way, a valid κ-plan does not describe the actual resolution of Gi, but
it does provide all relevant information concerning which genotypes are resolved
using the same haplotypes.

Definition 7 (P[κ, i], P [κ, i]). Let κ be an integer in {1, . . . , k}, and i be an
integer in {1, . . . , 
}. We denote by P [κ, i] the set of all κ-plans of length i, and
by P [κ, i] ⊆ P [κ, i] the set of all valid κ-plans for Gi = {g1, . . . , gi}.

Lemma 10. |P [κ, i]| ≤ |P [κ, i]| ≤ kO(k2) for any κ ≤ k and i ≤ 
.

Our algorithm proceeds by computing P [κ, i] in increasing values of κ and i. The
base-cases of this computation are

1. P [κ, 1] = P [κ, 1] for all 1 ≤ κ ≤ k, and
2. P [1, i] = P [2, i] = ∅ for all 2 ≤ i ≤ 
.

Clearly, G can be resolved using κ ≤ k haplotypes if and only if G
 = G has at
least one valid κ-plan. Hence, assuming we can correctly compute P [κ, i] for all
1 ≤ κ ≤ k and 1 ≤ i ≤ 
, the correctness of our algorithm is immediate. What
remains to be described is the dynamic-programming step for computing P [κ, i].

For this, we will first need to introduce some terminology. Let p be some
κ-plan which is valid for Gi, and let h ∈ H be some haplotype. For a given
x ∈ {1, . . . , κ}, we say that the assignment of hx = h is compatible with p if
there is a resolution H ′ = {h1, . . . , hκ} of Gi associated with p such that hx = h.
We extend this terminology also for assignments of pairs of haplotypes hx = h
and hy = h′, h, h′ ∈ H and x = y ∈ {1, . . . , κ}. The dynamic-programming step
for computing P [κ, i] is as follows:

1. P [κ, i]← P [κ−1, i].
2. For each p ∈ P [κ−2, i−1]:

– Concatenate {κ, κ−1} to the end of p, and add this new κ-plan to P [κ, i].
3. For each h, h′ ∈ H resolving gi, for each p ∈ P [κ−1, i−1], and for each

x ∈ {1, . . . , κ−1}:
– Check whether the assignment of hx = h is compatible with p. If so,

concatenate {x, κ} to the end of p, and add this new κ-plan to P [κ, i].
4. For each h, h′ ∈ H resolving gi, for each p ∈ P [κ, i−1], and for each x = y ∈
{1, . . . , κ}:

– Check whether the assignment of hx = h and hy = h′ is compatible with
p. If so, concatenate {x, y} to the end of p, and add this new κ-plan to
P [κ, i].
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Note that as we know p is associated with some resolution of Gi−1, we can
determine in polynomial-time whether assignments are compatible with p. This
can be done as follows: Suppose we want to determine whether hx = h is com-
patible with p. We mark all positions j, 1 ≤ j ≤ i − 1, with a letter {x, y} in
p. For each such position j, we compute hy = h′ from gj and h. Here, there are
three possible outcomes – (i) we have reached a contradiction with a previous
assignment, or (ii) we have discovered a new haplotype, or (iii) none of the pre-
vious two happens. In the first case we determine incompatibility. In the second
case we continue with the checking process. In the third case, since we know that
p is a κ-plan for Gi−1, we can safely determine compatibility. Checking whether
hx = h and hy = y is compatible with p is done similarly. The entire process
is performed in O(κ) rounds, with each round requiring O(
m) time, and so its
total time complexity is O(κ
m) = O(k3m).

Theorem 4. CPH parameterized by k = |H | is fixed-parameter tractable.
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Abstract. Driven by the international HapMap project, the haplotype
inference problem has become an important topic in the computational
biology community. In this paper, we study how to efficiently infer hap-
lotypes from genotypes of related individuals as given by a pedigree.
Our assumption is that the input pedigree data may contain de novo
mutations and missing alleles but is free of genotyping errors and recom-
binants, which is usually true for tightly linked markers. We formulate
the problem as a combinatorial optimization problem, called the mini-
mum mutation haplotype configuration (MMHC) problem, where we seek
haplotypes consistent with the given genotypes that incur no recombi-
nants and require the minimum number of mutations. This extends the
well studied zero-recombinant haplotype configuration (ZRHC) problem.
Although ZRHC is polynomial-time solvable, MMHC is NP-hard. We
construct an integer linear program (ILP) for MMHC using the system
of linear equations over the field F (2) that has been developed recently
to solve ZRHC. Since the number of constraints in the ILP is large (expo-
nentially large in the general case), we present an incremental approach
for solving the ILP where we gradually add the constraints to a standard
ILP solver until a feasible haplotype configuration is found. Our prelim-
inary experiments on simulated data demonstrate that the method is
very efficient on large pedigrees and can infer haplotypes very accurately
as well as recover most of the mutations and missing alleles correctly.

1 Introduction

Human beings have been fighting against diseases such as cancer, stroke, heart
disease, asthma, depression, and schizophrenia for decades. It is believed that
many of these diseases are caused by genetic factors. Gene mapping, which at-
tempts to establish connections between diseases and some specific genetic vari-
ations, is a very important and active area of genetics. More specifically, it aims
at locating genes of interest (e.g. genes responsible for certain diseases) relative
to genetic markers (such as microsatellites and single nucleotide polymorphisms,
or SNPs) on chromosomes. A set of genetic markers and their positions (called
marker loci) define a genetic map of chromosomes. In diploid organisms like
human, chromosomes (other than sex chromosomes) form pairs. Each pair of
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chromosomes consists of a paternal chromosome inherited from the father and a
maternal chromosome inherited from the mother. Hence, each genetic marker on
a pair of chromosomes occurs at the same location of both paternal and mater-
nal chromosomes. However, the marker may have different states (called alleles)
on the two chromosomes. The set of its two alleles is called the genotype of the
marker and the assignment of the two alleles to the paternal and maternal chro-
mosomes is called the haplotype (or phase) of the marker. The haplotype informa-
tion of genetic markers is of tremendous value to gene mapping and other genetic
analyses (such as linkage analysis) because it gives a more accurate description
of the inheritance process than the genotype information. Its importance can
also be seen from the international HapMap project launched in 2002 [19]. Since
genotype data instead of haplotype data are routinely collected in practice, espe-
cially in large-scale sequencing projects, due to cost considerations, efficient and
accurate computational methods for the inference of haplotypes from genotypes
over a set of marker loci, which is also commonly referred to as phasing, have
been extensively studied in the literature. See [11] for a recent survey on these
methods as well as the basic concepts involved in haplotype inference.

The existing computational methods for haplotype inference can be divided
into three groups according to the genotype data that they deal with: methods
for population data involving unrelated individuals (see e.g. [6,13,17]), methods
for pedigree data consisting of individuals (typically from an extended family)
that are related by the parent-child relationship (see e.g. [1,8,9,10,15,16,21,23]),
and methods for pooled samples (see e.g. [20,22]). The methods for population
data usually consider tightly linked markers that may involve mutations but no
recombinants, while the methods for pedigree data usually assume that the data
may have zero or few recombinants but is free of mutations (i.e. the Mendelian
law of inheritance holds). Here, we are interested in only pedigree data.

Some real pedigree data may actually contain mutations. In particular, a de
novo mutation is a mutation that is present for the first time in a family mem-
ber as a result of a mutation in a germ cell (egg or sperm) of one of the parents
or in the fertilized egg itself. It has been found that the detection and analysis
of mutations in a pedigree could provide a good alternative for some genetic
variation research [3,5,14]. In fact, Ellegren [5] has stated that “To reveal the
mutational contribution to overall genetic variability, the most straightforward
and conclusive way is the direct detection of mutation events in pedigree geno-
typing.” However, de novo mutations violate the Mendelian law of inheritance,
and hence pedigree data with such mutations cannot be properly handled by
the above common haplotype inference methods. When these methods are faced
with data with mutations, they typically treat the loci involving mutations as
genotyping errors and delete such loci. Very few haplotype inference methods in
the literature deal with pedigree data that contain mutations (one such method
is a genetic algorithm in [18]).

In this paper, we study haplotype inference on pedigree data on tightly linked
markers that have no recombinants but may contain a small number of de novo
mutations (or simply, mutations). Since mutation is a rare event, we formulate
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the problem as a combinatorial optimization problem, called the minimum mu-
tation haplotype configuration (MMHC) problem, where we look for a haplotype
solution consistent with the given genotype data that incur no recombinants
and require the minimum number of mutations. Our hypothesis is a solution
with the minimum number of mutations is likely the true solution. Moreover,
we are only interested in solutions where each locus has at most one muta-
tion in the pedigree. This restriction is reasonable given Kimura’s infinite-site
model et al. [7] which suggests that the probability of multiple mutations at the
same locus is low enough to be negligible. This extends the well studied zero-
recombinant haplotype configuration (ZRHC) problem where we try to find a
consistent haplotype solution incurring no recombinants or mutations. Although
ZRHC is polynomial-time solvable [9], we can prove that MMHC is NP-hard by
a reduction from NAE-3SAT (the proof is omitted in this extended abstract).
We construct an integer linear program (ILP) for MMHC using the system of
linear equations over the field F (2) that has been developed in [9,12,21] for solv-
ing ZRHC in almost linear time. Since the number of constraints in the ILP is
quite large (exponentially large in general) when the input pedigree is large, we
present an incremental approach for solving the ILP.

An outline of our incremental approach is as follows. Given a pedigree data,
we set up a system of linear equations over F (2) introduced in [12,21] for ZRHC,
but conditional on mutations. We convert the linear system to an ILP instance
for MMHC where the constraints generally describe the relation between the
equations and mutations. A small set of the constraints in the ILP are identified
as the core constraints, and a standard ILP solver GLPK (the GNU Linear Pro-
gramming Kit from http://www.gnu.org/softward/glpk) is invoked on the
partial ILP instance with only the core constraints. The ILP solution describes
an assignment of mutations in the pedigree which can be used to remove the
conditions in the linear system. By using Gaussian elimination, we can check
if the linear system is consistent. If it is consistent, a haplotype configuration
(with the minimum number of mutations) is returned. Otherwise, we find the
inconsistent equations and add some new constraints to the core to force their
consistency. This process is repeated until an ILP solution that satisfies its cor-
responding linear system has been found. Note that, the incremental approach
to solving the ILP is crucial here because the ILP instance cannot be efficiently
and explicitly constructed as its number of constraints grows exponentially in
the pedigree size in general. Also note that, with the advance in sequencing tech-
nology, larger and larger pedigrees are being genotyped and analyzed in practice.
For example, in [2,4], haplotype inference was performed on pedigrees of sizes
368 and 1149, respectively.

We have implemented the algorithm and tested it on pedigree data that were
simulated with random mutations and missing alleles. (Real pedigree data often
have up to 20% missing alleles.) The experimental results demonstrate that our
method can infer haplotypes with a very high accuracy. It can also detect most
of the mutations and impute most of the missing alleles correctly. Moreover, it
is found that the algorithm usually terminates after a small number of iterations
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without ever having to invoking ILP solver on the complete ILP instance consist-
ing of all the constraints. As a comparison, we have also considered the straight-
forward approach for solving the ILP with all the constraints considered at once
on binary tree pedigrees (i.e. each pair of parents has only one child). The ILP
instance can be efficiently constructed for binary tree pedigrees. It is found that
our algorithm is much faster than the straightforward approach.

The rest of the paper is organized as follows. In Section 2, we incorporate
mutations into the system of linear equations introduced in [12,21] for ZRHC to
obtain a system of conditional linear equations for MMHC. Section 3 describes
the ILP formulation for MMHC, and the incremental approach for solving the
ILP. In Section 4, we discuss the implementation of the algorithm and test
its performance on some simulated pedigree data with random mutations and
missing alleles. Section 5 concludes the paper with a few remarks.

2 A System of Conditional Linear Equations for MMHC

We review the system of linear equations over F (2) introduced in [12,21] for
solving ZRHC and extend the system to take into account mutations.

2.1 The Linear System

Let n denote the number of the individuals in the input pedigree and m the
number of marker loci of each individual. For simplicity, we assume in this paper
that all alleles are bi-allelic (denoted as 0 or 1) and the input pedigree is free
of mating loops (and thus a tree pedigrees). Tree pedigrees are very common
among human pedigrees. Our techniques can be extended to general pedigrees.
The genotype of individual j is denoted as a ternary vector gj whose kth entry
gj[k] represents the genotype at locus k of individual j as follows:⎧⎪⎨⎪⎩

gj [k] = 0 if both alleles are 0’s
gj [k] = 1 if both alleles are 1’s
gj [k] = 2 if the locus is heterozygous

(1)

The value of gj [k] is unknown if the alleles are missing. For each locus k of
individual j, we define a binary variable pj[k] over F (2) to indicate the paternal
allele at the locus:⎧⎪⎪⎪⎨⎪⎪⎪⎩

pj [k] = 0 if gj [k] = 0
pj [k] = 1 if gj [k] = 1
pj [k] = 0 if gj [k] = 2 and allele 0 is paternal
pj [k] = 1 if gj [k] = 2 and allele 1 is paternal

(2)

In other words, the binary vector pj represents the paternal haplotype of indi-
vidual j. To represent the maternal haplotype, we need another binary vector
wj to indicate if each locus of individual j is heterozygous. That is, wj [k] = 0 if
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gj[k] = 0 or 1, and wj [k] = 1 if gj[k] = 2. Clearly, the sum pj + wj (over F (2))
represents the maternal haplotype of individual j.

Suppose that individual i is a parent of individual j. To unify the represen-
tation of the haplotype that j inherited from i, define a binary vector di,j as
follows: di,j = 0 if i is j’s father and di,j = wj if i is j’s mother. Therefore,
pj + di,j represents the haplotype that j got from i. Define hi,j = 0 if pj + di,j

is i’s paternal haplotype and hi,j = 1 otherwise. Then pi + hi,j ·wi represents
the haplotype that i passed to j. The binary variables hi,j thus fully describe
the inheritance pattern in an ZRHC instance. Finally, define µi,j [k] = 1 if the
there is a mutation at locus k when i passes the haplotype pi +hi,j ·wi to j, and
µi,j [k] = 0 otherwise. For technical reasons, we view µi,j [k] as an integer from
Z instead of F (2). For convenience, we make these three vectors symmetric by
defining dj,i = di,j , hj,i = hi,j , and µj,i = µi,j . Using these notations, we can
derive a conditional equation over F (2):{

pi[k] + hi,j · wi[k] = pj[k] + di,j [k] if µi,j [k] = 0
pi[k] + hi,j · wi[k] = pj[k] + di,j [k] + 1 if µi,j [k] = 1

(3)

Since we assume that each locus has at most one mutation in the pedigree,

0 ≤
∑
i,j

µi,j [k] ≤ 1 ∀k (4)

Note that the summation is over Z instead of F (2). Hence, the MMHC problem
can be formally defined as follows. Given an input pedigree and genotype data
gj for each individual j, find a solution to each pj , hi,j and µi,j that satisfies all
the (conditional) constraints in Equations (3) and (4) and minimizes the sum∑

i,j,k µi,j [k].

2.2 Pre-Determined Variables

The above linear system has O(mn) variables and equations. As in [12,21], we
can convert the system to an equivalent linear system involving only the h-
variables which is much smaller (there are only O(n) h-variables). This requires
us to pre-determine the values of some p-variables. The situation is complicated
a little bit by the presence of the µ-variables.

Let us consider a p-variable pj [k] where the marker of individual j at locus k
is not missing, and several scenarios.

1. gj [k] = 2. By Equation (2), pj [k] = gj[k]. In this case, pj [k] is pre-determined.
We will refer to pj [k] as the intended p-value of the locus, denoted as v(j, k) =
pj [k].

2. gj [k] = 2 and exactly one parent, denoted as i, is homozygous at locus k.
See Figure 1(a). We have wi[k] = 0 by definition. According to Equation (3),
pj [k] is known if and only if µi,j [k] is known. We say that pj[k] is semi-
determined in this case. We also define µi,j [k] as the anchor of pj [k] and
denote a(j, k) = {µi,j [k]}. Since the value of pj [k] on the condition µi,j [k] = 0
is preferred, we denote v(j, k) = gi[k] + di,j [k].
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Fig. 1. Determining a p-variable. Consider the p-value of the child in the trio. (a) It
equals 0 as long as there is no mutation from the father and it is semi-determined. (b) It
equals 0 and there cannot be any mutation. It is pre-determined. (c) It is undetermined
but there must be a mutation. It is doubly-determined.

3. gj [k] = 2, both parents i1 and i2 of j are homozygous at locus k, and
gi1 [k] = gi2 [k]. See Figure 1(b). Since each locus has at most one mutation,
µi1,j [k] and µi2,j [k] cannot both be 1. Hence, µi1,j [k] = µi2,j [k] = 0. In this
case, pj [k] is pre-determined, and we denote v(j, k) = pi1 [k] + di1,j[k].

4. gj [k] = 2, both parents i1 and i2 are homozygous at locus k, and gi1 [k] =
gi2 [k]. See Figure 1(c). In this case, one of µi1,j [k] and µi2,j [k] equals 1 and
the other 0. Thus, pj [k] has two anchors: a1(j, k) = {µi1,j [k]} and a2(j, k) =
{µi2,j [k]}. Each anchor gives rise to a preferred value for pj[k], v1(j, k) =
pi1 [k] + di1,j [k] and v2(j, k) = pi2 [k] + di2,j[k], respectively. In this case we
call pj [k] doubly-determined.

5. All other cases. The variable pj[k] is undetermined and the variable v(j, k)
is undefined.

If a pj [k] is pre-determined or undetermined, we define a(j, k) = ∅. Similarly, we
might be able to pre-determine µ-variable µi,j [k] in some cases.

1. gi[k] = gj [k] = 2. Since the top equation in Equation (3) holds, we let
µi,j [k] = 0 and it is pre-determined.

2. gi[k] = gj [k] and both loci are homozygous. Since the bottom equation in
Equation (3) holds, we set µi,j [k] = 1. This µ-variable is pre-determined.
Moreover, all the other µ-variables at locus k must equal 0 and are pre-
determined too.

3. Some p-variable at locus k is doubly determined. All the µ-variables at lo-
cus k other than this p-variable’s anchors must equal 0 and are thus pre-
determined.

4. All other cases. The variable µi,j [k] stays undetermined.

2.3 A More Compact Linear System

Following [12,21], we can set up a linear system in terms of the h-variables. The
idea is to consider paths in the pedigree connecting individuals with pre/semi/
doubly-determined p-variables and derive (conditional) equality constraints on
the h-variables on such paths based on Equation (3).

Consider a locus k and a path j0, j1, . . . , jr in the input (tree) pedigree,
where individuals ji and ji+1 have the parent-child relationship. Suppose that
pj0 [k] and pjr [k] are pre-determined, semi-determined or doubly-determined, and
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Fig. 2. Two possible cycle constraints from a local cycle. (a) The sum of the four
h-variables is 0. (b) The sum of the four h-variables is 1.

gj1 [k] = · · · = gjr−1 [k] = 2. We call the path j0, j1, . . . , jr an all-heterozygous
path at locus k. If pj0 [k] and pjr [k] are pre-determined or semi-determined, we
define a path constraint connecting j0 and jr:

v(j0, k) + v(jr , k) +
r−1∑
i=0

(
hji,ji+1 + dji,ji+1 [k]

)
= 0

if all elements in a(j0, k) ∪ a(jr, k) ∪
r−1⋃
i=0

{µji,ji+1 [k]} equal 0 (5)

If we denote M = a(j0, k) ∪ a(jr, k) ∪
⋃r−1

i=0 {µji,ji+1 [k]}, H =
⋃r−1

i=0 {hji,ji+1},
and c = v(j0, k) + v(jr, k) +

∑r−1
i=0 dji,ji+1 [k], then the path constraint can also

be represented by the triple (H,M, c) which denotes:∑
hi,j∈H

hi,j = c iff µi,j [k] = 0 ∀µi,j [k] ∈ M (6)

If j0 or jr is doubly-determined, we can construct two path constraints in the
same way: one using v1(·) and a1(·) and the other using v2(·) and a2(·).

Consider a local cycle consisting of father i1, mother i2, and two adjacent
children j1, j2. If both parents are heterozygous at locus k, we can obtain four
conditional equations from Equation (3) by replacing i with i1, i2, and j with
j1, j2. (See Figure 2.) The summation of these conditional equations forms a
cycle constraint :

hi1,j1 + hi1,j2 + hi2,j1 + hi2,j2 = di1,j1 [k] + di1,j2 [k] + di2,j1 [k] + di2,j2 [k]
= wj1 [k] + wj2 [k]

iff µi1,j1 [k] = µi1,j2 [k] = µi2,j1 [k] = µi2,j2 [k] = 0 (7)

This constraint will also be denoted as (H,M, c) where H = {hi1,j1 , hi1,j2 , hi2,j1 ,
hi2,j2}, M = {µi1,j1 [k], µi1,j2 [k], µi2,j1 [k], µi2,j2 [k]}, and c = wj1 [k] + wj2 [k].

If both parents are homozygous at locus k, then the p-variables of both chil-
dren must be pre-determined or doubly-determined. However, the two children
are not connected by any all-heterozygous path and thus no path constraint is
derived. On the other hand, if exactly one parent is heterozygous at locus k,
then both children are semi-determined and there is a path constraint between
the two children through the heterozygous parent.
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For each locus and every pair of pre/semi/doubly-determined p-variables con-
nected by an all-heterozygous path, we construct a path constraint (or two if one
of the p-variables is doubly-determined, or four if both p-variables are doubly-
determined) as above. Since the pedigree is a tree, the number of such path
constraints is at most O(mn). Similarly, for each locus and local cycle, if both
parents are heterozygous at the locus, we construct a cycle constraint as above.
The number of such cycle constraints is also bounded by O(mn). Let E denote
the set of these constraints.

The results in [12] show that the linear system formed by the above constraints
(without the conditions) in terms of the h-variables is equivalent to the linear
system defined by Equation (3) (without the conditions) in terms of the h- and
p-variables. In other words, a feasible solution to the h-variable can be extended
to a feasible solution to both the h- and p-variables. It is easy to see that the
same equivalence holds with the conditions.

Note that, loci with missing alleles could be included in the linear system
in Equation (3) (as p-variables). However, they are excluded from the above
path/cycle constraints on h-variables. Some of the missing alleles will be imputed
using Equation (3) after the h-variables are determined.

3 The ILP for MMHC and Incremental Approach

We construct an ILP for MMHC based on the above linear system in h-variables.
Recall that the objective of the ILP is

Minimize
∑
i,j,k

µi,j [k]. (8)

We give all the constraints of the ILP in Sections 3.1 and 3.2. Section 3.3 presents
more details of the incremental approach to solving the ILP. In Section 3.4, we
describe how to obtain a solution for MMHC after solving the ILP (and the
linear system) and deal with missing alleles.

3.1 The Core Constraints

All the constraints in Equation (4) are core constraints of the ILP. For each
path/cycle constraint (H,M, c) in E , we introduce an equation variable:

EH =
∑

hi,j∈H
hi,j (9)

We then add an equation constraint for each (H,M, c):{
EH −

∑
µi,j [k]∈M µi,j [k] = 0 if c = 0

EH +
∑

µi,j [k]∈M µi,j [k] = 1 if c = 1
(10)

In other words, either the linear equation in (H,M, c) holds, or there is exactly
one mutation in M. Therefore, the core constraints of the ILP include all the
constraints in Equations (4), and (10). The number of these core constraints is
clearly bounded by O(mn).
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3.2 Consistency Constraints

Now we need some constraints to make sure that the assignment of the equation
variables are consistent with each other. Consider, for example, three sets of h-
variablesH1,H2,H3 that appear in the linear system such thatH1#H2#H3 = ∅.
(Here, # is the symmetric difference operator.) If EH1 = 0 and EH2 = 0, which
are equivalent to

∑
hi,j∈H1

hi,j = 0 and
∑

hi,j∈H2
hi,j = 0, then we must have∑

hi,j∈H3
hi,j =

∑
hi,j∈H1

hi,j +
∑

hi,j∈H2
hi,j = 0, or equivalently EH3 = 0. The

sum of EH1 , EH2 , EH3 must be even. To guarantee such a relation among the three
equation variables, we need include the following consistency constraints:

C(H1,H2,H3) :

⎧⎪⎪⎨⎪⎪⎩
EH1 + EH2 + (1− EH3) ≥ 1
EH1 + (1− EH2) + EH3 ≥ 1

(1− EH1) + EH2 + EH3 ≥ 1
(1− EH1) + (1− EH2) + (1− EH3) ≥ 1

(11)

These constraints ensure that (EH1 , EH2 , EH3) = (0, 0, 1), (0, 1, 0), (1, 0, 0),
(1, 1, 1), respectively. Therefore, illogical combinations of EH1 , EH2 , EH3 are pro-
hibited, and only legitimate combinations are allowed in a feasible solution.

In general, suppose that H1,H2, . . . ,Hr is any collection of sets of h-variables
that appear in the linear system such that H1#H2#· · ·#Hr = ∅. To construct
the consistency constraints for their corresponding equation variables, we intro-
duce new variables Si = #j

i=1Hi and their corresponding variables ESi . We then
construct a series of consistency constraints:

C(H1, . . . ,Hr) = C(H1,H2, S2) ∪ C(Sr−2,Hr−1,Hr) ∪
r−2⋃
i=3

C(Si−1,Hi, Si)

(12)

The core constraints and consistency constraints form the complete ILP in-
stance. Note that the number of consistency constraints is generally exponential
in n. The following lemma states that these constraints are sufficient for MMHI.
Its proof is omitted in this extended abstract.

Lemma 1. Consider a feasible solution to the (complete) ILP defined above.
We can convert the conditional linear system in Section 2.3 to an unconditional
linear system using the values of the equation variables in the solution. The linear
system must be consistent.

3.3 The Incremental Approach

Since the complete ILP instance cannot be efficiently constructed in general, we
start from an incomplete ILP instance with only the core constraints (no consis-
tency constraints). A standard ILP solver GLPK is invoked to find a solution to
the equation variables EH. The equation variable values specifies a set of (un-
conditional) linear equations from the conditional linear equations in E . We can
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solve the this system of linear equations by applying Gaussian elimination. How-
ever, the linear system may be inconsistent, i.e., there may be a set of equation
variables EH1 , EH2 , . . . , EHr such that #r

i=1Hi = ∅ but
∑r

i=1 EHi is odd deter-
mined by GLPK. When such an inconsistency occurs, there must be a subset
of equations

{∑
h∈Hi

h = ci

}r

i=1
such that

∑r
i=1 ci = 1 but

∑r
i=1

∑
h∈Hr

h = 0.
Hence #r

i=1Hi = ∅, and we add the consistency constraints shown in Equa-
tion (12) to the ILP instance. We then invoke GLPK again. This process is
iterated until a solution is found to yield a consistent system of linear equations.

Although in theory this process may take many iterations, more than 95%
of the time in our experiment a consistent solution was found in the very first
iteration using only the core constraints. Moreover, the process never took more
than three iterations in our experiment. This observation can be explained as
follows. For each equation constraint in Equation (10), the ILP solver GLPK
tends to assign c to the variable EH given (M,H, c) to minimize the number of
mutations, if this assignment does not result in conflicting equations. Since the
number of mutations is small, most equations should indeed hold. In addition,
we usually have a lot of pre-determined µ-variables, which could force GLPK to
assign the other variables correctly.

3.4 Phasing, Missing Allele Imputation, and Mutation Detection

Once a consistent (unconditional) linear system is found, solving the system by
Gaussian elimination assigns the values of all h-variables. GLPK also assigns
the values of all µ-variables in the last iteration. Therefore, we can resolve the
p-variables by using the propagation algorithm in [12,21]. The basic idea is to
propagate known (i.e. pre/semi/doubly-determined) p-variable values to unde-
termined p-variables along the edges in the pedigree by repeatedly applying
Equation (3). The p-variables that are left unresolved by the propagation algo-
rithm will be deemed as free in the solution. Note that, the resolved p-variables
could allow us to impute missing alleles at some loci (by possibly using some
ancestral p-variable and relevant h-variables if necessary), although perhaps not
at all loci.

If there are no missing alleles, then the above would produce a consistent
solution to the MMHC instance. However, the presence of missing alleles may
cause conflict between the assigned values of the µ-variables and those of the

0100 0111

?? ??

01 01

11

Fig. 3. Missing alleles may prevent us from obtaining path/cycle constraints. In the
figure, if there were no missing data, there should have been two path constraints
through the dotted line. The µ-variable on the dotted line is free because the two path
constraints are not included in the ILP instance.



Efficient Inference of Haplotypes from Genotypes on a Pedigree 363

p-variables and h-variables. This is because some µ-variables do not appear in
any conditional equation. These µ-variables only appear in the objective function
and the constraints in Equation (4). Let us call this type of µ-variables free. (See
Figure 3 for an example free µ-variable.) Clearly, the free µ-variables were set
to 0 by GLPK to minimize the objective function. This assignment could be
in conflict with the p-variable and h-variable values, because their associated
path/cycle constraints were not included in the ILP instance. We will try to
fix the problem by re-evaluating the free µ-variables using the determined p-
variables and h-variables and Equation (3). For any free µ-variable in conflict,
we change its value to 1 (which incurs a new mutation).

However, some of these changes might be incorrect (or redundant), and such
incorrect changes may potentially lead to other conflicts with the p-variable and
h-variable values. When a change leads to more conflicts, we know for sure that
the change is wrong (because there can be at most one mutation at the same
locus), as stated in the following lemma whose proof is omitted in this extended
abstract.

Lemma 2. If assigning µi1,j1 [k]=1 leads to another conflict that forces µi2,j2 [k]=1,
then both µi1,j1 [k] and µi2,j2 [k] should equal 0.

Whenever we find two mutations at the same locus, we force their corresponding
µ-variables to 0 in the ILP instance (by adding two new constraints), and run
GLPK and the propagation algorithm again. Note that, these two µ-variables
are no longer viewed as free since they now appear in some constraints in the
ILP instance. This process is repeated until all µ-variable values are consistent
with the p-variable and h-variable values.

4 Experimental Results

We have implemented our algorithm in C, denoted as MMPhase. A detailed
pseudocode of MMPhase is omitted in this extended abstract and will given in
the full paper. In this section, we test MMPhase on pedigree data with randomly
simulated genotypes, mutations and missing alleles to perform an empirical eval-
uation of its performance and efficiency. We also compare the speed of MMPhase
with that of the straightforward method for solving the MMHC ILP (i.e., run-
ning GLPK on all the constraints in a single iteration).

We first compare the speeds of MMPhase and the straightforward method.
Since the number of consistency constraints is exponential in the pedigree size n
and locus number m in general (even for trees), we implement the straightforward
method only for binary trees. When the pedigree is a binary tree, we do not have
cycle constraints. For each path constraint along the path between j1 and j2,
let H1 be the set of the h-variables on the path from the root of the binary
tree to j1, H2 the set of the h-variables on the path from the root to j2, and
H3 the set of h-variables on the path from j1 to j2. We put the consistency
constraint C(H1,H2,H3) into the ILP instance. This will provide a sufficient set
of consistency constraints which will guarantee a feasible solution to MMHC.
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Table 1. The average running times on 100 randomly generated replicates for each
pedigree size. The pedigrees are full binary trees.

Pedigree size Straightforward Incremental

63 .443s .144s
127 2.98s .750s
255 20.3s 4.39s
511 180s 29.0s
1023 29.2m 2.13m

Table 2. The performance of MMPhase under various configurations of the parame-
ters. The default setting includes the pedigree of size 52, 50 marker loci, 10% missing
alleles, and 3% mutations. 100 replicated are generated for each configuration of the
parameters. Starting from the default setting, we vary the missing rate in (a), the
mutation rate in (b), the pedigree in (c), and the number of loci in (d).

Missing rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

0% — 78.31% 99.98% 2.02s
5% 74.70% 70.20% 98.49% 1.49s
10% 68.97% 62.58% 92.72% 1.24s
20% 69.03% 59.69% 92.75% .900s

(a)

Mutation rate Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

1% 73.15% 73.33% 96.75% 1.23s
3% 68.97% 62.58% 92.72% 1.24s
10% 73.11% 69.57% 96.73% 1.47s

(b)

Pedigree size Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

29 75.34% 52.26% 94.51% .298s
52 68.97% 62.58% 92.72% 1.24s
128 73.49% 52.11% 93.99% 27.0s

(c)

Locus number Correctly imputed Correctly detected Correctly phased Running time
missing alleles mutations markers

20 73.13% 67.00% 96.78% .250s
50 68.97% 62.58% 92.72% 1.24s
200 73.09% 65.42% 96.82% 10.8s

(d)

Note that, the number of such consistency constraints is O(mn). Interesting,
the incremental approach implemented in MMPhase may theoretically use more
consistency constraints in the worst case because of creating redundant variables,
although it usually uses a smaller number of consistency constraints in practice.
We consider full binary trees of sizes from 63 to 1023, and run both algorithms
on 100 randomly generated genotype data with 50 loci, 10% missing alleles,
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Fig. 4. Three pedigrees are used to test the performance of MMPhase. The first has
29 individuals and is shown in (a). The second has 52 individuals and is shown in (b).
The third has 128 individuals and is too large to fit in the page.

and 3% mutations (i.e. 3% of the loci are mutated in inheritance). (Actually,
haplotypes are generated in the simulations and then converted to genotypes as
an input of the algorithms.) Table 1 shows the average running times of both
algorithms on each full binary tree. We observe that MMPhase is much faster
than the straightforward method, and the speedup ratio increases as the pedigree
size gets bigger. For example, the ratio is about 14 on full binary trees of size
1023. We also observe that the solutions from both algorithms are sometimes
slightly different but they always require the same number of mutations which
is smaller than the actual number of mutations simulated (the detailed results
are not shown).

Next we test the performance of MMPhase in terms of the percentage of
correctly phased markers, the percentage of correctly imputed missing alleles,
and the percentage of correctly detected mutations. (A simulated mutation is
correctly detected if there is an inferred mutation that coincides with its location
exactly.) We use three real human pedigrees from the literature as shown in
Figure 4. 100 replicates of genotype data is simulated on each of these pedigrees
with each of several configurations of the number of marker loci, the missing allele
rate and the mutation rate. Our default setting of simulation uses the pedigree
of size 52, 50 marker loci, 10% missing alleles, and 3% mutations. To observe
how each of these parameters affects the performance MMPhase, we vary one
parameter at a time in the test. Table 2 illustrates the test results. We observe
that, as shown in Table 2(a), higher missing rates lead to faster performance since
fewer path/cycle constraints are added to the ILP instance. Not surprisingly,
higher missing rates also result in fewer correctly detected mutations and fewer
correctly phased markers. Table 2(b) shows that the performance is not very
sensitive to the mutation rate. Table 2(c) and Table 2(d) show that the pedigree
and number of marker loci mainly affect the running time.

In conclusion, MMPhase is very efficient and can infer haplotypes very accu-
rately. It can also recover most of the mutations and missing alleles correctly.
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Note that, our criterion for correctly detecting a mutation is very stringent since
in some cases the mutation could be shifted in the pedigree without affecting
the feasibility of the solution (especially when missing alleles are present).

5 Concluding Remarks and Acknowledgements

Genotyping errors are very common in practice and can easily be confused with
mutations. It would be interesting to extend the method to deal with both
mutations and genotyping errors. The research is supported in part by NIH
grant LM008991 and NSF grant IIS-0711129.
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