
Oclets – Scenario-Based Modeling with Petri

Nets

Dirk Fahland

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

fahland@informatik.hu-berlin.de

Abstract. We present a novel, operational, formal model for scenario-
based modeling with Petri nets. A scenario-based model describes the
system behavior in terms of partial runs, called scenarios. This paradigm
has been formalized in message sequence charts (MSCs) and live sequence
charts (LSCs) which are in industrial and academic use. A particular ap-
plication for scenarios are process models in disaster management where
system behavior has to be adapted frequently, occasionally at run-time.
An operational semantics of scenarios would allow to execute and adapt
such systems on a formal basis.

In this paper, we present a class of Petri nets for specifying and mod-
eling systems with scenarios and anti-scenarios. We provide an opera-
tional semantics allowing to iteratively construct partially ordered runs
that satisfy a given specification. We prove the correctness of our results.

Keywords: scenarios, operational semantics, partial order, Petri nets.

1 Introduction

A recurring application of formal methods is the design, validation, and veri-
fication of distributed systems which consist of several interacting processes or
components. For this purpose, scenario-based methods like message sequence
charts (MSCs) and live sequence charts (LSCs) [1] have become accepted spec-
ification techniques: The behavior of a system is specified as a set of scenarios
being self-contained, partial executions. A scenario can be declared as possible,
imperative, or forbidden. A formal semantics allows to validate a system’s runs
against the scenarios following their intuitively understandable meaning [2].

Following the scenario-based paradigm [1,2], we have shown in [3] that in some
domains like disaster response system behavior can only faithfully be captured if
the complete behavior is given by a set of scenarios and anti-scenarios. Assuming
completeness and consistency turns a set of scenarios into a system model. This
particular representation has advantages when adapting a given model by adding,
removing, or modifying its scenarios without breaking the entire model. In [3],
we sketched an approach for this kind of modeling, executing, and adapting
systems with scenarios based on Petri nets.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 223–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

224 D. Fahland

In this paper, we present a complete and consistent formal model of our
approach in [3] and explain how a scenario-based specification evolves into a
system model within the same formalism.

A major difficulty when using scenarios is the step from a system specifica-
tion to a system model with formal operational semantics that provides the set
of enabled actions which extend a given run s.t. no scenario is violated. Exist-
ing operational models for MSCs and LSCs require a translation into another
formalism like automata [4], process algebras [5], or state charts [6], or use for-
mal techniques like graph grammars [7]. This makes operational semantics for
scenarios surprisingly technical while scenarios and their composition appear to
be very intuitive. In the worst case, the modeler cannot relate the operational
model to its original scenarios by mere comparison.

A formal model for scenarios with operational semantics within the same for-
malism would give a more coherent view on the technique and on system models.
A candidate formalism are Petri nets : They offer an intuitively understandable
notation together with a rigorously defined, simple, and well-understood partial-
order semantics [8]. The well-developed Petri net structure theory and available
verification techniques could be used for analyzing and verifying behavioral prop-
erties of the system [9,10]. Established extensions for Petri nets, like colors or
time, could easily be transferred to scenarios. Petri net synthesis techniques
could help in translating a scenario-based model into a state-based model.

In this paper, we propose a novel formalization of scenarios based on Petri
nets that takes existing results, specifically from LSCs into account. We define a
new class of Petri nets called oclets. An oclet formalizes a scenario as an acyclic,
labeled net, that can be read as a partial, partially ordered run. A prefix of
the oclet is denoted as a precondition for the scenario which must be observed
before the entire scenario can occur. We also define anti-oclets to denote partial
runs which must not occur completely. A specification is a set of oclets and
anti-oclets.

We provide a declarative, formal semantics of oclets to characterize the sat-
isfying, partially ordered runs of an oclet specification. The semantics allows to
check whether a given (Petri net) system satisfies the given scenarios. We com-
plement this semantics with an operational semantics that turns a specification
into an operational model and allows for directly constructing partially ordered
runs from oclets. We show that the operational semantics are equivalent to the
declarative semantics under a closed world assumption.

The remainder of this paper is organized as follows. In the next section, we in-
formally introduce the concepts of our approach as we revisit the dining philoso-
phers problem and sketch a solution of the problem with scenarios. We formally
define the new Petri net class of oclets in Sect. 3, followed by their declarative
semantics in Sect. 4. Section 5 is dedicated to the operational semantics of oclets.
We wrap up our approach as we solve the problem of the dining philosophers
with oclets in Sect. 6. We compare our approach with related work in Sect. 7
and conclude in Sect. 8.

Oclets – Scenario-Based Modeling with Petri Nets 225

2 Specifying with Scenarios – An Informal Introduction

Before we begin with formal definitions, we explain the concepts and the underly-
ing intuition of our approach by the help of the well-known dining philosophers ;
see [9] for instance. We first illustrate the philosophers problem on a Petri net
model of the system, and then informally sketch a solution with scenarios. We
revisit and solve the problem with our model in Section 6. We assume the reader
to be familiar with basic notions of Petri nets.

2.1 The Dining Philosophers Problem

The Petri net system (N3
phil, m

3
phil) in Fig. 1 models three philosophers each taking

his forks at once; this stricter variant will be sufficient to illustrate our ideas.
Each circle 〈thi, takei, eati, reli〉, i = 1, 2, 3 models the behavior of philosopher

i going from thinking to eating and back by taking and releasing his left and right
fork fi and fi⊕1; by ⊕ (and � later on), we denote addition (and subtraction)
modulo n. The philosophers synchronize on their shared forks: no two neighbor-
ing philosophers may eat at the same time. The system exhibits linear runs like
the following: (a) 〈take1, rel1, take1, rel1, . . .〉, (b) 〈take1, rel1, take2, rel2, take1, . . .〉,
and (c) 〈take1, rel1, take2, rel2, take3, rel3, take1, . . .〉.

In (a), phil. 1 always takes both of his

���������

����

�	�

�
�

�	� �	�

� ���������

��������

���������

Fig. 1. Petri net model N3
phil of three

dining philosophers with its initial
marking m3

phil

forks, none of his neighbors eats. In (b),
phil 1 and phil 2 alternatingly eat, alter-
natingly taking the left and the right fork
of phil. 3 who never eats. In (c), each
philosopher eats. Runs (a) and (b) are
unfair as transition take3 gets enabled in-
finitely often but never fires. These unfair
runs are undesired in the system, runs like
(c) are desired.

The dining philosophers problem is to
specify a system that distributedly coor-
dinates the execution of the philosophers
s.t. the system contains no deadlocks and
no unfair runs. Here, we seek for a stricter
solution that has only decent runs where
a philosopher, after having released his forks, refuses to take them again un-
til each neighbor has taken and released the corresponding shared fork [9].
Runs of kind (c) are decent. Figure 2 depicts a decent, partially ordered run
of (N3

phil, m
3
phil), corresponding to run (c) above.

2.2 The Basic Idea

We now want to sketch a solution for the dining philosophers problem with
scenarios. Our solution shall have the following properties: (i) A scenario is a
well-understandable fragment of a partially ordered run. (ii) System behavior is

226 D. Fahland

composeable from scenarios in an intuitive way. (iii) Anti-scenarios allow speci-
fying forbidden behavior. (iv) Behavioral preconditions of scenarios restrict the
applicability of a scenario to certain situations. (v) The semantics of scenarios
allows testing whether a set of runs satisfies all scenarios. (vi) Finally, satisfy-
ing runs can be constructed from the given scenarios in an operational manner.
We follow this agenda on an informal level in this section and we provide a
corresponding formal model from Sect. 3 onwards.

We begin with the notion of a

�����

� �	�
�

����

����

� �	�
�

�����

�	�
�

����

����

� �	�
�

�	�

�����

����

����

� �	�
�

�����

����������

����

����

�� �� ��

��

��

��

�� �� ���

�� ��

��

���

��

��� ��� ���

��

��

��	

�	

��
 ��
��	

�

�� ���

���

��

Fig. 2. A decent run π3 (bold nodes) of the
three dining philosophers of Fig. 1

�����

� �	�
���

����

����

� �	�
���

	�����
�� �� ��

��

��

��

�� �� �

Fig. 3. The elementary behavioral frag-
ment of the philosophers – oclet phil(i)

scenario. In the run π3 of Fig. 2 we
not only find copies of the transi-
tions and places of N3

phil, but even
larger, overlapping patterns.

The possibly most obvious pat-
tern, out of which the entire run is
composed, is depicted in Fig. 3. It
denotes one unrolled execution cy-
cle of philosopher i ∈ {1, 2, 3}. The
net itself is acyclic but its labels de-
note that at the end of the execu-
tion, the local state [fi, thi, fi⊕1] is
visited again. It specifies a logically
self-contained, partial execution of
the philosophers system. Such a
structure is a scenario.

By the symmetry of the philoso-
phers system, every partially-
ordered run of (N3

phil, m
3
phil) con-

sists of overlapping copies of
phil(i), i ∈ {1, . . . , 3} which de-
note the elementary scenarios of
(N3

phil, m
3
phil). As we wish to observe

these scenarios in the system, we
call them qualified.

From this observed decomposi-
tion, we can infer an appropriate
and intuitive composition of qual-
ified scenarios: Append a scenario
A to another scenario B by merg-
ing places at the beginning of A
with equally labeled places at the
end of B. Likewise, a scenario can
be appended to a run: If an initial
run π0, consisting of the places b1, . . . , b6 of Fig. 2, is given, then π3 can be
constructed by first appending phil(1) followed by phil(2) and phil(3).

Oclets – Scenario-Based Modeling with Petri Nets 227

This way, we can compose all partially ordered runs of (N3
phil, m

3
phil), even the

non-decent ones. For instance, appending phil(1) to π0 followed by phil(1) again
adds transition e7 (take1) and subsequent nodes. A run that begins with firing
take2 can be composed by first appending phil(2) to π0. Intuitively, all these
runs satisfy the scenarios {phil(1), . . . , phil(3)}. In the course of this paper, we
generalize this appending composition to overlapping scenarios. In either case,
a set of scenarios is meaningful only, if the scenarios share some labels.

2.3 Anti-Scenarios Exclude Behavior

We just sketched how composing qualified scenarios yields partially ordered runs.
Although each scenario phil(i), i = 1, 2, 3, is qualified, we can construct unde-
sired, non-decent runs as explained. Anti-scenarios are an expressive mean to
exclude undesired behavior [6].

The non-decent behavior of the philosophers, as defined in Sect. 2.1, can be
narrowed down to the anti-scenarios decentL(i) and decentR(i) of Fig. 4. Scenario
decentL(i) denotes that after the left fork fi was released by philosopher i, it is
directly taken again by philosopher i; decentR(i) respectively for the right fork
fi⊕1. A partially ordered run that completely contains an anti-scenario decentL(i)
or decentR(i) is not decent; such a run violates the anti-scenario. The run con-
sisting of the nodes {b1, . . . , b10, e1, e2, e7, b19} of Fig. 2 violates decentL(1).

2.4 Behavioral Preconditions

The previous sections introduced the basic concepts of scenarios and their relation
to runs. So far, a scenario can be appended to a run as soon as its beginning can be
merged with the run. We now introduce a behavioral precondition for scenarios.

The grey shaded (dashed) behavior in Fig. 3, 4, and 5 denotes each scenario’s
precondition. It can be a partial marking as in Fig. 3 or a finite, connected
history as in Fig. 4 and 5. All other behavior is the contribution of the scenario.
The interpretation is that a qualified scenario can extend a given run only, if
its precondition is satisfied (has been observed) in the run. Conversely, the run
must not continue with the contribution of an anti-scenario, if its precondition
has been observed.

�����

� �	�
���

����

����

���� ����������
����

�� �� ��

��

�	

��

��

�����

� �	�
���

����

����

��������������
����

�� �� ��

��

�	

��

��

Fig. 4. Anti-oclets decentL(i) and decentR(i)
specifying the decent use of forks i and i ⊕ 1

������

� �	�
���

� �	�
���

���
��

��
��

������ ������

������ ������

�� �� ��

��

�	 �� ��

�� ��

�� ��

Fig. 5. A qualified scenario with
a history-based precondition

228 D. Fahland

Scenario cleanF(i) in Fig. 5 denotes that phil. i may clean both forks after
they have been used and released by his left neighbor i � 1 and his right neigh-
bor i⊕ 1. The precondition specifies that clean(1) can be appended to run π3 of
Fig. 2. Directly appending cleanF(1) in the initial state is not forbidden by qual-
ified scenario cleanF(1), but such a run cannot be constructed. Thus a qualified
scenario reads as “if the precondition holds, the contribution is executable.”

2.5 Scenarios Specify Systems, Scenarios Model Systems

Up to now, we only related scenarios to single runs and explained rather vaguely
how a set of scenarios relates to the complete behavior of a system. We explain
this relation subsequently.

A specification is a set of scenarios. In general, a system satisfies a specifi-
cation, if for every prefix of a run π of the system, which allows to append a
qualified scenario according to its precondition, the system also has a run π′

where the scenario was appended to π. Additionally, no run of the system may
violate an anti-scenario of the specification. This definition entails progress for
all transitions.

This strict interpretation allows for contradicting specifications: Consider run
π1 that is created by appending phil(1) to π0 (consisting of b1, . . . , b10, e1, e2).
Qualified scenario phil(1) requires the presence of a run π′

1 constructed by ap-
pending phil(1) again; thus run π′

1 contains transition e7 which violates anti-
scenario decentL(1).

For a more flexible style of scenario-based specifications, we weaken the se-
mantics of qualified scenarios allowing that a qualified scenario is not executed
completely if this would violate an anti-scenario. Simply said, we prioritize anti-
scenarios over qualified scenarios to solve the contradiction (thus a qualified
scenario corresponds to a universal LSC with cold cuts only). With this weaker
semantics, a system that executes run π1, but not π′

1, as denoted above, does sat-
isfy the specification {phil(1), decentL(1)}. Apparently, every system satisfying
⋃3

i=1{phil(i), decentL(i), decentR(i)} has only decent runs.
In [1], Damm and Harel point out an important issue when interpreting a

set of scenarios as there are two principle ways to do so: The existential in-
terpretation requires only the possibility to execute the qualified scenarios and
forbids anti-scenarios in a system. Any other behavior is allowed. The universal
interpretation requires that the entire behavior of a system is composed only of
the qualified scenarios while disallowing anti-scenarios. Any other behavior that
cannot be constructed from the scenarios is forbidden.

A modeler usually begins shaping the system behavior with the existential
interpretation in mind. Each new scenario adds a further requirement on the
system behavior. Once the scenarios are sufficiently detailed, the modeler changes
to the universal interpretation enforcing that the system behaves as specified in
the scenarios, only. The universal interpretation turns a set of scenarios into a
complete system model. It allows to define an operational semantics for scenarios
which is not permissible for the existential interpretation.

Oclets – Scenario-Based Modeling with Petri Nets 229

This concludes the informal introduction of the key concepts for scenario-
based specifications and models. In the subsequent sections, we revisit these
concepts as we defined the notion of a scenario by generalizing the notion of a
local step. This allows us to define an existential, and a universal semantics for
scenarios based on Petri nets. The latter constructs runs by appending qualified
scenarios while preventing the violation of anti-scenarios as sketched above. We
will return to the philosophers example in Sect. 6.

3 Oclets – A Petri Net Model for Scenarios

The next three sections are dedicated to our formal model of scenario-based
specifications and their semantics. We begin with structural definitions of the
syntax. We assume the reader to be familiar with the basic formal notions of
Petri net theory, we recall the most important ones that we need subsequently;
for an introduction we refer to [9].

Recalling some basic notions. As usual, we denote a Petri net as N =
(P, T, F); we call each place p ∈ P and each transition t ∈ T a node of N . We
will use labeled nets, N = (P, T, F, �), with a labeling function � assigning each
node x of N a label �(x) from some set L; L = T �P is partitioned into action
labels T and resource labels P with �(P) ⊆ P and �(T) ⊆ T . We canonically lift
any notion on any object to sets and to tuples of these objects.

We write •x for the preset, and x• for the postset of a node x of N . A net N is
acyclic if the flow-relation F has no directed cycles, i.e. the transitive closure of F
contains no pair (x, x); we write ≤N for the reflexive-transitive closure of F . The
minimal nodes of a set Y ⊆ P ∪T is the set minN Y := {y ∈ Y | •y∩ Y = ∅};
maximal nodes of Y are maxN Y := {y ∈ Y | y• ∩Y = ∅}. The set of transitively
reachable predecessors of Y is the set Y �N := {x | ∃y ∈ Y, x ≤N y}; Y is causally
closed iff Y �N ⊆ Y . The transitively reachable successors are �Y �N := {x | ∃y ∈
Y, y ≤N x}.

A Petri net π = (B, E, F) is a causal net iff (1) π is acyclic, (2) for each node
x of π, {x}� is finite, and (3) each place b ∈ B has at most one pretransition,
|•b| ≤ 1 and at most one posttransition |b•| ≤ 1. A labeled causal net that
formalizes a partially ordered run of a Petri net system as a Petri net again is
called process (of the system) [8]. We use these three terms synonymously. The
net π3 of Fig. 2 (bold nodes) is a process of (N3

phil, m
3
phil).

The elements of B and E are called conditions and events, respectively. For
the systems considered in this paper, no event of a process has two equally
labeled preconditions and no two equally labeled postconditions; further each
event of a process has a non-empty preset. The following notions will help us to
argue about the structure of processes:

Definition 1 (Induced subnet). Let N = (P, T, F, �) and M = (P ′, T ′, F ′, �′)
be nets. N is a subnet of M , N ⊆ M , iff P ⊆ P ′, T ⊆ T ′, F ⊆ F ′, and
�(x) = �′(x) for all x ∈ P ∪T . Let Y ⊆ (P ∪ T). By N [Y] we denote the Y -
induced subnet (P ∩Y, T ∩ Y, F |(Y ×Y), �|Y) of N .

230 D. Fahland

Definition 2 (Complete prefix, ends-with). A causal net π = (B, E, F) is
a prefix of a causal net ρ = (B′, E′, F ′), π [→ ρ, iff π ⊆ ρ, B ∪E�ρ ⊆ B ∪E,
and �B ∪E�ρ = B′ ∪E′.

Prefix π of ρ is complete (wrt. postconditions) iff (e, b) ∈ F ′ implies (e, b) ∈ F
for each e ∈ E. A set R of causal nets is prefix-closed iff each complete prefix
of each net of R is also in R. The net ρ ends with π, ρ →| π iff π ⊆ ρ and
maxπ(B ∪E) ⊆ maxρ(B′ ∪E′).

The structure of scenarios. The aim of our formal model is to describe and
construct a system’s processes from smaller processes, i.e. the system’s scenarios.
The simplest kind of scenario is a process given by a single event with its pre- and
postconditions; it denotes an occurrence of a single transition. We formalize such
a scenario as an atomic oclet : The event’s set of preconditions forms the oclet’s
precondition, the remainder of the process is the oclet’s contribution. Figure 6
depicts the atomic oclet that denotes the occurrence of transition take1 of Fig. 1.

The theory that we present subsequently gen-

�����

� �	�
���

����

�� �� ��

��

��

Fig. 6. An atomic oclet

eralizes atomic oclets by extending precondition
and contribution. In an oclet the occurrence
of a transition t can depend on more than its
preplaces being marked. Instead, an oclet’s pre-
condition can denote a history of transition oc-
currences which finally produce the tokens on
•t. We denote only those predecessors that are
necessary to fire t, i.e. not all postconditions of
t’s predecessors must be included. Figure 5 depicts such an oclet. In the same
way, we allow more events and conditions for building larger contributions of an
oclet, but here we require each event’s pre- and postconditions to be complete;
Fig. 3 depicts this case. Altogether this results in the following formal definition
of scenarios constituting the class of oclets.

Definition 3 (Oclet). An oclet o = (P, T, F, �, pre) is a labeled, finite causal
net (P, T, F, �), where each t ∈ T has no equally labeled preplaces and no equally
labeled postplaces, and a precondition pre ⊆ P ∪ T that induces a complete prefix
o[pre] of o s.t. each x ∈ maxo pre has a successor in o.

We call the set (P ∪ T)\pre the contribution of o, which is non-empty by Def. 3.
The nets of the Figures 3, 4, and 5 are oclets. We graphically denote the net
structure of an oclet as usual, surrounded by a dashed box; a grey shading (and
dashed lines) distinguishes the precondition from the contribution.

By definition, the precondition of every oclet is a complete prefix of the entire
oclet, its maximal nodes are places, and each oclet ends with its contribution.
Thus, the precondition can be evaluated in a state and the contribution begins
with a transition. Further, the precondition is a history of the contribution.
Otherwise, we would require the contribution to observe behavior on which it
does not causally depend.

An oclet specification is a set of oclets partitioned into qualified oclets and
anti-oclets.

Oclets – Scenario-Based Modeling with Petri Nets 231

Definition 4 (Oclet specification). An oclet specification O = (Q, A) con-
sists of two finite, disjoint sets Q and A of oclets where for each o ∈ A holds
|To \ preo| = 1. We call Q qualified oclets and A anti-oclets.

For instance, Phildec
3 := ({phil(1), phil(2), phil(3)},

⋃3
i=1{decentL(i), decentR(i)})

is an oclet specification, see Fig. 3 and 4.
For the scope of this paper, we will impose a rather natural consistency con-

dition on an oclet specification O: Let t1 and t2 be two distinct transitions from
the contributions of two oclets of O. If t1 and t2 have the same labels, then for
every preplace (postplace) p1 of t1 exists an equally labeled preplace (postplace)
p2 of t2, and vice versa. If this property holds for any two transitions of any two
oclets in O, then O is label-consistent.

Label-consistency ensures that every two oclet transitions with equal labels
specify (maybe different) occurrences of the same “system transition”. The spec-
ification Phildec

3 is label-consistent. We do not impose consistency for transition
of the precondition as these do not specify a contribution but an observation of
behavior prior to a contribution. Here, partial correspondence is sufficient.

4 Formal Semantics of Oclets

We just defined the syntax of scenarios as oclets. In this section, we will define
their semantics in terms of sets of satisfying runs, i.e., labeled causal nets. The
semantics of a qualified oclet o shall read as “if preo holds, then the entire oclet o
can occur”. The semantics of an anti-oclet is much simpler: the entire anti-oclet
does not occur in any run.

Some useful terminology. The decisive concept to relate an oclet to a run,
and hence, to define the semantics of oclets is what we call an embedding. An
oclet can occur at several places in a run, that is, a run can have several subnets
that are isomorphic to an oclet. For clearly distinguishing between an oclet and
its occurrences, we say that an oclet is embedded in a run if the run contains a
subnet that is isomorphic to the oclet; the corresponding subnet isomorphism is
an embedding of the oclet into the run. For technical reasons, we formally define
these terms for induced subnets.

Definition 5 (Embedding). Let N and M bet two labeled Petri nets, let XN ⊆
PN ∪TN and XM ⊆ PM ∪TM . A mapping α : XN → XM is an embedding of
N [XN] in M [XM] iff for each node x ∈ XN holds �N(x) = �M (α(x)) and for
each edge (x1, x2) ∈ FN exists an edge (α(x1), α(x2)) ∈ FM .

As an example, consider oclet phil(2) of Fig. 3 and the process π3 of Fig. 2.
The mapping α1 with α1 = [p1 �→ b10, p2 �→ b4, p3 �→ b5] is an embedding of
prephil(2) into π3. To simplify notation, when referring to an induced subgraph,
e.g. phil(2)[prephil(2)], we only write its inducing nodes, e.g. prephil(2), if the net
is obvious from the context and confusion is safely avoided.

Our next step will be to relate a run to a set of runs which we call its con-
tinuations. This effectively means that the run gets various new labeled events,

232 D. Fahland

conditions, and arcs. We want to distinguish all these continuations only up to
isomorphism. That means, in the remainder of the paper, we will treat isomor-
phic Petri nets as equal, specifically regarding containment in sets, etc. This
treatment comes natural if we bear the graphical interpretation of nets in mind.
It has been shown earlier, e.g. in [10], how this treatment of isomorphic nets
can be reduced to strict mathematical identity by choosing canonic identities for
nodes of nets.

Continuing a run with an oclet. We now have all notions to formalize the
semantics of an oclet. We first define how a prefix of one oclet relates to one run
and how this run can be continued with the oclet. We then lift this notion to
a set of runs that satisfies one oclet and finally define the semantics of an oclet
specification, i.e. sets of oclets.

We introduce some notation for describing where (a prefix of) an oclet is
embedded in a run. Let o be an oclet and let X ⊆ (Po ∪ To) be the nodes of a
complete prefix o[X] of o; let π be a labeled causal net.

1. The prefix o[X] holds at the end of π by embedding α, denoted (π, α) |= o[X],
iff α embeds o[X] at the end of π, formally π →| α(o[X]), see Def. 2.

2. The prefix o[X] holds in (the past of) π by α, denoted (π, α) |= ♦- o[X] iff α
embeds o[X] in π.

3. We write π |= ϕ for ∃α :(π, α) |= ϕ and π |= ¬ϕ for ¬∃α :(π, α) |= ϕ.

For instance, π |= ¬♦- o[X] expresses that o[X] does not hold anywhere in π.
Although our notation takes inspiration from temporal logic, we do not build
such a logic here. Nevertheless, it is easy to prove that (π, α) |= ♦- o[X] holds iff
there exists a prefix π′ of π with (π′, α) |= o[X]. In our example, the precondition
of phil(1) of Fig. 3 holds at the end of run π3 in Fig. 2 while the precondition of
decentL(1) of Fig. 4 does not hold in π3.

A process in which the precondition of a qualified oclet holds naturally sug-
gests to continue this run by appending the complete oclet at its end. We are
not only interested in this largest continuation but also in all intermediate con-
tinuations. Of course, a run is a complete prefix of each of its continuations.

Definition 6 (Continuation). Let π, π′ be labeled causal nets, let o be an oclet.
π′ is a continuation of π with o, π

o−→ π′ iff π is a prefix of π′ and there exists
a complete prefix o[X ′] of o with preo ⊆ X ′ ⊆ Po ∪To and embeddings α and
α′ with (π, α) |= o[preo], (π′, α′) |= o[X ′] s.t. all new nodes come from X ′ only:
α′|preo

= α and α′(X ′ \ preo) = (B′ ∪E′) \ (B ∪E).

The set of prefixes of o induces the set of continuations of π. Thus, a con-
tinuation of π appends some nodes of o s.t. a larger prefix of o holds. In our
example, consider the run π0 (consisting of b1, . . . , b6) and the run π1 (consist-
ing of b1, . . . , b10, e1, e2) in Fig. 2. Run π1 is the largest continuation of π0 with
oclet phil(1).

A set of runs R is closed under continuations with o iff for each π ∈ R, each
continuation π′, π

o−→ π′, is a run in R.

Oclets – Scenario-Based Modeling with Petri Nets 233

Definition 7 (Semantics of an oclet). A set of labeled causal nets R satisfies
an oclet o, R |= o iff R is prefix-closed and closed under continuations with o. R
satisfies the negation of o, R |= ¬ o iff R is prefix-closed and o does not hold in
any run in R: ∀π ∈ R : π |= ¬♦- o.

A strict interpretation of an oclet specification O = (Q, A) would be R |= O iff
R |= o for all o ∈ Q, and R |= ¬ o for all o ∈ A. This would allow for contradicting
specifications with no satisfying run as explained in Sect. 2.5.

Existential semantics of an oclet specification. We motivated in Sect. 2.5,
that we are interested in a weaker semantics of an oclet specification that requires
the satisfaction of a qualified oclet in a run only up to the point where an anti-
oclet would be violated.

To achieve this, we cannot require that a set of runs is closed under all con-
tinuations; we have to exclude those continuations that would violate an anti-
oclet. The formalization is straight forward: Let π be a run, let o be a qualified
oclet, and let o′ be an anti-oclet. A continuation π

o−→ π′ does not violate o′ iff
π′ |= ¬♦- o′ holds. For a second anti-oclet o′′, the continuation π

o−→ π′ also does
not violate o′′ iff π′ |= ¬♦- o′ and π′ |= ¬♦- o′′ holds. Thus we can generalize this
notion of non-violating continuations to a set of anti-oclets.

Definition 8 (Non-violating continuation). Let o be an oclet and let A be a
set of anti-oclets. Let π, π′ be labeled causal nets; π′ is a non-violating continua-
tion of π with o wrt. A iff π

o−→ π′ ∧ ∀o′ ∈ A : π′ |= ¬♦- o′. We write π
o∧¬A−−−−→ π′

in this case.

A non-violating continuation wrt. A does not embed any anti-oclet o ∈ A. Be-
cause we exclude only those continuations that do violate an anti-oclet in A,
the set of non-violating continuations is maximal. We may now close a set of
processes in the right way by only considering the non-violating continuations.

A set of runs R is closed under non-violating continuations with o wrt. A iff
for each π ∈ R each non-violating continuation of π with o wrt. A is a run in R.
With this notion, lifting semantics of an oclet to a set of oclets yields the formal
existential semantics of oclet specifications.

Definition 9 (Semantics of an oclet wrt. anti-oclets). A set of labeled
causal nets R satisfies an oclet o wrt. a set of anti-oclets A, R |= (o ∧ ¬A), iff
R is prefix-closed and closed under non-violating continuations with o wrt. A.

Definition 10 (Existential semantics). A set of labeled causal nets R satis-
fies an oclet specification (Q, A), R |= (Q, A) iff R |= (o ∧ ¬A) for each o ∈ Q
and R |= ¬ o for each o ∈ A.

With Def. 10, we can use qualified oclets and anti-oclets to formally specify the
behavior of systems. A model, say a Petri net system, satisfies an oclet specifi-
cation if the system’s processes satisfy the intuitively understandable meaning
of “if the precondition holds, the entire scenario must be executable as long as
no anti-scenario is violated”. In any other respect, the behavior of the system
can be arbitrary.

234 D. Fahland

5 Operational Semantics of Oclets

In the previous section, we established the existential, formal semantics of oclets
for specifying systems. In this section, we turn an oclet specification into an oclet
system having only the behavior that is specified by its oclets.

We define the universal semantics of oclets which is the behavior that can be
constructed from a given set of oclets only. The universal semantics is operational
as it defines exactly the actions that extend a given run. Such a semantics needs
a specific point to begin with the construction; we define an oclet system.

Definition 11 (Oclet system). Let O be a label-consistent oclet specification,
and π0 be a process. Then Ω = (O, π0) is an oclet system.

Like for oclet specifications, we require that equally labeled transitions have
equally label preplaces and equally labeled postplaces; see Sect. 3. For example,
oclet specification (

⋃3
i=1{phil(i)},

⋃3
i=1{decentL(i), decentR(i)}) =: Phildec

3 yields
the oclet system Ωdec

3 = (Phildec
3 , π0) with π0 having only the conditions Bπ0 :=

{b1, . . . , b6} of Fig. 2; π0 is called initial process.
Considering transition t1 of phil(1), we see that the strict past of t1, i.e. •t1�,

can be embedded in π0 while t1� cannot be embedded. That is π0 |= •t1�.
Simply said, t1 is enabled in π0. Transition t2 of decentL(1) is not enabled in π0

because there is no embedding of the entire •t2� at the end of π0.

Definition 12 (Enabled transition). Let o be an oclet, let t ∈ To \ preo, and
let π be a labeled causal net. Transition t is enabled in π iff π |= •t�.

This definition of enabling a transition generalizes the definition for classical nets:
In order to embed the preset of a transition in a process, all its predecessors must
be embeddable. Thus in order to enable a transition of an oclet, the transition’s
history must have occurred. Transition t2 of decentL(1) is enabled in π1 (having
nodes {b1, . . . , b10, e1, e2}); the corresponding embedding α2 yields α2(•t2) =
{b8, b9, b10}.

Intuitively, firing an enabled transition t means to continue a process π with
transition t and its postset. We formalize this pattern as an extension of π:
It consists of a new event et that consumes from those conditions of π that
correspond to t’s preplaces and produces on new conditions that correspond to
t’s postplaces.

Definition 13 (Extension). Let t be a transition of an oclet o, t ∈ To \ preo

that is enabled in π by α: (π, α) |= •t�. An extension of π by t at α is a net
fragment Eα

t := (Bt, {et}, Fα
t , �t) with Bt = {b∗p | p ∈ t•}, Bt ∩Bπ = ∅, et �∈ Eπ,

– Fα
t = {(b, et) | b ∈ α(•t)}∪{(et, b

∗
p) | b∗p ∈ Bt}, and

– �t(et) = �o(t) and �t(b∗p) = �o(p) for all p ∈ t•.

In our example, the extension that corresponds to t1 (take1) of phil(1) in π0

consists of nodes e1 and b7 and all incoming arcs, especially (b1, e1), etc. in
Fig. 2. An extension is not a Petri net, because its arcs refer to nodes that are

Oclets – Scenario-Based Modeling with Petri Nets 235

not part of the extension. We therefore call it a net fragment. To fire a transition
in a process, append the corresponding extension to the process.

In our operational semantics, firing a transition must not violate an anti-oclet.
Observe that transition t1 of phil(1) is enabled in π1 as well; the corresponding
embedding α3 yields α3(•t1) = {b8, b9, b10} = α2(•t2) where t2 is the contribut-
ing transition of anti-oclet decentL(1). Both transitions have the same label;
firing t1 of phil(1) in π1 would violate decentL(1).

In general, a transition t would violate an anti-oclet oa in a process π iff t is
enabled in π by α and oa has an equally-labeled transition s ∈ (Ta \ prea) that
is enabled in π by αa s.t. t and s denote the same occurrence: α(•t) = αa(•s).
Firing a violating transition is forbidden. This interpretation yields the processes
of an oclet system.

Definition 14 (Processes of an oclet system). Let Ω = ((Q, A), π0) be an
oclet system. The set Proc(Ω) of all processes of Ω is the least set that satisfies:

1. π0 is a process of Ω iff π0 |= ¬ oa for all oa ∈ A.
2. Let π ∈ Proc(Ω). Let o ∈ Q and let t ∈ (To \ preo) be a transition that is

enabled in π and that would not violate any oa ∈ A.
The net (π⊕Eα

t) := (Bπ ∪Bt, Eπ ∪{et}, Fπ ∪Fα
t , �π ∪ �t) is a process of Ω.

Definition 14 completes the formal semantics of oclets. The entire process π3 of
Fig. 2 is a process of Ωdec

3 .
In the remainder of this section, we show that these definitions make sense.

We prove that oclet systems are at least as expressive as elementary net systems.
We finally show that existential and universal oclet semantics are consistent: the
processes of an oclet system (universal semantics) satisfy its own specification
(existential semantics). But first of all we show that all processes of an oclet
system are labeled causal nets, i.e. that Def. 14 is formally sound.

Lemma 1. Let Ω be an oclet system. If π ∈ Proc(Ω) is a process, and Eα
t is

an extension of π, then π⊕Eα
t ∈ Proc(Ω) is a labeled causal net.

Proof. Let Ω, π, and Eα
t be as assumed. Let o be the oclet of Ω with t ∈ To.

ρ := π⊕Eα
t is a Petri net: π is a net. Bρ ∩Eρ = (Bπ ∪Bt)∩(Eπ ∪{et}) = ∅

by Def. 13 and 14. It is easy to see that extending Fπ with Fα
t preserves the

bipartite structure of nets and that the union of �π and �t is well-defined.
ρ is a causal net: (1) π and Eα

t are acylic and disjoint. Further, Eα
t has no arc

(x, y) with y in π. Thus there exists no arc from Eα
t into π to close a cycle in ρ.

(2) In π⊕Eα
t , each node has only finitely many predecessors because π is a causal

net and Eα
t is finite. (3) Transition t is enabled in π (by Def. 13) which implies

α(•t) ⊆ maxπ(Bπ ∪Eπ) (by Def. 12). Thus each b ∈ α(•t) has no successor in
π. In ρ, each b ∈ α(•t) has only one successor: et (by Def. 13 and 14). The new
postconditions Bt ⊆ maxρ(Eρ ∪Bρ) have no successor and only one predecessor:
et (by Def. 13). Thus π is a labeled causal net as defined in Sect. 3. ��

The operational semantics of oclets is complete wrt. the partial order semantics
of Petri net systems.

236 D. Fahland

Theorem 1. Let N = (P, T, F, m0) be a Petri net system with initial marking
m0. Then there exists an oclet system ΩN s.t. the set of processes of N and the
set of processes of ΩN are equal.

Proof. We show completeness by defining an algorithm that constructs for each
N an oclet system ΩN that has exactly the same processes as N .

Let t ∈ T . We define an atomic oclet ot that specifies the firing of transition
t: ot := (Po, To, Fo, �o, preo) with Po = •t∪ t•, To = {t}, Fo the restriction of FN

to (Po × To)∪(To × Po), �o the identity on Po ∪To, and preo = •t; c.f. Fig. 6.
The structure ot is an oclet by Def. 3. Define ΩN := (({ot | t ∈ T }, ∅), π0) with
initial process π0 consisting only of the set of conditions Bπ0 := {b1, . . . , bk | ∃p ∈
PN : m0(p) = k, �π0(bi) = p, i = 1, . . . , k}; ΩN is an oclet system by Def. 14.

We prove the equivalence of processes by induction on the number of events
in them. Firstly, π0 is the initial process of N iff it is the initial process of ΩN ,
which holds by construction. Let π be a labeled causal net containing n events.
By inductive assumption, π is a process of N iff it is a process of ΩN .

By definition of partial order semantics of nets, π reaches the marking m
with m(p) = |{b ∈ max π | �π(x) = p}| for each place p. Let Tm be the set of
transitions that are enabled in m. By construction of ΩN holds t ∈ Tm iff there
exists oclet ot in ΩN with transition t that is enabled in π according to Def. 12.

If Tm = ∅, π cannot be extended by N and by ΩN . Otherwise, let t ∈ Tm

with •t = {p1, . . . , pk} and t• = {q1, . . . , ql}; firing t according to the Petri net
semantics constructs process ρ by adding a new t-labeled event e with precondi-
tions •e = {b1, . . . , bk} ⊆ maxπ(Bπ ∪Eπ) with �ρ(bi) = pi, i = 1, . . . , k and new
postconditions e• = {b∗1, . . . , b∗l } with �ρ(b∗i) = qi, i = 1, . . . , l. Because ΩN has
no anti-oclets, there exists an embedding α with π⊕Eα

t ∈ Proc(Ω) (Def. 14).
By definition of ot and by Def. 13 holds π⊕Eα

t = ρ. Thus ρ, with n + 1 events,
is a process of N iff it is a process of ΩN . ��

Theorem 1 relates oclet systems to classical Petri net systems. The following the-
orem relates the universal semantics of oclet systems to the existential semantics
of oclet specifications.

Theorem 2. Let Ω = (O, π0) be an oclet system. Proc(Ω) |= O.

We prove Thm. 2 by the help of two lemmata. The first technical lemma states
that every complete prefix of a continuation is a continuation as well. The second
lemma proves that the processes of an oclet system are closed under non-violating
continuations.

Lemma 2. Let π be a process, let o be an oclet, and let π
o−→ π2. Let π1 be a

complete prefix of π2, i.e. π1 contains all postconditions of its events (Def. 2),
s.t. π is a prefix of π1. Then π

o−→ π1.

Proof. We construct the prefix o[X1] of o that is embedded at the end of π1

according to Def. 6. The nodes XΔ := (B2 ∪E2) \ (B1 ∪E1) are not in π1.
Because π

o−→ π2, there exists a prefix o[X2] of o with preo ⊆ X2 and embed-
dings α and α2 with (π, α) |= o[preo] and (π2, α2) |= o[X2]; see Def. 6.

Oclets – Scenario-Based Modeling with Petri Nets 237

By Def. 5, α2 is injective. The nodes X1 := X2 \ α−1
2 (XΔ) are all oclet nodes

that are embedded into π1: Because π1 is a complete prefix of π2 and by α2 being
injective follows o[X1] is a complete prefix of o[X2]. The restricted embedding
α1 := α2|X1 embeds o[X1] at the end of π1: (π1, α1) |= o[X1].

From π being prefix of π1 follows (B ∪E)∩XΔ = ∅. Thus α(preo)∩XΔ = ∅
holds, which implies preo ∩α−1

2 (XΔ) = ∅. Hence preo ⊆ X2 and X1 = X2 \
α−1

2 (XΔ) imply preo ⊆ X1. Thus π
o−→ π1 by Def. 6. ��

Lemma 3. Let Ω = ((Q, A), π0) be an oclet system. Let o ∈ Q and let π ∈
Proc(Ω). Then every process π2 with π

o∧¬ A−−−−→ π2 is a process of Ω.

Proof. We prove the property by induction on the number n of new events in
π2, n = |Eπ2 \ Eπ|. For n = 0 we have π2 = π by Def. 6; thus π2 ∈ Proc(Ω).

Consider n > 0: Let π2 be a non-violating continuation of π; π2 contains a new
event e ∈ (Eπ2 \Eπ) that has no successor event, i.e. there ex. no e′ ∈ Eπ2 , e �= e′

with e ≤π2 e′. Let π1 be the prefix of π2 which we obtain by removing e and e•

from π2. Effectively, we remove events E∗ = {e}, conditions B∗ = e•, and arcs
F ∗ = {(b, e) | b ∈ •e}∪{(e, b) | b ∈ B∗}.

Because e �∈ Eπ, π is a prefix of π1. From Lemma 2 follows that π1 is a
continuation of π. Trivially, π1 does not violate any anti-oclet of A because π2

does not. Thus by inductive assumption, π1 ∈ Proc(Ω).
We have to show that π2 ∈ Proc(Ω). From the definition of continuation

(Def. 6) follows that some prefix o[X2] of o is embedded at the end of π2 by
some embedding α2. Thus there exists a transition t ∈ X2 with α2(t) = e which
we removed from π2 to obtain π1. We fire t in π1 to construct π2:

Because e and e• were removed, the prefix o[X1], X1 := X2 \ (t∪ t•) of o is
embedded at the end of π1 by α1 := α2|X1 . Then (π1, α1) |= •t�, i.e. t is enabled
in π1 (Def. 12). From Def. 13 follows that Eα1

t = (B∗, E∗, F ∗, �π2 |B∗ ∪E∗) as
removed from π2. Thus π1 ⊕Eα1

t = π2. By Def. 14, π2 is a process of Ω. ��
With Lem. 3 we have proven that the processes an oclet system are closed
under non-violating continuations. The proof also shows how declarative and
operational semantics are related to each other by the notion of local steps. The
proof of Thm. 2 is now straight forward.

Proof (of Thm. 2). Let Ω = (O, π0) be an oclet system with O = (Q, A). We have
to show Proc(Ω) |= O according to Def. 10. The set Proc(Ω) is prefix-closed by
construction. From Lemma 3 follows that Proc(Ω) is closed under non-violating
continuations with any qualified oclet of Ω wrt. A. Thus Proc(Ω) |= (o ∧ ¬A)
for each o ∈ Q.

It remains to show that no process of Ω violates any anti-oclet ov ∈ A:
Assume there is a run πv ∈ Proc(Ω), πv �= π0 and an embedding αv that violates
ov: (πv, αv) |= ♦- ov. Because Proc(Ω) is prefix-closed, we may assume that
(πv, αv) |= ov holds. From Def. 14 follows that there exists π ∈ Proc(Ω), an
oclet o ∈ Q, and a transition t of o that is enabled in π by an embedding α
with πv = π⊕Eα

t . But then, ov contains transition s with �ov(s) = �o(t) and
αv(•s) = α(•t). Hence t would violate ov. This contradicts πv = π⊕Eα

t ∈
Proc(Ω) by Def. 14. Thus Proc(Ω) |= ¬ o for each o ∈ A. ��

238 D. Fahland

We just have shown that the universal semantics of oclet systems imply the
existential semantics of oclet specifications. The semantics are not equivalent in
general, as any set of processes, that contain labels that do not occur in the
specification, cannot be constructed with the universal semantics.

The behavior that satisfies an oclet specification (Q, A) but that cannot be
constructed by an oclet system Ω = ((Q, A), π0) violates the following closed-
world assumption of the universal semantics. A set of runs R is closed wrt. Ω
iff for all π ∈ R, π0 is a complete prefix of π and for each node x ∈ (Bπ ∪Eπ)
exists a qualified oclet o of O that contributes this node to π, i.e. there exists y ∈
Po ∪To and embedding α : y� → (Bπ ∪Eπ) with α(y) = x. From the inductive
definition of the processes of an oclet system follows that if Proc(Ω) ⊂ R, then
R is not closed wrt. Ω.

6 Modeling with Oclets

In the previous three sections, we defined the formal semantics of oclets.
With this semantics, the oclet system Ωdec

3 = (Phildec
3 , π0) with Phildec

3 :=
(
⋃3

i=1{phil(i)},
⋃3

i=1{decentL(i), decentR(i)}) of our introductory Sect. 2 has
only decent runs by construction. The run π3 of Fig. 2 is a process of Ωdec

3 .
To give a better understanding for the use of oclet systems, we explain two

application scenarios for oclets in the section. First, we use oclets to specify the
solution of n dining philosophers with only n − 1 forks available. Secondly, we
sketch how oclets allow to quickly adapt system models.

6.1 Scenario-Based System Design with Oclets

We consider a variant of the dining philosophers: The philosophers are still
sitting around a table and alternate between thinking and eating by taking and
releasing forks they share with their neighbors. Unfortunately, one fork fi is
missing; philosophers i and i ⊕ 1 cannot eat. The task: Specify a system of n
philosophers with n − 1 forks s.t. each philosopher always eventually eats.

���

�� ��� �����

����

��	�

� ��� ����

������� �����

������

���

��

�

�����

������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
��

�
�

�
	

Fig. 7. Oclet exchF(i) specifying the
fork-passing protocol

In our solution, the philosophers pass
the forks around the table: Every philoso-
pher i⊕1,who is missing his right fork i⊕2
may request the left fork of his left neigh-
bor i. Philosopher i grants this request by
passing his left fork i to his right neighbor
i ⊕ 1, who put this fork to his right. Now,
phil. i�1 is missing his right fork i; he may
send a request to his left neighbor. To al-
low each phil. i to eat at least once before
passing his left fork, he may do so only af-
ter he has just returned from eating. Oclet
exchF(i) of Figure 7 denotes exactly this
specification.

Oclets – Scenario-Based Modeling with Petri Nets 239

Now, consider the oclet system Ωm
3 := (Philm3 , πm

0) with oclet specification
Philm3 := (

⋃3
i=1{phil(i), exchF(i)}, ∅) and initial process πm

0 having initial con-
ditions with labels f1, th1, f2, th2, m3, th3. Figure 8 depicts a process πm

4 of Ωm
3 :

In πm
0 , transition take1 of phil(1) and rqf2 of exchF(1) are enabled concurrently.

Because we made the enabling of a transition dependent only its own history
(instead of the entire precondition of its oclet), it is possible to start executing
a scenario even if not the entire precondition was observed. Theorem 2 justifies
this behavior. Firing take1 and rqf2 yields πm

1 (nodes b1, . . . , b9, e1, e2).
In πm

1 , only rel1 of phil(1) is en-

�� ��� �� ��� �� ���

�	
��

�	��

���

�� ���

��
����

���

��

���

���

�

��

���

�	
��

��

�	��

�� ��� ��

��

����

���

���

��

�	
��

����

�� �� �� �� �� ��

��

��

��

��� ��� ���

��

����

�	

��� ���

��� ��

��

���

��

���

��

��� ��� ���

�

��	���

��

Fig. 8. A process πm
4 of the fork-

passing philosophers

abled, yielding πm
2 (nodes b1, . . . , b12,

e1, . . . , e3). Transitions take1 of phil(1),
and gr1 of exchF(1) are enabled in con-
flict: their presets can only be overlap-
pingly embedded. Firing gr1 and the
subsequently enabled rcv2 of exchF(1)
constructs πm

3 (b1, . . . , b17, e1, . . . , e5)
where philosopher 2 can now take both
forks. Continuing with the construction,
we reach πm

4 where now philosopher 2
has to choose whether to grant the re-
quest of philosopher 3 or whether to
take the forks again.

The system Ωm
3 solves the missing fork

problem for 3 philosophers, but has non-
decent runs. We can easily refine Philm3 to
Philm,d

3 by adding anti-oclets decentL(i)
and decentR(i) of Fig. 4 for i = 1, 2, 3.
Process πm

4 is also a process of the re-
fined system Ωm,d

3 := (Philm,d
3 , πm

0), and
cannot be extended by e9 (take2) because
of t2 of decentL(2). The system Ωm,d

3 has
only decent runs by construction.

This solution has another unfair run in case of more than three philosophers:
Assume phil. 2 requests and receives fork f1 from phil. 1 and puts it as fork f3
between phil. 2 and phil. 3. Fork f3 can equally be taken from phils. 2 and 3.
Meanwhile, the other philosophers may have kept on passing forks until phil. 4
requests f3 from 3. If now phil. 3 takes and releases his forks, and then grants the
request of 4, phil. 2 was not able to eat with the forks he just has requested. The
specification can easily be extended with an anti-oclet to prevent this behavior.

6.2 Adapting System Models with Oclets

This rather flexible style of creating oclet specifications also helps when specify-
ing systems that have to be adapted frequently. Processes in disaster response are
such as case, where the system model must be adapted to incorporate changes
of the real-world processes [3].

240 D. Fahland

As it is fairly easy to add, remove, and modify single scenarios, the changes are
well-conceivable and do not break the model. Because our operational semantics
makes no assumptions regarding the initial process, adaptation can be done as
follows: Construct a process π of an oclet system (O, π0) until a problem is
encountered. Change specification O by adding, removing, or modifying oclets;
O → O′. Then continue in the system (O′, π). Iterate this procedure, possibly
beginning again at π0 or π, until the system is adapted. Our formal semantics
guarantees well-defined behavior at any time during adaptation.

7 Related Work

In this section, we compare our approach for scenario-based modeling with Petri
nets to existing works.

MSCs formalize scenarios as partial orders on events; several extensions are
available. Hierarchical MSCs (HMSCs) and Message Sequence Graphs (MSGs)
explicitly denote in a graph how scenarios may be concatenated, for specifying
entire systems. Operational semantics of (H)MSCs and MSGs translate a spec-
ification into process algebraic expressions [5], automata [4], or employ graph
grammars to construct runs [7] from MSCs. These, as well as existing Petri net
semantics like [11] do not support anti-scenarios.

LSCs are an extension of MSCs with a formal semantics for overlapping sce-
narios, anti-scenarios, and modalities for scenarios and events. LSCs are more
expressive than oclets; the original LSC semantics is declarative. Operational se-
mantics for LSCs, i.e. LSC play-out, is defined by a translation to state charts [6],
or by constructing an automaton from a specification [12]. Unfortunately, this
linearizes the partial order explicitly specified in the charts.

Desel et al brought up the approach of scenario-based system design and val-
idation with Petri nets [13,2]. The principle idea is to let the system designer
denote desired and undesired behavior as complete (finite) partially ordered
runs, i.e. complete scenarios and anti-scenarios. These mediate between a for-
mal specification and a system model (a Petri net): Specification and model
are validated against the scenarios, that is, whether each scenario satisfies the
specification and whether the system model executes the desired scenarios while
disallowing the undesired ones. The modeler iteratively reaches a valid system
model; thereby refinement of the system model is a creative step involving hu-
man interaction. This step can be supported by folding desired scenarios into an
overapproximating Petri net [2]. In [14], Bergenthum et al show how an equiv-
alently implementing Petri net can be synthesized from a complete set of finite
desired runs. The approach is extended in [15] where desired behavior is given
as a regular expression over finite scenarios.

The oclet model follows this idea of scenario-based system design. Oclets con-
tribute history-based preconditions to scenarios allowing that a scenario specifies
behavior “in the middle” of an execution. Thereby the composition of scenar-
ios to complete runs follows from the oclet’s inherent precondition requiring no
further notion like an expression for composition. Our operational semantics

Oclets – Scenario-Based Modeling with Petri Nets 241

allows to execute a set of scenarios directly without the need for additional syn-
thesis or transformation. In that respect, our semantics makes a set of scenarios
a complete system model. Still, a synthesis into Petri nets as in [14,15] allows to
use the entire Petri net theory for verification.

The concept of history-dependent firing of transitions has been proposed ear-
lier by defined corresponding transiting guards [16]; oclets provide a graphical
syntax for a subclass of these guards. The net composition techniques defined
in [17] are a general case of the net composition employed in our model. In the
context of adapting system models, existing works in the area of adaptive work-
flows, see [18] for a survey, use models with sequential semantics or require to
denote adaptations in explicit model transformation rules. Graph transforma-
tions on nets also require explicit adaptations rules for adaptations, e.g. [19]. In
comparison, adaptations of oclet systems can be done from the perspective of
desired and undesired scenarios only.

8 Conclusion

We presented a novel formal model for specifying and modeling systems with
Petri net scenarios. We defined a specification to be a set of oclets, labeled causal
nets with a dedicated precondition; oclets are partitioned into qualified oclets
and anti-oclet describing desired and forbidden behavior, respectively.

We defined a declarative semantics that characterizes sets of runs that satisfy
a given specification. We then provided an operational semantics to construct a
maximal set of satisfying runs; we have shown that any run, that cannot be con-
structed either violates the specification, or includes an action that is not defined
in the specification. We solved the dining philosophers problem in two variants to
illustrate how our model can be used for modeling distributed systems. Providing
an operational, partial-order Petri net semantics for scenarios and anti-scenarios
makes our work a contribution in the area of scenario-based techniques.

Our results hint to further research: We already have first results towards
constructing the complete finite prefix of a branching process of an oclet sys-
tem [10] which allows for the verification of oclet systems (the full branching
process can already be constructed with the given semantics). These results also
hint towards a synthesis of Petri nets from scenarios and anti-scenarios. We also
research structural properties of oclet specifications to derive system properties
directly from scenarios and intend to introduce modalities known from LSCs
such as imperative scenarios and events.

Our approach is implemented in our graphical runtime environment Greta,
that is available online at http://www.service-technology.org/greta/ to-
gether with several example specifications.

Acknowledgements. This paper has greatly benefitted from discussions with
and suggestions by Wolfgang Reisig, Karsten Wolf, Peter Massuthe, and all
referees of this paper. Our tool Greta, which substantially helped developing the
concepts would not have been possible without the work of Manja Wolf. Dirk
Fahland is funded by the DFG-Graduiertenkolleg 1324 “METRIK”.

242 D. Fahland

References

1. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Form.
Methods Syst. Des. 19(1), 45–80 (2001)

2. Desel, J.: From human knowledge to process models. In: UNISCON, pp. 84–95
(2008)

3. Fahland, D., Woith, H.: Towards process models for disaster response. In: Ardagna,
D., et al. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 244–256. Springer,
Heidelberg (2008)

4. Mukund, M., Kumar, K.N., Thiagarajan, P.S.: Netcharts: Bridging the gap between
HMSCs and executable specifications. In: Amadio, R., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 293–307. Springer, Heidelberg (2003)

5. Mauw, S., Reniers, M.A.: An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal 37, 269–277 (1994)

6. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Specifi-
cations. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 1–33. Springer,
Heidelberg (2001)

7. Hélouët, L., Jard, C., Caillaud, B.: An event structure based semantics for high-
level message sequence charts. Mathematical. Structures in Comp. Sci. 12(4), 377–
402 (2002)

8. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6), 575–591 (1991)
9. Reisig, W.: Elements Of Distributed Algorithms: Modeling and Analysis with Petri

Nets. Springer, Heidelberg (1998)
10. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-

ing. Springer, Heidelberg (2008)
11. Kluge, O.: Petri nets as a semantic model for Message Sequence Chart specifica-

tions. In: INT 2002, Grenoble, France, pp. 138–147 (2002)
12. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral require-

ments. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517,
pp. 378–398. Springer, Heidelberg (2002)

13. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and validation with Vip-
Tool. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM
2003. LNCS, vol. 2678, pp. 380–389. Springer, Heidelberg (2003)

14. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri Nets from
Finite Partial Languages. Fundam. Inform. 88(4), 437–468 (2008)

15. Bergenthum, R., Mauser, S.: Synthesis of Petri Nets from Infinite Partial Lan-
guages with VipTool. In: AWPN 2008, Rostock, Germany, University of Rostock
(September 2008)

16. Hee, K., Serebrenik, A., Sidorova, N., Voorhoeve, M., Werf, J.: Modelling with
History-Dependent Petri Nets. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 320–327. Springer, Heidelberg (2007)

17. Barros, J.a.P., Gomes, L.: Net model composition and modification by net oper-
ations: a pragmatic approach. In: Proceedings of INDIN 2004, Berlin, Germany
(June 2004)

18. Rinderle, S., Reichert, M., Dadam, P.: Evaluation of correctness criteria for dy-
namic workflow changes. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske,
M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 41–57. Springer, Heidelberg (2003)

19. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of
net transformations and token firing in reconfigurable place/transition systems.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123.
Springer, Heidelberg (2007)

	Oclets – Scenario-Based Modeling with Petri Nets
	Introduction
	Specifying with Scenarios – An Informal Introduction
	The Dining Philosophers Problem
	The Basic Idea
	Anti-Scenarios Exclude Behavior
	Behavioral Preconditions
	Scenarios Specify Systems, Scenarios Model Systems

	Oclets – A Petri Net Model for Scenarios
	Formal Semantics of Oclets
	Operational Semantics of Oclets
	Modeling with Oclets
	Scenario-Based System Design with Oclets
	Adapting System Models with Oclets

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

