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Preface

This volume consists of the proceedings of the 30th International Conference
on Applications and Theory of Petri Nets and Other Models of Concurrency
(PETRI NETS 2009). The Petri Net conferences serve as annual meeting places
to discuss the progress in the field of Petri nets and related models of concur-
rency. They provide a forum for researchers to present and discuss both appli-
cations and theoretical developments in this area. Novel tools and substantial
enhancements to existing tools can also be presented. The satellite program of
the conference comprised four workshops and seven tutorials. This year, the
conference was co-located with the 20th IEEE/IFIP International Symposium
on Rapid System Prototyping (RSP 2009). The two conferences shared five in-
vited speakers. Detailed information about PETRI NETS 2009 can be found at
http://petrinets2009.lip6.fr/.

The PETRI NETS 2009 conference was organized by Université Pierre &
Marie Curie as a part of MeFoSyLoMa1, gathering research teams from numer-
ous universities in Île-de-France: CNAM, ENS de Cachan, Université Evry-Val-
d’Essone, Université Paris-Dauphine, Université Paris 12, Université Paris 13,
and Telecom Paris-Tech. It took place in Paris, France, during June 22-26, 2009.
We would like to express our deep thanks to the Organizing Committee, chaired
by Fabrice Kordon, for the time and effort invested in the conference and for all
the help with local organization. We are also grateful for the financial support
by the Centre National de la Recherche Scientifique as well as by partners in the
Île-de-France region, in particular: Université Pierre & Marie Curie, Université
Paris 13, Laboratoire d’Informatique de Paris 6 and Laboratoire d’Informatique
de Paris Nord. We also thank the City of Paris for hosting a reception in the
Town Hall on June 24.

This year, we received 46 submissions by authors from 20 different countries.
We thank all the authors who submitted papers. Each paper was reviewed by at
least four referees. The Program Committee meeting took place in Turin, Italy,
and was attended by 18 Program Committee members. At the meeting, 19 pa-
pers were selected, classified as: theory papers (13 accepted), application papers
(1 accepted), and tool papers (5 accepted). After the conference, some authors
were invited to publish an extended version of their contribution in the journal
Fundamenta Informaticae. We wish to thank the Program Committee members
and other reviewers for their careful and timely evaluation of the submissions
before the meeting. Special thanks are due to Frank Holzwarth (Springer) and
Martin Karusseit (University of Dortmund) for their friendly attitude and tech-
nical support with the Online Conference Service. Finally, we wish to express

1 MeFoSyLoMa stands for “Méthodes Formelles pour les Systèmes Logiciels et
Matériel” (Formal Methods for Software and Hardware Systems).
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our gratitude to the invited speakers, Bernard Courtois, Gabriel Juhas, Grzegorz
Rozenberg, Joseph Sifakis, and Bill Tonti for their contribution. As usual, the
Springer LNCS team provided high-quality support in the preparation of this
volume.

April 2009 Giuliana Franceschinis
Karsten Wolf
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Céline Boutrous-Saab
Alexandre Hamez
Laure Petrucci (Chair)

Franck Pommereau
Xavier Renault

Workshops and Tutorials Organization

Serge Haddad (Chair)
Kais Klai

Tarek Melliti
Yann Thierry-Mieg

Referees

Paolo Baldan
João P. Barros
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Matthias Schmalz
Natalia Sidorova
Jeremy Sproston
Christian Stahl
Maciej Szreter
Koji Takahashi
Shigemasa Takai
Satoshi Taoka
Yann Thierry-Mieg



Organization IX

Nikola Trcka
Fernando Tricas
Emilio Tuosto
Daniele Varacca
Eric Verbeek
Marc Voorhoeve
Pascal Weil

Jan Martijn van
der Werf

Matthias
Wester-Ebbinghaus

Michael Westergaard
Elke Wilkeit
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Component-Based Construction of
Heterogeneous Real-Time Systems in Bip

Joseph Sifakis

Verimag Laboratory, Centre Equation, 2 ave de Vignate, 38610 GIERES, France

Abstract. We present a framework for the component-based construc-
tion of real-time systems. The framework is based on the BIP (Behaviour,
Interaction, Priority) semantic model, characterized by a layered repre-
sentation of components. Compound components are obtained as the
composition of atomic components specified by their behaviour and in-
terface, by using connectors and dynamic priorities. Connectors describe
structured interactions between atomic components, in terms of two ba-
sic protocols: rendezvous and broadcast. Dynamic priorities are used to
select amongst possible interactions - in particular, to express scheduling
policies.

The BIP framework has been implemented in a language and a toolset.
The BIP language offers primitives and constructs for modelling and
composing atomic components described as state machines, extended
with data and functions in C. The BIP toolset includes an editor and
a compiler for generating from BIP programs, C++ code executable on
a dedicated platform. It also allows simulation and verification of BIP
programs by using model checking techniques.

BIP supports a model-based design methodology involving three steps:

1. The construction of a system model from a set of atomic components
composed by progressively adding interactions and priorities.

2. The application of incremental verification techniques. These tech-
niques use the fact that the designed system model can be obtained
by successive application of property-preserving transformations in
a three-dimensional space: Behavior × Interaction × Priority.

3. The generation of correct-by-construction distributed implementa-
tions from the designed model. This is achieved by source-to-source
transformations which preserve global state semantics.

We provide two examples illustrating the methodology.
Further information is available at:

http://www-verimag.imag.fr/~async/bip.php

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Unifying Petri Net Semantics with Token Flows

Gabriel Juhás1, Robert Lorenz2, and Jörg Desel3

1 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia

gabriel.juhas@stuba.sk
2 Department of Computer Science, University of Augsburg, Germany

robert.lorenz@informatik.uni-augsburg.de
3 Department of Applied Computer Science

Catholic University of Eichstätt-Ingolstadt, Germany
joerg.desel@ku-eichstaett.de

Abstract. In this paper we advocate a unifying technique for description of Petri
net semantics. Semantics, i.e. a possible behaviour, is basically a set of node-
labelled and arc-labelled directed acyclic graphs, called token flows, where the
graphs are distinguished up to isomorphism. The nodes of a token flow represent
occurrences of transitions of the underlying net, so they are labelled by transi-
tions. Arcs are labelled by multisets of places. Namelly, an arc between an oc-
currence x of a transition a and an occurrence y of a transition b is labelled by
a multiset of places, saying how many tokens produced by the occurrence x of
the transition a is consumed by the occurrence y of the transition b. The variants
of Petri net behaviour are given by different interpretation of arcs and different
structure of token flows, resulting in different sets of labelled directed acyclic
graphs accepted by the net. We show that the most prominent semantics of Petri
nets, namely processes of Goltz and Reisig, partial languages of Petri nets intro-
duced by Grabowski, rewriting terms of Meseguer and Montanari, step sequences
as well as classical occurrence (firing) sequences correspond to different subsets
of token flows. Finally, we discuss several results achieved using token flows dur-
ing the last four years, including polynomial test for the acceptance of a partial
word by a Petri net, synthesis of Petri nets from partial languages and token flow
unfolding.

1 Introduction

Let us begin with a short story: An alien from a foreign planet comes with his UFO and
observes the following situation. He sees a man pressing a button of his mobile phone,
then the man is starting to call and after that sitting down. Actually, the man is totally
surprised because he had never seen a UFO and an alien, so he immediately calls his
wife and sits down to realize what he just saw. The alien writes a report to his planet:
”On Earth, if you want to sit down, you first have to press a button on a mobile phone
and then to start to talk to the phone.” As we all know, this is not exactly true, because
you can sit down independently (concurrently) from pressing a button and starting to
call. But it is still partially true, because in order to call you have to press a button of
your phone (or to do something equivalent).

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 2–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Unifying Petri Net Semantics with Token Flows 3

In the case of a sequential machine with a single processor, it is not necessary to
deal with the problem of independency of events or actions. One can at most observe
non-determinism, e.g. observe sitting down and calling in any order. But concurrency
substantially differs from non-determinism. Concurrency is not only the possibility to
occur in any order, but to be independent of each other. A typical example making
this difference clear, is the occurrence of two events (e.g. two persons wanting to call)
sharing one resource (only one phone available). These two events can occur in any
order but they obviously cannot happen in parallel. One could say that concurrency
includes possible occurrence in any order and simultaneous occurrence. The introduc-
ing example also shows that concurrency is not only simultaneous occurrence, which
is transitive: a man can sit down concurrently to pressing a button and concurrently
to starting to call. However, pressing a button and starting to call are not concurrent,
but causally dependent. Observe that the action calling in the short story causally de-
pends on the action pressing a button, but we can make more calls and pressing buttons
many times. If we say that calling is an action and pressing a button is another action,
we speak about causal dependencies between occurences of actions rather than about
causal dependencies between actions alone.

The study of concurrency as a phenomenon of systems behavior became much at-
tention in recent years, because of an increasing number of distributed systems, multi-
processors systems and communication networks, which are concurrent in their nature.
There are many ways in the literature to describe non-sequential behaviour, most of
them are based on directed acyclic graphs (DAGs). Usually, nodes of DAGs represent
the occurrences of actions, i.e. they are labelled by the set of actions and the labelled
DAGs (LDAGs) are distinguished up to isomorphism. Such LDAGs are reffered in the
literature as abstract [16]. Very often LDAGs with the transitive arcs are used, i.e. the
partial orders. Such structures are referred as partially ordered multisets, shortly pom-
sets, and can formally be seen as isomorphism classes of labelled partial orders [18].
Pomsets are also called partial words [9], emphasizing their close relation to words or
sequences; the total order of elements in a sequence is replaced by a partial order.

Petri nets are one of the most prominent formalisms for both understanding the con-
currency phenomenon on theoretical and conceptual level and for modelling of real
concurrent systems in many application areas. There are many reasons for that, among
others the combination of graphical notation and sound mathematical description, see
e.g. [5] for a more detailed discussion.

A place/transition Petri net (shorty a Petri net), consists of a set of transitions (ac-
tions), which can occur (fire) and a set of places (buffers of tokens), which can carry
a number of tokens. Distribution of tokens in places constitutes a state of a Petri net,
called a marking. Formally, a marking is given by a multiset of places, i.e. by a function
attaching to each place the number of tokens contained in the place. An occurrence of
a transition in a marking removes prescribed fixed numbers of tokens from places, i.e.
consume a multiset of places, and adds prescribed fixed numbers of tokens to places,
i.e. produce a multiset of places, resulting in a new marking. A transition is enabled to
occur in a marking, if there is enouhg number of tokens to consume by an occurrence
of the transition. In the paper, occurrences of transitions will be referred as events. We
also consider a fixed initial marking and a set of legal final markings.
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pressing a button

sitting

calling
pressing a button

calling

sitting

Fig. 1. A Petri net modelling the introductory story (left). To describe the independency relation
we need at least two steps sequences: the sequence with step ”pressing a button and sitting”
followed by the step ”calling” and the sequence with the step ”pressing a button” followed by the
step ”sitting and calling”. The underlying pomset of the behaviour (right).

There are many different ways how to define behaviour of Petri nets. The simplest
way is to take occurrence sequences, i.e. sequences of occuring transitions.

Another possibility is to extend the sequences of occuring transitions to sequences
of steps of transitions. Steps are multisets of transitions. A step is enabled to occur in
a marking if there is enough tokens to consume by the simultaneous occurrences of
transitions in the multiset. A situation described in the introductory example, where
independence relation of transition occurrences is not transitive, cannot be decribed by
a single step sequence, see Figure 1.

Therefore, pomsets seems to be a better choice to formalize non-sequential semantics
(see e.g. [18,9]. The natural question arises: which pomsets do express behaviour of
a Petri net? The answer has close relationships to the step semantics. In [9,12] it is
suggested to take pomsets satisfying: For each co-set of events (i.e. for each set of
unordered events) there holds: The step of events in the co-set is enabled to occur in the
marking reached from the initial marking by occurrence of all events smaller than an
event from the co-set.

Another possibility to express behaviour of Petri nets, is to take processes of [7,8],
which are a special kind of acyclic nets, called occurrence nets, together with a la-
belling which associates the places (called conditions) and transitions (called events)
of the occurrence nets to the places and transitions of the original nets preserving the
number of consumed and produces tokens, see Figure 2. Processes can be understood
as (unbranched) unfoldings of the original nets: every event in the process represents
an occurrence of its label in the original net. Abstracting from conditions of process
nets, LDAGs on events are defined. These LDAGs express the direct causality between
events. Adding transitive arcs to these LDAGs, we get pomsets called runs, which ex-
press (not necessarily direct) causality between events. In contrast to enabled pomsets,
events ordered by an arc in a run cannot be independent. A special role plays those runs,
which are minimal w.r.t. extension: they express the minimal causality between events.
An important result relating enabled pomsets and runs was proven in [12,19]: Every
enabled pomset includes a run and every run is an enabled pomset. Therefore, minimal
enabled pomsets equal minimal runs. In contrast to sequential semantics and step se-
mantics, processes distinguish between the history of tokens. An example is shown in
Figure 2. The process nets distinguish a token in place p3 produced by the occurrence
of transition t1 from a token in place p3 produced by the occurrence of transition t2.
As a consequence, one occurrence sequence, e.g. t1t2t3, can be an extension of two



Unifying Petri Net Semantics with Token Flows 5

2

22

p2 p3 p5

p3

p3

p2

p5

p1

p6

p4
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p4

p6

p4 p4

p3

p4
p5

p4

p3

p5

p3

p6
p3

p4

p4

p4

p2

p4

p4

p5

p1

p1

p3

p3

p4

p5

p2

p3

p6

p5

p4

p4

p4 p4

t2 t3

t1

t4

t3t1

t4t2

t3

t3

t1

t2 t3

t4

t4t2

t1 t3t3

Fig. 2. A Petri net (above) with three processes (below)
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different processes. The process semantics defined in [7] is also called individual token
semantics. Notice that in the case of the process semantics of elementary nets (with at
most one token in a place), any occurrence sequence and any step sequence uniquely
determine a process. In [3] the collective token semantics, which does not distinguish
between the history of tokens, is introduced. It is defined using an equivalence rela-
tion between processes. The equivalence relates processes differing only in permuting
(swapping) unordered conditions representing tokens in the same place of the original
net. For example, the processes in Figure 2 are equivalent w.r.t. swapping equivalence.
For swapping equivalence classes, called commutative processes, there holds that any
occurrence sequence and any step sequence uniquely determine a commutative process.

In [15] behaviour is described using rewrite terms generated from elementary terms
using concurrent and sequential composition. In this algebraic approach any transition
t is an elementary rewrite term, allowing to replace the marking consume(t) by the
marking produce(t). Any marking consisting of a single place p is an elementary term
rewriting p by p itself. Rewrite terms are constructed inductively from elementary terms
using operator ; for sequential and operator ‖ for concurrent composition. Each term has
associated an initial marking and final marking. Two terms can be composed sequen-
tially only if the final marking of the first term coincides with the initial marking of
the second one. For concurrent composition of two terms, the initial marking of the
resulting term is obtained by multiset addition of the initial markings of the composed
terms, and likewise for the final marking. The behavior of a net is given by equivalence
classes of rewrite terms defined by a set of equations. In [4] it is shown that the equiva-
lence class of rewrite terms as defined in [15] corresponds to the swapping equivalence
class of processes. Obviously, one can attach pomsets to rewrite terms. Each process
term α defines a partially ordered set of events representing transition occurrences in
an obvious way: an event e1 is smaller than an event e2 if the rewrite term α contains a
sub-term α1; α2 such that e1 occurs in α1 and e2 occurs in α2. The pomsets of rewrite
terms have a special structure. It is proven in [6], that a pomset is generated by concur-
rent and sequential composition from single element pomsets if and only if it does not
contain the shape of so called N-form. As a consequence, we get the characterization
of pomsets which are associated to rewrite terms of a Petri net: an enabed pomset is
associated with a rewrite term of a net if and only if it is N-free.

Most of the discussed results showing the correspondence between different seman-
tics are quite complicated, despite the clear intuition. The differences in the technique
used to describe the behaviour often cause, that even straightforward relationships have
technically difficult proofs. The formal description of the intuition chosen for single se-
mantics has some limitations too. Consider for example enabled pomsets and processes.
The definition of enabled pomsets is inherently exponential: to test the enabledness us-
ing co-sets and steps in innefective. The main advantages of the processes, as claimed
in the literature, is that they describe behaviour in the same modelling language, i.e.
using occurrence nets. But this is also their main disadvantage, because to model each
individual token by a single condition make the formal manipulation with processes
difficult. In fact, there is no need to remember each single token (it is suitable for el-
ementary nets, where at most one token for each place can be present in a marking,
but not so efficient for place/transition Petri nets), but it is enough to remember how
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many tokens produced by an occurrence are consumed by another occurrence, i.e. how
many tokens flow on the arcs connecting occurrences of transitions, abstracting from
the individuality of conditions.

The natural question arise: Is there a possibility to express all semantics discussed
above using a unifying but yet simple formal description? We give a positive answer to
this question, presenting a framework for description of different variants of semantics
of Petri nets. The semantics in the framework is basically a set of node-labelled and arc-
labelled directed acyclic graphs, called token flows, where the graphs are distinguished
up to isomorphism, defined originally in [10]. The nodes of a token flow represent
occurrences of transitions of the underlying net, so they are labelled by transitions.
Arcs are labelled by multisets of places. Namelly, an arc between an occurrence x of
a transition a and an occurrence y of a transition b is labelled by a multiset of places,
saying how many tokens produced by the occurrence x of the transition a is consumed
by the occurrence y of the transition b. A token flow of a Petri net have to fulfill so
called token flow property:

– Ingoing token flow (i.e. the sum of multisets over ingoing arcs) of any occurrence
of a transition a equals the multiset of places consumed in the net by firing
transition a.

– Outgoing token flow (i.e. the sum of multisets over outgoing arcs) of any occur-
rence of a transition a equals the multiset of places produced in the net by firing
transition a.

To keep the information which occurrences consume tokens directly from the initial
marking and which occurrences produce unconsumed tokens in the final marking, we
add a special single entry node and a special single exit node, which are labelled by the
initial and a final marking. respectively. The outgoing token flow of the entry equals
the initial marking and the ingoing token flow of the exit equals a final marking. An
important question arises, when expressing the behaviour by a set of LDAGs, i.e. by
an LDAG language: What is the interpretation of arcs in an LDAG? The answer is not
unique. Using Petri nets, there are two basic interpretations:

1. An occurrence y of an action b directly causaly depends on an occurrence x of an
action a: By the occurrence y of a transition b, transition b consumes some tokens
produced by the occurrence x of a. This interpretaton is used by processes of Petri
nets [7,8]. Direct causal interpretation of arcs is resulting in the requirement that
there is a non-zero token flow between the occurrences, i.e. the multiset label of
any arc does not equal empty multiset. The transitive closure of direct causality
gives causal dependency.

2. An occurrence y of an action b follows an occurrence x of an action a: The oc-
currence y of a transition b is either causaly dependent on the occurrence x or the
occurrences y and x are independent. This interpretation is used in the occurrence
sequences, step sequences and enabled pomsets of Petri nets [9]. We call this inter-
pretation occurrence interpretation. By occurrence interpretation, also arcs with the
zero token flow are allowed.

The variants of Petri net behaviour are given by different interpretation of arcs and
different structure of token flows, resulting in different sets of labelled directed acyclic
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graphs accepted by the net. We show that the most prominent semantics of Petri nets
correspond to different subsets of token flows. Namely:

– Processes of Goltz and Reisig [7,8] correspond to direct causal token flows, i.e. to
the token flows with direct causal interpretation of arcs, where all arcs have non-
zero token flows.

– Token flows in which LDAGs are pomsets and at least the skeleton arcs (non-
transitive arcs) have non-zero token flows are called the causal token flows of Petri
nets and represent the causal semantics. They are obtained from direct causal token
flows by adding all transitive arcs.

– Enabled pomsets, i.e. partial words introduced by Grabowski [9], correspond to
pomset token flows, i.e. to the token flows, where LDAGs are pomsets with occur-
rence interpretation of arcs (arcs may have the zero token flow).

– Rewriting terms of Meseguer and Montanari [15] correspond to N-free token flows,
i.e. to the pomset token flows where the underlying pomsets are N-free.
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Fig. 3. Petri net from the Figurer̃efprocex (above) and the dicausal token flows corresponding to
the processes in Figure 2
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– Step sequences correspond to step ordered multiset token flows, shortly somset
token flows, i.e. to the pomset token flows, where the relation given by unordered
pairs of nodes is transitive.

– Occurrence sequences correspond to totally ordered token flows, shortly tomset
token flows, i.e. to the pomset token flows where the relation given by unordered
pairs of nodes is empty.

For better illustration, dicausal token flows corresponding to processes from Figure 2
are included in Figure 3.

An important role plays the equivalence given by symmetric and transitive closure
of the extension relation of LDAGs, called extension equivalence: equivalence classes
given by exchange equivalence on sequences, swapping equivalence on processes, and
equivalence on rewrite terms correspond to restrictions of exchange equivalence classes
to tomset token flows, direct causal token flows and N-free token flows, respectively.

Finally, we discuss the results achieved using token flows during the last four years,
including the first polynomial test for the acceptance of a partial word by a Petri net,
synthesis of Petri nets from partial languages and token flow unfolding.

2 Token Flows

We use N to denote the nonnegative integers. Given a finite set A, |A| denotes the
cardinality of A. Given a function f from A to B and C ⊆ A we write f |C to denote
the restriction of f to C. We write A \ B to denote the usual set difference of sets A
and B. The set of all subsets of a set A is denoted by 2A. The set of all multisets over
a set A, i.e. the set of functions from A to N is denoted by NA. We use ∅ to denote
the empty multiset, i.e. ∀a ∈ A : ∅(a) = 0. The sum of multisets, the comparison
of multisets and the difference of multisets are given as usual: given m, m′ ∈ N

A,
(m + m′)(a) = m(a) + m′(a) for each a ∈ A, m ≥ m′ ⇔ m(a) ≥ m′(a) for each
a ∈ A, and whenever m ≥ m′ then (m−m′)(a) = m(a)−m′(a) for each a ∈ A.

We write
∑

a∈A m(a)a to denote the multiset m over A. Given a function l from a
set V to a set X , and a subset S ⊆ V , we define the multiset

∑
s∈S l(s) ⊆ NX by

(
∑

s∈S l(s))(x) = |{v ∈ V | v ∈ S ∧ l(v) = x}|. Given a binary relation R ⊆ A×A
over a set A, R+ denotes the transitive closure of R and R∗ the reflexive and transitive
closure of R.

A directed graph is a pair (V,→), where V is a finite set of nodes and→⊆ V ×V is a
binary relation over V called the set of arcs. Given a binary relation→ we write v → v′

to denote (v, v′) ∈→ and v �→ v′ to denote (v, v′) /∈→. We define •v = {v′ | v′ → v}
and v• {v′ | v → v′}. A node v ∈ V is called entry (also initial node, source, start or
input), if •v = ∅. A node v ∈ V is called exit (also final node, sink, end or output),
if v• = ∅. Skeleton of a directed graph (V,→) is the directed graph (V,→′) with
→′= {(v, v′) |� ∃v′′ : v →+ v′′ →+ v′} containing no transitiove arcs of→.

A partial order is a directed graph po = (V, <), where < is irreflexive and transitive
on V . Given a partial order (V, <), for a set S ⊆ V and a node v ∈ V ∧ v /∈ S we
write v < S, if v < s for a node s ∈ S. Two nodes v, v′ of a partial order (V, <) are
called independent if v �< v′ and v′ �< v. By co ⊆ V × V we denote the set of all
pairs of independent nodes of V . A co-set in a partial order (V, <) is a subset S ⊆ V
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fulfilling: ∀x, y ∈ S : x co y. A cut (also called a slice) is a maximal co-set. A partial
order to = (V, <) satisfying ∀(v, v′) ∈ V × V : v �= v′ ⇒ (v < v′ ∨ v′ < v) is a total
order. A partial order so = (V, <), where co is transitive, is a step order. Given a step
order so = (V, <), we write S < S′ for cuts S, S′ ∈ V whenever there exist v ∈ S
such that v < S′. Because relation co is symmetric and reflexive, in a step order it is
an equivalence relation. A partial order po = (V, <) satisfying (v < v′ ∧w < w′ ∧ v <
w′)⇒ ¬(v cow ∧ v′ cow ∧ v′ cow′) is an N-free partial order.

A directed acyclic graph is a directed graph dag = (V,→), where the podag =
(V,→+) is a partial order. Given directed acyclic graphs (V,→) and (V,→′) we say
that (V,→) is an extension of (V,→′) iff→′⊆→.

A labelled directed acyclic graph, shortly an LDAG, is a triple ldag = (V,→, l),
where (V,→) is a directed acyclic graph and l is a labelling function from V to a set of
labels. Two LDAGs (V1,→1, l1), (V2, <2, l2) are isomorphic iff there exists a bijection
γ from V1 to V2 between nodes which preserve the arcs and the labelling function, i.e.
∀v1, v2 ∈ V1 : v1 →1 v2 ⇐⇒ γ(v1) →2 γ(v2) ∧ l1(v1) = l2(γ(v1)). We are
not interested in the identity of nodes of an LDAG, so we distinguish LDAGs up to
isomorphism. Without lose of generality, we will use any LDAG from an isomorphism
class of LDAGs to denote the whole class.

A pomset is an LDAG lpo = (V, <, l), where (V, <) is a partial order. A tomset is
an LDAG lto = (V, <, l), where (V, <) is a total order. A somset is an LDAG lso =
(V, <, l), where (V, <) is a step order. An N-free pomset is an LDAG (V, <, l), where
(V, <) is an N-free partial order.

An LDAG language is a set of (isomorphism classes of) LDAGs. Given an LDAG
language L, and a subset L′ ⊆ L, L′ is called a sublanguage of L, and by Lmin we
denote its minimal sublanguage Lmin = {(V,→, l) ∈ L |� ∃(V,→′, l) ∈ L :→′⊂→}.

We use special LDAGs with a single entry and a single exit. An ldag = (V,→, l)
with a single entry and a single exit is called single-entry and single-exit LDAG, shortly
a SESE LDAG, entry(ldag) denotes its entry and exit(ldag) denotes its exit.

We also remove nodes and delete arcs from an LDAG. Let ldag = (V,→, l) be an
LDAG. Let X ⊆ V . We define remove(ldag, X) = (V ′,→′, l′), where V ′ = V \X ,
→′ =→ ∩(V ′×V ′) and ∀v ∈ V ′ : l′(v) = l(v). Observe, that removing nodes from an
LDAG one gets an LDAG. Moreover, removing nodes from a pomset one gets a pomset.
Let ⇀⊆→. We define delete(ldag, ⇀) = (V, ⇁, l), where ⇁ = {v → v′ | v �⇀ v′}.

Now we are prepared to define token flow functions of LDAGs over a finite set, and
ingoing and outgoing token flows.

Definition 1 (Token flow function). Let ldag = (V,→, l) be an LDAG. Let P be a
finite set. A function flow from the set of arcs→ to N

P is called a token flow function
of ldag over P . The function flow defines two functions attaching multisets over P to
nodes:

– the function inflow from V to NP , given by inflow(v) =
∑

v′∈ •v flow(v′, v),
called the ingoing token flow of v,

– the function outflow from V to NP , given by outflow(v) =
∑

v′∈v• flow(v, v′),
called the outgoing token flow of v.
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Let us define the first central notion of the paper - a token flow over a finite set: it is an
LDAG with a single entry, a single exit, and with arcs labelled by multisets over a finite
set.

Definition 2 (Token flow). Let P be a finite set. A token flow over P is a pair flowdag
= (ldag, f low), where ldag = (V,→, l) is a SESE LDAG, and flow is a token flow
function of ldag over P . A set of token flows over P is called P -token flow language,
or shortly token flow language.

3 Token Flows of Petri Nets

Definition 3 (Petri Net). A place/transition Petri net (shortly a Petri net) is a 6-tuple
PN = (P, T, consume, produce, initial, final) where P is a finite set of places, T is
a finite set of transitions, T ∩ (P ∪NP ) = ∅, consume and produce are functions from
T to NP , such that ∀t ∈ T : consume(t) �= ∅∧produce(t) �= ∅, multiset initial ∈ NP

is an initial marking and final ⊆ NP is a set of legal final markings.

In the rest of the paper we suppose that a PN = (P, T, consume, produce, initial,
final) is given. A multiset m ∈ NP is called a marking of PN . Sequential behaviour of
the PN is given by occurrences (firings) of transitions: A transition t ∈ T is enabled to
occur in a marking m of PN iff m ≥ consume(t). An occurrence of enabled transition
t in a marking m leads to the follower marking m′ = m− comsume(t)+ produce(t).
We write m

t�−→ m′ to denote that t is enabled to occur in m and that its occur-
rence leads to m′. Sequential behaviour can easily be extended to the simplest way
to dercsribe concurrent occurrences of transitions - to the occurrences of steps, which
are multisets of transitions: Given a step s ∈ NT , denote by consume(s) the mul-
tiset of places given by ∀p ∈ P : consume(s)(p) =

∑
t∈T s(t)consume(t)(p).

By produce(s) denote the multiset of places given by ∀p ∈ P : produce(s)(p) =∑
t∈T s(t)produce(t)(p). A step s ∈ NT is enabled to occur in a marking m of PN

iff m ≥ consume(s). An occurrence of enabled step s in a marking m leads to the fol-
lower marking m′ = m− comsume(s) + produce(s). We write m

s�−→ m′ to denote
that s is enabled to occur in m and that its occurrence leads to m′.

Le us notice, that the above definition differs from the usual definition of place Petri
nets, however the difference is only technnical. Usually, a place/transition Petri net is
given as a bipartite directed graph with weighted arcs, with nodes formed by places
and transition, places and arcs labelled by nonnegative integers. The labelling of places
gives the marking. From technical reasons in our definition we additionaly require that
no transition equals a multiset of places. In a usual definition, instead of the functions
consume, produce the relationship between places and transitions is given using a set
of arcs F ⊆ ((P × T ) ∪ (T × P )) (also called flow relation) and a weight function
W from F to N. Using our definition, F and W can be easily reconstructed: F =
{(p, t) ∈ P × T | consume(t)(p) �= 0} ∪ {(t, p) ∈ T × P | produce(t)(p) �= 0},
∀(p, t) ∈ F : W (p, t) = consume(t)(p), ∀(t, p) ∈ F : W (t, p) = produce(t)(p).

In a usual definition, the set of final marking is not defined. The intended meaning
of the set of final markings is to allow acceptance of only a subset of LDAGs generated



12 G. Juhás, R. Lorenz, and J. Desel

by processes. Obviously, taking the set of all multisets as legal final marking, one gets
that all of the processes are accepted.

Now we are prepared to define the second central notion of the paper: token flows
of PN , as token flows over P such that the entry is labelled by the initial marking and
the outgoing token flow of the entry equals the initial marking, the exit is labelled by
a final marking and the outgoing token flow of the exit equals the final marking, and
for all other nodes the ingoing token flow equals the consume value of their label and
outgoing token flow equals the produce value of their label.

Definition 4 (Token Flow of a Petri Net). Let PN = (P, T, consume, produce,
initial, final) be a Petri net and let flowdag = (ldag, f low) be a token flow over
P with ldag = (V,→, l). Then flowdag is called token flow of PN , and we say that
flow fulfils the token flow property iff:

1. ∀v ∈ V : v /∈ {entry(ldag), exit(ldag)} ⇒ (l(v) ∈ T ∧ consume(l(v)) =
inflow(v) ∧ produce(l(v)) = outflow(v))

2. l(entry(ldag)) = outflow(entry(ldag)) = initial,
3. l(exit(ldag)) = inflow(exit(ldag)) ⊆ final,

The set of all token flows of PN is denoted by Ltf
all(PN) and called the token flow

language of PN .

Observe that given a SESE LDAG ldag = (V,→, l) with the entry labelled by the
initial marking, the exit labelled by any final marking and remaining nodes labelled by
transitions of PN , the token flow functions fulfilling the token flow property are simply
nonnegative integer solutions of the system (1 - 3) of linear equations from the previous
definition, with inflow(v) replaced by

∑
v′∈ •v flow(v′, v), outflow(v) replaced by∑

v′∈v• flow(v, v′) for any v ∈ V , and unknown variables flow(v, v′)(p) for each
p ∈ P and each v → v′. We will call such a system the token flow system of the ldag.

Using the interpretation of arcs in the token flows and the structure of the LDAGs,
one can define all prominent semantics of PN . Basiacally, a semantics denoted by sem
is determinded by a subset Ltf

sem(PN) ⊆ Lalltf(PN) of token flows of PN . Each
semantics can be recognignized on four levels. The first level is given by a language
obtained from token flows by forgetting the flow function. The second level is formed
by the minimal sublanguage of this language. The third level is given by a language
obained from the first level by forgetting the entry and exit. The fourth level is given by
the minimal sublangage of the third language.

Definition 5 (Languages of a Petri Net). Let Ltf
sem(PN) ⊆ Ltf

all(PN). We derive
following four LDAG languages from Ltf

sem(PN):

1. Lio
sem(PN) = {ldag | (ldag, f low) ∈ Ltf

sem(PN)},
2. Lio

sem(PN)min,
3. Lnio

sem(PN) = {remove(ldag, {entry(ldag), exit(ldag)}) | ldag ∈ Lio(PN)},
4. Lnio

sem(PN)min.

Given an ldag ∈ Lio
all(PN), its final marking, i.e. the label of the final node, can be

easily determined.
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Proposition 1. Let ldag ∈ Lio
all(PN) with ldag = (V,→, l). Then l(exit(ldag)) =

initial +
∑

v∈V \{entry(ldag),exit(ldag)}(produce(l(v))− consume(l(v))).

If Lio
sem(PN) is a pomset language, then for each LDAG ldag′ ∈ Lnio

sem(PN), there
exists one and only one SESE LDAGs ldag ∈ Lio

sem(PN), such that ldag′ = remove
(ldag, {entry(ldag), exit(ldag)}. As a consequence for pomset languages we get that
Lnio

sem(PN)min is the image of the restriction of remove(ldag, {entry(ldag), exit
(ldag)}) to Lio

sem(PN)min.

3.1 Token Flow Semantics of Petri Nets

As the first semantics we define the direct causal token flows. The arcs in a direct causal
token flow represent direct causality, i.e. the fact, that the source of the arc produced at
least one token consumed by the target of the arc.

Definition 6 (Direct Causal Token Flow). Let flowdag = (ldag, f low) with ldag =
(V,→, l) be a token flow of PN satisfying ∀(v, v′) ∈→: flow(v, v′) �= ∅. Then
flowdag is called direct causal token flow of PN , shortly dicausal token flow of PN .
The set of all dicausal token flows of PN is denoted by Ltf

dicausal(PN) and called
dicausal token flow language of PN .

Observe, that the inequations flow(v, v′) �= ∅ can be rewrited to the integer inequation∑
p∈P flow(v, v′)(p) �= 0. Adding the inequations to the token flow system of ldag

we get the system of linear inequetions, called dicausal token flow system of ldag.
Obviously, ldag ∈ Lio

dicausal(PN) iff the dicausal token flow system of ldag has a
nonnegative integer solution.

Dicausal token flows of PN contain complete information about causal dependency
of transition occurrences, including the information which occurrences consume tokens
from the initial marking and which occurrences produce tokens in the final marking.
The difference between elements of Lio

dicausal(PN) and Lnio
dicausal(PN) is that in the

elements from Lnio
sem(PN) the information which occurrences consume tokens from the

initial marking and which occurrences produce tokens in the final marking is forgotten.
The second semantics are the causal token flows. The arcs in a causal pomset

represent causality between the source and the target, not necessarily the direct one.

Definition 7 (Causal Token Flow). Let flowdag = (ldag, f low) be a token flow of
PN such that ldag = (V, <, l) is a pomset. Let (V,→) be the skeleton of (V, <). If
∀(v, v′) ∈→: flow(v, v′) �= ∅ then flowdag is called causal token flow of PN . The
set of all causal token flows of PN is denoted by Ltf

causal(PN) and called causal token
flow language of PN .

The next semantics are the pomset token flows. In a pomset token flow, the arcs represent
the fact, that the source and the target occurred sequentially. This in fact means, that
either these occurrences are independent or the target is causaly dependent on the source.

Definition 8 (Pomset Token Flow). Let flowdag = (ldag, f low) be a token flow of
PN such that ldag is a pomset. Then flowdag is called pomset token flow of PN .
The set of all pomset token flows of PN is denoted by Ltf

pomset(PN) and called pomset
token flow language of PN .

The next semantics are token flows, where the underlying LDAGs are N-free pomsets.
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Definition 9 (N-Free Token Flow). Let flowdag = (ldag, f low) be a token flow of
PN such that ldag is an N-free pomset. Then flowdag is called N-free token flow of
PN . The set of all N-free token flows of PN is denoted by Ltf

Nfree(PN) and called
N-free token flow language of PN .

As the last two semantics we define somset and tomset token flows.

Definition 10 (Somset Token Flow). Let flowdag = (ldag, f low) be a token flow of
PN such that ldag is a somset. Then flowdag is called somset token flow of PN .
The set of all somset token flows of PN is denoted by Ltf

somset(PN) and called somset
token flow language of PN .

Definition 11 (Tomset Token Flow). Let flowdag = (ldag, f low) be a token flow
of PN such that ldag is a tomset. Then flowdag is called tomset token flow of PN .
The set of all tomset token flows of PN is denoted by Ltf

tomset(PN) and called tomset
token flow language of PN .

3.2 Relationship between Token Flow Semantics of Petri Nets

Directly from the above defintions we can see the following relationships between
the presented token flow semantics of PN . Let (ldag, f low) be a token flow of PN
with ldag = (V,→, l). We define positive(ldag, f low) = delete(ldag, {v → v′ |
flow(v, v′) = ∅}). Consider that x ∈ {io, nio}, i.e. x can be replaced by either io or
nio, and sem ∈ {causal, pomset, Nfree, somset, tomset}:

Lx
causal(PN) = {(V,→+, l) | (V,→, l) ∈ Lx

dicausal(PN)}

Lio
dicausal(PN) = {positive(ldag, f low) | (ldag, f low) ∈ Ltf

sem(PN)}
Lx

tomset(PN) ⊆ Lx
somset(PN) ⊆ Lx

Nfree(PN) ⊆ Lx
pomset(PN)

Lx
causal(PN) ⊆ Lx

pomset(PN)

Another important relationship between these semantics is the relationship w.r.t. ex-
tension. Taking two sets X, Y of pomsets, we denote by X � Y that for each pomset
(V, <, l) from X there exists a pomset (V, <′, l) from Y such that (V, <) is an extension
of (V, <′). We observe the following:

Lx
tomset(PN) � Lx

somset(PN) � Lx
Nfree(PN) � Lx

pomset(PN) � Lx
causal(PN)

As a consequence:
Lx

causal(PN)min = Lx
pomset(PN)min

Observe, that the total order of a tomset token flow can be an extension of DAGs of
several dicausal token flows with different DAGs. On the other hand, there can be sev-
eral tomset token flows with different total orders, which are extensions of the DAG
of a dicausal token flow. Therefore we introduce an equivalence on Lx

all(PN) as the
symmetric and transitive closure of the relation ”being an extension”. The equivalence
is called the extension equivalence on Lx

all(PN).

Definition 12 (Extension Equivalence). Let x ∈ {io, nio}. Let (V, <, l), (V, <′, l) ∈
Lx

all(PN). Define (V,→, l) ∝ (V,→′, l) if (V,→) is an extension of (V,→′). The
symmetric and transitive closure ≡ of ∝ is called extension equivalence on Lx

all(PN).
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3.3 Direct Causal Token Flows and Processes

In this subsection we discuss the relationship between dicausal token flows and pro-
cesses of [7,8].

Definition 13 (Occurrence Net). An occurrence net is a directed acyclic graph O =
(B ∪ E, G), with two partitions of nodes denoted by B and E (called conditions and
events) s. t. (B ∪ 2B) ∩ E = ∅, and flow relation G ⊆ (B × E) ∪ (E × B), s. t.
| • b|, |b • | ≤ 1 for every b ∈ B and no node from E is an entry or an exit.

The set of conditions of an occurrence net O = (B∪, G) which are entries and exits are
denoted by Min(O) Max(O), respectively.

Definition 14 (Process). Let PN = (P, T, consume, produce, initial, final) be a
Petri net. A process of PN is a pair K = (O, ρ), where O = (B ∪ E, G) is an
occurrence net and ρ : B ∪ E → P ∪ T is a labelling function, satisfying

(i) ρ(B) ⊆ P and ρ(E) ⊆ T .
(ii) ∀e ∈ E, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = consume(ρ(e))(p) and

∀e ∈ E, ∀p ∈ P : |{b ∈ e• | ρ(b) = p}| = produce(ρ(e)), (p).
(iii) ∀p ∈ P : |{b ∈Min(O) | ρ(b) = p}| = initial(p)
(iv) ∃fin ∈ final such that ∀p ∈ P : |{b ∈Max(O) | ρ(b) = p}| = fin(p).

Definition 15 (Canonical LDAG, Canonical Token Flow). Let K = (O, ρ) be a
process of a Petri net PN . Define

entryarc(K) = (Min(O), e) | ∃b ∈Min(O) : (b, e) ∈ G,
exitarc(K) = (e, Max(O)) | ∃b ∈ Max(O) : (e, b) ∈ G.

The canonical LDAG of process K is the LDAG ldagK = (V,→, l), where

V = E ∪ {Min(O), Max(O)},
→= G2|E×E ∪ entryarc(K) ∪ exitarc(K),
l|E = ρ|E , l(Min(O)) =

∑
b∈Min(O) ρ(b) and l(Max(O)) =

∑
b∈Max(O) ρ(b).

The canonical token flow function flowK of process K is the token flow function of
ldagK over P given by flowK(v, v′) =

∑
b∈(v• ∪ •v′) ρ(b) for each v → v′. The canon-

ical token flow of process K is the pair (ldagK , f lowK). The language of canonical
token flows of all processes of PN is denoted by CL(PN).

We have proven the following result in [10].

Theorem 1. Let PN be a Petri net. Then CL(PN) = Ltk
dicausal(PN).

In [3] so called swapping equivalence on processes is defined.

Definition 16 (Swapping). Let PN be a Petri net. Let K = (O, ρ), be a process of
PN with O = (B ∪ E, G). Let b1, b2 ∈ B, b1 co b2 w.r.t. G+ and ρ(b1) = ρ(b2).
Define G1 = {(b1, e) | (b2, e) ∈ G} and G2 = {(b2, e) | (b1, e) ∈ G}. Define
G′ = G1∪G2∪ (G∩ (E×B))∪ (G∩ ((B \{b1, b2})×E)). G′ is obtained from G by
interchanging arcs from b1 and b2. Finally, define swap(K, b1, b2) = ((B, E, G′), ρ).
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Definition 17 (Swapping Relation). Let K1 = ((B ∪ E, G), ρ) and K2 be processes
of PN . Let us define K1 ≡1 K2 if there are conditions b1, b2 ∈ B satisfying b1 co b2
w.r.t. G+, ρ(b1) = ρ(b2) and K2 is (isomorphic to) swap(K1, b1, b2).

It is easy to see that ≡1 is symmetric. Thus, ≡∗
1 is an equivalence relation on processes

of PN .

Definition 18 (Swapping Equivalence). The equivalence relation ≡∗
1 on processes of

PN is called swapping equivalence. The equivalence classes of processes w.r.t. the
swapping equivalence are called commutative processes of PN .

We extend the swapping equivalence to canonical LDAGs: Given two processes K1, K2
of a Petri net PN , we define ldagK1 ≡∗

1 ldagK2 whenever K1 ≡∗
1 K2. Based on

the results in [10] we state that the extension equivalence restricted to Lio
dicausal and

swapping equivalence coincide:

Theorem 2. For each ldag1, ldag2 ∈ Lio
dicausal : ldag1 ≡∗

1 ldag2 ⇔ ldag1 ≡ ldag2.

3.4 Pomset Token Flows and Enabled Pomsets

In this subsection we recall the definition of enabled pomsets, also known as partial
words [9,12,19] and discuss their relationship to pomset token flows.

Definition 19 (Enabled Pomset). Let PN = (P, T, consume, produce, initial,
final) be a Petri net. A pomset lpo = (V, <, l) with l : V → T is enabled to oc-
cur in PN if the following statements hold:

(a) For each co-set S of (V, <):

initial +
∑

v∈V ∧v<S

(produce(l(v)) − consume(l(v))) ≥
∑
v∈S

consume(l(v)).

(b) m = initial +
∑

v∈V (produce(l(v)) − consume(l(v))) ∈ final.

We say that occurrence of lpo leads from initial to m and m is the final marking of the
lpo. The enabled pomsets are also called partial words of PN and the language of all
enabled pomsets is called the partial language of PN and denoted by PL(PN).

Actually, the definition of enabledness can be reformulated considering only slices of
labelled partial orders (for the proof see e.g. [19]). In [10] we have proven the following
result.

Theorem 3. Let PN be a Petri net. Then PL(PN) = Lnio
pomset(PN).

3.5 N-Free Token Flows and Rewrite Terms

In this subsection we establish the relationship between N-free token flows and rewrit-
ing semantics originally introduced in [15]. In this subsection we write t : m → m′ to
denote that t ∈ T, consume(t) = m and produce(t) = m′.
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Definition 20 (Rewrite Term Semantics). Let PN = (P, T, consume, produce,
initial, final) be a Petri net. The set of general rewrite terms GT (PN) of PN is
defined inductively by the following production rules:

m ∈ NP

m : m → m ∈ GT (PN)

t ∈ T

t : consume(t)→ produce(t) ∈ GT (PN)

α1 : m1 → m′
1 ∈ GT (PN) ∧ α2 : m2 → m′

2 ∈ GT (PN)
(α1 ‖ α2) : m1 + m2 → m′

1 + m′
2 ∈ GT (PN)

α1 : m → m′ ∈ GT (PN) ∧ α2 : m′ → m′′ ∈ GT (PN)
(α1; α2) : m → m′′ ∈ GT (PN)

These rules define binary operations, called concurrent composition (‖) and sequential
composition (; ) of rewrite terms. The set of rewrite terms of PN denoted by T (PN)
is the subset of GT (PN) given by T (PN) = {α : initial → m ∈ GT (PN) | m ∈
final}.

Given a rewrite term α : m → m′, we shortly say that α is a term and we denote by
pre(α) = m the initial marking and by post(α) = m′ the final marking of α.

Definition 21 (Pomset of a Rewrite Term). Define inductively the pomset lpoα of a
term α:

– Given a marking m, lpom = (∅, ∅, ∅).
– Given a transition t ∈ T , lpot = ({v}, ∅, l), where l(v) = t.
– Given terms α1 and α2 with lpoα1 = (V1, <1, l1) and lpoα2 = (V2, <2, l2),

lpoα1‖α2 = (V1 ∪ V2, <1 ∪ <2, l1 ∪ l2), where V1 and V2 are assumed to be
disjoint (what can be achieved by appropriate renaming of nodes).

– Given terms α1 and α2 with lpoα1 = (V1, <1, l1) and lpoα2 = (V2, <2, l2),
lpoα1;α2 = (V1 ∪ V2, <1 ∪ <2 ∪{(a, b) | a ∈ V1, b ∈ V2}, l1 ∪ l2), where V1 and
V2 are assumed to be disjoint (what can be achieved by appropriate renaming of
nodes).

The language of pomsets associated to all rewrite terms of PN is denoted by TL(PN).
The elements of TL(PN) are called term pomsets of PN .

The previous definition is sound in the sense, that the structures attached to terms are
pomsets. Pomsets of rewrite terms of Petri nets coincide with so called finite series-
parallel pomsets, i.e. with pomsets generated from single element pomsets by con-
current composition (disjoint union side by side) and sequential composition. A finite
pomset is series-parallel iff it is N-free (for a proof see e.g. [6]). As a consequence we
get the following result based on [10]:

Theorem 4. Let PN be a Petri net. Then TL(PN) = Lnio
Nfree(PN).

Rewrite terms are identified by an equivalence relation ∼ which preserves the opera-
tions ‖ and ; (i.e. by a congruence w.r.t. the operations ‖ and ;), given by the following
axioms: Let m, m′ ∈ N

P and α1, α2, α3, α4 be rewrite terms.
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(1) (α1 ‖ α2) ∼ (α2 ‖ α1).
(2) ((α1; α2); α3) ∼ (α1; (α2; α3)), whenever these terms are defined.
(3) ((α1 ‖ α2) ‖ α3) ∼ (α1 ‖ (α2 ‖ α3)).
(4) ((α1 ‖ α2); (α3 ‖ α4)) ∼ ((α1; α3) ‖ (α2; α4)), whenever these terms are defined.
(5) (α1; post(α1)) ∼ α1 ∼ (pre(α1); α1).
(6) m + m′ ∼ (m ‖ m′)
(7) α1 + ∅ ∼ α1 for the empty multiset ∅.

Observe that for any two equivalent terms α1 ∼ α2, we have pre(α1) = pre(α2) and
post(α1) = post(α2).

We extend the equivalence∼ to the set TL(PN): Given two terms α1, α2 of a Petri
net PN , we define lpoα1 ∼ lpoα2 whenever α1 ∼ α2. Based on the results in [10] we
state that the extension equivalence restricted to TL(PN) and∼-equivalence coincide:

Theorem 5. For each ldag1, ldag2 ∈ TL(PN) : ldag1 ∼ ldag2 ⇔ ldag1 ≡ ldag2.

3.6 Somset Token Flows and Step Sequences

We briefly mention the relationship between step sequences and somset token flows.

Definition 22 (Step Sequence). Let PN be a Petri net. A finite sequence of steps of
PN σ = s1 . . . sn (n ∈ N) is called a step sequence of PN if there exists a sequence
of markings m1, . . . , mn such that initial

s1�−→ m1
s2�−→ . . .

sn�−→ mn and mn is a legal
final marking of PN .

Definition 23. Let PN be a Petri net. Let σ = s1 . . . sn be a step sequence of PN .
Then the somset lsoσ = (V,≺, l) with l : V → T and with cuts S1, . . .Sn satisfying
|Si| = si and i < j ⇒ Si ≺ Sj for every i, j ∈ {1, . . .n} is associated to σ. The
language of somsets associated to all step sequences of PN is denoted by SL(PN).

Theorem 6. Let PN be a Petri net. Then SL(PN) = Lnio
somset.

3.7 Tomset Token Flows and Occurrence Sequences

Finally, we discuss the relationship between occurrence sequences and tomset token
flows.

Definition 24 (Occurrence sequence). Let PN be a Petri net. A finite sequence of
transitions of PN σ = t1 . . . tn (n ∈ N) is called occurrence sequence of PN if there

exists a sequence of markings m1, . . . , mn such that initial
t1�−→ m1

t2�−→ . . .
tn�−→ mn

and mn is a legal final marking of PN .

Definition 25. Let PN be a Petri net. Let σ = l(v1) . . . l(vn) is an occurrence se-
quence of PN . Then the tomset lto = ({v1, . . . , vn},≺, l) satisfying i < j ⇒ vi ≺ vj

for every i, j ∈ {1, . . .n} is associated to occurrence sequence σ. The language of
tomsets associated to all occurrence sequences of PN is denoted by OL(PN).

Theorem 7. Let PN be a Petri net. Then OL(PN) = Lnio
tomset.

In [3] the exchange equivalence on occurrence sequences is defined.
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Definition 26 (Exchange Relation). Let PN be a Petri net.
Let σ1 = t1 . . . ti−1titi+1ti+2 . . . tn, σ2 = t1 . . . ti−1ti+1titi+2 . . . tn be occurrence
sequences of PN . Then σ1 ≡0 σ2 iff σ = {t1} . . . {ti−1}{ti, ti+1}{ti+2} . . . {tn} is a
step sequence of PN .

It is easy to see that ≡0 is symmetric and therefore≡∗
0 is an equivalence relation.

Definition 27 (Exchange Equivalence). The equivalence relation ≡∗
0 on occurrence

sequences of PN is called exchange equivalence.

Based on the results in [10] we state that the extension equivalence restricted to OL(PN)
and exchange equivalence coincide:

Theorem 8. For each lto1, lto2 ∈ OL(PN) : lto1 ≡∗
0 lto2 ⇔ lto1 ≡ lto2.

4 Results and Related Works

As we mentioned in Introduction, motivation for introducing token flows was to have
not only a unifying framework for different flavours of Petri net semantics, but to have
also a simple formalism and effective technique to solve problems. In this section we
briefly discuss the results achieved using token flows during the last four years, in-
cluding the first polynomial test for the acceptance of a partial word by a Petri net,
the first algorithm for synthesis of Petri nets from partial languages and token flow
unfolding.

Testing Pomsets of Petri Nets: The important question arise: Given a pomset lpo an
a Petri net PN , is lpo enabled in PN? The definition of enabledness of pomsets is
inherently exponential, since a pomset can have exponentially many cuts in the num-
ber of nodes. That means, the definition is not appropriate to develop a test for partial
words.

Using the fact that partial language PL(PN) equals Lnio
pomset of PN , which is ob-

tained by forgetting token flow function and the entry and the exit in token flows from
Ltk

pomset, the problem is reduced to answer the question : Given a SESE pomset, can
we label its arcs by a token flow function to get a token flow of PN? The answer is
positive, if and only if the token flow system of the pomset is solvable in nonnegative
integers. Unfortunately, the solvability of a system of linear equations in nonnegative
integers is in general NP-complete [20]. That means, to use a general algorithm for
solving linear equations in nonnegative integers is not appropriate to develop a test for
partial words.

In [11,14] we present algorithms to test a partial word in polynomial time, i.e we an-
swer the question whether a pomset lpo belongs to Lx

pomset(PN), where x ∈ {io, nio},
in a polynomial time. In [11,14] we have shown that decision whether a pomset is a
minimal causal pomset, i.e. whether a pomset lpo belongs to Lx

causal(PN)min, where
x ∈ {io, nio}, can be obtained in a polynomial time.

Synthesis of Petri Nets from Pomset Languages: In papers [13,2] token flows are used to
synthetize a Petri net PN (with all markings beeing final) from a pomset language PL
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(closed w.r.t. extension and prefixes) in such a way that either PL = Lnio
pomset(PN) or

PL ⊆ Lnio
pomset(PN) and there is no Petri net PN ′ satisfying PL ⊆ Lnio

pomset(PN ′) ⊂
Lnio

pomset(PN)). Obviously, the labels of the pomsets give transitions T . The synthe-
sis reduces to finding places, the values of consume and produce functions as well
as the initial marking in such a way, that still all pomsets are accepted. In the syn-
thesis procedure, the pomsets are extended by adding a single entry and a single exit.
The entry is labelled in all pomsets by the same unique symbol, not used as a label
of other nodes. The exit in each pomset is labelled by a different symbol, not used
in the labels of other nodes. The main idea is to consider simple token flow func-
tions, which attach a nonnegative integer to each arc in each pomset. If such a sim-
ple token flow function fulfils that equally labelled nodes in all pomsets have equal
ingoing token flows and equal outgoing token flows, then it is called a token flow
region and defines a place p. In the token flow region, we can speak about ingoing
token flows and outgoing token flows of labels: the ingoing token flow of a label
t ∈ T defines the consume(t)(p), the outgoing token flow of a label t ∈ T de-
fines produce(t)(p), and the ingoing token flow of the entry label defines the ini-
tial marking of the place p. Adding a place determined by a token flow region still
all pomsets will be accepted by the net. Adding places given by all regions, we get
the seeked Petri net PN . Similarly to token flow systems of an LDAG, the token
flow regions are nonnegative integer solutions of a system of linear equations, where
the single equations just states that the equally labelled nodes in pomsets have equal
ingoing and outgoing token flow. If the number of pomsets is finite, then the num-
ber of nodes is finite and the system have finite number of equations. The number
of solutions, and therefore places, can still be infinite. Fortunatelly, it is enouhg to
take places derived from the Hilbert basis of the system, which is finite. Namely, the
net with the places derived from the Hilbert basis accept the same pomsets as the
net PN .

Token flow unfolding: The idea of token flow unfolding presented in [1] is a straightfor-
ward extension of token flows. Instead of attaching a token flow function to pomsets,
obtaining causal token flows, the idea is to attach a token flow function to prime event
structures, to get token flow event structures, which are actually unions of causal token
flows.

Token flow Hasse diagrams: Another idea to extend token flows can be found in the
paper [17] in this volume. Instead of considering pomsets, authors consider Hasse dia-
grams, which are actually skeletons of LDAGs. It is shown in [17], that the token flow
function of a pomset can be reconstructed from the extended token flow function of its
skeleton, called interlaced flow. The interlaced flow attaches four multisets of tokens to
each arc v → v′ of the skeleton: the first multiset says how many tokens produced by
v are consumed by v′, the second says how many tokens produced by v are consumed
in the future of v′, the third counts how many tokens produced in the past of v and
consumed by v′; and the last multiset says how many tokens produced in the past of v
and consumed in the future of v′.
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Reaction Systems: A Formal Framework for
Processes

Grzegorz Rozenberg
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2333 CA Leiden, The Netherlands

Abstract. The functioning of a living cell consists of a huge number
of individual reactions that interact with each other. These reactions
are regulated, and the two main regulation mechanisms are facilita-
tion/acceleration and inhibition/retardation. The interaction between
individual biochemical reactions takes place through their influence on
each other, and this influence happens through the two mechanisms
mentioned above.

In our lecture we present a formal framework for the investigation of
biochemical reactions - it is based on reaction systems. We motivate this
framework by explicitely stating a number of assumptions/axioms that
(we believe) hold for a great number of biochemical reactions - we point
out that these assumptions are very different from the ones underlying
traditional models of computation such as Petri Nets. We discuss some
basic properties of reaction systems, and demonstrate how to capture and
analyze, in our formal framework, some biochemistry related notions.

The lecture is of a tutorial character and self-contained.
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Simple Composition of Nets

Wolfgang Reisig

Humboldt-Universität zu Berlin

Abstract. Petri nets are frequently composed of given nets. Literature
suggests a lot of different composition operators, for different purposes
and different classes of Petri nets. Formal definitions are frequently sur-
prisingly technical, not matching the intuitive elegance of their graphical
counterpart.

We provide the formal framework for a simple composition operator,
adequate for many classes of Petri net applications. It requires a min-
imum of fairly intuitive technicalities from its users and readers. The
operator furthermore is associative, thus meeting the minimal algebraic
requirements when composing a large system out of several smaller ones.

1 Introduction

Composition of nets is a fundamental principle to construct large system models.
A lot of different composition operators have been defined during recent decades.
Many operators come with quite detailed technicalities that the user may not
really be interested in.

In this contribution we suggest a composition operator that can be applied
in many different areas of Petri nets. Formulated more precisely, we present a
fairly large class C of nets together with a composition operator, with following
properties:

Firstly, any two nets N1, N2 ∈ C can be composed, resulting in a net N1 ·N2 ∈
C. In particular, the operator ”·” is not parameterized i.e. does not decompose
into a family ·i of operators, with i any kind of labelling. We rather suggest just
one operator

· : C × C → C. (1)

In particular, for N ∈ C, the composition N ·N is well defined.
The second property, decisively contributing to simplicity, is associativity of

composition: For any three nets N1, N2, N3 ∈ C,

(N1 ·N2) ·N3 = N1 · (N2 ·N3). (2)

Associativity of composition guarantees that a large net N , composed from a
set of smaller nets, is independent of the history of its construction.

Associativity is the bare minimum for an algebraically satisfying theory of
composition. This is why e.g. composition of symbol sequences over an alphabet
Σ is defined as an associative operation. True, composition of Petri nets has
frequently been defined by means of non-associative operators. Inspection of

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 23–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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their application might reveal, however, that a different, associative operator
might be both intuitive and technically more simple to apply.

We will show a series of types of nets with quite different character, properties
and application areas, all equipped with a composition operator that follows the
above described principles.

The rest of this paper is organized as follows: Section 2 presents a choice of
different examples where classes of nets are to be composed in different manners.
These examples set standards for the generality and variability of the operator.
The operator itself will then be defined in Sec. 3. Section 4 discusses advantages
and limits of the operator. The non-trivial proof of the operator’s associativity
is outlined in the appendix.

2 A Choice of Examples

We select different areas where Petri nets are composed: Concurrent runs, ser-
vice nets and branching processes. Additionally we consider nondeterministic
composition of nets.

2.1 Composition of Concurrent Runs

�
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�

�

�

�

� 	


 �

��

Fig. 1. Elementary system net, N

A concurrent run of an elementary sys-
tem net N is itself a net, labelled by
the elements of N . For the sake of sim-
plicity we stick to finite concurrent runs.
A concurrent run of N , starting in the
initial state may consist of ”snippets”.
Fig. 1 shows an example of a 1-bounded
elementary system net N . Typical run
snippets of N are shown in Fig. 2.

We are interested in the composition of
such snippets. Fig. 3 shows two examples
of runs, composed from the snippets of Fig.
2. Intuitively and graphically this kind of
composition is fairly simple. The formal counterpart of a composition operator
that would allow to write the runs of Fig. 3 as

r1 · r2 · r1 and r1 · r3 · r2 (3)

should likewise be simple.

2.2 Composition of Service Nets

As an entirely different kind of example, Fig. 4 shows a service net, buyer. This
net shows how a buyer component orders goods, expects to receive an invoice,
will pay the invoice, and – concurrently to those actions – receives the goods. The
four places order, invoice, payment and goods build the component’s environment.
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Fig. 2. Three run snippets of the net N of Fig. 1
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Fig. 3. Two concurrent runs, composed from the run snippets of Fig. 2
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Fig. 4. Service net of the buyer

We may assume a retailer company,
running a sales department (seller) to
accept the buyer’s orders, to send an in-
voice back to the buyer, to receive the
payment, and to advice the companies’
warehouse to deliver the ordered goods.
Fig. 5 shows these two components. The
job of the warehouse is to just de-
liver goods, upon the sales department’s
request.

An interface net such as in Fig. 4 or
Fig. 5 is a marked net with a distinguished
set of interface places. Graphically, an in-
terface net is drawn inside a box, with the
interface places on its surface.

Composition N1 · N2 of two interface
nets N1 and N2 ”glues” N1 and N2 along
their interface places: Some places are
turned into internal places, the rest con-
stitutes the interface of N1 ·N2. The inter-
nal structure of N1 ·N2 is just the union
of the internal structure of N1 and N2, and the newly gained internal places.
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Fig. 5. Service nets of the seller and the warehouse

As an example, Fig. 6 describes the retailer company as the composition of
the seller and the warehouse. At the end of the day we will write

retailer =def seller · warehouse. (4)

The place order that links the seller and the warehouse is turned into an internal
place. However, the goods place of the warehouse is an interface place of the
retailer, as it is required to communicate with the buyer.
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Fig. 6. Service net seller · warehouse
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Fig. 7. Some more compositions of components

Fig. 7 shows the resulting interfaces of some more compositions. As a – some-
what unusual – composition, buyer·seller ”glues” the three places at the left side
of seller with the corresponding places of buyer and turns them into inner places.
There remain two places, the seller’s order on its right side, and the buyer’s goods.
This net provides a perfect environment for the warehouse. Finally, composing
all three components, the environment remains empty.
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Fig. 8. Alternative warehouses

As a variant, the retailer company may
run a second warehouse, warehouse’, that
alternatively to the given one may de-
liver goods. The two warehouses share
their environment places order and goods,
as indicated in Fig. 8. Consequently, the
interface of the composition

warehouse’ · warehouse

should be identical with the interface of
warehouse alone.

2.3 Composition of Branching Processes

With the alternative warehouse in Fig. 8 we have seen already a case where two
nets N1 and N2 are composed such that in N1 · N2, some elements of N1 and
of N2 access the same interface places. This kind of composition is also required
whenever branching processes are to be composed.

For example, Fig. 9 shows an initial part of the branching process of the system
net N of Fig. 1. The problem here is to identify a small number of run snippets
and a composition operator such that Fig. 9 can be written as a composition of
snippets.

2.4 Nondeterministic Composition of Nets

In the examples considered so far, places of interfaces of different nets may be
equally labelled. But different places of the interface of one net were never equally
labelled. This is however not what we require. Typical examples are concurrent
runs of marked nets that are not 1-bounded. Fig. 10 shows an example of a
system net N with initially two tokens at place A, together with two concurrent
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Fig. 9. Prefix of the branching process of the net N as in Fig. 1
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Fig. 10. 2-bounded system net N with two concurrent runs

runs r1 and r2 of N . The environment of r1 contains two equally labelled places.
This gives rise to two different composed runs, r3 and r4, as shown in Fig. 11.
This is an example of non-deterministic composition.

2.5 Summary

Each of the above examples stands for a class of nets. It should be intuitively
obvious how nets of each such class are to be composed. Together these classes
cover a wide range of nets and corresponding composition operators found in
the literature. The above examples happened to compose nets by merging places
only. The operator will allow also transitions to be merged.

���

���

�

�� 
� �

� �

�� 
� � � �

Fig. 11. Two versions of composing r1 and r2, yielding two concurrent runs, r3 and r4
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3 A Composition Operator

3.1 The Idea of Ports

The above examples show that composition and decomposition of nets in many
cases is intuitively fairly simple. The graphical representation of nets supports
this claim decisively.

A formal definition of a composition operator should cover all aspects and
variants as they occurred above, and coincidently remain as simple as intuition
suggests.

Here we take a closer look at what the above examples do have in common.
We furthermore outline the notion of left and right port of a net. These ports
govern the composition of nets.

First of all we notice that the composition N1 · N2 of two nets N1 and N2
always is the union of N1 and N2, with some pairs of equally labelled elements of
N1 and N2 replaced by one element in N1 ·N2. However, not all equally labelled
elements of N1 and N2 turn into one place in N1 ·N2, nor is each element of N1
and N2 necessarily labelled at all. To cope with this observation, a net N that
is intended to be composed with other nets has two kinds of elements: Elements
of the interface of N are those directly affected by the composition (i.e. those
where upon composition, a new arrow will start or end). All other elements are
inner elements of N .

For example, in r1 of Fig. 2, composition affects the places labelled A, C and D.
They constitute the interface of r1. The place with label B and both transitions
labelled a and b are the inner elements.

The decisive concept is the notion of port : The interface of a net N is the
union of two subsets LN and RN of elements of N , denoted as the left and right
port of N . The two ports can reflect various different aspects of real systems.
Typical examples include

– front end and back end,
– input and output,
– standard case and exception,
– buy side and sell side,
– customers and suppliers.

Composition of nets along their ports motivates the denotation of ”left” and
”right” port: In the composed net N1 ·N2, elements of the right port of N1 and
elements of the left port of N2 are ”glued” and turned into inner elements of
N1 ·N2.

In concurrent runs such as r1 in Fig. 2, the notions of ”left port” and ”right
port” are particularly intuitive: The left port of r1 contains the A-labelled place.
Its right port consists of the two places labelled D and C. Consequently, for r3, the
left port as well as the right port consists of one place. Both are labelled by C.

Generally formulated, the ports of a concurrent run such as r1, r2 or r3 in
Fig. 2 are canonically defined: The left port comprizes all places with empty
preset. The right port comprizes all places with empty postset. This principle is
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likewise applied in case of nondeterministic composition of concurrent runs, as
discussed in Sec. 2.4.

Service nets, as considered in Sec. 2.2, have their interface places on their
surrounding box. The places of its left and right port are placed on the left and
right edge of the box, respectively.

Other classes of nets do not exhibit canonical ports. The designer of an in-
terface net has the freedom to determine them according to his or her needs
and interests. In particular, the two ports of an interface net are not necessarily
assumed to be disjoint. This is in particular exploited when branching processes
are composed as in Sec. 2.3. Taken to extreme, if a net is assumed to have just
a unique interface I instead of two ports, I is conceived as the left as well as the
right port.

3.2 Composing Nets along Their Ports

As a general setting, supported by all examples of Section 2, a port of a net N
is a subset of labelled elements of N . With Li and Ri denoting the left and right
ports of two nets Ni (i = 1, 2), the following rule of thumb yields the composition
N1 ·N2 of N1 with N2:

– Identify equally labelled elements in R1 and L2, glue them, and make them
inner elements of N1 ·N2.

– The remaining elements of L2 and R1 go to the left and right port L12 and
R12 of N1 ·N2, respectively.

– L1 becomes a subset of L12 and R2 a subset of R12.

Fig. 12 outlines this construct. The symbol — ∼ — links equally labelled ele-
ments of R1 and L2. The symbol — = — depicts their identification in N1 ·N2.

A closer look reveals however that composition can not be made as simple as
this. In particular, we have to cope with the case where a port has two (or more)
identically labelled elements.
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Fig. 12. A first idea to compose nets
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One might be tempted to simply exclude such ports. But this would exclude
important classes of nets too, including those considered in Sec. 2.4. Even worse,
they anyway may arise as the result of composing two nets.

We construct a composition operator for nets where a port may very well have
identically labelled elements. We do so with the mild assumption that identically
labelled elements of a port are ordered.

Nevertheless we may start more generally with a net where one (or both) of its
ports has identically labelled but unordered elements. Obviously, they can be or-
dered in different ways. With each such order we can proceed as described above.
All together, they provide the means to express nondeterministic composition,
as discussed in Sec. 2.4.

3.3 Interface Nets

Labels at net elements are usually employed to relate the elements to some items
outside the net. Here, we concentrate on the technical aspects of labelling, and
apply a convenience:

Assumption 1. In the rest of this paper, we assume a set L of labels.

Labelling of a set is defined as usual:

Definition 1. For a set A, a mapping λ : A → L is a labelling of A.

Labelling is usually not injective, i.e. different elements may carry the same label.

Notations. If a labelling λ of a set A can be assumed from context, A is said
to be labelled, an element a ∈ A is l-labelled if λ(a) = l, and Al denotes the
set of l-labelled elements of A.

In the sequel we require the elements of a set Al of equally labelled elements
to be ordered. We represent order by means of indices, i.e. numbers 1, 2, . . ..
Technically this is achieved by means of an index function:

Definition 2. Let A be a set with n elements. Then a bijective mapping δ : A →
{1, . . . , n} is an index function for A.

Notations. If an index function δ for a set A can be assumed from context,
δ(a) is called the index of a in A.

As explained above already, we will consider labelled sets A where each subset
Al of equally labelled elements is indexed:

Definition 3. Let A be a finite, labelled set. For each label l, let δA,l be an index
function of Al. Then A is indexed (by the index function δA,l).

We are now prepared to define the version of labelled nets as employed in the
sequel. We first realize that places and transitions of a net definitely represent
different kinds of items outside the net. This partitions the set L of labels:

Assumption 2. In the sequel we assume the set L of labels to consist in two
disjoint sets LP and LT .
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Element labelled nets are now defined as usual:

Definition 4. i. Let P and T be disjoint, finite sets, and let F ⊆ (P × T ) ∪
(T × P ). Then N = (P, T, F ) is a net. Elements in P, T and F are denoted
as places, transitions and arcs, respectively.

ii. N together with two labellings λP : P → LP and λT : T → LP is a labelled
net. As a notation, P ∪ T contains the elements of N .

We frequently require not every element of a net to be labelled. One may assume
a ”trivial” labelling (e.g. ”ε”) for the rest.

An interface net is now defined as a net together with two indexed subsets of
elements, its ports :

Definition 5. Let N be a finite labelled net, and let L and R be indexed subsets
of elements of N . Then N together with L and R is an interface net. The sets
L and R are the left and the right ports of N , respectively.

This kind of nets has been motivated in Sec. 3.1 already. Composition along ports,
as discussed in Sec. 3.2, requires some insight into properties of indexed sets.

3.4 Properties of Indexed Sets

If we want the union A∪B of two indexed sets A and B to be indexed again, we
have to define the indexing of Al ∪Bl, for each label l. This can not be achieved
as a symmetrical operation (Which element gets index 1?). We rather suggest
indexing of one set, Al, say, to remain, and to place the elements of Bl on top:
Al is extended by Bl.

Definition 6. Let A and B be finite, disjoint sets, indexed by index functions δA,l

and δB,l, respectively, for all labels l. Furthermore, let nl be the number of l-labelled
elements of A (i.e. nl = |Al|). Then the extension of A by B is the indexed set
C =def A ∪B, where for each label l, the index function δC,l is defined by

δC,l(c) =

{
δA,l(c) if c ∈ A

nl + δB,l(c) if c ∈ B

As a notation, if C is the extension of A by B, we frequently say that C is A
extended by B. Of course, the extension of A by B in general differs from the
extension of B by A.

Elements of two indexed sets may be partners : Both their indices are identical:

Definition 7. Let A and B be indexed sets. Then b ∈ B is a partner of a ∈ A
iff a and b carry the same label, and their indices in A and in B coincide.

Of course, a ∈ A has at most one partner b ∈ B. Furthermore, partners are
elements with small indices:

Lemma 1. Let A and B be indexed sets. To each label l there exists a number
l̃ ≥ 0 such that the partners in A and B have indices 1, . . . , l̃.
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Proof. Definitions 2, 3 and 7 imply for each b ∈ B with a partner a ∈ A, both
with some label l and some index k: To each i < k there exist elements a′ ∈ A
and b′ ∈ B which are partners with label l and index i. As Al and Bl are finite,
there is a greatest such k. With k =def 0 in case A and B contain no partners
with label l, choose l̃ =def k.

With l̃ as in the above Lemma, there may remain elements al̃+1, . . . , an in Al

(i.e. those without a partner in Bl). They constitute the overhead of A over B.
This set is canonically indexed, with indices l̃ + 1, . . . , n of Al ”dropping down”
to 1, . . . , n− l̃.

Definition 8. Let A and B be indexed sets. Then the overhead of A over B is
the indexed set C ⊆ A of all elements of A without a partner in B. For each
label l, the index function δC,l is defined by δC,l(a) = δA,l(a)− l̃, where l̃ is as in
Lemma 1.

3.5 Composition of Interface Nets

For disjoint nets N1 and N2 with indexed subsets E1 and E2 of elements, we
define the fusion N1 ·N2 along E1 and E2. This is intuitively simple: N1 ·N2 is
the union of N1 and N2, where each pair of partners in E1 and E2 is one element
in N1 ·N2. Technically we retain E1 and skip all elements e2 of E2 which have a
partner e1 in E1. Arcs (x, e2) and (e2, y) of N2 are replaced by (x, e1) and (e1, y)
in N1 ·N2.

Definition 9. For i = 1, 2 let Ni = (Pi, Ti, Fi) be disjoint, labelled nets, and
let Ei be indexed subsets of their elements. Let E ⊆ E2 be the subset of E2-
elements with a partner in E1. The fusion of N1 and N2 at E1 and E2 is the net
N = ((P1 ∪ (P2\E)), (T1 ∪ (T2\E)), F ), with

(x, y) ∈ F iff

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ F1 ∪ F2 and x, y /∈ E

x ∈ E1, x has partner z in E, and (z, y) ∈ F2,

y ∈ E1, y has partner z in E, and (x, z) ∈ F2,

x, y ∈ E1, x and y have partners zx and zy in E,
respectively, and (zx, zy) ∈ F2.

Fig. 13 depicts the 2nd and 3rd case of this definition.
In this definition, partners x and z (and likewise partners y and z) are equally

labelled (by Def. 7). Hence they either are both places or both transitions (by
Assumption 2). Hence, the definition is consistent.

We are now ready to define composition N1 ·N2 of interface nets N1 and N2
just as the fusion of N1 with N2 at the right port R1 of N1 and the left port L2
of N2. To make N1 ·N2 again an interface net, the left port of N1 ·N2 extends
the left port of N1 by the left overhead of N2. Consequently, the right port of
N1 ·N2 extends the right port of N2 by the right overhead of N1.
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Fig. 13. Depicting the 2nd and 3rd case of Def. 9

Definition 10. For i = 1, 2 let Ni be disjoint interface nets with left and right
ports Li and Ri. Then the composition N1 · N2 of N1 with N2 is the fusion of
N1 with N2 at R1 and L2. Furthermore, N1 ·N2 is an interface net with

– its left port L12 =def L1, extended by the overhead of R1 over L2

– its right port R12 =def R′
2, extended by the overhead of L2 over R1, where

each x ∈ R2 ∩ L2 is in R′
2 replaced by y, if x is in L2 a partner of y in R1.

Figure 14 shows two interface nets N1 and N2, as well as the products N1 ·N2
and N1 · N1, exemplifying the most general configurations of labels. We follow
the convention of drawing an element with higher index on top of an equally
labelled element with lower index. Hence, in N2, δR2,A(i) = 1 and δR2,A(j) = 2.
The indices of i and j are retained in the right port R12 of N1 ·N2; furthermore,
δR12,A(e) = 3. To construct N1 ·N1, the elements of the second instance of N1
are primed. Consequently, δL11,B(b) = 1, δL11,B(b’) = 2, δR11,A(e’) = 1 and
δR11,A(e) = 2.

As discussed above already, composition is associative:

Theorem 1. Let N1, N2, N3 be interface nets. Then (N1·N2)·N3 = N1·(N2·N3).

Proof of this Theorem is not trivial at all. Its central arguments are outlined in
the Appendix.

3.6 Examples Revisited

Turning back to the composition of nets in Sec. 2, we just have to indicate the
ports of the involved nets. Composition then follows Definition 10.

The ports L and R of the run snippets r1, r2, r3 in Fig. 2 are obvious: L
contains the places p with empty pre-set .p, and R the places p with empty
post-set p.. This convention makes r1, r2 and r3 interface nets, with compositions
as shown in Fig. 3. Matters are more involved for r1 in Fig. 10, with its left
port L = {p1, p2} and its right port R = {p2, p3}. The index function δR,A is
crucial here, because both places of R are equally labelled with δR,A(p2) = 1 and
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Fig. 14. Interface nets N1 and N2, and compositions N1 · N2 and N1 · N1

δR,A(p3) = 2, the composition r1 · r2 returns r3 of Fig. 11. Reversed indexing
yields r4 in Fig. 11.

Summing up, the ports L and R of a concurrent run contain the places p
with empty pre-set .p and empty post-set p., respectively. For 1-bounded sys-
tem nets, these ports are injectively labelled. Otherwise composition is the non-
deterministic combination of all potential index functions.

Each of the service nets in Fig. 4 – 7 is an interface net with the graphical
representation depicting the elements of the left and right port at the left and
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Fig. 15. Three concurrent runs, equipped with ports
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Fig. 16. The products N0 · N1 and N2 · N1 with their ports
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Fig. 17. The composition N0 · N1 · N2 · N1 with its ports L and R

right side of the surrounding box, respectively. This fairly intuitive convention
works for disjoint ports, including the case of empty ports, such as the right port
of warehouse in Fig. 5. The variant warehouse’ has the left port L of warehouse
as its left and its right port. Fig. 8 is a graphically unsatisfactory representation
of warehouse’ · warehouse.

The prefix in Fig. 9 of the branching process of N in Fig. 1 can be composed
from the concurrent run snippets of Fig. 2, with ports as shown in Fig. 15. Their
intuitive meaning is fairly obvious: The labels of the elements of the right ports
of N0, N1 and N2 in Fig. 15 and of the composed nets in Fig. 16 are C and
D. Hence, the ports describe the marking where alternatives can occur in the
system net N of Fig. 1. This is what Fig. 17 exploits. Even more, the prefix in
Fig. 9 just reads

N0 ·N1 ·N2 ·N1 ·N2 ·N1.

4 Limits of This Operator

One may think of composition operators that are – in whatever sense – more
general than the one suggested above. But utmost generality is not what makes
life easier: What eventually will prevail is the right balance between intuitive
simplicity, and sufficient generality. This is what the operator in this paper is
intended to deliver.
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b) cycle of three instances of N

Fig. 18. Cyclic structure

4.1 Cyclic Structures

Composition of interface nets never yields cyclic structures. Fig. 18 shows a
simple example. To gain the net in Fig. 18 a), one has to merge the left and
right ports of the net N ·N ·N .

Technically formulated, partners a and b in indexed subsets A and B of a net
N are merged into one element. In analogy to Def. 9, technically we skip b and
link a to the neighbors of b.

Definition 11. Let N = (P, T, F ) be a labelled net. Let A, B ⊆ P∪T be indexed,
and let B′ ⊆ B be the subset of B-elements with a partner in A. Then the net
(P\B′, T \B′, F ′) with

(x, y) ∈ F ′ iff

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x, y) ∈ F and x, y /∈ B′,
x ∈ A with partner z ∈ B′ and (z, y) ∈ F,

y ∈ A with partner z ∈ B′ and (x, z) ∈ F,

x, y ∈ A with partners zx and zy, respectively,
in B′, and (zx, zy) ∈ F.

is the fusion of N at A and B.

The cyclic closure N c of an interface net N is the fusion of N at its ports, with
the respective port overhead of N as new ports of N c:

Definition 12. Let N be an interface net with ports L and R. Then the cyclic
closure N c of N is the fusion of N at L and R, with the overhead of L over R,
and the overhead of R over L as the left and right ports of N c, respectively.

As an example, Fig. 18 b) can now be written as

(N ·N ·N)c,

with N the net in Fig. 17 a).

4.2 Composition in the Style of Process Algebras

A port may contain places as well as transitions. Composition of nets with ports
that contain transitions only, mimics synchronous composition as in process al-
gebras. Vogler in [4] combines fusion of transitions with nondeterministic choice.
Our framework fails to express his operator.
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4.3 Place- and Arc Inscriptions

Our composition operator only affects bare net structures (P, T, F ). If token
inscribed nets N1 and N2 are to be composed, tokens on partner places of R1
and L2 may be summed up at their joint place in N1 ·N2. This would retain the
operator’s associativity.

Arc inscriptions such as arc weights or formulas of high-level nets may cause
a problem in case of an inscribed arc p → t or t → p with p, t ∈ R1, and an
inscribed arc p′ → t′ or t′ → p′, with p′, t′ ∈ L2. Arc inscriptions of high level
nets are usually multisets of terms with addition, or terms with addition. Adding
the arc inscriptions would again preserve associativity.

4.4 Regulated Nondeterminism

In Sec. 2.4 we demonstrated by means of an example, that a port with two
or more identically labelled elements may cause more than one composed net.
This may be intended. If not intended, the net designer has to ”individualize”
identically labelled elements. We suggest to index such elements, i.e. to order
them, as described in Sec. 3.6. This appears to be the most simple means of
”individualization”. Furthermore, each theoretically possible combination can
be achieved this way.

One may suggest more complicated versions of nondeterministic choice, such
as alternating outcome at each of its invocation. Our operator could not express
this behaviour.

5 Conclusion

The composition operator suggested in this paper is intended to fullfill three
requirements:

– It is simple to use: Upon composing two nets N1 and N2, one only has to
identify ports of N1 and N2. The ports are then automatically re-organized
in N1 ·N2.

– It is associative: This is crucial for an algebraically manageable, history
independent and intuitively simple operator.

– It has widespread applications: This has been shown by means of examples.
Many nets anyway have canonical left and right ports.

Our operator accounts only for the structure (P, T, F ) of nets. It was easy, how-
ever, to include (initial) markings or arc inscriptions in a number of ways. [1],
[2] and [3] survey numerous versions of Petri Net composition operators. None
of them meets all three of the above requirements.
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Appendix: Outline of Proof of Theorem 1

We employ shorthands for interface nets Nx and Ny, writing Nxy for Nx · Ny,
and Lx and Rx for LNx and RNx , respectively. The Theorem’s central claim then
reads

N(12)3 = N1(23).

Furthermore, for indexed sets A and B we write
A �B for the extension of A by B, and
A−B for the overhead of A over B.

Throughout the proof, let a ∈ L1 ∪ L2 ∪ L3. For an indexed set A with a ∈ A,
– index(a) denotes the index of a in A, and
– Ā denotes |Al|, with l the label of a.

For an interface net N let inner(N) denote the set of elements of N that are
not in ports of N . From the Definitions follows:

Lemma 2. Let A, B, C be indexed sets. Then

a) a ∈ A implies a ∈ A �B, with index(A �B) = index(A).
b) A �B = Ā + B̄
c) A−B = Ā− B̄

Lemma 3. Let x, y ∈ {1, 2, 3, 12, 23}.

a) For a ∈ inner(Nx) holds a ∈ inner(Nxy) and a ∈ inner(Nyx).
b) If Rx ≥ Ly then Lxy = Lx.
c) If Rx ≤ Ly then Rxy = Ry.
d) For a ∈ Ly holds:

If Rx ≥ index(Ly) then a ∈ inner(Nxy).
If Rx < index(Ly) then a ∈ Lxy, with index(Lxy) = Lx + index(Ly)−Rx.

Proof of the Theorem is composed of three Lemmata.

Lemma 4. L(12)3 = L1(23)

We distinguish three cases:



40 W. Reisig

Case 1: a ∈ L1
As a shorthand, let n =def index(L1). We draw two conclusions:
a) a ∈ L1 � (L2 −R1) with index(L1 � (L2 −R1)) = n.

Then a ∈ L12 with index(L12) = n.
Then a ∈ L12 � (L3 −R12) with index(L12 � (L3 −R12)) = n.
Then a ∈ L(12)3 with index(L(12)3) = n.

b) a ∈ L1 � (L23 −R1) with index(L1 � (L23 −R1)) = n.
Then a ∈ L1(23) with index(L1(23)) = n.

Case 2: a ∈ L2
We distinguish two subcases:

Case 2.1: R1 ≥ index(L2)
We draw two conclusions:

a) a ∈ inner(N12).
Then a ∈ inner(N(12)3).
Then a /∈ L(12)3.

b) a ∈ L2 � (L3 −R2) with index(L2 � (L3 −R2)) = index(L2).
Then a ∈ L23 with index(L23) = index(L2).
Then a ∈ inner(N1(23)).
Then a /∈ L1(23).

Case 2.2: R1 < index(L2)
As a shorthand, let n =def L1+index(L2)−R1. We draw two conclusions:

a) a ∈ L12 with index(L12) = n.
Then a ∈ L12 � (L3 −R12) with index(L12 � (L3 −R12)) = n.
Then a ∈ L(12)3 with index(L(12)3) = n.

b) a ∈ L2 � (L3 −R2) with index(L2 � (L3 −R2)) = index(L2).
Then a ∈ L23 with index(L23) = index(L2).
Then a ∈ L1(23) with index(L1(23)) = L1 + index(L2)−R1.
Then a ∈ L1(23) with index(L1(23)) = n.

Case 3: a ∈ L3
We distinguish three subcases:

Case 3.1: R2 ≥ index(L3)
We draw two conclusions:

a) a ∈ inner(N23).
Then a ∈ inner(N1(23)).
Then a /∈ L1(23).

b) R2 + (R1 − L2) ≥ index(L3).
Then R2 + (R1 − L2) ≥ index(L3).
Then R12 ≥ index(L3).
Then a ∈ inner(N(12)3).
Then a /∈ L(12)3.
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Case 3.2: R2 < index(L3) and index(L3) ≤ R12
We draw two conclusions:

a) a ∈ inner(N(12)3).
Then a /∈ L(12)3.

b) a ∈ L23 with index(L23) = L2 + index(L3)−R2.
Then a ∈ L23 with

index(L23) ≤ L2 + R12 −R2

= L2 + (R2 �R1)− L2 −R2

= L2 + (R2 �R1)− L2 −R2

= L2 + R2 + R1 − L2 −R2

= R1.
Then a ∈ inner(N1(23)).
Then a /∈ L1(23).

Case 3.3: R12 < index(L3) As a shorthand, let n=def L1+L2+index(L3)−
R1 −R2. We draw two conclusions:

a) a ∈ L(12)3 with index(L(12)3) = L12 + index(L3)−R12.
We distinguish two subcases:

aa) R1 ≥ L2. Then

index(L(12)3) = L1 + index(L3)−R12

= L1 + index(L3)− (R2 + (R1 − L2))
= n.

ab) R1 < L2. Then
index(L(12)3) = L12 + index(L3)−R2

= L1 � (L2 −R1) + index(L3)−R2

= L1 + (L2 −R1) + index(L3)− R2

= L1 + L2 −R1 + index(L3)−R2

= n.

b)

R2 ≤ R2 + (R1 − L2)

= R2 � (R1 − L2)

= R12

Then R2 < index(L3).
Then a ∈ L23 with index(L23) = L2 + index(L3)−R2.
Then a ∈ L1(23), with

index(L1(23)) = L1 + L2 + index(L3)−R2 −R1

= n.
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Symmetrical arguments apply for the proof of

Lemma 5. R(12)3 = R1(23).

Furthermore, Lemma 2 and Lemma 3 imply

Lemma 6. inner(N(12)3) = inner(N1(23)).

Proof of the Theorem is now completed by by Lemmata 3, 4 and 5.
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Abstract. When designing complex systems, mechanisms for structur-
ing, composing, and reusing system components are crucial. Today, there
are many approaches for equipping Petri nets with such mechanisms. In
the context of defining a standard interchange format for Petri nets, mod-
ular PNML was defined as a mechanism for modules in Petri nets that is
independent from a particular version of Petri nets and that can mimic
many composition mechanisms by a simple import and export concept.

Due to its generality, the semantics of modular PNML was only infor-
mally defined. Moreover, modular PNML did not define which concepts
could or should be subject to import and export in high-level Petri nets.

In this paper, we formalise a minimal version of modular high-level
Petri nets, which is based on the concepts of modular PNML. This shows
that modular PNML can be formalised once a specific version of Petri net
is fixed. Moreover, we present and discuss some more advanced features
of modular Petri nets that could be included in the standard. This way,
we provide a formal foundation and a basis for a discussion of features
to be included in the upcoming standard of a module concept for Petri
nets in general and for high-level nets in particular.

Keywords: Modular Petri Nets, Standardisation, High-Level Nets.

1 Introduction

It is well-known that, in order to design large and complex systems, a mechanism
to break the system down into smaller pieces is needed. Although Petri nets are
often blamed for not having a structuring mechanism, there actually are many
proposals for composing Petri nets and for splitting large models into smaller
ones (see related work in Sect. 8). Moreover, for industrial size systems, it is not
only important to have a system composed of smaller subsystems or modules; a
module concept must also cater for re-use and abstraction.
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The standard on High-level Petri nets, ISO/IEC 15909 Part 1 [1], however, does
not define a concept for modules yet. Structuring issues and net extensions were
left for the future Part 3 of the standard. In this paper, we make a proposal for a
module concept for high-level Petri nets and its mathematical underpinning. Note
that there are two major directions for constructing nets from some parts, which
we call composition and modularity. In composition, basically, any two or more
nets can be composed by one or more composition operators, which gives a new
net, which, in principle, can be very different from the original nets. In modular-
ity, we can basically instantiate different module definitions with clear interfaces ;
these instances can be connected with each other at their interfaces, but their
structure is not changed. Here, we propose a modularity approach; still, this ap-
proach can mimic the main composition operators for nets like place and transition
fusion by the help of import and export nodes and symbols in the interfaces.

The module concept which we propose here is—up to some details—the one
from modular PNML [2,3], which was defined along with the early version of the
Petri Net Markup Language1 for interchanging all kinds of Petri nets. Actually,
modular PNML was more ambitious and more general since it was intended
to work for all kinds of Petri nets—in the terminology of PNML, for all Petri
net types. The downside of modular PNML’s generality, however, is that the
semantics was defined informally and only in terms of syntactical substitutions,
copies, and replacements, which was called flattening. Moreover, a concept for a
proper and syntactically correct use of symbols was proposed only very recently
[5]. Here, we focus on the module concepts for high-level Petri nets and provide
both, some semantical concepts for a more elegant way of dealing with modular
high-level Petri nets and a clear semantics.

One problem with most of the mathematical formalisations of high-level Petri
nets is that the sort and operation symbols and their underlying meaning (the
algebra) is monolithic. This becomes a problem when using and combining sym-
bols from different module instances. In this paper, we solve this problem by a
simple concept called generators.

2 Introductory Example

In this section, we discuss the main concepts of modular PNML with the help
of an example. The example as well as its explanation are a revised version of
the example from [5], which was based on examples from [2,3].

2.1 Module Definition

Figure 1 shows an example of a module Channel that transmits some information
from a place p1 to a place p2. To be more precise, Fig. 1 shows the module
definition. It consists of two parts: The upper part in the bold-faced box defines
the interface of the module and its name Channel. The interface consists of
1 PNML is currently under the final ballot as an interchange format for High-level

Petri nets, subject of Part 2 of the standard [4].
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p1: data Channel p2: data

import Sort: data

p2: data

[x] [x]

declarations
  var x:data

tp1: data

Fig. 1. The module Channel

p2: A x B

Inverter

[(x,f(x))]

  var x:A
declarations

p1: B

import Sort: A

import Sort: B

[f(x)]

t

import Operator: f

  output Sort B
  input Sorts A 

p1: B p2: A x B

Fig. 2. The module Inverter

different parts: it imports a place (the dashed circle on the left-hand side) and it
exports a place (the solid circle on the right-hand side). The difference between
import and export nodes will become clear later in this paper. Intuitively, the
import place will be provided by the environment of the module when it is used;
conversely, the export place is a place that can be used by the environment of
the module. In addition to the import and export nodes, the module definition
also imports a sort symbol. As indicated by its name, this sort represents the
type data that should be transmitted over the channel. In order to make the
symbol an import symbol, we use the keyword import2, the additional text Sort
indicates that this symbol is a sort.

The lower part of the module definition in the thinly outlined box is the imple-
mentation of the module. Basically, this is a “normal” high-level Petri net. The
only difference is that it uses the sort data provided via the interface, and some
of its elements refer to the interface. The place on the left-hand side is associated
with the import place, while the place on the right-hand side is associated with
the export place, as graphically indicated by the two dashed lines.

Moreover, there is a transition between these two places; the annotations of
the two arcs are [x], where x is a variable of sort data. This variable is defined in
the declaration of the implementation; the declaration makes use of the imported
sort symbol data. The bracket notation around variable x indicates that the arc
expression denotes a multiset with a single element3 bound to variable x.

Note that both places in the module implementation have type data, which
exactly corresponds to the type of the import and export places in the interface.

2.2 Module Instances

Next, we build a simple system from the module Channel. Figure 3 shows the use
of three instances of the module Channel. The instances are named ch1, ch2, and
ch3, respectively. To indicate the instantiation, we use the name of the instance
followed by the name of the module definition (inspired by UML).
2 Actually, the keywords import and export, as well as the graphical notation for import

and export nodes, are not the point of this paper.
3 Often, the notation 1‘x is also used, e.g., for coloured nets in CPNTools [6].
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[x+1]
  var x:int

ch1:Channelp1: data p2: data ch2:Channelp1: data p2: data ch3:Channelp1: data p2: data

data = int

[x]

data = int data = int

t

[2,5]

p: int

declarations

Fig. 3. Using instances of module Channel

[ch1.x]

declarations
  var ch2.x:int

declarations
  var ch1.x:int

declarations
  var ch1.x:int

declarations
  var x:int

ch1.p2: int ch2.p2: int ch3.p2: int

[x]

[ch2.x] [ch3.x][ch3.x][ch1.x] [ch2.x]

ch2.t ch3.t

t

[x+1]
[2,5]

p: int

ch1.t

Fig. 4. The resulting model

With the help of this example, we can explain the meaning of import places
and import symbols. For each instance of the module, the import place needs
to refer to some place outside the module, which will be the one imported for
that instance. This is indicated by dashed arrows from the use of the interface to
some other parts of the system. Note that export nodes of module instances are
seen outside a module. Hence, they can be referred to from import nodes. This
way, we get a sequence of three channels. Once the data from the leftmost place
is transmitted to the right-most channel, the additional transition increments
the token value and sends it back to the start place.

This is where the import symbol data representing a sort comes in again. For
each instance of the module Channel, we must provide a sort for the symbol data.
In this example, we use the sort int, which is a built-in sort of high-level Petri
nets. This way, the chain of channels transmits integer values. However, we could
have used any other built-in or user-defined sort for that.

From the model in Fig. 3 and the definition of the module Channel as shown
in Fig. 1, the actual Petri net defined is the one shown in Fig. 4. It is obtained
by making a copy of the module implementation for each module instance and
by merging the nodes identified by the references. Moreover, every occurrence
of the sort data in the module implementation is now replaced by the sort it is
assigned in this instance of the module: int in our example.

2.3 More Advanced Concepts

In the rest of this paper, we will formalise these ideas. The formal definitions
will however be more general. In our example, we had only import and export
places. In the general definition, there will be also import and export transitions,
with basically the same mechanism: fusing the respective transitions.
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Moreover, modules can also import operation symbols. Figure 2 shows an
example. For some operation f : A→ B and some value y of sort B, which is put
to the import place, it calculates a pair (x, y) such that f(x) = y and puts this
pair to the output place—if such a pair exists: it magically computes the inverse
of f. Note that the module is independent of a particular operator f; it works for
any operator, which will be provided when the module is instantiated.

In addition to the import of an operation symbol, this example shows another
important feature. In the implementation of the module, we make use of the
imported sorts A and B and build a new one, the product sort. This is, actually,
one of the technically tricky issues of the formalisation.

Finally, our formalisation allows for exporting sort and operation symbols.

3 Basic Definitions

In this section, we formalise algebraic Petri nets and all the pre-requisites. We
introduce the standard concepts of algebraic specifications [7] and of algebraic
Petri nets [8,9,10,11,1], but in a notation easing the definition of modules.

3.1 Basic Notations

As usual, N stands for the set of natural numbers (including 0), and B stands for
the set of booleans, i.e., B = {false, true}. For some set A, A+ denotes the set of
all non-empty finite sequences over A. For some function f : A → B and some
set C, the restriction of f to C is defined as the function f |C : A ∩C → B with
f |C(a) = f(a) for all a ∈ A∩C. For two functions f : A→ B and g : C → D with
disjoint domains A and C, we define f∪g as the function (f∪g) : A∪C → B∪D
with (f ∪ g)(a) = f(a) for all a ∈ A and (f ∪ g)(c) = g(c) for all c ∈ C.

For some set I, a set A together with a mapping i : A → I is an I-indexed
set (A, i). The I-indexed set (A, i) is finite if A is finite. When i is understood
from the context, we often use A for denoting the I-indexed set. For every j ∈ I,
we define the set of all elements indexed by j: Aj = {a ∈ A | i(a) = j}. By
definition, all Aj are disjoint. For an I-indexed set (A, i) and some set B, we
define (A, i) ∩B = (A ∩B, i|B).

For some set A, a mapping m : A→ N is called a multiset over A if
∑

a∈A m(a)
is finite. The set of all multisets over A is denoted by MS (A).

3.2 Signatures and Algebras

The idea of high-level nets is that there are different kinds of tokens, which are
often called colours. Mathematically, the tokens can come from some set which
is associated with a place. Different functions allow for manipulating them. In
order to represent these sets and functions, some syntax must be introduced.
Here, we use the approach of algebraic nets, where we use signatures for the
syntax, and the associated algebras for their underlying meaning.
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Definition 1 (Signature). A signature SIG = (S, O) consists of a set of sort
symbols S (often called sorts for short) and an S+-indexed set of operation
symbols O. The set S∪O is called the set of symbols of SIG. For some signature
SIG, we denote the set of its sorts by SSIG and the set of its operations by OSIG .

For some set of symbols A and some signature SIG = (S, O) the restriction of
SIG to symbols in A is SIG |A = (S ∩A, O ∩A). Note that SIG|A is not always
a signature (e. g. if A contains an operation of O but not the operation sorts).

Definition 2 (Signature extension). A signature SIG ′ extends a signature
SIG, if for some set A : SIG ′|A = SIG. This is denoted by SIG ⊆ SIG ′. Let
SIG = (S, O) and SIG ′ = (S′, O′) be two signatures with a disjoint set of sym-
bols, then we define the union SIG ∪ SIG ′ = (S ∪ S′, O ∪O′).

By definition, SIG ∪ SIG ′ is a signature, which extends SIG and SIG ′.

Definition 3 (Signature homomorphism). For two signatures SIG = (S, O)
and SIG ′ = (S′, O′), a mapping σ : S ∪ O → S′ ∪ O′ is called a signature
homomorphism, if for every s ∈ S we have σ(s) ∈ S′ and for every o ∈ Os1...sn

we have σ(o) ∈ O′
σ(s1)...σ(sn).

Definition 4 (Algebra). A SIG-algebra A assigns a carrier set to every sort
of SIG and a function to every operation of SIG.

Technically,A is a mapping such that, for every s ∈ S,A(s) is a set and, for every
o ∈ Os1...snsn+1 , A(o) is a function with A(o) : A(s1)× . . .×A(sn)→ A(sn+1).

Definition 5 (Algebra extension). Let SIG and SIG ′ be two signatures with
SIG ⊆ SIG ′, and let A be a SIG-algebra and A′ be a SIG ′-algebra. Algebra A′

extends algebra A, if A′|SSIG∪OSIG = A, written A ⊆ A′.

3.3 Variables and Terms

Let SIG = (S, O) be a signature. An S-indexed set X is a set of SIG-variables,
if X is disjoint from O. From the set of operations O of the signature and of
variables X , terms of some sort s can be constructed inductively:

Definition 6 (Terms). The sets of all SIG-terms of sort s over a set of vari-
ables X is denoted by TSIG

s (X). It is inductively defined as follows:

– Xs ⊆ TSIG
s (X).

– For every operation symbol o ∈ Os1...snsn+1 , and, for every k with 1 ≤ k ≤ n,
tk ∈ TSIG

sk
(X), we have (o, t1, . . . , tn) ∈ TSIG

sn+1
(X).

When SIG is clear from the context, we also write Ts(X) instead of TSIG
s (X).

The set of all terms is TSIG(X) =
⋃

s∈S TSIG
s (X). Terms without variables are

called ground terms and are defined by TSIG = T(∅) and by TSIG
s = TSIG

s (∅).
Note that, in practice, terms are written o(t1, . . . , tn) to make clear that the

operation is applied to the arguments. In order to emphasise the syntactical
nature of terms, we use the tuple notation (o, t1, . . . , tn) in all formal definitions.
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Definition 7 (Compatible mapping). Let SIG and SIG ′ be two signatures
and σ a signature homomorphism from SIG to SIG ′. Let X be a set of SIG-
variables and X ′ be a set of SIG ′-variables. A mapping ξ : X → X ′ is said to
be compatible with σ if, for every variable x ∈ Xs, we have ξ(x) ∈ X ′

σ(s). The
mappings σ and ξ can be canonically extended to a mapping σ ∪ ξ : TSIG (X)→
TSIG′

(X ′) by

– σ ∪ ξ(x) = ξ(x) for every x ∈ X, and
– σ ∪ ξ((o, t1, . . . , tn)) = (σ(o), σ ∪ ξ(t1), . . . , σ ∪ ξ(tn)), for every operation

symbol o ∈ Os1...snsn+1 , and, for all terms tk ∈ TSIG
si

(X).

3.4 Generators

In high-level nets and high-level net modules in particular, we often have some
sorts provided, and we need to construct other sorts from them in a standard
way. For example, for a given sort s, we need a sort that represents the multiset
sorts over that sort, ms(s). We may also want to build the product sort over
some sorts (see Fig. 2 for an example). Moreover, the sets associated with these
new sorts are defined based on the sets associated with the underlying sorts. For
example, the set associated with ms(s) is the set of all multisets over A(s).

In module definitions, we also want to import sorts to be used in the module
implementation without yet knowing which concrete set will be associated with
it, since this will only be known when the module is instantiated. Still, we would
like to use these sorts and sorts built from them in the module definition. For
that purpose, we need a mechanism for constructing new sorts and operations
from some signature and a way to define their meaning. To this end, we introduce
generators. A generator defines which new sorts and operators can be constructed
out of existing sorts, and once the associated sets are known for every sort, what
the meaning of the corresponding constructed sorts and operators should be.
Since generators are needed anyway, we also use them for defining the standard
sorts, such as bool, along with their operations.

Definition 8 (Generator). A generator G = (GS ,GA) consists of

– a sort generator function GS that, for any given signature SIG = (S, O),
returns a signature GS (SIG) = (S′, O′) such that S ⊆ S′ and O ⊆ O′;
GS (SIG) is called the signature generated from SIG by the generator G;

– an algebra generator function GA that, for any SIG-algebra A, returns a
GS (SIG)-algebra such that the algebra GA(A) extends algebra A, i.e., A ⊆
GA(A).

Throughout this paper, we will use a single generator4 G = (GS ,GA), which
will be defined in this section. The basic idea is to include, in addition to the
4 This is a very minimalistic version; there could be many more built-in sorts, gener-

ated sorts, and operations (see ISO/IEC 15909-2 [4]); but this is beyond the scope
of this paper; our module concept will work for any generator extending this one.
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existing sorts, the booleans, the associated multiset sort ms(s) for every sort s,
and all the product sorts. In order to emphasise the syntactical nature, and to
distinguish the newly constructed sorts, we use the notation (bool), (ms, s) and
(×, s1, . . . , sn) for these generated sorts. Likewise, the generator will generate the
boolean constants (true) and (false) and the standard operations on booleans,
the tupling operation ((), s1, . . . , sn), and the operation (([], s), s, . . . , s) which
makes a multiset out of a list of elements.

Definition 9 (Sort generator). Let SIG = (S, O) be an arbitrary signature,
then GS (SIG) = (S′, O′) is defined as follows:

– S′ is the least set for which the following conditions hold:
1. S ⊆ S′,
2. (bool) ∈ S′,
3. (ms, s) ∈ S′ for every s ∈ S′, and
4. (×, s1, . . . , sn) ∈ S′ for all sorts s1, . . . , sn ∈ S′.

– O′ is the least S′-indexed set for which the following conditions hold:
1. O ⊆ O′,
2. (true), (false) ∈ O′

(bool),
3. (not , (bool)) ∈ O′

(bool)(bool),
4. (and , (bool), (bool)), (or, (bool), (bool)) ∈ O′

(bool)(bool)(bool),
5. (([], s), s, . . . , s) ∈ O′

s...s(ms,s) for every sort s ∈ S′, where the number of
s is the same in both constructs,

6. (+, (ms, s), (ms, s)) ∈ O′
(ms,s)(ms,s)(ms,s) for every s ∈ S′, and

7. ((), s1, . . . , sn) ∈ O′
s1...sn(×,s1,...,sn) for all s1, . . . , sn ∈ S′.

Definition 10 (Algebra generator). Let A be a SIG-algebra with SIG =
(S, O) and let GS(SIG) = (S′, O′). Then we define GA(A) by:

– The mapping of the sorts of GA(A) is defined as follows:
1. GA(A)|S = A|S,
2. GA(A)((bool)) = B,
3. GA(A)((ms, s)) = MS (GA(A)(s)) for every sort s ∈ S′, and
4. GA(A)((×, s1, . . . , sn)) = GA(A)(s1) × . . . × GA(A)(sn) for all sorts

s1, . . . , sn ∈ S′.
– The mapping of the operations of GA(A) is defined as follows:

1. GA(A)|O = A|O,
2. GA(A)((true)) = true and GA(A)((false)) = false,
3. GA(A)((not , bool)) = ¬, where ¬ is the boolean negation function,
4. GA(A)((and , bool, bool)) = ∧ and GA(A)((or , bool, bool)) = ∨, where ∧

and ∨ are the boolean conjunction and disjunction functions,
5. GA(A)((([], s), s, . . . , s))(a1, . . . , an) = [a1, . . . , an], for every sort s ∈ S′

and all a1, . . . , an ∈ GA(A)(s); i. e. the multiset over s containing exactly
the elements a1, . . . , an,

6. GA(A)(+, (ms, s), (ms, s))) = + for every sort s ∈ S′, where + denotes
the addition of two multisets over GA(A)(s), and
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7. GA(A)(((), s1, . . . , sn))(a1, . . . , an) = (a1, . . . , an) for all s1, . . . , sn ∈ S′

and a1 ∈ GA(A)(s1), . . . , an ∈ GA(A)(sn), i.e., the usual tupling.

Note that, to avoid overly complex mathematics, we assume that all the sym-
bols used in a basic signature SIG are disjoint from symbols introduced by the
generators GS (SIG). We assume that the symbols in SIG are flat and unstruc-
tured, whereas the symbols introduced in GS (SIG) are tuples—some of them,
like (bool), are 1-tuples. Since this is just needed for making the mathematics
work, our examples will use bool for (bool) and ms(s) for (ms, s). However, we
stick to the technical notations (bool) and (ms, s) in all formal definitions.

Definition 11 (Sort generator homomorphism). A signature homomor-
phism σ from some signature SIG to some signature SIG ′ carries over to a
signature homomorphism σG from GS (SIG) to GS (SIG ′) in a canonical way:

– 1. σG(s) = σ(s) for every s ∈ S,
2. σG((bool)) = (bool),
3. σG((ms, s)) = (ms, σG(s)) for every s ∈ S, and
4. σG((×, s1, . . . , sn)) = (×, σG(s1), . . . , σG(sn)) for all s1, . . . , sn ∈ S.

– 1. σG(o) = σ(o) for every operation o ∈ O,
2. σG((true)) = (true) and σG((false)) = (false),
3. σG((not , (bool))) = (not , (bool)),
4. σG((and , (bool), (bool))) = (and , (bool), (bool)), and

σG((or , (bool), (bool))) = (or , (bool), (bool)),
5. σG(([], s, . . . , s)) = (([], σG(s)), σG(s), . . . , σG(s)) for every sort s ∈ S,
6. σG((+, (ms, s), (ms, s))) = (+, (ms, σG(s)), (ms, σG(s))) for every sort

s ∈ S, and
7. σG(((), s1, . . . , sn)) = ((), σG(s1), . . . , σG(sn)) for all s1, . . . , sn ∈ S.

In the following, we even use the symbol σ instead of σG.

3.5 Nets, Algebraic Net Schemes, and Algebraic Nets

Now we are prepared to define the basic concepts of this paper.

Definition 12 (Net). A net N = (P, T, F ) consists of two disjoint sets P and
T and a set of arcs F ⊆ (P × T ) ∪ (T × P ).

For a clear separation between syntax and semantics, we distinguish between
algebraic net schemes and algebraic nets.

Definition 13 (Algebraic net scheme). An algebraic net scheme is a tuple
Σ = (N,SIG , X, sort, l, c, m) consisting of:

1. a net N = (P, T, F ),
2. a signature SIG,
3. a set of GS (SIG)-variables X,
4. a place sort mapping sort : P → SGS(SIG),
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5. an arc label mapping l : F → TGS(SIG)(X) such that:
– for all (p, t) ∈ F ∩ (P × T ) : l((p, t)) ∈ T

GS(SIG)
(ms,sort(p))(X)

– for all (t, p) ∈ F ∩ (T × P ) : l((t, p)) ∈ T
GS(SIG)
(ms,sort(p))(X),

6. a transition condition mapping c : T → T
GS(SIG)
(bool) (X),

7. an initial marking m : P → TGS(SIG) such that, m(p) ∈ T
GS(SIG)
(ms,sort(p)) for

every place p ∈ P .

Definition 14 (Algebraic net). An algebraic net (Σ,A) is an algebraic net
scheme Σ equipped with a SIG-algebra A.

In this paper, we focus on the definition of modules and how they can be used to
define other modules. We are not so much interested in their actual behaviour.
Therefore, we do not define the firing rule for algebraic nets here. A formalisa-
tion of the abstraction in terms of the behaviour of a module is an interesting
endeavour—but much beyond the scope of this paper.

4 Modules Interfaces and Implementation

In this section, we formalise the notion of module interfaces and their implemen-
tation, informally introduced in Sect. 2. The module interface describes which
places and transitions are imported or exported, and which sort and operation
symbols are imported or exported on a purely syntactical level. Moreover, the
interface defines the sort of each of the import and export places.

Definition 15 (Module interface)
A module interface I = ((SIGI , PI , TI), (SIGO, PO, TO), sortIO) consists of two
signatures SIGI and SIGO with disjoint sets of symbols, four pairwise disjoint
sets PI , TI, PO, TO and a mapping sortIO : PI ∪ PO → SGS(SIGI∪SIGO).

We call (SIGI , PI , TI) the import interface, SIGI the imported signature, PI the
imported places, and TI the imported transitions. We call (SIGO, PO, TO) the
export interface, SIGO the exported signature, PO the exported places, and TO

the exported transitions. The mapping sortIO assigns a sort to every place of the
interface. Note that this can be any sort that can be generated from the sorts of
the import and export signatures.

Definition 16 (Module implementation)
Let I = ((SIGI , PI , TI), (SIGO, PO, TO), sortIO) be a module interface. Then, a
module implementation M = (I, Σ,A) of interface I, consists of:

1. the interface I itself,
2. an algebraic net scheme Σ = (N,SIG , X, sort, l, c, m) with N = (P, T, F )

where SIG = (S, O) extends SIGI and SIGO such that SIG restricted to
the non-imported part, SIG \ SIGI = SIG|S\SSIGI ∪O\OSIGI , is a signature,
P ⊇ PI ∪ PO, T ⊇ TI ∪ TO, and sort ⊇ sortIO,

3. a SIG \ SIGI -algebra A.
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Note that this definition does not require that A is a SIG-algebra since some
symbols from SIG are imported from SIGI . The interpretation of the symbols
from SIGI will come from the imported symbols when the module is instantiated.
In order to assign the meaning to the remaining symbols, we require SIG \SIGI

to be a signature, and A to be a SIG \ SIGI -algebra. In general, (Σ,A) is not
an algebraic net; however, it is an algebraic net if SIGI is empty.

5 Modules Definitions and Implementations

Up to now, we have defined module interfaces and their implementation. The
implementation was given by a monolithic algebraic net. The purpose of modules,
however, is to use instances of some modules for defining a system or other
modules, which we call module definitions. In this section, the notion of module
definition as well as its meaning is formalised.

5.1 Module Definition

Let J be a set of module interfaces, which can then be used for defining an-
other module. For each I ∈ J , we denote: I = ((SIGI

I , P I
I , T I

I ), (SIGI
O, P I

O, T I
O),

sortIIO), SIGI
I = (SI

I , OI
I ) and SIGI

O = (SI
O, OI

O).
First, we introduce a notation for module instances resp. the use of modules.

Definition 17 (Module instances and uses). For some n ∈ N and for every
k ∈ {1, . . . , n}, let Ik ∈ J . Then, U = {(1, I1), . . . , (n, In)} is a set of n module
instances of J . The set U is called the module uses.

Note that the interfaces Ik are not required to be different since the same module
may be used multiple times in another module definition. Therefore, in order to
be able to distinguish different instances of the same module, a different number
is associated with each of them. This is the case in the introductory example of
Sect. 2, where three copies of the Channel module are used.

Definition 18 (Module definition). A module definition
D = (I, Σ,U , (sik)n

k=1, (pik)n
k=1, (tik)n

k=1, (sok)n
k=1, (pok)n

k=1, (tok)n
k=1,A) for in-

terface I over some module interfaces J , consists of the following:

1. its own interface I = ((SIGI , PI , TI), (SIGO, PO, TO), sortIO),
2. an algebraic net scheme Σ = (N,SIG , X, sort, l, c, m) with signature SIG =

(S, O) and net N = (P, T, F ),
3. a set of module instances U = {(1, I1), . . . , (n, In)} of J ,
4. for each k ∈ {1, . . . , n},

(a) a signature homomorphism sik : SIGIk

I → SIG,
(b) an injective signature homomorphism sok : SIGIk

O → SIG \ SIGI ,
(c) a mapping pik : P Ik

I → P ,
(d) an injective mapping pok : P Ik

O → P \ PI ,
(e) a mapping tik : T Ik

I → T ,
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(f) an injective mapping tok : T Ik

O → T \ TI,
such that the co-domains of all homomorphisms sok are pairwise disjoint, the
co-domains of all mappings pok are pairwise disjoint, and the co-domains of
all mappings tok are pairwise disjoint. Moreover, for every k and for every
p ∈ P Ik

I , we have sik(sortIk

IO(p)) = sort(pik(p)), and for every p ∈ P Ik

O , we
have sok(sortIk

IO(p)) = sort(pok(p)), such that SIGD = (S′, O′) with S′ =
S \ (SSIGI ∪

⋃n
k=1 sok(SSIG

Ik
O )) and O′ = O \ (OSIGI ∪

⋃n
k=1 sok(OSIG

Ik
O ))

is a signature, and
5. A is a SIGD-algebra.

Basically, the module definition consists of an algebraic net scheme Σ, where
the homomorphisms and mappings (see condition 4) from the interfaces of the
used module instances U to Σ indicate how the instances of the modules are
embedded into Σ. This concerns the embedding of places and transitions as
well as the use of the different symbols of the signatures. Note that if an export
symbol of a module instance is mapped to a symbol of Σ, this symbol will get its
meaning from this module instance. Therefore, condition 4 requires that these
mappings do not overlap. The meaning of the symbols of the import signature
will be defined when the module is used; therefore, the module definition itself
does not need to give a definition to these symbols. Therefore, the algebraA does
not need to assign a meaning for the symbols coming from the import signature
of the defined module or from the export symbols of the used modules. The
remaining part of the signature, denoted by SIGD in the above definition, must
be a signature and A must be a SIGD-algebra (condition 5).

5.2 Denoted Implementation

In this section, we will define the module implementation inferred from a module
definition, i.e., based on other modules. Let us consider a module definition

D = (I, Σ,U , (sik)n
k=1, (pik)n

k=1, (tik)n
k=1, (sok)n

k=1, (pok)n
k=1, (tok)n

k=1,A)

as defined in Def. 18 using module instances U = {(1, I1), . . . , (n, In)}. In order
to define the module implementation, the implementations of the used modules
must be known. Let us assume that for each k ∈ {1, . . . , n}, Mk = (Ik, Σk,Ak)
is an implementation for interface Ik. The basic idea of the module defined by
D is to make a disjoint union of all signatures and nets of the implementations
and the module definition itself, and to transform the arc, place, and transition
labels accordingly. However, some parts need to be identified, as defined by the
homomorphism between the signatures and the mappings from the interface
places and transitions to the places and transitions of the module definition.

We start with defining the signature of the module implementation, which
will be denoted with ŜIG. First, we summarise the available signatures:

1. The signature SIG = (S, O) from the module definition.
2. For every use of a module (k, Ik), there are two disjoint signatures SIGIk

I and
SIGIk

O . We define SIGIk = SIGIk

I ∪ SIGIk

O . Moreover, there is a signature
homomorphism fk : SIGIk → SIG defined by fk = sok ∪ sik.
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3. For every use of a module (k, Ik), the implementation Mk = (Ik, Σk,Ak)
has a signature SIGk and variables Xk. By definition SIGIk ⊆ SIGk holds.

Definition 19 (Signature ŜIG and homomorphisms σk)
For each k ∈ {1, . . . , n}, the mapping σk is a signature homomorphism from
SIGk to ŜIG, defined as follows: for every x ∈ SIGk for which fk(x) is defined:
σk(x) = fk(x); for every other symbol x ∈ SIGk : σk(x) = (k, x). We define
ŜIG = (Ŝ, Ô) by Ŝ = S ∪

⋃n
k=1 σk(SSIGk) and Ô = O ∪

⋃n
k=1 σk(OSIGk), where

the arities carry over by interpreting σk as a signature homomorphism.

Note that, in the definition of σk(x), the pair (k, x) is used to make this symbol
of SIGk different from all the other symbols. The signature ŜIG will be the
signature of the defined module implementation. The signature homomorphisms
σk relate the signatures of the implementations to ŜIG; they will be used to
transfer the labels from the different module implementations to the defined
module implementation.

The variables from the different modules are made disjoint in the same way.

Definition 20 (Variables X̂). For every k ∈ {1, . . . , n}, the mapping ξk is
defined by: ξk(x) = (k, x) for every variable x ∈ Xk. The set of all variables is
defined by X̂ = X ∪

⋃n
k=1 ξk(Xk).

The meaning of the non-imported symbols of ŜIG is defined by an ŜIG \ SIGI -
algebra Â. Basically, this meaning carries over from the other algebras via the
respective homomorphisms.

Definition 21 (Algebra Â). The ŜIG \ SIGI-algebra Â associated with A is
defined as follows: If A(x) is defined, then Â(x) = A(x); if Ak(x) is defined,
then Â(σk(x)) = Ak(x).

By the conditions imposed on the algebras and the signature homomorphisms,
this definition of Â is unique and it is a ŜIG \ SIGI -algebra.

For experts, ŜIG and Â are pushout constructions in an appropriate category;
but the categorical constructions are beyond the scope of this paper.

Next, we define the places and transitions of the module implementation,
which are basically a disjoint union of all the places and transitions of the used
module implementations and the places and transitions of the module definition
itself. The places and transitions identified by the mappings from the import and
export interfaces will be merged. First, we summarise what we already know:

1. The net N = (P, T, F ) of the module definition. The set of all nodes of that
net is Z = P ∪ T .

2. For every use of a module (k, Ik), let ZIk be the set of nodes of the interface
and let Zk be the set of nodes of the implementation, ZIk ⊆ Zk. There is a
mapping gk : ZIk → Z, which is defined by gk = pik ∪ pok ∪ tik ∪ tok.

Definition 22 (Places P̂ and transitions T̂ ). For every k ∈ {1, . . .n}, a
mapping ek is defined as follows: ek(x) = gk(x) for every x ∈ ZIk, and ek(x) =
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(k, x) for every x ∈ Zk \ ZIk. The set of places of the module implementation
defined by the module definition is defined by P̂ = P ∪

⋃n
k=1 ek(Pk) and the set

of transitions is defined by T̂ = T ∪
⋃n

k=1 ek(Tk).

Now we have all the ingredients for defining the module implementation. Basi-
cally, the mappings of the module instances carry over from the module imple-
mentations via the homomorphism:

Definition 23 (Defined module implementation)
Let D = (I, Σ,U , (sik)n

k=1, (pik)n
k=1, (tik)n

k=1, (sok)n
k=1, (pok)n

k=1, (tok)n
k=1,A) be

a module definition with module uses U = {(1, I1), . . . , (n, In)} and module im-
plementations Mk = (Ik, Σk,Ak) for each k.

The module implementation defined by D is M̂ = (I, Σ̂, Â) where Σ̂ =
(N̂ , ŜIG, X̂, ŝort, l̂, ĉ, m̂) with N̂ = (P̂ , T̂ , F̂ ) such that
F̂ = F ∪

⋃n
k=1{(ek(x), ek(y)) | (x, y) ∈ Ak}.

The mappings l̂, ŝort, ĉ, and m̂ are defined as follows:

– l̂(f) = l(f) for every arc f ∈ F and l̂(f) = σk ∪ ξk(lk(f)) for every arc
f ∈ Fk.

– ŝort(p) = sort(p) for every place p ∈ P and ŝort(ek(p)) = σk(sortk(p)) for
every place p ∈ Pk.

– for every transition t ∈ T , for which there exists no k with t ∈ ek(T k
O), we

define ĉ(t) = c(t); for every transition t ∈ T k \ T k
I we define ĉ(ek(t)) =

σk ∪ ξk(ck(t)).
– for every place p ∈ P , for which there exists no k with p ∈ ek(P k

O), we
define m̂(p) = m(p); for every place p ∈ P k \ P k

I we define m̂(ek(p)) =
σk ∪ ξk(mk(p)).

As mentioned earlier, Â is a ŜIG \ SIGI -algebra. By the conditions imposed on
the module definitions, l̂, ŝort, ĉ, and m̂ are properly defined. Altogether, the
defined module implementation is uniquely defined:

Theorem 1. For an interface I = ((SIGI , PI , TI), (SIGO, PO, TO), sortIIO)
and a module definition D for I with module uses U = {(1, I1), . . . , (n, In)}
and module implementations Mk, M̂ = (I, Σ̂, Â) is a uniquely defined module
implementation. If SIGI is empty, then (Σ̂, Â) is an algebraic net.

6 Example

Here, we present an example of a railway case study described in a modular way
in [12]. It is now slightly changed so as to be consistent with our notations.

The example models a toy railway composed of several track sections, as
shown in Fig. 5, either connected directly or via a switch. Several trains can
circulate at the same time, and the routing policy of trains should ensure that
there is no collision and the system is always running. The modular design of
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◦ ◦ ◦

◦

◦ ◦ ◦

◦

switch1

switch2 switch3

switch4

◦ ◦

B2

B1 B11

B12

B4 B8

B5 B9

B3 B7

B10B6

Fig. 5. The tracks of the model railway

MoveSec
import Sort: Train
import Sort: TrainNb
import Sort: Direction
import Operator: none

output Sort: Train
import Operator: cl

output Sort: Direction
import Operator: acl

output Sort: Direction
import Operator: ()

input Sorts: TrainNb, Direction
output Sort: Train

S1: Train S2: Train

var t: TrainNb

S1: Train S2: Train

S1S2

[(t,acl)]

[none][none]

[(t,acl)]

S2S1

[(t,cl)]

[none] [none]

[(t,cl)]

(a) The MoveSec module

Switch
import Sort: Train
import Sort: TrainNb
import Sort: Direction
import Operator: none

output Sort: Train
import Operator: dir

output Sort: Direction
import Operator: !

input Sorts: Direction
output Sort: Direction

import Operator: ()
input Sorts: TrainNb, Direction
output Sort: Train

T1: Train T2: TrainO: Train

var t: TrainNb

T1: Train T2: Train

O: Train
T1O

[(t,!dir)]

[none]

[none]

[(t,!dir)]

OT1
[(t,dir)]

[none]

[none]

[(t,dir)]

T2O

[(t,!dir)]

[none]

[none]

[(t,!dir)]

OT2
[(t,dir)]

[none]

[none]

[(t,dir)]

(b) The Switch module

Fig. 6. The MoveSec module
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such a system was the scope of [12] and lead to identifying 2 modules: MoveSec
models the moves between two directly connected tracks while Switch is a switch
connecting three track sections. In both modules, each place corresponds to a
track section, which may or may not be occupied by a train. The transitions
reflect the possible moves. These two modules are depicted in Fig. 6 and are
used by a top-level module, which captures the whole system, in Fig. 7.

We have chosen to define the track sections within the Switch modules since
the switch is the most elaborate part of the system. Therefore the places in
module Switch exports its places. Conversely, module MoveSec imports its
places, as they are defined elsewhere.

Other choices in this particular example could have been made for import
and export places. For instance, the tracks of a toy railway are asymmetric
since for connecting pieces, one side of a track gets inside (the other side of)
another track. This easily fits an imported place and an exported place scheme
for the MoveSec module. But this also leads to two types of switch modules: one
exporting places T1 and T2 and importing O, and the other doing the converse.

The choice we made illustrates parameterisation of modules. Note that module
Switch imports a direction operator dir, which allows for using the same module
to represent all switches, even though they operate in symmetrical ways. The

Declarations
Sorts
Train
TrainNb
Direction

Operators
none: Train
cl: Direction
acl: Direction
!: Direction,Direction
(): TrainNb, Direction, Train

switch1: Switch
dir=cl

T1

T2
O

switch2: Switch
dir=acl

T1

T2
O

switch4: Switch
dir=acl

T1

T2
O

switch3: Switch
dir=cl

T1

T2
O

B1B2: MoveSec

S1 S2

B5B9: MoveSec

S1 S2

B6B10: MoveSec

S1 S2

B11B12: MoveSec

S1 S2

B3B7: MoveSec

S2 S1

B4B8: MoveSec

S2 S1

Fig. 7. The top-level net model of the model railway
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operator is instantiated when connecting the Switch module, as shown in Fig. 7.
It then takes value cl for switches switch1 and switch3, and value acl for
switches switch2 and switch4.

Finally, the sorts and operators are defined in the top-level module and can be
used consistently by all modules. This can be considered as a global definition.
A Train on a track section is identified by a TrainNb, and a can move in a given
Direction. The operators consist of 3 constants: none indicating that no train is
on a track section, cl and acl giving the possible directions of trains (clockwise
and anticlockwise). The unary operator ! is intended to change a direction into
the opposite one. Finally, () forms a pair with a train identity and a direction
in which the train moves, detailing a train present on a track section.

7 Discussion and Extensions

In this section, we briefly discuss our module concept and some issues that should
be considered for the work on Part 3 of the ISO/IEC-15909 standard.

7.1 Abstraction and Refinement

One of the main objectives of using modular design is to handle abstraction
and refinement features. Our proposal fits with such a scheme by separating the
module definition which lies at an abstract level and the module implementation.
Moreover, modules can import constructs from others and provide constructs to
be used by others.

Refinement can be pursued further, by detailing the functioning of a module
through other new modules. To cope with such a process, it will be most helpful
to provide a hierarchy of modules, showing how they are embedded in one an-
other. The current module definitions allow us to build modules in a hierarchical
way. However, for practical use, a designer should be provided with a view of
the hierarchy (as in e.g., Hierarchical CPNs).

The example of Sect. 6 also shows that parameterisation of modules is possible.
This is a key feature for reuse of modules in different contexts.

7.2 Aggregation of Label Information

In our formalisation, some annotations of places and transitions are ignored. For
example, the initial marking of a place is always taken from the module where
the place is actually defined. If a module imports a place, the module can define
an initial marking. But this marking is irrelevant since it will come from wherever
the imported place is defined. The same holds for the transition condition.

For the transition condition, it might make sense to use a conjunction of all
transition conditions attached to the transition. As concerns the initial marking,
it might make sense to use the sum of all initial markings. Since we started from
the modular PNML semantics, we did not include that here.
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Since such an aggregation mechanism seems to be reasonable in at least some
cases, aggregation should be considered for the upcoming standard. However, this
will introduce some technical difficulties. Not all annotations can be aggregated
in a reasonable way: clearly the aggregation function would require an associative
and commutative operation with a neutral element for making the aggregation in-
dependent from a specific order. Even if the operation is associative and commuta-
tive, its syntactical representation is not. Therefore, there would not be a canonical
syntactical representation for the defined module implementation.

The aggregation mechanism could be even more advanced. For example, the
defining module could provide the operation that is used for the aggregation.
This way, it would be up to the defining module to decide whether and how
particular labels of modules using it should be aggregated. What is reasonable,
necessary, easily usable, and semantically sound is subject to future research.

7.3 Export of Variables

In our formalisation, modules can export and import only sort and operation
symbols. It does not allow for exporting variables. In the case of synchronous
communication via merging of transitions, it might, however, make sense to use
a common variable for such transitions to exchange values between different
partners during a synchronisation. Therefore, it might be worthwhile to also
export and import some of the variables along with a transition.

A formalisation, however, requires that variables are defined locally to a tran-
sition as for example proposed by Schmidt [13]. The formalisation is a bit more
technical, but we believe that this concept should be included in the standard.

7.4 Node Connection Policies

In our definition of export and import nodes, the other modules could connect
to that node as to any other node. In some cases, some uses might not be
intended at all. In our introductory example from Fig. 1, it does not make much
sense for a module using the Channel module to add a token to export place p2.
Though adding a token does not do much harm here, the module might want to
restrict the use of this place so that tokens can only be removed from that place.
Right now such a restriction cannot be enforced and would just be a textual
recommendation of the use of a node.

It would be nice if a module could provide some composition policies that
state in which way a node may be used, in order to define and to enforce com-
munication paradigms. What exactly should be expressible by such policies and
how a language for expressing such policies should look like, requires further
investigation.

7.5 Generators

The key mechanism for having the module concept work is the generator. This
way, it is possible to construct standard sorts out of existing sorts without even
knowing the underlying algebra yet.
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Up to now, there is only one fixed generator, which supports the standard
generic constructs on sorts like multisets or products over sorts. It is not yet
possible to define user-defined generic constructs. Of course, it would be useful to
allow the extension of this generator within a module definition, so that a module
could define new generic constructs. To this end, we could use existing theory
from algebraic specifications. The question, however, is how much expressivity
is needed and worth the effort to be included in the standard.

The idea of generators could also serve a different purpose: As we have seen, we
used the generator for defining the built-in sorts and the standard constructs.
Actually, many variants of high-level Petri nets differ only in these standard
sorts and constructs. One example are well-formed nets [14], which are currently
included as a special version in Part 1 of ISO/IEC 15909 (renamed symmetric
nets). Generators could ease the definition of sub-classes of high-level Petri nets.

8 Related Work

Many modular constructs have been proposed in the literature. Our aim is to
propose a framework capturing most of these mechanisms. In this section, we
show how such mechanisms are dealt with.

Our approach extends the work in [5] by providing a formal and flexible def-
inition. The communication mechanisms proposed in [15] are place fusion and
transition fusion. They are easily handled by place and transition import/export
features. The main difference with our proposal is the asymmetry between im-
porting and exporting, whereas plain fusion is symmetric. But this is no
restriction.

One of the earliest and most widespread modular approach is Hierarchical
Coloured Petri Nets [16] and their implementation within CPNTools [6]. They
also use the concept of port places, which can be defined as input, output or
both. The structuring of nets is presented via a hierarchy of modules. Such nets
also use the place fusion concept, which is captured by our proposal.

9 Conclusion

In this paper, we have shown that there is a formal foundation for the concepts of
modular PNML. We also identified some issues that should be considered and re-
solved in the standardisation of the module concept in Part 3 of ISO/IEC 15909.
All kinds of proposals, suggestions, and concerns are most welcome—as is any
active participation in the standardisation process.

Acknowledgements. We would like to thank Anne Haxthausen and Hubert
Baumeister for some helpful discussions on the category theory constructions
behind the concepts of this paper. We hope that we, eventually, will write a
joint paper from that perspective.
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Abstract. In previous works we defined ν-APNs, an extension of P/T
nets with the capability of creating and managing pure names. We proved
that, though reachability is undecidable, coverability remains decidable
for them. We also extended P/T nets with the capability of nets to repli-
cate themselves, creating a new component, initially marked in some
fixed way, obtaining g-RN systems. We proved that these two extensions
of P/T nets are equivalent, so that g-RN systems have undecidable reach-
ability and decidable coverability. Finally, for the class of the so called
ν-RN systems, P/T nets with both name creation and replication, we
proved that they are Turing complete, so that also coverability turns out
to be undecidable. In this paper we study how can we restrict the models
of ν-APNs (and, therefore, g-RN systems) and ν-RN systems in order to
keep decidability of reachability and coverability, respectively. We prove
that if we forbid synchronizations between the different components in
a g-RN system, then reachability is still decidable. The proof is done
by reducing it to reachability in a class of multiset rewriting systems,
similar to Recursive Petri Nets. Analogously, if we forbid name commu-
nication between the different components in a ν-RN system, or restrict
communication to happen only for a given finite set of names, we obtain
decidability of coverability.

1 Introduction

Pure names are identifiers with no relation between them other than equal-
ity [11]. They were first mentioned by Needham, who said that pure names are
nothing but a bit pattern that is an identifier, and is only useful for comparing for
identity with other bit patterns [17]. Names are relevant to mobility and security
because they can be used to represent channels [16], keys [1] or ambients [5].

In previous works we have studied a very simple extension of P/T nets, that
we called ν-APNs [18, 19]. Tokens in ν-APNs are pure names, that can be cre-
ated fresh, moved along the net and used to restrict the firing of transitions
with name matching. ν-APNs have been recently used in [7] to model complex
choreographies proposed in [6].
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In [13] the author proves undecidability of reachability for every object-
oriented Petri net formalism. For that purpose, Minimal OO-nets are defined, as
a minimal model of nets having objects as tokens, assuming that, at least, each
object has a name. Though our ν-APNs were thought of in a different context,
they essentially correspond to the minimal OO-nets of [13].

Another model based on Petri nets that has names as tokens are Data
Nets [14]. In Data Nets, tokens are not pure in general, but taken from a linearly-
ordered infinite domain. Names can be created, but they cannot be guaranteed
to be fresh.

Other similar models include Nested Petri Nets [15] that, following the nets-
within-nets paradigm, have nets as tokens (object nets), that can evolve au-
tonomously (object-autonomous steps), move along the system net (transport
steps), synchronize with each other (horizontal synchronization steps) or syn-
chronize with the system net (vertical synchronization steps). Nested nets are
more expressive than ν-APNs. Indeed, it is possible to simulate every ν-APN by
means of a Nested Petri Net which uses only object-autonomous and horizontal
synchronization steps. Therefore, undecidability results can be transferred from
Nested Petri Nets to ν-APNs, but this is not the case for decidability results.

In the field of mobility, particularly in that of mobile agent systems, compo-
nents usually have the capacity to replicate themselves, that is, the capacity of
creating a new copy of themselves. In previous works we also extended P/T nets
with a simple primitive that creates a new net, marked in some fixed way. We
called g-RN to this extension, where the “g” stands for “garbage”, since we also
consider a garbage collection mechanism that removes empty nets, those without
tokens, that are assumed to be blocked. Therefore, the number of components in
a system cannot only grow when a new replication is executed, but also decrease
when a component becomes garbage.

We know that reachability in ν-APNs is undecidable [13], though coverability
is still decidable [18]. Moreover, in [19] we proved that ν-APNs and g-RN sys-
tems are equivalent, in a sense that preserves both reachability and coverability,
so that we also know that reachability is undecidable for g-RN systems, but
coverability is decidable for them.

Finally, also in [19] we extended P/T names both with name creation and
replication, obtaining ν-RN systems, and proving that, although both extensions
were equivalent, when we consider them simultaneously we achieved Turing-
completeness. In particular, coverability is undecidable for them.

In this paper we study how both models, g-RN systems (or equivalently
ν-APNs) and ν-RNs can be restricted in order to keep decidability of reach-
ability and coverability, respectively. We will prove that reachability is decidable
for the class of g-RN systems without synchronizations. The proof is done by first
reducing it to reachability in a multiset rewriting system with conditional rewrite
rules, where the conditions are reachability problems in ordinary P/T nets. This
technique is somewhat similar to the model of Recursive Petri Nets [12], in which
some transitions (the so called abstract transitions) are not atomic. They first
remove tokens from preconditions, but do not put them in postconditions until
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a new component (a child thread created by the abstract transition, initially
marked in some fixed way) fires a final transition. However, there are important
differences between these models, that do not allow to reduce reachability in
those rewriting systems to reachability for RPNs.

For the model of ν-RN systems, that encompasses both name creation and
replication, we prove that by forbidding name communication between compo-
nents, although maintaining synchronizations, coverability remains decidable. If
communication is allowed, but restricted to happen for names in a given finite
set, then we also prove decidability of coverability. We prove that, with these
restrictions, ν-RNs are a well-structured system [10], for which coverability is
decidable.

2 Preliminaries

Given an arbitrary set A, we will denote by MS(A) the set of multisets of A,
that is, the set of mappings m : A → N. We denote by S(m) the support of m,
that is, the set {a ∈ A | m(a) > 0}. A multiset m is finite if S(m) is a finite
set, in which case we denote by |m| =

∑
a∈S(m)

m(a) the cardinality of m. Given

two multisets m1, m2 ∈ MS(A) we denote by m1 + m2 the multiset defined by
(m1 + m2)(a) = m1(a) + m2(a). We will write m1 ⊆ m2 if m1(a) ≤ m2(a) for
every a ∈ A. In this case, we can define m2 − m1, given by (m2 − m1)(a) =
m2(a) −m1(a). We will denote by

∑
the extended multiset sum operator and

by ∅ ∈ MS(A) the multiset ∅(a) = 0, for every a ∈ A. If f : A → B and
m ∈MS(A), then we define f(m) ∈ MS(B) by f(m)(b) =

∑
f(a)=b

m(a). We will

also use set notation to specify multisets, as it is standard.
Every partial order ≤ defined in A induces a partial order � inMS(A), given

by {a1, . . . , an} � {b1, . . . , bm} if there is some h : {1, . . . , n} → {1, . . . , m}
injective such that ai ≤ bh(i) for all i. We write s < s′ if s ≤ s′ and s′ �≤ s
(analogously, we write � for �). A partial order ≤ is a well-quasi order (wqo) if
for every infinite chain s0, s1, . . . there are i and j with i < j such that si ≤ sj .
Equivalently, it is a wqo if every infinite sequence has an increasing subsequence.
It is a well known fact that the multiset order induced by a wqo is also a wqo.

Along the paper we assert several times that a model M′ simulates another
model M. By that we mean that for every system N in M there is N ′ =
F (N ) in M′, where F is a computable function, such that the transition systems
generated by the semantics of N and N ′ are isomorphic. Therefore, reachability
in N and N ′ are equivalent. Moreover, the isomorphisms preserve the natural
orders in each of the models, so that coverability is also equivalent.

In order to set notations, we next define P/T nets.

Definition 1. A P/T net is a tuple N = (P, T, F ) where P and T are disjoint
finite sets and F ⊆ (P × T ) ∪ (T × P ). A marking of N is any M ∈MS(P ).

As usual, we denote by t• and •t the set of postconditions and preconditions of
t, respectively, that is, t• = {p | (t, p) ∈ F} and •t = {p | (p, t) ∈ F}.
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Fig. 1. A simple ν-APN

Definition 2. Let N be a P/T net and M a marking of N . A transition t is
enabled at marking M if •t ⊆M . The reached state of N after the firing of t is
M ′ = (M − •t) + t•.

We will write M
t−→ M ′ if M ′ is the reached marking after the firing of t at

marking M , M −→ M ′ if there is some t such that M
t−→ M ′, and denote by

−→∗ the reflexive and transitive closure of −→.

3 Name Creation and Replication

In this section we briefly present ν-APNs and g-RN systems. For more details
see [19]. In ν-APNs tokens are names taken from an infinite set Id . In order to
handle names, we need matching variables labelling the arcs of the nets, taken
from a set Var . Moreover, we add a primitive capable of creating fresh names,
formalized by means of a special variable ν ∈ Var .

Definition 3. A ν-APN is a tuple N = (P, T, F ), where P and T are finite
disjoint sets, and F : (P × T ) ∪ (T × P )→ Var is a partial function such that
for every (p, t) in the domain of F , F (p, t) �= ν.

We denote by Var(t) the set of variables labelling arcs adjacent to t.

Definition 4. A marking of a ν-APN N = (P, T, F ) is any M : P →MS(Id).
We define S(M) =

⋃
p∈P

S(M(p)).

The set S(M) ⊂ Id is the set of all the names appearing in some place according
to M .

Transitions are fired with respect to a mode, that chooses which tokens are
taken from preconditions and which are put in postconditions. Given a transition
t of a net N , a mode of t is a mapping σ : Var(t) → Id , that instantiates each
variable involved in the firing of t to an identifier. We will use σ, σ′, σ1 . . . to
range over modes. In the following definition we assume that {σ(F (t, p))} = ∅
and {σ(F (p, t)) = ∅} whenever F (t, p) and F (p, t) are not defined, respectively.

Definition 5. Let N be a ν-APN, M a marking of N , t a transition of N and
σ a mode of t. We say t is enabled with mode σ if σ(ν) /∈ S(M) and for all
p ∈ •t, σ(F (p, t)) ∈M(p). The reached state of N after the firing of t with mode
σ is the marking M ′, given by

M ′(p) = (M(p)− {σ(F (p, t))}) + {σ(F (t, p))} ∀p ∈ P
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Fig. 2. g-RN system with marking M = {{p, p}, {p, p}} and two possible firings

We will write M
t(σ)−→ M ′ if M ′ is reached from M when t is fired with mode σ.

Analogously as for P/T nets, we also have the relations −→ and −→∗. Fig. 1
depicts a simple example of a ν-APN and the firing of its only transition.

In order to capture the intuition that the names in Id are pure, we work
modulo≡α, which allows consistent renaming of names in markings. Accordingly,
the order�α that induces coverability for ν-APNs is defined as follows: M �α M ′

if there is an injection ι : S(M) → S(M ′) such that for every place p ∈ P ,
ι(M(p)) ⊆M ′(p).

We now give a brief insight of g-RN systems, the extension of P/T nets with
replication. In a g-RN system nets have two types of transitions: synchronizing
transitions and replicating transitions. Synchronizing transitions are those which
are meant to be fired synchronously. For that purpose we will consider a set S
of service names, endowed with a function arity : S → N and we take the set
of synchronizing labels Sync = {s(i) | s ∈ S, 1 ≤ i ≤ arity(s)}. If arity(s) = 2
then we will write s? and s! instead of s(1) and s(2), respectively, that can be
interpreted as the offer and request of the service s. We denote by A the set of
labels s with arity one, and identify s ∈ A with s(1). Then, a synchronous firing
can happen whenever n compatible transitions (having labels s(1), . . . , s(n) for
some s ∈ S with arity n) are enabled. In that case they can all be fired simulta-
neously, following the ordinary token game (see Fig. 2). Replicating transitions
are labelled with a marking, and when fired produce a new component, initially
marked as indicated by the replicating transition (see Fig. 3).

Therefore, markings of g-RN systems are multisets of markings of their compo-
nents. We will identify a component by its current marking (out of repetitions),
and talk about component M . We also consider a very simple garbage collection
mechanism that removes empty components from markings.

• •

• •
•

{p, q}

aut

p

q

→ • •

• •
•

{p, q}

aut

p

q

• •

• •
•

{p, q}

aut

p

q

Fig. 3. g-RN system firing a replication transition
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Definition 6. A g-RN system is a labelled Petri net N = (P, T, F, λ) where:

– P and T are finite disjoint sets of places and transitions, respectively,
– F ⊆(P×T )∪ (T×P ) is the set of arcs of the net,
– λ is a function from T to the set of labels Sync ∪MS(P ).

A component of N is any M ∈MS(P ), and a marking of N is a finite multiset
of components of N .

A component M is an ordinary marking of N if considered as an ordinary P/T
net. We will use M, M′, M1,... to range over markings. We assume that every
transition has a precondition, so that every firing needs the presence of a token.
Therefore, empty components cannot fire any transition, so that they can be
considered as garbage. We identify markings up to ≡, the least congruence such
that M ≡ M + {∅}. We denote by InitN or simply Init when there is no
confusion, the set of components that appear as labels of replicating transitions,
that is, InitN = {λ(t) | t ∈ T, λ(t) ∈MS(P )}.

The general definition of enabling and firing of transitions in g-RN system
is a bit technical, because modes must specify which components are going to
fire each of the transitions, and these components are not necessarily different.
Again, the interested reader is referred to [19] for further details. However, in
this work we will mostly be interested in those g-RN that cannot synchronize,
that is, those in which transitions are either replicating transitions (labelled with
a component) or autonomous transitions (labelled with some element of A).

Therefore, next we present the simplified definition of enabling and firing of
transitions for the considered subclass of g-RN systems.

Definition 7. Let N be a g-RN system without synchronizations, t a transition
of N and M a marking of N . We say t is enabled for a component M ∈ M if
•t ⊆ M . The reached marking after the firing of t for M is M′ = (M−{M})+
{M ′, M}, where:

– M ′ = (M − •t) + t•, and

– M =

{
∅, if λ(t) ∈ A,
λ(t), otherwise.

Therefore, when t is autonomous, the firing of t consists on the ordinary firing of
transition t, so that M evolves to M ′. When t is a replicating transition, the new
component λ(t) is also added to the marking. Moreover, notice that since we are
working modulo ≡, every time a component becomes empty, it is automatically
removed from the current marking.

In [19] we proved that ν-APNs and g-RN systems (with synchronizations) are
equivalent, in the sense that they can simulate each other, so that the decid-
ability/undecidability results from ν-APNs can be transferred to g-RN systems.
In particular, we know that both ν-APNs and g-RN systems have undecidable
reachability, and both have decidable coverability.
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Finally, ν-RN systems can be defined as g-RN systems with names as tokens
or, equivalently, as ν-APNs with replication transitions. A marking of a ν-RN
system is a multiset of components, where now components are not multisets
of places, but mappings M : P → MS(Id). In [19] we proved that ν-RN sys-
tems are Turing complete. In particular, both reachability and coverability are
undecidable for them.

4 Decidability of Reachability for g-RN Systems without
Synchronizations

Next let us prove that the subclass of g-RN systems that cannot synchronize
have decidable reachability. First let us introduce some notations that we will
use throughout this section, that deal with the behaviour of a component when
considering it in isolation, that is, without considering it as part of a system.
We will write M

M−→M ′ to denote the fact that M ′ can be reached from M by
firing a sequence of transitions whose set of replicating transitions produces the

new components in M. Analogously, we will also write M
M≥
−→ M ′, when M ′

can be reached from M by at least producing the new components in M. Since
reachability is decidable for ordinary P/T nets [9], we immediately obtain the
following decidability results.

Lemma 1. Given M1, M2 and M, it is decidable whether M1
M−→M2.

Proof. Deciding M1
M−→M2 amounts to deciding whether M2 is reachable from

M1 having fired some transitions (the ones labelled with components in M) a
certain number of times. As it is standard, we add a postcondition pM to each
transition t with λ(t) = M ∈ Init . Then, M1

M−→ M2 if and only if M1 −→∗

M2 + M , where M(pM ) = M(M).

In order to decide, M1
M≥
−→ M2 we also add the places pM together with

a new place ok, and we use the standard technique of reducing coverability
to reachability, but only applied to the places pM . We add a transition1 with

{pM | M ∈ M} as precondition and ok as postcondition. Then M1
M≥
−→ M2 if

and only if the submarking M2 + {ok} (without considering the places pM ) is
reachable.

This section is devoted to proving that given M0 and Mf , markings of a g-
RN system N without synchronizations, we can decide whether M0 →∗ Mf .
Let us denote by R(M0,Mf ) or just R when there is no confusion, the set
of components appearing in the initial or final marking, or in some replicating
transition, R(M0,Mf ) = S(M0) ∪ S(Mf) ∪ InitN .

Consider any trace reaching Mf from such M0. Every component that ap-
pears in any marking of that trace evolves in its own, because there are no
1 We are now assuming that arcs have weights to keep the ideas clear. Weights could

have actually been considered, without affecting any of the results presented.
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synchronizations. Since the final marking is eventually reached, all of those com-
ponents either evolve to the empty component (possibly creating on their way
other components) or to some of the components in the final marking (again,
possibly creating other components). In other words, we are not interested in the
full behavior of components, but only in those aspects: whether they evolve to
the empty marking, whether they evolve to some component in the final marking
and, in both cases, what components it creates.

Therefore, in order to simplify our study by focusing on those aspects, we will
not work directly over the reachability graph generated by the g-RN system, but
over that of the transition system that we introduce next, that takes accurately
into account the previous considerations.

Definition 8. Let N = (P, T, F, λ) be a g-RN system without synchronizations,
M0 and Mf two markings of N . Let us define the transition system l(N) =
(S, �→), given by:

– S =MS(R(M0,Mf ))/≡,
– �→ is the least congruence (with respect to multiset addition) such that

M
M−→M ′

{M} �→ {M ′}+M

Therefore, each step M �→ M′ represents part of the life of a component M
in M, that either disappears if M ′ = ∅, or evolves to a component in R. The
behavior of N that we are interested on is reflected in l(N), as we prove in the
next result.

Proposition 1. For any M1 and M2 in R, M1 →∗ M2 in N ⇔M1 �→∗ M2
in l(N).

Proof. We prove thatM1 →∗ M2 impliesM1 �→∗ M2 (the converse implication
is trivial by definition of �→). The proof is by induction on the number of created
components in the trace. If no component is created, then M1 = {M1, . . . , Mn},
M2 = {M ′

1, . . . , M
′
n} and Mi

∅−→ M ′
i for i = 1, . . . , n. Then, for all i, we

can derive {Mi} �→ {M ′
i}, and because it is a congruence, {M1, . . . , Mn} �→∗

{M ′
1, . . . , M

′
n}.

Let us now suppose that some component is created in the trace. In that case,
there is some component that is created last, by some other component M . This
component was either in the initial marking or it was created by some other
component, so in any case M ∈ R. Let M be the multiset of all the components
created by M . Since no more components are created after those in M, M
evolves to some M′ ⊆ Mf , and every M ∈ M satisfies M

∅−→ M ′ for some
M ′ ∈ S(M2) or for M ′ = ∅. Then, we can derive that {M} �→ {M ′} and, as in
the base case, M �→∗ M′.

Now we have to distinguish between two cases: the one in which M evolves
to the empty marking, M

M−→ ∅ (so that {M} �→ M �→∗ M′), and the one in
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which it evolves to some component in the final marking, M
M−→ Mf (so that

{M} �→ M+ {Mf} �→∗ M′ + {Mf}). In the first case, we can reorder the trace
so that

M1 →∗ M2 −M′ + {M} →∗ M2

The induction hypothesis tells us that M1 �→∗ M2−M′ +{M} �→∗ M2−M′+
M′ = M2. Analogously, we obtain M1 �→∗ M2 in the second case.

From now on, we will study the reachability problem for the transition systems
l(N). The main problem when we try to devise an algorithm to decide reach-
ability in g-RN systems is that of components that may evolve to the empty
marking, possibly by creating other components that could also eventually dis-
appear. In order to handle this difficulty we will define the following order, that
takes into account those markings.

Definition 9. We write M1 �∅ M2 whenever M2 =M1 +M and M �→∗ ∅.

That is, M1 �∅ M2 if M1 ⊆ M2 and M2 −M1 �→∗ ∅. In the first place, the
defined relation is reflexive, transitive and anti-symmetric.

Lemma 2. �∅ is a partial order.

Moreover, given M1 and M2, there is a procedure to effectively determine
whether M1 �∅ M2. In order to see it, let us first see two results.

Lemma 3. Given M , the set of all minimal M (with respect to multiset inclu-
sion) such that M

M−→ ∅ is computable.

Proof. Actually, we prove the more general result of computing all minimal M
greater than a given M such that M

M−→ ∅, so that we obtain the result by
taking the particular case in which M = ∅. If M �→∗ ∅ (as marking of a P/T
net) then there is no such M, and the set we are computing is empty. Let us
suppose that M →∗ ∅. We proceed by induction on n, the number of components
in Init . If n = 0 then it is the case that M

∅−→ ∅, so that the only marking to
consider is the empty one (which is minimal).

Let us now consider the inductive case, that is, Init = {M1, . . . , Mn} for some
n > 0. We know that M →∗ ∅, so that we know that there is at least one M∅
such that M

M∅−→ ∅. Then, we can do a breadth-first search in the lattice of
markings (see Fig. 4) to compute one minimal M∅ greater than M such that

M
M∅−→ ∅.

Now we need to compute the rest of the minimal markings, though we do not
need to search among those greater thanM∅ (with respect to multiset inclusion)
because we know that any solution greater than M∅ would not be minimal. Let
us denote by ki the number of times that the component Mi ∈ R appears in
M∅, that is, ki = M∅(Mi). For each i ∈ {1, . . . , n} and all j ∈ {0, . . . , ki − 1}
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Fig. 4. Computation of all minimal M∅ when |Init | = 2

let Mj
i be the marking in which the i-th component Mi of Init appears j times,

and the l-th component Ml appears kl times, for all l �= i, that is

Mj
i (Ml) =

{
j if l = i,
kl if l �= i

Now for each i and j, let us see that we only need to look for all minimal
M′ greater than Mj

i and whose number of components Mi does not increase.
Indeed, let i and j such that j < ki − 1 and M such that Mj

i ⊂ M with
M(Mi) = j + 1. Since Mj

i ⊂ M, M(Ml) ≥ Mj
i (Ml) = kl = Mj+1

i (Ml), and
M(Mi) = j + 1 = Mj+1

i (Mi). Then we have that Mj+1
i ⊆ M. Similarly, we

can see that for j = ki − 1, any M greater than Mj
i such that M(Mi) = j + 1

satisfies that M∅ ⊆M.
Then, for every Mj

i we can “block” the firing of the replicating transitions
that create Mi, and apply the induction hypothesis to compute the set Minj

i of
all minimal markings greater than Mj

i that comply with the thesis. Now we can
compute the set we are looking for as {M∅} ∪

⋃
Minj

i .

In Fig. 4 you can see an example of the reasoning followed in the previous proof,
in the restricted case in which there are two different replicating transitions,
that is, when |Init | = 2. In it, the first four levels of the lattice of all multisets
with elements in Init is depicted, denoting by 1 the component M1 and by 2
the component M2, so that we write for instance 1122 to represent the multiset
{M1, M1, M2, M2}. In Fig. 4 it is assumed that the first marking that we find

when we search the lattice for a marking M∅ such that M
M∅−→ ∅ is 122, so

that k1 = 1 and k2 = 2. In that case, we do not need to keep searching among
those markings greater than 122, those inside the dashed line. In order to keep
searching among the markings that are not greater than M∅ the proof of the
previous result builds M0

1 (because k1 = 1) and both M0
2 and M1

2 (because
k2 = 2), which correspond to the markings inside boxes in the picture. As you
can see, now it is enough to keep searching by following the arrows, as proved in
the last part of the previous proof. For instance, the marking 1112 is greater than



Decidability Results for Restricted Models of Petri Nets 73

M0
2 if we allow 2 to be created, but is also greater than M1

2 without allowing
creation of component 2. Moreover, any marking greater than M1

2 that creates
component 2 is also greater than M∅.

Next, two simple lemmas that we will need to prove that the order �∅ is
decidable.

Lemma 4. M �→∗ ∅ if and only if for all M ∈ S(M), {M} �→∗ ∅.

Lemma 5. If M⊆M′ and M′ �→∗ ∅ then M �→∗ ∅.

Proof. If M ��→∗ ∅ then, by the previous lemma there is M ∈ M such that
{M} ��→∗ ∅. Since M⊆M′ then M ∈ M′, so that again by the previous result,
M′ ��→∗ ∅.

The following result, that will allow us to conclude that the defined order is
decidable, is a weak form of the decidability result we are looking for.

Proposition 2. Given a marking M, it is decidable whether M �→∗ ∅.

Proof. By Lemma 4, it is enough to decide whether {M} �→∗ ∅ for a given
component M . We proceed by induction on the number of components in Init .
If there are no components then M cannot replicate, and it is enough to decide
whether M →∗ ∅, which is decidable. Let us see the inductive case.

If M �→∗ ∅ then clearly {M} ��→∗ ∅. Otherwise, by Lemma 3 we can consider
all minimal M such that M

M−→ ∅. We have to decide whether at least one
of those M satisfies M →∗ ∅. Notice that, thanks to Lemma 5, it is enough
to consider minimal markings (the empty marking can be reached if and only
if it can be reached from the minimal ones). Notice also that, because we are
beginning the trace in M , it is enough to consider traces that do not create
marking M , so that we can remove M from Init . Therefore, we can apply the
induction hypothesis and we can conclude.

Corollary 1. �∅ is a decidable partial order.

Though Proposition 2 is only a step away from the result we are looking for,
decidability of general reachability, it does not look immediate to generalize the
previous result to the general one, essentially because we do not have a result
analogous to Lemma 5 in the general case. Instead, we will adapt the widely used
technique of well quasi-orders (wqo) for our purposes. In general, the technique
is used to prove decidability of the so called control reachability [3], that in our
setting amounts to coverability. However, the coverability problem induced by
�∅ is just reachability. Indeed, a markingM′ such thatM�∅ M′ is reachable if
and only if M is reachable, because M′ =M+M with M→∗ ∅ and, therefore,
M′ →∗ M.

We cannot use the technique directly, because the order we have defined is
not a wqo. A quasi-order is wqo if every sequence of states has “comparable”
elements. Our order would be a wqo if, for every sequence of markings (Mi)∞i=0
there were indices i < j such that Mi �∅ Mj . However, if M is a component
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such that M �→∗ ∅ then the sequence {M}, {M, M}, {M, M, M}, . . . does not
satisfy that condition.

However, the order is enough to decide reachability. The general technique
is based on a backwards reachability algorithm. The property of wqo assures
termination of the algorithm. We will prove that, even though our order does
not satisfy the property, the algorithm still halts.

In general, given a set J , we denote by C(J) the upward closed set induced
by J , that is, C(J) = {M | M′ �∅ M, M′ ∈ J}. Moreover, let us denote by
pre(M) = {M′ | M′ �→ M} and extend it pointwise to sets of markings.

Then, let us take the following sequence of sets:

– I0 = C({Mf}),
– In+1 = I0 ∪ pre(In).

This produces an increasing chain I0 ⊆ I1 ⊆ I2 ⊆ · · · . For each n ≥ 0, In is the
set of markings from which the final marking can be covered in at most n steps.
Therefore, Mf can be covered if and only if M0 is in some of those sets, which
by the previous comments amounts to saying that Mf can be reached if and
only if M0 ∈ Ii for some i ≥ 0. Now, in order to obtain an effective algorithm,
we need a way to represent and compute those infinite sets, together with a
guarantee of termination, namely that the previous chain stabilizes.

In the first place, since �→ is a congruence with respect to multiset inclusion,
the following is a straightforward result.

Lemma 6. The relation �→ is monotonic with respect to �∅.

This tells us that every set Ii is an ideal, that is, an upward closed set. We need
a finite representation of those Ii. For that purpose, given an ideal I we define
min(I) as the set satisfying:

1. min(I) ⊆ I,
2. If M,M′ ∈ min(I) and M�∅ M′ then M = M′,
3. For every M ∈ I there is M′ ∈ min(I) such that M′ �∅ M.

It is straightforward to see that min(I) is well defined, because there is only one
set that can satisfy the previous conditions (essentially, thanks to the antisym-
metry of �∅). If �∅ were a wqo, then we would immediately know that min(I)
is finite for every ideal I. However, as we said before, it is not a wqo. Actually,
for J = {{M}, {M, M}, {M, M, M}, . . .} with M �→∗ ∅, min(C(J)) = J , which
is not finite.

Nevertheless, we can prove that it is finite for every Ii. Let us first see the
following lemmas.

Lemma 7. Given M , M ′ and M, the set of all minimal M∅ (with respect to

multiset inclusion) such that M
M+M∅−→ M ′ and M∅ →∗ ∅ is computable.

Proof. Very similar to the proof of Lemma 3.
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Fig. 5. Computation of min(pre(C({M})))

Now we see how we can compute the predecessor function.

Lemma 8. For every M, the set min(pre(C({M}))) is finite and computable.

Proof. For all M′ + {Mf} ⊆ M with Mf ∈ S(Mf ) ∪ {∅}, let us consider all
the steps in which some component evolves to Mf , creating on its way at least
the components in M′, together with some others, that can necessarily evolve
to the empty marking.

For all M ∈ R, let us see if M can be that component. If M
M′≥
−→ Mf then,

by Lemma 7, we can compute all minimal M∅ such that M
M′+M∅−→ Mf and

M∅ →∗ ∅. Then we can add to the set of predecessors the marking M−M′ −
{Mf} + {M}. Notice that thanks to Lemma 5 it is enough to consider only
minimal markings M∅.

We have described a finite procedure, yielding finitely many markings in the
set of predecessors. This finite set could be not minimal, but we can always
minimize this finite set to compute the set we are interested in.

Fig. 5 can give you some insight about the proof of the previous result. A marking
M induces an upwards closed set, the cone in the right handside of Fig. 5. We
want to compute (a finite representation of) the set of the predecessors of the
markings in that cone, that have the form M +M∅ with M→∗ ∅. The proof
of the previous result factorises (thanks to Lemma 7) all the ways in which
such markings can be reached, yielding finitely many markings M′ such that
M′ →M+M∅. Therefore, every marking M′ +M′

∅ in the left handside cones
can reach in one step the cone in the right.

Proposition 3. For every i ≥ 0, min(Ii) is finite and computable.

Proof. We proceed by induction on i. Trivially, min(I0) = min(C({Mf})) =
{Mf}. Let us suppose that min(Ii) is finite and computable and let us see that
min(Ii+1) is also finite and computable.
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We need to compute min(Ii+1), which can be done as in [3] by computing

min
(

min(I0) ∪
⋃

M∈min(Ii)

min(pre(C({M})))
)

The induction hypothesis tell us that min(Ii) is finite, so that the union is a
finite one. Moreover, the previous result tells us that each min(pre(C({M}))) is
finite and computable, so that we can conclude.

Therefore, we can compute the sequence

min(I0), min(I1), min(I2), min(I3), · · ·

This sequence can be used to represent the previous chain of ideals because
for every ideal, C(min(I)) = I. Now let us see that the latter stabilizes, and
therefore, also the former.

Proposition 4. There is k such that for every j ≥ k, Ik = Ij.

Proof. Let us suppose that it does not stabilize, that is, I0 ⊂ I1 ⊂ I2 ⊂ I3 ⊂ · · ·
Then, for every i ≥ 1 there is Mi ∈ Ii \ Ii−1. By construction, since every Ii is
upward closed, for every i < j Mi ��∅ Mj . Since the multiset inclusion order
is a wqo, there is a subsequence (that we denote in the same way, for clarity of
notations) such that M1 ⊂M2 ⊂M3 ⊂ · · ·

Then, for every i > 1, Mi = Mi −Mi−1 is such that Mi �→∗ ∅ (otherwise,
we would have Mi−1 �∅ Mi). In that case, every marking reachable from Mi

has at least one component. Therefore, since Mn = M0 +M1 + . . .+Mn, every
marking reachable from Mn has at least n components, which for n greater
than |Mf | is a contradiction, because from every Mn the marking Mf should
be reachable.

Then, in order to decide reachability we must compute the previous sequence (its
finite representation) until it stabilizes in an ideal Ik, and see whetherM0 ∈ Ik=
C(min(Ik)), that is, if M�∅ M0 for some M ∈ min(Ik).

Corollary 2. The coverability notion induced by �∅ in l(N) is decidable.

Since reachability and coverability (induced by �∅) are equivalent, and Prop. 1
holds, we have the result we were looking for.

Proposition 5. Reachability for g-RN systems without synchronizations is de-
cidable.

As we have said, we have proved decidability of reachability by following the
technique proposed in [3], although our order is not a wqo. However, in a strict
sense, we are not extending the technique. Actually, we could work with an order
similar to �∅ that were a wqo. We can classify components in R in those that
perpetuate their offspring (that is, those M such that {M} ��→ ∅) and those
that do not (that is, those M such that {M} �→ ∅). Let us denote by P ⊆ R
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the set of those that cannot evolve to the empty marking. As we have seen
in the proof of Prop. 4, any marking containing n components in P can only
evolve to markings with at least n components. Thus, any marking with more
than n = |Mf | components in P cannot reach Mf . If we denote by Pn the set
of markings with more than n components in P , then we could have defined
�′

∅=�∅ ∪Pn × Pn. Intuitively, we are identifying all the markings in Pn. The
order �′

∅ is a wqo, and it induces the same coverability problem as �∅. However,
we have preferred to present our proofs without that technicality, thus keeping
them more intuitive.

We can obtain an analogous result for ν-APNs thanks to the equivalence be-
tween g-RN systems and ν-APNs proved in [19]. g-RN systems can simulate
ν-APNs, in the sense that for every ν-APN N there is a g-RN system F (N)
such that the transitions systems generated by N and F (N) are isomorphic, and
that isomorphism is monotonic, so that reachability and coverability are both
preserved. Moreover, F itself is an isomorphism. The simulation consists on con-
sidering a different component to represent each different name. When different
names can interact in the firing of a transition, in the simulation different com-
ponents synchronize. When all the variables adjacent to a transition t are the
same (that is, |Var(t)| = 1), then only one name is involved in its firing. If we
denote by ν=-APNs the subclass of ν-APNs such that every transition t satisfies
|Var(t)| = 1, or |Var(t)| = 2 with ν ∈ Var(t), it is straightforward to see that
ν=-APNs are the counterpart of g-RN systems without synchronizations.

Proposition 6. If N is a ν=-APN then F (N) is a g-RN system without syn-
chronizations.

Corollary 3. Reachability is decidable for the class of ν=-APNs.

For each g-RN system without synchronizations, we have defined a multiset
rewriting system l(N). This rewrite system is not a P/T net, though we are
rewriting multisets in a monotonic way. The reason is that the rewritings are
conditional ones, where the condition is reachability in an ordinary Petri net.
This reminds of Recursive Petri Nets (RPN) [12]. RPNs have two special types
of transitions: abstract and final transitions. The firing of abstract transitions is
not atomic. They remove tokens from their preconditions, but instead of adding
tokens to postconditions they create a new thread, starting on a marking as-
sociated to the transition. Tokens are added to postconditions when the child
thread finishes, which happens when it fires a final transition.

We could try to simulate l(N) by using an RPN, immediately obtaining the
decidability of reachability as a corollary of the analogous result for RPNs [12].
For each rule

M
M−→M ′

{M} �→ M+ {M ′}
we could consider creating a child thread starting in M . However, this “simula-
tion” would not be correct for two reasons. In the first place, we are interested in
reaching marking M ′, but the capability of firing a final transition (the ending
condition of a child thread in RPNs) is a coverability condition.
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The second reason is that, though we are writing a single rule for all such M ,
M ′ andM, although M and M ′ are taken from a finite set,M is taken from the
infinite setMS(R). We could use a different transition for every two components
M and M ′, but not for every M′. The technique of considering only minimal
such markings would not be valid in this case either. Therefore, the simulation
using RPNs (or a similar model) must use a single transition for every M such
that M

M−→M ′. The most intuitive way that we can think of to achieve it, is to
allow child threads to communicate some results to their parent thread. In this
way, if the child thread communicates how many times a transition has been
fired (that, of course, can be controlled by the number of tokens in some special
places) we would have a faithful simulation of the application of the rewrite rule.
However, we think that any general model (allowing synchronization) with these
features has undecidable reachability.

5 Decidability of Coverability for ν-RN Systems with
Restricted Communication

In the previous section we have restricted g-RN systems, for which reachability
is undecidable, in order to keep its decidability. Our goal now is to do the same
thing for ν-RN systems (Petri Nets extended simultaneously both with names
and replication). As we proved in [19], ν-RN systems are Turing complete and,
in particular, coverability is undecidable for them.

We could think that we also need to forbid synchronizations in order to keep
decidability of coverability for ν-RN systems. However, as we prove next, it is
enough to restrict communications. A communication happens whenever there is
a variable labelling an output arc of a transition, and an input arc of a different
compatible transition (see Fig. 6).

In a first approach, we will forbid all name communications between different
components. Therefore, components will still be able to synchronize between
them, as long as no name moves from one component to another.

The natural order in ν-RN systems, that induces coverability, is defined
by M1 = {M1, . . . , Mn} � M2 = {M ′

1, . . . , M
′
m} if there are two injections

h : {1, . . . , n} → {1, . . . , m} and ι : Id → Id such that for every i ∈ {1, . . . , n},
ι(Mi(p)) ⊆ M ′

h(i)(p) for all p. h has the role of mapping components of M1 to
components of M2, while ι maps names in M1 to names in M2.

Let us denote by the multiset order induced by �α. According to the def-
inition of multiset order, {M1, . . . , Mn} {M ′

1, . . . , M
′
m} if there is an injection

h : {1, . . . , n} → {1, . . . , m} such that Mi �α M ′
h(i). In this case, for each i

k ks?

s!l l

x x

y x → k ks?

s!l k

x x

y x

Fig. 6. A simple ν-RN system with communication
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Fig. 7. ν-RNs related by but not by �

there is an injection ιi such that ιi(Mi) ⊆ M ′
h(i). Notice that in the case of �,

the mapping ι that renames names must be the same for all the components,
and now we are allowing different mappings ιi. In other words, for � names are
global, but for , they are local to components.

The orders � and are different. Indeed, for the simple case in which the
net has a single places p, it is enough to consider M = {M1, M2} and M′ =
{M ′

1, M
′
2} with M1(p) = M2(p) = M ′

1(p) = {a} and M ′
2(p) = {b}. Clearly, they

satisfy M1 M2, but not M1 � M2 (see Fig. 7). However, we can prove the
following relation between them.

Proposition 7. Let M = {M1, . . . , Mn} and M′ = {M ′
1, . . . , M

′
m} be two

markings of a ν-RN system.

– If M�M′ then M M′.
– If S(Mi) ∩ S(Mj) = S(M ′

i) ∩ S(M ′
j) = ∅ ∀i �= j then M�M′ ⇔M M′.

Proof

– If M � M′ then there are two injections h : {1, . . . , n} → {1, . . . , m}
and ι : Id → Id such that ι(Mi(p)) � M ′

h(i)(p) for every p and for all
i ∈ {1, . . . , n}. In particular, by definition of �α we have that for each i,
Mi �α M ′

h(i). By definition of multiset order we can conclude that M M′.
– Thanks to the previous item, it is enough to prove that if M M′ then
M�M′. By definition of there is an injection h : {1, . . . , n} → {1, . . . , m}
such that for all i, Mi �α M ′

h(i). By definition of �α, for each i there is
an injection ιi : S(Mi) → S(Mh(i)) such that ιi(Mi(p)) ⊆ M ′

h(i)(p) for
all p. Since we are assuming that all the components in M have disjoint
namespaces (so that the domains of the ιis are disjoint), we can safely define
ι : Id → Id by ι(a) = ιi(a) whenever a ∈ S(Mi), which is an injection (in
its domain) because each ιi is injective and the components in M′ also have
disjoint namespaces. Then we have that ι(Mi(p)) = ιi(Mi(p)) ⊆ M ′

h(i)(p)
for all p, and we can conclude that M�M′.

We saw that the converse of the previous result cannot be true. Since � considers
names to be global, while considers them to be local, we can informally state
the previous result as follows: If each component has its own namespace, then
global and local names are the same thing. Components that cannot communi-
cate have its own namespace, if this is true in the initial marking. We call ν-lRN
systems to this class of ν-RN systems, though we omit their formal definition
due to lack of space, as well as the details of the following result.
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Proposition 8. Coverability is decidable for ν-lRN systems.

Proof (sketch). Once again, we use the wqo technique, that is, that ν-RN systems
without communications are well structured systems. In the first place, we have
to see that� is a wqo. Since is a wqo (it is the multiset order induced by a wqo),
thanks to the previous result it is enough to prove that all reachable markings
have disjoint namespaces. Since components do not communicate names, if they
initially have disjoint namespaces then they will always have disjoint namespaces.
Therefore, for every reachable marking the orders � and are the same, and
therefore, � (which induces coverability) is a wqo.

The proofs of monotonicity and computable predecessors are similar to the
analogous ones for ν-APNs, which can be seen in [18].

Notice that, unlike in the previous section, where we forbid all synchroniza-
tions between components, now we are only forbidding communications between
them. This means that several components can synchronize, as long as they are
anonymous synchronizations (that is, a component can synchronize with any
component that is willing to do so, and the result of that synchronization is the
same whichever that component was).

We could also allow a finite amount of names in a common namespace without
affecting the decidability result. Let Idc be the finite set of names allowed in the
common namespace. If all the names appearing in more than one component in
the initial marking is taken from Idc, and communications are forced to happen
with names in Idc, then the previous decidability result can be easily extended
to cope with this finite amount of names. If we denote by ν-RN(Id c) this class of
ν-RN systems, we have the following result, only sketched due to lack of space.

Proposition 9. Coverability is decidable for ν-RN(Idc) systems for Idc finite.

Proof (sketch). Given a ν-RN(Idc) system N , it is straightforward to build the
ν-lRN system N∗ that behaves as N . N∗ should have a storage of the names in
Idc and replace communications with synchronizations. In that case, the names
of Idc in each component can be safely renamed so that they satisfy the restric-
tions of ν-lRN systems. Then, we can conclude thanks to the previous result.

6 Conclusions and Future Work

We have restricted the models of g-RN systems and ν-RN systems presented
in [19] to obtain decidability results that do not hold in the unrestricted models.
More precisely, reachability, which is undecidable for g-RN systems, has been
proved to be decidable in the subclass of g-RN systems in which we do not allow
synchronizations between the different components that compose a system.

This decidability result is interesting in itself. Moreover, the proof has been
carried out by reducing the problem to reachability in a multiset rewriting sys-
tem with conditional rules, in which the conditions are reachability problems in
ordinary P/T nets. As we mentioned at the end of Sect. 4, the rewritings systems
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Fig. 8. Ciphering and deciphering

l(N) that we have used are quite similar to the model of Recursive Petri Nets
(RPN), thus bringing close two apparently quite different models. However, it
seems that RPNs are not enough to capture the behavior of l(N). We have used
these rewrite systems only as a technicality for our purposes, but perhaps it
would be interesting to study which is the minimal extension (or modification)
of RPNs that suffices to capture the behavior of l(N), and so that reachability is
still decidable. As we said, the main difference is that child threads should have
some result places, associated to other places in the father thread, so that when
the former finished, the latter could receive the results obtained by its child. In
our setting, the result places would be places added in an ad hoc way, that count
how many times each of the replicating transitions have been fired.

Many of the models described in this paper and in [19] are well structured, for
which coverability is decidable. Since in most of them reachability is undecidable,
we need a finer way to compare the expressive power of these models. In [4] a
comparison between well-structured systems is done. The comparison criterion
is weak trace equivalence, with coverability as accepting condition for traces. We
plan to place ν-APNs and the related models that appear in this paper inside
the hierarchy obtained in [4]. For instance, it seems very intuitive that Lossy
Channel Systems [2] are incomparable to ν-APNs, because ν-APNs cannot have
a FIFO-like behavior.

The comparison is achieved by seeing those systems as subclasses of
MSR(C) [8], which is a model based on multiset rewriting. Therefore, it would
also be interesting to see how the rewrite systems l(N) fit inside the hierarchy.

As we have said, in [19] we proved Turing completeness of ν-RN systems,
together with a way to map name creation to replication and viceversa. We plan
to study how this mapping can be achieved when we are dealing with tuples of
pure names as tuples.

It would be interesting to see if we can use pairs in a restricted way without
reaching Turing-completeness. Moreover, pairs can be used to represent cryp-
tographic primitives. For instance, we can write (a, k) as {a}k to represent the
message a ciphered under key k. Then, transitions like the ones in Figure 8
simulate the ciphering and deciphering of {a}k. Following the previous ideas, it
seems that when each key can only be used to cipher finitely many messages,
then the ν-RN system counterpart is actually a ν-RN(Id c), so that coverability
would remain decidable.
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Abstract. Step transition systems form a powerful model to describe the
concurrent behaviors of distributed or parallel systems. They offer also a gen-
eral framework for the study of marking graphs of Petri nets [22]. In this paper
we investigate a natural labeled partial order semantics for step transition sys-
tems. As opposed to [19] we allow for autoconcurrency by considering steps
that are multisets of actions. First we prove that the languages of step transi-
tion systems are precisely the width-bounded languages that are step-closed and
quasi-consistent. Extending results from [19] we focus next on finite step transi-
tion systems and characterize their languages in the line of Buchi’s theorem. Our
main result present six equivalent conditions in terms of regularity and MSO-
definability for a set of labeled partial orders to be recognized by some finite step
transition system.

1 Introduction

Partially ordered multisets, also called pomsets, labeled partial orders or partial words,
constitute one of the most basic models of concurrency [23]. Process algebras like CCS
and TCSP, and system models such as Petri nets have been given pomset semantics for
many years, and several pomset algebras have been designed. Nevertheless the study
of pomset languages from the point of view of recognizability, regularity or logical
definability still offers many interesting problems to investigate.

One of the most important and usefull results in language theory is a theorem due
to Büchi [3] which states the equivalence between the definability of a set of words
by a formula of MSO logic and its algebraic recognizability by a monoid morphism,
or equivalently its recognizability by a finite word automaton. This result has been
widely used in model checking: Most temporal logics, in particular LTL, are subsumed
by MSO logic, and effective translations from LTL formulae to automata have been
designed. The equivalence between MSO logic and algebraic recognizability has also
been proved for trees [7,24]. As a consequence, similarly to words, definable sets of
trees are characterized by tree automata which provides an effective decision procedure.

A key difficulty one encounters in the case of pomsets as opposed to words is the
lack of a finite set of operators generating all of them [12]. However various restricted
frameworks have been defined and investigated with an algebraic approach, and in many
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cases, Kleene-like and Büchi-like results have been established. In particular the equiv-
alence between MSO definability and algebraic recognizability has been proved for
subsets of Mazurkiewicz traces [5,25], finitely generated subsets of message sequence
charts [21], the algebra of series-parallel pomsets [20,18], the concurrency monoids of
stably concurrent automata [8], etc.

For larger classes of pomsets, as an alternative approach of recognizability, different
accepting finite devices for pomset languages have been investigated such as, e.g., graph
acceptors applied to pomsets [25], asynchronous automata applied to restricted classes
of pomsets without autoconcurrency [9], and message-passing automata [2]. In these
works the recognizable languages have no characterization in an algebraic framework.

In this paper we investigate a partial order semantics for step transition systems with
autoconcurrency. The latter are simply automata where transitions carry multisets of
actions. As shown by [22] this model is a nice framework for the study the marking
graphs of Place/Transition Petri nets. We introduce first a new and somewhat abstract
way to define the pomsets accepted by some step transition system. We show however
that this new approach coincides with the notion of firing pomset from [26,19]. This
connection leads us to a characterization of the pomset languages that are recognized
by step transition systems which is much simpler than the one obtained in [19] when no
autoconcurrency occurs: More precisely we prove that a pomset language is recognized
by some deterministic step transition system if and only if it is step-closed and quasi-
consistent (Theorem 15).

Next we focus on finite deterministic step transition systems. In Section 2 we estab-
lish first a connection with the notion of regularity from [11]: A step-closed and quasi-
consistent pomset language is regular if and only if it is recognized by some finite step
transition system (Theorem 22). Then we introduce in Section 3 the notion of MSO de-
finable sets and present various equivalences in the line of Buchi’s theorem. Our main
result gives several characterizations of the step-closed and quasi-consistent languages
that can be recognized by some finite deterministic step transition system (Theorem 48).
In particular we extend to the setting of autoconcurrency the main result from [19]: A
pomset language that is step-closed and quasi-consistent is recognized by some finite
deterministic step transition system if and only if its basis is definable in MSO logic and
also prime-bounded, a notion borrowed from [17]. This relies essentially on two tech-
nical ingredients: We show how to generalize to the setting of autoconcurrency the fact
that pomset languages of finite deterministic step transition systems are prime-bounded;
we explain also how to apply the technique of chain partitions from [4] in order to build
an MSO sentence from a regular, quasi-consistent and step-closed pomset language.

Preliminaries. Throughout the paper we fix some finite alphabet Σ. A labeled partial
order (lpo) over Σ is a triple t = (E, �, ξ) where (E, �) is a finite partial order and ξ
is a mapping from E to Σ. This structure can be seen as an abstraction of an execution
of a concurrent system [5,23]. In this view, the elements e of E are events and their
label ξ(e) describes the action that is performed in the system by the event e ∈ E. Fur-
thermore, the order � describes the dependence between events. In particular, if two
events are concurrent, they can be executed in any order or even in parallel. A pom-
set is the isomorphic class of an lpo. We denote by P(Σ) the class of all pomsets over
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Σ. A pomset t = (E, �, ξ) is without autoconcurrency if no action can be performed
concurrently with itself, that is: ξ(x) = ξ(y) implies x � y or y � x for all x, y ∈ E.

An order extension of a pomset t = (E, �, ξ) is a pomset t′ = (E, �′, ξ) such that
�⊆�′. We denote by OE(t) the set of order extensions of t and we put OE(L) =⋃

t∈L OE(t) for any pomset language L ⊆ P(Σ). Clearly L ⊆ OE(L). We say that
a pomset language is weak if it is closed for order extensions, that is, if L = OE(L).
A linear extension of t is an order extension that is linearly ordered. It corresponds to
a sequential view of the concurrent execution t. Linear extensions of a pomset t over
Σ can naturally be regarded as words over Σ. By LE(t) ⊆ Σ�, we denote the set of
linear extensions of a pomset t over Σ. For any subset of pomsets L ⊆ P(Σ), we put
LE(L) =

⋃
t∈L LE(t).

Let t = (E, �, ξ) be a pomset and x, y ∈ E. The elements x and y are concurrent
or incomparable (denoted x co y) if ¬(x � y) ∧ ¬(y � x). Now y covers x (denoted
x ·≺ y) if x ≺ y and x ≺ z � y implies z = y. An ideal of a pomset t = (E, �, ξ)
is a subset H ⊆ E such that x ∈ H ∧ y � x ⇒ y ∈ H . The restriction t′ = (H, �
∩(H ×H), ξ ∩ (H ×Σ)) is then called a prefix of t and we write t′ � t. For all z ∈ E,
we denote by ↓z the ideal of events below z, i.e. ↓z = {y ∈ E | y � z}.

For any pomset languageL ⊆ P(Σ), Pref(L) denotes the set of prefixes of pomsets
from L. Clearly L ⊆ Pref(L). The language L is called prefix-closed if L = Pref(L).
Let t1 = (E1, �1, ξ1) be a pomset over Σ. The residual L \ t1 consists of all pomsets
t2 = (E2, �2, ξ2) such that there exists some pomset t = (E, �, ξ) in L satisfying the
following conditions:

1. E = E1 ∪ E2, E1 ∩E2 = ∅, and E1 is an ideal of t,
2. t1 is the restriction of t to events in E1, and
3. t2 is the restriction of t to events in E2.

The most basic operation on pomsets is certainly the strong concatenation. Given two
pomsets t1 = (E1, �1, ξ1) and t2 = (E2, �2, ξ2) over Σ, we denote by t1 · t2 the
pomset that puts each event of t2 after all events of t1, i.e. t1 · t2 = (E1 �E2, �1 ∪ �2
∪(E1 × E2), ξ1 ∪ ξ2). A step sequence is a pomset where the concurrency relation
between events is transitive: Any event belongs to a single maximal set of pairwise
concurrent events (a step). The set of all step sequences over Σ is denoted S(Σ). Thus
S(Σ) = {(E, �, ξ) ∈ P(Σ) | ∀e, e′, e′′ ∈ E : e co e′ ∧ e′ co e′′ ∧ e �= e′′ ⇒ e co e′′}.
Clearly the set of all step sequences is closed for strong concatenation. Pomsets with
empty ordering (besides equality), i.e. pomsets (E, IdE , ξ), are particular step pomsets.
Note that S(Σ) is the submonoid of P(Σ) generated by strong concatenation of pomsets
with empty ordering. A subset of step sequences K ⊆ S(Σ) is called a step language.
Now a multiset over Σ is a mapping m : Σ → N. Given two multisets m1 and m2 we
write m1 � m2 if m1(a) � m2(a) for all a ∈ Σ. In that case m2 \ m1 denote the
multiset such that m2 \m1(a) = m2(a)−m1(a) for each a. We denote by M(Σ) the
set of all multisets over Σ. Clearly any step sequence can be identified with a sequence
of non-empty multisets. Conversely any sequence of multisets u ∈ M(Σ)� can be
regarded as a step sequence. We shall use these correspondances implicitly at some
places in the sequel of this paper.
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Let t be a pomset over Σ. We denote by SE(t) the set of step extensions SE(t) =
OE(t) ∩ S(Σ). For any pomset language L ⊆ P(Σ) we put SE(L) =

⋃
t∈L SE(t).

Noteworthy we have SE(SE(L)) = SE(L).

2 Pomset Languages of Step Transition Systems

In this section we investigate a pomset semantics for step transition systems which turns
out to correspond to the notion of firing pomsets or enabled partial words [26,19].

2.1 Step Transition Systems and Their Languages

Step transition systems were used by Mukund [22] in order to extend the synthesis prob-
lem of elementary Petri nets [10] to the more general setting of Place/Transition nets.
These automata accept not only words, that is: sequences of actions, but also sequences
of multisets, such as step firing sequences of a Place/Transition Petri net. We slightly
extend this model by providing step transition systems with some accepting states.

Definition 1. A step transition system (for short, an STS) over the alphabet Σ is a
structure A = (Q, ı, Σ,−→, F ) where Q is a set of states, ı ∈ Q is an initial state,
F ⊆ Q is the subset of final states and −→⊆ Q × M(Σ) × Q is a set of labeled
transitions such that

STS1: ∀q1, q2 ∈ Q: q1
∅−→ q2 ⇔ q1 = q2;

STS2: ∀q1, q2 ∈ Q, ∀p′ � p ∈M(Σ): q1
p−→ q2 ⇒ ∃q3 ∈ Q, q1

p′

−→ q3
p\p′

−→ q2.

The step transition system A is finite if Q is finite and moreover the size of all steps in
transitions from A is bounded, i.e. there is a finite number of transitions.

As usual, for any step sequences u = a1...an ∈ M(Σ)�, we write q
u−→ q′ if there

are states q0,..., qn such that q0 = q, qn = q′ and for each i ∈ [1, n], qi−1
ai−→ qi. The

step language of A SL(A) ⊆ M(Σ)� collects all step sequences u such that ı
u−→ qf

for some qf ∈ F . Observe that for any transition q
u−→ q′ and any step sequence

v ∈ SE(u), we have q
v−→ q′. This shows that SE(SL(A)) = SL(A).

Definition 2. The pomset language L(A) of a step transition system A consists of all
pomsets t ∈ P(Σ) such that SE(t) ⊆ SL(A).

Thus a pomset t is accepted by some step transition system A if all step extensions of t
are step sequences of A. We will show in Theorem 14 that this definition coincides with
the approach adopted in [19], when we focus on deterministic step transition systems
without autoconcurrency.

Example 3. Consider the Petri net from Fig. 1. Its marking graph is the step transition
system depicted in Fig. 2 and two of its pomsets are drawn in Fig. 3.



Pomset Languages of Finite Step Transition Systems 87

a b

c

Fig. 1. A Petri net...

a

b
b

c

a

c

c

b

a

Fig. 2. ... its marking graph...

a b

c

a b

c

Pomset t1 Pomset t2

Fig. 3. ... and two of its firing pomsets

Let L ⊆ P(Σ). The step closure 〈L〉SE ⊆ P(Σ) of L collects all pomsets whose
step extensions are step extensions from L: 〈L〉SE = {t ∈ P(Σ) | SE(t) ⊆ SE(L)}.
It is clear that 〈L〉SE = 〈SE(L)〉SE because SE(SE(L)) = SE(L). Moreover L ⊆
〈L〉SE . We borrow now from [11] the notion of step-closed languages (which were
called compatible in [11, Def. 1.5]).

Definition 4. A pomset language L ⊆ P(Σ) is step-closed if L = 〈L〉SE .

It is easy to check that any step-closed pomset language L is weak, i.e. L = OE(L).
Note also that for any step transition system A, we have L(A) = 〈SL(A)〉SE and
SE(L(A)) = SL(A). The next result shows that step-closed pomset languages are
precisely the languages of step transition systems.

Proposition 5. Let L ⊆ P(Σ) be a pomset language. Then L is the pomset language
of some step transition system if and only if L is step-closed.

Proof. If L is the language of an STS A then L = 〈SL(A)〉SE because SE(SL(A)) =
SL(A). It follows that SE(L) = SL(A) hence L = 〈SE(L)〉SE = 〈L〉SE . Assume
now that L is step-closed. We have L = 〈L〉SE = 〈SE(L)〉SE . We can build an STS
such that SL(A) = SE(L). Then L(A) = 〈SL(A)〉SE = 〈SE(L)〉SE = L.

2.2 Pomset Languages of Deterministic Step Transition Systems

In this paper we are mainly interested in properties of pomset languages described by
deterministic step transition systems. The latter include the marking graph of unlabeled
Petri nets.

Definition 6. A step transition system A is deterministic if for all states q1, q2, q3 ∈ Q
and for all steps m ∈M(Σ) we have: q1

m−→ q2 ∧ q1
m−→ q3 implies q2 = q3.

If A is deterministic then for all states q, q′, q′′ ∈ Q and all step sequences u, v ∈
M(Σ)� such that q

u−→ q′ and q
v−→ q′′ we have LE(u) ∩ LE(v) �= ∅ ⇒ q′ = q′′.

In order to characterize the pomset languages of deterministic step transition sys-
tems, we need to introduce the following new condition.

Definition 7. A pomset language L ⊆ P(Σ) is quasi-consistent if for any two prefixes
t, t′ ∈ Pref(L) we have LE(t) ∩ LE(t′) �= ∅ implies L \ t = L \ t′.
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In other words a pomset language is quasi-consistent if all prefixes that share a common
linear extension have a common residual. This condition resembles the definition of a
consistent pomset language [1] which requires that LE(t) ∩ LE(t′) �= ∅ implies t = t′

for any two prefixes ofL. However the pomset language of the Petri net from Example 3
is quasi-consistent but not consistent.

The next useful lemma characterizes the subsets of step sequences that are the step
languages of deterministic step transition systems.

Lemma 8. Let L ⊆ S(Σ) be a step language. Then L is the step language of some
deterministic step transition system if and only if L is quasi-consistent and SE(L) ⊆ L.

Proof. Let L be the step language of a deterministic step transition system A. We have
already noticed that SE(L) = L. Let u, v ∈ Pref(L) and q, q′ be the two states such
that ı

u−→ q and ı
u−→ q′. If LE(u)∩LE(v) �= ∅ then q = q′ because A is deterministic.

Therefore L \ u = L \ v. Thus L is quasi-consistent.
Assume now that the step language L ⊆ S(Σ) is quasi-consistent and SE(L) ⊆ L.

Then SE(L) = L. We consider the equivalence relation  over L such that u  v iff
L \ u = L \ v. For any pair u, v ∈ M(Σ)� and any step m ∈ M(Σ), if u  v then
u ·m  v · m. We denote by [u] the equivalence class of u w.r.t.  . We consider the
structure A that consists of the quotient M(Σ)�/ as set of states, the triples [u] m−→
[u ·m] as transition relation, the equivalence class of the empty pomset [ε] as initial state
and the set of equivalence classes L/ as set of final states. Then A is a deterministic
step transition system: If m = m1 ⊕ m2 then we have LE(m) ∩ LE(m1 · m2) �= ∅.
Since L is quasi-consistent, u ·m  u ·m1 ·m2. Finally it is clear that SL(A) = L.

Remark 9. A step language L ⊆ S(Σ) satisfies the requirement SE(L) ⊆ L iff for
any step sequences w, w′ ∈ S(Σ) and for any multisets m1, m2 ∈ M(Σ), we have:
w · (m1 ⊕m2) · w′ ∈ L implies w ·m1 ·m2 · w′ ∈ L.

The same criterium of quasi-consistency will be used to characterize the pomset lan-
guages of deterministic step transition systems in Theorem 15 —together with the ba-
sic requirement that it is step-closed (Prop. 5). Half of this result follows actually from
Lemma 8 as expressed by the next statement.

Corollary 10. If a pomset language L is step-closed and quasi-consistent then it is the
pomset language of some deterministic step transition system.

Proof. Let K = SE(L). We have SE(K) = K and moreover L = 〈K〉SE because
L is step-closed. By Lemma 8, it is sufficient to show that K is quasi-consistent. Let
u, v ∈ Pref(K) such that LE(u) ∩ LE(v) �= ∅. Since L is step-closed, it is weak and
thus K ⊆ L. Thus u, v ∈ Pref(L) and L \ u = L \ v because L is quasi-consistent.
Let w ∈ P(Σ). If w ∈ K \ u then w ∈ L \ u hence v · w ∈ L because L is weak. It
follows that v ·w ∈ K because K = L∩S(Σ). Thus K \u ⊆ K \ v. By symmetry we
get K \ u = K \ v. Thus K is quasi-consistent.

2.3 Comparisons to Similar Approaches from the Literature

At this point it is necessary to compare Definition 2 to other pomset semantics from
the literature, in particular [19] and [26]. To this aim we use the notion of T-pomsets.
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A T-pomset u · m ∈ Σ� · M(Σ) a simply a sequence of actions u ∈ Σ� followed
by a step m ∈ M(Σ). We denote by T(Σ) the class of all T-pomsets over Σ. A T-
pomset languageL ⊆ T(Σ) is a set of T-pomsets. The set of T-extensions of a pomset t
collects the order extensions of t that are T-pomsets: TE(t) = OE(t)∩T(Σ). Moreover
for any pomset language L we put TE(L) =

⋃
t∈L TE(t). Thus we have TE(L) =

OE(L) ∩ T(Σ).
Let A be a fixed deterministic step transition system. We consider now the collection

of T-pomsets T (A) = Pref(SL(A)) ∩ T(Σ). Thus a T-pomset u ·m belongs to T (A)
if there are three states q, q′, q′′ ∈ Q with q′′ ∈ F such that ı

u−→ q
m−→ q′ v−→ q′′ for

some word v ∈ Σ�. It is easy to check that if u·m ∈ T (A), v ∈ Σ� and v1, v2 ∈ LE(m)
then we have

Cpl1: m′ � m implies u ·m′ ∈ T (A)
Cpl2: m′ � m ∧ v ∈ LE(m′) implies u · v · (m \m′) ∈ T (A)
Cpl3: u · v1 · v ·m′ ∈ T (A) implies u · v2 · v ·m′ ∈ T (A)

because A is deterministic. This shows that T (A) corresponds to the notion of a com-
plete local independance relation [19, Def. 1.2]. Now we can borrow the notion of
process from [19, Def. 2.3] as follows.

Definition 11. A process of the deterministic step transition system A is a pomset t =
(E, �, ξ) such that for all prefixes t′ = (E′, �′, ξ′) of t, and for all linear extensions
u ∈ LE(t′), we have (u, ξ(min�(E \ E′))) ∈ T (A).

A process of L is final if each of its linear extensions belongs to SL(A). We denote by
p(A) the class of all processes of A and by pf (A) the class of all final processes of A.

Let t = (E, �, ξ) be a process and let t′ be a prefix of t. Since t is meant to describe a
concurrent execution of A, t′ corresponds to a partial execution and to complete it, the
system has to perform E \ E′. As the minimal events of this remainder are mutually
incomparable, the pomset does not restrict the order in which they shall be performed.
Therefore, the system should be able to execute them in parallel, which means that
the step ξ(min(E \ E′)) should be independent after performing t′ or any of its linear
extensions. This is precisely the requirement in the above definition. Note that the set
p(A) is in particular closed under prefixes and order extensions. A process is final if all
its linear extensions lead from the initial state to some final state.

Equivalently we can characterize the class of final processes as follows: pf(A) col-
lects all pomsets t ∈ P(Σ) such that TE(Pref(t)) ⊆ T (A) and LE(t) ⊆ SL(A). We
want to show now that pf (A) coincides with L(A) as stated in Theorem 14. Observe
first that SE(Pref(L(A))) = Pref(SE(L(A))) = Pref(SL(A)).

Proposition 12. Pref(L(A)) is step-closed.

Proof. Let t ∈ P(Σ) be such that SE(t) ⊆ SE(Pref(L(A))). We have to show that
t ∈ Pref(L(A)). Since SE(t) ⊆ Pref(SL(A)), there exists a state q such that for any
step sequence u ∈ SE(t), we have ı

u−→ q because A is deterministic. Moreover there is
some final state qf ∈ F and some w ∈ Σ� such that q

w−→ qf . Then SE(t)·w ⊆ SL(A).
Since SE(t · w) = SE(t) · w, we get t · w ∈ L(A) and t ∈ Pref(L(A)).



90 J. Fanchon and R. Morin

Proposition 13. For all t ∈ P(Σ), t ∈ Pref(L(A)) iff TE(Pref(t)) ⊆ T (A).

Proof. Let K = SL(A). Assume first that t ∈ Pref(L(A)). We have SE(t) ⊆
SE(Pref(L(A))) = Pref(K). Now TE(Pref(t)) ⊆ SE(Pref(t)) = Pref(SE(t)) ⊆
Pref(K). It follows that TE(Pref(t)) ⊆ Pref(K) ∩ T(Σ) = T (A).

Conversely we show that all pomsets t such that TE(Pref(t)) ⊆ T (A) belong
to Pref(L(A)). We proceed by induction over the size of t. The claim is trivial if t
is empty. Induction step: Let t be such that TE(Pref(t)) ⊆ T (A). Recall now that
SE(Pref(L(A))) = Pref(K). By Proposition 12 above, Pref(L(A)) is step-closed. So
we just have to show that each step sequence u ∈ SE(t) belongs to Pref(K). Assume
u = u′.m with u′ ∈ S(Σ) and m ∈M(Σ). Let t′ be a prefix of t such that u′ ∈ SE(t′).
Then TE(Pref(t′)) ⊆ TE(Pref(t)) ⊆ T (A). By induction hypothesis we know that
t′ ∈ Pref(L(A)). Since u′ ∈ SE(t′) we get u′ ∈ SE(Pref(L(A))), i.e. u′ ∈ Pref(K).
For any s ∈ LE(u′), s · m ∈ TE(t) hence s · m ∈ T (A). By definition we have
T (A) ⊆ Pref(K) hence s · m ∈ Pref(K). By Lemma 8 we know that K is quasi-
consistent. Since s ∈ LE(u′), this implies that K \ s = K \ u′. Now s ·m ∈ Pref(K)
hence u′ ·m ∈ Pref(K), i.e. u ∈ Pref(K).

We can now prove that the pomset semantics adopted in Def. 2 coincides with the notion
of final processes from Def. 11.

Theorem 14. For any deterministic step transition system A, L(A) = pf(A).

Proof. For any t ∈ L(A), we have
TE(Pref(t)) ⊆ SE(Pref(t)) ⊆ Pref(SE(t)) ⊆ Pref(SL(A))

hence TE(Pref(t)) ⊆ Pref(SL(A))∩T(Σ) = T (A). Moreover SE(t) ⊆ SL(A) hence
LE(t) ⊆ SL(A). Thus t ∈ pf(A).

Conversely assume now that t ∈ pf(A). Then TE(Pref(t)) ⊆ T (A), i.e. t ∈
Pref(L(A)) by Prop. 13 and moreover LE(t) ⊆ SL(A). This implies that for all
s ∈ LE(t) there exists some qs ∈ F such that ı

s−→ qs. Consider now some u ∈
SE(t). Since t ∈ Pref(L(A)), we have u ∈ SE(Pref(L(A))) = Pref(SE(L(A))) =
Pref(SL(A)) so there exists some state qu such that ı

u−→ qu. Let s ∈ LE(u). Then
on one hand s ∈ LE(t) and on the other hand ı

s−→ qu. It follows that qu ∈ F and
u ∈ SL(A). Thus SE(t) ⊆ SL(A), i.e. t ∈ L(A).

However for non-deterministic step transition systems, this identity fails in general.

2.4 Expressive Power of Deterministic Step Transition Systems

To conclude this section we present a characterization of the pomset languages of de-
terministic STSs that is actually the converse property of Cor. 10. The formulation of
this result is much simpler than the axiomatization established in [19, Def. 2.10 and Th.
2.16]. This simplification is a key step for the sequel of this paper.

Theorem 15. A pomset language is recognized by some deterministic step transition
system if and only if it is step-closed and quasi-consistent.

In the rest of this section we fix some deterministic STS A. Since the pomset language
of A is step-closed (Prop. 5) the proof of Theorem 15 follows from Proposition 18.
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We mimic [19] and introduce now the trace relation ∼ over Σ� as the least equiva-
lence relation such that

– ∀u, u′ ∈ Σ�, ∀a ∈ Σ: u ∼ v ⇒ u.a ∼ v.a
– ∀u ·m ∈ T (A), ∀m′ � m, ∀v, v′ ∈ LE(m′): u.v ∼ u.v′

Since A is deterministic, it is easy to check that

– For any words u, v ∈ Σ�, ı
u−→ q ∧ u ∼ v implies ı

v−→ q.
– For all u, v ∈ Σ� and all m ∈M(Σ): u ·m ∈ T (A)∧u ∼ v implies v ·m ∈ T (A)

The next two results were established in [19] for deterministic step transition systems
without autoconcurrency. But their proofs can be easily extended to the context of au-
toconcurrency. Due to Theorem 14 they can be rephrased as follows.

Lemma 16. [19, Lemma 2.5] Let t ∈ Pref(L(A)). For all words u, v ∈ LE(t) we have
u ∼ v.

Lemma 17. [19, Lemma 2.6] Let t = (E, �, ξ) be a pomset from P(Σ). Then t ∈
Pref(L(A)) if and only if for any prefix t′ = (E′, �′, ξ′) of t, there exists at least one
linear extension u ∈ LE(t′) such that u.ξ(min�(E \ E′)) ∈ T (A).

This lemma will be useful in the next section in order to characterize in a logical way
which pomset languages correspond to some deterministic STS. For now we derive
from Lemma 16 the announced result which concludes the proof of Theorem 15.

Proposition 18. L(A) is quasi-consistent.

Proof. Let t, t′ be two pomsets from Pref(L(A)) such that LE(t) ∩ LE(t′) �= ∅. We
have to show that L(A) \ t = L(A) \ t′. Let r ∈ L(A) \ t. Then SE(t) · SE(r) ⊆
SE(L(A)). By Lemma 16, all linear extensions of t (resp. t′) are ∼-equivalent. Since
LE(t)∩LE(t′) �= ∅, we get that all linear extensions of t and t′ are∼-equivalent. Since
A is deterministic, there is a state q such that for any word s ∈ LE(t) ∪ LE(t′), we
have ı

s−→ q. Then ı
u−→ q for any step sequence u ∈ SE(t) ∪ SE(t′). Since SE(t) ·

SE(r) ⊆ SE(L(A)) and SE(L(A)) = SL(A) we get SE(t′) · SE(r) ⊆ SE(L(A)), i.e.
SE(t′ ·r) ⊆ SE(L(A)). Since L(A) is step-closed, this implies that t′ ·r ∈ L(A) hence
r ∈ L(A) \ t′. Thus we have L(A) \ t ⊆ L(A) \ t′. The result follows by symmetry.

3 Regular Pomset Languages

In language theory, a set of words L ⊆ Σ� is called regular if it has finitely many
residuals. For a given word u, the residual at u consists of all words v such that u.v ∈ L.
In particular, if u is not a prefix of some word from L then the residual at u is empty. By
analogy with these classical definitions, we introduced in [11] the notion of a regular
pomset language which extends the classical notion of regularity for word languages.

Definition 19. Let L be a set of pomsets. Given two pomsets t and t′, we put t ≡r t′ if
L \ t = L \ t′. Then L is regular if the equivalence relation ≡r is of finite index.
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We observed in [11] that this notion of regularity coincides with the usual notion of
regularity for Mazurkiewicz traces [5], message sequence charts [14], consistent sets of
pomsets [1], and more generally to local trace languages [19].

In this section we relate first this notion of regularity with the class of finite step
transition systems (Theorems 21 and 22). Next we extend to the setting of autoconcur-
rency the main technical result from [19]: The basis of the pomset language of a finite
deterministic step transition system is prime-bounded (Theorem 36).

3.1 Pomset Languages of Finite Step Transition Systems

Recall that a finite STS is width-bounded, i.e. it has bounded steps: There is some
natural number k ∈ N such that the size of any multiset m is at most k if m occurs
in a transition from A. We denote by Pw<k(Σ) the class of pomsets whose width is
bounded by k, that is, whose steps are bounded by k. We start by the useful next result.

Proposition 20. [11, Th. 3.5] Let L be a width-bounded and step-closed pomset lan-
guage. Then L is regular if and only if SE(L) is regular.

As a consequence the pomset language of any finite step transition system A is regular
because SE(L(A)) = SL(A) and moreover SL(A) is obviously regular. It is also width-
bounded. Actually regularity coincides with finite step transition systems as shown by
the next result.

Theorem 21. Let L be a step-closed pomset language. Then L is the language of some
finite step transition system if and only if L is regular and width-bounded.

Proof. If L is regular then SE(L) is regular (Prop. 20). Similarly to Prop 5, we can
build a finite STS A such that SL(A) = SE(L). Then L(A) = 〈SE(L)〉 = L.

We focus now on pomset languages of deterministic step transition systems. By The-
orem 15 these languages are step-closed and quasi-consistent. It is clear also that they
are width-bounded because the step language of A is width-bounded. Moreover The-
orem 21 asserts that they are regular. The next result characterizes the languages of
deterministic finite step transition systems by establishing the converse property.

Theorem 22. Let L be a step-closed pomset language. Then L is the language of some
finite deterministic step transition system if and only if L is regular, width-bounded and
quasi-consistent.

Proof. Assume that L is step-closed, quasi-consistent, width-bounded and regular.
SinceL is step-closed and width-bounded, the step languageSE(L) is regular (Prop. 20).
Moreover SE(L) is quasi-consistent because L is quasi-consistent. Furthermore we
know that SE(SE(L)) = SE(L). Therefore we can apply the construction of Lemma 8
and get a deterministic STS whose step language is SE(L). Moreover the set of states
is the quotient SE(L)/ which is finite because SE(L) is regular.

3.2 Basis of a Pomset Language

As far as the description of concurrency is concerned, some redundancy of information
may appear in weak languages. In order to focus on restricted but representative parts
of weak languages, we look at basic sets of pomsets.
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Definition 23. A language of pomsets L is basic if t1 ∈ OE(t2) implies t1 = t2, for all
t1, t2 ∈ L.

We can check easily that two basic sets that have the same order extensions are equal:
OE(L) = OE(L′) implies L = L′ for all basic sets of pomsets L and L′. Therefore the
map OE from basic sets of pomsets to weak sets of pomsets is one-to-one. Actually, we
shall see that this map is also onto.

Definition 24. Let L be a language of pomsets. The basis of L consists of all pomsets
t ∈ L which are no order extension of some other pomsets of L:

B(L) = {t ∈ L | ∀t′ ∈ L : t ∈ OE(t′)⇒ t = t′}.

For any weak language L, B(L) is a basic set of pomsets and OE(B(L)) = L. Thus,
we obtain a one-to-one correspondence between weak languages and basic languages.
However, as already observed in [19], this duality does not preserve regularity in gen-
eral. Still we have the next fact:

Proposition 25. [11, Cor. 2.7] Let L be a weak pomset language. If B(L) is regular
then L is regular.

The next example shows that the converse property fails: It exhibits a weak language
that is regular whereas its basis is not regular.

Example 26. We consider the subset L0 of all pomsets t that consist of two rows of
a-events and an additional b-event. The languageL1 ⊂ L0 restricts to the pomsets such
that either the b-event covers the first a of each row, or covers the k-th a-event of one
row and is covered by the 2k-th a-event of the other row. Examples of pomsets from
L1 are depicted in Fig. 4. We claim that L1 is basic and not regular. Let L = OE(L1).
Then L is weak and L1 is the basis of L. However, we observe that ≡r

L has index 5: If
t is not a prefix of some t′ ∈ L, then L \ t = ∅. Now L \ ε = L, L \ a = OE(L \ a),
and moreover for all pomsets t that are prefixes of L different from the empty pomset
ε and the singleton pomset a, the residual OE(L) \ t depends only on whether b occurs
in t. To be more precise, let L2 be the language of all pomsets consisting of two rows
of a. Then OE(L) \ t equals OE(L2) if b occurs in t and OE(L0) otherwise.

3.3 Prime-Bounded Pomset Languages

We need to recall now the notion of a prime-bounded pomset language.

Definition 27. [17] Let t = (E, �, ξ) be a pomset and k be a positive integer. A k-chain
covering of t is a family (Ci)i∈[1,k] of subsets of E such that

1. each Ci is a chain in (E, �), i.e. (Ci, � ∩(Ci × Ci)) is a linear order;
2. E =

⋃
i∈[1,k] Ci;

3. ∀x, y ∈ E: (x ·≺ y ⇒ ∃i ∈ [1, k] : {x, y} ⊆ Ci).

For any k ∈ N, Pk(Σ) denotes the class of pomsets over Σ which admit a k-chain
covering. A class of pomsets over Σ is prime-bounded if it is included in some Pk(Σ).
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Fig. 4. Two pomsets from L1 in Ex. 26 Fig. 5. The Producer-Consumer and its basis

By Dilworth’s Theorem [6], the first two requirements are equivalent to saying that
(E, �) has width at most k. So the crucial part is the third requirement. It enforces that
not only the partial order (E, �) is covered by the chains, but that in addition the end
points of any prime interval belong to some common chain.

Example 28. We consider Producer-Consumer Petri net from Figure 5. A broken lad-
der is a pomset t over Σ = {p, c} that consists of a chain of n production events
(labeled by p) and a chain of m consumption events (labeled by c) with m � n and
such that

– the kth consumption covers the kth production;
– no consumption is below any production.

An example of a broken ladder is described on Figure 5. The set L of all broken ladders
is the basis of the pomset language corresponding to N. Note that the set of broken
ladders has width 2, but is not prime-bounded: The kth production and consumption
have to belong to some chain that cannot contain the lth production for l > k.

Theorem 14 asserts that the pomset language considered in Def. 2 corresponds to the
process semantics from Def. 11. Therefore we can rephrase the main technical result
from [19] as follows.

Lemma 29. [19, Lemma 3.15] Let A be a finite deterministic step transition system
without autoconcurrency. Then the basis of L(A) is prime-bounded.

In the rest of this section we extend this result to the general case of step transition
systems with autoconcurrency.

3.4 Generalization to Step Transition Systems with Autoconcurrency

In the rest of this section we fix some k ∈ N and some pomset languageL ⊆ P(Σ). We
assume that L is weak and k-width-bounded:L = OE(L) and L ⊆ Pw<k(Σ).

Let Ω = Σ × [1, k] be the set of pairs (a, i) such that a ∈ Σ and 1 � i � k. We let
π : Σ × [1, k] → Σ denote the first projection. This projection extends to a mapping
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on pomsets π : P(Σ× [1, k])→ P(Σ) such that for any pomset t = (E, �, ξ) ∈ P(Ω),
we have π(t) = (E, �, π ◦ ξ). We denote by Pnac(Ω) the set of pomsets without
autoconcurrency from P(Ω) and consider the language L′ = π−1(L) ∩ Pnac(Ω). Thus
L′ collects the pre-images without autoconcurrency of all pomsets from L.

Lemma 30. We have π(L′) = L.

Proof. Let t = (E, �, ξ) be a pomset from L. By Dilworth theorem [6], there exist
k paths in t which together contain all events of t. From any such set of paths we can
derive a chain partition of E, i.e. a set of k mutually disjoint subsets which are totally
ordered by � and which together contain all the events of t. Let {E1, ..., Ek} denote this
partition of E. Then the pomset t′ = (E, �, ξ′) where for all e ∈ E, ξ′(e) = (ξ(e), i)
iff e ∈ Ei is a pomset without autoconcurrency. Moreover it is clear that π(t′) = t. It
follows that t′ ∈ L′.

Lemma 31. If L is step-closed then L′ is step-closed.

Proof. Let t ∈ P(Ω) be such that SE(t) ⊆ SE(L′). Since L′ ⊆ Pnac(Ω) we have
t ∈ Pnac(Ω). On the other hand, we have π(SE(t)) = SE(π(t)) and π(SE(L′)) =
SE(π(L′)) = SE(L) by Lemma 30. It follows that SE(π(t)) ⊆ SE(π(L′)) = SE(L).
Since L is step-closed, we get π(t) ∈ L. Hence t ∈ π−1(L) ∩ Pnac(Ω), i.e. t ∈ L′.
This shows that L′ is step-closed.

Lemma 32. If SE(L) is quasi-consistent then SE(L′) is quasi-consistent.

Proof. Let K = SE(L) and K ′ = SE(L′). Since π(L′) = L we have π(SE(L′)) =
SE(L), i.e. π(K ′) = K . It follows that π(Pref(K ′)) = Pref(K). Moreover K ⊆ L
because L is weak.

Let u, v ∈ Pref(K ′) be such that LE(u)∩LE(v) �= ∅. We have to prove that K ′\u =
K ′\v. We have π(u) ∈ Pref(K) and π(v) ∈ Pref(K). Moreover π(LE(u)∩LE(v)) ⊆
LE(π(u))∩ LE(π(v)) �= ∅. Since K is quasi-consistent, we get K \ π(u) = K \ π(v).

Let w ∈ K ′ \u. Then w ∈ S(Ω) because K ′ ⊆ S(Ω). Moreover u ·w ∈ K ′ because
K ′ = SE(L′). Therefore we have π(u ·w) = π(u) ·π(w) ∈ K . Since K \ π(u) = K \
π(v), we get π(v) ·π(w) = π(v ·w) ∈ K . Now v ·w ∈ S(Ω) and π(v ·w) ∈ L because
K ⊆ L. Moreover neither v or w shows some autoconcurrency. Hence v · w ∈ L′. It
follows that v ·w ∈ K ′. Thus K ′ \u ⊆ K ′ \ v. By symmetry we get K ′ \u = K ′ \ v.

The mapping π maps step sequences from M(Ω)� onto step sequences from M(Σ)�.
Moreover for any t ∈ P(Ω), t is a step sequence from M(Ω)� if and only if π(t)
is a step sequence from M(Σ)�. The induced mapping π : M(Ω)� → M(Σ)� is a
surjective monoid morphism for the strong concatenation: For any pair u, v ∈ M(Ω)�

we have π(u · v) = π(u) · π(v).

Remark 33. Let L ⊆ S(Ω) be a step language such that SE(L) ⊆ L. ThenL is regular
if and only if L is recognizable in the monoid M(Ω)� —because v ∈ L\u iff u ·v ∈ L.

Lemma 34. If SE(L) is regular then SE(L′) is regular.



96 J. Fanchon and R. Morin

Proof. Let ℘(Ω) collect all subsets of Ω. We check first that SE(L′) = π−1(SE(L))∩
℘(Ω)�. Consider first some t ∈ L′ and some u ∈ SE(t). Then π(u) ∈ SE(π(t)) and
π(t) ∈ π(L′) = L by Lemma 30. Hence u ∈ π−1(SE(L)). Now u is a step sequence
without autoconcurrency because t ∈ L′, thus u ∈ π−1(SE(L)) ∩ ℘(Ω)�. Conversely,
consider now some step sequence u ∈ ℘(Ω)� such that π(u) ∈ SE(L). SinceL is weak,
we have π(u) ∈ L. Since u shows no autoconcurrency, we get u ∈ π−1(L)∩P

nac(Ω),
i.e. u ∈ L′. Now u is a step sequence, hence u ∈ SE(u): Thus u ∈ SE(L′).

The mapping π : M(Ω)� → M(Σ)� is a monoid morphism. Therefore if SE(L) is
recognizable in M(Σ)� then its pre-image π−1(SE(L)) is recognizable in M(Ω)�. Fur-
thermore ℘(Ω)� is a recognizable submonoid of M(Ω)� because for any u ∈ M(Ω)�,
℘(Ω)� \ u is either empty or equal to ℘(Ω)�. Since SE(L′) = π−1(SE(L)) ∩ ℘(Ω)�,
SE(L′) is the intersection of two recognizable languages, so it is recognizable, too. It
follows now from Remark 33 that SE(L′) is regular.

Lemma 35. We have B(L) ⊆ π(B(L′)).

Proof. Let L◦ = π−1(B(L)) ∩ Pnac(Ω). Clearly L◦ ⊆ L′. By Lemma 30, we have
B(L) = π(L◦). Furthermore we can check that L◦ is included in the basis B(L′): For
any pomset t ∈ L◦, if t ∈ OE(t′) with t �= t′ for some t′ ∈ L′, then π(t) ∈ OE(π(t′))
and π(t) �= π(t′), hence π(t) /∈ B(L): Contradiction. Thus L◦ ⊆ B(L′) and B(L) =
π(L◦) ⊆ π(B(L′)).

We can now extend Lemma 29 to the setting of autoconcurrency.

Theorem 36. Let L be a step-closed, quasi-consistent and width-bounded pomset lan-
guage. If L is regular then its basis B(L) is prime-bounded.

Proof. Since L is weak and width-bounded, we can apply the above construction
of L′ from L. It is clear that L′ is width-bounded. Since L is regular we know that
SE(L) is regular by Prop. 20. Now Lemma 31 proves that L′ is step-closed. Further-
more Lemma 34 asserts that SE(L′) is regular hence L′ is regular (Prop. 20). On the
other hand Lemma 32 shows that SE(L′) quasi-consistent. Since L′ is step-closed this
implies that L′ is quasi-consistent. Theorem 22 ensures that L′ is the language of a
deterministic finite step transition system A. We may assume that A shows no auto-
concurrency at all because L(A) = L′ ⊆ Pnac(Ω). By Lemma 29 the basis of L′ is
prime-bounded. The result follows then from Lemma 35.

4 MSO-Definable Pomset Languages

In this section we want to characterize the pomset languages that are recognized by
some finite deterministic step transition system in a logical way. Among other character-
izations we show in Theorem 48 that these languages are exactly the pomset languages
whose basis is prime-bounded and definable in Monadic Second-Order logic.

Admittedly this equivalence resembles the main result from [19]. However again we
consider here step transition systems and pomsets with autoconcurrency. That is why
we need to develop a new technique in order to handle concurrent events that carry
the same action. In particular, we will explain why it is not possible to rely on the
lexicographically least linear extension similarly to [5,19]. For that reason we make use
of the notion of chain partition and related results borrowed from [4].
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4.1 Monadic Second-Order Logic on Pomsets

Formulae of the MSO logic that we consider involve first-order variables x, y, z... for
events and second-order variables X, Y, Z... for sets of events. They are built up from
the atomic formulae Pa(x) for a ∈ Σ (which stands for “the event x is labeled by the
action a”), x � y, and x ∈ X by means of the boolean connectives ¬,∨,∧,→,↔ and
quantifiers ∃, ∀ (both for first order and for set variables). We denote by MSO(Σ) the
set of all formulae of MSO. Formulae without free variables are called sentences.

The satisfaction relation |= between pomsets and sentences is defined canonically
with the understanding that first order variables range over events of E and second
order variables over subsets of E. The set of pomsets which satisfy a sentence ϕ is
denoted by Mod(ϕ). We say that a set of pomsets L is MSO-definable if there exists a
sentence ϕ such that L = Mod(ϕ).

Example 37. We continue Example 28. The languageL of all broken ladders is MSO-
definable by

∀x, y : (Pp(x) ∧ Pp(y)) ∨ (Pc(x) ∧ Pc(y)) → (x � y ∨ y � x)
∀x, y : Pp(y) ∧ x � y → Pp(x)
∀y : (Pc(y)→ ∃x(Pp(x) ∧ x ·≺ y))
∀x, z : ((Pp(x) ∧ Pc(z) ∧ x � z)→ ∃y(Pc(y) ∧ x ·≺ y))

However OE(L) is not MSO-definable since LE(L) is not regular.

4.2 Monadic Second-Order Logic on Mazurkiewicz Traces

Let us recall some basic notion from Mazurkiewcz trace theory [5]. The concurrency of
a distributed system is often represented by an independence relation over the alphabet
of actions Σ, that is a binary, symmetric, and irreflexive relation ‖ ⊆ Σ×Σ. The asso-
ciated trace equivalence is the least congruence∼ over Σ� such that ∀a, b ∈ Σ, a‖b⇒
ab ∼ ba. A trace [u] is the equivalence class of a word u ∈ Σ�. We denote by M(Σ, ‖)
the set of all traces over the independence alphabet (Σ, ‖). A trace language is a subset
L ⊆ M(Σ, ‖). Let u ∈ Σ�; then the trace [u] is precisely the set of linear extensions
LE(t) of a unique pomset t = (E, �, ξ), that is, [u] = LE(t). Moreover t satisfies the
following properties:

MP1: For all events e1, e2 ∈ E with ξ(e1)� ‖ξ(e2), we have e1 � e2 or e2 � e1;
MP2: For all events e1, e2 ∈ E with e1 ·≺ e2, we have ξ(e1)� ‖ξ(e2).

Conversely the linear extensions of a pomset satisfying these two axioms form a trace
of M(Σ, ‖). Thus one usually identifies M(Σ, ‖) with the class of pomsets satisfying
MP1 and MP2. We have already mentioned that the notion of regularity adopted in this
paper coincides with the usual definition for Mazurkiewicz trace languages, that is: A
subset L ⊆ M(Σ, ‖) is regular if and only if LE(L) is a regular word language. An
interesting property of Mazurkiewicz trace languages is the following.

Theorem 38. [25] A set of Mazurkiewicz traces L ⊆ M(Σ, ‖) is regular if and only if
it is MSO-definable.
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We recall now why prime-bounded languages are related to Mazurkiewicz trace lan-
guages. The class of pomsets M(Σ, ‖) is prime-bounded by Card(Σ)2 whenever Σ is
finite. To see this, we simply consider for each pair of dependent actions a � ‖b the set of
events labeled by a or b. Then, by Axiom MP1, this set forms a chain and, by Axiom
MP2, the family of these chains forms a chain covering. Conversely, we shall explain
below that any prime-bounded language L ⊆ P(Σ) can be represented — up to a rela-
beling function — by a trace language over an appropriate finite independence alphabet
by means of a construction borrowed from [17].

For each k ∈ N we define the independence alphabet (Γk, ‖) by Γk = Σ×(℘([1, k])\
{∅}) and (a, M)‖(b, N) iff M ∩N = ∅ and a �= b. Let π1 : Γk → Σ be the projection
to the first component. Then there is an obvious extension of π1 to pomsets over Γk

defined by π1(E, �, ξ) = (E, �, π1 ◦ ξ). Now let t = (E, �, ξ) be a pomset over
Σ which admits (Ci)1�i�k as k-chain covering. We define a new labeling function
ξ′ : E → Γk by ξ′(e) = (ξ(e), {i ∈ [1, k] | e ∈ Ci}). Since for any e, f ∈ E with
e ·≺ f , there exists 1 � i � k with e, f ∈ Ci, the new pomset t′ = (E, �, ξ′) belongs to
M(Γk, ‖) — that is, it satisfies Axioms MP1 and MP2.

Corollary 39. Let L ⊆ P(Σ) be a pomset language. If L is MSO-definable and prime-
bounded then L is regular.

Proof. Since L is prime-bounded we can build a finite independence alphabet (Γ, ‖)
and a mapping π : Γ → Σ such thatL ⊆ π(M(Γ, ‖)). We putL′ = π−1(L)∩M(Γ, ‖).
Then L′ is MSO-definable because L is MSO-definable. It follows from Theorem 38
that L′ is regular. Since L = π(L′) we get that L is regular.

4.3 Two Other Preliminary Observations

The first basic observation asserts that the basis of an MSO-definable pomset language
is MSO-definable, too.

Lemma 40. Let L ⊆ P(Σ) be a pomset language. If L is MSO-definable then B(L) is
MSO-definable, too.

Proof. Let κ be a sentence for L. We define by induction the transformation α �→ αe,f

of MSO-formulae (where e and f are two new free variables) by replacing x � y in α
by x � y ∧ (x �= e ∨ y �= f). Then we claim that the basis of L is defined by

κ′ := κ ∧ ∀e, f : e ·≺ f → ¬κe,f

To see that κ′ defines B(L), consider a pomset t = (E, �, ξ) from L and a prime
interval e ·≺ f in t. Then te,f = (E, � \{(e, f)}, ξ) is still a pomset over Σ. Moreover,
t is in the basis of L if and only if for any e ·≺ f , te,f is not in L.

Note that the converse property may fail in general: Example 37 exhibits a weak lan-
guage OE(L) that is not MSO-definable although its basis L is MSO-definable.

Step languages can be regarded as words over the alphabet of all multisets. By
Buchi’s theorem, any MSO-definable word language is regular. With no surprise we
can easily establish a similar result for step languages.

Corollary 41. Let L ⊆ S(Σ) be a width-bounded step language. IfL is MSO-definable
then L is regular.



Pomset Languages of Finite Step Transition Systems 99

Proof. It is clear that L is prime-bounded because it consists of sequences of bounded
steps. The result follows then directly from Cor. 39.

The next example proves that this property may fail for general pomset languages:
There are regular pomset languages that are not MSO-definable.

Example 42. Let us consider again the pomset languageL from Example 26. ThenL is
regular and weak whereas its basis B(L) is prime-bounded but not regular. By Cor. 39,
B(L) is not MSO-definable. It follows from Lemma 40 that L is not MSO-definable.

This example shows that regular pomset languages are not MSO-definable in general.
However our goal now is to establish this property for the restricted class of pomset lan-
guages generated by finite deterministic step transition systems, that is, for regular, width-
bounded, step-closed and quasi-consistent pomset languages, as stated in Prop. 47.

4.4 Linear Extensions and Chain Partitions

Let k be an integer and Pw<k(Σ) be the set of pomsets width-bounded by k. By Dil-
worth theorem [6], a pomset t = (E, �, ξ) belongs to Pw<k(Σ) iff there exists a set of
k paths in t which together contain all events of t. From any such set we can derive a
chain partition of E, i.e. a set of mutually disjoint subsets each being totally ordered by
� and which together contain all events of t.

In the sequel we shall make use of the following open formula:

ChainPart(X1...Xk) := ∀x, y.

[∨
i∈[1,k](x ∈ Xi) ∧

∧
i
=j(x ∈ Xi → x /∈ Xj)∧∧

i∈[1,k](x ∈ Xi ∧ y ∈ Xi)→ (x � y ∨ y � x)

]
Proposition 43. A pomset t ∈ P(Σ) is k-width-bounded if and only if

t |= ∃X1...Xk.ChainPart(X1...Xk).

Given a chain partition D1, ..., Dk of a pomset t = (E, �, ξ), two concurrent events
of E belong to different chains. Using the total ordering on the set D1, ..., Dk, we
can define a minimal topological sorting of (E, �) w.r.t. this ordered chain partition.
Interestingly the resulting linear extension of t is MSO-definable. This means that for
each t ∈ Pw<k(Σ) and each chain partition D1, ..., Dk of t, there exists a particular
linear extension of t which is definable in t, D1, ..., Dk, by some MSO formula. We
skip the detailed specification of this formula and rely on the following theorem to
assert its existence.

Theorem 44. [4, Theorem 2.4] Let k be an integer. There is some MSO formula
θk(x, y, X1, ..., Xk) such that for each pomset t = (E, �, ξ) from Pw<k(Σ), and each
chain partition C = {D1, ..., Dk} of t, the relation �C defined on pairs e, e′ ∈ E by

e �C e′ ⇔ (t, e, e′, D1, ..., Dk) |= θk(x, y, X1, ..., Xk)

is a linear extension of (E, �).

It is clear that the linear pomset (E, �C , ξ) is uniquely determined by the partition
(D1, ..., Dk) and the formula θk. This word is denoted by LinEk(t, D1, ..., Dk).

Let k be a fixed integer. For any sentence ψ, we denote by ψ(X1, ..., Xk) the for-
mula obtained by replacing the occurrences of x � y in ψ by θk(x, y, X1, ..., Xk). For



100 J. Fanchon and R. Morin

each pomset t ∈ Pw<k(Σ) and each chain partition D1, ..., Dk of t, t is a model of
ψ(D1, ..., Dk) iff the linear extension LinEk(t, D1, ..., Dk) is a model of ψ. In other
words: (t, D1, ..., Dk) |= ψ iff LinEk(t, D1, ..., Dk) |= ψ. Given a sentence ψ, we
define the sentence ψ̂ := ∀X1, ..., Xk.ChainPart(X1, ..., Xk) → ψ(X1, ..., Xk).
Then t |= ψ̂ if and only if for any chain partition D1, ..., Dk of t, the linear exten-
sion LinEk(t, D1, ..., Dk) satisfies the formula ψ.
Lemma 45. Let t = (E, �, ξ) be a pomset from Pw<k. Then t |= ψ̂ if and only if for
all subsets D1, ..., Dk ⊆ E

(t, D1, ..., Dk) |= ChainPart(X1, ..., Xk) implies LinEk(t, D1, ..., Dk) |= ψ.

4.5 Regular Quasi-Consistent and Step-Closed Languages Are MSO Definable

In this subsection we fix some finite deterministic STS A and consider its pomset lan-
guage L. This means that L is width-bounded by some natural k, step-closed, quasi-
consistent and regular (Theorem 22). Since L is weak we have LE(L) = SL(A) ∩Σ�.
It is clear now that the word language LE(L) is regular because we can derive from A

finite automaton that accepts LE(L). Similarly for each multiset m ∈M(Σ), the word
language Lm = {u ∈ Σ� | u.m ∈ SE(Pref(L))} is regular, too. By Buchi’s theorem,
these word languages are MSO-definable. We let ψL be an MSO-formula for LE(L)
and for each multiset m ∈ M(Σ), ψm be an MSO-sentence for Lm.

Recall now that L = pf(A) by Theorem 14. Thus a pomset t ∈ P(Σ) belongs
to L if and only if TE(Pref(t)) ⊆ T (A) and LE(t) ⊆ LE(L). By Proposition 13
the first condition amounts to check that t ∈ Pref(L). Now by Lemma 17 we can
conclude that t ∈ L if and only if LE(t) ⊆ LE(L) and for all prefixes t′ = (E′, �′, ξ′)
of t, there exists at least one linear extension u ∈ LE(t′) such that u ∈ Lm, where
m = ξ(min�(E \ E′)). Moreover, in that case, any linear extension of t′ belongs to
Lm. In that way we get the next result.

Lemma 46. A pomset t = (E, �, ξ) from Pw<k(Σ) belongs to L if and only if it fulfills
the two next requirements:

1. for all chain partitions D1, ..., Dk of t, we have LinEk(t, D1, ..., Dk) |= ψL

2. for all prefixes t′ = (E′, �′, ξ′) of t, for all subsets M ⊆ min�(E \ E′), and for
all chain partitions D1, ..., Dk of t′, we have LinEk(t′, D1, ..., Dk) |= ψm where
m = ξ(M) is the multiset of labels of M .

As a consequence of the two previous lemmas, a pomset t = (E, �, ξ) belongs to L
if and only if t |= ψ̂L and for any prefix t′ = (E′, �′, ξ′) of t and for any subset
M ⊆ min�(E \ E′), if m = ξ(M) then t′ |= ψ̂m. This property can obviously be
encoded in MSO, which yields the next statement.

Proposition 47. L is MSO-definable.

4.6 Main Result

Theorem 22 shows that the languages of finite deterministic step transition systems are
precisely the pomset languages that are width-bounded, step-closed, quasi-consistent
and regular. We complete now this characterization with some logical criteria.
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Theorem 48. Let L be a width-bounded, step-closed and quasi-consistent pomset lan-
guage. Then L is the language of a finite deterministic step transition system if and only
if it satisfies one of the six following equivalent conditions:

(i) B(L) is regular (iv) B(L) is MSO-definable and prime-bounded
(ii) L is regular (v) L is MSO-definable
(iii) SE(L) is regular (vi) SE(L) is MSO-definable

Proof. By Proposition 20 we have (iii) ⇒ (ii) because L is step-closed. By Proposi-
tion 47 we get that (ii) ⇒ (v). Since L is step-closed, SE(L) ⊆ L hence SE(L) =
L∩ S(Σ). Since S(Σ) is MSO-definable, we have (v) ⇒ (vi). By Cor. 41, (vi) ⇒ (iii).
Thus (ii), (iii), (v), and (vi) are equivalent.

By Theorem 36, (v) implies that B(L) is prime-bounded. It follows now from
Lemma 40 that (v) ⇒ (iv). By Cor. 39 we have (iv) ⇒ (i). Finally Proposition 25
ensures that (i)⇒ (ii).

5 Conclusion

These results can be applied to some well-established concurrent semantics of Petri
nets. Obviously some deterministic step transition system can be derived from any
(unlabelled) Place/Transition Petri net. The resulting step language corresponds to the
generalized trace language investigated in [15]. The corresponding pomset language
coincides with the set of enabled partial-words [26], also called firing pomsets. Besides
this semantics is related to another major net semantics based on unfoldings, more pre-
cisely on pomsets generated by prefix-closed and conflict-free unfoldings [16]. It has
been proved in [16] and [26] that the set of order extensions of the unfolding pomsets
of a Petri net coincides with the set of its firing pomsets. As a direct consequence, un-
folding pomsets and firing pomsets have the same basis, and Theorem 48 establishes a
Büchi-like connection for this basis.

Recall now that the pomset languages of finite (non-deterministic) step transition
systems are precisely the pomset languages that are width-bounded, step-closed, and
regular (Prop. 5 and Theorem 21). Until now we do not know whether the six condi-
tions from Theorem 48 are still equivalent in the more general setting of width-bounded
and step-closed pomset languages. It would be nice anyway to establish a logical char-
acterization of the expressive power of non-deterministic step transition systems, too.

Acknowledgments. Thanks to anynomous referees for many useful remarks.
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Křetı́nský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer,
Heidelberg (2002)

12. Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61, 199–224
(1988)

13. Grabowski, J.: On partial languages. Fundamenta Informatica IV(2), 427–498 (1981)
14. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory

of Regular MSC Languages. Information and Computation 202, 1–38 (2005)
15. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A Trace Semantics for Petri Nets. Infor-

mation and Computation 117, 98–114 (1995)
16. Kiehn, A.: On the interrelationship between synchronised and non synchronised be-

haviour of Petri Nets. Journal of Information Processing and Cybernetics. EIK 24, 3–18
(1988)

17. Kuske, D.: Asynchronous cellular automata and asynchronous automata for pomsets. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 517–532. Springer,
Heidelberg (1998)

18. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theoretical Computer
Science 299, 347–386 (2003)

19. Kuske, D., Morin, R.: Pomsets for local trace languages. Journal of Automata, Languages
and Combinatorics 7, 187–224 (2002)

20. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theoretical
Computer Science 237, 347–380 (2000)

21. Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.)
STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

22. Mukund, M.: Petri Nets and Step Transition Systems. International Journal of Foundations
of Computer Science 3, 443–478 (1992)

23. Pratt, V.: Modelling concurrency with partial orders. International Journal of Parallel Pro-
gramming 15, 33–71 (1986)

24. Thatcher, W., Wright, J.B.: Generalized finite automata theory with an application to a deci-
sion problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)

25. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, vol. 3, pp. 389–455 (1997)

26. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625.
Springer, Heidelberg (1992)



Deficiency Zero Petri Nets and Product Form

Jean Mairesse and Hoang-Thach Nguyen
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Abstract. Consider a Markovian Petri net with race policy. The mark-
ing process has a “product form” stationary distribution if the probabil-
ity of viewing a given marking can be decomposed as the product over
places of terms depending only on the local marking. First we observe
that the Deficiency Zero Theorem of Feinberg, developped for chemical
reaction networks, provides a structural and simple sufficient condition
for the existence of a product form. In view of this, we study the classi-
cal subclass of bounded free-choice nets. Roughly, we show that the only
such Petri nets having a product form are the state machines which can
alternatively be viewed as Jackson networks.

1 Introduction

Queueing networks, Petri nets, and chemical reaction networks, are three math-
ematical models of “networks”, each of them with an identified community of
researchers.

In queueing, the existence of “product form” Markovian networks is one of
the cornerstones and jewels of the theory. Monographies are dedicated to the
subsect, e.g. Kelly [16] or Van Dijk [8]. Roughly, the interest lies in the equi-
librium behavior of a Markovian queueing network. The existence of such an
equilibrium is equivalent to the existence of a stationary distribution π for the
queue-length process. In some remarkable cases, π not only exists but has an ex-
plicit decomposable shape called “product form”. The interest is two-fold. First,
from a quantitative point of view, it makes the explicit computation of π possi-
ble, even for large systems. Second, the product form has important qualitative
implications, like the “Poisson-Input Poisson-Output” Theorems. Consequently
important and lasting efforts have been devoted to the quest for product form
queueing networks.

It is attractive and natural to try to develop an analog theory for Markovian
Petri nets, with the marking process replacing the queue-length process. There
is indeed a continueing string of research on this topic since the 90ies, e.g. [5,
6, 9, 11, 13, 14, 18]. Tools have been developped in the process which build on
classical objects of Petri net theory (e.g. closed support T-invariants). The most
accomplished results are the ones in [13].

In chemistry and biology, has emerged the model of chemical reaction net-
works. Such a network is specified by a finite set of reactions between species
of the type “2A + B → C”, meaning that two molecules of A can interact with

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 103–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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one molecule of B to create one molecule of C. The dynamics of such models is
either deterministic or stochastic, see [17].

Deterministic models are the most studied ones, they correspond to coupled
sets of ordinary differential equations. The most significant result is arguably
the Deficiency Zero Theorem of Feinberg [10]. Deficiency Zero is a structural
property which can be very easily checked knowing the shape of the reactions
in a chemical network. It does not refer to any assumption on the associated
dynamics. Feinberg Theorem states that if a network satisfies the Deficiency
Zero condition, then the associated deterministic dynamic model has remarkable
stability properties. An intermediate result is to prove that a set of non-linear
equations (NLE) have a strictly positive solution.

Stochastic models of chemical reaction networks correspond to continuous-
time Markov processes of a specific shape. Such models were considered in
Chapter 8 of the seminal book by Kelly [16]. There it is proved that if a set
of non-linear “traffic equations” (NLTE) have a strictly positive solution then
the Markov process has a product form.

How does Feinberg result connect with product form Markovian Petri nets ?
A first observation is that chemical reaction networks and Petri nets are two

different descriptions of the same object. This has been identified by different
authors in the biochemical community, see for instance [3] and the references
therein. Conversely, Petri nets were originally introduced by Carl Adam Petri to
model chemical processes, see [20].

A second observation was made recently by Anderson, Craciun, and Kurtz [2].
They observe that the NLE of Feinberg and the NLTE of Kelly are the same.
It implies that if a chemical network has deficiency zero, then the stochastic
dynamic model has a product form.

In the present paper, we couple the two observations together. The Deficiency
Zero condition provides a sufficient condition for a Markovian Petri net to have
a product form. This condition is structural and very easy to check. Moreover it
is at least as strong as the criteria which were known in the Petri net literature.
More precisely, we prove that if a Markovian Petri net satisfies the structural
condition in [13] then it has deficiency zero.

The class of Petri nets whose Markovian version have a product form is an
interesting one. It is therefore natural to study how this class intersects with the
classical families of Petri nets: state machines and free-choice Petri nets.

The central result that we prove is, in a sense, a negative result. We show that
within the class of free-choice Petri nets, the only ones which have a product
form are closely related to state machines. We also show that the Markovian
state machines are “equivalent” to Jackson networks. The latter form the most
basic and classical example of product form queueing networks.

2 Model

We use the notation R∗ = R−{0}. The coordinate-wise ordering of Rk is denoted
by the symbol �. We say that x ∈ R

k is strictly positive if xi > 0 for all i. We
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denote by 1S the indicator function of S, that is the mapping taking value 1
inside S and 0 outside.

2.1 Petri Nets

Our definition of Petri net is standard, with weights on the arcs.

Definition 1 (Petri net). A Petri net is a 6-tuple (P , T ,F , I, O, M0) where:

– (P , T ,F) is a directed bipartite graph, that is, P and T are non-empty and
finite disjoint sets, and F is a subset of (P × T ) ∪ (T × P) ;

– I : T → NP and O : T → NP are such that [I(t)p > 0 ⇔ (p, t) ∈ F ] and
[O(t)p > 0 ⇔ (t, p) ∈ F ] ;

– M0 belongs to NP .

The elements of P are called places, those of T are called transitions. The 5-tuple
(P , T ,F , I, O) is called the Petri graph. The vectors I(t) and O(t), t ∈ T , are
called the input bag and the output bag of the transition t. An element of N

P is
called a marking, and M0 is called the initial marking.

Petri nets inherit the usual terminology of graph theory. Graphically, a Petri
net is represented by a directed graph in which places are represented by circles
and transitions by rectangles. The initial marking is also materialized: if M0(p) =
k, then k tokens are drawn inside the circle p. See Figure 1 for an example.

A Petri net is a dynamic object. The Petri graph always remains unchanged,
but the marking evolves according to the firing rule. A transition t is enabled in
the marking M if M ≥ I(t), then t may fire which transforms the marking from
M into

M ′ = M − I(t) + O(t) .

We write M
t−→M ′. A marking M ′ is reachable from a marking M if there exists

a sequence of transitions t1, ..., tk, and a sequence of markings M1, ..., Mk−1,

such that M
t1−→ M1

t2−→ · · · tk−1−−−→ Mk−1
tk−→ M ′. We denote by R(M) the set of

markings which are reachable from M .

Definition 2 (Marking graph). The marking graph of a Petri net with initial
marking M0 is the directed graph with

– nodes: R(M0) , arcs: M →M ′ if ∃t ∈ T , M
t−→M ′.

The marking graph defines the state space on which the marking may evolve.
Observe that the marking graph may be finite or infinite. In Section 2.3, we will
define a Markovian Petri net as a continuous-time Markovian process evolving
on the marking graph.

The analysis of Petri nets relies heavily on linear algebra techniques, the
central object being the incidence matrix.

The incidence matrix N of the Petri net (P , T ,F , I, O, M0) is the (P × T )-
matrix N defined by:

Ns,t = O(t)s − I(t)s . (1)
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Example. Figure 1 represents a Petri net with places {p1, p2, p3, p4} and transi-
tions {t1, t2, t3, t4}. The initial marking is M0 = (2, 1, 0, 1). The input and output
bags are:

I(t1) = (2, 0, 0, 0), O(t1) = (0, 2, 0, 0), I(t2) = (0, 2, 0, 0), O(t2) = (2, 0, 0, 0) ,
I(t3) = (1, 0, 1, 0), O(t3) = (0, 1, 0, 1), I(t4) = (0, 1, 0, 1), O(t4) = (1, 0, 1, 0) .

The weights different from 1 are represented on the arcs.

2 2

22

p1p3 p2 p4

t1

t3

t2

t4

Fig. 1. Petri net

The reachable markings are M0, M1 = (0, 3, 0, 1), M2 = (3, 0, 1, 0), and M3 =
(1, 2, 1, 0) . The marking graph is represented on Figure 2.

M0 M1

M2 M3

t1

t2

t1

t2

t4t3 t4t3

Fig. 2. Marking graph

The incidence matrix of the Petri net is:

N =

⎛⎜⎜⎝
−2 2 −1 1

2 −2 1 −1
0 0 −1 1
0 0 1 −1

⎞⎟⎟⎠ . (2)
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2.2 Chemical Reaction Networks

Coinsider a Petri net (P , T ,F , I, O, M0). If no two transitions have the same
input/output bags, we can identify each t with the ordered pair (I(t), O(t)).
The Petri net can then be viewed as a triple (P , T ⊂ NP × NP , M0 ∈ NP). (In
particular, the flow relation F is encoded in T .)

Petri nets have appeared with this presentation in different contexts and un-
der different names: vector addition systems (see for instance [21]), or chemical
reaction networks (see for instance [10, 2]).

In the chemical context, the elements of P are species. The marking is the
number of molecules of the different species. The elements of T are reactions. A
reaction (c, d) ∈ NP × NP is represented as follows:∑

p∈P
cpp −→

∑
p∈P

dpp.

Example. The “chemical” form of the Petri net in Figure 1 is:

2p1 � 2p2 , p1 + p3 � p2 + p4 .

Let us now introduce some notions and definitions, which are borrowed from the
chemical literature.

Definition 3 (Reaction graph). Let (P , T ⊂ NP ×NP , M) be a Petri net. A
complex is a vector u in NP such that: ∃v ∈ NP , (u, v) ∈ T or (v, u) ∈ T . The
set of all complexes is denoted by C. The reaction graph associated to the Petri
net is the directed graph with

– nodes: C, arcs: u→ v if (u, v) ∈ T .

Definition 4 (Deficiency). Consider a Petri net with set of complexes C and
incidence matrix N . The deficiency of the Petri net is

δ = |C| − �− rank(N) ,

where � is the number of connected components of the reaction graph.

Proposition 1 (Feinberg [10]). The deficiency of a Petri net is always non-
negative.

Of particular importance are the Petri nets with deficiency 0. This class will
be central in the study of Markovian Petri nets having a product form. This will
be discussed in detail in Section 3.

Definition 5 (Weak reversibility). A Petri net is weakly reversible if every
connected component of the reaction graph is strongly connected.

Weak reversibility is a restrictive property. In Section 4.3, we show that the
class of weakly reversible free-choice nets is in a sense limited to generalized
state machines (each transition has at most one input and one output place).
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Elementary circuits of the reaction graph can be identified with the so-called
“minimal closed support T-invariants” of the Petri net literature (see [5]). In
particular, a Petri net is weakly reversible if and only if it is covered by minimal
closed support T-invariants. Such Petri nets are called Π-nets in [13].

Weak reversibility and deficiency 0 are two independent properties. The Petri
net of Figure 1 is weakly reversible and has deficiency 0. If we remove one transi-
tion, t1 for instance, weak reversibility disappears, yet the deficiency remains 0.
The Petri net of Figure 3 is weakly reversible and has deficiency 1. If we remove
one transition, the new Petri net is neither weakly reversible nor of deficiency 0.

Algorithmic complexity. Weak reversibility and deficiency 0 are algorithmically
simple to check. Let us determine the time complexity of the algorithms with
respect to the size of the Petri net (number of places and transitions, and the
unary representation of weights).

Observe first that the number of complexes is bounded by 2|T |. Building
the reaction graph from the Petri graph can be done in time O(|P||T |2). A
depth-first-search algorithm on the reaction graph enables to check the weak
reversibility and to compute the number of connected components (�). The DFS
algorithm runs in time O(|P||T |). Computing the rank of the incidence matrix
can be done in time O(|P||T |2) using a Gaussian elimination.

Globally the complexity is O(|P||T |2) for computing the deficiency as well as
for checking weak-reversibility.

2.3 Markovian Petri Nets with Race Policy

A Petri net is a logical object with no physical time involved. There exist several
alternative ways to define timed models of Petri nets, see for instance [1, 4].
We consider the model of Markovian Petri nets with race policy. The rough
description is as follows.

With each enabled transition is associated a “countdown clock” whose pos-
itive initial value is set at random. When a clock reaches 0, the corresponding
transition fires. This changes the set of enabled transitions and all the clocks get
reinitialized. The initial values of the clocks are chosen independently, according
to an exponential distribution whose rate depends on the transition and on the
current marking. With probability 1, no two clocks reach zero at the same time
so the model is unambiguously defined. Enabled transitions are involved in a
“race”: the transition to fire is the one whose clock will reach zero first.

We now proceed to a formal definition of the model.
When I(t) = O(t), the firing of transition t does not modify the marking. For

simplicity, we assume from now on that I(t) 	= O(t) for all t.

Definition 6 (Markovian Petri net with race policy). A Markovian Petri
net (with race policy) is formed by a Petri net (P , T ,F , I, O, M0) and a set of
rate functions (μt)t∈T , μt : R(M0) → R∗

+, satisfying

μt(M) =

{
κtΨ(M − I(t))Φ(M) if M � I(t)
0 otherwise

, (3)
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for some constants κt ∈ R∗
+, t ∈ T , and some functions Ψ and Φ valued in R∗

+.
The marking evolves as a continuous-time jump Markov process with state space
R(M0) and infinitesimal generator Q = (qM,M ′ )M,M ′ , given by

qM,M ′ =
∑

t:M
t−→M ′

μt(M) . (4)

The shape (4) for the infinitesimal generator is the transcription of the informal
description given at the beginning of the section.

The condition (3) for the rate functions (μt)t∈T is the same as the one in
[14] and [13, Section 2]. (In [13, Section 3], an even more general shape for the
rate function is considered.) Condition (3) is specifically cooked up in order for
the product form result of Theorem 1 to hold, which explains its artificial shape.
This general condition englobes two classical types of rate functions: the constant
rates and the mass-action rates.

Constant rates. In the Petri net literature, the standard assumption is that the
firing rates are constant:

∃κt ∈ R
∗
+, ∀M ∈ R(M0), I(t) � M, μt(M) = κt . (5)

Mass-action rates. In the chemical literature, the rate is often proportional to
the number of different subsets of tokens (i.e. molecules) that can be involved in
the firing (i.e. reaction). More precisely:

∀M ∈ R(M0), I(t) � M, μt(M) = κt

∏
p:I(t)p �=0

Mp!
(Mp − I(t)p)!

. (6)

Such rates are said to be of mass-action form and the corresponding stochastic
process has mass-action kinetics. To obtain (6) from (3), set Φ, Ψ−1 : NP →
R∗

+, x �→
∏

p xp!.

3 Product Form Results

We are interested in the equilibrium behavior of Markovian Petri nets. This
section presents the product form results which exist in the literature. We gather
results which were spread out, obtained independently either in the Petri net
community, or in the chemical one.

Let Q be the infinitesimal generator of the marking process. An invariant
measure π of the process is characterized by the balance equations πQ = 0, that
is: ∀x ∈ R(M0),

π(x)
∑

t:x�I(t)

μt(x) =
∑

t:x�O(t)

π(x + I(t)−O(t))μt(x + I(t)−O(t)) . (7)

A stationary distribution is an invariant probability measure. It is characterized
by πQ = 0,

∑
x π(x) = 1. If π is an invariant measure and K =

∑
x∈R(M0) π(x) <

+∞, then π/K = (π(x)/K)x is a stationary distribution.
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When the marking graph is strongly connected, the marking process is irre-
ducible. It follows from basic Markovian theory that the stationary distribution
is unique when it exists (the ergodic case). When the state space is finite, irre-
ducibility implies ergodicity.

Definition 7 (Non-linear traffic equations). Consider a Markovian Petri
net with general rates. Let C be the set of complexes. We call non-linear traffic
equations (NLTE) the equations over the unknowns (xp)p∈P defined by: ∀C ∈ C,∏

p:Cp �=0

xCp
p

∑
t:I(t)=C

κt =
∑

t:O(t)=C

κt

∏
p:I(t)p �=0

xI(t)p
p . (8)

(With the convention that the product over an empty set of indices equals 1.)

The NLTE can be viewed as a kind of balance equations (what goes in equals
what goes out) at the level of complexes. Their central role appears in next
theorem which is essentially due to Kelly [16, Theorem 8.1] (see also [2, Theorem
4.1]). In Kelly’s book, the setting is more restrictive, but the proof carries over
basically unchanged. For the sake of completeness, we recall the proof.

Theorem 1 (Kelly). Consider a Markovian Petri net. Assume that the NLTE
(8) admit a strictly positive solution (up)p∈P . Then the marking process of the
Petri net has an invariant measure π defined by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏
p∈P

uxp
p . (9)

We say that π has a product form: π(x) decomposes as a product over the places
p of terms depending only on the local marking xp.

Observe that π(x) > 0 for all x in (9). In particular it implies that the marking
process is irreducible. On the other hand, the measure defined in (9) may have a
finite or infinite mass. When it has a finite mass, the marking process is ergodic,
and the normalization of π is the unique stationary distribution.

In the case of mass-action rates (6), we get∑
x∈R(M0)

π(x) =
∑

x∈R(M0)

∏
p∈P

u
xp
p

xp!
�
∑

x∈NP

∏
p∈P

u
xp
p

xp!
= exp(

∑
p

up) < +∞ .

So we are always in the ergodic case. For constant rates (5), if the state space
R(M0) is infinite, the ergodicity depends on the value of the constants κt.

Proof. It suffices to verify that π of the form (9) satisfies (7) when (up)p∈P is a
solution to (8).

In (7), by replacing π and μt with the right-hand sides of (9) and (3), we
obtain, after simplification:

∑
t:x�I(t)

κtΨ(x − I(t))Φ(x)Φ(x)−1
∏
p

u
xp
p =

∑
t:x�O(t)

κtΨ(x − O(t))Φ(x + I(t) − O(t))Φ(x + I(t) − O(t))−1
∏
p

u
xp+I(t)p−O(t)p
p
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which is equivalent to∑
x�C

∑
t:I(t)=C

κtΨ(x− C)
∏
p

uxp
p =

∑
x�C

∑
t:O(t)=C

κtΨ(x− C)
∏
p

uxp+I(t)p−Cp
p .

A sufficient condition for the above equality to hold is to have, for each C ∈ C,∑
t:I(t)=C

κtΨ(x− C)
∏
p

uxp
p =

∑
t:O(t)=C

κtΨ(x− C)
∏
p

uxp+I(t)p−Cp
p ,

after simplification we get,∏
p:Cp �=0

uCp
p

∑
t:I(t)=C

κt =
∑

t:O(t)=C

κt

∏
p:I(t)p �=0

uI(t)p
p .

This last set of equations means precisely that (up)p∈P is a solution to the NLTE.

�

Theorem 1 is the core result. Below, all the developments consist in determining
conditions under which Theorem 1 applies. More precisely, we want conditions
on the model ensuring the existence of a strictly positive solution to the NLTE
and the finiteness of the measure π. The ideal situation is as follows:

– structural properties of the Petri net (i.e. independent of the firing rates)
ensure the existence of a strictly positive solution to the NLTE;

– conditions on the firing rates ensure the finiteness of the measure π.

Solving the non-linear traffic equations is still a challenging task. We may avoid
a direct attack to these equations by considering a simpler system of equations
called the linear traffic equations.

Definition 8 (Linear traffic equations). We call linear traffic equations
(LTE) the equations over the unknowns (yC)C∈C defined by: ∀C ∈ C,

yC

∑
t:I(t)=C

κt =
∑

t:O(t)=C

κtyI(t) . (10)

Furthermore, if ∅ ∈ C, then y∅ = 1.

The following proposition provides a simple and structural criterium for the
existence of a strictly positive solution to the LTE.

Proposition 2. The following statements are equivalent:

– ∃(κt)t∈T such that the equations (10) have a strictly positive solution.
– ∀(κt)t∈T , the equations (10) have a strictly positive solution.
– The Petri net is weakly reversible.

Proofs can be found in [5, Theorem 3.5] or [10, Corollary 4.2]. We recall the
argument from [5] which is simple and illuminating.
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Proof. The reaction process is a continuous-time Markov process, analog to the
marking process, except that it is built on the reaction graph instead of the
marking graph. More precisely, the state space is the set of complexes C and
the infinitesimal generator Q̃ = (q̃u,v)u,v is defined by

q̃u,v =
∑

t:I(t)=u,O(t)=v

κt .

(The discrete-time version of this process was introduced in [14] under the name
“routing process”.) The key observation is that the LTE (10) are precisely the
balance equations yQ̃ = 0 of the reaction process. The result now follows using
standard Perron-Frobenius theory. 
�

The NLTE and the LTE are clearly linked.

Lemma 1. If the NLTE (8) have a strictly positive solution u = (up)p∈P , then
v = (vC)C∈C,

vC =
∏

p:Cp �=0

uCp
p ,

is a strictly positive solution to the LTE (10).

So weak reversibility is a necessary condition to have a strictly positive solution
to the NLTE, and to be able to apply Theorem 1. Unfortunately, it is not a
sufficient condition as shown by the following example.

Example. Let us consider a Markovian Petri net whose underlying Petri graph
is shown in Figure 3, and is equivalently defined by the chemical reactions:

p1 � p2 p3 � p4 p1 + p3 � p2 + p4 .

This is a weakly reversible Petri net, thus its LTE always have a strictly positive
solution regardless of the choice of the constants κt. The NLTE are:

κ1x1 = κ2x2 κ3x3 = κ4x4 κ5x1x3 = κ6x2x4 . (11)

p2 p4

p1 p3

t5

t6

t2t1 t3 t4

Fig. 3. A weakly reversible Petri net
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The system (11) does not always have a strictly positive solution. For example,
set κ1 = κ2 = κ3 = κ4 = κ5 = 1, and κ6 = 2. Any solution to (11) must satisfy
either x1 = x2 = 0 or x3 = x4 = 0.

Depending on the values of the constants (κt)t, the Markovian Petri net may
or may not have a product form invariant measure. Anticipating on Theorem 3,
the deficiency of the Petri net has to be different from 0, and indeed we have a
deficiency which is equal to 1.

So now the goal is to find additional conditions on top of weak reversibility to
ensure the existence of a product form.

An early result in this direction appears in Coleman, Henderson and Taylor [6,
Theorem 3.1]. The condition is not structural (i.e. rate dependent) and not very
tractable. Next result, due to Haddad, Moreaux, Sereno, and Silva [13, Theorem
9], provides a structural sufficient condition.

Proposition 3. Consider a Markovian Petri net (set of complexes C). Assume
that the Petri net is weakly reversible. Let N be the incidence matrix of the
Petri net. Let A be the node-arc incidence matrix of the reaction graph, that is
the (C × T )-matrix defined by Au,t = −1{I(t)=u} + 1{O(t)=u}. Assume that there
exists a Q-valued (C×P)-matrix B such that BN = A. Then the marking process
has an invariant measure π given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏
p∈P

(∏
C∈C

v
BC,p

C

)xp
,

where v is a strictly positive solution to the LTE.

Independently of the efforts in the Petri net community ([6, 13]), the following
result was proved on the chemical side by Feinberg [10, Theorem 5.1].

Theorem 2 (Feinberg). Consider a Markovian Petri net. Assume that the
Petri net has deficiency 0. Then the NLTE have a strictly positive solution if
and only if the network is weakly reversible.

By combining Theorems 1 and 2, we obtain the following result.

Theorem 3. Consider a Petri net which is weakly reversible and has deficiency
0. Consider any associated Markovian Petri net. The NLTE have a strictly
positive solution (up)p and the marking process has a product form invariant
measure:

π(x) = Φ(x)−1
∏
p∈P

uxp
p .

If we assume furthermore that the rates are of mass-action type (6), then the
marking process is ergodic and its stationary distribution is:

π(x) = C
∏
p∈P

u
xp
p

xp!
,

where C =
(∑

x u
xp
p /xp!

)−1
.
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The above result is interesting. Indeed, the “deficiency 0” condition is structural
and very simple to handle. We now prove that the result in Theorem 3 is at least
as strong as the one in Proposition 3.

Proposition 4. Consider a weakly reversible Petri net. Assume that there exists
a (C × P)-matrix B such that BN = A (with the notations of Prop. 3). Then
the Petri net has deficiency 0.

Proof. Let � be the number of connected components of the reaction graph.
Proposition 1 states that rank(N) � |C|−�, and the deficiency is 0 iff rank(N) =
|C|− �. Since BN = A, we also have rank(A) � rank(N). So if we can prove that
rank(A) = |C| − �, it will imply that rank(N) = |C| − �, and that the Petri net
has deficiency 0.

Assume that � = 1. Consider x ∈ RC −{(0, . . . , 0)} such that xA = (0, . . . , 0).
Let C be such that xC 	= 0. Consider D ∈ C. Since � = 1, there exists an
undirected path (C = C0)−−C1−− · · ·−−(Ck = D) in the reaction graph. Assume
wlog that Ci → Ci+1 and let ti ∈ T be such that I(ti) = Ci, O(ti) = Ci+1. By
definition of A, we have (xA)ti = xCi+1 − xCi . So we have xCi = xCi+1 for all i,
and xC = xD. We have proved that

xA = (0, . . . , 0) =⇒ x ∈ R(1, . . . , 1) ,

and in particular rank(A) = |C| − 1. For a general value of �, we get similarly
that rank(A) = |C| − �. 
�

We believe that the converse of Proposition 4 is also true, but we have not been
able to prove it.

4 Markovian Free-Choice Nets and Product Form

The class of Petri nets whose Markovian version have a product form is an
interesting one. It is therefore natural to study how this class intersects with the
classical families of Petri nets: state machines and free-choice Petri nets.

The central result of this section is, in a sense, a negative result. We show
that within the class of free-choice Petri nets, the only ones which are weakly
reversible are closely related to state machines. We also show that the Markovian
state machines are “equivalent to” Jackson networks. The latter form the most
basic and classical example of product form queueing networks.

From now on, we consider only non-weighted Petri nets, that is Petri nets with
I, O : T → {0, 1}P . In this case, the input/output bags can be retrieved from
the flow relation F and we can define the Petri net as a quadruple (P , T ,F , M0).
We also identify complexes and subsets of P .

For a node x ∈ T ∪ P , set •x = {y : (y, x) ∈ F} and x• = {y : (x, y) ∈ F}.
For a set of nodes S ⊂ T ∪ P , set •S =

⋃
x∈S

•x and S• =
⋃

x∈S x•.
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4.1 State Machines

Definition 9 (State machine and generalized state machine). A non-
weighted Petri net N = (P , T ,F , M0) is a:

– State machine (SM) if for all transition t, |•t| = |t•| = 1;
– Generalized state machine (GSM) if for all transition t, |•t| ≤ 1, |t•| ≤ 1.

Definition 10 (Associated state machine). Given a generalized state ma-
chine N = (P , T ,F , M0), the associated state machine is N ′ = (P ′, T ,F ′, M ′

0)
in which:

– P ′ = P ∪ {p}, p /∈ P ,
– F ′ = F ∪ {(p, t), t ∈ T , |•t| = 0} ∪ {(t, p), t ∈ T , |t•| = 0} ,
– ∀x ∈ P , M ′

0(x) = M0(x), M ′
0(p) = 0 .

Figure 4 shows a SM, a GSM and its associated SM.

p

State machine Generalized SM Associated SM

Fig. 4. State machine, generalized state machine and associated state machine

Lemma 2. The reaction graph and the Petri graph of a state machine are iso-
morphic. The reaction graph of a GSM and the Petri graph of its associated SM
are isomorphic.

Proof. In a SM, each complex is just one place. Starting from the Petri graph and
replacing [p → t → q], p, q ∈ P , t ∈ T , by [p → q], we get the reaction graph.
For GSM, the mapping is the same with the empty complex corresponding to
the “new” place in the associated SM. 
�

Corollary 1. A SM is weakly reversible iff each connected component is strongly
connected. A GSM is weakly reversible iff in the associated SM, each connected
component is strongly connected.

In a SM, the complexes are the places. So the NLTE and the LTE coincide
exactly. For a GSM, the complexes are the places and the empty set. With the
convention y∅ = 1, we still have that the NLTE and the LTE coincide. Next
proposition follows.
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Proposition 5. Consider a weakly reversible GSM. For every rates (κt)t, the
NLTE have a strictly positive solution.

Proof. In the weakly reversible case, the LTE have a strictly positive solution
for every choice of the rates, Proposition 2. Therefore the NLTE have a strictly
positive solution for every choice of the rates. 
�

The above proof does not require Feinberg’s Theorem 2. However, it turns
out that the deficiency is 0, which provides a second proof of Prop. 5 using
Theorem 2.

Proposition 6. Generalized state machines have deficiency 0.

We first prove a weaker statement:

Lemma 3. State machines have deficiency 0.

Proof. Consider a SM with incidence matrix N . Let A be the node-arc incidence
matrix of the reaction graph defined as in Proposition 3. Using Lemma 2, we get
immediately that A = N .

Assume that the SM is connected: � = 1. It suffices to prove that rank(A) =
|C| − 1. Consider x ∈ RC −{(0, . . . , 0)} such that xA = (0, . . . , 0). Let C be such
that xC 	= 0. Let D be directly linked to C. Without loss of generality, suppose
that C = I(t), D = O(t) for some t. By definition of A, we have (xA)t = xD−xC ,
so xD = xC . Since � = 1, by recursively applying this argument, we have xC =
xD for every D. Hence:

xA = (0, . . . , 0) =⇒ x ∈ R(1, . . . , 1) ,

and in particular rank(A) = |C| − 1. For a general value of �, we get similarly
that:

rank(A) = |C| − � . (12)

In the connected case, the above formula can also be viewed as a special instance
of the Rank Theorem for well-formed free-choice nets, see [7, Chapter 6]. Using
(12), we obtain for the deficiency:

δ = |C| − rank(N)− � = |C| − (|C| − �)− � = 0 . 
�

Proof (Proposition 6). Consider a GSM N and its associated SM N ′.
Call C (resp. C′), N (resp. N ′) and � (resp. �′) the set of complexes, the

incidence matrix and the number of connected components of the reaction graph
of N (resp. N ′).

Since N and N ′ have the same reaction graph (Lemma 2), we have:

|C| = |C′| , � = �′ . (13)

By construction of N ′, N ′ is N augmented with a row (xt)t∈T defined by

xt = 1{t•=∅} − 1{•t=∅} ,
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(where t• and •t are defined in N ). We have rank(N ′) ≥ rank(N). On the other
hand, observe that ∀t ∈ T , xt = −

∑
s∈P Ns,t, so N ′ = BN , where B is the

P ×P identity matrix augmented with the row (−1, . . . ,−1). Hence rank(N ′) =
rank(BN) ≤ rank(N). So:

rank(N ′) = rank(N) . (14)

Together (13) and (14) imply that N and N ′ have the same deficiency. Since N ′

has deficiency zero (Lemma 3), N also has deficiency zero. 
�

By coupling Proposition 5 and Theorem 1, or alternatively Proposition 6 and
Theorem 3, we get the result below.

Corollary 2. Consider a Markovian weakly reversible GSM. The NLTE have
a strictly positive solution (up)p. The marking process admits a product form
invariant measure given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏
p∈P

uxp
p .

In the case of a SM, R(M0) is finite, the marking process is ergodic, and π can
be normalized to give a product form stationary distribution: ∀x ∈ R(M0),

π̃(x) = BΦ(x)−1
∏
p∈P

uxp
p ,

where B =
(∑

x∈R(M0) Φ(x)−1∏
p∈P u

xp
p

)−1.

Corollary 2 is far from a surprising or new result, as we now show.

4.2 Jackson Networks

The product form result for Jackson networks is one of the cornerstones of Marko-
vian queueing theory. It was originally proved by Jackson [15] for open networks
and by Gordon & Newell [12] for closed networks.

Consider a Markovian weakly reversible SM with constant rates (κt)t∈T . It
can be transformed into a Jackson network as follows:

– A place s becomes a simple queue, that is a single server Markovian queue
with an infinite buffer. The service rate at queue s is μs =

∑
t∈s• κt.

– The routing matrix P of the Jackson network is the stochastic matrix defined
as follows: ∀u, v ∈ P ,

Pu,v =

{
μ−1

u

∑
t:•t=u,t•=v κt if ∃t ∈ T , u→ t→ v

0 otherwise
.

– A token in place s becomes a customer in queue s.
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Consider now a Markovian weakly reversible GSM with constant rates (κt)t∈T .
On top of the above transformations, we do the following:

– A transition t with •t = ∅ becomes an external Poisson arrival flow of rate
κt in queue t•.

The routing matrix P is now substochastic. Indeed, if the transition t is such
that t• = ∅, then

∑
v P•t,v < 1.

In the SM case, the Jackson network is closed, that is without arrivals from
the outside and without departures to the outside. In the GSM case with input
and output transitions, the Jackson network is open.

The transformation from (G)SM to Jackson network is illustrated on Fig. 5.

κ2

κ1

κ3

State machine

κ1 + κ2 + κ3
p2

p1

p3

pi = κi/
∑

j κj

Jackson network

Fig. 5. From (generalized) state machine to Jackson network

A Jackson network can be translated into a Markovian (G)SM using the same
construction in the reverse direction.

The two models are identical in a strong sense. Precisely, the marking process
of the state machine and the queue-length process of the Jackson network have
the same infinitesimal generator.

The classical product form results for Jackson networks (Jackson [15] and
Gordon & Newell [12]) are exactly the translation via the above transformation of
Corollary 2. In the open case, the weak-reversibility implies the classical “without
capture” condition of Jackson networks.

The above transformation from GSM to queueing network can also be per-
formed in the case of general rate functions of type (3). Queueing networks with
those rate functions are called Whittle networks in the literature. The existence
of product form invariant measures for these networks is a classical result, see
for instance [22] and the references therein.

4.3 Free-Choice Petri Nets

We study the family of live and bounded free-choice nets. This is an important
class of Petri nets realizing a nice compromise between modelling power and
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tractability, see the dedicated monography of Desel & Esparza [7]. We show
that the only such Petri nets having a product form are, in a sense, the GSM.

Definition 11 (Free-choice Petri net). A free-choice Petri net is a non-
weighted Petri net (P , T ,F , M0) such that: for every two transitions t1 and t2,
either •t1 = •t2 or •t1 ∩ •t2 = ∅.

Some authors call the above an extended free-choice Petri net and have a more
restrictive definition for free-choice Petri nets.

In Figure 6, the Petri net on the left is free-choice, while the one on the right
is not free-choice.

Fig. 6. Free-choice (left) and non free-choice (right) Petri nets

Definition 12 (Cluster). The cluster of a node x ∈ P∪T , denoted by [x], is the
minimal set of nodes such that: (i) x ∈ [x] ; (ii) ∀t ∈ T : t ∈ [x] =⇒ •t ⊂ [x] ;
(iii) ∀p ∈ P : p ∈ [x] =⇒ p• ⊂ [x] .

The clusters form a partition of the set of nodes, see [7, Proposition 4.5], and
therefore of the places. Moreover, we have the following.

Lemma 4. Consider a weakly reversible free-choice Petri net. The non-empty
complexes are disjoint subsets of P. The partition of P induced by the non-empty
complexes is the same as the partition of P induced by the clusters.

Proof. In a weakly reversible free-choice Petri net, the non-empty complexes
are also non-empty input bags, which are disjoint according to the definition of
free-choiceness.

It follows from the definition of clusters that every non-empty input bag is en-
tirely contained in a cluster. This cluster is unique because the clusters partition
the set of places. Let I be a non-empty complex (which is also a non-empty input
bag). Denote by [I] the cluster containing I. We have I• ⊂ [I], so I ∪ I• ⊂ [I].
Since the Petri net is free-choice, •t = I for all t ∈ I•. The set I ∪ I• satisfies
the three conditions of the definition of clusters, so we have [I] ⊂ I ∪ I•. We
conclude that [I] = I ∪ I• and I is the set of places of the cluster [I].

Conversely, let [x] be a cluster such that [x] ∩ P 	= ∅. Let I be a non-empty
input bag contained in [x]. We have, using the above, [I] = I ∪ I• ⊂ [x]. By
minimality, [I] = [x] and [x] ∩ P = I. 
�

Under the assumptions of Lemma 4, the non-empty complexes are disjoint. Thus
each non-empty complex behaves as if it was a “big place”. Consider the opera-
tion which reduces each non-empty complex to a single place. The resulting Petri
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net is a generalized state machine. And this generalized state machine is weakly
reversible because the original free-choice Petri net was weakly reversible. Let
us define all this more formally.

Definition 13 (Reduced generalized state machine). Let N = (P , T ,F ,
M0) be a weakly reversible free-choice Petri net with set of complexes C. We
call the reduced generalized state machine (RGSM) of N the GSM RN = (C \
{∅}, T , F̃ , M̃0) where:

– F̃ = {(•t, t), (t, t•), t ∈ T };
– M̃0 is defined by: ∀C ∈ C \ {∅}, M̃0(C) = minp∈C M0(p).

Lemma 5. Let N be a weakly reversible free-choice Petri net andRN its RGSM.
The marking graph ofRN is isomorphic to the one ofN . IfN andRN are Marko-
vian with the same rates then the two marking processes are “identical”, meaning
that they have the same infinitesimal generator.

Proof. Consider f : R(M0)→ NC\∅ defined by f(M)C = minp∈C M(p).
It follows from the definition of RN that if M

t−→ M ′ in N then f(M) t−→
f(M ′) in RN , so f(R(M0)) = R(M̃0) and the marking graph of RN is the
marking graph of N up to a renaming of the nodes.

Since the marking graphs are the same, the infinitesimal generators are also
identical if the two Petri nets have the same rates. 
�

Now let us compare the structural characteristics of the original free-choice Petri
net N and of the reduced generalized state machine RN .

Lemma 6. Let N be a weakly reversible free-choice Petri net. The RGSM RN
is weakly reversible and has the same deficiency as N .

Proof. The weak reversibility of RN follows directly from the definition of re-
duced generalized state machines.

The Petri graph of RN is isomorphic to its reaction graph, Lemma 2. Now
by construction, N and RN have the same reaction graph. So the number of
complexes and the number of connected components of the reaction graph do
not change. Call N and N ′ the incidence matrices of N and RN respectively.
Let C be an arbitrary complex, let p, p′ be two places of C. For every transition
t, we have Np,t = Np′,t = N ′

C,t, which implies that rank(N) = rank(N ′). So the
two Petri nets have the same deficiency. 
�

Corollary 3. Weakly reversible free-choice Petri nets have deficiency 0.

Proof. This follows from Prop. 6 and Lemma 6. 
�

Now all the results for weakly reversible GSM can be applied to weakly reversible
free-choice Petri nets. We get the following.



Deficiency Zero Petri Nets and Product Form 121

Theorem 4. Let N be a free-choice Petri net. Then N is weakly reversible if
and only if its NLTE have a strictly positive solution.

In this case, the Petri net has deficiency zero. Let (up)p be a strictly positive
solution to the NLTE. The marking process has a product form invariant measure
π given by: ∀x ∈ R(M0),

π(x) = Φ(x)−1
∏
p∈P

uxp
p .

If ∅ /∈ C then the state space R(M0) is finite, the marking process is ergodic and
π can be normalized to give a product form stationary distribution: ∀x ∈ R(M0),

π̃(x) = BΦ(x)−1
∏
p∈P

uxp
p ,

where B =
(∑

x∈R(M0) Φ(x)−1∏
p∈P u

xp
p

)−1.
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Abstract. A new algorithm for bisimilarity minimization of labelled
directed graphs is presented. Its time consumption is O(m log n), where n
is the number of states and m is the number of transitions. Unlike earlier
algorithms, it meets this bound even if the number of different labels of
transitions is not fixed. It is based on refining a partition on states with
respect to the labelled transitions. A splitter is a pair consisting of a set
in the partition and a label. Earlier algorithms consume lots of time in
scanning splitters that have no corresponding relevant transitions. The
new algorithm avoids this by maintaining the sets of the corresponding
transitions. To facilitate this, a refinable partition data structure with
amortized constant time operations is introduced. Detailed pseudocode
and correctness proof are presented, as well as some measurements.

Keywords: Analysis of reachability graphs, verification of systems.

1 Introduction

Bisimilarity (also known as strong bisimilarity) has an important role in the
analysis and verification of the behaviours of concurrent systems. For instance,
two finite systems satisfy the same CTL or CTL∗ formulae if and only if they are
bisimilar [2], and two process-algebraic systems are observationally equivalent in
the sense of [10] if and only if their so-called saturated versions are bisimilar [8].
Bisimilarity abstracts away precisely the part of information stored by the state
of the system that does not have any effect on subsequent behaviour of the
system (this only holds in the absence of the notion of “invisible action”). Unlike
isomorphism, bisimilarity can unite different states. These properties make it also
a useful mathematical tool for dealing with other concepts, like symmetries.

Bisimilarity is an equivalence relation for comparing the vertices of a directed
graph whose vertices or edges or both have labels. We will use the words state
and transition instead of “vertex” and “edge” from now on, because the vertices
represent states of the concurrent system and edges represent (semantic) transi-
tions between states. Absence of state labels is equivalent to every state having
the same label, and similarly with transitions. So we may simplify the discussion
by assuming that both states and transitions have labels.

If two states s1 and s2 are bisimilar, then they have the same label, and they
can simulate each other’s transitions in the following sense. If s1 can make a
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transition with label a to some state s′1, then there is a state s′2 that is bisimilar
with s′1 such that s2 can make an a-transition to s′2. In the same fashion, whatever
transition s2 can make, s1 can simulate it.

The description of bisimilarity given above cannot be used as a definition,
because it is circular: to explain what it means that s1 and s2 are bisimilar,
it appeals to the bisimilarity of s′1 and s′2. Many different relations satisfy the
description. Therefore, the precise definition uses the auxiliary concept of bisim-
ulation. A binary relation between states is a bisimulation if and only if it meets
the description of bisimilarity given above. The empty relation and the identity
relation are trivially bisimulations. It is not difficult to check that the union of
any set of bisimulations over the same graph is a bisimulation. It is the largest
bisimulation, and it is an equivalence. It is the bisimilarity relation.

Bisimilarity can be applied to reachability graphs of Petri nets. The label of
a semantic transition could be the name of the Petri net transition whose occur-
rence created the semantic transition, or it could be something more abstract,
like a common name of several Petri net transitions. The label of a state could
be a collection of Boolean variables that describe some properties of the state,
such as there is a token in a certain subset of places. Using the marking as the
label of the state as such would make bisimilarity useless, because then each
state would be bisimilar only with itself.

Two systems can be compared by taking their disjoint union and checking
that their initial states are bisimilar in it. If the systems have several initial
states, then each initial state of each system must have a bisimilar initial state
in the other system. For each system, there is a unique smallest system that is
bisimilar to it. It can be found by removing the states that are not reachable
from any initial state, dividing the set of remaining states to equivalence classes
according to bisimilarity, and fusing each equivalence class into a single state.
The label and output transitions of the fused state are copied from one of its
states, where the end state of the copy transition is the fused state that contains
the end state of the copied transition. Thanks to the properties of bisimilarity, it
does not matter which state in the fused state is used in the copying. The fused
state is made an initial state if and only if it contains an original initial state.

In this paper we concentrate on finding the bisimilarity equivalence classes.
We present a new algorithm whose asymptotic time consumption is better than
that of earlier algorithms. The consumption does not depend on the number of
different labels of transitions. This is nice when there are many different labels,
like “send〈x〉” and “receive〈x〉” where x may assume many different values.

In Section 2 we describe the problem in more detail and discuss earlier work.
The new algorithm uses three copies of a special refinable partition data structure
that is described in Section 3. The new algorithm is presented in Section 4.
Detailed proofs of its correctness and performance are deferred to Section 5,
because they cannot be followed before having seen the algorithm as a whole.
Some measurements that were made with a prototype implementation are shown
in Section 6. Section 7 contains the conclusions.
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2 Background

The bisimilarity minimization problem is the following. A partition S of a set
S is a collection of non-empty, mutually disjoint sets S1, S2, . . . , Sk such that
S1 ∪ S2 ∪ · · · ∪ Sk = S. A refinement of S is any partition {Z1, Z2, . . . , Zh} such
that Z1 ∪ · · · ∪ Zh = S and each Zi is a subset of some Sj . Given is a labelled
directed graph (S, L, Δ), where Δ ⊆ S×L×S, together with an initial partition
I of S. By s−a→ s′ we mean that (s, a, s′) ∈ Δ. A partition S is compatible
with Δ, if and only if for every S ∈ S, S′ ∈ S, s1 ∈ S, s2 ∈ S, s′1 ∈ S′, and
a ∈ L such that s1−a→ s′1, there is an s′2 ∈ S′ such that s2−a→ s′2. It has been
proven that there is a unique partition that is a refinement of I, compatible with
Δ, and contains as few sets as possible. The task is to find that partition.

In this formulation of the problem, the state labels of Section 1 have been
replaced by the initial partition. This is not an important modification, because
the only thing done with state labels in the definition of bisimilarity is checking
whether the labels of two states are the same or not. The initial partition can
be constructed quickly enough by sorting the states according to their labels.

We denote the numbers of states, transitions, and labels by n = |S|, m = |Δ|,
and α = |L|. The number of sets in the initial partition is denoted with k.
To avoid getting into troublesome technicalities with complexity formulae, we
assume that n ≤ 2m. This is not a significant restriction, because to violate it
the directed graph must be rather pathological. If every state of a graph has at
least one input or output transition, then it meets the assumption.

In some applications of the bisimilarity minimization problem, only those
states are relevant that are reachable from an initial state. Furthermore, it may
be that a state is irrelevant also if no final state is reachable from it and it is not
initial. It is well known that irrelevant states can be removed in O(m + n) time
by basic graph traversal algorithms.

The bisimilarity minimization problem can be solved by starting with the
initial partition, and splitting sets of the partition as long as necessary. In this
context, the sets of the partition are traditionally called blocks. If s1 and s2
are in the same block B and s1−a→ s′1, where s′1 is in block B′, but there is
no s′2 ∈ B′ such that s2−a→ s′2, then B must be split so that s1 and s2 go
into different halves. This splitting may make further splitting necessary. There
may be s′′1 , s′′2 , s′′ in some block B′′, and b such that s′′1 −b→ s1, s′′2 −b→ s2,
s′′−b→ s1, s′′−b→ s2, and they do not have other b-labelled output transitions.
Then the separation of s1 and s2 into different blocks makes it necessary to
separate s′′, s′′1 , and s′′2 into three different blocks. We will call this three-way
splitting.

Hopcroft’s famous deterministic finite automaton (DFA) minimization al-
gorithm [7] contains an early sub-quadratic algorithm for an important sub-
problem of the bisimilarity minimization problem. DFA minimization consists
of removing irrelevant states and solving a restricted version of the bisimilarity
minimization problem. In this version, k ≤ 2 (the final states and the other
states), and the graph is deterministic, that is, for each s and a, there is at most
one s′ such that s−a→ s′. Thus m ≤ αn, while in general m ≤ αn2.
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Hopcroft’s algorithm runs in O(αn log n) time (see [5] or [9]). It uses splitters.
Precise meaning varies in the literature, but let us define a splitter as a block–
label pair (B, a). It is used for splitting each block according to whether its states
do or do not have an outgoing a-labelled transition whose end state is in B. In
Hopcroft’s algorithm, these transitions are traversed backwards, and their start
states are moved to tentative new blocks. This is much better than scanning a
block and checking which of its states have an a-transition to some state in B,
because the latter approach may involve costly scanning of numerous states that
lack such a transition.

Because DFAs are deterministic, three-way splitting is never necessary. As a
consequence, if (a, B) has been used for splitting and then B splits to B1 and B2,
it is not necessary to use both (a, B1) and (a, B2) for further splitting. Hopcroft’s
algorithm chooses the (in some sense) “smaller” of them. This guarantees that
each time when a transition is used for splitting, the size of some set is at most
half of its size in the previous time. Therefore, the same transition is used at
most a logarithmic number of times. This made it possible to reach O(αn log n)
time complexity instead of O(αn2).

An O(m log n) time algorithm for the sub-problem of bisimilarity minimiza-
tion where α = 1 (or, equivalently, transitions have no labels) was presented by
Paige and Tarjan [11]. Now the graph needs not be deterministic and three-way
splitting is necessary. To facilitate the use of the “half the size” trick, the al-
gorithm uses compound blocks. A compound block is a collection of blocks that
once constituted together a single block that has been used for splitting. The
use of the largest block in the compound block may be avoided in further split-
ting. A counter-based technique was used to find out whether the start state of
the current transition has an output transition also to elsewhere in the current
compound block, in addition to the current block.

Generalizing the Paige–Tarjan algorithm to α ≥ 1 while maintaining its good
complexity is not trivial. The algorithm in [4, p. 229] does not meet the challenge.
The paper does not give its time complexity, but there is certainly an αn term,
because the algorithm scans the set of labels for each block that it uses in a
splitter. Furthermore, it relies on the restrictive assumption that there is a global
upper bound to the number of output transitions of any state and label (p. 228).

In [3, p. 242], the label of each transition is represented by adding a new state
in the middle of the transition and initially partitioning these states according to
the labels they represent. Then the Paige–Tarjan algorithm can be used as such.
The time complexity is O(m log m), which is slightly worse than O(m log n). The
approach also consumes more memory by a constant factor than the algorithm
presented in Section 4.

When α is not fixed, an O(m log n) algorithm even for the deterministic case
had not been published until 2008 [12]. The problem has been the time spent in
scanning empty splitters, that is, splitters whose block does not have incoming
transitions with the label. Nothing needs to be done for them, but they are so
numerous that simply looking at each of them separately takes too much time.
In [12], this is avoided by maintaining the non-empty sets of transitions that
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correspond to splitters, and using these sets instead of the splitters to organize
the work. The sets constitute a partition of the set of transitions that can be
maintained similarly to the blocks. Therefore, [12] presents a refinable partition
data structure, one instance of which is used for the blocks and another for the
transitions.

In this paper we apply the above idea to the Paige–Tarjan algorithm, to
design an O(m log n) algorithm for the bisimilarity minimization problem. To
implement three-way splitting of blocks and to mimic the compound blocks, new
features are added to the refinable partition data structure. The counter-based
technique in [11] is replaced by a third instance of the structure.

3 A Refinable Partition Data Structure

In this section, a refinable partition data structure is presented. It is an extension
of the structure presented in [12]. It maintains a partition {A1, A2, . . . , Asets} of
the set {1, 2, . . . , items} for some integer constant items. Later in this paper three
instances of it will be used, one where the elements are states and items = n,
and two where the elements are transitions and items = m.

The partition is refinable, meaning that it is possible to replace any Ai by
two or three sets, provided that they are non-empty and disjoint and their union
is Ai. This operation is called splitting. One part inherits the index i from Ai,
while the other parts each get a brand new index.

To indicate which elements go into which subset of Ai, elements are 1-marked
and perhaps also 2-marked before splitting Ai. There is one splitting operation
that divides Ai to its 1-marked states and the remaining states, so that the set
of 1-marked states gets a new index, and the remaining states retain the old
index i. If either subset would be empty, then the operation does not divide Ai.
There is also another splitting operation that does the same for 2-marked states.
Each operation returns the index of the new subset, or zero to indicate that Ai

did not split. The reason for having these two splitting operations instead of
one three-way splitting operation is that returning the index or zero would be
clumsier with the three-way operation. To discuss marking and splitting, let A1

i

and A2
i denote the sets of 1-marked and 2-marked elements of Ai, respectively.

Initially all elements of Ai are unmarked, that is, both A1
i and A2

i are empty.
One of the three instances of the data structure uses bunches. The bunches

are a partition of the set {A1, . . . , Asets}. Therefore, a bunch Uu is a set of sets
{Au1 , Au2 , . . . , Aug}. A bunch cannot contain just any subset of {A1, . . . , Asets}.
Instead, a bunch starts its life containing precisely one set Ai. When any set in
a bunch is split, the bunch inherits all of its parts. There is also an operation
that extracts a set from a non-singleton bunch and makes a new bunch of it.

Furthermore, there are services for scanning a set or a bunch, and for other
duties. All services provided by the data structure are listed below.

Size(s) Returns the number of elements in the set with index s, that is, |As|.
Set(e) Returns the index of the set that element e belongs to, that is, the s such

that e ∈ As.
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Fig. 1. Illustrating the refinable partition data structure

Mark1(e) and Mark2(e) Mark the element e for splitting the set As that con-
tains e. Mark1 adds e to A1

s and Mark2 to A2
s, unless it is already in A1

s∪A2
s.

Split1(s) and Split2(s) If A1
s = ∅ or As = A1

s∪A2
s, then Split1(s) unmarks all 1-

marked elements in As and returns zero. Otherwise, it updates As := As−A1
s,

adds a new set Az := A1
s to the partition, puts it into the same bunch with

As, and returns z. In the end, A1
z = A2

z = A1
s = ∅, but A2

s has not changed.
Split2 works similarly on 2-marked elements.

No marks(s) Returns True if and only if A1
s = A2

s = ∅.
First(s) and Next(e) The elements of As can be scanned by first executing

e := First(s) and then while e 	= 0 do e := Next(e). Each element will be
returned exactly once, but the order in which they are returned is unspec-
ified. While scanning a set, Mark1, Mark2, Split1, and Split2 must not be
executed. These operations are provided to promote data abstraction. In-
stead of using them, it would be slightly more efficient to scan As directly
from the arrays that implement the data structure.

Bunch(s) Returns the index of the bunch that set s belongs to.
Bunch first(u) and Bunch next(e) Let Uu = {Au1 , Au2 , . . . , Aug} be a bunch.

With these operations, the elements of Au1 ∪Au2 ∪· · ·∪Aug can be scanned,
similarly to how First(s) and Next(e) scan a set in the partition.

Has many(u) Returns False if and only if bunch Uu consists of precisely one set.
Extract set(u) Let Uu = {Au1 , Au2 , . . . , Aug} be a bunch. If g = 1, then this

operation returns zero without changing anything. Otherwise, it selects some
i, introduces a new bunch {Aui}, removes Aui from Uu, and returns ui. The
chosen i is such that if Uu has a unique biggest set, then it is not Aui .

Left neighbour (e) and Right neighbour (e) If the partition consists of one set,
then both of these return zero. Otherwise, at least one of them returns an
element that is not currently in the same set as e, but was in the same set
until the most recent splitting of the set. The other one may return zero or
an element. The motivation for these operations is explained in Section 4.

The implementation of the services is illustrated in Figure 1, and shown in
Figures 2 and 3. We will soon discuss the implementation of the most complicated
operations. The variables sets and bunches tell the numbers of sets and bunches.
The implementation uses them and the following arrays:
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Size(s)
return end [s] − first [s]

Set(e)
return sidx [e]

First(s)
return elems[first [s]] /* Certainly exists, because the Ai are non-empty */

Next(e)
if loc[e] + 1 ≥ end [sidx [e]] then return 0 else return elems[loc[e] + 1]

Mark1(e)
s := sidx [e]; � := loc[e]; m := mid1[s]
if m ≤ � < mid2[s] then

mid1[s] := m + 1
elems[�] := elems[m]; loc[elems[�]] := �; elems [m] := e; loc[e] := m

Mark2(e)
s := sidx [e]; � := loc[e]; m := mid2[s] − 1
if mid1[s] ≤ � ≤ m then

mid2[s] := m
elems[�] := elems[m]; loc[elems[�]] := �; elems [m] := e; loc[e] := m

Split1(s)
if mid1[s] = mid2[s] then mid1[s] := first [s]
if mid1[s] = first [s] then return 0
else

sets := sets + 1; uidx [sets ] := uidx [s]
first [sets ] := first [s]; end [sets ] := mid1[s]; first [s] := mid1[s]
mid1[sets ] := first [sets ]; mid2[sets ] := end [sets ]
for � := first [sets ] to end [sets ] − 1 do sidx [elems[�]] := sets
return sets

Split2(s)
if mid1[s] = mid2[s] then mid2[s] := end [s]
if mid2[s] = end [s] then return 0
else

sets := sets + 1; uidx [sets ] := uidx [s]
first [sets ] := mid2[s]; end [sets ] := end [s]; end [s] := mid2[s]
mid1[sets ] := first [sets ]; mid2[sets ] := end [sets ]
for � := first [sets ] to end [sets ] − 1 do sidx [elems[�]] := sets
return sets

No marks(s)
if mid1[s] = first [s] ∧ mid2[s] = end [s] then return True else return False

Fig. 2. Main features of the refinable partition data structure

elems Contains 1, 2, . . . , items in such an order that elements that belong to the
same set are one after another. It is also the case that the sets that belong
to the same bunch are one after another in elems .
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Bunch(s)
return uidx [s]

Bunch first(u)
return elems[ufirst [u]]

Bunch next(e)
if loc[e] + 1 ≥ uend [uidx [sidx [e]]] then return 0 else return elems[loc[e] + 1]

Has many(u)
if end [sidx [elems[ufirst [u]]]] �= uend [u] then return True else return False

Extract set(u)
s1 := sidx [elems [ufirst [u]]]; s2 := sidx [elems[uend [u] − 1]]
if s1 = s2 then return 0
else

bunches := bunches + 1
if Size(s1) ≤ Size(s2) then ufirst [u] := end [s1] else uend [u] := first [s2]; s1 := s2

ufirst [bunches ] := first [s1]; uend [bunches ] := end [s1]; uidx [s1] := bunches
return s1

Left neighbour (e)
� := first [sidx [e]]; if � > 1 then return elems[� − 1] else return 0

Right neighbour (e)
� := end [sidx [e]]; if � ≤ items then return elems[�] else return 0

Fig. 3. Bunch- and neighbour-features of the refinable partition data structure

first and end Indicate the segment in elems where the elements of a set are
stored. That is, As = { elems[f ], elems [f + 1], . . . , elems [� − 1] }, where
f = first [s] and � = end [s].

mid1 and mid2 Let f and � be as above, and let m1 = mid1[s] and m2 =
mid2[s]. Then A1

s = { elems [f ], . . . , elems [m1− 1] }, the unmarked elements
are elems [m1], . . . , elems [m2− 1], and A2

s = { elems[m2], . . . , elems [�− 1] }.
loc Tells the location of each element in elems , that is, elems [loc[e]] = e.
sidx The index of the set that e belongs to is sidx [e]. That is, e ∈ Asidx [e].
uidx The index of the bunch that As belongs to is uidx [s]. That is, As ∈ Uuidx [s].
ufirst and uend The union of the sets in bunch Uu is { elems [f ], elems [f + 1],

. . . , elems [�− 1] }, where f = ufirst[u] and � = uend [u].

To avoid marking the same element more than once, Mark1(e) first tests that
the element e is in the segment for unmarked elements of the set that contains
e. If it is, then Mark1 swaps the element with the first unmarked element, and
moves the borderline between 1-marked and unmarked elements one location
forward. The loc array is updated according to the new locations of the swapped
elements. Mark2 works similarly, but with the last unmarked element.

If set s does not contain 1-marked elements, Split1(s) returns zero and ter-
minates on its second line. If it does not contain unmarked elements, the first
line unmarks all 1-marked elements, leading to termination on the second line.
Otherwise Split1 adjusts the number of sets and the set boundaries so that the
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1-marked elements become a new set whose all elements are unmarked. The
second statement on line 4 makes the new set a member of the same bunch as
the original set. The for-loop updates the set index of the 1-marked elements to
refer to the new set. Split2 works similarly with 2-marked elements.

Has many(u) finds the end location of the set that the first element of bunch
u belongs to, and tests if it is different from the end location of the bunch.

Extract set(u) first finds the indices of the first and last set in bunch u. If
they are the same, the bunch consists of only one set, and Extract set returns
zero. Otherwise Extract set chooses the smaller of the two sets, removes it from
the bunch, and makes a new bunch of it.

Left neighbour (e) returns the element that is immediately before the set that
contains e in elems , or zero, if the set is the first set in elems . Right neighbour
works similarly at the opposite end of the set.

The time consumption of initializing the data structure with the partition that
consists of one set is linear in items . The operations obviously run in constant
time, except Split1 and Split2. Fortunately amortized analysis reveals that they,
too, can be treated as constant time in the analysis of the algorithm as a whole.
Their running times are proportional to the number of Mark1- and Mark2-
operations executed after the previous splitting. Thus the total cost does not
change, even if the split operations are only charged constant cost.

4 The Algorithm

In this section the new bisimilarity minimization algorithm is described. Its
operation and asymptotic time consumption are discussed at an informal level.
Detailed correctness and performance proofs are deferred to Section 5.

It is assumed that states and labels are represented with numbers. That is,
S = {1, 2, . . . , n} and L = {1, 2, . . . , α}. We have Δ ⊆ S × L × S and m = |Δ|,
that is, there are m transitions. Let I = {S1, S2, . . . , Sk} denote the initial
partition of S. The input to the algorithm consists of n, α, Δ, and S2, . . . , Sk.
The set S1 need not be given, because it is S − (S2 ∪ · · · ∪ Sk).

Let Δa,B = Δ ∩ (S × {a} × B) and Δs,a,B = Δ ∩ ({s} × {a} × B). That is,
Δa,B is the set of those transitions whose label is a and whose end state is in B.
Adding the requirement that the start state must be s converts Δa,B to Δs,a,B.

It is assumed that transitions are represented via three arrays tail , label ,
and head . Each transition (s, a, s′) has an index t in the range 1, . . . , m such
that tail [t] = s, label [t] = a, and head [t] = s′. It is also assumed that the
indices of the transitions that share the same head state s are available via
In transitions [s] in some unspecified order. It may be implemented similarly
to elems , first , and end , and initialized in Θ(m + n) time with counting sort.
For convenience, confusing the transitions with their indices will be allowed in
formulae, like in In transitions [s] = { (s1, a, s2) ∈ Δ | s2 = s }.

For keeping track of work to be done, the algorithm uses four worksets. In
the prototype implementation, stacks were used as the worksets. However, they
need not be stacks. It suffices that they provide three constant time operations:
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Add(e) that adds the element e to the workset without checking whether it
already is there, Remove that removes any element of the workset and returns
the removed element, and Empty that returns True if and only if the workset
is empty. The capacity of a workset is the maximum number of elements it can
store.

The algorithm uses the following data structures:

Blocks . This is a refinable partition data structure on {1, . . . , n}. Its sets are the
blocks. The index of the set in Blocks is used as the index of the block also
elsewhere in the algorithm.

Splitters. This is a refinable partition data structure on {1, . . . , m}. Each set
in it consists of the indices of the a-labelled input transitions of some block
B, for some label a. That is, Splitters = {Δa,B | a ∈ L ∧ B ∈ Blocks ∧
Δa,B 	= ∅ }. That this property remains valid is not obvious from the code,
so it will be proven later as Lemma 1 (1). The bunch feature of Splitters will
be used. When saying that a transition is in a bunch it is meant that the
bunch contains a splitter that contains the transition.

Outsets. This, too, is a refinable partition data structure on {1, . . . , m}, but it
stores a finer partition than Splitters . Transitions that are in the same set
of Outsets also share their start state. That is, Outsets = {Δs,a,B | s ∈ S ∧
a ∈ L ∧ B ∈ Blocks ∧ Δs,a,B 	= ∅ }. This will be proven as Lemma 1 (2).

Unready Bunches. This is an initially empty workset of capacity �m/2�. It con-
tains the indices of the bunches of Splitters that consist of two or more
splitters. This will be proven as Lemma 1 (3).

Touched Blocks . This is an initially empty workset of capacity n. It contains the
indices of the blocks that have been affected when using a splitter, but have
not yet been split. In other words, precisely those blocks contain marked
states.

Touched Splitters and Touched Outsets. These are initially empty worksets of
capacity m. They contain the indices of the sets in Splitters and Outsets,
respectively, that must be updated, because the block where their transitions
end has been split. In other words, precisely those splitters or outsets contain
marked transitions.

Before discussing the main algorithm, it is useful to introduce the Update sub-
routine that is shown in Figure 4. Each time a block has been split, it is necessary
to split sets in Splitters and Outsets accordingly, to keep them consistent with
Blocks in the above-mentioned sense. The updating of Splitters may make it nec-
essary to update Unready Bunches , to maintain its above-mentioned relation to
Splitters . These duties are taken care of by Update.

When Update is called, b and b′ contain the indices of the halves of the block
that has just been split. Both halves must be non-empty.

To understand Update, let us first discuss what happens to a single set in
Outsets and temporarily ignore the rest. Update chooses one of the halves of the
block that has just been split, and marks those transitions of the outset that end
in the chosen half. (The implementation of this will be discussed soon.) If there



Bisimilarity Minimization in O(m log n) Time 133

Update(b, b′)
1 if Blocks .Size(b) ≤ Blocks .Size(b′) then s := Blocks .First(b)
2 else s := Blocks .First(b′)
3 while s �= 0 do
4 for t ∈ In transitions [s] do
5 p := Splitters .Set(t); o := Outsets .Set(t)
6 if Splitters .No marks(p) then Touched Splitters .Add(p)
7 if Outsets .No marks(o) then Touched Outsets .Add(o)
8 Splitters .Mark1(t); Outsets .Mark1(t)
9 s := Blocks .Next(s)

10 while ¬Touched Splitters .Empty do
11 p := Touched Splitters .Remove
12 u := Splitters .Bunch(p); if Has many(u) then u := 0
13 p′ := Splitters .Split1(p); if u �= 0 ∧ p′ �= 0 then Unready Bunches .Add(u)
14 while ¬Touched Outsets .Empty do
15 o := Touched Outsets .Remove ; o′ := Outsets .Split1(o)

Fig. 4. The Update subroutine

are no such transitions, then nothing happens to the outset. Otherwise, after the
marking phase, Update calls the split operation on the outset. If all transitions of
the outset were marked, then the split operation just unmarks them. Otherwise,
it divides the outset to two halves, those transitions that were marked and
those that were not, and unmarks all of its transitions. As a consequence, if
all transitions of the outset end in the same half-block, then Update does not
modify the outset; otherwise, it divides it to two outsets according to in which
half-block its transitions end.

To obtain good performance, Update updates all outsets in one batch. On
lines 1 and 2, Update finds the first state in the smaller half-block. As will
be discussed later, the performance of the algorithm depends on choosing the
smaller half. On lines 3 to 9, s scans through the states in the chosen half,
and t scans the input transitions of s on lines 4 to 8. Transitions in the outsets
are marked on line 8. The indices of the outsets whose transitions are marked
are collected into Touched Outsets. The test on line 7 ensures that the index
is added to Touched Outsets only once. The test works, because it is executed
before the transition is marked. Lines 14 and 15 pick each outset that contains
marked transitions one at a time, and splits it.

The processing of Splitters is otherwise similar to Outsets, but it contains an
additional step on lines 12 and 13. Line 13 may increase the number of splitters in
the bunch that contains p. If it is increased from one to two, then the bunch index
must be added to Unready Bunches , to maintain the property that it contains
the indices of precisely those bunches that consist of more than one splitter. If
line 13 does not actually split p, the test p′ 	= 0 fails and Unready Bunches is
not changed. If the bunch is already in Unready Bunches , then u becomes zero
on line 12 and Unready Bunches is not changed. The code is a bit complicated,
because Has many must be executed before p is split.
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Main part

16 initialize Blocks to {S} and Splitters to {Δa,S | a ∈ L ∧ Δa,S �= ∅ }
17 make every set of Splitters a singleton bunch
18 initialize Outsets to {Δs,a,S | s ∈ S ∧ a ∈ L ∧ Δs,a,S �= ∅ }
19 for i := 2 to k do
20 for s ∈ Si do Blocks .Mark1(s)
21 b := Blocks .Split1(1); Update(1, b)
22 for u := 1 to Splitters .bunches do
23 t := Splitters .Bunch first(u)
24 while t �= 0 do
25 s := tail [t]; b := Blocks .Set(s)
26 if Blocks .No marks(b) then Touched Blocks.Add(b)
27 Blocks .Mark1(s); t := Splitters .Bunch next(t)
28 while ¬Touched Blocks .Empty do
29 b := Touched Blocks .Remove
30 b′ := Blocks .Split1(b); if b′ �= 0 then Update(b, b′)
31 while ¬Unready Bunches .Empty do
32 u := Unready Bunches .Remove ; p := Splitters .Extract set(u)
33 if Splitters .Has many(u) then Unready Bunches .Add(u)
34 t := Splitters .First(p)
35 while t �= 0 do
36 if t = Outsets .First(Outsets .Set(t) ) then
37 s := tail [t]; b := Blocks .Set(s)
38 if Blocks .No marks(b) then Touched Blocks .Add(b)
39 t1 := Outsets .Left neighbour(t); t2 := Outsets .Right neighbour (t)
40 if t1 > 0 ∧ tail [t1] = s ∧ Splitters .Bunch(Splitters .Set(t1)) = u
41 ∨ t2 > 0 ∧ tail [t2] = s ∧ Splitters .Bunch(Splitters .Set(t2)) = u
42 then Blocks .Mark1(s) else Blocks .Mark2(s)
43 t := Splitters .Next(t)
44 while ¬Touched Blocks .Empty do
45 b := Touched Blocks .Remove
46 b′ := Blocks .Split1(b); if b′ �= 0 then Update(b, b′)
47 b′ := Blocks .Split2(b); if b′ �= 0 then Update(b, b′)

Fig. 5. Main part of the bisimilarity minimization algorithm

Touched Splitters and Touched Outsets are always empty when Update is
started, because they are initially empty, not used elsewhere, and Update leaves
them empty. The number of Remove-operations on them is thus the same as
the number of Add -operations. The cost of each split-operation is linear in the
number of the corresponding mark-operations. Other individual operations in
Update take constant time. Therefore, its execution time is dominated by lines 3
to 9. It is thus linear in the sum of the number of states in the scanned half-block
and the total number of their input transitions.

The main algorithm is shown in Figure 5. It starts by initializing Blocks ,
Splitters , and Outsets on lines 16 to 18 according to the situation where there
is only one block, and each splitter constitutes alone a bunch. Unready Bunches
is initially empty. This is consistent with the effect of line 17.
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The time consumption of the initialization is not otherwise a problem, but
the initialization of Splitters and Outsets requires putting the transitions in a
suitable order in Splitters .elems and Outsets.elems . Sorting the transitions with
heapsort would take Θ(m log m) time in the worst case, which is more than is
allowed. Sorting them with counting sort using the label as the key would take
Θ(m + α) time and memory. That is too much, when α = ω(m log n). There
is a trick with which the transitions can be classified according to their labels
in Θ(m) time and Θ(m + α) memory. It is based on [1, Exercise 2.12] and
was applied to the present purpose in [12]. The resulting order is suitable for
Splitters . Counting sorting the transitions with the start state as the key before
using the trick makes the resulting order suitable also for Outsets, and only takes
Θ(n + m) = Θ(m) extra time and memory.

Lines 19 to 21 split the original block according to the initial partition given
in the input, and update the other data structures accordingly. In the beginning
of line 21, block 1 is S1∪Si∪Si+1∪· · ·∪Sk. The split operation extracts Si and
makes it block b. Because the Si constitute a partition, none of them is empty.
Therefore, the half-blocks 1 and b are both non-empty when Update is called.

Now blocks have to be split until the partition is compatible. As has been
discussed above, the sets in Splitters correspond precisely to the non-empty
Δa,B, where a is a label and B is a block. Therefore, the splitting obligation
introduced by a and B can be met by marking the start states of the transitions
in the corresponding splitter and then splitting the blocks that contain marked
states.

To keep track of pending splitting obligations, the algorithm uses the bunches
of Splitters together with Unready Bunches . The bunches are used largely in the
same way as compound blocks were used in [11].

The algorithm first establishes and then maintains the property that if two
states are in the same block, then, for each bunch in Splitters, either none or
both of them have an output transition in the bunch. This invariant is crucial for
performance, as it allows to skip a largest splitter in the bunch when splitting.

The test on line 31 implies that when the algorithm terminates, each bunch
consists of a single splitter. Therefore, upon termination, if two states are in the
same block, then, for each splitter, either none or both of them have an output
transition in the splitter. This means that all splitting obligations have been
satisfied. In other words, for all states s1, s2, and s′1, labels a, and blocks B and
B′, if s1−a→ s′1 and s1 ∈ B and s2 ∈ B and s′1 ∈ B′, then s1 has an output
transition in the splitter that corresponds to Δa,B′ , so also s2 has, implying that
there is some s′2 ∈ B′ such that s2−a→ s′2. That is, the partition is compatible.

The for-loop on lines 22 to 30 establishes the above-mentioned property. For
each bunch, it splits the blocks so that the property starts to hold. Each cycle
around the for-loop processes Blocks similarly to the processing of Outsets in
Update. On lines 23 to 27, the start states of the transitions in the bunch are
marked, and the indices of the blocks that contain marked states are collected
into Touched Blocks . Touched Blocks is discharged on lines 28 to 30 by splitting
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the touched blocks. For each splitting, if both halves are non-empty, then Update
is called, to keep the other data structures consistent with Blocks .

Lines 22 to 30 actually separate the states according to the labels of their
output transitions. This is because bunches have not yet been divided after their
initialization, although splitters in them may have. Each bunch thus contains
precisely the a-labelled transitions for some label a. Therefore, lines 22 to 30
separate two states if and only if, for some label a, one of them has and the
other does not have an a-labelled output transition.

Lines 31 to 47 discharge Unready Bunches while maintaining the above-
mentioned property. On line 32, one bunch is chosen for processing, and a splitter
is extracted from it. If the remaining part of the bunch still contains more than
one splitter, line 33 puts it back to Unready Bunches , in accordance with the
main property of Unready Bunches .

To re-establish the above-mentioned property, it may be necessary to separate
two states because only one of them has an output transition in the remaining
bunch u, or because only one of them has an output transition in the extracted
splitter p (which is now a bunch on its own). This means that states of each
block have to be separated into three groups: those that have output transitions
only in p, only in u, or in both. Lines 34 to 47 do that according to a pattern
that we have seen twice before. We now discuss what is new on those lines.

The first novelty is the test on line 36. All transitions in the same set of
Outsets have the same start state. They also have the same left neighbour and
the same right neighbour in the sense of line 39. So they all have the same effect
on line 42. Therefore, it suffices to investigate only one of them on lines 37 to 42.
This is what the test on line 36 achieves. The test is an optimization that affects
neither correctness nor asymptotic time consumption, but improves practical
time consumption.

The second novelty is the splitting of blocks into three parts, and the test on
lines 40 and 41 that controls the splitting. We claim that a state s that has an
output transition in p or u is 1-marked, is 2-marked, or remains unmarked, if it
has an output transition in both p and u, only in p, or only in u, respectively.
Because t scans p, s is marked in some way if and only if it has an output transi-
tion in p. If s is 1-marked, then t1 or t2 is its output transition in u. It remains to
be shown that if a marked s has an output transition in u, then t1 or t2 is such
a transition. For each s and a, the order of the Δs,a,B in Outsets.elems is the
same as the order of the Δa,B in Splitters .elems , because the algorithm updates
Splitters and Outsets in a similar way. As a consequence, the output transitions
of s that are in p or u are contiguously in Outsets.elems . Thus Left neighbour
or Right neighbour or both find an output transition in u, if any exists.

Thanks to three issues, the algorithm runs in O(m log n) time. The first is
Hopcroft’s trick [7]: because Extract set tries two splitters and extracts the
smaller of them, each time when a transition is used for splitting blocks, it
belongs to a splitter whose size is at most half the size in the previous time. All
transitions in a splitter have the same label, so there can be at most n2 of them.
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Thus each transition can be used at most log2 n2 = 2 log2 n times for splitting.
Bunches were needed to make it legal to skip the largest splitter.

The second is Knuutila’s trick [9]: because Update chooses the smaller half-
block, each time when a state is used for updating splitters and outsets, it belongs
to a block whose size is at most half the size in the previous time. Thus each
state can be used at most log2 n times for updating.

The third issue is from [12]. It is the organisation of the work in such a way
that the set of labels is never scanned. Instead, subsets of transitions are scanned
so that if there are no transitions for some label, then no work is done for that
label. Failure to obey this principle would easily introduce an Ω(nα) term to
time consumption.

5 Detailed Proofs

The previous section explained the principle of the algorithm. In this section,
detailed proofs of its correctness and performance are presented.

As is obvious from earlier discussion, it is important that Splitters and Outsets
are consistent with Blocks , and Unready Bunches is consistent with Splitters .
The duty of the Update subroutine is to re-establish consistency each time Blocks
has changed. Let us state this precisely, and check that also the main algorithm
maintains consistency where necessary.

Lemma 1. The following hold everywhere after line 18, except (1) and (2) on
lines 21, 30, 46, and 47 and within Update, and (3) on lines 32, 33, and 13.

(1) For any two transitions, they are in the same set in Splitters if and only if
they have the same label and they end in the same set in Blocks.

(2) For any two transitions, they are in the same set in Outsets if and only if
they have the same start state and the same label, and they end in the same
set in Blocks. This is equivalent to that they have the same start state and
belong to the same set in Splitters.

(3) Unready Bunches contains the indices of precisely those bunches of splitters
that contain two or more splitters.

Proof. The main algorithm starts by initializing Blocks , Splitters , and Outsets
on lines 16 to 18 according to the situation where there is only one block. This
makes (1) and (2) hold. It also makes (3) hold, because Unready Bunches is
initially empty and line 17 makes each bunch of splitters to consist of a single
splitter. From then on, each time a block has been split (lines 21, 30, 46, and 47)
resulting in two non-empty sub-blocks, Update is called with the two halves as the
parameters. It splits Splitters and Outsets so that (1) and (2) are re-established.

The number of splitters in a bunch grows only on line 13. It has already been
discussed. The number of splitters in a bunch decreases only on line 32. It re-
moves the bunch from Unready Bunches and removes a splitter from the bunch.
Line 33 checks whether the bunch should have remained in Unready Bunches ,
and puts it back there if necessary. The removed splitter becomes a bunch of its
own. It is a singleton bunch, so it is not added to Unready Bunches . 
�
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The test on lines 40 to 42 is tricky enough to deserve a lemma of its own.

Lemma 2. If line 42 1-marks state s, then s has an outgoing transition in bunch
u. If line 42 2-marks s, then s does not have an outgoing transition in u.

Proof. If line 42 1-marks s, then t1 or t2 is clearly such a transition.
Assume now that such a transition t′ exists. The state s has been found on

line 37 via some t. Immediately before the extract operation on line 32 both t
and t′ were in u. So, by lines 16 and 17, they have the same label, say a. Let B
and B′ be the blocks where t and t′ end. So B 	= B′, t ∈ Δs,a,B, and t′ ∈ Δs,a,B′ .

Let X � Y denote that the elements of set X occupy at most as big indices
in the elems array in question as the elements of set Y .

Assume first that Δs,a,B � Δs,a,B′ . Thanks to line 18, if Δs,a,B � Δs′′,a′′,B′′

� Δs,a,B′ , then s′′ = s and a′′ = a. Therefore, t2 	= 0 and t2 is in some Δs,a,B′′ ,
where B′′ 	= B. The operation of Update implies that Δa,B � Δa,B′′ � Δa,B′

in Splitters .elems . Because Extract set extracted Δa,B from one end of u while
Δa,B′ stayed in u, also Δa,B′′ was and stayed in u. As a consequence, t2 is in u
and passes the test on line 41. So s is 1-marked.

The case Δs,a,B′ � Δs,a,B is symmetric with t1 replacing t2. 
�

The next lemma says that the algorithm does not do any splitting that it should
not.

Lemma 3. If the algorithm puts two states in different blocks, then those states
belong to different blocks in each partition that is a refinement of I and compat-
ible with Δ.

Proof. If two states go into different blocks on line 21, then they are in different
blocks in I.

When lines 22 to 30 are executed, the bunches of splitters still contain the
same transitions as originally, although they may have been divided into many
splitters. Thus each execution of lines 23 to 27 scans some Δa,S . Therefore, if
line 30 separates two states, then one of them has and the other does not have
an outgoing a-transition.

The case remains where line 46 or 47 puts the states into different blocks.
Assume that s1 is moved to a new block on line 46 and s2 on line 47, while
s0 stays in the original block. By Lemma 1 (1), there is some B ∈ Blocks and
a ∈ L such that s1 and s2 have but s0 does not have an a-transition to B. (B
is the block and a is the label that correspond to the splitter that is scanned on
lines 34 to 43.) It is thus necessary to separate s0 from s1 and s2 to obtain a
compatible partition.

By Lemma 2, s1 has and s2 does not have an output transition that belongs
to u. Let a be the label and B′ the end block of that transition of s1. Then s1
has and s2 does not have an a-transition that ends in B′. So it is correct to put
s1 and s2 into different blocks. 
�

The next lemma says that the algorithm does all the splitting that it should.
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Lemma 4. When the algorithm terminates, Blocks is a refinement of I and
compatible with Δ.

Proof. Lines 19 to 21 ensure that Blocks will be a refinement of I. The rest of
the proof is based on the following Gries-style [6] invariant.

On line 31, for every states s1 and s2 that are in the same block, transi-
tion t1 that starts at s1, and bunch of splitters u that contains t1, there
is a transition t2 that starts at s2 and is in u.

Lines 22 to 30 make the invariant hold by separating s1 to a different block from
s2, if t2 does not exist.

The constituents of the invariant may change only when a block is split or the
set of transitions in a bunch is modified. Splitting a block is not a threat to the
invariant (merging blocks would be, but the algorithm does not do that). Only
Extract set modifies the set of transitions in a bunch, and the only place where
it is executed is line 32. There a bunch is divided to a new singleton bunch that
consists of the splitter p, and u that contains the rest of the original bunch.

The purpose of lines 34 to 47 is to split blocks into up to three parts according
to the existence of an output transition in p but not in u, in u but not in p, and
in both. If s does not have an output transition in p, then it stays in its block.
In the remaining two cases, by Lemma 2 it is put in a different block on line 46
or 47 depending on which case holds. So the invariant is re-established.

Lemma 1 (3) implies that when the algorithm terminates, every bunch consists
of precisely one splitter. Then the invariant actually says that for every states s1
and s2 that are in the same block, transition t1 that starts at s1, and splitter p
that contains t1, there is a transition t2 that starts at s2 and is in p. By Lemma 1
(1), this is equivalent to that Blocks is compatible with Δ. 
�

The efficiency of the algorithm is stated in the next lemma.

Lemma 5. The algorithm runs in O(m log n) time and O(m + α) memory (as-
suming that n ≤ 2m).

Proof. All data structures consume O(n), O(m), or O(α) memory. The running
time of lines 16 to 18 was discussed in Section 4. Excluding the time spent in the
loops within Update, lines 19 to 21 are obviously O(n) and lines 22 to 30 Θ(m).

Because Extract set avoids choosing the largest set, each splitter that is used
as the p on lines 32 to 47 inherits at most half of the transitions of the bunch from
which it is extracted. The splitter becomes a new bunch. As a consequence, when
any transition is used anew for splitting a block, it belongs to a splitter whose
size is at most half the size in the previous time. Initially a splitter contains at
most n2 transitions. So the same transition can be used at most 2 log2 n times.
Therefore, lines 36 to 43 and 45 to 47 are executed at most 2m log2 n times.
Because splitters are not empty, lines 32 to 34 are executed at most the same
number of times as line 36, and lines 35 and 44 at most twice that many times.
Line 31 is executed once more than line 32.
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By now the act of calling Update has been taken into account in the analysis,
but the execution of Update has not. Lines 1 and 2 determine whether b or b′

is scanned. If b′ is scanned, then each scanned state was marked on line 20,
27, or 42. Otherwise other states are scanned, but their number is at most the
same. So the n, m, or 2m log2 n bound applies to line 9. Whenever lines 5 to 8
are executed anew for some t, the test on lines 1 and 2 guarantees that head [t]
belongs to a block whose size is at most half of the size in the previous time. This
implies an m log2 n upper bound. Lines 11 to 13 and 15 are executed at most as
often as line 5. So every line of the algorithm meets the O(m log n) bound. 
�

(It is indeed the case that the reasons why lines 8 and 9 meet the time bound are
different. Each of them may execute more often than the other, as In transitions [s]
may be empty for many s. A similar issue was discussed in [9].)

Corollary 1. The algorithm solves the bisimilarity minimization problem in
O(m log n) time and O(m + α) memory (assuming that n ≤ 2m).

6 Experience with a Prototype Implementation

For the purpose of testing the new algorithm and getting an idea of its perfor-
mance, the present author implemented it in C++. No reference implementation
was available for the general problem, but, thanks to [12], two comparable pro-
grams were available for the special case of DFA minimization. Therefore, a
pre-processing stage was added that removes unreachable states, and non-initial
states from which no state in S1 is reachable. This made the new program appli-
cable as such both to DFA minimization and to bisimilarity minimization with
at most two initial blocks.

The author tested the correctness of his implementation first by giving an
extensive set of randomly generated DFAs to the new and the reference program,
and checking that the outputs were isomorphic. Then he tested the new program
with more than 300 randomly generated nondeterministic graphs of various sizes
and densities. Unfortunately, in the nondeterministic case there is no reference
program, no straightforward way to check isomorphism, nor other simple way of
fully checking the output. Therefore, each nondeterministic graph was given to
the program in four different versions, and it was checked that the four outputs
had the same number of states and the same number of transitions. Two of the
versions were obtained by randomly permuting the numbering of states in the
original version, and the first output was used as the fourth input.

Timing measurements were conducted by Petri Lehtinen and executed on
a PC with Linux and 1 gigabyte of memory. A sample of results with ran-
domly generated nondeterministic graphs is shown in Table 1. Each entry shows
the fastest and slowest of three measurements, made with |S1| = n/2 + d and
|S2| = n/2− d, where d ∈ {−1, 0, 1}. The times are shown in seconds. The clock
was started when the input file had been read, and stopped when the program
was ready to start writing the output file. No attempt was made to optimize
the implementation to the extreme. In particular, all instances of the refinable
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Table 1. Running time with nondeterministic input containing two initial blocks

n α m = 20 000 m = 50 000 m = 100 000 m = 200 000 m = 500 000 1 000 000
1 000 10 0.017 0.017 0.043 0.044 0.119 0.123 0.092 0.365 0.257 0.260 0.539 0.547
1 000 100 0.021 0.022 0.084 0.088 0.251 0.255 0.501 0.505 1.016 1.025 2.330 2.402

10 000 10 0.005 0.005 0.027 0.027 0.074 0.079 0.505 0.512 1.404 1.456 2.926 2.983

partition data structure contained also the arrays and functionality (like the
bunches) that the particular instance does not need.

Because it is difficult to generate a precise number of transitions according to
the uniform distribution, sometimes the generated number was slightly smaller
than the desired number. Running time depends also on the size of the result: the
smaller it is, the less splitting of blocks. It is also very difficult to get full control
of all other activity that is going on in a modern computer. As a consequence, the
measurements contain some noise. The results should be considered as typical,
not as the absolute truth.

When m is big enough compared to nα, each state is likely to have an output
transition with every label to both a state in S1 and in S2, causing the graph
to minimize to 2 states and 4α transitions, while with a smaller m the graph
does not reduce much. This explains the anomaly with n = 1 000, α = 10, and
m = 200 000. The row n = 10 000 is subject to another, smoother phenomenon
that unduly reduces execution time: when m is small, many states are removed
in the pre-processing stage as unreachable from the initial state or as unable to
reach any final state. Altogether, the issue of precise running time is complicated.

7 Conclusions

The algorithm in this paper looks complicated. To some extent it is because it
was presented in great detail. A significant part of its implementation could be
obtained by copying the pseudocode in the figures and the definitions of arrays
in the main text, and converting them to the programming language in ques-
tion. This is how the author implemented the prototype. Algorithm descriptions
in research papers (like [11]) are often so sketchy that they are very hard to
implement. The author wanted this not to be the case with the present paper.

Only one of the instances of the refinable partition data structure used by the
algorithm uses Mark2 and Split2, and only one uses the bunch feature. These
features are supported by additional arrays. Leaving them out from the instances
that do not use them would improve the performance of the prototype.

The neighbour trick on lines 39 to 41 and Lemma 2 is ugly, because it breaks
the otherwise clean abstract interface of the data structure. It also made it
necessary to introduce Outsets and Touched Outsets. In [11], a similar problem
was solved by keeping track of how many transitions to each compound block
each state has. Finding the appropriate counter quickly enough is not trivial, so
the technique is somewhat complicated. It is plausible that something similar
could have been done in the new algorithm. We leave it for the future to find
out if it would work and be better than the chosen approach.
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In verification of concurrent systems, it is common to use equivalence notions
that abstract away from invisible actions. Bisimilarity does not do that. However,
it preserves all commonly used equivalences. Therefore, the new algorithm can
be used as a preprocessing stage that makes the graph smaller before it is given
to a reduction or minimization algorithm of the equivalence in question. Because
the new algorithm is cheap compared to most algorithms for other equivalences,
this kind of preprocessing may save a lot of time in practice.

When minimizing with respect to observation equivalence by saturating the
graph and then running bisimilarity minimization [8], the growth in the number
of transitions caused by saturation is a problem. A natural, but apparently
difficult, topic for future research is whether saturation could be replaced by
adding suitable graph traversal to the new algorithm, without losing too much
of its good performance.
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2 Université P. & M. Curie, LIP6 - CNRS UMR 7606 - Paris, France
emmanuel.Paviot-Adet@lip6.fr

3 Université Paris Descartes, Inst. Univ. de Technologie - Paris, France
4 Yahoo! Inc.

minwan@yahoo-inc.com

Abstract. We present a symbolic method for p-semiflow computation,
based on zero-suppressed decision diagrams. Both the traditional explicit
methods and our new symbolic method rely on Farkas’ algorithm, and
compute a generator set from which any p-semiflow for the Petri net
can be derived through a linear combination. We demonstrate the effec-
tiveness of four variants of our algorithm by applying them on a suite
of Petri net models, showing that our symbolic approach can produce
results in cases where the explicit approach is infeasible.

1 Introduction

This section begins by briefly summarizing our Petri net notation, then it reviews
the classic problem of p-semiflow computation, and gives some background on
the class of decision diagrams we use.

1.1 Petri Nets

We adopt the standard definition of a Petri net, as a directed bipartite graph
(P , T ,F−,F+), where

– P and T are sets of places and transitions, respectively drawn as circles and
rectangles, satisfying P ∩T = ∅ and P ∪T 	= ∅. We let n = |P| and m = |T |.

– A marking μ ∈ Nn assigns a number of tokens μp to each place p ∈ P .
– F− : P × T → N and F+ : P × T → N, are n × m incidence matrices

describing the cardinalities of the input arcs from p ∈ P to t ∈ T and of the
output arcs from t ∈ T to p ∈ P , respectively. Graphically, the cardinality is
written on the arc, the default being 1, except that a missing arc indicates
a cardinality of 0.

If the Petri net is marked, each place contains a number of tokens, collectively
described by the marking μ : P → N. Starting from the initial marking μinit, the

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 143–162, 2009.
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net then evolves as follows: (1) a transition t is enabled in marking μ if μp ≥ F−
p,t

for each place p, and (2) any enabled transition can fire, changing the marking
of the net from μ to μ′, where μ′

p = μp − F−
p,t + F+

p,t for each place p.

S

R

Y

1

2

T1a
G1

T1b

Y1
T1c T2c

T2b

G2T2a
R2

Fig. 1. Petri net of a simple traffic light controller

Fig. 1 shows an example of a Petri net modeling a traffic light controller
at an intersection. Places G1, Y1, and R1 represent the traffic lights for the
north/south direction, while places G2, Y2, and R2 represent the traffic lights
for the east/west direction. A token in place Gx, Yx, or Rx, represents that
the corresponding green, yellow, or red light is on, respectively, for x ∈ {1, 2}.
Transitions Txa, Txb, and Txc define the order through which a traffic light will
cycle: first green, then yellow, then red, and back to green. For example, firing
transition Txa consumes a token in place Rx and produces a token in place Gx,
transitioning from red to green. To ensure mutual exclusion, an additional place
S is used. Firing transition Txc to turn a light red produces a token in place S,
while firing a transition Txa will consume that token. Fig. 1 shows the initial
marking of the net with tokens in both R1 and R2 (representing the state of
both lights being red) and a token in S (meaning that either one of the two
lights is allowed to transition to green, but not both).

1.2 Explicit P-Semiflow Generation

Invariant analysis is concerned with relationships satisfied by any reachable
marking, thus based on the net structure rather than on the initial marking.
Much work has focused on computing p-semiflows [4, 3], i.e., non-zero solutions
w ∈ N

n to the set of linear “flow” equations w · F = 0, where F = F+ − F−

is the flow matrix. A p-semiflow w specifies the constraint
∑

p∈P wp · μp = C

on any reachable marking μ, where the initial marking μinit determines the
constant C =

∑
p∈P wp · μinit

p . However, invariant analysis provides necessary,
not sufficient, conditions on reachability; a marking μ might satisfy all known
invariants and still be unreachable from μinit through a legal firing sequence.

Letting the support of a p-semiflow w be the set of places with a positive
weight in w, Supp(w) = {p ∈ P : wp > 0}, we say that a p-semiflow w is
minimal if (a) it is scaled back, i.e., the greatest common divisor of its entries
is 1, and (b) it has minimal support, i.e., no other p-semiflow v exists with a
strictly smaller support Supp(v) ⊂ Supp(w).

Since any linear combination of p-semiflows is a p-semiflow, the set of scaled
back p-semiflows is infinite unless it contains a single element. It is desirable
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set of array[m+n] of int ExpPSemiflows(int n, int m, set of array[m+n] of int A) is

local int j;
local array[m+n] of int a, aN ,aP ;
local set of array[m+n] of int AN ,AP ;
1 for j = 1 to m do
2 AN ← ∅; • set of rows with negative entry j
3 AP ← ∅; • set of rows with positive entry j
4 foreach a ∈ A do
5 if a[j] < 0 then AN ← AN ∪ {a};
6 if a[j] > 0 then AP ← AP ∪ {a};
7 A ← A \ (AN ∪AP ); • remove from A rows with nonzero entry j
8 foreach (aN ,aP ) ∈ AN ×AP do
9 v ← MinimumCommonMultiple(−aN [j], aP [j]);

10 A ← A∪ {(−v/aN [j]) · aN + (v/aP [j]) · aP }; • entry j of new row is 0
11 return A;

Fig. 2. An explicit algorithm to compute P-semiflows

to compute a generator set W = {w(1), ...,w(r)} of minimal p-semiflows, from
which any p-semiflow w can be derived as the non-negative linear combination
w =

∑r
i=1 αiw(i), where αi ∈ N, for 1 ≤ i ≤ r, is uniquely determined by w. It

is well-known that the generator set is unique, since it contains all and only the
minimal p-semiflows, but its size can be exponential in the number of places n.

An algorithm to compute all minimal p-semiflows, possibly plus some with
non-minimal support, is based on Farkas’ algorithm [5], which operates on a ma-
trix [T|P], initially set to [F | I] ∈ Zn×(m+n), the juxtaposition of the flow matrix
F ∈ Zn×m with the n × n identity matrix I. The algorithm iteratively creates
new rows with an increasing number of zero entries in the first m columns. At
the end, any remaining row [t |p] of this matrix is such that the m entries of t are
all zero and the n entries of p describe a p-semiflow. Algorithm ExpPSemiflows
in Fig. 2 shows the pseudocode for this explicit approach, assuming that the
matrix is stored as a set A of integer row vectors, each of length m+n (treating
the matrix as a set of rows is convenient, since we need to add and remove rows
of this matrix). ExpPSemiflows works by iteratively annulling all the columns
of T beginning with the leftmost column, 1, and ending with the rightmost col-
umn, m. To annul column j, it first removes from A all rows with a negative or
positive entry in the jth column and puts them into two new sets AN and AP ,
respectively. It then computes the pairwise linear combination of each row in
AN with each row in AP , choosing positive integer scalars such that the result
has a zero entry in column j, and adds the resulting row back to set A. Once all
m columns of T have been thus annulled, the resulting matrix P represents a set
of p-semiflows for the net. The next step is to minimize this set of p-semiflows
by both scaling back P and removing all p-semiflows with non-minimal support.

To scale back A, we divide each row a ∈ A by the greatest common divisor of
all entries in a, i.e., A ← (A \ {a}) ∪ {a/gcd(a[m + 1], ...,a[m + n])}. Then, we
need to eliminate fromA the non-minimal support p-semiflows. This can be done
by considering each pair of distinct rows x and y in A. If Supp(x) is a proper
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subset of Supp(y), then y is non-minimal and is eliminated from A. Such an
approach, however, requires |A|·(|A|−1)/2 comparisons of supports, each of size
n, thus has time complexity O(|A|2 · n). For greater efficiency, we can eliminate
rows of A during, rather than after, the execution of Algorithm ExpPSemiflows .
This way, before the jth step, A contains only and all the minimal support p-
semiflows of the subnet obtained from the original net by deleting the transitions
corresponding to columns j, ..., m of T [3]. Then, each newly-generated row is
added to A in step 10 of Algorithm ExpPSemiflows only if it does not contain
the support of a row already in A. While the worst-case complexity remains
O(|A|2 · n), the early elimination of as many rows as possible from A tends to
be quite beneficial in practice.

To justify eliminating y at the jth step, we can show that there must exist a
row z such that Supp(z) ⊂ Supp(y) and y can be obtained by scaling back a
linear combination of x and z. Let kzz = kyy − kxx, where kx, ky, and kz are
positive integers, for any p ∈ Supp(y) we have kyy[p] ≥ kxx[p], and there exists
q ∈ Supp(y) s.t. kyy[q] = kxx[q]. Such integers kx, ky , and kz can always be
found. Then, z is a p-semiflow: z ·F = 1/kz(kyy− kxx) ·F, thus z ·F = 0. The
support of z is strictly included in that of y and kyy = kxx + kzz. Then, y can
be safely removed from the generator set. If x or z are not minimal, then other
minimal p-semiflows exist to reconstruct them, and in turn to reconstruct y.

Fig. 3 on the left shows the initial matrix [T |P] for the traffic light example of
Fig. 1, with null entries omitted for readability. Since T is initially the flow matrix
F, the first m = 6 columns encode the number of tokens that will be added to or
subtracted from each place when the corresponding transition fires. For example,
the second column tells us that firing transition T1b removes a token from G1 and
adds a token to Y1, representing traffic light 1 transitioning from green to yellow.
The same figure on the right shows the output of Algorithm ExpPSemiflows . The
first m columns are omitted, as they are all zero, and the last n columns, initially
encoding an identity matrix, now encode all minimal p-semiflows of the net. As
no p-semiflow in the final matrix is a linear combination of any other p-semiflows,
all p-semiflows have minimal support. In addition, all p-semiflows are obviously
scaled back, as their entries are either 0 or 1, thus we have the generator set
W = {(1, 1, 1, 0, 0, 0, 0), (0, 0, 0, 1, 1, 1, 0), (1, 1, 0, 1, 1, 0, 1)}. Each w ∈ W can be
tested to ensure that it is indeed a p-semiflow by verifying that w ·F = 0.

T P
T1a T1b T1c T2a T2b T2c G1 Y1 R1 G2 Y2 R2 S

G1 1 −1 1
Y1 1 −1 1
R1 −1 1 1
G2 1 −1 1
Y2 1 −1 1
R2 −1 1 1
S −1 1 −1 1 1

Pfinal

G1 Y1 R1 G2 Y2 R2 S

1 1 1
1 1 1

1 1 1 1 1

Fig. 3. Initial and final matrices for the traffic light Petri net
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Since W contains p-semiflows for the traffic light controller, we can use it
to gain valuable insights into how the controller functions. For example, the p-
semiflow (1, 1, 1, 0, 0, 0, 0), together with the initial marking, implies that exactly
one token will be circulating in G1, Y1, and R1, in any reachable marking, i.e.,
at any given moment of time, exactly one of the three lights (red, yellow, green)
for the north/south direction will be on. The p-semiflow (0, 0, 0, 1, 1, 1, 0) speci-
fies the analogous constraint for the east/west direction. Finally, the p-semiflow
(1, 1, 0, 1, 1, 0, 1), together with the initial marking, specifies the constraint that
exactly one place in {G1, Y1, G2, Y2, S} contains a token, i.e., if the green or yel-
low light in the north/south direction is on, then the green and yellow lights in
the east/west direction are off, and vice versa. One final aspect of these results
is that each place is included in the support of at least one p-semiflow. This
indicates that the state space for the net is finite in size for any initial marking.

1.3 Decision Diagrams

To increase the time and memory efficiency of p-semiflow generation, we use
decision diagrams, in particular, a variant of extensible multi-way decision dia-
grams (MDDs) [12] where variable domains are a-priori unknown sets of integers,
i.e., each variable can assume a negative, zero, or positive value. Formally, given
a set of L variables ordered as xL � xL−1 � · · · � x1, we define such a decision
diagram as a directed acyclic edge-labeled multi-graph such that:

– A nonterminal node p is associated with a variable p.var = xk, L ≥ k ≥ 1,
and has an infinite set of outgoing edges, each indexed by a different integer.

– The only terminal nodes, with no outgoing edges, are 0 and 1. For ease of
notation, we let 0.var = 1.var = x0, where xk � x0 for L ≥ k ≥ 1.

– The edge with index i originating from nonterminal node p points to a node
q satisfying p.var � q.var. We write this as p[i] = q.

We use a zero-suppressed [10] semantic for an edge skipping variables, i.e., p[i] =
q, with p.var = xk, q.var = xh, and k > h+1, is equivalent to a path p[i] = pk−1,
pk−1[0] = pk−2, ..., ph+1[0] = q, where each intermediate node pl is associated
with variable xl and is such that, except for the outgoing edge indexed by 0, all
its other edges point to 0. We then define the set of k-tuples encoded by a node
p, with p.var = xk, as

X (p) =

⎧⎨⎩
∅ if p = 0
{ε} if p = 1⋃

i:p[i] �=0∧p[i].var=xh
{i} · {0k−h−1} · X (p[i]) otherwise,

where {ε} indicates the set containing only the empty tuple, 0t indicates a tuple
of length t ≥ 0 of zeros, and “·” is the ordinary concatenation operator.

Conceptually, a node p has an infinite number of outgoing edges. We enforce
a finite representation by requiring that only a finite number of outgoing edges
point to nodes other than 0, and storing only these edges. We can then define
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Fig. 4. ZMDD encoding the flow matrix F for our Petri net

two canonical forms, a quasi-reduced and a fully-reduced one1. Either one forbids
nodes where all edges point to 0 and duplicates, i.e., distinct nodes associated
to the same variable must have different edge sets: if p.var = q.var, then there
must be an i such that p[i] 	= q[i]. Then, the quasi-reduced form, QMDD, forbids
variable-skipping altogether, except for edges pointing to 0: if p.var = xk, any
edge p[i] = q 	= 0 satisfies q.var = xk−1. The zero-suppressed, form, ZMDD,
forces instead variable-skipping whenever possible: there can exist no node p
where only p[0] does not point to 0. In the following we use the term MDD
to indicate that our algorithms can be implemented either with QMDDs or
with ZMDDs, however, we assume ZMDDs, as they simplify the pseudocode
for the algorithms we introduce, and are more efficient in practice, since most
p-semiflows are usually very sparse, especially for large nets.

Fig. 4 shows the ZMDD encoding the flow matrix F, as a set of tuples (rows),
for our example. The terminal 0 and any edge pointing to it are omitted.

2 Our Contribution

As described in Sect. 1.2, the time and memory required to build a generator
set is at least proportional to its size, which can be exponential in m. We then
present a symbolic algorithm that, by using MDDs, has the potential to be much
more efficient in many practical nets.

2.1 A Symbolic Algorithm to Compute P-Semiflows

Algorithm SymPSemiflows in Fig. 5 is a symbolic implementation of p-semiflows
computation. Unlike the explicit version of Fig. 2, SymPSemiflows operates on
an MDD a rather than on a matrix A. The MDD a encodes the matrix [T|P]
as a set of rows over L = m + n variables, v1�···� vm�w1�···�wn (we still
associate variable x0 to the terminal nodes).

1 The proofs of canonicity for the quasi-reduced and the fully-reduced forms are anal-
ogous to that for quasi-reduced BDDs [9] and ZBDDs [10], respectively.
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Union and Intersection in Fig. 5 are the usual MDD disjunction and con-
junction operations. SymLinComb(ρx, x, ρy, y) is instead used to symbolically
compute all pairwise linear combinations of the rows encoded by MDDs x and
y, multiplied respectively by the positive integers ρx and ρy. As with all decision
diagram manipulations, the recursive algorithm starts at the root and ends at
the terminals. However, the recursion might end early if the desired result is

mdd SymPSemiflows(int m, mdd a) is

local int j, iN , iP , ρ, ρN , ρP ;
local mdd aN , aP ;
1 for j = 1 to m do
2 if a.var �= vj skip; • nothing to do if a encodes only rows with vj = 0
3 aN ← Intersection(a,Potential (vj < 0)); • set of rows with negative vj

4 aP ← Intersection(a,Potential (vj > 0)); • set of rows with positive vj

5 a ← Intersection(a,Potential (vj = 0)); • redefine a for the next iteration
6 foreach iN s.t aN [iN ] �= 0 do
7 foreach iP s.t. aP [iP ] �= 0 do
8 ρ ← MinimumCommonMultiple(−iN , iP );
9 ρN ← ρ/(−iN );

10 ρP ← ρ/iP ;
11 a ← Union(a,SymLinComb(ρN , aN [iN ], ρP , aP [iP ]));
12 return a;

mdd SymLinComb(int ρx, mdd x, int ρy, mdd y) is

local int ix, iy , t;
local mdd r;
1 if x = 1 and y = 1 then return 1;
2 if x = 0 or y = 0 then return 0;
3 if InCache(CSymLinComb, ρx, x, ρy, y, r) then return r;
4 if x.var � y.var then • y.var is skipped
5 r ← NewNode(x.var);
6 foreach ix s.t. x[ix] �= 0 do
7 r[ρxix] ← SymLinComb(ρx, x[ix], ρy, y);
8 else if y.var � x.var then •x.var is skipped
9 r ← NewNode(y.var);

10 foreach iy s.t. y[iy] �= 0 do
11 r[ρyiy ] ← SymLinComb(ρx, x, ρy, y[iy]);
12 else • y.var = x.var
13 r ← NewNode(x.var);
14 foreach ix s.t. x[ix] �= 0 do
15 foreach iy s.t. y[iy ] �= 0 do
16 t ← ρxix + ρyiy ;
17 r[t] ← Union(r[t],SymLinComb(ρx, x[ix], ρy, y[iy ]))
18 r ← UniqueTableInsert(r);
19 CacheAdd(CSymLinComb, ρx, x, ρy, y, r);
20 return r;

Fig. 5. A symbolic algorithm to compute p-semiflows
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found in the operation cache, implemented as a hash table searched with a key
(Cx, ops), where Cx is the code for operation x and ops are the operands. The
pseudocode accesses this cache through two functions: InCache(Cx, ops, res) fills
res with the result and returns true if (Cx, ops) is a hit, otherwise it leaves res
unchanged and returns false, while CacheAdd (Cx, ops, res) inserts res as the
lookup value for (Cx, ops).

Potential (cond) returns the set of rows satisfying boolean condition cond. As
we assume integer variable domains, this set could be infinite but, in our specific
case, this is not a problem because we use Potential only in an intersection
with a finite set of rows X (a). Thus, in practice, we can modify the Intersection
operator to “fake” the second argument, as condition cond in our case can be
enforced on the first argument, node a, which is associated to variable vj .

Algorithm SymPSemiflows works by eliminating variable v1 through vm, in
that order. This accomplishes the task of annulling each column in matrix T,
after which we obtain the MDD encoding the p-semiflows. Given MDD a, the
process of annulling a column at a.var = vj involves the following steps:

1. Create two new MDDs aP and aN , encoding the set of rows with positive vj

and negative vj , respectively.
2. Remove these rows from a, which results in a encoding only rows with null

vj . Due to the ZMDD encoding, a is set to a[0], thus the height of a decreases
by at least one.

3. Perform the pairwise linear combination between each aP [iP ] and aN [iN ].
4. Finally, combine the resulting MDD with a using a Union operation.

Due to our use of ZMDDs and to the for-loop order, line 2 of SymPSemiflows
effectively checks whether all rows encoded by a have v1 = ... = vj = 0. After
executing line 5, we are guaranteed that this is the case, thus a.var = vj+1, or
possibly even lower. Also, if, at iteration j some rows have vj > 0 but no row
has vj < 0, or vice versa, i.e., if aN = 0 and aP 	= 0 or aN 	= 0 and aP = 0, no
work is required, and, at iteration j + 1, a simply encodes the rows with vj = 0.

Algorithm SymLinComb recursively performs the pairwise symbolic linear
combination of all rows encoded by MDDs x and y, using ρx and ρy as weights.
Given two MDDs with x.var = y.var, we create a new node r such that r.var =
x.var = y.var. Then, for each pair of edges x[ix] and y[iy], we add a new edge r[t]
to r, where t = ρxix + ρyiy. This edge points to the symbolic linear combination
of x[ix] and y[iy], still with the same weights ρx and ρy. If r already contains
an edge r[t], a union is performed. A special case occurs when x.var 	= y.var.
For example, if x.var > y.var, then y encodes only rows with null x.var and,
we only need to scale each edge of x[ix] 	= 0 by the scalar ρx, with each edge
pointing to the linear combination of x[ix] and y.

2.2 Removing Non-minimal P-Semiflows

Recall that, at the start of algorithm SymPSemiflows , MDD a has m+n variables
v1 � · · · � vm � w1 � · · · � wn, with v1, ..., vm corresponding to the transitions.
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At the end of any given iteration, the p-semiflows found thus far are represented
by all nodes p s.t. p.var ∈ {w1, ..., wn}. Thus, the nodes above variable w1 must
be ignored to obtain the current set of p-semiflows. For this, we define an MDD
operation called Prune which, given an MDD a, returns the Union of all nodes
p such that (1) p is either a or a descendant of a, and (2) either p.var = w1 or
w1 � p.var and p is pointed to by an edge from a node q s.t. q.var � w1. Then,
the set of semiflows represented by an MDD a with a.var � w1 is X (Prune(a)).

SymPSemiflows , just like ExpPSemiflows , can compute some non-minimal p-
semiflows in addition to the minimal ones. Recall that there are two causes that
can make a p-semiflow non-minimal: its support is not minimal, or its support
is minimal, but it is not scaled back. We now describe how to eliminate these
non-minimal p-semiflows from the result returned by SymPSemiflows .

2.3 Removing Non-minimal Support P-Semiflows

The elimination of non-minimal support p-semiflows is not a trivial task. Various
explicit approaches have been proposed [3], differing in how and when non-
minimal testing and elimination take place. Recall the following proposition [3]:

Proposition 1. Let [T|P] be the matrix obtained after annulling k−1 columns,
where P only contains the minimal p-semiflows of A(k−1). Let [tu|pu] be a row
obtained (not necessarily the first row) while annulling column k of [T|P] as a
combination of [ti|pi] and [tj |pj ]. Then, pu is a non-minimal p-semiflow of Ak

iff there exists a row pe in P s.t. pi 	= pe 	= pj and Supp(pe) ⊆ Supp(pu).

Proposition 1 implies that the support of a newly generated row cannot be a
subset of the support of a row already in [T|P], thus new rows never eliminate
old rows. It is possible for the support of a newly generated row to equal that
of a row already in [T|P], but, if this occurs, we must retain only the old row,
because the old row has vk = 0, therefore cannot be one of the rows involved in
the computation of a p-semiflow at step k.

The elimination of non-minimal support p-semiflows can be performed period-
ically during the computation of SymPSemiflows , or at the end of the algorithm.
As the number of p-semiflows can be exponential, it is often beneficial to per-
form non-minimal support p-semiflow elimination as the algorithm progresses.
Algorithm MinSuppInt in Fig. 6 performs an internal comparison to eliminate a
p-semiflow that can be obtained via the linear combination of at least two other
p-semiflows also in a. We can therefore use a single MDD a to store the result of
the p-semiflow computation, possibly refining a periodically using MinSuppInt .
After each call to SymLinComb, the result is immediately unioned with a. Since
newly generated rows cannot eliminate old rows, Algorithm MinSuppInt can be
applied at any time to the intermediate result of the p-semiflow computation, to
reduce the number of rows.

Another strategy is instead to use a second MDD b as an accumulator, stor-
ing either the result of a single linear combination SymLinComb, or the union
of multiple linear combinations. MDD a encodes a set of minimal support p-
semiflows. Algorithm MinSuppExt merges a with the intermediate results in b,
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by first applying ElimNMSupp to b to remove from b all p-semiflows which have
non-minimal supports with respect to the other p-semiflows in b, and then per-
forming an external elimination step during which it removes any p-semiflow
found in b whose support is either found in a or can be generated as a union of
supports from both a and b. As Proposition 1 guarantees that a new row cannot
eliminate an old one, we do not have to perform an external elimination step on
a with respect to b. The result is a refined MDD b containing p-semiflows, each
of them having a support which is minimal with respect to all other p-semiflows
in both a and b. MDDs a and b can then be safely unioned.

Before describing Algorithms MinSuppInt and MinSuppExt , we define some
helper functions they utilize. Algorithm MkBool in Fig. 6 performs a fixpoint
iteration to compute the MDD encoding the supports of all p-semiflows (minimal
or otherwise). In other words, MkBool (a) takes an MDD a encoding the set of p-
semiflows X (Prune(a)) and returns the boolean MDD, i.e., a (zero-suppressed)
BDD, encoding the set of boolean vectors

{b∈B
n : ∃x∈X (Prune(a)), ∀i, 1≤ i≤n,b[i]=1 ⇔ x[i]>0}.

Lines 4–7 of MkBool implement the Prune operation, thus eliminate all nodes
associated with variables above w1. Lines 9–12 build a node representing the
boolean equivalent of node a. In all our pseudocode, type bdd indicates a BDD
on variables w1 � · · · � wn.

Algorithm Filter eliminates from X (Prune(a)) any path representing a p-
semiflow whose support is obtainable as the union of two or more p-semiflows in
X (Prune(a)). It does so by taking an MDD a and a minimal support BDD b and
computing the MDD t such that t contains all p-semiflows found in X (Prune(a))
whose support is found in b. In other words, Filter returns the MDD encoding

{x ∈ X (Prune(a)) : ∃b ∈ X (b), ∀i, 1≤ i≤n,b[i]=1⇔ x[i]>0}.
Lines 10–20 filter all nodes at or below w1. Since the transition information
above variable w1 is still pertinent, lines 6–8 copy these nodes into the result.

Algorithm EWOr in Fig. 6 is needed when eliminating all non-minimal sup-
ports from a BDD. EWOr takes two BDDs p and q in input and returns a BDD
r encoding the “element-wise-or” of all pairs of tuples, one from X (p) and one
from X (q), i.e., X (r) = {i∨ j : i ∈ X (p), j ∈ X (q)}. This is an unusual operation
for BDDs, quite unlike the much more familiar (non-element-wise) union of sets
encoded by two BDDs, but it nevertheless has an efficient and elegant symbolic
implementation. To generating r[0], we simply have to recursively call EWOr on
p[0] and q[0] (line 11). This is because the element-wise-or t of a pair of tuples
from i ∈ X (p) and j ∈ X (q) cannot produce a 1 in position t(0) if i(0) = j(0) = 0.
Generating r[1] is instead more involved, as the element-wise-or t of any pair of
tuples from i ∈ X (p) and j ∈ X (q) can have a 1 in position t(0) if either i(0) = 1,
or j(0) = 1, or both. We must therefore recursively call EWOr on three pairs of
nodes: p[0] and q[1], p[1] and q[0], and, finally, p[1] and q[1]. An ordinary Union
operation is used to combine the three results together and obtain r[1].

Algorithm ElimNMSupp performs the actual work of eliminating from a BDD
all non-minimal supports, taking a BDD p and returning a BDD r that contains
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bdd MkBool(mdd a) is

local int i;
local bdd b;
1 if a.var = x0 then return a;
2 if InCache(CMkBool , a, b) then
3 return b;
4 if a.var�w1 then
5 b ← 0;
6 foreach i s.t. a[i] �= 0 do
7 b ← Union(b, MkBool(a[i]));
8 else
9 b ← NewNode(a.var);

10 if a[0] �=0 then b[0]←MkBool(a[0]);
11 foreach i > 0 s.t. a[i] �= 0 do
12 b[1] ← Union(b[1], MkBool(a[i]));
13 b ← UniqueTableInsert(b);
14 CacheAdd(CMkBool , a, b);
15 return b;

bdd EWOr(bdd p, bdd q) is

local bdd r, r01, r10, r11;
1 if p = 0 or q = 0 then return 0;
2 if p = q then return p;
3 if InCache(CEWOr , p, q, r) then
4 return r;
5 if q.var�p.var then Swap(p, q);
6 r ← NewNode(p.var);
7 if p.var�q.var then
8 r[0] ← EWOr(p[0], q);
9 r[1] ← EWOr(p[1], q);

10 else
11 r[0] ← EWOr(p[0], q[0]);
12 r01 ← EWOr(p[0], q[1]);
13 r10 ← EWOr(p[1], q[0]);
14 r11 ← EWOr(p[1], q[1]);
15 r[1] ← Union(r01,Union(r10, r11));
16 r ← UniqueTableInsert(r);
17 CacheAdd(CEWOr , p, q, r);
18 return r;

mddMinSuppExt(mdddirty,mddclean) is
local bdd bdirty, bclean, bunion, bmin;
1 bdirty ←MkBool(dirty);
2 bdirty ←ElimNMSupp(bdirty); • int.
3 bclean←MkBool(clean);
4 bunion←EWOr(bdirty, bclean);
5 bmin ←Diff (bdirty, bunion) • ext.
6 return Filter(dirty, bmin);

mdd Filter(mdd a, bdd b) is

local int i;
local mdd f ;
1 if a = 0 or b = 0 then return 0;
2 if a = 1 and b = 1 then return 1;
3 if InCache(CFilter , a, b, f) then
4 return f ;
5 f ←NewNode(Highest(a.var,b.var));
6 if a.var�w1 then
7 foreach i s.t. a[i] �= 0 do
8 f [i] ← Filter(a[i], b);
9 else if a.var�b.var then

10 if a[0] �=0 then
11 f ← Filter(a[0], b);
12 else if b.var�a.var then
13 if b[0] �=0 then
14 f ← Filter(a, b[0]);
15 else • a.var = b.var, filter node a
16 if a[0] �= 0 and b[0] �= 0 then
17 f [0] ← Filter(a[0], b[0]);
18 if b[1] �= 0 then
19 foreach i > 0 s.t. a[i] �= 0 do
20 f [i] ← Filter(a[i], b[1]);
21 f ← UniqueTableInsert(f);
22 CacheAdd(CFilter , a, b, f);
23 return f ;

bdd ElimNMSupp(bdd p) is

local bdd r, r0, r1, t;
1 if p.var = x0 then return p;
2 if InCache(CElimNMSupp, p, r) then
3 return r;
4 r0 ← ElimNMSupp(p[0]);
5 r1 ← ElimNMSupp(p[1]);
6 if r0 = r1 then return r0;
7 r ← NewNode(p.var);
8 r[0] ← r0;
9 r[1] ← r1;

10 t ← EWOr(r[0], r[1]);
11 r[1] ← Diff (r[1], t);
12 r ← UniqeTableInsert(r);
13 CacheAdd(CElimNMSupp, p, r);
14 return r;

mdd MinSuppInt(mdd a) is

local bdd b;
1 b ← MkBool(a);
2 b ← ElimNMSupp(b);
3 return Filter(a, b);

Fig. 6. Symbolic minimal support P-semiflow generation
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only the minimal supports in p. As with EWOr , the case for p[0] is simpler,
requiring only a recursive call to ElimNMSupp on p[0] (line 4). To generate r[1],
we begin by recursively calling ElimNMSupp on p[1]. However, r[1] could now
contain supports obtainable by element-wise-or from X (r[0]) and X (r[1]). Such
supports must be eliminated from r[1] to enforce minimality (lines 9–11). First,
we use EWOr to generate t, the BDD encoding supports obtainable via linear
combinations between X (r[0]) and X (r[1]), then we use a set difference, Diff ,
to remove these supports from r[1]. Algorithms EWOr and ElimNMSupp are
essential to the efficiency of our approach, as they allow us to reduce the cost
of recognizing and eliminating rows with nonminimal support symbolically, and
they are fundamentally different from the way the explicit approach operates.

We can now discuss algorithms to generate the minimal support p-semiflows.
Algorithm MinSuppInt , shown in Fig. 6, is relatively straightforward. First, it
generates a BDD b encoding all minimal supports. This is done by combining
MkBool and ElimNMSupp to generate all the minimal supports found in a MDD
a. Then, it uses Filter to remove all p-semiflows from a whose support is not
found in b. Algorithm MinSuppExt instead takes as input two MDDs, dirty,
containing minimal support p-semiflows in addition to possibly non-minimal
support ones, and clean, containing only minimal support p-semiflows. Then,
it eliminates from dirty all non-minimal support p-semiflows, whose support
can be generated as an element-wise-or of supports from dirty and clean. This
algorithm can be used to compute the union of the p-semiflows in clean and
dirty, by first eliminating from the latter all p-semiflows that would make the
resulting MDD non-minimal.

2.4 When to Perform Non-minimal Support P-Semiflow
Elimination

Algorithm SymPSemiflows of Fig. 5 computes the p-semiflows of a net, but does
not minimize them. We propose four variants for doing this, see Fig. 7. The
first three variants perform non-minimal support elimination while executing
SymPSemiflows : V1 minimizes immediately after performing each linear combi-
nation, while V2 and V3 minimize after annulling a column. We compare these
with V4, which simply performs minimization only once, after SymPSemiflows
has completed its work; as we will see empirically, this last option can be the best,
but it can also perform poorly, if the (more numerous) p-semiflows it manages
during the execution do not lend themselves to a compact MDD encoding.

Given an MDD a, V1 calls MinSuppExt immediately after performing each
symbolic linear combination, to minimize the result with respect to a, then
unions it to a; this has the advantage of eliminating non-minimal support p-
semiflows as soon as possible, thus is potentially very space efficient. V3 simply
calls MinSuppInt on a after annulling a column and is as simple to implement
as V4. V2 instead uses an MDD linComb to accumulate the newly computed p-
semiflows then, once the entire column has been annulled, it minimizes linComb
with respect to a using MinSuppExt , and unions it with a.
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mdd SymPSemiflows(int m, mdd a) is • common portion to all variants

local int j, iN , iP , ρ, ρN , ρP ,;
local mdd aN , aP , linComb, newRows; •newRows is used only in V2
1 for j = 1 to m do
2 if a.var �= vj skip;
3 aN ← Intersection(a,Potential(vj < 0));
4 aP ← Intersection(a,Potential(vj > 0));
5 a ← Intersection(a,Potential(vj = 0));
6 newRows ← 0; • only for V2
7 foreach iN s.t aN [iN ] �= 0 do
8 foreach iP s.t. aP [iP ] �= 0 do
9 ρ ← MinimumCommonMultiple(−iN , iP );

10 ρN ← ρ/(−iN);
11 ρP ← ρ/iP ;

•V1: Minimize after each linear combination (using external comparisons)
121 linComb = SymLinComb(ρN , aN [iN ], ρP , aP [iP ]);
131 a ← Union(a,MinSuppExt(linComb, a));
141 return a;

•V2: Minimize after annulling column (using external comparisons)
152 linComb ← SymLinComb(ρN , aN [iN ], ρP , aP [iP ]);
162 newRows ← Union(newRows, linComb);
172 a ← Union(a,MinSuppExt(newRows, a));
182 return a;

•V3: Minimize after annulling column (using internal comparisons)
193 a ← Union(a,SymLinComb(ρN , aN [iN ], ρP , aP [iP ]));
203 a ← MinSuppInt(a);
213 return a;

•V4: Minimize only at the end (using internal comparisons)
224 a ← Union(a,SymLinComb(ρN , aN [iN ], ρP , aP [iP ]));
234 return MinSuppInt(a);

Fig. 7. Minimal support computation on-the-fly

2.5 Scaling Back P-Semiflows

After eliminating all p-semiflows with non-minimal support, we scale back the
remaining ones using the brute force Algorithm SymScalePsemiflows in Fig. 8.
This in turn uses Algorithm ScaleByNumber , which takes an MDD a and an inte-
ger μ and returns two MDDs: s, encoding all scaled-back p-semiflows in a which
could be scaled by μ, X (s) = {x ∈ Nn : ∃a ∈ X (a),x = a/μ}, and u, encoding
those that could not, X (u) = {a ∈ X (a) : a/μ 	∈ Nn}. SymScalePsemiflows
takes an MDD a and scales its p-semiflows until none is divisible by an inte-
ger greater than one. First, it finds the largest value γ contained in a, then it
repeatedly attempts to scale a by the prime numbers between 2 and

√
γ, us-

ing ScaleByNumber . Each time, the two MDDs returned by ScaleByNumber are
unioned back to produce the new scaled-back MDD.



156 G. Ciardo et al.

mdd SymScalePsemiflows(mdd a) is

local int γ, μ;
local mdd s, u;
1 γ ← maxi∈N{p[i] �= 0 : p is a node in the MDD a};
2 foreach μ ∈ {2, ..., �√γ� : μ is prime} do
3 repeat
4 〈s, u〉 ← ScaleByNumber(a, μ); • s encodes scaled paths
5 a ← Union(s, u); • update a by combining scaled and unscaled paths
6 until s = 0;
7 return a;

〈mdd, mdd〉 ScaleByNumber(mdd a, int μ) is

local int i;
local mdd s, u;
1 if a.var = x0 return 〈1, 0〉;
2 if InCache(CScaleByNumber , a, μ, 〈s, u〉) then return 〈s, n〉;
3 s ← NewNode(a.var); • s will encode paths that were scaled
4 u ← NewNode(a.var); •u will encode paths that could not be scaled
5 foreach i s.t a[i] �= 0 do
6 if μ divides i then
7 〈s[i/μ], u[i]〉 ← ScaleByNumber (a[i], μ); • a[i] is divisible by μ, scale it
8 else
9 u[i] ← a[i]; • a[i] cannot be scaled

10 s ← UniqueTableInsert(s);
11 u ← UniqueTableInsert(u);
12 CacheAdd(CScaleByNumber , a, μ, 〈s, u〉);
13 return 〈s, u〉;

Fig. 8. A symbolic algorithm to scale back p-semiflows

3 Experimental Results

Each variant of the SymPSemiflows algorithm is implemented in SmArT [2] and
all experiments are performed on a Pentium4 3.0GHz PC with 1.0GB of available
memory, running CentoOS Linux 2.6.9. We use the following parametric models
(for models with multiple parameters, the same value is used for all parameters;
in our discussion, the parameter value is appended to the model name):

trains: a circular railway system with u trains and s rail trunks [6].
slot: a local area network protocol with u nodes in the network [11].
robin: a round robin solution to the mutual exclusion among u processes [8].
aloha: the ALOHA networking protocol, a precursor to Ethernet.
classic: a classic Petri net with m transitions and m stages of u places each,

used to demonstrate that the number of p-semiflows can be exponential,
um [3]. Fig. 9 shows this net for m = 4 and u = 3.

classicX: an extended version of the previous model, where the first input arc
of each transition has cardinality 1, the next one has cardinality 2, and so
on. The output arcs for each transition likewise have increasing cardinalities.
The number of p-semiflows remains um.
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Fig. 9. Petri net classic

mmarch: a multi-threaded architecture with u× u processing nodes [7].
phil: the classic dining philosophers problem, with u philosophers.
power: an electric power distribution system with u electric generators. It uses

arcs with cardinality greater than one and has a single p-semiflow.

Figs. 10 and 11 show the runtime results. For each model we report the number
of transitions (trans), the number of p-semiflows, and the number of nodes and
edges required to encode the final set of p-semiflows symbolically using an MDD.
Then, for each of the four variants, “V1”, “V2”, “V3”, and “V4”, we report
the peak amount of memory measured in MBytes (mem), the overall runtime
in seconds (time), and the percentage of the overall runtime spent to perform
computations related specifically to p-semiflow generation (PS), non-minimal
support elimination (MS), and scaling back (SB), respectively. We also run each
model using GreatSPN [1], which provides an explicit p-semiflow generation
capability. The performance for GreatSPN is shown in the rows labeled “GS”.
The percentage of time spent performing p-semiflow generation, non-minimal
support elimination, and scaling back is not shown for GreatSPN, as the tool
does not report this detailed information. Finally, “om” means “out-of-memory”
and “ot” means “out-of-time”, i.e., the runtime exceeds eight hours.

3.1 Models Requiring Non-minimal P-Semiflow Elimination

We first analyze the models requiring non-minimal support elimination (Fig. 10).
It is apparent that the results for V1 and V2 are nearly identical. Petri nets often
have two features resulting in similar performance for these two variants: only
arcs with cardinality one, and a sparse flow matrix. When the flow matrix is
sparse and contains only entries with value −1, 1, or 0, the first column to be
eliminated requires that only a single linear combination be performed because
the MDD encoding of the flow matrix has at most a single positive entry, 1, and a
single negative entry, −1, at its root. Performing this linear combination requires
scalar multipliers equal to 1, so the scaled rows retain their original values. Due
to the sparsity of the matrix, the MDD encoding the linear combination is likely
to still retain the property of having (most) entries with value −1, 1, or 0, thus
the next column to be eliminated also will most likely require that only a single
linear combination be performed, and so on. For the models in Fig. 10 this
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model trans p-semiflows nodes edges mem PS MS SB time

trains10 100 37 642 678

V1 6 5.02% 94.95% 0.03% 4.70
V2 6 4.99% 94.98% 0.03% 4.81
V3 7 4.76% 95.17% 0.07% 4.05
V4 om
GS 0.06 - - - 0.03

trains15 255 99 3,533 3,620

V1 19 4.86% 95.13% 0.01% 210.60
V2 19 4.80% 95.17% 0.03% 210.05
V3 21 4.98% 95.01% 0.01% 216.30
V4 om
GS 0.242 - - - 0.33

slot20 160 42 1,597 1,798

V1 58 0.20% 99.79% 0.01% 57.44
V2 58 0.20% 99.79% 0.01% 57.46
V3 om
V4 5 98.46% 0.01% 1.53% 0.29
GS 3 - - - 0.08

slot2000 16,000 4,002 31,997 35,998

V1 om
V2 om
V3 om
V4 242 99.64% 0.01% 0.36% 126.12
GS 876 - - - 189.02

robin4 24 30 78 96

V1 0.198 15.11% 83.45% 1.44% 0.012
V2 0.198 15.06% 83.51% 1.42% 0.012
V3 0.187 10.76% 88.14% 1.10% 0.015
V4 26 99.9% 0% 0% 11.06
GS 3 - - - 0.01

robin90 540 1.24 × 1027 1,798 2,160

V1 57 1.02% 99.97% 0.01% 64.89
V2 57 0.36% 99.62% 0.01% 64.81
V3 om
V4 om
GS ot

aloha15 60 32,771 78 96

V1 0.325 30.17% 68.99% 0.83% 0.02
V2 0.326 30.31% 68.88% 0.81% 0.02
V3 0.362 17.25% 82.26% 0.49% 0.03
V4 om
GS 4 - - - 33.20

aloha100 400 1.27 × 1030 503 606

V1 12 43.42% 56.43% 0.14% 1.00
V2 12 43.91% 55.95% 0.14% 1.02
V3 14 6.21% 93.76% 0.03% 4.96
V4 om
GS ot

Fig. 10. Models requiring minimal-support elimination.

process repeats throughout the entire process of p-semiflow generation. It is for
this reason that the performance of V1 and V2 is identical for these models:
V1 calls MinSuppExt after each linear combination for a column, but this is the
same as calling MinSuppExt after all linear combinations for a column, as done
in V2, if only one linear combination is performed per column.

V1 and V2 outperform V3, which typically requires more time and memory,
running out of memory in some cases. The higher memory requirements arise
from not refining the result of a linear combination before unioning it with a.
V3 requires more time also because MinSuppInt performs non-minimal support
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elimination on the entire MDD a instead of on a smaller MDD produced as the
result of a linear combination (for symbolic algorithms, higher memory require-
ments typically imply longer runtimes).

V4 performs poorly on all models except slot, because many non-minimal p-
semiflows are found at each step of the algorithm. These extra p-semiflows greatly
increase the time and memory requirements for V4, making it feasible for only
the smallest model configurations. The only exception is slot, as it results in very
few non-minimal p-semiflows (only about half of the generated p-semiflows are
non-minimal); here, V4 actually outperforms V1, V2, and V3.

GreatSPN tends to perform better than our symbolic techniques only for mod-
els with relatively few p-semiflows, while our tool greatly outperforms GreatSPN
for models with many p-semiflows. This is especially apparent with slot and
robin. For the smaller version of these models, GreatSPN generates the results
much more quickly. However, for the larger version of these models GreatSPN
was either slower than at least one of our variants, or ran out of memory.

3.2 Models Not Requiring Non-minimal Support Elimination

Fig. 11 reports results for the models not requiring non-minimal support elimi-
nation. Among these, classic, mmarch, and phil do not use arcs with cardinality
greater than one. As such, V1, V2, and V3 exhibit results similar to the models
discussed in the previous section: V1 and V2 have nearly identical performance
while V3 is somewhat less efficient. However, V4 really shines when applied to
these three models. Non-minimal p-semiflow elimination is an expensive opera-
tion, and V1, V2, and V3 spend the majority of their runtime performing the
useless task of looking for and attempting to eliminate non-minimal support
p-semiflows when none such p-semiflows exist.

Models power and classicX contain arcs with cardinality greater than one.
This added challenge does not significantly increase the overhead for power,
which has a single p-semiflow: each variant exhibits comparable performance.
The same does not hold for classicX, however. V1 performs very poorly on
it because, for the parameters used in our tests, classicX ends up requiring
hundreds of linear combination steps for each column in the flow matrix. This
has a profound impact on performance as V1 is the only variant that performs
elimination after each linear combination. V2, V3, and V4 have similar per-
formance for classicX, because, with the higher cost of performing p-semiflow
computation on a model having arc cardinalities greater than one, the minimiza-
tion steps represent a relatively insignificant portion of the total computation
time.

GreatSPN was unable to finish computation on classic and classicX because
generating the large number of p-semiflows for these models is infeasible using
explicit methods. Our tool was also better suited for generating the p-semiflows
for the larger version of the mmarch model. However, GreatSPN outperformed
our approach on phil and power due to their small number of p-semiflows.
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model trans p-semiflows nodes edges mem PS MS SB time

classic10 10 1 × 1010 100 190

V1 0.055 16.19% 75.17% 8.64% 0.0027
V2 0.055 15.99% 75.69% 8.31% 0.0028
V3 0.058 8.51% 87.15% 4.33% 0.0054
V4 0.031 80.66% 0.81% 18.53% 0.0014
GS ot

classic250 250 3.05 × 10599 62,500 124,750

V1 613 0.58% 99.00% 0.37% 54.20
V2 613 0.58% 99.05% 0.37% 53.59
V3 om
V4 8 84.97% 0.01% 15.03% 0.92
GS ot

mmarch10 1,400 404 1,200 1,603

V1 40 0.82% 99.12% 0.06% 4.76
V2 40 0.83% 99.11% 0.06% 4.79
V3 om
V4 2 95.85% 0.05% 4.93% 0.0056
GS 3 - - - 0.01

mmarch20 5,600 1,604 4,800 6,403

V1 198 3.84% 96.15% 0.01% 122.15
V2 198 3.91% 96.08% 0.01% 121.99
V3 om
V4 6 96.00% 0% 3.99% 0.32
GS 110 - - - 4.29

phil30 120 90 239 328

V1 11 2.35% 97.59% 0.06% 1.04
V2 11 2.36% 97.59% 0.06% 1.04
V3 11 0.43% 99.53% 0.04% 1.61
V4 0.346 94.45% 0.17% 5.38% 0.011
GS 0.1 - - - 0.01

phil100 400 300 799 1,098

V1 50 0.19% 99.79% 0.01% 30.90
V2 50 0.19% 99.80% 0.01% 30.85
V3 50 0.13% 99.86% 0.01% 47.64
V4 2 96.82% 0.04% 3.13% 0.077
GS 1 - - - 0.04

power50 2,600 1 51 51

V1 2 51.25% 48.68% 0.06% 0.21
V2 2 51.17% 48.76% 0.06% 0.21
V3 2 24.03% 75.94% 0.03% 0.45
V4 2 99.84% 0.02% 0.13% 0.11
GS 0.6 - - - 0.08

power100 10,200 1 101 101

V1 14 51.39% 48.58% 0.01% 2.05
V2 14 51.37% 48.62% 0.01% 2.04
V3 14 23.51% 76.49% 0.01% 4.50
V4 14 99.98% 0.00% 0.01% 1.05
GS 4 - - - 0.64

classicX8 8 1.67 × 106 5,193 9,402

V1 14 0.31% 99.87% 0.01% 273.42
V2 2 68.60% 17.26% 13.94% 0.27
V3 2 70.50% 16.33% 13.17% 0.29
V4 4 86.47% 0.01% 13.53% 0.28
GS ot

classicX12 12 8.92 × 1012 61,584 114,648

V1 om
V2 18 84.43% 9.54% 6.02% 29.73
V3 19 82.78% 11.05% 6.16% 29.07
V4 18 93.71% 0% 6.29% 28.31
GS ot

Fig. 11. Models not requiring minimal-support elimination
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3.3 Scaling Back

For each variant of our algorithm for p-semiflow computation, we choose to scale
back the p-semiflows at the very end. This avoids performing this operation
multiple times; at least one pass of SymScalePsemiflows is required at the end
of the p-semiflow computation anyway. For models where total runtime is greater
than one second, less than 1% of time is spent scaling back. The only exception is
classicX, which requires many passes of SymScalePsemiflows , because it results
in rows with large numbers due to its many high-cardinality arcs. Even for this
model, though, less than 14% of the time is spent scaling back the p-semiflows.

4 Summary and Conclusions

The symbolic method for p-semiflow computation we presented offers vast time
and space improvements thanks to its use of ZMDDs for storage and computa-
tion. The most dramatic example comes from model classic250, for which it was
able to generate 3.05× 10599 p-semiflows in under a second using only 8MBytes
of memory. Our symbolic method benefits from the structure of many Petri net
models that use only arcs with cardinality one. Such models often require a single
pass of the SymLinComb algorithm per column.

Two types of models appear to have larger time and memory requirements
using the proposed symbolic method. One includes models with a dense flow
matrix, which cannot take as great an advantage of the properties of ZMDDs.
The other includes models with arc cardinalities greater than one, as revealed
by comparing the performance of the classic and classicX models. Despite the
increased resource requirements for this second type of models, the symbolic
method still greatly outperforms explicit approaches; for example, it can generate
the 8.92× 1012 p-semiflows of the classicX12 model in under 30 seconds.

We presented four variants of our algorithm, and at least one of either V2 or V4
was the most efficient (or very close to being the most efficient) for each model.
V2 works best for models which add many non-minimal support p-semiflows at
each step, while V4 works best for models where few non-minimal support p-
semiflows are generated. It should then be possible to heuristically combine these
two variants into a more resilient algorithm that starts with V4 and switches to
V2 if the number of non-minimal support p-semiflows added at an iteration is
above a certain threshold. Alternately, two workstations can be run in parallel,
each computing the p-semiflows using either V2 or V4. For comparison, the
explicit method implemented by GreatSPN tends to be more efficient for models
with relatively few p-semiflows. However, for the majority of our parametric
models, at least one variant of our symbolic method was able to outperform
GreatSPN for large enough instances.

One topic left unexplored is that of a good variable order, an important issue in
any decision diagram manipulation. Reordering the variables prior to p-semiflow
computation (statically) or between column eliminations (dynamically) might
reduce computation times and memory requirements. For example, a variable
with only positive values or only negative values could be moved to the root
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so that no linear combinations or minimal-support computations would have
to be performed for the column it represents. Due to the high cost of variable
reordering and the potential growth rate of the MDD, it might be best to explore
good static variable reordering heuristics first, in our future research.
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Abstract. In this paper, we study partially ordered structures associ-
ated to occurrence nets. An occurrence net is endowed with a symmetric,
but in general non transitive, concurrency relation. By applying known
techniques in lattice theory, from any such relation one can derive a clo-
sure operator, and then an orthocomplemented lattice. We prove that,
for a general class of occurrence nets, those lattices, formed by closed
subsets of net elements, are orthomodular. A similar result was shown
starting from a simultaneity relation defined, in the context of special rel-
ativity theory, on Minkowski spacetime. We characterize the closed sets,
and study several properties of lattices derived from occurrence nets; in
particular we focus on properties related to K-density. We briefly discuss
some variants of the construction, showing that, if we discard conditions,
and only keep the partial order on events, the corresponding lattice is
not, in general, orthomodular.

1 Introduction

In this paper we present some theoretical results in the frame of the partial order
theory of concurrency. In particular, we focus on occurrence nets, the basic model
in net theory for modelling non-sequential processes (see [1] and [2]).

The origin of this work lies on our interest for the relations between Petri net
theory and physics; here we consider in particular the special relativity theory.

Since the beginning of his work on nets, Petri has stressed the role that physics
should play in their formal and conceptual development. We can identify a double
role; on one hand, any theory of information flow, of processes, and of general
systems, must take into account the constraints imposed by physical laws; on the
other hand, Petri has always considered physical theories, in their mathematical
form, as a sort of model to which a theory of information flows should be inspired.

A crucial difference between the standard physical theories and the framework
on which Petri develops his own theory comes from the use of the continuum as
the underlying model in physics. Petri proposes a combinatorial representation
of a spacetime, in which notions corresponding to the relativistic concepts of
world line and causal cone can be defined in occurrence nets by means of the
concurrency and causal dependence relations.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 163–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The idea of a discrete, combinatorial model for physical phenomena has been
developed by numerous authors, and in many different directions. The most
successful attempt seems to be that based on cellular automata, with a huge
literature, and the ambitious project brought forward by Wolfram (see [3]). Other
interesting, and sometimes controversial, approaches were proposed by Fredkin
(see his web site on Digital Philosophy) and Zuse, who also cooperated with
Petri, (see [4], [5]). More recently, several authors have proposed so-called causal
sets as a discrete model of spacetime (see, for instance, [6]); a causal set is a
partial order of events. See also [7] for a different approach to “discrete physics”,
based on notions of category theory.

A more specific inspiration for the present paper comes from a couple of
papers studying orthomodular lattices derived from Minkowski spacetime ([8])
and more general spacetimes ([9]). In these papers, a lattice of subsets of points
of a spacetime is constructed via a closure operator defined on the basis of the
spacelike and timelike relations, which are analogous to concurrency and causal
dependence. We apply the same construction, but starting from an occurrence
net and the associated concurrency relation, and obtain a similar result: for a
general class of occurrence nets, the lattice of closed sets is orthomodular. This
result suggests an analogy between the concurrency relation in occurrence nets
and the simultaneity relation on Minkowski spacetime. In this sense, our work
can be seen as a continuation of Petri’s work on a combinatorial representation
of spacetime.

In a different context, lattices associated to occurrence nets have been stud-
ied also by Fernandez, Merceron, Thiagarajan, and others, who take maximal
concurrent subsets of events and conditions as elements of the derived lattices
(see, for instance, [10]).

The paper is structured as follows. Section 2 collects basic definitions related
to occurrence nets, closure operators, orthomodular posets and lattices. In Sec-
tion 3, causally closed sets in occurrence nets are defined, and then characterized
by a set of structural properties. Then, in Section 4, the global structure of the
lattice formed by causally closed sets is analyzed; here we show that, for a gen-
eral class of occurrence nets, the lattice is orthomodular. In a specific subsection
we look at properties of the lattice of causally closed sets which are related to
K-density. In 4.2, we apply the same construction to elementary event structures
([11]), and show that, in this case, the lattice of closed sets is not guaranteed to
be orthomodular. Finally, in Section 5, we briefly comment on the main results,
and suggest further developments.

2 Preliminary Definitions

In this section, we recall the basic definitions needed in the following.

2.1 Occurrence Nets

Definition 1. A net is a triple N = (B, E, F ), where B and E are countable
sets, F ⊆ (B × E) ∪ (E ×B), and
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(i) B ∩E = ∅
(ii) dom(F ) ∪ ran(F ) = B ∪ E

The elements of B are called local states or conditions, the elements of E local
changes of state or events, and F is called the flow relation. We will use the
standard graphical notation for nets.

For each x ∈ B ∪ E, define •x = {y ∈ B ∪ E | (y, x) ∈ F}, x• = {y ∈
B ∪E | (x, y) ∈ F}. For e ∈ E, an element b ∈ B is a precondition of e if b ∈ •e;
it is a postcondition of e if b ∈ e•. A net N = (B, E, F ) is simple iff for each
x, y ∈ B ∪ E: (•x = •y and x• = y•) ⇒ x = y.

Occurrence nets are a special class of nets used to model non-sequential pro-
cesses ([1], [2]). Note that they are called causal nets in [11].

Definition 2. A net N = (B, E, F ) is an occurrence net iff

(i) ∀b ∈ B : |•b| ≤ 1 ∧ |b•| ≤ 1 and
(ii) ∀x, y ∈ B ∪ E : (x, y) ∈ F+ ⇒ (y, x) /∈ F+.

Hence an occurrence net contains neither conflicts nor cycles.
Because of Definition 2(ii), the structure (X,�) derived from an occurrence

net N by putting X = B ∪ E and �= F ∗ is a partially ordered set (shortly
poset). We will use � to denote the associated strict partial order.

Given a partial order relation ≤ on a set A, we can derive the relations li = ≤
∪ ≥, and co = (A×A) \ li. We will be interested in such relations derived from
(X,�). In such case, intuitively, x li y means that x and y are connected by a
causal relation, and x co y means that x and y are causally independent. The
relations li and co are symmetric and not transitive. Note that li is a reflexive
relation, while co is irreflexive. Given an element x ∈ X and a set S ⊆ X , we
write x co S if ∀y ∈ S : x co y. Moreover, given two sets S1 ⊆ X and S2 ⊆ X ,
we write S1 co S2 if ∀x ∈ S1, ∀y ∈ S2 : x co y. In the following we will use x co y
or (x, y) ∈ co indifferently, and similarly for li.

For each element x of X , we can now define the causal cone at x by:

Cone(x) = {y ∈ X | x li y}.

For each x ∈ X we denote by:

F−(x) = {y ∈ X | y � x} and F+(x) = {z ∈ X | x � z}

the past and the future of x, respectively. By generalizing to subsets S of X , we
denote the past and the future of S by

F−(S) = {x ∈ X | x /∈ S, ∃y ∈ S : x ∈ F−(y)} and

F+(S) = {x ∈ X | x /∈ S, ∃y ∈ S : x ∈ F+(y)}.

Note that an element x belongs neither to its future nor to its past. From the li
and co relations one can define cuts and lines of a poset A = (A,≤):

Cuts(A) = {c ⊆ A | c is a maximal clique of co ∪ idA};
Lines(A) = { l ⊆ A | l is a maximal clique of li}.
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Given an occurrence net N = (B, E, F ), we will denote by Cuts(N) and Lines(N),
respectively, the set of cuts and the set of lines of the poset associated to N . We
will always assume the Axiom of Choice, so that any clique of co and of li can be
extended to a maximal clique.

The notion of K-density [2] was introduced in order to formalize a property
which intuitively should hold for posets corresponding to non-sequential pro-
cesses which are actually feasible. K-density is based on the idea of interpreting
cuts as (global) states and lines as sequential subprocesses. K-density postulates
that every occurrence of a subprocess must be in a specific state.

Definition 3. A = (A,≤) is K-dense⇔ ∀c ∈ Cuts(A), ∀l ∈ Lines(A) : c∩l 	= ∅.

An occurrence net N is K-dense if its associated poset is K-dense.
For posets derived from occurrence nets, K-density can be characterized by

the absence of the substructures shown in Fig. 1 [2]. In order to formalize this
fact we need to say that a poset (A′,≤′) is embeddable into (A,≤) iff there exists
an injection γ : A′ → A such that ∀x, y ∈ A′ : x ≤′ y ⇔ γ(x) ≤ γ(y).

Proposition 1. Let (X,�) be the poset associated to an occurrence net N =
(B, E, F ), X = (B ∪ E). If none of the posets shown in Fig. 1 is embeddable
into (X,�), then (X,�) is K-dense.

Fig. 1. Posets which are not K-dense

In the following examples, we often use a specific, infinite and regular, oc-
currence net, which we call Petri grid, proposed by Petri ([12]), as a discrete
representation of bidimensional spacetime. We have chosen the following defini-
tion of Petri grid, among all the possible ones, since, with respect to the event
coordinates of the net, it preserves the relations which hold on the coordinates
of points in a bidimensional Minkowski spacetime.

Definition 4. Let Ng = (Bg, Eg, Fg) be an infinite occurrence net, where Eg =
{(x, y) |x, y ∈ Z, x + y is even}, Bg = {(e1, e2) | e1, e2 ∈ Eg, e1 = (x, y), e2 =
(x± 1, y + 1)}, and Fg is such that ∀e1, e2 ∈ Eg, if (e1, e2) ∈ Bg then

(i) (e1, (e1, e2)) ∈ Fg,
(ii) ((e1, e2), e2) ∈ Fg.
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The Petri grid Ng = (Bg, Eg, Fg) is not K-dense. The violation of K-density is
witnessed, e.g., by the line l = {(x, y) | (x, y) ∈ Eg, x = y}∪ {(e1, e2) | (e1, e2) ∈
Bg, e1 = (x, y), e2 = (x + 1, y + 1), x = y} and the cut c = {(e1, e2) | (e1, e2) ∈
Bg, e1 = (x, y), e2 = (x− 1, y + 1), x = y} (see the left side of Fig. 2, where the
blackened elements form l, while the dotted line joins the elements of c). On the
right side of Fig. 2 we show another example of K-density violation.

Fig. 2. Examples illustrating that the net Ng is not K-dense

2.2 Orthomodular Posets and Lattices

In this section we recall the basic definitions related to orthomodular posets and
lattices.

Definition 5. An orthocomplemented poset P = 〈P,≤, 0, 1, ( . )′〉 is a partially
ordered set 〈P,≤〉, equipped with a minimum and a maximum element, respec-
tively denoted by 0 and 1, and with a map ( . )′ : P → P , such that the following
conditions are verified (where ∨ and ∧ denote, respectively, the least upper bound
and the greatest lower bound with respect to ≤, when they exist): ∀x, y ∈ P

(i) (x′)′ = x;
(ii) x ≤ y ⇒ y′ ≤ x′;
(iii) x ∧ x′ = 0 and x ∨ x′ = 1.

The map ( . )′ : P → P is called an orthocomplementation in P . In an orthocom-
plemented poset, ∧ and ∨, when they exist, are not independent: in fact, the
so-called De Morgan laws hold: (x∨y)′ = x′∧y′, (x∧y)′ = x′∨y′. In the follow-
ing, we will sometimes use meet and join to denote, respectively, ∧ and ∨. Meet
and join can be extended to families of elements in the obvious way, denoted
by
∧

and
∨

. In an orthocomplemented poset the notions of orthogonality and
compatibility can be introduced. Two elements x, y ∈ P are called orthogonal,
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Fig. 3. A finite regular orthomodular poset

denoted x ⊥ y, iff x ≤ y′. Two elements x, y ∈ P are called compatible, denoted
x $ y, iff ∃x0, y0, z ∈ P : (x0 ⊥ y0 ⊥ z ⊥ x0 and x = x0 ∨ z and y = y0 ∨ z).

From the previous definitions it follows that [13]:

(i) x ⊥ x′; (ii) x ⊥ y ⇒ x $ y; (iii) x ≤ y ⇒ x $ y;
(iv) x $ y ⇒ (x ∨ y ∈ P and x ∧ y ∈ P ); (v) x $ y ⇔ x $ y′ ⇔ x′ $ y′.

A poset P is called orthocomplete when it is orthocomplemented and every
pairwise orthogonal countable subset of P has a least upper bound.

A lattice L is a poset in which for any pair of elements meet and join always
exist. A lattice L is complete when the meet and the join of any subset of L
always exist.

Definition 6. [14] An orthomodular poset P = 〈P,≤, 0, 1, ( . )′〉 is an ortho-
complete poset which satisfies the condition:

x ≤ y ⇒ y = x ∨ (y ∧ x′)

which is usually referred to as the orthomodular law; we will sometimes use the
equivalent statement x ≤ y ⇒ x = y ∧ (x ∨ y′).

The orthomodular law is weaker than the distributive one. A lattice L is called
distributive if and only if ∀x, y, z ∈ L the equalities x∧ (y∨z) = (x∧y)∨ (x∧z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) hold. A distributive lattice is orthomodular.
Orthocomplemented distributive lattices are generally called Boolean algebras.
Orthomodular posets and lattices can therefore be considered as a generalization
of Boolean algebras and have been studied as algebraic models for quantum
logic [13].

An orthomodular poset P = 〈P,≤, 0, 1, ( . )′〉 is regular (or coherent) when
∀x, y, z ∈ P such that x $ y $ z $ x, it holds (x ∨ y) $ z. Any orthomodular
lattice L is regular [13]. Any regular orthomodular poset can be seen as a family
of partially overlapping Boolean algebras. Two elements are compatible if there
is a Boolean subalgebra which contains both of them.
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Example 1. Fig. 3 shows a finite regular orthomodular poset. Fig. 4 shows an
infinite regular orthomodular poset.

Fig. 4. An infinite regular orthomodular poset

2.3 Closure Operators

Useful references for this section are [15] and [16].

Definition 7. Let X be a set and P(X) the powerset of X. A map C : P(X)→
P(X) is a closure operator on X if, for all A, B ⊆ X,

(i) A ⊆ C(A),
(ii) A ⊆ B ⇒ C(A) ⊆ C(B),
(iii) C(C(A)) = C(A).

Note that, with this definition, C is not a topological closure operator. A subset
A of X is called closed with respect to C if C(A) = A. If C is a closure operator
on a set X , the family LC = {A ⊆ X | C(A) = A} of closed subsets of X forms
a complete lattice, when ordered by inclusion, in which∧

{Ai : i ∈ I} =
⋂
i∈I

Ai,
∨
{Ai : i ∈ I} = C(

⋃
i∈I

Ai).

The proof of this statement can be found in [15].
We now describe a construction from binary relations to closure operators.

Let X be a set of elements, and α ⊆ X × X be a symmetric relation. Given
A ⊆ X we can define an operator (.)⊥ on the powerset of X

A⊥ = {x ∈ X | ∀y ∈ A : (x, y) ∈ α}.

By applying twice the operator ( . )⊥, we get a new operator C( . ) = ( . )⊥⊥. The
map C on the powerset of X is a closure operator on X [15]. A subset A of X is
called closed with respect to ( . )⊥⊥, if A = A⊥⊥. The family L(X) of all closed
sets of X , ordered by set inclusion, is then a complete lattice [15].
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When α is also irreflexive, the operator ( . )⊥, applied to elements of L(X),
is an orthocomplementation; the structure L(X) = 〈L(X),⊆, ∅, X, ( . )⊥〉 then
forms an orthocomplemented complete lattice [15].

A closure operator C(.) on a set X is called algebraic if, for all A ⊆ X ,

C(A) =
⋃
{C(B) | B ⊆ A and B is finite}.

If C(.) is an algebraic closure operator on a set X and LC the associated complete
lattice, then LC is an algebraic lattice ([16]).

3 Causally Closed Sets Induced by the Concurrency
Relation in Occurrence Nets

In this section we give the definition of a closure operator built starting from the
co relation in occurrence nets, and study the characterization of causally closed
sets induced by this operator.

We work on a general class of occurrence nets N = (B, E, F ) such that N is
simple and

(i) ∀e ∈ E : 1 ≤ |•e| <∞ ∧ 1 ≤ |e•| < ∞,
(ii) ∀e1, e2 ∈ E : |[e1, e2]| <∞, where [e1, e2] = {x ∈ B ∪E | e1 � x � e2}.

Condition (i) is stronger than “degree finiteness” since each event must have at
least one precondition and one postcondition, while condition (ii) is “interval
finiteness” [2]. These two properties seem to be natural requirements for models
of real processes.

Let N = (B, E, F ) be an occurrence net satisfying (i) and (ii) above. We
can define an operator on subsets of X = (B ∪ E), which corresponds to an
orthocomplementation, since co is irreflexive, and give a characterization of the
causally closed sets generated by this operator.

Definition 8. Let S ⊆ X, then

(i) S⊥ = {x ∈ X | ∀y ∈ S : x co y} is the orthocomplement of S;

(ii) if S = (S⊥)⊥, then S is a causally closed set of N.

The set S⊥ contains the elements of X which are not in causal relation with any
element of S. Obviously, S ∩ S⊥ = ∅ for any S ⊆ X . Notice that causally closed
sets are not related to closed sets as defined by Petri for nets ([17]).

A typical example of a closed set in Petri grid is shown in Figure 5, together
with the corresponding orthocomplement.

We now introduce some properties of causally closed sets of N . In the follow-
ing, we denote by b and e, respectively, an element of B and an element of E,
and we sometimes denote (S⊥)⊥ by S⊥⊥. First, we present a relation between
a causally closed set S and its orthocomplement S⊥.

Proposition 2. Let S = S⊥⊥. Then F−(S) = F−(S⊥) and F+(S) = F+(S⊥).
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Fig. 5. A closed set S and its orthocomplement S⊥

Proof. Let S = S⊥⊥, and x ∈ F−(S). Then ∃y ∈ S : x � y. Assume that
x /∈ F−(S⊥). Let us consider two cases:

1. x co S⊥. Since S = S⊥⊥, x ∈ S in contradiction with the assumption
x ∈ F−(S).

2. x ∈ F+(S⊥). Then ∃y1 ∈ S⊥, y1 � x; from x � y, it then follows y1 � y,
which is a contradiction.

Therefore x ∈ F−(S⊥) and F−(S) ⊆ F−(S⊥). Since (S⊥)⊥ = S, by the same
argument F−(S) ⊇ F−(S⊥). The proof for x ∈ F+(S) is analogous. 
�

Proposition 2 states that a causally closed set S and its orthocomplement S⊥

share the past and the future.
We now show that if a causally closed set S contains an event e then it contains

its preconditions and postconditions.

Proposition 3. For each e ∈ E, for each x ∈ X

(x, e) ∈ co⇔ (∀y ∈ •e : (x, y) ∈ co)⇔ (∀z ∈ e• : (x, z) ∈ co).

Proof. Assume (x, e) ∈ co. Let b ∈ •e. (x, b) ∈ co follows immediately from the
fact that e is the unique element in b•.

Assume now (x, b) ∈ co for all b ∈ •e. Any path from x to e should pass
through one precondition of e; hence there can be no such path. On the other
hand, if e � x, then b � x for all b ∈ •e; hence (x, e) ∈ co. We have thus shown
(x, e) ∈ co⇔ ∀b ∈ •e : (x, b) ∈ co.

By the same argument, inverting the order relation, one shows (x, e) ∈ co ⇔
∀b ∈ e• : (x, b) ∈ co. 
�

Corollary 1. Let S = S⊥⊥ and e ∈ E. We have:

(i) e ∈ S ⇒ •e ∪ e• ⊆ S,
(ii) •e ⊆ S ⇒ e ∈ S,
(iii) e• ⊆ S ⇒ e ∈ S.

The next proposition shows that any causally closed set S is convex.



172 L. Bernardinello, L. Pomello, and S. Rombolà

Proposition 4. Let b1, b2 ∈ B such that b1 � b2; if b1, b2 ∈ S = S⊥⊥ then
∀x ∈ B ∪ E : x ∈ [b1, b2]⇒ x ∈ S.

Proof. Let y ∈ S⊥; then y co b1 and y co b2. Let x ∈ [b1, b2]. If y ∈ F−(x) then
y ∈ F−(b2); so y � b2, which is a contradiction. If y ∈ F+(x) then y ∈ F+(b1);
so y � b1, which again is a contradiction. Therefore y co x for any x ∈ [b1, b2],
and x ∈ S⊥⊥ = S. 
�

Since any condition has at most one pre-event and at most one post-event, from
Proposition 4 it follows immediately that, for any x1, x2 ∈ S, the interval [x1, x2]
is contained in S when S is closed.

From Corollary 1 and Proposition 4 it follows that the causally closed sets of
N are convex sets, namely that if a causally closed set S contains two causally
connected elements then it contains any element between them.

We now give a complete characterization of causally closed sets. In order to
do this we need some preliminary definitions.

Definition 9. Let S ⊆ X. Then

(i) Adf (S) = {e ∈ E | e /∈ S, •e ∩ S 	= ∅, ∀x ∈ F−(e) : [x, e] ∩ S = ∅ ⇒
F−(x) ∩ S 	= ∅},

(ii) Adp(S) = {e ∈ E | e /∈ S, e• ∩ S 	= ∅, ∀x ∈ F+(e) : [e, x] ∩ S = ∅ ⇒
F+(x) ∩ S 	= ∅}.

We denote by Ad(S) = Adf (S) ∪ Adp(S) the set of adjacent events of S. Intu-
itively, events adjacent to a set S are events such that, going backwards along
their past (or going along their future), outside S, we cannot find an element
whose past (or future) is independent from S. Note that if a set S ⊆ X con-
tains all preconditions or all postconditions of an event e outside S then e is an
adjacent event of S.

Example 2. An example of an adjacent event is shown on the left side of Fig. 6,
where e1 ∈ Adf (S1). The event e2 on the right side of Fig. 6 is not adjacent to
S2 since x ∈ F−(e2), [x, e2] is disjoint from S2, but F−(x) ∩ S2 = ∅. Intuitively,
every element in the past of e1 is in the future of some element in S1, while x,
which is in the past of e2, is causally independent from any element in S2.

Fig. 6. The event e1 is adjacent to S1; e2 is not adjacent to S2
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Fig. 7. An example of frontier of a set S

Definition 10. Let S ⊆ X. Then the frontier of S is the set

μ(S) = {x ∈ S | ∃y /∈ S, x F y or y F x}.

Intuitively, the frontier of S is the set of elements of S which are directly linked
to the outside (see Fig. 7 where the frontier of S is graphically represented by the
set of grey elements). Note that if S is a causally closed set then, by Corollary
1, μ(S) ⊆ B.

We are now ready for our characterization of causally closed sets of N .

Proposition 5. Let S ⊆ X. Then

(S is a convex set, Ad(S) = ∅, and μ(S) ⊆ B) ⇔ S = S⊥⊥.

Proof. We first show the “⇒” implication (see the left side of Fig. 8). Let S ⊆ X
be a convex set, with Ad(S) = ∅ and μ(S) ⊆ B. We proceed by contradiction.
Take x ∈ S⊥⊥ \ S. We will show that x li w for some w ∈ S⊥.

From the hypothesis, x /∈ S⊥. Suppose x ∈ F+(S); then ∃b ∈ μ(S), ∃e ∈ E :
e /∈ S, b ∈ •e, e � x. Since Ad(S) = ∅, e cannot be adjacent to S; hence

∃y ∈ F−(e) : [y, e] ∩ S = ∅ and F−(y) ∩ S = ∅.

Fig. 8. Characterization of causally closed sets of N
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Choose an arbitrary path from y to e, and let e1 be the last event on this path
for which F−(e1) ∩ S = ∅. If e1 co S, then e1 ∈ S⊥; since e1 ∈ F−(x), and
x ∈ S⊥⊥ we have a contradiction.

Assume then that e1 /∈ S⊥. Since F−(e1)∩S = ∅, e1 /∈ F+(S). If e1 ∈ F−(S),
take a condition b1 such that b1 ∈ e1

•, b1 ∈ [e1, e]. Since {e1} = •b1 and
e1 /∈ F+(S) it follows that b1 /∈ F+(S). Assume that b1 ∈ F−(S). Let {e2} = b1

•,
then e2 ∈ F−(S). Moreover e2 ∈ F−(e), e2 ∈ [e1, e] and F−(e2)∩S 	= ∅, because
of the choice of e1. Hence e2 ∈ F+(S). But this is in contradiction with the
assumption that S is a convex set. Therefore e2 /∈ F−(S) from which it follows
that b1 /∈ F−(S). Hence b1 co S, that implies b1 ∈ S⊥. But b1 ∈ F−(x), in
contradiction with the assumption x ∈ S⊥⊥.

For x ∈ F−(S) the proof is analogous. Therefore S = S⊥⊥.
We now show the reverse implication (see the right side of Fig. 8). Let S =

S⊥⊥. From Corollary 1 and Proposition 4 it follows that S is a convex set.
Corollary 1(i) implies that μ(S) ⊆ B. Suppose Ad(S) 	= ∅. Then ∃e ∈ E : e ∈
Ad(S). Suppose e ∈ Adf (S); then ∃b ∈ •e : b ∈ S. Since S = S⊥⊥ and e /∈ S,
∃x ∈ S⊥ : x li e. If x ∈ F+(e) we have x li b which is a contradiction. Suppose
x ∈ F−(e); since x ∈ S⊥, [x, e] ∩ S = ∅ and F−(x) ∩ S = ∅. By Definition 9
e /∈ Adf (S), in contradiction with the assumption that e ∈ Adf (S).

For e ∈ Adp(S) the proof is analogous. Therefore Ad(S) = ∅. 
�

4 The Algebraic Structure of Causally Closed Sets

In this section we study the algebraic structure induced by the closure operator
defined above. In particular, we show that, for the general class of occurrence
nets here considered, this closure operator gives rise to an orthomodular lattice.

In Section 4.1 some properties of lattices generated in this way are presented,
and some relations with K-density are shown.

Finally, in Section 4.2 we discuss the application of the same construction to
partial orders of events obtained by deleting conditions from occurrence nets.
We show that, in this case, the lattice can be non orthomodular.

We call L(N) the collection of causally closed sets of N = (B, E, F ), and
X = B ∪E. By the results on closure operators recalled in Section 2.3, we know
that

L(N) = 〈L(N),⊆, ∅, X, ( . )⊥〉

is an orthocomplemented complete lattice, in which the meet is just set inter-
section, while the join of a family of elements is given by set union followed by
causal closure.

Now we present the main result of this paper, namely, the proof that the
collection L(N) of causally closed sets of N forms an orthomodular lattice. In
order to do this we need the following proposition.

Proposition 6. Let S1, S2 ∈ L(N) be such that S1 ⊆ S2. Then ∀x ∈ (S1∨S⊥
2 )\

(S1 ∪ S⊥
2 ), ∃y1 ∈ S1, ∃y2 ∈ S⊥

2 : (x li y1) ∧ (x li y2).
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Fig. 9. An example of an element x /∈ (S1 ∨ S⊥
2 ) \ (S1 ∪ S⊥

2 )

Proof. Let S1, S2 ∈ L(N), with S1 ⊆ S2 (see Fig. 9). Then S⊥
2 ⊆ S⊥

1 , and
S1 co S⊥

2 . We show that if an element x ∈ (S1∨S⊥
2 )\(S1∪S⊥

2 ) belongs to S⊥
1 ∪S2,

then we have a contradiction. Put M = S1∨S⊥
2 . Let x ∈ M \(S1∪S⊥

2 ); suppose
that x ∈ S2 \ S1. The element x cannot belong to S2 ∩ S⊥

1 , since in that case
x ∈ (S1 ∪ S⊥

2 )⊥, which contradicts x ∈ S1 ∨ S⊥
2 . So x ∈ S2 \ S⊥

1 . Since x /∈ S⊥
1 ,

there exists y ∈ S1 with x li y. Assume that in N there is a path directed from
x to y (if the path is directed the other way, the argument is symmetric). Let
(e, b) ∈ F be the arc crossing the border of S1 along the path; b ∈ B, since
S1 is closed. We will show that e cannot actually belong to S2 by deriving a
contradiction. By Proposition 5, e /∈ Ad(S1); hence, there is z ∈ F+(e) such
that [e, z] ∩ S1 = ∅ and F+(z) ∩ S1 = ∅ (see Fig. 10). Choose a path from e to
z. Let ei be the last event along this path whose future crosses S1. Hence there
is w ∈ μ(S1) such that w ∈ F+(ei). By hypothesis e ∈ M (x and y belong to

Fig. 10. An example of an event e /∈ (S1 ∨ S⊥
2 ) \ (S1 ∪ S⊥

2 )
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M and M is convex); but also w ∈ M , hence also ei ∈ M . Let us call bi the
postcondition of ei on the selected path from e to z; bi must belong to M . By
the convexity of S2, ei ∈ S2, hence bi ∈ S2. If bi ∈ F+(S1) also ei ∈ F+(S1)
which is in contradiction with the assumption S1 ∈ L(N). By definition of ei,
bi /∈ F−(S1), hence bi ∈ S⊥

1 . We have bi ∈ (S2 ∩ S⊥
1 ), from which follows

bi ∈ (S1 ∪ S⊥
2 )⊥ in contradiction with assumption bi ∈ (S1 ∨ S⊥

2 ). Therefore
e /∈ S2, and we already know that e /∈ S⊥

2 . By a similar proof e /∈ S⊥
1 and e /∈ S1.

Hence ∃y1 ∈ S1, ∃y2 ∈ S⊥
2 : (e li y1) ∧ (e li y2). 
�

Theorem 1. L(N) is orthomodular.

Proof. We show that, for S1, S2 ∈ L(N), if S1 ⊆ S2, then S1 = S2 ∧ (S1 ∨S⊥
2 ) =

S2 ∩ (S1 ∨ S⊥
2 ).

Let S1 ⊆ S2. If x ∈ S1, then x ∈ S2, which implies x ∈ S2 ∧ (S1 ∨ S⊥
2 ), hence

S1 ⊆ S2 ∧ (S1 ∨ S⊥
2 ).

On the other hand, let x ∈ S2 ∩ (S1 ∨ S⊥
2 ); then x ∈ S2 and x ∈ (S1 ∨ S⊥

2 ).
From S1 ⊆ S2 ⇒ S1 co S⊥

2 , it follows that S1 ∪ S2 is convex. We must then
consider two cases:

1. Ad(S1 ∪ S⊥
2 ) = ∅, then S1 ∨ S⊥

2 = S1 ∪ S⊥
2 . Suppose that x ∈ S⊥

2 ; since
by hypothesis x ∈ S2, we obtain a contradiction, thus x ∈ S1 and S1 ⊇
S2 ∧ (S1 ∨ S⊥

2 ).
2. Ad(S1 ∪ S⊥

2 ) 	= ∅. Suppose that x ∈ (S1 ∨ S⊥
2 ) \ (S1 ∪ S⊥

2 ). Then, from
Proposition 6 it follows that ∃y ∈ S⊥

2 : y li x, contradicting our assumption
x ∈ S2. Thus x /∈ (S1 ∨ S⊥

2 ) \ (S1 ∪ S⊥
2 ); which implies x ∈ S1 and S1 ⊇

S2 ∧ (S1 ∨ S⊥
2 ). 
�

The following propositions characterize orthogonality and compatibility of
causally closed sets.

Proposition 7. Let S1, S2 ∈ L(N). S1 ⊥ S2 ⇔ S1 co S2.

Proof. From the definitions, S1 ⊥ S2 ⇔ S1 ⊆ S⊥
2 ⇔ S1 co S2. 
�

Proposition 8. Let S1, S2 ∈ L(N). S1 $ S2 ⇔ S1 ∪ S2 is a convex set.

Proof. We first show the “⇒” implication. Let S1, S2 ∈ L(N) and S1 $ S2;
then ∃A1, A2, A ∈ L(N) such that A1 ⊥ A2 ⊥ A ⊥ A1 and S1 = A1 ∨ A
and S2 = A2 ∨ A. Suppose that S1 ∪ S2 is not a convex set; then ∃x ∈ S1 \ A,
∃y ∈ S2\A : x li y and [x, y] � S1∪S2. Without loss of generality, we can assume
that x is in the frontier of S1, y in the frontier of S2, and x � y. Consider two
cases:

(i) x ∈ A1. Then y /∈ A2, since A1 ⊥ A2; since y ∈ A ∨ A2, by Proposition 6,
there is z ∈ A2 : y li z. It cannot be y � z, because in that case, we would
have a path from A1 to A2; hence z � y. Since y is a condition on the
frontier of S2, any path from z to y must contain the unique event in •y.
But this event is outside S2, and then S2 would not be convex, which is a
contradiction.
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(ii) x /∈ A1. If y ∈ A2, then apply a symmetric argument to that of point (i). If
y /∈ A2, then, we can apply Proposition 6 both to x and to y to build a path
from A1 to A2, in contradiction with the assumption A1 ⊥ A2.

Therefore S1 ∪ S2 is a convex set.
We now show the reverse implication. Let S1, S2 ∈ L(N) be such that S1∪S2

is a convex set. Take A = S1 ∩S2, A1 = S1 ∩A⊥ and A2 = S2 ∩A⊥. A, A1, A2 ∈
L(N), since they are intersections of closed sets, and by construction A1 ⊥ A
and A2 ⊥ A. We now show that A1 ⊥ A2. Suppose ∃x ∈ A1, ∃y ∈ A2 such
that x li y. Then there is a path from x to y, which we call α. By convexity of
S1 ∪ S2, α ⊆ S1 ∪ S2. From A1 ⊥ A it follows α ∩ A = ∅. Therefore there are
v, w such that v ∈ S1 \S2, w ∈ S2 \S1, (v, w) ∈ F and α passes through the arc
(v, w); but v and w are then in the frontier of, respectively, S1 and S2, hence
they should be both conditions, which is a contradiction. Hence A1 ⊥ A2. To
prove that S1 $ S2 we show that S1 = A1 ∨A and S2 = A2 ∨A. Since A1 ⊆ S1,
by Theorem 1, S1 = A1 ∨ (S1 ∧A⊥

1 ). We now show S1 ∧A⊥
1 = A.

If x ∈ A, then x ∈ S1 and, since A ⊥ A1, x ∈ A⊥
1 . This means that A ⊆

S1 ∧A⊥
1 .

Let x ∈ S1 ∧ A⊥
1 ; by de Morgan’s laws, A⊥

1 = S⊥
1 ∨ A. Hence x ∈ S1 and

x ∈ (S⊥
1 ∨A); x cannot be an element of S⊥

1 . Suppose x ∈ (S⊥
1 ∨A) \ (S⊥

1 ∪A);
then by Proposition 6 ∃y ∈ S⊥

1 : x li y, in contradiction with the hypothesis
x ∈ S1. Hence x must be in A.

Therefore S1 = A1 ∨X . An analogous proof holds for S2 = A2 ∨X . 
�

4.1 Some Properties of L(N) Related to K-Density

In this section we study some properties of lattices derived from occurrence nets
related to K-density. The first property we prove is valid in general.

Theorem 2. Let S ∈ L(N), with |S| < ∞. Then, for each line l of N , l ∩ (S ∪
S⊥) 	= ∅.

Proof. We proceed by contradiction. Suppose there is a line l such that l ∩ (S ∪
S⊥) = ∅. Then, each element of l must be in relation li with at least one element
of S (otherwise, it would belong to S⊥).

Let D1 ⊆ l be the set of those elements of l which lie in the past of S. D1
must be a proper subset of l, since otherwise, S being finite, at least one element
of S would be in relation li with all of l, and l would not be a maximal clique
of li. Similarly, let D2 = {x ∈ l | ∃y ∈ S : y � x}; D2 is also a proper subset of
l. D1 and D2 are disjoint, since S is convex.

If D1 	= ∅, then there is a greatest element (with respect to �) of D1, and
this element must be an event, say e. The unique post-condition of e on l cannot
belong to D2, hence it is concurrent with every element of S; but in that case,
it would be an element of S⊥, in contradiction with the initial assumption.

If instead D1 = ∅, then, since D2 is a proper subset of l, there exist points of
l concurrent with all points of S, hence again we have a contradiction. 
�
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If, in the statement of the previous theorem, we drop the finiteness condition on
S, the property does not hold in general. In the proof of the following theorem,
we show an example of an infinite closed set S such that its orthocomplement
is also infinite, and a line which intesects neither S nor S⊥. Notice that this
requires the occurrence net to be non K-dense.

Theorem 3. An occurrence net N = (B, E, F ) is K-dense if and only if,

∀S ∈ L(N), ∀l ∈ Lines(N) : l ∩ (S ∪ S⊥) 	= ∅

Proof. We first show that, if N is not K-dense, then there exist a line λ and a
closed set S such that λ ∩ (S ∪ S⊥) = ∅.

Assume that N is not K-dense. Then, by Proposition 1, one of the posets
in Figure 1 embeds into N . Let λ be a line of N extending the set formed by
all the xi; such a line exists, because those elements form a clique of li. Let
YP = {yi|i is even} and YD = {yi|i is odd}. Clearly, YD ⊆ Y ⊥

P . Since each
element of λ is in relation li with at least one element of YP , we also have
λ ∩ Y ⊥

P = ∅ and λ ∩ Y ⊥⊥
P = ∅. Since Y ⊥

P is closed, the proof is done.
Let us now prove the implication in the other direction. Assume there exist

a line λ and a closed set S such that λ ∩ (S ∪ S⊥) = ∅. Note first that λ must
be infinite: if it were finite, it should end with a condition (since |e•| ≥ 1 for all
events), which should be concurrent with all elements of S. Since S = (S⊥)⊥,
from the hypothesis it follows that each element of λ is in relation li with at
least one element of S. Hence each element of λ is either in F−(S) or in F+(S),
but not in both, since S is convex. Moreover, if x ∈ λ is in F−(S), then the same
holds for each y ∈ λ, since, otherwise, the postcondition of the last element of λ
lying in F−(S) would be in S⊥. Assume, then, that all elements of λ lie in the
past of S (the other case is dealt with in a dual way). Consider the set H formed
by all those conditions in the frontier of S belonging to some path coming from
λ (see Figure 11). We claim that this set is infinite, and that it is a clique of the

Fig. 11. Pattern of non K-dense occurrence nets
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concurrency relation in N . To see that H is infinite, take x ∈ H ; since [z, x] is
finite for all z ∈ B ∪E, there must be a finite number of elements of λ preceding
x. Since λ is infinite, also H must be infinite. Suppose now that there are two
elements, v, w ∈ H , linearly ordered: v � w; a path from v to w must pass
through the unique incoming arc of w, hence must leave S and then re-enter it,
but this is impossible, because S, being closed, is convex.

Now, by using elements on λ and elements in H , it is easy to see that the
poset on the left side of Figure 1 embeds into N , and N is not K-dense. 
�

We now introduce a relation between K-dense occurrence nets and algebraic
lattices.

Proposition 9. If N = (B, E, F ) is not K-dense, then L(N) is not algebraic.

Proof. Suppose N is not K-dense; then there is a line l, and a cut c such that
l ∩ c = ∅, and l and c are infinite. By the definition of cut, c⊥⊥ = B ∪ E, since
c⊥ = ∅; hence l ⊂ c⊥⊥. Take an arbitrary M ⊂ c, |M | < ∞; we will show that
M⊥⊥∩l = ∅. From this it follows that the closure operator (.)⊥⊥ is not algebraic,
hence L(N) is not algebraic.

Let us consider two distinct cases.

1. ∃x ∈ l such that x co M ; then x ∈ M⊥, which implies that no element of l
can belong to M⊥⊥.

2. ∀x ∈ l, ∃y ∈ M : x li y.
Suppose first that in l there are both elements in the past of M and in the
future of M . No such element can be in both, because otherwise there would
be either a cycle in N or a directed path between two distinct elements of M .
Hence there is a greatest (with respect to �) element, which is both in l and
in the past of M . The unique postcondition b of such event on l must then
be concurrent with M . Hence b ∈ M⊥ and so no element of l can belong to
M⊥⊥.

Suppose now that all elements of l lie in the past of M . If l had a last
element x, then x � z for some z ∈ M , and the same would hold for all of l,
which could not be a line. Hence l does not have a last element; then, since M
is finite, there is at least one w ∈ M which lies in the future of each element
of l, and this contradicts the hypothesis that l is a maximal clique of li.

If all elements of l lie in the future of M , a similar argument applies. 
�

It is still an open problem whether the reverse implication of Proposition 9 holds.

4.2 Lattices of Causally Closed Sets on Event Structures

In this section we briefly report some results on lattices generated by the con-
currency relation in the elementary event structures associated to occurrence
nets [11]. These structures are posets where � = F ∗|E×E and the concurrency
relation corresponds to the relation co in N restricted to E ×E; obviously, also
in this case, co is symmetric and irreflexive. We can then apply the construc-
tions recalled in Section 2.3, obtaining the corresponding orthocomplemented
complete lattices formed by the collection of causally closed sets.
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Fig. 12. The lattice constructed on event structures is not orthomodular

These causally closed sets have properties analogous to closed sets defined
on occurrence nets; in particular, any closed set is convex. However, by drop-
ping conditions, in general we lose orthomodularity, as shown by the following
example.

Example 3. Fig. 12 shows a fragment of the event structure derived from Petri
grid. In it we have, for instance, the closed sets S1 = {x, y, z, w}, S2 = {x, y, z, w,
v, u}. They are such that: S1 ⊂ S2 and S2 	= S1 ∨ (S2 ∧ S⊥

1 ), since S2 ∧ S⊥
1 = ∅;

therefore the orthomodularity law is not valid.

5 Conclusions

We have studied a closure operator induced by the co relation in an occurrence
net, and the algebraic structure of the corresponding causally closed sets, show-
ing that it is a complete orthomodular lattice.

The structure of closed sets has a sort of density property; in fact, as proved
in Theorem 2, if we consider a finite closed set, then any line, which can be
interpreted as a possible world line, crosses either the given set or its ortho-
complement (which could then be interpreted as a negation). This property is
actually valid for any closed set in the case of K-dense occurrence nets.

Starting from these first results, several further developments are possible.
We are working on a further characterization of the causally closed sets of an
occurrence net in terms of subprocesses of the process described by the net itself.

In [9], Casini suggests an interpretation of the causally closed sets of a space-
time in terms of a logical language, whose formulas express properties of the
history of a particle. The resulting logic is non classical, since the related lattice
is orthomodular, but non distributive. We will investigate how to define a similar
interpretation for our case.
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On a more technical side, we intend to study the properties of lattices gen-
erated from nets, and in particular the problem to decide when a given ortho-
modular lattice corresponds to the structure of the causally closed sets of an
occurrence net and how to construct it.

Kummer and Stehr have considered and studied causality and concurrency
on cyclic processes ([18]); if we consider causally closed subsets of system nets
with cyclic behaviour, in general we do not get an orthomodular structure. It
is therefore interesting to characterize the class of system nets such that the
lattices of closed sets are orthomodular, and to study the relations between the
lattices obtained from the processes and from the systems.
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Abstract. In [LJ06] Lorenz and Juhás raised the question of whether
there exists a suitable formalism for the representation of infinite fam-
ilies of partial orders generated by Petri nets. Restricting ourselves to
bounded p/t-nets, we propose Hasse diagram generators as an answer.
We show that Hasse diagram generators are expressive enough to repre-
sent the partial order language of any bounded p/t net. We prove as well
that it is decidable both whether the (possible infinite) family of partial
orders represented by a given Hasse diagram generator is included on the
partial order language of a given p/t-net and whether their intersection
is empty. Based on this decidability result, we prove that the partial or-
der languages of two given Petri nets can be effectively compared with
respect to inclusion. Finally we address the synthesis of k-safe p/t-nets
from Hasse diagram generators.

Keywords: Causality/partial order theory of concurrency.

1 Introduction

When dealing with the development and analysis of concurrent systems, some
questions may arise naturally. We may want to know, for example, whether the
behavior of a given system subsumes a specified collection of desired scenarios or
whether it contains some, out of a collection of undesired scenarios. Given two
systems A and B, we could ask as well whether the behavior of A is included in
the behavior of B. Finally, we could be interested in synthesizing a system whose
behavior minimally includes a given set of scenarios. In this paper, we address
these questions under an unifying perspective. We formalize our systems by
means of p/t-nets and our scenarios by means of partial orders.

In order to finitely represent possible infinite families of partial orders, we in-
troduce Hasse diagram generators. With this aim, we define slices as the building
blocks of directed acyclic graphs (DAGs). We specify languages over slices by
means of what we call slice graphs. Composing the slices on the strings of these
languages, we get infinite families of DAGs, the transitive closure of which, gives
rise to infinite families of partial orders. A Hasse diagram generator is a slice
graph which generates exclusively transitive reduced DAGs. For this special type
of slice graph, each generated DAG is the Hasse diagram of the partial order it
induces.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 183–203, 2009.
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Partial orders can be associated to p/t-nets via the notion of Petri net process
[GR83, BW00]. They may carry two possible semantics. The causal and the exe-
cution semantics. Accordingly to the causal semantics, a vertex v is connected to a
vertex v′ in a partial order if and only if the event representedby v′ causally depends
on the occurrence the of event represented by v. The absence of an edge between
two events indicates independence. The execution semantics is not aimed to indi-
cate a causal dependence between events, but rather the order in which they are
executed. An edge connecting v to v′ indicates that v′ can be executed either after
or at the same time as v, but not before. The absence of edge between v and v′ in-
dicates that they can be executed in any order. For a given Petri net N we say that
a partial order PO is a causal order of N if it carries the causal semantics and an
execution of N if it carries the execution semantics. We denote Lcau(N), the set of
causal orders of N , and Lex(N), its set of executions.

Our main result states that for any Hasse diagram generator HG, and any
bounded p/t-net N , it is decidable whether the language LPO(HG) of partial or-
ders generated by HG is included on Lsem(N), as well as whether the intersection
of LPO(HG) with Lsem(N) is empty. We use the variable sem to indicate that
these decidability results are valid for both the causality semantics (sem = cau)
and for the execution semantics (sem = ex). Previously, decidability was stated
for single ( and consequently finite families of ) partial orders carrying both se-
mantics [JLD05]. In order to provide supporting evidence that Hasse diagram
generators are indeed a suitable formalism for the representation of the partial
order language generated by p/t-nets, we show that for each p/t-net N there
exist effectively computable Hasse diagram generators HGex(N) and HGcau(N),
whose partial order languages match respectively the set of executions of N and
the set of causal orders of N .

In the reverse direction, we study the synthesis of Petri nets from Hasse dia-
gram generators. We restrict ourselves to k-safe p/t-nets for a given k. Here, the
term k-safe is used in order to emphasize that the bound k is given as a param-
eter for the synthesis. We develop the notion of k-safe region for slice graphs.
Using these regions, we are able to synthesize from a given Hasse diagram gener-
atorHG, a Petri net with minimal execution language with relation to the partial
order language represented by HG. For the causal semantics we impose as well
a bound r on the number of copies of each place of the synthesized net. With
this additional care, we are able to synthesize the set of minimal nets whose
causal language is minimal with respect to the partial order language defined
by HG. It is worth noting that this work deals for the first time with the syn-
thesis of (unlabeled) p/t-nets from partial order languages carrying the causal
semantics. Synthesis of Petri nets from many types of automata and sequential
or step languages had previously been achieved through the theory of regions
[Dar98, Dar00, BD96, ED96]. In [LJ06] an abstract notion of region was defined
for partial order languages. This notion was effected in [LBDM07, BDLM08] for
finite sets of partial orders carrying the execution semantics and in [LBD08] for
a class of partial orders which is not expressive enough to represent the partial
order behavior of arbitrary bounded p/t-nets.
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The rest of the paper is organized as follows. In section 2 we define slices,
slice graphs and Hasse diagram generators. In section 3 we describe p/t-nets,
their processes and their execution and causal order languages. In section 4 we
introduce the notion of interlaced flow in order to characterize Hasse diagrams
of p/t-net executions and processes. Interlaced flows can be regarded as a gen-
eralization of token flows defined in [JLD05, BDJL06]. In sections 5 and 6 we
introduce respectively seasoners and filters, which provide a nice framework for
the statement of our main results in section 7. In section 8 we address the syn-
thesis of k-safe p/t-nets from Hasse diagram generators and in section 9 we make
some final remarks.

2 Slices, Slice Graphs and Hasse Diagram Generators

A slice is a DAG S = (V, E, l) where V = I∪̇C∪̇O and l : V → {I1, ..., I|I|}∪T ∪
{O1, ...,O|O|}. The vertex set V is partitioned into three subsets: A non-empty
center C labeled by l with elements of a set of transitions T and the in- and
out-frontiers, I and O respectively, which are injectively numbered by l in such a
way that l(I) = {I1, ..., I|I|} and l(O) = {O1, ...,O|O|}. Furthermore an unique
edge touches each frontier vertex v ∈ I∪̇O. This edge is outgoing if v lies on the
in-frontier I and incoming if v lies on the out-frontier O. It will be convenient to
write simple j to denote the unique edge which touches in the j-th vertex v of a
frontier, i.e, for which l(v) ∈ {Ij ,Oj}. Whether v is an in or out-frontier vertex
will be clear by the context. For such an edge j, js denotes its source vertex and
jt its target vertex. Along all this paper, for an edge e of a graph, es will denote
its source vertex and et its target vertex.

In drawings, we surround slices by dashed rectangles, and implicitly direct their
edges from left to right. In and out frontiers vertices are determined respectively
by the intersection of edges with the left and right sides of the rectangle. Frontier
vertices are implicitly numbered from up to down. Center vertices are indicated by
their labels (Fig: 1.I). A slice S can be composed with a slice S′ whenever the out-
frontier of S is of the same size as the in-frontier of S′. In this case, the resulting
slice S◦S′ is obtained by gluing the single edge touching j-th out-frontier vertex of
S to the corresponding edge touching the j-th in-frontier vertex of S′ ( Fig. 1.II).
We note that as a result of the composition, multiple edges may arise, since the
vertices on the glued frontiers disappear. Formally we have

S ◦ S′ = [(S−O)∪̇(S′ − I ′)] + {(js, jt)|1 ≤ j ≤ |O|}.

Where ∪̇ stands for the disjoint union of multigraphs. The minus operation
stands for the usual deletion of vertices and the + operation for the usual addition
of edges on multigraphs. It is easy to see that any DAG, even containing multiple
edges, can be cast as the composition of a sequence of unit slices.

We say a slice is initial if its in-frontier is empty and final if its out-frontier
is empty. A slice with a unique vertex in the center is called a unit slice. A unit
slice is standard if there is at least one edge connecting its center vertex to an
in(out)-frontier vertex, whenever the in(out)-frontier of S is not empty. If both
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Fig. 1. I : A slice and its representation accordingly to our convention. II : Composition
of slices. III : A slice which is not standard. IV : A slice graph labeled with unit slices,
and an intuitive representation of its graph language. S1 is initial and S5, final.

the in- and out-frontiers of a slice are empty, we say that it is a pure DAG. In
this paper we assume that unit initial slices have its center vertex labeled by ι
and that unit final slices have its center vertex labeled by ε.

Definition 1 (Slice Graph). A slice graph over a slice alphabet ΣS is a di-
rected graph SG = (V , E ,S) possible containing loops but free of multiple edges.
The function S : V → ΣS satisfies the following condition: (v1, v2) ∈ E implies
that S(v1) can be composed with S(v2). We say that a vertex on a slice graph
is initial if it is labeled with an initial slice and final if it is labeled with a final
slice.

A graph is simple if it doesn’t contain multiple edges. The simplification of a
multigraph G is the simple graph obtained from it by letting on it a single copy
of each edge. A DAG is a directed and acyclic graph. A vertex of a DAG is
minimal (maximal) if there is no edge in which v is the tail (source). A partial
order is a simple DAG where E is irreflexive and transitive. The partial order
induced by a DAG G is the transitive closure G∗ of the simplification of G. The
Hasse diagram of G is the Hasse diagram of its induced partial order.

Definition 2 (Languages Generated by Slice Graphs)

(i) Slice language: L(SG) = {S(v1)S(v2)...S(vn) : v1v2...vn is a walk on SG
from an initial to a final vertex}

(ii) Graph language: LG(SG) = {S1 ◦ S2 ◦ ... ◦ Sn|S1S2...Sn ∈ L(SG)}
(iii) PO language: LPO(SG) = {H∗|H ∈ LG(SG)}.
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Definition 3 (Hasse Diagram Generator). A hasse diagram generator is a
slice graph SG in which all elements of LG(SG) are Hasse diagrams.

3 p/t-Nets and Their Partial Order Semantics

Let T be a set of transitions. Then a place over T is a triple p = (p0, p̌, p̂) where
p0 denotes the initial number of tokens on p and p̌, p̂ : T → � are functions
which denote the number of tokens that a transition t respectively puts on and
takes from p. A p/t-net over T is a pair N = (P, T ) where T is a set of transitions
ant P a multiset of places over T . We assume through this paper that for each
transition t ∈ T , there exists places p1, p2 ∈ P for which p̌1(t) ≥ 0 and p̂2(t) ≥ 0.
A marking of N is a function m : P → �. A transition t is enabled at marking
m if m(p) ≥ p̂(t) for each p ∈ P . The occurrence of an enabled transition at
marking m gives rise to a new marking m′ defined as m′(p) = m(p)− p̂(t)+ p̌(t).
The initial marking m0 of N is given by m0(p) = p0 for each p ∈ P . A sequence
of transitions t0t1...tn−1 is an occurrence sequence of N if there exists a sequence
of markings m0m1...mn such that ti is enabled at mi and if mi+1 is obtained
by the firing of ti at marking mi. A p/t-net N is k-safe, for k ≥ 1, if for each
occurrence t0t1...tn−1 of N , mi(p) ≤ k for each 0 ≤ i ≤ n. N is bounded if it is
k-safe for some k. The union of two p/t-nets N1 = (P1, T ), N2 = (P2, T ) over T
is the p/t-net N1 ∪N2 = (P1∪̇P2, T ).

Definition 4 (Process). A process of a p/t-net N = (P, T ) is a DAG π =
(B∪̇V, F, ρ) where B∪̇V is the set of vertices. We cal the vertices in B conditions
and the vertices in V events. The edge set F is included on (B × V ) ∪ (V ×B)
and ρ : (B ∪ V )→ (P ∪ T ) ∪ {ι, ε} is a labeling function satisfying

(i) π has an unique minimal vertex vι ∈ V and an unique maximal vertex
vε ∈ V .

(ii) ρ(B) ⊆ P , ρ(V \{vι, vε}) ⊆ T , ρ(vι) = ι, ρ(vε) = ε.
(iii) ∀v ∈ V, ∀p ∈ P : |{(b, v) ∈ F : ρ(b)=p}|= p̂(ρ(v))
(iv) ∀v ∈ V, ∀p ∈ P : |{(v, b) ∈ F : ρ(b)=p}|= p̌(ρ(v)).
(v) ∀p ∈ P : |{(vι, b) : ρ(b)=p}|=p0.

The only point our definition of process differs from the usual definition of p/t-
net process [GR83] is the addition of a minimal event vι which is labeled with
a letter ι /∈ T and a maximal event vε which is labeled with a letter ε /∈ T .
Intuitively, ι loads the initial marking of N , and ε empties the marking of N
after the occurrence of all events of the process. We call attention to the fact
that the number of conditions connected to vε varies accordingly to the process.
These minimal and maximal events will be useful to avoid the consideration of
particular cases on theorem 10.

A partial order po = (V, <, l) is a simple graph where < is a transitive and
irreflexive relation over V × V . A prefix of po is a partial order po′ = (V ′, <′, l′)
where V ′ ⊆ V, <′⊆<, l′ = l|V and for all v′ ∈ V ′, v ∈ V , v < v′ implies that
v ∈ V ′ and v <′ v′. A sequentialization of po is a partial order po′ = (V, <′, l)
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where <⊆<′. The causal order of a process π is obtained from it by abstracting
its conditions and by taking the partial order induced by its events. An execution
is a sequentialization of a causal order.

Definition 5 (Causal order of a p/t-net Process and Executions). The
causal order of a process π = (B∪̇V, F, ρ) of a p/t-net N is the partial order
poπ = (V, F ∗|V ×V , ρ|V ). An execution of π is a partial order po′ = (V, F ′, ρ)
where F ⊆ F ′.

We denote Lcau(N) the set of all causal orders derived from processes of N and
Lex(N) the set of all its executions. When talking about a prefix of a causal
order (execution) of a process, we take the additional care of adding a maximum
vertex labeled with ε, so that it is itself a causal order (execution) of N . We
notice that with this proviso, Lcau(N) is prefix closed and Lex(N) is both prefix
and sequentialization closed.

4 Interlaced Flows, Executions and Causal Orders

In [JLD05, BDJL06] executions and causal orders of Petri nets were charac-
terized in terms of token flows. These flows however cannot be transposed to
Hasse diagram generators, since a flow value must be assigned to each edge of a
given partial order. In this section we introduce the notion of p-interlaced flow,
which non-trivially generalizes token flows in the sense that they allow us to
characterize Petri net partial orders by attaching values only to the edges of
their Hasse diagrams. Instead of a single value, our flow assigns four values to
each edge. Establishing an interlacing relation on these values, we are able to
coherently derive Petri net processes without considering edges which are not in
the transitive reduction of the partial order. As it will be clear in sections 5 and
7, interlaced flows can be easily ”sliced” and then transposed to Hasse diagram
generators.

Definition 6 (Interlaced Flow). Let H = (V, E, l) be a Hasse diagram. Then
a four-tuple f = (bb, bf , pb, pf ) of functions of type E → � is called an inter-
laced flow on H if the following equation is satisfied for each vertex v ∈ V :∑

et=v

bf(e) + pf(e) =
∑
es=v

pb(e) + pf(e) (1)

Intuitively, for each e ∈ E, pb(e) counts some of the tokens produced in the past
of es and consumed by et; pf(e), some of the tokens produced in the past of es

and consumed in the future of et, and bf (e), some of the tokens produced by
es and consumed in the future of et. Thus equation 1 states that on interlaced
flows, the total number of tokens produced in the past of a vertex v, that arrives
at it without being consumed, will eventually be consumed in the future of v.
bb(e), which does not appears on equation 1 counts the totality tokens produced
by es and consumed by et. This component of the flow will be used below in
the definition of unit flows as well as in the definition of p-interlaced flows.
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As we shall see in lemma 8 any interlaced flow can be decomposed on a sum of
unit flows. Each unit flow keeps track of the trajectory of a unique token, from
the event in which it is created until the event in which it is consumed. The sum
of flows is performed componentwise. We recall that the value associated by a
flow f to an edge e of a DAG is the four-tuple (bb(e), bf(e), pb(e), pf (e)).

Definition 7 (Unit flow). Let H = (V, E, l) be a DAG and w = v1e1v2...
vkekvk+1 be a path on H. Then the unit flow of w on H, is the function fw :
E → �

4 where fw(e) = (0, 0, 0, 0) for e ∈ E\{e1...ek} and fw(ei) is defined as
follows for 1 ≤ i ≤ k:

fw(ei) =

⎧⎪⎪⎨⎪⎪⎩
(1, 0, 0, 0) if i = 1 and k = 1
(0, 1, 0, 0) if i = 1 and k > 1
(0, 0, 0, 1) if 1 < i < k and k > 1
(0, 0, 1, 0) if i = k and k > 1

(2)

Intuitively fw represents a unique token that is produced at the first vertex
of w and is consumed at its last vertex, after traveling untouched along all
intermediary vertices. At each edge, one component of the interlaced flow is
equal to 1 and the other three are 0. If w has a unique edge, i.e. k = 1, the
token produced by es

1 is consumed by et
1, thus bb(e1) = 1. For k > 1, the

token produced by es
1 travels to the future of et

1. In this case, bf(e1) = 1. For
1 < i < k, the token is produced in the past of es

i and consumed in its future,
hence pf(ei) = 1. Finally, for ek we have pb(ek) = 1 since the token is produced
in the past of es

k and consumed by et
k. It is easy to verify that for any path w of

H , fw is an interlaced flow on H . This and some other properties of interlaced
flows are described in the following lemma, which will be used in the proof of
theorem 10.

Lemma 8. Let H = (V, E, l) be a Hasse diagram, w a path in H and f, f ′ :
E → �

4 be two interlaced flows on H where f = (bb, bf , pb, pf) and f ′ =
(bb′, bf ′, pb′, pf ′). Then

1. If f(e) = (0, 0, 0, 0) for every e ∈ E then f is an interlaced flow on H.
2. fw is an interlaced flow on H.
3. f + f ′ is an interlaced flow on H.
4. Let w = v1e1v2...vkekvk+1 be a path on H and suppose f = f ′ + fw, then

(a) bb(e1) + bf(e1) = bb′(e1) + bf ′(e1) + 1
(b) pb(ek) + bb(ek) = pb′(ek) + bb′(ek) + 1

5. Let e ∈ E. Then
(a) bb(e)+bf(e) ≥ 1 if and only if there exists a path w = v1e1v2..vkekvk+1

and an interlaced flow f ′ on H such that e1 = e and f = f ′ + fw.
(b) pb(e)+ bb(e) ≥ 1 if and only if there exists a path w = v1e1v2..vkekvk+1

and an interlaced flow f ′ on H such that ek = e and f = f ′ + fw.
6. There exists a multiset M of paths of H such that f =

∑
w∈M fw.
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7. Let M be a multiset of paths of H and f =
∑

w∈M fw. Then for each v ∈ V
(a)
∑

es=v bb(e) + bf(e) = |{w ∈ M |v is the first vertex of w}|
(b)
∑

et=v bb(e) + pb(e) = |{w ∈M |v is the last vertex of w}|

Proof. Items 1-3 follow from the definitions of interlaced flow (6) and of unit flow
(7 ). Items 4.a and 4.b follow from the definition of unit flow and holds even if f
is not interlaced. For the proof of one direction of item 5.a, suppose that there
is a path w = v1e1v2...vkekvk+1 where e1 = e, f = f ′ + fw and f ′ is interlaced.
Then by item 4.a bb(e)+bf(e) must be greater than 1, since bb′(e)+bf ′(e) ≥ 0.
For the other direction, suppose bb(e) + bf(e) ≥ 1. If bb(e) ≥ 1 then the path
has length 1 and consists in e itself. Now let bb(e) = 0 and bf (e) ≥ 1. Then
by the equation of definition 6, there exists an edge e2 in H with et = es

2 for
which pb(e2) + pf(e2) ≥ 1. If pb(e2) ≥ 1 take w = (es)e(et)e2(et

2). Otherwise
also by the equation of definition 6 there exists an edge e3 with et

2 = es
3 and

pb(e3) + pf(e3) ≥ 1 and so on. For some k we must have pb(ek) ≥ 1 since
H is finite. This ek will be the last edge of the path. The proof of item 5.b is
analogous. For the first direction we use 4.b instead of 4.a. For the other direction
we construct the path w in the reverse order, starting from the last edge. Item 6
follows from items 5.a and 5.b: decompose f sucessively until the zero interlaced
flow is reached. Indeed, item 5 assures that while the flow is non-zero, such
decomposition is possible. Item 7.a follows from items 5.a and 4.a and item 7.b
from 5.b and 4.b. �

Definition 9 (p-interlaced flow). Let N = (P, T ) be a p/t-net H = (V, E, l)
a Hasse diagram with l : V → T and p ∈ P a place of N . Then a p-interlaced
flow is an interlaced flow f : E → �

4 which satisfies the two following additional
equations around each vertex:

(IN) In(v) =
∑
et=v

bb(e) + pb(e) = p̂(l(v))

(OUT ) Out(v) =
∑
es=v

bb(e) + bf(e) = p̌(l(v))

4.1 Characterization of Executions and Causality Diagrams in
Terms of p-Interlaced Flows

In this subsection we enunciate and prove theorem 10, which characterizes Petri
net partial orders in terms of interlaced flows. Item (i) of theorem 10 states that
each Hasse diagram H whose induced partial order H∗ is an execution of a p/t-
net N can be characterized by a set of p-interlaced flows, one for each place of
N . The proof is constructive. Given that H∗ is an execution of N , we construct
a set of interlaced flows on H , one for each place of N. Conversely, if such a set
of p-interlaced flows is given, we construct a process π of N for which H∗ is
one of its executions. Making some additional considerations on each direction
of the proof, we prove as well item (ii) of theorem 10 which characterizes Hasse
diagrams of causal orders of N .
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Theorem 10 (Interlaced flow theorem). Let N = (P, T ) be a (not neces-
sarily bounded) p/t-net and H = (V, E, l) be a Hasse diagram. Then

(i) The partial order induced by H is an execution of N iff there exists a p-
interlaced flow fp : E → �

4 on H for each place p.
(ii) The partial order induced by H is a causal order of N iff there exists a set

{fp}p∈P of p-interlaced flows such that for at least one p, the component of
fp which denotes the direct transmission of tokens is strictly greater than 1.

From Processes to Flows. Let π = (B∪̇V, F, ρ) be a process of N and suppose
that H∗ = (V, <, l) is an execution of N . For each place p ∈ N we extend the
functions p̂, p̌ : T → � to p̌ : T ∪ {ι, ε} → � and p̂ : T ∪ {ι} → � by making
p̌(ι) = p0, p̌(ε) = 0 and p̂(ι) = 0 . p̂(ε) represents the number of tokens on p after
the occurrence of every events of π. For each b ∈ B with (v, b), (b, v′) ∈ F for
some v, v′ ∈ V we choose an arbitrary path wb in H (not in H∗) from v to v′.
Since H is the Hasse diagram of a sequentialization of the causal order poπ of π,
such a path always exists. We claim that for each p ∈ P , fp =

∑
ρ(b)=p fwb

is a
p-interlaced flow of N . By lemma 8.2, each fwb

is interlaced. Thus by lemma 8.3,
fp is interlaced as well. By the definition of process (4), for each v ∈ V we have
|{(v, b) ∈ F : ρ(b) = p}|= p̌(ρ(v)) and thus exactly p̌(l(v)) chosen paths whose
first vertex is v. It implies, by lemma 8.4 that

∑
es=v bbp(e) + bfp(e) = p̌(l(v)).

Thus condition (OUT ) of definition 9 is satisfied. Analogously |{(b, v) ∈ F :
ρ(b)=p}|= p̂(ρ(v)) and thus exactly p̂(l(v)) chosen paths whose last vertex is v,
what implies

∑
et=v pbp(e)+bbp(e) = p̂(l(v)). Thus condition (IN) of definition

9 is satisfied as well. This proves one direction of item i of theorem 10. In order to
prove the same direction of item ii, suppose that H is the Hasse diagram of the
causal order of π, and let e = (v, v′) ∈ E be one of the edges of H . Then for some
p ∈ P there exists a condition b in π whose label is p for which (v, b), (b, v′) ∈ F .
Thus fwb

(e) = (1, 0, 0, 0) which implies that bb(e) ≥ 1.

From Flows to Processes. Suppose that there is a p-interlaced flow fp : E →
�

4 on H for each p ∈ P . We construct a process π = (B∪̇V, F, ρ) of N for which
H∗ is one of its executions. First we set ρ(v) = l(v) for each v ∈ V . By lemma 8.6,
for each fp, there exists a multiset Mp of paths of H for which fp =

∑
w∈Mp

fw.
For each path w = v1e1v2...vkekvk+1 in Mp we create a condition bw in B labeled
by p, i.e. ρ(bw) = p, and put (v1, bw) and (bw, vk+1) into F . We claim that for each
v ∈ V , |{(b, v) ∈ F : ρ(b) = p}|= p̂(ρ(v)) and |{(v, b) ∈ F : ρ(b)= p}|= p̌(ρ(v)).
Since each fp is a p-interlaced flow, we have

∑
et=v pbp(e) + bbp(e) = p̂(l(v))

and
∑

es=v bbp(e) + bfp(e) = p̌(l(v)) for each v ∈ V . By lemma 8.7, for each
p ∈ P , there exists exactly p̌(l(v)) paths in Mp whose first vertex is v and
exactly p̂(l(v)) paths in Mp whose last vertex is v. Furthermore for v = vι, there
are p̌(ι) = p0 minimal conditions, which correspond to paths whose first vertex
is vι.

It remains to check that H∗ is indeed a sequentialization of the causal order
poπ = (V, <π, l) derived from π. For that, let v, v′ ∈ V with v <π v′. Then
by the definition of causal order (5) there exists at least a condition b in B for
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which (v, b), (b, v′) ∈ F . Let ρ(b) = p for some p ∈ P . Then by our construction
of π from f , this condition b = bw corresponds to a path w in H whose first
vertex is v and last is v′, what implies that v < v′ in H∗ = (V, <, l). This proves
that <π⊆<, and thus H∗ is a sequentialization of poπ. This proves the converse
direction of item (i). In order to prove the same direction of item ii, suppose
that for each e = (v, v′) ∈ E, we have bb(p) ≥ 1 for at least one place p ∈ P .
Then by the construction of process described above, we have a condition bw

such that (v, bw), (bw, v′) ∈ F . This implies that the edge (v, v′) is also in the
causal order derived from π. And thus < which is the transitive closure of E is
included on <π. Since the inclusion in the other sense was already proved, we
have <=<π. �

5 Slicing Graph Properties via Seasonings

Any DAG can be cast as the composition of a sequence of unit slices. Conversely,
we can use slice graphs in order to compose unit slices and define infinite families
of DAGs. It would be interesting to generate infinite families of DAGs carrying
some given property. Being a Hasse diagram is an example of an useful property,
since Hasse diagrams are in one to one correspondence with the partial orders they
induce. Given a p/t-netN we could be interested in generating as well, sets of Hasse
diagrams which induced partial order is an execution or a causal order of N .

In order to address these problems we introduce in this section the notion of
seasoner. A seasoner is a second order predicates Q(S, R) where the first variable
S, ranges over unit slices and the second R, over relations defined on the edges of S.
Roughly speaking, we use seasoners in order to transpose DAG properties to the
unit slices they are constituted of. This notion will be made more precise below.

A seasoning of a slice S = (V, E, l) is a relation R : Eα ×X which associates
values of an arbitrary fixed set X to α-tuples of edges of S. A seasoned slice is
a pair (S, R) where S is an slice and R a seasoning of S. A seasoned slice (S, R)
can be composed with a seasoned slice (S′, R′) if S can be composed with S′ and
furthermore the values associated by R to each α-tuple of out-edges of S agrees
with the values associated by R′ to the corresponding α-tuple of in-edges of S′

(Fig. 2.III and 3). A seasoning of a sequence S1S2...Sn of slices is a sequence of
relations R1R2...Rn where Ri is a seasoning of Si for 1 ≤ i ≤ n and such that
(Si, Ri) can be composed with (Si+1, Ri+1) for 1 ≤ i ≤ n− 1. In this paper we
restrict our seasonings to partial functions (view as relations).

Definition 11 (Seasoner). A seasoner is a decidable second order predicate
Q(S, R) in which the first variable S ranges over unit slices, the second R over
seasonings of S, and for each S the set {R|Q(S, R)} is finite and computable. A
sequence of unit slices S1S2...Sn is Q-seasonable, if S1S2...Sn has a seasoning
R1R2...Rn satisfying Q(Si, Ri) for each i. A DAG G is Q-seasonable if each of
its unit decompositions S1S2...Sn is Q-seasonable. A seasoner Q is coherent if
for every DAG G, the Q-seasonability of a unit decomposition S1S2...Sn of G
implies the Q-seasonability of G.
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Fig. 2. I) A p/t-net N . II) A process π of N . III) The hasse diagram H of the causal
order derived from π toguether with an interlaced flow. H with the flow attached on
it can be cast as the composition of a sequence of seasoned slices (section 5). IV ) The
flow attached to H is decomposed into unit flows. One for each condition bi of π.

Fig. 3. (Left) Hasse seasoning of a unit decomposition Hasse diagram. (Right) If a
graph is not a Hasse diagram, none of its unit decompositions can be coherently
Hasse-seasoned.

Our interest in seasoners is justified in lemma 12. The first three items provide
a sliced characterization of p-interlaced flows, executions and causal orders. The
fourth provides a sliced characterization of Hasse diagrams.

Lemma 12 (Seasoners and DAG properties). Let H be a Hasse diagram,
G a DAG, N a bounded p/t-net with bound k and p a place of N . Then there
exist seasoners Qk

p, QN
ex, QN

cau and QH such that
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(i) The PO induced by H has a p-interlaced flow with relation to N iff H is
Qk

p-seasonable.
(ii) The PO induced by H is an execution of N iff H is QN

ex-seasonable.
(iii) The PO induced by H is a causal order of N iff H is QN

cau-seasonable.
(iv) G is a Hasse diagram with a unique minimal vertex iff G is QH-seasonable.

The proof of the first three items of lemma 12, will follow directly from theorem
10 combined with proposition 14 and the auxiliary lemma 15. The proof of item
(iv) will be postponed to subsection 5.1.

Definition 13. Let N = (P, T ) be a bounded p/t-net with bound k, p a place of
N and S = (V, E, l) a standard unit slice with V = I∪̇{v}∪̇O and l(v) = t for
some t ∈ T . Then

1. (p-seasoner) Define Qk
p(S, R) to be true if S is standard and R is a function

R : E → �
4 where for each e ∈ E, R(e) = (bb(e), bf (e), pb(e), pf (e)) and

(a)
∑

et=v pb(e) + bb(e) = p̂(l(v)),
(b)
∑

es=v bb(e) + bf(e) = p̌(l(v)),
(c)
∑

et=v bf (e) + pf (e) =
∑

es=v pb(e) + pf(e),
(d)
∑

es∈I bb(e) + bf (e) + pb(e) + pf(e) ≤ k,
(e)
∑

et∈O bb(e) + bf (e) + pb(e) + pf(e) ≤ k.
2. (Execution seasoner) Define QN

ex(S, R) to be true if R is a function R : P →
(E → �

4) where for each p ∈ P Qk
p(S, R(p)) holds. For each e ∈ E we let

R(p)(e) = (bbp(e), bfp(e), pbp(e), pfp(e)).
3. (Causality seasoner) Define QN

cau(S, R) to be true iff QN
ex(S, R) holds and if

for each e ∈ E there exists a p ∈ P with bbp(e) ≥ 1.

Proposition 14. Let N = (P, T ) be a bounded p/t-net with bound k, p a place
of N , S = (V, E, l) a unit slice with V = I∪̇{v}∪̇O and R a Qk

p-seasoning of S.
Then∑
et∈O

(bb + bf + pb + pf)(e) = p̌(l(v)) − p̂(l(v)) +
∑
es∈I

(bb + bf + pb + pf)(e).

Lemma 15. Let N = (P, T ) be a bounded p/t-net with bound k, p a place of N ,
H = (V, E, l) a DAG whose induced partial order is an execution of N , S1S2...Sn

an unit decomposition of H where Si = (Vi, Ei, li) with Vi = Ii ∪ {vi} ∪ Oi and
R1R2...Rn a Qk

p-seasoning of S1S2...Sn. Then for 1 ≤ i ≤ n − 1 the following
equality holds:∑

et∈Oi

(bbi + bf i + pbi + pf i)(e) =
∑

1≤j≤i

(p̌(lj(vj))− p̂(lj(vj)))

Proof. The proof is by induction on i. Since the partial order induced by H is an
execution of N , H has a unique minimal vertex which is labeled by ι. Thus the
in-frontier of S1 is empty and its unique center vertex is vι which is labeled by
ι. By equation (c) and (b) of definition 13.1 (p-seasoner),

∑
es=vι

(bb1 + bf1 +
pb1 + pf1)(e) =

∑
es=vι

(bb + bf)(e) = p̌(ι) = m0(p). Thus the lemma is valid
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for the base case. Now suppose it is valid for i with 1 ≤ i < n− 1. We prove it
is valid for i + 1 as well. By the rule of composition of seasoned slices, the sum
over the edges touching the in-frontier of Si+1 must be equal to the sum over
the edges touching out-frontier of Si. Thus we have∑

es∈Ii+1

(bbi+1 + bf i+1 + pbi+1 + pf i+1)(e) =
∑

1≤j≤i

(p̌(lj(vj))− p̂(lj(vj))).

This equation together with proposition 14 imply that∑
et∈Oi+1

(bbi+1 + bf i+1 + pbi+1 + pf i+1)(e) =
∑

1≤j≤i+1

(p̌(lj(vj))− p̂(lj(vj)))

what proves the lemma. �

Proof of items (i)-(iii) of lemma 12. Let S1S2...Sn be a unit decomposition
of a Hasse diagram H and R1R2...Rn be a Qk

p-seasoning of S1S2...Sn. Then
(S, R1) ◦ (S2, R2) ◦ ... ◦ (Sn, Rn) is equal to H with a p-interlaced flow associated
to its edges (Fig. 2.III). Conversely, if it is possible to associate a p-interlaced
flow fp to a Hasse diagram H , then to any of its unit decompositions S1S2...Sn,
we can associate a seasoning R1R2...Rn where Ri(ei) = f(e) if and only if ei is
the sliced part of e which lies on Si (Fig. 2.III). Since f is interlaced and satisfies
conditions (IN) and (OUT ) of definition 9, equations (a),(b) and (c) of definition
13 are satisfied. Since N is bounded by k, lemma 15 assures that equations (d)
and (b) of definition 13.I are satisfied as well. This last claim follows from the
fact that

∑
1≤j≤i(p̌(lj(vj)) − p̂(lj(vj))) corresponds to the number of tokens at

place p after the firing of transitions l1(v1)l2(v2)...lk(vi). Items (ii) and (iii) of
lemma 12 follow analogously. The unique difference is that instead of single
interlaced flows we attach sets of interlaced flows to each edge of H : one flow for
each place p ∈ P . �

5.1 Slicing Hasse Diagrams

Definition 16 (Hasse Seasoning). Let S = (V, E, l) be a unit standard slice
whose unique center vertex is v. Then a partial function H : E2 → {0, 1}2
is a Hasse seasoning of S if the following conditions can be verified for every
e1, e2 ∈ E:

1. H(e1e2) is not defined if and only if (e1=e2) or (et
1=es

2) or (es
1=et

2)
2. If H(e1e2) = xy then H(e2e1) = yx, x, y ∈ {0, 1}
3. If et

1=et
2 then H(e1e2) = 11

4. If es
1=es

2 then H(e1e2) = 00
5. If es

1 ∈ I and et
1 ∈ O and es

2 = v then H(e1e2) ∈ {01, 11} and
H(e1e2) = 01 iff (∃e, et=v)(H(e1e) ∈ {00, 01})

We define the Hasse seasoner QH(S, R) to be true if S is a unit slice and R is
a Hasse seasoning of SG. See figure 3.
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We say that edges i, j touching the in-frontier of a slice S converge if it = jt.
Now let i, j touch the out frontier of S. Then we say that i, j diverge if is = js

and that i is shorter than j if there is a path with at least one edge from is to
js. Some intuition about definition 16 can be gathered by the understanding of
the next three propositions, which we will employ in the proof of lemma 12.IV .

Proposition 17. Let S1S2...Sn be an unit decomposition of a slice S with a
unique maximal vertex, H1H2...Hn a Hasse seasoning of S1S2...Sn and i, j ∈ On

be two out-frontier vertices of Sn. Then

– Hn(i, j) = 00⇔ i and j diverge in S
– Hn(i, j) = 01⇔ i is shorter than j in S

See figure 3.

Proposition 18. Let S, S′ be two (not necessarily unit ) slices such that S can
be composed with S′. And let i, j be two convergent in-frontier vertices in S′. If
i, j are divergent in S or if i is shorter than j in S then S ◦ S′ is not transitive
reduced.

Proposition 19. Let S and S′ be two unit slices such that S can be composed
with S′, H be an Hasse seasoning of S. If there is no Hasse seasoning H′ of S′

such that (S,H) can be composed with (S′,H′), then there exist i, j such that
H(i, j) ∈ {00, 01} and i, j converge in S′.

We finish this section with a proof of item (iv) of lemma 12.

Proof of item (iv) of lemma 12: Let S = S1 ◦ S2 ◦ ... ◦ Sn be a slice with
a unique minimal vertex. Suppose that S is not a Hasse diagram and that it is
QH-seasonable. Then there exists a QH-seasoningH1H2...Hn of S1S2...Sn. Since
S is not a Hasse diagram, there exists two vertices v and v′ which are connected
either by multiple edges, either by an edge and a path of length greater than one.
Let v′ be in Sk+1. Then there are i, j such that i, j converge in Sk+1. Furthermore
either i, j diverge or i is shorter than j in S1 ◦ S2 ◦ ... ◦ Sk. By proposition 17,
we have that Hk(i, j) ∈ {00, 01}. By proposition 19, there is no Hk+1 such that
(Sk,Hk) can be composed with (Sk+1,Hk+1). This contradicts the assumption
that S1 ◦ S2 ◦ ... ◦ Sn is QH-seasonable.

In order to prove the converse, let S1S2...Sk be the greatest prefix of S1S2...Sn

which is QH-seasonable and let H1H2...Hk be one of its Hasse seasonings. Sup-
pose that k < n. By proposition 19, there exists integers i, j such that Hk(i, j) ∈
{00, 01} and i, j converge in Sk+1. By proposition 17, either i, j diverge, either
i is shorter than j in S1 ◦ S2 ◦ ... ◦ Sk. This implies, by proposition 18 that
S1 ◦ ... ◦ Sk ◦ Sk+1 is not transitive reduced, and so neither is S1 ◦ ... ◦ Sn. �

6 Filters

In this section we introduce filters. A filter is a function filter(SG, Q) which
takes as parameters a slice graph and a coherent seasoner, and returns a slice
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graph whose graph language consists exactly on the Q-seasonable graphs of the
graph language of SG. In other words, it filters out from LG(SG) every graph
that is not Q-seasonable. In particular, if Q = QH is the Hasse seasoner defined
in definition 16, then LG(filter(SG, QH)) is exactly the set of Hasse diagrams
in LG(SG). Other concrete examples of filters will be found in section 7 where
we state our main results. In this section we study filters and their properties in
a rather general setting.

Definition 20 (Filter). Let SG = (V , E ,S) be a slice graph where S : V → ΣS

and let Q be a seasoner. Then the Q-filter of SG is the slice graph filter(SG, Q) =
(Vf , Ef ,Sf ) where

Vf =
⋃
v∈V
{vR|Q(S(v), R)} Sf : Vf → ΣS Sf (vR) = S(v)

Ef = {(vR, v′R′)|(v, v′) ∈ E and (S(v), R) can be composed with (S(v′), R′)}

Lemma 21. Let Q be a seasoner. Then S1S2...Sn ∈ L(filter(SG, Q)) if and
only if S1S2...Sn ∈ L(SG) and S1S2...Sn is Q-seasonable.

Proof. Let S1S2...Sn be the label of a walk v1
R1

v2
R2

...vn
Rn

from an initial to a final
vertex on filter(SG, Q). Then R1R2..Rn is a Q-seasoning of S1S2...Sn, which
labels the walk v1v2...vn in SG as well. Converselly, suppose that R1R2...Rn is
a Q-seasoning of the label S1S2...Sn of a walk v1v2...vn in SG. Then S1S2...Sn

also labels the walk v1
R1

v2
R2

...vn
Rn

in filter(SG, Q).

Lemma 22 (Filter Lemma). Let Q be a coherent seasoner and SG a slice
graph. Then there exists an effectively computable slice graph filter(SG, Q) such
that H ∈ LG(filter(SG, Q)) iff H ∈ LG(SG) and H is Q-seasonable.

Proof. It is clear that the filter of definition 20 is computable, since by def-
inition 11, for each S the set {R|Q(S, R)} is finite and computable. If H ∈
LG(filter(SG, Q)) then one of its unit decompositions S1S2...Sn is in L(SG, Q).
By lemma 21 S1S2...Sn is Q-seasonable, and since Q is coherent, H is Q-
seasonable. Now suppose H is Q-seasonable and that it is in LG(SA). Then one
of its unit decompositions S1S2...Sn is in L(SA) and by lemma 21, S1S2...Sn is
in L(filter(SG, Q)), what implies that H ∈ LG(SG, Q). �

The next lemma will be useful in the proofs our main results in the next section.

Lemma 23 (Decidability of Equality and Emptiness). Let SG be a slice-
graph and Q a seasoner. Then it is decidable whether LG(filter(SG, Q)) = ∅ as
well as whether LG(SG) = LG(filter(SG, Q)).

Proof. It is well known that the set of labels of walks on a given graph is a regular
set. Thus for any slicegraph SG, L(SG) is a regular language over an alphabet
of slices. The idea of our proof is to reduce the emptiness and inclusion tests of
graph languages of filtered slice graphs, to the emptiness and inclusion tests of
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their slice languages, and then take advantage of well known decidability results
for regular sets. In this sense, the decidability of emptiness follows easily, since
LG(filter(SG, Q)) = ∅ ⇔ L(filter(SG, Q)) = ∅. With relation to the equality
test, we claim that LG(SG) = LG(filter(SG, Q)) ⇔ L(SG) = L(filter(SG, Q).
First we note that L(filter(SG, Q)) ⊆ L(SG) for any Q. Thus we just have
to prove that L(SG) ⊆ L(filter(SG, Q)) ⇔ LG(SG) ⊆ LG(filter(SG, Q). It is
easy to see that for any slice graphs SG′,SG′′, L(SG′) ⊆ L(SG′′) implies that
LG(SG′) ⊆ LG(SG′′), what proves the → direction. The converse however is not
valid for any two slice graphs, but as we show now it is whenever one of them
is a filtered version of the other. Let H be a DAG in LG(SG) and suppose that
LG(SG) ⊆ LG(filter(SG, Q)). Thus by lemma 22, any unit decomposition of H is
Q-seasonable. Let S1S2...Sn be a unit decomposition of H in L(SG). Then since
S1S2...Sn is Q-seasonable, lemma 21 implies that S1S2...Sn ∈ L(filter(SG, Q)),
what proves that L(SG) ⊆ L(filter(SG, Q)). �

7 Main Results

In this section we will use seasoners and filters defined in the previous sections in
order to prove our main results. We start with the verification theorem 24, which
states that for any bounded p/t-net N , we are able to decide either whether the
partial order language generated by a Hasse diagram generator is included on
the partial order language of a p/t-net N , or whether their intersection is empty.
These tests are decidable for both the execution and for the causal semantics.
The variable sem assumes the value ex for the execution semantics and the value
cau for the causality semantics.

Theorem 24 (Verification Theorem). Let N be a bounded p/t-net and HG
a Hasse diagram generator. Then

(i) LPO(HG) ⊆ Lsem(N)⇔ LPO(HG) = LPO(filter(HG, QN
sem))

(ii) LPO(HG) ∩ Lsem(N) = ∅ ⇔ LPO(filter(HG, QN
sem)) = ∅

Furthermore the equalities on the right hand side of the ⇔ symbol are decidable.

Proof. Since HG is a hasse diagram generator, questions about its partial or-
der language can be safely translated to analogous questions about its graph
language. Formally, it is enough to prove that

(i) LG(HG) ⊆ Lsem(N)⇔ LG(HG) = LG(filter(HG, QN
sem))

(ii) LG(HG) ∩ Lsem(N) = ∅ ⇔ LG(filter(HG, QN
sem)) = ∅

and that both the equality test and the emptiness test on the right side of the ⇔
symbols of statements (i) and (ii) respectively, are decidable. The decidability
of these tests was already proved on lemma 23 for general filters. Now by lemma
12, the partial order induced by any Hasse diagram H in LG(SG), is an execution
of N if and only if H is QN

ex-seasonable. Analogously, H is a causality diagram
of N if and only if it is QN

cau seasonable. Thus, using the filter lemma (22),
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H ∈ LG(filter(HG, QN
ex)) iff H ∈ LG(HG) and the partial order induced by H is

an execution of N . Similarly, H ∈ LG(filter(SG, QN
cau)) iff H ∈ LG(SG) and the

partial order induced by H is a causal order of N . Thus the statements above
hold and the verification theorem is proved. �

Definition 25 (Slicewidth). We define the slicewidth sw(S) of a slice S =
(V, E, l) as the size of its greatest frontier, i.e. if V = I ∪ C ∪ O then sw(S) =
max{|I|, |O|}. The slicewidth of an unit decomposition S1S2...Sn is the slice
width of its widest slice: sw(S1S2...Sn) = max{sw(Si)}. The slicewidth of a
DAG H is the slicewidth of its thinnest unit decomposition: sw(H) =
min{sw(S1S2...Sn)|S1S2...Sn ∈ ud(H)}.

We contrast our notion of slicewidth with that of width of a partial order which
is defined in terms of chains. A chain in a partial order po is a totally ordered
subset of elements of po. A cut of po is a set of pairwise non-comparable elements
of po. The width of a partial order is defined as the minimal number chains in
which its elements can be partitioned.

Lemma 26 (Dilworth 1950 [Dil50]). In a partial order the maximal cardi-
nality of a cut is equal to the minimal number of chains into which the partial
order can be partitioned.

The slicewidth of partial orders can be arbitrarily greater than their width.
Chains for example, always have width equal to 1, while their slicewidth grows
quadratically with their length. However, the slicewidth of the Hasse diagram H
of a partial order po is always equal to the width of po, i.e, sw(H) = w(po). The
following proposition follows from this observation, from lemma 26 and from the
fact that at any marking of a bounded p/t-net N = (P, T ) with bound βN , at
most βN |P | transitions can be fired concurrently.

Proposition 27. Let N = (P, T ) be a bounded p/t-net. Then the slicewidth
sw(H) of any Hasse diagram which induced partial order is an execution (or
causal order) of H is bounded by βN |P |.

Definition 28 (Bounded Width Slicegraph). Let n ∈ �. Then we denote
SGn the slice graph (V , E ,S) over ΣS where

ΣS = {S|S is a unit standard slice over T ∪ {ι, ε} , w(S) ≤ n}

V = {vS|S ∈ ΣS} S : V → ΣS S(vS) = S

E = {(vS, v′S′) ∈ V×V | S can be composed with S′}

Proposition 29. A DAG H belongs to LG(SGn) if and only if it has an unique
minimal vertex which is labeled with ι, an unique maximal vertex which is labeled
with ε, and its slice width sw(H) is less than or equal to n.

Our second main result 30, the expressibility theorem, states that for any given
bounded Petri net N = (P, T ) there exist effectively computable Hasse diagram
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generators whose partial order languages match the causal behavior and the
execution behaviors of N . In order to prove this theorem we will make use of
the Hasse seasoner and of the Hasse filter, which where not employed in the
verification theorem because there we assumed that the slice graphs we where
working with were Hasse diagram generators.

Let βN ne the bound of N . Then any Hasse diagram whose induced partial
order is an execution or causal order of N can be decomposed into slices of width
at most βN |P |. In order to prove theorem 30, first we consider a slice graph SGN

which generates all DAGs of width bounded by βN |P |. Then we filter SGN

using the Hasse seasoner QH, in order to obtain the Hasse diagram generator
filter(SGN , QH) which generates precisely the Hasse diagrams of width bounded
by βN |P |. Subsequently we apply another filter, using QN

sem in order to get a
Hasse diagram generator whose graph language consists precisely on the Hasse
diagrams of executions of N (sem = ex), or of causal orders of N (sem = cau).

Theorem 30 (Expressibility Theorem). Let N = (P, T ) be a bounded p/t-net
and HGN

sem = filter(filter(SGN , QH), QN
sem). Then Lsem(N) = LPO(HGN

sem).

Proof. Let n = βN |P | and SGN = SGn. By lemma 12, H is a Hasse diagram iff it
is QH-seasonable. Thus by proposition 29, and by the filter lemma 22, H belongs
to LG(filter(SGN , QH)) iff H is a Hasse diagram whose width is bounded by
n. Filtering again we have that H ∈ LG(filter(filter(SGN , QH), Qsem)) if and
only if H is the Hasse diagram of an execution (sem = ex) or causal order
(sem = cau) of N with sw(H) ≤ n. Since by proposition 27 the slicewidth of the
Hasse diagram of any execution or causal order of N is bounded by n, it follows
that every execution (sem = ex) or causal order (sem = cau) of N belongs to
LG(filter(filter(SGN , QH), Qsem)). This is enough to prove the theorem, since
filter(filter(SGN , QH), Qsem) is a Hasse diagram generator. �

As a corollary of theorems 24 and 30. we have the decidability of the inclusion
of the causal and execution languages of any two given bounded nets N1, N2.

Corollary 31 (Comparison of p/t-nets Partial Order Langauges). Let
N1, N2 be two bounded Petri nets. Then it is decidable whether Lsem(N1) ⊆
Lsem(N2).

Proof. Using the expressibility theorem 30, compute SGsem(N1). Then employing
the verification theorem 24, test whether LPO(SGsem(N1)) ⊆ Lsem(N2). �

8 Synthesis

Another potential useful application for our slice graphs is the synthesis of p/t-
nets from infinite families of scenarios. Here we restrict ourselves to the syn-
thesis of k-bounded Petri nets for a given k. The synthesis problem can be
formally stated as follows: Given a Hasse diagram generator HG and a semantics
sem ∈ {ex, cau} construct a k-safe p/t-net N whose language Lsem(N) min-
imally includes LPO(HG). Here minimal inclusion means that given any other
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k-safe p/t-net N ′, the chain of inclusions LPO(HG) ⊆ Lsem(N ′) ⊆ Lsem(N) im-
plies that Lsem(N) = Lsem(N ′). In this work we do not address the question of
whether the behavior of the constructed net actually matches the partial order
behavior specified by the slice graph. Our approach for the synthesis problem
starts with the definition of k-safe regions for slice graphs in connection with the
abstract regions for possible infinite partial order languages defined in [LBD08].

Definition 32 (k-safe Region for Hasse Diagram Generators). Let HG
be a Hasse diagram generator and T a set of transitions. Then a k-safe region
of HG with relation to T is a place p = (p0, p̂, p̌) over T such that L(HG) =
L(filter(HG, Qk

p)). We denote Rk(HG) the set of all k-safe regions of HG.

Intuitively, a k-safe region of HG is a k-safe place for which all partial orders
generated by HG have a p-interlaced flow. We note that the set of k-safe places
is finite for a given k. It turns out that the union of all these regions gives rise
to a k-safe p/t-net with the unique minimal k-safe behavior with relation to HG.

Theorem 33 (Synthesis for the Execution Semantics). Let HG be a Hasse
diagram generator and k ≥ 1. Then if Rk(HG) 	= ∅, the net

N k
ex(HG) =

⋃
p∈Rk(HG)

({p}, T )

is a k-safe net with minimal execution behavior with relation to LPO(HG).

Proof. By lemmas 12.(i) and 22, for each region p, each Hasse diagram in LG(HG)
has a p-interlaced flow. Thus by theorem 10, each partial order in LPO(HG) is
an execution of N k

ex(HG). Since the addition of a region can at most restrict the
execution behavior of a net, and since all possible regions are contained in N k

ex,
LPO(N k

ex) includes LPO(HG) minimally.

We note that our notion of minimal behavior depends on the bound k. Thus
theorem 33 does not exclude the existence of a k′-safe p/t-net N ′ with k′ ≥ k
whose partial order behavior is strictly included on the partial order behavior of
Nk

ex(HG) but for which LPO(HG) ⊆ Lex(N ′).
With relation to the causal semantics, we impose a bound on the number of

copies of each place on the net. We say that a p/t-net N is (k, r)-safe if it is k-
safe and if it contains at most r copies of each place of N . This restriction is not
necessary for the execution semantics because repeated places do not interfere
in the execution behavior of p/t-nets. However they do interfere on the causal
behavior of p/t-nets. Another particularity of the causal semantics is the fact
that the uniqueness of the minimal behavior, is not assured.

Theorem 34. Let HG be a slice graph and k, r ≥ 1. Then the set of (k, r)-safe
p/t-nets, with minimal causal behavior with relation to LPO(HG), is computable.
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Proof. Any (k, r)-safe net which causal behavior includes LPO(HG) must be a
multiset of k-safe regions of HG in which each region appears at most r times.
LetMk,r(HG) be the set of all such multisets whose unions give rise to legal nets,
i.e., for which every transition in T takes tokens of some place and puts on some
other. Since Rk(HG) is finite, so is Mk,r(HG). Using the verification theorem
24 we can compute the subset Ck,r(HG) of all (k, r)-safe p/t-nets of Mk,r(HG)
whose causal behavior includes LPO(HG). By using corollary 31 we can partially
order Ck,r(HG) with relation to inclusion of their causal behavior. The nets with
minimal causal behavior with relation to LPO(HG) are the minimal elements of
this ordering. �

9 Final Comments and Future Directions

Most of our results where stated in terms of Hasse diagram generators. It turns
out that for a matter of flexibility, it might be convenient to allow in the graph
language of a slice graph the presence of DAGs which are not transitive reduced.
Edges which do not belong to the transitive reduction of such DAGs, could be
used to highlight particular causal dependences between some of their events.
But since the ordering relation between events is what matters when leading
with formal analysis, it would be convenient to develop a method to transform
an arbitrary slice graph into a Hasse diagram generator with identical partial
order language. This problem, which is formalized below, is topic of our current
research.

Problem 35. Given an arbitrary slice graph SG compute a Hasse diagram gener-
ator HG with LPO(SG) = LPO(HG).

By the results in [BW00] any bounded p/t-net can be transformed in a one-safe
labeled p/t-net with the same partial order behavior. There, the result is stated
with relation to the causal semantics, but it holds for the execution semantics
as well. It would be interesting to reverse the direction of this question. That
means, given a one safe labeled p/t-net NO we would be interested in synthesizing
an unlabeled p/t-net with identical partial order behavior, if it exists. By an
adaptation of theorem 30, this question can be reduced to the synthesis of p/t-
nets from slice graphs. Indeed from NO, we derive its Hasse diagram generator
HGsem(NO) ignoring the labels of the transitions. After, on each of its slices, we
relabel the center vertices with the labels of the transitions. Then we ask for the
synthesis of an unlabeled net N whose causal or execution behavior minimally
includes the set of partial orders generated by HGsem(NO). The advantage of
this approach is that LPO(HGcau(NO)) is prefix closed and LPO(HGex(NO)) is
prefix and sequentialization closed. These closedness conditions are essential if
we are aiming to test whether the partial order language of the synthesized net
precisely matches the partial order language of a given Hasse diagram generator
respectively with the causal and the execution semantics.
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Abstract. In road transportation networks, such as freeways, motorways or 
highways, variable speed limit (VSL) control is one of the most efficient strate-
gies to substantially improve traffic flow and solve or reduce the congestion 
problem. One way to design control strategies applicable in real time is to rep-
resent the vehicle flows with a hybrid dynamic model. In this context, Batches 
Petri Nets (BPN) and their extensions, are well adapted for the modeling of 
such systems as they intend to model variable delays on continuous flows by 
adding special nodes, called batch nodes, to the continuous and hybrid Petri 
nets. Using BPN with controllable batch speed, this paper studies a portion of 
the A12 highway in The Netherlands. This hybrid representation leads to the 
evaluation of several real time VSL control laws in accordance with the accu-
mulation front of vehicles. 

Keywords: transportation network, real-time control, variable speed limit, 
Batches Petri nets. 

1   Introduction 

The control of the congestion, meaning the maximization of the vehicle flow with 
real-time actions, becomes one of the most delicate problems in the urban and road 
traffic domain [9]. To analyze the congestion problem, there is already a large variety 
of models, methods and architectures [6]. Among the class that consists of dynamic 
discrete events and hybrid models, continuous and hybrid Petri nets [2] are well 
adapted to the modeling and analysis of performance and control of flow systems. 
This class of nets combines the advantages of discrete modeling to represent the con-
trol using timed discrete Petri nets, and of continuous modeling using continuous Petri 
nets to represent flows. Several authors use these hybrid formalisms for the modeling 
and analysis of traffic systems, either with a macroscopic representation or micro-
scopic representation: continuous Petri nets with constant speed have been used in [5] 
to study the traffic in the city of Turin in Italy, the authors of [13] use continuous Petri 
nets with variable speed to represent the congestion phenomenon, while in [7] the 
authors have studied the optimal traffic light control of an urban transportation sys-
tem. Batches Petri nets [3] extend the hybrid Petri nets class by defining a new type of 
node, the batch node, and the concept of batch, i.e. a group of entities moving through 
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a transfer zone at a certain speed. These Petri nets allow by their hybrid dynamic 
formalization to represent in a very detailed manner transfer elements with the possi-
bility of accumulation of entities. Since its first definition and application to high 
throughput manufacturing systems, batches PN has been extended and widespread by 
several authors in different domains: [14] defines the stochastic batch Petri nets while 
[8] extends the model to evaluate multi-modal hubs. Adopting a suitable spatial de-
composition and a mesoscopic representation of transportation systems, several ele-
mentary models have been defined [4] by means of the generalized batches Petri net 
(GBPN): one way sections, two ways sections, convergent and divergent intersec-
tions. Dedicated to transportation systems, GBPN has proved to be an accurate and 
powerful formalism to analyze vehicles flows. Thanks to this Petri net model, the 
accumulation levels can be characterized in real time. It is now possible to consider 
the control of traffic congestion.  

The off-line optimal control could be constructed for any section of the traffic net, 
while its real time solution and its realization present a certain number of difficulties. 
Some advanced control theories have been developed on continuous and hybrid Petri 
net formalisms but most of those works have been dedicated to traffic light control [7] 
and to their application to urban transportation systems [5]. In transportation systems 
such as freeways, motorways or highway, ramp metering and variable speed limit 
(VSL) control are the most efficient strategies to substantially improve traffic flow 
and to solve or reduce the congestion problem [10]. While the control by ramp meter-
ing or coordinated ramp metering can be established thanks to the traffic light control 
studies, few works have been dedicated to VSL control strategies. The main impact of 
VSL on traffic flow is deemed to be the reduction of the mean speed under critical 
densities, and the homogenization of speeds, i.e. reduction of speed differences 
among vehicles.  

In this context, this paper proposes a model using GBPN with controllable batch 
speed for analyzing control laws of a real transportation system. Section 2 presents 
the concepts of batches Petri nets by focusing on the hybrid dynamics of controllable 
batches. With such extensions, it is now conceivable to regulate the speed of vehicles 
according to the level of the accumulation front. Furthermore, a real infrastructure, a 
10 km segment of the A12 highway in the Netherlands, is studied. Two VSL control 
strategies on this highway are discussed in section 3. 

2   Concepts of Batches Petri Nets 

A Batches Petri Net (BPN) intends to model variable delays on continuous flows by 
adding special nodes, called batch nodes, to a hybrid Petri net [2] combining transi-
tion timed discrete Petri nets and constant continuous Petri nets. BPN [3] is thus com-
posed of three kinds of places and three kinds of transitions: discrete place and  
discrete transition, continuous place and continuous transition, batch place and batch 
transition (see Fig.1). Batch nodes combine both a discrete event and a linear continu-
ous dynamics in a single structure: a batch transition acts like a continuous transition 
while a batch place integrates a hybrid formalism of the circulation flow. 



206 I. Demongodin 

2.1   Definitions and Notations 

Definition 1. A Generalized Batches Petri net (GBPN) [3], is defined by a 5-tuple B = 
(R, f, c, Tempo, M0) where: 

1) R is a Petri net defined by R = <P, T, Pre, Post> with P: finite set of places, T: 
finite set of transitions, Pre (Pi, Tj) is a function defining the weight of an arc from a 
place to a transition and Post (Pi, Tj) is a function defining the weight of an arc from a 
transition to a place. 
2) f: P ∪ T → {D, C, B}, called the "batch function", indicates for every node if it is a 
discrete, continuous or batch node. 
3) c: if f(Pi) = B: Pi → {Vi, dmaxi, si} ∈ ℜ+×ℜ+×ℜ+,  
c, called the "characterized batch function", associates three continuous characteristics 
(speed, maximum density and length) to every batch place. 
4) Tempo is an application that associates a rational positive or null number to every 
transition: 
- if f(Tj) = D, then Tempo (Tj) = dj is the delay associated with the discrete transition 
Tj, expressed in time unit. 
- if f(Tj) = C or B, then Tempo (Tj) = Φ(Tj) = Φj is the maximum firing flow associated 
with transition Tj, expressed in entities/time unit. With every continuous or batch 
transition Tj, is also associated an instantaneous firing flow, noted ϕj(t), representing 
the quantity of markings by time unit that fires transition Tj. The instantaneous firing 
flow of Tj is a piecewise constant function with a value lower or equal to the maxi-
mum firing flow of Tj: 0 ≤ ϕj(t) ≤ Φj.  
5) M0 = M(t0) = (m1

0, m2
0, …, mn

0) is an initial marking. We denote by M(t) = (m1(t), 
m2(t), …, mn(t)), the marking at time t. According to the type of places, the marking is 
defined in different sets:  
- if f(Pi) = D, then mi ∈ ℵ: the marking of a discrete place is a natural integer. 
- if f(Pi) = C, then mi ∈ ℜ+: the marking of a continuous place is a non negative real. 
- if f(Pi) = B, then mi = {B1i, ..., Bpi, ..., Bni}: the marking of a batch place is a series of 
batches.       

 

Fig. 1. Nodes of Batches Petri nets 

In the basic definition found in [3], a batch, i.e. an internal coherent batch, represents 
a series of entities with the same distribution characteristics during a time interval. At 
time t, an internal coherent batch (ICBp) is characterized by three continuous vari-
ables: a length (lp ∈ ℜ+), a density (dp ∈ ℜ+), and a head position (xp ∈ ℜ+). With this 
concept, the marking of a batch place Pi, is a series of batches, ordered on their posi-
tion, moving forward at the same speed Vi. For controlling the speed of batches mov-
ing at different speeds, we define here the concept of controllable batch, which is an 
internal coherent batch with a speed characteristic.  

: batch place 
{Vi, dmaxi, si} 
 
: batch transition 

: discrete place 
 
 
: discrete transition 

: continuous place 
 
 
: continuous transition
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Definition 2. At time t, a controllable batch is defined by a quadruple: CtBk(t) = [lk(t), 
dk(t), xk(t), vk(t)] ∈ ℜ+×ℜ+×ℜ+×ℜ+ where (lk) is a length, (dk) a density , (xk) a head 
position and (vk) is a driving speed. The instantaneous flow of a controllable batch is 
defined as: ϕ(xk, t) = ϕk(t) = vk(t).dk(t). A controllable batch that composes the mark-
ing of place Pi, is noted CtBki(t) = [lk(t), dk(t), xk(t), vk(t)]i.                                      

At time t, a batch is called an output batch of Pi, noted OBki, if its head position is 
equal to the length associated with Pi: xk(t) = si. If the density of a batch is equal to the 
maximal density of the batch place, dk(t) = dmaxi, this batch is totally accumulated. Due 
to the bounded characteristics of a batch place, some constraints on batches character-
istics have to be respected: 0 ≤ lk ≤ xk ≤ si (position and length constraints) and 0 ≤ dk 
≤ dmaxi (density constraint).  

For instance, let us consider a batch place Pi with c(Pi) = {Vi, dmaxi, si}, two control-
lable batches CtBpi(t), CtBqi(t), and one output controllable batch OCtB(t), defined as 
follow (see Fig. 2): CtBpi(t) = [lp(t), dp(t), xp(t), vp(t)]i, CtBqi(t) = [lq(t), dq(t), xq(t), 
vq(t)]i and OCtB0i(t) = [l0(t), d0(t), si, v0(t)]i. Thus, the marking of place Pi is: mi = 
{CtBpi(t), CtBqi(t)i, OCtB0i(t)}. We note ϕin(t) and ϕout(t), the input flow and the output 
flow, respectively, of the batch place, i.e.: ϕin(t) = ϕ(0, t) and ϕout(t) = ϕ(si, t). 

dp 

CtBpi 

dq 

CtBqi

ϕou t

v0 

ϕin 

xq 
lq lp  l0  xp 

OCtB0 i

0 

d0

vp vq 

speed: Vi 

si 

 

Fig. 2. Controllable batches 

Various static functions, previously defined on internal coherent batches, have 
been adapted for controllable batches. 

Definition 3. At time t, let us consider a controllable batch CtBki(t) = [lk(t), dk(t), xk(t), 
vk(t)]i of place Pi. 

- if the length is null (lk(t) = 0) and it is not a creating batch (xk(t) ≠ 0), this batch can 
be destroyed. The destruction function is noted by CtBki(t) = ∅. 
- it is always possible to split a batch into two batches. This splitting can be either on 
the length with the same density or on the density with the same length. 
- if two batches are in contact with the same density and the same speed, they can be 
merged. Let us consider CtBqi(t) = [lq(t), dk(t), xq(t), vk(t)]i, with xk(t) = xq(t) + lk(t). In 
this case, the downstream batch of CtBqi(t), CtBki(t), becomes CtBki(t) = [lk(t)+lq(t), 
dk(t), xk(t), vk(t)]i and batch CtBqi(t) is destroyed, CtBqi(t) = ∅.       

The dynamics of GBPN with controllable batch speed is realized by the firing of 
transitions and the hybrid dynamic of batch places, i.e. the hybrid dynamics of con-
trollable batches that can be resumed as follow.  
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2.2   Dynamics of Controllable Batches 

Batch places describe the transfer of batches according to a switching dynamic be-
tween two behaviors: the free behavior and the accumulation behavior. Both dynam-
ics of a batch place are governed by the state of the batches composing it.  

Definition 4. At time t, a controllable batch CtBki(t) = [lk(t), dk(t), xk(t), vk(t)]i is in a 
free type behavior (noted Rki(t) = F) if its elements move freely at the driving speed 
vk(t), while it is in an accumulation type behavior (noted Rki(t) = A) if its elements are 
not transferred at the driving speed but move according to an output flow which has a 
lower value than its instantaneous flow. Let us consider a given ϕoutBki(t):  

- if ϕki(t) ≤ ϕoutBki(t) => Rki(t) = F or, 
- if ϕki(t) > ϕoutBki(t) =>Rki(t) = A.       

For instance, with ϕoutBqi(t) = vq(t).dmaxi, batch CtBqi(t) of Fig.2 is in free behaviour 
(Rq(t) = F) as ϕqi(t) = vq(t).dq(t) under density constraint, dq(t) ≤ dmaxi. 

Definition 5. A batch place has an accumulation at the exit, if there exists an accumu-
lated output batch or the output batch is in an accumulated behavior.           

Various equations govern the characteristics of batches according to their position and 
behavior: creation, moving and exit. 

2.2.1   Creation of a Batch 
At time t1, if the input flow of a batch place Pi is not null, a batch is created and added 
to the marking of Pi such that: CtBki(t1) = [0, dk(t1), 0, vk(t1)]i with dk(t1) = ϕin(t1)/Vi(t1) 
and vk(t1) = Vi(t1). From this time on, the moving of this batch is governed by: 
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2.2.2   Moving of a Batch  
Equations that govern the moving of a batch inside a batch place Pi depend on the 
state of this batch (see definition 4).  

1) Batch in free behavior 
From time t1 on, a batch, CtBki(t1) = [lk(t1), dk(t1), xk(t1), vk(t1)]i, which has a free be-
havior, Rki(t1) = F, evolves according to the following equations. 
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2) Batch in accumulated behavior 
At time t1, a batch of Pi, CtBpi(t1) = [lp(t1), dp(t1), xp(t1), vp(t1)]i, has an accumulated 
behavior Rpi(t1) = A, if: 
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 (i) CtBpi(t1) is in contact with another (downstream) batch CtBqi(t1) = [lq(t1), dq(t1), 
xq(t1), vq(t1)]i i.e. xq(t1) = xp(t1) + lq(t1),  

(ii) the sum of both batch densities is greater than the maximal density of Pi i.e. 
dp(t1) + dq(t1) > dmaxi, and dq(t1) < dmaxi,  

(iii) CtBqi(t1) has a lower speed i.e. vq(t1) < vp(t1). 

Remark: for all other cases, i.e. if [dp(t) + dq(t) ≤ dmaxi], or [dp(t) + dq(t) > dmaxi and 
vq(t1) ≥ vp(t1)], both batches are in free type behavior, and their evolution is governed 
by (2). In case that dq(t1) = dmaxi, batch CtBpi cannot pass batch CtBqi and, thus the 
speed of batch CtBpi is reduced to the speed of CtBqi, i.e. vp(t1) = vq(t1). 

From time t1 on, batch CtBpi can pass batch CtBqi, which has a slower speed. For rep-
resenting this phenomenon, at time t1, batch CtBpi is split into two batches CtBp’i and 
CtBp’’i, and an empty batch CtBp’’’i is introduced with CtBp’’’i(t1) = [0, dq(t1), xp(t1), 
vq(t1)]i such that:  

- CtBp’i(t1)=[lp(t1), dp’(t1), xp(t1), vp(t1)]i with dp’(t1) = dmaxi - dq(t1) and from t1, its be-
havior is governed by (2) 
- CtBp’’i(t1) = [lp(t1), dp’’(t1), xp(t1), vp(t1)]i with dp’’(t1) = dp(t1) - dp’(t1) i.e., dp’’(t1) = 
dp(t1) + dq(t1) - dmaxi  
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Fig. 3. Dynamics of two batches in accumulation behavior 

Between two timed events, in other words during time interval [t1, t2], batch densities 
do not vary, i.e. dp’’’(t) = dq(t1) and dp’’(t) = dp(t1) + dq(t1) – dmaxi, with t1 < t < t2. Thus, 
according to the conservation law and the distance covered by batches, the equations 
that govern both batches CtBp’’i and CtBp’’’i, from time t1 on, are: 
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Finally, at time t2 and by definition 3, a merging is applied to batches CtBqi and 
CtBp’’’i as they get in contact with the same speed and the same density.  

2.2.3   Exit of a Batch 
At time t1, let us consider an output batch of Pi, OCtB0i(t1) = [l0(t1), d0(t1), si, v0(t1)]i.  

1) Output batch in free behavior 
In this case, ϕout(t1)≥ϕ0i(t1), with ϕ0i(t1) = v0(t1).d0(t1), and from time t1 on, the evolu-
tion is governed by: 
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2) Output batch in accumulated behavior 
We assume that the output flow of the batch place is constant during a certain delay, 
i.e. at time t’ > t1, ϕout(t’) = ϕout(t1). Two cases can be distinguished: the output batch 
is totally accumulated or not, at time t1. 

a) d0(t1) = dmaxi 

As the output batch is already accumulated, it must reduce its speed, i.e. v0(t1) = 
ϕout(t1)/d0(t1) = ϕout(t1)/dmaxi. Thus, at time t1, OCtB0i(t1) = [l0(t1), dmaxi, si, 
ϕout(t1)/dmaxi]i. From this time on, the evolution is governed by: 
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b) d0(t1) < dmaxi 

In this case, the output batch starts its accumulation as its density is strictly inferior to 
the maximal one of the batch place. For representing such a phenomenon, at time t1, 
this batch is split into two batches in contact such that: OCtBA0i(t1) = [0, dmaxi, si, 
vA0(t1)]i and CtB0i(t1) = [l0(t1), d0(t1), si, v0(t1)]i, with vA0(t1) = ϕout(t1)/dmaxi.  

Consequently to the conservation law, the distance covered by the end of the out-
put batch from time t1 on, and as d0(t) = d0(t1) and dA0(t) = dmaxi, for time t > t1, the 
evolution of batches OCtBA0i and CtB0i is governed by: 
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Fig. 4. Dynamic of an output batch in accumulation behavior 
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2.3   Dynamics of Batches Petri Nets 

Enabling conditions and firing rules are those of timed transition discrete PN (with a 
preselection policy), constant speed continuous PN, and batch PN. All definitions and 
concepts, such that incidence matrix, place and transition invariants, are preserved 
when considering controllable batches instead of internal coherent batches (see [3] for 
more details). The behavior algorithm of a batch PN is based on a discrete event ap-
proach with linear or constant continuous evolutions between timed events. It calcu-
lates the states of the system only when it undergoes discontinuity. The first phase of 
the algorithm determines the enabled transitions, next reserves the marks in discrete 
and continuous places, computes instantaneous firing flows, and finally, establishes 
batch place states. From these states and their values, all timed events that change the 
global state of the system are determined, as described below. The date of the nearest 
event, which is the nearest in time, becomes the current date and at this instant, and 
new markings are deduced from the firing rules. Thus, between two events or two 
dates, the state of the hybrid model has an invariant behavior state (IB-state), which 
corresponds to a period of time such that:  

- the marking in discrete places is constant and, 
- the instantaneous firing flow of continuous and batch transitions is constant and, 
- the reserved marking of discrete and continuous places is constant. 
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The IB-state changes if and only if one (or possibly several at the same time) of the 
following kinds of events occurs: 

1. firing of a discrete transition: Tj. 
2. the non reserved marking of a continuous place becomes equal to zero: mn

i = 0. 
3. the non reserved marking of a continuous place which is a pre- place of a discrete 
transition becomes equal to the weight of the corresponding arc: mn

i = a. 
4. a batch of a batch place becomes an output batch: CtB0i = OCtB0i. 
5. an output batch of a batch place is destroyed: OCtB0i = ∅. 

Inside a batch place, several timed events have to be taken into account in the dy-
namic evolution of batches: (i) a batch becomes an output batch (i.e. event 4 above); 
(ii) meeting of two batches; (iii) end of the total accumulation of a batch; (iv) destruc-
tion of a batch; (v) end of over taking of a batch. 

As in hybrid PN, the behavior of a BPN can be represented by an evolution graph 
where a node represents an IB-state of the dynamic model. The nodes are linked by 
arcs with a labeled transition that determines the occurred events and the past delay 
between two consecutive IB-states. The label associated to this transition is noted as 
following: {occur events / Δt} where Δt is the past delay between events. As shown in 
Fig.5, and illustrated in Fig.9, a node is decomposed into three parts:  

1. The first part represents discrete markings MD and reserved marking of discrete 
places MDr = {mr

i / f(Pi) = D}. 
2. The second part represents the instantaneous firing flows of continuous transitions 
{ϕj / f(Tj) = C}, and reserved markings MCr = {mr

i / f(Pi) = C} of continuous places. 
The total marking of continuous places MC at the beginning of the phase and at the 
end of the phase is also represented. 
3. The third part represents the instantaneous firing flows of batch transitions {ϕj / 
f(Tj) = B}, the behavior of batch places {Ri / f(Pi) = B}and markings MB of batch 
places, at the beginning of the phase and at the end of the phase. The characteristics of 
batches are described on the right side of the node.  

 
ϕj(t ) 

Ri(t )
(MDr) (MC r) 
(MD) 

(MC) beginning  

(MC) end 

(MB) beginning

(MB) end
CtBni(t+Δt) = [ln(t+Δt),  dn(t+Δt), xn(t+Δt),, vn(t+Δt)]i end 
CtBni(t) = [ln(t), dn(t),  xn,(t ), vn(t)]i beginningϕk(t) 

 

Fig. 5. Node of the evolution graph 

3   Speed Control of a Highway Network Traffic 

The traffic network under study is the A12 highway between the sites of Veenendaal 
and Maarsbergen, in the province of Utrecht, The Netherlands. This study is inspired 
from the master thesis of Andrea Pinna [11], where the model of this A12 segment is 
developed in a microscopic approach using the Paramics traffic simulator. The con-
sidered system is a simple part of the highway, with a length of 10 kilometers, where 
the traffic flow of this stretch is modeled only for the east-west direction, that is, from 
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Arnhem to Den Haag. A petrol station is present just in the middle of the stretch, 
introducing one off-ramp and one on-ramp, which are separated by 1 km. Thus, the 
flow of the vehicles in the highway is perturbed by the vehicles that, stopping for a 
lay over, enter and exit the service station. In particular, the vehicles entering the 
highway from the on-ramp, adding up to the already strong flow of vehicles in the 
main stream, could cause congestions and traffic jams. Hence, the chronic problems 
of traffic congestion appear.  

In real highways and during the circumstances of congestion, the control panels 
advise the drivers about the suggested speed ((30, 40, 50, 60, 70, 80, 90, 100, 110, 
120 km/h) or (8, 11, 14, 16, 19, 22, 25, 27, 30, 33 m/s)), in order to maximize the 
flow of vehicles and to minimize the negative effects of traffic jams. When this dy-
namic speed limit is applied on a highway section panel, all vehicles will be enforced 
to follow the suggested speed. Moreover, on this highway, there are detector loops 
that continuously measure the traffic variables (flow, density, speed, etc.). To each of 
these detector loops is associated a position in the highway; unfortunately, this posi-
tion is not always accurate. In order to have a good model of the network, it is neces-
sary to know the exact position of the detector loops. Thanks to the service provided 
by Google Earth, it has been possible to measure the true reciprocal distances be-
tween the detector loops [11]. Detector loops are usually placed few meters after 
control panels, which are clearly visible in the pictures offered by Google Earth. In 
the case study segment, we will use 11 detector loops. Finally, the two following 
data will be considered as limit parameters that the vehicle flows have to be re-
spected: accumulation speed (2.7 m/s) which defines the maximum speed a vehicle 
could move in order to be counted as being in an accumulation; accumulation length 
(200 m) sets the minimum length of a group of vehicles so that it could be considered 
an accumulation.  

3.1   Modeling of the A12 Highway 

The A12 highway portion is characterized by the presence of four zones: two of them 
are strictly origin zones, while the other two are strictly destination zones. The two 
main zones are the start of the freeway stretch near Veenendaal at km 91 (zone 1) and 
the end before the intersection near Maarsbergen at km 81 (zone 4). The entrance at 
km 85 (zone 2) and the exit at km 84 (zone 3) of the petrol station are the remaining 
zones.  

 

Fig. 6. The model of the case study network 
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A 10 kilometers stretch connects zones 1 - 4, while zones 2 - 3 are linked through 
an off-ramp and an on-ramp, for which the traffic network model will not consider the 
curvature of the road. According to the data in [11] (i.e. information received from the 
Dutch Ministry of Transportations) the traffic demand on this 10 km highway portion 
between 6:00 and 7:00 a.m., can be considered as follows: 2448 vehicles left zone 1 
to get directly to zone 4; 100 vehicles left zone 1 going into the service station (zone 
2) and 107 vehicles left the service station in order to reach zone 4.  

From this description, three sections of the 10 km highway portion have been de-
fined (see Fig. 6): section 1 from zone 1 to zone 2; section 2 from zone 2 to zone 3; 
section 3 from zone 3 to zone 4. By using elementary models dedicated to transporta-
tion infrastructures (see [4], for more details), the GBPN model (see Fig. 7) is estab-
lished, where the three sections are represented by the three batch places P8 (section 
1), P9 (section 2) and P10 (section 3). 

 

 

 
Fig. 7. GBPN model of the portion of the A12 highway 

The three defined sections of the 10 km highway sector have a normal traffic 
around 6:00 a.m. Therefore, at the initial time, each batch place contains a batch with 
the length equal to that of the batch place and moving with the maximum speed of the 
batch place. Thus, we define an initial state where each place contains an output batch 
not accumulated: OCtB8(t0) = [6000, 0.026, 6000, 33]8, OCtB9(t0) = [1000, 0.025, 
1000, 30]9, OCtB10(t0) = [3000, 0.024, 3000, 33]10. In other terms, at the initial time, 
section 1 contains 156 vehicles, section 2 contains 25 vehicles while 72 vehicles are 
in section 3. Zones 1, 2, 3 and 4 are represented by continuous places P1, P2, P3 and 
P4, respectively. Places P5, P6 and P7 limit the capacity of each batch place P8, P9 and 
P10, and according to the initial state of the batch places, the marking of these con-
tinuous places is respectively: m5 = 1644, m6 = 275 and m7 = 828.  

Remarks: (i) All the values have been transformed in meters and seconds instead of 
kilometers and hours, in order to be compatible with the BPN tool. (ii) As each sec-
tion is represented by a batch place, no distinguishing is established for different lanes 
of a section. Since the speed limits are sometimes distinct from lane to lane, it has 
been necessary to reach a compromise: the speed limit applied to several lanes is the 
average of the speed limits.  
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3.2   Performance Indicators of Transportation Systems 

We now focus our attention on the influence of a control law that regulates the maxi-
mal speed of sections (or batch places) according to the accumulation front. In the 
spirit of transportation systems [6], for establishing the influence of a speed control 
strategy, it is necessary to define performance indicators.  

Different time parameter evolutions can be characterized from the evolution graph, 
such as: number of entities passing through batch places (i.e. quantity of marks), 
length of accumulation at the exit of a section, batches density, fundamental diagram, 
etc. When a change of the speed of a batch place occurs as in Controlled BPN [1], this 
change has to be considered as an external event. In the GBPN with controllable batch 
speed, a change of the speed of a place will only limit the batch being created.  

The notion of a quantity vector, a vector composed of the quantities of marks, has 
already been defined in GBPN [3]. For discrete and continuous places, the quantity of 
marks is equal to their marking values. The quantity of marks associated with a batch 
place represents the number of units composing all the batches, i.e.  
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With this notion, we define the mean density of a batch place Pi, as the weighted 
mean of the density of each batch in the same batch place: 
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For evaluating the speed control laws, we also define the mean speed of a batch place 
as the weighted mean of the speed of each batch in the same batch place: 
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Finally, in order to analyze the performance of the studied system, a simulation soft-
ware tool, named A12segment, has been developed [12]. Based on Simuleau, i.e.  
a tool dedicated to BPN (linked with Sirphyco that is a tool for HPN), the 
A12segment tool is in charge of the user interface for the A12 highway portion. More 
precisely, the tool reads data from a Simuleau output file and extracts the previous 
indicators. It thus provides a manual managed event driven player that allows the user 
to see a text description of the state of the traffic model, at each event that occurs. 

3.3   Evaluation without Control Law 

Considering all the initial state information, with a simulation time of 3600 seconds 
and a precision of 0.01, the evolution graph can be established thanks to Simuleau. 
However, due to space limits, the complete evolution graph of the highway system is  
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Fig. 8. A12 segment interface 

not presented in this paper. Only the initial state and the event corresponding to an 
accumulation length equal to 200 m. on section 3 are represented in Fig. 9.  

(2548;0;107;0;1644;275;828) 

(1914;25.2;83.95 ;568.56;1640;
2 21 ;797.26) 

 

ϕ1=0.825;   ϕ2=0.82;
ϕ3=0.75;     ϕ4=0.74 

({OCtB18; OCtB19; OCtB110})

({OCtB18; CtB28; OCtB19; 

CtB29; OCtB110; CtB210}) 

OCtB18 = [106, 0.3, 6000, 33]12  

CtB28 = [5894, 0.026, 5894, 33]12  

OCtB19 = [156, 0.3, 1000, 30]13  

CtB29 = [844, 0.025, 844, 30]13  

OCtB110 = [200, 0.3, 3 000 , 33]14  

CtB210 = [2800, 0.024, 2800, 33]14  

OCtB18 = [6000, 0.026, 6000, 33]8  

OCtB19 = [1000, 0.025, 1000, 30]13  

OCtB110 = [3000, 0.024, 3000, 33]14  R8=A 
R9=A 
R10=A

 

 

Fig. 9. Initial node of the evolution graph 

After extracting the information from the Simuleau output file, the A12segment tool 
provides the following evolutions for the main parameters of the A12 highway, as 
shown in Fig. 10: average density, average speed and accumulation length.  

From these evolutions, it can be observed that an accumulation is created on  
section 1, continue to increase on section 2 helped by the existence of the service 
station and maintains considerable dimensions when it reaches section 3. The increas-
ing of the average density and the decreasing of the average speed on the sections are 
the main consequences of the appearance and increasing of the vehicle accumulation. 
As a conclusion, it can be inferred that an accumulation of maximum 467 m - 737 m - 
946 m on section 1 - 2 - 3 produces an increasing of the average density with 0.019 
veh/m - 0.205 veh/m - 0.085 veh/m and a decreasing in speed with 2 m/s - 20 m/s - 10 
m/s, respectively. 

DL km 81 detects 200 m 
accumulation on section 3 (total 200 
m) / 768.35
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Section 1 Section 2 Section 3 

Fig. 10. Parameter evolutions without control law 

3.4   Evaluation with Speed Control Laws 

The two following decision algorithms for choosing the right moment or event to 
change the speed limits into the sections of the highway have been tested.  

3.4.1   Decision Algorithm 1 
i) If the detector loop at km 85.1 (beginning of section 1) detects that vehicles move 
with 2.7 m/s (defined accumulation speed) and, if the camera from km 85.1 detects a 
200 m length of accumulation, the speed on section 1 will be decreased by 5.55 m/s 
(20 km/h). 
ii) If 300 seconds (5 min.) elapsed from the camera accumulation detection or from 
the last state check, the information received from the detector loops and the cameras 
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will be analyzed and, depending on the variation of the accumulation lengths, differ-
ent speed limits will be shown on the information panels. 

a- If the accumulation length of a section is over 200 m, the speed limit on this sec-
tion will be reduced by 5.5 m/s, but not under 8 m/s. 

b- If the accumulation length of a section is still over 200 m and if the speed limit 
on this section is under 14 m/s, the speed limit on the previous section will be reduced 
by 2.7 m/s, but not under 8 m/s. 

c- If the accumulation length of a section is below 200 m, the speed limit on this 
section will be increased by 2.7 m/s, unless it already reached the maximum speed 
imposed by the default speed limit of the section. 

d- If the accumulation length of a section is still below 200 m, and the speed limit 
on this section is increased over 14 m/s, the speed limit on the previous section will be 
increased by 2.7 m/s, unless it already reached the maximum speed imposed by the 
default speed limit of this other section. 

By applying this speed control strategy to the highway, new results have been ob-
tained (see Fig. 11). It can be observed that when the accumulation on section 1 
reaches 200 m, the length of accumulation is controlled. The accumulation length on 
section 2 is better, but still with considerable accumulation dimensions – the maxi-
mum length of accumulation reached 650 m. On section 3, the accumulation length 
reaches a maximum value closer to 400 m, a quite good evolution compared with 930 
m in the case without control. Nevertheless, the accumulation length reaches 650 m 
because the decision algorithm checks the state of the road only at a 300 seconds 
interval and sometimes an accumulation, not controlled at the incipient phase, can 
become difficult to control and eliminate. Therefore, an improved decision algorithm 
will be proposed in order to solve this problem. 

3.4.2   Decision Algorithm 2 
The improved decision algorithm is described below: 

i) If the detector loops from km 85.1 or km 84 or km 81, detect that vehicles move 
with 2.7 m/s (defined accumulation speed) and the cameras placed at the same posi-
tions detect a 200 m length of vehicle accumulation, then: 

a- If the accumulation length of a section is over 200 m, the speed limit on this sec-
tion will be reduced by 5.5 m/s, but not under 8 m/s. 

b- If the accumulation length of a section is still over 200 m and the speed limit on 
this section got under 14 m/s, the speed limit on the previous section will be reduced 
by 2.7 m/s, but not under 8 m/s. 
ii) If 300 seconds elapsed from the last camera and detector loop accumulation detec-
tion (it means that during 300 seconds no accumulation over 200 m was detected on 
the road), the sensors of the highway will do another state check, the information 
received from the detector loops and the cameras from all three sections will be ana-
lyzed and depending on the variation of the accumulations lengths different speed 
limits will be shown on the information panels. 

a- If the accumulation length of a section is below 200 m, the speed limit on the 
section will be increased by 2.7 m/s, unless it already reached the maximum speed 
imposed by the default speed limit of the section. 
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Section 1 Section 2 Section 3 

Fig. 11. Parameter evolutions – decision algorithm 1 

b- If the accumulation length of a section is below 200 m, and the speed limit on 
the section is over 14 m/s, the speed limit on the previous section will be increased by 
2.7 m/s, unless it already reached the maximum speed imposed by the default speed 
limit of this other section. 
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Section 1 Section 2 Section 3 

Fig. 12. Parameter evolutions – decision algorithm 2 

From Fig. 12, it can be observed that when the vehicle accumulation on section 3 
reaches 200 m at 768 seconds, the accumulation length on the three sections is very 
well controlled. The variation of the average density is very good on the first section, 
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acceptable on the second, and good on the third one, while the average speed main-
tains high values in sections 1 and 2 and a slight decrease in section 3. The speed 
limits during the simulation confer a pleasant and relaxing trip on sections 1 and 3, 
but some small delays can occur on section 2 due to the lower speed limits applied. 
Finally, the improved decision algorithm allows the accumulation length on all three 
sections to be controlled to a maximum value of 207 m, a mean value of 150 m and a 
minimum value of 37 m. The vehicle accumulation is not totally eliminated, but it is 
successfully maintained under the value of 200 m, that is considered the critical 
length for a normal traffic state to be considered with accumulations.  

A disadvantage of reducing the speed limits is, as expected, a longer time for the 
non-accumulated vehicles to transit the section, however for security reasons, the 
control of congestion is more important in traffic situations.  

4   Conclusions 

The main advantage of the batches Petri net class is the mixing of discrete-event 
model, continuous time model, and model integrating the set theory, through the con-
cept of batches, which represents variable delays on continuous flows. Thanks to this 
formalism, several studies have dealt with performance evaluation and control evalua-
tion of a real high throughput manufacturing system, i.e. a bottling line of Perrier 
spring company. In this paper, we use Generalized Batches Petri nets with controlla-
ble batch speed to model a portion of a highway and to analyze two speed control 
strategies. A further step could be to apply optimal control strategies by dealing with 
supervisory control and hybrid control in order to regulate congestion through the 
combined use of ramp metering and VSL control. Finally, connections between dif-
ferent tools dedicated to timed discrete PN, continuous PN, hybrid PN (as HYPENS 
or SIRPHYCO) and Batches Petri nets (SIMULEAU) should also be developed, to 
allow designers and users to analyze different systems from manufacturing , transpor-
tation or computer science domains. 
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Abstract. We present a novel, operational, formal model for scenario-
based modeling with Petri nets. A scenario-based model describes the
system behavior in terms of partial runs, called scenarios. This paradigm
has been formalized in message sequence charts (MSCs) and live sequence
charts (LSCs) which are in industrial and academic use. A particular ap-
plication for scenarios are process models in disaster management where
system behavior has to be adapted frequently, occasionally at run-time.
An operational semantics of scenarios would allow to execute and adapt
such systems on a formal basis.

In this paper, we present a class of Petri nets for specifying and mod-
eling systems with scenarios and anti-scenarios. We provide an opera-
tional semantics allowing to iteratively construct partially ordered runs
that satisfy a given specification. We prove the correctness of our results.

Keywords: scenarios, operational semantics, partial order, Petri nets.

1 Introduction

A recurring application of formal methods is the design, validation, and veri-
fication of distributed systems which consist of several interacting processes or
components. For this purpose, scenario-based methods like message sequence
charts (MSCs) and live sequence charts (LSCs) [1] have become accepted spec-
ification techniques: The behavior of a system is specified as a set of scenarios
being self-contained, partial executions. A scenario can be declared as possible,
imperative, or forbidden. A formal semantics allows to validate a system’s runs
against the scenarios following their intuitively understandable meaning [2].

Following the scenario-based paradigm [1,2], we have shown in [3] that in some
domains like disaster response system behavior can only faithfully be captured if
the complete behavior is given by a set of scenarios and anti-scenarios. Assuming
completeness and consistency turns a set of scenarios into a system model. This
particular representation has advantages when adapting a given model by adding,
removing, or modifying its scenarios without breaking the entire model. In [3],
we sketched an approach for this kind of modeling, executing, and adapting
systems with scenarios based on Petri nets.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 223–242, 2009.
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In this paper, we present a complete and consistent formal model of our
approach in [3] and explain how a scenario-based specification evolves into a
system model within the same formalism.

A major difficulty when using scenarios is the step from a system specifica-
tion to a system model with formal operational semantics that provides the set
of enabled actions which extend a given run s.t. no scenario is violated. Exist-
ing operational models for MSCs and LSCs require a translation into another
formalism like automata [4], process algebras [5], or state charts [6], or use for-
mal techniques like graph grammars [7]. This makes operational semantics for
scenarios surprisingly technical while scenarios and their composition appear to
be very intuitive. In the worst case, the modeler cannot relate the operational
model to its original scenarios by mere comparison.

A formal model for scenarios with operational semantics within the same for-
malism would give a more coherent view on the technique and on system models.
A candidate formalism are Petri nets : They offer an intuitively understandable
notation together with a rigorously defined, simple, and well-understood partial-
order semantics [8]. The well-developed Petri net structure theory and available
verification techniques could be used for analyzing and verifying behavioral prop-
erties of the system [9,10]. Established extensions for Petri nets, like colors or
time, could easily be transferred to scenarios. Petri net synthesis techniques
could help in translating a scenario-based model into a state-based model.

In this paper, we propose a novel formalization of scenarios based on Petri
nets that takes existing results, specifically from LSCs into account. We define a
new class of Petri nets called oclets. An oclet formalizes a scenario as an acyclic,
labeled net, that can be read as a partial, partially ordered run. A prefix of
the oclet is denoted as a precondition for the scenario which must be observed
before the entire scenario can occur. We also define anti-oclets to denote partial
runs which must not occur completely. A specification is a set of oclets and
anti-oclets.

We provide a declarative, formal semantics of oclets to characterize the sat-
isfying, partially ordered runs of an oclet specification. The semantics allows to
check whether a given (Petri net) system satisfies the given scenarios. We com-
plement this semantics with an operational semantics that turns a specification
into an operational model and allows for directly constructing partially ordered
runs from oclets. We show that the operational semantics are equivalent to the
declarative semantics under a closed world assumption.

The remainder of this paper is organized as follows. In the next section, we in-
formally introduce the concepts of our approach as we revisit the dining philoso-
phers problem and sketch a solution of the problem with scenarios. We formally
define the new Petri net class of oclets in Sect. 3, followed by their declarative
semantics in Sect. 4. Section 5 is dedicated to the operational semantics of oclets.
We wrap up our approach as we solve the problem of the dining philosophers
with oclets in Sect. 6. We compare our approach with related work in Sect. 7
and conclude in Sect. 8.
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2 Specifying with Scenarios – An Informal Introduction

Before we begin with formal definitions, we explain the concepts and the underly-
ing intuition of our approach by the help of the well-known dining philosophers ;
see [9] for instance. We first illustrate the philosophers problem on a Petri net
model of the system, and then informally sketch a solution with scenarios. We
revisit and solve the problem with our model in Section 6. We assume the reader
to be familiar with basic notions of Petri nets.

2.1 The Dining Philosophers Problem

The Petri net system (N3
phil, m

3
phil) in Fig. 1 models three philosophers each taking

his forks at once; this stricter variant will be sufficient to illustrate our ideas.
Each circle 〈thi, takei, eati, reli〉, i = 1, 2, 3 models the behavior of philosopher

i going from thinking to eating and back by taking and releasing his left and right
fork fi and fi⊕1; by ⊕ (and # later on), we denote addition (and subtraction)
modulo n. The philosophers synchronize on their shared forks: no two neighbor-
ing philosophers may eat at the same time. The system exhibits linear runs like
the following: (a) 〈take1, rel1, take1, rel1, . . .〉, (b) 〈take1, rel1, take2, rel2, take1, . . .〉,
and (c) 〈take1, rel1, take2, rel2, take3, rel3, take1, . . .〉.

In (a), phil. 1 always takes both of his
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Fig. 1. Petri net model N3
phil of three

dining philosophers with its initial
marking m3

phil

forks, none of his neighbors eats. In (b),
phil 1 and phil 2 alternatingly eat, alter-
natingly taking the left and the right fork
of phil. 3 who never eats. In (c), each
philosopher eats. Runs (a) and (b) are
unfair as transition take3 gets enabled in-
finitely often but never fires. These unfair
runs are undesired in the system, runs like
(c) are desired.

The dining philosophers problem is to
specify a system that distributedly coor-
dinates the execution of the philosophers
s.t. the system contains no deadlocks and
no unfair runs. Here, we seek for a stricter
solution that has only decent runs where
a philosopher, after having released his forks, refuses to take them again un-
til each neighbor has taken and released the corresponding shared fork [9].
Runs of kind (c) are decent. Figure 2 depicts a decent, partially ordered run
of (N3

phil, m
3
phil), corresponding to run (c) above.

2.2 The Basic Idea

We now want to sketch a solution for the dining philosophers problem with
scenarios. Our solution shall have the following properties: (i) A scenario is a
well-understandable fragment of a partially ordered run. (ii) System behavior is
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composeable from scenarios in an intuitive way. (iii) Anti-scenarios allow speci-
fying forbidden behavior. (iv) Behavioral preconditions of scenarios restrict the
applicability of a scenario to certain situations. (v) The semantics of scenarios
allows testing whether a set of runs satisfies all scenarios. (vi) Finally, satisfy-
ing runs can be constructed from the given scenarios in an operational manner.
We follow this agenda on an informal level in this section and we provide a
corresponding formal model from Sect. 3 onwards.

We begin with the notion of a
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Fig. 2. A decent run π3 (bold nodes) of the
three dining philosophers of Fig. 1
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Fig. 3. The elementary behavioral frag-
ment of the philosophers – oclet phil(i)

scenario. In the run π3 of Fig. 2 we
not only find copies of the transi-
tions and places of N3

phil, but even
larger, overlapping patterns.

The possibly most obvious pat-
tern, out of which the entire run is
composed, is depicted in Fig. 3. It
denotes one unrolled execution cy-
cle of philosopher i ∈ {1, 2, 3}. The
net itself is acyclic but its labels de-
note that at the end of the execu-
tion, the local state [fi, thi, fi⊕1] is
visited again. It specifies a logically
self-contained, partial execution of
the philosophers system. Such a
structure is a scenario.

By the symmetry of the philoso-
phers system, every partially-
ordered run of (N3

phil, m
3
phil) con-

sists of overlapping copies of
phil(i), i ∈ {1, . . . , 3} which de-
note the elementary scenarios of
(N3

phil, m
3
phil). As we wish to observe

these scenarios in the system, we
call them qualified.

From this observed decomposi-
tion, we can infer an appropriate
and intuitive composition of qual-
ified scenarios: Append a scenario
A to another scenario B by merg-
ing places at the beginning of A
with equally labeled places at the
end of B. Likewise, a scenario can
be appended to a run: If an initial
run π0, consisting of the places b1, . . . , b6 of Fig. 2, is given, then π3 can be
constructed by first appending phil(1) followed by phil(2) and phil(3).
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This way, we can compose all partially ordered runs of (N3
phil, m

3
phil), even the

non-decent ones. For instance, appending phil(1) to π0 followed by phil(1) again
adds transition e7 (take1) and subsequent nodes. A run that begins with firing
take2 can be composed by first appending phil(2) to π0. Intuitively, all these
runs satisfy the scenarios {phil(1), . . . , phil(3)}. In the course of this paper, we
generalize this appending composition to overlapping scenarios. In either case,
a set of scenarios is meaningful only, if the scenarios share some labels.

2.3 Anti-Scenarios Exclude Behavior

We just sketched how composing qualified scenarios yields partially ordered runs.
Although each scenario phil(i), i = 1, 2, 3, is qualified, we can construct unde-
sired, non-decent runs as explained. Anti-scenarios are an expressive mean to
exclude undesired behavior [6].

The non-decent behavior of the philosophers, as defined in Sect. 2.1, can be
narrowed down to the anti-scenarios decentL(i) and decentR(i) of Fig. 4. Scenario
decentL(i) denotes that after the left fork fi was released by philosopher i, it is
directly taken again by philosopher i; decentR(i) respectively for the right fork
fi⊕1. A partially ordered run that completely contains an anti-scenario decentL(i)
or decentR(i) is not decent; such a run violates the anti-scenario. The run con-
sisting of the nodes {b1, . . . , b10, e1, e2, e7, b19} of Fig. 2 violates decentL(1).

2.4 Behavioral Preconditions

The previous sections introduced the basic concepts of scenarios and their relation
to runs. So far, a scenario can be appended to a run as soon as its beginning can be
merged with the run. We now introduce a behavioral precondition for scenarios.

The grey shaded (dashed) behavior in Fig. 3, 4, and 5 denotes each scenario’s
precondition. It can be a partial marking as in Fig. 3 or a finite, connected
history as in Fig. 4 and 5. All other behavior is the contribution of the scenario.
The interpretation is that a qualified scenario can extend a given run only, if
its precondition is satisfied (has been observed) in the run. Conversely, the run
must not continue with the contribution of an anti-scenario, if its precondition
has been observed.
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Fig. 4. Anti-oclets decentL(i) and decentR(i)
specifying the decent use of forks i and i ⊕ 1
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Fig. 5. A qualified scenario with
a history-based precondition
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Scenario cleanF(i) in Fig. 5 denotes that phil. i may clean both forks after
they have been used and released by his left neighbor i# 1 and his right neigh-
bor i⊕ 1. The precondition specifies that clean(1) can be appended to run π3 of
Fig. 2. Directly appending cleanF(1) in the initial state is not forbidden by qual-
ified scenario cleanF(1), but such a run cannot be constructed. Thus a qualified
scenario reads as “if the precondition holds, the contribution is executable.”

2.5 Scenarios Specify Systems, Scenarios Model Systems

Up to now, we only related scenarios to single runs and explained rather vaguely
how a set of scenarios relates to the complete behavior of a system. We explain
this relation subsequently.

A specification is a set of scenarios. In general, a system satisfies a specifi-
cation, if for every prefix of a run π of the system, which allows to append a
qualified scenario according to its precondition, the system also has a run π′

where the scenario was appended to π. Additionally, no run of the system may
violate an anti-scenario of the specification. This definition entails progress for
all transitions.

This strict interpretation allows for contradicting specifications: Consider run
π1 that is created by appending phil(1) to π0 (consisting of b1, . . . , b10, e1, e2).
Qualified scenario phil(1) requires the presence of a run π′

1 constructed by ap-
pending phil(1) again; thus run π′

1 contains transition e7 which violates anti-
scenario decentL(1).

For a more flexible style of scenario-based specifications, we weaken the se-
mantics of qualified scenarios allowing that a qualified scenario is not executed
completely if this would violate an anti-scenario. Simply said, we prioritize anti-
scenarios over qualified scenarios to solve the contradiction (thus a qualified
scenario corresponds to a universal LSC with cold cuts only). With this weaker
semantics, a system that executes run π1, but not π′

1, as denoted above, does sat-
isfy the specification {phil(1), decentL(1)}. Apparently, every system satisfying⋃3

i=1{phil(i), decentL(i), decentR(i)} has only decent runs.
In [1], Damm and Harel point out an important issue when interpreting a

set of scenarios as there are two principle ways to do so: The existential in-
terpretation requires only the possibility to execute the qualified scenarios and
forbids anti-scenarios in a system. Any other behavior is allowed. The universal
interpretation requires that the entire behavior of a system is composed only of
the qualified scenarios while disallowing anti-scenarios. Any other behavior that
cannot be constructed from the scenarios is forbidden.

A modeler usually begins shaping the system behavior with the existential
interpretation in mind. Each new scenario adds a further requirement on the
system behavior. Once the scenarios are sufficiently detailed, the modeler changes
to the universal interpretation enforcing that the system behaves as specified in
the scenarios, only. The universal interpretation turns a set of scenarios into a
complete system model. It allows to define an operational semantics for scenarios
which is not permissible for the existential interpretation.
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This concludes the informal introduction of the key concepts for scenario-
based specifications and models. In the subsequent sections, we revisit these
concepts as we defined the notion of a scenario by generalizing the notion of a
local step. This allows us to define an existential, and a universal semantics for
scenarios based on Petri nets. The latter constructs runs by appending qualified
scenarios while preventing the violation of anti-scenarios as sketched above. We
will return to the philosophers example in Sect. 6.

3 Oclets – A Petri Net Model for Scenarios

The next three sections are dedicated to our formal model of scenario-based
specifications and their semantics. We begin with structural definitions of the
syntax. We assume the reader to be familiar with the basic formal notions of
Petri net theory, we recall the most important ones that we need subsequently;
for an introduction we refer to [9].

Recalling some basic notions. As usual, we denote a Petri net as N =
(P, T, F ); we call each place p ∈ P and each transition t ∈ T a node of N . We
will use labeled nets, N = (P, T, F, �), with a labeling function � assigning each
node x of N a label �(x) from some set L; L = T $P is partitioned into action
labels T and resource labels P with �(P ) ⊆ P and �(T ) ⊆ T . We canonically lift
any notion on any object to sets and to tuples of these objects.

We write •x for the preset, and x• for the postset of a node x of N . A net N is
acyclic if the flow-relation F has no directed cycles, i.e. the transitive closure of F
contains no pair (x, x); we write ≤N for the reflexive-transitive closure of F . The
minimal nodes of a set Y ⊆ P ∪T is the set minN Y := {y ∈ Y | •y∩ Y = ∅};
maximal nodes of Y are maxN Y := {y ∈ Y | y• ∩Y = ∅}. The set of transitively
reachable predecessors of Y is the set �Y �N := {x | ∃y ∈ Y, x ≤N y}; Y is causally
closed iff �Y �N ⊆ Y . The transitively reachable successors are %Y &N := {x | ∃y ∈
Y, y ≤N x}.

A Petri net π = (B, E, F ) is a causal net iff (1) π is acyclic, (2) for each node
x of π, �{x}� is finite, and (3) each place b ∈ B has at most one pretransition,
|•b| ≤ 1 and at most one posttransition |b•| ≤ 1. A labeled causal net that
formalizes a partially ordered run of a Petri net system as a Petri net again is
called process (of the system) [8]. We use these three terms synonymously. The
net π3 of Fig. 2 (bold nodes) is a process of (N3

phil, m
3
phil).

The elements of B and E are called conditions and events, respectively. For
the systems considered in this paper, no event of a process has two equally
labeled preconditions and no two equally labeled postconditions; further each
event of a process has a non-empty preset. The following notions will help us to
argue about the structure of processes:

Definition 1 (Induced subnet). Let N = (P, T, F, �) and M = (P ′, T ′, F ′, �′)
be nets. N is a subnet of M , N ⊆ M , iff P ⊆ P ′, T ⊆ T ′, F ⊆ F ′, and
�(x) = �′(x) for all x ∈ P ∪T . Let Y ⊆ (P ∪ T ). By N [Y ] we denote the Y -
induced subnet (P ∩Y, T ∩ Y, F |(Y ×Y ), �|Y ) of N .
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Definition 2 (Complete prefix, ends-with). A causal net π = (B, E, F ) is
a prefix of a causal net ρ = (B′, E′, F ′), π [→ ρ, iff π ⊆ ρ, �B ∪E�ρ ⊆ B ∪E,
and %B ∪E&ρ = B′ ∪E′.

Prefix π of ρ is complete (wrt. postconditions) iff (e, b) ∈ F ′ implies (e, b) ∈ F
for each e ∈ E. A set R of causal nets is prefix-closed iff each complete prefix
of each net of R is also in R. The net ρ ends with π, ρ →| π iff π ⊆ ρ and
maxπ(B ∪E) ⊆ maxρ(B′ ∪E′).

The structure of scenarios. The aim of our formal model is to describe and
construct a system’s processes from smaller processes, i.e. the system’s scenarios.
The simplest kind of scenario is a process given by a single event with its pre- and
postconditions; it denotes an occurrence of a single transition. We formalize such
a scenario as an atomic oclet : The event’s set of preconditions forms the oclet’s
precondition, the remainder of the process is the oclet’s contribution. Figure 6
depicts the atomic oclet that denotes the occurrence of transition take1 of Fig. 1.

The theory that we present subsequently gen-
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Fig. 6. An atomic oclet

eralizes atomic oclets by extending precondition
and contribution. In an oclet the occurrence
of a transition t can depend on more than its
preplaces being marked. Instead, an oclet’s pre-
condition can denote a history of transition oc-
currences which finally produce the tokens on
•t. We denote only those predecessors that are
necessary to fire t, i.e. not all postconditions of
t’s predecessors must be included. Figure 5 depicts such an oclet. In the same
way, we allow more events and conditions for building larger contributions of an
oclet, but here we require each event’s pre- and postconditions to be complete;
Fig. 3 depicts this case. Altogether this results in the following formal definition
of scenarios constituting the class of oclets.

Definition 3 (Oclet). An oclet o = (P, T, F, �, pre) is a labeled, finite causal
net (P, T, F, �), where each t ∈ T has no equally labeled preplaces and no equally
labeled postplaces, and a precondition pre ⊆ P ∪ T that induces a complete prefix
o[pre] of o s.t. each x ∈ maxo pre has a successor in o.

We call the set (P ∪ T )\pre the contribution of o, which is non-empty by Def. 3.
The nets of the Figures 3, 4, and 5 are oclets. We graphically denote the net
structure of an oclet as usual, surrounded by a dashed box; a grey shading (and
dashed lines) distinguishes the precondition from the contribution.

By definition, the precondition of every oclet is a complete prefix of the entire
oclet, its maximal nodes are places, and each oclet ends with its contribution.
Thus, the precondition can be evaluated in a state and the contribution begins
with a transition. Further, the precondition is a history of the contribution.
Otherwise, we would require the contribution to observe behavior on which it
does not causally depend.

An oclet specification is a set of oclets partitioned into qualified oclets and
anti-oclets.
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Definition 4 (Oclet specification). An oclet specification O = (Q, A) con-
sists of two finite, disjoint sets Q and A of oclets where for each o ∈ A holds
|To \ preo| = 1. We call Q qualified oclets and A anti-oclets.

For instance, Phildec
3 := ({phil(1), phil(2), phil(3)},

⋃3
i=1{decentL(i), decentR(i)})

is an oclet specification, see Fig. 3 and 4.
For the scope of this paper, we will impose a rather natural consistency con-

dition on an oclet specification O: Let t1 and t2 be two distinct transitions from
the contributions of two oclets of O. If t1 and t2 have the same labels, then for
every preplace (postplace) p1 of t1 exists an equally labeled preplace (postplace)
p2 of t2, and vice versa. If this property holds for any two transitions of any two
oclets in O, then O is label-consistent.

Label-consistency ensures that every two oclet transitions with equal labels
specify (maybe different) occurrences of the same “system transition”. The spec-
ification Phildec

3 is label-consistent. We do not impose consistency for transition
of the precondition as these do not specify a contribution but an observation of
behavior prior to a contribution. Here, partial correspondence is sufficient.

4 Formal Semantics of Oclets

We just defined the syntax of scenarios as oclets. In this section, we will define
their semantics in terms of sets of satisfying runs, i.e., labeled causal nets. The
semantics of a qualified oclet o shall read as “if preo holds, then the entire oclet o
can occur”. The semantics of an anti-oclet is much simpler: the entire anti-oclet
does not occur in any run.

Some useful terminology. The decisive concept to relate an oclet to a run,
and hence, to define the semantics of oclets is what we call an embedding. An
oclet can occur at several places in a run, that is, a run can have several subnets
that are isomorphic to an oclet. For clearly distinguishing between an oclet and
its occurrences, we say that an oclet is embedded in a run if the run contains a
subnet that is isomorphic to the oclet; the corresponding subnet isomorphism is
an embedding of the oclet into the run. For technical reasons, we formally define
these terms for induced subnets.

Definition 5 (Embedding). Let N and M bet two labeled Petri nets, let XN ⊆
PN ∪TN and XM ⊆ PM ∪TM . A mapping α : XN → XM is an embedding of
N [XN ] in M [XM ] iff for each node x ∈ XN holds �N(x) = �M (α(x)) and for
each edge (x1, x2) ∈ FN exists an edge (α(x1), α(x2)) ∈ FM .

As an example, consider oclet phil(2) of Fig. 3 and the process π3 of Fig. 2.
The mapping α1 with α1 = [p1 �→ b10, p2 �→ b4, p3 �→ b5] is an embedding of
prephil(2) into π3. To simplify notation, when referring to an induced subgraph,
e.g. phil(2)[prephil(2)], we only write its inducing nodes, e.g. prephil(2), if the net
is obvious from the context and confusion is safely avoided.

Our next step will be to relate a run to a set of runs which we call its con-
tinuations. This effectively means that the run gets various new labeled events,
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conditions, and arcs. We want to distinguish all these continuations only up to
isomorphism. That means, in the remainder of the paper, we will treat isomor-
phic Petri nets as equal, specifically regarding containment in sets, etc. This
treatment comes natural if we bear the graphical interpretation of nets in mind.
It has been shown earlier, e.g. in [10], how this treatment of isomorphic nets
can be reduced to strict mathematical identity by choosing canonic identities for
nodes of nets.

Continuing a run with an oclet. We now have all notions to formalize the
semantics of an oclet. We first define how a prefix of one oclet relates to one run
and how this run can be continued with the oclet. We then lift this notion to
a set of runs that satisfies one oclet and finally define the semantics of an oclet
specification, i.e. sets of oclets.

We introduce some notation for describing where (a prefix of) an oclet is
embedded in a run. Let o be an oclet and let X ⊆ (Po ∪ To) be the nodes of a
complete prefix o[X ] of o; let π be a labeled causal net.

1. The prefix o[X ] holds at the end of π by embedding α, denoted (π, α) |= o[X ],
iff α embeds o[X ] at the end of π, formally π →| α(o[X ]), see Def. 2.

2. The prefix o[X ] holds in (the past of) π by α, denoted (π, α) |= ♦- o[X ] iff α
embeds o[X ] in π.

3. We write π |= ϕ for ∃α :(π, α) |= ϕ and π |= ¬ϕ for ¬∃α :(π, α) |= ϕ.

For instance, π |= ¬♦- o[X ] expresses that o[X ] does not hold anywhere in π.
Although our notation takes inspiration from temporal logic, we do not build
such a logic here. Nevertheless, it is easy to prove that (π, α) |= ♦- o[X ] holds iff
there exists a prefix π′ of π with (π′, α) |= o[X ]. In our example, the precondition
of phil(1) of Fig. 3 holds at the end of run π3 in Fig. 2 while the precondition of
decentL(1) of Fig. 4 does not hold in π3.

A process in which the precondition of a qualified oclet holds naturally sug-
gests to continue this run by appending the complete oclet at its end. We are
not only interested in this largest continuation but also in all intermediate con-
tinuations. Of course, a run is a complete prefix of each of its continuations.

Definition 6 (Continuation). Let π, π′ be labeled causal nets, let o be an oclet.
π′ is a continuation of π with o, π

o−→ π′ iff π is a prefix of π′ and there exists
a complete prefix o[X ′] of o with preo ⊆ X ′ ⊆ Po ∪To and embeddings α and
α′ with (π, α) |= o[preo], (π′, α′) |= o[X ′] s.t. all new nodes come from X ′ only:
α′|preo

= α and α′(X ′ \ preo) = (B′ ∪E′) \ (B ∪E).

The set of prefixes of o induces the set of continuations of π. Thus, a con-
tinuation of π appends some nodes of o s.t. a larger prefix of o holds. In our
example, consider the run π0 (consisting of b1, . . . , b6) and the run π1 (consist-
ing of b1, . . . , b10, e1, e2) in Fig. 2. Run π1 is the largest continuation of π0 with
oclet phil(1).

A set of runs R is closed under continuations with o iff for each π ∈ R, each
continuation π′, π

o−→ π′, is a run in R.
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Definition 7 (Semantics of an oclet). A set of labeled causal nets R satisfies
an oclet o, R |= o iff R is prefix-closed and closed under continuations with o. R
satisfies the negation of o, R |= ¬ o iff R is prefix-closed and o does not hold in
any run in R: ∀π ∈ R : π |= ¬♦- o.

A strict interpretation of an oclet specification O = (Q, A) would be R |= O iff
R |= o for all o ∈ Q, and R |= ¬ o for all o ∈ A. This would allow for contradicting
specifications with no satisfying run as explained in Sect. 2.5.

Existential semantics of an oclet specification. We motivated in Sect. 2.5,
that we are interested in a weaker semantics of an oclet specification that requires
the satisfaction of a qualified oclet in a run only up to the point where an anti-
oclet would be violated.

To achieve this, we cannot require that a set of runs is closed under all con-
tinuations; we have to exclude those continuations that would violate an anti-
oclet. The formalization is straight forward: Let π be a run, let o be a qualified
oclet, and let o′ be an anti-oclet. A continuation π

o−→ π′ does not violate o′ iff
π′ |= ¬♦- o′ holds. For a second anti-oclet o′′, the continuation π

o−→ π′ also does
not violate o′′ iff π′ |= ¬♦- o′ and π′ |= ¬♦- o′′ holds. Thus we can generalize this
notion of non-violating continuations to a set of anti-oclets.

Definition 8 (Non-violating continuation). Let o be an oclet and let A be a
set of anti-oclets. Let π, π′ be labeled causal nets; π′ is a non-violating continua-
tion of π with o wrt. A iff π

o−→ π′ ∧ ∀o′ ∈ A : π′ |= ¬♦- o′. We write π
o∧¬A−−−−→ π′

in this case.

A non-violating continuation wrt. A does not embed any anti-oclet o ∈ A. Be-
cause we exclude only those continuations that do violate an anti-oclet in A,
the set of non-violating continuations is maximal. We may now close a set of
processes in the right way by only considering the non-violating continuations.

A set of runs R is closed under non-violating continuations with o wrt. A iff
for each π ∈ R each non-violating continuation of π with o wrt. A is a run in R.
With this notion, lifting semantics of an oclet to a set of oclets yields the formal
existential semantics of oclet specifications.

Definition 9 (Semantics of an oclet wrt. anti-oclets). A set of labeled
causal nets R satisfies an oclet o wrt. a set of anti-oclets A, R |= (o ∧ ¬A), iff
R is prefix-closed and closed under non-violating continuations with o wrt. A.

Definition 10 (Existential semantics). A set of labeled causal nets R satis-
fies an oclet specification (Q, A), R |= (Q, A) iff R |= (o ∧ ¬A) for each o ∈ Q
and R |= ¬ o for each o ∈ A.

With Def. 10, we can use qualified oclets and anti-oclets to formally specify the
behavior of systems. A model, say a Petri net system, satisfies an oclet specifi-
cation if the system’s processes satisfy the intuitively understandable meaning
of “if the precondition holds, the entire scenario must be executable as long as
no anti-scenario is violated”. In any other respect, the behavior of the system
can be arbitrary.
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5 Operational Semantics of Oclets

In the previous section, we established the existential, formal semantics of oclets
for specifying systems. In this section, we turn an oclet specification into an oclet
system having only the behavior that is specified by its oclets.

We define the universal semantics of oclets which is the behavior that can be
constructed from a given set of oclets only. The universal semantics is operational
as it defines exactly the actions that extend a given run. Such a semantics needs
a specific point to begin with the construction; we define an oclet system.

Definition 11 (Oclet system). Let O be a label-consistent oclet specification,
and π0 be a process. Then Ω = (O, π0) is an oclet system.

Like for oclet specifications, we require that equally labeled transitions have
equally label preplaces and equally labeled postplaces; see Sect. 3. For example,
oclet specification (

⋃3
i=1{phil(i)},

⋃3
i=1{decentL(i), decentR(i)}) =: Phildec

3 yields
the oclet system Ωdec

3 = (Phildec
3 , π0) with π0 having only the conditions Bπ0 :=

{b1, . . . , b6} of Fig. 2; π0 is called initial process.
Considering transition t1 of phil(1), we see that the strict past of t1, i.e. �•t1�,

can be embedded in π0 while �t1� cannot be embedded. That is π0 |= �•t1�.
Simply said, t1 is enabled in π0. Transition t2 of decentL(1) is not enabled in π0
because there is no embedding of the entire �•t2� at the end of π0.

Definition 12 (Enabled transition). Let o be an oclet, let t ∈ To \ preo, and
let π be a labeled causal net. Transition t is enabled in π iff π |= �•t�.

This definition of enabling a transition generalizes the definition for classical nets:
In order to embed the preset of a transition in a process, all its predecessors must
be embeddable. Thus in order to enable a transition of an oclet, the transition’s
history must have occurred. Transition t2 of decentL(1) is enabled in π1 (having
nodes {b1, . . . , b10, e1, e2}); the corresponding embedding α2 yields α2(•t2) =
{b8, b9, b10}.

Intuitively, firing an enabled transition t means to continue a process π with
transition t and its postset. We formalize this pattern as an extension of π:
It consists of a new event et that consumes from those conditions of π that
correspond to t’s preplaces and produces on new conditions that correspond to
t’s postplaces.

Definition 13 (Extension). Let t be a transition of an oclet o, t ∈ To \ preo

that is enabled in π by α: (π, α) |= �•t�. An extension of π by t at α is a net
fragment Eα

t := (Bt, {et}, Fα
t , �t) with Bt = {b∗p | p ∈ t•}, Bt ∩Bπ = ∅, et 	∈ Eπ,

– Fα
t = {(b, et) | b ∈ α(•t)}∪{(et, b

∗
p) | b∗p ∈ Bt}, and

– �t(et) = �o(t) and �t(b∗p) = �o(p) for all p ∈ t•.

In our example, the extension that corresponds to t1 (take1) of phil(1) in π0
consists of nodes e1 and b7 and all incoming arcs, especially (b1, e1), etc. in
Fig. 2. An extension is not a Petri net, because its arcs refer to nodes that are
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not part of the extension. We therefore call it a net fragment. To fire a transition
in a process, append the corresponding extension to the process.

In our operational semantics, firing a transition must not violate an anti-oclet.
Observe that transition t1 of phil(1) is enabled in π1 as well; the corresponding
embedding α3 yields α3(•t1) = {b8, b9, b10} = α2(•t2) where t2 is the contribut-
ing transition of anti-oclet decentL(1). Both transitions have the same label;
firing t1 of phil(1) in π1 would violate decentL(1).

In general, a transition t would violate an anti-oclet oa in a process π iff t is
enabled in π by α and oa has an equally-labeled transition s ∈ (Ta \ prea) that
is enabled in π by αa s.t. t and s denote the same occurrence: α(•t) = αa(•s).
Firing a violating transition is forbidden. This interpretation yields the processes
of an oclet system.

Definition 14 (Processes of an oclet system). Let Ω = ((Q, A), π0) be an
oclet system. The set Proc(Ω) of all processes of Ω is the least set that satisfies:

1. π0 is a process of Ω iff π0 |= ¬ oa for all oa ∈ A.
2. Let π ∈ Proc(Ω). Let o ∈ Q and let t ∈ (To \ preo) be a transition that is

enabled in π and that would not violate any oa ∈ A.
The net (π⊕Eα

t ) := (Bπ ∪Bt, Eπ ∪{et}, Fπ ∪Fα
t , �π ∪ �t) is a process of Ω.

Definition 14 completes the formal semantics of oclets. The entire process π3 of
Fig. 2 is a process of Ωdec

3 .
In the remainder of this section, we show that these definitions make sense.

We prove that oclet systems are at least as expressive as elementary net systems.
We finally show that existential and universal oclet semantics are consistent: the
processes of an oclet system (universal semantics) satisfy its own specification
(existential semantics). But first of all we show that all processes of an oclet
system are labeled causal nets, i.e. that Def. 14 is formally sound.

Lemma 1. Let Ω be an oclet system. If π ∈ Proc(Ω) is a process, and Eα
t is

an extension of π, then π⊕Eα
t ∈ Proc(Ω) is a labeled causal net.

Proof. Let Ω, π, and Eα
t be as assumed. Let o be the oclet of Ω with t ∈ To.

ρ := π⊕Eα
t is a Petri net: π is a net. Bρ ∩Eρ = (Bπ ∪Bt)∩(Eπ ∪{et}) = ∅

by Def. 13 and 14. It is easy to see that extending Fπ with Fα
t preserves the

bipartite structure of nets and that the union of �π and �t is well-defined.
ρ is a causal net: (1) π and Eα

t are acylic and disjoint. Further, Eα
t has no arc

(x, y) with y in π. Thus there exists no arc from Eα
t into π to close a cycle in ρ.

(2) In π⊕Eα
t , each node has only finitely many predecessors because π is a causal

net and Eα
t is finite. (3) Transition t is enabled in π (by Def. 13) which implies

α(•t) ⊆ maxπ(Bπ ∪Eπ) (by Def. 12). Thus each b ∈ α(•t) has no successor in
π. In ρ, each b ∈ α(•t) has only one successor: et (by Def. 13 and 14). The new
postconditions Bt ⊆ maxρ(Eρ ∪Bρ) have no successor and only one predecessor:
et (by Def. 13). Thus π is a labeled causal net as defined in Sect. 3. 
�

The operational semantics of oclets is complete wrt. the partial order semantics
of Petri net systems.
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Theorem 1. Let N = (P, T, F, m0) be a Petri net system with initial marking
m0. Then there exists an oclet system ΩN s.t. the set of processes of N and the
set of processes of ΩN are equal.

Proof. We show completeness by defining an algorithm that constructs for each
N an oclet system ΩN that has exactly the same processes as N .

Let t ∈ T . We define an atomic oclet ot that specifies the firing of transition
t: ot := (Po, To, Fo, �o, preo) with Po = •t∪ t•, To = {t}, Fo the restriction of FN

to (Po × To)∪(To × Po), �o the identity on Po ∪To, and preo = •t; c.f. Fig. 6.
The structure ot is an oclet by Def. 3. Define ΩN := (({ot | t ∈ T }, ∅), π0) with
initial process π0 consisting only of the set of conditions Bπ0 := {b1, . . . , bk | ∃p ∈
PN : m0(p) = k, �π0(bi) = p, i = 1, . . . , k}; ΩN is an oclet system by Def. 14.

We prove the equivalence of processes by induction on the number of events
in them. Firstly, π0 is the initial process of N iff it is the initial process of ΩN ,
which holds by construction. Let π be a labeled causal net containing n events.
By inductive assumption, π is a process of N iff it is a process of ΩN .

By definition of partial order semantics of nets, π reaches the marking m
with m(p) = |{b ∈ max π | �π(x) = p}| for each place p. Let Tm be the set of
transitions that are enabled in m. By construction of ΩN holds t ∈ Tm iff there
exists oclet ot in ΩN with transition t that is enabled in π according to Def. 12.

If Tm = ∅, π cannot be extended by N and by ΩN . Otherwise, let t ∈ Tm

with •t = {p1, . . . , pk} and t• = {q1, . . . , ql}; firing t according to the Petri net
semantics constructs process ρ by adding a new t-labeled event e with precondi-
tions •e = {b1, . . . , bk} ⊆ maxπ(Bπ ∪Eπ) with �ρ(bi) = pi, i = 1, . . . , k and new
postconditions e• = {b∗1, . . . , b∗l } with �ρ(b∗i ) = qi, i = 1, . . . , l. Because ΩN has
no anti-oclets, there exists an embedding α with π⊕Eα

t ∈ Proc(Ω) (Def. 14).
By definition of ot and by Def. 13 holds π⊕Eα

t = ρ. Thus ρ, with n + 1 events,
is a process of N iff it is a process of ΩN . 
�

Theorem 1 relates oclet systems to classical Petri net systems. The following the-
orem relates the universal semantics of oclet systems to the existential semantics
of oclet specifications.

Theorem 2. Let Ω = (O, π0) be an oclet system. Proc(Ω) |= O.

We prove Thm. 2 by the help of two lemmata. The first technical lemma states
that every complete prefix of a continuation is a continuation as well. The second
lemma proves that the processes of an oclet system are closed under non-violating
continuations.

Lemma 2. Let π be a process, let o be an oclet, and let π
o−→ π2. Let π1 be a

complete prefix of π2, i.e. π1 contains all postconditions of its events (Def. 2),
s.t. π is a prefix of π1. Then π

o−→ π1.

Proof. We construct the prefix o[X1] of o that is embedded at the end of π1
according to Def. 6. The nodes XΔ := (B2 ∪E2) \ (B1 ∪E1) are not in π1.

Because π
o−→ π2, there exists a prefix o[X2] of o with preo ⊆ X2 and embed-

dings α and α2 with (π, α) |= o[preo] and (π2, α2) |= o[X2]; see Def. 6.
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By Def. 5, α2 is injective. The nodes X1 := X2 \ α−1
2 (XΔ) are all oclet nodes

that are embedded into π1: Because π1 is a complete prefix of π2 and by α2 being
injective follows o[X1] is a complete prefix of o[X2]. The restricted embedding
α1 := α2|X1 embeds o[X1] at the end of π1: (π1, α1) |= o[X1].

From π being prefix of π1 follows (B ∪E)∩XΔ = ∅. Thus α(preo)∩XΔ = ∅
holds, which implies preo ∩α−1

2 (XΔ) = ∅. Hence preo ⊆ X2 and X1 = X2 \
α−1

2 (XΔ) imply preo ⊆ X1. Thus π
o−→ π1 by Def. 6. 
�

Lemma 3. Let Ω = ((Q, A), π0) be an oclet system. Let o ∈ Q and let π ∈
Proc(Ω). Then every process π2 with π

o∧¬ A−−−−→ π2 is a process of Ω.

Proof. We prove the property by induction on the number n of new events in
π2, n = |Eπ2 \ Eπ|. For n = 0 we have π2 = π by Def. 6; thus π2 ∈ Proc(Ω).

Consider n > 0: Let π2 be a non-violating continuation of π; π2 contains a new
event e ∈ (Eπ2 \Eπ) that has no successor event, i.e. there ex. no e′ ∈ Eπ2 , e 	= e′

with e ≤π2 e′. Let π1 be the prefix of π2 which we obtain by removing e and e•

from π2. Effectively, we remove events E∗ = {e}, conditions B∗ = e•, and arcs
F ∗ = {(b, e) | b ∈ •e}∪{(e, b) | b ∈ B∗}.

Because e 	∈ Eπ, π is a prefix of π1. From Lemma 2 follows that π1 is a
continuation of π. Trivially, π1 does not violate any anti-oclet of A because π2
does not. Thus by inductive assumption, π1 ∈ Proc(Ω).

We have to show that π2 ∈ Proc(Ω). From the definition of continuation
(Def. 6) follows that some prefix o[X2] of o is embedded at the end of π2 by
some embedding α2. Thus there exists a transition t ∈ X2 with α2(t) = e which
we removed from π2 to obtain π1. We fire t in π1 to construct π2:

Because e and e• were removed, the prefix o[X1], X1 := X2 \ (t∪ t•) of o is
embedded at the end of π1 by α1 := α2|X1 . Then (π1, α1) |= �•t�, i.e. t is enabled
in π1 (Def. 12). From Def. 13 follows that Eα1

t = (B∗, E∗, F ∗, �π2 |B∗ ∪E∗) as
removed from π2. Thus π1⊕Eα1

t = π2. By Def. 14, π2 is a process of Ω. 
�
With Lem. 3 we have proven that the processes an oclet system are closed
under non-violating continuations. The proof also shows how declarative and
operational semantics are related to each other by the notion of local steps. The
proof of Thm. 2 is now straight forward.

Proof (of Thm. 2). Let Ω = (O, π0) be an oclet system with O = (Q, A). We have
to show Proc(Ω) |= O according to Def. 10. The set Proc(Ω) is prefix-closed by
construction. From Lemma 3 follows that Proc(Ω) is closed under non-violating
continuations with any qualified oclet of Ω wrt. A. Thus Proc(Ω) |= (o ∧ ¬A)
for each o ∈ Q.

It remains to show that no process of Ω violates any anti-oclet ov ∈ A:
Assume there is a run πv ∈ Proc(Ω), πv 	= π0 and an embedding αv that violates
ov: (πv, αv) |= ♦- ov. Because Proc(Ω) is prefix-closed, we may assume that
(πv, αv) |= ov holds. From Def. 14 follows that there exists π ∈ Proc(Ω), an
oclet o ∈ Q, and a transition t of o that is enabled in π by an embedding α
with πv = π⊕Eα

t . But then, ov contains transition s with �ov(s) = �o(t) and
αv(•s) = α(•t). Hence t would violate ov. This contradicts πv = π⊕Eα

t ∈
Proc(Ω) by Def. 14. Thus Proc(Ω) |= ¬ o for each o ∈ A. 
�
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We just have shown that the universal semantics of oclet systems imply the
existential semantics of oclet specifications. The semantics are not equivalent in
general, as any set of processes, that contain labels that do not occur in the
specification, cannot be constructed with the universal semantics.

The behavior that satisfies an oclet specification (Q, A) but that cannot be
constructed by an oclet system Ω = ((Q, A), π0) violates the following closed-
world assumption of the universal semantics. A set of runs R is closed wrt. Ω
iff for all π ∈ R, π0 is a complete prefix of π and for each node x ∈ (Bπ ∪Eπ)
exists a qualified oclet o of O that contributes this node to π, i.e. there exists y ∈
Po ∪To and embedding α : �y� → (Bπ ∪Eπ) with α(y) = x. From the inductive
definition of the processes of an oclet system follows that if Proc(Ω) ⊂ R, then
R is not closed wrt. Ω.

6 Modeling with Oclets

In the previous three sections, we defined the formal semantics of oclets.
With this semantics, the oclet system Ωdec

3 = (Phildec
3 , π0) with Phildec

3 :=
(
⋃3

i=1{phil(i)},
⋃3

i=1{decentL(i), decentR(i)}) of our introductory Sect. 2 has
only decent runs by construction. The run π3 of Fig. 2 is a process of Ωdec

3 .
To give a better understanding for the use of oclet systems, we explain two

application scenarios for oclets in the section. First, we use oclets to specify the
solution of n dining philosophers with only n − 1 forks available. Secondly, we
sketch how oclets allow to quickly adapt system models.

6.1 Scenario-Based System Design with Oclets

We consider a variant of the dining philosophers: The philosophers are still
sitting around a table and alternate between thinking and eating by taking and
releasing forks they share with their neighbors. Unfortunately, one fork fi is
missing; philosophers i and i ⊕ 1 cannot eat. The task: Specify a system of n
philosophers with n− 1 forks s.t. each philosopher always eventually eats.
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Fig. 7. Oclet exchF(i) specifying the
fork-passing protocol

In our solution, the philosophers pass
the forks around the table: Every philoso-
pher i⊕1,who is missing his right fork i⊕2
may request the left fork of his left neigh-
bor i. Philosopher i grants this request by
passing his left fork i to his right neighbor
i ⊕ 1, who put this fork to his right. Now,
phil. i#1 is missing his right fork i; he may
send a request to his left neighbor. To al-
low each phil. i to eat at least once before
passing his left fork, he may do so only af-
ter he has just returned from eating. Oclet
exchF(i) of Figure 7 denotes exactly this
specification.
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Now, consider the oclet system Ωm
3 := (Philm3 , πm

0 ) with oclet specification
Philm3 := (

⋃3
i=1{phil(i), exchF(i)}, ∅) and initial process πm

0 having initial con-
ditions with labels f1, th1, f2, th2, m3, th3. Figure 8 depicts a process πm

4 of Ωm
3 :

In πm
0 , transition take1 of phil(1) and rqf2 of exchF(1) are enabled concurrently.

Because we made the enabling of a transition dependent only its own history
(instead of the entire precondition of its oclet), it is possible to start executing
a scenario even if not the entire precondition was observed. Theorem 2 justifies
this behavior. Firing take1 and rqf2 yields πm

1 (nodes b1, . . . , b9, e1, e2).
In πm

1 , only rel1 of phil(1) is en-

�� ��� �� ��� �� ���

�	
��

�	��

��
�

�� ���

��
����

���

��

���

���

�

��

���

�	
��

��

�	��

�� ��� ��

��

����

���

��
�

��

�	
��

����

�� �� �� �� �� ��

��

��

��

��� ��� ���

��

����

�	

��� ���

��� ��


��

���

��

���

��

��� ��� ���

�


��	���

��

Fig. 8. A process πm
4 of the fork-

passing philosophers

abled, yielding πm
2 (nodes b1, . . . , b12,

e1, . . . , e3). Transitions take1 of phil(1),
and gr1 of exchF(1) are enabled in con-
flict: their presets can only be overlap-
pingly embedded. Firing gr1 and the
subsequently enabled rcv2 of exchF(1)
constructs πm

3 (b1, . . . , b17, e1, . . . , e5)
where philosopher 2 can now take both
forks. Continuing with the construction,
we reach πm

4 where now philosopher 2
has to choose whether to grant the re-
quest of philosopher 3 or whether to
take the forks again.

The system Ωm
3 solves the missing fork

problem for 3 philosophers, but has non-
decent runs. We can easily refine Philm3 to
Philm,d

3 by adding anti-oclets decentL(i)
and decentR(i) of Fig. 4 for i = 1, 2, 3.
Process πm

4 is also a process of the re-
fined system Ωm,d

3 := (Philm,d
3 , πm

0 ), and
cannot be extended by e9 (take2) because
of t2 of decentL(2). The system Ωm,d

3 has
only decent runs by construction.

This solution has another unfair run in case of more than three philosophers:
Assume phil. 2 requests and receives fork f1 from phil. 1 and puts it as fork f3
between phil. 2 and phil. 3. Fork f3 can equally be taken from phils. 2 and 3.
Meanwhile, the other philosophers may have kept on passing forks until phil. 4
requests f3 from 3. If now phil. 3 takes and releases his forks, and then grants the
request of 4, phil. 2 was not able to eat with the forks he just has requested. The
specification can easily be extended with an anti-oclet to prevent this behavior.

6.2 Adapting System Models with Oclets

This rather flexible style of creating oclet specifications also helps when specify-
ing systems that have to be adapted frequently. Processes in disaster response are
such as case, where the system model must be adapted to incorporate changes
of the real-world processes [3].
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As it is fairly easy to add, remove, and modify single scenarios, the changes are
well-conceivable and do not break the model. Because our operational semantics
makes no assumptions regarding the initial process, adaptation can be done as
follows: Construct a process π of an oclet system (O, π0) until a problem is
encountered. Change specification O by adding, removing, or modifying oclets;
O → O′. Then continue in the system (O′, π). Iterate this procedure, possibly
beginning again at π0 or π, until the system is adapted. Our formal semantics
guarantees well-defined behavior at any time during adaptation.

7 Related Work

In this section, we compare our approach for scenario-based modeling with Petri
nets to existing works.

MSCs formalize scenarios as partial orders on events; several extensions are
available. Hierarchical MSCs (HMSCs) and Message Sequence Graphs (MSGs)
explicitly denote in a graph how scenarios may be concatenated, for specifying
entire systems. Operational semantics of (H)MSCs and MSGs translate a spec-
ification into process algebraic expressions [5], automata [4], or employ graph
grammars to construct runs [7] from MSCs. These, as well as existing Petri net
semantics like [11] do not support anti-scenarios.

LSCs are an extension of MSCs with a formal semantics for overlapping sce-
narios, anti-scenarios, and modalities for scenarios and events. LSCs are more
expressive than oclets; the original LSC semantics is declarative. Operational se-
mantics for LSCs, i.e. LSC play-out, is defined by a translation to state charts [6],
or by constructing an automaton from a specification [12]. Unfortunately, this
linearizes the partial order explicitly specified in the charts.

Desel et al brought up the approach of scenario-based system design and val-
idation with Petri nets [13,2]. The principle idea is to let the system designer
denote desired and undesired behavior as complete (finite) partially ordered
runs, i.e. complete scenarios and anti-scenarios. These mediate between a for-
mal specification and a system model (a Petri net): Specification and model
are validated against the scenarios, that is, whether each scenario satisfies the
specification and whether the system model executes the desired scenarios while
disallowing the undesired ones. The modeler iteratively reaches a valid system
model; thereby refinement of the system model is a creative step involving hu-
man interaction. This step can be supported by folding desired scenarios into an
overapproximating Petri net [2]. In [14], Bergenthum et al show how an equiv-
alently implementing Petri net can be synthesized from a complete set of finite
desired runs. The approach is extended in [15] where desired behavior is given
as a regular expression over finite scenarios.

The oclet model follows this idea of scenario-based system design. Oclets con-
tribute history-based preconditions to scenarios allowing that a scenario specifies
behavior “in the middle” of an execution. Thereby the composition of scenar-
ios to complete runs follows from the oclet’s inherent precondition requiring no
further notion like an expression for composition. Our operational semantics
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allows to execute a set of scenarios directly without the need for additional syn-
thesis or transformation. In that respect, our semantics makes a set of scenarios
a complete system model. Still, a synthesis into Petri nets as in [14,15] allows to
use the entire Petri net theory for verification.

The concept of history-dependent firing of transitions has been proposed ear-
lier by defined corresponding transiting guards [16]; oclets provide a graphical
syntax for a subclass of these guards. The net composition techniques defined
in [17] are a general case of the net composition employed in our model. In the
context of adapting system models, existing works in the area of adaptive work-
flows, see [18] for a survey, use models with sequential semantics or require to
denote adaptations in explicit model transformation rules. Graph transforma-
tions on nets also require explicit adaptations rules for adaptations, e.g. [19]. In
comparison, adaptations of oclet systems can be done from the perspective of
desired and undesired scenarios only.

8 Conclusion

We presented a novel formal model for specifying and modeling systems with
Petri net scenarios. We defined a specification to be a set of oclets, labeled causal
nets with a dedicated precondition; oclets are partitioned into qualified oclets
and anti-oclet describing desired and forbidden behavior, respectively.

We defined a declarative semantics that characterizes sets of runs that satisfy
a given specification. We then provided an operational semantics to construct a
maximal set of satisfying runs; we have shown that any run, that cannot be con-
structed either violates the specification, or includes an action that is not defined
in the specification. We solved the dining philosophers problem in two variants to
illustrate how our model can be used for modeling distributed systems. Providing
an operational, partial-order Petri net semantics for scenarios and anti-scenarios
makes our work a contribution in the area of scenario-based techniques.

Our results hint to further research: We already have first results towards
constructing the complete finite prefix of a branching process of an oclet sys-
tem [10] which allows for the verification of oclet systems (the full branching
process can already be constructed with the given semantics). These results also
hint towards a synthesis of Petri nets from scenarios and anti-scenarios. We also
research structural properties of oclet specifications to derive system properties
directly from scenarios and intend to introduce modalities known from LSCs
such as imperative scenarios and events.

Our approach is implemented in our graphical runtime environment Greta,
that is available online at http://www.service-technology.org/greta/ to-
gether with several example specifications.

Acknowledgements. This paper has greatly benefitted from discussions with
and suggestions by Wolfgang Reisig, Karsten Wolf, Peter Massuthe, and all
referees of this paper. Our tool Greta, which substantially helped developing the
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Abstract. In this contribution we propose an algebraic extension of
object nets. Object nets, also known as nets within nets, allow nets itself
as tokens. The algebraic structure introduced here refers to the topology
of these net-tokens, i.e. we have operators which compose nets. Object
nets that use net operations in arc expression are called Higher Order
Recursive Nets, or short: Hornets.

The operations on nets allow to modify the structure of net-tokens at
run-time. We apply this construct to the workflow management domain.
We propose a simple Hornet model of a distributed workflow manage-
ment system. This system consists of a network of workflow management
agents. The agents cooperatively transfer workflows over the network for
distributed execution, monitor their processes, and reorganise the work-
flow repository to improve e.g. the system’s performance.

1 Motivation: Distributed Workflow Management

In this contribution we apply the nets within nets [1] approach to the domain of
workflow nets and their management. The combination of both research direc-
tions was started in [2] as a joint work of Wil van der Aalst and the Hamburg
group: The paper considered workflows that are executed within one organisa-
tion, which is itself a net. This scenario has been modelled using object nets and
the model was executed using the Renew tool.

Both groups undertook further research which brought both areas, object nets
and workflow nets, closer together: The Hamburg group investigated properties
of object nets [3,4,5,6] and used them to model workflows as well as agent in-
teraction protocols [7,8,9]. The Eindhoven group extended workflow nets with
composition and hierarchy, resulting in adaptive workflow nets [10,11]: Workflow
nets [12] may be composed sequentially, parallel, or in alternation – denoted
(N1 ·N2), (N1‖N2), and (N1 +N2) – as depicted in Figure 1. Additionally, adap-
tive workflow nets are considered as tokens of other nets which control their
execution.

In this paper we want to narrow the gap a little bit more and will show how
adaptive workflow nets could be expressed in terms of object nets. Hierarchy
is already a feature of object nets while composition is not. Therefore we con-
sider an extension of object nets, called Hornets, which allow arbitrary algebraic
operations on nets.
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Fig. 1. Composition of Workflow Nets

WF1, ...
WFMS 1

 WF2,  ....
WFMS 11

WF1, WF3, ...

........ ....

WF1, WF2, (WF1 || WF2), ....

WF2, ...

WF1, WF3, (WF1 + WF3), ....

all workflows that the agent can handle by delegation

workflows that the agent can handle on its own

WFMS 12

subordinate WFMS agent

root WFMS agent

Fig. 2. The Workflow Management Network

We will illustrate the modelling power of Hornets by formalising a Workflow
Management System (WFMS). We even allow to model a distributed WFMS,
that consists of a network of WFMS-agents. Workflows are decomposed into
smaller parts, distributed over the network and executed by several agents. Each
WFMS-agent specifies those workflows that it can execute locally and those that
it executes by delegating parts to other agents. In the following we consider a
system with a tree-like structure as in Figure 2.

Following this aim the paper has the structure: Section 2 defines Hornets as
the algebraic generalisation of object nets and Section 3 presents the model of
the distributed WFMS including parts like analysis, repository management,
delegation information management, and workflow execution. The paper closes
with a conclusion.

2 Hornets: Higher Order Recursive Nets

In this paper we define the algebraic extension of object nets [1], i.e. Petri nets
with nets as tokens. This nesting may be limited as in [13] or unlimited as in
[3,4,5,6].

Among the wealth of research on defining nested systems, in recent years a
variety of formalisms have been introduced: Calculi based approaches are e.g. the
ambient calculus [14] (a relative of the π-calculus [15]) and Petri net based ones
are e.g. mobile nets [16], recursive nets [17], nested nets [18], mobile pr/t nets
[19], PN2 [20], hypernets [21], mobile systems [22], AHO systems [23], adaptive
workflow nets [10], and RN systems [24].
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The algebraic extensions considered here are not introduced to have data
types which replace the anonymous black tokens, like done by algebraic nets
[25]. The algebra considered here is defined on the nets themself and allows to
modify the structure of the net-tokens as a result of a firing transition. These
object nets are called Higher Order Recursive Nets, or Hornets for short.

Example 1. We consider a Hornet with two workflow nets N1 and N2 as tokens
– cf. Figure 3. To model a run-time adaption, we combine N1 and N2 resulting
in the net N3 = (N1‖N2). This modification is modelled by transition t of the
Hornets in Fig. 3. In a binding a with x �→ N1 and y �→ N2 the transition t
is enabled. Assume that (x‖y) evaluates to N3 for a. If t fires it removes the
two net-tokens from p and q and generates one new net-token on place r. The
net-token on r has the structure of N3 and its marking is obtained as a transfer
from the token on v in N1 and the token on s in N2 into N3. This transfer is
possible since all the places of N1 and N2 are also places in N3 and tokens can
be transferred in the obvious way.

��
p
����

x

��
q

����
y

t �(x‖y) �r
�

�
��

	
	

	

N1 �i1� a � �u� b � �� v� c � �f1

N2 �i2� d � �� s� e � �f2

N3

net-token produced on r by t

�i3� ���



�



�

���
� �f3

�i1� a� �u� b � ��v� c � �f1

�i2 � d � �s� � e � �f2

Fig. 3. Modification of the net-token’s structure

The use of algebraic transformation in Hornets relates them to algebraic
higher-order (AHO) systems [23], which are restricted to two-levelled systems
but have a greater flexibility for the operations on net-tokens, since each net
transformation is allowed.

2.1 Signatures, -Theories and -Logic

We define the algebraic structure of object nets. For a general introduction of
algebraic specifications cf. [26].

Let K be a set of net-types (kinds). We assume the type • ∈ K of anonymous,
so called ‘black’ tokens (as in p/t nets).

A signature describes the set of all object net terms. A signature is a disjoint
family Σ = (Σk1···kn,k)k1,··· ,kn,k∈K of operators. (For K-indexed families we use
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abbreviations like σ ∈ Σ instead of σ ∈
⋃

k1,··· ,kn,k∈K Σk1···kn,k if there is no
danger of confusion.) The set Σλ,k are the constants of type k.

Let X = (Xk)k∈K be a countable family of disjoint sets of variables, all disjoint
to operators. The set of terms Tk

Σ(X) of type k over a signature Σ is defined as
follows: Each variable x ∈ Xk is a term of type k; for an operator σ ∈ Σk1···kn,k

and terms t1 ∈ T
k1
Σ (X), . . . , tn ∈ T

kn

Σ (X) we have that σ(t1, . . . , tn) ∈ Tk
Σ(X) is

a term of type k. The set of all terms is TΣ(X) :=
⋃

k∈K Tk
Σ(X).

Let Σ be a signature over K. For each type k ∈ K there is a set of axioms
Ek. An axiom is a pair of terms (t1, t2) ∈ Ek with t1, t2 ∈ Tk

Σ(X), denoted as
∀X : (t1 ∼ t2).

A specification (Σ, X, E) consists of a signature Σ, a family of variables X =
(Xk)k∈K , and a family of axioms E = (Ek)k∈K .

Let (Σ, X, E) be a specification. In the following we use (many-sorted) pred-
icate logic, where the terms are generated by a signature Σ. In addition to
the signature Σ and the variables X we define a family of typed predicates
Ψ = (Ψk1···kn)k1,...,kn∈K . Together with the signature Σ this defines the set of
formulae in the standard way for predicate logic:
(i) If ψ ∈ Ψk1···kn is a predicate and t1 ∈ T

k1
Σ (X), . . . tn ∈ T

kn

Σ (X) are terms,
then ψ(t1, . . . , tn) is a formulae.
(ii) If F1 and F2 are formulae and x ∈ X is a variable, then ¬F1, (F1 ∧ F2),
(F1 ∨ F2), (F1 =⇒ F2), ∀x : F1, and ∃x : F1 are formulae.

The set of formulae is denoted PLΓ where Γ = (Σ, X, E, Ψ) defines the logic
structure.

2.2 Object Nets

For the rest of the paper we fix a fixed logic structure Γ = (Σ, X, E, Ψ) and
the global set of places P :=

⋃
k∈K Pk, transitions T :=

⋃
k∈K Tk, and channels

C :=
⋃

k∈K Ck where all the Pk, Tk, and Ck are countable and pairwise dis-
joint. The intended meaning is that a place p ∈ Pk contains only net-tokens of
object nets that are of type k.

This implicit typing is also expressed by the mapping cd : P ∪C → K with
the meaning that the net-tokens on p have the structure of nets in the set Ncd(p).
Similarly for channels. The mapping is deduced from the the families Pk and
Ck as:

cd(x) = k :⇐⇒ x ∈ Pk ∪Ck (1)

In the graphical representation the typing is denoted as a label ::cd(p) of the
place p. This label is omitted for cd(p) = •.

Note that recursive nesting is possible, i.e. it is allowed that for some p ∈ P (N)
we have cd(p) = N .

An object net N is the common structure for all the net-tokens of N . Object
nets are Petri nets with finite subsets P ⊆ P, T ⊆ T, and C ⊆ C. (This already
implies P ∩ T = ∅.) Each arc is labelled with a term of the signature (which
means that the net-token used in the firing phase of the transition has the net
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structure that is obtained by evaluating this term).1 This arc labelling is defined
by the mappings ∂−

P , ∂+
P : T → (P → TΣ(X)) where ∂±

P is a total mapping,
while ∂±

P (t) is only defined for those p that are connected with t.
Channels are modelled very similarly to normal places. The main difference

is that channels are unmarked in ‘real’ states. Tokens on channel places denote
some intermediate state occurring only during a synchronisation very similar to
the mechanism of zero-safe nets [27].

Channels are used to transfer tokens between the nesting levels of the marking.
Channels connecting to the level above are called up-links and those connecting
to the levels below are called down-links. Due to the tree-like nesting structure of
markings there may be several down-links but at most one up-link: |C−(t)| ≤ 1.
The labelling for channels is described by the mappings ∂−

C , ∂+
C : T → (C →

TΣ(X)) where ∂−
C describes the up-links and ∂+

C the down-links. In the graphical
representation an up-link c is denoted as the transition label ?c and a down-link
c as !c.

Since places P and channels C are disjoint, we combine the mappings ∂−
P and

∂−
C into one single mapping (analogously for ∂+):

∂−, ∂+ : T → ((P ∪ C) → TΣ(X))

The set of all up-links C−(t) and the set of all down-links C+(t) of a transition
t are those channels c ∈ C such that ∂±

C (t)(c) is defined:

C±(t) := dom(∂±
C (t)) (2)

For uniformity of notations we use P−(t) := dom(∂−
P (t)) instead of •t and

P+(t) := dom(∂+
P (t)) instead of t• to denote pre- and postsets.

Definition 1. An object net is a tuple:

N = (P, T, C, ∂−, ∂+, G)

1. P ⊆ P is a finite set of places.
2. T ⊆ T is a finite set of transitions.
3. C ⊆ C is a finite set of channels.
4. ∂± : T → ((P ∪ C) → TΣ(X)) are the pre- and post-conditions allowing at

most one up-link: |C−(t)| ≤ 1 for all t ∈ T .
5. G : T → PLΓ is the guard predicate.

Given the object net N then P (N) denotes its set of places. Analogously for
T (N), ∂±(N) etc.

1 Therefore, a transition removes at most one token from each place. This assumption
allows us to identify each token with the place it has been removed from. Note, that
this restriction can easily be dropped for the price of more cumbersome notations.
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2.3 Hornets: Net-Algebra and -Models

Let Σ be a signature over K. A net-algebra assigns to each type k ∈ K a set Nk

of object nets.2 We assume the family N = (Nk)k∈K to be disjoint. We identify
N with

⋃
k∈K Nk in the following. The nodes of the object nets do not have to

be disjoint. The firing rule allows to transfer tokens between those places that
are shared by object nets (cf. below).

The type • ∈ K of anonymous tokens is interpreted with N• = {N•}, where
N• is a net with empty sets of places and transitions.

The family of object nets N is the universe of the algebra. A net-algebra
(N , I) assigns to each constant σ ∈ Σλ,k an object net σI ∈ Nk and to each
operator σ ∈ Σk1···kn,k with n > 0 a mapping σI : Nk1 × · · · × Nn

kn
→ Nk.

A variable assignment α = (αk : Xk → Nk)k∈K maps each variable onto an
element of the algebra. For a variable assignment α the evaluation of a term
t ∈ Tk

Σ(X) is uniquely defined and will be denoted as α(t).
An axiom ∀X : (t1 ∼ t2) is valid in the net-algebra (N , I) under the assign-

ment α (denoted I, α |= e) iff α(t1) = α(t2) holds. An axiom e is valid (denoted
as I |= e) iff e is valid for all assignments α. A set of axioms E is valid (denoted
as I |= E) iff each axiom e ∈ E is valid. A net-algebra, such that all axioms of
(Σ, X, E) are valid, is called net-theory.

A net-theory (N , I) extends to a net-model of Γ = (Σ, X, E, Ψ), if we extend
the interpretation I on predicates: Each predicate ψ ∈ Ψk1···kn is interpreted by
n-ary relation ψI ⊆ Nk1 × · · · × Nkn .

For a fixed net-model each variable assignment α : X → N induces the truth
evaluation for each formulae F ∈ PLΣ in the usual way for predicate logic. This
truth value is denoted by F I,α.

Deducibility of a formulae F from a set of formulae F is denoted by F |=α
I F .

Nested Markings. We assume a given net-algebra with universe N . Net-tokens
of the object net N differ in their markings μ, which are nested multisets.

A multiset m on the set D is a mapping m : D → N. The set of all multisets
over the set D is denoted MS (D). We use common notations for multisets, like
cardinality |m| or the sum (m1 ⊕m2). The empty multiset is denoted by 0.

Multisets are the free commutative monoid over D since every multiset has
the unique representation in the form m =

⊕
d∈D m(d) · d where m(d) denotes

the multiplicity of d.
A net-token is denoted in the form [N, μ], where μ is a multiset of net-tokens

which must be consistent with the typing cd (cf. below). A net-token on the
place p is denoted p[N, μ], where N must be in Nk for k = cd(p). Similarly for
net-tokens on channels.

We define markings as nested multisets. Let P :=
⋃

N∈N P(N), Pn(N) :=⋃
N∈N Pn(N), and P(N) :=

⋃∞
n=0 Pn(N), where:

Pn(N) =
{

p[N ′, μ′] | p ∈ P (N) ∧N ′ ∈ Ncd(p) ∧ μ′ ∈ MS
(⋃

i<n
Pi(N ′)

)}
(3)

2 To be more precise and to avoid cyclic definitions: Nk are names of nets. Since there
is no danger of confusion we use N ∈ Nk as the name and for the net N itself.
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Black tokens on p are of the form p[N•,0], since whenever cd(p) = • then the
marking must be empty, as N• has no places. The token p[N•,0] is abbreviated
as p[].

p_0 :: N_1

!c_{i+1} 

p_i :: N_{i+1} p’_i :: N_{i+1}

Net N_0 Net N_i, i>0

t’0 t_i t’_i
!c_1  

?c_i p’_0 :: N_1

Fig. 4. Hornet with unbounded marking depth

There is no a-priori bound for the nesting of markings μ ∈ MS (P). E.g. we
may have K = N ∪ {•} as the set of types and Ni = {Ni} for all i ∈ N. The
structure of the Ni is given in Fig. 4. Here we have cd(ci) = • and cd(pi) =
cd(p′i) = Ni+1. Whenever pi is marked, then the transition t′i synchronises via
the channel ci+1 with ti+1 and generates a net-token of type i + 2 on pi+1. Each
firing step increases the number of used net-types as well as the nesting level by
one:

p0[N1,0]→ p′0[N1, p1[N2,0]]→ p′0[N1, p
′
1[N2, p2[N3,0]]]→ · · ·

Hornets Let Γ = (Σ, X, E, Ψ) be a logic-structure over the types k ∈ K. A
Hornet consists of a family of object nets N = (Nk)k∈K where (N , I) has to be
a net-model for the given Γ .

All the arc expressions must be consistent with the typing cd(p) of places:

∀N ∈ N : ∀t ∈ T (N) : ∀x ∈ (P±(t) ∪ C±(t)) : ∂±(t)(x) ∈ T
cd(x)
Σ (X) (4)

Additionally, we distinguish the top-level net of the system Ns ∈ N , called the
system-net, and its initial marking μ0 ∈ MS (P(Ns)).

Definition 2. A Higher Order Reflexive Net (short: Hornet) is a tuple:

OS = (N , I, Ns, μ0)

1. (N , I) is a net-model for Γ , respecting (4).
2. Ns ∈ N is the system-net.
3. μ0 ∈ MS (P(Ns)) is the initial marking of Ns.

A Hornet is called elementary typed, whenever each type denotes one net: ∀k ∈
K : |Nk| = 1. We can enforce this property by restricting the operators for each
k ∈ K to exactly one constant ck: |Σε,k| = 1 and |Σw,k| = 0 for all |w| > 0.
In this case we can assume that in each algebra the set Nk consists of exactly
one object net, i.e. the interpretation of the constant ck. In this case we have a
one-to-one correspondence between types in K and nets in N . For elementary
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typed Hornets we may omit the arc labels in the graphical representation, since
they can be derived from the typing cd . Similarly, the net N in markings [N, μ]
may be omitted.

An Hornet is called elementary communicating, when channels transport black
tokens only: ∀c ∈ C : cd(c) = •. Note, that the systems considered in [4] are
restricted to elementary typed and communicating ones.

2.4 Bindings, Events, and the Firing Rule

Bindings An assignment a = (ak : Xk → Nk)k∈K maps each net variable x ∈ Xk

to its value ak(x) in the algebra. An assignment extends the usual way to terms.
For the arc expressions ∂±

P (t)(p) the assignment evaluates to a concrete object
net: N±

p := a(∂±
P (t)(p)). Analogously for channels c.

Let t ∈ T (N) be a transition of the object net N . Each firing activity modifies
the markings of the involved net-tokens. This is modelled by the set Xμ(t) of
firing variables:

Xμ(t) := {x−
p1

, x+
p2

, y±
u , z±v , x±

N1,N2
, x±

v | p1 ∈ P−(t), p2 ∈ P+(t),
u ∈ C−(t), v ∈ C+(t), N1, N2 ∈ N}

(5)

The variables in
⋃

t∈T Xμ(t) are chosen disjoint to those in
⋃

k∈K Xk. The pair
b = (a, aμ) is called a binding of t, whenever a is an assignment that satisfies the
guard G(t), i.e. E |=a

I G(t) holds. The set of all bindings of t is B(t).
The firing rule defines for each net type N a separate constraint. Therefore,

we identify the set of places and channels that are connected to t in a given
binding b via an arc, whose expression evaluates to N .

P±
N (t, b) = {p ∈ P±(t) | a(∂±

P (t)(p)) = N} (6)
C±

N (t, b) = {c ∈ C±(t) | a(∂±
C (t)(c)) = N} (7)

Events. Events are a ‘tree-like bundle’ of transition instances synchronised via
channels. Like markings events are nested, too and form synchronisation trees.
For each down-link c ∈ C+(t) there must be a synchronisation tree τ(c) that
has to fire synchronously with t. For θ = (t, b)[τ ] we define P±(θ) := P±(t) and
C±(θ) := C±(t).

The set of synchronisation trees is defined by T :=
⋃

N∈N T (N) where
T (N) :=

⋃∞
n=0 Tn(N), Tn :=

⋃
N∈N Tn(N), and:

Tn(N) :=
{

(t, b)[τ ] | t ∈ T (N), b ∈ B(t) ∧ τ : C+(t)→
(⋃

k<n Tk

)
∧ ∀c ∈ C+(t) : C−(τ(c)) = {c}

} (8)

A synchronisation tree (t, b)[τ ] ∈ T not having an up-link is closed and is called
event. The set of all events is:

Θ := {(t, b)[τ ] ∈ T | C−(t) = ∅} (9)
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Firing Rule. The firing rule synchronises all transitions occurring in an event
θ = (t, b)[τ ]. We define the auxiliary relation ·

.

⇒ · recursively over the structure
of a given synchronisation tree. The firing rule is then obtained from this relation
as a restriction to events.

For a given θ = (t, b)[τ ], b = (a, aμ) we define the following abbreviations for
the firing variables in Xμ(t):

μ±
p := aμ(x±

p ), μ±
u := aμ(y±

u ), μ±
v := aμ(z±v ),

α±
N1,N2

:= aμ(x±
N1,N2

), and β±
v := aμ(x±

v )

For each N ∈ N the tree θ = (t, b)[τ ] removes net-tokens [N, μ] of the structure
N from all the places p ∈ P−

N (t) in the preset and from all up-links u ∈ C−
N (t)

(there is at most one up-link). Analogously firing generates net-tokens in the
postset, i.e. on all p ∈ P+

N (t). During the firing the event synchronises with the
sub-synchronisation trees τ(v) for each down-link v ∈ C+(t).

Each channel allows a bi-directional flow of tokens, i.e. there is a marking μ−
u

provided by the channel and consumed by the event and another marking μ+
u

generated during the firing which is sent back over the up-link u.
The concrete constraints on the combination and distribution of the markings

is restricted by the predicates ψ±
1 (θ), ψ2(θ) and ψ3(θ) – cf. (10), (11) and (12)

below.

Definition 3. Let θ = (t, b)[τ ] ∈ T be a synchronisation-tree of the Hornet OS .
We define:

μ±(θ) :=
⊕

N∈N

⊕
u∈C−

N (t,b)

u[N, μ±
u ]⊕

⊕
p∈P±

N (t,b)

p[N, μ±
p ]

Then μ−(θ)
θ

⇒ μ+(θ) holds iff ψ(θ) := ψ−
1 (θ) ∧ ψ+

1 (θ) ∧ ψ2(θ) ∧ ψ3(θ) holds.
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μ−
p

β−
v

μ−
u

μ−
v

ψ2(θ)
β+

v

ψ3(θ)
μ+

p

ψ+
1 (θ)ψ−

1 (θ)

μ+
u

μ+
v

α−
N,N′ α+

N,N′

�
�

�
�

τ (v)

Fig. 5. The flow of tokens for nested events

In the following we define the conditions ψ±
1 (θ), ψ2(θ) and ψ3(θ) for θ =

(t, b)[τ ]. These conditions are illustrated in Figure 5 as a flow of net-tokens.
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– For each N the incoming markings μ−
u and μ−

p are added and distributed
onto the markings α−

N,N ′ , β−
v , and μ−

v . In a symmetric way, the markings
α+

N,N ′ , β+
v , and μ+

v are added and distributed to the outgoing markings μ+
u

and μ+
p . The summation ranges over variables of the same net type N . The

condition ψ±
1 (θ) holds iff:

∀N ∈ N :
⊕

u∈C−
N (t)

μ±
u ⊕

⊕
p∈P±

N (t)

μ±
p =

⊕
N ′∈N

α±
N,N ′ ⊕

⊕
v∈C+

N(t)

μ±
v ⊕

⊕
v∈C+(t),

τ(v)∈T (N)

β±
v (10)

Note that each channel, i.e. u ∈ C−
N (t) or v ∈ C+

N (t), is present in both
equations, since channels transport net-tokens in both directions.

– For eachdown-link v ∈ C+(t) the markingβ−
v enables the sub-synchronisation

τ(v). Over the channel v the net-token [Nv, μ
−
v ] is moved downwards. On firing

τ(v) generates the marking β+
v and from the channel v the net-token [Nv, μ+

v ]
is received:

ψ2(θ) ⇐⇒ ∀v ∈ C+(t) :
(
β−

v ⊕ v
[
Nv, μ

−
v

]) τ(v)
⇒
(
β+

v ⊕ v
[
Nv, μ

+
v

])
with Nv = a(∂+

C (t)(v))
(11)

– Whenever a place p is a place of N1 as well as one of N2, it is possible
to transfer tokens from p in N1 to this p in N2. The multiset α−

N1,N2
∈

MS (P(N1)) contains those tokens, that N1 provides N2 with for a transfer.
Similarly, α+

N2,N1
∈ MS (P(N2)) contains those tokens, that N2 receives from

N1. Both must be equal (which implies that they are multisets over common
places):

ψ3(θ) ⇐⇒ ∀N1, N2 ∈ N : α−
N1,N2

= α+
N2,N1

(12)

An event θ is called transfer-free iff no token transfer between nets – except
the trivial one – takes place:

∀N1, N2 : (α−
N1,N2

	= 0 ∨ α+
N2,N1

	= 0) =⇒ N1 = N2

In this case we have α−
N,N = α+

N,N which will be abbreviated as αN .

The constraint ψ(θ) guarantees that markings are only distributed when not
specified differently by the sub-synchronisations. The constraint also guarantees
that the typing of tokens remains correct.

The firing rule of Hornets is restricted to those synchronisation trees μ
θ
⇒ μ′

where θ ∈ T such that we have a closed synchronisation, i.e. to events: θ ∈ Θ.
In addition we have identities μ

idμ−−→ μ and the firing rule is closed with respect
to addition and context formation. This closure extends the nested multiset
structure of markings onto the set of actions. It is generated very similarly to
the “Petri nets are monoids” approach of [28].

Definition 4. The firing rule θ−→ is the smallest relation closed with respect to
the rules in Table 1.
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Table 1. Deduction rules for the firing rule

generator μ
θ
⇒μ′

μ
θ−→μ′

θ ∈ Θ

identities
μ

idμ−−→μ

μ ∈ MS(P)

multiset addition μ1
θ1−→μ′

1 μ2
θ2−→μ′

2

(μ1⊕μ2)
(θ1⊕θ2)−−−−−→(μ′

1⊕μ′
2)

sequence μ
θ1−→μ′ μ′ θ2−→μ′′

μ
(θ1·θ2)−−−−→μ′′

context μ
θ−→μ′

p[N,μ]
p[N,θ]−−−−→p[N,μ′]

μ,μ′∈MS(P(N)),
p∈P,N∈Ncd(p)

Example: Events without Sub-Synchronisations The firing rule given in Defini-
tion 3 simplifies a lot whenever an event has no sub-synchronisations, i.e. for all
events of the form θ = (t, b)[∅]. Since C+

N (t, b) is empty, the constraint ψ2(θ) is
always true and then we obtain:

∀N ∈ N :
⊕

p∈P±
N (t,b)

μ±
p =

⊕
N ′∈N

α±
N,N ′ ∧ ∀N1, N2 ∈ N : α−

N1,N2
= α+

N1,N2

⊕
N∈N

⊕
p∈P−

N (t,b)

p[N, μ−
p ]

(t,b)[∅]
⇒

⊕
N∈N

⊕
p∈P+

N (t,b)

p[N, μ+
p ]

Example 2. Consider the Hornet of Figure 3 in the marking μ = p[N1, μp] ⊕
q[N2, μq] where μp = v[] and μq = s[]. Since the places of N1 are disjoint with
those in N2 and both are subsets of places in N3, firing may transfer tokens.

The event (t, b)[∅] with a(x) = N1, a(y) = N2 and a(x‖y) = N1‖IN2 = N3 is
enabled:

p[N1, μp] + q[N2, μq]
(t,b)[∅]−−−−→ r[N3, μr)]

The firing rule determines μr, since it holds:

μ−
p = α−

N1,N1
⊕ α−

N1,N2
⊕ α−

N1,N3

μ−
q = α−

N2,N1
⊕ α−

N2,N2
⊕ α−

N2,N3

0 = α−
N3,N1

⊕ α−
N3,N2

⊕ α−
N3,N3

0 = α+
N1,N1

⊕ α+
N1,N2

⊕ α+
N1,N3

0 = α+
N2,N1

⊕ α+
N2,N2

⊕ α+
N2,N3

μ+
r = α+

N3,N1
⊕ α+

N3,N2
⊕ α+

N3,N3

Since N1 and N2 are disjoint, we have α−
N1,N2

= 0 and α−
N2,N1

= 0. Simplifying
further, we obtain:

μ−
p = α−

N1,N3
, μ−

q = α−
N2,N3

, and μ+
r = α−

N1,N3
⊕ α−

N2,N3
= μ−

p ⊕ μ−
q

This generates the expected event:

μ = p[N1, μp]⊕ q[N2, μq]
(t,b)[∅]−−−−→ r[N3, (μp ⊕ μq)]
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The resulting marking of the net-tokens on place r equals the sum of the markings
of the two net-tokens on p and q.

Whenever all object nets are disjoint we have α±
N1,N2

	= 0 only if N1 = N2. In
this case we can simplify the rule further:

∀N ∈ N :
⊕

p∈P−
N (t,b)

μ−
p =

⊕
p∈P+

N (t,b)

μ+
p

⊕
N∈N

⊕
p∈P−

N (t,b)

p[N, μ−
p ]

(t,b)[∅]
⇒

⊕
N∈N

⊕
p∈P+

N (t,b)

p[N, μ+
p ]

The constraint can be read as follows: An event is enabled whenever the sum
of the markings of all the removed net-tokens of type N equals the sum of the
markings of all the generated ones.

Since a transfer of tokens is only possible between the same place in different
nets, we obtain the following sufficient condition.

Lemma 1. Whenever the places of all nets in N are disjoint, then all events
θ ∈ Θ are transfer-free.

Since we are free to name the elements of object nets, we assume that object nets
share places whenever a conversion is explicitly wanted.

Example: Transfer of Net-Tokens over Channels In Hornets net-tokens can be
transferred over channels. We discuss the event θ = (t, bt)[τ ] with τ : c �→ (v, bv)[]
for the example in Figure 6. The current marking is μ = p1[N1,0]⊕ p2[N2, q1[]].

q2::N3

t
!c:N2

p3::N1

p2::N2

x

v
?c::N2

p1::N1

q1::N3 q2::N3

t
!c:N2

p3::N1

p2::N2

x x

r::N2
v

?c::N2

Net N1y

y

p1::N1

Net N2Net N1

Net N2

x
z

z
r::N2

q1::N3

Fig. 6. Transfer of Net-Tokens over Channels

Since all the nets are disjoint, all events are transfer-free and only the multisets
α±

N,N are nonempty and α−
N,N = α+

N,N due to ψ3.

– The sub-synchronisation event (v, bv)[] where bv(z) = N2 is given as:

c[N2, μ
−
c ]

(v,bv)[]
⇒ c[N2, μ

+
c ]⊕ r[N2, μ

+
r ]

where ψ±
1 is

μ−
c = αN2 = μ+

c ⊕ μ+
r (*)
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– For the event θ = (t, bt)[τ ] with bt(x) = N1 and bt(y) = N2 we have:

p1[N1, μ
−
p1

]⊕ p2[N2, μ
−
p2

]
θ
⇒ p3[N1, μ

+
p3

]

To match the actual marking μ we are interested in bindings bt where μ−
p1

= 0
and μ−

p2
= q1[]. Here ψ±

1 is given as:

μ−
p1

= αN1 ⊕ β−
c

μ+
p3

= αN1 ⊕ β+
c

μ−
p2

= αN2 ⊕ μ−
c

0 = αN2 ⊕ μ+
c

which simplifies,
using μ−

p1
= 0 and

μ−
p2

= q1[], further to:

0 = αN1 = β−
c

μ+
p3

= β+
c

q1[] = μ−
c

0 = αN2 = μ+
c

Analogously, ψ2, which is c[N2, μ
−
c ]⊕ β−

c

τ(c)
⇒ c[N2, μ

+
c ]⊕ β+

c , simplifies
to

c[N2, q1[]]
τ(c)
⇒ c[N2,0]⊕ β+

c

Matching this with the sub-synchronisation
(v,bv)[]

⇒ above and using (∗) we
obtain μ+

r = q1[] and μ+
p3

= β+
c = r[N2, q1[]]:

c[N2, q1[]]
(v,bv)[]

⇒ c[N2,0]⊕ r[N2, q1[]]

All in all we obtain the event θ as:

μ = p1[N1,0]⊕ p2[N2, q1[]]
θ
⇒ p3[N1, r[N2, q1[]]] =: μ′

Note, that the firing increases the nesting level of the marking by one. The
resulting marking is shown on the right of Figure 6.

The effect of the transfer is very similar to the in/out primitives of the ambient
calculus [14].

2.5 Expressiveness

Hornets can simulate counter programs and therefore have the power of Turing
machines. This simulation can be given in two different ways: The first variant
uses the algebraic structure to define the data type Nat with the constant zero
and the unary operator suc. For the second variant we encode a counter value n
by an object nets that has a marking of depth n (cf. [4]).

But even if one does not use the algebraic structure and limits the nesting
depth, we obtain that the reachability problem is undecidable [29].

2.6 Reversibility of the Firing Rule

A basic property of Petri nets is that their firing rule is symmetric in time,
i.e. whenever all arcs are reversed then we can fire backwards: This is ex-
pressed by the reversed net N rev = (P, T, ∂−, ∂+) which is obtained from N =
(P, T, ∂+, ∂−) by dualising the effect. Symmetry in firing is expressed as:

m1
t−→
N

m2 ⇐⇒ m2
t−−−→

N rev
m1
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This property of reversibility holds also for object nets. For each object net
N = (P, T, C, ∂−, ∂+, G) the reverse object net is N rev = (P, T, C, ∂+, ∂−, G).

We have defined the firing rule carefully in such a way that reversibility holds
also for object net systems:

Theorem 1. Let OS be a Hornet and θ ∈ Θ an event, then we have the re-
versibility:

μ1
θ−−→

OS
μ2 ⇐⇒ μ2

θ−−−−→
OSrev

μ1

Proof. Observe that reverting all arcs is equivalent to the inversion of the flow in
Figure 5. Formally this is obtained if we consistently change ± into ∓. An easy
induction over the depth of the synchronisation tree shows that the firing con-
straints are reversible, too: If we revert the flow in Figure 5 then ψ−

1 (θ) becomes
ψ+

1 (θ) and vice versa. The constraint ψ3(θ) is self-dual. For synchronisation trees
of depth zero we are done. Whenever we have a tree of depth n + 1, we use that
ψ2(θ) and ψ3(θ) are reversible by induction assumption and we are done, too.

Example 3. Cf. the Hornet in Fig. 3. The reverse of event (t, b)[∅] may fire:

r[N3, (μp ⊕ μq)]
(t,b)[∅]−−−−→
OSrev

p[N1, μp]⊕ q[N2, μq]

Note, that this does not mean that each possible marking μr of the net-token
[N3, μr] on place r may fire in OSrev, since this is possible only if we can decom-
pose μr into two markings: μr = (μp⊕μq). This cannot be done e.g. for μr = i3
since i3 is neither a place in N1 nor in N2.

2.7 Relationships to Other Formalisms

Hornets are expressive enough, so that many other formalisms can be embedded
into them. The most obvious ones are algebraic nets and object nets.

Algebraic Nets [25] can be seen as Hornets that do not use the feature of
nesting and all the net-tokens’ markings are empty. Only the system net itself
is used and the signature of the coloured tokens are directly used for the object
nets. Of course, the algebra A of the algebraic net is not a net-algebra in general,
but at least we always have an net algebra that is isomorphic to A.

It is quite obvious that Hornets extend the object net systems presented in
[4]. We like to point out the main differences:

(a) The object net systems do not use signatures and algebras. In fact there
are no arc expressions at all since for each place the structure of all net-tokens
is equal. Therefore these object nets can be seen as elementary typed Hornets
(i.e. each type denotes only one net).

(b) The second difference is that the channels of object nets are used only for
synchronisation; net-tokens are not transferred over them. Therefore they are
elementary communicating Hornets.

(c) All the object nets are assumed to be disjoint. By Lemma 1 we have no
transfer between net-tokens derived from different object nets. Therefore they
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are transfer-free Hornets. To summarise: Object net systems are Hornets that
are elementary typed, elementary communicating, and transfer-free.

We like to mention that the formalism of elementary object nets (Eos), which
we studied in [29], can be considered as a special object net system where only
the system net is allowed to have non-anonymous tokens. Therefore, the marking
structure is limited to depth of two. Note, transfers between different nets has
been studied for Eos already in [30].

3 The Workflow Management System

For the distributed workflow management systems we have two sorts, one for
the workflows: WFN and one for the the workflow management system agents:
WFMS. Thus K = {WFN, WFMS}.

For WFN we have the binary operators ·, + and ‖ in ΣWFN·WFN,WFN. Their
axioms (associativity, commutativity etc.) are the same as in the box calculus
[31]. We assume a set of names for workflows and for each name n we have the
constant σn ∈ Σλ,WFN.

The kind k = WFN is interpreted by NWFN which is the set of all workflow
nets. More precisely, the variant of workflow nets where the in-place i is pre-
ceded by a start transition with an up-link channel start() and the out-place o
is followed by a stop transition with an up-link channel stop(). With these ad-
ditional transitions the environment of the workflow (here: the WFMS net) can
control the start/stop-activation of each workflow. Each WFN constant σn is
interpreted as one workflow net. The operators ·, + and ‖ are interpreted as
sequential, alternative, and parallel composition, respectively.

For WFMS we have only one constant σwfms ∈ Σλ,WFMS and no operators.
The kind WFMS is interpreted by NWFMS = {NWFMS} where NWFMS is the net
given in Figure 7.

We have the variables A, A1, A2 ∈ XWFMS for WFMS and N, N1, N2 ∈ XWFN
for WFN.

Additionally we use the kinds pair and boolean (using net kinds here as ab-
stract data types) which are interpreted as pairs and booleans with the usual
operators and axioms. We have b as a boolean variable.

The complete WFMS is a tree-structure obtained by nesting net-tokens of the
net NWFMS like in Fig. 2. Each parent WFMS stores its children as tokens on
the place subordinate WF agents. The resulting Hornet provides channels to-
wards the environment: inWF(N), secure_in(N), and enactWF(N). The channel
inWF(N) is used to store a new workflow net N in the WFMS repository while
the channel secure_in(N) is used when N is known already to be well-formed.
The channel enactWF(N) is used to activate an new instance of the workflow N .

The tasks of each node in the WFMS-tree are carried out by WFMS agents
(cf. Fig. 7). Their tasks cover the following aspects:

– Workflow Analysis: ensures well-formed workflows
– Delegation Information Management: responsible for the management of the

delegation information
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Fig. 7. The Workflow Management Agent

– Workflow Repository Management: responsible for the repository of known
and executable workflows

– Workflow Execution: responsible for the execution and the distribution of
sub-workflows in the WFMS

Workflow Analysis. This part receives over the channel inWF(N) a workflow N
as a proposed net. This net is checked whether it is a well-formed workflow net,
i.e. whether its short-cut is bounded and live. These tests are performed as part
of WFMS. Figure 8 shows an appropriate refinement of the transition check.
Each workflow net that passes the check successfully is put on the place atomic
well formed workflows.

Workflow Repository Management. The atomic well formed workflows are handled
in two ways: (a) Each well formed workflow N is propagated downwards via the
channel secure_in(N) to a subordinate A and stored in the place well formed
workflows. The transition compose takes two nets N1 and N2 and stores their
composition, i.e. either (N1 ·N2) or (N1+N2), or (N1‖N2) – which is correct since
well-formedness is preserved by composition. (b) Then insert checks whether N
is locally executable (computed by the function b = is_local(N)) and stores the
pair [N, b] in the local workflow repository. The transition compose2 stores the
composition of N1 and N2 and additionally evaluates whether they are locally
executable, which is true if both are.

If N is locally executable, i.e. we have a token [N, true] in the local workflow
repository, then this information is propagated upwards along the WMFS-tree
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Fig. 8. Refinement: Analysis of WF-Nets

via the up-link upd(N) of transition propagate basic delegation info upwards. The
corresponding down-link is in the Delegation Information Management part.

Transition “in doubt: delegate” is an example for the reorganisation of the local
workflow repository. If [N, b] is stored there and N is decomposable into N1 and
N2 such that N1 is in the log then N is replaced by N1. (This transition is just
for illustrational purposes. Of course the log file has to be analysed in more detail
to conclude which reorganisations might be useful.).

Delegation Information Management. The transition update delegation info re-
ceives from one of its subordinates A the information, that A is capable of enact-
ing N (either directly or indirectly by delegation) over the down-link A:upd(N).
This fact is stored as a pair [N, A] on delegation info. If N1 is delegatable to
A and N2 to A, so is the composition of N1 and N2 – which is expressed by
compose3. The delegation info [N, A] is also propagated upwards via the up-link
upd(N) and eventually reaches the root of the WFMS. This corresponds to the
fact that the root is capable of enacting N if some of its descendant is.

Workflow Execution. The Workflow Execution part is responsible for the work-
flow enactment. Each WFMS receives the request to enact N via the channel
enactWF(N), called either from the environment at the root or from the father
at its children. The request is stored on wf instance.

There are two possibilities to enact N : either (a) directly via start execution
or (b) via transition delegate and distribute. (a) A workflow is locally executable
if we have the token [N, true] in the local workflow repository. The transition
start execution activates the execution via the channel N :start() and puts N on
running workflows. When N terminates, the channel N :stop() becomes activated
and stop execution may fire generating some log information.

(b) For a workflow that is in the local workflow repository but is not locally
executable we have the token [N, false ]. In this case we try to decompose N
into N1 and N2 and check whether we know by our delegation info if A1 is
capable of enacting N1 (and A2 for N2) and then transition delegate and distribute
enacts both sub-workflows via the down-links A1:enact(N1) and A2:enact(N2).
This distribution continues recursively downwards. Due to the mechanism that
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manages the delegation info we can be sure that some descendant will finally
execute the sub-workflows.

4 Conclusion

In this contribution we have introduced an algebraic extension of object nets.
These nets are called Higher Order Recursive Nets, or short: Hornets. Hornets
are a combination of algebraic nets and object nets. The algebraic structure
introduced here refers to the topology of net-tokens. This is formalised by a
signature and many sorted logic that is interpreted by net-algebras.

Compared to object net systems studied in previous works Hornets do not
only provide signatures and algebras, but also channels that can transfer net-
tokens over the hierarchy; and it is possible that an event can transfer tokens
between net-tokens derived from different object nets.

Our main intention for the algebraic extension was to modify the structure
of net-tokens at run-time, e.g. by sequential, parallel, or alternative composition
(or decomposition) through pattern matching.

If we tailor this construct to the domain of workflow management, our ap-
proach reveals an interesting connection to the formalism of adaptive workflow
nets. Compared to Hornets the origin of adaptive workflow nets has been quite
the other way round: It started with WF-nets and extended them with com-
position and hierarchy, while Hornets started as a nets within nets formalism,
extended by composition and specialised to workflows.

To demonstrate the elegance of the Hornet formalism we presented a simple
Hornet model of a distributed workflow management system. This system for-
malised a network of workflow management agents. These agents cooperatively
execute workflow nets (part: workflow execution).

If one agent is not able to execute a workflow itself it decomposes it into
simpler parts (exploiting the algebraic net structure) and delegates these parts
over the network to other agents. The agents take care that they delegate only
if it is guaranteed that their delegation partners are able to execute their parts
– either themselves or by further delegation. The necessary data is managed by
the delegation information management part of the model. The agent network
also monitors the execution processes, i.e. the firing of their net-tokens, in or-
der to reorganise the workflow nets structure. This is handled by the workflow
repository management part. Another specialty is that the analysis whether a
workflow net is well-formed can be performed inside the formalism itself, as done
in the workflow analysis part.

The resulting prototype model of a WFMS is very lean which demonstrates
the modelling power of Hornets.
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Abstract. Web Service orchestrations are compositions of different Web
Services to form a new service. The services called during the orches-
tration guarantee a given Quality of Service (QoS) to the orchestrator,
usually in the form of contracts. These contracts can then be used by
the orchestrator to deduce the contract it can offer to its own clients,
by performing contract composition. An implicit monotonicity assump-
tion in contract based QoS management is: “the better the component
services perform, the better the orchestration’s performance will be”.

In some orchestrations, however, monotonicity can be violated, i.e.,
the performance of the orchestration improves when the performance of
a component service degrades. This is highly undesirable since it can
render the process of contract composition inconsistent.

In this paper we formally define monotonicity for orchestrations mod-
elled by Colored Occurrence Nets (CO-nets) and we characterize the
classes of monotonic orchestrations. Contracts can be formulated as hard,
possibly nondeterministic, guarantees, or alternatively as probabilistic
guarantees. Our work covers both cases. We show that few orchestrations
are indeed monotonic, mostly because of complex interactions between
control, data, and timing. We also provide user guidelines to get rid of
non-monotonicity when designing orchestrations.

1 Introduction

Web Services and their compositions are being widely used to build distributed
applications over the web. Web Service orchestrations are compositions of Web
Services to form an aggregate, and usually more complex, Web Service. Differ-
ent formalisms have been proposed for orchestrating Web Services, the most
popular amongst these is the Business Process Execution Language (BPEL) [3].
Another such formalism is Orc [7], a small and elegant language equipped with
extensive semantics work [6,12]. Various other models have been used either to
directly model orchestrations, or as a semantic domain for some formalisms; see
for example the Petri Nets based WorkFlow Nets [13].

Though the main focus of the existing models is to capture the functional as-
pects of service and their compositions, the non-functional - also called Quality
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of Service (QoS) - aspects also need to be considered. The QoS of a service is
characterised by different metrics - called QoS parameters - , e.g., latency, avail-
ability, throughput, security, etc. QoS management is usually based on the notion
of a Service Level Agreement (SLA) or contract, which specifies constraints on
the QoS parameters of the service. A typical service contract could be : for 95%
of the requests, the response time will be less than 5ms. The WSLA Standard [5]
is one such proposition for specifying QoS through SLAs.

In service orchestrations, contracts are agreements made between the orches-
trator and the different services called by the orchestrator (also called sub-
contractors) which formalise the duties and responsibilities for each of them.
The orchestrator can then compose all the contracts with its sub-contractors, to
help it propose a contract to its own clients. This process is called contract com-
position. In [10] we introduced the notion of probabilistic contracts to formalise
the QoS behaviour of services — the work of [10] focused on latency. We showed
how these contracts can be composed to get the orchestration’s contract. We
also showed that there is room for overbooking the orchestrator’s resources.

Contract based QoS management in orchestrations relies on the implicit as-
sumption that if each of the sub-contractor meets its contract’s objectives, then
so does the orchestrator. Vice-versa, a sub-contractor breaching its contract can
cause the orchestrator to breach the contract with its clients. Thus the whole
philosophy behind contracts is that the better the sub-contractors behave, the
better the overall orchestration will meet its contract. In fact, the authors them-
selves have developed their past work [10] based on this credo . . . until they
discovered that this implicit assumption could easily be falsified. Why so?

S

N T

M

Fig. 1. A non-monotonic orchestration

As an example, consider the orchestration modeled by the Petri net in
Figure 1. Services M and N are first called in parallel. If M responds first,
service S is next called and the response of N is ignored. If N responds first,
T is called and not S. Let δi denote the response time of site i. Assume the
following delay behaviour: δM < δN and δS � δT . Since M responds faster,
the end-to-end orchestration delay is d0 = δM + δS . Now let service M behaves
slightly ’badly’, i.e delay δM increases and becomes slightly greater than δN .
Now service T is called and the new orchestration delay is d1 = δN + δT . But
since δS � δT , d1 is in fact lower than d0. This orchestration is non-monotonic
since increasing the latency of one of its components can decrease the end-to-end
latency of the orchestration. So, what is the nature of the difficulty?
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“Simple” composed Web services are such that QoS aspects do not interfere
with functional aspects and do not interfere with each other. Their flow of con-
trol is typically rigid and does not involve if-then-else branches. For such cases,
latencies will compose gently and will not cause pathologies as shown above.
However, as evidenced by the rich constructions offered by BPEL, orchestra-
tions and choreographies can have branching based on data and QoS values,
various kinds of exceptions, and timers. With such flexibility, non-monotonicity
such as that exhibited by the example of Figure 1 can very easily occur.

Lack of monotonicity impairs using contracts for the compositional manage-
ment of QoS. Surprisingly enough, this fact does not seem to have been noticed
in the literature.

In this paper we classify orchestrations based on their monotonic character-
istics. We focus on latency, although other aspects of QoS are discussed as well.
Section 2 informally introduces the notion of monotonicity with examples. In
Section 3 we recall the definition of Petri nets and introduce our model, Orch-
Net. A formal definition of monotonicity and a characterisation of monotonic
orchestrations is then given in Section 4. Section 5 extends the notion of mono-
tonicity to nets whose transitions’ delays are probability distributions. Section
6 gives a few ideas to avoid the problem of non-monotonicity and Section 7
concludes. Proofs of non-trivial results are deferred to the appendix.

2 Examples for Non-monotonic Orchestrations

In this section we look at sample orchestrations and illustrate the concept of
(non) monotonicity using them.

The Travel Planner orchestration: The orchestration to the left in Figure 2 is
inspired by [14]. A client calls the Travel Planner orchestration with a city he

attractions

HotelA

search
CarRent

BikeRent

d > �

d ≤ �

attractions

HotelA

search

BikeRent

Fig. 2. The Travel Planner orchestration (left); a simplified version (right)

plans to visit along with the dates of his visit. The orchestration looks for a
hotel in that city (service HotelA) for those dates and parallelly looks for sites
of attractions (service Search Attractions) in the city. Once both these tasks are
completed, it calculates the maximal distance ’d’ between the hotel found and
the attraction sites. If this distance is less than a certain threshold �, a bike
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rental service is called to get quotes for a rental bike. If distance d exceeds �,
then Car Rent is called to get quotes for a rental car instead. The orchestration
to the right in Figure 2 is a simplified version of travel planner, in which it is
assumed that all returns from HotelA are closer than � to the attraction site.

This Travel Planner orchestration is monotonic: Increasing (or decreasing) the
response time of any of its component services does result in a corresponding
increase (or decrease) in the end to end latency. Monotonicity holds in this case
because increasing (or decreasing) the response time of the services called first
does not affect the value returned by these services.

The Travel Planner orchestration – A Modified Version. The presence of time-
outs and data dependant choices in orchestrations can however complicate things.
Figure 3 (left) is a modified version of the Travel planner example where quotes
for hotels are obtained from two services, HotelA and HotelB. Such an extension
is quite natural in orchestrations, where a pool of services with similar functional-
ity are queried with the same request. The orchestration selects the best response
obtained from the pool, or combines their responses. In this modified Travel Plan-
ner example, of the two hotel offers received, the cheaper one is taken. Calls to the
hotels are guarded by timers: if only one hotel has replied before a timeout, the
response of the other is ignored. The rest of the example is unchanged.

HotelA

Timer

attractions
search

CarRent

BikeRent

d > �

d ≤ �

Timer

HotelB

attractions
search

Timer

HotelB

HotelA

Timer

BikeRent

CarRent

Fig. 3. The Modified Travel Planner orchestration. By convention, each Timer has
priority over the HotelX service it is in conflict with. Left (a), right (b).

Now look at the following scenario: HotelA returns propositions that are usu-
ally cheaper than those of HotelB and so HotelA’s propositions are chosen. Let
the distance d in this case be greater than � and so service Car Rent is called.
If the performance of HotelA now degrades such that it doesn’t reply before a
timeout, only HotelB ’s response is taken. Say that the maximum distance d in
this case is less than � and so service Bike Rent is called. Now if Car Rent takes
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a significantly greater time to respond compared to Bike Rent, it is possible that
the overall latency is shorter in the second case. That is, a degradation in the
performance of a service (HotelA here) leads to an improvement in the overall
performance of the orchestration.

A solution to this is to make the choice in the Travel Planner orchestration
dependent on the orchestration’s client. For e.g, if we alter this orchestration
such that the client specifies in the start of the orchestration whether he wants
to rent a car or a bike, the choice is resolved by the client. The exact execution
path of the orchestration is known at the start, on receiving the client’s request.
This execution path is a partial order, which is monotonic. We could then have
input-dependent contracts, e.g., promising a certain response time for a given
set of input parameters and promising another response behaviour for a different
set of inputs.

The orchestration to the right in Figure 3 assumes that HotelA’s propositions
are all close to the attraction sites, whereas those of HotelB are all far from
them. The net on the left can thus be simplified to the guard-free net of the
right.

The examples in figure 3 are non-monotonic due to the presence of choice
followed by paths with different performances. In the sequel, we formally char-
acterize the classes of orchestrations that are monotonic, giving both necessary
and sufficient conditions for it. The formal material for this is introduced next.

3 The Orchestration Model: OrchNets

In this section we present the high level Petri Nets model for orchestrations that
we use for our studies, which we call OrchNets. OrchNets are a special form of
colored occurrence nets (CO-nets).

We have chosen this mathematical model for the following reasons. From the
semantic studies performed for BPEL [9,2] and Orc [6,12], we know that we
need to support in an elegant and succinct way the following features: concur-
rency, rich control patterns including preemption, representing data values, and
for some cases even recursion. The first three requirements suggest using colored
Petri nets. The last requirement suggests considering extensions of Petri nets
with dynamicity. However, in our study we will not be interested in the spec-
ification of orchestrations, but rather in their executions. Occurrence nets are
concurrent models of executions of Petri nets. As such, they encompass orches-
trations involving recursion at no additional cost. The executions of Workflow
Nets [13] are also CO-nets.

3.1 Background on Petri Nets and Occurrence Nets

A Petri net is a tuple N = (P , T ,F , M0), where: P is a set of places, T is a set
of transitions such that P ∩ T = ∅, F ⊆ (P × T ) ∪ (T ×P) is the flow relation,
M0 : P → N is the initial marking.

The elements in P ∪ T are called the nodes of N and will be denoted by
variables for e.g, x. For a node x ∈ P ∪ T , we call •x = {y | (y, x) ∈ F} the
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preset of x, and x• = {y | (x, y) ∈ F} the postset of x. A marking of the net
is a multiset M of places, i.e a map from P to N. A transition t is enabled in
marking M if ∀p ∈ •t, M(p) > 0. This enabled transition can fire resulting in a
new marking M − •t+ t• denoted by M [t〉M ′. A marking M is reachable if there
exists a sequence of transitions t0, t1 . . . tn such that M0[t0〉M1[t1〉 . . . [tn〉M . A
net is safe if for all reachable markings M , M(P) ⊆ {0, 1}.

For a net N = (P , T ,F , M0) the causality relation < is the transitive closure
of the flow relation F . The reflexive closure of < is denoted by ≤. For a node
x ∈ P ∪T , the set of causes of x is �x
 = {y ∈ P ∪T | y ≤ x}. Two nodes x and
y are in conflict - denoted by x#y - if there exist distinct transitions t, t′ ∈ T ,
such that t ≤ x, t′ ≤ y and •t∩•t′ �= ∅. Nodes x and y are said to be concurrent -
written as x‖y - if neither (x ≤ y) nor (y ≤ x) nor (x#y). A set of concurrent
places P ⊆ P is called a co-set. A cut is a maximal (for set inclusion) co-set.

A configuration of N is a subnet κ of nodes of N such that:

1. κ is causally closed, i.e, if x < x′ and x′ ∈ κ then x ∈ κ
2. κ is conflict-free, i.e, for all nodes x, x′ ∈ κ,¬(x#x′)

For convenience, we will assume that the maximal nodes (w.r.t the < relation)
in a configuration are places.

A safe net N = (P , T ,F , M0) is called an occurrence net (O-net) iff

1. ¬(x#x) for every x ∈ P ∪ T .
2. ≤ is a partial order and �t
 is finite for any t ∈ T .
3. For each place p ∈ P , |•p| ≤ 1.
4. M0 = {p ∈ P|•p = ∅}, i.e the initial marking is the set of minimal places

with respect to ≤.

Occurrence nets are a good model for representing the possible executions of a
concurrent system. Unfoldings of a safe Petri net, which collect all the possible
executions of the net, are occurrence nets. Unfoldings are defined as follows. For
N and N ′ two safe nets, a map ϕ : P∪T �→ P ′∪T ′ is called a morphism of N to
N ′ if: 1/ ϕ(P) ⊆ P ′ and ϕ(T ) ⊆ T ′, and 2/ for every t ∈ T and t′ = ϕ(t) ∈ T ′,
•t ∪ {t} ∪ t• is in bijection with •t′ ∪ {t′} ∪ t′• through ϕ. A branching process
of a safe net N is a pair (U, ϕ) where U is an occurrence net and ϕ : U �→ N is
a morphism such that 1/ ϕ establishes a bijection between M0 and the minimal
places of U , and 2/ •t = •t′ and ϕ(t) = ϕ(t′) together imply t = t′. Branching
processes are partially ordered (up to isomorphism) by the prefix order and there
exists a unique maximal branching process called the unfolding of N and denoted
by UN . The configurations of UN capture the executions of N , seen as partial
orders of events. For a configuration κ of an occurrence net N , the future of κ
in N , denoted by Nκ is a sub-net of N with the nodes:

Nκ = {x ∈ N \ κ | ∀x′ ∈ κ,¬(x#x′)} ∪ max(κ)

where max(κ) is the set of maximal nodes of κ (which are all places by our
restriction on configurations).
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3.2 Orchestration Model: OrchNets

We now present the orchestration model that we use for our studies, which we
call OrchNets. OrchNets are occurrence nets in which

tokens are equipped with a special attribute, referred
to as a color, and consisting of a pair (value, date). (1)

m n

t

E =

⎧⎨⎩ case d < d′ then d + τs

case d > d′ then d′ + τt

otherwise nondeterministic.

d1

d2
τn

τ = 0

τtτs

τ = 0

τm

d0 + τm d1 + τn

d′ = max{d2, d1 + τn}d = max{d2, d0 + τm}

s

d0

Fig. 4. An OrchNet showing the dates of its tokens. The delay of a transition is shown
next to it.

Figure 4 shows an OrchNet with its dates. Each place is labeled with a date
which is the date of the token on reaching that place. Transitions are labeled with
latencies. The tokens in the three minimal places are given initial dates (here,
d0, d1, d2). The four named transitions m, n, s and t are labeled with latencies
τm, τn, τs and τt respectively, and the two shaded transitions have zero latency.

The presence of dates in tokens alters the firing semantics. A transition t is
enabled at a date when all places in its preset have tokens. and if its guard
evaluates to true (absence of a guard is interpreted as the guard true). Once
enabled, transition t takes τt additional time to fire. For example, the shaded
transition in the left has all its input tokens at max{d2, d0+τm} and so it fires at
max{d2, d0 +τm}+0 since it has zero latency. If a transition fires at date d, then
the tokens in its postset have the date d. This is shown in the figure, e.g., on the
place following the left shaded transition, which has date max{d2, d0 + τm}.

When transitions are in conflict, (e.g., the two shaded transitions in Figure 4),
the transition that actually occurs is governed by a race policy [4,8]. If a set of
enabled transitions are in conflict, the one with smallest date of occurrence will
fire, preempting the other transitions in conflict with it. In Figure 4, the left
or the right shaded transition will fire depending on whether d < d′ or d > d′

respectively, with a nondeterministic choice if d = d′. This results in selecting
the left most or right most continuation (firing s or t) accordingly. The resulting
overall latency E of the orchestration is shown at the bottom of the figure.
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In addition to dates, tokens in OrchNets can have data attributes, which we
call values. We have not shown this in Figure 4, in order to keep it simple. Values
of tokens in the preset of a transition t can be combined by a value function φt

attached to t. The resulting value is taken by the token in the postset of t. At
this point we are ready to provide the formal definition of OrchNets :

Definition 1 (OrchNet). An OrchNet is a tuple N = (N, Φ, T, Tinit) consist-
ing of

– An occurrence net N with token attributes c = (value, date).
– A family Φ = (φt)t∈T of value functions, whose inputs are the values of the

transition’s input tokens.
– A family T = (τt)t∈T of latency functions, whose inputs are the values of

the transition’s input tokens.
– A family Tinit = (τp)p∈min(P) of initial date functions for the minimal places

of N .

In general, value, latency, and initial date functions can be nondeterministic. We
introduce a global, invisible, daemon variable ω that resolves this nondetermin-
ism and we denote by Ω its domain. That is, for a given value ω of this daemon,
φt(ω), τt(ω), and τp(ω) are all deterministic functions of their respective inputs.

3.3 The Semantics of OrchNets

We now explain how the presence of dates attached to tokens affects the se-
mantics of OrchNets by adopting the so-called race policy. We first describe
how a transition t modifies the attributes of tokens. Let the preset of t have n
places whose tokens have (value, date) attributes (v1, d1) . . . (vn, dn). Then all
the tokens in the postset of t have the pair (vt, dt) of value and date, where:

vt = φt(v1 . . . vn)
dt = max{d1 . . . dn} + τt(v1 . . . vn) (2)

The race policy for firing transitions is as follows. In any given marking M , let
T be the set of transitions that are possibly enabled, i.e. ∀t ∈ T , •t is marked
in M and the guard of t (if any) is true. Then the transition t that is actually
enabled, (which really fires) is given by:

t = argmin
t∈T

dt,

where: arg min
x∈X

f(x) = x∗ ∈ X s.t. ∀x′ ∈ X, f(x∗) ≤ f(x′).

If two possibly enabled transitions have the same dt, then the choice of the tran-
sition that actually fires is non-deterministic. The race policy has the effect of fil-
tering out configurations of OrchNets as explained now. Let N = (N, Φ, T, Tinit)
be a finite OrchNet. For a value ω ∈ Ω for the daemon we can calculate the
following dates for every transition t and place p of N :

dp(ω) = τp(ω) if p is minimal, ds(ω) where s = •p otherwise
dt(ω) = max{dx(ω) | x ∈ •t} + τt(ω)(v1, . . . vn) (3)
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where v1, . . . vn are the value components of the tokens in •t as in equation (2).
If κ is a configuration of N , the future N κ is the OrchNet (Nκ, ΦNκ , TNκ , T ′

init)
where ΦNκ and TNκ are the restrictions of Φ and T respectively, to the transitions
of Nκ. T ′

init is the family derived from N according to (3): for any minimal place
p of Nκ, the initialisation function is given by τ ′

p(ω) = dp(ω). For a net N with
the set of transitions TN , set Tmin(N) = {t ∈ TN | ••t ∩ TN = ∅}. Let min(PN)
denote the minimal places of N . Now define κ0(ω) = min(PN ) and inductively,

for m > 0 : κm(ω) = κm−1(ω) ∪ {tm} ∪ •tm ∪ tm
• (4)

where tm = arg min
t∈Tmin(Nκm−1(ω))

dt(ω)

Since net N is finite, the above inductive definition terminates in finitely many
steps when Nκm(ω) = ∅. Let M(ω) be this number of steps. We thus have

∅ = κ0 ⊂ κ1(ω) · · · ⊂ κM(ω)(ω)

κM(ω)(ω) is a maximal configuration of N that can actually occur according to
the race policy, for a given ω ∈ Ω; such actually occurring configurations are
generically denoted by

κ(N , ω)

For B, a prefix-closed subset of the nodes of N define

Eω(B,N ) = max{dx(ω) | x ∈ B} (5)

If B is a configuration, then Eω(B,N ) is the time taken for B to execute (latency
of B). The latency of the OrchNet N = (N, Φ, T, Tinit) for a given ω is

Eω(N ) = Eω(κ(N , ω),N ) (6)

Our design choices for the semantics of OrchNets were inspired by the application
domain, i.e. compositions of web services. They reflect the following facts:

– Since we focus on latency, {value, date} is the only color needed.
– Orchestrations rarely involve decisions on actions based on absolute dates.

Timeouts are an exception, but these can be modelled explicitly, without
using dates in guards of transitions. This justifies the fact that guards only
have token values as inputs, and not their dates.

– The time needed to perform transitions does not depend on the tuple of
dates (d1 . . . dn) when input tokens were created, but it can depend on the
data (v1 . . . vn) and computation φ performed on these. This justifies our
restriction for output arc expressions.

If it is still wished that control explicitly depends on dates, then dates must be
measured and can then be stored as part of the value v.

4 Characterizing Monotonicity

In this article, we are interested in the total time taken to execute a web-service
orchestration. As a consequence, we will consider only orchestrations that ter-
minate in a finite time, i.e, only a finite number of values can be returned.
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4.1 Defining and Characterizing Monotonicity

To formalize monotonicity we must specify how latencies and initial dates can
vary. As an example, we may want to constrain some pair of transitions to have
identical latencies. This can be stated by specifying a legal set of families of
latency functions. For example, this legal set may accept any family T = (τt)t∈T
such that two given transitions t and t′ possess equal latencies: ∀ω ⇒ τt(ω) =
τt′(ω). The same technique can be used for initial dates. Thus, the flexibility
in setting latencies or initial dates can be formalized under the notion of pre-
OrchNet we introduce next.

Definition 2 (pre-OrchNet). Call pre-OrchNet a tuple N = (N, Φ, T, Tinit),
where N and Φ are as before, and T and Tinit are sets of families T of latency
functions and of families Tinit of initial date functions. Write N ∈ N if N =
(N, Φ, T, Tinit) for some T ∈ T and Tinit ∈ Tinit.

For two families T and T ′ of latency functions, write

T ≥ T ′

to mean that ∀ω ∈ Ω, ∀t ∈ T =⇒ τt(ω) ≥ τ ′
t(ω), and similarly for Tinit ≥ T ′

init.
For N ,N ′ ∈ N, write

N ≥ N ′ and E(N ) ≥ E(N ′)

to mean that T ≥ T ′ and Tinit ≥ T ′
init both hold, and Eω(N ) ≥ Eω(N ′) holds

for every ω, respectively.

Definition 3 (monotonicity). pre-OrchNet N = (N, Φ, T, Tinit) is called
monotonic if, for any two N ,N ′ ∈ N, such that N ≥ N ′, we have E(N ) ≥
E(N ′).

Theorem 1 (a global necessary and sufficient condition)

1. The following implies the monotonicity of pre-OrchNet N = (N, Φ, T, Tinit):

∀N ∈ N, ∀ω ∈ Ω, ∀κ ∈ V (N) =⇒ Eω(κ,N ) ≥ Eω(κ(N , ω),N ) (7)

where V (N) denotes the set of all maximal configurations of net N and
κ(N , ω) is the maximal configuration of N that actually occurs under the
daemon value ω.

2. Conversely, assume that:
(a) Condition (7) is violated, and
(b) for any two OrchNets N and N ′ s.t. N ∈ N, then N ′ ≥ N ⇒ N ′ ∈ N.
Then N = (N, Φ, T, Tinit) is not monotonic.

Statement 2 expresses that Condition (7) is also necessary provided that it is legal
to increase at will latencies or initial dates. Observe that violating Condition (7)
does not by itself cause non-monotonicity; as a counterexample, consider a case
where T is a singleton for which (7) is violated—it is nevertheless monotonic.
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The orchestration in the left of Figure 2 satisfies Theorem 1 trivially, since for
any given ω, there is only one possible maximal configuration. This is because
the value of d is fixed for a ω and only one branch of the two rental services
is enabled. The orchestration in the left of Figure 3 does not fulfill Theorem 1.
Consider an ω for which the actually occurring configuration κ has both the
responses of HotelA and HotelB. Say that d > � for κ and Car Rent is called.
Now consider another configuration κ′ (under the same ω), got by replacing
HotelA by Timer. In this case, the response of Hotel B is used to calculate d,
which may be different from that in configuration κ. This d could be less than �
causing Bike Rent to be called. In this case, the latencies of Car Rent and Bike
Rent can be set such that Eω(κ,N ) > Eω(κ′,N ), violating Theorem 1.

4.2 A Structural Condition for the Monotonicity of Workflow Nets

Workflow nets [13] were proposed as a simple model for workflows. These are
Petri nets, with a special minimal place i and a special maximal place o. We
consider the class of workflow nets that are 1-safe and which have no loops.
Further, we require them to be sound [13]. A Workflow net W is sound iff:

1. For every marking M reachable from the initial place i, there is a firing
sequence leading to the final place o.

2. If a marking M marks the final place o, then no other place can in W can
be marked in M

3. There are no dead transitions in W . Starting from the initial place, it is
always possible to fire any transition of W .

Workflow nets will be generically denoted by W . We can equip workflow nets
with the same attributes as occurrence nets, this yields pre-WFnets W =
(W, Φ, T, Tinit). Referring to the end of Section 3.1, unfolding W yields an oc-
currence net that we denote by NW with associated morphism ϕW : NW �→ W .
Here the morphism ϕW maps the two c transitions (and the place in its preset
and postset) in the net on the right to the single c transition (and its preset and
postset) in the net on the left. Observe that W and NW possess identical sets
of minimal places. Morphism ϕW induces a pre-OrchNet

NW = (NW , ΦW , TW , Tinit)

by attaching to each transition t of NW the value and latency functions attached
to ϕW (t) in W.

We shall use the results of the previous section in order to characterize those
pre-WFnets whose unfoldings give monotonic pre-OrchNets. Our characteriza-
tion will be essentially structural in that it does not involve any constraint on
latency functions. Under this restricted discipline, the simple structural condi-
tions we shall formulate will also be almost necessary. For this, we recall a notion
of cluster [8] on nets. For a net N , a cluster is a (non-empty) minimal set c of
places and transitions of N such that ∀t ∈ c, •t ⊆ c and ∀p ∈ c, p• ⊆ c.
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Theorem 2 (Sufficient Condition). Let W be a WFnet and NW be its un-
folding. A sufficient condition for the pre-OrchNet NW = (NW , ΦW , TW , Tinit)
to be monotonic is that every cluster c satisfies the following condition:

∀t1, t2 ∈ c, t1 �= t2 =⇒ t1
• = t2

• (8)

Recall that the sufficient condition for monotonicity stated in Theorem 1 is
“almost necessary” in that, if enough flexibility exist in setting latencies and
initial dates, then it is actually necessary. The same holds for the sufficient
condition stated in Theorem 2 if the workflow net is assumed to be live.

Theorem 3 (Necessary Condition). Suppose that the workflow net W is
sound. Assume that W ∈ W and W ′ ≥ W implies W ′ ∈ W, meaning that there
is enough flexibility in setting latencies and initial dates. In addition, assume
that there is at least one W∗ ∈ W such that there is an daemon value ω∗ for
which the latencies of all the transitions are finite. Then the sufficient condition
of Theorem 2 is also necessary for monotonicity.

Observe that the orchestration in the right of figure 2 satisfies Theorem 2,
whereas the orchestration in the right of figure 3 does not.

5 Probabilistic Monotonicity

So far we have considered the case where latencies of transitions are nonde-
terministic. In a previous work [10,11], on the basis of experiments performed
on real Web services, we have advocated the use of probability distributions
when modeling the response time of a Web service. Can we adapt our theory to
encompass probabilistic latencies?

5.1 Probabilistic Setting, First Attempt

In Definitions 1 and 2, latency and initial date functions were considered non-
deterministic. The first idea is to let them become random instead. This leads
to the following straightforward modification of definitions 1 and 2:

Definition 4 (probabilistic OrchNet and pre-OrchNet, 1). Call proba-
bilistic OrchNet a tuple N = (N, Φ, T, Tinit) where Φ = (φt)t∈T , T = (τt)t∈T ,
and Tinit = (τp)p∈min(P), are independent families of random value functions,
latency functions, and initial date functions, respectively.

Call probabilistic pre-OrchNet a tuple N = (N, Φ, T, Tinit), where N and Φ are
as before, and T and Tinit are sets of families T of random latency functions
and of families Tinit of random initial date functions. Write N ∈ N if N =
(N, Φ, T, Tinit) for some T ∈ T and Tinit ∈ Tinit.

We now equip random latencies and initial dates with a probabilistic ordering.
If τ is a random latency function, its distribution function is defined by

F (x) = P(τ ≤ x)
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where x ∈ R+. Consider the following ordering: random latencies τ and τ ′ satisfy

τ ≥s τ ′ if F (x) ≤ F ′(x) holds ∀x ∈ R+, (9)

where F and F ′ are the distribution functions of τ and τ ′, respectively—with
corresponding definition for the probabilistic ordering on initial date functions.
Order (9) is classical in probability theory, where it is referred to as stochastic
dominance or stochastic ordering among random variables [1].

Using order (9), for two families T and T ′ of random latency functions, write

T ≥s T ′

to mean that ∀t ∈ T =⇒ τt ≥s τ ′
t , and similarly for Tinit ≥s T ′

init. For
N ,N ′ ∈ N, write

N ≥s N ′

if T ≥s T ′ and Tinit ≥s T ′
init both hold. Finally, the latency Eω(N ) of OrchNet

N is itself seen as a random variable that we denote by E(N ), by removing
symbol ω. This allows us to define, for any two N ,N ′ ∈ N,

E(N ) ≥s E(N ′)

by requiring that random variables E(N ) and E(N ′) are stochastically ordered.

Definition 5 (probabilistic monotonicity, 1). Probabilistic pre-OrchNet N

is called probabilistically monotonic if, for any two N ,N ′ ∈ N, such that N ≥s

N ′, we have E(N ) ≥s E(N ′).

It is a classical result on stochastic ordering that, if (X1, . . . , Xn) and (Y1, . . . , Yn)
are independent families of real-valued random variables such that Xi ≥s Yi

for every 1 ≤ i ≤ n, then, for any increasing function f : Rn → R, then
f(X1, . . . , Xn) ≥s f(Y1, . . . , Yn). Applying this yields that nondeterministic
monotonicity in the sense of definition 3 implies probabilistic monotonicity in
the sense of to definition 5. Nothing can be said, however, regarding the converse.

In order to derive results in the opposite direction, we shall establish a tighter
link between this probabilistic framework and the nondeterministic framework
of sections 3 and 4.

5.2 Probabilistic Setting: Second Attempt

Let us restart from the nondeterministic setting of sections 3 and 4. Focus on def-
inition 1 of OrchNets. Equipping the set Ω of all possible values for the daemon
with a probability P yields an alternative way to make the latencies and initial
dates random. This suggests the following alternative setting for probabilistic
monotonicity.

Definition 6 (probabilistic OrchNet and pre-OrchNet, 2). Call proba-
bilistic OrchNet a pair (N ,P), where N is an OrchNet according to definition 1
and P is a probability over the domain Ω of all values for the daemon.
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Call probabilistic pre-OrchNet a pair (N,P), where N is a pre-OrchNet ac-
cording to definition 2 and P is a probability over the domain Ω of all values for
the daemon.

How can we relate the two definitions 4 and 6? Consider the following assump-
tion, which will be in force in the sequel:

Assumption 1. For any N ∈ N, τt and τp form an independent family of
random variables, for t ranging over the set of all transitions and p ranging over
the set of all minimal places of the underlying net.

Let us now start from definition 4. For t a generic transition, let (Ωt,Pt) be
the set of possible experiments together with associated probability, for random
latency τt; and similarly for (Ωp,Pp) and τp. Thanks to assumption 1, setting

Ω =
(∏

t

Ωt

)
×
(∏

p

Ωp

)
and P =

(∏
t

Pt

)
×
(∏

p

Pp

)
, (10)

yields the entities of definition 6. Can we use this correspondence to further relate
probabilistic monotonicity to the notion of monotonicity of sections 3 and 4? In
the nondeterministic framework of section 4, definition 2, we said that

τ ≥ τ ′ if τ(ω) ≥ τ ′(ω) holds ∀ω ∈ Ω, (11)

Clearly, if two random latencies τ and τ ′ satisfy condition (11), then they also
satisfy condition (9). That is, ordering (11) is stronger than stochastic ordering
(9). Unfortunately, the converse is not true in general. For example, condition (9)
may hold while τ and τ ′ are two independent random variables, which prevents
(11) from being satisfied. Nevertheless, the following routine result holds:

Theorem 4. If condition (9) holds for the two distribution functions F and F ′,
then there exists a probability space Ω, a probability P over Ω, and two real
valued random variables τ̂ and τ̂ ′ over Ω, such that:

1. τ̂ and τ̂ ′ possess F and F ′ as respective distribution functions, and
2. condition (11) is satisfied by the pair (τ̂ , τ̂ ′) with probability 1.

Proof. Take Ω = [0, 1] and P the Lebesgue measure. Then, taking, τ̂ (ω) =
inf{x ∈ R+|F (x) ≥ ω} and τ̂ ′(ω) = inf{x ∈ R+|F ′(x) ≥ ω} yields the claim.

Theorem 4 allows reducing the stochastic comparison of real valued random
variables to their ordinary comparison as functions defined over the same set of
experiments endowed with a same probability. This applies in particular to each
random latency function and each random initial date function, when considered
in isolation. Thus, when performing construction (10) for two OrchNets N and
N ′, we can take the same pair (Ωt,Pt) to represent both τt and τ ′

t , and similarly
for τp and τ ′

p. Applying (10) implies that both N and N ′ are represented using
the same pair (Ω,P). This leads naturally to definition 6.
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In addition, applying theorem 4 to each transition t and each minimal place p
yields that stochastic ordering N ≥s N ′ reduces to ordinary ordering N ≥ N ′.
Observe that this trick does not apply to the overall latencies E(N ) and E(N ′) of
the two OrchNets; the reason for this is that the space of experiments for these
two random variables is already fixed (it is Ω) and cannot further be played
with as theorem 4 requires. Thus we can reformulate probabilistic monotonicity
as follows—compare with definition 5:

Definition 7 (probabilistic monotonicity, 2). Probabilistic pre-OrchNet
(N,P) is called probabilistically monotonic if, for any two N ,N ′ ∈ N, such
that N ≥ N ′, we have E(N ) ≥s E(N ′).

Note the careful use of ≥ and ≥s . The following two results establish a relation
between probabilistic monotonicity and monotonicity:

Theorem 5. If pre-OrchNet N is monotonic, then, probabilistic pre-OrchNet
(N,P) is probabilistically monotonic for any probability P over the set Ω.

This result was already obtained in the first probabilistic setting; it is here a
direct consequence of the fact that τ ≥ τ ′ implies τ ≥s τ ′ if τ and τ ′ are two
random variables defined over the same probability space. The following converse
result completes the landscape and is much less straightforward. It assumes that
it is legal to increase at will latencies or initial dates, see theorem 1:

Theorem 6. Assume condition 2b of theorem 1 is satisfied. Then, if probabilis-
tic pre-OrchNet (N,P) is probabilistically monotonic, then it is also monotonic
with P-probability 1.

6 Getting Rid of Non-monotonicity

Avoiding Non-Monotonicity. We suggest a few ways in which non-monotonic
orchestrations can be made monotonic. These might serve as guidelines to the
designer of an orchestration, to avoid building non-monotonic orchestrations.

1. Eliminate Choices. We saw that choices in the execution flow can create non-
monotonicity. So if possible, choices in the execution flow should be avoided
while designing orchestrations. This seems very restrictive but is not totally
unrealistic. For example, in the Travel Planner orchestration of figure 3, if
the designer can find a rental service for both, cars and bikes, then the two
mutually exclusive rental calls can be replaced by a call to that single rental
service. This makes the execution flow an event graph and the Travel Planner
orchestration monotonic.

2. Balancing out performance of mutually exclusive branches. One way to make
an orchestration “more monotonic” is to ensure that all its mutually exclusive
branches have similar response times. For e.g., in the Travel Planner example
of figure 3, if the two exclusive services Bike Rent and Car Rent have similar
response times, the orchestration is nearly monotonic.
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3. Externalising Choices. Choices are of course integral to many execution flows
and sometimes simply cannot be removed. A possible way out in this case is
to externalise the choice and make them client dependent. This solution has
already been discussed in the modified Travel Planner example of Section 2.

4. If none of the above works, then a brute force alternative consists in perform-
ing the following. Replace the orchestration latency Eω(N ) defined in (6) by
the following pessimistic bound for it (see Theorem 1 for the notations):

Fω(N ) = max
{
Eω(κ,N ) | κ ∈ V (N)

}
(12)

Then for any net N , and any two OrchNets N and N ′ over N , ∀ω

Fω(N ) ≥ Eω(N ) (13)
N ≥ N ′ ⇒ Fω(N ) ≥ Fω(N ′) (14)

holds. Therefore, using the pessimistic bound Fω(N ) instead of tight esti-
mate Eω(N ) when building the orchestration’s contract with its customer,
is safe in that: 1) by (14), monotonicity of Fω(N ) with respect to the under-
lying OrchNet is guaranteed, and 2) by (13), the orchestration will meet its
contract if its sub-contractors do so. In turn, this way of composing contracts
is pessimistic and should therefore be avoided whenever possible.

Where does monotonicity play a role in the orchestration’s life cycle? We use
contracts to abstract the behaviour of the services involved in an orchestration.
The orchestration, trusting these contracts, composes them to derive an estimate
of its own performance, from which a contract between the orchestration and its
customers can be established. Since this relies on trust between the orchestration
and its sub-contractors, these contracts will have to be monitored at run-time to
make sure that the sub-contractors deliver the promised performance. In case of
violation, counter-measures like reconfiguring the orchestration might be taken.
The orchestration’s life cycle thus consists of the following phases [11]:

1. At design time, establish QoS contracts with the customer by composing
QoS contracts from the called services; tune the monitoring algorithms ac-
cordingly; design reconfiguration strategy.

2. At run time, run the orchestration; in parallel, monitor the called services for
possible QoS contract violation; whenever needed, perform reconfiguration.

Monotonicity plays a critical role at design time. The above pessimistic approach
can be used as a backup solution if monotonicity is not satisfied. Monotonicity
is however, not an issue at run time and the orchestration can be taken as such,
with no modification. Monitoring of the called services remains unchanged too.

7 Conclusion

This paper is a contribution to the fundamentals of contract based QoS man-
agement of Web services orchestrations. QoS contracts implicitly assume mono-
tonicity w.r.t. QoS parameters. We focus on one representative QoS parameter,
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namely response time. We have shown that monotonicity is easily violated in re-
alistic cases. We have formalized monotonicity and have provided necessary and
sufficient conditions for it. As we have seen, QoS can be very often traded for
Quality of Data: poor quality responses to queries (including exceptions or in-
valid responses) can often be got much faster. This reveals that QoS parameters
should not be considered separately, in isolation. We have provided guidelines
for getting rid of non-monotonicity.

We see one relevant extension of this work: Advanced orchestration languages
like Orc [7] offer a sophisticated form of preemption that are modelled by contex-
tual nets (with read arcs). Our mathematical results do not consider nets with
read arcs. Extending our results to this case would be interesting and useful.
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A Collecting Proofs

A.1 Proof of Theorem 1

Proof. We first prove Statement 1. Let N ′ ∈ N be such that N ′ ≥ N . We have:

Eω(κ(N ′, ω),N ′) ≥ Eω(κ(N ′, ω),N ) ≥ Eω(κ(N , ω),N )

where the first inequality follows from the fact that κ(N ′, ω) is a conflict free
partial order and N ′ ≥ N , and the second inequality follows from (7) applied
with κ = κ(N ′, ω). This proves Statement 1.

We prove statement 2 by contradiction. Let (N , ω, κ†) be a triple violating
Condition (7), in that

κ† cannot occur, but Eω(κ†,N ) < Eω(κ(N , ω),N ) nevertheless holds.

Now consider the OrchNet net N ′ = (N, Φ, T ′, Tinit) where the family T ′ is the
same as T except that in ω, ∀t /∈ κ†, τ ′

t(ω) > Eω(κ†,N ). Clearly N ′ ≥ N . But
using construction (4), it is easy to verify that κ(N ′, ω) = κ† and thus

Eω(κ(N ′, ω),N ′) = Eω(κ†,N ′) = Eω(κ†,N ) < Eω(κ(N , ω),N ),

which violates monotonicity.

A.2 Proof of Theorem 2

Proof. Let ϕW be the net morphism mapping NW onto W and let N ∈ N be
any OrchNet. We prove that condition 1 of Theorem 1 holds for N by induction
on the number of transitions in the maximal configuration κ(N , ω) that actually
occurs. The base case is when it has only one transition. Clearly this transi-
tion has the least latency and any other maximal configuration has a greater
execution time.

Induction Hypothesis. Condition 1 of Theorem 1 holds for any maximal occurring
configuration with m − 1 transitions (m > 1). Formally, for a pre-OrchNet N =
(N, Φ, T, Tinit): ∀N ∈ N, ∀ω ∈ Ω, ∀κ ∈ V (N),

Eω(κ,N ) ≥ Eω(κ(N , ω),N ) (15)

holds if |{t ∈ κ(N , ω)}| ≤ m − 1.

Induction Argument. Consider the OrchNetN , where the actually occurring con-
figuration κ(N , ω) has m transitions. κ′ is any other maximal configuration of N .
If the transition t in κ(N , ω) with minimal date dt also occurs in κ′ then compar-
ing execution times of κ(N , ω) and κ′ reduces to comparing Eω(κ(N , ω)\{t},N t)
and Eω(κ′ \ {t},N t). Since κ(N , ω) \ {t} is the actually occurring configuration
in the future N t of transition t, using our induction hypothesis, we have

Eω(κ(N , ω) \ {t},N t) ≤ Eω(κ′ \ {t},N t)
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and so
Eω(κ(N , ω),N ) ≤ Eω(κ′,N )

If t /∈ κ′ for some κ′, then there must exist another transition t′ such that
•t ∩ •t′ �= ∅. By the definition of clusters, ϕW (t) and ϕW (t′) must belong to
the same cluster c. Hence, t• = t′• follows from condition 8 of Theorem 2. The
futures N t and N t′ thus have identical sets of transitions: they only differ in the
initial marking of their places. If Tinit and T ′

init are the initial marking of these
places, Tinit ≤ T ′

init (since dt ≤ dt′ , t• has dates lesser than t′•). Hence

Eω(κ(N , ω),N ) = Eω(κ(N , ω) \ {t},N t) (16)

and

Eω(κ′,N ) = Eω(κ′ \ {t′},N t′) ≥ Eω(κ′ \ {t′},N t) (17)

The inequality holds since N t′ ≥ N t. The induction hypothesis on (16) and (17)
gives Eω(κ(N , ω),N ) ≤ Eω(κ′,N ). This proves the theorem.

A.3 Proof of Theorem 3

Proof. We will show that when condition (8) of Theorem 2 is not satisfied by
W , the Orchnets in its induced preOrchNet NW can violate condition (7) of
Theorem 1, the necessary condition for monotonicity.

Let cW be any cluster in W that violates the condition 8 of Theorem 2.
Consider the unfolding of W , NW and the associated morphism ϕ : NW �→ W
as introduced before. Since W is sound, all transitions in cW are reachable from
the initial place i and so there is a cluster c in NW such that ϕ(c) = cW .
There are transitions t1, t2 ∈ c such that •t1 ∩ •t2 �= ∅, •ϕ(t1) ∩ •ϕ(t2) �= ∅ and
ϕ(t1)

• �= ϕ(t2)
•. Call [t] = �t
 \ {t} and define K = [t1] ∪ [t2]. We consider the

following two cases:

K is a configuration. If so, consider the OrchNet N ∗ ∈ NW obtained when
transitions of NW (and so W ) have latencies as that in W∗. So for the daemon
value ω∗, the quantity Eω∗(K,N ∗) is some finite value n∗. Now, configuration K
can actually occur in a OrchNet N , such that N > N ∗, where N is obtained as
follows (τ and τ∗ denote the latencies of transitions in N and N ∗ respectively):
∀t ∈ K, t′ ∈ NW s.t. •t∩•t′ �= ∅, set τt′(ω∗) = n∗+1 and keep the other latencies
unchanged. In this case, for the daemon value ω∗, the latencies of all transitions
of N (and so its overall execution time) is finite. Denote by NK the future of
N once configuration K has actually occurred. Both t1 and t2 are minimal and
enabled in NK .

Since ϕ(t1)
• �= ϕ(t2)

•, without loss of generality, we assume that there is a
place p ∈ t1

• such that ϕ(p) ∈ ϕ(t1)
• but ϕ(p) /∈ ϕ(t2)

•. Let t∗ be a transition
in NK such that t∗ ∈ p•. Such a transition must exist since p can not be a
maximal place: ϕ(p) can not be a maximal place in W which has a unique
maximal place. Now consider the Orchnet N ′ > N obtained as follows: τ ′

t1(ω
∗) =
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τt1(ω∗), τ ′
t2(ω

∗) = τt1(ω∗) + 1 and for all other t ∈ c, τ ′
t(ω

∗) = τ ′
t2(ω

∗) + 1. Set
τ ′
t∗(ω

∗) = ∞ and for all other transitions of N ′, the delays are the same as that
in N and thus are finite for ω∗.

t1 has the minimal delay among all transitions in c, and t∗ is in the future
of t1. So the actually occurring configuration Eω∗(κ(N ′, ω∗),N ′) has an infinite
delay. However any maximal configuration κ which does not include t1 (for eg,
when t2 fires instead of t1) will have a finite delay. For such κ we thus have
Eω∗(κ(N ′, ω∗),N ′) > Eω∗(κ,N ′) and so N ′ violates the condition (7) of Theo-
rem 1.

K is not a configuration. If so, there exist transitions t ∈ [t1]\ [t2], t′ ∈ [t2]\ [t1]
such that •t∩ •t′ �= ∅, •ϕ(t)∩ •ϕ(t′) �= ∅ and ϕ(t)• �= ϕ(t′)•. The final condition
holds since t2 and t1 are not in the causal future of t and t′ respectively. Thus t
and t′ belong to the same cluster, which violates condition 8 of Theorem 2 and we
can apply the same reasoning as in the beginning of the proof. Since [t] is finite
for any transition t, we will eventually end up with K being a configuration.

A.4 Proof of Theorem 6

Proof. The proof is by contradiction. Assume that N is not monotonic with
positive P-probability, i.e., :

there exists a pair (N ,N ′) of OrchNets such that
N ≥ N ′ and P {ω ∈ Ω | Eω(N ) < Eω(N ′)} > 0.

(18)

To prove the theorem it is enough to prove that (18) implies:

there exists No,N ′
o ∈ N such that No ≥ N ′

o,
but E(No) ≥s E(N ′

o) does not hold (19)

To this end, set No = N and define N ′
o as follows, where Ωo denotes the set

{ω ∈ Ω | Eω(N ) < Eω(N ′)}:

N ′
o(ω) = if ω ∈ Ωo then N ′(ω) else N (ω)

Note that No ≥ N ′
o by construction. Also, N ′

o ≥ N ′, whence N ′
o ∈ N since

condition 2b of theorem 1 is satisfied. On the other hand, we have Eω(No) <
Eω(N ′

o) for ω ∈ Ωo, and Eω(No) = Eω(N ′
o) for ω �∈ Ωo. By (18), we have

P(Ωo) > 0. Consequently, we get:

[ ∀ω ∈ Ω ⇒ Eω(No) ≤ Eω(N ′
o) ] and [P {ω ∈ Ω | Eω(No) < Eω(N ′

o)} > 0 ]

which implies that E(No) ≥s E(N ′
o) does not hold.
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Abstract. In the world of Service Oriented Architectures, one deals
with networks of cooperating components. A component offers services;
to deliver a service it possibly needs services of other components, thus
forming a service tree. This tree is built dynamically and not known
beforehand. It is hard to verify the behavior of a service tree by using
standard verification techniques, because these techniques typically as-
sume a static flattened model. In this paper we model a component by
an open Petri net. We give a sufficient condition for proper completion
(called soundness) that requires only pairwise checks of the service com-
positions. We also provide a correctness-by-construction approach for
building services trees.

1 Introduction

According to the paradigm of Service Oriented Architectures (SOA) a system
can be seen as a (possibly open) network of cooperating components based on
asynchronous communication [3, 8, 18]. A component offers services to a client
which may be a component itself. Each component may play two roles: service
provider and service client. One of the interesting features of SOA is the dynamic
binding of services: in order to provide a service S for its client, a component may
invoke a service S′ of another component during the execution, while it might be
not known at the beginning of this execution that the service S′ was needed and
which component would be selected to deliver it. In this way, the components
form a tree, called a service tree, to deliver a certain service. However, this tree
is not known to any party and for privacy and security reasons we often do not
want the tree to be known to anybody. This makes the verification of behavioral
correctness very hard.

Correctness requirements concern both dataflow and control flow. In this pa-
per, we focus on the control flow aspect, i.e., on the orchestration. There are
several approaches to define the orchestration process. BPEL (Business process
Execution Language) is one of the main languages to specify the orchestration
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Fig. 1. The composition of three composable OWNs

at the implementation level [9]. We use here Petri nets for modeling the orches-
tration of components in order to analyse the behavioral properties.

Due to dynamic binding, we never know how a service tree will look like,
and therefore, we are not able to check a complete service tree beforehand.
Thus, if we want ensure proper termination we need a verification method that
only considers pairwise compositions of components. Therefore, we propose a
correctness-by-construction method that guarantees that if each pair of con-
nected components satisfies some correctness condition, then the whole service
tree will be sound.

We model services and service trees as open Petri nets (OPNs), i.e., a Petri
net with a set of interface (input or output) places [5, 15, 18]. An OPN has one
initial marking and one final marking, which is usually a deadlock. A composition
of two OPNs is an OPN again; the corresponding interface places of the two
nets are fused and they are not a part of the interface of the resulting net
anymore. Sometimes, we consider a more restrictive class of OPNs, called open
workflow nets (OWNs) which have one initial place, one final place, and an
arbitrary number of interface places. Both OPNs and OWNs can be seen as a
generalization of the classical workflow nets [1, 10].

The behavioral correctness criterion we consider is the weak termination prop-
erty of services, which can be seen as generalization of the soundness concept of
workflow nets [1], and therefore we also call it soundness. A stand-alone OPN
is called sound if for each marking reachable from the initial marking the final
marking is reachable, discarding the interface places.

We illustrate the need for compositional soundness conditions for service trees
on the example shown in Figure 1. Here, we have three components, A, B, and
C. The composition of A with B is sound, as well as the composition of B with
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C. However, the composition of the three has a deadlock, since this composition
introduces a cyclic dependency implying a deadlock.

We will consider two approaches: a posteriori approach and a constructive
approach. In the posteriori approach for each pair of composed components in
a service tree we have to verify the correctness condition by checking a specific
simulation relation. In the constructive approach we apply stepwise refinement.
We start with a service tree of two composed components, which are known
to satisfy the correctness condition. Then we select two so-called synchronized
places and we refine them simultaneously by correctly composed components.
We can also extend the tree by adding new leaves to it at arbitrary nodes.

In Section 2 we give basic definitions. In Section 3 we introduce the basic
concepts of OPNs. In Section 4 we define the composition operator for OPNs and
give sufficient conditions for soundness of service trees. In Section 5 we introduce
the stepwise refinement approach in general and in Section 6 we present a correct-
by-construction method for service trees. Finally, we conclude with related and
future work in Section 7.

2 Preliminaries

Let S be a (finite) set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}.
We use |S| for the number of elements in S. Two sets U and V are disjoint if
U ∩ V = ∅. A bag m over S is a function m : S → IN . We denote e.g. the bag m
with an element a occurring once, b occurring three times and c occurring twice
by m = [a, b3, c2]. The set of all bags over S is denoted by INS . Sets can be seen
as a special kind of bag were all elements occur only once. We use + and − for
the sum and difference of two bags, and =, <, >, ≤, ≥ for the comparison of two
bags, which are defined in a standard way. The projection of a bag m ∈ INS on
elements of a set U ⊆ S, is denoted by m|U , and is defined by m|U (u) = m(u)
for all u ∈ U and m|U (u) = 0 for all u ∈ S \ U . Furthermore, if for some
n ∈ IN , disjoint sets Ui ⊆ S with 1 ≤ i ≤ n exist such that S =

⋃n
i=1 Ui, then

m =
∑n

i=1 m|Ui
.

A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If n > 0
and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉, and σi for σ(i).
The length of a sequence is denoted by |σ|. The sequence of length 0 is called
the empty sequence, and is denoted by ε. The set of all finite sequences over S
is denoted by S∗. Let ν, γ ∈ S∗ be two sequences. Concatenation, denoted by
σ = ν; γ is defined as σ : {1, . . . , |ν| + |γ|} → S, such that for 1 ≤ i ≤ |ν|:
σ(i) = ν(i), and for |ν| + 1 ≤ i ≤ |ν| + |γ|: σ(i) = γ(i − |ν|). A projection of a
sequence σ ∈ S∗ on elements of a set U ⊆ S (i.e. eliminating the elements from
S \ U) is denoted as σ|U .

If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A, B, C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.

Definition 1 (Labeled transition system). A labeled transition system
(LTS) is a 5-tuple (S,A,−→, si, sf ) where
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– S is a set of states;
– A is a set of actions;
– −→ ⊆ S × (A ∪ {τ}) × S is a transition relation, where τ �∈ A is the silent

action [10].
– si ∈ S is the initial state;
– sf ∈ S is the final state.

For m, m′ ∈ S and a ∈ A, we write L : m
a−→ m′ if and only if (m, a, m′) ∈−→.

If the context is clear, we omit the L. A state m ∈ S is called a deadlock if no
action a ∈ A∪{τ} and state m′ ∈ S exist such that m

a−→ m′. We often require
that sf is a deadlock.

We define =⇒ as the smallest relation such that m =⇒ m′ if m = m′ ∨
∃m′′ ∈ S : m =⇒ m′′ τ−→ m′. m =⇒ m′ is sometimes also referred to as m

τ=⇒
m′, i.e., a path of zero or more silent actions [10]. We define a=⇒ as the smallest
relation such that m

a=⇒ m′ if ∃m′′ ∈ S : m =⇒ m′′ a−→ m′.

Definition 2 (Hiding). Let L = (S,A,−→, si, sf ) be an LTS. Let H ⊆ A. We
define the operation τH on an LTS by τH(L) = (S,A\H,−→′, si, sf ), where for
m, m′ ∈ S and a ∈ A we have (m, a, m′) ∈−→′ if and only if (m, a, m′) ∈−→ and
a �∈ H and (m, τ, m′) ∈−→′ if and only if (m, τ, m′) ∈−→ or (m, a, m′) ∈−→
and a ∈ H.

We define simulation and bisimulation relations on labeled transition systems.

Definition 3 (Simulation, bisimulation). Let L = (S,A,−→, si, sf ) and
L′ = (S′,A,−→′, s′i, s

′
f) be two LTSs. The relation R ⊆ S × S′ is a simula-

tion, denoted by L �R L′, if:

1. si R s′i and sf R s′f ;

2. ∀m, m′ ∈ S, m̄ ∈ S′, a ∈ A∪{τ} : (m a−→ m′∧m R m̄) ⇒ (∃m̄′ ∈ S′ : m̄
a=⇒

′

m̄′ ∧ m′ R m̄′).
3. ∀m′ ∈ S′ : (sf R m′) ⇒ (m′ =⇒ s′f).

If both R and R−1 are simulations, R is a bisimulation.

Note that L �R L′ means that L′ can mimic L, i.e., L′ is able to simulate L.

Petri nets. A Petri net is a 3-tuple N = (P, T, F ) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F ⊆ (P × T ) ∪ (T × P )
is a flow relation. The elements from the set P ∪ T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions
as squares. For each element (n1, n2) ∈ F , an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F ) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T ) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F ) be a Petri net. Given a node
n ∈ (P ∪ T ), we define its preset N• n = {n′ | (n′, n) ∈ F}, and its postset
n

N•= {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to sets. Given
a set U ⊆ (P ∪ T ), N• U =

⋃
n∈U

N• n and U
N•=
⋃

n∈U n
N• . If the context is clear,

we omit the N in the superscript.
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Markings are states of a net. A marking m of a Petri net N = (P, T, F ) is
defined as a bag over P . A pair (N, m) is called a marked Petri net. A transition
t ∈ T is enabled in a marking m ∈ INP if and only if •t ≤ m. An enabled
transition may fire. A transition firing results in a new marking m′ with m′ =
m − •t + t•, denoted by N : m

t→ m′. If the context is clear, we omit the N .
A sequence σ = 〈t1, . . . , tn〉 is a firing sequence of (N, m) if and only if there
exist markings m1, . . . , mn ∈ INP such that N : m

t1→ m1
t2→ . . . mn−1

tn→ mn.
We write N : m

∗→ m′ if there exists a (possibly empty) firing sequence σ ∈ T ∗

such that N : m
σ→ m′. The set of all reachable markings of a marked Petri net

(N, m) is denoted by R(N, m) = {m′ ∈ INP | N : m
∗→ m′}.

A place p ∈ P is safe if for any marking m′ ∈ R(N, m), holds that m′(p) ≤ 1.
A marked Petri net is called safe if all its places are safe. The marking m is a
deadlock if there exists no transition t ∈ T such that •t ≤ m.

Definition 4 (Workflow net, soundness). A Petri net N = (P, T, F ) is
called a workflow net if (1) there exists exactly one place i ∈ P , called the initial
place, such that •i = ∅, (2) there exists exactly one place, called the final place,
f ∈ P such that f• = ∅, and (3) all nodes are on a path from i to f . N is sound
if [f ] ∈ R(N, m) for any marking m ∈ R(N, [i]).

3 Open Petri Nets

The SOA paradigm builds upon asynchronous communications: a component
sends messages to communicate with other components. In this approach, we
model a component by a Petri net. Communication is done through an interface,
modeled by input and output places. We call such a Petri net with an interface
an open Petri net (OPN) [5, 15, 18].

Definition 5 (Open Petri net). An open Petri net (OPN) is a 7-tuple
(P, I, O, T, F, i, f) where

– (P ∪ I ∪ O, T, F ) is a Petri net;
– P is a set of internal places;
– I is a set of input places, and •I = ∅;
– O is a set of output places, and O• = ∅;
– P , I, O, and T are pairwise disjoint;
– i ∈ INP is the initial marking,
– f ∈ INP is the final marking, and
– f is a deadlock.

We call the set I ∪O the interface places of the OPN. Two OPNs N and M are
called disjoint if PN , PM , IN , IM , ON , OM , TN and TM are pairwise disjoint.

Note that the initial and final markings cannot mark interface places. Although
we allow interface places to have more than one connected transition, it is always
possible to transform the nets to equivalent ones with exactly one connected
transition for interface places (cf. [4]).
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In order to inspect and refer to the internal working of a component, ignoring
the communication aspects, we introduce the notion of a skeleton. The skeleton
is the Petri net of the component without any interface places.

Definition 6 (Skeleton). Let N be an OPN. The skeleton of N is defined as
the Petri net S(N) = (PN , TN , F ) with F = FN ∩ ((PN ×TN)∪ (TN ×PN )). We
use R(N) as a shorthand notation for R(S(N), iN ).

The semantics of an OPN is given by its LTS.

Definition 7 (LTS of an OPN). Let N be an OPN. Its labeled transition
system is defined as: T (N) = (R(N), T,−→, iN , fN) with (m, t, m′) ∈−→ if and
only if S(N) : m

t→ m′.

We focus on services that try to reach a goal. We therefore introduce the notion
of an open workflow net, i.e., an open Petri net such that the skeleton is a
workflow, and only the initial place is marked in the initial marking.

Definition 8 (Open workflow net). Let N be an OPN. It is called an open
workflow net (OWN) iff its skeleton is a workflow net with initial place i ∈ P
and final place f ∈ P , such that •i = ∅, f• = ∅, iN = [i], fN = [f ].

Note that in an OWN N , the final marking fN is always a deadlock. All transi-
tions and internal places lie on a path from i to f , since the skeleton is a workflow,
whereas interface places cannot not have this property. We would like services
to be sound, i.e., always have the possibility to terminate properly. As the open
Petri net has interface places, termination depends on the communication part-
ners of the net. Still, we want to express that at least the service disregarding
the communication is modelled in a proper way. Therefore, we define soundness
on the skeleton of the open Petri net.

Definition 9 (Soundness of OPNs). An OPN N is called sound if for any
marking m ∈ R(N) we have S(N) : m

∗→ fN .

Note that if an OPN N is sound and fN is a nonempty deadlock, then the
initial marking iN cannot be the empty marking, since if f is reachable from the
empty marking, also 2 · f is reachable, but f cannot be reached from 2 · f thus
invalidating soundness.

4 Composition

Two open Petri nets can be composed by fusing interface places with the same
name.

Definition 10 (Composition). Let A and B be two OPNs. Their composition
is an OPN A ⊕ B = (P, I, O, T, F, i, f) defined by:
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– P = PA ∪ PB ∪ (IA ∩ OB) ∪ (IB ∩ OA);
– I = (IA \ OB) ∪ (IB \ OA);
– O = (OA \ IB) ∪ (OB \ IA);
– T = TA ∪ TB;
– F = FA ∪ FB ;
– i = iA + iB;
– f = fA + fB.

Two OPNs are composable if they do not share any internal places, input places
and output places. Note that an input place of one net can be an output place
of another net.

Definition 11 (Composable). Two OPNs A and B are composable if and
only if (PA ∪ IA ∪ OA ∪ TA) ∩ (PB ∪ IB ∪ OB ∪ TB) = (IA ∩ OB) ∪ (OA ∩ IB).

The composition operator is commutative and associative for composable OPNs.

Lemma 12 (Commutativity and associativity of composition). Let A,
B and C be three pairwise composable OPNs. Then A ⊕ B = B ⊕ A and (A ⊕
B) ⊕ C = A⊕ (B ⊕ C). In addition, if O = (∅, ∅, ∅, ∅, ∅, ∅, ∅), we have A ⊕ O =
O ⊕ A = A.

Proof. Follows directly from the definition of ⊕. ��

Using the composition notion, we define a projection relation and simulation
based on this relation.

Definition 13 (Projection relation, simulation property). Let A and B
be two composable OPNs. The projection relation R ⊆ INPA ×INPA⊕B is defined
as R = {(m|PA

, m) | m ∈ R(A⊕B)}. We use the shorthand notation A⊕B � A
for τTB (T (A ⊕ B)) �R T (A). If A ⊕ B � A, we say that the composition has
the simulation property.

Note that the notation A ⊕ B � A states that the projection relation is a
simulation. If A ⊕ B � A, then A ⊕ B is able to mimic the behavior of A after
abstracting away the transitions in B.

The next lemma shows that for a sequence σ in A ⊕ B and a sequence σ̃
in B ⊕ C, such that their projections on B are identical, a composed sequence
σ exists, such that the projection of σ on A and B is identical to σ, and the
projection of σ on B and C is identical to σ̃.

Lemma 14 (Combining firing sequences). Let A, B and C be three pairwise
composable OPNs and let A and C have disjoint interface places. Let m ∈ R(A⊕
B ⊕ C), σ ∈ (TA ∪ TB)∗, σ̃ ∈ (TB ∪ TC)∗, m′ ∈ R(A ⊕ B) and m′′ ∈ R(B ⊕ C)
such that A ⊕ B : m|PA⊕B

σ−→ m′, B ⊕ C : m|PB⊕C

σ̃−→ m′′ and σ|TB
= σ̃|TB

.
Then there exist a firing sequence σ ∈ (TA∪TB∪TC)∗ such that σ|TA∪TB

= σ and

σ|TB∪TC
= σ̃, and a marking m ∈ R(A⊕B⊕C) such that A⊕B⊕C : m

σ−→ m,
m|PA⊕B

= m′ and m|PB⊕C
= m′′.
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Proof. We prove this lemma by induction on the length of σ|TB
. If σ|TB

= ε,
then σ can execute independently of σ̃, since transitions in A and C have no
places in common. Hence, the statement holds for length 0.

Let it hold for length n and we consider m ∈ R(A⊕B⊕C), σ ∈ (TA∪TB)∗, σ̃ ∈
(TB∪TC)∗, m′ ∈ R(A⊕B) and m′′ ∈ R(B⊕C) such that A⊕B : m|PA⊕B

σ−→ m′,

B ⊕ C : m|PB⊕C

σ̃−→ m′′, with σ|TB
= σ̃|TB

= σ′; b for some b ∈ TB and |σ′| = n.
Then σ = σ1; b; σ2 for some σ1 ∈ (TA ∪ TB)∗, σ2 ∈ (TA)∗ and σ̃ = σ̃1; b; σ̃2
for some σ̃1 ∈ (TB ∪ TC)∗ and σ̃2 ∈ (TC)∗ and σ1|TB

= σ̃1|TB
= σ′|TB

. By the
induction hypothesis there exists σ1 such that σ1|TA∪TB

= σ1 and σ1|TB∪TC
= σ̃1

and a marking m1 such that A ⊕ B ⊕ C : m
σ1−→ m1, m1|PA⊕B

= m′
1 and

m1|PB⊕C
= m′′

1 .

We have A ⊕ B ⊕ C : m1
b−→ m2, since b is enabled both in A ⊕ B and in

B⊕C. In the resulting marking m2, σ2 and σ̃2 are independently enabled, since
A and C have no common places. Hence, we can apply the induction hypothesis
on σ2 and σ̃2 which gives a firing sequence σ2 such that σ2|TA∪TB

= σ2 and

σ2|TB∪TC
= σ̃2 and a marking m such that A⊕B⊕C : m2

σ2−→ m, m|PA⊕B
= m′

and m|PB⊕C
= m′′. Hence, σ = σ1; b; σ2 has the desired property. ��

Lemma 15. Let A and B be two composable OPNs. Let m, m′ ∈ R(A⊕B) and

σ ∈ (TA ∪ TB)∗ such that A ⊕ B : m
σ→ m′. Then A : m|PA

σ|TA−→ m′|PA
and

B : m|PB

σ|TB−→ m′|PB
.

Since a service tree is not known in advance, we need a condition such that
if any two composed services satisfy this condition, the whole service tree is
sound. The example in Figure 1 shows that soundness itself is not the right
property, since although both A ⊕ B and B ⊕ C are sound, the composition of
the three, A ⊕ B ⊕ C is not. The reason is that A ⊕ B and B ⊕ C are acyclic
but A ⊕ B ⊕ C has a cycle which causes a deadlock. This example shows how
tricky the asynchronous composition of OPNs is. We use Lemma 14 to come to
a sufficient condition for soundness of the composition of three OPNs, by only
pairwise checking of the connections between the OPNs.

If a component B is composed with A, and this composition is sound, compos-
ing it with C should not destroy soundness. This can occur e.g. if C blocks some
execution path of B. We will show that a sufficient condition for the soundness
of A⊕ B ⊕ C is: C should not block any execution of B that starts in the initial
marking and ends in the final marking.

First, we formally define the sufficient condition.

Definition 16 (Condition ΩA,B). Let A and B be two composable OPNs.
Condition ΩA,B holds if and only if ∀m ∈ R(A ⊕ B), σ ∈ (TA)∗ : (A : m|PA

σ→
fA) ⇒ (∃σ̃ ∈ (TA ∪ TB)∗ : (A ⊕ B : m

σ̃→ fA + fB) ∧ σ̃|TA
= σ).

Note that we do not require soundness of A or B here, but if A is sound, ΩA,B

implies that A ⊕ B is sound.
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Lemma 17. Let A and B be two composable OPNs. If A is sound and condition
ΩA,B holds, then A ⊕ B is sound.

Now we show that condition ΩB,C is a sufficient condition allowing to extend
an arbitrary composition A ⊕ B by C obtaining a sound A ⊕ B ⊕ C.

Theorem 18 (Sufficient condition). Let A, B and C be three pairwise com-
posable OPNs such that A and C have disjoint interface places. If the composition
A ⊕ B is sound and ΩB,C holds, then A ⊕ B ⊕ C is sound.

Proof. Let m ∈ R(A ⊕ B ⊕ C). Then, by Lemma 15, m|PA⊕B
∈ R(A ⊕ B) and

m|PB⊕C
∈ R(B⊕C). By the soundness of A⊕B there is a σ ∈ (TA⊕B)∗ such that

A ⊕ B : m|PA⊕B

σ−→ fA + fB. By condition ΩB,C applied to m|PB⊕C
and σ|TB

,

there is a σ̃ ∈ (TB∪TC)∗ such that σ̃|TB
= σ|TB

and B⊕C : m|PB⊕C

σ̃−→ fB+fC .
By Lemma 14, there exist a firing sequence σ ∈ (TA ∪ TB ∪ TC)∗ and marking
m such that σ|TA∪TB

= σ and σ|TB∪TC
= σ̃ and A ⊕ B ⊕ C : m

σ−→ m,
m|PA⊕B

= fA + fB and m|PB⊕C
= fB + fC . Note that the interface places

between A and B and between B and C are empty. Since there are no interface
places between A and C, we have m = fA + fB + fC . ��

To facilitate the check of condition ΩA,B, we prove that ΩA,B is equivalent to
the condition “A ⊕ B simulates A”.

Theorem 19 (Equivalent condition). Let A and B be two composable OPNs
and A be sound. Then ΩA,B holds if and only if A ⊕ B � A.

Proof. (⇒) Assume that ΩA,B holds. We show that the projection relation R =
{(m|PA

, m) | m ∈ R(A ⊕ B)} is a simulation.
1) By definition of ⊕, we have iA R iA⊕B and fA R fA⊕B provided that

fA⊕B ∈ R(A ⊕ B). The latter condition follows from ΩA,B.
2) Let m ∈ R(A ⊕ B) and m = m|PA

, i.e., m R m. Note that by Lemma 15,

m ∈ R(A). Further let A : m
t−→ m′ for some m′ ∈ R(A), t ∈ TA.

Since A is sound, there exists a sequence σ ∈ (TA)∗ such that A : m
t;σ−→

fA. By the condition ΩA,B, there is a sequence σ̃ ∈ (TA ∪ TB)∗, such that

A ⊕ B : m
σ̃−→ fA + fB and σ̃|TA

= t; σ. Thus, A ⊕ B : m
σ̃′
−→ m′′ t−→ m′ (i.e.

A ⊕ B : m
t=⇒ m′) for some markings m′, m′′ ∈ R(A ⊕ B) and sequence σ̃′ ∈

(TB)∗. Since σ̃′ ∈ (TB)∗, for all places p ∈ PA holds m(p) = m(p) = m′′(p) and
m′(p) = m(p)− •t(p)+ t•(p) = m′′(p)− •t(p)+ t•(p) = m′(p). Thus m′|PA

= m′,
and therefore m′ R m′.

3) The only reachable deadlock possible in A is fA. Let m ∈ R(A ⊕ B) such
that fA R m. No transition t ∈ TA is enabled in marking fA, and hence, also not
in m. By applying ΩA,B to ε and m, we conclude that there exists a sequence

σ̃ ∈ (TA ∪ TB)∗ such that A ⊕ B : m
σ̃−→ fA + fB. Since no transition of A can

fire, σ̃ ∈ (TB)∗. Hence A ⊕ B : m =⇒ fA + fB.
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(⇐) Assume A⊕B � A. Let m ∈ R(A⊕B), σ ∈ (TA)∗ such that A : m|PA

σ−→
fA. We prove by induction on the length of σ that ∃σ̃ ∈ (TA ∪ TB)∗ : (A ⊕ B :
m

σ̃→ fA + fB) ∧ σ̃|TA
= σ to show that ΩA,B holds.

Suppose σ = ε, i.e. m|PA

ε−→ fA, which implies fA = m|PA
and thus fA R m.

Since A ⊕ B � A, there exists a sequence σ̃ ∈ (TB)∗ such that A ⊕ B : m
σ̃−→

fA + fB with σ̃|TA
= ε.

Suppose σ = t; σ′, t ∈ TA. Then, a marking m′ ∈ R(A) exists, such that

A : m|PA

t−→ m′ σ′
−→ fA. Since A ⊕ B � A, there exists a marking m′ ∈

R(A ⊕ B) such that A ⊕ B : m
t=⇒ m′ and m′ R m̄′. Hence, there is a marking

m′′ ∈ R(A⊕B) and a sequence σ̃′ ∈ (TB)∗ such that A⊕B : m
σ̃′
−→ m′′ t−→ m′.

The induction hypothesis applied to σ′ implies the existence of a sequence σ̃′′ ∈
(TA∪TB)∗ such that σ̃′′

|TA
= σ′ and A⊕B : m′ σ̃′′

−→ fA +fB. Hence, σ̃ = σ̃′; t; σ̃′′

is a sequence such that A ⊕ B : m
σ̃−→ fA + fB and σ̃|TA

= σ. ��
We can extend our results to compositions that are more complex than chains
of three components. A service tree is a tree of components connected to each
other such that the higher OPNs can only “subcontract” work to lower level
OPNs. The structure of the tree is defined by the tree function c. Each node i is
an OPN representing a component that is delivering a service to its parent c(i)
using services of its children c−1(i). In the remainder of this section, we show
that the sufficient condition is enough to only pairwise check the connections in
the tree to decide whether the whole service tree is sound.

Definition 20 (Service tree). Let A1, . . . , An be pairwise composable OPNs.
Let c : {2, . . . , n} → {1, . . . , n − 1} be such that:

– ∀i ∈ {2, . . . , n} : c(i) < i,
– ∀1 ≤ i < j ≤ n : i �= c(j) ⇒ IAi ∩ OAj = ∅ ∧ OAi ∩ IAj = ∅, and
– ∀1 ≤ i < j ≤ n : i = c(j) ⇒ IAi ∩ OAj �= ∅ ∨ OAi ∩ IAj �= ∅.

We call A1 ⊕ . . . ⊕ An a service tree with root A1 and tree function c.

Lemma 17 together with Theorem 19 implies that if B⊕C � B and B is sound,
the composition is sound as well. Hence, if we combine the results so far, we can
show that if the root of a service tree is sound, and all the connections fulfill the
Ω condition, the whole service tree is sound.

Theorem 21 (Soundness of service trees). Let A1, . . . An be a service tree
with root A1 and tree function c. Further, let A1 be sound and for 2 ≤ i ≤ n, it
holds that Ai ⊕ Ac(i) � Ac(i). Then A1 ⊕ . . . ⊕ An is sound.

Proof. We prove this by induction on n. If n = 1, it is true by definition. Suppose
it is true for n = k− 1. Let n = k. By the induction hypothesis: A1 ⊕ . . .⊕ Ak−1
is sound and always c(k) < k. By the associativity and commutativity of ⊕ we
have that (A1 ⊕ . . .⊕ Ac(k)−1 ⊕ Ac(k)+1 ⊕ . . . ⊕ Ak−1)⊕ Ac(k) is sound. We also
have Ak ⊕ Ac(k) � Ac(k). By Lemma 17 we have (A1 ⊕ . . .⊕ Ac(k)−1 ⊕ Ac(k)+1 ⊕
. . . ⊕ Ak−1) ⊕ Ac(k) ⊕ Ak is sound. Again by associativity and commutativity,
the theorem is proven. ��
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5 Stepwise Refinement

In the previous section we showed that we can build sound service trees com-
positionally. In this section we present a construction method that guarantees
condition Ω with simultaneous refinements of places in communicating compo-
nents with communicating subcomponents.

In [12], the authors introduce a notion of place refinement where a place is
refined by a workflow net. We define this refinement operation on open Petri
nets, and refine internal places by communicating OWNs.

The choice for OWNs with a single initial and a single final place makes the
refinement definition natural. The refinement is only defined for the nets that
do not overlap, except for (possibly) interface places. In some situations we will
additionally require that input places of A may not be output of B or vice-
versa, to prevent breaking the composability of A with other components. These
requirements are captured in the following definition.

Definition 22 (Refinable). Let A be an OPN, and let B be an OWN. A is
refinable by B if (PA∪IA∪OA∪TA)∩(PB∪IB∪OB∪TB) = (IA∪OA)∩(IB∪OB).

A is strictly refinable by B if (PA ∪ IA ∪ OA ∪ TA) ∩ (PB ∪ IB ∪ OB ∪ TB) =
(IA ∩ IB) ∪ (OA ∩ OB).

When we refine an arbitrary place p ∈ PA by an OWN B, all transitions of the
refined net that produced a token in p now produce a token in the initial place
of B, and all transitions that consumed a token from p now consume a token
from the final place of B. If the two nets share interface places, these places are
fused.

Definition 23 (Place refinement). Let A be an OPN, and let B be an OWN
such that A is refinable by B. Let p ∈ PA such that iA(p) = fA(p) = 0. The
refined OPN A �p B = (P, I, O, T, F, i, f) is defined as:

– P = (PA \ {p}) ∪ PB ∪ (IA ∩ OB) ∪ (IB ∩ OA);
– I = (IA \ OB) ∪ (IB \ OA);
– O = (OA \ IB) ∪ (OB \ IA);
– T = TA ∪ TB;
– F = FA \ ((•p × {p}) ∪ ({p} × p•)) ∪ FB ∪ (•p × {iB}) ∪ ({fB} × p•);
– i = iA;
– f = fA.

Note that in case an input place of one net is an output place of another net,
this place becomes an internal place of the resulting net.

If in the original net two places are refined, the resulting net does not depend
on the order in which the refinements took place. Also, the refinement distributes
over the composition.

Lemma 24. Let N be an OPN, let p, q ∈ PN and p �= q. Let C and D be two
disjoint OWNs such that N is strictly refinable by C and N is strictly refinable
by D. Then (N �p C) �q D = (N �q D) �p C. Furthermore, if N = A ⊕ B for
some OPNs A and B, p ∈ PA and q ∈ PB, we have ((A ⊕ B) �p C) �q D =
(A �p C) ⊕ (B �q D).
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Fig. 2. Places p and q are safe, A⊕ B � A and C ⊕ D � C, but (A�p C)⊕ (B �q D)
is not sound

The following statement is a generalization of Theorem 10 from [12] to the case
of OPN nets.

Lemma 25 (Soundness of refinement). Let A be a safe and sound OPN,
and let B be a sound OWN such that A is strictly refinable by B. Let p ∈ PA.
Then the refinement A �p B is sound.

When constructing services, we might want to refine two places of communicating
components with a sound composition of two subcomponents. Refinement of a
sound and safe OPN by a sound OWN results in a sound OPN, but refining two
places in a sound and safe OPN by a sound composition is in general not sound.
An intuitive approach would be to apply this refinement only to “synchronizable”
places — such places that if one of the places becomes marked in the execution
sequence, then another one already has a token, or will receive it before the
token disappears from the first one. A counterexample for this idea is given in
Figure 2. Both compositions A⊕ B and C ⊕ D are safe and sound and places p
and q are “synchronizable”, but the composition (A�p C)⊕ (B �q D), i.e. place
p is refined by C and place q by D, is not sound, which is caused by the fact
that C can be started for the second time before D has finished. Consider for
example the firing sequence σ = 〈t1, u1, u3, t2, u2, u4, u6, u5, u7, t3, t5, u1〉. We
have (A�pC)⊕ (B�q D) : [iA, iB] σ→ [s5, b, c, s2, p1, e, j, p6]. Continuing with the
firing sequence γ = 〈u9, u3, t4, t6〉 we obtain marking [s5, s6, p3, g, j, iD], which
is a deadlock. This scenario was not possible in C ⊕ D itself.

To solve this problem, we need to ensure a stricter synchronization for places
p and q, namely that place q only becomes marked if p is marked, and that p can
only become unmarked, after q became unmarked. A structure that guarantees
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Fig. 3. Block structure ensuring that p is synchronized with q (p 
N q)

this condition is the block structure (see Figure 5), which is a handshaking pro-
tocol providing the notifications when a place becomes marked or unmarked. If
place p becomes marked, this is notified by sending a message. This message is
consumed when q becomes marked. As soon as q becomes unmarked, a message
is sent, after which p can become unmarked.

Definition 26 (Synchronized places, p 
N q). Let N be an OPN and p, q ∈
PN two distinct places. We say that p is synchronized with q in N , denoted by
p 
N q, if and only if p and q are safe, iN (p) = iN(q) = fN (p) = fN(q) =
0, and there exist two communication places r, s ∈ PN and four transitions
t1, t2, u1, u2 ∈ TN that together form a so-called block structure where:

– •p = {t1} ∧ p• = {t2} ∧ •q = {u1} ∧ q• = {u2};
– t1

• = {p, s} ∧ •t2 = {p, r} ∧ u1
• = {q} ∧ •u2 = {q};

– •s = {t1} ∧ s• = {u1} ∧ •r = {u2} ∧ r• = {t2}.

The block structure guarantees that if place p becomes marked, it cannot become
unmarked before q has been marked. This is ensured via two communication
places, place s and place r. A token in place s indicates that a token is put in
p but not yet in q, whereas a token in place r indicates that a token has been
consumed from place q. I.e., a transition that produces a token in p should also
produce a token in place s, a transition that consumes from s should place a
token in q. If a transition consumes from place q, it should produce a token
in r, which can only be consumed by a transition that also consumes from p.
Note that the block structure is asymmetric, although reversing the direction of
the messages will have small local influence on the behaviour when p and q get
refined with communicating subcomponents.

It is easy to show that p = q + r + s is a place invariant, i.e., the structure
guarantees that the number of tokens in p equals the number of tokens in q, r,
and s.

Lemma 27. Let N be an OPN. Let p, q ∈ PN such that p 
N q. Let s, r ∈ PN

be the communication places of the block structure of p and q. Then p = q+s+r
is a place invariant.

�� ��
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��
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Fig. 4. Places p and q are not synchronized

This invariant implies that if the net is sound, the block structure of two synchro-
nized places indeed guarantees the desired property: if p is marked, q is already
marked, or it will become marked before the token is gone from p.

Corollary 28. Let N be a sound OPN, p, q ∈ PN such that p 
N q and m ∈
R(N) such that m(p) = 1. Then there exist a firing sequence σ ∈ (TN )∗ and a
marking m′ ∈ R(N) such that N : m

σ−→ m′ and m′(p) = m′(r) = 1 (i.e. σ
enables t2). Moreover, if N = A ⊕ B for some composable OPNs A and B with
A ⊕ B � A, p ∈ PA and q ∈ PB , then there exists such a sequence σ with just
transitions of B (i.e., σ ∈ (TB)∗).

In Figure 4, we consider a slight extension of the block structure by allowing
more output places for transition t1. This extension does not work. First note
that A, B and A⊕ B are all sound and A⊕ B � A. However, if we refine places
p and q with the very simple net C⊕D, we loose the simulation property for the
whole system. In A�p C we can have the firing sequence 〈t0, t1, t3〉 while in the
whole system, (A �p C) ⊕ (B �q D), this firing sequence cannot be simulated,
since the firing of transition x is needed in order to put a token on the third
input place of t3 in (A �p C) ⊕ (B �q D).

As in an OPN only a safe place can be refined by a sound OWN, we show that
if a net is safe, and we refine two places by a safe composition of two OWNs,
then the refined net is safe again.

Theorem 29 (Refinement preserves safety). Let N be a safe OPN, let
p, q ∈ PN such that p 
N q. Let C and D be two composable OWNs such that
N is strictly refinable by C and N is strictly refinable by D, and C ⊕ D is safe.
Then the refinement N ′ = (N �p C) �q D is safe.

Proof. Since N is safe, p and q are never marked with two or more tokens. Hence,
if m(p) > 0, transition t2 ∈ p

N• fires before transition t1 ∈N• p can fire again. The
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same holds for u1 and u2 because of the block structure. Therefore, C ⊕ D can
never be restarted before it is finished. Hence, since both N and C ⊕D are safe,
N ′ is safe. ��

We use Corollary 28 to show that if in a sound OPN N two synchronized places
are refined by a sound composition, then the refined OPN is sound as well.

Theorem 30 (Refinement preserves soundness). Let N be a sound OPN
with p, q ∈ PN such that p 
N q. Let C and D be composable OWNs such that
C⊕D is sound and N strictly refinable by C and N strictly refinable by D. Then
N ′ = (N �p C) �q D is sound.

Proof. (Idea) We map an arbitrary token marking m′ ∈ R(N ′) to the marking
m of N by putting a token on p when C is marked, a token on q when D is
marked and keeping the rest of the marking as is; note that m is reachable in
N . Due to the soundness of N , m

σ−→ fN for some σ ∈ T ∗
N . Then we use the

fact that p and q are safe and synchronized, and C ⊕ D is sound to fill in σ up

to σ′ such that m′ σ′
−→ fN ′ . ��

The next theorem exploits the composition structure. If A⊕ B simulates A and
C ⊕ D simulates C, then ((A �p C) ⊕ (B �q D)) simulates A �p C.

Theorem 31 (Refinement preserves simulation). Let A and B be two com-
posable OPNs such that N = A ⊕ B, N � A, and A is sound. Let p ∈ PA and
q ∈ PB such that p 
N q. Let C and D be two composable OWNs such that N
is strictly refinable by C and N is strictly refinable by D, C ⊕ D � C and C is
sound. Let A′ = A �p C and B′ = (B �q D). Then A′ ⊕ B′ � A′.

Proof. (Sketch) Let N ′ = A′⊕B′. We prove that R = {(m|PA′ , m) | m ∈ R(N ′)}
is a simulation, assuming all transitions of B′ are τ -labeled. Let m, m′ ∈ R(A′),
t ∈ TA′ and m ∈ R(N ′). Then either t ∈ TA or t ∈ TC . Suppose t ∈ TA. Then
either (1) C and D do not contain any marked place in m, or (2) there is at least
one place marked in C. In the first case, the firing of t does not depend on the
marking in p. A ⊕ B � A implies the existence of a marking m′ ∈ R(N ′) such
that N ′ : m

t=⇒ m′ and m′ R m′. In the second case, we need to consider two
subcases: either p is in the preset of t in A, or not. If p is not in the preset, the
argument is similar to case (1). In case p is in the preset of t, we have t = t2. If
there is a place marked in D, C ⊕ D � C implies that a marking m′′ ∈ R(N ′)
enabling transition t can by reached by the firings of transitions of B and D only.
Hence, there exists a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′ and m′ R m′.
If there is no place marked in D, then by Corollary 28, either t is enabled in m′,
or there exists a firing sequence in B marking a place in D. In both cases we
can conclude the existence of a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′

and m′ R m′.
Suppose t ∈ TC . Then either (1) there exists a place in D that is marked in

m or (2) no place in D is marked in m. In the first case, C ⊕ D � C implies
the existence of a marking m′ such that N ′ : m

t=⇒ m′ and m′ R m′. If there
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is no place in D that is marked in m, then by Corollary 28, either there is a
firing sequence in B that marks a place in D or D has already finished. In the
first case, a marking m′′ ∈ R(N ′) with N ′m =⇒ m′′ is reached, marking a place
in D, hence we can apply case (1) to marking m′′. In the second case, D has
already produced all necessary tokens for C, thus t ≤ m. In both cases we can
conclude the existence of a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′ and
m′ R m′. ��
Theorems 21 and 31 imply compositionality of our construction method with
respect to soundness:

Corollary 32. Let A and B be two composable OPNs such that N = A ⊕ B,
N � A, and A sound. Let p ∈ PA and q ∈ PB such that p 
N q. Let C and D
be two composable OWNs such that N is strictly refinable by C and N is strictly
refinable by D, C ⊕D � C, and C sound. Then ((A�p C)⊕ (B�q D)) is sound.

6 Construction of Service Trees

In Section 4 we defined a sufficient condition for the soundness of service trees and
showed that this condition is equivalent to the simulation property. In Section 5,
we showed that if two places in a composition are synchronized, they can be
refined by a composition, such that the refined net is sound again. In this section,
we combine the results obtained so far to construct service trees in a soundness-
by-construction fashion. We show two examples of possible approaches, one for
OWNs and another one for a specific subclass of OPNs.

The first approach is inspired by the concept of outsourcing. Consider a sound
OWN N . Suppose some place x ∈ PN is not just a state marker, but it represents
the execution of an activity outside the scope of the OWN, e.g. the place is called
“producing an item”. Now suppose there is a service that produces this “item”.
Then we can “outsource” the activity to the service we found. We modify the
net, and refine the place by a start transition and an end transition, indicating
the start and end of the activity. The start transition initiates the service, and
as soon as the service finishes, the end transition is triggered.

Consider Figure 5, where place x represents “producing an item” and we as-
sume that it is safe. By Lemma 25, we can refine place x by a sound workflow
net so that the refined net is sound. Consider the OWN M1 = ({iM , p, fM},
{r}, {s}, {t1, t2}, {(iM , t1), (t1, p), (t1, s), (p, t2), (r, t2), (t2, fM )}, [iM ], [fM ]). The
refinement N �xM1 is sound, and, since place x is safe, place p is safe. Now, con-
sider the OPN M2 = ({q}, {s}, {r}, {t3, t4}, {(s, t3), (t3, q), (q, t4), (t4, r)}, ∅, ∅).
Although we need to drop the requirement that the final marking is a dead-
lock, it is easy to show that the net (N �x M1) ⊕ M2 is sound and so is
(N �x M1) ⊕ M2 � (N �x M1). By this composition, we introduced a block
structure around places p and q (see Figure 5). By Lemma 27 and the safety
of p, we know that q is safe, and thus p 
(N�xM1)⊕M2 q. Now we can refine
places p and q by any sound composition of OWNs. This way, we can construct
an arbitrary large sound service tree, without the need to check condition ΩA,B

for any pair of composed OPNs A and B.
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Fig. 5. The “outsourcing” method: place x is refined by M1

Theorem 33. Let N be an arbitrary OPN and x ∈ PN . Consider the two OPNs
M1 and M2 from Figure 5. Let N ′ = N �x (M1⊕M2) = (N �x M1)⊕M2. Then:

1. if N is safe, then N ′ is safe;
2. if N is sound, then N ′ is sound;
3. N ′ � (N �x M1);
4. if N is an OWN, then N ′ is also an OWN.

Proof. This follows immediately from the structure of M1 and M2. ��

A second approach is based on pairs of composed OPNs belonging to a special
subclass N of OPNs. This class is recursively defined, starting with two composed
OPNs that are either both acyclic T-nets1 or both isomorphic S-nets2 with some
additional requirements on their composition. The class N is defined in such a
way that any pair of OPNs in this class is safe, sound and has the simulation
property. In these pairs of composed OPNs we can easily detect the synchronized
places and then each pair of these can be refined with nets of N , resulting in an
element that is again in N . For details, see [4].

As an example, consider the approach presented in [13]. All services have
the same protocol (OPN) for bargaining about the outsourcing of a service.
Internally each service has its OWN orchestration process of the service. A task
of this orchestration is modeled by a start transition, an end transition and a
place in between like in Figure 5. The whole orchestration is modeled as an OWN.
Some tasks may be outsourced to another service. The next step is refinement of
the synchronized places by the standard bargaining protocol, which is in fact a
sound composition of two OWNs, one for the service client and one for the service
provider. In the OWN of the service provider there is one place that represents
the execution of the service. This place may be refined by an arbitrary sound
OWN which represents the orchestration of the service and by Lemma 25 this
conserves the soundness of the whole system. Now we may select a task in this

1 A Petri net in which all places have maximal one input and output transition.
2 A Petri net in which all transitions have maximal one input and one output place.
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orchestration process and we may repeat the outsourcing process. Hence, we
build up a service tree as an OWN.

Another example is that we have three parties with interaction between all
three. For instance a Buyer invokes a service at a Seller and the Seller invokes a
service at a Shipper which is the direct delivery of the goods to the Buyer. Now,
the question is: “does this fit into the framework?”. In fact the Seller process
will wait in some place q until the Shipper has delivered the goods at the Buyer
and then the Shipper will notify the Seller by sending a token to a transition t
in the Seller, where t is an output transition of q. We may refine q by a OWN
that only intercepts and passes the communication between Shipper and Buyer
and thus all interaction between the Shipper and the Buyer is now via the Seller.
This reflects the responsibility: the Seller is in fact responsible for the delivery.
Hence, now it is a tree structure again and it fits into our framework.

7 Conclusions

In this paper, we presented a method for compositional verification of a global
termination property of an arbitrary tree of communicating components, where
only checks of pairs of directly linked components are required. Another dimen-
sion where our construction goes is place refinements. Note that our method can
easily be extended to the simultaneous refinement of several (more than two)
places in communicating components with communicating subcomponents. Fi-
nally, we gave a method to construct such a tree in a correctness-by construction
fashion, based on the composition and refinement.

Related Work. In [10] the authors give a constructive method preserving the
inheritance of behavior. As shown in [2] this can be used to guarantee the correct-
ness of interorganizational processes. Other formalisms, like I/O automata [17]
or interface automata [7] use synchronous communication, whereas we focus
on asynchronous communication, which is essential for our application domain,
since the communication in SOA is asynchronous.

In [20], the author introduces place composition to model asynchronous com-
munication focusing on the question which subnets can be exchanged such that
the behavior of the whole net is preserved. Open Petri Nets are very similar to
the concept of Petri net components, see e.g. [14], in which a module consists of a
Petri net and interface places to be connected to other components. Open Petri
nets were introduced and studied in [5, 6, 15, 16, 18]. In [16] the authors focus
on deciding controllability of an OPN and computing its operating guidelines.
Operating guidelines can be used to decide substitutability of services [19], or to
prove that an implementation of a service meets its specification [6].

The major advantage of our approach compared to the operating guideline
approach is its compositionality. In our setting it is sufficient to analyze only
directly connected services of the tree, while the overall operating guidelines of
the tree would have to be re-computed before a new service can be checked for
a harmless addition to the tree. Moreover, the construction of the service tree
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remains flexible — any component can be replaced by another component, pro-
vided that the composition of this component with its direct neighbors satisfies
our condition. This flexibility comes however with a price label, namely, the con-
dition we define is a sufficient but not necessary condition, i.e. we might not be
able to approve some service trees, although they were sound.

In [11], the authors propose to model choreographies using Interaction Petri
nets, which is a special class of Petri nets, where transitions are labeled with the
source and target component, and the message type being sent. To check whether
the composition is functioning correctly, the whole network of components needs
to be checked, whereas in our approach the check is done compositionally.

Future Work. The sufficient condition provided in Section 4 requires that an
OPN B does not restrict the behavior of A in the composition A ⊕ B. This
condition might be relaxed by requiring that A⊕ B mimics all visible behavior.
The main research question here is defining a set of visible actions so that the
approach would remain compositional and this set would be as small as possible.
Note that such a relaxation will not influence the framework.

In Section 6, we have shown how the obtained results can be used to build
service trees that are sound by construction. Although we only apply our results
on Petri nets, our method can be extended to languages like BPEL, to facilitate
the construction of web services in development environments like Oracle BPEL
or IBM Websphere.
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Abstract. The ASCoVeCo State space Analysis Platform (ASAP) is
a tool for performing explicit state space analysis of coloured Petri nets
(CPNs) and other formalisms. ASAP supports a wide range of state space
reduction techniques and is intended to be easy to extend and to use,
making it a suitable tool for students, researchers, and industrial users
that would like to analyze protocols and/or experiment with different
algorithms. This paper presents ASAP from these two perspectives.

1 Introduction

State space analysis (or model checking) is one of the main approaches to model-
based verification of concurrent systems and is one of the most successfully
applied analysis methods for formal models. Its main limitation is the state ex-
plosion problem, i.e., that state spaces of systems may have a large number of
reachable states, meaning that they are too large to be handled with the avail-
able computing power (CPU speed and memory). Methods for alleviating this
inherent complexity problem is an active area of research and has led to the
development of a large collection of state space reduction methods . These meth-
ods have significantly broadened the class of systems that can be verified and
state spaces can now be used to verify systems of industrial size. A computer
tool supporting state space analysis must implement a wide range of reduction
algorithms since no single method works well on all systems. The software ar-
chitectures of many such tools, e.g., CPN Tools [5], SPIN [1], make it difficult
to support a collection of state space reduction methods in a coherent manner
and to extend the tools.

This paper presents the ASCoVeCo State Space Analysis Platform (ASAP)
[2] which is currently being developed in the context of the ASCoVeCo research
project [3]. ASAP represents the next generation of tool support for state space
exploration and analysis of CPN models [13] and other formal models. The aim
and vision of ASAP is to provide an open platform suited for research, edu-
cational, and industrial use of state space exploration. This means that ASAP
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supports a wide collection of state space exploration methods and has an ar-
chitecture that allows the research community to extend the set of supported
methods. Furthermore, we aim at making ASAP sufficiently mature to be used
for educational purposes, including teaching of advanced state space methods,
and for use in industrial projects as has been the case with CPN Tools and
Design/CPN [6].

This paper is structured as follows. The next section is an overview of the
architecture of our tool. Section 3 briefly describes how the tool can be extended
with new verification algorithms or modeling languages. A few benchmarks com-
paring our tool with CPN Tools and DiVinE [7] are presented in Section 4.
Section 5 concludes this work and presents some future extensions to our tool.

2 Architecture of ASAP

The ASAP platform consists of a graphical user interface (GUI) and a state
space exploration engine (SSE engine). Figure 1(a) shows the software architec-
ture of the graphical user interface which is implemented in Java based on the
Eclipse Rich Client Platform [8]. The software architecture of the SSE engine is
shown in Fig. 1(b). It is based on Standard ML and implements the state space
Exploration and model checking algorithms supported by ASAP. The choice of
SML for the SSE engine is primarily motivated by its ability to easily specify
and extend algorithms. The state space exploration and model checking algo-
rithms implemented rely on a set of Storage and Waiting Set components for
efficient storage and exploration of state spaces. Furthermore, the SSE engine
implements the Query Languages(s) used for writing state space queries and to
verify properties.

User interface. The ASAP GUI makes it possible to create and manage verifi-
cation projects consisting of a collection of verification jobs . Verification jobs are

Java

Eclipse Rich Client Platform

GMF Eclipse Modelling Framework

JoSEL CPN Model

CP
N

In
sta

nt
iat

or

CP
N

Lo
ad

er

Sc
he

du
ler

JoSEL Editor M
et

ho
d-

sp
ec

ific
ta

sk
s

(a) Graphical user interface

Standard ML

M
od

el
Si

m
ula

to
r(s

)

St
or

ag
e(

s)

W
ait

ing
-

Se
t(s

)

Qu
er

y
La

ng
ua

ge
(s

)

Exploration(s)

(b) SSE engine

Fig. 1. ASAP platform architecture



ASAP: An Extensible Platform for State Space Analysis 305

constructed and specified using the verification Job Specification and Execution
Language (JoSEL) [17] and the JoSEL Editor. We will briefly highlight the key
ideas of JoSEL later. JoSEL and the JoSEL Editor are implemented using the
Eclipse Modeling Framework and GMF, the Graphical Modeling Framework. The
ASAP GUI additionally has a Model Loader component and a Model Instantiator
component that can load and instantiate, e.g., CPN models [13] created with
CPN Tools [5]. It is worth noticing that only the dark gray (red) boxes in Fig. 1
(CPN Model Loader, CPN Model Instantiator, and CPN Model Representation as
well as the Model Simulator(s) component of the SSE engine) are language spe-
cific; all other components are independent of any concrete modeling language,
and indeed we have implemented components for loading models specified in
DVE, the input language of the DiVinE model checker.

The GUI has two different perspectives for working with verification projects:
An editing perspective for creating and editing verification jobs, and a verification
perspective for inspecting and interpreting verification results. Figure 2(a) shows
a snapshot of the graphical user interface in the editing perspective. The user
interface consists of three main parts apart from the usual menus and tool-bars
at the top. To the left is an overview of the verification projects loaded, in this
case just a single project named Demo is loaded. A verification project consists
of a number of verification jobs, models, queries, and generated reports. In this
case there is one verification job, safety check, concerned with checking safety
properties. A CPN model named ERDP is loaded, which is a CPN model of
an edge router discovery protocol from an industrial case study [14]. We have
one query, checking if buffers of the model overflow, and two reports from two
different verification job executions. At the bottom is a console making it possible
to interact directly with the SSE engine using SML. This allows experimenting
with the tool and issuing queries that need not be stored as part of the verification
project. The area at the top-right is the editing area used to edit queries and
verification jobs. Here, the safety checker job is being edited and the window
shows its graphical representation in JoSEL. Other components may be added
to this job by using the tool palette adjacent to the editing area.

A snapshot of the verification perspective is shown in Figure 2(b). Here, a
verification report is opened. It consists of three parts. The Configuration report
lists general information like the model name or the different reduction tech-
niques enabled, e.g., hash compaction in this case. The Results report specifies
which properties were checked and whether or not they hold. In case of error,
it also displays a counter-example that proves why the property does not hold.
The Statistics report gives information on the state space, the exploration time
and additional information depending on the reduction techniques used.

The Job Specification and Execution Language. JoSEL [17] is a graph-
ical language inspired by data-flow diagrams that makes it possible to specify
the formal models, queries, state space explorations, and processing of analysis
results that constitute a verification job. The top-right panel in Fig. 2(a) shows
a graphical representation of a JoSEL job that we use to illustrate the different
key ideas behind this language.
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(a) The editing perspective

(b) The verification perspective

Fig. 2. Snapshots of the graphical user interface

In JoSEL, tasks are the basic units of computation used as blocks to construct
jobs. A task can, for instance, load a CPN model from a file or explore the
state space of a model using a specific search algorithm. Tasks are graphically
represented by rounded boxes.

A job consists of a set of interconnected tasks. Connections are used to specify
a producer/consumer scenario: tasks can produce data that can be in turn used
by another task. Each task has a set of input ports that specify the type of data
it waits for in order to be executed. Once its execution is finished, the production
of the task is specified by output ports . Both are graphically represented using
small triangles placed at the left of tasks for inputs and at the right for outputs.
In our example, the Instantiate Model task takes as input a CPN Model file, and
from it, produces a Model which is an SML representation of the CPN model
usable by the SSE engine (see the next paragraph and Section 3). This one
can be consumed by the No dead states and SML Safety Property tasks that
instantiate two properties, absence of deadlock and a user defined property.
These are analyzed by the Safety checker task.
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At this level, the type of algorithm or reduction techniques used by the Safety
checker are not visible to the user. This is because this task has been defined
as a macro. A macro is at the same time a job (described by the user with
tasks and connections) and a task that can be part of other jobs. The graphical
representation of macros differs from the one of tasks in that the rounded box
is drawn using a double outline. Besides the advantages of clarifying the view
of jobs and allowing the reuse of macros along different jobs, their use allows
different levels of abstraction. Many users are not interested in the details of
the safety checker whereas some with more background in model checking would
perhaps like, for a specific model, to use a specialized search algorithm assumed
to be especially efficient in that particular case. Double-clicking on the Safety
checker macro expands the view of the macro and allows the user to tune the
way properties are checked.

The main motivation of JoSEL is to provide the user with an intuitive and
graphical language that allows different level of abstractions for users with differ-
ent background in model checking such as: students, researchers, and industrial
users.

The state space search engine. It is commonly agreed upon in the model
checking community that no reduction technique works well on all models and
that algorithms and methods are usually designed for a specific stage of the
verification process. Therefore tools have to support several algorithms in order
to prove useful.

Currently, ASAP supports checking deadlocks in systems and user specified
safety properties. ASAP implements a broad range of techniques and below we
briefly mention some of them.

Bit-state hashing and hash-compaction [12] are incomplete methods based on
hashing and are generally used prior to any other analysis technique for their
ability to quickly discover errors rather than proving their absence. The sweep-
line method [15] exploits a notion of progression exhibited by many protocols to
garbage collect states during the search thereby lowering peak memory require-
ments. The recently developed ComBack method [18,11] is especially suited to
models having complex states, e.g., with many tokens in places for CPNs. It
makes it possible to represent states with 16–24 bytes independently from the
model, hence achieving a memory reduction close to the one provided by hash
compaction without the loss of precision associated with that method. If, using
these techniques, memory is still lacking, the user can switch to efficient disk-
based algorithms [4,10]. In experiments reported in [10] we were able to explore
large state spaces with 108–109 states in a reasonable time (4–20 hours).

3 Extending ASAP

An important design guideline of ASAP is to provide a flexible and modular
architecture that can be easily extended with new algorithms or modeling lan-
guages. We give in this section a brief overview of how this can be done.
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� �
1 functor SweepLineExploration (
2 structure Model : MODEL

3 structure Storage : STORAGE

4 val progressValue : Model . state −> int ) : EXPLORATION =
5 struct
6 fun explore initialStates = . . .
7 end� �

(a) First of lines of the sweep-line search algorithm in the SSE engine.
� �

1 class SweepLineExplorationTask implements FunctorTask {
2 String getName ( ) { return ”Sweep Line Explorat ion ” ; }
3 String getFunctor ( ) { return ”SweepLineExplorat ion ” ; }
4 Value getReturnType ( ) {
5 return new Value ( ” Traver sa l ” , Exploration . class ) ; }
6 Value [ ] getParameters ( ) {
7 return new Value [ ] {
8 new Value ( ”Model” , Model . class ) ,
9 new Value ( ” Storage ” , Storage . class ) ,

10 new Value ( ” Progres s Measure” , Measure . class ) } ; }
11 Exploration exec ( Model m , Storage s , Measure p ) {
12 Exploration e = new Exploration (m . getSimulator ( ) ) ;
13 m . getSimulator ( ) . evaluate (
14 e . getDeclaration ( ) + ” = ” + getFunctor ( ) +
15 ” ( s t r u c tu r e Model = ” + m . getStructure ( ) +
16 ” s t r u c tu r e Storage = ” + s . getStructure ( ) +
17 ” va l progres sValue = ” + p . getName ( ) + ” ) ” ) ;
18 return e ; }
19 }� �

(b) Creation of a Sweep-Line Exploration task (see Fig 4) in the JoSEL editor.

Fig. 3. Integration of the sweep-line method in ASAP

Integrating new algorithms. Let us suppose that we wish to integrate the
sweep-line method [15] into ASAP. Only the light gray (green) boxes in Fig. 1 are
method specific and have to be considered for this integration. On the SSE en-
gine side we have to implement the search algorithm used by this method. Since
this one is independent from any storage method, and uses its own waiting set
component to store unvisited states, we only have to implement an exploration
component. The engine is based on a number of SML signatures (the equivalent
of JAVA interfaces) among which the most important ones are: EXPLORATION
that describes search algorithms, e.g., depth-first search; STORAGE that de-
scribes data structures used to store visited states, e.g., hash tables; and MODEL
used to describe language dependent features of the analyzed model, e.g., how
states are represented (see the next paragraph). The SweepLineExploration of
Figure 3 is a generic EXPLORATION, i.e., an SML functor, that requires three
parameters to be instantiated: Model, the model of which the state space is
explored; a Storage data structure used to store visited states; and a function,
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progressValue, that maps each state to a progress value, here an integer (see
[15] for details). As this functor implements the EXPLORATION signature,
it has to define a function, explore, that explores the state space from some
starting state(s) and returns a storage containing the set of visited states upon
termination of the algorithm. Because of space limitations we have left out the
implementation of the explore function.

For these changes to be visible in the graphical interface, we then have to
extend the JoSEL language with the Method-specific tasks of Fig. 1. The main
one, Sweep Line Exploration is graphically represented in Fig. 4. It corresponds
to the instantiation of functor SweepLineExploration and is implemented in the
JoSEL editor by the SweepLineExplorationTask class of Fig. 3. This one in-
herits from FunctorTask, which is used to describe JoSEL tasks that simply
consist of the instantiation of a functor. The methods getName and getFunctor
return the name of the task, i.e., the label appearing in the graphical repre-
sentation of the task, and the name of the underlying SML functor. The in-
put and output ports (their names and types) of the task are specified by the

Fig. 4. Graphical representation of
the Sweep Line Exploration task

getParameters and getReturnType methods.
Note that a FunctorTask can only have one
output port, namely, the SML structure re-
sulting from the instantiation of the functor.
Also, there usually is a one-to-one mapping
between the parameters of the functor and
the items returned by method getParameters,
as it is the case here. The last method, exec,
specifies the SML code that is interpreted as
the task is executed. Its parameters match
the list of output ports specified by method
getParameters.
Integrating new modeling languages. All search algorithms implemented
by the SSE engine receive a model, which from the SSE engine point of view,
is an SML structure implementing the MODEL signature (see Fig 5). To be
valid, such a structure must define two types: the type of states and the type of
events. For CPNs, the state type consists of a set of multi-sets over typed tokens
and an event is a pair composed of a transition identifier and an instantiation

� �
1 signature MODEL = sig
2 type state

3 type event

4 val initialStates : unit −> ( state ∗ event list ) list

5 val succ : state ∗ event −> ( state ∗ event list ) list

6 val stateToString : state −> string

7 val eventToString : state −> string

8 end� �

Fig. 5. The MODEL signature
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for the variables of this transition. To be able to explore the state space of the
model, the engine must know its initial state(s) and from a given state how to
calculate its successor(s). This is the purpose of functions initialStates and succ.
Non-deterministic systems are supported. Indeed, both initialStates and succ
return a list of states (rather than single states) along with their enabled events.
Functions stateToString and eventToString return a user readable representation
of states and events that can be used, for instance, to display counter-examples.

Note that providing a model structure is the minimal requirement to be able
to use the SSE engine. Many algorithms or reduction techniques expect more
information, e.g, a state serializer for external algorithms or an independence
relation for partial order reduction.

The easiest way to integrate a new specification language is to write a compiler
that, from a specification file, can produce an SML MODEL structure. Since
the other components of the engine are independent of any concrete language,
those will remain unchanged. Although our work focuses on the development
of language independent algorithms, the architecture of the SSE engine does
not prevent us from integrating algorithms or reduction techniques specifically
tailored for a specific language, e.g., search algorithms that exploit Petri net
invariants. It is sufficient to define a new signature that extends MODEL with
the desired features.

4 Benchmarks

The ability of ASAP to load CPN and DVE models makes it possible to experi-
mentally compare different algorithms and reduction techniques on models from
our own collection [3], e.g., [9,14], and on the numerous models of the BEEM
database [16].

For comparison, we have shown in Table 1 the performance of ASAP com-
pared to CPN Tools and DiVinE. For each Model, the table shows its number

Table 1. Performance of ASAP, CPN Tools, and DiVinE on some models

Model States Time Time (ComBack)

Basis ASAP Speedup ASAP Speedup

C
P

N
T
oo

ls

Dining Philosophers 40 · 103 6,614 27 245 55 120
Simple Protocol 204 · 103 7,084 33 215 54 131
ERDP 207 · 103 19,351 112 173 197 98
DYMO 114 · 103 7,403 308 24 355 21

Average on 4 models 164 92

D
iV

in
E

brp2.6 5.7 · 106 39 17 2.29 90 0.43
firewire tree.5 3.8 · 106 227 525 0.43 388 0.59
plc.4 3.7 · 106 55 45 1.22 67 0.81
rether.4 9.5 · 106 51 34 1.52 191 0.27

Average on 50 models 1.39 0.72



ASAP: An Extensible Platform for State Space Analysis 311

of States, the full exploration time with the Basis tool (CPN Tools or DiVinE)
and with ASAP (with and without the ComBack method). Times are in seconds,
and Speedup is the ratio between Basis and ASAP time. We see that ASAP per-
forms significantly better than CPN Tools, achieving speedups of several orders
of magnitude for both full state space generation and the ComBack method com-
pared to full generation in CPN Tools. The performances of DiVinE and ASAP
are comparable although slightly in favor of ASAP. On 50 models we observed
an average speedup of 1.4 without using reduction. Even with the ComBack
method, ASAP was able to perform at 0.7 of the speed of DiVinE despite the
time overhead of the ComBack method.

5 Conclusion

ASAP is a graphical tool based on Eclipse for the analysis of CPN models and
other formalisms. It provides the user with an intuitive and graphical language,
JoSEL, for specification of verification jobs. To alleviate the state explosion
problem, ASAP implements several algorithms and reduction techniques. Among
these are: hash compaction, the sweep-line method, the ComBack method and
external memory algorithms. The tool has been designed to be easily extended
with new algorithms or specification languages and its modular architecture
allowed us to write a sweep-line plug-in and a DVE plug-in to load DVE models
in a few days without modifying the rest of the code. ASAP is also very useful
for experimenting with and comparing algorithms as it gives the possibility to
analyze more than 60 CPN and DVE models from our test-suite or from the
BEEM database. Last but not least, ASAP significantly outperforms CPN Tools
regarding performance and performs as well as DiVinE for DVE models. For
these reasons we believe the tool to be suitable for students, researchers, and
industrial users who would like to analyze CPN models or to experiment with
different verification algorithms.

ASAP has replaced CPN Tools in our group to perform verification tasks and
has been used to analyze an edge router discovery protocol [14] and a dynamic
mobile ad-hoc network routing protocol [9]; and to experiment with state space
algorithms [18,10,11]. It is also intended to be used in a future advanced state
space course at Aarhus University.

We are currently considering adding new features to ASAP. In its current
version, ASAP can analyze deadlocks and verify user defined safety properties.
In the design phase of communication protocols, properties are, however, often
specified in a temporal logic, e.g., LTL or CTL. The integration of temporal logic
in ASAP is therefore one of our main priorities.

Since parallel machines are nowadays widespread, it is crucial that model
checkers take advantage of this additional computational power. As the SSE en-
gine of ASAP is currently single-threaded we consider extending it with parallel
and distributed algorithms. In particular, we are working on a parallel version
of the ComBack method of which we briefly mentioned the principle in [11].
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Availability. ASAP is a stand-alone tool available for Windows XP/Vista,
Linux, and Mac OS X. The current version, 1.0, can be freely downloaded from
our web page [2].
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Abstract. Coloured Petri nets (CP-nets or CPNs) is a widely used for-
malism for describing concurrent systems. CPN Tools provides a ma-
ture environment for constructing, simulating, and performing analysis of
CPN models. CPN Tools also has limitations if, for example, one wishes
to extend the analysis capabilities or to integrate CPN models into exter-
nal applications. In this paper we present Access/CPN, a framework that
facilitates such extensions. Access/CPN consists of two interfaces: one
written in Standard ML, which is very close to the simulator component
of CPN Tools, and one written in Java, providing an object-oriented rep-
resentation of CPN models, a means to load models created using CPN
Tools, and an interface to the simulator. We illustrate Access/CPN by
providing the complete implementation of a simple command-line state
space exploration tool.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) provide a useful formalism for describing
concurrent systems, such as network protocols and workflow systems. CPN Tools
[2] provides an environment for editing and simulating CPN models, and for
verifying correctness using state space analysis. Sometimes, this is not enough,
however. As CPN Tools is inherently graphical it cannot be controlled by external
applications, so it is difficult to use CPN Tools in settings that are outside its
scope of interactive use by one user. Such examples include repeated simulation
on multiple servers in a grid, describing a complex decision procedure as a CPN
model for use in an application, and allowing users to set parameters of a model
using a custom user interface. Due to the architecture of the simulator and state
space tool in CPN Tools, it is also difficult to implement new analysis techniques
like new more efficient state space methods.

CPN Tools basically consists of two components (see Fig. 1 (top)): a graph-
ical editor (middle) and a simulator daemon (right). The editor allows users to
interactively construct a CPN model that is transmitted to the simulator, which
checks it for syntactical errors and generates model-specific code to simulate the

� Supported by the Danish Research Council for Technology and Production.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 313–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



314 M. Westergaard and L.M. Kristensen

Fig. 1. Architecture of CPN Tools (top)
and Access/CPN (bottom)

CPN model. The editor invokes the
generated simulator code and presents
results graphically. The editor can load
and save models using an XML for-
mat (left in Fig. 1 (top)). The edi-
tor imposes most of the restrictions
on the use of CPN Tools mentioned
above. Replacing the editor with our
own application, we can remove the
limitations imposed by the editor. This
has been done in several settings: In
[10] simulation code is augmented with
code to let it run within a web-server,
allowing users to interact with the
CPN model via a web-site to perform
operational planning. In [8] the editor
is replaced by a custom application to
allow military planning, and in [12] the editor is replaced by a more general-
purpose application, which makes it possible to make domain specific visuali-
sations of CPN models. Each of these examples use their own ad-hoc way to
interact with the simulator. The simulator suffers from two problems making
such interaction difficult. Firstly, the protocol used for communication between
the editor and the simulator is low-level and complex to implement. Secondly,
the CPN simulator is optimised for simulation and incremental code generation
making it difficult to use for other purposes.

In this paper we propose Access/CPN [1] which comprises two interfaces to
the CPN simulator, alleviating the problems mentioned above. Access/CPN does
not aim to replace CPN Tools as an editor for CPN models, but rather to allow
researchers and developers to make experiments with the CPN formalism and use
it as part of application development. Access/CPN has been developed as part
of the ASAP model checking platform [9] and will be presented in this context,
but is applicable also in general. One interface of Access/CPN is written in Java
and the other in Standard ML (SML). Fig. 1 (bottom) shows how Access/CPN
augments and replaces parts of CPN Tools. The Java interface (middle) consists
of an object-oriented representation of CPN models, the ability to transmit this
representation to the simulator and to perform simulation and inspection of the
current state in the simulator. Furthermore, it includes a loader which can import
models created using CPN Tools. The SML interface (right in Fig. 1 (bottom))
encapsulates the data-structures used in the simulator and provides an interface
to a CPN model facilitating fast simulation, useful for efficient analysis and other
applications executing transitions with little or no user-interaction.

In this paper, we first describe and exemplify the SML interface using a sim-
ple example, and then turn to the Java interfaces. The two parts can be read
independently, and each assumes a knowledge of the language used. Finally, we
conclude, compare with related work, and provide directions for further work.
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2 The SML CPN Model Interface

In this section we describe the SML interface of Access/CPN. The aim of the
interface is to provide efficient access to the CPN simulator, in particular with
the goal of implementing new and more efficient analysis methods. To support
this, the SML interface provides an interface to the state of a CPN model and
to execute enabled transitions. For performance reasons, this interface is written
in SML like the CPN simulator.

Example CPN Model. To exemplify the SML interface, we use a CPN model
of a simple stop-and-wait protocol with one sender and two receivers as an
example. The top module of the model can be seen in Fig. 2 (top), where we
have a substitution transition for the sender, the network, and one for each
receiver. The network has a maximum capacity modeled by the Limit place. If
the network has available capacity, the sender (Fig. 2 (bottom left)) transmits
packets from Send onto the A place. The network (Fig. 2 (bottom middle))
transmits the packet to B1 and B2, optionally dropping one or both of the
packets. The receivers (Fig. 2 (bottom right)) receive the packets on Received and
transmit back acknowledgment onto C1 or C2, which the network transmits to D,
optionally dropping one or both. When the sender receives acknowledgements
from both receivers, the NextSend counter is updated and the transmission is
repeated for the next packet. The model consists of four modules: Top, Sender,
Network, and Receiver. The Receiver module is instantiated twice in the module
Top corresponding to the substitution transitions Receiver 1 and Receiver 2.

2.1 Model Interface

The SML interface is designed with state space analysis in mind, but can be
used for other purposes. It is designed to be independent of the actual formal-
ism, making it possible to develop tools that are formalism-independent. The
interface can be seen in Listing 1. It defines the concepts of states and events
(ll. 2–3). The most important functions are getInitialStates (l. 7) and nextStates
(l. 9). getInitialStates returns a list of initial states (in order to support non-
deterministic formalisms, this is not restricted to being a single state) and a
list of enabled events for each state. nextStates takes a state and an event, and
returns successors using the same format as getInitialStates. If the given event is
not enabled, the exception EventNotEnabled (l. 4) is raised. Additionally, the in-
terface has a function for executing a sequence of events, executeSequence (l. 11),
which works like nextStates except it executes any number of events, and two
functions, stateToString and eventToString (ll. 13–14) for converting states and
events to their string representation.

In addition to providing an implementation of the Model signature, the SML
interface also provides utility functions like a hash-function, a partial order,
and marshalling functions. Additionally, an interface for inspecting the model
is provided, allowing users to create news model-specific functions, but not to
modify the model; for this we suggest using the Java interface instead.
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Fig. 2. Top (top), sender (bottom left), network (bottom middle), and receiver (bottom
right) modules of a simple stop-and-wait protocol model with two receivers

Listing 1. Model interface
� �

1 signature MODEL = sig
2 eqtype state
3 eqtype event
4 exception EventNotEnabled

6 val getInitialStates: unit -> (state * event list) list (* Get initial states and enabled events *)
7 val nextStates: state * event -> (state * event list) list (* Get successor states + enabled events *)
8 val executeSequence: state * event list -> (state * event list) list (* Execute event sequence *)
9 val stateToString: state -> string (* String representation of states *)

10 val eventToString: event -> string (* String representation of events *)
11 end

� �

Listing 2. State representation
� �

1 structure Mark : sig
2 type Sender = { NextSend: NO ms }
3 type Network = { }
4 type Receiver = { NextRec: NO ms }
5 type Top = { A: NOxDATA ms, B1: NOxDATA ms, B2: NOxDATA ms, C1: NO ms, C2: NO ms, D: NOxNO ms,
6 Limit: UNIT ms, Received_1: DATA ms, Received_2: DATA ms, Send: NOxDATA ms, Network: Network,
7 Receiver_1: Receiver, Receiver_2: Receiver, Sender: Sender }
8 type state = { Top: Top, time: time }
9 val get’Top’Receiver_1’NextRec : state -> NO ms val set’Top’Receiver_1’NextRec : state -> NO ms -> state

10 val get’Top’Receiver_2’NextRec : state -> NO ms val set’Top’Receiver_2’NextRec : state -> NO ms -> state
11 val get’Top’Receiver_1’B : state -> NOxDATA ms val set’Top’Receiver_1’B : state -> NOxDATA ms -> state
12 ... (* several more accessor functions *)
13 end

� �
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States. The interface in Listing 1 is formalism-independent. In order to instan-
tiate the interface for CPN models, we need to define the types state and event.
To increase familiarity for users of the state space tool of CPN Tools [2], we
define a structure, Mark, with data types and functions for manipulating states.
We want the type to reflect the hierarchical structure of the CPN model. List-
ing 2 shows (most of) the Mark structure for the model in Fig. 2. The type of
the state is defined inductively in the hierarchy of the model. For each module,
we define a record which contains entries for all places and sub-modules of the
module. For example, in Listing 2 (l. 2) we see the record defined for the Sender
module in Fig. 2 (bottom left). We see that we have only included real (non-port
and non-fusion) places, i.e., so only the NextSend place is present. The type uses
names from the model, and NextSend is thus represented using the record entry
NextSend. The type of the NextSend is NO ms, i.e., multi-sets over the color
NO. The multi-set type is the same as used by CPN Tools. Similarly, types are
defined for Network (l. 3) which contains no real places, and Receiver (l. 4) which
contains one real place. The Top module is more complex (ll. 5–7), but uses
the same structure. It contains entries for all real (i.e., all) places (ll. 5–6), and
entries for all sub-modules (ll. 6–7). The entries for sub-modules are named after
the substitution transition and the type is that of the sub-module. For example,
we see that the sub-module defined by the substitution transition Receiver 1 is
represented by the entry Receiver 1 of type Receiver. At the top-level, we define
the type of the state itself. As it is possible for a model to contain more than
one top module, we add a new top level (l. 8), containing all top modules (here
Top), an entry for all reference declarations (here there are none), and the model
time. For example, see the initial state of the network protocol in Listing 3.

State records, like the one in Listing 3, can be used with SML pattern match-
ing, built-in accessor functions, and by building new structures. For convenience,
we have also created set- and get-functions to access all modules and places of
the structure. These functions use the naming convention: the function name
(get or set) followed by the path of the place or module, separated by quotes.
The functions take a state as argument, and getter functions return either a
multi-set or a record describing the selected module. Setter functions also take
a parameter of multi-set or record type and returns a new state like the one
given with the selected place/module replaced. Examples of setter and getter
functions can be seen in Listing 2 in ll. 9–11. In addition to providing accessors
for the real places represented in the state record, we also provide accessors to
port and fusion places, so it is possible to use, e.g., get’Top’Receiver 1’B, to get
the marking of the port place B in the receiver (really B1 on the Top module).

Listing 3. Initial state of the network protocol example
� �

1 val initial = { Top = { A = empty, B1 = empty, B2 = empty, C1 = empty, C2 = empty, D = empty, Limit = 3‘(),
2 Received_1 = 1‘"", Received_2 = 1‘"", Send = 1‘(1,"COLOUR")++1‘(2,"ED PET")++1‘(3,"RI NET"), Network = {},
3 Receiver_1 = {NextRec = 1‘1}, Receiver_2 = {NextRec = 1‘1}, Sender = {NextSend = 1‘1} }, time = 0 }

� �

Events. Events are defined by the data-type in Listing 4. We define a construc-
tor for each transition named after the module it resides on and the name of
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the transition (same naming convention as for accessor functions in the state
representation). Each constructor is a pair of an instance number and a record
with all variables of the transition. To alleviate the use of instance numbers, we
define symbolic constants (l. 8) for the path to each module instance. Using this,
we can refer to Receive Acknow on Sender as Bind.Sender’Receive Acknow
(Bind.Top.Sender, {k, n1, n2}).

Listing 4. New representation of events
� �

1 structure Bind : sig
2 datatype event = Network’Transmit_Acknow1 of int * {n: INT, success1: BOOL}
3 | Network’Transmit_Acknow2 of int * {n: INT, success2: BOOL}
4 | Network’Transmit_Packet of int * {n: INT, p: STRING, success1: BOOL, success2: BOOL}
5 | Receiver’Receive_Packet of int * {k: INT, n: INT, p: STRING, str: STRING}
6 | Sender’Receive_Acknow of int * {k: INT, n1: INT, n2: INT}
7 | Sender’Send_Packet of int * {n: INT, p: STRING}
8 val Top: int val Top’Network: int val Top’Receiver_1: int val Top’Receiver_2: int val Top’Sender: int
9 end

� �

Listing 5. Implementation of a simple state space exploration algorithm
� �

1 exception Violating of CPNToolsModel.state
2 fun combinator (h2, h1) = Word.<<(h1, 0w2) + h1 + h2 + 0w17
3 val hash = CPNToolsHashFunction combinator
4 fun none _ = false
5 fun dead (_, events) = List.null events

7 fun dfs predicate states =
8 let fun equals (a, b) = a = b
9 val storage = HashTable.mkTable (hash, equals) (1000, LibBase.NotFound)

10 fun dfs’’ state [] = ()
11 | dfs’’ state (event::events) = let val successors = CPNToolsModel.nextStates (state, event)
12 val _ = dfs’ successors
13 in dfs’’ state events
14 end
15 and dfs’ [] = ()
16 | dfs’ ((state, events)::rest) = if Option.isSome (HashTable.find storage state)
17 then dfs’ rest
18 else let val _ = HashTable.insert storage (state, ())
19 val violates = predicate (state, events)
20 in if violates
21 then raise Violating state
22 else (dfs’’ state events; dfs’ rest)
23 end
24 in (dfs’ states; (NONE, storage)) handle Violating state => (SOME state, storage)
25 end

� �

2.2 Example: State-Space Exploration

To illustrate the use of the SML interface, consider the implementation of a sim-
ple state space exploration algorithm in Listing 5 using the primitives presented
above. The algorithm performs a recursive depth-first traversal of the state space
and stores already expanded states in a hash-table. If a state not satisfying the
property is found an exception is raised. The code first (l. 1) defines an exception
to raise if a violating state is found, a built-in hash-function for states is instan-
tiated (ll.2–3), and we define a predicate that is never satisfied (l. 4) and one
that checks for dead-locks (l. 5). The rest is the actual algorithm, which takes a
predicate to apply to each state and a list of states from which to start the explo-
ration. The function defines the storage using SML’s built-in HashTable (ll. 9).
Then two mutually recursive functions dfs’ and dfs” are defined. dfs’ (ll.15–23)
traverses a list of states. It starts by checking if we have already traversed the
state (l. 16), and, if so, continues with the next state (l. 17). If the state is new,
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it is stored (l. 18) and the predicate is checked (l. 19), and an exception is raised
(l. 21) on violation. Otherwise we call dfs”, which explores successors resulting
from executing all enabled events for the given state using the nextStates prim-
itive of the SML interface. dfs” calculates successor states for each event (l. 11),
explores them using dfs’ (l. 12), and traverses the remaining events (l. 13). The
top function calls dfs’ with the given state (l. 24) and returns the storage. If a
violation is found it is also reported.

3 The Java CPN Model Interface

Many applications can benefit from tight integration with the CPN simulator.
For non-algorithmic applications, Access/CPN has a Java interface providing an
object-oriented representation of CPN models, an importer to load models from
CPN Tools, and an implementation of the protocol used to communicate with
the CPN simulator. We have created this interface in Java as Java is widely used
and provides many frameworks and tools for creating user-friendly applications.

Object Model. Our object model builds on version 1.1.5 of ISO/IEC 15909-2,
in particular the PNML Core Model (Fig. 2 in [6]) and the High-Level Core
Structure (Fig. 8 in [6]). We have extended the PNML Core Model with a sim-
plified version of Modular PNML [7] to support hierarchical nets. The model
is not shown here due to space limitations, but is a straightforward represen-
tation of a CPN model. Basically, we have a PetriNet containing one or more
Pages, which can contain any number of Arcs, Places and Transitions, each con-
taining appropriate Labels (e.g., name, place type, and arc inscription). The
net structure is basically an implementation of the PNML Core Model, and
Labels is an implementation of the High-Level Core Structure. Pages can also
contain Instances, corresponding to substitution transitions in CPN Tools. In-
stances contain ParameterAssignments corresponding to port/socket assignments
in CPN Tools, and are simplified versions of ModInstance and ParamAssign from
Modular PNML. Implementation of the object model is done using the Eclipse
Modeling Framework (EMF) [3], is a framework for implementing object models.
EMF generates implementation code from Java interfaces and provides features
like automatic generation of XML marshaling (saving/loading models as XML)
and an adaptor architecture making it possible to observe the object model for
changes and to add new functionality without changing the classes.

CPN Tools Importer. Instances of the object model can be created programmat-
ically, but it is desirable to create models using a graphical editor instead. For
this reason we have created an importer, which allows programmers and users to
import models created with CPN Tools. The importer imports the net-structure
of the model and is able to load graphical information as well, as we have made
a preliminary implementation of the Graphical Information from Fig. 3 in [6].

Protocol Implementation. The CPN Tools editor communicates with the
simulator using a proprietary protocol, which is an implementation of a remote
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Fig. 3. Implementation of the protocol used to communicate with the simulator

procedure call (RPC) system. The protocol sends packets over a TCP/IP stream
in the custom BIS (boolean, integer, string) format, which is a binary format
that marshals simple data types. Packets have an integer op-code indicating the
type of packet and some have an additional integer to indicate the command to
execute. Commands must be combined in the correct way to syntax check a CPN
model and generate simulator code for it. In order to implement this protocol,
one must implement the BIS packet format, high-level constructs translating to
the lower-level command integers, as well as a component that can take a CPN
object model and send it all to the simulator for syntax check and simulation.

In Fig. 3 we see how the BIS protocol has been implemented in the Java in-
terface of Access/CPN. It consists of five packages. cpn.model represents the ob-
ject model described earlier, and cpn.model.importer contains the importer. The
class Job, which is outside of any of the packages, is part of Eclipse. The remaining
three packages implement the protocol used to communicate with the CPN simu-
lator. The classes are listed with the most high-level to the left. Only the classes at
the top are meant to be used by application developers. At the bottom-right, we
have Packet, which implements the BIS package format. Such packets can be sent
to a Simulator. The Simulator uses a delegate, DaemonSimulator, to communicate
with the simulator via TCP/IP in the same way as CPN Tools. The Simulator class
provides communication at the level of packets. The HighLevelSimulator provides
stubs for calls supported by the simulator, making it possible to communicate us-
ing named methods. It uses a PacketGenerator factory to create packets as needed.
The Checker class ties this to the object model hierarchy, and makes it possible to
perform higher-level operations, such as syntax checking all declarations of a CPN
model. CheckerJob further lifts this and makes it possible to syntax check an entire
net using a single call. The checker job integrates with the Eclipse platform and can
provide feedback to the user. If this is undesired, one can use the simpler Checker
class, which can be used independently of the platform used. For simulation, one
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uses the HighLevelSimulator. One rarely needs to consider Simulator, PacketGener-
ator, and underlying classes.

3.1 Example: Command-Line State-Space Analyser

To illustrate the use of the Java interface, we implement a simple command-line
application that uses the state-space algorithm from Sect. 2.2 to check models for
dead-locks. We load a model given as a parameter, load the SML code shown pre-
viously, perform the exploration, and show the result to the user. The Java imple-
mentation can be seen in Listing 6. We start by importing classes needed (ll. 1–5).
The code starts by obtaining the name of the file containing the CPN model to
analyse (l. 9). The file is loaded as a Petri net (l. 10), and we create a HighLevelSim-
ulator. As we are running this outside of an Eclipse application, we need to supply a
simulator manually. The simulator requires a delegate, which must have informa-
tion about which host and port to connect to as well as the name of the run-time
system to load. All of this is handled in ll. 11–12. If we are using the interface as
part of an Eclipse application, we can leave out the parameter in line 12. We then
create a new CheckerJob (l. 13), which requires a name (here the string My model),
a Petri net, and a high-level simulator. We start (schedule) the job and wait for it
to terminate (l. 14). We then load the state-space algorithm developed in Sect. 2.2
(l. 15), and launch an exploration (ll. 16–18). We process the exploration result
and show the user the violating state (if any) and the number of states explored.
When done, the simulator is shut down (l. 20). The application can be executed as
java StateSpaceTool protocol.cpn.

Listing 6. Implementation of a command-line state space exploration tool
� �

1 import java.io.*; import java.net.*;
2 import dk.au.daimi.ascoveco.cpn.engine.Simulator; import dk.au.daimi.ascoveco.cpn.engine.daemon.DaemonSimulator;
3 import dk.au.daimi.ascoveco.cpn.engine.highlevel.HighLevelSimulator;
4 import dk.au.daimi.ascoveco.cpn.engine.highlevel.checker.CheckerJob;
5 import dk.au.daimi.ascoveco.cpn.model.PetriNet; import dk.au.daimi.ascoveco.cpn.model.importer.DOMParser;

7 public class StateSpaceTool {
8 public static void main(String[] args) throws Exception {
9 String file = args[0];

10 PetriNet petriNet = DOMParser.parse(new URL("file://" + file));
11 HighLevelSimulator s = HighLevelSimulator.getHighLevelSimulator(
12 new Simulator(new DaemonSimulator(InetAddress.getLocalHost(), 23456, new File("cpn.ML"))));
13 try { CheckerJob checkerJob = new CheckerJob("My model", petriNet, s);
14 checkerJob.schedule(); checkerJob.join();
15 s.evaluate("use \"simple-dfs.sml\"");
16 System.out.println(s.evaluate("let val (s, storage) = dfs dead (CPNToolsModel.getInitialStates())" +
17 " in (s, HashTable.numItems storage) " +
18 "end"));
19 } finally {
20 s.destroy();
21 } } }� �

4 Conclusion and Future Work

In this paper we have described Access/CPN, which provides two interfaces to
the CPN Tools simulator. One is close to the simulator and written in Standard
ML providing fast access to the simulator, which is useful for analysis methods
and other algorithmic applications. The other interface is written in Java and pro-
vides an object-oriented representation of CPN models, a means to import models
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created using CPN Tools, and abstractions of the communication with the CPN
Tools simulator, making it possible to integrate CPN simulation into Java appli-
cations. Access/CPN is currently used as part of the ASAP platform [9] and in a
master’s thesis on automatic code generation of CPN models [4]. Access/CPN has
already been distributed to several interested parties and is available from [1].

The BRITNeY Suite [12], originally developed for visualisation purposes, re-
sembles Access/CPN as it also allows programmers to interact with the simulator
of CPN Tools. BRITNeY requires that programmers implement their programs
as extensions of BRITNeY, whereas Access/CPN makes it possible to embed
the CPN simulator into other programs, allowing greater freedom. In that re-
spect, Access/CPN is a significant improvement over the interface provided by
BRITNeY. The Petri Net Kernel (PNK) [11] shares many of the same traits
as Access/CPN, i.e., a representation of Petri nets and ability to use Petri net
simulators. PNK, like BRITNeY, however, makes programmers write their pro-
grams within PNK and is more focused on making it easy to make Petri net
tools rather than using Petri nets within external applications.

As part of future work, it would be useful to integrate the incremental syntax-
checking capabilities of the CPN Tools simulator with the object model, so when
the object model is altered it is automatically syntax-checked and the simulation
code is regenerated. This would be useful for editors and model generating ap-
plications. It would also be interesting to use Access/CPN for integrating CPNs
into meta-modelling tools like PNK or the High-Level Architecture [5].
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Abstract. DSSZ-MC supports the symbolic analysis of bounded place/
transition Petri nets extended by read, inhibitor, equal, and reset arcs.
No previous knowledge of the precise boundedness degree is required. It
contains tools for the efficient analysis of standard properties (bounded-
ness, liveness, reversibility) and CTL model checking, built on an object-
oriented implementation of Zero-suppressed Binary Decision Diagrams
and Interval Decision Diagrams. The main features are saturation-based
state space generation, analysis of strongly connected components, dead
state analysis with trace generation, and CTL model checking by limited
backward reachability analysis. The tool is available for Windows, Linux,
and Mac/OS.

1 Motivation

Considering efficient implementations of model checking tools for Petri nets,
most research efforts so far are aimed at techniques for 1-bounded nets.

Reports on applying symbolic techniques to k-bounded nets can be occasion-
ally found in the literature, but the only available tool implementing symbolic
CTL model checking is SMART [CS03]. Though every bounded net can be simu-
lated by a 1-bounded net, in practice the transformation is generally complicated
and produces huge nets which can no longer be efficiently analysed.

However, biochemical networks in systems and synthetic biology often result
in k-bounded models, caused by stoichiometry and the number of molecules or
discrete concentration levels involved; see e.g. [KJH05], [GH06], [HGD08]. Many
of these models could not be analysed by existing model checking tools and new
techniques were required.

This paper gives an overview on the basic functionality of our new symbolic
analysis tool that supports the efficient analysis of 1-bounded (zbdd-mc) and k-
bounded (idd-mc) Petri nets extended by four non-standard arc types. It replaces
our former symbolic CTL model checker of 1-bounded place/transition Petri nets
[Noa99], which has been part of the model checking kit [SSE03] for quite a while.

We deliberately confine ourselves to an informal presentation; see [Tov08] for
more detailed information concerning data structures and algorithms, as well as
all related formal definitions.

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 323–332, 2009.
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2 Inputs

2.1 Extended Petri Nets

The tool supports the analysis of standard place/transition Petri nets extended
for convenience by four special arc types: read arcs (identified by a black dot),
inhibitor arcs (hollow dot), equal arcs (two black dots), and reset arcs (double
arrow), which can be used simultaneously and always go from places to transi-
tions. The standard firing rule is adapted accordingly. The enabling condition
is extended in the following way: if there is an arc a with a weight w = V (p, t)
connecting a place p with a transition t, then t can be enabled in a marking m
if the following conditions are satisfied:

– a is a read arc ∧m(p) ≥ w,
– a is an inhibitor arc ∧m(p) < w,
– a is an equal arc ∧m(p) = w.

The token situation on p is not changed by the firing of t, i.e. m′(p) = m(p).
Contrary, reset arcs do not alter the enabling condition, but involve a change of
the marking on p by firing of t:

– m′(p) = 0, if p is not also a postplace of t
– m′(p) = V (t, p), if p is also a postplace of t

This net class is strictly more powerful than the class of standard place/transi-
tion Petri nets. Non-standard arcs help to express context conditions and allow
themselves an elegant implementation of the analysis algorithms. For illustration
consider the extended Petri nets in Figure 1, showing typical components of
software verification models.

In the tradition of our previous model checking tools, the Petri nets have to
be given in the Abstract Petri Net Notation (APNN) [BKK94] which is a lan-
guage for the description of different classes of Petri nets. Keywords are similar
to LaTeX commands. APNN has been adapted to allow the specification of the
non-standard arc types. The input format can be generated, e.g., by the ex-
port feature of our hierarchical Petri net editor Snoopy [HRS08] which supports
standard place/transition Petri nets as well as the extended Petri net class.

b
4

b
4

a

a

temp

outinin out

then else

if(b=2)
5

32 2

Fig. 1. Extended Petri nets components for software modelling (from left to right): if
(b=2) then . . . else . . . , a := 5, a := b
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All analyses supported by DSSZ-MC involve the construction of the state
space, so the models have to be bounded. However, no previous knowledge of
the exact boundedness degree is required. Please note, the tool does not perform
a coverability check. If the Petri net is unbounded, a run will not terminate
before the memory is exhausted (physically or as set by the memory option).

2.2 CTL Model Checking

We support model checking of Computational Tree Logic (CTL) according to
the standard semantics; for a formal semantics definition see e.g. [CGP01]. The
following grammar specifies a valid input for our CTL model checker.

ctl input = ctl formula ’;’
| ctl formula ’;’ ctl input .

ctl formula = ’(’ ctl formula ’)’
| unop ’(’ ctl formula’)’
| ’(’ctl formula’)’ binop ’(’ctl formula’)’
| ae ’[’ ctl formula ’U’ ctl formula ’]’
| untemp ’(’ ctl formula ’)’
| ap .

unop = ’ !’ .

binop = ’*’ | ’+’ | ’->’ | ’<-’ | ’<->’ .

ae = ’A’ | ’E’ .

untemp = ’AX’ | ’EX’ | ’AF’ | ’EF’ | ’AG’ | ’EG’ .

(* when using zbdd-mc *)
ap = PLACE .

(* when using idd-mc *)
ap = PLACE cmp num

| PLACE ’in’ interval .

cmp = ’==’ | ’ !=’ | ’>=’ | ’>’ | ’<=’ | ’<’ .

interval = ’[’ num ’,’ num ’)’ .

num = [0-9]+ .

PLACE has to be a valid place name of the Petri net to be analysed and in
conformity with the standard conventions of C++ identifiers. Places are read as
Boolean variables in the case of 1-bounded Petri nets (zbdd-mc) and as integer
variables in the case of k-bounded Petri nets (idd-mc).

Intervals are left-closed and right-open; thus, the lower bound is included and
the upper bound is excluded from the specified interval. A CTL input file may
also contain an arbitrary number of single-line and multi-line comments in C++

style, allowing for better readable requirement specifications.
Additionally, there are a couple of non-standard temporal operators (EY, EH,

FwdUntil, FwdGlobal), which, however, are beyond the scope of this introduc-
tory overview; see [Tov08] for details. They specifically allow for efficient forward
traversal model checking (in preparation); compare Section 4.3.
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3 Basic Data Structures

The tool is built upon an object-oriented implementation of Zero-suppressed
Binary Decision Diagrams (ZBDDs) and Interval Decision Diagrams (IDDs).
Both data structures are crucial for the reached performance, see Section 6.
Here we sketch the basic principles to illustrate the compression effect, which we
hope to gain generally by symbolic representations of very large state spaces.

ZBDDs [Min93] trail the success story of Binary Decision Diagrams (BDDs)
[Bry86]. They are a special variation dedicated to the efficient representation of
vast sets of sparse arrays, thus they are perfectly suited for the analysis of 1-
bounded Petri Nets. The efficiency gain in comparison to standard BDDs comes
from a special reduction rule which eliminates all variables that do not occur in
a given marking (place is empty), compare Figure 2.

IDDs are a rather straightforward generalization of BDDs [Rid97], [ST98].
Arcs are labelled by (possibly) real intervals, the number of outgoing arcs of
a node can vary, and values of IDD variables are not bounded. To analyse k-
bounded Petri Nets, Boolean IDDs (IDDs with only two terminal nodes: 0 and
1) over integer intervals are used, compare Figure 3. Every Boolean IDD over n
variables represents a function f that can be written as an interval logic formula
over n variables, i.e., as a formula containing only atomic propositions over
integer variables combined by logic operators. To find the result of a function
for the given values ai of all variables xi, one follows a path through the graph
from the root to a terminal node. In a non-terminal node v, an edge labelled
with Ij must be chosen if var(v) = xm and am ∈ Ij . The result of the function
is defined by the label of the terminal node reached. As usual, all paths to the
terminal node 1 can be read as the encoding of a state set.

ZBDDs and IDDs enjoy the same powerful property in that they yield a
canonical representation of Boolean or interval logic functions, respectively, if
they are ordered and reduced. Boolean functions naturally encode sets of states
of 1-bounded Petri nets, while interval logic functions allow a natural encoding
of sets of states of k-bounded Petri nets. Both types of decision diagrams allow

x2

x1

x1

x2 x2

x3

x4

0 10 1

Fig. 2. The state set { (1, 0, 0, 0), (0, 1, 0, 0) } in BDD and ZBDD representation
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Fig. 3. Bool-Shannon decomposition for IDDs; general principle (left), and the IDD
encoding the interval logic function f = (x1 ≥ 8) ∨ (x1 ∈ [6, 8) ∧ x2 > 0) (right)

straightforward implementation of the basic operations required for the various
Petri net analyses.

All algorithms and options sketched in the next section are equally available
for both data structures and, thus, for 1-bounded and k-bounded Petri nets.

4 Main Features

There is a wide variety of tool options among which the user can choose. We
sketch here only the most important ones. According to our experience up to
now, there seems to be no general rule for the best choice of options.

4.1 Preliminaries

The variable ordering (i.e. place ordering) is known to have a strong influence
on the decision diagrams’ size and, thus, on the computation speed. A bad choice
may even totally prevent the state space’s constructability. There is no general
rule for the best method and we provide several options:

1. plain order as read from the APNN file
2. reverse order to the one read from the APNN file
3. a random order
4. heuristic 1 – an algorithm computing weights for places based on the net

structure [Noa99]
5. heuristic 2 – an adaption of the previous one [Tov08] (default)
6. derived from the transition ordering
7. read from a file as specified by the user

Likewise, the transition ordering has a crucial impact on the performance
of the chaining and the saturation algorithms. There are several options: plain,
random, read from file, and three heuristics derived from the net structure (one
of the heuristics is the default).
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There are three categories of state space generation algorithms.

1. Common Breadth-First Search (BFS): an iteration fires sequentially all tran-
sitions (according to the transition ordering) before adding the new states
to the state space.

2. Transitions chaining: like BFS, but the state space is updated after the firing
of each single transition.

3. Saturation algorithm (SAT): transitions are fired in conformance with the
decision diagram, i.e. according to an ordering, which is defined by the vari-
able ordering. A transition is saturated if its firing does not add new states
to the current state space. Transitions are bottom-up saturated (i.e. start-
ing at the terminal nodes and going towards the root). Having fired a given
transition, all preceding transitions have to be saturated again, either af-
ter a single firing (single) or the exhausted firing (fixpoint) of the current
transition; see Section 6 for some benchmarks.

4.2 Analysis of General Behavioural Properties

No a priori knowledge of the precise boundedness degree is required. The
boundedness of each individual place as determined by the state space construc-
tion can be written to a file.

Symbolic algorithms for the computation and enumeration of the terminal
strongly connected components allow one to determine efficiently liveness
and reversibility. All live/nonlive transitions can be written to a file.

The dead state analysis with trace generation determines all reachable dead
states, which can be written to file as an interval logic expression, i.e., as an
expression containing only atomic propositions over integer variables combined
by logic operators. All empty places do not appear in the expression. A transition
sequence producing one of the reachable dead states can be written to a file as
well.

4.3 Model Checking of Special Behavioural Properties

Limited backward reachability analysis. The traditional backward analysis
to check the operator EU can often be improved by deleting all states after each
backward step, which are not reachable from the initial marking. We support
this established technique complemented by efficient saturation-based reach-
ability analysis.

Furthermore, forward traversal reachability analysis is under prepara-
tion, which is expected to be more efficient in some cases than any backward
analysis technique. It will be applied for all formulae containing the non-standard
forward operators FwdUntil and FwdGlobal, the past tense operators EY and
EH , and for all formulae which can be transformed using them; see [Tov08] for
transformation rules.
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5 Graphical User Interface

The symbolic analyser DSSZ-MC per se is implemented as a command line tool.
However, it comes along with an optional Graphical User Interface (GUI) which
is designed to assist the user in choosing among the various tool features [Fra08].
Actually, it is a general GUI generator for command line tools configured by an
xml file specifying the individual tool options and their interdependencies, so it
can be easily translated into other languages or adjusted to new tool options or
even other tools. Figure 4 gives a snapshot of the sub-window offering the choice
amongst the possible algorithms and related settings of DSSZ-MC.

Fig. 4. A snapshot of the GUI to choose among the various tool options

6 Benchmarks

We compare our tool with SMART [CS03] which is the best tool known for
the symbolic analysis of k-bounded Petri nets with extended arcs. It deploys
Multi-valued Decision Diagrams (MDDs) and also implements a saturation-
based reachability algorithm. In contrast to DSSZ-MC, which handles monolithic
Petri nets, SMART requires a suitable partitioning of the place set of the net to
achieve good results. Unfortunately, defining a good partitioning is generally not
a trivial task for non-regular models. SMART’s saturation algorithm saturates
MDD nodes, while DSSZ-MC applies the saturation strategy transition-wise to
the whole decision diagram.

Our test suite comprises six Petri net models. The first three (philosophers,
kanban, FMS) are taken from SMART’s examples archive, which come along with
a partitioning [MC99]. We added two biochemical networks [GH06], [HGD08], and
a Petri net weakly computing the Ackermann function [PW03]. We tried our very
best to find suitable partitionings for them.
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Table 1. Some benchmarks for the ZBDD tool

model net ZBDD-MC SMART
time secs time secs

|P| |T| |states| fixpoint single
phils N500 3000 2000 3.03e+313 12.77 12.83 7.60
phils N1000 6000 4000 9.18e+626 97.14 97.28 15.74

Table 2. Some benchmarks for the IDD tool a)

model net IDD-MC SMART
time secs time secs

|P| |T| |states| fixpoint single
kanban N50 16 16 1.04e+16 14.68 0.54 386.00
kanban N75 7.83e+17 - 4.17 674.66
kanban N100 1.73e+19 - 6.50 -
kanban N200 3.17e+22 - 37.86 -
kanban N300 2.65e+24 - 265.01 -
FMS N100 22 21 2.70e+21 10.28 6.60 3.11
FMS N200 1.95e+25 38.09 57.41 37.56
FMS N250 3.46e+26 107.11 170.11 70.33
FMS N300 3.65e+28 907.37 - -
erk N50 11 11 2.83e+8 2.74 2.27 25.23
erk N100 1.59e+10 3.99 2.51 231.41
erk N200 9.52e+11 29.80 4.08 -
erk N700 1.67e+15 - 55.18 -
levchenko N20 22 30 8.81e+10 2.34 2.39 6.82
levchenko N40 4.78e+14 3.00 2.44 133.23
levchenko N80 5.63e+18 17.44 3.34 †
levchenko N120 1.62e+21 153.95 5.73 †
levchenko N160 1.06e+23 - 10.88 †
levchenko N320 2.62e+27 - 133.54 †
ack(3,2) 23 24 1.44e+07 2.81 4.14 76.75
ack(3,3) 1.34e+09 6.79 32.97 -
ack(3,4) 1.42e+11 43.50 - -

a) ’–’ means that physical memory was exhausted,
† we did not get results within one hour computation time.

The benchmarks were done on a 2 GHz Pentium M with 2 GB RAM running a
32bit Linux. In general, we used the default settings, which are in most cases the
best possible choice. The memory option was set to 4 (up to 2.6 GB memory).
It may be worthwhile to try different place ordering options to find the most
suitable one. We did so for the kanban and FMS nets, for which we used option
6. Furthermore we tried the SAT algorithm with single firing first, which usually
speeds up the construction significantly. Tables 1 and 2 show the total processing
time for the state space computation using the saturation algorithms (fixpoint,
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single). These figures do not include the precious time a tool user spends to look
for good options and suitable net partitionings.

The results suggest that the two tools under consideration may complement
each other, depending on the power of the variable/transition orderings and net
partitionings found.

7 Technicalities

The tool is a complete re-implementation in C++, using the GNU MB Bignum
Library (GMP). The parser of CTL formulae has been generated by the lexical
analyser and parser generator flex and bison, respectively. The source code
comprises about 22,800 LOC (Lines of Code, including comments) and has been
tested on Windows, Linux, and MAC/OS.

The command line tool comes as two all-inclusive binaries (statically linked
libraries), therefore, no special installation is required. Each takes about 1-2 MB
memory, depending on the platform.

The GUI is written in Java and delivered by an installer as a Java jar file, so
it requires the Java run-time environment (1.6 or higher).

The tool is available free of charge for scientific purposes at www-dssz.informa-
tik.tu-cottbus.de. We provide the binaries for Windows, Linux, and Mac/OS. At
the same website one also finds all the Petri net examples (in Snoopy, APNN,
and SMART syntax) which we used as benchmarks in the preceding section.
Maybe the reader finds better partitionings and/or options?

8 Conclusions

We have presented a tool for the symbolic analysis of extended Petri nets that
supports the efficient analysis of general behavioural properties and CTL model
checking as well. The models have to be bounded, however, no a priori knowl-
edge of the precise boundedness degree is required. Crucial points for the tool’s
performance are the data structures used for the symbolic state space represen-
tation, and the algorithms, which exploit strongly connected components and
the saturation principle.

We are working on a more detailed comparison with related tools, including
liveness and reversibility decision as well as a representative set of model checking
queries.

Besides the forward traversal strategy for efficient model checking mentioned
in Subsection 4.3, we consider an extension of the current implementation by
allowing a set of initial states. This set has then to be specified by an interval
logic expression.

Continuing the encouraging results we have gotten so far, we are develop-
ing IDD-based model checking of Continuous time Stochastic Logic (CSL), see
[Sch08]. A first prototype is available on the same website as the tool described
in this paper.



332 M. Heiner, M. Schwarick, and A. Tovchigrechko

References

[BKK94] Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri Net Notation. Techni-
cal report, Univ. Dortmund, CS Dep. (1994)

[Bry86] Bryant, R.E.: Graph-based algorithms for Boolean function manipulation.
IEEE Trans. on Computers C-35(8), 677–691 (1986)

[CGP01] Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge (1999) (third printing, 2001)

[CS03] Ciardo, G., Siminiceanu, R.: Structural symbolic CTL model checking of
asynchronous systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 40–53. Springer, Heidelberg (2003)

[Fra08] Franzke, A.: A concept for redesigning Charlie. Technical report, BTU Cot-
tbus, Dep. of CS (2008)

[GH06] Gilbert, D., Heiner, M.: From Petri nets to differential equations - an inte-
grative approach for biochemical network analysis. In: Donatelli, S., Thia-
garajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer,
Heidelberg (2006)

[HGD08] Heiner, M., Gilbert, D., Donaldson, R.: Petri nets in systems and syn-
thetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008.
LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

[HRS08] Heiner, M., Richter, R., Schwarick, M.: Snoopy - a tool to design and ani-
mate/simulate graph-based formalisms. In: Proc. PNTAP 2008, associated
to SIMUTools 2008. ACM digital library, New York (2008)

[KJH05] Koch, I., Junker, B.H., Heiner, M.: Application of Petri Net Theory for
Modeling and Validation of the Sucrose Breakdown Pathway in the Potato
Tuber. Bioinformatics 21(7), 1219–1226 (2005)

[MC99] Miner, A.S., Ciardo, G.: Efficient reachability set generation and storage
using decision diagrams. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999.
LNCS, vol. 1639, pp. 6–25. Springer, Heidelberg (1999)

[Min93] Minato, S.: Zero-suppressed BDDs for set manipulation in combinato-
rial problems. In: Proc. 30th ACM/IEEE Design Automation Conference
(DAC), pp. 272–277. ACM Press, New York (1993)

[Noa99] Noack, A.: A ZBDD package for efficient model checking of Petri nets. Tech-
nical report, BTU Cottbus, Dep. of CS (1999) (in German)

[PW03] Priese, L., Wimmel, H.: Theoretical Informatics - Petri Nets. Springer, Hei-
delberg (2003) (in German)

[Rid97] Ridder, H.: Analysis of Petri Net Models with Decision Diagrams. PhD
thesis, University Koblenz-Landau (1997) (in German)

[Sch08] Schwarick, M.: Transient Analysis of Stochastic Petri Nets With Interval
Decision Diagrams. In: Proc. 15th German Workshop on Algorithms and
Tools for Petri Nets (AWPN 2008), September 2008. CEUR Workshop Pro-
ceedings, vol. 380, pp. 43–48. CEUR-WS.org (2008)
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Abstract. A large number of models that are employed in the field of
concurrent systems design, such as Petri Nets, gate-level circuits, Static
Data Flow Structures and Conditional Partial Order Graphs have an
underlying static graph structure. Their semantics, however, is defined
using additional entities, e.g. tokens or node/arc states, which in turn
form the overall state of the system. We jointly refer to such formalisms
as Interpreted Graph Models. The similarities in notation allow for links
between different models to be created, such as interfaces between dif-
ferent formalisms or conversion from one model type into another, which
greatly extend the range of applicable analysis techniques.

This paper presents the new version of the Workcraft tool designed
to provide a flexible common framework for development of Interpreted
Graph Models, including visual editing, (co-)simulation and analysis.
The latter can be carried out either directly or by mapping a model into
a behaviourally equivalent model of a different type (usually a Petri Net).
Hence the user can design a system using the most appropriate formalism
(or even different formalisms for the subsystems), while still utilising the
power of Petri Net analysis techniques. The tool is platform-independent,
highly customisable by means of plug-ins, and is freely available for
academic use.

1 Introduction

Petri nets (PNs) have been used for a long time as a formalism that, while simple
enough to understand intuitively, is yet quite expressive and natural for model-
ling and designing concurrent systems. The value of PNs arises from the fact
that there exists mature theory and numerous tools that are able to efficiently
verify various behavioural properties of a PN. In particular, model checking [3]
is an automatic technique able to either prove that a certain property (deadlock
freeness, mutual exclusion of places, etc.) holds for the given PN or generate
a trace demonstrating that the property is violated. This information is very
useful for troubleshooting, and often allows to detect and fix errors early in the
system design process.

However, PNs are a low-level formalism, much like an assembly language. The
size of a PN required to describe the behaviour of a realistic system can become
so large that a designer is unable to comprehend it. Hence, using them directly

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 333–342, 2009.
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Fig. 1. Model verification workflow using Workcraft

to describe a system is often unworkable and error-prone, and in practice higher
level formalisms are often employed, e.g. gate-level digital circuits, networks of
handshake components [2], Static Data Flow Structures [14] and Conditional
Partial Order Graphs [9]. Such formalisms, in turn, require analysis and verifica-
tion methods; however, development of detailed theory and special tools for each
of them is often impractical – it may be more efficient to express a formalism in
terms of another one, e.g. a PN, for which mature theory and tools have already
been developed. Then, the result of the analysis (e.g. a violation trace) can be
propagated back, interpreted in terms of the original model and shown to the
designer (see Figure 1). Naturally, PNs are a good choice for the target model,
as their compositions are well understood, and efficient model checking tools for
PNs are readily available.

A common feature of the high-level models mentioned above, as well as PNs
themselves, is the presence of an underlying static graph structure. Their se-
mantics are defined using additional entities, such as tokens or node/arc states,
which together form the overall state of the system. We jointly refer to such
formalisms as Interpreted Graph Models (IGM). The similarities in notation and
expressive power allow a number of basic operations on these formalisms, such as
serialisation, visualisation, editing and translation from one formalism into ano-
ther, to be generalised. More complex operations on the models can also be used,
such as interfacing one model type with another. This enables the designer to
model subsystems using the most appropriate formalism, while still maintaining
the ability to simulate and analyse the overall system.

This paper presents the new version of the Workcraft tool that is desi-
gned to provide a flexible common framework for Interpreted Graph Models.
The tool is built using a plug-in driven architecture, and thus is easily exten-
dable to other IGMs, as well as new analysis/verification modules. Workcraft
provides a GUI environment that facilitates model entry, supports interactive
visual simulation, convenient “single-click” verification using external tools, and
automatic back-propagation of violation traces from one model to another. The
latter enables such traces to be immediately simulated in the high-level model,
greatly increasing a designer’s productivity.

2 Objectives

The primary design goal of the Workcraft framework is twofold. One target
category of users are the researchers who would like to define new Interpreted
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Graph Models, while the other category are those who wish to design, analyse
and verify a system using already implemented formalisms. To appeal to the
former category, a plug-in based architecture was designed, which allows new
formalisms to be introduced with the minimum effort – the benefits of the visual
editing and simulation are inherited from the framework. Also, some of the
important tools, such as the Petri Net mapping engine, were designed as general-
purpose: a developer of a model only needs to write a mapping specification file
using a straightforward XML-based format to receive the benefits of automated
PN based verification features of the framework.

A major focus in development was a clean and fast visualisation engine, which
is based on custom-written hardware-accelerated vector graphics renderer. The
visualisation engine is used to support graphical editing and interactive simula-
tion; it also supports graphics output into widely used vector file formats (SVG,
EPS and PDF). The interactive simulation is one of the main features of the
framework, that allows one to simulate the implemented IGMs in a variety of
ways, such as user-controlled step-by-step simulation, automatic simulation with
random choice of steps, or violation trace replay.

In contrast to the previous version of Workcraft that focused exclusively
on the analysis of Static Data Flow Structures [12], the new version aims to pro-
vide a general-purpose framework, not focused on one particular formalism, but
exploiting the enormous potential of different aspects of IGMs interoperability.

3 Functionality

In this section we give a brief overview of Workcraft’s functionality and
present a number of screenshots to give a general impression of the GUI.

3.1 Overview

The main window of Workcraft is shown in Figure 2. The main menu (1), be-
sides the standard file and editing operations, includes the automatically selected
set of tools which are applicable to the current model. The editor settings (2)
allow the user to enable or disable editing features such as snap-to-grid. The do-
cument view (3) presents the current model graphically. It is used for navigating
the model and provides scaling (using the mouse wheel) and panning (holding
right/middle mouse button and dragging) operations to control the viewport.
The same view is also used for the interactive simulation. Editor tools (4) are
used to switch between editing modes, such as creating and deleting the model
components (represented by the vertices in the graph with specific semantics,
e.g. places and transitions in a PN or gates and latches in a gate-level circuit),
as well as connecting the components (e.g. by arcs in a PN or by wires in a
gate-level circuit).

The property editor (5) displays the properties of the currently selected com-
ponent and allows the user to edit them, e.g. to change the label or number of
tokens in a PN place, or the type and parameters of a circuit gate. The com-
ponent list (6) shows the set of all components supported by current model. A
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Fig. 2. The main GUI window of Workcraft

component can be added to the document either by dragging it from the com-
ponent list and dropping onto the document view, or by using a hotkey, which
is optionally specified by the component definition. All components are further
assigned numeric hotkeys from ’1’ to ’9’, corresponding to their order in com-
ponent list for faster access. The utility area (7) has three tabs: the console,
which is used to display various information during normal execution of the pro-
gram and also allows to execute scripts; the problem list displaying errors which
might have occurred during execution; and the simulation control panel which
is discussed in detail below.

3.2 Working with Models

The new model dialogue (Figure 3) accessible through the file menu is used to
start working on a new model. The dialogue presents the user with a choice of
currently supported models. Each of these models is specified using a plug-in, so
the user is able to customise the selection by removing the models that he/she
is not going to use. After the model has been created, the user can add, connect
and edit the components using the document view (Figure 2).

Fig. 3. New model dialogue
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(a) File menu (b) Tools menu (c) Model trans-
form menu

Fig. 4. Items of the main menu

Import/export menu is accessible from the File menu, see Figure 4(a). There
are two kinds of export: graphics export and model export. Graphics export is
used to save the visual snapshot in a vector format, such as SVG or EPS. This
feature greatly facilitates creation of figures that can be used for writing articles
or documentation. Model export, on the other hand, is used to store the model
in a format usable by other tools. Tools menu, see Figure 4(b), contains the
currently applicable tool plug-ins that are used for model analysis. The set of
available tools depends on the current model type and installed plug-ins. For
example, if the currently opened model is a gate-level circuit, tools that check
the circuit for deadlocks and hazards will automatically be inserted into this
menu. Transform menu, see Figure 4(c), contains tools that are used to change
the model structure or to convert it into another model type. For example, a
circuit can be converted into a Petri net by using the “convert into Petri Net”
command from this menu.

Simulation controls, see Figure 2(area 8), allow the user to perform the in-
teractive simulation of the current model in several ways. Start, Step, Stop and
Reset buttons are used to switch between the simulation and editing modes.
When the simulation is started using the Start button, all editing is disabled
until the simulation is stopped using the Stop button. After the simulation has
been stopped, the system can be reset to the pre-simulation state by using the
Reset button. Automatic simulation will periodically fire components that are
currently enabled. If several such components exist simultaneously, one of them
will be chosen randomly. The interval at which the components are fired is
set using the Simulation speed slider. This simulation mode is convenient for
large, pipeline-style systems, and helps the user to see how the events propagate
through the system. Interactive simulation highlights the components that can
be fired at each step. The enabled components are only fired when the user clicks
on them (the components with straightforward behaviour, such as consecutive
combinational logic blocks in SDFS model, are still fired automatically). This
simulation mode is convenient for manual inspection of execution scenarios or
for examining the response of the system to certain input stimuli. Trace replay
mode allows the user to replay either previously saved traces or the violation
traces returned by verification tools. In this way, a sequence of events that leads
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to an undesired state of the system can be examined by the user, which is very
helpful for debugging. If Step-by-step option is selected, only one event at a time
is fired when the user presses the Step button.

4 Use Cases

Workcraft has been successfully used for numerous practical applications,
some of them employing complex interactions between several different model
types. Below we present a number of examples illustrating this.

4.1 Static Data Flow Structures Simulation and Verification

Workcraft played a crucial role during the development of the asynchronous
circuits datapath models based on Static Data Flow Structures (SDFS) [14],
which are a high-level formalism for asynchronous datapaths; SDFS can be
viewed as an equivalent of register transfer level (RTL) in synchronous
design.

The SDFS model is a directed graph that has two types of nodes: registers
(depicted as boxes with two vertical lines) and combinational logic (depicted as
plain boxes). Registers can be marked with tokens (shown as black circles or
squares), and their movement from register to register models the propagation
of data inside the datapath. The logic nodes represent combinational logic and
model the effect of its delay on the data pipeline. An essential property of the
logic nodes is the possibility of early evaluation (EE) – the situation where just a
subset of inputs is sufficient to start producing the computation result. In such a
case, all the other inputs are no longer required, and it is best to send a signal to
terminate their computation in order to save power and time. There are several
types of SDFSs capable of expressing datapaths with EE, such as Spread Token,
Anti-token and Counterflow [14]. They have a similar graphical notation but
different token game rules.

Systems with EE often have very intricate behaviour, and it is very easy to
introduce subtle errors when designing them. For example, the shortest trace
leading to a deadlock in a (rather small) Counterflow SDFS model in Figure 5
contains 29 steps. This problem would be fairly hard to discover using manual
interactive simulation, due to a very long and peculiar sequence of events that
leads to a deadlock. Hence formal verification is essential in SDFS design. In
this example, Workcraft was able not only to detect a deadlock, but also to

EE

(a) Initial state

EE

(b) Deadlock state

Fig. 5. Counterflow SDFS verification example
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(a) Verification flow (b) Environ-
ment STG

A

B

Q
      wire delay

(c) Circuit that implements the speci-
fication (a)

(d) A potential hazard state

Fig. 6. Circuit verification example

graphically reproduce, step-by-step, the problematic event trace. This has led to
a better understanding of the limitations of the Counterflow SDFS model, and
provided the motivation and essential ideas for further adjustment of the token
game rules.

4.2 Asynchronous Circuits Verification

An important problem when designing a gate-level asynchronous circuit is the
efficient detection of hazards. However, whether the circuit is hazardous or not
almost always depends on the behaviour of its environment, i.e. a circuit can be
hazardous in one environment and not hazardous in another. The problem here
is that it is usually impractical or even impossible to provide the specification
of the environment as a gate-level circuit. In practice, the abstraction of the
environment is often given in the form of a Signal Transition Graph (STG) [8],
which is a special type of a labelled PN. That is, the overall specification is
inherently heterogeneous, as a part of it is a gate-level circuit and another part is
an STG. Hence Workcraft’s ability to interface different formalisms becomes
essential for this scenario. It translates the circuit into an STG [11], which is
then composed with the environment specification. To alleviate the state space
explosion, the verification is performed using efficient external tools based on
PN unfolding prefixes, namely Punf [6] and MPSat [7]. The shortest PN trace
leading to a hazard is then mapped back onto the gate-level representation of
the circuit, presenting the designer with a readable trace that can be visually
simulated in Workcraft.

An example of circuit verification is shown in Figure 6. The circuit that is
verified is a possible implementation of Muller’s C-element. If one does not take
the wire delays into consideration then the implementation is correct. However,
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if a wire delay is introduced (modelled by a buffer in parts (c,d) of the figure),
the excited AND-gate that follows the wire can become disabled without firing,
causing a hazard.

Circuit verification features of Workcraft have helped us to discover a
potential hazard in a previously published Counterflow Stage Controller cir-
cuit [1,14], as well as assisted in the development of a multiresource arbiter [5].

4.3 Asynchronous Circuit Synthesis Based on Conditional Partial
Order Graphs

Conditional Partial Order Graph [9] is a formalism for circuit specification which
combines certain advantages of Petri nets and Finite State Machines: it does not
have the explicit notion of states (like PNs) and models the choice on the level of
logic conditions (like FSMs). The specification size of a highly concurrent system
with multiple combinational choice is often much smaller in the CPOG model
than in PN or FSM one.

CPOGs were implemented in Workcraft, and appear to be the forma-
lism with most links to other model types, see Figure 7. Asynchronous circuits
can be synthesised directly from CPOG specifications, and verified for speed-
independence using the PN mapping technique [11] (the environment behaviour
in this case is specified using STGs). A CPOG model can also be directly conver-
ted into a PN, and checked for properties such as deadlocks. Petrify tool can
be used as an alternative method of synthesising the same specification, so that
its result can be compared with that of CPOG-based synthesis, and the user can
chose the best one.

Fig. 7. A complex model interoperability example
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5 Comparison with Other Tools

There is a large number of tools available that are able to manipulate and analyse
particular Interpreted Graph Model types. The tool closest to Workcraft with
respect to the design philosophy is probably the Pep tool [10]. It is a compre-
hensive and extendable framework that includes a set of utilities for verification
of Petri nets. Pep tool supports a considerable number of models, including pro-
cess algebrae, high-level and low-level Petri nets; it can also export the models
into a variety of formats (SPIN, INA etc.). The only models in Pep that support
visual representation are high-level and low-level Petri nets; in particular, there
is no support for circuits.

Petrify [4] is a command-line utility that generates circuits from STGs.
While quite powerful at that task, it lacks a GUI mode to work with circuits
or STGs. Petrify is able to detect problems in the input STG, such as dead-
locks and hazards, but it does not produce violation traces to help the designer
pinpoint the problem. It also cannot read circuits and convert them back into
STGs, e.g. for the purpose of verification.

Versify [13] is a tool that accepts circuits and can efficiently check if the
circuit is speed-independent under a given environment. It is a command-line
tool, which makes it hard to browse its output.

Workcraft is different from other tools in that it does not focus on algo-
rithms for a particular IGM type, but aims to provide a common environment
that helps to “glue” existing tools together in a consistent manner. For example,
Workcraft provides the visualisation and editing functionality for Petri nets,
but does not have any internal verification routines. Instead, it relies on exter-
nals tools such as Punf [6] and MPSat [7] to carry out verification. Then it is
able to parse the verification output and present it to the user in a graphical
manner. Without much effort, Workcraft could be interfaced with tools like
Petrify — and benefit from their algorithmic power while at the same time
providing them with the user-friendly front-end.

Another notable difference is that while other tools generally support minimal
links between the models, such as direct translation from one model to another,
Workcraft supports more complicated model interoperability. Different parts
of the system can be specified using different formalisms, and then automatically
be merged and verified. For example, as explained above, it is often convenient
to specify a circuit as a gate netlist and its environment as an STG. Then the
verification result (i.e. the violation trace) is propagated back and presented to
the user as a trace of the original model, rather than that of the PN to which
the model was translated for verification.

In contrast to the version of Workcraft that has been presented earlier
in [12] and focused solely on Static Data Flow Structures, the version presented
in this paper has its paradigm shifted to general IGMs. As of time of writing,
Workcraft supports editing, simulation and verification of the following mo-
dels: PNs, STGs, gate-level circuits, SDFSs of several types and Conditional
Partial Order Graphs. We also plan to add networks of handshake components
in near future.
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6 Availability

The Workcraft tool supports all major OS platforms (Windows, Linux,
Mac OS) and is freely available for academic use. The latest version can be
downloaded from Workcraft’s homepage http://workcraft.org.
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Abstract. Discrete-event systems have gained a lot of interest due to their wide 
range of applications. SDES is a unified description for stochastic discrete-
event systems. The aim is to use this description as a basis of a new multi-
formalism modeling framework. In this paper, we introduce PDETool, which is 
based on SDES description. This modeling tool provides features for 
construction and translation of models into the XML-based input language of an 
SDES-based simulation engine that is developed for this purpose. Currently, we 
have implemented some useful extensions of Petri nets, such as stochastic Petri 
nets (SPNs), stochastic reward nets (SRNs) and stochastic activity networks 
(SANs) in this framework. PDETool is easily extensible to support a wide range 
of graphical and non-graphical formalisms. Furthermore, it facilitates the 
construction, animation and simulation of models. This tool has some 
advantages over the existing multi-formalism modeling and simulation tools, 
which will be mentioned in this paper.  

Keywords: Stochastic discrete-event systems, SDES description, PDETool, 
Petri nets. 

1   Introduction 

In stochastic discrete-event systems, the events are responsible for changing the state 
of the system. The behavior of these systems can be described using stochastic models. 
Discrete-event simulation (DES) of such a model helps the modeler to evaluate some 
important performance or dependability measures of the corresponding system. 

In addition to DES, several formal languages have been used for modeling 
stochastic discrete-event systems. Stochastic extensions of Petri nets, including 
stochastic Petri nets (SPNs) [5], stochastic reward nets (SRNs) [3] and stochastic 
activity networks (SANs) [8], and stochastic extensions of process algebra have 
widely been used in a wide range of applications. Each formal modeling language 
depicts a way of describing systems with a specified level of abstraction. In practice, 
to use a formal modeling language, it is necessary to have a modeling tool. Most of 
the existing formal modeling languages share some common characteristics. In 
addition, the analysis methods of these models are same or quite similar.  

In the literature, many efforts have been reported to develop multi-formalism 
modeling tools. SHARPE [7] is probably the first one, which supports multiple 
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models, including Markov models, generalized SPNs (GSPNs), queueing networks, 
etc. After SHARPE, some other tools have been developed with the same goal. 
SMART [2], Möbius [4, 10] and OsMoSys [12] are other multi-formalism modeling 
tools. Although the existing tools provide various capabilities, there are many 
difficulties to extend them to support new models. Most of the multi-formalism tools 
can only be extended by their developers. 

Stochastic discrete-event systems (SDES) [13] is a unified and abstract description 
for stochastic discrete-event systems that can be regarded as a blueprint for an abstract 
data type with virtual elements, which are instantiated for a certain model class by 
substituting the attributes with net-class dependent values and functions.  

In this paper, we introduce PDETool, which is a multi-formalism modeling tool 
based on SDES. This modeling tool provides features for construction and translation 
of models into the XML-based input language of an SDES-based simulation engine 
that we have developed for this purpose.  

Currently, we have implemented some useful extensions of Petri nets, such as 
SPNs, SRNs and SANs in this framework. PDETool is easily extensible to support a 
wide range of graphical and non-graphical formalisms. Furthermore, it facilitates the 
construction, animation and simulation of models. 

The remainder of this paper is organized as follows. In section 2, the SDES unified 
description is briefly reviewed. Section 3, describes PDETool, its application and 
architecture. A case study using SANs is presented in section 4. Finally, some 
concluding remarks and a list of future works are mentioned in section 5. 

2   A Brief Introduction to SDES Description 

A discrete-event system is a system that is in a state during some time interval, after 
which an atomic event might happen that changes the state of the system 
immediately. Several stochastic discrete-event models have been proposed, which all 
share some common characteristics and many algorithms and methods that have been 
developed for one model are applicable for many of them. SDES [13], introduced by 
Zimmermann, is a unified description for stochastic discrete-event systems. Popular 
model classes like automata, queuing networks, and Petri nets of different kinds with 
stochastic extensions are subclasses of stochastic discrete-event systems and can be 
translated into the SDES description.  

In [13], a stochastic discrete-event system, SDES, is defined as a tuple SDES = 
(SV*, A*, S*, RV*), where SV* describes a finite set of state variables and actions A* 
together with the sort function S* and the reward variables RV* corresponds to the 
quantitative evaluation of the model.  

For more information about SDES unified description, please see [13].  

3   The PDETool Framework 

There exist many modeling and simulation tools, which most of them support only a 
single simulation or modeling language and a few simulation or solution methods. It 
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is interested to develop a multi-formalism modeling framework to support a wide 
range of models and easily be extensible to support new formalisms.  

In the following subsections, we firstly introduce an SDES-based simulation 
engine. Then, we review the software architecture and some main functionalities of 
PDETool. 

3.1   An SDES-Based Simulation Engine 

Before starting to develop PDETool, we developed a simulation engine based on 
SDES description, named SimGine, which is an abbreviation for simulation engine. 
As the best of our knowledge, this is the first engine that has been developed based on 
the SDES description.  

As mentioned before, SDES is a unified description. Many formal modeling 
languages for stochastic discrete-event systems can be translated to SDES. Therefore, 
SimGine can be used for simulation of a wide range of formal modeling languages. A 
model can be simulated by SimGine if a mapping can be provided into the SDES 
description and thus the input language of the engine. 

SimGine uses an XML-based input language whose syntax and semantics are 
designed to resemble the SDES description. In this input language, each model 
consists of four parts: (1) auxiliaries, for the required functions and constants, (2) 
model state variables, to define the states of the system, (3) a number of events, that 
are responsible for changing the system states, and (4) some reward structures, that 
are used for evaluation of the modeler's interested measures during the evaluation of 
the model. The most important part of the model is the events part (i.e. A* in the 
SDES description), which defines a set of events and everything needed about them. 
An event represents the basic unit of a model that facilitates changing the state of the 
system by modifying the values of state variables. For each event, the event 
precondition, delay, priority, weight, action, and reactivation predicate should be 
defined in the input language. 

After definition of events, rewards must be specified. SimGine supports 
performance rewards, which include both rate rewards and impulse rewards [9]. For 
each reward variable, the type of rewards should also be specified, which indicates the 
time of reward computation, which can be transient or steady-state. 

The XML-based input language of SimGine defines some methods. The body of 
these methods can be written in a programming language and can be constructed of 
common programming structures, such as local variable declarations, repetition or 
conditional statements, assignment statements, etc. This provides a powerful and 
flexible way for definition of events with complex behaviors. Currently, C#.Net is 
used as the programming language of SimGine’s input models.  

To support more modeling languages, we have partially extended SDES with event 
reactivation concept, which exists in SANs [8]. However, we have assumed that the 
degree of each activity is one and each action had exactly one variant and therefore, 
does not distinguish between an action and its modes.  

SimGine can easily be used in third-party Microsoft .NET applications as a library 
or as a stand alone application with a graphical user interface (GUI). To obtain the 
SimGine and more information about it, please visit the SimGine homepage [11]. 
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3.2   The PDETool Software 

The aim of developing PDETool is to introduce an SDES-based multi-formalism 
modelling and simulation framework for construction, simulation and solution of 
stochastic discrete-event models. The tool has the following components:  

• Model Editor: Model Editor is a GUI that allows modelers to load, construct, edit 
and save models. Each formal modeling language, which is supported by 
PDETool, has its corresponding model editor that can use its own file format and 
graphical or textual representation. Currently, model editors for SANs, SPNs and 
SRNs have been developed. For example, SAN Editor can be used to construct and 
edit SAN models. Fig. 1 shows a screenshot of the SAN Editor. 

• Reward Variable Editor: This editor provides a user interface to define and edit 
reward variables. The tool supports rate and impulse rewards. Each of these types 
can be defined as steady-state, instance-of-time, average-of-time, or interval-of-
time, which specify the interested time of the reward computation. 

• Global Variable Editor: PDETool allows modelers to define and use global 
variables and constants. Using this feature, the modeler can define the desired 
global variables, which should be initialized in a simulation study.  

• Model Animator: PDETool can animate models. This feature is known as token-
game animation in tools for Petri nets. Fig. 2 shows a sample view of the model 
animator for SANs. 

• Model Simulator: This feature is used for discrete-event simulation of models. To 
do so, first the model will be translated into the SDES description and then, the 
SimGine is used to parse the input file and generate the simulation code, and then 
the simulation model will be run and the reward variables will be evaluated. The 
information of reward variables can be watched during the simulation progress. 
This information includes the confidence mean value and the confidence interval 
and also the variance of each reward variable in the current time. 

• SimGine Interface: PDETool has an interface for direct working with SimGine. 
This feature is useful when the modeler likes to simulate a SimGine file. In this 
case, the modeler can load, edit and simulate a SimGine file. A simple model 
animator is also available for this purpose. 

As mentioned before, SimGine can be used for simulation of stochastic formalisms by 
a mapping into the input language of the engine. So, PDETool by using this engine 
can be extended to support these model classes. It currently has the ability to simulate 
SAN, SPN and SRN models. In the next section, we will briefly describe how the tool 
can be extended to support a new formalism. 

The PDETool software is executable on Microsoft Windows XP and Vista. This 
tool and its user manual are available for download in PDETool homepage [6]. 

3.3   The Software Architecture of PDETool 

The overall software architecture of the tool, including its main modules and their 
relations, is depicted in Fig. 3. As shown in the figure, the software architecture is 
composed of two layers: a front-end layer and a back-end layer corresponding to the 
PDETool interface and the SimGine, respectively. These layers are described below: 
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Fig. 1. Graphical user interface of SAN Editor 

 

Fig. 2. Graphical user interface of SAN Animator 

• The Front-End Layer: This layer can be viewed as an interface between the users 
and the back-end layer. This layer provides the required GUIs and a model 
translator. The user interfaces includes editors (model editor, reward variable 
editor, global variable editor), SimGine interface, simulation and animation GUI, 
as described in the previous subsection. For each supported modeling language, its 
editor, translator and an optional graphical animator should be provided, which are 
responsible for communication with the back-end layer.  

• The Back-End Layer: PDETool uses SimGine as the underlying layer. This back-
end layer is responsible for simulation of the model and evaluating reward 
variables and also provides model animation facility. As we mentioned before, for 
simulating a model based on particular stochastic discrete-event formalism, the 
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model translator (in the front-end layer) prepares the input model of the simulation 
engine by mapping the original model (constructed in the PDETool interface) into 
the input language of SimGine. As depicted in Fig. 3, the internal architecture of 
SimGine is consists of parser, code generator, utility library, simulator, animator 
and SDES simulation manager. 

3.4   How to Extend PDETool to Support a New Formalism 

PDETool is extensible to support new stochastic formal modeling languages. It uses 
an object-oriented architecture, which helps the developers to easily extend the front-
end layer of the tool that has communications with SimGine. For this purpose, 
PDETool provides some basic abstract classes that should be extended using 
inheritance property and overriding the required methods. The class diagram of the 
PDETool class hierarchy and their relationships with SimGine are depicted in Fig. 4. 

GraphicalModel and TextualModel are two basic main classes that are used to 
represent an individual graphical and textual model. They have the required abstract 
methods to work with a particular formalism (such as, saving, loading and validating 
models). For graphical models, each graphical element of the model should be 
implemented as an extension of BaseGraphicalObject class, which includes the 
necessary properties and methods, such as displaying the element or its validation 
(e.g. validation of its connections with other elements or properties assigned to the 
element). Construction of a model is performed in a GUI (window) that is inherited 
from TextualEditorGUI or GraphicalEditorGUI, which has the capabilities of 
presentation and edition of textual and graphical models, respectively. 

ModelSimulationGUI is the base class for handling the simulation process (i.e. 
starting, pausing, displaying reward variables during simulation, etc.). The simulation 
progress can also be animated by using the SimGine animation event handlers defined 
in SimGine SDESAnimator class. An optional GUI animator based on 
ModelAnimationGUI can be developed for this purpose. 

Model Editor Model Simulator & 
Animator

GUI Model 
Translator

Simulator Animator Parser 

SDES Simulation Manager Code  
Generator 

Utility Library 

SimGine Engine

SimGine 
Interface 

 
Fig. 3. The software architecture of PDETool 
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Fig. 4. The class diagram of base classes and their relations with SimGine 

A translator class inherited from the abstract class ModelTranslator should also be 
developed to translate this particular formalism into the SDES description based on 
the SimGine input language, which can be simulated by the engine. 

3.5   Comparison 

By utilizing SimGine as an SDES-based simulation engine, PDETool provides 
features for definition and translation of models into the XML-based input language 
of SimGine and it can easily be extended to support a wide range of formalisms. 

Comparing to other modeling tools and frameworks, PDETool and its underlying 
layer, SimGine, can easily be used as a simulation and modeling engine in third party 
applications. For example, using SimGine classes and methods, an application can 
simulate stochastic discrete-event models by translating them into the input language 
of SimGine. SDES unified description is simple and understandable, which makes 
SimGine to be an easy-to-use simulation engine. 

4   A Case Study Using SANs 

Modeling with a particular formalism using PDETool can be considered from both 
developers’ viewpoint and modelers’ viewpoint. In this section, we review the 
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implementation of SANs in the PDETool framework (i.e. developers’ viewpoint). 
Then, we take a glance at simulation of a simple model using the tool (i.e. modelers’ 
viewpoint).  

SANModel class, inherited from the Model class, uses a PNML-based file format 
for SANs, called SANML [1], to load and save SAN models. For construction and 
edition of SAN models, SANModelEditor is developed based on ModelEditorGUI 
class. This editor contains a reward and global variable editor too. Note that the 
reward and global variable editor exists in ModelEditorGUI and is accessible for all 
graphical editors, including the SANModelEditor. SANAnimationGUI is a class 
obligated to animate SAN models (i.e. token-game animation). Note that the graphical 
model animation is an optional facility which can be provided for a model type. 
SANTranslator class, inherited from the ModelTranslator, is responsible for 
translation of SAN models into the SimGine input language. This translation is 
performed by conversion of the model stored as an object of type SANModel. In a 
nutshell, the tool translates the input gate predicates of an activity into precondition of 
its corresponding event and the related input/output gate functions into the action 
method of that event. Places and global variables are translated into the state 
variables. 

From the modelers’ viewpoint, as an example, consider a computer system with 
two processors, in which one of them is faster than the other. Tasks enter the system 
based on a Poisson process and route to a processor for execution. The fast processor 
has priority over the slow one for processor allocation. If both processors are busy, 
the tasks wait in a bounded buffer with a capacity equal to three. If this buffer is full, 
the tasks will be rejected. The necessary service time of different tasks is 
exponentially distributed. 

A SAN model for this system, which is presented in Fig. 5, has been constructed 
by PDETool. The gate table of the model is also presented in Table 1. 

The aim of simulation is to compute the average number of tokens in place 
SlowAlloc and place FastAlloc (i.e. E(MarkSlowAlloc) and E(MarkFastAlloc)), and the 
probability of being 0 and 2 tokens inside Jobs (i.e. P(MarkJobs=0) and 
P(MarkJobs=2)). The simulation results of the model with confidence level 99% are 
presented in Table 2. 

 

Fig. 5. An example of a computer system with two processors modeled in SANs 
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Table 1. Gate table for the model of Fig. 5 

Gate name Input predicate Gate function 

ig1 

if (Fast.Mark != 0 
   || Slow.Mark != 0)  
    return true; 
else  
    return false; 

if (Fast.Mark != 0) {  
  Fast.Mark = 0; 
  WhichSel.Mark = 0; 
} 
else {  
  Slow.Mark = 0; 
  WhichSel.Mark = 1; 
} 

og1 n/a 
if (WhichSel.Mark == 0) FastAlloc.Mark = 1; 
else SlowAlloc.Mark =  1; 

og2 n/a if (Jobs.Mark < 3) Jobs.Mark++; 

Table 2. The simulation results 

Measure Value Confidence Variance 
E(MarkSlowAlloc) 0.409990 0.008849 0.241898 

E(MarkFastAlloc) 0.484920 0.008992 0.249772 

P(MarkJobs=0) 0.877465 0.005769 0.107519 

P(MarkJobs=2) 0.035370 0.003323 0.034119 

5   Conclusions 

Discrete-event simulation is a popular solution for performance and dependability 
evaluation of systems. In this paper, we introduced PDETool as a new multi-
formalism modeling and simulation framework which uses a simulation engine based 
on SDES unified description called SimGine. Providing some features for 
constructing and translating models into the XML-based input language of SimGine, 
PDETool can easily be extended to support wide range of formalisms. Currently, it 
can be used for modeling and simulation of some useful extensions of Petri nets such 
as SPNs, SRNs and SANs. The tool and its underlying layer, SimGine, can also be 
used as a library in other applications. 

We are currently working to improve the tool in several ways: 

• Analytic solution: An important step in further developments of the framework is 
to implement state-space generators and a solution engine including various 
analytic steady-state and transient solvers for Markovian models. 

• Hierarchical modeling: Based on the SDES description, PDETool currently 
supports only flat models. We intend to implement capabilities for hierarchical 
model construction, animation and simulation. 

• Fast simulation: As a separate project, we have extensively worked on fast 
simulation techniques of rare events. We intend to implement techniques like 
importance sampling and partition-of-the-region in the framework. 

• Model checking: We intend to extend the PDETool framework with a model 
checking engine. 

• Implementation of more formal languages: By now, we have implemented some 
useful extensions of Petri nets and an actor-based formalism in the framework. 
We intend to implement more models, including process algebra, etc. 
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