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Abstract. Pattern-based model-to-model transformation is a new ap-
proach for specifying transformations in a declarative, relational and for-
mal style. The language relies on patterns describing allowed or forbidden
relations between two models, which are compiled into operational mech-
anisms to perform forward and backward transformations.

In this paper, we extend the approach for handling attribute conditions
expressed in some suitable logic, adapt the operational mechanisms based
on graph transformation to relax attribute handling by constraint solving,
and discuss heuristics for the compilation of patterns into rules.

1 Introduction

Model-to-Model (M2M) transformations are widely used in Model-Driven En-
gineering, e.g. to migrate between language versions, to transform into a vari-
fication domain, or to refine a model. There are two main approaches to M2M
transformation: operational and declarative. The former is based on operations
that explicitly state how and when creating target elements from source ones.
Instead, declarative approaches describe mappings between source and target
models in a direction-neutral way. Then, operational mechanisms are generated
for different scenarios, e.g. to transform a source model into a target one or vice
versa (forward and backward transformations), to synchronize two models, or to
signal inconsistencies between them [8].

In previous work [3] we proposed a declarative, relational and formal approach
to M2M transformation based on triple patterns to express the relations between
two models. Our patterns are similar to graph constraints [6] but for triple graphs
made of two graphs plus their traceability relations. Patterns can specify positive
information (the relation they declare must hold) or negative one (the relation
must not hold). A pattern specification is compiled into operational mechanisms,
implemented with Triple Graph Grammar (TGG) operational rules [5, 8, 14], to
perform forward and backward transformations.

In this paper we extend our framework with attributes. Traditionally, at-
tribute handling has been one of the main difficulties of declarative bidirectional
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languages. For example, attribute computations must be specified in a non-causal
way, and therefore generating operational mechanisms involves their algebraic
manipulation for the synthesis of attribute pre-conditions and computations,
which may be difficult to automate. We tackle these issues by the uniform inte-
gration of attribute computations and conditions in patterns, and by considering
the manipulated models also as constraints, hence avoiding algebraic manipu-
lation. Thus, during the transformation, attributes in models are specified by
variables and formulae constraining them. When the transformation finishes,
one can resort to an equation solver to obtain concrete attribute values.

The advantages of our proposal are the following. First, its relational style
contrasts with declarative approaches such as TGGs, where a causality between
the existing elements in the models and the ones to be created has to be given.
Second, the order of pattern enforcement is deduced, contrary to approaches
such as QVT, where it must be explicitly specified. Third, its formal foundation
allows studying the specification in both declarative (patterns) and operational
(derived rules) formats. Fourth, our patterns have a compositional style – a
triple graph satisfies two patterns in conjunction if it satisfies the two patterns
separately – making specifications extensible. Finally, the separation of the op-
erational mechanism from the declarative specification allows generating opera-
tional mechanisms for different purposes, as well as using different operational
languages (e.g. graph grammar rules, a constraint solver, or QVT core [13]).

Paper Organization. Section 2 introduces triple graphs, our new concept
of constraints, and the algebraic approach to M2M transformation. Sections 3
and 4 present our pattern-based notation and the generation of operational rules,
sketching some heuristics to improve their efficacy. Section 5 shows a case study.
Section 6 compares with related work, and Section 7 ends with the conclusions.

2 Algebraic Approach to Model-to-Model Transformation

This section introduces triple graphs, constraint triple graphs, and triple graph
transformation. Triple graphs are based on labelled graphs (called E-graphs
in [6]), which allow data in nodes and edges. An E-graph G is defined as a special
kind of graph that includes an additional set of nodes DG with the values stored
in the graph, and two additional kinds of edges that are used for attribution
of nodes and edges. Mappings between E-graphs (morphisms) are tuples of set
morphisms – one for each set in the E-graph – such that the structure of the
E-graph is preserved (for details see [6]). For the typing we use a type graph [6],
similar to a meta-model, but for simplicity we omit further discussion on types.

Triple graphs are made of three graphs: source (S), target (T ) and correspon-
dence (C). Nodes in the correspondence graph relate nodes in the source and
target graphs by means of two graph morphisms [5], and for technical reasons we
restrict them to be unattributed (i.e. DC = ∅). We use triple graphs to store the
source and target models of a M2M transformation, as well as the transformation
traces.
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Definition 1 (Triple Graph and Morphism). A triple graph TrG = (S cS←
C

cT→ T ) is made of three E-graphs S, C and T s.t. DC = ∅, and two graph
morphisms cS and cT , called the source and target correspondence functions.

A triple morphism m = (mS , mC , mT ) : TrG1 → TrG2 is made of three E-
morphisms mX for X = {S, C, T }, s.t. mS◦c1

S = c2
S◦mC and mT ◦c1

T = c2
T ◦mC,

where cx
S and cx

T are the correspondence functions of TrGx (for x={1, 2}).

We use the notation 〈S, C, T 〉 for a triple graph made of graphs S, C and T .
Given TrG = 〈S, C, T 〉, we write TrG|X for X ∈ {S, C, T } to refer to a triple
graph where only the X graph is present, e.g. TrG|S = 〈S, ∅, ∅〉. Triple graphs
and morphisms form the category TrG.

T

S cT
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Class2

Attr1
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’c1’

’__att’

’persi
stent’

’c1’

Table1

false

parent
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public
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c

Fig. 1. Triple graph example

Example 1. Fig. 1 shows a triple graph
relating a class diagram and a relational
schema. The graph nodes are depicted as
rectangles, and the data nodes in DS and
DT as circles. We only draw the used data
nodes, as they may be infinite. Graph G in
Fig. 5 shows the same triple graph using
the UML notation, as well as types.

In order to describe the manipulation
of triple graphs by means of graph trans-
formation rules, these rules may need to
include graphs storing variables that will typically be instantiated when applying
the rule. Moreover, we may need to express some properties about these vari-
ables. We have formalized this kind of graph using the new notion of constraint
triple graphs. These are triple graphs attributed over a finite set of variables, and
equipped with a formula on this set to constrain the possible attribute values of
source and target elements.

Definition 2 (Constraint Triple Graph). Given an algebra A over signature
Σ = (S, OP ), a constraint triple graph CTrGA = (TrG, ν, α) consists of a triple
graph TrG = 〈S, C, T 〉, a finite set of S-sorted variables ν = DS 	DT (with 	
denoting disjoint union) and a Σ(ν)−formula α in conjunctive or clausal form.

y = x * 2 z = 3

a = x

T1: A

b = y
c = z

T2: BT: C

y > 0

Fig. 2. Constraint

Example 2. Fig. 2 shows a constraint triple graph. We
take the convention of placing in the left compartment
the terms of the formula concerning only source graph
attributes; in the right compartment the terms con-
straining only attributes in the target; and the terms
constraining both in the middle. In all cases we omit the
conjunctions. Note that “=” denotes equality, not as-
signment. Hence, in our approach there is no attribute
computation, but only attribute conditions. Finally, unused attributes are omit-
ted in the figures, and the formula of the empty constraint is equal to true.

Notice that constraint triple graphs do not store data explicitly in the graphs:
the data nodes DS and DT are variables. Thus, if for instance we would like to
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store a value V on an attribute node, it is enough to label that node with some
fresh variable X and include the equality X = V in the associated formula.

Before defining morphisms between constraints, we need an auxiliary opera-
tion for restricting Σ(ν)−formulae to a smaller set of variables ν′ ⊆ ν. This will
be used when restricting a constraint triple graph to the source or target graph
only (e.g. when checking the forward or backward satisfaction of the constraint).
Thus, given a Σ(ν)-formula α, its restriction to ν′ ⊆ ν is given by α|ν′ = α′,
where α′ is like α, but with all clauses with variables in ν− ν′ replaced by true.
For example (x = 3 ∧ y = 7)|{x} = (x = 3 ∧ true) = (x = 3).

Given a constraint CTrGA = (TrG, ν, α), we write αS for the restriction
to the source variables α|DS , and αT for the restriction to the target variables
α|DT . Given a variable assignment f : ν → A, we write A |=f α to denote that
the algebra A satisfies the formula α with the value assignment induced by f.

Next, we define morphisms between constraint triple graphs. These are made
of a triple graph morphism and a mapping of variables (i.e. a set morphism).
In addition we require an implication from the formula of the constraint in the
codomain to the one in the domain, as well as implications from the source
and target restrictions of the formula in the codomain to the restrictions of the
formula in the domain. This means that the formula in the domain constraint
should be weaker or equivalent to the formula of the constraint in the codomain
(intuitively, the codomain should be “more restricted”).

Definition 3 (Constraint Triple Graph Morphism). A constraint triple
graph morphism m = (mTrG, mν) : CTrGA

1 → CTrGA
2 is made of a triple mor-

phism mTrG : TrG1 → TrG2 and a mapping mν : ν1 → ν2 s.t. the diagram to
the left of Fig. 3 commutes, and ∀f : ν2 → A s.t. A |=f α2, then A |=f (αS

2 ⇒
mν(αS

1 )) ∧ (αT
2 ⇒ mν(αT

1 )) ∧ (α2 ⇒ mν(α1)), where mν(α) denotes the formula
obtained by replacing every variable X in α by the variable mν(X).

Remark 1. Note that α2 ⇒ mν(α1) does not imply αS
2 ⇒ mν(αS

1 ) or αT
2 ⇒

mν(αT
1 ). For technical reasons we require (αS

2 ⇒ mν(αS
1 )) ∧ (αT

2 ⇒ mν(αT
1 )) as

will be evident in Definition 4 and its associated remark.

Example 3. The right of Fig. 3 shows a constraint triple graph morphism.
Concerning the formula, assume some variable assignment f : νB → A satisfying
αB (i.e. A |=f αB), then such f makes A |=f [(x0 = 4 ∧ z > x0) ⇒ (x0 >
0)] ∧ [(y0 >= 1) ⇒ (y0 > 0)] ∧ [(x0 = 4 ∧ z > x0 ∧ x0 > y0 ∧ w > x0 ∧ y0 >=
1)⇒ (x0 > 0 ∧ y0 <> x0 ∧ y0 > 0)]. In this case, the formula in the constraint
A is weaker than the formula in B.

DTrG1
S ��

��

mT rG
D,S

��
=

DTrG2
S ��

��
ν1 mν ��

=

ν2

DTrG2
T

� �

��

mT rG
D,T

�� DTrG2
T

� �

��
: D

: F
: E

e = w

: A

a = x0
: C

: B

b = y0

d = z

x0 = 4
z > x0

x0 > y0
w > x0 y0 >= 1

B

: C
: A

a = x

: B

b = y

y <> xx > 0 y > 0

A

Fig. 3. Condition for CTrG-morphisms (left). Example (right).
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From now on, we restrict to injective morphisms for the sake of simplicity,
and because our patterns are made of injective morphisms. Given Σ and A,
constraint triple graphs and morphisms form the category CTrGA. As we will
show later, we need to manipulate objects in this category through pushouts and
restrictions. A pushout is the result from gluing two objects B and C along a
common subobject A, written B+AC. Pushouts in CTrGA are built by making
the pushout of the triple graphs, and taking the conjunction of their formulae.

Proposition 1 (Pushout in CTrGA). Given the span of CTrGA-morphisms
BA b←− AA c−→ CA, its pushout is given by DA = (B +A C, νB +νA νC , c′(αB)∧
b′(αC)), and morphisms c′ : BA → DA and b′ : CA → DA induced by the
pushouts in triple graphs (B +A C) and sets (νB +νA νC).

Example 4. Fig. 4 shows a pushout, where αD ⇒ c′(b(αA)) ≡ b′(c(αA)).

c’

: D : A

zd > xd
xd = 4

xd >= 0 wd > xd
xd > yd

: C
: B : E

yd >= 1
yd = 3

D

d = zd a = xd b = yd e = wd

: A

a = x1
: C

y1 = 3

: B : E

C

w > x1x1 >= 0

b = y1 e = w

: D : A
: C

: B

b = y0

x0 = 4
z > x0

B

d = z a = x0

x0 > y0 y0 >= 1: B

b = y
: C

: A

a = x

y > 0y <> xx > 0

A b

c

P.O.

b’

Fig. 4. Pushout example

The source restriction of a constraint triple graph is made of the source graph
and the source formula, and similarly for target. This will be used later to keep
just the source or target model in a constraint, when such constraint is evaluated
either source-to-target or target-to-source.

Definition 4 (Constraint Restriction). Given CTrGA = (TrG, ν, α), its
source restriction is given by CTrGA|S = (TrG|S = 〈S, ∅, ∅〉, DS , α|DS = αS).
The target restriction CTrGA|T is calculated in an analogous way.

Remark 2. The source restriction CTrGA|S of a constraint induces a morphism
CTrGA|S ↪→ CTrGA. Also, given a morphism q : CA → QA, we can construct
morphisms qS : CA|S → QA|S and qT : CA|T → QA|T .

An attributed triple graph can be seen as a constraint triple graph whose for-
mula is satisfied by a unique variable assignment, i.e. ∃1f : ν → A with A |=f α.
We call such constraints ground, and they form the GroundCTrGA full sub-
category of CTrGA. We usually depict ground constraints with the attribute
values induced by the formula in the attribute compartments and omit the for-
mula (e.g. see constraint CTrG to the right of Fig. 7). The equivalence between
ground constraints and triple graphs is useful as, from now on, we just need to
work with constraint triple graphs. In particular, triple graphs are manipulated
with TGG operational rules, but seeing them as ground constraint graphs, which
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offers several benefits, as we will see. The rules that we consider in this paper
are non-deleting and consist of left and right hand sides (LHS and RHS) made
of a constraint triple graph each, plus sets of negative pre- and post-conditions.
A rule can be applied to a host triple graph if a constraint morphism exists from
the LHS to the graph and no negative pre-condition (also called NAC) is found.
Then, the rule is applied by making a pushout of the RHS and the host graph
through their intersection LHS, which adds the elements created by the rule to
the host graph. This step is called direct derivation. Negative post-conditions are
checked after rule application, and such application is undone if they are found.

The most usual way [6, 14] of dealing explicitly with triple graphs instead
of with ground constraint graphs poses some difficulties, most notably concern-
ing attribute handling. For instance, Fig. 5 shows an example where a TGG
operational rule is applied to a triple graph G. The rule creates a column for
each private attribute starting by ‘ ’. Function LTRIM(p1,p2) returns p2 after
removing p1 from its beginning.

c: Class

name = x
public = false

a: Attribute

t: Table

C2T1

: C2T

C2T2

: C2T

name = ’c1’
kind = ’persistent’

Class1: Class

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

name = ’c1’

Table1: Table

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

ac: A2C

C2T1

: C2T

C2T2

: C2T

name = ’att’

co: Column

name = ’c1’

Table1: Table

ct:C2Tc: Class

name = x
public = false

a: Attribute

t: Table

LHS

x[0:2] = ’__’
ATTRIBUTE CONDITION

RHS = NAC

name = 
LTRIM(’__’,x)

co: Column
compile

TGG operational rule:

{new}

x = ’__’+y

{new}
{new}

co: Column
{new}

name = y

{new}

TGG declarative rule:

P.O.

parent

G

parent

H

name = ’c1’
kind = ’persistent’

Class1: Class

c: Class

name = x
public = false

a: Attribute

ct:C2T

ac:A2C

t: Table
ct:C2T

ac:A2C

Fig. 5. Direct derivation by a non-deleting TGG operational rule

In practice, the TGG operational rules are not specified by hand, but derived
from declarative rules modelling the synchronized evolution of two models [14],
as depicted in the upper part of Fig. 5. The declarative rule is shown with its LHS
and RHS together, and new tags indicating the synchronously created elements.
Of course, in declarative rules, attribute computations must be expressed in a
declarative style. However, their compilation into operational rules has to assign
a causality to attribute computations, which involves algebraic manipulation of
formulae. Moreover, appropriate attribute conditions must be synthesized too. In
the example, the condition x=‘ ’+y has to be transformed into a computation
LTRIM(‘ ’,x) for the created column name, and into the condition x[0:2]=‘ ’
as the attribute name should start by ‘ ’. Please note that this kind of manip-
ulation is difficult to automate, since it involves the synthesis of operations and
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conditions. Our approach proposes a more straightforward solution. Fig. 8 shows
the same example when dealing with triple graphs as ground constraints, where
there is no need to synthesize attribute computations. The result of a transfor-
mation is a pair of models where their attributes are variables with values given
by formulae. If needed, a constraint solver can compute concrete values.

3 Pattern-Based Model-to-Model Transformation

Triple Patterns are similar to graph constraints [6], but made of constraint triple
graphs instead of graphs. We use them to describe the allowed and forbidden
relations between source and target models in a M2M transformation.

Definition 5 (Triple Pattern). Given the injective CTrGA-morphism C
q→

Q and the sets of injective CTrGA-morphisms NPre = {Q ci→ Ci}i∈Pre, NPost =
{Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci)∧←−P (C)⇒ P (Q)∧ ∧

j∈Post

−→
N (Cj) is a positive pattern (P-pattern).

–
−→
N (Cj) is a negative pattern (N-pattern).

Remark 3. The notation
←−
P (·), ←−N (·), −→N (·) and P (·) is just syntactic sugar

to indicate a positive pre-condition (that we call parameter), a negative pre-
condition, a negative post-condition and the main constraint respectively.

The simplest P-pattern is made of a main constraint Q restricted by negative
pre- and post-conditions (Pre and Post sets). In this case, Q has to be present
in a triple graph (i.e. in a ground constraint) whenever no negative pre-condition
Ci is found; and if Q is present, no negative post-condition Cj can be found.
While pre-conditions express restrictions for the constraint Q to occur, post-
conditions describe forbidden graphs. If a negative pre-condition is found, it is
not mandatory to find Q, but still possible. P-patterns can also have parameters,
specified with a non-empty C. In such case, Q has to be found only if C is also
found. Finally, an N-pattern is made of one negative post-condition, forbidden
to occur (and hence C and Q are empty).

Example 5. The left of Fig. 6 shows a P-pattern, taken from the class to
relational transformation [13]. It is made of a main constraint C-T with a negative
pre-condition Parent. It maps persistent classes without parents to tables with
the same name. The negative pre-condition shows only the elements that do not
belong to the main constraint, and those connected to them.

The right of Fig. 6 shows a P-pattern with its parameters indicated with
〈〈param〉〉. We present C and Q together, as usually the formula in C is the same
as the one in Q. The pattern maps the attributes of a class with the columns of
the table related to the class. As Section 4.1 will show, it is not even necessary
to specify the parameters, as our heuristics are able to suggest them. In fact, a
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ct:C2T

name = nc
kind = k

c: Class

name = nc
kind = k

c: Class

parent

nc = nt

P(C−T)

k = ’persistent’ k = ’persistent’

N(Parent)

name = nt

t: Table ac:A2C

name = x
public = p

a: Attribute

t: Tablec: Classc1: Class

co: Column

name = y

ct:C2T

p = false

P(Attribute−Column)

x = ’__’+y

<<param>> <<param>><<param>>

Fig. 6. P-pattern examples

M2M specification is usually made of N- and P-patterns without parameters. For
technical reasons, we assume that no P-pattern has negative post-conditions.

Definition 6 (M2M Specification). A M2M specification SP =
∧

i∈I Pi is a
conjunction of patterns, where each Pi can be positive or negative.

Next we define pattern satisfaction. A unique definition is enough as N-patterns
are a special case of P-patterns. We check satisfiability of patterns on constraint
triple graphs, not necessarily ground. This is so because, during a transformation,
the source and target models do not need to be ground. When the transformation
finishes we can use a solver in order to find an attribute assignment satisfying the
formulae.

We define forward and backward satisfaction. In the former we check that
the main constraint of the pattern is found in all places where the pattern is
source-enabled (roughly, in all places where the pre-conditions for enforcing the
pattern in a forward transformation hold). The separation between forward and
backward satisfaction is useful because, e.g. if we transform forwards (assuming
an initial empty target) we just need to check forward satisfaction. Full satis-
faction implies both forward and backward satisfaction and is useful to check if
two graphs are actually synchronized.

Definition 7 (Satisfaction). A constraint triple graph CTrG satisfies CP =
[

∧

i∈Pre

←−
N (Ci) ∧←−P (C)⇒ P (Q) ∧ ∧

j∈Post

−→
N (Cj)], written CTrG |= CP , iff:

– CP is forward satisfiable, CTrG |=F CP : [∀mS : PS → CTrG s.t. (∀i ∈ Pre
s.t. NS

i � PS , �nS
i : NS

i → CTrG with mS = nS
i ◦ aS

i ), ∃m : Q → CTrG
with m ◦ qS = mS, s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj], and

– CP is backward satisfiable, CTrG |=B CP : [∀mT : PT → CTrG s.t. (∀i ∈
Pre s.t. NT

i � PT , �nT
i : NT

i → CTrG with mT = nT
i ◦aT

i ), ∃m : Q→ CTrG
with m ◦ qT = mT , s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj ],

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {S, T }),
see left of Fig. 7. C +C|x Q|x is the pushout object of C and Q|x through C|x.

In forward satisfaction, for each occurrence of PS = C +C|S Q|S satisfying the
negative pre-conditions, an occurrence of Q must be found satisfying the neg-
ative post-conditions. A pattern is satisfied either because no occurrence of PS
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Fig. 7. Forward satisfaction (left). Example (right).

exists (trivial satisfaction), because some occurrence of PS exists as well as some
occurrence of the negative pre-conditions (vacuous satisfaction), or because an
occurrence of the main constraint Q exists, and none of the negative pre- and
post-conditions (positive satisfaction). Note that if the resulting negative pre-
condition Nx

i is isomorphic to Px, it is not taken into account. This is needed as
many pre-conditions express a restriction in either source or target but not on
both. Similar conditions are demanded for backward satisfiability.

Example 6. The right of Fig. 7 depicts the satisfaction of pattern C-T shown
in Fig. 6 by the ground constraint CTrG. We have CTrG |=F C − T as there
are two occurrences of PS , and the first one (shown by equality of identifiers)
is positively satisfied, while the second (node c2) is vacuously satisfied. We also
have CTrG |=B C−T , as there is just one occurrence of PT , positively satisfied.
Hence CTrG |= C − T .

Given a specification SP =
∧

i∈I Pi and a constraint CTrG, we write CTrG |=
SP to denote that CTrG satisfies all patterns in SP . The semantics of a speci-
fication is the language of all constraint triple graphs that satisfy it.

Definition 8 (Specification Semantics). Given a specification SP , its se-
mantics is given by SEM(SP ) = {CTrG ∈ Obj(CTrGA)|CTrG |= SP}, where
Obj(CTrGA) are all objects in the category CTrGA.

The semantics is defined as a set of constraint triple graphs, not necessarily
ground. Given a non-ground constraint, a solver can obtain a ground constraint
satisfying it, if it exists. Moreover, the specification semantics is compositional, as
adding new patterns to a specification amounts to intersecting the languages of
both. This fact is useful when extending or reusing pattern-based specifications.

Proposition 2 (Composition of Specifications). Given specifications SP1

and SP2, SEM(SP1 ∧ SP2) = SEM(SP1) ∩ SEM(SP2).
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4 Generation of Operational Mechanisms

This section describes the synthesis of TGG operational rules implementing for-
ward and backward transformations from pattern-based specifications. In forward
transformation, we start with a constraint triple graph with correspondence and
target empty, and the other way round for backward transformation.

The synthesis process creates from each P-pattern one rule that contains triple
constraints in its LHS and RHS. In particular, PS = C +C|S Q|S is taken as
the LHS for the forward rule and Q as the RHS. The negative pre- and post-
conditions of the P-pattern are used as negative pre- and post-conditions of
the rule. All N-patterns are converted into negative post-conditions of the rule,
using the well-known procedure to convert graph constraints into rule’s post-
conditions [6]. Finally, additional NACs are added to ensure termination.

Definition 9 (Derived Operational Rules). Given specification SP and
P = [

∧

i∈Pre

←−
N (Ci) ∧ ←−P (C) ⇒ P (Q) ∧ ∧

j∈Post

−→
N (Cj)] ∈ SP , the following rules

are derived:

– Forward. −→rP : ((L = C +C|S Q|S → R = Q), preS(P ), post(P )),
– Backward. ←−rP : ((L = C +C|T Q|T → R = Q), preT (P ), post(P )),

where prex(P ) (for x = {S, T }) is the union of the following two sets of NACs:

– NACx(P ) = {L ax
i→ Nx

i |L � Nx
i }i∈Pre is the set of NACs derived from P ’s

negative pre-conditions, with Nx
i
∼= Ci|x +C|x C.

– TNACx(P ) = {L nj→ Tj} is the set of NACs ensuring termination, where Tj

is built by making nj injective and jointly surjective with Q
f→ Tj, s.t. the

diagram to the bottom-left of Fig. 8 commutes.

and post(P ) is the union of the following two sets of negative post-conditions:

– POST (P ) = {nj : R→ Cj}j∈Post is the set of rule’s negative post-conditions,
derived from the set of P ’s post-conditions.

– NPAT (P ) = {R → D|[−→N (Ck)] ∈ SP , R → D ← Ck is jointly surjective,
and (R\L)∩Ck �= ∅} is the set of negative post-conditions derived from each
N-pattern

−→
N (Ck) ∈ SP .

The set NPAT (P ) contains the negative post-conditions derived from the N-
patterns of the specification. This is done by merging each N-pattern with the
rule’s RHS in all possible ways. Moreover, the condition (R\L)∩Ck �= ∅ reduces
the size of NPAT (P ), by only considering violations of the N-patterns due to
the creation of elements, as we start with an empty target model.

Example 7. The upper row of Fig. 8 shows the operational forward rule gener-
ated from pattern Attribute-Column. The set NACS contains one constraint,
equal to R. There are two NACs for termination, TNAC2 and TNAC1, the latter
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Q|x ��

��
=

Q

f
��

L �� Tj

Class1: Class

parent

G

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false n1 = nt

c: Class t: Table

name = x
public = p

a: Attribute : A2C

name = y

: Column

R = NAC1 = TNAC1

ct:C2T

p = false x = ’__’+y

c: Class t: Tablect:C2T

: Table: C2T

name = x
public = p

a: Attribute : A2C

TNAC2

name = y

p = false x = ’__’+y

: Column

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Class1: Class

name = y

: Column

c: Class t: Table

a: Attribute

public = p

L

ct:C2T

p = false

parent

H

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false

: A2C

na = ’__’+y
n1 = nt

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Fig. 8. Condition for TNACx(P ) (left). Example rule and derivation (right).

equal to R. As a difference from Fig. 5, we do not need to do algebraic manipu-
lation of formulae to generate the rule. The figure also shows a direct derivation
where both G and H are ground constraints. Note also that we do not check in
L that x starts with “ ”, but if it does not, we would obtain an unsatisfiable
constraint.

According to [12], the generated rules are terminating, and in absence of N-
patterns, correct: they produce only valid models of the specification. However,
the rules are not complete: not all models satisfying the specification can be
produced. Next subsection describes a method, called parameterization, that in
addition ensures completeness of the rules generated from a specification with-
out N-patterns. If a specification contains N-patterns, these are added as neg-
ative post-conditions for the rules, preventing the occurrence of N-patterns in
the model. However, they may forbid applying any rule before a valid model
is found, thus producing graphs that may not satisfy all P-patterns (because
the transformation stopped too soon). That is, in this situation the operational
mechanism would not be able to find a model, even if it exists. Next subsection
presents one heuristic that ensures finding models, and hence correctness, for
mechanisms derived from some specifications with certain classes of N-patterns.

4.1 Parameterization and Heuristics for Rule Derivation

Applying the parameterization operation to each P-pattern in the specification
ensures completeness of the operational mechanism: the rules are able to generate
all possible models of the specification [12]. The operation takes a P-pattern and
generates additional ones, with all possible positive pre-conditions “bigger” than
the original pre-condition, and “smaller” than the main constraint Q. This allows
the rules generated from the patterns to reuse already created elements.
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Definition 10 (Parameterization). Given T =
∧

i∈Pre

←−
N (Ci)∧←−P (C)⇒ P (Q)∧

∧

j∈Post

−→
N (Cj), its parameterization is Par(T ) = { ∧

i∈Pre

←−
N (Ci)∧←−P (C′)⇒ P (Q)∧

∧

j∈Post

−→
N (Cj)|C i1

↪→ C′ i2
↪→ Q, C � C′, C′ � Q}.

Remark 4. The formula αC′ can be taken as the conjunction of αC for the
variables already present in νC , and αQ for the variables not in νC (i.e. in
ν′

C \ i1(νC)). Formally, αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming
of variables).

Example 8. Fig. 9 shows an example, where some of the parameters generated
by parameterization are shown for a pattern like the one in Fig. 6 but without
parameters. Parameterization generates 45 patterns, each one made of the same
main constraint and one of the generated parameters. The pattern with parame-
ter
−→
P (1) is enforced when the class is already mapped to a table, and in forward

transformation avoids generating a rule that creates a table with arbitrary name.
Parameter

−→
P (3) reuses a column with the same name as the attribute (up to

the preffix ‘ ’), possibly created by a parent class. However,
−→
P (2) is harmful as

it may lead to reusing a column connected to a different table, and thus to an
incorrect model where the column is connected to two different tables.

ct:C2T

co: Column

t: Tablec: Class

P(2)

ct:C2T t: Tablec: Class

P(1)

name = x
public = p

a: Attribute

t: Tablec: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(3)

erization
paramet

ac:A2C

t: Table

name = x
public = p

a: Attribute

c: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(Attribute−Column.withoutParams)

Fig. 9. Parameterization example

As the example shows, parameterization generates an exponential number of
patterns with increasingly bigger parameters, which may lead to operational
rules reusing too much information. Although this ensures completeness, we
hardly use it in practice, and we prefer using heuristics to control the level of
reuse. However, as previously stated, generating fewer patterns can make the
rules unable to find certain models of the specifications (those “too small”).

We propose two heuristics in this paper. The first one is used to derive only
those parameters that avoid creation of elements with unconstrained attribute
values. The objective is to avoid synthesizing rules creating elements whose at-
tributes can take several values.

Heuristic 1. A pattern P can be replaced by another one having the same main
constraint and as parameter all elements with attributes not constrained by any
formula, and the mappings between these elements.
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Example 9. In Fig. 9, the heuristic generates just one pattern with parameter−→
P (1). Thus, the generated rules avoid creating a table with arbitrary name.

Next heuristic generates only those parameters that avoid duplicating a graph
S1, forbidden by some N-pattern of the form

−→
N (S1 +U S1), preventing the

subgraph S1 to appear twice. This ensures the generation of rules produc-
ing valid models for specifications with N-patterns of this form (called FIP
in [3]).

Heuristic 2. Given [
∧

i∈Pre

←−
N (Ci) ∧←−P (C) ⇒ P (Q)], if [

−→
N (S)] ∈ SP with S ∼=

S1 +U S1, and ∃s : S1 → Q and �s′ : S1 → C both injective s.t. q ◦ s′ = s, we
generate additional patterns with parameters all C′

j s.t. q1 and qs in C
q1→ C′

j

qs←
S1 are jointly surjective, and the induced C′

j → Q is injective.

The way to proceed is to apply heuristic 2 to each P- and N-pattern of the form−→
N (S1+U S1), and repeat the procedure with the resulting patterns until no more
different patterns are generated. Next section illustrates both heuristics.

5 Example

Next we illustrate our approach with a bidirectional transformation between re-
lational database schemas (RDBMS) and XML documents. Their meta-models
are shown in the meta-model triple in Fig. 10. Schemas contain books and sub-
jects. A book has zero or more subjects, and those books with the same subject
description are related to the same object Subject. On the contrary, the XML
meta-model allows nested relationships, and even if two books have the same
subject description, they are assigned two different objects Subject.

p1+’ ed.’ = p2

: B

ISBN = i2
title = t2

: Book

name = p2

: Publisher

P(Book)

name = p1

: Publisher

name = p2

: Publisher

N(NotDupXMLPublisher)

p1 = p2

desc = d2

: Subject

desc = d1

: Subject

N(NotDupRDBMSSubject)

d1 = d2

: S

desc = d1

: Subject

desc = d2

: Subject

: Book : B : Book

P(Subject)

d1 = d2

B

S

− ISBN: String
− title: String

Book

− desc: String

Subject

− desc: String

Subject

− name: String

Publisher

Meta−model triple:

RDBMS

subject

*

*

*

1
subject* 1 pub

− ISBN: String

− publisher: String
− title: String

Book

XML

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1)

d1 = d2

by heuristic 2:

ISBN = i1

: Book

publisher = p1
title = t1 i1 = i2

t1 = t2

P(Book.h2)

p1+’ ed.’ = p2

i1 = i2
t1 = t2

Initial M2M specification:

New pattern generated
by heuristic 1:

New patterns generated

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1.h2)

d1 = d2

ISBN = i1

: Book

publisher = p1
title = t1

ISBN = i2
title = t2

: Book: B

name = p2

: Publisher

<<param>><<param>>

<<param>>

<<param>><<param>> <<param>>

<<param>>

<<param>>

Fig. 10. Mapping relational database schemas and XML
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Fig. 10 shows the initial M2M specification, which is made of four patterns.
The P-pattern Book states how the books in both meta-models should relate,
and adds an “ ed.” suffix to the publisher in the XML model. P-pattern Subject
maps subjects in both models. Note that we need these two patterns as it is
possible to have books with zero or more subjects. Should a book have exactly
one subject, then only one pattern would have been enough. In addition, as
the RDBMS format does not allow two subjects with the same description, we
forbid such situation by defining the N-pattern NotDupRDBMSSubject. Similarly,
N-pattern NotDupXMLPublisher forbids repeating publishers in XML.

: Book

name = p2

p: Publisher

name = p3

: Publisher

NPAT1 (post)

p1+’ ed.’ = p2
t1 = t2
i1 = i2

p2 = p3

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

p1+’ ed.’ = p2
t1 = t2
i1 = i2

name = p2

: Publisher

R = TNAC1
b: Book

L

Book

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

p1+’ ed.’ = p2
t1 = t2
i1 = i2

R = TNAC1

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

name = p3

: Publisher

TNAC2

p1+’ ed.’ = p2
p1+’ ed.’ = p3

t1 = t2
i1 = i2

publisher = p1

b: Book

name = p2

p: Publisher

L

p1+’ ed.’ = p2

Book.h2

desc = d1

s: Subject : S

: B

c: B b2: Book

d1 = d2
desc = d2

: Subject

b1: Book

TNAC2

: Book

c: B

desc = d1

s: Subject : S

R = TNAC1

d1 = d2
desc = d2

: Subject

b1: Book b2: Book

b1: Book

s: Subject

c: B b2: Book

L

Subject.h1 Subject.h1.h2

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

Fig. 11. Generated forward rules

In this example we cannot use generic parameterization as it would generate
patterns with parameters reusing, e.g. the Subjects in the XML model. There-
fore we use the heuristics instead. The first one generates pattern Subject.h1
from pattern Subject by defining the elements with unconstrained attributes as
parameters. The new pattern replaces the old one and ensures that, when the
subject is translated, the book associated to it has been translated first. The
second heuristic is applied to patterns Subject.h1 and Book and produces two
new patterns, Subject.h1.h2 and Book.h2. The first one reuses RDBMS Sub-
jects so that they are not duplicated in backward transformations. The second
reuses one Publisher, avoiding its duplication in forward transformations.

As a last step, we use patterns Book, Subject.h1,Subject.h1.h2and Book.h2
and the N-patterns to generate the operational rules. Fig. 11 shows the forward
ones. Rule Book contains a termination NAC (TNAC1) equal to its RHS and a
negative post-condition (generated from

−→
N (NotDupXMLPublisher)) avoiding two

publishers with same name. Patterns Subject.h1 and Subject.h1.h2 produce
equivalent rules with two termination NACs. Finally, rule Book.h2 creates books
that reuse publishers once they have been created. Note again that we do not need
to perform algebraic manipulation of expressions for rule synthesis, as the LHSs
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and RHSs contain constraint triple graphs (where note that attributes not used
in formulae are ommited, like in the LHS of rule Book).

Altogether, the operational mechanisms generated for this example are ter-
minating, confluent, correct and complete even using heuristics. However, our
mechanisms cannot guarantee confluence in general if we do not have a means
to prefer one resulting model or another.

6 Related Work

Some declarative approaches to M2M transformation use a textual syntax, e.g.
PMT [15], Tefkat [9]. All of them are uni-directional, whereas our patterns are
bidirectional. There are also bidirectional textual languages, like MTF [10].

Among the visual declarative approaches, a prominent example is QVT-
relational [13]. Relations in QVT may include when and where clauses that
identify pre- and post-conditions and can refer to other relations. From this
specification, executable QVT-core is generated. This approach is similar to
ours, but we compile patterns to TGG rules, allowing its analysis [6]. Besides,
we can analyse the patterns themselves. In the QVT-relations language, there
is no equivalent to our N-patterns. Notice however, that our N-patterns can be
used to model keys in QVT (e.g. elements that should have a unique identi-
fier) as we showed in Section 5 with N-patterns

−→
N (NotDupXMLPublisher) and−→

N (NotDupRDBMSSubject). An attempt to formalize QVT-core is found in [7].
In [1], transformations are expressed through positive declarative relations,

heavily relying on OCL constraints, but no operational mechanism is given to
enforce such relations. In BOTL [2], the mapping rules use a UML-based notation
that allows reasoning about applicability or meta-model conformance.

Declarative TGGs [14] formalize the synchronized evolution of two graphs
through declarative rules from which TGG operational rules are derived. We also
generate TGG operational rules, but whereas declarative TGG rules must say
which elements should exist and which ones are created, our heuristics infer such
information. Moreover, TGGs need a control mechanism to guide the execution
of the operational rules, such as priorities [8] or their coupling to editing rules [5],
while our patterns do not need it. As in QVT, there is no equivalent to our
N-patterns, however TGGs can be seen as a subset of our approach, where a
declarative TGG rule is a pattern of the form

←−
P (L)⇒ P (R).

In [11] the authors start from a forward transformation and the corresponding
backward transformation is derived. Their transformations only contain injective
functions to ensure bidirectionality, and if an attribute can take several values
one of them is chosen randomly. Finally, in [4] attribute grammars are used as
transformation language, where the order of execution of rules is automatically
calculated according to the dependencies between attributes.

7 Conclusions and Future Work

In this paper we have extended pattern-based transformation with attributes.
The resulting language allows expressing relations between models in a



98 E. Guerra, J. de Lara, and F. Orejas

declarative way, leaving open the kind of logic used for attribute conditions.
Typically, it can be first order predicate logic, e.g. with OCL syntax. The advan-
tage of our approach is that it provides a formal, high-level language to express
bidirectional transformations. Our language is concise, as its heuristics allow
omitting the parameters in the relations. Moreover, at the operational level, we
have proposed a new way of triple graph rewriting based on constraints. This
idea, which can be used in other transformation approaches, avoids manipulation
of attribute conditions, one of the main difficulties of relational approaches.

We are currently working towards using this approach to formalize QVT re-
lations. Also, we are considering other operational languages, further heuristics,
devising analysis methods, and implementing a prototype tool.
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