
Experiments with a
High-Level Navigation Language

Jesús Sánchez Cuadrado1, Frédéric Jouault2,
Jesús García Molina1, and Jean Bézivin2

1 Universidad de Murcia
{jesusc,jmolina}@um.es

2 AtlanMod team, INRIA & EMN
{jean.bezivin,frederic.jouault}@inria.fr

Abstract. Writing navigation expressions is an important part of the
task of developing a model transformation definition. When navigation is
complex and the size of source models is significant, performance issues
cannot be neglected. Model transformation languages often implement
some variants of OCL as their navigation language. Writing efficient code
in OCL is usually a difficult task because of the nature of the language
and the lack of optimizing OCL compilers. Moreover, optimizations gen-
erally reduce readability.

An approach to tackle this issue is to raise the level of abstraction of
the navigation language. We propose to complement the regular naviga-
tion language of model transformation languages with a high-level navi-
gation language, in order to improve both performance and readability.
This paper reports on the initial results of our experiments creating the
HLN language: a declarative high-level navigation language. We will mo-
tivate the problem, and will we describe the language as well as the main
design guidelines.

1 Introduction

Model transformations are a key element for the success of Model Driven Engi-
neering (MDE). As this discipline becomes mature, model transformations are
being used to address problems of an increasing complexity, and the number
of developers writing transformations is also growing. In this way, MDE is be-
ing applied to contexts such as DSL-based development, system modernization,
or megamodeling. In some scenarios (e.g. system modernization), models being
handled are typically large, and performance becomes an important concern.

Model transformation languages usually rely on query or navigation languages
for traversing source models in order to feed transformation rules (e.g., check-
ing a rule filter) with the required model elements. In complex transformation
definitions a significant part of transformation logic is devoted to model nav-
igation, and most of the transformation bottlenecks are located there. In this
setting, performance cannot be neglected when writing navigation expressions.
However, writing efficient code can be a difficult issue, and it often compromises
readability.

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 229–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 J.S. Cuadrado et al.

To tackle this issue we propose to raise the abstraction level of the navigation
language, so both readability and performance may be achieved at the same
time. Readability is improved as language constructs are declarative and reflect
better the intention of the developer, whereas compiler optimizations are easier
to perform because the granularity of the constructs is coarser. Such a high-level
navigation language is intended to complement the regular navigation language
implemented as part of a model transformation language.

This paper reports on the initial results of our experiments with a high-level
navigation language, called HLN. We have implemented the language on top
of the ATL virtual machine [2] in order to interoperate with any language im-
plemented on top of it (e.g., ATL, QVT-R). However, HLN could also be im-
plemented on a different engine architecture. We will explain the structure and
the design of the language, and we will show why it is a good complement for
navigation languages.

The paper is organized as follows. Next section motivates our approach. Sec-
tion 3 presents the technical context of this work. Section 4 presents the HLN
language and describes how it has been designed. Finally, Section 5 presents
some related works, and Section 6 gives the conclusions.

2 Motivation

Many current model transformation languages, such as ATL [8], QVT [12], and
ETL [9], use some variants of the Object Constraint Language (OCL) [15] as their
navigation language. OCL encourages a “functional” style based on collections,
iterators, and expressions without side-effects (e.g., collections are immutable).
However, despite its apparent “declarativeness”, it can be considered as a low-
level navigation language since all details about the navigation steps must be
specified [14]. We argue that the level of abstraction of OCL is sometimes inad-
equate to achieve performance.

From our experience in discovering performance patterns for model navigation
in model transformation [5], we have identified four issues with OCL:

– Algorithm locality. Algorithms are typically defined in operations at-
tached to metaclasses. Several identical passes are often done, computing
the same value several times. Writing global algorithms as global functions
often improves performance.

– Immutability. The lack of side-effects makes optimizing compilers very
important. OCL makes intensive use of collections, and rewriting inmutable
operations to mutable operations when possible is a must to get performance.
However, few optimizing compilers for OCL are available.

– Verbosity. Efficient code tends to be large and verbose.
– Specificity. Similar specific algorithms to solve a given navigation problem

are generally implemented several times in different transformations defini-
tions, generally at least once per different metamodel. OCL does not provide
mechanisms for generalizing algorithms.

Experiments with a High-Level Navigation Language 231

To tackle these issues we have built a high-level navigation language, called
HLN. This is a declarative language, in which each language construct is intended
to address a recurrent navigation problem (i.e., a navigation pattern).

As we will show during the paper, our approach has four main advantages
involving performance and readability, namely:

1. Optimization opportunities. Possibility for the compiler to optimize,
since the language constructs are declarative and their granularity is coarse
(e.g., the compiler can use mutable operations internally easily).

2. Simplicity. The developer does not need to know how to implement the
navigation expressions in an efficient way, the best algorithm is chosen by
the compiler.

3. Readability is improved because each construct of the language reflects
exactly the intention of the developer.

4. Generality. Code repetition is alleviated (e.g., writing a similar algorithm
for different meta-types) because of the generality of the constructs.

3 Technical Context

The technical context of our work is the ATL Virtual Machine (ATL VM) ar-
chitecture provided by the AmmA platform. The ATL VM language is a small
imperative instruction set composed of four categories of bytecodes: stack, mem-
ory, control flow, and model handling. It provides facilities to attach functions
to metamodel elements, for instance to create helpers, as specified by OCL [15].

In this way, a language such as ATL is built by creating a compiler targeting
the VM. An important benefit of targeting a VM architecture is that of language
interoperability: operations defined in one language may be used from another.
For instance, a library written in HLN can be reused in transformations written
in several languages (provided they are implemented on top of the ATL VM).

As we will see, each HLN construct will implicitly yield to the creation of one
or more helpers (i.e., operations attached to metaclasses). Such helpers can be
called by any other language implemented on top of the VM (e.g., ATL), but
also HLN interoperates via helpers with such languages. We do not intend to
extend OCL, but to complement it “externally” with navigation libraries.

4 The HLN Language

In this section we present the High-Level Navigation (HLN) language. It is a
domain-specific language for the domain of model navigation. HLN is intended
to allow model transformation developers to specify model navigation statements
at a high level of abstraction.

HLN is not a general purpose navigation language in the sense that it is
not possible to specify all kinds of navigation on a source model. It is intended
to cover a range of common navigation problems for which it provides good
performance. Other problems can be solved using the other navigation language

232 J.S. Cuadrado et al.

that HLN complements (e.g., OCL as generally used for model transformation).
As explained above, targeting the ATL VM allows us to fulfil this requirement.
The four principles guiding the design of the language are the following:

– Declarative. It should be based on declarative constructs. Any construct
should allow to specify the result of the navigation without detailing each
navigation step. Thus, the language is designed to require the minimum
possible amount of information from the developer.

– Readable. The syntax of the constructs should resemble natural language
as far a possible. Readability and maintainability are promoted since each
statement reflects an intention of the developer.

– Useful. Each construct of the language should be included only on the
basis of experimental tests showing that it provides an improvement in per-
formance or readability.

– Simple. There is no “expression language” in order to keep the language
simple. We rely on the interoperability with other languages (via helpers)
when conditions must be expressed.

The current version of HLN comes from our experience developing a catalog
of navigation patterns, which identifies recurrent problems in model naviga-
tion [1] [5]. Some of these patterns are amenable to be encoded as language
constructs. In particular, we have currently implemented four of them as HLN
constructs, namely: linking elements by some property, computing transitive clo-
sures, computing the opposite of a reference, and setting a navigation path.

An HLN library is composed of a header and a set of navigation statements.
An excerpt of an HLN library to navigate class diagrams is shown below. The
header of a library declares the source models with their reference models (i.e.,
metamodels) to be navigated (in the example the CD metamodel stands for class
diagram). Then, one or more navigation statements are written, for instance, to
compute the transitive closure of the superclasses relationship. A metamodel
element is specified by prefixing the metaclass name with the corresponding
metamodel name, using ! as a separator (e.g., CD!Class for metaclass Class of
metamodel CD). A metaclass property (possibly a helper) is specified using the
dot notation (e.g., CD!Class.superclasses).

1 navigate IN : CD;
2 trans it ive closure a l l S u p e r c l a s s e s of CD! Class . s u p e r c l a s s e s

Figure 1 shows the abstract syntax of the language. The constructs inherit from
the Statement abstract metaclass. The HelperRef metaclass represents a prop-
erty or helper of some metaclass (note that it references MetaElement), but it
does not say whether the property or helper exists or whether it will be created.
This is part of each construct’s semantics. The concrete syntax of HLN (used in
examples) is textual, and is implemented with the TCS tool [7].

It is worth noting that the current implementation of the HLN compiler does
not perform any static checking against the source metamodel. This means
that, for instance, it is required to explicitly declare whether a property is

Experiments with a High-Level Navigation Language 233

Fig. 1. Abstract syntax metamodel of HLN

multi-valued (multivalued attribute of HelperRef), despite this information being
already present in the source metamodel. At the concrete syntax level this is ex-
pressed with [*]. The SelectClause and TransitiveClosure do not use HelperRef,
but just helperName, to reference a helper to be created, because the meta-
element and multiplicity are implicit.

Next, each construct will be introduced by showing a piece of simple OCL
code illustrating the navigation pattern. From such code, the essential parts will
be identified, and an HLN construct will be derived from them.

4.1 Linking

The linking pattern appears when two model elements are implicitly linked be-
cause they both have some feature (possibly helpers) with the same value (i.e.,
this is a kind of join).

For instance, a class diagram can be annotated using some weaving infras-
tructure such as AMW. Gathering the annotations for a given class could be
done in the following way. For each class, all annotations are iterated, looking
for those “pointing” to the current class.

1 context CD: : Class def : annotat ions : Sequence (AMW: : ClassAnnotation) =
2 AMW: : ClassAnnotation . a l l I n s t an c e s ()−>s e l e c t (a | s e l f .__xmiID__= a . r e f)

Taking into account the piece of code above we derive an HLN construct, which
is typically implemented using some kind of hash join. The essential parts are the
following: the two metaclasses whose instances will be matched (e.g., CD::Class
and AMW::ClassAnnotation), the name of the feature of each metaclass to be
compared (e.g., __xmiID__ and ref), and the name of helpers to be created
(e.g., only annotations in this case). In general, two helpers will be created, one
for each linked end.

234 J.S. Cuadrado et al.

The piece of abstract syntax metamodel for this construct is shown in Figure 1
(Link metaclass). A linking is specified as a link between two link ends. Each
link end represents a metaclass and the property used to compare. A new helper
containing the result of linking one end with the other end is created. In this
way, we focus on the “what”, and the “how” is left to the HLN’s compiler.

A piece of HLN code illustrating the concrete syntax of this construct is shown
below. It is intended to be read as if it were natural language: link each Class
using __xmiID__ to each ClassAnnotation using ref). The result is that a
helper called annotations is attached to metaclass Class. The _ symbol is used
to indicate that we do not want to create the helper at the other end.

1 l ink CD! Class . annotat ions [∗] on __xmiID__
2 to AMW! ClassAnnotation ._[∗] on r e f ;

Notice that the [*] modifier could be removed, but instead of computing a
collection of links for each instance, only one link would be selected (if there are
more links they are just discarded).

4.2 Navigation Path

Navigation of models with OCL is based on the dot notation to access model
element properties. Collections are typically handled using iterators, such as
select to filter elements, collect for deriving a collection from another one or any
for getting an element satisfying a condition.

A typical pattern in OCL is navigating through multiple multi-valued ref-
erences, filtering by some criteria, so that a combination of select, collect and
flatten operations are needed to get the final collection. The following piece of
OCL code shows this pattern in the case of obtaining all attributes contained
by the classes of a package.

1 context CD: : Package def : g e tA l lAt t r i bu t e s : CD: : Attr ibute =
2 s e l f . c l a s s i f i e r s −>s e l e c t (c | c . i sC l a s s)−>
3 c o l l e c t (c | c . f e a t u r e s)−>f l a t t e n ()−>
4 s e l e c t (f | f . i sA t t r i bu t e)

The evaluation of this expression implies creating a collection with all classifiers
satisfying the isClass condition, next a collection containing collections of fea-
tures is created, which is then flattened, and it is filtered again to obtain the
result. As the number of navigation steps grow the evaluation is more inefficient.

This shows that several implementation-level details must be specified in OCL,
in particular the collect and flatten operations are needed only to “normalize”
the filtered collection before applying the next filter (i.e., the second select oper-
ation). The essential information includes navigated properties (e.g., classifiers
and features) and filter conditions (if any).

The piece of metamodel for the corresponding construct is shown in Figure 1
(Path metaclass). An expression is based on nested navigation clauses that take
the result of the owning clause to perform its navigation step. An example of the
concrete syntax is shown below. The when part is optional if no filter is specified.
This expression can be naturally read as: given a package, select all classifiers

Experiments with a High-Level Navigation Language 235

satisfying the isClass condition, and, for each one, select all features satisfying
the isAttribute condition.

1 path ClassM ! Package . g e tA l lAt t r i bu t e s
2 select c l a s s i f i e r s when i sC l a s s
3 select f e a t u r e s when i sA t t r i bu t e

4.3 Opposite

Given a relationship from one model element to another, it is often necessary to
navigate through the opposite relationship. For instance, in a class diagram, the
opposite for the superclasses relationship of a Class metaclass is the collection
of direct subclasses for a given class.

If the opposite relationship has been defined in the metamodel, then nav-
igation in both directions can be efficiently achieved. However, such opposite
relationship is not always available, so an algorithm has to be worked out.

A straightforward algorithm will involve traversing all the instances of the
opposite relationship’s metaclass and checking which of them are part of the
relationship. For instance, to get the owning package of a class, the opposite of
the package’s classifiers relationship is computed as follows1:

1 context CD: : Class def : owner : CD: : Package =
2 CD: : Package . a l l I n s t an c e s ()−>any (p |
3 p . c l a s s i f i e r s . i n c l ude s (s e l f))

The corresponding HLN construct can be easily derived from this algorithm. The
required elements are two metaclass/relationship pairs: the source metaclass and
the already existing relationship, and the target metaclass with the name of the
new relationship to be computed. The piece of metamodel corresponding to this
construct is shown in Figure 1 (Opposite metaclass).

An example of the concrete syntax is shown below. It should be read in the
following way: compute the opposite relationship, called CD!Class.owner, of the
relationship CD!Package.classifiers.

1 opposite CD! Class . owner of CD! Package . c l a s s i f i e r s [∗] ;

4.4 Transitive Closure

Computing the transitive closure of a relationship is a common operation in
model transformations. An example is computing the set of all direct and indirect
superclasses of a class. Another example is computing the set of reachable states
from a given state of a state machine.

Let us consider a piece of OCL code to compute the transitive closure of the
superclasses relationship in a class diagram. There are several performance
issues in this code. Firstly, the union operation is immutable, which means that
collections are duplicated unless the OCL compiler is able to detect and optimize
1 MOF and Ecore provide the refImmediateComposite() and eContainer() operations

respectively to get an element’s container. However, the discussion still holds for
non-containment relationships, and when such operations are not made available by
the underlying transformation language.

236 J.S. Cuadrado et al.

this case. Secondly, collect and flatten also imply duplicating collections. Finally,
the transitive closure is computed several times for the same class. A transitive
closure can be implemented in one traversal, whereas a straightforward OCL
implementation such as this one performs several.
1 context CD: : Class def : a l l S up e r c l a s s e s : Sequence (CD: : Class) =
2 s e l f . parents−>union (s e l f . supe r c l a s s e s −>
3 c o l l e c t (c | c . a l l S up e r c l a s s e s)−>f l a t t e n ())

The only essential information to derive the HLN construct is the name of the
relationship (e.g., superclasses), the corresponding metaclass (e.g., CD!Class),
and the attribute helper that will be created (e.g., allSuperclasses). The piece of
metamodel corresponding to this construct shows that (Figure 1, TransitiveClo-
sure metaclass). The details about how to perform the computation are ignored
This means that the compiler may evolve to implement a more efficient version
of the construct, without affecting existing HLN libraries.

The concrete syntax for this construct is the following. Notice that it is implicit
that the allSuperclasses helper must belong to CD!Class, and that it is multi-
valued.

1 trans it ive closure a l l S u p e r c l a s s e s of CD! Class . s u p e r c l a s s e s

4.5 Combining Constructs

To cover a wider range of navigation problems, while keeping the language sim-
ple, HLN allows constructs to be combined using the helpers created as a result
of one construct in another construct. Again, we rely on the use of helpers to
interoperate, in this case for the interoperability of the language constructs. No-
tice that the order of the constructs is not important, because the compiler may
keep track of the dependencies.

For instance, the transitive closure construct does not consider a relationship
defined by means of an intermediate class, such as is the case of the superclasses
relationship in UML 2.0, which is defined using the Generalization metaclass.

Instead of extending HLN, the path construct can be used to first get the
collection of direct superclasses, going through the generalization relationship.
Then, the helper created for this construct is used seamlessly for the transitive
closure construct. This is shown in the following piece of HLN code.
1 path UML! Class . d i r e c t Sup e r c l a s s e s
2 select g en e r a l i z a t i o n
3 select gene ra l ;
4 trans it ive closure a l l S u p e r c l a s s e s of UML! Class . d i r e c t S up e r c l a s s e s ;

Another useful example of this technique involves defining the “inverse transitive
closure” of a relationship, which can be computed combining the opposite and
transitive closure constructs.

5 Related Work

Twomain approaches to model query or navigation can be found in model transfor-
mation languages: patterns andnavigation languages.Graphpatterns are typically

Experiments with a High-Level Navigation Language 237

used in graph transformation languages, such as Viatra [4] or GReAT [3]. Objects
patterns are available in QVT Relational [12] and in Tefkat [10].
OCL-like navigation languages are the primary navigationmechanism providedby
rule transformation languages such asATL [8],QVTOperational [12], andETL [9].

Even though in this paper we have focused on OCL, our approach is applicable
to complement other query languages. For instance, pattern languages use object
properties to constraint query results. Such properties can be helpers defined by
an HLN library, since the VM makes the integration seamless.

Regarding the performance of OCL, in [6] the need for developing benchmarks
to compare different OCL engines is mentioned. The authors have developed
several benchmarks but they are intended to compare features of OCL engines,
rather than performance. In [11] the authors present several algorithms to opti-
mize the compilation of OCL expressions. They argue that its optimizing OCL
compiler for the VMTS tool can improve the performance of a validation process
by 10-12%.

Finally, domain-specific query languages have been proposed as a means to
enhance the query mechanism (strategies) of the Stratego program transforma-
tion tool. In particular, the implementation of an XPath-like language is dis-
cussed [13]. It behaves like a macro-system, generating Stratego code. In our
case, we are able to generate efficient VM code.

6 Conclusions

In the paper, we reported on our experiments with an approach to model naviga-
tion based on a high-level navigation language providing declarative constructs.
We introduced the HLN language, and we compared HLN against writing nav-
igation expressions in OCL. The initial benchmarks we have carried out have
shown performance improvements ranging from 20% to 800% with respect to a
normal ATL implementation.

The contribution of this work is two-fold, on the one hand we have shown that
raising the level of abstraction of a navigation language has several advantages:
(1) it allows the compiler to easily optimize, which yields improved performance,
(2) quality attributes such as readability and maintainability are also improved,
and (3) model navigation best-practices are encoded in language constructs.
On the other hand, the HLN implementation is a contribution itself. Its current
implementation can be used as a complement to any language built on top of the
ATL VM, and it is also useful for tool implementors to compare the performance
of their navigation languages2.

A possible extension of this work includes adding new constructs and improv-
ing performance of the current ones, comparing to other transformation lan-
guages (e.g., with an optimizing compiler), and creating a static type checker. It
would also be useful to investigate how to improve interoperability of HLN with
other languages (e.g., via parameters) while still keeping the language simple.
2 The implementation of HLN, and several benchmarks can be downloaded from

http://www.modelum.es/projects/hln [1].

238 J.S. Cuadrado et al.

Acknowledgments

This work has been supported by Fundación Seneca (Murcia, Spain), grant 08797/PI/08.

References

1. Benchmarks for HLN, http://www.modelum.es/projects/hln/
2. Specification of the ATL Virtual Machine,

http://www.eclipse.org/m2m/atl/doc/
3. Agrawal, A.: Graph Rewriting and Transformation (GReAT): A Solution for The

Model Integrated Computing (MIC) Bottleneck. In: ASE, pp. 364–368 (2003)
4. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: SAC 2006: Proceedings of the, ACM symposium on
Applied computing, pp. 1280–1287. ACM, New York (2006)

5. Cuadrado, J.S., Jouault, F., Garcia-Molina, J., Bèzivin, J.: Optimization patterns
for OCL-based model transformations. In: Proceedings of the 8th OCL Workshop
(2008)

6. Gogolla, M., Kuhlmann, M., Buttner, F.: A benchmark for OCL engine accuracy,
determinateness, and efficiency. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 446–459. Springer, Heidel-
berg (2008)

7. Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE 2006: Proceedings of the 5th In-
ternational Conference on Generative programming and Component Engineering,
pp. 249–254. ACM, New York (2006)

8. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

10. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Heidel-
berg (2006)

11. Mezei, G., Levendovszky, T., Charaf, H.: An optimizing OCL compiler for meta-
modeling and model transformation environments. In: Software Engineering Tech-
niques: Design for Quality, pp. 61–71. Springer, Heidelberg (2007)

12. OMG. Final adopted specification for MOF 2.0 Query/View/Transformation
(2005),
www.omg.org/docs/ptc/05-11-01.pdf

13. van Wijngaarden, J.: Code Generation from a Domain Specific Language. Design-
ing and Implementing Complex Program Transformations. Master’s thesis, Utrecht
University, Utrecht, The Netherlands, INF/SCR-03-29 (July 2003)

14. Vaziri, M., Jackson, D.: Some Shortcomings of OCL, the Object Constraint Lan-
guage of UML. In: Proceedings of the Technology of Object-Oriented Languages
and Systems (TOOLS 2000), Washington, USA, p. 555. IEEE Computer Society,
Los Alamitos (2000)

15. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
With UML. Addison Wesley, Reading (1998)

http://www.modelum.es/projects/hln/
http://www.eclipse.org/m2m/atl/doc/
www.omg.org/docs/ptc/05-11-01.pdf

	Experiments with a High-Level Navigation Language
	Introduction
	Motivation
	Technical Context
	The HLN Language
	Linking
	Navigation Path
	Opposite
	Transitive Closure
	Combining Constructs

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

