

Lecture Notes in Computer Science 5563
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Richard F. Paige (Ed.)

Theory and Practice
of Model Transformations

Second International Conference, ICMT 2009
Zurich, Switzerland, June 29-30, 2009
Proceedings

13

Volume Editor

Richard F. Paige
University of York, Department of Computer Science
Heslington, York, YO10 5DD, United Kingdom
E-mail: paige@cs.york.ac.uk

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.3, D.4.8, F.3, I.6, K.6, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-02407-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02407-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12702183 06/3180 5 4 3 2 1 0

Preface

Models have become essential for supporting the development, analysis and evo-
lution of large-scale and complex IT systems. Models allow different views, per-
spectives and elements of a system to be captured rigorously and precisely, thus
allowing automated tools to manipulate and manage the models. In a full-fledged
model-driven engineering (MDE) process, the transformations developed and ex-
pressed between models are also key. Model transformations allow the definition
and implementation of the operations on models, and also provide a chain that
enables the automated development of a system from its corresponding mod-
els. Model transformations are already an integral part of any model-driven
approach, and there are a number of available model transformation languages,
tools, and supporting environments; some of these approaches are now approach-
ing maturity. Nevertheless, much work remains: the research community and
industry need to better understand the foundations and implications of model
transformations, such as the key concepts and operators supporting transforma-
tion languages, their semantics, and their structuring mechanisms and properties
(e.g., modularity, composability and parametrization). The effect of using model
transformations on organizations and development processes – particularly when
applied to ultra-large scale systems, or in distributed enterprises – is still not
clear. These issues, and others related to the specification, design, implementa-
tion, analysis and experimentation with model transformation, are the focus of
these proceedings.

The Second International Conference on Model Transformation (ICMT 2009)
was held in late June 2009 in Zurich, Switzerland. As was the case with the 2008
edition, the conference was conducted in collaboration with the TOOLS Eu-
rope 2009 conference. ICMT built on the success of the inaugural edition in
2008, and the success of tracks on Model Transformation at the ACM Sympo-
sium on Applied Computing (SC): MT 2006 in Dijon, France, and MT 2007 in
Seoul, Korea. The second ICMT conference brought together researchers and
practitioners to share experiences in using model transformations. ICMT 2009
combined a strong practical focus with the theoretical approach required in any
discipline that supports engineering practices.

ICMT 2009 received 67 abstract submissions, of which 61 were submitted
as full papers. Each paper was reviewed by at least three Program Commit-
tee members. There was a full and rigorous discussion process after which the
Program Committee recommended 14 full papers for acceptance, giving an ac-
ceptance rate of 23%. Additionally, the Program Committee recommended three
short papers for acceptance, inclusion in the proceedings, and presentation at
the conference. These shorter papers presented work of considerable promise and
interest, which led to substantial discussion at the conference. Submissions and

VI Preface

the reviewing process were supported by EasyChair, which greatly facilitated
these tasks.

The conference was fortunate to have an invited keynote talk by Benjamin
Pierce of the University of Pennsylvania. Additionally, an exciting panel on bidi-
rectional transformation was organized by Krzysztof Czarnecki, Nate Foster,
Zhenjiang Hu, Ralf Lämmel, Andy Schürr and James Terwilliger, and was de-
rived from a GRACE meeting held in Japan in December 2008. We are pleased
that the panel organizers were also able to prepare an invited paper summarizing
the GRACE meeting, which is included in these proceedings.

I thank all members of the Program Committee, and their designated re-
viewers, for participating and leading a constructive and supportive reviewing
process. Their dedication was instrumental in designing a very high quality con-
ference. I especially thank the ICMT 2009 Publicity Chair, Dennis Wagelaar, for
his tireless efforts in advertising the conference. I also thank the TOOLS Europe
2009 organizers, particularly Manuel Oriol (TOOLS 2009 Program Chair), local
organizers Claudia Günthart and Ilinca Ciupa at ETH Zurich, and Bertrand
Meyer (Conference Chair) for their support and help with logistics. The success
of ICMT 2009 is greatly due to their efforts. Finally, I thank the ICMT Steering
Committee – Antonio Vallecillo, Alfonso Pierantonio, Jeff Gray and Jean Bézivin
– for their support and help throughout the process. Without their efforts, ICMT
would be but a thought!

June 2009 Richard Paige

Organization

Conference Commitee

Program Chair: Richard Paige
(University of York, UK)

Publicity Chair: Dennis Wagelaar
(V.U. Brussel, Belgium)

Steering Committee: Alfonso Pierantonio
(University of dellAquila, Italy)

Antonio Vallecillo
(University of Málaga, Spain)

Jeff Gray
(University of Alabama at Birmingham,
USA)

Jean Bézivin
(INRIA, Nantes, France)

Program Committee

Orlando Avila-Garcia Open Canarias, Spain
Luciano Baresi U.P. Milan, Italy
Jordi Cabot University of Toronto, Canada
Charles Consel INRIA/LaBRI, France
Davide Di Ruscio University of Aquila, Italy
Jean-Marie Favre University of Grenoble, France
Piero Fraternali Polytechnic Unversity of Milan, Italy
Jesús Garćıa-Molina University of Murcia, Spain
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama at Birmingham,

USA
Reiko Heckel University of Leicester, UK
Howard Ho IBM Almaden, USA
Frédéric Jouault INRIA, Nantes, France
Gerti Kappel Technical University of Vienna, Austria
Günter Kniesel University of Bonn, Germany
Dimitrios Kolovos University of York, UK
Thomas Kuehne Victoria University Wellington, New Zealand
Vinay Kulkarni Tata, India
Ivan Kurtev University of Twente, The Netherlands
Esperanza Marcos University of Rey Juan Carlos, Spain
Marc Pantel University of Toulouse, France
Francesco Parisi-Presicce University of Rome La Sapienza, Italy

VIII Organization

Vicente Pelechano University of Valencia, Spain
Alfonso Pierantonio University of Aquila, Italy
Ivan Porres Åbo Akademi, Finland
Nicolas Rouquette JPL, USA
Andreas Rummler SAP, Germany
Bernhard Rumpe RTWH Aachen, Germany
Andy Schürr TU Darmstadt, Germany
Bran Selic Malina, Canada
James Steel Queensland University, Australia
Yasemin Topaloglu Ege University, Turkey
Gabi Taentzer University of Marburg, Germany
Laurence Tratt University of Bournemouth, UK
Antonio Vallecillo University of Malaga, Spain
Hans Vangheluwe McGill University, Canada
Dániel Varró University of Budapest, Hungary
Jens Weber University of Victoria, Canada
Ed Willink Thales Research, UK
Andreas Winter Johannes Gutenberg University of Mainz,

Germany
Gregor Engels University of Paderborn, Germany
Jon Whittle Lancaster University, UK

External Reviewers

K. Androutsopoulos
A. Beresnev
D. Bisztray
V. Bollati
P. Bottoni
D. Cassou
A. Cicchetti
D.-H. Dang
A. Egesoy
B. Güldali
U. Hannemann
F. Hermann
A. Horváth

M. Kuhlmann
N. Loriant
T. Lundkvist
T. Motal
D. Reiss
H. Rendel
J.O. Ringert
J.E. Rivera
J.-R. Romero
L. Rose
A. Rutle
J. Sanchez-Cuadrado
M. Schindler

H. Schwarz
M. Seidl
E. Syriani
M. Tisi
J.M. Vara
G. Varro
B. Vela Sanchez
S. Völkel
M. Wimmer
A. Wübbeke
V. de Castro
J. de Lara

Table of Contents

Invited Paper

Foundations for Bidirectional Programming . 1
Benjamin C. Pierce

Full Papers

Model Superimposition in Software Product Lines . 4
Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kästner

Efficient Model Transformations by Combining Pattern Matching
Strategies . 20

Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró

Managing Dependent Changes in Coupled Evolution 35
Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio

Model Transformation By-Example: An Algorithm for Generating
Many-to-Many Transformation Rules in Several Model Transformation
Languages . 52

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and
Rubén Fuentes-Fernández

A Collection Operator for Graph Transformation . 67
Roy Grønmo, Stein Krogdahl, and Birger Møller-Pedersen

Pattern-Based Model-to-Model Transformation: Handling Attribute
Conditions . 83

Esther Guerra, Juan de Lara, and Fernando Orejas

Towards Model Round-Trip Engineering: An Abductive Approach 100
Thomas Hettel, Michael Lawley, and Kerry Raymond

Rewriting Queries by Means of Model Transformations from SPARQL
to OQL and Vice-Versa . 116

Guillaume Hillairet, Frédéric Bertrand, and Jean Yves Lafaye

Solving Constraints in Model Transformations . 132
Andreas Petter, Alexander Behring, and Max Mühlhäuser

Automatic Model Generation Strategies for Model Transformation
Testing . 148

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu

X Table of Contents

A Simple Game-Theoretic Approach to Checkonly QVT Relations 165
Perdita Stevens

Supporting Model–Driven Development of Object–Relational Database
Schemas: A Case Study . 181

Juan Manuel Vara, Belén Vela, Verónica Andrea Bollati, and
Esperanza Marcos

Typing in Model Management . 197
Andrés Vignaga, Frédéric Jouault, Maŕıa Cecilia Bastarrica, and
Hugo Brunelière

Supporting Parallel Updates with Bidirectional Model
Transformations . 213

Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato Takeichi

Short Papers

Experiments with a High-Level Navigation Language 229
Jesús Sánchez Cuadrado, Frédéric Jouault,
Jesús Garćıa Molina, and Jean Bézivin

Using Metrics for Assessing the Quality of ASF+SDF Model
Transformations . 239

Marcel F. van Amstel, Christian F.J. Lange, and
Mark G.J. van den Brand

Achieving Rule Interoperability Using Chains of Model
Transformations . 249

Marcos Didonet Del Fabro, Patrick Albert, Jean Bézivin, and
Frédéric Jouault

Panel on Bidirectional Transformations

Bidirectional Transformations: A Cross-Discipline Perspective: GRACE
Meeting Notes, State of the Art, and Outlook . 260

Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger

Author Index . 285

Foundations for Bidirectional Programming

Benjamin C. Pierce

University of Pennsylvania

Most programs get used in just one direction, from input to output. But some-
times, having computed an output, we need to be able to update this output and
then “calculate backwards” to find a correspondingly updated input. The prob-
lem of writing such bidirectional transformations—often called lenses—arises in
applications across a multitude of domains and has been attacked from many
perspectives [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, etc.]. See [17] for a detailed
survey.

The Harmony project at the University of Pennsylvania is exploring a linguis-
tic approach to bidirectional programming, designing domain-specific languages
in which every expression simultaneously describes both parts of a lens. When
read from left to right, an expression denotes an ordinary function that maps
inputs to outputs. When read from right to left, it denotes an “update transla-
tor” that takes an input together with an updated output and produces a new
input that reflects the update. These languages share some common elements
with modern functional languages—in particular, they come with very expressive
type systems. In other respects, they are rather novel and surprising.

We have designed, implemented, and applied bi-directional languages in three
quite different domains: a language for bidirectional transformationson trees (such
as XML documents), based on a collection of primitive bidirectional tree transfor-
mation operations and “bidirectionality-preserving” combining forms [17]; a lan-
guage for bidirectional views of relational data, using bidirectionalized versions
of the operators of relational algebra as primitives [18]; and, most recently, a lan-
guage for bidirectional string transformations, with primitives based on standard
notations for finite-state transduction and a type system based on regular expres-
sions [19,20]. The string case is especially interesting, both in its own right and
because it exposes a number of foundational issues common to all bidirectionalpro-
gramming languages in a simple and familiar setting. We are also exploring how
lenses and their types can be enriched to embody privacy and integritypolicies [21].

This talk surveys some lessons learned from the work so far on Harmony,
focusing on foundational issues and attempting to connect them to work ongoing
in the model transformation community.

References

1. Meertens, L.: Designing constraint maintainers for user interaction (1998)
(manuscript)

2. Kennedy, A.J.: Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming 14(6), 727–739 (2004)

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 1–3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 B.C. Pierce

3. Benton, N.: Embedded interpreters. Journal of Functional Programming 15(4),
503–542 (2005)

4. Ramsey, N.: Embedding an interpreted language using higher-order functions and
types. In: ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Em-
ulators (IVME), San Diego, CA, pp. 6–14 (2003)

5. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bi-directional transformations. In: Partial Evaluation and Pro-
gram Manipulation (PEPM), pp. 178–189 (2004); Extended version to appear in
Higher Order and Symbolic Computation (2008)

6. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual syntax for XML languages. In:
Information Systems (2007) (to appear); Extended abstract in Database Program-
ming Languages (DBPL) (2005)

7. Kawanaka, S., Hosoya, H.: bixid: a bidirectional transformation language for XML.
In: ACM SIGPLAN International Conference on Functional Programming (ICFP),
Portland, Oregon, pp. 201–214 (2006)

8. Fisher, K., Gruber, R.: PADS: a domain-specific language for processing ad hoc
data. In: ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), Chicago, IL, pp. 295–304 (2005)

9. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.:
There and back again: Arrows for invertible programming. In: ACM SIGPLAN
Workshop on Haskell, pp. 86–97 (2005)

10. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

11. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

12. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of con-
sistent views. ACM Transactions on Database Systems (TODS) 13(4), 486–524
(1988)

13. sGreenberg, M., Krishnamurthi, S.: Declarative Composable Views, Under-
graduate Honors Thesis. Department of Computer Science, Brown University
(2007)

14. Voigtländer, J.: Bidirectionalization for free! In: ACM SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages (POPL), Savannah, Georgia, pp.
165–176 (January 2009)

15. Lutterkort, D.: Augeas–A configuration API. In: Linux Symposium, Ottawa, ON,
pp. 47–56 (2008)

16. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2) (June 2008); Short version in PEPM 2004

17. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(May 2007); Extended abstract in Principles of Programming Languages, POPL
(2005)

18. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language
for updateable views. In: Principles of Database Systems, PODS (2006);
Extended version available as University of Pennsylvania technical report
MS-CIS-05-27

Foundations for Bidirectional Programming 3

19. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, California (January
2008)

20. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: ACM SIGPLAN
International Conference on Functional Programming (ICFP), Victoria, British
Columbia (September 2008)

21. Foster, J.N., Pierce, B.C., Zdancewic, S.: Updatable security views. In: Computer
Security Foundations Symposium (2009)

Model Superimposition in Software Product Lines

Sven Apel1, Florian Janda1, Salvador Trujillo2, and Christian Kästner3

1 Department of Informatics and Mathematics, University of Passau, Germany
{apel,janda04}@uni-passau.de

2 IKERLAN Research Centre, Spain
STrujillo@ikerlan.es

3 School of Computer Science, University of Magdeburg, Germany
ckaestne@ovgu.de

Abstract. In software product line engineering, feature composition generates
software tailored to specific requirements from a common set of artifacts. Su-
perimposition is a technique to merge code pieces belonging to different features.
The advent of model-driven development raises the question of how to support the
variability of software product lines in modeling techniques. We propose to use
superimposition as a model composition technique in order to support variabil-
ity. We analyze the feasibility of superimposition for model composition, offer
corresponding tool support, and discuss our experiences with three case studies
(including an industrial case study).

1 Introduction

Modeling is essential to deal with the complexity of software systems during their devel-
opment and maintenance. Models allow engineers to precisely capture relevant aspects
of a system from a given perspective and at an appropriate level of abstraction. Initially,
modeling in software development aimed at the description of single software systems.
Typically, for each software system there is a set of models that describe its static struc-
ture, dynamic behavior, interaction with the user, and so on. With ‘model’ we refer
henceforth to a concrete software artifact written in a modeling language that describes
a certain facet of a software system.

Recently, researchers and practitioner have realized the necessity for modeling vari-
ability of software systems [1, 2, 3, 4]. Especially, software product line engineering
poses major challenges on contemporary modeling techniques [5]. A software product
line is a set of software intensive systems that are tailored to a specific domain or market
segment and that share a common set of features [1,6,7]. A feature is an end-user visible
behavior of a software systems, and features are used to distinguish different software
systems, a.k.a. variants, of a software product line [1]. For example, in telecommunica-
tion software, automatic callback and an answering machine are two features that are
not necessarily present in all possible telecommunication systems.

There are two facets of modeling in software product lines. First, there are approaches
for describing the variability of a product line, i.e., they specify which feature combina-
tions produce valid variants [1]. Second, all variants of a product line may have models

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 4–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model Superimposition in Software Product Lines 5

that describe them. Since the variants have usually significant overlaps in their function-
ality, their models have significant overlaps, too, and it is desirable to factor out these
overlaps. So, modeling languages have to take this into account.

We aim at the latter facet of modeling. The basic idea is to decompose a (structural,
behavioral, etc.) model according to the features of the product line. This allows us
to generate models for individual variants by composing model fragments, instead of
maintaining individual models for every variant. A model fragment is a part of a model
that covers only a feature of a system. Apart from that, a model fragment has to be
syntactically complete according to its metamodel. Two things are needed for that: (1)
a means to express model fragments and (2) a mechanism to compose model fragments
in different combinations yielding different variants. For example, in our telecommu-
nication system, we have a base system and two features. Each of them contains a
class diagram (state diagram, activity diagram, and so on) that captures precisely the
part of the complete model that is ‘added’ by the feature. When generating a specific
telecommunication system variant, the engineer selects the desired features and then
the corresponding models are composed by a generator.

The decomposition of models into fragments (features) solves two problems in mod-
eling, complexity and variability [2,3,8,9]: (1) engineers tame complexity by modeling
only parts of a possibly large system, and (2) engineers do not provide models for each
distinct variants of a software system but they provide model fragments for the system’s
features, from which the models of the variants are generated. Solutions to both prob-
lems are essential in order to increase the productivity of modeling and to let the vision
of model-driven development come true.

Many approaches to feature composition rely on the technique of superimposition [10,
11,12,13,14]. Superimposition is a relatively simple composition technique that, never-
theless, has been used successfully for the composition of code, written in a wide variety
of languages, e.g., Java, C#, C++, C, Haskell, Scheme, JavaCC, and Bali [10,11,14]. So,
naturally, the question arises whether superimposition is expressive and powerful enough
for the composition of models, especially, in the face of the diverse kinds of models used
today.

For the purpose of a compact discussion, we concentrate on three kinds of mod-
els supported in the unified modeling language (UML), namely, class diagrams, state
diagrams, and sequence diagrams. They differ significantly in their syntax and seman-
tics and thus cover a sufficiently broad spectrum of model elements for our discussion.
On the basis of an analysis of the feasibility and expressiveness of model composi-
tion with superimposition, we have extended the feature composition tool FEATURE-
HOUSE for UML model composition. We used FEATUREHOUSE in three case studies
on model composition: two academic product lines and a product line of our industrial
partner, from which we will report our experiences. The studies demonstrate that, even
though superimposition is a simple, syntax-driven composition technique, it is expres-
sive enough for the scenarios we looked at. Furthermore, our analysis and studies reveal
some interesting issues w.r.t. the trade-off between expressiveness and simplicity, which
we will discuss.

In summary, we make the following contributions: (1) an analysis of superimposition
as composition technique for UML models, (2) a tool for UML model composition on

6 S. Apel et al.

the basis of superimposition, and (3) three case studies (including an industrial study)
on model superimposition and a discussion of our experiences.

2 Software Product Lines and Feature Composition

A software product line is a set of software intensive systems that are tailored to a
specific domain or market segment and that share a common set of features [1, 6, 7].
A feature is an end-user visible behavior of a software system. Features are used to
distinguish different variants of a software product line. Feature composition is the
process of assembling and composing software artifacts (e.g., models) belonging to
different features based on a user’s feature selection [10, 14].

One popular approach to feature composition is superimposition. Superimposition
is the process of composing software artifacts by merging their corresponding substruc-
tures on the basis of nominal and structural similarity. Superimposition has been applied
successfully to the composition of software artifacts in different application scenarios
and languages [10, 14, 15, 16].

In recent work, it has been shown that superimposition as feature composition tech-
nique is applicable to a wide variety of software artifacts, mostly source code artifacts
written in different languages, e.g., Java, C#, C++, C, Haskell, Scheme, JavaCC, and
Bali [10, 11, 14]. Before we explore the feasibility and expressiveness of superimpo-
sition for model composition, we explain how superimposition is commonly used for
composing source code artifacts.

On the left side in Figure 1, we show a simple Java class implementing a rudimentary
phone system that allows clients to make outgoing calls. On the right side, we show the
abstract structure of the class in the form of a feature structure tree (FST) [13, 14].
An FST represents the essential modular structure of a software artifact and abstracts
from language-specific details. In our example, the FST contains nodes representing the
classes Phone and OutCall as well as their members.1

Now suppose we want to add a feature that allows users to receive incoming calls.
In Figure 2, we show the Java code and a corresponding FST that implement incom-
ing calls. In order to create a phone system that contains both features, outgoing and
incoming calls, we superimpose their FSTs. In Figure 3, we show the result of the super-
imposition of the FSTs of OUTCALLS and INCALLS. The two FSTs are superimposed
by merging their nodes, matched by theirs names, types, and relative positions, starting
from the root and descending recursively. Their superimposition, denoted by ‘•’, results
in a merged package phone containing all three classes Phone, OutCall, and InCall. The
class Phone is interesting as it contains the union of the members of its instances in the
features OUTCALLS and INCALLS.

Assuming further features like CALLBACK or ANSWERING, we have an SPL from
which several telecommunication system variants can be generated, e.g., INCALL •
ANSWERING, OUTCALL • CALLBACK, or OUTCALL • CALLBACK • INCALL • AN-
SWERING. Since not all combinations form meaningful variants, additional constraints
define which combinations are valid [17, 18].

1 Note that typing information is attached to each node and the actual content of the methods is
hidden in the leaves of the FST.

Model Superimposition in Software Product Lines 7

1 package phone;
2 class Phone {
3 String number; String owner; int state;
4 void outCall(String num) { ... }
5 }
6 class OutCall {
7 double time; double date;
8 void makeCall(String num) { ... }
9 } owner state

number time

OutCall

date

Phone

phone

OutCalls

outCall makeCall

Fig. 1. Java code and FST of the feature OUTCALLS

1 package phone;
2 class Phone {
3 int voiceMsg;
4 void inCall() { ... };
5 }
6 class InCall {
7 double time; double date;
8 void acceptCall() { ... }
9 }

voicMsg inCall date acceptCall

Phone

phone

time

InCall

InCalls

Fig. 2. Java code and FST of the feature INCALLS

1 package phone;
2 class Phone {
3 String number; String owner; int state;
4 void outCall(String num) { ... }
5 int voiceMsg;
6 void inCall() { ... };
7 }
8 class OutCall {
9 double time; double date;

10 void makeCall(String num) { ... }
11 }
12 class InCall {
13 double time; double date;
14 void acceptCall() { ... }
15 }

state

owner

number

Phone

inCall OutCall

makeCall

date

time

acceptCall

date

time

InCall

phone

outCall

voicMsg

OutCalls InCalls

Fig. 3. Java code and FST of the superimposition of OUTCALLS and INCALLS

While superimposition has been used successfully in software product lines [10, 14,
19] and component systems [16], it is not a general technique for all kinds of compo-
sition scenarios. A limitation is that the structures of two software artifacts being com-
posed have to obey certain similarities that guide the composition. Accidental name
clashes cannot be detected and possibly necessary renamings cannot be performed au-
tomatically since the semantics of the underlying artifacts is not considered. We discuss
the implications of this limitation for our case studies in Section 6.

As said, it has been shown that superimposition is applicable to a wide variety of
software artifacts written in different languages [10, 14]. However, superimposition im-
poses several constraints on the target language: (1) the substructure of a feature must
be a hierarchy of modules, (2) every module (submodule, ...) of a feature must have
a name, and (3) the name of a module must be unique in the scope of its enclosing

8 S. Apel et al.

module (that is, a module must not have two submodules with identical names). Typ-
ically, these constraints are satisfied by most programming languages, but also other
(non-code) languages like XML or grammars align well with them [10, 20, 14]. In the
next section, we analyze whether and how superimposition is capable of being used for
model composition, especially for the composition of UML models.

3 Analysis of Superimposition as Model Composition Technique

In this section, we analyze whether UML class diagrams, state diagrams, and sequence
diagrams, can be decomposed into features and composed again to create complete
models corresponding to the variants of an SPL. We do not address layouting issues but
only structural composition. In Table 1, we give an overview of our findings, which are
conveyed in the remaining section. The table shows for each diagram type (Column 1)
the elements that can be composed (Column 2), how elements are identified – if at all
(Column 3), possible variants of an element (Column 4), and the composition method,
i.e., how two elements are composed to form a new element (Column 5). Note that
the difference between superimposition and replacement is that with superimposition
the corresponding substructures of two elements are superimposed recursively. With
replacement one element substitutes the other completely. Concatenation is used only
in sequence diagrams, which is explained below.

Class Diagrams. An UML class diagram consists of a set of packages, entities, and
relationships between these entities. Entities are displayed by boxes and may denote
plain classes, implementation classes, association classes, interfaces, types, and so on.
A package may contain several further packages and entities. Each package and entity
has a unique name (possibly consisting of an instance and a class name) in the scope
of its enclosing package as well as a type that corresponds to its syntactical category or
stereotype (e.g., «class» or «interface»). Relationships are displayed by different kinds
of arrows and denote inheritance, aggregation, composition, and so on. Relationships
do not necessarily have unique names but may have annotations such as cardinalities or
message names.

Table 1. An overview of UML model elements and their composition

diagram element name variants (excerpt) composition
class package identifier — superimposition

entity instance, class class, interface, type superimposition
attribute type, variable valued attributes replacement
operation signature — replacement
relationship optional identifier generalization, association replacement

state state identifier — superimposition
transition optional identifier — replacement
start/stop state — — replacement

sequence role instance, class — superimposition
lifeline — — concatenation
interaction — — —

Model Superimposition in Software Product Lines 9

phone

time : double
date : double
acceptCall()

InCall

phone

1

0..*

makes

phone

1

0..*

receives

time : double
date : double
acceptCall()

InCall

voiceMsg : int
inCall()

Phone
number : int
owner : String
state : int
outCall(num : String)

time : double
date : double
makeCall(num : String)

Phone

OutCall

receives
1

owner : String
state : int
voiceMsg : int
outCall(num : String)
inCall()

number : String
Phone

time : double
date : double
makeCall(num : String)

OutCall
0..*

1

0..*
makes

Fig. 4. Superimposition of the class diagrams of OUTCALLS and INCALLS

We illustrate the superimposition of class diagrams by the example of our phone sys-
tem. In Figure 4, we show from right to left the class diagrams of OUTCALL, INCALL,
and their superimposition OUTCALL • INCALL.

During superimposition, entities are matched by name and type. That is, the class
Phone in package phone is merged with the other class Phone in package phone stem-
ming from another feature. Entities of different types or from different packages are not
composed. When composing two entities, the union is taken from their members, much
like in our Java example in Figure 3. If there are two members with the same name (and
type), one replaces the other, whose order is inferred from the feature composition order.

Relationships cannot be merged in every case by name since they do not always
have names. Implicitly, we assume that each unnamed relationship has a unique name
(possibly automatically assigned by a tool) – thereby satisfying the second and third
constraint of Section 2. Hence, in our example, both of the two associations from the
features OUTCALLS and INCALLS appear in the superimposed diagram. If two rela-
tionships have identical names, one replaces the other, much like with members. Other
types of entities and relations are treated similarly to the ones explained above.

In summary, the superimposition of class diagrams is straightforward as it resem-
bles the superimposition of FSTs of object-oriented code. Of course, more complex,
possibly semantics-driven, composition rules are possible, e.g., for the composition of
cardinalities, but for our use cases, a simple replacement of the involved relationships
is simpler and sufficient, as we will discuss in Sections 5 and 6.

State Diagrams. An UML state diagram consists basically of a set of states and a set
of state transitions. States have unique names and may have inner states. So, they can be
composed by name. As with packages, inner states must have unique names in the scope
of their enclosing state in order to be superimposed recursively. A state transition may
have annotations and a unique name. In case there is no unique name, we assign one,
as with relationships in class diagrams. Other elements of state diagrams are handled
similarly to states and transitions; if they have names (e.g., signals), they are treated like
states; if they do not have unique names (e.g., choices), they are treated like unnamed
transitions.

10 S. Apel et al.

StandBy

Dialing Calling

dialing hangUp

pickUp

turnOn turnOff

isBusy

StandBy

Dialing Calling

StandBy

Calling

dialing

pickUp

turnOn turnOff

isBusy
hangUp

turnOn turnOff

accept hangUp accept

Fig. 5. Superimposition of the state diagrams of OUTCALLS and INCALLS

The start and stop states of a state diagram deserve a special attention. Each state
diagram must have exactly one start and possibly one stop state. For composition that
means that the start and stop states of one feature replace the start and stop states of the
other feature.

In Figure 5, we illustrate the composition of two state diagrams that describe the
behavior of our phone system. The state diagrams of OUTCALLS (left) and INCALLS

(middle) are superimposed (shown on the right). Essentially, the feature INCALLS adds
a new transition from the state StandBy to the state Calling. In our case studies, we
found more complex examples in which also compound states and multiple start and
stop states are involved.

In summary, the superimposition of state diagrams is similar to class diagrams, ex-
cept the treatment of start and stop states. States correspond roughly to classes and
transitions correspond roughly to relationships. All other elements such as signals and
choices can be assigned to one of these two categories. As with class diagrams, more
complex composition rules are possible, e.g., for composing choices, but we found our
rules are sufficient, as we will discuss in Sections 5 and 6.

Sequence Diagrams. An UML sequence diagram consists of a set of roles that rep-
resent time lines of objects and different kinds of interactions that represent the timely
interplay between objects. Roles have unique names that consist of object and/or class
name. Hence, they can be composed by name, much like classes. Furthermore, each
role has a lifeline – displayed from top to bottom – that is the source and destination
of interactions with other roles, which are denoted with arrows. Along the lifelines, the
time proceeds from top to bottom. Interactions have usually annotations (e.g., opera-
tion names and guards) but do not have unique names. Although there may be names,
these do not need necessarily to be unique. For example, along its lifeline, a role may
interact with another role via multiple interactions that have identical names (e.g., by
invoking an operation multiple times), but that occur at different points in time. Hence,
we assign unique names (our tool does), much like we do with unnamed relationships
in class diagrams.

The composition of two roles with the same name is done by adding the interactions
of the second role to the ones of the first role. In Figure 6, we show the composition of
the sequence diagrams of the features OUTCALLS (left) and INCALLS (middle). Phone
is the only role that is defined in both features. In the superimposed lifeline (right),
the Phone’s lifeline of feature INCALLS is added below the corresponding lifeline of
feature OUTCALLS, which is de facto a concatenation.

Model Superimposition in Software Product Lines 11

date
time

date
time

date
time

date
time

makeCall
outCall inCall

acceptCall makeCall
outCall

inCall
acceptCall

:Client :Phone :OutCall :Phone :InCall :Client :Phone :OutCall :InCall

Fig. 6. Superimposition of the sequence diagrams of OUTCALLS and INCALLS

While this approach works for our example, this kind of composition of lifelines
may be too restricted. What would we have to do if we want to add the interactions of
INCALLS before or somewhere in the middle of the ones of OUTCALLS? While the
former case would be possible by reversing the composition order of OUTCALLS and
INCALLS, the second case cannot be implemented using superimposition. This problem
has been observed in the context of other programming languages and several solutions
have been proposed, e.g., splitting features or injecting hooks [14] (see also Sec. 6).

In summary, sequence diagrams can be composed like class diagrams, where roles
correspond to classes and interactions correspond to relationships, except that the order
of interactions matters in the composition of lifelines. As with class and state diagrams,
more complex composition rules would be possible, e.g., for composing guards, but we
found our rules are sufficient (see Sec. 5 and 6).

4 Tool Support

Based on our analysis of the feasibility of superimposition for the composition of UML
models, we have extended our tool FEATUREHOUSE2 to enable it to compose UML
diagrams. FEATUREHOUSE is a software composition tool chain that relies on fea-
ture structure trees and superimposition [14]. In Figure 7, we show the architecture of
FEATUREHOUSE. The central tool is FSTCOMPOSER which language-independently
superimposes FSTs stored in a proprietary data structure. At certain points during su-
perimposition special composition rules are applied, such as replacement and concate-
nation, which we have implemented as specified in Table 1.

Furthermore, FSTGENERATOR generates for each language (1) a parser that trans-
lates artifacts written in that language to FSTs and (2) a pretty printer that creates an
artifact out of an (composed) FST. FSTGENERATOR receives as input an annotated
FEATUREBNF grammar (an extended BNF format with annotations that control su-
perimposition) of the language whose artifacts are going to be composed. The details
of this generation step are out of scope of this paper and explained elsewhere [14]. We
have implemented the rules of superimposing UML diagrams as explained in Section 3.

Technically, we use the XML metadata interchange 1.2 format (XMI) [21] as an rep-
resentation of UML diagrams and ArgoUML3 for creating, displaying, and editing UML

2 http://www.fosd.de/fh
3 http://argouml.tigris.org/

http://www.fosd.de/fh
http://argouml.tigris.org/

12 S. Apel et al.

Java C XML

Generator

...C#

Parser Composer Pretty Printer

Source Code Source CodeFST

Haskell JavaCC

FSTFST

FSTComposer

FSTGenerator

FeatureBNF

Library of Composition Rules

Fig. 7. Architecture of FEATUREHOUSE

diagrams stored in XMI files. Points in favor of XMI are that XMI files are machine-
readable by FEATUREHOUSE and can be transformed easily into FSTs. In a first step, we
have developed a parser manually (without a generation step) that translates class, state,
and sequence diagrams stored in XMI files to FSTs and a pretty printer that translates
the (composed) FSTs back to XMI files. In a second step, we have extended FSTGEN-
ERATOR by the ability to generate a parser and pretty printer automatically on the basis
of an annotated grammar, which was in our case an XML schema document. Interest-
ingly, the annotated grammar plays the role of the metamodel of the models we consider.
This raises the question if other more common metamodels such as Ecore could be used
instead, which we address in further work.

A typical development cycle consists of four steps: (1) ArgoUML is used to design
model fragments belonging to different features; (2) the visual model representations
are exported to XMI using ArgoUML’s standard export facilities; (3) FEATUREHOUSE

is used to compose multiple model fragments based on a user’s feature selection; (4)
ArgoUML is used to view the composed result. We have used FEATUREHOUSE (and
ArgoUML) in three case studies, which we will explain next. For simplicity, we as-
sume that the feature selections passed to FEATUREHOUSE are valid. Existing tools
like GUIDSL [18] can be easily used with FEATUREHOUSE to ensure the validity of a
feature selection.

5 Case Studies

We have explored the feasibility and practicality of FEATUREHOUSE for model compo-
sition by means of three case studies. Specifically, we wanted to know whether such a
simple approach like superimposition is expressive enough to compose models in prac-
tice. All models (XMI and PNG files) of all case studies can be downloaded from the
Web.4 In order to protect the intellectual property of our industrial partner, we have
made the models of the gas boiler system (third case study) anonymous to some extent.

Audio Control System. As a first, simple case study, we have designed an audio con-
trol system (ACS). ACS is a small product line consisting only of three features: a basic

4 http://www.fosd.de/mc/ICMT2009.zip

http://www.fosd.de/mc/ICMT2009.zip

Model Superimposition in Software Product Lines 13

Table 2. An overview of UML model elements and their composition

class diagrams:
class member relationship

all extended all added replaced all added replaced
ACS 12 4 30 7 0 8 3 1
CMS 7 3 28 9 6 4 2 0
GBS 22 8 24 31 61 8 12 4

state diagrams:
state transition

all extended compound start stop all added replaced
ACS 11 2 2 3 1 25 8 0
CMS 16 7 2 3 3 26 18 2

sequence diagrams:
role/lifeline interaction

all extended all added replaced
ACS 8 5 3 14 0
CMS 5 6 11 9 0

all: number of all elements in the product line; extended: number of all elements that have been extended, possibly multiple
times; added: number of all elements that have been added to a given program; replaced: number of all elements that have
been replaced by other elements; compound/start/stop: number of compound/start/stop states;

amplifier, a remote control, and a compact disk player. We designed the structure and
behavior of ACS with class, state, and sequence diagrams. Overall, we have developed
three class diagrams, two state diagrams, and three sequence diagrams, i.e., not for ev-
ery feature there is a distinct state diagram. From the ACS product line four different
variants can be generated which results in different class, state, and sequence diagrams
that have been composed by the model fragments of the selected features. In Table 2,
we show some numbers about the models of this case study.

The decomposition of ACS into features and their subsequent composition in dif-
ferent combinations was straightforward. This may be due to the simplicity of the case
study and/or that we designed it with features in mind. The dominant activity of features
was to add new elements and to extend existing elements with subelements, such as to
extend classes with members or lifelines with interactions. This case study provides a
good canonical example for the feasibility of model composition by superimposition.

Conference Management System. As a second case study, we have decomposed the
conference management system (CMS) of [22] into features. The initial version of CMS
contained only class diagrams, decomposed into four features: user management, sub-
mission system, submission verification procedure, and review process. Based on the
informal description of the authors of CMS [22], we complemented the class diagrams
with state and sequence diagrams. Although more are possible, we have composed four
concrete variants of CMS. Overall, the decomposed version of CMS consists of four
class diagrams, four state diagrams, and four sequence diagrams. Like ACS, the decom-
position into features and the composition of features in order to generate variants was

14 S. Apel et al.

mostly straightforward. However, CMS is more complex than ACS and was designed
by a third party and not designed as an SPL – so it is a more unbiased example. An
interesting property of CMS is the use and superimposition of compound states, as can
be seen in Table 2. These are superb use cases for superimposition.

Gas Boiler System. As a third case study, we have composed different variants of a gas
boiler system (GBS). GBS was developed by a customer of our industrial partner, the
IKERLAN Technology Research Centre,5 Mondragon, Spain, for serving as embedded
control software of gas boilers. The developers at IKERLAN have refactored the initial
versions of GBS into a software product line. Furthermore, they have used modeling
techniques, in particular, UML class diagrams, to describe the structure of the overall
system. In contrast to our approach, they have developed a complete class diagram in
which model elements of all features are merged, and they use annotations to maintain
the relationship between model elements and features.

Based on their annotations, we have decomposed the complete class diagram into 29
class diagram fragments that correspond to the 29 features of GBS. Despite the com-
plexity of this case study, the (de)composition was relatively simple because informa-
tion about features and variants was available from our partner. Mostly, features add
new classes and extend existing classes by new members and relationships. One inter-
esting issue was how to model the variability inside a method of a class. The problem
is that class diagrams do not expose details about method bodies and the developers did
use notes or other kinds of annotations for that. In their initial approach, they simply
annotated a method to be associated to two or more features. This is not possible with
superimposition. Instead, we have modeled this kind of intra-method variability by in-
troducing a corresponding class and member to every feature that affects this member.
For example, if feature A and B both affect the implementation of a method m contained
in class C, then the class diagrams of both features define a class C with method m.

5.1 Summary of Experiences

We summarize our experiences in the following list:
– Mostly, the decomposition of models into features and the composition of features

for the generation of model variants was straightforward. The predominant “activ-
ities” of features were to add new elements such as classes, states, or roles, and to
extend existing elements, e.g., by adding new attributes, operations, relationships,
transitions, or interactions. Usually, the addition of new elements and the extension
of existing elements occurred together in order to connect the newly introduced
elements in some way to the existing elements. Extensions at a finer grain, such
as changing or extending a guard or an annotation, did not occur, even not in the
third-party case studies.

– The fact that two models need to obey certain similarities in their structure in order
to be superimposed caused no problems in our case studies. However, for modeling
product lines from scratch, as in the case of the ACS study, it is necessary to plan
carefully the structure of the base models and their subsequent extensions applied

5 http://www.ikerlan.es

http://www.ikerlan.es

Model Superimposition in Software Product Lines 15

by features. A decomposition of existing models, as in the GBS case study, naturally
leads to models that can be superimposed again in different combinations.

– The problem that roles in sequence diagrams can only be extended by adding new
interactions at the end or in front of their lifelines did not occur in our case studies.
Usually, the features that extend lifelines add sequences of interactions that are
semantically distinct from the existing interactions. Of course, in other cases this
problem may be more daunting and has to be explored then.

– We found some convincing use cases of nested model elements, e.g., compound
states in CMS, that take advantage of the recursive superimposition process.

– Intra-method variability, i.e., the situation in which multiple features affect the im-
plementation of a single method, occurs in several situations in our industrial case
study. The reason is that the developer already thought about the implementation of
the model. We handle this case by introducing a corresponding model element into
each feature that is involved.

– Cases for the replacement of existing elements did not occur frequently. We found
only use cases for relationships in which two identical relationships have been com-
posed. The reason was readability, i.e., both class diagram fragments were easier to
understand with the relationship in question.

6 Discussion: Simplicity vs. Expressiveness

Superimposition is a comparatively simple composition technique. Not least this is
rooted in its aim at generality. Based on our experience with superimposition of source
code artifacts, we have explored if it is applicable to model composition. Since models
are mostly of a hierarchical structure, superimposition is a good match, as it is indi-
cated by our examples and case studies. Due to our focus on software product lines
and feature-based (de)composition, the input models naturally have similar structures
so that they could be easily superimposed. In other scenarios, such as multi-team devel-
opment, additional refactorings may be necessary.

However, applicability is not the only criterion. Is superimposition expressive enough
to compose models in practice? Many model transformation and composition techniques
aim at more powerful, fine-grained, and semantics-based composition models [2, 3, 23,
24,25,26,27]. With these techniques, even elements such as guards or cardinalities can
be composed, elements can be renamed and changed in manifold ways, and semantic
constraints check the correctness of a transformation/composition. Superimposition is
syntax-driven without semantic checks and there are not many ways to change an el-
ement (replacement and concatenation). However, erroneous compositions have been
rejected by analyzing a feature model that defines the valid feature combinations of an
SPL [18]. Additionally, experts from our industrial partner checked the results of our
compositions for correctness. But it is certainly desirable to automate this process using
constraint-based techniques, e.g., [25]. However, at least for our case studies, superim-
position was expressive enough to satisfy the composition demands of the considered
applications scenarios in SPL development. Especially, the industrial setting of the GBS
study indicates that, with superimposition, we can go a long way.

16 S. Apel et al.

Important to note is that superimposition is no technique for the integration of
arbitrary models. It is useful for decomposing models into features, where each feature-
related model fragment has a certain structural similarity with other model fragments
in order to be superimposed. Automated renamings, rebindings, and refactorings are
not supported. Thus, superimposition is not the “silver bullet”, but useful at least in the
context of feature composition and software product lines. Also the success of super-
imposition for the composition of code is a motivation for our work. We believe that a
general model for feature composition (for source code, models, documentation, make-
files, test cases, etc.) helps the programmer to tame complexity and to gain insight into
the software since all software artifacts are treated uniformly during composition.

Our work suggests that there is a trade-off between expressiveness (fine-grained,
semantics-based composition) and simplicity (superimposition). Of course, we cannot
judge for one or the other, nor infer an ideal mixture of both. This trade-off has been
discussed for years in the programming languages community and led to several inter-
esting approaches (just think of the difference in complexity of Scheme and Haskell);
we believe that our work can help to initiate a discussion about this issue for modeling
languages and model composition mechanisms.

7 Related Work

Our approach to superimposition on the basis of FSTs has been influenced from
AHEAD [10]. AHEAD is a model for feature composition that emphasizes language
independence of superimposition. Work on AHEAD has claimed that superimposition
should be in principle applicable to a wide variety of software artifacts. Work on FEA-
TUREHOUSE has further developed the concept of language-independent superimposi-
tion on the basis of FSTs [14]. Composition of UML models is one application scenario
that has been analyzed in this paper.

Aspect-oriented modeling (AOM) aims at separating model elements that belong
to different concerns. Although features and concerns are not entirely identical con-
cepts [19], decomposing models into features and compose them again on demand is
very similar to the aims and procedures of AOM. In AOM, usually, different model
fragments are “woven” using certain more or less explicit composition rules. As there
is a multitude of different AOM approaches, we use three representative examples to
explain the difference to our approach. For example, in the Theme/UML approach, mod-
els can be composed by user-defined composition rules that also include to some extent
the superimposition by name and type [8]; in the aspectual scenario approach differ-
ent scenarios are merged and state machines are generated [2]; Jezequel has shown
how aspects can be woven into sequence diagrams [26], which is more flexible but
also more complex than superimposition. In contrast to these sometimes very different
AOM approaches, superimposition on the basis of the FST model is very simple, gen-
eral, and language-independent, as it can be used to compose so different artifacts like
Java, Haskell, and UML models in a uniform way.

Heidenreich et al. propose an approach to enhance modeling languages with compo-
sition capabilities based on the meta model [28]. They allow two models to be composed
at predefined hooks, which is essentially an interface-based approach. Superimposition

Model Superimposition in Software Product Lines 17

is simpler as it merges models by nominal and structural similarities without interfaces,
which was sufficient for our case studies. Superimposition is inherently non-invasive
whereas the interface-based approach requires a proper preparation.

Several model merge tools, e.g., the Epsilon Merging Language [27] or the ATLAS
Model Weaver [3], support diverse kinds of transformations of models. These tools
could be used to implement model composition by superimposition. However, super-
imposition is simpler but also less expressive than other merge tools. As with program-
ming languages, there is a trade-off between simplicity and expressiveness which we
find largely unexplored in model transformation.

Boronat et al. present an automated approach for generic model merging from a
practical standpoint, providing support for conflict resolution and traceability between
software artifacts by using the QVT Relations language [22]. They focus on the defini-
tion of an operator Merge and apply it to class diagrams integration; other model types
are not considered. We have shown that our approach is also applicable to different
kinds of models.

FeatureMapper [9] and fmp2rsm [29] are tools with which developers can annotate
models with features. Annotations help programmers to overview and understand how
individual features influence the structure and behavior of a software system. Anno-
tation is conceptually related to the decomposition of models into features. Annota-
tion and decomposition deserve further investigation since they have complementary
strengths and weaknesses [30]. In a recent study, FeatureMapper and FEATUREHOUSE

have been used to annotate/decompose entity-relationship-diagrams [31]. However, the
focus of this work was on tailoring database schemas and not on model composition.

Feature-oriented model-driven development is an approach that ties feature compo-
sition to model-driven development [5]. The core of this approach is a theory based
on category theory that relates transformations that stem from feature composition to
transformations that stem from model refinement. In their case study, they use the Xak
tool [20] to compose state machines written in a domain-specific language, which is
related to FEATUREHOUSE but not language-independent.

The package merge mechanism of UML is related to superimposition [32]. It com-
bines the content of two packages. Package merge is used extensively in the UML 2
specification to modularize the definition of the UML 2 metamodel and to define the
four compliance levels of UML 2. However, package merge is not applicable to states
and roles, and defines many specific composition rules. Our implementation is much
simpler and extends to other kinds of models.

Finally, there is a relationship to domain and variability modeling techniques [1,4,17].
While these techniques are used to model the variability of software systems in terms
of features and their relationships, we support the derivation of different model variants
based on feature composition.

8 Conclusion

We have explored the feasibility and expressiveness of superimposition as a model com-
position technique. Our analysis and case studies indicate that, even though superimpo-
sition is syntax-driven and quite simple, it is indeed expressive enough for the systems

18 S. Apel et al.

we looked at – even in the context of a real-world, industrial case study. We offer a tool
that is able to compose UML class, state, and sequence diagrams in the form of XMI
documents via superimposition. In further work, we will extend the analysis, the tool,
and the case studies in order to support further kinds of UML and non-UML models.
Furthermore, we will explore the connection of our metamodel (annotated grammar)
to other metamodels for superimposition. Finally, we will experiment with specific
(semantics-based) composition rules for individual model elements in order to explore
the trade-off between simplicity and expressiveness and to combine them with superim-
position eventually.

Acknowledgments

Apel’s work was funded partly by the German Research Foundation, project #AP 206/2-
1. Trujillo’s work was co-supported by the Spanish Ministry of Science & Education
under contract TIN2008-06507-C02-02.

References

1. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI, CMU (1990)

2. Whittle, J., Araujo, J.: Scenario Modelling with Aspects. IEE Software 151, 157–172 (2004)
3. Jossic, A., et al.: Model Integration with Model Weaving: A Case Study in System Archi-

tecture. In: Proc. Int. Conf. Systems Engineering and Modeling, pp. 79–84. IEEE CS, Los
Alamitos (2007)

4. Sinnema, M., Deelstra, S.: Classifying Variability Modeling Techniques. Inf. Softw. Tech-
nol. 49, 717–739 (2007)

5. Trujillo, S., Batory, D., Díaz, O.: Feature Oriented Model Driven Development: A Case
Study for Portlets. In: Proc. Int. Conf. Software Engineering, pp. 44–53. IEEE CS, Los
Alamitos (2007)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

7. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. In: Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

8. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach.
Addison-Wesley, Reading (2005)

9. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Controlled Visualisations
in Software Product Line Engineering. In: Proc. Int. Workshop Visualisation in Software
Product Line Eng., Lero, pp. 335–342. University of Limerick (2008)

10. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans. Soft-
ware Engineering 30, 355–371 (2004)

11. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 125–140. Springer, Heidelberg (2005)

12. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming
and Aspects. In: Proc. Int. Symp. Foundations of Software Eng., pp. 127–136. ACM Press,
New York (2004)

Model Superimposition in Software Product Lines 19

13. Apel, S., Lengauer, C.: Superimposition: A Language-Independent Approach to Software
Composition. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 20–35.
Springer, Heidelberg (2008)

14. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: Language-Independent, Automatic Soft-
ware Composition. In: Proc. Int. Conf. Software Engineering. IEEE CS, Los Alamitos
(2009)

15. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proc. Int. Conf. Software Engineering, pp. 107–
119. IEEE CS, Los Alamitos (1999)

16. Bosch, J.: Super-Imposition: A Component Adaptation Technique. Information and Soft-
ware Technology 41, 257–273 (1999)

17. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading (2000)

18. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

19. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software Engineer-
ing 34, 162–180 (2008)

20. Anfurrutia, F., Díaz, O., Trujillo, S.: On Refining XML Artifacts. In: Baresi, L., Fraternali,
P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 473–478. Springer, Heidelberg
(2007)

21. Grose, T., Doney, G., Brodsky, S.: Mastering XMI. OMG Press (2002)
22. Boronat, A., Carsí, J., Ramos, I., Letelier, P.: Formal Model Merging Applied to Class

Diagram Integration. Electron. Notes Theor. Comput. Sci. 166, 5–26 (2007)
23. Klein, J., Helouet, L., Jezequel, J.: Semantic-Based Weaving of Scenarios. In: Proc. Int.

Conf. Aspect-Oriented Software Development, pp. 27–38. ACM Press, New York (2006)
24. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An Algebraic View on

the Semantics of model Composition. In: Proc. Europ. Conf. Model Driven Architecture –
Foundations and Applications, pp. 99–113. Springer, Heidelberg (2007)

25. Czarnecki, K., Pietroszek, K.: Verifying Feature-Based Model Templates Against Well-
Formedness OCL Constraints. In: Proc. Int. Conf. Generative Programming and Component
Engineering, pp. 211–220. ACM Press, New York (2006)

26. Jezequel, J.M.: Model Driven Design and Aspect Weaving. Software and Systems Model-
ing 7, 209–218 (2008)

27. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models with the Epsilon Merging Lan-
guage (EML). In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006.
LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

28. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-Independent Model
Modularisation. Trans. Aspect-Oriented Software Development (2009)

29. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

30. Kästner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product
Line Engineering. In: Proc. Workshop on Modularization, Composition, and Generative
Techniques for Product Line Engineering, Dept. of Informatics and Mathematics, University
of Passau, pp. 35–40 (2008)

31. Siegmund, N., et al.: Bridging the Gap between Variability in Client Application and
Database Schema. In: Proc. Conf. Datenbanksysteme für Business, Technologie und Web,
Gesellschaft für Informatik, pp. 297–306 (2009)

32. Group, O.M.: Unified Modeling Language: Superstructure, Version 2.1.1 (2007)

Efficient Model Transformations
by Combining Pattern Matching Strategies

Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
{bergmann,ahorvath,rath,varro}@mit.bme.hu

Abstract. Recent advances in graph pattern matching techniques have demon-
strated at various tool contests that graph transformation tools can scale up to han-
dle very large models in model transformation problems. In case of local-search
based techniques, pattern matching is driven by a search plan, which provides
an optimal ordering for traversing and matching nodes and edges of a graph pat-
tern. In case of incremental pattern matching, matches of a pattern are explicitly
stored and incrementally maintained upon model manipulation, which frequently
provides significant speed-up but with increased memory consumption. In the
current paper, we present a hybrid pattern matching approach, which is able to
combine local-search and incremental techniques on a per-pattern basis. Based
upon experimental evaluation, we identify scenarios when such combination is
highly beneficial, and provide guidelines for transformation designers for opti-
mal selection of pattern matching strategy.

1 Introduction

Model transformations play a crucial role in modern model-driven system engineering,
an application domain where transformations need to handle large, industrial models in
a short amount of time. Graph transformation (GT) [1] based tools have been frequently
used for capturing and executing complex transformations. In GT tools, graph patterns
capture structural conditions and type constraints in a compact visual way. During trans-
formation time, these conditions are evaluated during graph pattern matching, which
aims to derive one or all matches of a given pattern to execute a transformation rule.

Empirical evidence reported at recent tool contests [2, 3] proved that GT tools scale
up for transforming very large models, thanks to highly sophisticated, local-search
based graph pattern matching (LS) algorithms proposed in transformation tools such
as GrGEN.NET [4], FUJABA [5], and VIATRA2 [6]. In all these approaches, pattern
matching is driven by a search plan, which provides an optimal ordering for traversing
and matching nodes and edges of a graph pattern.

As an alternative, incremental pattern matching (INC) approaches [7,8,9,10,11] have
recently become a hot topic in the model transformation community. The core idea is to
improve the execution time of the time-consuming pattern matching phase by additional
memory consumption. Essentially, the (partial) matches of graph patterns are stored ex-
plicitly, and these match sets are updated incrementally in accordance with elementary

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 20–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Efficient Model Transformations by Combining Pattern Matching Strategies 21

model changes. While model manipulation becomes slightly more complex, all matches
of a graph pattern can be retrieved in constant time in exchange by eliminating the need
for recomputing existing matches.

Initial benchmarking [12] has shown that in many scenarios, the incremental pattern
matching approach (as implemented in the VIATRA2 framework) leads to orders-of-
magnitude increases in speed. However, an important implication of caching match sets
is increased memory consumption, which needs to be taken into account when scaling
up to large models. Unfortunately, in many practical applications of model transfor-
mations, available memory is frequently constrained (e.g. when they are executed on
average desktop computers and not on high performance servers).

In the current paper, we propose a hybrid pattern matching approach which en-
ables the transformation designer to combine local search-based and incremental pat-
tern matching to adapt to memory constraints. At design-time, transformation engineers
may select whether a graph pattern should be matched using the LS or the INC strategy
separately for each pattern. Moreover, based upon runtime monitoring, the execution
engine may automatically switch from incremental pattern matching to local-search
based technique when a certain memory limit has been reached.

Additionally, we present experiments to demonstrate that the incremental strategy is
not always the best choice for pattern matching: we highlight scenarios using a perfor-
mance benchmark of model transformations (object-relational mapping) where a com-
bination of INC with LS significantly outperforms the plain INC-only and LS-only
versions. By the analyzing results of our case study, we provide a list of various fac-
tors (metrics) which we experienced to have significant factor on performance, and give
hints to transformation designers when a graph pattern should be matched using an INC
or an LS strategy in each case.

The rest of the paper is structured as follows. Section 2 briefly introduces graph
patterns and graph transformation rules (as available in the VIATRA2 transformation
language). It also describes the object-relational mapping used as a performance bench-
mark throughout the paper. As related work, we highlight main characteristics of the
local search-based and incremental pattern matcher implementations. In Section 3, we
present scenarios to highlight when a hybrid pattern matching strategy provides signif-
icant performance advantage in typical model transformations. We present metrics to
optimally select LS or INC strategies for patterns at design time. Moreover, we present
an adaptive runtime technique to switch to LS strategy when memory is low (Section 4).
Finally, Section 5 concludes the paper.

2 Background

2.1 Graph Patterns and Transformation

Graph patterns are frequently considered as the atomic units of model transforma-
tions [13]. They represent conditions (or constraints) that have to be fulfilled by a part of
the instance model. A basic graph pattern consists of (i) structural constraints prescrib-
ing the existence of nodes and edges of a given type, and (ii) containment constraints
specifying containment relation between nodes of graph patterns. A negative applica-
tion condition (NAC), defined by a negative subpattern, prescribes contextual conditions
for the original pattern which are forbidden in order to find a successful match.

22 G. Bergmann et al.

Graph transformation (GT) [1] provides a high-level rule and pattern-based ma-
nipulation language for graph models. Graph transformation rules can be specified by
using a left-hand side – LHS (or precondition) pattern determining the applicability of
the rule, and a right-hand side – RHS (postcondition) pattern which declaratively speci-
fies the result model after rule application. Elements that are present only in (the image
of) the LHS are deleted, elements that are present only in the RHS are created, and other
model elements remain unchanged.

In the following, we use the language of the VIATRA2 framework [13] for demon-
stration purposes, which also provides additional control structures (such as rule
invocation, variable declaration, sequencing operator, iterative and simultaneous exe-
cution etc.) for assembling complex transformations defined by abstract state machines
(ASM) [14].

Example 1. The graphical representation of an example graph transformation rule, along
with the VIATRA2 textual representation of the LHS, is depicted on Figure 1. Informally,
the meaning of the schemaRule is to map a package P contained by the container Con to
a schema S, unless the mapping has already been performed. Elements labeled with new
are the ones created by the rule; elements labeled with neg constitute the single NAC of
the rule1. The NAC is used to exclude the cases when the mapping has been performed;
it applies if there is an edge R of type schemaRef between the nodes P and SN.

How this rule is invoked in VIATRA2 is captured by Lst. 1. The forall rule is used to
find all substitutions (matches) for variables defined in its head (P), which satisfies the
LHS of the schemaRule patttern, and then executes the model manipulation operations
for each substitution separately followed by the println rule. Note that the Container
variable will have to be defined prior to the execution of the forall rule as it is assumed
as an input parameter for the schemaRule.

gtrule schemaRule(P,Con) = {
package(P) below Con;
neg pattern mapped(P, SN, RN) = {

package(P);
schema(SN);
package.schemaRef(RN, P, SN);

}
new schema(SN);
new package.schemaRef(RN, P, SN);

}

Fig. 1. GT rule for unmapped packages below a container

...
//invoking the schemaRule GT Rule with Container as a bound input parameter
forall P with apply schemaRule(P,Container) do
//prints the name of the package processed to the console
println("SchemaRule: p="+ name(P));

Listing 1. VIATRA2 source code for invoking the schemaRule

1 We do not display rules with multiple NACs or with deletion action in this paper.

Efficient Model Transformations by Combining Pattern Matching Strategies 23

2.2 Case Study

Transformation overview. The (simplified) Object-to-Relational schema mapping
(ORM) case study was proposed as a performance benchmark of model synchronization
transformations in [15, 12]. The aim of the transformation is to produce corresponding
relational database schemas from UML class diagrams according to the following map-
ping rules:

– First, a relational schema is created for the specified package below a given con-
tainer by schemaRule (Fig. 1). Transitive containment is represented by an edge
tagged as “contains”.

– Then classes in the package are mapped into tables in the corresponding schema,
each with an id column as a primary key (classRule).

– Each association in the package is mapped into a table in the corresponding schema
with a primary key column (associationRule);

– Each association end in the association is mapped into a foreign key of the corre-
sponding table pointing at the table generated from the class that the association
end points to (assocEndRule);

– Attributes in the class are mapped into columns of the corresponding table (see
attributeRule in Fig. 3).

Fig. 2. Reference metamodel

In incremental synchronization, to avoid rebuilding
target models in each pass, a reference model (also
known as trace / correspondence model) is used to es-
tablish a mapping between source and corresponding
target model elements (Fig. 2) and to trace changes
in them. In this context, the reference model is often
referenced in NACs to identify elements in the source
model that have not yet been mapped into the target
model. In the current paper, we restrict our investiga-
tions to one-way synchronization.

Transformation scenario. In the original benchmark example [12], the source model
consists of two packages, both containing a (generated) set of classes with attributes.

gtrule attributeRule(C, A, T) = {
class(C);
class.attribute(A);
class.cl2attrs(CF1, C, A);
table(T);
class.tableRef(R1, C, T);
neg pattern mapped(A, ColN , RN) = {

class.attribute(A);
column(ColN);
class.attribute.colRef(RN, A, ColN);

}
new column(ColN);
new class.attribute.colRef(RN, A, ColN);

}

Fig. 3. GT rule for unmapped attributes

24 G. Bergmann et al.

pattern detectGeneralization(Sub,Sup) = {
general(Gen);
class(Sup);
general.parent(PE,Gen,Sup);
class(Sub);
general.child(CE,Gen,Sub);

}

Fig. 4. Graph pattern checking for generalizations

First, (i) the primary package will be mapped into a relational schema to create initial
mappings. Then, the source models are modified, and, in an additional pass, (ii) the
system has to synchronize the changes to the target model (i.e. find the changes in the
source and alter the target accordingly). This scenario is now extended as follows.

Check phase. First, we check as a precondition of the transformation that no
generalization exists in the source UML model to ensure the applicability of the
transformation. It is captured by a corresponding simple graph pattern (detectGen-
eralization in Fig. 4). We intentionally omitted support for inheritance from the
model transformation itself to analyze a case where a transformation has to per-
form a preliminary applicability check; the practical consequences of this choice
will be assessed later in Sec. 3.2.

Initial transformation phase. When there are no generalizations, the primary package
is mapped into a relational schema by the transformation program.

Refactoring phase. A refactoring operation modifies the package hierarchy of the
source model, namely the secondary package is moved inside the primary package.

Synchronization phase. Afterwards, synchronization propagates these changes into
the target relational model so that it holds the mapping of the (changed) primary
package once again. This involves creating the tables for classes that stem from the
secondary package, and creating columns for attributes of these classes.

2.3 Pattern Matching Strategies and Related Work

Pattern matching plays a key role in the efficient execution of all model transformation
engines. In case of graph transformation based approaches, the goal is to find the occur-
rences of a graph pattern, which contains structural as well as type constraints on model
elements. During pattern matching, each variable of a graph pattern is bound to a node
in the model such that this matching (binding) is consistent with edge labels, and source
and target nodes of the model.

Most model transformation approaches (e.g. [4, 5, 16, 17] and many more) usually
rely on a local search based pattern matching (LS) that starts the matching process from
a single node and extends it step-by-step by neighboring nodes and edges. Informally,
a search plan [18, 6] defines an ordering of pattern nodes, in which they are bound
to objects of the instance model during pattern matching. With efficient search plans
([4, 19]), LS strategies can produce good runtime performance with a relatively small
memory footprint, and low update complexity. Other approaches [20,21] use constraint
satisfaction techniques for matching graph patterns.

Efficient Model Transformations by Combining Pattern Matching Strategies 25

As an alternate approach, incremental pattern matching (INC) [7,8,10,11] relies on
a cache in which the matches of a pattern are stored explicitly. The match set is readily
available from the cache at any time without searching, and the cache is incrementally
updated whenever changes are made to the model. As pattern occurrences are stored,
they can be retrieved in constant time – excluding the linear cost induced by the size of
the result set itself –, making pattern matching extremely fast. The trade-off is increased
memory consumption, and increased update costs (required to continuously maintain
the stored match set caches.

In the current paper, our goal is to investigate if (and when) the combination of pat-
tern matching strategies within a transformation (referred to as hybrid pattern match-
ing) can provide better runtime performance, especially, with constraints on available
resources (such as memory consumption). For our investigations, we use the VIATRA2
framework, which supports both pattern matching engine strategies and allows to spec-
ify the use of INC or LS strategy separately for each graph pattern.

There are cases where the use of either the incremental or the local search based
pattern matching approach is significantly more efficient than the other. We argue that
many transformations could benefit even more from combining these two approaches,
by using different pattern matcher engines for different graph patterns. As a conceptual
analogy for our current work, recent research in expert systems [22] demonstrated that
an integration between two different incremental strategies can be advantageous.

3 Motivating Scenarios for Hybrid Pattern Matching

Recent benchmarks evaluations [12] and tool contests [3] in the graph transformation
community have shown that INC can easily be orders of magnitude faster than (most)
LS approaches for certain problem classes. This section identifies three scenarios where,
on the other hand, LS has a clear advantage, as demonstrated by our experiments2. For
each scenario, we identify a hybrid pattern matching approach where some patterns and
transformations should use LS, while the rest of the transformation relies upon INC to
obtain a better performance than the two extremes (LS-only or INC-only).

3.1 Scenario: Match Set Cache Does Not Fit into Memory Limit

This scenario demonstrates that the high memory consumption of incrementally main-
tained caches can be a bottleneck of INC. By choosing LS for patterns that are memory-
intensive (i.e. with many matches) but not time-critical, the high memory consumption
can be greatly reduced, while still retaining the short execution time comparable to INC.

Our experiments were performed on the Transform phase of the ORM case study
(see section 2.2), by measuring the heap commit size of the Java VM. In the followings,
we model a frequently occurring development scenario. As the transformation designer
is typically working with small toy models, scaling up to large model sizes might lead to
unexpected results. For instance, while a toy model with 10 classes and 250 attributes
and the corresponding INC cache easily fits in a few megabytes, a memory usage of

2 Measurement environment: Intel Core Duo t2400@1,83 GHz processor, 3 GB RAM, Windows
XP SP3, Sun HotSpot Java 1.6.0 02 and VIATRA2 Release 3 build 2009.02.03.

26 G. Bergmann et al.

128MBs can be reached by increasing the model to 575 classes and 14375 attributes,
as shown on Table 1. With a memory limit of 128M, as the match set cache expands
rapidly, the JVM begins to trash due to memory starvation shortly after the transforma-
tion is started. This leads to significant slowdown (to 21 seconds), and may even result
in a failed execution because of heap exhaustion. If the amount of memory is suitably
large (i.e. 1GB in our case), execution is very fast (4.6 seconds). LS is not an alternative
here: while the memory consumption of the caches is spared, the execution time for this
model size is very long (avg. 184 seconds).

Closely observing this transformation, we may identify LHS pattern attributeRule
(see Figure 3) and its embedded negative application condition as patterns with high
number of occurrences. By sacrificing execution time (runs in 5.0s with a 1G heap),
we marked this pattern to be matched by the LS engine, despite using INC for the rest
of the transformation. This reduced memory consumption to 105M, and allowed the
transformation to run with approximately the same execution time (5.6s) even with a
memory limit of 128M. Therefore the hybrid approach has the potential to efficiently
scale up to higher model sizes given the same memory constraints.

Table 1. Match Set Memory and Performance

PM Strategy Memory limit [MB] Used heap [MB] Transform phase time [ms]
LS 128 99 183729
INC 128 128 21057
INC 1024 128 4639
Hybrid 128 105 5573

3.2 Scenario: Construction Time Penalty

This scenario emphasises that the time required to initialize the incrementally main-
tained caches might itself be too expensive. The construction time of the caches is not
less than the time required to find all occurrences of the pattern, since the match set is
directly available from this cache. If the transformation needs to find only one (or few)
of many pattern occurrences altogether, there is no need for LS to continue the search
and retrieve the entire match set, therefore it can be significantly faster than INC. This
phenomenon only applies if the pattern is efficiently matchable by LS, unlike large
patterns with high combinatorial complexity.

This behaviour was observed in the Check phase of the ORM case study (see section
2.2). We measured the time it takes to find an arbitrary generalization edge if all 2500
generated classes inherit a common superclass, which is a single-occurrence query of a
very simple graph pattern (see Figure 4) consisting of a single edge. The measurements
show (in Table 2) that constructing the cache took 0.14s on average, while INC would
gain only about 16 ms time (too small to be more accurately measured) compared to
LS with each further query (if there were any). To complement these results, we also
took the measurement on a source model without generalization, for which the transfor-
mation could be performed; we found that, in accordance with expectations, LS has no
significant advantage in this case: constructing the cache took 16 ms, while LS needed
36 ms to complete the query (both of them too small to be accurately measured).

Efficient Model Transformations by Combining Pattern Matching Strategies 27

Table 2. Construction Time Performance

PM Strategy Used heap [MB] Cache construction time [ms] Further queries [ms]
with generalization edges

LS 152 - 16
INC 159 143 0

without generalization edges
LS 147 - 36
INC 149 16 0

3.3 Scenario: Expensive Model Updates

This scenario happens if there is heavy model manipulation between infrequent pattern
queries. In this case, the time overhead imposed on model manipulation by INC may
outweigh its benefits. The cost of incrementally maintaining the match set caches for a
long period of time with frequent model updates may be larger than the cost of applying
LS and calculating the match set from scratch at each pattern query. In other terms, it
may be superfluous to continuously maintain the match sets if they are not frequently
used for model queries. This cost can be avoided by not using INC, or only using it for
a limited number of patterns.

Expensive update overhead is observable in the Refactoring phase of the ORM case
study (see section 2.2). We measured the time it takes to move a package in the source
model to a different package, while the INC maintains the caches of patterns that rep-
resent the location of classes in the namespace hierarchy of packages, classes and at-
tributes (Table 3). The transitive containment is a model feature of high combinatorial
complexity, and moving a high-level element will cause drastic changes in this relation-
ship, thereby forcing the INC to perform intensive cache updates. The measurements
have shown that the cost of the single move operation can be as high as 2.1 seconds with
INC. Using pure LS was not a feasible solution either, as the Synchronization phase did
not terminate within half an hour. A hybrid pattern matcher assignment solved these
problems: patterns using the transitive containment (see Figure 1) were matched by LS
and the rest by INC, resulting in a fast move operation and an execution time of 14.5 ms
for the entire Refactoring phase. These measurements were taken with both the primary
and secondary packages consisting of 1000 classes and 25000 attributes.

Table 3. Model Update Performance

PM Strategy Used heap [MB] Refactoring phase time [ms] Synchronization phase time [ms]
LS - 0 >2000000
INC 493 2109 13386
Hybrid 298 0 13570

3.4 Overall Performance on the Entire Case Study

Finally, we compare the overall performance of the three approaches on all three steps
of the case study combined. Measurements were taken for various source model sizes,

28 G. Bergmann et al.

Fig. 5. Overall Execution Time

scaling up until the transformation became too slow (LS) or did not fit into memory
(INC, hybrid). Figure 5 indicates the total execution time versus the number of classes
in the primary source package. For these measurements, the number of classes in the
secondary package (N/4) was always one quarter of the number of classes initially in
the primary package (N), and each class still had 25 attributes (25N, 25N/4); thus the
largest case (N=2400) consisted of 2400 classes and 60000 attributes in the primary
package, 600 classes and 15000 attributes in the secondary package, i.e. more than 150
000 source model elements altogether including edges. As the figure shows, INC scales
up higher than LS, but the hybrid approach is even more efficient (note that due to
overhead, the advantage becomes visible for large models when N >= 1200).

4 Towards Intelligent Selection of Matching Strategies

In this section, we first identify various factors (qualitative metrics) which help transfor-
mation designers decide when a certain pattern matching strategy (LS or INC) would be
beneficial (Sec. 4.1). Then, in Sec. 4.2, we discuss how an adaptive run-time behaviour
can be obtained by monitoring relevant metrics, and switching from one strategy to the
other at runtime. Compared to existing adaptive pattern matching solutions [19, 4], the
main novelty of this approach lies in the fact that we are able to automatically switch
between two entirely different pattern matching strategies to increase performance. The
high-level workflow of these techniques is illustrated in Fig. 6.

As identified in Sec. 3, several factors may influence the behaviour of the pattern
matching algorithms. Static factors like (i) static attributes of graph patterns (e.g. pat-
tern size, fan-out, structural complexity) and (ii) control structures of model transfor-
mations (e.g. forall, iterate) determine operative characteristics which, in combination
with the characteristics with the different pattern matcher strategies, greatly influence
the cost of pattern matching.

In contrast, dynamic factors change in-between transformation runs on the same
system, and also with different target execution platforms: (iii) model-specific graph

Efficient Model Transformations by Combining Pattern Matching Strategies 29

Fig. 6. Selecting pattern matching strategies at design-time and runtime

characteristics like qualitative attributes related to structure (e.g. average fan-out) and
quantitative parameters related to model size (e.g. total number of model elements) may
change as the transformation is changing the underlying model. Moreover, (iv) memory
limitations impose external constraints which are related to the execution environment.

4.1 Factors for Design-Time Selection of Matching Strategies

In the VIATRA2 framework, transformation designer can fine-tune the performance of
graph pattern matching by prefixing a graph pattern with @incremental or
@localsearch annotations to select the designated pattern matching strategy.

Based on our previous experience with performance benchmark transformations [12]
and practical model transformations of large complexity [23], we identified the follow-
ing factors to be important for transformation designers to choose between LS and INC
strategies:

(i) Graph pattern static attributes
• number of graph patterns in a transformation program has a huge impact on

the memory consumption. The cache size of the pattern increases memory con-
sumption when matched by INC strategy.

• pattern size: in practical applications, we experienced that the number of
matches gradually decrease as the pattern to be matched becomes more and
more complex (having more and more elements). This contradicts the intuition
that larger patterns will have more matches due to more combinatorical possi-
bilities. Although this combinatorical increase may hold for smaller patterns, it
is overwhelmed by the scarcity due to restrictiveness of larger patterns in many
practical scenarios. As a result, large patterns should be preferably matched by
INC.

• containment hierarchy constraints, especially transitive containment, may sig-
nificantly increase the memory consumption of incremental pattern matching
due to fact that all containment relation between model elements have to be
cached and incrementally updated. A good compromise could be to decom-
pose the pattern and match only the containment constrained part with the LS

30 G. Bergmann et al.

engine while leaving INC strategy for the rest. Another solution would be to
refactor patterns (and possibly the model also) so that they use explicit graph
edges instead of relying on the implicit containment hierarchy.

(ii) Control structures
• parameter passing is using the result of rules or patterns as an input of other

rules or patterns. This technique increases efficiency in LS as search operations
are much more efficient if one or more pattern variables are bound, i.e. their
values are known at time of the query. INC performance is not affected.

• usage frequency of patterns is relevant, since the more often a pattern is used,
the more advantage INC has. Frequently used patterns can be identified by
static analysis of the transformation code, e.g. by marking patterns that are
used from within a loop. Trace analysis can yield more valuable estimates, if
typical example inputs are available, by executing the transformation on these
inputs and counting the times each pattern is accessed.

• model update cost: if program code analysis can reveal that model element
types belonging to a certain pattern are rarely (or never) manipulated, the model
manipulation costs imposed by INC can be neglected.

(iii) Model dependent pattern characteristics
• node type complexity, a rough upper bound on the number of potential matches

can be obtained as the product of the cardinalities (number of model instances)
of the types of each node in the graph pattern. This estimate is, of course, accu-
rate as there are also edges in the pattern to constrain the possible combinations
of nodes. However, high complexity may result in high memory consumption
for INC, and long search operations for LS.

• model statistics generally extend graph pattern static attributes to the entire in-
stance model the transformation is working on. A well-known practical statis-
tics on pattern complexity is the search space tree cost, that has already been
used to adaptively select the search plan for LS-based matchers [19]. It uses
model statistics to assess the branching factors (node type complexity) during
the search process. Other important factors like fan-out, hierarchy depth and
model symmetries can also effectively make the estimation of match set sizes
and time complexity of the pattern matching more precise.

By evaluating these (qualitative) metrics on the ORM case study described in Sec. 2.2,
the observed behaviour in Scenarios 3.1–3.3 can be explained in more detail.

– In Sec. 3.1, we have identified the cause of the performance bottleneck to the at-
tributeRule graph pattern with large match set. Since this pattern is used to filter for
Attributes which have not yet been mapped to a Table column, it can be expected to
have an initially large match set for class models with a large number of attributes.
The match set size can be estimated a-priori by looking at instance count num-
bers for the Attribute type, or, by simply considering the general type composition
characteristics of models the transformation is to be executed on.

– Sec. 3.2 demonstrated the usage of a simple pattern for structural checking (i.e.
executing only once). This case corresponds to low pattern complexity and low
usage count which, especially when combined with a potentially high match count,
indicates a good candidate for switching to LS.

Efficient Model Transformations by Combining Pattern Matching Strategies 31

– Finally, Sec. 3.3 uses a pattern with a transitive containment constraint which, when
used for synchronization after a model move high in the containment hierarchy,
caused a drastic overhead for the incremental pattern matcher. As the resolution
suggests, such patterns should generally be matched with LS.

4.2 Adaptive Runtime Optimization

Dynamic factors like memory consumption can quite easily change in-between transfor-
mation runs (even on the same system), especially using INC pattern matching, leading
to performance degradation or insufficient memory. The current section focuses on an
adaptive approach that can intervene in the predefined matching strategy in order to
adapt to the altered environment.

In accordance with the general strategy described in Sec. 3, the adaptive engine gen-
erally prefers using the incremental pattern matcher for all graph patterns. When short-
age of available memory is detected, pattern match set cache structures are gradually
abandoned. For constructing such an adaptive approach monitoring, the following pa-
rameters are actually considered:

– During the execution of a VIATRA2 transformation the memory consumption is
directly observable through the Java Virtual Machine (JVM), which provides a
straightforward way for monitoring available memory.

– Simple model space statistics (e.g. the total number of model elements) are au-
tomatically registered by the VIATRA2 engine, along with sizes of match sets
available from the incremental pattern matcher that can also be used as a model-
specific indicator for actual memory consumption and to dynamically detect situa-
tions where run-time adaptive matching selection strategy switching is needed.

Note that telemetry registration does have some overhead at run-time (especially in the
case of heap monitoring since several garbage collection runs need to be executed for
reliable heap data), however this overhead is negligible for long-running transformations.

For the actual strategy the priority order for the cache removal is determined by the
largest-first principle, where the pattern match cache structure with the largest overall
memory footprint is selected for removal resulting, that the forthcoming pattern match
operation requested for the corresponding pattern will always be executed by the LS-
based pattern matcher leading to a smaller memory consumption. In our case, memory
shortage is detected when the available heap memory is less than 15%, which initiates
dropping PM caches and switching to LS strategy.

In order to evaluate the efficiency and impact of this approach, we ran the benchmark
experiment described in Sec. 3.1 with the adaptive implementation. The results for this
measurement were obtained in a different software environment: we used the 64-bit
version of IcedTea 1.3.1 as a JVM (hence the larger memory consumption figures).
Execution times can be observed in Table 4.

Unsurprisingly, the execution time of the hybrid adaptive approach is between the
fastest INC, the static hybrid approaches and a pure LS run. Note that memory was
constrained for hybrid runs, marked with *; with memory constraints, INC would not
run successfully in this case.

32 G. Bergmann et al.

Table 4. Match Set Memory and Performance of the Adaptive Hybrid Strategy

PM strategy Used heap [MB] Transform phase time [ms]
LS 201 77054
INC 353 13693
Static hybrid 220* 10958

Adaptive hybrid 235* 35716

Overall, this technique prevents the transformation engine from trashing due to mem-
ory starvation. However, the largest match set caches may not be the best choice for
abandonment when optimizing for the shortest possible execution time. Therefore the
presented technique is theoretically sub-optimal. A straightforward approach for future
optimization is adjusting the priority order based on static analysis of the transformation
program.

5 Conclusion and Future Work

Practical experience has shown that performance optimization is an important part of
building powerful model transformations in a model-driven development process. First,
as models are increasing in size and complexity, transformations need to be able to
transform them efficiently. Secondly, as transformations are becoming hidden (e.g. em-
bedded in a design tool), they should execute seamlessly - quickly and using as little
resources as possible.

In this paper, we presented a hybrid pattern matching approach, which provides smart
selection from two entirely different matching strategies (namely, the local search-based
and incremental pattern matching) to improve overall performance.

Based on experience with complex applications of model transformations (e.g. [23]),
we selected three scenarios for the investigation. Based on our experimental analysis,
we argue that many practical transformations may significantly benefit from a hybrid
pattern matching approach with properly selected matching strategies for the patterns.
We gave conceptual guidelines on manual optimization based upon various metrics
in Sec. 4. Additionally, as an initial contribution towards automatic optimization, we
presented an adaptive approach switches pattern matching strategies when memory is
running low.

However, we also recognize that the ultimate goal for optimizing model transfor-
mation performance is to enable the user to concentrate only on functionality and the
software tool should select the optimal pattern matching strategy. In order to provide
semi-automatic aids to the transformation designer for code optimization, and to de-
velop a more optimal method for adaptive strategy switching, several well-known ap-
proaches can be adapted in the future.

– Pattern analysis may be used to classify graph patterns according to complexity,
size, and complex cost metrics (as mentioned in Sec. 4.1) statically. While such
techniques are currently used internally in our LS implementation, direct user in-
terface feedback is needed to expose relevant data to the transformation designer.

Efficient Model Transformations by Combining Pattern Matching Strategies 33

– Program analysis aims to identify patterns and model manipulation steps that are
frequently used, rarely used, or unused for a period of time by analyzing the trans-
formation program, without actually running it.

– Trace analysis improves this knowledge of transformation behaviour by actually
running the program on one or more provided typical models and gathering statis-
tics on the type and amount of executed pattern queries and model manipulations.

– Quantitative model analysis is a highly promising approach to estimate the match
set cardinality of graph patterns based on statistics of the model (without actually
running the pattern matching algorithm).

As a main direction for future work, we plan to implement a framework with high-
level support for these static analysis techniques, to find answers for open questions
outlined in Sec. 4.1 (e.g. the limit in pattern size and pattern usage frequency for a
given transformation where the break-even point for INC and LS occurs).

Additionally, we plan to investigate ways to achieve tighter integration between the
two pattern matching engines. This will allow different strategies to be responsible for
matching different subpatterns within the same pattern.

While the direct contributions of the paper are dedicated to graph transformation-
based approaches of model transformations, we believe that the conceptual foundations
are, in fact, adaptable to other transformation techniques. For instance, similar inves-
tigations can be carried out in the future to assess when an OCL constraint should be
evaluated incrementally, and when an evaluation should be initiated from scratch.

References

1. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook on Graph Grammars
and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World
Scientific, Singapore (1999)

2. The AGTIVE Tool Contest: official website (2007),
http://www.informatik.uni-marburg.de/˜swt/agtive-contest

3. GraBaTs - Graph-Based Tools: The Contest: official website (2008),
http://www.fots.ua.ac.be/events/grabats2008/

4. Geiss, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: A Fast SPO-Based
Graph Rewriting Tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidelberg (2006)

5. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment. In: The
22nd International Conference on Software Engineering (ICSE), Limerick, Ireland. ACM
Press, New York (2000)

6. Varró, G., Horváth, Á., Varró, D.: Recursive Graph Pattern Matching With Magic Sets and
Global Search Plans. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS,
vol. 5088. Springer, Heidelberg (2008)

7. Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Structures and
Initial Experiments. In: Karsai, G., Taentzer, G. (eds.) Graph and Model Transformation
(GraMoT 2006). Electronic Communications of the EASST, vol. 4. EASST (2006)

8. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the
VIATRA transformation system. In: GRaMoT 2008, 3rd International Workshop on Graph
and Model Transformation, 30th International Conference on Software Engineering (2008)

http://www.informatik.uni-marburg.de/~swt/agtive-contest
http://www.fots.ua.ac.be/events/grabats2008/

34 G. Bergmann et al.

9. Matzner, A., Minas, M., Schulte, A.: Efficient Graph Matching with Application to Cognitive
Automation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088.
Springer, Heidelberg (2007)

10. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evo-
lution of Model-Driven Systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

11. Mészáros, T., Madari, I., Mezei, G.: VMTS AntWorld submission. In: GraBaTs - 4th Inter-
national Workshop on Graph-Based Tools: The Contest (September 2008)

12. Bergmann, G., Horvath, A., Ráth, I., Varr, D.: A Benchmark Evaluation of Incremental Pat-
tern Matching in Graph Transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer,
G. (eds.) ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg (2008)

13. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3), 214–234 (2007)

14. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer, Heidelberg (2003)

15. Varró, G., Schürr, A., Varró, D.: Benchmarking for Graph Transformation. Technical Re-
port TUB-TR-05-EE17, Budapest University of Technology and Economics (March 2005),
http://www.cs.bme.hu/˜gervarro/publication/TUB-TR-05-EE17.pdf

16. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES Approach: Language and Environ-
ment. In: [1], pp. 487–550. World Scientific, Singapore (1999)

17. ATLAS Group: The ATLAS Transformation Language, http://www.eclipse.org/gmt
18. Zündorf, A.: Graph Pattern Matching in PROGRES. In: Selected papers from the 5th Inter-

national Workshop on Graph Gramars and Their Application to Computer Science, London,
UK, pp. 454–468. Springer, Heidelberg (1996)

19. Varró, G., Varró, D., Friedl, K.: Adaptive Graph Pattern Matching for Model Transformations
using Model-sensitive Search Plans. In: Karsai, G., Taentzer, G. (eds.) Proc. of Int. Workshop
on Graph and Model Transformation (GraMoT 2005), Tallinn, Estonia. ENTCS, vol. 152, pp.
191–205. Elsevier, Amsterdam (2005)

20. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern match-
ing. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS,
vol. 1764, pp. 238–252. Springer, Heidelberg (2000)

21. El-Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions using constraint prop-
agation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 189–203. Springer, Heidelberg (2008)

22. Wright, I., Marshall, J.: The execution kernel of RC++: RETE*, a faster RETE with TREAT
as a special case. International Journal of Intelligent Games and Simulation 2(1), 36–48
(2003)

23. Kovács, M., Lollini, P., Majzik, I., Bondavalli, A.: An Integrated Framework for the Depend-
ability Evaluation of Distributed Mobile Applications. In: Proc. Int. Workshop on Software
Engineering for Resilient Systems (SERENE 2008), Newcastle upon Tyne, UK, November
17-19, pp. 29–38 (2008)

http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf
http://www.eclipse.org/gmt

Managing Dependent Changes in Coupled Evolution�

Antonio Cicchetti1, Davide Di Ruscio2, and Alfonso Pierantonio2

1 School of Innovation, Design and Engineering
Mälardalen University,

SE-721 23, Västerås, Sweden
antonio.cicchetti@mdh.se

2 Dipartimento di Informatica
Università degli Studi dell’Aquila

Via Vetoio, Coppito I-67010, L’Aquila, Italy
{diruscio,alfonso}@di.univaq.it

Abstract. In Model-Driven Engineering models and metamodels are not pre-
served from the evolutionary pressure which inevitably affects almost any arte-
facts. Moreover, the coupling between models and metamodels implies that when
a metamodel undergoes a modification, the conforming models require to be ac-
cordingly co-adapted. One of the main obstacles to the complete automation of
the adaptation process is represented by the dependencies which occur among
the different kinds of modifications. The paper illustrates a dependency analy-
sis, classifies such dependencies, and proposes a metamodeling language driven
resolution which is independent from the evolving metamodel and its underlying
semantics. The resolution enables a decomposition and consequent scheduling of
the adaptation steps allowing the full automation of the process.

1 Introduction

Model Driven Engineering (MDE) [1] is increasingly gaining acceptance as a mean to
leverage abstraction and render business logic resilient to technological changes. Co-
ordinated collections of models and modelling languages are used to describe software
systems on different abstraction layers and from different perspectives [2]. In general,
domains are analysed and engineered by means of a metamodel, i.e. a coherent set of
interrelated concepts. A model is said to conform to a metamodel, or in other words
it is expressed by the concepts encoded in the metamodel, constraints are expressed at
the metalevel, and model transformation occurs when a source model is modified to
produce a target model.

In a model-centric vision of software-development, models and metamodels are not
preserved from the evolutionary pressure which inevitably affects almost any artefacts
involved in the process [3]. Moreover, the coupling between models and metamodels
implies that when a metamodel undergoes a modification, the conforming models re-
quire to be accordingly co-adapted1 not to let them become invalid. This adaptation
� Partially supported by the European Community’s 7th Framework Programme (FP7/2007-

2013), grant agreement n◦ 214898.
1 The terms co-adaptation, co-evolution, and coupled evolution will be at some extent used as

synonyms throughout the paper.

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 35–51, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

36 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

process is difficult, error-prone and can give place to inconsistencies between the meta-
model and the related artefacts, if not supported by any automation. Such an issue be-
comes even more relevant when dealing with enterprise applications, since in general
system models encompass a large population of instances which need to be appropri-
ately adapted, hence inconsistencies can possibly lead to irremediable information ero-
sion [4]. The management of coupled evolution is intrinsically complex and requires the
capability of a) differencing, i.e. determining the differences between two versions of
the same metamodel and b) adaptation, that is a transformational process able to partly
or fully automatize the adaptation of the models according to the modifications detected
in the previous step. Recently, these aspects have been investigated by several works,
while some focused on the problem of metamodel matching (e.g., [5]), most of them
concentrated on the adaptation by either assuming that change traces, for instance, are
somehow available or addressing only atomic modifications (e.g., [4,6,7]), see Sect. 2.1
for a detailed discussion. Unfortunately, supposing the availability of predefined infor-
mation about changes and assuming only atomic operations is not always practicable,
because metamodels usually evolve in a complex way without keeping track of the
applied changes.

This paper proposes a transformational approach to co-adaptation which is agnostic
of the differencing method and considers complex modifications of metamodels, in con-
trast with current approaches [4,6,7]. As shown in [8], the adaptation is defined as the
parallel composition of two different transformations which are automatically derived
from the breaking resolvable, and breaking unresolvable changes. Unfortunately, the
occurrence of dependencies between these two kind of changes compromises the par-
allel independence of the generated transformations, and thus the complete automation
of the co-adaptation. This work enhances the work in [8] by proposing a dependency
analysis which underpins a resolution strategy allowing the correct scheduling of the
adaptation steps. All the metamodel change dependencies have been considered and
for each of them a resolution schema is proposed enabling the complete automation
of the adaptation. Interestingly, the technique is independent of the metamodel and its
underlying semantics, since it relies only on the definition of the metamodeling
language.

The structure of the paper is as follows. In Sect. 2 a discussion about the related work
and the background is presented. Next section analyzes the metamodel change depen-
dencies and discusses the countermeasures to adopt in order to resolve them. Finally
some conclusions are drawn.

2 Metamodel Evolution and Model Co-evolution

Metamodels are expected to evolve during their life-cycle, thus causing possible prob-
lems to existing models which conform to the old version of the metamodel and do
not conform to the new version anymore. A possible solution is the adoption of mech-
anisms of model co-evolution, i.e. models are migrated in new instances according to
the changes of the corresponding metamodel. In the following, related works are illus-
trated to give an overall view of the problem, current solutions, and the issues which are
still open.

Managing Dependent Changes in Coupled Evolution 37

2.1 Related Work

The problem of co-evolution presents intrinsic difficulties. In [7] the authors introduce
a new language, COPE, to support the adaptation of models with respect to metamodel
updates. However, the language is mainly exploited to provide helpers in instance co-
adaptations and not to introduce a generative approach based on metamodel variations.
In [4,6,9] the authors try to improve the degree of automation, by considering all the pos-
sibile metamodel manipulations and distinguishing them with respect to the effects they
have on the existing instances. In particular, metamodel changes are classified in (i) non-
breaking changes that do not break the conformance of models once the corresponding
metamodel has been modified, (ii) breaking and resolvable changes which break the
conformance of models even though they can be automatically co-adapted, and (iii)
breaking and unresolvable changes that break the conformance of models which can
not be automatically co-evolved and user intervention is required. Such a categorization
suggests to support model co-evolution by separating the various forms of metamodel
revisions and then by adopting the appropriate countermeasures. For instance, in [4]
metamodel evolutions are specified by QVT relations, while co-adaptations are defined
in terms of QVT transformations when resolvable changes occur. The main limitations
are that co-adapting transformations are not automatically obtained from metamodel
modifications and unresolvable changes are not given explicit support. Moreover, using
relations instead of difference models does not allow distinguishing metaelement up-
dates from deletion/addition patterns. This problem is (partly) addressed in [6], which
advocates for some metamodel difference management by means of change traces, al-
though no specific proposal is adopted or given.

In [10] the authors discuss the possibility to induce model transformations through
model weaving. In particular, weaving links are given to establish correspondences
(or matchings) between metamodel elements and consequently to derive mappings be-
tween corresponding models. If the weaving is seen as a difference representation, the
induced transformation can be considered as the automated co-adaptation of existing
instances. Nonetheless, the approach in [10] lacks of expressiveness, since only addi-
tions and deletions can be represented through the semantics provided by the proposed
weaving relationships. The problem of metamodel matching is also discussed in [5]
where techniques based on schema matching algorithms are used to compute meta-
model alignments.

The co-evolution problem is also investigated in the context of database evolution
and metadata handling, which have been demonstrated to share several problems re-
lated to model management [11]. In fact, when schemas evolve to overcome new re-
quirements all the interconnected artefacts need to be co-adapted, like queries, scripts
and even existing data. Also in this field, a common solution relies on the separation be-
tween schema manipulations causing no or limited updates to existing instances versus
modifications requiring deep structural changes and data conversions. Analogously to
model co-evolution, simple situations can be automatically supported, while complex
ones demand for user intervention, even though the environment can be adequately
started-up [12].

38 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

2.2 Supporting Complex Metamodel Changes

A common aspect that seems to underlay current approaches to co-evolution is the
atomicity of the changes, i.e. the classified change types are assumed to occur individu-
ally, which is not always the case since modifications tend to occur with arbitrary mul-
tiplicity and complexity. Additionally, interdependencies may also be present posing
severe difficulties in distinguishing the various change types. To clarify such problems
the sample evolution of the (simplified) Petri Net metamodel depicted in Figure 1 will
be considered in the rest of the section. In particular, the initial metamodel MM0 consists
of Places and Transitions, places can have source and/or destination transitions,
whereas transitions must link source and destination places (src and dst association
roles, respectively). In the new metamodel MM1, each Net has at least one Place and
one Transition. Besides, arcs between places and transitions are made explicit by
extracting PTArc and TPArc metaclasses, thus allowing to add further properties to
relationships between places and transitions. Since PTArc and TPArc both represent
arcs, they have been generalized in MM2 by the new abstract class Arc encompassing
the integer metaproperty weight. Finally, the metaclass Net has been renamed into
PetriNet.

The modifications applied to the Petri Net metamodel MM0 to obtain MM1 consists of
breaking and resolvable changes. In fact the addition of the new PTArc and TPArc
metaclasses breaks the conformance of the existing models to MM0 since, according
to the new metamodel MM1, Place and Transition instances have to be related
through PTArc and TPArc elements. However, models can be automatically migrated
by adding for each couple of Place and Transition entities two additional PTArc
and TPArc instances between them. An automatic model adaptation cannot be per-
formed when MM1 is changed to get MM2 because of the breaking and unresolvable modi-
fications. In particular, in this case, only a human intervention can introduce the missing
information related to the weight of the arc being specified, or otherwise default values
have to be considered.

All the scenarios of model co-adaptations, like the one of the Petri Net example,
can be managed with respect to the possible metamodel modifications which can be

Fig. 1. Petri Net metamodel evolution

Managing Dependent Changes in Coupled Evolution 39

distinguished into additive, subtractive, and updative [8]. By going into more details,
with additive changes we refer to the following metamodel element additions:

– Add metaclass or metaproperty, introducing new metaclasses or metaproperties is
a common practice in metamodel evolution which gives place to metamodel exten-
sions;

– Generalize metaproperty, a metaproperty is generalized when its multiplicity or
type are relaxed, for instance the cardinality is modified from 3..n to 0..n, or a
type is substituted with its supertype;

– Pull metaproperty, a metaproperty p is pulled into a superclass A and the old one is
removed from a subclass B;

– Extract superclass, a superclass is extracted in a hierarchy and a set of properties is
pulled on.

Subtractive changes consist of the deletion of some of the existing metamodel elements:

– Eliminate metaclass, a metaclass is deleted by giving place to a sub metamodel of
the initial one;

– Eliminate metaproperty, a property is eliminated from a metaclass, it has the same
effect of the previous modification;

– Push metaproperty, pushing a property in subclasses means that it is deleted from
an initial superclass A and then cloned in all the subclasses C of A;

– Flatten hierarchy, to flatten a hierarchy means eliminating a superclass and intro-
ducing all its properties into the subclasses;

– Restrict metaproperty, a metaproperty is restricted when its multiplicity or type are
enforced, for example the cardinality is modified from 0..* to 0..10, or a type is
substituted with one of its subtypes.

Finally, a new version of the model can consist of some updates of already existing
elements leading to updative modifications:

– Change metaproperty type, the type of a metaproperty is updated and the new type
has not particular relationships with the old one;

– Rename metaelement, a metaelement is renamed;
– Move metaproperty, it consists of moving a property p from a metaclass A to a

metaclass B;
– Extract/inline metaclass, extracting a metaclass means to create a new class and

move the relevant fields from the old class into the new one. Vice versa, to inline a
metaclass means to move all its features into another class and delete the former.

Such classification plays a key role in a transformational approach to model co-evolution
presented by the authors in [8] and its discussion goes beyond the purpose of this pa-
per; nonetheless, an overall illustration of such proposal is given in Figure 2. The im-
plementation of the approach relies on the KM3 metamodeling language [13] which
provides metamodeling constructs consisting of a common subset of OMG/MOF and
EMF/Ecore. The applicability of the proposed co-evolution approach with respect to the
metamodeling elements which are not included in such a subset is an open issue and
it will be investigated in the near future. In particular, given two versions MM1 and MM2

40 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

a) b)

Fig. 2. Transformative co-evolution approach

Fig. 3. Fragment of the generated difference KM3 metamodel

of the same metamodel, their differences are recorded in a difference model Δ, whose
metamodel KM3Diff is automatically derived from KM3 and shown in Figure 3. Es-
sentially, for each metaclass MC of the KM3 metamodel, the additional metaclasses
AddedMC, DeletedMC, and ChangedMC are generated in order to represent additions,
deletions, or changes, respectively, of MC instances [14].

In realistic cases, the metamodel modifications represented in the model Δ con-
sist of an arbitrary combination of the atomic changes in Tab. 1. Hence, a difference
model formalizes all kind of modifications, i.e. non-breaking, breaking resolvable and
unresolvable ones. In this respect, the adopted difference representation approach is
crucial. In particular, if the representation of the updates is too coarse-grained, then
the co-adaptation acts with less efficacy. For instance, if the introduction of PTArc
and TPArc in the sample MM0 would be represented as the deletion of the current as-
sociations and the addition of those new entities (instead of an update of the current
relationships), all the existing connections between arcs and transitions would be lost
in the co-adaptation process. In fact, PTArc and TPArc would be interpreted as new
relationships between arcs and transitions instead of being a refinement of them. In
this respect, the quality of the approach used for the difference calculation may af-
fects the results of the proposed co-adaptation technique. In other words, depending on

Managing Dependent Changes in Coupled Evolution 41

Table 1. Changes classification

Change type Change
Non-breaking changes Generalize metaproperty, Add (non-obligatory) metaclass,

and Add (non-obligatory) metaproperty
Breaking and Extract (abstract) superclass, Eliminate metaclass,
resolvable changes Eliminate metaproperty, Push metaproperty,

Flatten hierarchy, Rename metaelement,
Move metaproperty, and Extract/inline metaclass

Breaking and Add obligatory metaclass, Add obligatory metaproperty,
unresolvable changes Pull metaproperty, Restrict metaproperty,

Change metaproperty type, and Extract (non-abstract) superclass

the metamodels being considered, difference algorithms have to be properly chosen or
customized. Interested readers can refer to [15] which summarizes the already exist-
ing approaches for model matching. Once the metamodel changes have been calculated
(as for instance in [5]) and represented in Δ, such a difference model is automatically
decomposed in two disjoint (sub) models, ΔR and Δ¬R [8], which denote breaking
resolvable and unresolvable changes, respectively. The decomposition is given by two
model transformations, TR and T¬R (see Figure 2.a).

As previously said, the possibility to have a set of dependencies among the several
parts of the evolution makes the updates not always distinguishable as single atomic
steps of the metamodel revision. In such situations, a certain set of delta entities can per-
tain to multiple modification categories in Tab. 1 at the same time, and then the order in
which such manipulations take place matters. In fact, it does not allow the decomposi-
tion of a difference model in ΔR and Δ¬R, like for instance when evolving MM0 directly
to MM2 in Figure 1 (although the sub steps MM0−MM1 and MM1−MM2 are directly manage-
able). In these cases ΔR and Δ¬R are said to be parallel dependent and they have to be
further refined to identify and isolate the interdependencies causing the interferences. If
ΔR and Δ¬R are parallel independent then corresponding co-evolutions are generated
separately. In particular, co-evolution actions are directly obtained as model transforma-
tions from the calculated metamodel changes by means of higher-order transformations,
i.e. transformations which produce other transformations [16]. More specifically, two
different higher-order transformations HR and H¬R take ΔR and Δ¬R and produce
the (co-evolving) model transformations CTR and CT¬R, respectively. Since ΔR and
Δ¬R are parallel independent CTR and CT¬R can be applied in any order because
they operate to disjoint sets of model elements (see Figure 2.b). On the contrary, paral-
lel dependence is more complex to manage: the main problem in having such kind of
interdependencies is in the nondeterminism given by the following

ΔR|Δ¬R �= ΔR; Δ¬R + Δ¬R; ΔR

denoting with + the nondeterministic choice. In the next section, we proposes a depen-
dency analysis and resolution criteria to decompose and schedule the modifications in
order to resolve the dependencies according to a comprehensive classification of them
as they can occur in a metamodel evolution.

42 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

3 Dealing with Parallel Dependent Changes

The automatic co-adaptation approach recalled in the previous section relies on the
parallel independence of breaking resolvable and unresolvable modifications. For in-
stance, when evolving the sample PetriNet metamodel MM0 in Figure 1 directly to MM2,
the approach cannot be directly applied unless the dependent changes in ΔR and Δ¬R

are identified and resolved. In particular, in the example, the Add obligatory metaclass
modification, consisting of the addition of the attribute weight in the metclass Arc,
depends on the addition of this new metaclass induced by the Extract abstract meta-
class change. Such a dependence is due to the reference owner which, according to
the KM3 metamodel, needs to be specified for each structural feature.

Being more precise, our solution is based on the following observation: given two
versions of a same metamodel and a model Δ which represents their differences, the
models ΔR and Δ¬R obtained from the decomposition of Δ to isolate breaking re-
solvable and unresolvable modifications, respectively, are parallel dependent when the
source and the target elements of the following references (defined in the KM3 differ-
ence metamodel) are not in the same difference model:

– owner : StructuralFeature → {AddedClass, ChangedClass}, all the at-
tributes and references defined in a given metamodel are related to a corresponding
class which represents their owner. If a given structural feature sf belongs to ΔR

(or Δ¬R) and its owner metaclass mc to Δ¬R (or ΔR), then a parallel dependence
occurs. In this case, owner(sf) can be specified once mc has been added or modified;

– type : TypedElement → {AddedClass, ChangedClass}, given an element te,
type(te) refers to the added or modified classifier mc which represents its type. In
this respect, if a typed element te belongs to ΔR (or Δ¬R) and its type mc to Δ¬R

(or ΔR), then a parallel dependence occurs. In this case, type(te) can be specified
once mc has been added or modified;

– superTypes : Class → {AddedClass, ChangedClass}∗, in order to specify
hierarchies of classes, the superTypes reference is available to define all the super-
classes ci of a given class c. If a given class c belongs to ΔR (or Δ¬R) and its
superclasses ci to Δ¬R (or ΔR), then a parallel dependence occurs. In fact super-
Types(c) can be specified once the superclasses ci have been added or modified.

Because of such references, many of the metamodel changes recalled in the previous
section may give place to parallel dependencies which are summarized in Table 2.
In particular, the rows of the table reports unresolvable changes whereas the resolv-
able ones are given in the columns. Non empty cells represent the dependencies which
may occur because of the corresponding couple of unresolvable and resolvable changes
which might interfere one with another because of the specified reference. For instance,
the cell B1 is not empty since an Add obligatory metaproperty modification and an Ex-
tract abstract superclass one may give place to a dependence because of the references
owner or type. In particular, an added obligatory metaproperty may have as owner or
type the new superclass obtained by means of an Extract abstract superclass modifica-
tion. In this respect, as in the PetriNet example, the dependence can be sorted out by
applying the resolvable change before the unresolvable one (this is the meaning of the
R in the cell B1).

Managing Dependent Changes in Coupled Evolution 43

Table 2. Metamodel change dependencies

The rest of the section is organized as follows: all the metamodel change dependen-
cies summarized in Table 2 will be described in Section 3.1. The identification and the
resolution of the dependencies occurring in large difference models are discussed in
Section 3.2.

3.1 Classification of Change Dependencies

The description of the parallel dependent changes summarized in Table 2 exploits the
sample metamodel evolution reported in Figure 4 (for the sake of readability, parallel
independent combinations have not been included in that table). The differences be-
tween the sample metamodels MM1 and MM2 are represented in the difference model
in Figure 5 which has been decomposed in the corresponding ΔR and Δ¬R in Figure 6.

A1. Both the Add obligatory metaclass and Extract abstract superclass modifications
give place to new metaclasses. Such modifications are parallel dependent if the meta-
class added by the former is subclass of the metaclass added by the latter (or vicev-
ersa). For instance, in the running example, an Add obligatory metaclass modification
has been executed to add the new metclass MC7 as specialization of MC4 which is a

MM1 MM2

Fig. 4. Sample metamodel evolution

44 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

Fig. 5. Representation of the sample metamodel modifications

a. Resolvable changes (ΔR) b. Unresolvable changes (Δ¬R)

Fig. 6. Decomposed difference model

new abstract metaclass that has been added as superclass of the existing MC2. The addi-
tion of MC7 is represented by the element ac3 in the model Δ¬R whereas the addition
of the metaclass MC4 is represented in the ΔR by means of the element ac2. Such

Managing Dependent Changes in Coupled Evolution 45

modifications are parallel dependent since supertTypes of the added MC7 refers to
the metaclass MC4 whose addition is in ΔR.

B1. The owner or the type of a new attribute obtained by means of an Add obligatory
metaproperty modification may be a new class which has been added by means of an
Extract abstract superclass operation. For instance, in the running example the new
meta attribute ma5 has been added as represented by the element aa1 in Δ¬R and
its owner refers to the metaclass MC4 which has been obtained through the Extract
abstract superclass modification previously described.

C1. The Pull metaproperty modification moves a metaproperty p from a subclass B to
the superclass A. If such superclass is obtained through an Extract abstract superclass
modification, a parallel dependence occur since in order to set the reference owner
of p, the metaclass A has to be added first. For instance, the metaproperty ma3 has
been moved from MC2 to the new metaclass MC4 by means of a Pull metaproperty
modification (see the elements ac2 and a1 in Δ¬R) Such modification depends on the
addition of the metaclass MC4 which is represented in ΔR as described above.

D1. The Extract non abstract superclass modification extracts a non abstract superclass
A in a hierarchy. If A is superclass of an abstract class obtained after an Extract abstract
superclass modification (or viceversa), a parallel dependence is raised because of the
supertypes reference. For instance, an Extract non abstract superclass modification
has been performed to create the new metaclass MC3 as superclass of MC2 (see the ele-
ment ac4 in Δ¬R). In this case, the dependence D1 occurs since MC3 also specializes
the metaclass MC4 (see the reference superTypes of the element ac4 in Δ¬R to
the element ac2 in ΔR) which has been obtained after an Extract abstract superclass
modification represented in ΔR.

E1. If the type of a metaproperty is changed to the abstract class obtained by means of
an Extract non abstract superclass modification, a parallel dependence occurs because
of the type reference. For instance, the type of the attribute ma2 in the metaclass MC2
has been changed from String to MC4. This is a Change metaproperty type modifica-
tion and is represented in Δ¬R by means of the elements ca2 and a2. However, since
the new type of the attribute ma2 is a class obtained by means of an Extract abstract
superclass modification, the dependence E1 occurs.

A2. The Push metaproperty modification deletes a metaproperty p from a superclass
A and clones it in all the subclasses C of A. If the subclasses C have been added by
means of Add obligatory metaclass modifications, parallel dependencies occur because
of the owner reference. In the running example, an Add obligatory metaclass change
has been performed to add MC6 as specialization of MC2. Such a modification is repre-
sented in Δ¬R by means of the element ac1. Moreover, a Push metaproperty change
has been executed to change the owner of the attribute ma4 from the metaclass MC2
to the just added MC6. This modification is represented in ΔR by the elements ca3
and a3 instances of the metaclasses ChangedAttribute, and Attribute, respec-
tively. The addition of MC6 and the owner change of the attribute ma4 are an example
of the dependence A2.

46 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

A3. Similarly to the dependence A3, A2 occurs because of the reference ownerwhen a
metaproperty is moved to a metaclass added by means of an Add obligatory metaclass
modification. For instance, the attribute ma7 has been moved from the metaclass MC1
to the new metaclass MC6 by means of the Move metaproperty change represented in
ΔR by the elements ca5 and a5. Such a modification depends on the Add obligatory
metaclass change which has to be performed first in order to add the metaclass MC6 and
update the value of the reference owner of the attribute ma7.

D3. A metaproperty can be moved to a new metaclass obtained by means of an Extract
non abstract superclass modification. In this case, because of the owner reference, a
dependence occurs and to set the owner of the moved property, the new non abstract
metaclass has to be extracted first. In the running example, a Move metaproperty mod-
ification has been executed to move the attribute ma1 from the metaclass MC1 to MC3
as represented by the elements ca4 and a4 in ΔR. However, since the new owner
of the attribute ma1 is the metaclass MC3 (obtained through an Extract non abstract
superclass represented in Δ¬R) the dependence D3 takes place.

B4. The Extract metaclass operation means to create a new metaclass and move the
relevant fields from the old metaclass to the new one and relate them. For instance, in
Figure 4 an Extract metaclass operation has been performed to create the new metaclass
MC5 associated with the existing MC1 (see the elements cc2, c2, ar1, and ac5 in
ΔR). Consequently, if a new metapropertymp is created by means of an Add obligatory
metaproperty modification, a dependence with the Extract metaclass modification can
be raised if the type or the owner of mp is the extracted metaclass. For instance, the
new attribute ma6 has been added in MC5 as represented by the element aa2 in Δ¬R,
and the modification depends on the Extract metaclass operation since the owner of the
new attribute ma6 is the extracted metaclass MC5.

D4. As previously said, the Extract non abstract superclass modification extracts a non
abstract superclass A in a hierarchy. If A is superclass of a class obtained by means of an
Extract metaclass modification (or viceversa), a parallel dependence is raised because
of the superTypes reference. For instance, the metaclass MC5, obtained through an
Extract metaclass modification, has been added as specialization of the class MC3which
has been created by means of Extract non abstract superclass change giving place to
dependent modifications.

E4. An existing metaproperty can be modified by setting its type to a metaclass which
has been added by means of an Extract metaclass modification. In this case, dependent
modifications have been performed which need to be sorted out. For instance, the type
of the attribute ma3 moved to the new metaclass MC4 has been changed from String
to the new metaclass MC5 by means of a Change mataproperty type operation repre-
sented by the elements ca1 and a2 in Δ¬R. Since the new type of the attribute is a
class obtained by means the Extract metaclass modification, the dependence E4 takes
place.

When the evolution of a metamodel consists of complex modifications, the decom-
position in resolvable and unresolvable changes can easily give place to dependencies
which are usually difficult to be identified and sorted out by hand. In the next section

Managing Dependent Changes in Coupled Evolution 47

we propose a formal approach to support the identification and the resolution of such
dependencies.

3.2 Identification and Resolution of Change Dependencies

In this section we propose an approach to identify and resolve the dependencies which
have been discussed in the previous section. The approach is based on the concepts of
sets and functions which will enable a precise and formal identification and manipula-
tion of dependencies among atomic changes.

In particular, an algebra signature is directly derived from the KM3 difference meta-
model whose elements define sorts and functions as reported in Figure 7. This operation
can be performed in an automated way by means of model transformations as shown
in [17,18]. More precisely, the metamodel induces the signature Σ composed of sorts
(S) and functions (OP): for each non abstract metaclass of the metamodel a correspon-
dent set in S is defined, and the functions in OP are induced by the attributes and refer-
ences of all the metaclasses. For instance, the attribute name of the metaclass Class
induces the definition of the function name: Class → String. Moreover, to specify the
type of an Attribute, the function type: Attribute → Class is defined with respect
to the property type of the abstract metaclass TypedElement which is superclass of
the Attribute one.

The sets and the functions in Figure 7 enables the encoding of models conform-
ing to the KM3 difference metamodel as in the example in Figure 8 which depicts the
encoding of a fragment of the difference models in Figure 6. More specifically, the el-
ements ac3, aa1 and a1 of Figure 6.a, cc1, c1, ac2, cc2, and c2 of Figure 6.b
are represented. The ovals in Figure 8 represents some metaclasses of the KM3 differ-
ence metamodel. The elements contained in such ovals are instances of the represented
metaclasses. For example, the changed class MC2 on the left hand side of Figure 6.a, is
encoded in Figure 8 by means of the element cc1 contained in the ChangedClass
oval. Please note that the overlaps of the ovals and the graphical order in which they
appear have no semantics and their layout is related to presentation purposes only.

The resolvable and the unresolvable modifications are also distinguished (see the
dashed parts which enclose ΔR and Δ¬R , respectively) and each of them consists of
a set of the atomic metamodel changes described in the previous section. For instance,
the modification δ2 in ΔR corresponds to the Extract abstract superclass modification
which has been applied to the metamodel MM1 in Figure 4 to add the metaclass MC4 in

Σ = (S, OP)
S := {Class, AddedClass,ChangedClass,Attribute,

AddedAttribute,ChangedAttribute, . . . }
OP :={ name : Class → String

name : Attribute → String
isAbstract : Class → Boolean
isPrimary : Attribute → Bool
type : Attribute → Class
owner : Attribute → Class, . . .}

Fig. 7. Fragment of the signature induced by the KM3 difference metamodel

48 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

name(a1) = ”ma3” name(ac3) = ”MC7”

name(aa1) = ”ma5” name(cc1) = ”MC2”

name(ac2) = ”MC4” name(c1) = ”MC2”

name(c2) = ”MC1” name(cc2) = ”MC1”

Fig. 8. Sample difference model encoding

MM2. Moreover, the Add obligatory metaclass modification which has been executed
to add the metaclass MC7 has been represented by δ′1 in Δ¬R. As discussed in the
previous section, the latter modification depends on the former according to the case
A1 in Table 2. Such a dependence can be noticed also by considering the encoding in
Figure 8. In fact, the reference superTypes of the elements ac3 in Δ¬R has ac2 as
value which is in ΔR. In this respect, the modification δ′1 depends on δ2, hence Δ¬R

depends on ΔR.
Being more formal, by considering the owner, superTypes, and type functions de-

fined at the beginning of the section, the following definitions can be given:

Definition 1. Let δ1 = {a1, a2, . . . , an} and δ2 = {b1, b2, . . . , bm} be two meta-
model changes. δ1 depends on δ2 if there exists a couple (ai, bj), i ∈ {1 . . .n}, j ∈
{1 . . .m}, of atomic modifications such that owner(ai) = bj or type(ai) = bj or
superTypes(ai) = bj .

Definition 2. Let Δ1 = {δ1, δ2, . . . , δn} and Δ2 = {δ′1, δ′2, . . . , δ′m} be two difference
models, Δ1 depends on Δ2 if there exists a couple (δi, δ

′
j), i ∈ {1 . . .n}, j ∈ {1 . . .m},

of metamodel changes such that δi depends on δ′j .

It is important to stress how the functions above are part of the KM3 definition and are
the only responsible for the dependencies among the breaking resolvable and breaking
unresolvable changes. As a consequence, this makes the technique independent from
the metamodel and its underlying semantics.

Managing Dependent Changes in Coupled Evolution 49

Fig. 9. Fragment of the sample change dependencies

As mentioned above, the automatic co-adaptation of models relies on the parallel
independence of breaking resolvable and unresolvable modifications, or more formally

ΔR|Δ¬R = ΔR; Δ¬R + Δ¬R; ΔR (1)

where + denotes the non-deterministic choice. In essence, their application is not af-
fected by the adopted order since they do not present any interdependencies. If change
dependencies are identified they have to be sorted out in order to recover the parallel
independence condition. In this respect, according to Table 2, the discovered depen-
dencies induce the order in which changes have to be applied. For instance, Figure 9
contains a fragment of the sample metamodel changes presented above with their de-
pendencies depicted by means of dashed arrows. By taking into account such dependen-
cies and the resolution criteria presented above, the correct scheduling of modifications
is as follows

(ΔR − {δn}) | (Δ¬R − {δ′1, δ′2, δ′3}) ; {δ′1 | δ′2 | δ′3} ; δn (2)

denoting with − the calculation of model differences and with ; and | the sequential and
parallel application of differences, respectively.

The identification of change dependencies can be easily automatized by translat-
ing each non-empty entry in Table 2 into first-order logic predicates. For instance, the
dependency B1 in Table 2 can be detected if exists a structural feature sf in the set
AddedAttribute or AddedReference such that owner(sf) or type(sf) is an el-
ement belonging to the set AddedClass and which is an abstract superclass of one
of the existing elements in the set Class. Thus the dependency identification can be
implemented in OCL [19], for instance, which has the support for specifying first-order
logic predicates.

Finally, it is worth to mention that cyclic change dependencies cannot occur. In par-
ticular, because of the typing of the functions type, owner, and superTypes the only
admitted cycle might be caused by the last one since it has the set Class as domain and
codomain. However, having a cyclic dependence because of such a function would give
the possibility to define cyclic hierarchies which are not admitted in general.

4 Conclusions and Future Work

In this paper, we have presented an approach that automates the adaptation of mod-
els whenever the corresponding metamodel is subject to evolution, i.e., to arbitrary,
complex and, possibly non-monotonic modifications. To the best of our knowledge, the

50 A. Cicchetti, D. Di Ruscio, and A. Pierantonio

existing approaches are only dealing with atomic changes which are assumed to occur
in isolation and which can then be automatized in a pretty straightforward way. Com-
plex modifications, which can be applied with arbitrary multiplicity and complexity,
poses severe difficulties since they may present interdependencies which compromises
the automation of the adaptation.

This work advocates the adoption of the transformational approach presented in [8]
which encompasses the decomposition of difference models to distinguish among break-
ing resolvable and unresolvable metamodel changes. The main contribution of this paper
is in providing a classification of the interdependencies which can occur in these two
categories of modifications. The classification is used to define resolution criteria which
provide the decomposition and the correct scheduling of modifications. Moreover, it has
been shown how the dependencies are caused by features which are defined in the meta-
metamodel (in this case KM3), which implies that the results are general and agnostic
from the metamodel and its semantics.

A prototypical implementation of the co-evolution approach is available at [20].
Future works includes a more systematic validation of the dependency detection and
resolution technique which necessarily encompasses larger population of models and
metamodels. Finally, we plan to investigate how the works related to change impact
analysis [21] can be adapted and used in MDE to support the co-evolution of metamod-
els and corresponding models.

References

1. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer 39(2),
25–31 (2006)

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)

3. Favre, J.M.: Meta-Model and Model Co-evolution within the 3D Software Space. In: Procs.
of the Int. Workshop ELISA at ICSM (September 2003)

4. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

5. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for automatic
model transformation generation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer, Heidelberg (2008)

6. Gruschko, B., Kolovos, D., Paige, R.: Towards Synchronizing Models with Evolving Meta-
models. In: Procs of the Work. MODSE (2007)

7. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: Automatability of Coupled Evolution of Meta-
models and Models in Practice. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 645–659. Springer, Heidelberg (2008)

8. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-
driven engineering. In: 12th IEEE International EDOC Conference (EDOC 2008), Munich,
Germany, pp. 222–231. IEEE Computer Society, Los Alamitos (2008)

9. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evolution. Jour-
nal of Visual Languages & Computing 15(3-4), 291–307 (2004)

10. Del Fabro, M.D., Valduriez, P.: Semi-automatic Model Integration using Matching Trans-
formations and Weaving Models. In: The 22th ACM SAC - MT Track, pp. 963–970. ACM,
New York (2007)

Managing Dependent Changes in Coupled Evolution 51

11. Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In: Procs. of
the 1st Conf. on Innovative Data Systems Research, CIDR (2003)

12. Galante, R., Edelweiss, N., dos Santos, C.: Change Management for a Temporal Versioned
Object-Oriented Database. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002.
LNCS, vol. 2503, pp. 1–12. Springer, Heidelberg (2002)

13. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg
(2006)

14. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Differ-
ence Representation. Journal of Object Technology 6(9), 165–185 (2007)

15. Kolovos, D.S., Di Ruscio, D., Paige, R.F., Pierantonio, A.: Different models for model match-
ing: An analysis of approaches to support model differencing. In: Proc. 2nd CVSM 2009,
ICSE 2009 Workshop, Vancouver, Canada (2009) (to appear)

16. Bézivin, J.: On the Unification Power of Models. Jour. on Software and Systems Modeling
(SoSyM) 4(2), 171–188 (2005)

17. Di Ruscio, D.: Specification of Model Transformation and Weaving in Model Driven Engi-
neering. Ph.D thesis, Università degli Studi dell’Aquila (February 2007),
http://www.di.univaq.it/diruscio/phdThesis.php

18. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending AMMA for Sup-
porting Dynamic Semantics Specifications of DSLs. Technical Report n. 06.02, Laboratoire
d’Informatique de Nantes-Atlantique (LINA) (April 2006)

19. Object Management Group (OMG): OCL 2.0 Specification, OMG Document formal/2006-
05-01 (2006)

20. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Implementation of an automated
co-evolution of models through atl higher-order transformations (2008),
http://www.di.univaq.it/diruscio/CoevImpl.php

21. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press, Los Alami-
tos (1996)

http://www.di.univaq.it/diruscio/phdThesis.php
http://www.di.univaq.it/diruscio/CoevImpl.php

Model Transformation By-Example: An
Algorithm for Generating Many-to-Many
Transformation Rules in Several Model

Transformation Languages

Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and Rubén Fuentes-Fernández

Software Engineering and Artificial Intelligence
Facultad de Informática

Universidad Complutense de Madrid, Spain
ivan gmg@fdi.ucm.es, jjgomez@sip.ucm.es, ruben@fdi.ucm.es

http://grasia.fdi.ucm.es/

Abstract. Practitioners of model-driven engineering usually find that
producing model transformations still requires much effort. The Model
Transformation By-Example (MTBE) approach softens this problem by
means of the automated creation of model transformations from pairs
of source and target model examples. However, the current techniques
and tools for MTBE are limited in the sense that they can only produce
transformations rules that are limited to just one element in some of the
patterns. In addition, some transformation languages cannot directly
represent many-to-many transformation rules. To overcome both limita-
tions, this paper presents a MTBE algorithm, that can generate many-to-
many rules in several transformation languages even if the transformation
language cannot directly represent these kinds of rules. In particular, the
implementation of this algorithm with the ATL language is available for
practitioners, and it has already generated several MTs that are applied
in software development. Finally, the paper compares this algorithm with
existing techniques for MTBE.

Keywords: Model-driven engineering, model-driven development, model
transformations, model-transformation by-example, algorithm.

1 Introduction

The Model-Driven Development (MDD) [11] approach moves the focus of the
development from the code to the models of the system. It organizes develop-
ment around the definition and transformation of models to generate all the
required artifacts. For the specification of these Model Transformations (MTs),
it has defined multiple Model Transformation Languages (MTLs). Some rele-
vant examples are the ATLAS Transformation Language (ATL) [7], QVT [10],
Tefkat [9], and VIATRA2 [14]. All these languages demand a large amount of
effort from designers to define transformations. Their rules have to be coded

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 52–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 53

as in traditional programming languages, which reduces the level of abstraction
in the development when compared with modeling. Coding these rules implies
studying the expected inputs and outputs, producing candidate transformation
rules, and debugging them until they work as expected. Besides, designers have
not much support for this development since the related tools are not as mature
as the ones for widespread programming languages. For instance, transforma-
tion tools usually lack of editing assistants or debugging capabilities. Moreover,
some designers are not used to the declarative approach followed by
most MTLs.

A solution for this problem consists of using Model Transformations By Ex-
ample (MTBE) [13]. In this approach, rules are automatically generated from
fragments of models. Designers have to provide models that are examples of
the inputs and outputs that the rule has to consider. The history of this technique
dates back to the Krishnamurthi’s work [8] about a transformation by-example
proposal for XML, concretely the XT3D transformation system. Though this
work does not mention model transformations, it can be considered the precur-
sor of MTBE. Afterwards, Varro [13] introduced the MTBE term, and Varro
and Balogh [15] presented a implementation of MTBE using inductive logic pro-
gramming. These works initiated a line of research with followers like Wimmer
et al. [17], who presented a MTBE generator for ATL, and Siikarla et al. [12],
who proposed a process for the iterative definition of transformations through
partial examples. The main limitation of these approaches is that they need the
input pattern (sometimes also the output) to contain only one modeling ele-
ment. That is, their rules cannot take data from several modeling elements. For
instance, many-to-many rules that create attribute values by means of composi-
tion of attribute values from several modeling elements are necessary in agent-
oriented software engineering, as one can observe in the evaluation presented in
Section 4.

This paper contributes to MTBE with an algorithm that addresses this
limitation. It deals with networks of concepts and not only one-to-one or one-to-
many transformation rules between connected graphs. The generation of many-
to-many rules is based on the creation of constraints for the simulation of input
patterns of several elements. Also, this algorithm works with mappings embed-
ded in the models. This means that models themselves indicate how information
should be transferred from the input to the output.

This research has also developed a tool that implements this algorithm for
the ATLAS Transformation Language (ATL). Due to the ATL requirements,
this tool uses ECore [2] as language for defining the involved metamodels and
models, and the Object Constraint Language (OCL) [16] for the constraints.
The main reasons for the choice of ATL are: its the wide technical support [1]
for Eclipse; and its wide use [3] due to its hybrid approach between declara-
tive and imperative, and its mechanisms for modularization and traceability.
Nevertheless, it must be noticed that this specific implementation is a proof
of concept, since the algorithm could be adapted for other transformation lan-
guages that are hybrid between declarative and imperative approaches and use

54 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

constraints in the input side of the rules, such as QVT, XSLT, Tefkat or VIA-
TRA2. The tool can be downloaded from our web [6].

The remainder of the paper is organized as follows. Section 2 introduces some
preliminary definitions used in the paper. Section 3 presents the proposed al-
gorithm for MTBE, which overcomes some limitations of existing MTBE algo-
rithms. Section 4 evaluates the algorithm by presenting both an implementation
for ATL, the MTGenerator tool, and several MTs generated by the implemen-
tation. Section 5 compares the presented algorithm with other existing relevant
approaches for MTBE. Finally, the paper discusses some conclusions and future
work in Section 6.

2 Background Definitions

This section introduces some basic definitions used in the remainder of the paper.
They refer to the notions of metamodel, model and element considered in the
algorithm for MTBE.

Definition 1. A model M is a tuple M =< E, G, R, A, O, OR > that is subject
to the following conditions:

– E, called elements, is a set of tuples {< n, t > |n ∈ I, t ∈ T }, where I is
the set of valid identifiers and T the set of valid types.

– G is a set of tuples {< e1, e2, n, t > |e1, e2 ∈ E, t ∈ T , n ∈ I} called ag-
gregation relations. In this set, there is no sequence e1e2 . . . en−1en such
that e1 = en and < ei, ei+1, n, t >∈ G, i.e., there are no cycles formed by
aggregation relationships.

– OR ∈ E is the model root forced by the realization of the model in different
implementations. Reviewed MTLs process models expressed in XML, which
forces always to have a single root. This root appears as a distinguished en-
tity in the model. The model root is optional and regards to the selected im-
plementation language. For instance, QVT uses graph-based models, which
have not a forced model root.

– O is a set of elements e ∈ E such that (∃ < OR, e, n, t >∈ OR.G, if ∃OR) or
(� < OR, e, n, t >∈ G, if �OR). These elements are referred as logical roots.

– R is a set of tuples {< e1, e2, n, t > |e1, e2 ∈ E, t ∈ T , n ∈ I} called
references.

– A is a set of pairs {< e, v, n, t > |e ∈ E, v ∈ TP , n ∈ I} named attributes,
where e ∈ E, v is a value of primitive type, n denotes its name, and t denotes
its type. The set TP contains all primitive types like integer, string, boolean,
and so on.

Definition 2. A metamodel declares how a model is constructed. Given a tuple
M =< E, G, R, A, O, OR >, a metamodel would declare the set of valid types that
can be used in E,G, and R. It declares as well the set of valid type aggregation
or reference relationships, G or R, among the set of valid entities types, E.
Finally, it declares the attributes of each entity in E. A model is produced from
a metamodel by creating entities of the types declared by the metamodel and
connecting them with relationships allowed by the metamodel.

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 55

Given this definitions of metamodel and model, this work considers the following
notations to work with them.

Notation 1. Given a model M :=< E, G, R, A, O, OR >, M.E, M.G, M.R,
M.A, M.O and M.OR respectively denote E, G, R, A, O and O in model M .

Notation 2. Given a model M :=< E, G, R, A, O, OR >, an element e ∈ E,
an aggregation relation g ∈ G, and a reference r ∈ R,

– e.G denotes {< e1, e2, n, t >∈ G : e = e1}
– e.R denotes {< e1, e2, n, t >∈ R : e = e1}
– e.A denotes {< ex, vx >∈ A : e = ex}
– e.g.e2 denotes e2 : g =< e, e2, n, t >∈ G
– e.r.e2 denotes e2 : r =< e, e2, n, t >∈ R

The components of models are usually labeled with names. According to this
reality, the following notation is used.

Notation 3. Given a model M :=< E, G, R, A, O, OR >, an element e ∈ E,
and an aggregation relation g ∈ G,

– e.n denotes (n : e =< n, t >), which is the name of the element
– g.n denotes (n : g =< e1, e2, n, t >), which is the name of the aggregation

relation

Each MTL has its own notation; consequently, this work uses a generic grammar
capturing the most relevant from several transformation languages. The gram-
mar is described using EBNF; bold words represent terminal symbols, whereas
non-bold words represent non-terminal symbols:

1: MT::= header DefVariables begin Rules end
2: DefVariables::= DefVariable DefVariables

DefVariables::= DefVariable
DefVariable::=Define Name : Type

3: Type ::= List
4: Rules ::= Rule Rules

Rules ::= Rule
5: Rule::= rule InputElement (Constraint) to OutputElements

imperative Actions endrule
6: Constraint::= Constraint and Constraint

Constraint::= Constraint or Constraint
Constraint::= exist(Element)
Constraint::= attributeConstraint(Attribute)
Constraint::= aggregationConstraint(Aggregation)
Constraint::= referenceConstraint(Reference)
Constraint::= BasicRootConstraint

7: OutputElements::= Element (Actions) , OutputElements
OutputElements::= Element (Actions)

56 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

8: Expression::= Element→Attribute→Expression
Expression::= Element→Aggregation→Expression
Expression::= Element→Reference→Expression
Expression::= Element
Expression::= Value

9: Actions ::= Actions Action
Actions ::= Action

10:Action ::= assign(Aggregation, Variable)
Action ::= assign(Attribute, Variable)

The Element in line 8 will be an element of the model. Attribute, Variable, and
List non-terminal symbols are not defined here, but they refer to their intuitive
meaning. The genericity of this grammar is shown in Table 1, which studies
several transformation languages and the existence of the primitives remarked
in the grammar. As one can observe, required constraints are available in all of
them, and only the multiple input possibility is missing in some cases.

Table 1. Properties Transformation Languages

Constraints Actions Rule patterns
exist attribute aggregation reference assign multiple multiple

input output
QVT

√ √ √ √ √
X

√
ATL

√ √ √ √ √
X

√
XSLT

√ √ √ √ √
X

√
Tefkat

√ √ √ √ √ √ √
VIATRA2

√ √ √ √ √ √ √

Finally, the description of the algorithm uses also a pseudocode language, whose
particularities are:

– The replace(str,s,t) function returns a string with the same value as str
but where the target t replaces the appearances of the source s.

– The notation <non-terminal> indicates a string type derivable from the
non-terminal of the aforementioned grammar.

3 The MTBE Algorithm

The presented algorithm produces a MT that contains rules transforming a group
of elements into another group of elements. The algorithm can be implemented in
most of the transformation languages since it is based on the primitives present
in all of them (see Table 1). Though some languages support transformation
rules with multiple input patterns, these languages happen to be of reduced use
in the community. Hence, the utility of this algorithm for those languages is
straightforward. This missing functionality is provided by means of constraints

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 57

which are common to all transformation languages. To ensure enough abstraction
and genericity, the algorithm sticks to the definition of MT presented in the
previous section. The composition of the different words of the MT is made by
means of the ⊕ operator. Terminal nodes of the MT grammar appear in the
algorithm as bold text. The algorithm is introduced below in a high level of
abstraction.

function mtbe(mmi, mmo : metamodel; pairs: PMmmi
×Mmmo):MT

The algorithm takes as input two metamodels, mmi and mmo, and pairs of in-
stances of those metamodels. These pairs are a subset of PMmmi

×Mmmo , which
stands for the set of sets whose elements are pairs of models instantiating the input
models, i.e., {< mi, mo > |mi is an instance of mmi, mo is an instance of mmo}.
The output of the algorithm is a MT satisfying the grammar introduced in the
previous section.

1: begin
2: dictionary = ∅
3: vars = GenerateVariables(mmo)
4: rules = ∅
5: for each < mi, mo >∈ pairs do
6: main := SelectMainElement(mi.E)
7: UpdateDictionary(dictionary, main, BasicRootConstraint)
8: inCons := GenerateInputConstraints(main)
9: . . . Continues later. . . ;

The information transfer from the input models to the output models is achieved
by means of a dictionary. A dictionary is a set of tuples < ex, cx >, where
ex ∈ E is an element and cx a constraint expression of the MTL.

The algorithm starts with an empty dictionary, a list of variables, and a
preliminary root element of the model. If there are several possible roots, then
anyone is chosen. This root element is traversed until reaching all connected
elements by means of references, aggregation, or attribute relationships.This
information is added as constraints to the inCons variable, which represents the
input constraints of the current rule.

10: . . .
11:for each < mi, mo >∈ pairs do

. . . Continuing main loop. . . ;
12: for each potentialMain ∈ mi.E such that potentialMain is a root
13: potentialMainConstraint = CreateConstraint(potentialMain)
14: UpdateDictionary(dictionary, potentialMain, potentialMainConstraint)
15: inCons = inCons and GenerateInputConstraints(potentialMain)
16: end for
17: . . . Continues later . . . ;

58 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

After a reference point is chosen, main in this case, other possible roots are
studied and included as constraints in the rule. These new elements are added
to the dictionary and to the input constraints. So far, all input elements have
been taken into account in inCons, and it is the turn of considering output
elements. The variable inCons is constructed following the grammar rule for
MTLs in Line 6.

18: . . .
19:for each < mi, mo >∈ pairs do

. . . Continuing main loop. . . ;
20: aggregatedToRootElements = ∅
21: outElems = ∅
22: for each e ∈ mo.O.e do
23: outElems := outElems ⊕ GenerateOutputElement(dictionary, e)

aggregatedToRootElements := aggregatedToRootElements ∪ {e}
24: end for
25: actions = GenerateActions (aggregatedToRootElements)
26: rule = rule main(⊕ inCons ⊕) ⊕ to ⊕ outElems ⊕
27: imperative ⊕ actions ⊕ endrule
28: rules = rules ⊕ rule
29:end for

This part of the algorithm visits all elements which are roots in the output model,
i.e., the elements of mo.e. For each one of these elements, a set of MTL elements,
following the MTL actions rule in Line 7, is generated. There is a set because,
from the selected root, all connected elements are visited. This set contains im-
perative actions intended to fill in values in the attributes of generated elements.
Afterwards, a basic rule is composed using the MTL rules in Lines 4 and 5 from
previous section. The emphasized text represents pieces of information stored in
variables. Rules are chained one to the other with⊕ operator to form the final MT.

30: . . .
31:rootRule = GenerateRootRule()
32:rules = rules ⊕ rootRule
33:mt = header ⊕ vars ⊕
34: begin ⊕ rules⊕ end
35:return mt
36:end

The final transformation is constructed using the variables initially extracted
and the rules obtained for each pair of models. The combination of rules to form
the actual transformation follows the MTL grammar rule in Line 1.

3.1 Allocation of Target Elements

The simulation of many-to-many transformation rules implies that the number
of elements may be different from the source model to the target model. In most

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 59

MTLs, the allocation of the target elements must be explicitly managed when
using these kind of transformation rules.

This algorithm manages the allocation of target elements by defining a helper
variable for each element of the target model aggregated from its root (see Line 3
in the algorithm and Line 37 for the related function). Then, the generated rules
add the original target elements to these variables. The function GenerateActions
(see Line 43) takes as input these variables and ”inserts” (see Line 46) the
target elements (i.e. entry.g.name) in them (i.e. entry.id). Finally, this algorithm
creates a last rule (see Line 49) that transforms the source model root into the
target model root, and it adds all the target elements in the target model root
through the correspondent actions in the imperative section of the rule.

37: function GenerateVariables(MMB: metamodel): DefV ariables
38:vars := ∅
39:for each t ∈ MMB.E do
40: vars := vars ⊕ {t ⊕ : List}
41:end for
42:return vars

The function builds a list of variables named exactly as the types mentioned in
the metamodel for valid entities.

43: function GenerateActions(elements :E): Actions
44: actions = ∅
45: for each entry ∈ elements do
46: actions = actions ⊕ insert(⊕ entry.g.name ⊕ entry.id ⊕)

47: end for
48:return actions

For each element, an insert action is produced.

49: function GenerateRootRule (ma is instance of mmi, mb is instance of mmo): Rule

50:rule:= rule begin ⊕ ma.OR ⊕ () to mb.OR ⊕ imperative
51:for each g ∈ mb.OR.G do
52: rule := rule ⊕ assign(mb.OR , g.t)
54:end for
55:rule:= rule ⊕ endrule
56:return rule

3.2 Simulation of the Input Side of Rules by Means of Constraints

Some existing MTLs cannot directly define rules that receive input from sev-
eral non-connected graphs of elements. For this reason, this algorithm simulates
the input side of rules by means of constraints. One of the elements of the in-
put model is selected as the main element, which is the single input element of

60 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

the corresponding rule. Other input elements are included in the rule through
constraints that depends on the main element.

The algorithm for generating these constraints is recursive. The function con-
catenates the constraint resulting from the recursive call with the reference ex-
pression that contains the main element. In this manner, the constraint expres-
sions with the Transformation IDentifiers (TIDs) can be added to the dictionary
as pairs, and then used in the propagation of attributes from source models to
target models. The TIDs are attributes of the input elements that are uniquely
associated with input elements, and they are used for the matching mechanism,
which is described in Section 3.4.

57: function GenerateInputConstraints (e: element): Constraint
58: inCons:=exist(e)
59:for each a ∈ e.A do
60: inCons := inCons ⊕ and attributeConstraint(⊕ a ⊕)
61:end for
62:for each r ∈ e.R do
63: inCons := inCons ⊕ and referenceConstraint(⊕ r ⊕)
64: GenerateInputConstraints(e.r.e2)
65:end for
66:for each g ∈ e.G do
67: inCons := inCons ⊕ and aggregationConstraint(⊕ g ⊕)
68: GenerateInputConstraints(e.g.e2)
69:end for
70:return inCons

The GenerateInputConstraints reproduces the structure of the input model by
means of attributeConstraints, referenceConstraint, and aggregationConstraint.
Recursively, the algorithm traverses all elements interconnected with reference
or aggregation relationships. Infinite recursive loops are avoided by the prop-
erties requested from a model, i.e., there are no loops created by references or
aggregation relationships.

The generation of constraints in the algorithm using the function GenerateIn-
putConstraints is achieved by traversing each main element of the input example
model (see Lines 12-16) as follows:

1. Starting from the main element, a new constraint is created to check the
value of each attribute. In the input model, attributes can have string or
integer literals as values. The algorithm interprets a specific value, as the
need of having that exact value in the input model. If the attribute has empty
values, which can be the empty string and zero or MAXINT1 regarding the
user preferences for integers for instance, it is assumed that the attribute
can have any value; in other words, it is a wildcard. Wildcards are translated
in the corresponding constraint as ‘true’ literals.

1 Maximum value of the integer type.

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 61

2. The function creates another constraint for each reference (or aggregation)
coming out from the main element. This new constraint intends to capture
the dependencies among input elements, so that the generated rule can match
similar structures. This constraint requires knowing the path from the main
element to the current element. A path here would be the set of concrete
references traversed in order to go from the main element to the current ele-
ment. The cardinality of a reference can be one or more than one. Regarding
the selected MTL, the distinction between these two cases with additional
constraints may be necessary. The traversal is recursive, and cycles can be
avoided in different manners regarding the implementation.

This process allows considering different kinds of configurations in the input
model example. In the simplest case, all the elements in the input model can
be reached from one main element. This is the common setting that existing
MTBE proposals consider. However, there are worse cases where there can be
non-connected graphs of concepts. This traversal gets more complicated since
there are several main elements, which are not necessarily linked. In that case,
the procedure previously mentioned is applied for each identified potential main
element (see Lines 12-16) .

3.3 Generation of the Output Side of the Rule

The output side of the rule in most MTLs (see Table 1) can have several mod-
eling elements. Hence, there are no obvious limitations to the complexity of the
output model but explicitly preserving the interconnections among the elements.
The target model is usually structured as a tree in which the root element con-
tains other elements by means of the aggregation relation. There can be other
references among the nodes of the tree. The generation process in the proposed
algorithm (see Line 71) is based on a recursive function that is initially applied
to the root. It creates an output element in the rule for each entity of the output
model example. The following steps forms this generation process.

1. The root element of the output is selected.
2. The elements contained by the root are recursively added before the creation

of the current element, and identified with a particular MTL variable.
3. After that, the current element is created, with its aggregation relations

pointing to the MTL variables of the previously created elements. In this
way, the process preserves the connections among the target elements.

4. For each created entity, its attributes are filled in with either the values
indicated in the output model or information extracted from the input model.

71:function GenerateOutputElement(dictionary, e: element): OutputElements
72:outElems = ∅
73:out = 	
74:for each g ∈ e.G do

outElems = outElems ⊕ GenerateOutputElement(dictionary, e.g.e2)
75:end for

62 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

76:for each a ∈ e.A do
77: for each entry ∈ dictionary do
78: value = replace(a.v, entry.e.n, entry.c)
79: out = out ⊕ assign(⊕ a ⊕ , ⊕ value ⊕)
80: end for
81:end for
82:for each g ∈ e.G do
83: out = out ⊕ assign(⊕ g ⊕ , ⊕ e.g.e2 ⊕)
84:end for
85:outElems = outElems ⊕ , ⊕ out
86:return outElems

3.4 Mapping of Property Values between the Input and Output
Models

The algorithm assumes that attributes in the output model may contain ex-
pressions referring to values found in elements of the input model. In the out-
put model, the designer refers to information from the input model using the
Transformation IDentifiers (TIDs) (see Section 3.2). Given this identifier, all its
related properties can be obtained from the dictionary. During the generation
of the output of the rule, the attributes are set with the correct expression ob-
tained from the corresponding input model element. This expression is usually
the path of the corresponding element from the main element of the input side
of the rule. The constraint construction follows rules [8].

87: procedure UpdateDictionary (var dictionary, e, c)
88:where e: element;
89: c: constraint expression of the element from main element
90:dictionary = dictionary

⋃
{< e, c >}

91:for each r ∈ {e.R ∪ e.G} do
92: newConstraint = c ⊕ → ⊕ r.n
93: UpdateDictionary(dictionary, e.r.e2 , newConstraint)
94:end for

The MTBE algorithm works for this issue as follows. Firstly, during the gener-
ation of the input side of the rule (see Line 7), pairs of TIDs and the necessary
constraint expression to access it are inserted in the dictionary with the pro-
cedure UpdateDictionary (see Line 87). If possible, the constraint expression
references the corresponding element using as origin the main element. Oth-
erwise, the constraint expression uses the type of the element and the values
of its attributes. Secondly, in the generation of the output, the TIDs are re-
placed with the constraint expressions associated to the corresponding TIDs.
This way, if an attribute contains the name of a known TID, it is replaced with
a correct constraint expression indicating how to get the information from the
input model.

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 63

4 Evaluation

For experimentation, this algorithm with a graphical user interface has been
implemented with the Java programming language for generating rules defined
with ATL [7]. This tool, called MTGenerator, with its source code can be down-
loaded from Grasia web [6]. Some MTs generated by this tool have been applied
to software developments, and some of these MTs are either described in other
publications or available in our web site, as Table 2 presents. In this table, N:1
and N:N denote one-to-many and many-to-many rules respectively.

Table 2. MTs generated by the MTGenerator tool

Kinds of Other MTBE Requires Published in
rules tool can further manual or

generate adjustment available from
UseCase2Agent N:N No No [4,5]

InitialTaskWorkflow 1:N Yes Yes [4]
NonInitialTaskWorkflow N:N No No [4]
Task2CodeComponent 1:N Yes No [4]

InteractionUnit N:N No No [4]
Agent2Deployment 1:N Yes No [4]
Deployment2Testing 1:N Yes No [4]
RefactoringADELFE N:N No Yes [5]
UseCase2Interaction N:N No No Grasia web [6]
InteractionDefinition2 N:N No No Grasia web [6]
2InteractionProtocol

AddSkill N:N No No Grasia web [6]

Considering the eleven MTs of Table 2, seven of these MTs cannot be gener-
ated by other existing MTBE tools [17, 15] because the other tools cannot gen-
erate many-to-many rules. For instance, the generation of these kinds of rules
becomes crucial in agent-oriented software engineering, in which designers are
not used to model transformation languages and many-to-many transformation
rules are necessary as proven in our previous work [4, 5].

Furthermore, nine out of the eleven MTs (see Table 2) did not require any
manual adjustment after the generation. However, two MTs required manual
adjustment because it was necessary to add an additional constraint; for instance,
the constraint that was added to the InitialTaskWorkflow MT is described in [4].
For preventing this manual adjustment, in the future the algorithm can consider
negative examples [15], which prevent the execution of a rule in case the input
matches with a negative example. The algorithm can incorporate the generation
of negative constraints to incorporate the negative examples. A negative example
for the InitialTaskWorkflow MT is proposed in [4].

Finally, for illustrating the application of the presented algorithm and tool,
an example of a the input part of a rule generated by the MTGenerator tool
follows. In this piece of ATL code, several input elements are considered by
adding constraints related to the main element.

64 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

cin:MMA!UInitiates(
cin.iniSource.multiplicity=1 and
cin.iniSource.itRole.id=’R1’ and
cin.iniTarget->select(t|

t.multiplicity=2 and
t.isInteractionUnit.id=’IUA’).notEmpty())

A piece of the ATL code of the rule generated by the MTGenerator tool follows.
Some elements are produced by the rule and they are connected among them. In
addition, the multiplicity value of the first element is taken from the input part of
the rule.

outa1:MMB!InteractionSource(
multiplicity<-cin.iniSource.multiplicity,
isInteractionUnit<-oute1),

...
outr1:MMB!UColaborates(

label<-”,
colSource<-outa1,
colTarget<-outa2),

A piece of ATL code of the imperative part of the rule generated by the MT-
Generator tool follows. In this piece of code, an element created in the output
part of the rule is inserted in auxiliary variables, and then these elements will
be allocated in the output model.

thisModule.newRelations
<-thisModule.newRelations.append(outr1);

5 Related Work

The key works in MTBE are those of Wimmer et al. [17] and Varro and Balogh
[13,15], who presented at almost the same time implementations of this approach.
This section discusses the differences between these works and the algorithm intro-
duced in thispaper.Table3 summarizes themostrelevant featuresof eachapproach.

Wimmer et al. [17] presents the generation of Model Transformations By Ex-
ample and named it as MTBE. They present MTBE as the automated generation
of transformations from examples of the input and output models. This avoids
the user knowing neither the transformation language, the metamodels, nor even
the abstract syntax of the modeling languages. The work is illustrated with the
ATL language.

The work of Varro and Balogh [13,15] uses inductive logic programming to de-
rive the transformation rules with a MTBE approach. An innovation of that work
is the learning of negative constraints from negative examples. This work also
introduces the connective analysis to consider the references among modeling
elements. However, this analysis is restricted to the rule outputs. The networks
of modeling elements in rule inputs are not considered.

MTBE: An Algorithm for Generating Many-to-Many Transformation Rules 65

Table 3. Comparison of the features of existing MTBE approaches

Features of MTBE Varro and
Balogh

Wimmer
et al

Our Tech-
nique

Mapping of attributes yes yes yes
Propagation of links yes yes yes
Negative Examples yes no no
Generation of Constraints no yes yes
Explicit Allocation of Target Elements yes no yes
Limit number of input elements of rules 1 1 no-limit
Limit number of output elements of rules 1 1 no-limit

In both cases, the main difference with the work in this paper is the generation
of many-to-many rules. Wimmer et al. only generates ATL rules that transform
one element into another . Varro and Balogh’s also generate rules for only one
input element, although the output of a transformation can be a graph by means
of the connective analysis. On the contrary, our approach is able to generate
many-to-many rules by means of OCL constraints within the input side of the
rules. This allows one to transform networks of modeling elements into other
networks, and to match information from groups of input elements into groups
of output elements.

6 Conclusions and Future Work

This paper presents an algorithm for the generation of transformations with a
MTBE approach and its implementation for ATL. The main contribution of the
algorithm is the processing of rules with multiple graphs of elements as input
using embedded mappings. The tool implementing this algorithm is publicly
available from Grasia web [6].

As a future line of research, the algorithm can consider negative examples,
which can be added to the pairs of examples. Then, each rule can ge generated
from a positive source example, several negative source examples and a target
example. The negative examples will be translated into negative constraints in
the rule. In this manner, more complex model transformations can be defined
without manual adjustment.

Acknowledgements. This work is supported by the project Agent-based Mod-
eling and Simulation of Complex Social Systems (SiCoSSys), funded by Spanish
Council for Science and Innovation, with grant TIN2008-06464-C03-01.

References

1. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL-eclipse support for model
transformation. In: Proceedings of the Eclipse Technology eXchange workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France (2006)

66 I. Garćıa-Magariño, J.J. Gómez-Sanz, and R. Fuentes-Fernández

2. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modelling
Framework: Developer’s Guide. Addison Wesley, Reading (2003)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

4. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández., R.: INGENIAS Devel-
opment Assisted with Model Transformation By-Example: A Practical Case. In:
7th International Conference on Practical Applications of Agents and Multi-Agent
Systems, PAAMS 2009 (2009) (papers section), http://grasia.fdi.ucm.es

5. Garćıa-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes,
M.-P., Gómez-Sanz, J.J.: A Tool for Generating Model Transformations By-
Example in Multi-Agent Systems. In: 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems, PAAMS 2009 (2009) (papers
section), http://grasia.fdi.ucm.es

6. Grasia web: http://grasia.fdi.ucm.es (in Software → MTGenerator section)
7. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
8. Krishnamurthi, S., Gray, K.E., Graunke, P.T.: Transformation-by-Example for

XML. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, p.
249. Springer, Heidelberg (2000)

9. Lawley, M., Steel, J.: Practical Declarative Model Transformation with Tefkat.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer,
Heidelberg (2006)

10. OMG. Meta Object Facility(MOF) 2.0 Query/View/Transformation Specification.
Final Adopted Specification. Object Management Group (05-11-01) (November
2005)

11. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

12. Siikarla, M., Laitkorpi, M., Selonen, P., Systä, T.: Transformations Have to be
Developed ReST Assured. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 1–15. Springer, Heidelberg (2008)

13. Varro, D.: Model transformation by example. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

14. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming 68(3), 187–207 (2007)

15. Varró, D., Balogh, Z.: Automating model transformation by example using induc-
tive logic programming. In: Proceedings of the 2007 ACM symposium on Applied
computing, pp. 978–984 (2007)

16. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Getting Your Mod-
els Ready for MDA. Addison-Wesley Professional, Reading (2003)

17. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transforma-
tion By-Example. In: Proceedings of the 40th Annual Hawaii International Con-
ference on System Sciences, vol. 40(10), p. 4770 (2007)

http://grasia.fdi.ucm.es
http://grasia.fdi.ucm.es
http://grasia.fdi.ucm.es

A Collection Operator for Graph Transformation

Roy Grønmo1,2, Stein Krogdahl1, and Birger Møller-Pedersen1

1 Department of Informatics, University of Oslo, Norway
2 SINTEF Information and Communication Technology, Oslo, Norway

{roygr,birger,steinkr}@ifi.uio.no

Abstract. Graph transformation has a well-established theory and as-
sociated tools that can be used to perform model transformations. How-
ever, the lack of a construct to match and transform collections of similar
subgraphs makes graph transformation complex or even impractical to
use in a number of transformation cases. This is addressed in this paper,
by defining a collection operator which is powerful, yet fairly simple to
model and understand. We present model transformation examples from
different modeling domains to illustrate the benefit of the approach.

1 Introduction

Graph transformations have been proposed by several authors as a means to
perform model transformations [4,7]. The graphical way to define graph trans-
formations, the available tool support [10,23,25], and the well-established theory
including termination and confluence analysis [16,21] makes graph transforma-
tion appealing.

The graph concept is based on nodes and directed edges from which we can
define models. Many model transformations can then be defined by a set of graph
transformation rules, where each rule consists of a left hand side (LHS) graph,
a right hand side (RHS) graph, and an interface (I) graph. The elements in the
interface graph are to be preserved, the elements in LHS \ I are to be deleted,
and the elements in RHS \ I are to be added.

The minimalistic nature of graph transformation is probably a key factor to its
success, since it makes it easier to implement tools and to establish theory on its
concepts. For the graph transformation designer, on the other hand, the lack of
higher level constructs reduces the usability of graph transformation. This is why
some authors have proposed to raise the level of abstraction by introducing new
and powerful graph transformation mechanisms, e.g. the star operator [17] and
recursion [12]. Our experience on a number of graph transformation examples
reveals an often occurring need to match collections of similar subgraphs, which
is addressed by our collection operator. The collection operator allows us to
express a fairly powerful model transformation using a single rule.

Fujaba [10] and PROGRES [23] have support for matching collections of single
nodes only. In many cases this is too restrictive and a lot of recent approaches
[1,5,9,14,18,22] address this by allowing to match collections of subgraphs. Our
collection operator aims to be concise and easy to use for the rule designer,

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 67–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

68 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

and at the same time expressive enough for many typical model transformation
scenarios.

The paper is structured as follows. Section 2 provides the formal foundation of
graph transformation; Section 3 presents the collection operator; Section 4 shows
how complicated it is to simulate a rule with collection operators by multiple
collection free rules in the AGG graph transformation tool; Section 5 shows
three example rules with collection operators; Section 6 covers related work; and
Section 7 concludes.

2 Graph Transformation

Below we provide the known formal foundation of graph transformation [15].

Definition 1 (Graph and graph morphism). A graph G = (GN , GE , src,
trg) consists of a set GN of nodes, a set GE of edges, two mappings src, trg :
GE → GN , assigning to each edge e ∈ GE a source node src(e) ∈ GN and
target node trg(e) ∈ GN . A graph morphism f : G1 → G2 from one graph to
another, with Gi = (GE,i, GN,i, srci, trgi), (i = 1, 2), is a pair f = (fE : GE,1 →
GE,2, fN : GN,1 → GN,2) of mappings, such that fN ◦ src1 = src2 ◦ fE and
fN ◦ trg1 = trg2 ◦ fE (preserve source and target).

A graph morphism f : G1 → G2 is injective if fN and fE are injective map-
pings. Only injective graph morphisms will be relevant in this paper.

Definition 2 (Rule). A graph transformation rule p : L
l← I

r→ R consists
of three graphs L(LHS), I(Interface) and R(RHS) and a pair of injective graph
morphisms l : I → L and r : I → R.

Definition 3 (Match). Given a rule p : L
l← I

r→ R and a graph G. Then
an occurrence of L in G, i.e. an injective graph morphism m : L → G, is called
match. The function isMatch : L, G, (L → G) → Bool returns true if and only
if L → G is a match from L to G. A match m for rule p satisfies the dangling
condition if no node in m(L \ l(I)) is incident to an edge in G \ m(L \ l(I)).

Definition 4 (Derivation Step). Given a graph G, a graph transformation
rule p : L

l← I
r→ R, and a match m : L → G, then there exists a derivation

step from the graph G to the graph H if and only if the dangling condition is
satisfied. H is constructed as follows:

1. Remove the image of the non-interface elements of L in G, i.e. H ′ = G \
m(L \ l(I)).

2. Add the non-interface elements of R into H, i.e. H = H ′ ∪ (R \ r(I)).

A negative application condition [15] is an extension of the LHS which prevents
matches from being applied in a derivation step.

Definition 5 (Negative application condition (NAC)). A NAC for a graph
transformation rule L

l← I
r→ R, is defined by a pair of injective graph morphisms:

A Collection Operator for Graph Transformation 69

L
s← NI

t→ N , where N is the negative graph, and NI defines the interface graph
between L and N . A match m : L → G satisfies the NAC if and only if there does
not exist an injective graph morphism n : N → G which preserves the NI interface
mappings, i.e. for all nodes v in NI we have nN(tN (v)) = mN (sN (v)) and for
all edges e in NI we have nE(tE(v)) = mE(sE(e)). A rule can have an arbitrary
number of NACs, and a derivation step can only be applied if a match satisfies all
the NACs of the matched rule.

In addition to the above, we adopt the theory of typed attributed graphs [13],
where graphs are extended by assigning types to nodes and edges, and by as-
signing a set of named attributes to each node type. A graph morphism must
now also preserve the node and edge types, and the attribute values.

In the graph transformation rules throughout this paper we only explicitly
display the LHS and the RHS graphs, while the interface graph is given by shared
identifiers of elements in the LHS and the RHS. Such identifiers are displayed
next to its element.

2.1 Concrete and Abstract Syntaxes

Typed attributed graphs are rich enough to represent most of todays modeling
languages in a natural way. These graphs use a generic graphical layout, called
abstract syntax, where nodes are visualized as rectangles containing the type
name and a list of attribute values, and edges are visualized as directed arrows
with the type name. The concrete syntax of a modeling language uses a tailored
visualization with icons and rendering rules depending on the element types.
To improve the usability for the graph transformation designer, we define the
transformation rules upon concrete syntax. The transformation designer can
think entirely in the concrete syntax, while the matching and derivation steps
are still carried out in the abstract syntax.

In a natural translation of UML activity models [19] to typed attributed
graphs, an activity in the concrete syntax corresponds to a node of type Activity
in the abstract syntax. A control flow in the concrete syntax corresponds to a
node of type CFlow and two edges of types src and trg. The figure below shows
an activity model concrete syntax on the left and the corresponding abstract
syntax on the right.

SC TC

SA TA

rC

rA

models: concrete syntax

graphs: abstract syntax
S=source,
T=target, r = rule

conceptual transformation
actual transformation

Activity CFflow Activitysrc trgconcrete syntax corresponding
abstract syntax

translations

Our examples use the concrete syntax, while the formalization is defined on the
abstract syntax. We assume that the translation from concrete to abstract syntax
(c2a), and the opposite direction (a2c), is already defined for the relevant mod-
eling languages. Then we can link concrete syntax-based graph transformation
to abstract (and traditional) syntax-based graph transformation in a systematic

70 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

way: 1) translate the concrete syntaxes of source model and rules (consisting of
L, I, R, NI, and N models) into abstract syntax graphs by c2a, 2) apply the ab-
stract syntax graph transformation rules on the source graph, and 3) translate the
resulting abstract syntax graph to a concrete model by a2c.

Linking concrete syntax-based graph transformation to the traditional graph
transformation has been successfully applied in our previous work [11] and by
other authors [3,26]. With a large number of modeling languages, including those
illustrated in this paper, the same translation (c2a) is reasonable to use for both
the rules and the source model. When the same translation is used for both
the rules and the source model, the principles of graph transformation can be
directly applied at the concrete syntax level, and the transformation designer
does not have to care about the underlying translations to graphs at the lower
abstraction level.

3 The Collection Operator

We propose a collection operator that can be used in a graph transformation
rule to match and transform a set of similar subgraphs in one step. Figure 1
illustrates the collection operator in a workflow refactoring example [6,11]. The
source model (labeled 1) is an activity model with two consecutive decision nodes
(displayed as diamond symbols), and two inner paths leading to the activities
named doA and doB. The refactored model (labeled 2) shows that the two decision
nodes can be combined into one.

Since there can be an arbitrary number of inner paths, plain graph transforma-
tion as defined above cannot express the removal of a redundant decision node with

[?guard1] [?guard2]
1..*

[?guard1 ” and ” ?guard2]

1..*

[x] doA

doB

[a]

[b]

doA

doB

[x and a]

[x and b]

id=1

id=1

id=2

id=2

id=3

id=3

LHS

RHS

1

2

Fig. 1. Activity model refactoring: Removing redundant decision node

A

B

A

B

A

B

A

B
...

A

B

A A... A

B

A

B

A

B
...

a) b) c)
LHS matches

a) b) c)

Fig. 2. Semantics of the collection operator

A Collection Operator for Graph Transformation 71

a single rule. In the right part of Figure 1 a single rule with the collection opera-
tor (dashed line frame) is sufficient to do the refactoring. The collection operator
matches an arbitrary number of subgraphs, which all have an inner path leading to
a single activity node between the inner decision and merge nodes. The outer guard
(?guard1) is combined with each inner guard (?guard2) by using and operators.
Notice that a matched subgraph at the abstract syntax level contains three nodes
(one node of type Activity and two nodes of type CFlow) and associated edges.

The size of the collection match must be greater or equal to the lower bound
cardinality (1 in the example) in order to apply a rule. A collection match size is
non-deterministically increased until we reach the upper bound (no limit in the
example) or there are no more possible subgraph matches. The parts outside of
the collection operator must occur only once in a rule match.

Identifiers (e.g. id=1) are associated to the main elements such as activities,
control nodes and control flow. Attribute variables (e.g. ?guard2) are associated
with the values of attributes such as activity name and guard. An identifier/
variable inside a collection represents a set of identifiers/variables.

In Figure 2 we use a simple concrete syntax of named circles connected by ar-
rows to show the relationship between the collection operator in the LHS and pos-
sible matches. In case a) only the arrow is inside the collection while the source
and target circles are outside the collection. This means that possible matches
have a set of arrows between the same two circles. In case b) the circle named A is
also inside the collection which means that a match contains a set of distinct A
circles with arrows leading to the same target circle named B. In case c) both the
circles are inside the collection which means that a match contains a set of distinct
circles each having their own arrow.

A NAC and the RHS can only use collection operators that are introduced
in the LHS. The RHS indicates the changes to each subgraph match in the
collection, and the cardinality of the same collection operator must be the same
in the LHS and the RHS/NACs. The actual matching collection size of the LHS
leads to the same collection instantiation size within the RHS/NACs. If the
collection operator is absent in the RHS, then it implies a deletion of all the
matched collection subgraphs.

A collection operator has an identifier which is visualized next to the collec-
tion frame. No collection identifier visualization is needed in cases where the
collection operator is uniquely identified by its cardinality, or when the rule has
only one collection operator (e.g. Figure 1). To avoid complexity we disallow col-
lection operators to be overlapping or nested in the abstract syntax, which also
implies that two collection operators cannot be adjacent in the concrete syntax.
Otherwise the two collection operators would include at least one common edge
in the abstract syntax. This fact becomes clearer in the following subsection.

3.1 Mapping Collection Operator from Concrete to Abstract
Syntax

In the translation from concrete syntax rules to abstract syntax rules, we must
determine which abstract syntax elements belong to the collection. This is

72 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

illustrated in the figure below with a collection operator in concrete syntax to
the left, and corresponding abstract syntax to the right:

Activity CFflow Activitysrc trg

If an element is inside a collection in the concrete syntax, then a corresponding
node goes inside the collection in the abstract syntax (e.g. leftmost Activity
node and CFlow node). An edge connecting two nodes that are both inside a
collection, belongs to the collection (e.g. src edge).

An edge in the abstract syntax connecting a collection node to a non-collection
node must also be included in the collection (e.g. trg edge). This is because all
edges shall have exactly one source and one target node (note: source and target
should not be confused with the example edges of type src and trg). Other-
wise, with a non-collection edge incident to a collection node, the only possible
collection cardinality is 1..1, which implies that the collection is redundant.

3.2 Collection Operator Formalized

A collection operator can be represented in graphs as a node of type coll, with
min and max as cardinality attributes, and with a set of edges targeting all the
collection subgraph nodes. The set of all collection operators in a rule p is referred
to as Collp. We use ψ to denote a function that maps each collection operator
in a rule p, to a number within its cardinality range, i.e. ψ : Collp → (N =
{0, 1, 2, . . .}), where ∀c ∈ Collp : ψ(c) ∈ [c.min, c.max].

For a rule p : L
l← I

r→ R with at least one collection operator, we let
pψ : Lψ l← Iψ r→ Rψ denote the collection free rule where all collection oper-
ators in p are replaced by the ψ mapped number of collection content copies.
In these copies all the copied elements/attributes get fresh identifiers/variables
respectively, while the interface elements between the LHS and the RHS are
maintained. Similarly, Lψ s← NIψ t→ Nψ denotes a collection free NAC.

Figure 3 shows pψ, where c1 is the collection operator in the transformation
rule p representing the redundant decision node example from Figure 1, and
ψ(c1) = 2.

[?guard1] [?guard2-a]

[?guard1 ” and ” ?guard2-a]

id=1

id=1

id=2.1

id=2.1

id=3

id=3

LHS

RHS

c1) = 2

[?guard2-b]

id=2.2

[?guard1 ” and ” ?guard2-b]

id=2.1

p

Fig. 3. The rule for activity model refactoring with 2 as the collection size

A Collection Operator for Graph Transformation 73

Definition 6 (Extensions). Given a rule p : L
l← I

r→ R with at least one
collection and a graph G. A collection cardinality mapping ψ+ extends the car-
dinality mapping ψ (denoted ψ+ p ψ) if and only if there is at least one greater
collection cardinality and none of the collection cardinalities are smaller:

ψ+ p ψ
def=

∃c ∈ Collp : ψ+(c) > ψ(c) ∧ ∀c ∈ Collp : ψ+(c) ≥ ψ(c)

A rule pψ+
extends the rule pψ (denoted pψ+ ⊃ pψ) if and only if the following

holds: ψ+ p ψ and the three graphs Lψ+
, Iψ+

, and Rψ+
contains respectively

Lψ, Iψ, and Rψ as subgraphs.
An injective morphism mψ+

: Lψ+ → G extends the injective morphism mψ :
Lψ → G (denoted mψ+ ⊃ mψ) if and only if pψ+ ⊃ pψ and mψ+

(Lψ) = mψ(Lψ).

Definition 7 (Match for a rule with collections (cMatch)). Given a rule
p : L

l← I
r→ R with at least one collection, a graph G, and a collection cardinality

mapping ψ. An injective morphism mψ : Lψ → G is a cMatch of rule p in G if
and only if mψ is a non-extendable injective morphism in G. Formally,

isCMatch(L, G, ψ, mψ, Lψ) def=
isMatch(Lψ, G, mψ) ∧

�mψ+ ∈ (Lψ+ → G) : (mψ+ ⊃ mψ) ∧ isMatch(Lψ+
, G, mψ+

)

When we have a cMatch mψ : Lψ → G for a rule p with collections, then mψ

is also a match in the collection free rule pψ : Lψ l← Iψ r→ Rψ where Def. 4
for derivation steps is still valid. We also get collection free NAC definitions as
Lψ s← NIψ t→ Nψ, where Def. 5 applies.

3.3 Inherent Tool Support for Rules with Collection Operators

This section describes how we can provide tool support for rules with collection
operators. The minimal configuration of ψ for which we can find a cMatch for a
rule p with collection operators, is when ∀c ∈ Collp : ψ(c) = c.min. We refer to
this minimal configuration of ψ as ψ−. Given a rule p with collection operators
and a graph G, the following steps can be used to find a cMatch in p and try to
apply a derivation step for that cMatch:

1. Look for an injective morphism mψ−
: Lψ− → G in the collection free rule

pψ−
.

2. Extend (if possible) the injective morphism mψ−
until it is a non-extendable

injective morphism mψ : Lψ → G, i.e. a cMatch for p. The extension process
can be achieved by iterating over each collection operator c ∈ Collp and
increasing ψ(c) as much as possible. ψ(c) can only be increased by 1, if the
injective morphism can be extended with an additional subgraph match of
the collection content in c.

74 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

3. Apply a derivation step with the collection free rule pψ and the match mψ

if mψ satisfies all the NACs and the dangling condition.

We use a transformation task of state machine refactoring [24] to illustrate the
proposed matching process above. The refactoring applies to cases where all the
inner states of a composite state have outgoing transitions to the same state,
and all these outgoing transitions share the same trigger and effect, while the
guards must all be undefined or equivalent. In such cases we can replace all
these outgoing transitions by a single transition from the composite state to the
external state.

The top left part of Figure 4 shows an example state machine modeling the
behavior of a smartphone (based on [4]). The state called Idle represents a
waiting state of a smartphone. The signal phoneMode triggers a composite state
named Active in which we can make phone calls. All the inner states have a
trigger with the same outgoing trigger hangUp targeting the outer Idle state.

DialTone

Active

Idle

Connecting

Talking Ringing

phoneMode
/ getDialTone

dialedNumber
/ connect

connected
/ getRingTone

calleeAnswer
/ enableSpeech

hangUp

hangUp

hangUp

hangUp

m -

Active

Idle

Connecting

hangUp

m

DialTone

Active

Idle

Connecting

Talking Ringing

hangUphangUp

hangUp

hangUp

DialTone

Active

Idle

Connecting

Talking Ringing

phoneMode
/ getDialTone

dialedNumber
/ connect

connected
/ getRingTone

calleeAnswer
/ enableSpeech

hangUp

p

The injective morphism m -

is extended three times
until we reach a cMatch

?trigger [#null] / ?effect

id=1

id=2
id=3

?trigger [#null] / ?effect

id=1
id=2

id=3

1..* 1..*
id=1

id=2

RHSLHS NACp

id=c1 id=c1 1..*
id=c1

-(c1)=1 (c1)=4

Fig. 4. State machine refactoring: phone example (top), transformation rule (middle),
matching process (bottom)

A Collection Operator for Graph Transformation 75

The middle part of Figure 4 shows a transformation rule, named p, that
defines the refactoring. The rule uses a collection operator with the id c1, where
a transition is inside the collection and its three attributes are outside of the
collection. Recall that the parts outside of the collections occur once, and must
therefore have the same value for all the transitions. When the variables or values
must be shared by collection nodes, we call them shared variables (e.g. ?trigger
and ?effect) or shared values (e.g. #null). We have introduced a keyword #null
to indicate that all the guard values shall be undefined (the same interpretation
as a true value).

We have included a NAC to ensure that all the substates within the compos-
ite state have the requested transitions to the external state. The matching is
injective, which means that the NAC prohibits the existence of other substates
than those already matched by the LHS and repeated with id=1 in the NAC.
The new transition in the RHS gets the same trigger and effect values as those
shared by all the replaced transitions, and it gets an undefined guard value.

The bottom part of Figure 4 illustrates how the matching algorithm works.
First we non-deterministically find a match mψ−

of the rule mψ−
, which is an

injective morphism for the rule p (shown in the bottom left part). The injective
morphism mψ−

is extended by three subgraph matches of the collection content
until we reach the cMatch mψ . The top right part of the Figure 4 shows the
refactored model after applying the match mψ and the rule pψ on the source
model.

4 Simulating a Collection Rule by a Transactional
Sequence of Collection Free Rules

As an alternative to implementing the new matching algorithm from Section 3.3,
this section shows how a rule with collection operators can be simulated in an
existing graph transformation tool such as AGG [25]. Since the collection oper-
ator is not available, we use a transactional sequence of multiple collection free
rules to simulate the intended effects of a single rule with collection operators.
An early prototype of the approach was described in [11]. We only consider NAC
free rules in this section.

The complicated apparatus and the set of less intuitive collection free rules
show the large benefits for the transformation designer to have direct support
for the collection operator. The alternative is to manually define and ensure a
correct execution strategy of collection free rules, which is time consuming and
error prone.

A rule r with collection operators can be represented by zero or one Init rule,
one or more Iter rules and zero or one Final rule. These rules are ordered and
executed as a transaction.

Init rule. The rule shall be applied only once as the first rule in the transaction.
This rule has LHS = Lψ−

, which ensures that there is a match of the original rule
r. The RHS copies the LHS and adds all (if any) of the to-be-added non-collection

76 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

elements. It must be the first applied rule, since the other rules may connect
to the added elements from this rule. Iter rules. Each collection operator is
mapped to an Iter rule. The Iter rule shall be applied to each subgraph match
of a collection. Final rule. The Final rule deletes all non-collection elements.

The transformation of a rule r with collection operators is defined by the
pseudocode of algorithm 1. The numCollections method returns the number of
collection operators. The remColls method removes all collection operators in-
cluding their content. The collContent(i) method retrieves the content inside
collection operator number i. Iteri is the rule for collection i. Rule Iteri only
applies the changes relevant to collection i. By not changing any other parts, all
the individual matches within collection i as well as the other collections get an
equal chance to be matched.

Algorithm 1. ToCollFree(r : CollRule)

nonCollAdd = r.R.remColls \ r.I.remColls

Init = new Rule; Init.L = r.Lψ−
; Init.R = Init.L ∪ nonCollAdd

for i ← 1 to r.numCollections

do

⎧⎨
⎩

Iteri = new Rule
Iteri.L = r.L.remColls ∪ nonCollAdd ∪ r.L.collContent(i)
Iteri.R = r.L.remColls ∪ nonCollAdd ∪ r.R.collContent(i)

if (r.L.remColls \ r.I.remColls) <> ∅

then
{

Final = new Rule; Final.L = r.L.remColls
F inal.R = r.R.remColls \ nonCollAdd

Figure 1 showed an example of a rule with collection operators. By following
algorithm 1 we get a set of rules, {Init , Iter ,Final}, as shown in Figure 5. The
Final rule is produced since there are non-collection elements to-be-deleted. The
Iter rule replaces a path of control flows going to the innermost decision and
merge nodes, with a new path of control flows only going to the outermost
decision and merge nodes with a combined guard. The Iter rule replaces one
path each time the rule is applied. The Final rule is applied when the Iter rule
is no longer applicable.

We need to ensure that all the rules in a single transaction involve the same
context regarding the non-collection elements, which we achieve by introducing
an additional id attribute for all the elements. All the non-collection elements
in the Iter and Final rules gets id values corresponding to the elements matched
by the Init rule.

Conceptually, the collection rule LHS builds an entire match, and then applies
the effect defined by the RHS. When simulating such a behavior with multiple
rules in AGG, we need to be careful about possible dependencies and interactions
between the Iter rules. One Iter rule may for instance add elements leading to
yet another individual matching of another Iter rule, which is incorrect behavior.
To avoid this problem we extend all the model elements by a boolean helper
attribute named exclude. All exclude attributes are set to false at the start

A Collection Operator for Graph Transformation 77

[?guard1] [?guard2]

[?guard1 ” and ” ?guard2]

id=1

id=3 id=5
LHS

RHS

Iter

Final [?guard1]

id=1 id=1

id=3 id=3LHS RHS

id=2 id=4

[?guard1]
id=1

id=3 id=5
id=2 id=4

[?guard1] [?guard2]
id=1

id=5 id=8LHSInit id=3 id=7

id=2 id=4 id=6 id=7

RHS=LHS

Fig. 5. Activity model refactoring (collection free)

of the transaction, while all the collection content exclude attributes are set to
true in the RHS of the Iter rules. Furthermore, the LHS of the Iter rules are
extended so that they only match elements with the exclude attribute set to
false. By doing so, the Iter rules can be applied in an arbitrary order.

In other tools with more control flow and transaction support like in Fu-
jaba [10] and PROGRES [23], it may be simpler than with AGG to simulate
a collection rule by collection free rules. Still, the introduction of a collection
operator will greatly reduce the effort needed by the transformation designer
when designing rules.

5 Examples

In this section we show three examples where the collection operator is helpful.

Fire transition in petri nets. A petri net model consists of places, transitions
and directed arrows. The directed arrows goes from a place to a transition or
from a transition to a place. A transition T1 has a preset of places which is the
places that have a directed edge to T1, and T1 has a postset of places which is
the places that have a directed edge from T1. At any moment a number of tokens
are assigned to each place, and each token is assigned to exactly one place.

In our concrete syntax, the tokens are drawn as small, filled circles, places
are drawn as larger, unfilled circles, and transitions are drawn as rectangles. An
example is shown at the top left of Figure 6 with label 1, where we have a single
transition consisting of two places in the preset and three places in the postset.
The places in the preset have one and two tokens respectively. The places in the
postset have zero, zero and one token respectively.

A transition is enabled when all the places in the preset of a transition have
at least one token. The transition, within the model labeled 1 in Figure 6, is thus
enabled and we can fire a transition. When firing a transition we shall remove

78 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

fireTransition

id=1
id=3

* id=c1 id=c2*

id=1

id=2

id=3

id=c1 id=c2

id=1

id=2
id=c1

id=2 RHSLHS NAC
FireTransition

token
place

transition1 2

Fig. 6. Top: The effects of firing a transition on a petri net model, bottom: fire transition
rule

one token from each place in the preset and add one token to each place in the
postset. The resulting model after firing the transition is shown with label 2.

With two collection operators (identified as c1 and c2) we can define the firing
of a transition by a single rule. Collection c1 expresses that we remove one token
from each place in the preset, while collection c2 expresses that we add one token
to each place in the postset. The NAC ensures that there are no preset places
without a token.

Activity model refactoring: add fork. UML activity models allow an activ-
ity to have multiple outgoing control flows, which are interpreted as an implicit
fork. It is normally encouraged to use an explicit fork node instead, which we can
automatically introduce by the leftmost rule in Figure 7. We assume that the rule
editor is more flexible than typical activity model editors, by allowing a control
flow without a target. The missing target allows any kind of target node type in
the model match. If a target node is required in the editor, then we can use an ab-
stract supertype from the UML metamodel representing the possible target nodes.
This type will be displayed with the abstract syntax as the target node in the rule.
The lower cardinality of the collection operator is 2, so that the fork node is only
introduced when there is more than one outgoing control flow.

?F

?Mand ?Opt

1..* ?F

+ +?Mand

O O?Opt
1..*

id=1 id=2

1..* id=2

id=11..*

RHSLHS
MandatoryAndOptional

LHS RHS

2..*
2..*

Add Fork

id=1 id=1

id=2
id=2

Fig. 7. Left : Activity model refactoring, Right : From feature models to BPMN

A Collection Operator for Graph Transformation 79

From feature models to BPMN. This example, given by the rightmost rule
in Figure 7, shows a need for two collection operators in the same rule. The
rule MandatoryAndOptional is one of many rules we have defined to transform
from feature models [2] to Business Process Modeling Notation (BPMN) [20]
(BPMN models are very close to UML 2 activity models). For this example
transformation, the sibling features are assumed to represent independent tasks.
The rule is simplified compared to the complete rule that works recursively when
the child features themselves also are parent features.

Features are mapped to BPMN activities. Activities of child features are
placed inside independent control flow branches of an activity. We use two col-
lection operators, one for optional tasks and the other for mandatory tasks.

A parent feature with the arbitrary name ?F is mapped to an activity node with
the same name. We get an internal fork-join branch (fork and join are displayed
with a diamond symbol with a plus sign inside) to represent all the mandatory
tasks, and an internal inclusive decision-merge branch (decision and merge
are displayed with a diamond symbol with a circle inside) to represent all the op-
tional tasks.

6 Related Work

In this section we describe related approaches, and these can be distinguished
as two groups: 1) collection matching and transformation that is restricted to
single nodes only, and 2) collection matching and transformation of subgraphs.

Fujaba [10] and PROGRES [23] have support for matching collections of single
nodes only (set nodes in PROGRES, multi objects in Fujaba), which is a limited
expressiveness compared to the collection operator that allows for collections of
a fixed but arbitrarily large subgraph. Furthermore, the single node approaches
are only defined for abstract syntax. To determine if single node collections are
expressive enough for a particular transformation task may depend on the choice
of abstract syntax representation of the involved source and target languages.

As an example, we now consider if we can use single node collections to express
a rule for firing of petri nets (Figure 6). If the abstract syntax of petri net graph
representation uses two different node types to represent tokens and places, then
a rule to perform transition firing with single node collections will fail. This is
because all tokens of the places in the transition preset will be consumed, and not
only one token per place as required. This problem can be avoided by choosing
a different abstract syntax where a place has an integer attribute to keep track
of the number of tokens instead of having a separate node type for a token.
In general it is undesirable to adjust the abstract syntax due to limitations in
the rule language. By using E-graphs [8] where edges can have attributes we
can get away with using single node collections for some of the paper examples,
depending on the choice of abstract syntax.

The remaining approaches in this section are all capable of handling sub-
graph collection matching and transformation. A group operator, introduced by
Balasubramanian et al. [1] and implemented in the GREaT tool, enables arbi-

80 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

trarily large subgraph matches that can be copied, moved or deleted. However,
the subgraph matches can not be modified as with the collection operator.

Amalgamated rules [5] by Jaramillo et al. can simulate the collection operator.
Our collection operator is more concise since we can use a single rule, while they
need one subrule to capture the rule part outside of all collections, and one
elementary rule for each collection operator.

Nested quantification is proposed by Rensink [22] as an extension to the
GROOVE tool, which is similarly concise as our collection operator by allowing
a single rule to express subgraph matches. His notation is a bit different from
ours since they use exists (∃) and for all (∀) quantifiers to express the parts
outside of a collection, and those inside a collection respectively.

Fuss and Tuttlies [9] propose an extension to PROGRES called set-regions,
which is quite similar to our collection operator. However the concrete notation
of such set-regions within the rules is not shown. A strength compared to many
other approaches is that they allow for nested set-regions. In this paper we
have not allowed the collection operators to be nested, but this seems to be an
appropriate extension which we plan to describe in future work.

Minas and Hoffmann [14,18] define a cloning operator which is an alterna-
tive to our collection operator. Cloned nodes and incident edges correspond to
elements inside a collection operator. They support multiple elements inside
the same collection operator by assigning the same cloning identifier to several
cloned nodes (the incident edges of the cloned nodes implicitly belongs to the
same collection).

To our best knowledge none of the other subgraph collection matching ap-
proaches have support for shared variables nor collection cardinalities beyond
0..∗ and 1..∗. Furthermore, the other approaches focus only on applying their
collection operators for the abstract syntax. The notations by Rensink [22] and
as sketched by Fuss and Tuttlies [9] have a nature which makes them appropriate
to be introduced on the concrete syntax, which is not the case for Minas and
Hoffmann [14,18]. We extend our earlier work [11] where the collection operator
was restricted to activity model transformations. The improvements in this pa-
per includes support for multiple collection operators of arbitrary cardinalities
in the same rule.

7 Conclusions

In this paper we have introduced the collection operator, which makes graph
transformation suitable to use on a number of model transformation cases where
it would be cumbersome or impractical without. The collection operator raises
the level of abstraction, which is a benefit to the transformation designer. For
model transformations where the collection operator naturally applies, Section 4
shows that it is a complicated and time consuming task to manually define
transformations without the collection operator.

The collection operator can be used both on the concrete syntax of the modeling
language and at the abstract syntax of graphs. A straightforward implementation

A Collection Operator for Graph Transformation 81

strategy, described in Section 3.3, shows how we can identify matches and apply
derivation steps by reusing much of the existing graph transformation apparatus.

We leave it as future work to investigate how the use of collection operators
affect the theory of termination and confluence. It is also future work to decide
the conditions under which graph transformation is naturally applicable at the
concrete syntax level.

Acknowledgment. The work reported in this paper has been funded by The
Research Council of Norway, grant no. 167172/V30 (the SWAT project), and by
the DiVA project grant no. 215412 (EU FP7 STREP).

References

1. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai,
G.: A Subgraph Operator for Graph Transformation Languages. In: ECEASST,
vol. 6 (2007)

2. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

3. Biermann, E., Ermel, C., Hurrelmann, J., Ehrig, K.: Flexible visualization of auto-
matic simulation based on structured graph transformation. In: IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC (2008)

4. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301. Springer, Heidelberg (2008)

5. de Lara Jaramillo, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel Graph Trans-
formation for Model Simulation applied to Timed Transition Petri Nets. Electr.
Notes Theor. Comput. Sci. 109, 17–29 (2004)

6. Eder, J., Gruber, W., Pichler, H.: Transforming Workflow Graphs. In: Conf. on
Interoperability of Enterprise Software and Applications (2005)

7. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE
2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

8. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

9. Fuss, C., Tuttlies, V.E.: Simulating Set-Valued Transformations with Algorithmic
Graph Transformation Languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 442–455. Springer, Heidelberg (2008)

10. Geiger, L., Zündorf, A.: Tool Modeling with Fujaba. Electr. Notes Theor. Comput.
Sci. 148(1) (2006)

11. Grønmo, R., Møller-Pedersen, B.: Aspect Diagrams for UML Activity Models. In:
Applications of Graph Transformation with Industrial Relevance (2008)

12. Guerra, E., de Lara, J.: Adding Recursion to Graph Transformation. ECEASST 6
(2007)

13. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph
Transformation Systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505. Springer, Heidelberg (2002)

82 R. Grønmo, S. Krogdahl, and B. Møller-Pedersen

14. Hoffmann, B., Janssens, D., Eetvelde, N.V.: Cloning and Expanding Graph Trans-
formation Rules for Refactoring. Electr. Notes Theor. Comput. Sci. 152, 53–67
(2006)

15. Lambers, L., Ehrig, H., Orejas, F.: Conflict Detection for Graph Transformation
with Negative Application Conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006)

16. Levendovszky, T., Prange, U., Ehrig, H.: Termination Criteria for DPO Transfor-
mations with Injective Matches. Electr. Notes Theor. Comput. Sci. 175(4) (2007)

17. Lindqvist, J., Lundkvist, T., Porres, I.: A Query Language With the Star Operator.
In: Workshop on Graph Transformation and Visual Modeling Techniques (2007)

18. Minas, M., Hoffmann, B.: An Example of Cloning Graph Transformation Rules for
Programming. Electr. Notes Theor. Comput. Sci. 211, 241–250 (2008)

19. Object Management Group. UML 2.0 Superstructure Specification, OMG Adopted
Specification ptc/03-08-02 (August 2003)

20. Object Management Group. Business Process Modeling Notation (BPMN) Version
1.0 (May 2004)

21. Plump, D.: Confluence of Graph Transformation Revisited. In: Processes, Terms
and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop,
on the Occasion of His 60th Birthday. LNCS, pp. 280–308. Springer, Heidelberg
(2005)

22. Rensink, A.: Nested Quantification in Graph Transformation Rules. In: Corradini,
A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 1–13. Springer, Heidelberg (2006)

23. Schürr, A., Winter, A.J., Zündorf, A.: Graph Grammar Engineering with PRO-
GRES. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, Springer,
Heidelberg (1995)

24. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.-M.: Refactoring UML Models. In:
The Unified Modeling Language, Modeling Languages, Concepts and Tools. LNCS.
Springer, Heidelberg (2001)

25. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

26. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A
Unified Approach for Composing UML Aspect Models based on Graph Trans-
formation. Transactions on AOSD - Special Issue on Aspects and Model-Driven
Engineering (2008) (in press)

Pattern-Based Model-to-Model Transformation:
Handling Attribute Conditions

Esther Guerra1, Juan de Lara2, and Fernando Orejas3

1 Universidad Carlos III de Madrid, Spain
eguerra@inf.uc3m.es

2 Universidad Autónoma de Madrid, Spain
jdelara@uam.es

3 Universitat Politècnica de Catalunya, Spain
orejas@lsi.upc.edu

Abstract. Pattern-based model-to-model transformation is a new ap-
proach for specifying transformations in a declarative, relational and for-
mal style. The language relies on patterns describing allowed or forbidden
relations between two models, which are compiled into operational mech-
anisms to perform forward and backward transformations.

In this paper, we extend the approach for handling attribute conditions
expressed in some suitable logic, adapt the operational mechanisms based
on graph transformation to relax attribute handling by constraint solving,
and discuss heuristics for the compilation of patterns into rules.

1 Introduction

Model-to-Model (M2M) transformations are widely used in Model-Driven En-
gineering, e.g. to migrate between language versions, to transform into a vari-
fication domain, or to refine a model. There are two main approaches to M2M
transformation: operational and declarative. The former is based on operations
that explicitly state how and when creating target elements from source ones.
Instead, declarative approaches describe mappings between source and target
models in a direction-neutral way. Then, operational mechanisms are generated
for different scenarios, e.g. to transform a source model into a target one or vice
versa (forward and backward transformations), to synchronize two models, or to
signal inconsistencies between them [8].

In previous work [3] we proposed a declarative, relational and formal approach
to M2M transformation based on triple patterns to express the relations between
two models. Our patterns are similar to graph constraints [6] but for triple graphs
made of two graphs plus their traceability relations. Patterns can specify positive
information (the relation they declare must hold) or negative one (the relation
must not hold). A pattern specification is compiled into operational mechanisms,
implemented with Triple Graph Grammar (TGG) operational rules [5,8, 14], to
perform forward and backward transformations.

In this paper we extend our framework with attributes. Traditionally, at-
tribute handling has been one of the main difficulties of declarative bidirectional

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 83–99, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 E. Guerra, J. de Lara, and F. Orejas

languages. For example, attribute computations must be specified in a non-causal
way, and therefore generating operational mechanisms involves their algebraic
manipulation for the synthesis of attribute pre-conditions and computations,
which may be difficult to automate. We tackle these issues by the uniform inte-
gration of attribute computations and conditions in patterns, and by considering
the manipulated models also as constraints, hence avoiding algebraic manipu-
lation. Thus, during the transformation, attributes in models are specified by
variables and formulae constraining them. When the transformation finishes,
one can resort to an equation solver to obtain concrete attribute values.

The advantages of our proposal are the following. First, its relational style
contrasts with declarative approaches such as TGGs, where a causality between
the existing elements in the models and the ones to be created has to be given.
Second, the order of pattern enforcement is deduced, contrary to approaches
such as QVT, where it must be explicitly specified. Third, its formal foundation
allows studying the specification in both declarative (patterns) and operational
(derived rules) formats. Fourth, our patterns have a compositional style – a
triple graph satisfies two patterns in conjunction if it satisfies the two patterns
separately – making specifications extensible. Finally, the separation of the op-
erational mechanism from the declarative specification allows generating opera-
tional mechanisms for different purposes, as well as using different operational
languages (e.g. graph grammar rules, a constraint solver, or QVT core [13]).

Paper Organization. Section 2 introduces triple graphs, our new concept
of constraints, and the algebraic approach to M2M transformation. Sections 3
and 4 present our pattern-based notation and the generation of operational rules,
sketching some heuristics to improve their efficacy. Section 5 shows a case study.
Section 6 compares with related work, and Section 7 ends with the conclusions.

2 Algebraic Approach to Model-to-Model Transformation

This section introduces triple graphs, constraint triple graphs, and triple graph
transformation. Triple graphs are based on labelled graphs (called E-graphs
in [6]), which allow data in nodes and edges. An E-graph G is defined as a special
kind of graph that includes an additional set of nodes DG with the values stored
in the graph, and two additional kinds of edges that are used for attribution
of nodes and edges. Mappings between E-graphs (morphisms) are tuples of set
morphisms – one for each set in the E-graph – such that the structure of the
E-graph is preserved (for details see [6]). For the typing we use a type graph [6],
similar to a meta-model, but for simplicity we omit further discussion on types.

Triple graphs are made of three graphs: source (S), target (T) and correspon-
dence (C). Nodes in the correspondence graph relate nodes in the source and
target graphs by means of two graph morphisms [5], and for technical reasons we
restrict them to be unattributed (i.e. DC = ∅). We use triple graphs to store the
source and target models of a M2M transformation, as well as the transformation
traces.

Pattern-Based Model-to-Model Transformation 85

Definition 1 (Triple Graph and Morphism). A triple graph TrG = (S cS←
C

cT→ T) is made of three E-graphs S, C and T s.t. DC = ∅, and two graph
morphisms cS and cT , called the source and target correspondence functions.

A triple morphism m = (mS , mC , mT) : TrG1 → TrG2 is made of three E-
morphisms mX for X = {S, C, T }, s.t. mS◦c1

S = c2
S◦mC and mT ◦c1

T = c2
T ◦mC,

where cx
S and cx

T are the correspondence functions of TrGx (for x={1, 2}).

We use the notation 〈S, C, T 〉 for a triple graph made of graphs S, C and T .
Given TrG = 〈S, C, T 〉, we write TrG|X for X ∈ {S, C, T } to refer to a triple
graph where only the X graph is present, e.g. TrG|S = 〈S, ∅, ∅〉. Triple graphs
and morphisms form the category TrG.

T

S cT
Class1

Class2

Attr1

’c2’

’c1’

’__att’

’persi
stent’

’c1’

Table1

false

parent
kind
kind

C2T2

C2T1
name

name

name

public

name

S C

c

Fig. 1. Triple graph example

Example 1. Fig. 1 shows a triple graph
relating a class diagram and a relational
schema. The graph nodes are depicted as
rectangles, and the data nodes in DS and
DT as circles. We only draw the used data
nodes, as they may be infinite. Graph G in
Fig. 5 shows the same triple graph using
the UML notation, as well as types.

In order to describe the manipulation
of triple graphs by means of graph trans-
formation rules, these rules may need to
include graphs storing variables that will typically be instantiated when applying
the rule. Moreover, we may need to express some properties about these vari-
ables. We have formalized this kind of graph using the new notion of constraint
triple graphs. These are triple graphs attributed over a finite set of variables, and
equipped with a formula on this set to constrain the possible attribute values of
source and target elements.

Definition 2 (Constraint Triple Graph). Given an algebra A over signature
Σ = (S, OP), a constraint triple graph CTrGA = (TrG, ν, α) consists of a triple
graph TrG = 〈S, C, T 〉, a finite set of S-sorted variables ν = DS � DT (with �
denoting disjoint union) and a Σ(ν)−formula α in conjunctive or clausal form.

y = x * 2 z = 3

a = x

T1: A

b = y
c = z

T2: BT: C

y > 0

Fig. 2. Constraint

Example 2. Fig. 2 shows a constraint triple graph. We
take the convention of placing in the left compartment
the terms of the formula concerning only source graph
attributes; in the right compartment the terms con-
straining only attributes in the target; and the terms
constraining both in the middle. In all cases we omit the
conjunctions. Note that “=” denotes equality, not as-
signment. Hence, in our approach there is no attribute
computation, but only attribute conditions. Finally, unused attributes are omit-
ted in the figures, and the formula of the empty constraint is equal to true.

Notice that constraint triple graphs do not store data explicitly in the graphs:
the data nodes DS and DT are variables. Thus, if for instance we would like to

86 E. Guerra, J. de Lara, and F. Orejas

store a value V on an attribute node, it is enough to label that node with some
fresh variable X and include the equality X = V in the associated formula.

Before defining morphisms between constraints, we need an auxiliary opera-
tion for restricting Σ(ν)−formulae to a smaller set of variables ν′ ⊆ ν. This will
be used when restricting a constraint triple graph to the source or target graph
only (e.g. when checking the forward or backward satisfaction of the constraint).
Thus, given a Σ(ν)-formula α, its restriction to ν′ ⊆ ν is given by α|ν′ = α′,
where α′ is like α, but with all clauses with variables in ν − ν′ replaced by true.
For example (x = 3 ∧ y = 7)|{x} = (x = 3 ∧ true) = (x = 3).

Given a constraint CTrGA = (TrG, ν, α), we write αS for the restriction
to the source variables α|DS , and αT for the restriction to the target variables
α|DT . Given a variable assignment f : ν → A, we write A |=f α to denote that
the algebra A satisfies the formula α with the value assignment induced by f.

Next, we define morphisms between constraint triple graphs. These are made
of a triple graph morphism and a mapping of variables (i.e. a set morphism).
In addition we require an implication from the formula of the constraint in the
codomain to the one in the domain, as well as implications from the source
and target restrictions of the formula in the codomain to the restrictions of the
formula in the domain. This means that the formula in the domain constraint
should be weaker or equivalent to the formula of the constraint in the codomain
(intuitively, the codomain should be “more restricted”).

Definition 3 (Constraint Triple Graph Morphism). A constraint triple
graph morphism m = (mTrG, mν) : CTrGA

1 → CTrGA
2 is made of a triple mor-

phism mTrG : TrG1 → TrG2 and a mapping mν : ν1 → ν2 s.t. the diagram to
the left of Fig. 3 commutes, and ∀f : ν2 → A s.t. A |=f α2, then A |=f (αS

2 ⇒
mν(αS

1)) ∧ (αT
2 ⇒ mν(αT

1)) ∧ (α2 ⇒ mν(α1)), where mν(α) denotes the formula
obtained by replacing every variable X in α by the variable mν(X).

Remark 1. Note that α2 ⇒ mν(α1) does not imply αS
2 ⇒ mν(αS

1) or αT
2 ⇒

mν(αT
1). For technical reasons we require (αS

2 ⇒ mν(αS
1)) ∧ (αT

2 ⇒ mν(αT
1)) as

will be evident in Definition 4 and its associated remark.

Example 3. The right of Fig. 3 shows a constraint triple graph morphism.
Concerning the formula, assume some variable assignment f : νB → A satisfying
αB (i.e. A |=f αB), then such f makes A |=f [(x0 = 4 ∧ z > x0) ⇒ (x0 >
0)] ∧ [(y0 >= 1) ⇒ (y0 > 0)] ∧ [(x0 = 4 ∧ z > x0 ∧ x0 > y0 ∧ w > x0 ∧ y0 >=
1) ⇒ (x0 > 0 ∧ y0 <> x0 ∧ y0 > 0)]. In this case, the formula in the constraint
A is weaker than the formula in B.

DTrG1
S ��

��

mT rG
D,S

��
=

DTrG2
S ��

��
ν1 mν ��

=

ν2

DTrG2
T

� �

��

mT rG
D,T

�� DTrG2
T

� �

��
: D

: F
: E

e = w

: A

a = x0
: C

: B

b = y0

d = z

x0 = 4
z > x0

x0 > y0
w > x0 y0 >= 1

B

: C
: A

a = x

: B

b = y

y <> xx > 0 y > 0

A

Fig. 3. Condition for CTrG-morphisms (left). Example (right).

Pattern-Based Model-to-Model Transformation 87

From now on, we restrict to injective morphisms for the sake of simplicity,
and because our patterns are made of injective morphisms. Given Σ and A,
constraint triple graphs and morphisms form the category CTrGA. As we will
show later, we need to manipulate objects in this category through pushouts and
restrictions. A pushout is the result from gluing two objects B and C along a
common subobject A, written B+AC. Pushouts in CTrGA are built by making
the pushout of the triple graphs, and taking the conjunction of their formulae.

Proposition 1 (Pushout in CTrGA). Given the span of CTrGA-morphisms
BA b←− AA c−→ CA, its pushout is given by DA = (B +A C, νB +νA νC , c′(αB)∧
b′(αC)), and morphisms c′ : BA → DA and b′ : CA → DA induced by the
pushouts in triple graphs (B +A C) and sets (νB +νA νC).

Example 4. Fig. 4 shows a pushout, where αD ⇒ c′(b(αA)) ≡ b′(c(αA)).

c’

: D : A

zd > xd
xd = 4

xd >= 0 wd > xd
xd > yd

: C
: B : E

yd >= 1
yd = 3

D

d = zd a = xd b = yd e = wd

: A

a = x1
: C

y1 = 3

: B : E

C

w > x1x1 >= 0

b = y1 e = w

: D : A
: C

: B

b = y0

x0 = 4
z > x0

B

d = z a = x0

x0 > y0 y0 >= 1: B

b = y
: C

: A

a = x

y > 0y <> xx > 0

A b

c

P.O.

b’

Fig. 4. Pushout example

The source restriction of a constraint triple graph is made of the source graph
and the source formula, and similarly for target. This will be used later to keep
just the source or target model in a constraint, when such constraint is evaluated
either source-to-target or target-to-source.

Definition 4 (Constraint Restriction). Given CTrGA = (TrG, ν, α), its
source restriction is given by CTrGA|S = (TrG|S = 〈S, ∅, ∅〉, DS , α|DS = αS).
The target restriction CTrGA|T is calculated in an analogous way.

Remark 2. The source restriction CTrGA|S of a constraint induces a morphism
CTrGA|S ↪→ CTrGA. Also, given a morphism q : CA → QA, we can construct
morphisms qS : CA|S → QA|S and qT : CA|T → QA|T .

An attributed triple graph can be seen as a constraint triple graph whose for-
mula is satisfied by a unique variable assignment, i.e. ∃1f : ν → A with A |=f α.
We call such constraints ground, and they form the GroundCTrGA full sub-
category of CTrGA. We usually depict ground constraints with the attribute
values induced by the formula in the attribute compartments and omit the for-
mula (e.g. see constraint CTrG to the right of Fig. 7). The equivalence between
ground constraints and triple graphs is useful as, from now on, we just need to
work with constraint triple graphs. In particular, triple graphs are manipulated
with TGG operational rules, but seeing them as ground constraint graphs, which

88 E. Guerra, J. de Lara, and F. Orejas

offers several benefits, as we will see. The rules that we consider in this paper
are non-deleting and consist of left and right hand sides (LHS and RHS) made
of a constraint triple graph each, plus sets of negative pre- and post-conditions.
A rule can be applied to a host triple graph if a constraint morphism exists from
the LHS to the graph and no negative pre-condition (also called NAC) is found.
Then, the rule is applied by making a pushout of the RHS and the host graph
through their intersection LHS, which adds the elements created by the rule to
the host graph. This step is called direct derivation. Negative post-conditions are
checked after rule application, and such application is undone if they are found.

The most usual way [6, 14] of dealing explicitly with triple graphs instead
of with ground constraint graphs poses some difficulties, most notably concern-
ing attribute handling. For instance, Fig. 5 shows an example where a TGG
operational rule is applied to a triple graph G. The rule creates a column for
each private attribute starting by ‘ ’. Function LTRIM(p1,p2) returns p2 after
removing p1 from its beginning.

c: Class

name = x
public = false

a: Attribute

t: Table

C2T1

: C2T

C2T2

: C2T

name = ’c1’
kind = ’persistent’

Class1: Class

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

name = ’c1’

Table1: Table

name = ’c2’
kind = ’persistent’

Class2: Class

Attr1: Attribute

name = ’__att’
public = false

ac: A2C

C2T1

: C2T

C2T2

: C2T

name = ’att’

co: Column

name = ’c1’

Table1: Table

ct:C2Tc: Class

name = x
public = false

a: Attribute

t: Table

LHS

x[0:2] = ’__’
ATTRIBUTE CONDITION

RHS = NAC

name =
LTRIM(’__’,x)

co: Column
compile

TGG operational rule:

{new}

x = ’__’+y

{new}
{new}

co: Column
{new}

name = y

{new}

TGG declarative rule:

P.O.

parent

G

parent

H

name = ’c1’
kind = ’persistent’

Class1: Class

c: Class

name = x
public = false

a: Attribute

ct:C2T

ac:A2C

t: Table
ct:C2T

ac:A2C

Fig. 5. Direct derivation by a non-deleting TGG operational rule

In practice, the TGG operational rules are not specified by hand, but derived
from declarative rules modelling the synchronized evolution of two models [14],
as depicted in the upper part of Fig. 5. The declarative rule is shown with its LHS
and RHS together, and new tags indicating the synchronously created elements.
Of course, in declarative rules, attribute computations must be expressed in a
declarative style. However, their compilation into operational rules has to assign
a causality to attribute computations, which involves algebraic manipulation of
formulae. Moreover, appropriate attribute conditions must be synthesized too. In
the example, the condition x=‘ ’+y has to be transformed into a computation
LTRIM(‘ ’,x) for the created column name, and into the condition x[0:2]=‘ ’
as the attribute name should start by ‘ ’. Please note that this kind of manip-
ulation is difficult to automate, since it involves the synthesis of operations and

Pattern-Based Model-to-Model Transformation 89

conditions. Our approach proposes a more straightforward solution. Fig. 8 shows
the same example when dealing with triple graphs as ground constraints, where
there is no need to synthesize attribute computations. The result of a transfor-
mation is a pair of models where their attributes are variables with values given
by formulae. If needed, a constraint solver can compute concrete values.

3 Pattern-Based Model-to-Model Transformation

Triple Patterns are similar to graph constraints [6], but made of constraint triple
graphs instead of graphs. We use them to describe the allowed and forbidden
relations between source and target models in a M2M transformation.

Definition 5 (Triple Pattern). Given the injective CTrGA-morphism C
q→

Q and the sets of injective CTrGA-morphisms NPre = {Q ci→ Ci}i∈Pre, NPost =
{Q cj→ Cj}j∈Post of negative pre- and post-conditions:

–
∧

i∈Pre

←−
N (Ci)∧

←−
P (C) ⇒ P (Q)∧

∧
j∈Post

−→
N (Cj) is a positive pattern (P-pattern).

–
−→
N (Cj) is a negative pattern (N-pattern).

Remark 3. The notation
←−
P (·), ←−

N (·), −→
N (·) and P (·) is just syntactic sugar

to indicate a positive pre-condition (that we call parameter), a negative pre-
condition, a negative post-condition and the main constraint respectively.

The simplest P-pattern is made of a main constraint Q restricted by negative
pre- and post-conditions (Pre and Post sets). In this case, Q has to be present
in a triple graph (i.e. in a ground constraint) whenever no negative pre-condition
Ci is found; and if Q is present, no negative post-condition Cj can be found.
While pre-conditions express restrictions for the constraint Q to occur, post-
conditions describe forbidden graphs. If a negative pre-condition is found, it is
not mandatory to find Q, but still possible. P-patterns can also have parameters,
specified with a non-empty C. In such case, Q has to be found only if C is also
found. Finally, an N-pattern is made of one negative post-condition, forbidden
to occur (and hence C and Q are empty).

Example 5. The left of Fig. 6 shows a P-pattern, taken from the class to
relational transformation [13]. It is made of a main constraint C-T with a negative
pre-condition Parent. It maps persistent classes without parents to tables with
the same name. The negative pre-condition shows only the elements that do not
belong to the main constraint, and those connected to them.

The right of Fig. 6 shows a P-pattern with its parameters indicated with
〈〈param〉〉. We present C and Q together, as usually the formula in C is the same
as the one in Q. The pattern maps the attributes of a class with the columns of
the table related to the class. As Section 4.1 will show, it is not even necessary
to specify the parameters, as our heuristics are able to suggest them. In fact, a

90 E. Guerra, J. de Lara, and F. Orejas

ct:C2T

name = nc
kind = k

c: Class

name = nc
kind = k

c: Class

parent

nc = nt

P(C−T)

k = ’persistent’ k = ’persistent’

N(Parent)

name = nt

t: Table ac:A2C

name = x
public = p

a: Attribute

t: Tablec: Classc1: Class

co: Column

name = y

ct:C2T

p = false

P(Attribute−Column)

x = ’__’+y

<<param>> <<param>><<param>>

Fig. 6. P-pattern examples

M2M specification is usually made of N- and P-patterns without parameters. For
technical reasons, we assume that no P-pattern has negative post-conditions.

Definition 6 (M2M Specification). A M2M specification SP =
∧

i∈I Pi is a
conjunction of patterns, where each Pi can be positive or negative.

Next we define pattern satisfaction. A unique definition is enough as N-patterns
are a special case of P-patterns. We check satisfiability of patterns on constraint
triple graphs, not necessarily ground. This is so because, during a transformation,
the source and target models do not need to be ground. When the transformation
finishes we can use a solver in order to find an attribute assignment satisfying the
formulae.

We define forward and backward satisfaction. In the former we check that
the main constraint of the pattern is found in all places where the pattern is
source-enabled (roughly, in all places where the pre-conditions for enforcing the
pattern in a forward transformation hold). The separation between forward and
backward satisfaction is useful because, e.g. if we transform forwards (assuming
an initial empty target) we just need to check forward satisfaction. Full satis-
faction implies both forward and backward satisfaction and is useful to check if
two graphs are actually synchronized.

Definition 7 (Satisfaction). A constraint triple graph CTrG satisfies CP =
[

∧
i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q) ∧

∧
j∈Post

−→
N (Cj)], written CTrG |= CP , iff:

– CP is forward satisfiable, CTrG |=F CP : [∀mS : PS → CTrG s.t. (∀i ∈ Pre
s.t. NS

i � PS , �nS
i : NS

i → CTrG with mS = nS
i ◦ aS

i), ∃m : Q → CTrG
with m ◦ qS = mS, s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj], and

– CP is backward satisfiable, CTrG |=B CP : [∀mT : PT → CTrG s.t. (∀i ∈
Pre s.t. NT

i � PT , �nT
i : NT

i → CTrG with mT = nT
i ◦aT

i), ∃m : Q → CTrG
with m ◦ qT = mT , s.t. ∀j ∈ Post �nj : Cj → CTrG with m = nj ◦ cj],

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {S, T }),
see left of Fig. 7. C +C|x Q|x is the pushout object of C and Q|x through C|x.

In forward satisfaction, for each occurrence of PS = C +C|S Q|S satisfying the
negative pre-conditions, an occurrence of Q must be found satisfying the neg-
ative post-conditions. A pattern is satisfied either because no occurrence of PS

Pattern-Based Model-to-Model Transformation 91

P.O.

C S

Q S

c: Class

name = nc
kind = k

k="persistent"

P
S

c: Class

name = nc
kind = k

k="persistent"

c: Class

name = nc
kind = k

t: Table

name = nt
ct: C2T

Q

k="persistent" nc=nt
c: Class

c1: Class

name = nc
kind = k

parent

c: Class

c1: Class

name = nc
kind = k

parent

Ni
s

SCi

c: Class

name = "Person"
kind="persistent"

c2: Class

C

ct1: C2T

ct: C2T
t: Table

name = "Person"

P.O.

CTrG

name = "Employee"
kind="persistent"

parent

Ci|S

dS
i

��

P.O.

C|S
�
�

�����
��

qS

����
��

�

bi
S��

C
=

eS
i

����
�� cS

������� P.O. Q|S
pS

�������

NS
i

/
nS

i

		

PS

=

aS
i

��

mS ��

qS

 Q
= =

cj

m�����
��

�
Cj

/
nj

��CTrG

Fig. 7. Forward satisfaction (left). Example (right).

exists (trivial satisfaction), because some occurrence of PS exists as well as some
occurrence of the negative pre-conditions (vacuous satisfaction), or because an
occurrence of the main constraint Q exists, and none of the negative pre- and
post-conditions (positive satisfaction). Note that if the resulting negative pre-
condition Nx

i is isomorphic to Px, it is not taken into account. This is needed as
many pre-conditions express a restriction in either source or target but not on
both. Similar conditions are demanded for backward satisfiability.

Example 6. The right of Fig. 7 depicts the satisfaction of pattern C-T shown
in Fig. 6 by the ground constraint CTrG. We have CTrG |=F C − T as there
are two occurrences of PS , and the first one (shown by equality of identifiers)
is positively satisfied, while the second (node c2) is vacuously satisfied. We also
have CTrG |=B C−T , as there is just one occurrence of PT , positively satisfied.
Hence CTrG |= C − T .

Given a specification SP =
∧

i∈I Pi and a constraint CTrG, we write CTrG |=
SP to denote that CTrG satisfies all patterns in SP . The semantics of a speci-
fication is the language of all constraint triple graphs that satisfy it.

Definition 8 (Specification Semantics). Given a specification SP , its se-
mantics is given by SEM(SP) = {CTrG ∈ Obj(CTrGA)|CTrG |= SP}, where
Obj(CTrGA) are all objects in the category CTrGA.

The semantics is defined as a set of constraint triple graphs, not necessarily
ground. Given a non-ground constraint, a solver can obtain a ground constraint
satisfying it, if it exists. Moreover, the specification semantics is compositional, as
adding new patterns to a specification amounts to intersecting the languages of
both. This fact is useful when extending or reusing pattern-based specifications.

Proposition 2 (Composition of Specifications). Given specifications SP1
and SP2, SEM(SP1 ∧ SP2) = SEM(SP1) ∩ SEM(SP2).

92 E. Guerra, J. de Lara, and F. Orejas

4 Generation of Operational Mechanisms

This section describes the synthesis of TGG operational rules implementing for-
ward and backward transformations from pattern-based specifications. In forward
transformation, we start with a constraint triple graph with correspondence and
target empty, and the other way round for backward transformation.

The synthesis process creates from each P-pattern one rule that contains triple
constraints in its LHS and RHS. In particular, PS = C +C|S Q|S is taken as
the LHS for the forward rule and Q as the RHS. The negative pre- and post-
conditions of the P-pattern are used as negative pre- and post-conditions of
the rule. All N-patterns are converted into negative post-conditions of the rule,
using the well-known procedure to convert graph constraints into rule’s post-
conditions [6]. Finally, additional NACs are added to ensure termination.

Definition 9 (Derived Operational Rules). Given specification SP and
P = [

∧
i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q) ∧

∧
j∈Post

−→
N (Cj)] ∈ SP , the following rules

are derived:

– Forward. −→rP : ((L = C +C|S Q|S → R = Q), preS(P), post(P)),
– Backward. ←−rP : ((L = C +C|T Q|T → R = Q), preT (P), post(P)),

where prex(P) (for x = {S, T }) is the union of the following two sets of NACs:

– NACx(P) = {L ax
i→ Nx

i |L � Nx
i }i∈Pre is the set of NACs derived from P ’s

negative pre-conditions, with Nx
i
∼= Ci|x +C|x C.

– TNACx(P) = {L nj→ Tj} is the set of NACs ensuring termination, where Tj

is built by making nj injective and jointly surjective with Q
f→ Tj, s.t. the

diagram to the bottom-left of Fig. 8 commutes.

and post(P) is the union of the following two sets of negative post-conditions:

– POST (P) = {nj : R → Cj}j∈Post is the set of rule’s negative post-conditions,
derived from the set of P ’s post-conditions.

– NPAT (P) = {R → D|[−→N (Ck)] ∈ SP , R → D ← Ck is jointly surjective,
and (R\L)∩Ck �= ∅} is the set of negative post-conditions derived from each
N-pattern

−→
N (Ck) ∈ SP .

The set NPAT (P) contains the negative post-conditions derived from the N-
patterns of the specification. This is done by merging each N-pattern with the
rule’s RHS in all possible ways. Moreover, the condition (R\L)∩Ck �= ∅ reduces
the size of NPAT (P), by only considering violations of the N-patterns due to
the creation of elements, as we start with an empty target model.

Example 7. The upper row of Fig. 8 shows the operational forward rule gener-
ated from pattern Attribute-Column. The set NACS contains one constraint,
equal to R. There are two NACs for termination, TNAC2 and TNAC1, the latter

Pattern-Based Model-to-Model Transformation 93

Q|x ��

��
=

Q

f
��

L �� Tj

Class1: Class

parent

G

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false n1 = nt

c: Class t: Table

name = x
public = p

a: Attribute : A2C

name = y

: Column

R = NAC1 = TNAC1

ct:C2T

p = false x = ’__’+y

c: Class t: Tablect:C2T

: Table: C2T

name = x
public = p

a: Attribute : A2C

TNAC2

name = y

p = false x = ’__’+y

: Column

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Class1: Class

name = y

: Column

c: Class t: Table

a: Attribute

public = p

L

ct:C2T

p = false

parent

H

n1 = ’c1’
n2 = ’c2’
k1 = ’persistent’
k2 = ’persistent’
na = ’__att’
pa = false

: A2C

na = ’__’+y
n1 = nt

C2T1

: C2T

C2T2

: C2T

name = nt

Table1: Table

Attr1: Attribute

name = na
public = pa

name = n2
kind = k2

Class2: Class

name = n1
kind = k1

Fig. 8. Condition for TNACx(P) (left). Example rule and derivation (right).

equal to R. As a difference from Fig. 5, we do not need to do algebraic manipu-
lation of formulae to generate the rule. The figure also shows a direct derivation
where both G and H are ground constraints. Note also that we do not check in
L that x starts with “ ”, but if it does not, we would obtain an unsatisfiable
constraint.

According to [12], the generated rules are terminating, and in absence of N-
patterns, correct: they produce only valid models of the specification. However,
the rules are not complete: not all models satisfying the specification can be
produced. Next subsection describes a method, called parameterization, that in
addition ensures completeness of the rules generated from a specification with-
out N-patterns. If a specification contains N-patterns, these are added as neg-
ative post-conditions for the rules, preventing the occurrence of N-patterns in
the model. However, they may forbid applying any rule before a valid model
is found, thus producing graphs that may not satisfy all P-patterns (because
the transformation stopped too soon). That is, in this situation the operational
mechanism would not be able to find a model, even if it exists. Next subsection
presents one heuristic that ensures finding models, and hence correctness, for
mechanisms derived from some specifications with certain classes of N-patterns.

4.1 Parameterization and Heuristics for Rule Derivation

Applying the parameterization operation to each P-pattern in the specification
ensures completeness of the operational mechanism: the rules are able to generate
all possible models of the specification [12]. The operation takes a P-pattern and
generates additional ones, with all possible positive pre-conditions “bigger” than
the original pre-condition, and “smaller” than the main constraint Q. This allows
the rules generated from the patterns to reuse already created elements.

94 E. Guerra, J. de Lara, and F. Orejas

Definition 10 (Parameterization). Given T =
∧

i∈Pre

←−
N (Ci)∧

←−
P (C) ⇒ P (Q)∧

∧
j∈Post

−→
N (Cj), its parameterization is Par(T) = {

∧
i∈Pre

←−
N (Ci)∧

←−
P (C′) ⇒ P (Q)∧

∧
j∈Post

−→
N (Cj)|C

i1
↪→ C′ i2

↪→ Q, C � C′, C′ � Q}.

Remark 4. The formula αC′ can be taken as the conjunction of αC for the
variables already present in νC , and αQ for the variables not in νC (i.e. in
ν′

C \ i1(νC)). Formally, αC′ = αC ∧ αQ|i2(νC′\i1(νC)) (assuming no renaming
of variables).

Example 8. Fig. 9 shows an example, where some of the parameters generated
by parameterization are shown for a pattern like the one in Fig. 6 but without
parameters. Parameterization generates 45 patterns, each one made of the same
main constraint and one of the generated parameters. The pattern with parame-
ter

−→
P (1) is enforced when the class is already mapped to a table, and in forward

transformation avoids generating a rule that creates a table with arbitrary name.
Parameter

−→
P (3) reuses a column with the same name as the attribute (up to

the preffix ‘ ’), possibly created by a parent class. However,
−→
P (2) is harmful as

it may lead to reusing a column connected to a different table, and thus to an
incorrect model where the column is connected to two different tables.

ct:C2T

co: Column

t: Tablec: Class

P(2)

ct:C2T t: Tablec: Class

P(1)

name = x
public = p

a: Attribute

t: Tablec: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(3)

erization
paramet

ac:A2C

t: Table

name = x
public = p

a: Attribute

c: Class ct:C2T

co: Column

name = y

p = false x = ’__’+y

P(Attribute−Column.withoutParams)

Fig. 9. Parameterization example

As the example shows, parameterization generates an exponential number of
patterns with increasingly bigger parameters, which may lead to operational
rules reusing too much information. Although this ensures completeness, we
hardly use it in practice, and we prefer using heuristics to control the level of
reuse. However, as previously stated, generating fewer patterns can make the
rules unable to find certain models of the specifications (those “too small”).

We propose two heuristics in this paper. The first one is used to derive only
those parameters that avoid creation of elements with unconstrained attribute
values. The objective is to avoid synthesizing rules creating elements whose at-
tributes can take several values.

Heuristic 1. A pattern P can be replaced by another one having the same main
constraint and as parameter all elements with attributes not constrained by any
formula, and the mappings between these elements.

Pattern-Based Model-to-Model Transformation 95

Example 9. In Fig. 9, the heuristic generates just one pattern with parameter−→
P (1). Thus, the generated rules avoid creating a table with arbitrary name.

Next heuristic generates only those parameters that avoid duplicating a graph
S1, forbidden by some N-pattern of the form

−→
N (S1 +U S1), preventing the

subgraph S1 to appear twice. This ensures the generation of rules produc-
ing valid models for specifications with N-patterns of this form (called FIP
in [3]).

Heuristic 2. Given [
∧

i∈Pre

←−
N (Ci) ∧

←−
P (C) ⇒ P (Q)], if [

−→
N (S)] ∈ SP with S ∼=

S1 +U S1, and ∃s : S1 → Q and �s′ : S1 → C both injective s.t. q ◦ s′ = s, we
generate additional patterns with parameters all C′

j s.t. q1 and qs in C
q1→ C′

j

qs←
S1 are jointly surjective, and the induced C′

j → Q is injective.

The way to proceed is to apply heuristic 2 to each P- and N-pattern of the form−→
N (S1+U S1), and repeat the procedure with the resulting patterns until no more
different patterns are generated. Next section illustrates both heuristics.

5 Example

Next we illustrate our approach with a bidirectional transformation between re-
lational database schemas (RDBMS) and XML documents. Their meta-models
are shown in the meta-model triple in Fig. 10. Schemas contain books and sub-
jects. A book has zero or more subjects, and those books with the same subject
description are related to the same object Subject. On the contrary, the XML
meta-model allows nested relationships, and even if two books have the same
subject description, they are assigned two different objects Subject.

p1+’ ed.’ = p2

: B

ISBN = i2
title = t2

: Book

name = p2

: Publisher

P(Book)

name = p1

: Publisher

name = p2

: Publisher

N(NotDupXMLPublisher)

p1 = p2

desc = d2

: Subject

desc = d1

: Subject

N(NotDupRDBMSSubject)

d1 = d2

: S

desc = d1

: Subject

desc = d2

: Subject

: Book : B : Book

P(Subject)

d1 = d2

B

S

− ISBN: String
− title: String

Book

− desc: String

Subject

− desc: String

Subject

− name: String

Publisher

Meta−model triple:

RDBMS

subject

*

*

*

1
subject* 1 pub

− ISBN: String

− publisher: String
− title: String

Book

XML

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1)

d1 = d2

by heuristic 2:

ISBN = i1

: Book

publisher = p1
title = t1 i1 = i2

t1 = t2

P(Book.h2)

p1+’ ed.’ = p2

i1 = i2
t1 = t2

Initial M2M specification:

New pattern generated
by heuristic 1:

New patterns generated

desc = d1

: Subject : S

desc = d2

: Subject

: B: Book : Book

P(Subject.h1.h2)

d1 = d2

ISBN = i1

: Book

publisher = p1
title = t1

ISBN = i2
title = t2

: Book: B

name = p2

: Publisher

<<param>><<param>>

<<param>>

<<param>><<param>> <<param>>

<<param>>

<<param>>

Fig. 10. Mapping relational database schemas and XML

96 E. Guerra, J. de Lara, and F. Orejas

Fig. 10 shows the initial M2M specification, which is made of four patterns.
The P-pattern Book states how the books in both meta-models should relate,
and adds an “ ed.” suffix to the publisher in the XML model. P-pattern Subject
maps subjects in both models. Note that we need these two patterns as it is
possible to have books with zero or more subjects. Should a book have exactly
one subject, then only one pattern would have been enough. In addition, as
the RDBMS format does not allow two subjects with the same description, we
forbid such situation by defining the N-pattern NotDupRDBMSSubject. Similarly,
N-pattern NotDupXMLPublisher forbids repeating publishers in XML.

: Book

name = p2

p: Publisher

name = p3

: Publisher

NPAT1 (post)

p1+’ ed.’ = p2
t1 = t2
i1 = i2

p2 = p3

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

p1+’ ed.’ = p2
t1 = t2
i1 = i2

name = p2

: Publisher

R = TNAC1
b: Book

L

Book

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

p1+’ ed.’ = p2
t1 = t2
i1 = i2

R = TNAC1

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

: Book

name = p2

p: Publisher

name = p3

: Publisher

TNAC2

p1+’ ed.’ = p2
p1+’ ed.’ = p3

t1 = t2
i1 = i2

publisher = p1

b: Book

name = p2

p: Publisher

L

p1+’ ed.’ = p2

Book.h2

desc = d1

s: Subject : S

: B

c: B b2: Book

d1 = d2
desc = d2

: Subject

b1: Book

TNAC2

: Book

c: B

desc = d1

s: Subject : S

R = TNAC1

d1 = d2
desc = d2

: Subject

b1: Book b2: Book

b1: Book

s: Subject

c: B b2: Book

L

Subject.h1 Subject.h1.h2

ISBN = i1

b: Book

publisher = p1
title = t1

: B

ISBN = i2
title = t2

Fig. 11. Generated forward rules

In this example we cannot use generic parameterization as it would generate
patterns with parameters reusing, e.g. the Subjects in the XML model. There-
fore we use the heuristics instead. The first one generates pattern Subject.h1
from pattern Subject by defining the elements with unconstrained attributes as
parameters. The new pattern replaces the old one and ensures that, when the
subject is translated, the book associated to it has been translated first. The
second heuristic is applied to patterns Subject.h1 and Book and produces two
new patterns, Subject.h1.h2 and Book.h2. The first one reuses RDBMS Sub-
jects so that they are not duplicated in backward transformations. The second
reuses one Publisher, avoiding its duplication in forward transformations.

As a last step, we use patterns Book, Subject.h1,Subject.h1.h2and Book.h2
and the N-patterns to generate the operational rules. Fig. 11 shows the forward
ones. Rule Book contains a termination NAC (TNAC1) equal to its RHS and a
negative post-condition (generated from

−→
N (NotDupXMLPublisher)) avoiding two

publishers with same name. Patterns Subject.h1 and Subject.h1.h2 produce
equivalent rules with two termination NACs. Finally, rule Book.h2 creates books
that reuse publishers once they have been created. Note again that we do not need
to perform algebraic manipulation of expressions for rule synthesis, as the LHSs

Pattern-Based Model-to-Model Transformation 97

and RHSs contain constraint triple graphs (where note that attributes not used
in formulae are ommited, like in the LHS of rule Book).

Altogether, the operational mechanisms generated for this example are ter-
minating, confluent, correct and complete even using heuristics. However, our
mechanisms cannot guarantee confluence in general if we do not have a means
to prefer one resulting model or another.

6 Related Work

Some declarative approaches to M2M transformation use a textual syntax, e.g.
PMT [15], Tefkat [9]. All of them are uni-directional, whereas our patterns are
bidirectional. There are also bidirectional textual languages, like MTF [10].

Among the visual declarative approaches, a prominent example is QVT-
relational [13]. Relations in QVT may include when and where clauses that
identify pre- and post-conditions and can refer to other relations. From this
specification, executable QVT-core is generated. This approach is similar to
ours, but we compile patterns to TGG rules, allowing its analysis [6]. Besides,
we can analyse the patterns themselves. In the QVT-relations language, there
is no equivalent to our N-patterns. Notice however, that our N-patterns can be
used to model keys in QVT (e.g. elements that should have a unique identi-
fier) as we showed in Section 5 with N-patterns

−→
N (NotDupXMLPublisher) and

−→
N (NotDupRDBMSSubject). An attempt to formalize QVT-core is found in [7].

In [1], transformations are expressed through positive declarative relations,
heavily relying on OCL constraints, but no operational mechanism is given to
enforce such relations. In BOTL [2], the mapping rules use a UML-based notation
that allows reasoning about applicability or meta-model conformance.

Declarative TGGs [14] formalize the synchronized evolution of two graphs
through declarative rules from which TGG operational rules are derived. We also
generate TGG operational rules, but whereas declarative TGG rules must say
which elements should exist and which ones are created, our heuristics infer such
information. Moreover, TGGs need a control mechanism to guide the execution
of the operational rules, such as priorities [8] or their coupling to editing rules [5],
while our patterns do not need it. As in QVT, there is no equivalent to our
N-patterns, however TGGs can be seen as a subset of our approach, where a
declarative TGG rule is a pattern of the form

←−
P (L) ⇒ P (R).

In [11] the authors start from a forward transformation and the corresponding
backward transformation is derived. Their transformations only contain injective
functions to ensure bidirectionality, and if an attribute can take several values
one of them is chosen randomly. Finally, in [4] attribute grammars are used as
transformation language, where the order of execution of rules is automatically
calculated according to the dependencies between attributes.

7 Conclusions and Future Work

In this paper we have extended pattern-based transformation with attributes.
The resulting language allows expressing relations between models in a

98 E. Guerra, J. de Lara, and F. Orejas

declarative way, leaving open the kind of logic used for attribute conditions.
Typically, it can be first order predicate logic, e.g. with OCL syntax. The advan-
tage of our approach is that it provides a formal, high-level language to express
bidirectional transformations. Our language is concise, as its heuristics allow
omitting the parameters in the relations. Moreover, at the operational level, we
have proposed a new way of triple graph rewriting based on constraints. This
idea, which can be used in other transformation approaches, avoids manipulation
of attribute conditions, one of the main difficulties of relational approaches.

We are currently working towards using this approach to formalize QVT re-
lations. Also, we are considering other operational languages, further heuristics,
devising analysis methods, and implementing a prototype tool.

Acknowledgments. Work supported by the Spanish Ministry of Science and In-
novation,projectsMETEORIC (TIN2008-02081),MODUWEB (TIN2006-09678)
and FORMALISM (TIN2007-66523).Moreover,part of this work was done during
a sabbatical leave of the third author at TU Berlin, with financial support from
the Ministerio de Ciencia e Innovación (grant ref. PR2008-0185). We thank the
referees for their useful comments.

References

1. Akehurst, D.H., Kent, S.: A relational approach to defining transformations in a
metamodel. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 243–258. Springer, Heidelberg (2002)

2. Braun, P., Marschall, F.: Transforming object oriented models with BOTL.
ENTCS 72(3) (2003)

3. de Lara, J., Guerra, E.: Pattern-based model-to-model transformation. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
pp. 426–441. Springer, Heidelberg (2008)

4. Dehayni, M., Féraud, L.: An approach of model transformation based on attribute
grammars. In: Konstantas, D., Léonard, M., Pigneur, Y., Patel, S. (eds.) OOIS
2003. LNCS, vol. 2817, pp. 412–423. Springer, Heidelberg (2003)

5. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

7. Greenyer, J.: A study of model transformation technologies: Reconciling TGGs
with QVT. Master’s thesis, University of Paderborn (2006)

8. Königs, A., Schürr, A.: Tool integration with triple graph grammars - a survey.
ENTCS 148(1), 113–150 (2006)

9. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Heidel-
berg (2006)

10. MTF. Model Transformation Framework,
http://www.alphaworks.ibm.com/tech/mtf

11. Mu, S.-C., Hu, Z., Takeichi, M.: Bidirectionalizing tree transformation languages:
A case study. JSSST Computer Software 23(2), 129–141 (2006)

http://www.alphaworks.ibm.com/tech/mtf

Pattern-Based Model-to-Model Transformation 99

12. Orejas, F., Guerra, E., de Lara, J., Ehrig, H.: Correctness, completeness and ter-
mination of pattern-based model-to-model transformation (2009) (submitted),
http://astreo.ii.uam.es/~jlara/papers/compPBT.pdf

13. QVT (2005), http://www.omg.org/docs/ptc/05-11-01.pdf
14. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,

E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

15. Tratt, L.: A change propagating model transformation language. JOT 7(3), 107–
126 (2008)

http://astreo.ii.uam.es/~jlara/papers/compPBT.pdf
http://www.omg.org/docs/ptc/05-11-01.pdf

Towards Model Round-Trip Engineering:
An Abductive Approach

Thomas Hettel1,2, Michael Lawley3, and Kerry Raymond1

1 School of Information Technology
Queensland University of Technology, Brisbane, Australia
t.hettel@student.qut.edu.au, k.raymond@qut.edu.au

2 SAP Research, CEC Brisbane, Australia
t.hettel@sap.com

3 The Australian E-Health Research Centre,
CSIRO ICT Centre, Brisbane, Australia

michael.lawley@csiro.au

Abstract. Providing support for reversible transformations as a basis for
round-trip engineering is a significant challenge in model transformation
research. While there are a number of current approaches, they require
the underlying transformation to exhibit an injective behaviour when re-
versing changes. This however, does not serve all practical transformations
well. In this paper, we present a novel approach to round-trip engineering
that does not place restrictions on the nature of the underlying transfor-
mation. Based on abductive logic programming, it allows us to compute a
set of legitimate source changes that equate to a given change to the tar-
get model. Encouraging results are derived from an initial prototype that
supports most concepts of the Tefkat transformation language.

1 Introduction

In the vision of model-driven software development, models are the prime arte-
facts. They undergo a process of gradual refinement turning high level descrip-
tions of a system into detailed models and finally code. As part of this process,
models are translated to various modelling languages most appropriately ex-
pressing important concepts of particular abstraction layers and from certain
perspectives. Once models have been translated, the results are subject to re-
vision and there is no easy way to reflect changes back to their original source.
However, propagating changes is indispensable in order to keep the intercon-
nected mesh of models in a consistent state.

While there are many different approaches to model synchronisation, they
place restrictions on the underlying transformation. Generally, transformations
are required to exhibit some injective behaviour such that unique source models
can be found for each and every change to the target model. However, there
are many practical transformations where such an injective behaviour is not
achievable (e.g., see Sec. 3.1) as important information is discarded in the trans-
formation process and not encoded in the target model. In general there are

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 100–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards Model Round-Trip Engineering: An Abductive Approach 101

Sold

Snew Tnew

Told

S T

Transformation
(Check)

Change
Translation

Transformation

RangeDomain

Fig. 1. Synchronisation through change translation: changes to the range in model T
are translated into corresponding changes to the domain in S

often many different ways to reflect changes to the target in terms of changes to
the source model and no simple decision can be made to prefer one over another.

To cope with such scenarios, this paper presents an approach to model round-
trip engineering (RTE) based on unidirectional, non-injective transformations.
Borrowing from abductive reasoning, a number of different source changes can
be computed that all equate to the desired target change. Building upon our
previous work on the formal foundations of model synchronisation [1], changes
performed on the target model are translated into changes to the source. Target
changes can either be relevant, manipulating the range of the transformation or
irrelevant, in which case the synchronised state is not impaired and no change
translation is necessary. In the following (w.l.o.g.) we only consider relevant
changes. Translating changes must ensure that applying the transformation to
the changed source yields exactly the range (relevant part) of new target model
(Fig. 1). No other changes, called side effects, are permissible. In this paper we
present an implementation of this change translation function.

The remainder of this paper is structured as follows. Sec. 2 introduces the
concept of abductive reasoning and outlines how it can be leveraged to solve
the round-trip engineering problem. Illustrating our approach, Sec. 3 introduces
the Tefkat model transformation language alongside a running example that is
used throughout this paper. The main contribution, Sec. 4, details how the idea
of abduction together with other techniques can be used to effectively reverse a
unidirectional transformation based on Tefkat to synchronise two models. The
presented ideas are then compared to related work in Sec. 5. Concluding, we
summarise and discuss our findings and provide an outlook to future work.

2 Abduction and RTE

Abduction was introduced as an epistemological theory to scientific knowledge
acquisition by C.S. Pierce [2]:

102 T. Hettel, M. Lawley, and K. Raymond

“The surprising fact, C, is observed. But if A were true, C would be
a matter of course. Hence, there is reason to suspect that A is true.”

Arriving at A is the process of abduction also paraphrased as the “inference
to the best explanation”. To illustrate this, consider the abductive feat achieved
by Johannes Kepler (1571–1630). He noticed that Mars’ orbit around the sun
did not comply to a circular trajectory that had been attributed to planetary
motion. After years of studying planetary motion and generalising from Mars to
all planets1, he came up with his theory that planets follow an elliptical trajec-
tory around the sun rather than a circular motion. Kepler’s laws of planetary
motion still hold today and correctly describe the orbits of planets and comets
discovered long after Kepler’s death.

Due to Pierce’s broad definition of abduction, contrasting it against induction
is difficult and largely depends on its concrete interpretation. Some philosophers
regard abduction as a special case of induction. Others maintain it is more
general and subsumes induction [3].

2.1 Abductive Logic Programming

In this paper we adopt the much narrower interpretation of abduction as pursued
by the logic programming and artificial intelligence community [4,5]. The main
difference is that an existing, possibly incomplete, but fixed background theory
is required. By making certain assumptions, the abduction process can complete
this theory so as to provide an explanation for an observed phenomenon. These
incomplete parts of the theory, for which it is not known whether they hold true
or not, are called abducibles.

Formally speaking, an abductive framework is a triple (P, A, I), where

– P is the program (or theory), a set of logic implications;
– A the set of abducibles, predicates used in P that can be assumed as required;

and
– I the set of integrity constraints over predicates in A.

In order to explain an observed phenomenon Q, the abductive query, a hypothesis
H ⊂ A is sought such that:

– H ∪P |= Q, the hypothesis applied to the program explains the observation;
– H ∪ P |= I, the hypothesis and the program comply with the integrity

constraints; and
– H ∪ P is consistent, i.e., the hypothesis does not contradict the program.

To arrive at an explanation, the abductive logic programming (ALP) proof proce-
dure [6] can be applied. It leverages an algorithm similar to backwards chaining,
which is for instance used in Prolog implementations. An abductive explanation
for Q is produced by unfolding it against the logic program or theory P . If the
1 This generalisation is not obvious as the orbits of the other known planets are less

eccentric and could crudely be approximated by a circle.

Towards Model Round-Trip Engineering: An Abductive Approach 103

procedure encounters an abducible, it is assumed as required (i.e. such that Q
succeeds) and the integrity checking phase is entered to verify that the hypoth-
esis does not violate the constraints. While doing so, other abducibles may be
encountered, assumed and checked as well. Eventually, the proof procedure will
terminate with a set of hypotheses that all constitute legitimate explanations
for Q with respect to the aforementioned criteria. However, it may also happen
that no explanation can be found. In this case, the observation Q cannot, under
no legitimate assumptions, be explained by the theory P .

2.2 Reversing and RTE as an Abductive Problem

The idea of abduction can be applied to reverse model transformations. This is
achieved by interpreting the new target model as the observed phenomenon Q,
which should be explained in terms of the transformation that corresponds to
the program P by hypothesising about the existence of source model elements,
which correspond to H and A respectively. Possible explanations are constraint
by the source meta-model in terms of the defined type hierarchy and cardinality
and nature of references (association vs. aggregation).

By extending the previous interpretation, also incremental RTE scenarios,
which are our primary concern, can be covered as illustrated in Fig. 2. Therefore,
we assume the old source and target models are accessible and only changes need
to be propagated. Moreover, it is assumed that the old target model is the result
of applying the transformation to the old source. In this case, the program P
corresponds to the old source and target models, the trace connecting both and
the transformation producing the new target from the new source. Changes to
the target are represented by the observation Q and are explained in terms of
source changes as part of the hypothesis H . As aforementioned, explanations
have to comply with the integrity constraints I, which are mainly derived from
the meta-model. This rather abstract interpretation of RTE as an abductive
problem will be further refined and elaborated on in Sec. 4.

S T

TraceSold Told

Snew Tnew
Observation

Q
Hypothesis

H

MS MT

Integrity
Constraints I

Program P

Conforms to

Conforms to

Transformation

Transformation

Fig. 2. Model round-trip engineering interpreted as an abductive problem. MS and
MT represent the meta-models of source model S and target model T respectively.

104 T. Hettel, M. Lawley, and K. Raymond

3 Tefkat

To illustrate how abduction can be leveraged to facilitate model synchronisation
based on a unidirectional, non-injective transformation between two models, the
Tefkat transformation language [7] is used. It provides a rule-based and declara-
tive way to specify transformations. Guaranteeing confluence of the transforma-
tion result, rules are automatically scheduled by the engine.

RULE class2table

FORALL Class c

WHERE c.persistent AND c.name = n

MAKE Table t FROM t4c(c)

SET t.name = append("tbl",n);

PATTERN hasAttribute(c,a)

FORALL Class c2

WHERE c.ownsAttr = a

OR (c.super = c2

AND c2.ownsAttr = a);

RULE attr2col

FORALL Class c, Attribute a

WHERE hasAttribute(c,a)

AND c.persistent

AND a.name = n

MAKE Table t FROM t4c(c),

Column col FROM col(c,a)

SET t.cols = col,

col.name = n;

Fig. 3. Model transformation rules given in Tefkat [7] for mapping UML class diagrams
onto relational database schema

Facilitating reuse of transformation fragments, Tefkat offers rule inheritance
and a concept called PATTERN for reusing pattern definitions. Rules consist of 3
parts (refer to Fig. 3 for examples). The source pattern (FORALL and WHERE), the
target pattern (MAKE and SET) and the trace (FROM) connecting both. Elements
that are matched as part of the source pattern can be used to uniquely identify
target elements through a function2. Using the same function in different rules
makes sure that a target object is only created once and can subsequently be
reused in other rules. For instance in the example depicted in Fig. 3 the function
t4c(c) in the MAKE statement of rule class2table creates one Table per Class
c. The same function is reused in rule attr2col for adding Columns to Tables. In
other words: Class c together with the function t4c uniquely identifies Table
t. This mapping produced during the transformation process is stored in the
trace, which can be queried for relations between source and target model.

3.1 Running Example

To illustrate the concepts introduced in the paper the following running example
is used, which is based on the popular UML to relational-database-schema map-
ping. The transformation (see Fig. 3) is not injective as there are at least two
different class diagrams that equate to the database schema depicted in Fig. 4.
One is also depicted in Fig. 4, another can be derived by flattening the class
hierarchy and effectively moving the name attribute to Student and Staff.
2 This does not mean that Tefkat is restricted to injective transformations in any way.

Rather the identity of target elements is restricted to one particular set of source
elements to allow different rules to define different aspects of one target element.

Towards Model Round-Trip Engineering: An Abductive Approach 105

name:String
Person

id:String

Student
persistent

salary:Int
faculty:String

Staff
persistent

name idtblStudent:

name salarytblStaff: faculty

Fig. 4. A simple UML class diagram and the corresponding relational database schema
with respect to the transformation depicted in Fig. 3

4 Reversing Transformations

There are a number of steps involved in reversing transformations. The following
subsections elaborate on each of these steps.

4.1 Logic Programming Representation

Employing abductive logic programming to solve the RTE problem requires that
models and transformation are represented in terms of first-order logic con-
structs. The source and target models are encoded using three different predi-
cates for instances, attributes and references. One further predicates is needed
to encode the trace:

– inst(o, t), where o is a unique object identifier and t refers to a specific type;
– attr(o, a, v), where o identifies the object, a the attribute and v the value;
– ref(o1, r, o2), where o1 is the source object and r the reference pointing to

object o2; and
– trace(i, t, s) where i is the name of the uniqueness function, t the target

element uniquely identified by i and the source elements s.

The following predicates encode (parts of) the UML class diagram as depicted
in Fig. 4.3 In the following, atoms are denoted by type writer font, whereas
variables are denoted by italics.

inst(person, class), ref(person, attributes, name),
attr(person, name, ‘Person’), inst(student, class),
inst(name, attribute), ref(student, super, person),
attr(name, name, ‘name’), . . .

Transformation rules can be interpreted as logic implications of the form Tgt(Y),
T race(X, Y) ← Src(X) where Src is the source pattern and X the elements
matched by it. Trace represents the trace part uniquely mapping source el-
ements X to target elements Y and Tgt the target pattern to be established.
3 Please note that the object identifiers were chosen to improve readability, but can

be completely arbitrary as far as abduction logic programming is concerned.

106 T. Hettel, M. Lawley, and K. Raymond

For instance, the class2table transformation rule can be represented as follows:

inst(t, table), attr(t, name, n), trace(t4c, t, c) ←inst(c, class), attr(c, name, n),
attr(c, persistent, true).

Employing ALP requires that there is only one head predicate. Therefore, the
target pattern is collapsed into a single predicate and each rule is split in two
parts: the source part, which is amenable to abduction, and the target part,
which is used to match target patterns. Trace is included in the source part so
that changes to it can be abduced. Both parts are discussed in the following
sections. For instance, the rule class2table can be represented as follows:

Source part: class2table(t, n) ←inst(c, class), attr(c, persistent, true),
attr(c, name, n), trace(t4c, t, c)

Target part: class2table(t, n) ←inst(t, table), attr(t, name, n).

4.2 Matching Target Patterns

Transformation rules generally match source patterns and then create the cor-
responding target pattern. Considering only one application of one rule, say
attr2col, results in one instance of the target pattern being created. Removing
only parts of that pattern–only the column for instance–is not possible. There is
no way, the aforementioned rule can produce an isolated column. Only removing
(or creating) the whole target pattern constitutes a legitimate target change.
Therefore, changes can only be propagated on a target pattern basis. Either the
whole pattern is created or deleted.

Usually, target patterns overlap to produce an interconnected network for ob-
jects (see Fig. 5), rather than unconnected islands of target pattern instances.
For example, consider the transformation in Fig. 3. Assume there is one persis-
tent class with one attribute. Applying the transformation produces one table
with the corresponding name through rule class2table. Rule attr2col (re-)
creates the same table and adds a column to it. Through the overlapping of both
target patterns, the table is now supported by both rules whereas the column is
only supported by one.

cl
as
s2
ta
bl
e

attr2col

attr2col

name="tblStaff"
tblStaff:Table

name="name"
colName:Column

name="faculty"

colFaculty:Column
cols

cols

Fig. 5. Object diagram showing overlapping target patterns

Towards Model Round-Trip Engineering: An Abductive Approach 107

This overlapping effectively allows the removal of parts of target patterns, but
not arbitrary target elements. For instance, removing the column and retaining
the table in the previous example is a legitimate change, even though only a part
of the attr2col target pattern is removed. The other part, namely the table, is
still supported by class2table. Changing the source model such that attr2col
cannot be applied any more results in the deletion of the target instances that
were solely supported by this particular rule application. Other target elements,
supported by other rules, still remain.

Not only target patterns can be overlapping, but also source patterns. This is
also the case in our previous example. The same class is matched by
both rules. Therefore, solutions to deleting the column may also accidentally
delete the table, which, however, should be retained. Consider a source change
where the class is deleted, which results in the deletion of the column and the
table. To prevent such side effects, overlapping patterns can be actively retained
by “observing” their insertion. With respect to the example, deleting the column
requires the whole attr2col target pattern to be deleted and the table to be
retained by (re-)inserting class2table.

As changes can only be propagated on a target pattern basis, individual
changes need to be coalesced. This is done by matching the target patterns
against the old and new target model and requiring that with each pattern at
least one change (deletion or insertion) is matched. Based on these matches it
can be determined which patterns need to be deleted or inserted. For pattern
matches where only some of the elements were subject to deletion, all other el-
ements need to be supported by other rules and actively retained, as discussed
before.

4.3 Formulating the Abductive Query

Based on the target patterns that need to be created or removed, the abductive
query can be formulated. This step is straightforward for deletions in which case
the corresponding source pattern can be looked up in the trace.

For insertions, a more complex process is necessary. Target patterns may be
overlapping and even different rules can have the same target pattern. Therefore,
it may be possible that not all source patterns can be created to support all target
pattern matches. For instance, consider the following transformation:

RULE R1 RULE R2
FORALL X x FORALL Y y
MAKE Z z FROM f(x) MAKE Z z FROM g(y)

Assume a new instance of Z was created in the otherwise empty target model
and this change is now propagated. Both target patterns match this change.
However, as they use different uniqueness functions (f(x) in R1 and g(y) in R2)
only one of the rules can support the new Z. There is an exclusive choice to be
made. Even more complex scenarios are possible where there are two (or more)
sets of rules covering the same target patterns. Again, not all of them can and
have to support the target patterns.

108 T. Hettel, M. Lawley, and K. Raymond

Essentially, the abductive query is a conjunction of disjunctions of rules, where
all variables are bound to target elements. Disjunctions of transformation rules
represent the different alternatives. For propagating pattern deletions, rules are
negated (e.g. ¬attr2col(tblStudent, colName, ‘name’)) to require a set of source
changes that explain the absence of this particular pattern match in the new
target model. Positively mentioned (not negated) rules lead to explanations in
terms of source changes as to the pattern’s insertion in the new target model.

Consider our previous example where there was an alternative between rules
R1 and R2 to support a new instance of Z, say newZ. The abductive query Q can
be formulated as follows:

Q1 = R1(newZ) ∨ R2(newZ).

In other words, an explanation is sought for the existence of newZ either through
applying R1 or R2.

Consider the running example (transformation Fig. 3, instances Fig. 4). As-
sume column name in table tblStudent was deleted. This results in the deletion
of rule attr2col(tblStudent, colName, ‘name’). As discussed before, in order to
retain table tblStudent and column id they have to be actively retained by
re-inserting their supporting rules into the query:

Q2 =¬attr2col(tblStudent, colName, ‘name’)∧
attr2col(tblStudent, colId, ‘id’) ∧ class2table(tblStudent, ‘Student’)

4.4 Abducing Source Changes

With the abductive query in place, this section now focuses on the computation
of the corresponding source changes that provide an explanation to the query.
Recall that an abductive framework is a triple (P, A, I), consisting of the program
or theory P , the set of abducibles A, and integrity constraints I. Moreover, there
is an abductive query Q, which was discussed before and a set of hypotheses H
explaining Q.

As part of the program P , a representation of the original (or old) source model
is required. As introduced in Sec. 4.1 three predicates are used to encode instances
(inst), references (ref) and attributes (attr) as parts of the source model. A forth
predicate (trace) represents the trace connecting source elements with their corre-
sponding target elements based on the FROM-statements in the transformation. To
distinguish between the old and new source model, the aforementioned predicates
are prefixed with old and new respectively.

Since the new source model is not known, it is formulated in terms of changes
(insertions ins and deletions del) to the old source model:

new inst(c, t) ← old inst(c, t),¬del inst(c, t)
new inst(c, t) ←¬old inst(c, t), ins inst(c, t)

with similar rules for attributes, references and trace. In words: instances (at-
tributes, references, or trace) are in the new model, if they are in the old and
have not been deleted, or if they are not in the old model but have been inserted.

Towards Model Round-Trip Engineering: An Abductive Approach 109

In terms of abductive logic programming, the changes to the source model is
the part of the theory or program that is incomplete. It is not known whether
a particular instance was inserted or deleted. However, the abductive proof pro-
cedure has the freedom to hypothesise about this in order to account for new
elements in the target model. The old source model is given and must not be
changed. Formally speaking, the predicates prefixed with ins or del in the above
rules are the abducibles in A, which can be assumed as required.

To complete the abductive program P , the transformation has to be in-
cluded. As introduced in Sec. 4.1 the transformation rules can be written as logic
implications, formulated over the predicates that make up the new source model.
Hence, all predicates referring to source elements have to be prefixed with new.
As the query Q is formulated over rules rather than individual target elements,
only the source side and the trace of the transformation rules are of interest:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

class2table(t, n) ← new inst(c, class),newattr(c,persistent,true),
new attr(c, name, n),new trace(t4c, t, c).

attr2col(t, col, n) ← new inst(c, class),new inst(a, attribute),
new attr(c, persistent, true), hasAttribute(c, a),
new attr(a, name, n),new trace(t4c, t, c),
new trace(col4attr, col, [c, a]).

hasAttribute(c, a) ← new inst(c, class),new ref(c, ownsAttr, a).
hasAttribute(c, a) ← new inst(c, class),new ref(c, super, sc),

new ref(sc, ownsAttr, a).

To complete the abductive framework, a set of integrity constraints has to
be provided, which is necessary to get sensible answers from the system. These
integrity constraints are made up of three parts.

– Constraints concerning the uniqueness of the trace, i.e., there must be exactly
one set of source elements giving rise to one target element, regardless of the
function used.

– Constraints on the usage of ins and del, i.e. elements cannot be inserted and
deleted at the same time. Moreover, only existing elements can be deleted
and only non-existing elements can be inserted.

– Constraints concerning the types of elements, cardinality of references, con-
tainment, as derived from the meta-model.

With this set of rules given, the abductive query can be evaluated. This happens
in a fashion similar to backward chaining. However, abduction has the freedom
to assume the abducibles (the source changes) as required to succeed the query.
If the query cannot be succeeded, changes made to the target are not valid and
no source changes exist such that the desired target model can be produced by
applying the transformation. To avoid littering the source model with excess
elements, only minimal source changes are sought.

To illustrate the abduction process, consider the deletion of name column in
tblStudent. As per previous discussions, the corresponding query equates to

Q = ¬attr2col(tblStudent, colName, ‘name’)∧
attr2col(tblStudent, colId,‘id’) ∧ class2table(tblStudent, ‘Student’)

110 T. Hettel, M. Lawley, and K. Raymond

The proof procedure now unfolds the query against P (see previous page) and
first tries to fail attr2col(tblStudent, colName, ‘name’). Therefore, it tries to fail
new attr(student, persistent, true) by assuming the class was non-persistent
(del attr(student, persistent, true)), which is an abducible. Now the integrity
checking phase is entered, which declares this solution to be legitimate. However,
advancing other parts of the query will rule out this solution as it cannot explain
class2table(tblStudent, ‘Student’). There are more potential solutions that
need to be explored. Another alternative is to fail hasAttribute(student, name)
by assuming del ref(student, super, person). Again integrity check declares
this assumption to be viable and indeed it sustains advancing all other parts of
the query. The proof procedure will continue unfolding all parts of the query,
explore all alternatives and arrive at a set of alternative source changes.

4.5 Compensating Side Effects

Abductive explanations (source changes) may have different qualities when trans-
formed back to the target side. All will explain the observation, i.e., perform the
desired target change. However, some will do more and inflict further changes on
the target model. Assume that for some reason the name column in tblStudent
is to be removed. The corresponding alternative source changes proposed by the
abduction process are:

– H1 = {delete attribute name in Person},
– H2 = {delete Person},
– H3 = {delete inheritance relationship between Person and Student}.

The first two changes have side effects and cause tblStaff to lose its name
column. One solution seems to be to add additional constraints to I that re-
ject these solutions. However, this proves to be too short-sighted as possible
solutions may be overlooked. By temporarily accepting these side effects, but re-
quiring their compensation by insisting on reinserting the deleted elements, new
solutions can be generated. These new solutions are super-sets of the previous
solution. In a new abductive query an explanation is then sought for the obser-
vation that tblStudent does not have a name column any more but tblStaff
still has.

With this extended query, the system comes up with the following suggestions:

– H ′
1 = {delete inheritance relationship between Person and Student},

– H ′
2 = {move attribute name from Person to Staff},

– H ′
3 = {introduce a new, non-persistent class, move name there and make

Staff a subclass of the new class}

All of these changes exactly perform the requested target change and therefore
do not exhibit any side effects when transformed to the target model. Note that
we have no basis for choosing any one of these solutions as “superior” but the
user might have some criteria unknown to the tool.

Towards Model Round-Trip Engineering: An Abductive Approach 111

4.6 Implementation

In our first attempt to implement the outlined procedure for synchronising mod-
els we experimented with ProLogICA [8], which is a direct implementation of the
proof procedure in Prolog. It can essentially be applied to any Prolog program.
While it was easy to use and the rules needed were essentially the rules outlined
above, we quickly run into performance issues and answers took too long to
compute, making it infeasible for even quite small transformations and models.
Moreover, it required a set of “blank” object identifiers for use in creating new
instances of types. This resulted in an combinatoric explosion of isomorphic so-
lutions, where the only difference was the object identifier used to create a new
instance of a type.

Our second and current attempt is based on constraint handling rules (CHR)
as suggested by Abdennadher and Christiansen [9]. CHR implementations are
readily available in most Prolog environments. Given a set of re-writing rules,
constraints are rewritten until false was produced or no rules are applicable any
more. In this case the set of remaining constraints constitute the answer. Mod-
els are encoded as aforementioned but in addition are “closed” by a constraint
prohibiting the creation of new facts through rewriting. Moreover, modifications
to the transformation rules were necessary as CHR does not support negation
as failure. Instead explicit negation had to be used, which required splitting the
transformation rules in two parts. One for inserting and one for deleting. Even
though there was a larger number of rules involved to encode the RTE problem,
solutions were produced much more quickly. Moreover, using CHR also allows
us deal with attribute value manipulation, such as adding numbers, concatenat-
ing strings, etc. and comparisons of attribute values in source patterns. When
reversing such rules, a number of constraints can be provided restricting possible
values.

Even though the CHR-based approach seems to be far away from how the
abductive proof procedure works, it is in fact not that different. Essentially,
the same steps are executed but not necessarily in the same order. Queries are
still unfolded against the program. This unfolding, however, can be advanced in
a more breadth-first manner, building up constraints for explanations quickly,
rather than traversing the search space in a strictly depth-first fashion. We be-
lieve that this together with the fact that CHR implementations are mature and
directly translated, optimised and executed in Prolog, rather than executing an
ALP-interpreter, account for the big difference in performance.

5 Related Work

There are a number of existing approaches to model synchronisation and round-
trip engineering, imposing different restrictions on the underlying transforma-
tions. In general it is required that there is a one-to-one relationship between
source and target changes. How this is achieved depends on the concrete
approach.

112 T. Hettel, M. Lawley, and K. Raymond

There some approaches centred around a set primitive of injective functions
that can be combined to produce more complex transformations. These are guar-
anteed to be injective and can be easily reversed [10,11]. Injective functions, how-
ever, are quite limited and not even arithmetic operations can be used. To lift
restrictions on the transformation, Foster et al [12] present an approach based
on so-called lenses; pairs of functions defining the forward and the reverse trans-
formation. The forward function solely works on the source model and produces
the target model. Conversely, the reverse uses the old source model and the new
target to produce the new source model. Still, target changes together with the
old source model have to uniquely identify the new target model.

Yet another approach [13] that considers three models for synchronisation is
based on triple graph grammars [14], which govern the co-evolution of source and
target models. Any relationship—even non-functional relations—can be speci-
fied, but not necessarily executed. Changes are propagated by identifying the
matching pattern and then establishing or invalidating the corresponding pat-
tern in the other model. When invalidating patterns, all elements are deleted
that do not partake in another pattern match. Transformations are not required
to be bijective on an element level in order to be usable for this synchronisation
approach, as shown by Ehrig et al [15]. However, there must be a one-to-one
relationship between source and target patterns.

Fewer restrictions on the nature of the transformation are imposed by the
approach presented by Cicchetti et al [16]. It allows for non-injective partial
transformations. The reverse transformation, specified by the user, may not be
a function and hence there may be several source models for a given target model.
However, there is no way to ensure that the provided reverse is reasonable in
the sense that when transformed forward again all sources result in the changed
target model. Moreover, round-trips without any changes produce all possible
source models rather than just the original one.

Query/View/Transformation (QVT) [17] is a recent standard for model trans-
formation, which allows the declarative definition of relationships between source
and target models. Relations between models can be checked or enforced in both
directions. There is no restriction on the nature of these relationships. They do
not have to be one-to-one but can also be many-to-one or even many-to-many in
one or the other direction. In other words, there may be more than one source
model that corresponds to a given target model and vice versa. This is very sim-
ilar to the problems discussed in this paper. In fact, QVT model transformation
and RTE based on QVT can also be understood as an abductive problem, anal-
ogous to Sec. 2.2. We are certain that our technique can also be applied in the
context of QVT to support more than just the one-to-one relationships between
models.

Not directly related to model synchronisation, is an approach by Varró and
Balogh [18] where they propose a model transformation approach based on an
inductive learning system. By providing pairs of corresponding models, the in-
ductive logic programming systems derives a set of rules that transform one
model into another. As pointed out earlier, there is a close relationship between

Towards Model Round-Trip Engineering: An Abductive Approach 113

abduction and induction and therefore, there are also parallels between Varro
and Balogh’s approach on our approach. However, the premises are different.
We consider the theory (transformation) as give and immutable, and derive new
source models, as opposed to considering the models as immutable and trying to
derive a theory. Self-evidently, both approaches could be combined to result in
“synchronisation by example”, where the system tries to derive rules based on
pairs of source and target changes chosen by a user. This, however, presupposes
that all information required to make a choice is contained in the models and
the transformation. There may be scenarios where this is the case. As far as our
running example is concerned, this does not hold. Whether to delete a class or
to mark it non-persistent so as to delete a table is nothing that can be derived
from any of the models or the transformation. It rather depends on the meaning
a user assigns to the class in question and therefore is not amenable to logic
programming.

6 Conclusion and Future Work

In this paper we presented a novel approach to model round-trip engineering based
on abductive logic programming. Abductive reasoning, the inference to the best
explanation, allows us to compute hypotheses that together with a theory explain
an observed phenomenon. We showed how RTE can be interpreted as an abductive
problem. Changes to a target model represent the phenomena for which a set of
source changes is hypothesised that account for the target changes with respect
to the transformation. This was operationalised by translating the transformation
into first-order logic with rules of the form “source pattern implies target pattern”.
Models were represented using predicates for instances, attributes and references.
Abductive reasoning can then be applied to this first-order-logic program to result
in a set of source changes performing the desired target change. While performing
the target change, the proposed source changes may inflict further changes, side
effects, on the target model. In this case compensation can be applied to avoid side
effects and arrive at more solutions. The presented techniques are implemented in
Prolog using constraint handling rules (CHR), which also allow for dealing with
attribute value comparisons in the sense, that solutions may contain a number of
constraints restricting attribute values.

With the proposed techniques most of Tefkat’s features can be reversed. This
includes negation, LINKS/LINKINGs and PATTENs. Features that are not yet sup-
ported are recursive PATTENs or reflection. The presented ideas, however are not
limited to Tefkat. Also model synchronisation based on QVT or triple graph
grammars, which both allow the specification of non-functional relations, can be
interpreted as abductive problems.

Abduction was paraphrased as “inference to the best explanation” and there-
fore needs a way to assess the quality of the produced solution. Based on this
a list of likely or recommended solutions could then be presented to user or
picked automatically. We have investigated very simple heuristics based on the
size of the proposed changes, which worked surprisingly well. However, further

114 T. Hettel, M. Lawley, and K. Raymond

investigations are required. This heuristic could be directly integrated into the
abduction mechanism such that each choice-point creates a backlog of solutions,
while only the “best” solution is explored further. Such a merge of abduction
and A* search is subject to future work to improve performance and find “good”
solutions quickly. Furthermore, Hearnden et al’s [19] approach to incrementally
propagating source changes to the target model of the transformation, could
prove beneficial for incrementally checking for side effects of proposed source
changes.

References

1. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-
trip engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008)

2. Pierce, C.S.: Collected Papers of Charles Sanders Peirce, vol. 2. Harvard University
Press, Cambridge (1931-1958)

3. Aliseda, A.: Abductive Reasoning: Logical Investigations Into Discovery and Ex-
planation. Springer, Heidelberg (2005)

4. Kakas, A., Denecker, M.: Abduction in Logic Programming. Computational Logic:
Logic Programming and Beyond, 402–436 (2002)

5. Kakas, A., Kowalski, R., Toni, F.: Abductive Logic Programming. Journal of Logic
and Computation 2(6), 719–770 (1993)

6. Kakas, A., Mancarella, P.: Generalized Stable Models: A Semantics for Abduction.
In: Proceedings of the 9th European Conference on Artificial Intelligence, ECAI
1990, Stockholm, Sweden, pp. 385–391 (1990)

7. Lawley, M., Steel, J.: Practical Declarative Model Transformation with Tefkat.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer,
Heidelberg (2006)

8. Ray, O., Kakas, A.: ProLogICA: a practical system for Abductive Logic Program-
ming. In: Proceedings of the 11th International Workshop on Non-monotonic Rea-
soning (2006)

9. Abdennadher, S., Christiansen, H.: An Experimental CLP Platform for Integrity
Constraints and Abduction. In: Proceedings of FQAS 2000, Flexible Query An-
swering Systems: Advances in Soft Computing series, pp. 141–152 (2000)

10. Mu, S.C., Hu, Z., Takeichi, M.: An Injective Language for Reversible Computation.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 289–313. Springer, Heidelberg
(2004)

11. Mu, S., Hu, Z., Takeichi, M.: An Algebraic Approach to Bi-directional Updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combina-
tors for Bi-Directional Tree Transformations: A Linguistic Approach to the View
Update Problem. ACM Transactions on Programming Languages and Systems
(2007)

13. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

Towards Model Round-Trip Engineering: An Abductive Approach 115

14. Königs, A.: Model transformation with triple graph grammars. In: Proceedings
of the Model Transformations in Practice Satellite Workshop of MODELS 2005
(2005)

15. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE
2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

16. Cicchetti, A., Ruscio, D.D., Eramo, R.: Towards Propagation of Changes by Model
Approximations. In: Proceedings of the 10th International Enterprise Distributed
Object Computing Conference Workshops, p. 24. IEEE Computer Society, Los
Alamitos (2006)

17. Object Management Group (OMG) formal/08-04-03: Meta Object Facility (MOF)
2.0 Query/View/Transformation (QVT) Specification Version 1.0 (November 2005)

18. Varró, D., Balogh, Z.: Automating model transformation by example using induc-
tive logic programming. In: SAC 2007: Proceedings of the, ACM symposium on
Applied computing, pp. 978–984. ACM, New York (2007)

19. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 116–131, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Rewriting Queries by Means of Model Transformations
from SPARQL to OQL and Vice-Versa

Guillaume Hillairet, Frédéric Bertrand, and Jean Yves Lafaye

Laboratoire Informatique Image Interaction,
University of La Rochelle, France

{guillaume.hillairet01,fbertran,jylafaye}@univ-lr.fr

Abstract. Implementing language translation is one of the main topics within
the model to model transformation area. Nevertheless, a majority of solutions
promoted by model driven engineering tools focus on transformations related to
modeling languages. In this paper, we address query rewriting by means of
model transformations. This study has been carried out within the context of
implementing an object ontology mapping tool, which could enable bridging
object oriented applications and RDF data sources. This approach allows query-
ing RDF data sources via an object oriented query which is automatically re-
written in SPARQL (RDF query language) in order to access RDF data. Hence,
the developer can freely focus upon the sole application object model. In this
paper, we also present with solutions for translating SPARQL queries into ob-
ject oriented queries, thus allowing the implementation of SPARQL endpoints
for object oriented applications.

Keywords: Model Transformations, Query languages, SPARQL, OQL, ATL.

1 Introduction

The Semantic Web [4] envisions the promotion of the Web of Data as a giant inter-
linked information database [6]; data is expressed and published in a machine-
readable format, which enables automatic processing and inference. Semantic Web
technologies provide three facilities to manage data, namely: a directed labeled graph
model for data representation: RDF [12] (Resource Description Framework); a Web
ontology language (OWL [3]) to express data semantics and a query language for
RDF (SPARQL [16]) which allows to distribute queries across RDF graphs. These
technologies provide a pragmatic way to make the Semantic Web vision operational.
Integrating these technologies within an application development process may be
valuable in two ways: firstly, Web applications may provide their data in RDF and
thus contribute to Web of Data enrichment; secondly, applications could use any
available RDF data on the Web and thus enrich their own content (ex: automated data
mashup [1]).

One way to achieve this is to allow the manipulation of RDF data as plain objects,
thanks to an object/ontology mapping solution, similar to what exists for bridging
relational data and object oriented applications. One main common feature of such
tools is their dealing with query rewriting. During the implementation of an object

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 117

ontology mapping, we actually faced the problem of designing a query rewriting tool.
This tool should allow the developer to successively write a query according to the
application object model, rewrite this object oriented query as a SPARQL query
thanks to the previously defined mapping between the object model and an ontology,
execute the query on a RDF data source, and translate back the results into objects.

In this paper we study the transformation rules between an object oriented query
language and the RDF query language SPARQL. We develop a query rewriting en-
gine on top of an object ontology mapping solution. The query rewriting engine uses
the ATL model transformation language [14]. This study demonstrates a novel appli-
cation area for model transformations.

The remainder of this paper is structured as follows: Section 2 presents related
work. Section 3 introduces the context of this work, which is based on the implemen-
tation of an object ontology mapping solution performing RDF data access through an
object abstraction. Section 4 presents the query languages we chose for this study.
Section 5 explains the query rewriting process implementation via model transforma-
tions. Finally, Section 6 concludes on remarks and future works.

2 Related Work

Providing solutions to expose existing data source content in RDF is of high interest
for insuring a real adoption of the Semantic Web. Many approaches have been pro-
posed, mainly about relational to RDF mapping. The W3C RDB2RDF Incubator
Group produced a corresponding typology. Other states of the art for database to RDF
efforts can be found in [9] and [19]. Some of these approaches provide mechanisms to
query relational data with SPARQL.

R2O [18] and D2RQ [5] are based on declarative mapping languages, and can be
used to build SPARQL endpoints over RDBMs. R2O provides more flexibility and
expressiveness, it needs a referenced ontology. D2RQ directly exposes the database as
Linked Data and SPARQL with D2R server. Using either R2O or D2RQ requires an
initial learning of the language as well as a good knowledge about modeling. Virtuoso
RDF Views [8] stores mappings in a quad storage. While D2RQ and RDF Views
follow the table-to-class, column-to-predicate approach, RDF Views has some addi-
tional methods to incorporate the DB semantics. All mapping languages have more or
less the same complexity and flexibility as SQL. Relational.OWL [11], SPASQL [17]
and DB2OWL [9] are other projects that aim to expose relational data on the Web.

SPOON (Sparql to Object Oriented eNgine) [7] addresses the wrapping of hetero-
geneous data sources in order to build a SPARQL endpoint. The SPOON approach
grounds on an object oriented abstract view of the specific source format (as in ORM
solutions). SPOON provides a run time translation of SPARQL queries into an OO
query language based on the correspondence between the SPARQL algebra and the
monoïd comprehension calculus. Our approach shares many conceptual ideas with the
SPOON project. Nevertheless, the SPOON approach seems to only operate in case of
an ontology that is generated from an object model, and not to offer solutions for
complex mappings. Furthermore, SPOON does not propose any solution for rewriting
OO queries into SPARQL queries.

118 G. Hillairet, F. Bertrand, and J.Y. Lafaye

3 Context of This Work

In this section, we present the context in which our proposal has been developed.
The query rewriting process uses an object ontology mapping solution we are cur-
rently developing. This solution allows both RDF data access through an objet ab-
straction, and conversely ensures an external access to objects via SPARQL queries
on a corresponding RDF representation. It does alleviate the implementation of
SPARQL endpoints.

3.1 Bridging Object Oriented Applications and Semantic Web

The pieces of work presented in this article take place within the context of the devel-
opment of an object ontology mapping solution. We already presented our main ideas
in [10]. We have specified a declarative mapping language and developed a frame-
work that is inspired from object relational mapping framework, but actually deals
with bridging applications and Semantic Web sources.

Such a solution allows the publication of data being generated by an object
oriented application (here, by a Java application) as RDF data. RDF is dynamically
generated and can be used by external applications, taking advantage of the data inte-
gration capabilities offered by the Semantic Web technologies. This allows an easier
data sharing between applications, for example automated data mashups. The second
benefit of such a solution is to allow the developer focusing on the application object
model, without having to care about how objects are represented in RDF, and thus not
having to define SPARQL queries, but rely upon an object query language instead.
One advantage is that the application is no longer bound to a single data source, as
usual in object relational solutions.

The framework we developed considers the set of POJO (Plain Old Java Object)
classes as the domain object model. POJO classes are represented at runtime as an
Ecore model (i.e. a metamodel), thus enabling the representation of object graphs as
models conforming to an Ecore model. Considering the application domain model as
a metamodel is perhaps unusual, but not penalizing, since classes of the application
domain model are supposed to be POJO classes. Such classes generally own proper-
ties that can be accessed by getters and setters; Class operations can specify the class
behavior. This kind of classes can easily be represented in the form of Ecore models.
The use of model enables the execution of model transformations at runtime for both
data transformation and query rewriting. Our framework uses the ATL model trans-
formation language.

The object-oriented model proposed by Ecore [20] and the ontology model proposed
by OWL [3] share many features. Both include the concepts of classes, properties and
multiple inheritances. However, the object model and the ontological model show major
differences as reported in [13]. Object model instances are instance of only one class,
and must conform exactly to the structure (properties and methods) of their class defini-
tion, whereas in RDF/OWL instances may easily deviate from their class definitions or
have no such definitions at all. The purpose of our object ontology mapping approach is
not to provide a solution to the impedance mismatch between object and RDF. We

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 119

rather consider ontologies as schema for online RDF data sources that help us to
identify required data to be used by an application. The mapping language we have
developed helps defining rules for instantiating objects from RDF data, and rules for
publishing objects as RDF data. Figure 1 presents the domain object model that will be
used as an example throughout this article, as well as the ontology associated with it.

Fig. 1. Domain object model (left) and an excerpt of the bibo1 ontology (right)

3.2 Object Ontology Mapping Language

We propose MEO (Mapping Ecore to OWL), a declarative language for the definition
of binary mappings between domain object models and ontologies. This mapping is
based on the well-defined semantics of the ATL language. The mapping language is
compiled into two ATL transformations, via a couple of higher order transformations
(refer to [10] for more details). The first generated transformation takes the object
model as input, and produces an RDF model (according to the ontology vocabulary).
The second generated transformation deals with the opposite way. It takes an RDF
model as input and produces a model that conforms to the application domain model,
thus finally enabling the retrieval of objects from RDF data sources.

Our mapping language has its own abstract and concrete syntaxes developed by us-
ing the TCS toolkit [15]. An excerpt of a mapping is given in Listing 1. The mapping
is composed of two mapping rules indicating the correspondences between on the one
hand the object model class Author and the ontology class foaf:Person, and on the
other hand, the object model class DVDItem with bibo:Film. Let’s note that two on-
tologies are used here, since the bibo ontology uses terms from the foaf2 ontology.

A mapping rule specifies variables to identify the classes to be mapped. Each vari-
able can be initialized thanks to OCL expressions. The classMap operation indicates
which classes are mapped, while the propertyMap operation maps properties. The
get() and put() operations are others kind of propertyMap() operations to be used
when complex property mappings are to be defined.

1 http://bibotools.googlecode.com/svn/bibo-ontology/trunk/doc/index.html
2 http://xmlns.com/foaf/spec/

120 G. Hillairet, F. Bertrand, and J.Y. Lafaye

1
2
3
4
5
6

mapping library
models = {lib : 'http://org.example.library'}
ontology = {

bibo: 'http://purl.org/ontology/bibo/,
 foaf: 'http://xmlns.org/foaf/0.1/'
}

9
10
11
12
13
14

rule Author2Person {
def a is lib:Author
def b is foaf:Person
def getName is String as b.foaf:name.firstLiteral()
def putName is String as a.name
classMap(a, b)

15
16
17
18

put(putName, b.foaf:name)
get(a.name, getName)
propertyMap(a.authorOf, b.foaf:made)

}
19
20
21
22

rule DVDItem2Film {
def a is lib:DVDItem
def b is bibo:Film
classMap(a, b)

23
24
25

propertyMap(a.title, b.dc:title)
propertyMap(a.length, b.po:duration)
propertyMap(a.authors, b.foaf:maker)

}

Listing 1. Excerpt of a mapping declaration in MEO language

3.3 Specification, Implementation and Execution

The object ontology mapping solution provides a Java library offering common meth-
ods for loading/saving objects to/from RDF data sources, as well as a query engine
enabling the query of RDF data source through an object oriented query language.
This library makes use of models and model transformations at runtime. Using this
solution spans three levels:

Specification. The specification step comprises the definition of the object model of
the application. This object model is the data model, and is defined thanks to the
Eclipse Modeling Framework (EMF) in Ecore. The second specification step is the
selection of the ontology that will be mapped to the object model. This ontology can
either be a custom one, designed as a simple mirror of the object model, or a common
previously existing one, possibly extended by extra concepts. The third specification
step is the definition of the mapping between the object model and the ontology
thanks to the MEO language. The mapping can be trivial if the object model and the
ontology are close to one another, or more complex in case there exist significant
differences.

Implementation. The implementation step uses the Java library offered by the ob-
ject/ontology mapping solution for the Java application which has to access RDF data
sources. This library provides methods to save/load objects to/from RDF data sources. In
this implementation step, the preferred scenario supposes the generation of POJO (Plain
Old Java Object) classes from the Ecore model defined during the specification step.

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 121

Execution. The object ontology mapping solution is performed during the execution
of the Java application (during loading/saving objects). The execution step uses the
ATL engine at runtime. ATL model transformations are generated from our mapping
language and executed when translation of objects to or from RDF is required. The
ATL engine is also used at runtime for the query rewriting process as presented in this
paper.

4 Query Languages

This section presents the query languages used by our approach: an object-oriented
language based on OQL and a query language for RDF data (SPARQL). The
object-oriented language chosen for this implementation is HQL (Hibernate Query
Language) [2].

4.1 Object Query Language

The OQL language is a standard developed by the ODMG (Object Data Management
Group) for the expression of queries on object oriented databases. It suffers from too
much complexity and has never been fully implemented. Several variants of this stan-
dard exist in implementations such as: JDOQL, EJBQL or HQL.

Here, we partially redefine the implementation of the HQL language with the help
of MDE toolkits. A metamodel is developed from the grammar of the HQL language.
The textual syntax of the language is defined, according to the metamodel, using the
TCS toolkit. The execution of a query is made either with the Hibernate framework
[2] when needing to retrieve objects form relational data, or by using model transfor-
mations joint with our object ontology mapping tool when needing to retrieve objects
from RDF data. The latter solution is the one presented in this article.

We limit our presentation to HQL queries of type SELECT. The following figure
shows the representation of a query of such a type in conformance to the HQL meta-
model. A SELECT statement is composed of four clauses: SelectFromClause,
WhereClause, OrderByClause and GroupByClause.

SelectFromClause WhereClause OrderByClauseGroupByClause

SelectStatement

1 0..1 0..1 0..1

Fig. 2. The Select Statement representation in the HQL metamodel

In a SELECT query, only the SelectFromClause element is mandatory. Examples
of valid HQL queries (according to our HQL metamodel) are given below:

(a) from Library
(b) select a.name from Author a, a.authorOf item

where item.publishDate > '2000'

122 G. Hillairet, F. Bertrand, and J.Y. Lafaye

 SelectFromClause

SelectClause FromClause

NewExpression PropertyList

0..1 1

FromRange
alias [0..1] : String

1..*

FromClassPath

InClassDeclaration InCollectionDeclaration

Path
1..*

typeName : String

Fig. 3. Representation of the Select From Clause in the HQL metamodel

HQL query results are either lists of objects or lists of values. Query (a) returns the
list of objects of type Library. Query (b) returns a list of values from the property
name of all objects of type Author having published an item after 2000.

The SelectFromClause representation is given in Figure 3. It is composed of an op-
tional SelectClause and a mandatory FromClause. A SelectClause may be of two
types: NewExpression is a clause which creates a new object. PropertyList contains
the list of values or objects resulting from the query. Values are path expressions
composed of one or more terms. A term is either an alias for a type of the object
model, or a property of the object model. A path permits to browse the object model.

The FromClause allows selecting these elements from the object model that will be
used in the query. The declaration of these elements is achieved either by indicating
the desired class in the object model (represented in the HQL metamodel by From-
ClassPath) or indicating an association. Each element of a FromClause is identified
by an alias that will be used for specifying paths in the query.

The WhereClause element represents the constraint part of the query. A WhereClause
basically is an expression which can either be a binary expression (and, or), an operator
expression (=, <, =<, >, >=), a path expression, or a value (string, integer, boolean).

WhereClause

Expression

1

OperatorExpr

Path

BinaryExpr

AndExpr OrExpr

Value

IntValue StringValue

2

Variable PropertyList

0..1

ExprElement
2

Fig. 4. Representation of the Where Clause in the HQL metamodel

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 123

4.2 RDF Query Language (SPARQL)

SPARQL enables the retrieval of data available on the Web in the form of RDF tri-
ples. RDF models data as a directed labeled graph that represents the information on
the Web. SPARQL can be used to express queries across various RDF data sources,
potentially native RDF data, or RDF data generated automatically, e.g. via a SPARQL
endpoint. A SPARQL endpoint is a server managing the conversion of data (relational
or other) into RDF, when answering the receipt of a SPARQL query.

SPARQL is based on the concept of graph patterns for the selection of RDF triples.
A pattern is a triple composed of one or more variables. An example of SPARQL
query is given below.

(c) select ?o where { ?s rdf:type ?o }
(d) construct {

?s dc:title ?t ;
 po:duration ?n ;
 bibo:pages ?p .

}
where {

?s dc:title ?t .
 ?s dc:date ?d .
 filter (?d > '2000') .

optional {?s po:duration ?n}
optional {?s bibo:pages ?p}

}

A SPARQL query returns a list of values (ResultSet) or an RDF graph. For exam-
ple, Query (c), of type SELECT, returns a list of values corresponding to the identifier
(URI) of the types of all resources in an RDF graph. Query (d) returns an RDF graph
constituted by a set of patterns built in accordance to the set of patterns defined in the
WHERE clause. Let’s note that the WHERE clause in Query (d), includes a test value
using a filter, and two optional patterns. An optional pattern is used to select a pattern
potentially not present in the graph.

To carry our approach out, we defined the SPARQL metamodel from the SPARQL
grammar. We derived the concrete syntax from the metamodel and used the TCS
toolkit.

Figure 5 shows the SPARQL metamodel part and addresses the different possible
types for a query. In this study, we are only interested in queries of types SELECT
and CONSTRUCT.

QueryOperation

SelectQuery ConstructQuery DescribeQuery AskQuery

WhereClause

GroupGraphPattern

Variable
1..*

Fig. 5. The different types of Query Operation in the SPARQL metamodel

124 G. Hillairet, F. Bertrand, and J.Y. Lafaye

SPARQL basic concept is the triple. A set of triples forms a graph pattern. The rep-
resentation of this concept in the SPARQL metamodel is given in Figure 6. The
GroupGraphPattern consists of a set of graph patterns (GraphPattern) representing
the various kinds of graph pattern.

 GroupGraphPattern

GraphPattern

TriplesSameSubject OptionalGraphPattern

GroupOrUnionGraphPattern

0..*

GraphNode PropertyList

subject propertyList1..*1

objectpredicate 1 1

FilterPattern

Expression

1..*

Variable Value

Fig. 6. Representation of the Group Graph Pattern in the SPARQL metamodel

The simpler one is the triple represented by the element TriplesSameSubject which
includes a subject and one or more associated properties. Other types are Grou-
pOrUnionGraphPattern for union of patterns; OptionalGraphPattern for optional
patterns and FilterPattern for specifying filters. Graph patterns are created from
nodes. A node is either a variable (named or free) or a primitive type. A named vari-
able is identified by an URI.

5 Model Transformations

This section presents the implementation of our solution for rewriting HQL queries
into SPARQL and vice versa. We use the model transformation language ATL.

5.1 Rewriting HQL in SPARQL

Rewriting into SPARQL an HQL query expressed in the terms of an object model is
carried out by a model transformation that needs two inputs: the mapping defined
between the object model and the ontology and the HQL query itself. The following
figure depicts the overall rewriting process.

The HQL query is first translated into a model that conforms to the HQL meta-
model. This model is used as an input by HQL2SPARQL.atl. The output is the corre-
sponding SPARQL model. During the transformation execution, the object ontology
mapping is used to identify the correspondences between object model terms and
ontology terms. The SPARQL model is sent to a relevant RDF data source. The exe-
cution of the query returns an RDF graph. This graph is then transformed into a model
conforming to the RDF metamodel. The RDF model is used as input by
rdf2model.atl. This transformation is generated by a high order transformation from
the object ontology mapping. The execution of rdf2model.atl supplies the resulting
object graph.

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 125

The HQL query returns a list of items or a list of values or a list of values and ob-
jects. Hereafter, we detail the first case, and only outline the second. The last case is
not yet supported by our implementation. Figure 7 depicts the case where the
SPARQL query returns an RDF graph.

RDF

HQL
Query
model

HQL2SPARQL.atl

Mapping
model

rdf2model.atl

SPARQL
Query
model

model

construct {
?a :type :Author

}
where {
?a :typre :Author ;
…

}

Object
model

Object/Ontology Mapping

(1) Send query to
RDF Data Source

Data Source Manager

Query Engine

RDF
Model

(2) Get results

(3) Results
RDF Model

in

outin

out in

in

c2

model-to-text
select a
from Author a
where ...

text-to-model

Java Objects

Fig. 7. Query execution process : From HQL to SPARQL

Case 1. The query returns a list of values. In this case the HQL query must be trans-
lated into a SPARQL query of type SELECT. This type of query returns a list of val-
ues and not an RDF graph. The result of the HQL query is the result of the SPARQL
query having been generated. No transformation is needed since the data retrieved
actually are plain values.

Case 2. The query returns a list of objects. In this case the HQL query must be trans-
lated into a SPARQL query of type CONSTRUCT. This type of SPARQL query
returns an RDF graph. The latter will be processed by our object ontology mapping
engine, so as to transform the RDF graph into an object model.

The implementation of all cases above is driven by two distinct model transforma-
tions. The transformation rules presented below refer to Case 2. However most of the
rules are common to both cases, particularly for what concerns the generation of
graph patterns from HQL path expressions. Let’s explain more about the transforma-
tion rules, and let’s consider the following query which is defined on the object model
presented in Fig. 1 at Section 3.1.

(e) select item, author from Item item, item.authors author

where item.releaseDate > '2000'

Let Q be the HQL query, Q' the resulting SPARQL query and M the object ontol-

ogy mapping. The transformation HQL2SPARQL is hence defined by:

SPARQL2HQL(Q : HQL, M : MEO) → Q’ : SPARQL

Rule A: For each Path identifying an object belonging to a PropertyList element in
the SelectClause of query Q (if any), a set of triple patterns (TriplesSameSubject) is
generated and added to a ConstructQuery element in query Q’.

126 G. Hillairet, F. Bertrand, and J.Y. Lafaye

The set of triples enables to retrieve each property belonging to a given RDF prop-
erty. The set comprises a triple identifying the type of the resource. This type is re-
trieved according to the mapping. Other triple patterns correspond to the properties
required by the mapping.

Rule B: For each FromClassPath element from Query Q, having a Path size equal to
1 and identifying an object, a set of triple patterns (TriplesSameSubject) is generated
and added to the WhereClause in Query Q’ (cf. figure below).

Rule C: For each FromClassPath from Query Q having a Path element of size N
(N>1) and being a valid expression path according to the object model, a set of N-1
triple patterns is created in Query Q’ by applying recursively the previous rule. (ex-
ample: a.b.c => ?a :b ?ab . ?ab :c ?bc).

Rule D: For each expression in the WhereClause of Query Q being of type Opera-
torExpr and having the symbol ‘=’ as operator, a corresponding triple pattern is cre-
ated in the WhereClause of Query Q’. (example: s.p = o => ?s :p ?o)

Rule E: For each expression of type OperatorExpr in the WhereClause of Query Q
and having an operator that belongs to the following list: (> | >= | < | =<), a triple
pattern and a filter pattern are created in the WhereClause of Query Q’. The filter
pattern contains the expression occurring in the OperatorExpr.
(example: s.p > val => ?s :p ?sp . filter(?sp > val))

5.2 Rewriting SPARQL in HQL

Information systems persistency is usually achieved through relational database,
XML files, etc… However, using an RDF representation is a way to facilitate data
integration and matching, as promoted by the Semantic Web architecture. Semantic
Web technologies provide and enable representation of existing data via a common

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 127

vocabulary (ontologies) that can be extended so that an additional vocabulary could
be taken into. Data represented via RDF graphs can be interlinked with each other,
allowing an easy navigation within a graph representing the global data on the Web.

Providing tools allowing an efficient and transparent transformation of existing
data into RDF is a most important issue Through the abstraction offered by the object
model, we can take advantage of mappings, transformations, converters, etc., that
already exists between the object abstraction and data sources such as relational,
XML, etc. By adding an object ontology mapping tool to these solutions, we can get a
complete conversion chain between heterogeneous data sources and Semantic Web
data. Query rewriting between SPARQL and an object query language (such as HQL)
allows an on the fly generation of RDF data and thus makes it possible to keep data in
existing databases and avoid data replication with its entailed lack of synchronization
and integrity.

The rewriting process from SPARQL to HQL supposes two prerequisites. First an
object model must have been explicitly or implicitly identified (e.g. application
classes in the latter case). Second, an ontology is associated to this object model (see
example Figure 1). Finally, a SPARQL endpoint has been implemented in order to
connect our application to the Web, and thus enable receipt and processing of
SPARQL queries.

The SPARQL endpoint is a Web server receiving queries from others Web applica-
tions. SPARQL queries received are injected in the form of SPARQL model thanks to
a text to model transformation, as depict in figure 8. This SPARQL model is proc-
essed by a set of model transformations and result in a HQL model. During those
transformations, the object ontology mapping helps to determine how terms used in
the SPARQL queries (ontology terms) are converted in terms for the HQL queries
(object mode terms). The resulting HQL query is used by a Java application, and may
be executed thanks to the Hibernate framework on a relational database. Resulting
objects are translated in RDF thanks to our object ontology mapping solution, as de-
picted by figure 8.

Fig. 8. Query execution process: From SPARQL to HQL

The rewriting process of a SPARQL query into the object formalism chains three
steps, corresponding to three model transformations. Let’s illustrate our transforma-
tion rules, by treating the following SPARQL query as an example:

128 G. Hillairet, F. Bertrand, and J.Y. Lafaye

(f) construct {?a ?p1 ?o1 .?c ?p2 ?o2 }
 where {
 ?a dc:date ?c . filter(?c > '2000') .
 ?a foaf:maker ?b

 }

5.2.1 Step 1: Identifying Types in Initial Query
The first step is to identify the types of each variable in the query. All potential types
are determined by querying the ontology associated with the object model. For exam-
ple, Query (f) uses three unbounded variables: ?a, ?b and ?c. By parsing the Where-
Clause of Query (f), we notice that there is no triple pattern using the RDF property
rdf:type which would explicitly indicate the type of variables. However, the triple
patterns use named variables as predicates (named variables are URIs). So, we can
infer the types by identifying the domain and range of the triple pattern predicates.
This can be done by simply querying the ontology. To do so, we rewrite the query
from the initial one, by adding the unknown types in the select clause. Performing the
new query will retrieve the missing information about types. More precisely, the re-
writing process is handled by the model transformation SPARQL2OntQuery.atl (see
Figure 8). For example query (f) is rewritten as follows:

(g) select

 ?dateDom, ?dateRang, ?makerDom, ?makerRang
 where {
 dc:date rdfs:domain ?dateDom ;
 rdfs:range ?dateRang .
 foaf:maker rdfs:domain ?makerDom ;
 rdfs:range ?makerRang .
 }

The SPARQL2OntQuery transformation takes the initial query Q as input and is de-
fined as follows: SPARQL2OntQuery(Q : SPARQL) → Qt : SPARQL

Running Query (g) over the ontology provides all valid types for the free variables.
The result is serialized by a SPARQL Engine implementation (Jena ARQ3) in an
XML format (SPARQL Results XML Format4). A metamodel of this format, marked
as SRF, has been defined in order to allow the next step transformation to reuse the
former results.

5.2.2 Step 2: Refining the Initial SPARQL Query by Adding Types
The second step takes the previous results into account. Types that have been inferred
by performing SPARQL2OntQuery are inserted into the initial SPARQL query so as
to bind the free variables to their valid types. This is done by the model transforma-
tion SPARQLRewrite.atl (see figure 8). This transformation takes the initial query Q,
the ontology O, and the result Rt produces by query Qrw as inputs.

SPARQLRewrite(Q :SPARQL, O :OWL, Rt :SRF) → Qrw : SPARQL

3 http://jena.sourceforge.net/ARQ/
4 http://www.w3.org/TR/rdf-sparql-XMLres/

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 129

The query Qrw is identical to the initial query Q except that triple graph patterns
identifying variables types are added. This set of additional triples patterns is denoted
Tp. For each variable v in Q, having Type t according to Rt, there exists a pattern p
such that p = {?s rdf:type t}. Thus the query (f) rewrites as:

(h) construct {?a ?p1 ?o1 . ?c ?p2 ?o2 }

 where { ?a dc:date ?c . filter(?c > '2000') .
 ?a foaf:maker ?b ;
 ?a rdf:type bibo:Film .
 ?a rdf:type bibo:Book .
 ?b rdf:type foaf:Person
 }

5.2.3 Step 3: Transformation Rules for SPARQL to HQL
The last step encompasses the transformation of SPARQL into HQL. This operation
is trivial once the types of the variables are known i.e. when Step 2 is completed. The
rewriting process is performed by the model transformation SPARQL2HQL.atl. This
transformation takes the query Qrw and the object ontology mapping M as inputs.

SPARQL2HQL(Qrw : SPARQL, M : MEO) → Q’ : HQL

The transformation rules address the translation of SPARQL triples graph patterns

into HQL path expressions. The main transformation rules are the following:

Rule A: For each triple pattern {?s rdf:type <URI>} belonging to the Where-
Clause in query Qrw, a FromClassPath (from ClassName ?s) is created where
ClassName <- map(<URI>) and map the mapping function from ontology to ob-
ject model.

Rule B: For each triple pattern {?s ?p ?o} belonging to the WhereClause in Query
Qrw and having as predicate an ObjectProperty (property with an RDF resource as
range), the triple is translated into an OperatorExp (s.p = o) in query Q’. The
expression in OperatorExp is the Path formed by the subject and predicate of the
corresponding triple pattern and has for RHS expression its object.

Rule C: For each triple pattern {?s ?p val} belonging to the WhereClause in
Query Qrw and val an RDF::Literal then the triple is translated into an OperatorExp
(s.p = val) in query Q’.

Rule D: For each triple pattern {?s ?p ?o . filter(?o op val)} belonging to
the WhereClause in Query Qrw then an OperatorExp (s.p op val) is created in
query Q’.

6 Conclusion

In this paper, we presented a query rewriting process implemented by model transfor-
mations. These transformations exploit a mapping model that describes the relationship

130 G. Hillairet, F. Bertrand, and J.Y. Lafaye

between the elements of a model object with those of an ontology. It was also necessary
to define the metamodels of the two query languages handled in these transformations:
HQL as an object oriented query language and SPARQL as a graph pattern query lan-
guage for the RDF data model.

The Model Driven Engineering makes it possible to manage complexity inherent in
the translation of requests built on quite different data models. The rules of transfor-
mation presented in this paper, implemented using ATL language, include transfor-
mations from HQL to SPARQL and opposite directions. The main goal of this work is
to facilitate the use and the enrichment of the many collections of RDF data available
on the Web without having simultaneously to master the object technologies and
Semantic Web technologies.

This work is fully implemented, but it has not been heavily evaluated and so a
comparison with others similar approaches, in terms of response time and scalability
has not yet been done. Future works include the evaluation of the tool and its exten-
sion so as to cope with transformation rules taking more complex query languages
features into account, namely join for HQL and ‘optional’ and ‘union’ patterns for
SPARQL.

References

1. Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The two cultures: Mashing up Web
2.0 and the Semantic Web. Web Semantics: Science, Services and Agents on the World
Wide Web 6, 70–75 (2008)

2. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications (2006)
3. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,

P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation 10,
2006–10 (2004)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284, 28–
37 (2001)

5. Bizer, C., Seaborne, A.: D2RQ: treating non-RDF databases as virtual RDF graphs. In: In-
ternational Semantic Web Conference ISWC (posters) (2004)

6. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web Demon-
strations Track. In: 4th European Semantic Web Conference, Innsbruck, Austria (2007)

7. Corno, W., Corcoglioniti, F., Celino, I., Della Valle, E.: Exposing Heterogeneous Data
Sources as SPARQL Endpoints through an Object-Oriented Abstraction. In: Asian Seman-
tic Web Conference (ASWC 2008), pp. 434–448 (2008)

8. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Proceedings of the 1st
Conference on Social Semantic Web. GI-Edition- Lecture Notes in Informatics (LNI),
vol. P-113. Bonner Kollen Verlag (2007) ISSN 1617-5468

9. Ghawi, R., Cullot, N.: Database-to-ontology mapping generation for semantic interopera-
bility, 2007. In: Third International Workshop on Database Interoperability, InterDB
(2007)

10. Hillairet, G., Bertrand, F., Lafaye, J.Y.: MDE for publishing Data on the Semantic Web,
Transform and Weaving Ontologies in MDE (TWOMDE). In: Czarnecki, K., Ober, I.,
Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301. Springer, Hei-
delberg (2008)

 Rewriting Queries by Means of Model Transformations from SPARQL to OQL 131

11. de Laborda, C.P., Conrad, S.: Bringing Relational Data into the SemanticWeb using
SPARQL and Relational. OWL. IEEE Computer Society, Washington (2006)

12. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax
Specification (1999)

13. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: Embedding Semantic Web data into ob-
ject-oriented languages. In: Web Semantics: Science, Services and Agents on the World
Wide Web (2008)

14. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

15. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In: Proceedings of the 5th international conference on
Generative programming and component engineering, pp. 249–254 (2006)

16. Prud’hommeaux, E., Seaborne, A.: others: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008)

17. Prud’hommeaux, E.: Adding SPARQL Support to MySQL (2006)
18. Rodriguez, J.B., Corcho, O., Gomez-Perez, A.: R2o: an extensible and semantically based

database-to-ontology mapping language. In: SWDB (2004)
19. Rodriguez, J.B., Gomez-Perez, A.: Upgrading relational legacy data to the semantic web.

In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 1069–
1070. ACM, New York (2006)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Frame-
work, 2nd edn. Addison-Wesley Professional, Reading (2008)

Solving Constraints in Model Transformations

Andreas Petter, Alexander Behring, and Max Mühlhäuser

Technische Universität Darmstadt, Department of Computer Science,
Telecooperation, Hochschulstr. 10, D-64289 Darmstadt, Germany

{a petter,behring,max}@tk.informatik.tu-darmstadt.de

Abstract. Constraint programming holds many promises for model
driven software development (MDSD). Up to now, constraints have only
started to appear in MDSD modeling languages, but have not been prop-
erly reflected in model transformation. This paper introduces constraint
programming in model transformation, shows how constraint program-
ming integrates with QVT Relations - as a pathway to wide spread use
of our approach - and describes the corresponding model transformation
engine. In particular, the paper will illustrate the use of constraint pro-
gramming for the specification of attribute values in target models, and
provide a qualitative evaluation of the benefit drawn from constraints
integrated with QVT Relations.

Keywords: model driven engineering, constraint solving, constraint pro-
gramming, model transformation.

1 Introduction

Declarative model transformation languages have gained a lot of attention in the
model transformation community, especially by discussing and proposing trans-
formation languages like QVT [1]. They are deemed to have several advantages [2].
Some declarative approaches follow the relational approach, which could be called
“logic programming for model transformations”. These languages relate model el-
ements from the source model to model elements of the target model.

Some models benefit from the use of constraints to overcome possible under-
specification. Therefore, constraints have seen widespread usage in practical
modelling [3,4]. Furthermore, constraints have shown their declarative nature
for programming tasks. Freuder even states that constraint programming would
yet be the closest approach to finding the holy grail of programming [5].

Models with constraints may be transformed using standard model transfor-
mation languages. But, as transformation languages are not able to cope with
constraints to specify aspects of target models, transforming these models will
not take into account the constraints contained in the models (or meta-models)
directly. Thus, if developers of transformations use model-to-model transforma-
tion languages and want a constraint based problem to be satisfied in target
models, they will need to solve the constraints by hand after the transformation
has finished.

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 132–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Solving Constraints in Model Transformations 133

Our contribution therefore is the combination of constraint programming and
model- to-model transformations. Hereby we fill the gap how constraints can be
specified in model transformations and how they can be satisfied in target mod-
els. Due to the generality of the basic approach, called “Constraint Relational
Transformations” many model-to-model transformation languages can benefit
from our contribution.

The contributions in this paper are:

– a model transformation language to define model transformations with con-
straint satisfaction problems,

– using constraint programming for the specification of attribute values in
target models,

– a qualitative evaluation how well constraints integrate with declarative model
transformation languages, investigated on the example of QVT Relations, and

– an implementation of a model transformation engine which is able to solve
constraints.

1.1 Overview

The third section defines “Constraint Relational Transformations” which allow
for constraint solving to be used in transformations. Section 4 presents how we
changed QVT Relations and OCL to support for constraint solving. Section 5
presents our implementation of the transformation engine while section 6 dis-
cusses the benefits and 7 the state of the art. Section 8 summarizes the findings
and presents opportunities for further research.

2 Constraints and Running Examples

It is important to note that the complexity of the constraint language greatly
affects the complexity of the algorithms needed to satisfy the constraints. For ex-
ample it is comparatively easy to solve continuous linear constraints, but difficult
to solve discrete, non-linear constraints. However, in model driven engineering
the most frequently used constraint language is the Object Constraint Language
(OCL) [4]. It allows for the definition of constraints on almost any facet of com-
mon model elements. The language has been found to be non-computable in
theory [6]. Therefore, it imposes a problem to do constraint solving over all as-
pects of the OCL language. Constraint solving over OCL constraints can only
be done efficiently on a subset of the language. While it remains an interesting
research task to formally identify this subset, we restrict our constraints to the
subset of non-linear numeric constraints. This type of constraints is needed in
many domains where constraint programming can be applied [7].

Constraints can be divided into two different types: constraints over attribute
values and associations in transformations versus global graph constraints. The
first type of constraints can be attached to model elements and therefore are “lo-
cal” to them. Nevertheless, they can span several model elements through transi-
tive use of associations. Constraints used in common modeling languages are local

134 A. Petter, A. Behring, and M. Mühlhäuser

(e.g. UML and OCL). We assume that most constraints used in modelling fall into
this category. The second type is global to a transformation and requires the trans-
formation engine to satisfy them even across all model elements. Scheduling and
planning problems fall into this category. We only take into account constraints of
the first type. The second type would require extensive research how the concept
of graph constraints can be combined with a model transformation language and
integrated with constraints over attributes and associations.

This paper focuses on numeric, non-linear, local constraints. Hereby, problems
like generating user interface models or problems from operations research can
be addressed using a declarative model-to-model transformation language with
constraint solving.

Our constraint based approach can also be used to simultaneously span con-
straints over source and target models at once. This is not our research focus
as the main application of such a setup would be model synchronization, which
we are not heading for. Therefore, the language presented can only use variables
to retrieve information from the source model and not use constraints which
simultaneously enforces constraints on source and target model elements.

2.1 Transformation Examples

Even in very simple model transformations numeric constraints can be a require-
ment. Our illustrative example is borrowed from the user interface community
where constraints have been widely used to define user interfaces. The developer
wants to develop a model-to-model transformation that is able to account for
adaption to the display of the target platform. The target platform will show a
window (c.f., figure 1), which contains three standard buttons (“Ok”, “Cancel”,
and “Ignore”). The suitable meta-model of the abstract user interface model is
shown in figure 2 while the platform specific one is shown in figure 3. The sizes of
the components used when displaying are retrieved from the model (e.g. because
they can be altered in a graphical model editor). Therefore, the model-to-model
transformation should set them.

Hereby the following constraints must be satisfied: The sum of the width of
the buttons should not be larger than the window and the window should fit
on the screen (800 pixels). Furthermore the buttons must have minimum and
maximum sizes (e.g. 30 ≤ width ≤ 60). The resulting model transformation will
be a constraint solving problem that transforms an abstract user interface model
into a platform specific user interface model.

This example currently can not be executed using a model-to-model transfor-
mation language without investing significant effort.

Fig. 1. Outline of the desired target window for the example (JAVA Swing)

Solving Constraints in Model Transformations 135

Fig. 2. Meta-model of the abstract user interface model

Fig. 3. Meta-model of the platform specific user interface model

To implement the transformation with a common model-to-model transforma-
tion language, the developer would need to either write a specialized constraint
solver using imperative language constructs, which is cumbersome, or use a con-
straint solver library, pass the constraints to the solver using a special language
and call it from the transformation. Obviously, both approaches require efforts,
which are not to be underestimated and may be different for each type of trans-
formation being implemented.

3 Constraint Relational Transformations

Depending on the definition of the term “constraints”, different mechanism to
reflect and solve the constraints need to be applied in transformation languages.

136 A. Petter, A. Behring, and M. Mühlhäuser

Especially, it must be made clear what type of constraints must be supported.
If constraints are restricted to equations, then QVT Relations will classify as
a constraint solving approach [8]. While one can arguably call an equation a
constraint (e.g. PropertyTemplates in QVT Relations are equations), in fact
no constraint solving is performed. Instead, concepts from logic programming
are applied. Czarnecki mentions logic programming [8] as the standard way to
implement such approaches. Hereby, the main concept is “unification” which is
able to cope with variables used in predicates. However, logic programming has
been extended to constraint logic programming to support constraints used by
constraint solvers (e.g. numeric constraints). In analogy, we extend relational
transformations to “constraint relational transformations”.

Constraint relational transformations support local or global constraints, as
has been motivated in the last section. Hereby, local constraints can be applied
on values of model elements of the target model to enforce relations between
them. Additionally, variables may be used to relate source model elements to
target model constraints. A set of constraints forms a constraint system, called
CSP. This is a constraint program, which needs to be solved by a constraint
solver. For example, two model elements representing user interface components
are contained in a model element representing a container component. The model
elements are related, because they share the same parent space on the screen
but may not overlap. Therefore their sizes add to the size of the container com-
ponent (see section 2.1). This is normally done by using numeric constraints.
Satisfaction of these numeric constraints in target models can be established
using constraint solving and in the case at hand should be done in the model-
to-model transformation engine.

4 Extending the Syntax of QVT and OCL

Defining a completely new transformation language is difficult, especially when
it should be declarative. Therefore this section enhances a concrete transforma-
tion language to become a constraint relational transformation language. QVT
Relations is known to have a very declarative and abstract notation [9]. Despite
commonly known problems (e.g. [10]) we chose QVT Relations because of its
declarativity, which we believe is a good start to add concepts from constraint
programming. However, extending QVT Relations is only an example and the
main concepts presented here, can be used to extend other relational model
transformation approaches, e.g. Tefkat [2] or MTF [11], as well.

Our QVT Relations dialect is called “Solverational”. To implement Solvera-
tional we needed to change the syntax of QVT Relations, as well as the semantics
of OCL.

4.1 QVT Relations

Transformations written in a QVT language are defined over MOF [12] based
meta-models. MOF may be seen as to be a small subset of the well known UML,

Solving Constraints in Model Transformations 137

Fig. 4. QVT Relations abstract syntax of PropertyTemplateItem. The PropertyTem-
plateItem is extended with the OperatorKind attribute to support inequalities.

which is usually used to define meta-models. A transformation rule in QVT
Relations is called a “relation”. Simplified, a relation is a mapping between
several sets of model elements, called “domains”. Each domain is based on a
meta-model class. The domains of the model elements are defined by types from
the source and target meta-models.

Every domain may contain “PropertyTemplateItems”. If applied to the source
domain, the PropertyTemplateItems will select instances from the model. In the
target domain they set the properties or associations of the target instance.
These template items will use values from other domains, if their variable names
are declared within the relation. PropertyTemplates in traditional QVT Rela-
tions cannot contain inequalities or multiple constraints to assign values, instead
equations are used.

We defined a simple extension to the QVT Relations textual concrete syntax [1]:
The equal sign in “propertyTemplate” may be replaced by smaller, greater, smaller
or equal, or greater or equal. The following grammar rule is a replacement for
the one given in the QVT Relations definition. This simple extension already has
significant implications on the model transformation process. Current model-to-
model transformation engines are not able to execute a transformation based on
this grammar.

<propertyTemplate> ::=
<identifier> (’=’|’<’|’<=’|’>=’|’>’|’<>’) <OclExpressionCS>

The complete QVT Relations abstract syntax meta-model can also be found
in [1]. In figure 4 the meta-model element PropertyTemplateItem is depicted,
a small part of the QVT Relations meta-model. A PropertyTemplateItem has
a property (which is actually the left side of the equation in the traditional
concrete syntax) and an OCLExpression. To allow for more than equality in

138 A. Petter, A. Behring, and M. Mühlhäuser

PropertyTemplateItems we introduce comparator types (the name ”operator” is
being used in the OCL description, so we used it in the model as well).

Due to missing definitions in the original QVT Relations document, the seman-
tics need to be made more precise, only. The QVT Relations specification states
that the “property value must match the . . . expression”. As the word “match” is
not defined we assume that it is understood as “equality in at least one item of a
set”. We refined the meaning of “match” and suggest that a match also occurs in
the case the property value is really unequal (“<”, “>”, “≤”, “≥”, “ �=”).

4.2 OCL

Our constraints heavily rely on aggregation functions to evaluate constraints
over associations. In OCL aggregation functions (e.g. sum, max, min, product)
are used on collections. To support most intuitive usage in the transformation
language these aggregation functions were derived from the ones used by OCL
but may be used directly in OCL expressions. Because they are not used on
collections, their signatures have changed. We implemented only a subset of the
OCL, that is most interesting for constraint solving (numeric constraints).

The constraints may have arguments, which are evaluated by identifying ap-
propriate model elements and their values in the model. They may refer to asso-
ciations to access other model elements. Results from the aggregation functions
are not directly computed, but used in the constraint solving process to determine
the values of all model elements and their attributes involved in the constraints.

This can best be explained by referring to the Solverational description of
the example, which is shown in figures 5 and 1. The function “sum” sums up
all “x” attributes of the model elements associated by the “childs” association.
However, the value of the sum is not pre-determined. In fact, the transformation
will calculate appropriate values for the x attribute by relating the values of the
children. We call this form of transformation containing smaller equal constraints
“smaller-equal-transformation”.

We also wrote a different version of this transformation with a pre-determined
sum. The width “w” of the model element called “Window” is fixed by setting it
to w = 800. This forces the constraint solver to determine values for the “w” at-
tributes of the child elements. This form is referred to by “equal-transformation”.

4.3 Additional Solverational Features

The most obvious strength of Solverational is its ability to use constraints in-
stead of using attribute assignments. Therefore the transformation developer is
freed from the cumbersome task of solving the constraints by hand afterwards.
In Solverational this can be noted in an intuitive way. The developer simply
uses inequality comperators to get a solved target model. Every attribute can be
subject to a multitude of constraints. Therefore - in contrast to QVT Relations,
where this does not make sense (ironically it is not forbidden in the specification),
the developer can use the same attribute multiple times in the same rule (the
same “ObjectTemplateExp”). Each time he may specify a different constraint

Solving Constraints in Model Transformations 139

Fig. 5. Transformation example noted in Solverational

on the attribute. The attribute may also take part in a computation which will
implicitly enforce a constraint on the attribute value, if the result of the calcu-
lation is set by a different constraint. If the developer over-specifies a property,
such that the constraints are not solveable at all - the transformation engine will
not transform the transformation at all and report failure to do so.

Solverational allows for usage of aggregation functions to sum, multiply or
select elements in a set (OCL terminology:“collection”). As Solverational is able
to do work on target models and not just copies values, this adds a new form
of relationship to transformation processes: attributes of target model elements
can be related in the transformation rules. Even though this is not possible with
normal programming languages, it is intuitive as it is a completely declarative
way to express this class of complex relationships.

5 Implementation

After introducing the concept of constraint relational transformations in
section 2 and an extension to QVT Relations, this section presents a prototype

140 A. Petter, A. Behring, and M. Mühlhäuser

Fig. 6. Architecture of the transformation engine

implementation. The architecture presented in figure 6 can be devided into two
parts.Theupperhalf of thefigure shows the compilation step.Fromthemeta-models
of the source and target models together with the Solverational transformation, an
ECLiPSe form is produced (transformation compiler). This program can be used
for an arbitrary number of transformations of different model instances (transfor-
mation compiler). The form depends on the direction of the transformation and
must be regenerated in case the direction changes. Then, the compiled transfor-
mation is executed as depicted in the lower half of the figure. For the execution the
models are read-in and transformed by the ECLiPSe form.

Compilation step. The language for the compiled transformation has been chosen
to best support the mapping process from Solverational (this was inspired by
the verification from Cabot et al. [13]). As a result from the thoughts given in
[14] we chose a logic programming language. This language needs to support
constraint solving, as is done by the chosen ECLiPSe1 PROLOG dialect ([15]).
ECLiPSe is a constraint logic programming language, which supports common
constraint solvers and search algorithms. It allows for the definition of heuristics
and the search order of domain values.

The meta-model and the Solverational description is used to produce the
ECLiPSe representation of the Solverational transformation definition. Several
challenges need to be addressed in this compilation step.

1 The ECLiPSe PROLOG dialect is used for constraint programming. The Eclipse
IDE is used for developing JAVA applications. We used both and created a plugin
for Eclipse to generate ECLiPSe model-transformation-programs.

Solving Constraints in Model Transformations 141

For example, the execution order of the relations can be seen as a scheduling
problem (a Solverational transformation can contain multiple relations). This
problem can best be addressed with a constraint solver. Using the constraint
solver “Choco” ([16]), the Solverational model transformation engine orders
the relations according to “when” and “where” clauses. The result is used to
write the relations in a correct execution order into the ECLiPSe PROLOG
file. Thus, at runtime, relations will automatically be executed in correct order.
However, we never tested this approach with a very large number of transfor-
mation rules.

Execution step. The EMF to ECLiPSe mapping transforms EMF models into
a term based representation in ECLiPSe. Every meta-model element is identi-
fied by a term. The terms of the nodes, attributes, and references have special
notations which can be distinguished according to their type. When transform-
ing an EMF model, the mapping component creates identifiers and stores them
until the transformation process is completed. Afterwards it can map instances
of model elements back onto their corresponding EMF representation or create
new ones. The transformation of the models to its ECLiPSe form as well as the
execution of the transformation in ECLiPSe are performed automatically from
JAVA using embedded ECLiPSe programs. During the execution the algorithm
given in section 5.1 is executed.

The transformation engine has been realized as an Eclipse plugin, because
the Eclipse IDE provides support for many modeling tasks, such as loading and
saving models which are used by the engine. The developer can therefore combine
the transformation plugin with many of the modeling tools developed by many
of the Eclipse projects.

5.1 Algorithm

A generated program that implements a mapping from Solverational to ECLiPSe
is a sequence of 6 steps. Their purpose is to collect constraints which need to be
satisfied and solve the generated CSP (constraint solving problem). Each CSP
variable maps to an attribute in the target model. As soon as the CSP finds a
solution, the values of the attributes will be assigned from the CSP variable.

An important aspect is the question at what point a constraint can be inserted
in to the CSP. If associations are used in a constraint it can only evaluated
after all relevant model elements have been created. Therefore, our generation
is composed of 6 steps:

1. First, target model elements are being created or searched for.
2. When a model element is created or found, the algorithm creates a variable

for each attribute of the model element on the heap, so they can be resolved
during later steps.

3. If there are constraints for the attributes of the model element they are
inserted directly into the CSP.

4. After all model elements have been created, constraints for attribute values
spanning associations are inserted.

142 A. Petter, A. Behring, and M. Mühlhäuser

5. Then, all variables of the attributes are retrieved from the heap and inserted
into the CSP.

6. Finally, the CSP is going to be solved by executing the constraint solver and
results are calculated.

Our algorithm can also cope with the selection of a specific target model out of
the set of possible target models in an intuitive way by defining a target function
over the set of model elements. However, this is a whole work on its own and due
to space constraints we must restrict ourselfs to the contribution of constraint
programming in model transformations.

6 Discussion

Our example shows that developers can benefit from the declarative style of con-
straint programming. We assume that the size of the effect is domain dependent.
Nevertheless, as this seems to be the case for many domains [7], we conclude that
constraint programming may be a valuable asset to model transformation.

Implementing even the very simple example using the plain QVT Relations
language, instead of Solverational, is very difficult. The only option would be to
specify values by hand after the transformation has been performed. However,
this can only be done for a small set of model elements and it has to be done every
time the transformation is executed on a different set of input models. This is
cumbersome and a clear indication that this process should be automated. The
concepts presented in this paper allow for automating transformations using
local constraints.

The implementation shows that it is feasible to do constraint solving on
smaller models. To determine the size of models that can be handled efficiently,
we evaluated three transformations on models with increasing numbers of model
elements. As explained in section 4.2, the three Solverational transformations use
different constraints. The “smaller-equal-transformation” constraints the maxi-
mum width “w” of “Window” model elements, while the “equal-transformation”
sets the size to a specific value and enforces “w” of children to be calculated by
the constraint solver. Of course, we had to alter the maximum size constraint
for “w” of “Window”, such that it still fits the sum of model elements of the
“w” of the “children”, depending on the number of model elements we wanted
to transform.

Additionally, we tried to run the transformation without any constraints (be-
cause plain QVT is not able to solve constraints) with an open source QVT
Relations transformation engine (“QVT medini” [17]). We expected it to be
much faster, as it does not use constraint solving and is an industrial product.
It is noteworthy that Solverational is a QVT Relations dialect and therefore is
compatible with a large subset of QVT Relations transformations.

We measured the CPU time for the different transformations. We did not
add the time needed to save and load the models, but only the time needed

Solving Constraints in Model Transformations 143

 0

 5

 10

 15

 20

 25

3100 500 1000 1500 2000 2500

tim
e

[s
]

number of model elements

equal
smaller equal
no constraints

medini

Fig. 7. Number of model elements versus time in seconds for different transformations

to perform the transformation. All results were taken on a computer with a
1.8GHz Intel CPU and 1GB RAM, which was not exceeded during the test
runs. Reperforming several transformations on other CPUs indicate that the
time needed to perform the transformations is proportional to the speed of the
CPU. The results are illustrated in figure 7.

Execution times of the Solverational transformation engine increased as ex-
pected, with a slight decrease of calculation time by enforcing constraints for 2000
model elements. The constraints which were more difficult to solve took more
CPU time. The “equal-transformation” took longest to compute, because the
constraint solver needed to set the values of the “children” model elements. Al-
though, time increased only slightly compared to the one needed for the “smaller-
equal-transformation”.

Both transformation engines seemtohave sub-exponential executionbehaviour,
but to our great surprise our transformation engine seems to be comparatively fast.
Note, that in the case of 2500 model elements, the constraint solver needs to solve
more than 10000 constraints with more than 5000 variables. But still the medini
QVT engine had considerable larger execution times.

These results indicate that using constraint solving in model transformations
is not the time-killing factor. The medini QVT engine implements other features,
which seem to be far more time consuming than constraint solving in the model
transformation process. However, our examples used very simple constraints and
solving time is highly dependent on them. Using e.g. non-linear constraints can
arguably produce completely different results. However, we argued in section 1
that many modeling constraints are similar to the ones we were using.

144 A. Petter, A. Behring, and M. Mühlhäuser

7 Related Work

There are two categories of related work: work on model or graph transformation
and work on models and constraint solving.

Ehrig et al. outline that constraint solving is a standard way to optimize pat-
tern matching to search for model elements in model transformations [18]. This
has been used in Attributed Graph Grammars (AGG) [19]. However, search-
ing differs from our constraint solving for target models, because our approach
enforces constraints in target models.

In different work Ehrig provides a graph grammar based theory which shows
how graph constraints can be transformed into application conditions of trans-
formation rules [20]. Then the application conditions support the consistency
of graphs involved. The graph transformation rules may not be fired when an
application condition (and therefore a graph constraint) is violated. This is not
equal to constraint solving, where the solver enforces attribute values.

El-Boussaidi and Mili present an approach that is able to search for model
patterns [21]. It is based on the ILOG JSlover constraint solver library and
searches for patterns by solving a constraint solving problem over graphs, similar
to the approach mentioned above [19].

A proposal called ”xMOF” [22] to the OMG RFP for the QVT [23] trans-
formation language has not been accepted as such, but the approach presented
uses constraints within the definition of the model transformation. The approach
recommends to use a minimalistic extension to OCL [4] to develop model trans-
formations based on meta-models written in MOF [12]. The proposal has not
been implemented, so it does not use constraint solving (OptimalJ, for which
xMOF had been designed, implements QVT Core instead). From our experiences
with our current implementation of the transformation language we suspect that
an efficient implementation of the proposal would be rather difficult.

Lengyel et al. allow for the definition of transformation rules and the at-
tachment of constraints [24]. They define “constraint validation”, “constraint
preservation” and “constraint guarantee” for model transformations. However,
the OCL constraints are not enforced by their implementation and therefore
does not use constraint solving. As they do not use backtracking the approach
cannot produce all possible solutions. Furthermore, it uses XSLT which cannot
cope with constraint satisfaction problems.

White et al. focus on using constraint solving to weave models [25]. Model
weaving is similar to model transformation in that it is able to weave (or trans-
form) several models into a single model. However, this model must then be
transformed by model transformation to be in accordance with the output tar-
get platform meta-model, which is a concrete weaving model. However, White et
al. do not provide a transformation language that performs constraint solving,
but a model weaver which is integrated in the GME environment. Therefore,
the constraints of the target platforms would need to be integrated into the
constraints of the source model or the model weaver, which would not be very
useful, since they should be abstract to produce an abstract weaving solution.

Solving Constraints in Model Transformations 145

Our model transformation language can be applied to complement the solution
in the transformation process.

Constraints have also been used to transform models of user interfaces. SUP-
PLE [26] uses constraints to define the properties of target platforms. The trans-
formation does not transform the user interface descriptions into models, but
the user interface is directly displayed after the constraints are solved. Further-
more SUPPLE does not use a model-to-model transformation language to define
the mapping between model elements and the user interface. Therefore, the
model can not be modified by the developer, before it is being displayed.

MASTERMIND uses declarative models to construct software based on gen-
erative constraints to enforce dependencies between user interface components
[27,28]. Starting from the MASTERMIND textual format, model-to-code trans-
formations can be executed, which take into account layout constraints given in a
presentation model. MASTERMIND does not use a model-to-model transforma-
tion language and therefore is not able to handle constraints in model-to-model
transformations.

In a limited scope our approach is also well suited for round-trip engineering
as it is able to produce a set of possible source models when it is used as a
bidirectional transformation. A definition of round trip transformations and how
they relate to the problem of multiple possible source models is given in [29]. In
that sense our approach is therefore similar to the one presented in [30], which
also uses a logic programming language to implement the generation of multiple
source models. However, while Cicchetti’s approach is used mainly for round trip
transformations and does not use constraint solving but answer set programming
to produce possible target models, our approach focuses on the transformation
of consraints on attribute values.

8 Conclusions and Future Work

In this paper we presented how constraint solving and model transformations
are integrated to constraint relational transformations. Constraint relational
transformations allow for the first time to solve local numeric constraints dur-
ing model-to-model transformations. It was shown that constraints integrate,
almost naturally, in QVT Relations transformations. The new dialect is called
Solverational.

We presented our implementation of a model transformation engine and showed
how a model transformation engine can be extended to support constraint rela-
tional transformations. We showed that our concept, when applied, is not the main
factor for transformation times.

Our goal is to use the transformation language on user interface models. This
will allow for optimization of the user interface models during model-to-model
transformation. This work will be applied in the domain of crisis management
within the SoKNOS project.

Further, it is planned to work on the integration on graph constraints that
can be used for planning and solve problems known from operations research.

146 A. Petter, A. Behring, and M. Mühlhäuser

This will open up more complex application scenarios to model-to-model trans-
formations suggesting constraint solving, e.g. planning and scheduling.

Acknowledgements. The work presented was partly funded by the SoKNOS
project. The funding is provided by the German Ministry of Education and
Research (BMBF).

References

1. OMG: Meta object facility (mof) 2.0 query/view/transformation specification.
OMG, ptc/07-07-07 (July 2007)

2. Lawley, M., Raymond, K.: Implementing a practical declarative logic-based model
transformation engine. In: SAC 2007: Proceedings of the, ACM symposium on
Applied computing, pp. 971–977. ACM, New York (2007)

3. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. Object Technology Series. Addison-Wesley, Reading (2003)

4. OMG: Object constraint language omg available specification version 2.0. OMG
(May 2006)

5. Freuder, E.C.: In pursuit of the holy grail. Constraints 2(1), 57–61 (1997)
6. Brucker, A.D., Doser, J., Wolff, B.: Semantic issues of OCL: Past, present, and

future. Electronic Communications of the EASST 5, 213–228 (2006)
7. Ratschan, S.: Applications of quantified constraint solving over the reals. Internet

(January 2008), http://www2.cs.cas.cz/~ratschan/appqcs.html visited 01/09
8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-

proaches. IBM Systems Journal 45(3), 621–646 (2006)
9. Jouault, F., Kurtev, I.: On the architectural alignment of atl and qvt. In: SAC

2006: Proceedings of the, ACM symposium on Applied computing, pp. 1188–1195.
ACM Press, New York (2006)

10. Stevens, P.: Bidirectional model transformations in qvt: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

11. IBM United Kingdom Laboratories Ltd., I.a.: Model transformation framework
(mtf). IBM alphaWorks (2004), http://www.alphaworks.ibm.com/tech/mtf

12. OMG: Meta object facility 2.0 core final adopted specification. OMG (October
2003)

13. Cabot, J., Clariso, R., Riera, D.: Verification of uml/ocl class diagrams using con-
straint programming. In: Model Driven Engineering, Verification, And Validation:
Integrating Verification And Validation in MDE, MoDeVVA 2008 (2008)

14. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
missing link of mda. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

15. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
University Press, New York (2007)

16. Jussien, N., Rochart, G., Lorca, X.: The choco constraint programming solver.
In: CPAIOR 2008 workshop on Open-Source Software for Integer and Contraint
Programming (OSSICP 2008), Paris, France (June 2008)

17. ikv++ technologies AG: Qvt medini. Internet,
http://www.ikv.de/ikv_movies/mediniQVT.swf

http://www2.cs.cas.cz/~ratschan/appqcs.html
http://www.alphaworks.ibm.com/tech/mtf
http://www.ikv.de/ikv_movies/mediniQVT.swf

Solving Constraints in Model Transformations 147

18. Ehrig, K., Taentzer, G., Varro, D.: Tool integration by model transformations based
on the eclipse modeling framework. Technical report, EASST Newsletter (2006)

19. Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph Pat-
tern Matching. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
TAGT 1998. LNCS, vol. 1764, pp. 381–394. Springer, Heidelberg (2000)

20. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Constraints and application
conditions: From graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303.
Springer, Heidelberg (2004)

21. El-Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions using con-
straint propagation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 189–203. Springer, Heidelberg (2008)

22. Compuware-Corporation, SUN-Microsystems: Xmof queries, views and transfor-
mations on models using mof, ocl and patterns. OMG, OMG Document ad/2003-
08-07 (August 2003)

23. OMG: Mof 2.0 query / views / transformations rfp (April 2004)
24. Lengyel, L., Levendovszky, T., Charaf, H.: Constraint Validation Support in Visual

Model Transformation Systems. Acta Cybernetica 17(2), 339–357 (2005)
25. White, J., Gray, J., Schmidt, D.C.: Constraint-based model weaving. In: Transac-

tions on Aspect-Oriented Software Development (2009) (to appear)
26. Gajos, K., Weld, D.S.: Supple: automatically generating user interfaces. In: IUI

2004: Proceedings of the 9th international conference on Intelligent user interfaces,
pp. 93–100. ACM Press, New York (2004)

27. Palanque, P., Paterno, F.: Formal Methods in Human-Computer Interaction.
Springer, Berlin (1998) ISBN 978-3540761587

28. Browne, T., Davila, D., Rugaber, S., Stirewalt, R.E.K.: The mastermind user inter-
face generation project. Technical report, Georgia Institute of Technology (1996)

29. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-
trip engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008)

30. Cicchetti, A., Di Ruscio, D., Eramo, R.: Towards propagation of changes by model
approximations. In: EDOCW 2006: Proceedings of the 10th IEEE on Interna-
tional Enterprise Distributed Object Computing Conference Workshops, Washing-
ton, DC, USA, p. 24. IEEE Computer Society, Los Alamitos (2006)

Automatic Model Generation Strategies for Model
Transformation Testing

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu

INRIA, Centre Rennes - Bretagne Atlantique, Campus universitaire de beaulieu,
Rennes Cedex 35000, France

{ssen,bbaudry,jmottu}@irisa.fr

Abstract. Testing model transformations requires input models which are graphs
of inter-connected objects that must conform to a meta-model and meta-constraints
from heterogeneous sources such as well-formedness rules, transformation pre-
conditions, and test strategies. Manually specifying such models is tedious since
models must simultaneously conform to several meta-constraints. We propose
automatic model generation via constraint satisfaction using our tool Cartier for
model transformation testing. Due to the virtually infinite number of models in the
input domain we compare strategies based on input domain partitioning to guide
model generation. We qualify the effectiveness of these strategies by performing
mutation analysis on the transformation using generated sets of models. The test
sets obtained using partitioning strategies gives mutation scores of up to 87% vs.
72% in the case of unguided/random generation. These scores are based on analysis
of 360 automatically generated test models for the representative transformation
of UML class diagram models to RDBMS models.

1 Introduction

Model transformations are core MDE components that automate important steps in soft-
ware development such as refinement of an input model, re-factoring to improve main-
tainability or readability of the input model, aspect weaving, exogenous and endogenous
transformations of models, and generation of code from models. Although there is wide
spread development of model transformations in academia and industry there is mild
progress in the domain of validating transformations. In this paper, we address the chal-
lenges in validating model transformations via black-box testing. We think that black-box
testing is an effective approach to validating transformations due to the diversity of trans-
formation languages based on graph rewriting [1], imperative execution (Kermeta [2]),
and rule-based transformation (ATL [3]) that render language specific formal methods
and white-box testing impractical.

In black-box testing of model transformations we require test models that can
detect bugs in the model transformation. These models are graphs of inter-connected
objects that must conform to a meta-model and satisfy meta-constraints such as well-
formedness rules and transformation pre-conditions.

Automatic model generation based on constraint satisfaction is one approach to en-
sure that meta-constraints and test requirements are simultaneously satisfied by models.
In previous work [4], we introduce a tool Cartier that transforms the input meta-model

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 148–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Model Generation Strategies for Model Transformation Testing 149

(in Eclipse Model Framework (EMF) standard [5]) of a model transformation and pre-
condition (in a textual language such as OCL [6]) to a common constraint language Al-
loy. Cartier invokes Alloy to generate a Boolean CNF formula and solve it using a SAT
solver [7] to obtain solutions at a low-level of abstraction. Cartier transforms these solu-
tions back to instances of the high-level input meta-model (as XMI instances of the EMF
meta-model). However, most models generated using Cartier are only trivial as they are
not guided by a strategy. One of the goals of our work is to compare transformation in-
dependent strategies to guide automatic test model generation in order to detect bugs.

In this paper we use Cartier to systematically generate finite sets of models from the
space of virtually infinite input models using different test strategies. First, we generate
sets of random models (we call this strategy random for convenience although random
or pseudorandom models is still not a well-defined concept and is not the focus of this
paper). We also generate sets of models guided by model fragments obtained from meta-
model partitioning strategies presented in our previous work [8]. We compare strategies
using mutation analysis of model transformations [9] [10]. Mutation analysis serves as
a test oracle to determine the relatively adequacy of generated test sets. We do not use
domain-specific post-conditions as oracles to determine the correctness of the output
models. We use the representative model transformation of Unified Modelling Language
Class Diagram (UMLCD) to Relational Database Management Systems (RDBMS) mod-
els called class2rdbms to illustrate our model generation approach and effectiveness of
test strategies. The mutation scores show that input domain partitioning strategies guide
model generation with considerably higher bug detection abilities (87%) compared to
unguided generation (72%). Our results are based on 360 generated test models and
about 50 hours of computation on a high-end server. We summarize our contributions
as follows:

– Contribution 1: We use Cartier [4] to generate hundreds of valid models using
different search strategies.

– Contribution 2: We use mutation analysis [10] to compare sets of generated mod-
els for their bug detecting effectiveness. We show that model sets generated using
partitioning strategies, previously presented in our work [8], help detect more bugs
than unguided generation.

The paper is organized as follows. In Section 2 we present the transformation testing
problem and the case study. In Section 3 we describe our tool Cartier for automatic
model generation, strategies for guiding model generation, and mutation analysis for
model transformation testing. In Section 5 we present the experimental methodology,
setup and results to compare model generation strategies. In Section 6 we present related
work. We conclude in Section 7.

2 Problem Description

We present the problem of black-box testing model transformations. A model transfor-
mation MT (I,O) is a program applied on a set of input models I to produce a set of
output models O as illustrated in Figure 1. The set of all input models is specified by
a meta-model MMI (UMLCD in Figure 2). The set of all output models is specified

150 S. Sen, B. Baudry, and J.-M. Mottu

Fig. 1. A Model Transformation

by meta-model MMO. The pre-condition of the model transformation pre(MT) further
constrains the input domain. A post-condition post(MT) limits the model transforma-
tion to producing a subset of all possible output models. The model transformation is
developed based on a set of requirements MTRequirements.

Model generation for black-box testing involves finding valid input models we call
test models from the set of all input models I. Test models must satisfy constraints that
increase the trust in the quality of these models as test data and thus should increase
their capabilities to detect bugs in the model transformation MT (I,O). Bugs may also
exist in the input meta-model and its invariants MMI or the transformation pre-condition
pre(MT). However, in this paper we only focus on detecting bugs in a transformation.

2.1 Transformation Case Study

Our case study is the transformation from UML Class Diagram models to RDBMS
models called class2rdbms. In this section we briefly describe class2rdbms and discuss
why it is a representative transformation to validate test model generation strategies.

In black-box testing we need input models that conform to the input meta-model
MMI and transformation pre-condition pre(MT). Therefore, we only discuss the MMI

and pre(MT) for class2rdbms and avoid discussion of the model transformation output
domain. In Figure 2 we present the input meta-model for class2rdbms. The concepts
and relationships in the input meta-model are stored as an Ecore model [5] (Figure 2
(a)). The invariants on the UMLCD Ecore model, expressed in Object Constraint Lan-
guage (OCL) [6], are shown in Figure 2 (b). The Ecore model and the invariants together
represent the input meta-model for class2rdbms. The OCL and Ecore are industry stan-
dards used to develop meta-models and specify different invariants on them. OCL is not
a domain-specific language to specify invariants. However, it is designed to formally
encode natural language requirements specifications independent of its domain. In [11]
the authors present some limitations of OCL.

The input meta-model MMI gives an initial specification of the input domain. How-
ever, the model transformation itself has a pre-condition pre(MT) that test models need
to satisfy to be correctly processed. Constraints in the pre-condition for class2rdbms
include: (a) All Class objects must have at least one primary Attribute object (b) The
type of an Attribute object can be a Class C, but finally the transitive closure of the type
of Attribute objects of Class C must end with type PrimitiveDataType. In our case we
approximate this recursive closure constraint by stating that Attribute object can be of
type Class up to a depth of 3 and the 4th time it should have a type PrimitiveDataType.
This is a finitization operation to avoid navigation in an infinite loop. (c) A Class object

Automatic Model Generation Strategies for Model Transformation Testing 151

Fig. 2. (a) Simple UML Class Diagram Ecore Model (b) OCL constraints on the Ecore model

cannot have an Association and an Attribute object of the same name (d) There are no
cycles between non-persistent Class objects.

We choose class2rdbms as our representative case study to validate input selection
strategies. It serves as a sufficient case study for several reasons. The transformation is
the benchmark proposed in the MTIP workshop at the MoDELS 2005 conference [12]
to experiment and validate model transformation language features. The input domain
meta-model of UML class diagram model covers all major meta-modelling concepts
such as inheritance, composition, finite and infinite multiplicities. The constraints on the
UML meta-model contain both first-order and higher-order constraints. There also exists
a constraint to test transitive closure properties on the input model such as there must
be no cyclic inheritance. The class2rdbms exercises most major model transformation
operators such as navigation, creation, and filtering (described in more detail in [10])
enabling us to test essential model transformation features. Among the limitations the
simple version of the UMLCD meta-model does not contain Integer and Float attributes.
The number of classes in the simplified UMLCD meta-model is not very high when
compared to the standard UML 2.0 specification. There are also no inter meta-model
references and arbitrary containments in the simple meta-model.

Model generation is relatively fast but performing mutation analysis is extremly time
consuming. Therefore, we perform mutation analysis on class2rdbms to qualify trans-
formation and meta-model independent strategies for model synthesis. If these strate-
gies prove to be useful in the case of class2rdbms then we recommend the use of these
strategies to guide model synthesis in the input domain of other model transformations
as an initial test generation step. For instance, in our experiments, we see that gener-
ation of a 15 class UMLCD models takes about 20 seconds and mutation analysis of a
set of 20 such models takes about 3 hours on a multi-core high-end server. Generating
thousands of models for different transformations takes about 10% of the time while
performing mutation analysis takes most of the time.

152 S. Sen, B. Baudry, and J.-M. Mottu

3 Automatic Model Generation

We use the tool Cartier previously introduced in our paper [4] to automatically gener-
ate models. We invoke Cartier to transform the input domain specification of a model
transformation to a common constraint language Alloy. Then Cartier invokes the Alloy
API to obtain Boolean CNF formulae [13], launch a SAT solver such as ZChaff [7] to
generate models that conform to the input domain of a model transformation.

Cartier transforms a model transformation’s input meta-model expressed in the
Eclipse Modelling Framework [5] format called Ecore using the transformation rules
presented in [4]. OCL constraints and natural language constraints on the input ecore
meta-model are manually transformed to Alloy facts. These OCL constraints are used to
express meta-model invariants and model transformation pre-conditions. We do not au-
tomate OCL to Alloy as there are several challenges posed by this transformation as dis-
cussed in [14]. We do not claim that all OCL constraints can be manually/automatically
transformed to Alloy for our approach to be applicable in the most general case. OCL
and Alloy were designed with different goals. OCL is used mainly to query a model
and check if certain invariants are satisfied. Alloy facts and predicates on the other hand
enforce constraints on a model. This is in contrast with the side-effect free OCL. The
core of Alloy is declarative and is based on first-order relational logic with quantifiers
while OCL includes higher-order logic and has imperative constructs to call operations
and messages making some parts of OCL more expressive. In our case study, we have
been successful in transforming all meta-constraints on the UMLCD meta-model to Alloy
from their original OCL specifications. Identifying a subset of OCL that can be automat-
ically transformed to Alloy is an open challenge. As an example transformation consider
the invariant for no cyclic inheritance in Figure 2(b). The constraint is specified as the
following fact:

fact noCyclicInheritance {no c: Class | c in c.ˆparent}

The generated Alloy model for the the UMLCD meta-model is given in Appendix A.
This Alloy model only describes the input domain of the transformation. Solving the
facts and signatures in the model (see Section 3.2) results in unguided and trivial solu-
tions. Are these trivial solution capable of detecting bugs? This is the question that is
answered in Section 5. Are there better heuristics to generate test models? In the fol-
lowing sub-section we illustrate how one can guide model generation using strategies
based on input domain partitioning.

3.1 Strategies to Guide Model Generation

Good strategies to guide automatic model generation are required to obtain test models
that detect bugs in a model transformation. We define a strategy as a process that gen-
erates Alloy predicates which are constraints added to the Alloy model synthesized by
Cartier as described in Section 3. This combined Alloy model is solved and the solutions
are transformed to model instances of the input meta-model that satisfy the predicate.
We present the following strategies to guide model generation:

Automatic Model Generation Strategies for Model Transformation Testing 153

– Random/Unguided Strategy: The basic form of model generation is unguided
where only the Alloy model obtained from the meta-model and transformation is
used to generate models. No extra knowledge is supplied to the solver in order to
generate models. The strategy yields an empty Alloy predicate pred random{}.

– Input-domain Partition based Strategies: We guide generation of models using
test criteria to combine partitions on domains of all properties of a meta-model
(cardinality of references or domain of primitive types for attributes). A partition
of a set of elements is a collection of n ranges A1,..., An such that A1, ..., An do not
overlap and the union of all subsets forms the initial set. These subsets are called
ranges. We use partitions of the input domain since the number of models in the
domain are infinitely many. Using partitions of the properties of a meta-model we
define two test criteria that are based on different strategies for combining partitions
of properties. Each criterion defines a set of model fragments for an input meta-
model. These fragments are transformed to predicates on meta-model properties
by Cartier. For a set of test models to cover the input domain at least one model
in the set must cover each of these model fragments. We generate model fragment
predicates using the following test criteria to combine partitions (cartesian product
of partitions):

• AllRanges Criteria: AllRanges specifies that each range in the partition of
each property must be covered by at least one test model.

• AllPartitions Criteria: AllPartitions specifies that the whole partition of each
property must be covered by at least one test model.

The notion of test criteria to generate model fragments was initially proposed in our
paper [8]. The accompanying tool called Meta-model Coverage Checker (MMCC) [8]
generates model fragments using different test criteria taking any meta-model as input.
Then, the tool automatically computes the coverage of a set of test models according to
the generated model fragments. If some fragments are not covered, then the set of test
models should be improved in order to reach a better coverage.

In this paper, we use the model fragments generated by MMCC for the UMLCD
Ecore model (Figure 2). We use the criteria AllRanges and AllPartitions. For example,
in Table 1, mfAllRanges1 and mfAllRanges2 are model fragments generated by Cartier
using MMCC [8] for the name property of a classifier object. The mfAllRanges1 states
that there must be at least one classifier object with an empty name while mfAllRanges2
states that there must be at least one classifier object with a non-empty name. These
values for name are the ranges for the property. The model fragments chosen using
AllRanges mfAllRanges1 and mfAllRanges2 define two partitions partition1 and par-
tition2. The model fragment mfAllPartitions1 chosen using AllPartitions defines both
partition1 and partition2.

These model fragments are transformed to Alloy predicates by Cartier. For instance,
model fragment mfAllRanges7 is transformed to the predicate :

pred mfAllRanges7(){some c:Class|#c.attrs=1}

As mentioned in our previous paper [8] if a test set contains models where all model
fragments are contained in at least one model then we say that the input domain is com-
pletely covered. However, these model fragments are generated considering only the

154 S. Sen, B. Baudry, and J.-M. Mottu

concepts and relationships in the Ecore model and they do not take into account the
constraints on the Ecore model. Therefore, not all model fragments are consistent with
the input meta-model because the generated models that contain these model fragments
do not satisfy the constraints on the meta-model. Cartier invokes the Alloy Analyzer [15]
to automatically check if a model containing a model fragment and satisfying the input
domain can be synthesized for a general scope of number of objects. This allows us
to detect inconsistent model fragments. For example, the following predicate, mfAll-
Ranges7a, is the Alloy representation of a model fragment specifying that some Class
object does not have any Attribute object. Cartier calls the Alloy API to execute the run
statement for the predicate mfAllRanges7a along with the base Alloy model to create a
model that contains up to 30 objects per class/concept/signature:

pred mfAllRange7a(){some c:Class|#c.attrs=0}
run mfAllRanges7 for 30

The Alloy analyzer yields a no solution to the run statement indicating that the model
fragment is not consistent with the input domain specification. This is because no model
can be created with this model fragment that also satisfies an input domain constraint
that states that every Class must have at least one Attribute object:

sig Class extends Classifier{..attrs : some Attribute..}

, where some indicates 1..*. However, if a model solution can be found using Alloy we
call it a consistent model fragment. MMCC generates a total of 15 consistent model
fragments using AllRanges and 5 model fragments using the AllPartitions strategy, as
shown in Table 1.

Table 1. Consistent Model Fragments Generated using AllRanges and AllPartitions Strategies

Model-Fragment Description
mfAllRanges1 A Classifier c | c.name =“”
mfAllRanges2 A Classifier c | c.name! =“”
mfAllRanges3 A Class c | c.is persistent = True
mfAllRanges4 A Class c | c.is persistent = False
mfAllRanges5 A Class c | #c.parent = 0
mfAllRanges6 A Class c | #c.parent = 1
mfAllRanges7 A Class c | #c.attrs = 1
mfAllRanges8 A Class c | #c.attrs > 1
mfAllRanges9 An Attribute a | a.is primary = True
mfAllRanges10 An Attribute a | a.name =“”
mfAllRanges11 An Attribute a | a.name! =“”
mfAllRanges12 An Attribute a | #a.type = 1
mfAllRanges13 An Association as | as.name =“”
mfAllRanges14 An Association as | #as.dest = 0
mfAllRanges15 An Association as | #as.dest = 1
mfAllPartitions1 Classifiers c1,c2 | c1.name =“” and c2.name! =“”
mfAllPartitions2 Classes c1,c2 | c1.is persistent = True and c2.is persistent = False
mfAllPartitions3 Classes c1,c2 | #c1.parent = 0 and #c2.parent = 1
mfAllPartitions4 Attributes a1,a2 | a1.is primary = True and a2.is primary = False
mfAllPartitions5 Associations as1,as2 | as1.name =“” and as2.name! =“”

Automatic Model Generation Strategies for Model Transformation Testing 155

3.2 Model Generation by Solving Alloy Model

Given the base Alloy model with signatures, facts and predicates from model fragments
(see A) Cartier synthesizes Alloy run commands. Cartier synthesizes a run command for
a given scope or based on exact number of objects per class/signature. A scope is the
maximum number of objects/atoms per signature. Scope can be specified for individual
signatures or the same scope can apply to all signatures. Executing the following run
command in Alloy attempts to generates a model that conforms to the input domain and
satisfies the model fragment called mfAllRanges1.

run mfAllRanges1 for 20

Cartier invokes a SAT solver using the Alloy API to incrementally increase the scope
unto 20 and see if one or more solutions can be found. If solutions can be found we
transform the low-level Alloy XML output to XMI that can be read by Ecore based
model transformations or editors. On the other hand, we can also specify the correct
number of atoms/objects per signature as shown below.

run mfAllRanges1 for for 1 ClassModel,5 int, exactly 5 Class,
exactly 25 Attribute, exactly 4 PrimitiveDataType,exactly 5 Association

4 Qualifying Models: Mutation Analysis for Model
Transformation Testing

We generate sets of test models using different strategies and qualify these sets via
mutation analysis [9]. Mutation analysis involves creating a set of faulty versions or
mutants of a program. A test set must distinguish the program output from all the output
of its mutants. In practice, faults are modelled as a set of mutation operators where each
operator represents a class of faults. A mutation operator is applied to the program under
test to create each mutant. A mutant is killed when at least one test model detects the
pre-injected fault. It is detected when program output and mutant output are different. A
test set is relatively adequate if it kills all mutants of the original program. A mutation
score is associated to the test set to measure its effectiveness in terms of percentage of
the killed/revealed mutants.

We use the mutation analysis operators for model transformations presented in our
previous work [10]. These mutation operators are based on three abstract operations
linked to the basic treatments in a model transformation: the navigation of the models
through the relations between the classes, the filtering of collections of objects, the
creation and the modification of the elements of the output model. Using this basis we
define several mutation operators that inject faults in model transformations:

Relation to the same class change (RSCC). The navigation of one association toward
a class is replaced with the navigation of another association to the same class.

Relation to another class change (ROCC). The navigation of an association toward a
class is replaced with the navigation of another association to another class.

Relation sequence modification with deletion (RSMD). This operator removes the
last step off from a navigation which successively navigates several relations.

156 S. Sen, B. Baudry, and J.-M. Mottu

Relation sequence modification with addition (RSMA). This operator does the op-
posite of RSMD, adding the navigation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP). The filtering criterion, which
could be on a property or the type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD). This operator deletes a filter on a
collection; the mutant operation returns the collection it was supposed to filter.

Collection filtering change with addition (CFCA). This operator does the opposite of
CFCD. It uses a collection and processes an additional filtering on it.

Class compatible creation replacement (CCCR). The creation of an object is replaced
by the creation of an instance of another class of the same inheritance tree.

Classes association creation deletion (CACD). This operator deletes the creation of
an association between two instances.

Classes association creation addition (CACA). This operator adds a useless creation
of a relation between two instances.

Using these operators, we produced two hundred mutants from the class2rdbms
model transformation with the repartition indicated in Table 2.

Table 2. Repartition of the UMLCD2RDBMS mutants depending on the mutation operator applied

Mutation Operator CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total
Number of Mutants 19 18 38 11 9 72 12 12 9 200

In general, not all mutants injected become faults as some of them are equivalent and
can never be detected. The controlled experiments presented in this paper uses mutants
presented in our previous work [10]. We have clearly identified faults and equivalent
mutants to study the effect of our generated test models.

5 Empirical Comparison of Generation Strategies

5.1 Experimental Methodology

We illustrate the methodology to qualify test generation strategies in Figure 3. The
methodology flows is: (1) The inputs to Cartier are an Ecore meta-model, Alloy facts
on the Ecore model, Alloy predicates for transformation pre-condition and experimental
design parameters (such as factor levels, discussed shortly) (2) Cartier generates an Alloy
model from the Ecore using rules in [4]. The input facts and predicates are inserted into
the Alloy model. MMCC uses the Ecore to generate model fragments which Cartier
transforms to Alloy predicates which are inserted into to the Alloy model. Cartier uses
experiment design parameters to generate run commands and inserts them into the Alloy
model. These aspects are inserted in the sequence: signatures, facts, predicate, and run
commands (3) Cartier invokes the Alloy API to execute each run command (4) Cartier
invokes run commands that uses the KodKod engine [13] in Alloy to transform the Alloy

Automatic Model Generation Strategies for Model Transformation Testing 157

Fig. 3. Experimental Methodology to Qualify Automatic Model Generation Strategies

model to Boolean CNF, followed by invocation of a SAT solver such as ZChaff [7]
to solve the CNF and generate solutions in Alloy XML (5,6) Cartier transforms Alloy
XML instances to XMI using the input Ecore meta-model (7) We obtain XMI models
in different sets for different strategies. Mutation analysis is performed on each of these
sets with respect to a model transformation to give a mutation score for each set (8)
We represent the mutation scores in a box-whisker diagram to compare and qualify
strategies.

5.2 Experimental Setup and Execution

We use the methodology in Section 5.1 to compare model fragment driven test gen-
eration with unguided/random test model generation. We consider two test criteria for
generating model fragments from the input meta-model: AllRanges and AllPartitions.
We compare test sets generated using AllRanges and AllPartitions with randomly gener-
ated test sets containing an equal number of models. We use experimental design [16]
to consider the effect of different factors involved in model generation. We consider the
exact number of objects for each class in the input meta-model as factors for experi-
mental design. The AllRanges criteria on the UMLCD meta-model gives 15 consistent
model fragments (see Table 1). We have 15 models in a set, where each model satisfies
one different model fragment. We synthesize 8 sets of 15 models using different levels
for factors as shown in Table 3 (see rows 1,2,3,4,5,6). The total number of models in
these 8 sets is 120. The AllPartitions criteria gives 5 consistent model fragments. We
have 5 test models in a set, where each model satisfies a different model fragment. We
synthesize 8 sets of 5 models using factor levels shown in Table 3. The levels for factors
for AllRanges and AllPartitions are the same. Total number of models in the 8 sets is 40.
The selection of these factors at the moment is not based on a problem-independent
strategy. They are chosen based on the capacity of the solver in obtaining a model with
100 to 200 objects for our case study in a reasonable amount of time.

158 S. Sen, B. Baudry, and J.-M. Mottu

Table 3. Factors and their Levels for AllRanges
and AllPartitions Test Sets

Factors Sets: 1 2 3 4 5 6 7 8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 15 15 5 15 5 15
#Association 5 15 5 15 5 5 15 15
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#Models/Set AllRanges 15 15 15 15 15 15 15 15
#Models/Set AllPartitions 5 5 5 5 5 5 5

Table 4. Factor Levels for Ran-
dom Pool of 200 Test Models

Factors Levels
#ClassModel 1
#Class 5,10,15,20,25

#Association 5,10,15,20,25
#Attribute 25,30,35,40
#Primitive 3,4
DataType

Bit-width Integer 5

Table 5. Mutation Scores in Percentage for All Test Model Sets

Set 1 2 3 4 5 6 7 8
Random 15 models/set in 8 sets 72.6 70.61 69 71.64 72.68 72.16 69 69
AllRanges 15 models/set in 8 sets 65.9 85.5 86.6 81.95 67.5 80.9 87.1 76.8
Random 5 models/set in 8 sets 61.85 65.9 65.9 55.67 68.55 63.4 56.7 68.0
AllPartitions 5 models/set in 8 sets 78.3 84.53 87.6 81.44 72.68 86.0 84 79.9

We create random/unguided models as a reference to qualify the efficiency of dif-
ferent strategies. We generate a pool of 200 unguided/random test models. We select
this pool of test models using all the unique combinations of factor levels shown in the
Table 4. We then randomly select 15 models at a time from this pool to create 8 sets of
random models. We use these sets to compare mutation scores of 8 sets we obtain for
the AllRanges strategy. Similarly, we randomly select 5 models at a time from the pool
of 200 random models to create 8 sets of random models for comparison against the
AllPartitions sets. The factor levels for random models as shown in Table 4. The levels
range from very small to large levels covering a larger portion of the input domain in
terms of model size allowing us to compare model fragments based test models against
random test models of varying sizes.

To summarize, we generate 360 models using an Intel(R) CoreTM 2 Duo processor
with 4GB of RAM. We perform mutation analysis of these sets to obtain mutation
scores. The total computation time for the experiments which includes model generation
and mutation analysis is about 50 hours. We discuss the results of mutation analysis in
the following section.

5.3 Results and Discussion

Mutation scores for AllRanges test sets are shown in Table 5 (row 2). Mutation scores
for test sets obtained using AllPartitions are shown in Table 5 (row 4). We discuss the
effects of the influencing factors on the mutation score:

– The number of Class objects and Association objects has a strong correlation with
the mutation score. There is an increase in mutation score with the level of these

Automatic Model Generation Strategies for Model Transformation Testing 159

Fig. 4. Box-whisker Diagram to Compare Automatic Model Generation Strategies

factors. This is true for sets from random and model fragments based strategies. For
instance, the lowest mutation score using AllRanges is 65.9 %. This corresponds to
set 1 where the factor levels are 1,5,5,25,4,5 (see Column for set 1 in Table 3) and
highest mutation scores are 86.6 and 87.1% where the factor levels are 1,15,5,25,4,5
and 1,5,15,25,4,5 respectively (see Columns for set 3 and set 7 in Table 3).

– We observe a strong correlation of the mutation score with the number of Class
and Association objects due to the nature of the injected mutation operators. The
creational, navigational, and filtering mutation operators injected in the model
transformation are killed by input test models using a large number of Class and
Association objects. However, we see that random models with both large and small
number of Class and Association objects are not able to have a mutation score above
72%. There is a clear need for more knowledge to improve this mutation score.

– We observe that AllPartitions test sets containing only 5 models/set gives a score of
maximum 87.1%. The AllPartitions strategy provides useful knowledge to improve
efficiency of test models.

We random test sets with model fragment guided sets in the box-whisker diagram shown
in Figure 4. The box whisker diagram is useful to visualize groups of numerical data
such as mutation scores for test sets. Each box in the diagram is divided into lower
quartile (25%), median, upper quartile (75% and above), and largest observation and
contains statistically significant values. A box may also indicate which observations, if
any, might be considered outliers or whiskers. In the box whisker diagram of Figure 4
we shown 4 boxes with whiskers for random sets and sets for AllRanges and AllParti-
tions. The X-axis of this plot represents the strategy used to select sets of test models
and the Y-axis represents the mutation score for the sets.

We make the following observations from the box-whisker diagram:

– Both the boxes of AllRanges and AllPartitions represent mutation scores higher than
corresponding random sets although the random sets were selected using models
of larger size.

160 S. Sen, B. Baudry, and J.-M. Mottu

– The high median mutation scores for strategies AllRanges 81% and AllPartitions
82.7% indicate that both these strategies return consistently good test sets. The
median for AllPartitions 82.72% is highest among all sets.

– The small size of the box for AllPartitions compared to the AllRanges box indicates
its relative convergence to good sets of test models.

– The small set of 5 models/set using AllPartitions gives mutations scores equal or
greater than 15 models/set using AllRanges. This implies that it is a more efficient
strategy for test model selection. The main consequence is a reduced effort to write
corresponding test oracles [17] with 5 models compared to 15 models.

The freely and automatically obtained knowledge from the input meta-model using
the MMCC algorithm shows that AllRanges and AllPartitions are successful strategies
to guide test generation. They have higher mutation scores with the same sources of
knowledge used to generate random test sets. A manual analysis of the test models
reveals that injection of inheritance via the parent relation in model fragments results
in higher mutation scores. Most randomly generated models do not contain inheritance
relationships as it is not imposed by the meta-model.

What about the 12% of the mutants that remain alive given that the highest mutation
score is 87.6%? We note by an analysis of the live mutants that they are the same for
both AllRanges and AllPartitions. There remain 25 live mutants in a total of 200 injected
mutants (with 6 equivalent mutants). In the median case the AllRanges strategy gives a
mutation score of 81.43% and while AllPartitions gives a mutation score of 82.73%. The
live mutants in the median case are mutants not killed due to fewer objects in models.
To consistently achieve a higher mutation score we need more CPU speed, memory and
parallelization to efficiently generate large test models and perform mutation analysis on
them. This extension of our work has not be been explored in the paper. It is important
for us to remark that some live mutants can only be killed with more information about
the model transformation such as those derived from its requirements specification.
Further, not all model fragments are consistent with the input domain and hence they
do not really cover the entire meta-model. Therefore, we miss killing some mutants.
This information could help improve partitioning and combination strategies to generate
better test sets.

We also neglect the effect of the constraint solver which is Alloy on the variation of the
mutation scores. Relatively small boxes in the box-whisker diagram would be ideal to
ascertain the benefits of test generation strategies. This again requires the generation of
several thousand large and small models including multiple solutions for the same input
specification. This will allow us to statistically minimize the external effects caused by
Alloy and Boolean SAT solver allowing us to correctly qualify only the input generation
strategies.

6 Related Work

We explore three main areas of related work : test criteria, automatic test generation,
and qualification of strategies.

The first area we explore is work on test criteria in the context of model transforma-
tions in MDE. Random generation and input domain partitioning based test criteria are

Automatic Model Generation Strategies for Model Transformation Testing 161

two widely studied and compared strategies in software engineering (non MDE) [18]
[19] [20]. To extend such test criteria to MDE we have presented in [8] input domain
partitioning of input meta-models in the form of model fragments. However, there exists
no experimental or theoretical study to qualify the approach proposed in [8].

Experimental qualification of the test strategies require techniques for automatic
model generation. Model generation is more general and complex than generating in-
tegers, floats, strings, lists, or other standard data structures such as dealt with in the
Korat tool of Chandra et al. [21]. Korat is faster than Alloy in generating data structures
such as binary trees, lists, and heap arrays from the Java Collections Framework but it
does not consider the general case of models which are arbitrarily constrained graphs
of objects. The constraints on models makes model generation a different problem than
generating test suites for context-free grammar-based software [22] which do not con-
tain domain-specific constraints.

Test models are complex graphs that must conform to an input meta-model specifica-
tion, a transformation pre-condition and additional knowledge such as model fragments
to help detect bugs. In [23] the authors present an automated generation technique for
models that conform only to the class diagram of a meta-model specification. A similar
methodology using graph transformation rules is presented in [24]. Generated models
in both these approaches do not satisfy the constraints on the meta-model. In [25] we
present a method to generate models given partial models by transforming the meta-
model and partial model to a Constraint Logic Programming (CLP). We solve the re-
sulting CLP to give model(s) that conform to the input domain. However, the approach
does not add new objects to the model. We assume that the number and types of models
in the partial model is sufficient for obtaining complete models. The constraints in this
system are limited to first-order horn clause logic. In [4] we have introduce a tool Cartier
based on the constraint solving system Alloy to resolve the issue of generating models
such that constraints over both objects and properties are satisfied simultaneously. In
this paper we use Cartier to systematically generate several hundred models driven by
knowledge/constraints of model fragments [8]. Statistically relevant test model sets are
generated from a factorial experimental design [16] [26].

The qualification of a set of test models can be based on several criteria such as code
and rule coverage for white box testing, satisfaction of post-condition or mutation anal-
ysis for black/grey box testing. In this paper we are interested in obtaining the relative
adequacy of a test set using mutation analysis [9]. In previous work [10] we extend
mutation analysis to MDE by developing mutation operators for model transformation
languages. We qualify our approach using a representative transformation UMLCD mod-
els to RDBMS models called class2rdbms implemented in the transformation language
Kermeta [2]. This transformation [12] was proposed in the MTIP Workshop in MoDeLs
2005 as a comprehensive and representative case study to evaluate model transforma-
tion languages.

7 Conclusion

Black-box testing exhibits the challenging problem of developing efficient model gener-
ation strategies. In this paper we present Cartier, a tool to generate hundreds of models

162 S. Sen, B. Baudry, and J.-M. Mottu

conforming to the input domain and guided by different strategies. We use these test
sets to compare four strategies for model generation. All test sets using these strategies
detect faults given by their mutation scores. We generate test sets using only the input
meta-model. The comparison partitioning strategies with unguided generation taught
us that both strategies AllPartitions and AllRanges look very promising. Partitioning
strategies give a maximum mutation score of 87% compared to a maximum mutation
score of 72% in the case of random test sets. We conclude from our experiments that
the AllPartitions strategy is a promising strategy to consistently generate a small test of
test models with a good mutation score. However, to improve efficiency of test sets we
might require effort from the test designer to obtain test model knowledge/test strategy
that take the internal model transformation design requirements into account.

References

1. Bardohl, R., Taentzer, G., Minas, M., Schurr, A.: Handbook of Graph Grammars and Com-
puting by Graph transformation. In: vII: Applications, Languages and Tools. World Scien-
tific, Singapore (1999)

2. Muller, P.A., Fleurey, F., Jezequel, J.M.: Weaving executability into object-oriented meta-
languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–
278. Springer, Heidelberg (2005)

3. Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and QVT. In: Proceedings of
ACM Symposium on Applied Computing (SAC 2006), FRA (April 2006)

4. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to select test
models for model transformation testing. In: IEEE International Conference on Software
Testing, Lillehammer, Norway (April 2008)

5. Budinsky, F.: Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley, Reading
(2004)

6. OMG: The Object Constraint Language Specification 2.0, OMG: ad/03-01-07 (2007)
7. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: Hoos, H.H.,

Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005)
8. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Towards dependable model transforma-

tions: Qualifying input test data. In: Software and Systems Modelling (2007) (accepted)
9. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: Help for the practicing

programmer. IEEE Computer 11(4), 34–41 (1978)
10. Mottu, J.M., Baudry, B., Traon, Y.L.: Mutation analysis testing for model transformations. In:

Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 376–390. Springer,
Heidelberg (2006)

11. Vaziri, M., Jackson, D.: Some shortcomings of ocl, the object constraint language of uml. In:
TOOLS 2000: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 34’00), Washington, DC, USA. IEEE Computer Society, Los Alamitos (2000)

12. Bezivin, J., Rumpe, B., Schurr, A., Tratt, L.: Model transformations in practice workshop.
In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg
(2006)

13. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Tools and Algorithms for
Construction and Analysis of Systems, Braga, Portugal (March 2007)

14. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model transfor-
mation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

Automatic Model Generation Strategies for Model Transformation Testing 163

15. Jackson, D. (2008), http://alloy.mit.edu
16. Pfleeger, S.L.: Experimental design and analysis in software engineering. Annals of Software

Engineering, 219–253 (2005)
17. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: Oracle issue. In: Proc.

of MoDeVVa workshop colocated with ICST 2008, Lillehammer, Norway (April 2008)
18. Vagoun, T.: Input domain partitioning in software testing. In: HICSS 1996: Proceedings of

the 29th Hawaii International Conference on System Sciences (HICSS), Washington, DC,
USA. Decision Support and Knowledge-Based Systems, vol. 2 (1996)

19. Weyuker, E.J., Weiss, S.N., Hamlet, D.: Comparison of program testing strategies. In: TAV4:
Proceedings of the symposium on Testing, analysis and verification, pp. 1–10. ACM, New
York (1991)

20. Gutjahr, W.J.: Partition testing versus random testing: the influence of uncertainty. IEEE
TSE 25, 661–674 (1999)

21. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java predicates.
In: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing
and analysis (2002)

22. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating minimal
test suites for grammar-based software. In: Proc. of the 20th IEEE/ACM ASE, New York,
USA (2005)

23. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test generation
for model transformations: an algorithm and a tool. In: Proceedings of ISSRE 2006, Raleigh,
NC, USA (2006)

24. Ehrig, K., Kster, J., Taentzer, G., Winkelmann, J.: Generating instance models from meta
models. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 156–
170. Springer, Heidelberg (2006)

25. Sen, S., Baudry, B., Precup, D.: Partial model completion in model driven engineering using
constraint logic programming. In: International Conference on the Applications of Declara-
tive Programming (2007)

26. Federer, W.T.: Experimental Design: Theory and Applications. Macmillan, Basingstoke
(1955)

A Concise Version of Alloy Model Synthesized by Cartier

module tmp/simpleUMLCD
open util/boolean as Bool
sig ClassModel{classifier:set Classifier,association:set Association}
abstract sig Classifier{name : Int}
sig PrimitiveDataType extends Classifier {}
sig Class extends Classifier{
is_persistent: one Bool,parent : lone Class,attrs : some Attribute}
sig Association{name: Int,dest: one Class,src: one Class}
sig Attribute{name: Int,is_primary : Bool,type: one Classifier}
//Meta-model constraints
//There must be no cyclic inheritance in the generated class diagram
fact noCyclicInheritance {no c: Class|c in c.ˆparent}
/*All the attributes in a Class must have unique attribute names*/
fact uniqueAttributeNames {
all c:Class|all a1: c.attrs, a2: c.attrs |a1.name==a2.name=>a1=a2}
//An attribute object can be contained by only one class

http://alloy.mit.edu

164 S. Sen, B. Baudry, and J.-M. Mottu

fact attributeContainment {
all c1:Class, c2:Class | all a1:c1.attrs, a2:c2.attrs|a1==a2=>c1=c2}
//There is exactly one ClassModel object
fact oneClassModel {#ClassModel=1}
/*All Classifier objects are contained in a ClassModel*/
fact classifierContainment {
all c:Classifier | c in ClassModel.classifier}
//All Association objects are contained in a ClassModel
fact associationContainment {
all a:Association| a in ClassModel.association}
/*A Classifier must have a unique name in the class diagram*/
fact uniqueClassifierName {
all c1:Classifier, c2:Classifier |c1.name==c2.name => c1=c2}
/*An associations have the same name either
they are the same association or they have different sources*/
fact uniqeNameAssocSrc {all a1:Association, a2:Association |
a1.name == a2.name => (a1 = a2 or a1.src != a2.src)}
/*Model Transformation Pre-condition*/
fact atleastOnePrimaryAttribute {
all c:Class| one a:c.attrs | a.is_primary==True}
fact no4CyclicClassAttribute{
all a:Attribute |a.type in Class => all a1:a.type.attrs|a1.type in
Class=>all a2:a.type.attrs|a2.type in Class=>all a3:a.type.attrs|a3.type
in Class => all a4:a.type.attrs| a4.type in PrimitiveDataType}
fact noAttribAndAssocSameName{all c:Class,assoc:Association |
all a:c.attrs|(assoc.src==c)=>a.name!=assoc.name}
fact no1CycleNonPersistent {
all a: Association | (a.dest == a.src) => a.dest.is_persistent= True }
fact no2CycleNonPersistent{all a1: Association, a2:Association |
(a1.dest == a2.src and a2.dest==a1.src) =>
a1.src.is_persistent= True or a2.src.is_persistent=True}

A Simple Game-Theoretic Approach to
Checkonly QVT Relations

Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Abstract. The QVT Relations (QVT-R) transformation language al-
lows the definition of bidirectional model transformations, which are re-
quired in cases where a two (or more) models must be kept consistent
in the face of changes to either. A QVT-R transformation can be used
either in checkonly mode, to determine whether a target model is con-
sistent with a given source model, or in enforce mode, to change the
target model. Although the most obvious semantic issues in the QVT
standard concern the restoration of consistency, in fact even checkonly
mode is not completely straightforward; this mode is the focus of this
paper. We need to consider the overall structure of the transformation
as given by when and where clauses, and the role of trace classes. In
the standard, the semantics of QVT-R are given both directly, and by
means of a translation to QVT Core, a language which is intended to
be simpler. In this paper, we argue that there are irreconcilable differ-
ences between the intended semantics of QVT-R and those of QVT Core,
so that the translation cannot be helpful. Treating QVT-R directly, we
propose a simple game-theoretic semantics. We demonstrate that consis-
tent models may not possess a single trace model whose objects can be
read as traceability links in either direction. We briefly discuss the effect
of variations in the rules of the game, to elucidate some design choices
available to the designers of the QVT-R language.

1 Introduction

Model-driven development (MDD) is widely agreed to be an important ingre-
dient in the development of reliable, maintainable multi-platform software. The
Object Management Group, OMG, is the industry’s consensus-based standards
body, so the standards it proposes for model-driven development are necessarily
important. In the area of MDD, a key standard is Queries, Views and Trans-
formations (QVT, [5]), a specification of three different languages for defining
transformations between models, which may include defining a restricted view
of a model which abstracts away from aspects of the model not relevant to a
particular class of intended user. Rather disappointingly, however, the Queries,
Views and Transformations languages have been slow to be adopted. Few tools
are available for any of the languages: notably, it sometimes happens that even

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 165–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 P. Stevens

those tools which use “QVT” in their marketing literature do not actually pro-
vide any of the three QVT languages, but rather, provide a “QVT-like” language.
In this paper we will consider QVT Relations (QVT-R), the language which best
permits the high-level, declarative specification of bidirectional transformations.
There have been two candidate implementations of this: Medini QVT1 and Mod-
elMorf2. ModelMorf is the more faithful to [5], but unfortunately development
of it seems to have ceased while the tool was still in pre-beta.

Why has the uptake of QVT been so low? Optimistically, we may point to
the fact that, while the QVT standard has been under development for a long
time, it has only recently been standardised. However, the same applied to other
OMG standards, most notably UML, and did not prevent their adoption before
finalisation. Lack of support for important engineering activities like testing and
debugging may also play a role, but this does not explain why there do exist
several tools each of which uses its own transformation language other than the
OMG standard ones, and case studies of successful use of these tools. Perhaps a
contributory factor is that, whereas the UML standard was developed following
years of widespread use of various somewhat similar modelling languages, the
model transformation arena is still far more sparsely populated. Therefore, how
to define, or recognise, a good model transformation language for use on a partic-
ular problem is less well understood. We consider that the difficulty developers
have in understanding the semantics of QVT may play a role, and we develop a
game-theoretic semantics which we hope may be more accessible.

In this paper, we only consider transformations in checkonly mode. That is,
we are interested in the case where a QVT-R transformation is presented with
two models, and the transformation engine must return true if the models are
consistent according to the definition of consistency embodied in the transfor-
mation, or false otherwise. Perhaps surprisingly, it turns out that this already
raises some interesting issues.

Related work. This paper follows on from earlier work by the present author, [9], in
which questions answered here, specifically the role of relation invocation in when
and where clauses (relation definition applied to particular arguments), were left
open. Discussion of the foundations of, and range of approaches to, bidirectional-
ity, not specific to QVT, are presented in [8] and [7] respectively.

Greenyer and Kindler [3] presented at MODELS 2007 a discussion of the re-
lationship between QVT Core and Triple Graph Grammars, together with an
outline of a translation from QVT Core to TGGs. Romeikat and others [6] trans-
lated QVT-R transformations to QVT Operational. Garcia [1] formalised aspects
of QVT-R in Alloy, permitting certain well-formedness errors to be detected.

Formal games have been widely used in computer science; the most relevant
strand for this paper is surveyed in [10]. In modelling, the GUIDE tool [11] uses
games to support design exploration and verification.

1 http://projects.ikv.de/qvt/, version 1.6.0 current at time of writing.
2 http://www.tcs-trddc.com/ModelMorf/index.htm, but download page not available

at time of writing.

A Simple Game-Theoretic Approach to Checkonly QVT Relations 167

2 Background

QVT Relations. A QVT-R transformation is structured as a number of relations,
connected by referencing one another in when and where clauses. The idea is that
an individual relation constrains a tuple of models in a rather simple, local, way, by
matching patterns rooted at model elements of particular kinds. The power, and
the complexity, of the transformation comes from the way in which relations are
connected. A relation may also have a when clause and/or a where clause. In these
clauses, other relations are invoked with particular roots for their own patterns to
be matched. In this way, global constraints on the models being compared can be
constructed from a web of local constraints. The allowed dependencies between
the choices made of values for variables – in a typical implementation, the order
in which these choices are made – are such that the when functions as a kind of
pre-condition; the where clause imposes further constraint on the values chosen
during the relation to which it is attached (it is, in a way, a post-condition).

The reader is referred to [5] for details: the relevant sections are Chapter 7
and Appendix B. A key point is that the truth of a relation is defined using a
logical formula which states that for every legal assignment of values to certain
variables, there must exist an assignment of values to certain other variables,
such that a given condition is satisfied.

Logic. In logical terms, this is expressed as a “for all–there exists” formula; more
precisely, such a formula is called a Π2 formula, provided that the formula which
follows these two quantifiers is itself quantifier-free.

The difficulty in QVT-R is that actually, the truth of a complete transforma-
tion is expressed by a much more complex formula. Appendix B only expresses
the truth of an individual relation, but this is defined in terms of the truth of the
relations which may appear in its when and where clauses, so that, in fact, the
number of alternations between universal and existential quantifiers (the length
of a forall-thereexists-forall-thereexists... formula which would be equivalent to a
whole QVT-R transformation evaluating to true) is unbounded. For example, con-
sider the well-known example of transformation between UML class diagrams and
RDBMS schemas, in which packages correspond to schemas, classes to tables and
attributes to columns. Looking at [5] p197, we see that ClassToTable invokes rela-
tion AttributeToColumn in its where clause. The invocation gives explicit values
for the rootvariables of the patterns in AttributeToColumn, but even though those
are fixed, the usual rule applies as regards the rest of the valid bindings to be found
inAttributeToColumn.Thus, for eachvalidbinding of one pattern inClassToTable
(and of the when variables), there must exist a valid binding of the other pattern
in ClassToTable, such that for each valid binding of the remaining variables of one
pattern in AttributeToColumn (and of the when variables, except that in this case
there are none), there exists a valid binding of the remaining variables of the other
pattern in AttributeToColumn.3 Note that, if there was more than one choice for
3 Actually, the version in [5] is a little more complicated than this: AttributeToColumn

invokes further relations in its where clause, and it is those which require the binding
of remaining variables: but the point is the same.

168 P. Stevens

the second binding in ClassToTable, it is entirely possible that it turns out that
only one of these choices satisfies the rest of the condition, concerning the match-
ing in AttributeToColumn: thus any evaluation, whether mental or by a tool, of
ClassToTable has to be prepared either to consider both relations together, or to
backtrack in the case that the first choice of binding made is not the best.

Therefore, while one might at first glance hope to be able to understand,
and evaluate, the meaning of a QVT-R transformation by studying the relations
individually, in fact, no such “local” evaluation is possible, because of the way
the relations are connected.

Fortunately, similar situations arise throughout logic and computer science,
and much work has been done on how to handle them. In particular, this is
exactly the situation in which games have found to be a useful aid to developing
intuition, as well as to formal reasoning.

Games. There is a long history in logic of formulating the truth of a logical propo-
sition as the existence of a winning strategy in a two-player game. For example,
the formula ∀x.∃y.y > x (where x and y are integers, say) can be turned into a
game between two players. The player who is responsible for picking a value for x is
variously called ∀belard, Player I, Spoiler, Refuter, depending on the community
defining the game, while the player responsible for picking a value for y is called
∃louise, Player II, Duplicator or Verifier. We will go with Refuter and Verifier. Re-
futer’s aim is, naturally, to refute the formula, while Verifier’s aim is to verify it.
In this game, Refuter has to pick a value for x, then Verifier has to pick a value for
y. Verifier then wins this play of the game if y > x, while Refuter wins this play
otherwise. In fact, in this case, Verifier has a winning strategy for the game: that
is, she has a way of winning the game in the face of whatever moves Refuter may
choose. This is an example of a two-player game of perfect information (that is,
both players can see everything about one another’s moves).

Of course, it is entirely possible that for a particular value of x, there is more
than one value of y which makes the formula true: that is, Verifier has more than
one winning strategy. When a Π2 formula is true, a Skolem function expresses a
particular set of choices that constitute a winning strategy: given x, it returns the
chosen y. Different Skolem functions may exist which justify the truth of the same
formula. In the example above, one choice of Skolem function maps x to x + 1,
another maps x to x+17, another maps 1 to 23, 2 to 4, 3 also to 4, and so on. Clearly
the trace model in QVT has something in common with a Skolem function.

Another family of examples comes from concurrency theory. Processes are
modelled as labelled transition systems (LTSs), that is, an LTS is a set of states
S including a distinguished start state i ∈ S, a set of labels L, and a ternary
relation →⊆ S × L × S: we write s

a→ t for (s, a, t) ∈→. The question of when
two processes should be deemed to have consistent behaviour can be answered
in many ways depending on context. One simple choice is simulation. A process
B = (SB, iB, LB,→B) is said to simulate a process A = (SA, iA, LA,→A) if there
exists a simulation relation S ⊆ SA × SB containing (iA, iB). The condition for
the relation to be a simulation relation is the following:

(s, t) ∈ S ⇒ (∀a, s′ .(s a→ s′ ⇒ ∃t′ . t
a→ t′ ∧ (s′, t′) ∈ S))

A Simple Game-Theoretic Approach to Checkonly QVT Relations 169

This can very easily be encoded as a game: starting at the start state of A,
Refuter picks a transition. Verifier has to pick a transition from the start state
of B which has the same label. We now have a new pair of states, the targets of
the chosen transitions, and the process repeats: again, Refuter chooses a tran-
sition from A and Verifier has to match it. Play continues unless or until one
player cannot go: either Refuter cannot choose a transition, because there are no
transitions from his state, or Verifier cannot choose a transition because there
is no transition from her state which matches the label on the transition chosen
by Refuter. A player wins if the other player cannot move. If play continues
for ever, Verifier wins. It is easy to show that in fact, Verifier has a winning
strategy for this game exactly when there exists a simulation relation between
the two processes; indeed, in a sense which can be made precise, a simulation
relation is a winning strategy for Verifier. (As with the Skolem functions for Π2
formulae, there may be more than one simulation relation between a given pair
of processes.)

A curious and relevant fact about simulation is that even if B simulates A
by simulation relation S and A simulates B by simulation relation T , it does
not follow that A simulates B by the reverse of S, nor even that there must
exist some relation which works as a simulation in both directions. This is the
crucial difference between simulation equivalence and the stronger relation of
bisimulation equivalence; see for example [2].

We will shortly define the semantics of QVT-R using a similar game, but first,
we must consider an alternative approach.

3 The Translation from QVT Relations to QVT Core

In an attempt to help readers and connect the several languages it defines, [5]
defines the semantics of QVT Relations both directly, and by translation to
QVT Core. Both specifications are informal (notwithstanding some minor use of
logic e.g. in Appendix B). [5] does not specify what should happen in the case
of conflicts between the two, nor does it explicitly argue for their consistency.
Therefore any serious attempt to provide a formally-based semantics for QVT-R
needs to take both methods into consideration.

In this section, we consider the translation, with the aid of a very simple
example QVT-R transformation. We then argue that, not only is what we believe
to be the intended translation of this transformation not semantically equivalent,
but also, the intended semantics of QVT Core appear to be such that it simply
cannot express semantics equivalent to those of our simple QVT-R example.
That is, even if our reading of the translation is incorrect, the problem remains:
no translation can correctly reproduce the semantics of QVT-R. If the reader is
convinced by the argument, it follows that the translation of QVT-R to QVT
Core cannot contribute to an understanding of QVT-R.

Consider an extremely simple MOF metamodel which we will call SimplestMM.
It defines one metaclass, called ModelElement, which is an instance of MOF’s
Class. It defines nothing else at all, so models which conform to this metamodel are

170 P. Stevens

simply collections (possibly empty) of instances of ModelElement. (Of course, in
the usual object-oriented fashion, there is no obstacle to having several instances
of ModelElement which are indistinguishable except by their identities.) We will
refer to three models which conform to SimplestMM, having zero, one and two
ModelElements respectively. We will imaginatively call them Zero, One and Two.
Indeed, models conforming to SimplestMM can be identified in this way with nat-
ural numbers: a natural number completely determines such a model, and vice
versa.

Next, consider a very simple QVT-R transformation between two models each
of which conforms to SimplestMM. Figure 1 show the text of the transformation
(we use ModelMorf syntax here).

transformation Translation (m1 : SimplestMM ; m2 : SimplestMM)

{

top relation R

{

checkonly domain m1 me1:ModelElement {};

checkonly domain m2 me2:ModelElement {};

}

}

Fig. 1. A very simple transformation

Suppose that we use the QVT-R semantics to execute this transformation
in the direction of m2 (we will return to the issue of directionality of checkonly
transformations below, in Section 4). When executed in the direction of m2, it
should return true if and only if, for every valid binding of me1 there exists a valid
binding of me2. There are no constraints beyond the type specification, so this is
equivalent to: if model m1 is non-empty, then model m2 must also be non-empty. If
model m1 is empty, then there is no constraint on model m2. Thus, when invoked
on the six possible pairs of models from Zero, One and Two, the transformation
should return false on the pairs (One,Zero) and (Two,Zero), otherwise true.
Conversely, if we check in the direction of m1, the transformation returns false if
m1 is empty and m2 is not, otherwise true. Reassuringly, ModelMorf gives exactly
these results.

QVT-R works this way because its semantics are specified using logical “for
all–there exists” formulae, without reference to a trace model or any other means
of enforcing a permanent binding of one model element to another, such that
a model element might be considered “used up”. While [5] says that running a
QVT-R transformation “implicitly” generates a trace model, the definition of
the transformation does not rely upon its existence. It is simply assumed that
an implementation will build a trace model, and use it, for example, to allow
small changes to one model to be propagated to another without requiring all
the computation involved in running a transformation to be redone. However,
because the definition of QVT-R is independent of any trace model or its prop-
erties, there is no obstacle to the same model element being used more than
once, which is why the transformation has the semantics discussed, rather than

A Simple Game-Theoretic Approach to Checkonly QVT Relations 171

enforcing any more restrictive condition, such as that the two models have the
same number of model elements. This helps to provide QVT-R the ability to
express non-bijective transformations in the sense discussed in [9]; this ability
in turn is essential to allow the expression of transformations between models
which abstract away different things. The absolute requirement to be able to do
this is most obvious when we consider a transformation between a fully-detailed
model and an abstracted view onto it, where either the full model or the view
may be updated (this is called the “view update problem” in databases). Even
in transformations between models we might regard as equally detailed, though,
it turns out that non-bijectiveness is essential. For example, in a realistic in-
terpretation of a transformation between UML packages and RDBMS schemas,
there are many schemas which are consistent with a given package, and many
packages consistent with a given schema. See [9] for more discussion.

Now, taking [5] at face value, we expect to be able to translate this simple
QVT-R transformation into a QVT Core transformation which has the same
behaviour, and which, in particular, will return the same values when invoked
on our simple models. The specification of the translation is not so clear that
mistakes are impossible (e.g., possibly the multiple importing of the same meta-
model is unnecessary), but this is what the author believes to be the intended
translation:

module SimpleTransformation imports SimplestMM {

transformation Translation {

m1 imports SimplestMM;

m2 imports SimplestMM;

}

class TR {

theM1element : ModelElement;

theM2element : ModelElement;

}

map R in Translation {

check m1() {

anM1element : ModelElement

}

check m2() {

anM2element : ModelElement

}

where () {

realize t:TR|

t.theM1element = anM1element;

t.theM2element = anM2element;

}

The effect of this QVT Core transformation is to construct for every model el-
ement in m1 an object of the trace class TR which connects this model element

172 P. Stevens

to a corresponding model element in m2. However, [5] says several times that in
QVT Core, valid bindings must be unique. For example, p133 says:

There must be (exactly) one valid-binding of the bottom-middle pattern
and (exactly) one valid binding of the bottom-domain pattern of a checked
domain, for each valid combination of valid bindings of all bottom-domain-
patterns of all domains not equal to the checked domain, and all these valid
bindings must form a valid combination together with the valid bindings of
all guard patterns of the mapping.

and this sentiment is then repeated in a logical notation. In executing the QVT
Core version of our transformation on the models (Two,One), this condition
would fail because, given the valid binding of the single ModelElement in One to
variable me2, there would have to be two valid bindings to me1, one binding each
of the ModelElements in Two. What is not so clear is whether this condition is
intended to be satisfied if we run the example on (Two,Two): a literal reading
would seen to suggest not, yet it seems impossible that QVT Core is intended
to be unable to express the identity relation. The problem is where exactly the
valid binding is supposed to be unique: in the model, or just in the mapping?
That is, given a model element in m2, must there exist only one model element
in m1 which could validly be linked to it, or is it, more plausibly, enough that
there is only one model element which actually is linked to it by some trace
object? Either way, though, (Two,One) will still fail.

Unfortunately no implementation of QVT Core seems to be available. Various
sources refer to a pre-release of Compuware OptimalJ, but OptimalJ no longer
exists. Therefore we cannot investigate what actual QVT Core tools do.

It is noteworthy, though, that this misapprehension that model elements, or at
least patterns of them, must correspond one-to-one in order to make bidirectional
transformations possible is pervasive: it appears even in the documentation for
Medini QVT, which intends to be an implementation of QVT-R (see Medini
QVT Guide, version 1.6, section QVT Relations Language, Bidirectionality).

Could we write a QVT Core transformation which did have the same be-
haviour as our simple QVT-R transformation? Unfortunately not. A moment’s
thought will show that the requirement that valid bindings correspond one-
to-one (even if only in the constructed trace model) precludes any QVT Core
transformation that could return true on both (One,Two) and (Two,One) but
false on (One,Zero).

4 Transformation Direction

The reader who is familiar with [9] may have noticed an inconsistency between
the treatment of bidirectional transformations in that paper and the way we
described checkonly transformations above. The framework in [9] is based on a
direction-free notion of consistency: a transformation between sets of models M
and N specifies, for any pair (m, n) ∈ M × N , whether or not m is consistent
with n. In the above, however, our consistency check had a direction: checking

A Simple Game-Theoretic Approach to Checkonly QVT Relations 173

Translation in the direction of m2 is not the same as checking it in the direction
of m1 and indeed, can give different answers. When Translation is checked in
the direction of m1 on the pair of models (Zero, One), it returns true, since there
are no model elements on the left to be matched. When the same transformation
is checked on the same pair of models in the other direction, it returns false.

The standard [5] is slightly ambivalent about whether a checkonly QVT-
R transformation has a direction. Compare p13, which talks about “checking
two models for consistency” and implicitly contrasts execution for enforcement,
which has a direction, with execution for checking, which implicitly does not,
with the details of the QVT-R definition which clearly assume that checking has
a direction. The resolution seems to be (p19, my emphasis): A transformation can
be executed in “checkonly” mode. In this mode, the transformation simply checks
whether the relations hold in all directions, and reports errors when they do not.

That is, the notion of consistency intended by the QVT-R standard is given
by conjunction: m1 is consistent with m2 according to transformation R if and
only if R’s check evaluates to true in both directions.

In fact, ModelMorf requires a transformation execution to have a direction
specified, even when it is checkonly: to find out what the final result of a check-
only transformation is, one has to manually run it in each direction and conjoin
the results. Medini, by contrast, makes it impossible to run a transformation in
checkonly mode: if you run a transformation in the direction of a domain which
is marked enforce, there is no way to make the transformation engine return
false if it finds that the models are inconsistent, rather than modifying the tar-
get model. These seems to be a misinterpretation of [5] and indeed is on the
bug list. However, it is a superficial matter, because QVT-R is supposed to have
“check then enforce” semantics: that is, it is not supposed to modify a model
unless it is necessary to do so to enforce consistency. Therefore, given a QVT
engine which was compliant with [5] except that it did not provide the ability
to run transformations in checkonly mode, it would be easy to construct a fully
compliant engine using a wrapper. The wrapper would save the target model,
run the transformation, and compare the possibly modified target model with
the original. If the target model had been modified, it would restore the original
version and return false; otherwise, it would return true.

5 A Game-Theoretic Semantics for Checkonly QVT-R

Given a set of metamodels, a set of models conforming to the metamodels, a
transformation written in a simplified version of QVT-R, and a direction for
checking, we will define a formal game which explains the meaning of the trans-
formation in the following sense. The game is played between Verifier and Re-
futer. Refuter’s aim in the game is to refute the claim that the check should
succeed; Verifier’s aim is to verify that the check should succeed. The semantics
of QVT is then defined by saying that the check returns true if and only if Ver-
ifier has a winning strategy for the game. If this is not the case, then (since by
Martin’s standard theorem on Borel determinacy [4] the game we will define will

174 P. Stevens

be determined, that is, one or other player will have a winning strategy) Refuter
will have a winning strategy, and this corresponds to the check returning false.

This approach has several advantages. Most importantly, it separates out the
specification of what the answer should be from the issue of how to calculate the
answer efficiently. Calculating a winning strategy is often much harder (in both
informal, and formal complexity, senses) than checking that a given strategy
is in fact a winning strategy. Indeed, it can be useful to calculate a strategy
using heuristics or other unsound or unproved methods, and then use a separate
process to check that it is winning: this is the game equivalent of a common
practice in formal proof, the separation between the simple process of proof
checking and the arbitrarily hard process of proof finding. Nevertheless, although
this paper does not address the issue of how winning strategies can be calculated
efficiently, it is worth noting that formulating the problem in this way makes
accessible a wealth of other work on efficient calculation of winning strategies to
similar games.4

We may also hope to be able to use the game to explain the meaning of
particular transformations, or of the QVT-R language in general, to develop-
ers or anyone else who needs to understand it: similar approaches have proven
successful in teaching logic and concurrency theory.

Finally, a game-theoretic approach is a helpful framework in which to consider
the implications of minor variations in decisions about what the meaning of a
QVT-R transformation should be, since many such differences arise as minor
variations in the rules of the game.

In order to specify a two-player game of perfect information, we need to
provide definitions of the positions, the legal moves, the way to determine which
player should move from a given position, and the circumstances under which
each player shall win.

We fix a set of models, where each mi conforms to a metamodel Mi, and a
transformation definition given in a simplified version of QVT-R. Specifically, we
consider that when and where clauses are only allowed to contain (conjunctions of
lists of) relation invocations, not arbitrary OCL. We do not consider extension or
overriding of transformations or relations. Further, our semantics is parametrised
over a notion of pattern matching and relation-local constraint checking: in other
words, we do not give semantics for these, but assume that an oracle is given
to check the correctness, according to the relevant metamodel, of a player’s
allocation of values to variables, and local constraints such as identity of values
between variables in different domains.

We will first define a game Gk which corresponds to the evaluation of a QVT-
R checkonly transformation in the direction of one of its typed models, mk. For
ease of understanding we will explain the progress of the game informally first:
Figure 2 defines the moves of the game more systematically. At every stage, if

4 For the most complex games we consider here, such work is collated in the PGSolver
project, http://www.tcs.ifi.lmu.de/pgsolver/. If we insist that the graph of re-
lations should be a DAG, as discussed later in this section, simpler automata-based
techniques suffice.

http://www.tcs.ifi.lmu.de/pgsolver/

A Simple Game-Theoretic Approach to Checkonly QVT Relations 175

it is a player’s turn to move, but that player has no legal moves available, then
the other player wins.

To begin a play of game Gk, Refuter picks a top relation (call it R) and valid
bindings for all patterns except that from mk, and for any when variables (that
is, variables which occur as arguments in relation invocations in the when clause
of R). Notice that he is required to pick values which do indeed constitute valid
bindings and satisfy relation-local constraints, as confirmed by the oracle men-
tioned earlier. Play moves to a position which we will notate (Verifier, R, B, 1),
indicating that Verifier is to move, that the relation in play is R, that bindings
in set B have been fixed, and that only one of the players has yet played a part
in this relation.

Verifier may now have a choice.

1. She may pick a valid binding for the as-yet-unbound variables from the mk

domain (if any), such that the relation-local constraints such as identity
of values of particular variables are satisfied according the oracle. Let the
complete set of bindings, including those chosen by both players, be B′. (If
there are no more variables to bind, Verifier may still pick this and B′ = B.)
In this case, play moves to a position which we will notate (Refuter, R, B′, 2)
indicating that Refuter is to move, that the relation in play is still R, that the
bindings in set B′ have been fixed, and that both players have now played
their part in this relation.

2. Or, she can challenge one of the relation invocations in the when clause (if
there are any), say S (whose arguments, note, have already been bound by
Refuter). Then play moves to S, and before finishing her turn, she must
pick valid bindings for all patterns of S except that from mk, and for any
when variables of S. Say that this gives a set of bindings C, in which the
bindings of the root variables of all domains are those from B, and bindings
of the other variables are those just chosen by Verifier. The new position is
(Refuter, S, C, 1).

If Verifier chose 2., play proceeds just as it did from (Verifier, R, B, 1) except
that, notice, the roles of the players have been reversed. It is now for Refuter to
choose one of the two options above, in the new relation S.

If Verifier chose 1., Refuter’s only option is to challenge one of the relation
invocations in the where clause, say T (whose arguments, note, are bound). (If
there are none, he has no valid move, and Verifier wins this play.) Then play
moves to T , and, before finishing his turn, Refuter must pick valid bindings for
all patterns of T except that from mk, and for any when variables of T . Say that
this gives a set of bindings D, in which the bindings of the root variables of all
domains are those from B′, and bindings of the other variables are those just
chosen by Refuter. The new position is (Verifier, T, D, 1). Play now continues
just as above.

The final thing we have to settle is what happens if play never reaches a
position where one of the players has no legal moves available: who wins an
infinite play? We could just forbid this to happen, e.g., by insisting as a condition
on QVT-R transformations that the graph in which nodes are relations and there

176 P. Stevens

Position Next position Notes
Initial (Verif., R, B, 1) R is any top relation; B comprises valid bindings for all vari-

ables from domains other than k, and for any when variables.
(P, R, B, 1) (P , R, B′, 2) B′ comprises B together with bindings for any remaining

variables.
(P, R, B, 1) (P , S, C, 1) S is any relation invocation from the when clause of R; C

comprises B’s bindings for the root variables of patterns in
S, together with valid bindings for all variables from domains
other than k in S, and for any when variables of S.

(P, R, B, 2) (P , T, D, 1) T is any relation invocation from the where clause of R; D
comprises B’s bindings for the root variables of patterns in
T , together with valid bindings for all variables from domains
other than k in T , and for any when variables of T .

Fig. 2. Summary of the legal moves of the game Gk: note that the first element of the
Position says who picks the next move, and that we write P for the player other than
P , i.e. Refuter = Verifier and vice versa. Recall that bindings are always required to
satisfy relevant metamodel and relation-local constraints.

is an edge from R to S if R invokes S in a where or when clause, should be acyclic.
There is probably5 a reasonable alternative that achieves sensible behaviour by
allowing the winner of an infinite play to be determined by whether the outermost
clause which is visited infinitely often is a where clause or a when clause: but
this requires further investigation. Note that [5] has nothing to say about this
situation: it corresponds to infinite regress of its definitions.

5.1 Discussion of the Treatment of When Clauses

Most of the above game definition is immediate from [5], but the treatment of
when clauses requires discussion. From Chapter 7, ([5], p14): “The when clause
specifies the conditions under which the relationship needs to hold, so the relation
ClassToTable needs to hold only when the PackageToSchema relation holds between
the package containing the class and the schema containing the table.”

The naive way to interpret this would have been to say that both Refuter and
Verifier choose their values, and then, if it turns out that the when clause is not
satisfied given their choices, Verifier wins this play. This interpretation is not
useful, however, as it often gives Verifier a way to construct a winning strategy
which does not tell us anything interesting about the relationship between the
models. When challenged by Refuter to pick a value for her domain, all she
would need to do would be to pick a binding such that the when clause was not
satisfied. In the case discussed by [5], whenever Refuter challenged with a class,
she would reply with any table from a schema not corresponding to the package
of his class, the when clause would not be satisfied, and she would win.

5 By thinking from first principles about cases in which a play goes through a when
(rsp. where) clause infinitely often, but only finitely often through where (rsp. when)
clauses; or by intriguing analogy with μ calculus model-checking.

A Simple Game-Theoretic Approach to Checkonly QVT Relations 177

So the sense in which a when clause is a precondition must be more subtle
than this. In programming, giving a function a precondition makes it easier
for the function satisfy its specification, but here the idea is rather to restrict
Verifier’s choices: if Refuter chooses a class C in package P , Verifier is bound
to reply not with any table, but specifically with a table T which is in a/the
schema that corresponds to package P . The intuition behind allowing Verifier
to counter-challenge the when clause is that Refuter may “unfairly” challenge
Verifier to match the class from a/the “wrong” schema.

In trying to settle whether we really mean “a schema” or “the schema” in the
paragraph above, we refer again to Appendix B of [5]. The problem is that this
is not a complete definition. E.g., in order to use it to interpret ClassToTable, we
already need to be able to determine whether, for given values of a package p and
schema s, the when clause when { PackageToSchema (p,s) } holds. Informally
it seems that people who write about QVT have two different interpretations of
this, perhaps not always realising that they are different:

1. the purely relational: the pair (p,s) is any member of the relation expressed
in PackageToSchema, when it is interpreted using the very same text which
we are now trying to interpret

2. the operational: the program which is checking the transformation is as-
sumed to have looked at PackageToSchema already and chosen a schema to
correspond to package p (recording that choice using a trace object). Ac-
cording to this view, we only have to consider (p,s) if s is the very schema
which was chosen on this run of the checking program.

To see the difference, imagine that there are two schemas, s1 and s2, either of
which could be chosen as a match for p in PackageToSchema. In the first interpre-
tation, both possibilities have to be checked when ClassToTable is interpreted;
in the second, only whichever one was actually used.

In our main game definition, we have taken the purely relational view, since
we can do so while remaining compatible with the definitions in [5], whereas
as we have seen in the SimplestMM example – which, recall, had no when or
where clauses and whose semantics were therefore defined unambiguously by
Appendix B – the idea that there should be a one-to-one correspondence between
valid bindings is incompatible with Appendix B; but we will shortly consider a
variant of the game which brings us closer to the latter view.

5.2 Variants of the Game

Non-directional variant. Let G be the variant of Gk in which, instead of a direc-
tion being defined as part of the game definition, Refuter is allowed to choose a
direction (“once and for all”) at the beginning of the play. Clearly, Verifier has a
winning strategy for G if and only if she has a winning strategy for every Gk. This is
the way of constructing a non-directional consistency definition from directional
checks that is specified in [5]. However, note that it is not automatic that there
should be any simple relationship between the various winning strategies; hence,
there may not be any usable multi-directional trace relationship between the bind-
ings in different models. Let us explain using an example derived from one in [2].

178 P. Stevens

xi:Inter

xc:Thing

value="c"

xd:Thing

value="d"
value="c"value="c" value="d"

Model m2

xa:Container a2:Container a1:Container

i2:Inter i1:Inter

tc1:Thingtc2:Thing td:Thing

Model m1

Fig. 3. m1 and m2 are (two-way) consistent according to QVT-R transformation Sim,
but no set of bi-directional trace objects can link them

Figure 3 illustrates two models which conform to the obvious metamodel
MM: a model may include multiple Containers, each of which references one
Inter, each of which may reference multiple Things, each of which has a value.
The following QVT-R transformation evaluates to true on the models shown,
in both directions (both according to [5], and according to ModelMorf). Indeed,
Verifier has a winning strategy for G: the only interesting choice she has to make
is in G2, where she has to be sure to reply with a2 (and i2), not a1 (and i1), if
Refuter challenges in ContainersMatch by binding xa to c1 (and xi to inter1).

transformation Sim (m1 : MM ; m2 : MM)

{

top relation ContainersMatch

{

inter1,inter2 : MM::Inter;

checkonly domain m1 c1:Container {inter = inter1};

checkonly domain m2 c2:Container {inter = inter2};

where {IntersMatch (inter1,inter2);}

}

relation IntersMatch

{

thing1,thing2 : MM::Thing;

checkonly domain m1 i1:Inter {thing = thing1};

checkonly domain m2 i2:Inter {thing = thing2};

where {ThingsMatch (thing1,thing2);}

}

relation ThingsMatch

{

s : String;

checkonly domain m1 thing1:Thing {value = s};

checkonly domain m2 thing2:Thing {value = s};

}

}

A Simple Game-Theoretic Approach to Checkonly QVT Relations 179

Now, in the m1 direction the constructed trace will take a1 to xa, etc.; there
is nothing else it can do. Yet in the m2 direction, a trace object which took xa
to a1 would be erroneous. Thus there can be no single set of trace objects whose
links can be read in either direction, which could capture the correctness of this
QVT-R transformation.

Model-switching variant. Let G′ be the variant of G in which, instead of the
first player to move in a new relation being constrained to pick a valid binding
everywhere except in the once-and-for-all designated target model mk, the player
is permitted to pick valid bindings for all but any one domain, making a new
choice of which domain to leave out every time. This is a different way to define
a non-directional variant of the game. The modification to the game rules is
analogous to the difference, in concurrency theory, between a game which defines
bisimulation equivalence and that which defines simulation equivalence. This
might well have better properties as regards the existence of a sensible multi-
directional trace model. This requires further investigation. Certainly in the
example above, it will be Refuter who has a winning strategy for G′: he will first
challenge in m2 with a1, and later switch to m1 where he leads play to the “d”
which cannot be matched starting from a1 in m2.

Trace-based variant. Let GT be the variant of G in which, as play proceeds, we
build a global auxiliary structure which records, for each relation, what choices
of valid binding have been made by the players (for example, “Package P was
matched with schema S”). It is an error if subsequent moves in a play try to
choose differently (and we might consider a multi-directional subvariant in which
either matching P with S′ or matching S with P ′ was an error, along with uni-
directional subvariants in which only one of those would be an error). The player
to complete such an erroneous binding would immediately lose. Otherwise, play
would be exactly as in Gk, except that it loops: if Refuter cannot go, he can
“restart”, choose a new top relation and play again, but the old auxiliary struc-
ture is retained. If play passes through infinitely many restarts, Verifier wins.
This game would impose one-to-one constraints on valid bindings, and construct
well-defined trace objects, at the expense of having a semantics incompatible
with [5] and having curtailed expressivity.

6 Conclusions

We have presented a game-theoretic semantics of QVT-R checkonly transforma-
tions, based on the direct semantics in [5]; we justified our choice to ignore the
translation to QVT Core by pointing out a fundamental incompatibility between
the two languages. We have briefly discussed variants of the game, demonstrating
in the process that bi-directional trace objects may not exist.

References

1. Garcia, M.: Formalization of QVT-Relations: OCL-based Static Semantics and
Alloy-based Validation. In: Proceedings of the Second Workshop on MDSD Today,
October 2008, pp. 21–30 (2008)

180 P. Stevens

2. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics
of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.)
Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)

3. Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 16–30.
Springer, Heidelberg (2007)

4. Martin, D.A.: Borel determinacy. Annals of Mathematics. Second series 102(2),
363–371 (1975)

5. OMG. MOF2.0 query/view/transformation (QVT) version 1.0. OMG document
formal/2008-04-03 (2008), www.omg.org

6. Romeikat, R., Roser, S., Müllender, P., Bauer, B.: Translation of QVT relations
into QVT operational mappings. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.)
ICMT 2008. LNCS, vol. 5063, pp. 137–151. Springer, Heidelberg (2008)

7. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

8. Stevens, P.: Towards an algebraic theory of bidirectional transformations. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
pp. 1–17. Springer, Heidelberg (2008)

9. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. Journal of Software and Systems Modeling, SoSyM (2009) (to appear)

10. Stirling, C.: Bisimulation, model checking and other games. In: Notes for Mathfit
Instructural Meeting on Games and Computation (1997),
http://homepages.inf.ed.ac.uk/cps/mathfit.ps

11. Tenzer, J., Stevens, P.: GUIDE: Games with UML for interactive design explo-
ration. Journal of Knowledge Based Systems 20(7) (October 2007)

www.omg.org
http://homepages.inf.ed.ac.uk/cps/mathfit.ps

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 181–196, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Supporting Model–Driven Development of
Object–Relational Database Schemas: A Case Study

Juan Manuel Vara, Belén Vela, Verónica Andrea Bollati, and Esperanza Marcos

Kybele Research Group
Rey Juan Carlos University

Madrid, Spain
{juanmanuel.vara,belen.vela,veronica.bollati,

esperanza.marcos}@urjc.es

Abstract. This paper completes our proposal for automatic development of Ob-
ject-Relational (OR) DataBase (DB) schemas. By means of a case study, this
work focuses on presenting the tooling developed to support the whole process.
As usual, the proposal starts from a conceptual data model (Platform Independ-
ent Model) depicted in a UML class diagram. Then, the conceptual data model
is mapped into an OR DB model (Platform Specific Model) that represents the
OR DB schema. To that end, we have implemented a set of formalized mapping
rules using the ATL language. Finally, the SQL code that implements the mod-
eled schema in Oracle 10g is automatically generated from the OR model by
means of a MOFScript model to text transformation. Moreover, since the OR
model could be refined along the design process, we have developed a graphical
editor for OR DB models.

Keywords: Model-Driven Engineering, Object-Relational Databases, Model
Transformations, Code Generation.

1 Introduction

In spite of the impact of relational Databases (DBs) over the last decades, this kind of
DB has some limitations for supporting data persistence required by present day ap-
plications. Due to hardware improvements, more sophisticated applications have
emerged, which can be characterized as consisting of complex objects related by
complex relationships. Representing such objects and relationships in the relational
model implies that the objects must be decomposed into a large number of tuples.
Thus, a considerable number of joins are necessary to retrieve an object. Thus, when
tables are too deeply nested, performance is significantly reduced [3]. A new DB
generation appeared to solve these problems: the Object-Oriented DB generation,
which includes Object–Relational (OR) DB [22]. This technology is well suited for
storing and retrieving complex data. It supports complex data types and relationships,
multimedia data, inheritance, etc. Moreover, it is based on a standard [10]. It extends
the basic relational model with user defined types, collection types, typed tables, gen-
eralizations, etc. Nowadays, OR DBs are widely used both in the industrial and aca-
demic areas and they have been incorporated into a lot of commercial products.

182 J.M. Vara et al.

Nevertheless, good technology is not enough to support these extensions. Just like
it happens with relational DBs [8], design methodologies are needed for OR DB de-
velopment. Those methodologies have to incorporate the OR model and to take into
account old and new problems. Like choosing the right technology, solving platform
migration and platform independence problems, maintenance, etc.

Following the Model-Driven Engineering (MDE) [5,21] proposal, this paper
presents a model-driven approach for Object-Relational Databases development of
MIDAS [13], a methodological framework for model-driven development of service-
oriented applications. Since it is a model-driven proposal, models are considered as
first class entities and mappings between the different models are defined, formalized
and implemented. By means of a case study, this work presents the tooling developed
to support the proposal.

The proposal starts from a Platform Independent Model (PIM), the conceptual data
model, which is mapped to an OR DB model that represents the OR DB schema. To
that end, we have defined metamodels for OR DB modeling. Then, the Platform Spe-
cific Model (PSM) is translated into SQL code by means of a model to text transfor-
mation. This work focuses on the mappings defined to transform the conceptual data
model into the OR DB schema, i.e. to obtain the PSM from the PIM, as well as on the
code generation from that schema.

The rest of the paper is structured as follows: first, section 2 summarizes the pro-
posed OR DB development process, including the metamodel for OR DB modeling,
as well as a brief overview of the PIM to PSM mappings. Next, section 3 uses a case
study to illustrate the tooling developed to support the proposal. Section 4 examines
related work and finally, section 5 outlines the main findings of the paper and raises a
number of questions for future research.

2 Object-Relational DB Development in MIDAS

Our approach for OR DB development is framed in MIDAS, a model-driven method-
ology for service-oriented applications development. It falls on the proposal for the
content aspect, which corresponds to the traditional concept of a DB. Here we focus
on the PIM and PSM levels, whose models are depicted in Fig. 1. In our approach, the
proposed data PIM is the conceptual data model represented with a UML class dia-
gram while the data PSM is the OR model or the XML Schema model, depending on
the selected technology to deploy the DB.

Regarding OR technology we consider two different platforms, thus two different
PSMs. The first one is based on the SQL standard [10] and the second one on a spe-
cific product, Oracle10g [20]. Here, we focus on the OR DB development. We have
defined two metamodels for OR DB modeling, one for the SQL standard and the
other one for Oracle 10g. The later will be presented in the next section since the one
for Oracle is still valid for SQL just by considering some minor differences. More-
over, using the one for Oracle we can check the output by loading the generated code
into an Oracle DB.

In the proposed development process once the conceptual data model (PIM) is de-
fined, an ATL model transformation generates the OR DB model (PSM). If needed,
the designer could refine or modify this model using the graphical editor developed to

 Supporting Model–Driven Development of Object–Relational Database Schemas 183

PIM

P
S
M

XML
Schema

SQL

OR
Model

XML
Model

MOFScript

Conceptual
Data Model

W
O
RKIN

G
CO

D
E

PS
M

M2DAT/DB

Fig. 1. MIDAS technical solution for ORDB Development: M2DAT/DB

that end. Finally, a MOFScript model to text transformation takes the previous OR
DB model as input and generates the SQL code for Oracle that implements the mod-
eled DB schema. We will present all these mappings in the following sections.

All this work is been integrated in M2DAT (MIDAS MDA Tool) as a new module:
M2DAT/DB. M2DAT is a case tool whose aim is to support all the techniques pro-
posed in MIDAS for the semiautomatic generation of the information system. The
modular nature of the MIDAS architecture facilitates the modular development of
M2DAT. Therefore, we are able to address the development of separate modules that
implement the different proposals of MIDAS and later integrate them by means of a
model transformation bus. The tool is now under development in our research group
and its early functionalities have been already presented [24]. Fig. 1 shows the archi-
tecture of M2DAT/DB.

2.1 Modeling OR DB

In previous works we described a pair of UML profiles for OR DB modeling. They
were defined according to the earlier specifications of the SQL standard and Oracle
OR capabilities [12].

184 J.M. Vara et al.

However, when we first addressed the task of implementing the PIM to PSM
mappings of our proposal, we decided to shift from UML profiles to Domain Spe-
cific Languages (DSL) [14]. Technology is playing a key role in the distinction
between UML based and non-UML based tools: the facilities provided in the con-
text of the Eclipse Modeling Project (EMP) and other DSL frameworks, like the
Generic Modeling Environment (GME) or the DSL Tools, have shifted the focus
from UML-based approaches to MOF-based ones [5]. Therefore, regarding existing
technology for (meta-) modeling and model transformations, it was more conven-
ient to express the new concepts related with OR DB modeling by means of well
defined metamodels. To that end we have defined a pair of MOF based metamodels.
Here we will summarize only the one for Oracle10g since the one for the SQL stan-
dard is very similar.

Figure 2 shows the metamodel that represents the object characteristics of Ora-
cle10g’s OR model. The main differences with regard to the standard metamodel are:
Oracle neither supports the ROW type nor the inheritance of tables and Oracle does
support the NESTED TABLE type instead of the MULTISET type (although they
represent nearly the same concept).

Fig. 2. Oracle 10g’s OR metamodel

2.2 PIM to PSM Transformations for OR DB Development

We have to define a set of mapping rules to move from the conceptual data model
(PIM) to the OR DB one (PSM). Regarding how they should be defined, in [19] it is
stated that “the mapping description may be in natural language, an algorithm in an
action language, or a model in a mapping language”. This way, in previous works [7]
we sketched a common approach to address the development of model to model trans-
formations in MIDAS framework:

 Supporting Model–Driven Development of Object–Relational Database Schemas 185

1. First, the mappings between models are defined using natural language.
2. Next, those mappings are structured by collecting them in a set of rules, ex-

pressed again in natural language.
3. Then, these mapping rules are formalized using graph grammars.
4. Finally, the resulting graph transformation rules are implemented using one of the

existing model transformation approaches (we have chosen the ATL language;
this decision will be explained later).

This proposal is oriented to give solution to some problems we have detected in the field
of model transformations: there is a gap between the developers of the different model
transformation engines and those who have to use them. We aim at reducing this gap by
providing with a simple method for the definition of mappings. In this sense, the fact
that models are well represented as graphs is particularly appealing to shorten the dis-
tance between modelers and model transformation developers. Moreover, formalizing
the mappings before implementing them can be used to detect errors and inconsistencies
in the early stages of development and can help to increase the quality of the built mod-
els as well as the subsequent code generated from them. These activities are especially
important in proposals aligned with MDA (like the one of this paper), because MDA
proposes the models to be used as a mechanism to carry out the whole software devel-
opment process. Likewise the formalization of mappings has simplified significantly the
development of tools supporting any model-driven approach.

We have followed this method to carry out the PIM to PSM mappings of our pro-
posal for OR DB development. As a first step, we collected the mappings in the set of
rules summed up in Table 1.

It is worth mentioning that these rules are the result of a continuous refining proc-
ess. As mentioned before, the very first version of these mappings was conceived for
the SQL:1999 standard and the 8i version of Oracle [12].

Table1. OR PIM to PSM Mappings

Data PIM Standard Data PSM
(SQL:2003)

Product Data PSM
(Oracle10g)

Class Structured Type + Typed Table Object Type + Object Table

Class Extension Typed Table Table of Object Type

Multivalued Array/Multiset Varray/Nested Table

Composed ROW/Structured Type (column) Object Type (column)

A
tt

ri
b-

ut
es

Calculated Trigger/Method Trigger/Method

One-To-One Ref/Ref Ref/Ref

One-To-Many Ref/Multiset/Array Ref/Nested Table/Varray

Many-To-Many Multiset/Multiset
Array/Array

Nested Table/Nested Table
Varray/Varray

Aggregation Multiset/Array Nested Table/Varray
of References

Composition Multiset/Array Nested Table/Varray
of Objects

A
ss

oc
ia

tio
n

Generalization Types/Typed Tables Types/Typed Tables

186 J.M. Vara et al.

The next step was the formalization of the mapping rules using a graph transforma-
tion approach [2]. Finally, those rules are implemented using the ATL Language [11],
a model transformation language developed by ATLAS Group. It is mainly based on
the OCL standard and it supports both the declarative and imperative approach, al-
though the declarative one is the recommended.

We have chosen ATL because, nowadays, it is considered as a de-facto standard
for model transformation since the OMG’s Query/View/Transformations (QVT) prac-
tical usage is called into question due to its complexity and the lack of a complete
implementation. There do exist partial implementations, both of QVT-Relational, like
ikv++’s medini QVT, and QVT Operational Mappings, like SmartQVT or Eclipse’s
QVTo. However, none of them combines both approaches (declarative and impera-
tive), in theory, one of the strengths of QVT, and they are still to be adopted by the
MDD community. On the other hand, ATL provides with a wide set of tools and its
engine is being constantly improved. Next section presents some of the mapping rules
next to their implementation using the ATL language.

3 Case Study

This section presents, step by step, our proposal for model-driven development of OR
DB by means of a case study: the development of an OR DB for the management of
the information related to the projects of an architect's office.

It should be noticed that, once the PIM has been defined, the whole process is car-
ried out in an automatic way. Nevertheless, the designer has the option to refine
and/or modify the OR generated model before the code generation step. To ease this
task, we have developed a graphical editor for models conforming to the OR meta-
model sketched in section 2.1.

3.1 Conceptual Data Model

The first step in the proposed development process is to define the conceptual data
model. Fig. 3 shows the model for our case study: a project manager is related to one
or more projects. Both, his cod_manager or his name serve to identify him. He has an
address plus several phone numbers. In its turn, every project has a name and it
groups a set of plans, each one containing a set of figures. We would like to know
how many figures a plan contains. Thus, a number figures derived attribute is in-
cluded in the Figure class. Those figures could be polygons, which are composed of
lines. Every line has an identifier and contains a set of points. The length of the line is
obtained by computing the distance between their points.

We have used UML2 to define this model. UML2 is an EMF-based implementa-
tion of the UML metamodel for the Eclipse platform. We use UML2 for the graphical
definition of PIM models in M2DAT.

3.2 PIM to PSM Mapping

Now we will show how some of the mapping rules are applied to obtain the OR PSM
for Oracle 10g. We present the formalization of each rule with graph grammars next
to its ATL implementation.

 Supporting Model–Driven Development of Object–Relational Database Schemas 187

Fig. 3. Conceptual Data Model for the case study

Mapping Classes and Properties. Left-hand side of Fig. 4 shows the graph trans-
formation rule to map persistent classes (PIM) to DB schema objects (PSM).

ownedAttibute

*
*

???:UML::Class

name:String=???

1
match(1).name:OR::Typed Table

1’

match(2).name:OR::Attribute

datatype = match(2).datatype

2’

match(1).name + “_Type”:OR::Structured Type
1’

???:UML::Property

name:String=??
datatype:Datatype=??

2

:UML::Stereotype

name: String= Persistent

3

LHS
- UML Class Diagram -

RHS
- OR Model -

rule Class2UDT {
from
c : UML!Class

to
udt : modeloOR!StructuredType(

Name <- c.name + ‘ <<UDT>>',
typed <- tt,
method <- meth_seq,
supertype <- if (not c.generalization-> first()->oclIsUndefined()) then

c.generalization->first().general
else
OclUndefined

endif,
model <- thisModule.package
),

meth_seq : distinct modeloOR!Method foreach
(op in c.ownedOperation)(Name <- op.name),

tt : modeloOR!TypedTable(
Name <- c.name + 's <<PERSISTENT>>')

}

rule Property2Attribute {
from
p:UML!Property (not p.isDerived and not p.isMultivalued() and

p.refImmediateComposite().oclIsTypeOf(UML!Class))
to
a : modeloOR!Attribute(

Name <- p.name,
Type <- p.type,
structured <- p->refImmediateComposite())

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Fig. 4. Persistent Classes mapping rule

Whenever an UML class stereotyped as persistent is found on the PIM (−), a
structured type (also known as user-defined type - UDT) and a typed table are added on
the PSM (’). The type of the new table will be the UDT. Each property associated
with the persistent class will be mapped by adding an attribute to the UDT (’).

188 J.M. Vara et al.

Right-hand side of Fig. 4 shows the Class2UDT and Property2Attribute ATL rules
that implement the prior graph transformation rule. The Class2UDT rule states that
for every Class found in the source model (UML!Class), an UDT and a typed table
are created in the target model (modeloOR!StructuredType and
modeloOR!TypedTable). A set of direct bindings initialize the simple attributes of
the structured type, such as the name. While more complex bindings serve to initialize
the rest. For instance, the expression used to initialize the supertype attribute first
checks if the source class was the descendant of any other class (lines 9-13).

On the other hand, the Property2Attribute ATL rule maps every UML property of
each class in the source model to an attribute of the corresponding UDT. To that end,
the structured property of each new attribute is bound to the source class that contains
the property that is being mapped (line 30). When the ATL engine evaluates this ex-
pression, the reference to the source class is replaced by a reference to the structured
type that maps the source class. This way, we do not need to navigate the target model
when we need to establish references between its elements. It is the ATL engine that
deals with this task using its resolve mechanism [11]: whenever a reference to an
element in the source model is found, it is replaced by a reference to the element that
maps it in the target model.

rule Class2UDT {…}
rule Property2Attribute {…}

Fig. 5. Mapping of class Manager

Fig. 5 shows the instantiation of this rule. On the left-hand side there is an extract
of the conceptual data model: the Manager UML class owning a set of properties. The
right-hand side is a partial screen capture from our graphical editor. It shows the ele-
ments that map the source class into the target model: an object type named Manager
owning a set of attributes, next to the corresponding Managers typed table.

Notice that we have opted for giving a UML-alike appearance to the graphical editor.
This way, we try to take the best from UML: it is well-known by software engineers and
developers. However, we try to take out the worst from UML: its complexity. When
you are developing model transformations for UML stereotyped models you have to
deal with the complex and big metamodel of UML − profiles always add something,
they never remove anything. We prefer to avoid this complexity by using a DSL with
“UML graphical syntax”.

 Supporting Model–Driven Development of Object–Relational Database Schemas 189

Mapping Multivalued Properties. The mapping rules we have just presented work
fine for mapping classes and their properties in the generic case. However, as showed
on Table 1, specific mapping rules are needed to handle the special nature of certain
properties. This way, we have defined rules for mapping multivalued, composed and
calculated (i.e. derived) properties. For the sake of space we present here just the first
one (see Fig. 6).

LHS
- UML Class Diagram -

RHS
- OR Model -

ownedAttibute
*

???:UML::Class

name: String=???

1

match(1).name:OR::Typed Table
1’

match(1).name +”_Type”:OR::Structured Type
1’

match(2).name:OR::Attribute
2’

match(2).name+”_MS”:OR::NESTED_TABLE

datatype=match(2).datatype

3’

???:UML::Property

name: String =???
isMultivalued() = true
datatype: Datatype = ???

2

rule PropertyMultivalued2Attribute {
from
p :UML!Property (not p.isDerived and p.isMultivalued() and

p.refImmediateComposite().oclIsTypeOf(UML!Class))
to
a : modeloOR!Attribute(

Name <- p.name,
Type <- thisModule.generateNestedTableMultivalued(p),

structured <-(p.refImmediateComposite())
),

st : modeloOR!StoredNestedTable(
Name<- p.name + ‘s_ List’,
attribute <- a,
typed <-thisModule.resolveTemp(

p->refImmediateComposite(),'tt')
)

}
unique lazy rule generateNestedTableMultivalued {
from
p: UML!Property

to
nt : modeloOR!NestedTableType (

Name <-'NT_' + p.name + ‘s <<NT>>',
Type <- p.type,
model <- thisModule.package)

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Fig. 6. Multivalued properties mapping rule

Multivalued properties on the conceptual data model correspond to columns of a
collection type on OR DB schemas. Oracle 10g provides with two pre-defined con-
structors for collection types: VARRAY and NESTED TABLE. Fig. 6 shows the
graph transformation rule when we choose the NESTED TABLE constructor.

The UML class () has a multivalued property (). It is stated by the true value
of its isMultivalued attribute. Therefore, the structured type that maps the persistent
class (’) owns an attribute of a NESTED TABLE type (’− ’) (the same is valid
for a VARRAY type).

When we coded this rule we did not know of any way to decide whether we want
to create a VARRAY or a NESTED TABLE each time the rule is executed. There-
fore, we chose NESTED TABLE as the default collection type since it is the less
restrictive. Right now we have solved this problem using annotation models to
parameterize the transformation. Right-hand side of Fig. 6 shows that we need two
different rules to code the mapping of multivalued properties. The guard of the Prop-
erty2MultiValuedAttribute rule ensures that only multivalued properties of UML
classes will match this rule (line 3-4). Its target pattern specifies that two elements
will be added in the target model to map the property found on the source model: an
OR attribute and an OR Nested Table (lines 11-25). Moreover, by the time the new
attribute is created, a Nested Table type is also defined. To that end, the type property
of the new attribute is initialized by calling the generateNestedTableMultivalued lazy
rule (line 8-9). A lazy rule is also a declarative rule but it has to be explicitly called.
This way, the type of the attribute is the newly created Nested Table type.

Fig. 7 shows the result of mapping the multivalued property Architects of the
class Plan.

190 J.M. Vara et al.

rule PropertyMultivalued2Attribute {…}
unique lazy rule generateNestedTable {…}

Fig. 7. Mapping of Architects multivalued property

Mapping Associations. We propose different transformation rules depending on the
maximum multiplicity of the classes involved in the association (see Table 1). For the
sake of simplicity, we have considered only uni-directional relationships. The same
rules can be applied for bi-directional relationships with two minor adjustments: du-
plicating the construction in both sides of the rule and adding some mechanism to
maintain referential integrity (a trigger for instance). Here we introduce the rule for
mapping many-to-many associations.

As left-hand side of Fig. 8 shows, Maximum Many Multiplicity associations are
identified in the PIM by the value of the upper attribute in the UML property () of
the source class. The corresponding uni-directional relationship in the PSM is built
upon an attribute in the Structured Type that maps the source class of the association
(’− ’). This attribute is a collection of references to the Structured Type that maps
the target class (’− ’). Thus, it is a Nested Table object containing a set of refer-
ences (REF type objects).

LHS
- UML Class Diagram -

RHS
- OR Model -

ownedAttibute *

association

???:UML::Class

name: String=???

1

???:UML::Property

name: String=???
upper = *
lower = ???

2

???:UML::DataType
3

???:UML::Property
4

match(1).name:OR::Typed Table
1’

match(1).name +”_Type”:OR::Structured Type
1’

match(2).name+”MS”:OR::NESTEDTABLE
2’

???:UML::Class

name: String=???

5

match(2).name:OR::Attribute
2’

match(5).name:OR::Typed Table
5’

match(5).name +”_Type”:OR::Structured Type
5’

match(2).name+”_Ref”:OR::ReferenceType
2’

rule PropertyAssocMulti2Attribute {
from
p:UML!Property(p.refImmediateComposite().oclIsTypeOf

(UML!Association) and p.isMultivalued() and
p.isChangeable())

to
a : modeloOR!Attribute(

Name <- p.name,
Type <- thisModule.generateNestedTable(p.type),
structured <-p.getProperty().type),

st: modeloOR!StoredNestedTable(
Name <- p.name + ‘_List’,
attribute <- a,
typed <- thisModule.resolveTemp

(p.getProperty().type,'tt'))
}
unique lazy rule generateNestedTable {
from
c:UML!Class

to
nt : modeloOR!NestedTableType(

Name <- 'NT_' + c.name + ‘s <<nt>>',
Type <- thisModule.generateReferences(c),
model <- thisModule.package)

}
unique lazy rule generateReferences {
from
c:UML!Class

to
ref : modeloOR!ReferenceType(

Name <- 'Ref_' + c.name + '<<REF>>',
Type <- c,
model <- thisModule.package)

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 8. Associations mapping rule

 Supporting Model–Driven Development of Object–Relational Database Schemas 191

Right-hand side of the picture shows the corresponding ATL implementation. The
guard ensures that only UML multivalued properties of an UML association will be
mapped by this rule (line 3-5). To map the property, an OR attribute is created (lines
6-16). The type of the attribute will be a Nested Table type. It is created by the gener-
ateNestedTable lazy rule (lines 17-25). Also, we need to create a new REF type by
invoking the generateReferences lazy rule (lines 26-33). It serves to define the type of
the elements of the Nested Table type. Notice that both lazy rules are unique. This
way, we ensure that neither the REF, nor the Nested Table types will be duplicated if
those rules are called again with the same parameters. Instead, they will return a ref-
erence to the already created types.

rule PropertyAssocMulti2Attribute {…}
unique lazy rule generateReferences {…}
unique lazy rule generateNestedTable {…}

Fig. 9. Mapping of Has_Figures association

Fig. 9 shows the result of mapping the association between a Plan and its Figures:
apart from the structured types and the typed tables that map the Plan and the Figure
classes, a REF type (Ref_Figure) and a Nested Table type are created (NT_Figures).
The later contains a collection of objects of the former.

3.3 Code Generation

In order to implement the generation of the corresponding SQL code from the OR model,
we have chosen the MOFScript language [18]. MOFScript is a prototype implementation
based on concepts submitted to the OMG MOF Model to Text RFP process.

In front of the declarative approach of ATL (and the vast majority of existing
model to model proposals), model to text transformation engines take the form of

192 J.M. Vara et al.

imperative programming languages. In fact, a MOFScript script is a parser for models
conforming to a given metamodel. While it parses the model structure, it generates a
text model based on transformation rules. On a second phase this text model is serial-
ized into the desired code. This way, the script uses the metamodel to drive the navi-
gation through the source model, just as an XML Schema drives the validation of an
XML file. As a matter of fact, every model is persisted in XMI format, an XML syn-
tax for representing UML-like (or MOF) models.

The program that implements the model to text transformation is basically a model
parser. It navigates the structure of the OR model, generating a formatted output
stream: the SQL script that implements the modeled DB schema in Oracle 10g. In the
following we introduce this script showing some code excerpts. The reader is referred
to [18] for more information on how to configure MOFScript execution.

As showed below, a main function (line 13) is the entry point for the script. It in-
cludes a set of rules for processing each possible type of element that can be found in
the source model (so-called context types in MOFScript). Besides, we include the eco
parameter in the script header to specify which the input metamodel is (line 11). To that
end we use the URI that identifies the OR metamodel we have presented in section 2.1.

Next, a transformation rule is defined for each context type. For simple rules, we
code the rule inside the main body whilst the complex ones are coded by means of
auxiliary functions. Those functions are invoked from the main body.

For instance, the rule for Structured Types creation is probably the most complex
one since it encapsulates a lot of semantics. Thus, it is coded in the generateStruc-
tured auxiliary function. The main body invokes it for every Structure Type object
found in the source model (line 21 below).

The next code extract presents the generateStructured function (for the sake of
space, we have skipped the code for attributes mapping, lines 100-127).

88 // Auxiliary Function for Structured Type code generation
89 eco.StructuredType ::generateStructured () {
90 var texto:String=""
91 if (self.supertype .Name.size()=0)
92 texto="CREATE OR REPLACE TYPE " + self.Name.replace(" <<UDT>>", "") + " AS OBJECT \r\n("
93 else
94 texto="CREATE OR REPLACE TYPE " + self.Name.replace(" <<UDT>>", "") + " UNDER " +
95 self.supertype .Name.replace(" <<UDT>>", "") + "\r\n("
96 println(texto)
97
98 // Attributes
99 self.attribute->forEach (a:eco.Attribute) {

128 // Typed Tables
129 self.typed->forEach (t:eco.TypedTable){
130 println("CREATE TABLE " + t.Name.replace (" <<PERSISTENT>>","") +

" OF " + self.Name.replace (" <<UDT>>","") + "\r\n(")
131 t.generateTypedTable ()
132 println("")
133 }
134 }

 Supporting Model–Driven Development of Object–Relational Database Schemas 193

First, the auxiliary variable that will store the SQL code is initialized (line 90).
Next, we add the SQL code to start the creation of the structured type, distinguishing
those types that inherit from any other type (lines 91-96) from those that do not. Then,
another rule is coded to transform attribute objects (lines 100-127). This rule is exe-
cuted for every attribute object that belongs to the structured type (line 99). Finally,
we iterate over the typed property of the structured type to identify the typed tables,
whose type is the one being mapped (line 129). Then, the SQL code to start the crea-
tion of each table is added and the rule to create them, the generateTypedTable func-
tion, is invoked (lines 130-131).

To conclude this section, Fig. 10 shows a piece of the SQL code generated for the
case study.

y

MOFScript
Code Generation

eco.StructuredType::generateStructured() {…}
self.attribute->forEach(a:eco.Attribute) {…}

self.typed->forEach(t:eco.TypedTable){…}

CREATE OR REPLACE TYPE Manager AS OBJECT (
Cod_Manager VARCHAR2(25),
Name VARCHAR2(25),
Address Address_Type,
manage REF_Project
Telephone VARCHAR2(25))

/

CREATE OR REPLACE TYPE Ref_Manager AS OBJECT (
ref REF Manager)

/

CREATE TABLE Managers OF Manager;

CREATE OR REPLACE TYPE Project AS OBJECT (
Cod_Project VARCHAR2(25),
Name VARCHAR2(25),
plans NT_Plans,
managed_by REF_Manager)

/

CREATE OR REPLACE TYPE Ref_Project AS OBJECT (
ref REF Project)

/

CREATE TABLE Projects OF Project
NESTED TABLE plans STORE AS Plans_List;

MOFScript

Fig. 10. Code Generation excerpt

The upper side is a screen capture of the developed graphical editor. It shows an
extract from the OR model of the case study. Specifically the Manager and Project
types and the corresponding typed tables, next to the REF types created from them.
This code is generated by the execution of the mapping rules listed in the annotation
beside.

194 J.M. Vara et al.

4 Related Work

The mapping of object models to relational DB schemas and vice versa has been
widely used as a case study to present new model transformations proposals. For
instance, see the works from [6].

Besides there are some works on the application of model-driven techniques to
Data Warehouses (DW) development though they are still too immature, limiting
themselves to the proposal of new UML profiles for DW modeling. Probably the most
mature are the ones from Mazón et al. [9, 15] and Tonkunaite et al. [23] where a
modeling process is proposed and the corresponding model transformations are al-
ready defined. Nevertheless, they are just formally specified with the QVT standard
but not implemented using any technical solution for model transformation.

Likewise, we should consider the works from Atzeni, Bernstein et al. on model
management [1]. They propose a framework focused on schema mappings. The pro-
posal is based on a solid formal basis (relational DBs) but some objections can be
made from the point of view of MDE. First, the use of a new metametamodel (known-
as Supermodel) different from MOF is not justified. It makes it hard to develop
bridges towards the universe of MOF-compliant proposals. Moreover, such Super-
model is extended when needed, raising other questions. Where is the limit to extend
the Supermodel? Why is it not extended for each new metamodel considered? Using
an evolving metametamodel seems to be a bad practice. One can argue that, each time
the Supermodel is extended, you might consider updating your existing metamodels
to consider the modifications or just to improve them. But there is no doubt this is a
bad practice. Evolving metamodels are a hard problem in MDE. Whenever you mod-
ify your metamodel, you will have to propagate those changes to your model trans-
formations, code generator, diagrammers, etc. i.e. to all your tooling.

However, to the best of our knowledge there are no previous works applying
model-driven techniques for OR DB development. As a matter of fact, this is the main
contribution of this work with regard to other existing approaches for OR DB devel-
opment, like the ones from [16] and [17]. On the one hand, the creation of the models
that take into account technological aspects are postponed as much as possible in the
development process, so that technology changes imply low costs. On the other hand,
the definition of model to model and model to text transformations results in the
automatic generation of the most part of the working-code. In this sense, our proposal
is original and complete. We have defined a modeling process and we have developed
the technical support to carry out the proposed process.

5 Conclusions and Future Work

In this paper we have used a case study to present the tool support of our proposal for
model-driven development of OR DB schemas. To that end, we have implemented an
ATL model transformation that generates an OR DB model from a conceptual data
model and a MOFScript model to text transformation that generates the SQL code for
the modeled DB schema. As part of the proposal we have defined a MOF-based DSL
for OR DB modeling as well as a graphical editor for such DSL.

 Supporting Model–Driven Development of Object–Relational Database Schemas 195

The implementation of our proposal is one of the modules of M2DAT (MIDAS
MDA Tool). M2DAT is a case tool, which integrates all the techniques proposed in
MIDAS for the semi-automatic generation of service-oriented Information Systems.
We are still working on the development of the technical support for the rest of the
methodological proposals comprised in MIDAS framework. In this sense, this work
has served also as test bench. We have obtained a set of lessons learned and good
practices to address such challenges. Once we complete the modules that rest, we will
address the integration task.

Besides, this paper allows confirming one of the hypotheses around model trans-
formation sketched in [7]: PIM to PSM transformations are easier to automate than
PIM to PIM transformations. The former implies decreasing the abstraction level, thus
handling more specific artifacts that result easier to model. The later implies a higher
abstraction level and more similarity between the elements of the source and target
models, in short, more ambiguities. Thus, it requires a higher level of decision making
from the designer.

Regarding this issue there is still some place for improvement. At present time we
are working in the use of weaving models [3] to annotate the OR model (i.e. the
source model). This way, we are able to parameterize the model transformation, so
that the mapping process for OR DB development can be customized. For each spe-
cific case some design decisions can be made. This way we keep the generic nature of
the model transformation without polluting the source model.

Acknowledgments

This research has been carried out in the framework of the MODEL-CAOS
(TIN2008-03582/TIN) and CONSOLIDER (CSD2007-0022, INGENIO 2010) pro-
jects financed by the Spanish Ministry of Education and Science (TIN2005-00010/)
and the M-DOS project (URJC-CM-2007-CET-1607) cofinanced by the Rey Juan
Carlos University and the Regional Government of Madrid.

References

1. Atzeni, P., Cappellari, P., Gianforme, G.: MIDST: model independent schema and data
translation. In: Proceedings of the 2007 ACM SIGMOD international Conference on Man-
agement of Data. SIGMOD 2007, Beijing, China, June 11-14, pp. 1134–1136. ACM, New
York (2007)

2. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software Engi-
neering Perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

3. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. In: First
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA (2003)

4. Bertino, E., Marcos, E.: Object Oriented Database Systems. In: Díaz, O., Piattini, M. (eds.)
Advanced Databases: Technology and Design. Artech House, Norwood (2000)

5. Bézivin, J.: Some Lessons Learnt in the Building of a Model Engineering Platform. In: 4th
Workshop in Software Model Engineering (WISME), Montego Bay, Jamaica (2005)

196 J.M. Vara et al.

6. Bézivin, J., et al.: Model Transformations in Practice Workshop. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg (2006)

7. Cáceres, P., De Castro, V., Vara, J.M., Marcos, E.: Model Transformations for Hypertext
Modeling on Web Information Systems. In: SAC 2006. Proc. of the 2006 ACM Sympo-
sium on Applied Computing, pp. 1232–1239. ACM Press, New York (2006)

8. Chen, P.P.: The Entity-Relationship Model – Toward a Unified View of Data. ACM
Transactions on Database Systems 1(1), 9–36 (1976)

9. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: Developing secure data
warehouses with a UML extension. Information Systems 32, 826–856 (2007)

10. ISO / IEC 9075-14:2008 Standard, Information Technology – Database Languages – SQL
2008, International Organization for Standardization (2008)

11. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Marcos, E., Vela, B., Cavero, J.M.: Extending UML for Object-Relational Database De-
sign. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 225–239.
Springer, Heidelberg (2001)

13. Marcos, E., Vela, B., Cáceres, P., Cavero, J.M.: MIDAS/DB: a Methodological Frame-
work for Web Database Design. In: Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H.C.,
Hunt, I. (eds.) ER Workshops 2001. LNCS, vol. 2465, pp. 227–238. Springer, Heidelberg
(2002)

14. Marjan, M., Jan, H., Anthony, M.S.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37, 316–344 (2005)

15. Mazon, J.-N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the development of
data warehouses. In: Proceedings of the 8th ACM international workshop on Dataware-
housing and OLAP. ACM, Bremen (2005)

16. Muller, R.: Database Design for Smarties. Morgan Kaufmann, San Francisco (1999)
17. Naiburg, E.J., Maksimchuk, R.A.: UML for Database Design. Addison-Wesley, Reading

(2001)
18. Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., Berre, A.-J.: Toward Standardised Model

to Text Transformations. In: Model-driven Architecture – Foundations and Applications,
pp. 239–253 (2005)

19. Miller, J., Mukerji, J. (eds.): OMG. MDA Guide Version 1.0. Document number
omg/2003-05-01 (retrieved 2003), http://www.omg.com/mda

20. Oracle Corporation. Oracle Database 10g. Release 2 (10.2),
http://www.oracle.com

21. Selic, B.: The pragmatics of Model-Driven development. IEEE Software 20(5), 19–25
(2003)

22. Stonebraker, M., Brown, P.: Object-Relational DBMSs. In: Tracking the Next Great
Wave. Morgan Kauffman, San Francisco (1999)

23. Tonkunaite, J., Nemuraite, L., Paradauskas, B.: Model driven development of data ware-
houses. In: 7th International Baltic Conference on Databases and Information Systems,
July 3-6, pp. 106–113 (2006)

24. Vara, J.M., De Castro, V., Marcos, E.: WSDL automatic generation from UML models in
a MDA framework. International Journal of Web Services Practices 1(1,2), 1–12 (2005)

25. Voelter, M.: MD* Best Practices (12/2008), http://voelter.de(retrieved January
10, 2009)

Typing in Model Management

Andrés Vignaga1, Frédéric Jouault2, Maŕıa Cecilia Bastarrica1,
and Hugo Brunelière2

1 MaTE, Department of Computer Science, Universidad de Chile
{avignaga,cecilia}@dcc.uchile.cl

2 AtlanMod, INRIA Rennes Center - Bretagne Atlantique, Ecole des Mines de Nantes
{frederic.jouault,hugo.bruneliere}@inria.fr

Abstract. Model management is essential for coping with the complex-
ity introduced by the increasing number and varied nature of artifacts
involved in MDE-based projects. Global Model Management (GMM)
addresses this issue enabling the representation of artifacts, particularly
transformation composition and execution, by a model called a meg-
amodel. Typing information about artifacts can be used for preventing
type errors during execution. In this work, we present a type system for
GMM that improves its current typing approach and enables formal rea-
soning about the type of artifacts within a megamodel. This type system
is able to capture non-trivial situations such as the use of higher order
transformations.

1 Introduction

In the field of software development, the increasing use of Model-Driven Engi-
neering (MDE) in the past years has lead to more and more complex situations.
Indeed, MDE mainly suggests basing the software development and mainte-
nance process on chains of model transformations. A single transformation is
often quite easy to handle but, as soon as industrial use cases are tackled, we
are faced with large sets of MDE artifacts (e.g., models, metamodels, transfor-
mations) from which a solution have to be assembled. Thus, in order to be able
to use them, but without unintentionally increasing the complexity of MDE,
we need to invent new ways of creating, storing, viewing, accessing, modifying,
and using the metadata associated with all these modeling entities. This is the
purpose of Global Model Management (GMM) [6].

As the managed modeling resources may be of varied natures, some support for
efficiently organizing them is required. In order to cope with this heterogeneity, a
GMM solution has to rely on an architecture which allows precisely typing all the
involved entities and corresponding relationships. This should prevent type errors
during execution, such as the attempted execution of a non-transformation, or the
use of a transformation on arguments for which it is not defined.

Currently, our GMM approach assumes that all managed artifacts are mod-
els conforming to precise metamodels. Model typing is then simply based on the
conformance relationship, and metamodels are used as types. Moreover, artifacts

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 197–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 A. Vignaga et al.

are also related by strong semantic links. For instance, a transformation refers to
its source and target metamodels (i.e., its parameter and return types). Informa-
tion based on this typing approach suffices for most common cases. However, this
scheme notably fails when transformations explicitly depend on these semantic
links like in the two following cases: a) when a metamodel (i.e., a type used as a
value) is used as input to a transformation, and b) when a transformation is used
as input to another transformation (i.e., a function used as a value). Under these
circumstances, it may not be possible to automatically infer a complete type for
some elements. For this reason, a more complex typing approach is required.

In this paper we present a first version of a static type system dedicated to
GMM. Understanding transformations as functions on models, we introduce a
predicative formal system with dependent types with infinite hierarchies of sorts.
The type system builds on the existing solution and features dependent prod-
ucts. These types are powerful enough for overcoming the identified limitations.
Expressing GMM elements as terms of our calculus enables to statically type
check these elements in a mechanical fashion.

This paper is organized as follows. Section 2 describes the GMM approach to
model management, characterizes the limitations of the current version, and in-
troduces a simple example illustrating them. Section 3 details our formal system
by providing the syntax of terms and types, type judgments, as well as the set of
type rules that form the type system. Section 4 revisits the example in order to
demonstrate the application of the type system, and discusses its prototypical
implementation within a tool that realizes GMM. Section 5 discusses related
work. Section 6 concludes.

2 Global Model Management

In this section we summarize the basic concepts of GMM that enable an under-
standing of the general context, we discuss how typing is currently addressed
and its limitations. For illustrating these issues we also discuss a small example,
which will be revisited later on after our solution is presented.

2.1 Global Model Management Conceptual Framework

A Global Model Management approach is based on several general concepts (see
Fig. 1), which can be mapped to any concrete case. Most of these concepts,
corresponding to a generic conceptual MDE framework, have already been pre-
sented in [5]. In addition to these, the concept of a megamodel is introduced here
as a building block for modeling in the large [6]. The principle is the following:
for each real-world complex system or process, there can be a megamodel [3]
representing the different artifacts involved (i.e., models) and their relationships
by specifying associated metadata. The type of an artifact or relationship be-
tween some artifacts, the identifier of a given artifact and its location, etc., are
examples of such registered metadata.

MDE approaches generally introduce the following three different kinds of
models, which occur in the conceptual framework of GMM illustrated in Fig. 1:

Typing in Model Management 199

Fig. 1. Global Model Management Conceptual Framework

– terminal models (M1) conform to metamodels and are representations of
real-world systems.

– metamodels (M2) conform to metametamodels and define domain-specific
concepts.

– metametamodels (M3) conform to themselves and provide generic concepts
for metamodel specification.

Several kinds of terminal models may be considered, for example, weaving mod-
els, and transformation models. A megamodel is also a specific kind of terminal
model, whose elements represent models themselves, as well as relationships be-
tween them. As it is a terminal model, a megamodel conforms to a specific
metamodel: the metamodel of megamodel. If represented as models, available
tools, services and service parameters may also be managed by a megamodel.
There are actually many events that may change a megamodel like the creation
or deletion of a model or metamodel, or the execution of a given transformation.

In addition, the current GMM framework proposes different kinds of relation-
ships between them. The model transformation relationship allows specifying
source and target metamodels of a given model transformation, and can thus be
regarded as its signature. From an execution point of view, the transformation
record relationship offers a way of representing the metadata needed for any
potential execution of a given transformation. This allows specifying its actual
input and output models.

To summarize, a megamodel can be viewed as a metadata repository where
precise representations of models and links between them are stored and made
available to users for various and varied purposes. In particular, the framework
should be able to represent type information for adequately typing each element
in a megamodel, and provide precise directions on how to use that information.

2.2 Limitations of the Current Typing Approach

As mentioned in the introduction, the current typing solution in GMM follows
a simple approach: in principle, all entities are models. Each model conforms to

200 A. Vignaga et al.

a concrete metamodel, which is its type. The has-type relation (denoted by a
colon ‘:’) is therefore defined as follows: conformsTo(m,M) iff m:M, for any model
m and metamodel M. However, GMM involves other elements different from en-
tities: relationships. Some elements have dual representations, for example a
transformation may be regarded as a relationship (i.e., model transformation)
but also as a model (i.e., transformation model) [4]. In the latter case, the type
of the element is the metamodel it conforms to. For ATL (AtlanMod Trans-
formation Language) transformations [11,12], this type is plainly ATL, which
does not carry information about source and target types. In the former case,
the relationship is actually unidirectional and thus a model transformation is
understood as a function on models. Type information associated to the element
adequately refers to the type of source and target models. However, such models
are typed as models whether they are transformations or not, which may cause
a loss of type information.

In GMM, typing information plays an important role. The results of a trans-
formation must be properly typed for a later use. This is especially critical when
the result is another transformation. For transformations which do not handle
dual elements the current typing approach is adequate.

As transformations operate on models, it is natural to type their inputs and
outputs as models. The problem is that some of them may have a dual represen-
tation and thus the typing approach we initially described does not suffice. The
most common case is that of a higher-order transformation (HOT). Consider
a transformation h that produces another transformation t. Here h is consid-
ered as a transformation, but t is considered as a model. As a consequence of
this situation they are typed differently. The type of h refers to the types of its
source and target elements. In particular, the type of the target element is the
type of t, which is the metamodel t conforms to (e.g., ATL). The type of t as a
relationship does not fit into this scheme and thus t is only partially typed. We
do know that it is a transformation, but we do not know the types of its source
and target elements.

This typing approach presents an interesting benefit though. Some form of
genericity is introduced: a HOT taking an ATL transformation as source accepts
any model conforming to ATL (i.e., any ATL transformation), regardless of the
number and type of its source and target elements. This capability is something
we would like to preserve.

Another situation where typing by metamodel may lead to a loss of type
information is when transformations operate on metamodels. In fact, the type
of any metamodel received or generated by one of such transformations is a
metametamodel (e.g., KM3 [5]). Then, from the type of the transformation, it
is possible to know that a metamodel is involved, but not which one. If this
metamodel is used for typing other models involved in the same transformation,
then it may not be possible to type that transformation.

When the two situations described so far meet, even harder problems arise.
The KM32ATLCopier transformation [2] is one simple yet interesting case for
illustrating these issues. This HOT receives a metamodel M and produces an

Typing in Model Management 201

identity transformation (called a copier), which is specifically applicable to mod-
els conforming to M. The type of the resulting copier transformation clearly de-
pends on M. Type information about KM32ATLCopier as a relationship may
be found in the header of its ATL definition:

create OUT : ATL from IN : KM3

This type information for KM32ATLCopier is insufficient. First, M is not asso-
ciated to the type of model IN. Second, all we know about model OUT from its
type is that it is a transformation. Third, it is not possible to specify that we
know that both its source and target models conform to M.

By introducing other kinds of types such as function types and parametric
types, we will be able to deal with these issues. In Sect. 4 this example will be
revisited and a type for KM32ATLCopier carrying richer information will be
discussed.

3 A Type System for GMM

Our solution is based on a typed calculus called cGMM. We define a mapping
between GMM constructs and terms and types of that calculus, and then we
define a type system for it. Expressing elements within a megamodel as terms
enables statically typechecking those elements in a mechanical fashion. This is
the main concern of our work, which does not aim to be considered as a complete
formalization of GMM.

The cGMM calculus is a predicative typed λ-calculus with dependent types
similar to the underlying language of Coq [17], the Predicative Calculus of
(Co)Inductive Constructions (pCIC) [14,19]. Although other approaches may
be applicable, a functional one appropriately fits our needs. Like in the cur-
rent implementation of GMM, we use typed variables for representing models
conforming to a metamodel. Dependent products enables (dependent) function
types for typing transformations, and universally quantified types for coping with
genericity. In particular, higher-order functions naturally represent higher-order
transformations. In addition, an infinite hierarchy of universes supports the no-
tion of Type being a type (i.e., Type:Type), and enables a proper representation
of the three kinds of models (M1 to M3) discussed in Sect. 2.1.

In order to formalize the type system we need to present some elements of
our calculus first. We start by discussing its syntax and the mapping to GMM
constructs, and then we address its typing.

3.1 Textual Syntax

All objects handled in cGMM have a type. Unlike most type theories, we do
not make a syntactic distinction between types and terms because the type-
theory itself forces terms and types to be defined in a mutually recursive way.
We therefore define both types and terms in the same syntactical structure.

202 A. Vignaga et al.

Sorts. Types are seen as terms and as such they should be typed. The type
of a type is called a sort. In principle, we use types for typing models so we
introduce the sort Type which intends to be the type of such types. Since sorts
can be manipulated as terms they also should be given a type. Typing Type
with itself leads to undecidable type systems [7]. As a consequence we need
to introduce infinite sorts by means of a hierarchy of universes Typei for any
natural i. Thus our set of sorts S is defined by: S ≡ {Typei|i ∈ N}. These sorts
satisfy the following property: Typei:Typei+1. In this way we understand Type0
as the type of all metamodels (e.g., Class : Type0), which turns Type0 into a
metametamodel. As in Coq, when referring to the universe Typei the user will
never mention the index i, which is managed by the system. Therefore from a user
perspective Type:Type is safely assumed. Consequently, without indexes, Type is
a metametamodel which conforms to itself, as required by the first constraint in
Fig. 1. However, GMM is expected to support multiple metametamodels at the
same time, for example KM3, Ecore, and so on. To that end, we define a separate
hierarchy of universes for each of metametamodel, and a corresponding hierarchy
should be included in S each time a new metametamodel is incorporated. In what
follows we do not replicate our presentation for every possible metametamodel,
rather, we refer to Type as an arbitrary metametamodel.

Terms. Terms are built from variables, several forms of dependent products,
several forms of abstractions, applications, cartesian products, tuples, and pro-
jections. Assuming x is a variable and T, U are terms, cGMM terms are as
follows:

Type A sort, the type of all types
x A variable
λx :T ;U An abstraction (for type abstractions)
λx :T.U An abstraction (for classical λ-abstractions)
λx 1:T.x 2:U An abstraction (for functions with a constant result)
∀x :T.U A dependent product (for universal quantification)
x :T→U A dependent product (for dependent function types)
T→U A non dependent product (for function types)
(T U) An application (for both functional application and

type instantiation)
U 1 × . . .× U n A cartesian product
〈T 1, . . . ,Tn〉 A tuple
T|i A projection

Type is a metametamodel and as such belongs to M3. Variables map to models,
either at M1, M2 or M3. If a variable is typed by Type it represents a reference
model, which is an element of M2 or M3. If it is typed by a term typed by Type,
then it denotes a terminal model, which is an element of M1. A type abstraction
is used for parameterizing types. Transformation models are represented as func-
tions. GMM manages two kinds of transformations. On the one hand, transforma-
tion models can be externally defined in a suitable transformation language, such

Typing in Model Management 203

as ATL, and are thus seen as opaque operations on models where their internal
definition is not accessible by the GMM environment. We call this kind of trans-
formations atomic transformations. Currently, the only external transformation
language supported by GMM is ATL through the GMM4ATL extension. In this
work we assume that all atomic transformations are defined in ATL. On the other
hand, transformations can be defined within a megamodel, using the language
provided by the GMM4CT extension, as external compositions of other existing
transformations, regardless of their kind. We call them composite transformations
and they are model transformations (i.e., relationships) and not transformation
models (i.e., entities). For representing first-order atomic transformations we use
a special form of abstraction which returns a constant value. This variant was
introduced for simplicity, because the only interesting information about the re-
sult of such transformations is its type. Therefore, the body of the corresponding
function should be nothing but an arbitrary value of the right type. Since each
function would require the inclusion of a suitable variable in the typing environ-
ment, which should be then accessed for retrieving its type, the environmentwould
be bloated with this kind of definitions. With this abstraction, the variable rep-
resenting the result is locally defined in the abstraction and therefore the term
stays closed and no access to the environment is required. Other forms of trans-
formations are represented by ordinary abstractions. For example, defining two
atomic transformations like Class2Relational ≡ λy:Class.r :Relational and Rela-
tional2SQL ≡ λz :Relational.s :SQL, it is possible to define a composite transfor-
mation Class2SQL ≡ λx :Class.(Relational2SQL (Class2Relational x)).

A universal quantification represents the parametrization of a term with re-
spect to a typed variable. This is usually used in conjunction with higher-order
transformations for achieving genericity. Function types, which are just either
dependent or non dependent functional views of products, are used for typing
transformations. The non dependent case is the typical function type. In turn,
in the dependent case, the target type depends on a value of the source type. A
detailed example of this involving a HOT will be presented in the next section.
An application on a parametric term allows its instantiation to a given type. An
application on a function then maps to a transformation record and represents
the execution of a transformation on a specific model.

Finally, a cartesian product enables a function type with multiple sources and
multiple targets. A tuple is a sequence of typed terms, and projections extract a
component from a tuple. As a remark, a HOT is a transformation that operates
and/or produces other transformations. Thus a HOT is expressed as a function
which either: a) has a parameter typed by a function type, or b) its body is
a function. Free variables and substitution are defined as usual for λ-calculi.
Substituting a term T to free occurrences of a variable x in a term U is denoted
as U {x/T}.

3.2 Typing

A type system is a collection of type rules, however they are always formulated
with respect to a static typing environment for the program fragment being

204 A. Vignaga et al.

checked. A static typing environment records the type of free variables during
the processing of program fragments. For example, the has-type relation a:A is
associated with a static typing environment Γ that contains information about
free variables of a and A.

Judgments. The description of a type system starts with the description of a
collection of judgments of the form Γ � A where Γ is a static typing environ-
ment, A is an assertion, and the free variables of A are declared in Γ . The static
typing environment can be understood as a list of distinct typed variables such
as ∅, x 1:A1, . . . , xn:An. A static typing environment then maps to the notion of
megamodel. The empty environment is denoted by ∅. The form of A determines
the different judgments to be used within a type system. For our system, we
need the following judgments:

Γ � � Γ is a well-formed environment
Γ � T :U T is a well-formed term of type U in Γ

A judgment can be regarded as valid or invalid. Validity formalizes the notion
of well typed programs and is based on type rules. Type rules are used to carry
out step-by-step deductions, i.e., type derivations, which formally prove that
judgments are valid.

Type Rules. Type rules may be organized according to their conclusion judg-
ment. We distinguish environment well-formedness rules, whose names are of the
form (Env ...), from term type rules. In turn, the latter group may be further
organized in rules where terms are given the type Type (Type ...) and all the rest.
Figure 2 shows some selected rules, where some of which are used further on the
next section in our example.

The rule (Env ∅) is an axiom stating that an empty environment is a valid
environment. This means that an empty megamodel is a valid megamodel. The
rule (Env Var) extends an environment with a new variable provided that the
variable is not defined in the environment and its type is a valid type. This cor-
responds to adding a new model to a megamodel. The rule (Type Ax) formalizes
the property which holds for universes in the same hieararchy within S. The rule
(Var) extracts an assumption from an environment, that is, this allows us to use
a model included in a valid megamodel.

Rules (Type DFun) and (Type Fun), construct dependent and non dependent
function types respectively. In turn rules (Abs Par), (Abs DFun) and (Type Fun)
type abstractions. These are type parametrization, dependent and non depen-
dent functions respectively. Finally, rules (App TIns), (App DFun) and (App Fun)
introduce applications. In the first case, it is a type instantiation, the others
correspond to functional applications.

In the next section we revisit the example of Sect. 2 in detail and present a
type derivation which applies many of the rules discussed above.

Soundness. The purpose of a type system is to prevent programs from causing
type errors during their execution. A type system is sound when only well typed

Typing in Model Management 205

(Env ∅)

X

∅ � �

(Env Var)

Γ � T :s s ∈ S x /∈ Γ

Γ, x :T � �

(Type Ax)

Γ � � i < j

Γ � Typei : Typej

(Var)

Γ ′, x :T , Γ ′′ � �
Γ ′, x :T , Γ ′′ � x : T

(Type DFun)

Γ � T :Typei i ≤ k Γ, x :T � U : Typej j ≤ k

Γ � x :T→U : Typek

(Type Fun)

Γ � T :Typei i ≤ k Γ � U : Typej j ≤ k

Γ � T→U : Typek

(Abs Par)

Γ � ∀x :T.U : s s ∈ S Γ, x :T � t :U

Γ � λx :T ;t : ∀x :T.U

(Abs DFun)

Γ � x :T→U : s s ∈ S Γ, x :T � t :U

Γ � λx :T.t : x :T→U

(Abs Fun)

Γ � x :T→U : s s ∈ S
Γ � λx :T.t :U : T→U

(App TIns)

Γ � t : ∀x :U.T Γ � u:U

Γ � (t u) : T{x/u}

(App DFun)

Γ � t : x :U→T Γ � u:U

Γ � (t u) : T{x/u}

(App Fun)

Γ � t : U→T Γ � u:U

Γ � (t u) : T

Fig. 2. Sample type rules of cGMM

programs execute without type errors [8]. This property of a type system is
demonstrated by means of a soundness theorem. A proof of soundness rests upon
the semantics of the underlying language, and other properties such as subject
reduction and strong normalization. A full proof would deserve a paper on its
own, as in [21]. Instead, we rely on the fact that cGMM is based on pCIC, which
enjoys such properties [17]. In what follows we discuss some concepts related to
those properties which lead to additional rule for our calculus.

Subject reduction, or type preservation, states that reductions preserve type
and is formulated as follows. If ∅ � T : U and T � T ′ then ∅ � T ′ : U (which
means that if T reduces then it does so to a value of type U). Note that this is
not sufficient for type soundness because it does not rule out the case in which
T has a type but it does not reduce. Additionally, the type system should not be
able to type terms that cause type errors. In systems such as pCIC all reductions
for all typable terms do terminate. Such terms are called strongly normalizing.

The fundamental rule that defines reduction � identifies the application of a
function to a given argument with its result. This is called β-reduction and the rule
is: Γ � ((λx :T.t) u) � t{x/u}. In systems with dependent types, type conversion
is additionally required. Type convertibility T = U is achieved when terms T
and U reduce to the same normal form. This enables a rule which says that two

206 A. Vignaga et al.

convertible well-formed types have the same inhabitants. In this way, terms of a
type before a reduction are also typed by the type resulting from the reduction.

As a specific characteristic of cGMM, it is worth noting that an application
of the form ((λx 1:T.x 2:U) u) trivially reduces to x2:U in one step since no
substitution is actually performed. In GMM, all transformations, even composite
ones, are ultimately built in terms of atomic transformations like the one just
discussed. This suffices for seeing that in cGMM well typed applications reduce
to a value.

4 Application

In this section we demonstrate the application of the type system revisiting the
KM32ATLCopier example, and discuss the prototypical implementation of the
type system and its integration into the AM3 tool.

4.1 Example Revisited

Each element in a megamodel represented by an environment Γ is expressed as
a term t of our calculus. Then, for a proper type T it should be possible to
derive, using the type rules, a proof for Γ � t : T . If this is possible, term t is
well typed and T is its type. For the KM32ATLCopier transformation example
we use KM3 as a concrete metametamodel instead of Type, and define a term as
follows:

KM32ATLCopier ≡ λM :KM3.λx :M.y:M

This definition can be interpreted as “a transformation for which, given a meta-
model M we get a transformation that takes a model conforming to M as source
produces a model conforming to M as a target”. At the outer level the term
is an abstraction on variable M. The term at the inner level (i.e., the result of
the outer term) is a function with a constant result which represents an atomic
copier; its argument x is of type M and the result y is of type M as well. The
purpose of the term is just to enable a proper typing for KM32ATLCopier and
not to model its definition. If that was the case, then the copier would have
been written as λx :M.x, for emphasizing that the result is actually argument x,
but in our context it is not necessary even though it would have been possible
in this particular case. Now we can prove the following judgment which types
KM32ATLCopier :

∅ � KM32ATLCopier : M :KM3→M→M

This type is a dependent function type on value M. Its co-domain is a non
dependent function type where both the domain and the co-domain are M.
The static typing environment is the empty environment, which means that
no other elements are required within the megamodel for this definition to be

Typing in Model Management 207

meaningful. Next we show a type derivation that proves the well typing of the
KM32ATLCopier definition.

We start by applying rule (Abs DFun) and as a result we have three subgoals:
(1) ∅ � M :KM3→M→M : KM3, (2) KM3 ∈ S, which naturally holds, and
(3) ∅,M :KM3 � λx :M.y:M : M→M. Proceeding with subgoal (1), we apply
rule (Type DFun) for getting the following subgoals: (4) ∅ � KM3:KM3 which
we can prove by applying rule (Type Ax) and rule (Env ∅), and then subgoal
(5) ∅,M :KM3 � M→M : KM3. We prove (5) by applying (Type Fun), which
introduces the following subgoal twice: (6) ∅,M :KM3 � M :KM3. This is proved
by succesively applying rules (Var), (Env Var), and (Type Ax). For proving (3) we
apply rule (Abs Fun) which introduces subgoals: (5) and (2) again. This concludes
the proof.

Type inference concerns algorithms that find types (if existing) for typing type-
annotated terms, such as the term KM32ATLCopier defined before. However, if
terms are constructed in a bottom-up fashion, that is, following a derivation from
the leaves to the root, and the type information is properly preserved at each step,
then the resulting term will be well typed by construction. As discussed next, this
is the approach we follow in the implementation of the type system.

For concluding the example, we instantiate the KM32ATLCopier term for
obtaining a specific copier transformation. To that end, we define the following
term based on the SQL metamodel:

SQLCopier ≡ (KM32ATLCopier SQL)

This term is simply a functional application. The result should be a transforma-
tion from SQL to SQL as we prove next for the following judgment:

∅,SQL:KM3 � SQLCopier : SQL→SQL

Since substitution M→M {M /SQL} produces SQL→SQL, the proof simply con-
sist of applying rule (App DFun) which produces a subgoal which is exactly the
same judgment we previously proved, and subgoal ∅,SQL:KM3 � SQL:KM3,
which is proved as subgoal (6) before.

Next, we discuss the implementation of these mechanisms and their integra-
tion into a realization of GMM: the AM3 tool.

4.2 Implementation

Our type system was firstly emulated using System Coq, and then prototyped
as a Java stand-alone system. In such an implementation terms are constructed
in a bottom-up fashion, as discussed above, and types are inferred following the
type rules. Our experiments were satisfactory, as the right types where found
for well-typed terms, and also ill-typed terms correctly threw exceptions during
their construction. However, our goal is to integrate such an implementation into
the prototypical realization of GMM, which is provided by the Eclipse-GMT
AM3 project [1]. Thus, some general information about its overall architecture

208 A. Vignaga et al.

and main features is first presented. Then, more details on the integration of
the type system into the AM3 GMM prototype are given, still taking the same
KM32ATLCopier transformation as a test example.

The Eclipse-GMT AM3 Global Model Management Solution. The cur-
rent version of the Eclipse.org AM3 solution implements the previously described
conceptual framework and thus can be used as the GMM tool in the context of
our experiments with the proposed type system. It is a project which is part
of the GMT subproject, which is itself part of the top-level Eclipse Modeling
project. As an Eclipse project, the AM3 prototype is fully open-source and thus
all its source code is freely available from its Eclipse website and download
server [1]. The generic and extensible AM3 Global Model Management solu-
tion, built on top of the Eclipse environment, provides not only the capabilities
to explicitly specify the metadata associated with a given modeled system or
MDE process, but also a standard Megamodel Navigator as well as generic and
extensible editors for instantiating and editing the megamodel in a more user-
friendly way. In addition, it offers several extension points allowing the definition
of domain-specific extensions of the tool (i.e., extending both the metamodel of
megamodel and the related UI components). Thus, AM3 is composed of two
distinct sets of Eclipse plug-ins:

– The core plug-ins provide the basic metamodel of megamodel, the core run-
time environment, the main APIs and an associated generic navigator and
editors.

– The extension plug-ins provide extensions of the metamodel of megamodel,
related specific APIs and corresponding extensions of the UI (for instance
specific editor pages, contextual actions, etc).

With AM3, users can build their customized Megamodeling solution by extend-
ing either the core plug-ins or other already existing extension plug-ins. Indeed,
a set of generic MDE extensions have already been developed: GMM for Global
Model Management which implements the previously presented GMM concep-
tual framework, GMM4ATL for dealing with model transformations in ATL,
GMM4CT for supporting Composite Transformations, etc.

Integrating the type system into the AM3 Solution. In order to fully
exploit the benefits of the type system in a concrete environment, it must be
integrated into the current implementation of the AM3 tool. To that end, and
based on the mapping between terms and GMM constructs presented in Sect. 3.1,
possible implementation steps could be the following:

1. Develop the required interfaces allowing external tools to provide/retrieve
information to/from the existing implementation of the type system;

2. Extend the current GMM extension of the AM3 tool so that all the informa-
tion needed by the type system for a successful evaluation can be represented
into a megamodel;

3. Modify the current transformation executor in the GMM4ATL extension
so that, in the case of the execution of a HOT implemented in ATL, the

Typing in Model Management 209

Fig. 3. Megamodel Samples for the KM32ATLCopier transformation (respectively be-
fore/after type derivation)

required information is provided to the implementation of the type system.
The result of its evaluation is then retrieved, by the AM3 tool, in order to
automatically fill the megamodel with the complete type information.

Additionally, corresponding editors also need to be updated. In the current im-
plementation, terms such as Class2Relational from Sect. 3.1, which is a first-
order atomic transformation, can be created. For the KM32ATLCopier case
which is a HOT, specifying KM3 as the source metamodel must introduce a
variable M. Then, specifying ATL as the target metamodel should allow the
user to express that M will be both the source and the target of the resulting
transformation. In this way, all the required information for deriving an appro-
priate type is available.

As an illustration, let us consider a megamodel registering the KM32ATLCopier
model transformation (along with the KM32ATLCopier-Module transformation
model) and the SQL metamodel. After KM32ATLCopier is applied to SQL ac-
cording to the current AM3 implementation, the SQLCopierGeneration transfor-
mation record is created. Its target model is therefore the SQLCopier-Module
transformation model. The state of the megamodel is shown in the left part of
Fig. 3. Note that the source and target models of SQLCopier-Module were not
created because the current typing approach does not provide enough informa-
tion for doing so. Additionally, the corresponding model transformation (i.e.,
SQLCopier) was not created for the same reason. The megamodel resulting from
deriving the type of the result of such an execution is shown in the right part
of Fig. 3. According to the type derivations discussed before, it is possible to
know that the result of the execution has type SQL→SQL, and thus the infor-
mation for properly completing SQLCopier-Module and creating the SQLCopier
relationship is available.

210 A. Vignaga et al.

To summarize, the implementation of the type system is integrated into the
GMM prototype in such a way that it allows automatically inferring the previ-
ously lacking type information. Thus, the corresponding megamodel can now be
automatically updated with the computed information.

5 Related Work

GMM is about managing models and other MDE-related resources which are
defined elsewhere. So far the only exception to this is that composite transfor-
mations can in fact be defined in GMM. Typing becomes a critical issue when
execution is considered, and can be studied both at intra-resource and inter-
resource levels. In the former case, typing deals with elements within a resource,
and the focus is on their internal properties. For example, a type system for a
transformation language could ensure that produced models will satisfy some
properties [9], such as good behavior. In the latter case, elements to be typed
are the resources themselves. Typing in GMM mainly takes this second form.
However, well typing of composite transformations is important to us as well.

Similarly to GMM, [10] presents a metamodel for describing MDE concepts
and their relationships. Unlike GMM, only core concepts are considered and
no tool support is reported. In particular, the typing of those concepts is not
addressed or discussed, as we did for GMM.

Model typing is addressed in [16] for investigating transformation reuse. A
form of subtyping for model types (i.e., metamodels) enables a sort of subsump-
tion on models. Under some circumstances the same transformation may be
applied to models of different types. A basic transformation language was intro-
duced for discussing those circumstances, and a type system was defined for it.
In that language, transformations are in-place procedures rather than functions,
thus they may not be composed. In addition, they are not treated as models and
HOTs are not addressed. Although it is related to inter-resource issues due to
the subtyping relation, that type system, compared to ours, mainly deals with
internal concerns of transformation definitions.

Constructive Type Theory was used in [15] for encoding the MOF layered
metamodeling architecture. In particular, an infinite hierarchy of sorts was used
for that purpose. However similar, the MOF hierarchy presents an extra level
compared to GMM’s. Additionally, the dual representation of elements at one
level as types of that level and instances of types of the level above was repre-
sented, requiring reflection maps for establishing such a correspondence. Since
MOF was the only metametamodel, no additional hierarchies were required as in
our case. Such a formalism focuses on MOF and therefore is closed to the repre-
sentation of MOF-based artifacts, which include metamodels, models, and so on,
but excludes other MDE-based artifacts. In particular, model transformations
and their execution was not considered in that framework.

Typechecking of compositions of transformations has been addressed in [20]
and with more detail in [18]. Both approaches use different notions of model
typing, and like ours, they require the same type for connecting two adjacent

Typing in Model Management 211

subtransformations. However, none of them provide explicit rules to that end.
Additionally, HOTs as well as other cases discussed in this work are not handled.

6 Conclusions and Further Work

Typing in GMM enables transformation execution and is required for preventing
type errors during that execution. We improved the current typing approach by
proposing a type system that formally indicates how to reason about types in
GMM. We showed how non-trivial situations, such as the use of HOTs, can now
be handled. Although constructs like model weaving and model-to-text/text-to-
model transformations are not yet supported, the issues they pose are similar to
those we already dealt with in this work.

Our type system ensures good behavior but relying on the good behavior of
atomic transformations. A stronger level of type safety would be achieved by
integrating our type system with the type system of a transformation language.
This is delicate since both type systems need to be aligned and the result of the
integration should still be sound. ATL would be an appropriate case for this. In
turn, our type system would benefit from including features from F2<: [8]. This
would enable subtyping, not only for model types as in [16], but also for function
types as well. Moreover, composite transformations are currently defined by the
user, and type information can be used for supporting this manual process, and
even for automating (parts of) it.

Acknowledgements

We would like to thank Alvaro Tasistro for his numerous contributions to this
document. The present work has been jointly supported by the IST-FP6 MOD-
ELPLEX European project [13] and the Conicyt Chile-INRIA HOT project.

References

1. AM3 Project. Internet (2009), http://www.eclipse.org/gmt/am3/
2. ATL Transformations Zoo. Internet (2009),

http://www.eclipse.org/m2m/atl/atlTransformations/

3. Barbero, M., Jouault, F., Bézivin, J.: Model Driven Management of Complex Sys-
tems: Implementing the Macroscope’s Vision. In: 15th ECBS 2008. IEEE, Los
Alamitos (2008)

4. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
Transformations? Transformation Models! In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer,
Heidelberg (2006)

5. Bézivin, J., Jouault, F.: KM3: a DSL for Metamodel Specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/m2m/atl/atlTransformations/

212 A. Vignaga et al.

6. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and
Modeling in the Small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA
2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

7. Cardelli, L.: Typechecking Dependent Types and Subtypes. In: Boscarol, M., Levi,
G., Aiello, L.C. (eds.) Foundations of Logic and Functional Programming. LNCS,
vol. 306, pp. 45–57. Springer, Heidelberg (1988)

8. Cardelli, L.: Type Systems. In: Tucker, A.B. (ed.) The Computer Science and
Engineering Handbook, pp. 2208–2236. CRC Press, Boca Raton (1997)

9. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

10. Favre, J.-M.: Towards a Basic Theory to Model Model Driven Engineering. In: 3rd
Workshop in Software Model Engineering, Lisbon, Portugal (2004)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Sci. Comput. Program. 72(1-2), 31–39 (2008)

12. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

13. MODELPLEX IST-FP6 European Project. Internet (2009),
https://www.modelplex-ist.org/

14. Paulin-Mohring, C.: Le Système Coq. Thèse d’habilitation, ENS Lyon (1997)
15. Poernomo, I.: A Type Theoretic Framework for Formal Metamodelling. In: Reuss-

ner, R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 262–298. Springer, Heidelberg (2006)

16. Steel, J., Jézéquel, J.-M.: On Model Typing. Software and System Modeling 6(4),
401–413 (2007)

17. The Coq Proof Assistant Reference Manual. Version 8.2 (2009),
http://coq.inria.fr/doc-eng.html

18. Vanhooff, B., Ayed, D., Baelen, S.V., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil,
F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

19. Werner, B.: Une Théorie des Constructions Inductives. Thèse de doctorat, Univer-
sité Paris 7 (1994)

20. Willink, E.D.: OMELET: Exploiting Meta-Models as Type Systems. In: Akehurst,
D.H. (ed.) 2nd European Workshop on MDA, pp. 160–164. University of Kent
(2004)

21. Wright, A.K., Felleisen, M.: A Syntactic Approach to Type Soundness. Inf. Com-
put. 115(1), 38–94 (1994)

https://www.modelplex-ist.org/
http://coq.inria.fr/doc-eng.html

Supporting Parallel Updates with Bidirectional
Model Transformations

Yingfei Xiong1, Hui Song2, Zhenjiang Hu1,3, and Masato Takeichi1

1 Department of Mathematical Informatics
University of Tokyo, Tokyo, Japan

{Yingfei Xiong,takeichi}@mist.i.u-tokyo.ac.jp
2 Key Laboratory of High Confidence Software Technologies (Peking University)

Ministry of Education, Beijing, China
songhui06@sei.pku.edu.cn

3 GRACE Center
National Institute of Informatics, Tokyo, Japan

hu@nii.ac.jp

Abstract. Model-driven software development often involves several re-
lated models. When models are updated, the updates need to be propa-
gated across all models to make them consistent. A bidirectional model
transformation keeps two models consistent by updating one model in ac-
cordance with the other. However, it does not work when the two models
are modified at the same time.

In this paper we propose a new algorithm that wraps any bidirectional
transformation into a synchronizer with the help of a model difference
approach. The synchronizer enables parallel updates by taking the two
original models, the two updated models as input and producing two
new models where the updates are synchronized. We also examine the
requirements for synchronizing parallel updates, and demonstrate that
our algorithm satisfies the requirements if the bidirectional transforma-
tion satisfies the correctness property and the hippocraticness property.
Implementation of our algorithm showed that it works well in a runtime
management framework in practical cases.

1 Introduction

One central activity of model-driven software development is to transform high-
level models into low-level models through model transformation. For example,
Figure 1(a) shows a basic Unified Modeling Language (UML) model containing
a Book class with two attributes. To implement this UML design, we can write
a model transformation program to transform the model into a basic database
model, as shown in Figure 1(b). Each UML class whose persistent feature is
true is transformed into a database table of the same name. Each attribute
belonging to a persistent class is transformed into a column with the same
name. The database model also contains implementation-related information,
the owner feature, and this feature is set with default value "admin".

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 213–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

214 Y. Xiong et al.

Fig. 1. Transforming a UML model into a database model

In an ideal situation, the target model is always obtained from a source model
and never needs to be modified. In reality, however, developers often need to
modify the target model directly. In such cases, the updates need to be reflected
back to the source model.

Bidirectional model transformation [1,2] solves this maintenance problem by
providing a bidirectional model transformation language, which is used to de-
scribe the relation between the two models symmetrically. Programs in these
languages are used not only to transform models from one format into another,
but also to update the other model automatically when a model is updated
by users.

Stevens [3] formalizes a bidirectional model transformation as two functions.
If M and N are meta models and R ⊆ M × N is the consistency relation to be
established between them, a bidirectional model transformation consists of two
functions:

−→
R : M × N → N←−
R : M × N → M

Given a pair of models (m, n) ∈ M ×N , function −→
R changes n to make it consis-

tent with m. Similarly, ←−R changes m in accordance with n. Many bidirectional
model transformation languages fall into this model; typical languages include
Query/View/Transformation relations (QVT-R) [1] and TGGs [2].

However, in some cases, models m and n may be simultaneously updated
before a bidirectional transformation can be applied. For example, a designer
could be working on the design model at the same time a programmer is working
on the implementation model. Applying the transformation in either direction
will result in the loss of updates on the target side.

Because of the large number of available bidirectional transformation languages
and existing transformation programs, it would be preferable if we could synchro-
nize parallel updates using existing bidirectional transformations. One basic idea
is to sequentially apply the two updates and interleave them with two transforma-
tions. For example, suppose a user changes the price attribute into "bookPrice"
in the UML model and another user changes the title column into "bookTitle"
in the database model at the same time, as shown in Figure 2. We can assume that
the title column in the database model is changed first and perform a backward
transformation to change the title attribute in the UML model. Then, we change
the price attribute into "bookPrice" in the UML model and perform a forward
transformation to change the price column in the database model.

Supporting Parallel Updates with Bidirectional Model Transformations 215

Fig. 2. Non-conflicting parallel updates

Fig. 3. Conflicting parallel updates

However, there are two problems in implementing this idea. First, as with
bidirectional transformation, we do not want to require users to track updates.
We thus need to identify which part of the updated UML model was changed so
that we can later apply the update to the result of the backward transformation.
Second, the updates applied to the two models can sometimes conflict. Figure 3
shows an example of conflicting updates where the title attribute and the title
column are changed to different values. If we transform backward and then go
forward again, we will lose the update to the database model. A preferable
synchronization procedure would detect such conflicts and advise the user.

In this paper we propose a new approach based on the idea of sequentially
applying parallel updates. We use commonly used model difference approaches
[4,5,6] to solve the two problems above. We design an algorithm that use model
difference approaches to wrap any bidirectional transformation into a synchro-
nizer for parallel updates. The synchronizer takes the two original models and
two updated models as input and produces two new models in which the updates
are synchronized.

The main contributions of this work can be summarized as follows.

– We identify general requirements for synchronizing parallel updates. The
requirements mainly consist of three properties: consistency, stability and
preservation. These properties are adapted from previous work [7] on
non-symmetrical, language-specific synchronization. We significantly modify
them to make them appropriate for more general and symmetrical synchro-
nization.

– We propose an algorithm that can wrap any bidirectional model transfor-
mation and any model difference approach into a synchronizer supporting
parallel updates. It treats the bidirectional model transformation and the
model difference approach as black boxes and does not require the user to
write additional code. For any bidirectional transformation satisfying the
correctness and hippocraticness properties [3], the synchronizer satisfies the

216 Y. Xiong et al.

consistency, stability, and preservation properties, ensuring correct and pre-
dictable synchronization behavior.

– We have implemented our algorithm and applied it to a runtime manage-
ment framework. The application showed that our algorithm works well in
practical cases.

The rest of the paper is organized as follows. Section 2 describes the bidirectional
model transformation properties introduced by Stevens [3]. Section 3 introduces
our requirements for synchronizing parallel updates. Section 4 describes model
difference approaches in our context and introduces how we use a model dif-
ference approach to construct a three-way merger and a preservation tester,
which are used in our algorithm. Section 5 introduces our algorithm and proves
that bidirectional model transformation properties lead to model synchroniza-
tion properties. Section 6 describes its application and Section 7 discusses related
work. Finally, Section 8 concludes the paper and discusses a possible future di-
rection: conflict resolution.

2 Background: Properties of Bidirectional Model
Transformation

The definition of bidirectional transformation describes only the input and out-
put of a transformation; it does not constrain the behavior of the transformation.
Stevens [3] proposes three properties that a bidirectional transformation should
satisfy to ensure that models are transformed in a reasonable way. In this paper,
however, we require only that a bidirectional transformation satisfy two of them
(correctness and hippocraticness) because the last property, undoability, would
prohibit many practical transformations.

The first property, correctness, ensures that a bidirectional transformation
does something useful. Given two models, m and n, the forward and backward
transformations must establish consistency relation R between them.

Property 1 (Correctness).
∀m ∈ M, n ∈ N : R(m,

−→
R (m, n))

∀m ∈ M, n ∈ N : R(←−R (m, n), n)

The second property, hippocraticness, prevents a bidirectional transformation
from doing something harmful. Given two consistent models m and n, if neither
model is modified, the forward and backward transformations should modify
neither model.

Property 2 (Hippocraticness).
R(m, n) =⇒ −→

R (m, n) = n

R(m, n) =⇒ ←−
R (m, n) = m

The last property, undoability, means that a performed transformation can be
undone. Suppose there are two consistent models, m and n. A user, working

Supporting Parallel Updates with Bidirectional Model Transformations 217

on the M side, updates m to m′ and performs a forward transformation to
propagate the updates to the N side. Immediately after the transformation, he
realizes that the update is a mistake. He modifies m′ back to m and performs
the forward transformation again. If the bidirectional transformation satisfies
undoability, the second transformation will produce the exact n to cancel the
previous modification on the N side.

Property 3 (Undoability).
∀m′ ∈ M : R(m, n) =⇒ −→

R (m,
−→
R (m′, n)) = n

∀n′ ∈ N : R(m, n) =⇒ ←−
R (←−R (m, n′), n) = m

While undoability makes sense in some situations, here we do not require bidi-
rectional transformations to satisfy this property because undoability imposes
a strong requirement on the consistency relation, R, and prohibits many useful
transformations. One example is the UML-to-database transformation we men-
tioned in Section 1. If we change the persistent property of a class to false
in the UML model, a forward transformation will delete the corresponding table
in the database model. However, if we modify the property back to true, it is
not possible for the forward transformation to recover the original table because
the value of the owner property has been lost. This problem cannot be solved
from the transformation alone. To satisfy undoability, we must change the meta
model of the database to store all deleted owner properties, which would be
impossible and unnecessary in many cases.

3 Requirements of Synchronizing Parallel Updates

As discussed above, the interface of the bidirectional transformation functions
do not allow parallel updates and we need a new interface. Suppose M and N
are meta models and R ⊆ M × N is the consistency relation to be established.
A synchronization procedure for parallel updates is a partial function of the
following type.

sync : R × (M × N) → M × N

This definition describes the input and output of the synchronization procedure.
The input includes four models: the two original models satisfying consistency
relation R, and the two updated models. The output is two new models for which
the updates are synchronized.

This definition already implies some requirements for synchronizing parallel
updates. First, the synchronization procedure is a function, which means that
this procedure must be deterministic. Second, the function is partial, which
implies detection of conflicts in updates. If the updates to the two models conflict,
the function should be undefined for these input.

However, like bidirectional transformations, this definition alone does not im-
pose much constraint on the behavior of the synchronization. We introduce three
properties to ensure the synchronization procedure behaves in a reasonable way.
These properties were first proposed in previous work [7], and are significantly
modified for the synchronization of parallel updates.

218 Y. Xiong et al.

Similar to the properties of bidirectional transformation, our first property,
consistency1, requires that the synchronization procedure to do something use-
ful. It ensures that consistency relation R is established on the output models.

Property 4 (Consistency).
sync(m, n, m′, n′) is defined =⇒ R(sync(m, n, m′, n′))

The second property, stability, prevents the synchronization procedure from do-
ing something harmful. If neither of the two models has been updated, the
synchronization procedure should update neither of them.

Property 5 (Stability).
R(m, n) =⇒ sync(m, n, m, n) = (m, n)

The last property, preservation, is more interesting. Consider the updates shown
in Figure 2. The easiest way to achieve consistency is to change the attribute
name from "bookPrice" back to "price" and change "bookTitle" back to
"title". However, this is not the behavior we want. What we want is that the
updates are propagated from the modified parts to the unmodified parts, rather
than changing back the modified parts. To prevent the unwanted behavior, we
require that the user updates be preserved in the output models. If the user
changes the name of the price attribute to "bookPrice", the synchronization
procedure should not change the attribute to any other value.

Formally, let PM ∈ M × M × M be a preservation relation over M , in the
sense that PM (mo, ma, mc) implies that the update from mo to ma is preserved
in mc. Similarly, let PN ∈ N × N × N be a preservation relation over N .

Property 6 (Preservation).
sync(m, n, m′, n′) = (m′′, n′′) =⇒ PM (m, m′, m′′)
sync(m, n, m′, n′) = (m′′, n′′) =⇒ PN (n, n′, n′′)

Note that we do not define a universal preservation relation for all meta models.
Instead, we allow different preservation relations to be defined for one meta
model, and a synchronization procedure should satisfy a specific preservation
relation. This is because there may be multiple modification sequences from one
model to another, and a different choice of modification sequences leads to a
different preservation result.

For example, in Figure 3(a), we change the name feature of the Attribute ob-
ject from "title" to "bookName". However, we can also consider the update as
deleting the Attribute element "title" and adding a new Attribute element
"bookName". The same dilemma applies to the database model. As a result, if
we adopt the feature-changing update, the updates on the two models conflict
and we cannot find a consistent model that preserves both updates. However, if
we adopt the object-deleting-adding update, the updates to the two models do
not conflict, and the model in Figure 4 preserves the updates. As a result, the
preservation relation depends on what update operations we consider and how

1 This was called propagation in the previous publication [7].

Supporting Parallel Updates with Bidirectional Model Transformations 219

Fig. 4. Updates to both models are preserved

we recover updates from models. In the next section we will define a preservation
relation from a model difference approach.

The previous work [7] also introduces a fourth property: composability. How-
ever, this property has the same problem as undoability: it constrains the consis-
tency relation too much and prohibits many useful transformations. Therefore,
we do not require the synchronization procedure to satisfy this property.

4 Model Difference, Three-Way Merger and Preservation

As introduced in Section 1, we use model difference approaches [4,5,6] to iden-
tify updates and detect conflicts. In this section we describe model differences
in our context. We will also show how we use a model difference approach to
define a three-way merger and a preservation relation, which will be used in our
algorithm.

4.1 Model Difference

Following the definitions of Diskin [8], we consider the space of models in the
meta model M as a directed graph; its nodes are models, and its arrows are
updates. We call the starting node of update δ the pre-model of δ (denoted as
δ.pre) and the end node of δ the post-model (denoted as δ.post). There may be
different updates leading from one model to another, so the graph is a multi-
graph, meaning that there can be more than one arrow between two nodes. In
addition, any model in M should be updatable to any model, so the graph is
a complete graph. This definition is different from that in other work [9,10] in
which updates are considered to be functions. In our definition, each update has
only one associated pre-model and only one associated post-model, and cannot
be directly applied to other models. We use ΔM to denote the set of updates in
the model space of M .

We consider that a model difference approach should provide at least two
operations. The first operation is used to identify the updates in two models.
We call it the difference operation. Formally, a difference operation is a function,
diff ∈ M ×M → ΔM , that takes two models, m and m′, and produces update δ,
where δ.pre = m and δ.post = m′. We define a difference operation as a function
to require the procedure to be deterministic. A difference operation should choose

220 Y. Xiong et al.

one update from all possible updates using predefined criteria. For example, in
Alanen et al.’s approach [4], the result is a set of insertions and deletions that
preserve the longest common subsequence when comparing two ordered features.

The second operation, the union operation, also known as “parallel composi-
tion” in some publications [9], is used to merge different updates to be applied
to the same model. This operation is useful in distributed development environ-
ments where several developers may simultaneously work on the same model, and
their updates need to be merged. Given updates δ1 and δ2 where δ1.pre = δ2.pre,
we denote their union as δ1 + δ2, where (δ1 + δ2).pre = δ1.pre = δ2.pre and
(δ1 + δ2).post is a model that is considered to have both δ1 and δ2 applied. The
union operation should be commutative, that is, δ1 + δ2 = δ2 + δ1. In addition,
we do not require the union operation to be total. If δ1 and δ2 conflict, δ1 + δ2 is
undefined. The techniques to implement this operation can be found in existing
approaches [4,9].

For example, given the model in Figure 1(a) and the model in Figure 2(a),
a difference operation may return the update (intuitively) “change the price
attribute in Figure 1(a) to bookPrice”. Similarly, for Figure 1(a) and Figure 3(a)
it may return “change the title attribute in Figure 1(a) to bookName”. The
union of the two updates may be a new update that changes both attributes in
Figure 1(a).

One special case in the model difference function and the union operation
is the identity update, which means nothing is changed. We require that the
difference operation always returns the identity update when comparing two
identical models and that computing the union of arbitrary update δ with the
identity update results in δ. Formally, we require that the diff function and the
“+” operator satisfy the following property.

Property 7 (Stability of Model Difference).
∀δ ∈ ΔM : δ + diff(δ.pre, δ.pre) = δ

4.2 Three-Way Merger

With the model difference function and the union operator, we can construct
a three-way merger of models. A three-way merger takes one original model
and two independently updated copies of the model and produces a new model
in which the updates to the two copies are merged. Three-way mergers are
widely used in many distributed systems, like the Concurrent Versions System
(CVS), and in the diff3 command [11] in Unix. Given an original model mo and
two independently modified copies, ma and mb, a three-way merger is a partial
function defined as the following.

merge(mo, ma, mb) = (diff(mo, ma) + diff(mo, mb)).post

If (diff(mo, ma) + diff(mo, mb)) is not defined, merge is not defined, indicting
there are conflicts between ma and mb.

Supporting Parallel Updates with Bidirectional Model Transformations 221

4.3 Preservation

In Section 3 we have mentioned that there are multiple preservation relations for
one meta model if there are multiple updates from a pair of models. As model
difference approaches identify an update using certain criteria, we can define
a preservation relation in accordance with the semantics of a model difference
approach.

Definition 1. Given a difference operation diff and a union operator “+”, we
say mc preserves the update from mo to ma if and only if there exists an update
δ where (diff(mo, ma) + δ).post = mc.

One natural result is that a three-way merger will always preserve the updates
in both models.

Theorem 1. If mc = merge(mo, ma, mb), then mc preserves the update from
mo to ma and the update from mo to mb.

Proof. From the definition of merge we get (diff(mo, ma) + diff(mo, mb)).post =
mc. From the commutativity of +, we get (diff(mo, mb) + diff(mo, ma)).post =
mc. Because there exists diff(mo, mb), from the first formula, we have that mc

preserves the update from mo to ma. Similarly, from the second formula, we
have that mc preserves the update from mo to mb.

This definition of preservation gives us a basic method for testing whether three
models (mo, ma, and mc) satisfy the preservation relation. However, to actually
test it, we must iterate all possible updates starting from mo, which is not
possible in practice. What we need is an efficient procedure for quickly testing
the preservation of three models. Such an efficient testing procedure is difficult
to find in general. However, given a specific model difference approach, it is often
possible to define an efficient testing procedure in accordance with the update
operations considered in the difference approach. In the following we show how
to efficiently test preservation for Alanen et al.’s [4] model difference approach
as an example.

Testing Preservation in Alanen et al.’s Approach. Alanen et al. consider
an update as a sequence of update operations, and they define seven types of
operations, as shown in Table 1. In their work, they assume that each element
has a universally unique identifier (UUID) that does not change across versions.
Under this assumption, we can easily identify and match model elements in dif-
ferent versions of objects. In addition, they consider limited types of features on
the models. Features can be classified as attributes that store primitive values
and references that store links to other model elements. They assume that all
attributes are single features (can contain only one value) and that all refer-
ences are multiple features (can contain more than one feature, either ordered
or unordered).

To test whether an update from mo to ma is preserved in mc, we first use
the difference operation to get the update δoa = diff(mo, ma). Then we examine

222 Y. Xiong et al.

Table 1. Modification Operations

Operation Description
new(e, t) create a new element e of type t
delete(e, t) delete element e of type t
set(e, f, vo, vn) set an attribute f of element e from vo to vn

insert(e, f, et) add a link from e.f to et for an unordered reference f
remove(e, f, et) remove a link from e.f to et for an unordered reference f
insertAt(e, f, et, i) add a link from e.f to et at index i for an ordered reference f
removeAt(e, f, et, i) remove a link from e.f to et at index i for an ordered reference f

Table 2. Testing of Preservation

Operation in δoa Preservation condition
new(e, t) e exists in mc, and all features of e are the same as ma

delete(e, t) e does not exist in mc

set(e, f, vo, vn) e exists in mc, and e.f is the same value as vn

insert(e, f, et) e exists in mc, and a link to et exists in e.f
remove(e, f, et) e does not exist in mc, or a link to et does not exist in e.f
insertAt(e, f, et, i) e exists in mc, a link to et exists in e.f , and the inserted links

have their order in ma preserved in mc for all insertAt operations
on the feature

removeAt(e, f, et, i) always preserved (as deleted links can be inserted back)

mc for each update operation in δoa. If we find that an operation such that the
union of any operation and this operation cannot reach mc from mo, we report a
violation of preservation. The detailed rules for examining the update operations
can be found in Table 2.

For example, suppose the price attribute in Figure 1(a), the bookPrice at-
tribute in Figure 2(a), and the price attribute in Figure 3(a) share UUID ep.
The difference of Figure 1(a) and Figure 2(a) is thus an update containing one
update operation: set(ep, name, "price", "bookPrice"). This update is not pre-
served in Figure 3(a) because the rule for set(e, f, vo, vn) is violated: ep.name
has a value of "price" and is different from "bookPrice" in Figure 3(a).

5 Algorithm

Now we have a three-way merger and can test the preservation of updates. Let us
use them to wrap a bidirectional transformation into a synchronizer for parallel
updates. The basic idea is to first convert the model from the N side to the M
side using backward transformation, then use the three-way merger to reconcile
the updates, and transform back using the forward transformation. The detailed
algorithm is shown in Figure 5.

We explain the algorithm using the example in Section 1. Initially, we have the
two models in Figure 1, which correspond to mo and no in our algorithm. Users
modify the two models into the models in Figure 2, which correspond to ma

Supporting Parallel Updates with Bidirectional Model Transformations 223

mo

ma

mb

mab

no

nb

nab

1.
←−
R

2. merge 3.
−→
R

4. test
preservation

1. mb :=
←−
R (mo, nb)

2. mab := merge(mo, ma, mb)

3. nab :=
−→
R (mab, nb)

4. check if nab preserves diff(no, nb)

Fig. 5. Synchronization algorithm

Fig. 6. Execution of algorithm

and nb in our algorithm. We use different subscripts to show different updates,
where a represents the update on mo and b represents the update on no. The
four models together comprise the algorithm input.

The first step of our algorithm is to invoke backward transformation ←−
R to

propagate the updates made to nb to mo, resulting in mb. The result is shown
in Figure 6(a). The attribute name is changed from "title" to "bookTitle".

Now we have model ma containing update a and model mb containing update
b. The second step is to use the three-way merger we constructed in the last
section to merge the two updates and produce synchronized model mab on the
M side. The result is shown in Figure 6(b). The model has both attributes
changed; i.e., it contains updates from both sides. If the updates to the two
models conflict, the three-way merger detects the conflict and reports an error.

The third step is to use forward transformation −→
R to produce synchronized

model nab on the N side. The result is shown in Figure 6(c). This model also
contains updates from both sides, with both columns changed.

Now we have two synchronized models to which the updates have propagated.
It looks as if we have performed enough steps to finish the algorithm. However,
the above steps do not ensure the detection of all conflicts and may lead to
violation of preservation due to the heterogeneousness of the two models.

224 Y. Xiong et al.

Fig. 7. Violating preservation

To see how this can happen, let us consider
the example in Figure 7. Initially we have only
one class and one table, and they are consis-
tent. Then suppose that a user changes the
persistent feature of the class to false and
changes the owner of the table to "xiong".
Because the owner feature is not related to
the UML model, the backward transformation
changes nothing, and mb is the same as mo.
The three-way merger detects no updates in
mb and produces a model that is the same as
ma. Finally, we perform the forward transfor-
mation, and the table is deleted because of
the change to the persistent feature. How-
ever, as the user has modified a feature of the
table, so he or she will expect to see the exis-
tence of the table in the final result. The input
models contain conflicting updates, but the synchronization process does not
detect them.

This kind of violation is caused by the heterogeneity of M and N . Due to the
heterogeneity, not all updates to N are visible on the M side. As the three-way
merger only works on the M side, it cannot detect such invisible conflicts.

To capture such conflict, we add an additional step, preservation testing, to
the end of the algorithm. It is shown as the fourth step in Figure 5. This step uses
the preservation testing procedure described in Section 4 and checks whether the
update from no to nb is preserved in nab. If not, the algorithm reports an error.

The models used in Figure 6 and Figure 7 are simply examples. The actual
execution depends on the bidirectional transformation and the model difference
approach used in the synchronization and may differ from the above execution.
Nevertheless, whatever bidirectional transformation and model difference ap-
proach we choose, our algorithm ensures the three synchronization properties:
consistency, stability, and preservation.

Theorem 2. If the bidirectional transformation satisfies correctness, the syn-
chronization algorithm satisfies consistency.

Proof. Because −→
R (mab, nb) = nab, we have R(mab, nab).

Theorem 3. If the bidirectional transformation satisfies hippocraticness and
the model difference approach satisfies stability of model difference, the synchro-
nization algorithm satisfies stability.

Proof. If we have mo = ma and no = nb, we have R(mo, nb). Because of hip-

pocraticness, we have mb = ←−
R (mo, nb) = mo. Because of stability of model

difference, mab = merge(mo, ma, mb) = (diff(mo, ma) + diff(mo, mb)).post =
(diff(mo, mo)+diff(mo, mo)).post = mo. On the other hand, nab = −→

R (mab, nb) =−→
R (mo, no) = no, and the preservation testing always passes because of the exis-
tence of identity update.

Supporting Parallel Updates with Bidirectional Model Transformations 225

Theorem 4. The synchronization algorithm always satisfies preservation.

Proof. Because of Theorem 1, the update on the M side is preserved. Because
of the last preservation test, the update on the N side is preserved.

It is worth noting that our algorithm works even if the bidirectional transfor-
mation does not satisfy correctness or hippocraticness. This has practical value
because many bidirectional transformation languages in practice do not guar-
antee the properties [3]. In such cases, the algorithm still produces output but
does not guarantee the corresponding synchronization properties (consistency or
stability).

Bidirectional transformations are symmetrical, so we can also implement this
algorithm in the opposite direction. We can start a forward transformation first,
merge models on the N side, perform a backward transformation, and check
preservation on the M side. Implementing the algorithm in both directions can
guarantee the three properties. However, due to the heterogeneity of M and N , it
is possible that different directions may produce different results for some input.
The difference is related to the specific bidirectional transformation approach
and the difference approach used in the algorithm, and we do not discuss it in
this paper.

6 Application

Fig. 8. Structure of runtime
management system

We implemented our algorithm in a runtime man-
agement framework [12], as shown in Figure 8.
We used our algorithm to wrap a QVT-R pro-
gram [1] (executed in mediniQVT [13]) and a
Beanbag-based model difference approach [10]
into a synchronizer for parallel updates, and used
our synchronizer to synchronize a runtime man-
agement user interface and a running system.

A high-level management user interface (UI) is
often provided in a runtime management system
for monitoring the state of the running system
and for reconfiguring it. Because the high-level management UI often abstracts
away many low-level details, the high-level UI and the running system are het-
erogeneous and need to be synchronized. Because the system state is constantly
changing during runtime, any modification to the management UI will cause
parallel updates. In our implementation, we captured both the management UI
and the running system as models and used our algorithm to synchronize them.

The bidirectional transformation used to synchronize the two models is a
QVT-R program. The QVT-R language [1] enables rapid development of bidi-
rectional transformations. However, it does not always guarantee correctness and
hippocraticness. If a program has complex interaction with the constraints on
the meta models, it may produce inconsistent result. In our implementation, we

226 Y. Xiong et al.

manually check the consistency of our program and the constraints on the meta
models to ensure correctness and hippocraticness.

The model difference approach we used is extracted from the Beanbag system
[10]. We first convert models into the Beanbag data types and then use operations
provided by Beanbag to merge the models. In the conversion, we assume each
model element has a unique identifier and do not consider ordered multiple
features. The situation is simpler than those considered by most model difference
approaches, but it is sufficient for models in runtime management. The details
of the Beanbag data types and model conversion can be found in the technical
report of Beanbag [10].

When there is a conflict between updates to the running system and those to
the management UI, our synchronization algorithm reports an error and halts.
The user needs to manually resolve the conflict and resynchronize again. How-
ever, as the system is constantly changing, it is often impossible for users to
resolve all conflicts. We solve this problem by giving precedence to the updates
made to the management UI. In a runtime management system, updates to the
management UI are in fact control operations that the user want to perform
on the system, so it is always safe to overwrite an update made to the running
system with one made to the management UI. To implement this, we change the
difference algorithm so that it overwrites an update made to the running system
with one made to the management UI if the two updates conflict. In addition,
we remove the final preservation test.

We performed a set of experiments using our runtime management framework,
and the results showed that our algorithm works well. The details of the runtime
management framework and the experiments can be found else where [12].

7 Related Work

Several other approaches also target synchronizing parallel updates on hetero-
geneous data. Typical ones include Harmony [14] and Beanbag [10].

The goal of Harmony is similar to ours: use bidirectional transformations to
construct synchronizers for parallel updates. Compared to our approach, Har-
mony uses an asymmetrical form of bidirectional transformation, where the tar-
get is an abstract of the source. Users must design a common replica and write
two transformation programs to map the replicas to be synchronized to the com-
mon replica. Our approach does not require users to design an extra model, so
users can better reuse existing transformation programs. In addition, we adopt
the symmetrical form of bidirectional transformation, which is more frequently
used in the model transformation community.

Beanbag is a general language for synchronizing parallel updates. Different
from this paper, Beanbag uses an operation-based approach: users need to tell
the synchronizer what update operations have been applied, and the synchronizer
returns more update operations to make the data consistent. The approach in
this paper is state-based: whole copies of models (the current states of models)
are taken as input and new copies of these models are returned.

Supporting Parallel Updates with Bidirectional Model Transformations 227

Another related branch of research is detecting and fixing inconsistencies in
models [15,16]. The methods developed can also be used to synchronize parallel
updates but from a different perspective: only the updated models are exam-
ined, and the inconsistencies are resolved by human intervention or heuristic
rules. This is very different from our objective of fully automatic, predictable
synchronization behavior. Compared to them, our approach is fully automatic,
and the synchronization behavior is predicable through the three properties.

Some researchers build frameworks for classifying synchronization approaches.
Antkiewicz and Czarnecki [17] classifies synchronization approaches using differ-
ent design decisions. Under their classification schema, our synchronization algo-
rithm can be classified as a “bidirectional, non-incremental, and many-to-many
synchronizer using artifact translation, homogeneous artifact comparison, and
reconciliation with choice”. Diskin [8] builds a more formal framework for bidi-
rectional model synchronization, in which bidirectional transformation is classi-
fied into lenses, di-systems, and tri-systems on the basis of the relation between
models and the number of input models. Our definition of a synchronizer for
parallel updates can be considered a supplement to his framework, where we
add quadruple-systems, in the sense that our synchronizer takes four models
as input.

8 Conclusion and Future work

In this paper we have proposed an approach that wraps a bidirectional transfor-
mation program and a model difference approach into a synchronizer for parallel
updates. Our approach is general and predictable. It is general in the sense that
it allows the use of any bidirectional transformation and any model difference
approach, and it is predictable because it satisfies three model synchronization
properties: consistency, stability and preservation.

Currently, our approach only reports the existence of conflicts; it does not
support conflict resolution. A preferable synchronization procedure would re-
port the features and model elements involved in the conflicts and give a list of
solutions for the user to choose from. However, such a resolution procedure is
difficult to define in general because the reason for a conflict is related to the
specific bidirectional transformation and the model difference approach used.
We plan to design a resolution procedure based on a specific transformation lan-
guage and a specific model difference approach. One idea is to use QVT-R as the
transformation language and exploit the trace information recorded by QVT-R.
This remains for future work.

References

1. Object Management Group: MOF query / views / transformations specification
1.0 (2008), http://www.omg.org/docs/formal/08-04-03.pdf

2. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proc. of the 4th Inter-
national Conference on Graph Transformation, pp. 411–425 (2008)

http://www.omg.org/docs/formal/08-04-03.pdf

228 Y. Xiong et al.

3. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

4. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

5. Mehra, A., Grundy, J., Hosking, J.: A generic approach to supporting diagram
differencing and merging for collaborative design. In: Proc. 20th ASE, pp. 204–213
(2005)

6. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and
merging of architectural views. In: Proc. 21st ASE, pp. 47–58 (2006)

7. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Proc. 22nd ASE, pp. 164–
173 (2007)

8. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

9. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing model conflicts in dis-
tributed development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

10. Xiong, Y., Hu, Z., Zhao, H., Takeichi, M., Hui, S., Mei, H.: Beanbag: Operation-
based synchronization with intra-relations. Technical Report GRACE-TR-2008-04,
GRACE Center, National Institute of Informatics, Japan (December 2008)

11. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of diff3. In: Arvind,
V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 485–496. Springer, Hei-
delberg (2007)

12. Song, H., Xiong, Y., Hu, Z., Huang, G., Mei, H.: A model-driven framework for
constructing runtime architecture infrastructures. Technical Report GRACE-TR-
2008-05, GRACE Center, National Institute of Informatics, Japan (December 2008)

13. ikv++ technologies: medini QVT homepage, http://projects.ikv.de/qvt
14. Pierce, B.C., Schmitt, A., Greenwald, M.B.: Bringing Harmony to optimism: A syn-

chronization framework for heterogeneous tree-structured data. Technical Report
MS-CIS-03-42, University of Pennsylvania (2003)

15. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. 29th ICSE, pp.
292–301 (2007)

16. Kolovos, D., Paige, R., Polack, F.: Detecting and repairing inconsistencies across
heterogeneous models. In: ICST 2008: Proceedings of the International Conference
on Software Testing, Verification, and Validation, pp. 356–364 (2008)

17. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 3–46.
Springer, Heidelberg (2008)

http://projects.ikv.de/qvt

Experiments with a
High-Level Navigation Language

Jesús Sánchez Cuadrado1, Frédéric Jouault2,
Jesús García Molina1, and Jean Bézivin2

1 Universidad de Murcia
{jesusc,jmolina}@um.es

2 AtlanMod team, INRIA & EMN
{jean.bezivin,frederic.jouault}@inria.fr

Abstract. Writing navigation expressions is an important part of the
task of developing a model transformation definition. When navigation is
complex and the size of source models is significant, performance issues
cannot be neglected. Model transformation languages often implement
some variants of OCL as their navigation language. Writing efficient code
in OCL is usually a difficult task because of the nature of the language
and the lack of optimizing OCL compilers. Moreover, optimizations gen-
erally reduce readability.

An approach to tackle this issue is to raise the level of abstraction of
the navigation language. We propose to complement the regular naviga-
tion language of model transformation languages with a high-level navi-
gation language, in order to improve both performance and readability.
This paper reports on the initial results of our experiments creating the
HLN language: a declarative high-level navigation language. We will mo-
tivate the problem, and will we describe the language as well as the main
design guidelines.

1 Introduction

Model transformations are a key element for the success of Model Driven Engi-
neering (MDE). As this discipline becomes mature, model transformations are
being used to address problems of an increasing complexity, and the number
of developers writing transformations is also growing. In this way, MDE is be-
ing applied to contexts such as DSL-based development, system modernization,
or megamodeling. In some scenarios (e.g. system modernization), models being
handled are typically large, and performance becomes an important concern.

Model transformation languages usually rely on query or navigation languages
for traversing source models in order to feed transformation rules (e.g., check-
ing a rule filter) with the required model elements. In complex transformation
definitions a significant part of transformation logic is devoted to model nav-
igation, and most of the transformation bottlenecks are located there. In this
setting, performance cannot be neglected when writing navigation expressions.
However, writing efficient code can be a difficult issue, and it often compromises
readability.

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 229–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 J.S. Cuadrado et al.

To tackle this issue we propose to raise the abstraction level of the navigation
language, so both readability and performance may be achieved at the same
time. Readability is improved as language constructs are declarative and reflect
better the intention of the developer, whereas compiler optimizations are easier
to perform because the granularity of the constructs is coarser. Such a high-level
navigation language is intended to complement the regular navigation language
implemented as part of a model transformation language.

This paper reports on the initial results of our experiments with a high-level
navigation language, called HLN. We have implemented the language on top
of the ATL virtual machine [2] in order to interoperate with any language im-
plemented on top of it (e.g., ATL, QVT-R). However, HLN could also be im-
plemented on a different engine architecture. We will explain the structure and
the design of the language, and we will show why it is a good complement for
navigation languages.

The paper is organized as follows. Next section motivates our approach. Sec-
tion 3 presents the technical context of this work. Section 4 presents the HLN
language and describes how it has been designed. Finally, Section 5 presents
some related works, and Section 6 gives the conclusions.

2 Motivation

Many current model transformation languages, such as ATL [8], QVT [12], and
ETL [9], use some variants of the Object Constraint Language (OCL) [15] as their
navigation language. OCL encourages a “functional” style based on collections,
iterators, and expressions without side-effects (e.g., collections are immutable).
However, despite its apparent “declarativeness”, it can be considered as a low-
level navigation language since all details about the navigation steps must be
specified [14]. We argue that the level of abstraction of OCL is sometimes inad-
equate to achieve performance.

From our experience in discovering performance patterns for model navigation
in model transformation [5], we have identified four issues with OCL:

– Algorithm locality. Algorithms are typically defined in operations at-
tached to metaclasses. Several identical passes are often done, computing
the same value several times. Writing global algorithms as global functions
often improves performance.

– Immutability. The lack of side-effects makes optimizing compilers very
important. OCL makes intensive use of collections, and rewriting inmutable
operations to mutable operations when possible is a must to get performance.
However, few optimizing compilers for OCL are available.

– Verbosity. Efficient code tends to be large and verbose.
– Specificity. Similar specific algorithms to solve a given navigation problem

are generally implemented several times in different transformations defini-
tions, generally at least once per different metamodel. OCL does not provide
mechanisms for generalizing algorithms.

Experiments with a High-Level Navigation Language 231

To tackle these issues we have built a high-level navigation language, called
HLN. This is a declarative language, in which each language construct is intended
to address a recurrent navigation problem (i.e., a navigation pattern).

As we will show during the paper, our approach has four main advantages
involving performance and readability, namely:

1. Optimization opportunities. Possibility for the compiler to optimize,
since the language constructs are declarative and their granularity is coarse
(e.g., the compiler can use mutable operations internally easily).

2. Simplicity. The developer does not need to know how to implement the
navigation expressions in an efficient way, the best algorithm is chosen by
the compiler.

3. Readability is improved because each construct of the language reflects
exactly the intention of the developer.

4. Generality. Code repetition is alleviated (e.g., writing a similar algorithm
for different meta-types) because of the generality of the constructs.

3 Technical Context

The technical context of our work is the ATL Virtual Machine (ATL VM) ar-
chitecture provided by the AmmA platform. The ATL VM language is a small
imperative instruction set composed of four categories of bytecodes: stack, mem-
ory, control flow, and model handling. It provides facilities to attach functions
to metamodel elements, for instance to create helpers, as specified by OCL [15].

In this way, a language such as ATL is built by creating a compiler targeting
the VM. An important benefit of targeting a VM architecture is that of language
interoperability: operations defined in one language may be used from another.
For instance, a library written in HLN can be reused in transformations written
in several languages (provided they are implemented on top of the ATL VM).

As we will see, each HLN construct will implicitly yield to the creation of one
or more helpers (i.e., operations attached to metaclasses). Such helpers can be
called by any other language implemented on top of the VM (e.g., ATL), but
also HLN interoperates via helpers with such languages. We do not intend to
extend OCL, but to complement it “externally” with navigation libraries.

4 The HLN Language

In this section we present the High-Level Navigation (HLN) language. It is a
domain-specific language for the domain of model navigation. HLN is intended
to allow model transformation developers to specify model navigation statements
at a high level of abstraction.

HLN is not a general purpose navigation language in the sense that it is
not possible to specify all kinds of navigation on a source model. It is intended
to cover a range of common navigation problems for which it provides good
performance. Other problems can be solved using the other navigation language

232 J.S. Cuadrado et al.

that HLN complements (e.g., OCL as generally used for model transformation).
As explained above, targeting the ATL VM allows us to fulfil this requirement.
The four principles guiding the design of the language are the following:

– Declarative. It should be based on declarative constructs. Any construct
should allow to specify the result of the navigation without detailing each
navigation step. Thus, the language is designed to require the minimum
possible amount of information from the developer.

– Readable. The syntax of the constructs should resemble natural language
as far a possible. Readability and maintainability are promoted since each
statement reflects an intention of the developer.

– Useful. Each construct of the language should be included only on the
basis of experimental tests showing that it provides an improvement in per-
formance or readability.

– Simple. There is no “expression language” in order to keep the language
simple. We rely on the interoperability with other languages (via helpers)
when conditions must be expressed.

The current version of HLN comes from our experience developing a catalog
of navigation patterns, which identifies recurrent problems in model naviga-
tion [1] [5]. Some of these patterns are amenable to be encoded as language
constructs. In particular, we have currently implemented four of them as HLN
constructs, namely: linking elements by some property, computing transitive clo-
sures, computing the opposite of a reference, and setting a navigation path.

An HLN library is composed of a header and a set of navigation statements.
An excerpt of an HLN library to navigate class diagrams is shown below. The
header of a library declares the source models with their reference models (i.e.,
metamodels) to be navigated (in the example the CD metamodel stands for class
diagram). Then, one or more navigation statements are written, for instance, to
compute the transitive closure of the superclasses relationship. A metamodel
element is specified by prefixing the metaclass name with the corresponding
metamodel name, using ! as a separator (e.g., CD!Class for metaclass Class of
metamodel CD). A metaclass property (possibly a helper) is specified using the
dot notation (e.g., CD!Class.superclasses).

1 navigate IN : CD;
2 trans it ive closure a l l S u p e r c l a s s e s of CD! Class . s u p e r c l a s s e s

Figure 1 shows the abstract syntax of the language. The constructs inherit from
the Statement abstract metaclass. The HelperRef metaclass represents a prop-
erty or helper of some metaclass (note that it references MetaElement), but it
does not say whether the property or helper exists or whether it will be created.
This is part of each construct’s semantics. The concrete syntax of HLN (used in
examples) is textual, and is implemented with the TCS tool [7].

It is worth noting that the current implementation of the HLN compiler does
not perform any static checking against the source metamodel. This means
that, for instance, it is required to explicitly declare whether a property is

Experiments with a High-Level Navigation Language 233

Fig. 1. Abstract syntax metamodel of HLN

multi-valued (multivalued attribute of HelperRef), despite this information being
already present in the source metamodel. At the concrete syntax level this is ex-
pressed with [*]. The SelectClause and TransitiveClosure do not use HelperRef,
but just helperName, to reference a helper to be created, because the meta-
element and multiplicity are implicit.

Next, each construct will be introduced by showing a piece of simple OCL
code illustrating the navigation pattern. From such code, the essential parts will
be identified, and an HLN construct will be derived from them.

4.1 Linking

The linking pattern appears when two model elements are implicitly linked be-
cause they both have some feature (possibly helpers) with the same value (i.e.,
this is a kind of join).

For instance, a class diagram can be annotated using some weaving infras-
tructure such as AMW. Gathering the annotations for a given class could be
done in the following way. For each class, all annotations are iterated, looking
for those “pointing” to the current class.

1 context CD: : Class def : annotat ions : Sequence (AMW: : ClassAnnotation) =
2 AMW: : ClassAnnotation . a l l I n s t an c e s ()−>s e l e c t (a | s e l f .__xmiID__= a . r e f)

Taking into account the piece of code above we derive an HLN construct, which
is typically implemented using some kind of hash join. The essential parts are the
following: the two metaclasses whose instances will be matched (e.g., CD::Class
and AMW::ClassAnnotation), the name of the feature of each metaclass to be
compared (e.g., __xmiID__ and ref), and the name of helpers to be created
(e.g., only annotations in this case). In general, two helpers will be created, one
for each linked end.

234 J.S. Cuadrado et al.

The piece of abstract syntax metamodel for this construct is shown in Figure 1
(Link metaclass). A linking is specified as a link between two link ends. Each
link end represents a metaclass and the property used to compare. A new helper
containing the result of linking one end with the other end is created. In this
way, we focus on the “what”, and the “how” is left to the HLN’s compiler.

A piece of HLN code illustrating the concrete syntax of this construct is shown
below. It is intended to be read as if it were natural language: link each Class
using __xmiID__ to each ClassAnnotation using ref). The result is that a
helper called annotations is attached to metaclass Class. The _ symbol is used
to indicate that we do not want to create the helper at the other end.

1 l ink CD! Class . annotat ions [∗] on __xmiID__
2 to AMW! ClassAnnotation ._[∗] on r e f ;

Notice that the [*] modifier could be removed, but instead of computing a
collection of links for each instance, only one link would be selected (if there are
more links they are just discarded).

4.2 Navigation Path

Navigation of models with OCL is based on the dot notation to access model
element properties. Collections are typically handled using iterators, such as
select to filter elements, collect for deriving a collection from another one or any
for getting an element satisfying a condition.

A typical pattern in OCL is navigating through multiple multi-valued ref-
erences, filtering by some criteria, so that a combination of select, collect and
flatten operations are needed to get the final collection. The following piece of
OCL code shows this pattern in the case of obtaining all attributes contained
by the classes of a package.

1 context CD: : Package def : g e tA l lAt t r i bu t e s : CD: : Attr ibute =
2 s e l f . c l a s s i f i e r s −>s e l e c t (c | c . i sC l a s s)−>
3 c o l l e c t (c | c . f e a t u r e s)−>f l a t t e n ()−>
4 s e l e c t (f | f . i sA t t r i bu t e)

The evaluation of this expression implies creating a collection with all classifiers
satisfying the isClass condition, next a collection containing collections of fea-
tures is created, which is then flattened, and it is filtered again to obtain the
result. As the number of navigation steps grow the evaluation is more inefficient.

This shows that several implementation-level details must be specified in OCL,
in particular the collect and flatten operations are needed only to “normalize”
the filtered collection before applying the next filter (i.e., the second select oper-
ation). The essential information includes navigated properties (e.g., classifiers
and features) and filter conditions (if any).

The piece of metamodel for the corresponding construct is shown in Figure 1
(Path metaclass). An expression is based on nested navigation clauses that take
the result of the owning clause to perform its navigation step. An example of the
concrete syntax is shown below. The when part is optional if no filter is specified.
This expression can be naturally read as: given a package, select all classifiers

Experiments with a High-Level Navigation Language 235

satisfying the isClass condition, and, for each one, select all features satisfying
the isAttribute condition.

1 path ClassM ! Package . g e tA l lAt t r i bu t e s
2 select c l a s s i f i e r s when i sC l a s s
3 select f e a t u r e s when i sA t t r i bu t e

4.3 Opposite

Given a relationship from one model element to another, it is often necessary to
navigate through the opposite relationship. For instance, in a class diagram, the
opposite for the superclasses relationship of a Class metaclass is the collection
of direct subclasses for a given class.

If the opposite relationship has been defined in the metamodel, then nav-
igation in both directions can be efficiently achieved. However, such opposite
relationship is not always available, so an algorithm has to be worked out.

A straightforward algorithm will involve traversing all the instances of the
opposite relationship’s metaclass and checking which of them are part of the
relationship. For instance, to get the owning package of a class, the opposite of
the package’s classifiers relationship is computed as follows1:

1 context CD: : Class def : owner : CD: : Package =
2 CD: : Package . a l l I n s t an c e s ()−>any (p |
3 p . c l a s s i f i e r s . i n c l ude s (s e l f))

The corresponding HLN construct can be easily derived from this algorithm. The
required elements are two metaclass/relationship pairs: the source metaclass and
the already existing relationship, and the target metaclass with the name of the
new relationship to be computed. The piece of metamodel corresponding to this
construct is shown in Figure 1 (Opposite metaclass).

An example of the concrete syntax is shown below. It should be read in the
following way: compute the opposite relationship, called CD!Class.owner, of the
relationship CD!Package.classifiers.

1 opposite CD! Class . owner of CD! Package . c l a s s i f i e r s [∗] ;

4.4 Transitive Closure

Computing the transitive closure of a relationship is a common operation in
model transformations. An example is computing the set of all direct and indirect
superclasses of a class. Another example is computing the set of reachable states
from a given state of a state machine.

Let us consider a piece of OCL code to compute the transitive closure of the
superclasses relationship in a class diagram. There are several performance
issues in this code. Firstly, the union operation is immutable, which means that
collections are duplicated unless the OCL compiler is able to detect and optimize
1 MOF and Ecore provide the refImmediateComposite() and eContainer() operations

respectively to get an element’s container. However, the discussion still holds for
non-containment relationships, and when such operations are not made available by
the underlying transformation language.

236 J.S. Cuadrado et al.

this case. Secondly, collect and flatten also imply duplicating collections. Finally,
the transitive closure is computed several times for the same class. A transitive
closure can be implemented in one traversal, whereas a straightforward OCL
implementation such as this one performs several.
1 context CD: : Class def : a l l S up e r c l a s s e s : Sequence (CD: : Class) =
2 s e l f . parents−>union (s e l f . supe r c l a s s e s −>
3 c o l l e c t (c | c . a l l S up e r c l a s s e s)−>f l a t t e n ())

The only essential information to derive the HLN construct is the name of the
relationship (e.g., superclasses), the corresponding metaclass (e.g., CD!Class),
and the attribute helper that will be created (e.g., allSuperclasses). The piece of
metamodel corresponding to this construct shows that (Figure 1, TransitiveClo-
sure metaclass). The details about how to perform the computation are ignored
This means that the compiler may evolve to implement a more efficient version
of the construct, without affecting existing HLN libraries.

The concrete syntax for this construct is the following. Notice that it is implicit
that the allSuperclasses helper must belong to CD!Class, and that it is multi-
valued.

1 trans it ive closure a l l S u p e r c l a s s e s of CD! Class . s u p e r c l a s s e s

4.5 Combining Constructs

To cover a wider range of navigation problems, while keeping the language sim-
ple, HLN allows constructs to be combined using the helpers created as a result
of one construct in another construct. Again, we rely on the use of helpers to
interoperate, in this case for the interoperability of the language constructs. No-
tice that the order of the constructs is not important, because the compiler may
keep track of the dependencies.

For instance, the transitive closure construct does not consider a relationship
defined by means of an intermediate class, such as is the case of the superclasses
relationship in UML 2.0, which is defined using the Generalization metaclass.

Instead of extending HLN, the path construct can be used to first get the
collection of direct superclasses, going through the generalization relationship.
Then, the helper created for this construct is used seamlessly for the transitive
closure construct. This is shown in the following piece of HLN code.
1 path UML! Class . d i r e c t Sup e r c l a s s e s
2 select g en e r a l i z a t i o n
3 select gene ra l ;
4 trans it ive closure a l l S u p e r c l a s s e s of UML! Class . d i r e c t S up e r c l a s s e s ;

Another useful example of this technique involves defining the “inverse transitive
closure” of a relationship, which can be computed combining the opposite and
transitive closure constructs.

5 Related Work

Twomain approaches to model query or navigation can be found in model transfor-
mation languages: patterns andnavigation languages.Graphpatterns are typically

Experiments with a High-Level Navigation Language 237

used in graph transformation languages, such as Viatra [4] or GReAT [3]. Objects
patterns are available in QVT Relational [12] and in Tefkat [10].
OCL-like navigation languages are the primary navigationmechanism providedby
rule transformation languages such asATL [8],QVTOperational [12], andETL [9].

Even though in this paper we have focused on OCL, our approach is applicable
to complement other query languages. For instance, pattern languages use object
properties to constraint query results. Such properties can be helpers defined by
an HLN library, since the VM makes the integration seamless.

Regarding the performance of OCL, in [6] the need for developing benchmarks
to compare different OCL engines is mentioned. The authors have developed
several benchmarks but they are intended to compare features of OCL engines,
rather than performance. In [11] the authors present several algorithms to opti-
mize the compilation of OCL expressions. They argue that its optimizing OCL
compiler for the VMTS tool can improve the performance of a validation process
by 10-12%.

Finally, domain-specific query languages have been proposed as a means to
enhance the query mechanism (strategies) of the Stratego program transforma-
tion tool. In particular, the implementation of an XPath-like language is dis-
cussed [13]. It behaves like a macro-system, generating Stratego code. In our
case, we are able to generate efficient VM code.

6 Conclusions

In the paper, we reported on our experiments with an approach to model naviga-
tion based on a high-level navigation language providing declarative constructs.
We introduced the HLN language, and we compared HLN against writing nav-
igation expressions in OCL. The initial benchmarks we have carried out have
shown performance improvements ranging from 20% to 800% with respect to a
normal ATL implementation.

The contribution of this work is two-fold, on the one hand we have shown that
raising the level of abstraction of a navigation language has several advantages:
(1) it allows the compiler to easily optimize, which yields improved performance,
(2) quality attributes such as readability and maintainability are also improved,
and (3) model navigation best-practices are encoded in language constructs.
On the other hand, the HLN implementation is a contribution itself. Its current
implementation can be used as a complement to any language built on top of the
ATL VM, and it is also useful for tool implementors to compare the performance
of their navigation languages2.

A possible extension of this work includes adding new constructs and improv-
ing performance of the current ones, comparing to other transformation lan-
guages (e.g., with an optimizing compiler), and creating a static type checker. It
would also be useful to investigate how to improve interoperability of HLN with
other languages (e.g., via parameters) while still keeping the language simple.
2 The implementation of HLN, and several benchmarks can be downloaded from

http://www.modelum.es/projects/hln [1].

238 J.S. Cuadrado et al.

Acknowledgments

This work has been supported by Fundación Seneca (Murcia, Spain), grant 08797/PI/08.

References

1. Benchmarks for HLN, http://www.modelum.es/projects/hln/
2. Specification of the ATL Virtual Machine,

http://www.eclipse.org/m2m/atl/doc/
3. Agrawal, A.: Graph Rewriting and Transformation (GReAT): A Solution for The

Model Integrated Computing (MIC) Bottleneck. In: ASE, pp. 364–368 (2003)
4. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: SAC 2006: Proceedings of the, ACM symposium on
Applied computing, pp. 1280–1287. ACM, New York (2006)

5. Cuadrado, J.S., Jouault, F., Garcia-Molina, J., Bèzivin, J.: Optimization patterns
for OCL-based model transformations. In: Proceedings of the 8th OCL Workshop
(2008)

6. Gogolla, M., Kuhlmann, M., Buttner, F.: A benchmark for OCL engine accuracy,
determinateness, and efficiency. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 446–459. Springer, Heidel-
berg (2008)

7. Jouault, F., Bézivin, J., Kurtev, I.: TCS: A DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE 2006: Proceedings of the 5th In-
ternational Conference on Generative programming and Component Engineering,
pp. 249–254. ACM, New York (2006)

8. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

10. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Heidel-
berg (2006)

11. Mezei, G., Levendovszky, T., Charaf, H.: An optimizing OCL compiler for meta-
modeling and model transformation environments. In: Software Engineering Tech-
niques: Design for Quality, pp. 61–71. Springer, Heidelberg (2007)

12. OMG. Final adopted specification for MOF 2.0 Query/View/Transformation
(2005),
www.omg.org/docs/ptc/05-11-01.pdf

13. van Wijngaarden, J.: Code Generation from a Domain Specific Language. Design-
ing and Implementing Complex Program Transformations. Master’s thesis, Utrecht
University, Utrecht, The Netherlands, INF/SCR-03-29 (July 2003)

14. Vaziri, M., Jackson, D.: Some Shortcomings of OCL, the Object Constraint Lan-
guage of UML. In: Proceedings of the Technology of Object-Oriented Languages
and Systems (TOOLS 2000), Washington, USA, p. 555. IEEE Computer Society,
Los Alamitos (2000)

15. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
With UML. Addison Wesley, Reading (1998)

http://www.modelum.es/projects/hln/
http://www.eclipse.org/m2m/atl/doc/
www.omg.org/docs/ptc/05-11-01.pdf

Using Metrics for Assessing the Quality of
ASF+SDF Model Transformations�

Marcel F. van Amstel1, Christian F.J. Lange2, and Mark G.J. van den Brand1

1 Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

{M.F.v.Amstel,M.G.J.v.d.Brand}@tue.nl
2 Federal Office for Information Technology, Cologne, Germany

mail@christian-lange.com

Abstract. Model transformations are an essential part of Model Driven
Engineering and are in many ways similar to traditional software ar-
tifacts. Therefore it is necessary to define and evaluate the quality of
model transformations. We propose a set of six quality attributes to
evaluate the quality of model transformations. We define 27 metrics for
ASF+SDF model transformations to predict the quality attributes we
propose. Metrics data has been collected from six heterogeneous model
transformations automatically. The quality of the same transformations
has been evaluated manually by several ASF+SDF experts. We assess
whether the automatically collected metrics are appropriate predictors
for the quality attributes by correlating the metrics data with the expert
data. Based on the measurement results, we identify a set of predicting
metrics for each of the quality attributes for model transformations.

1 Introduction

Model Driven Engineering [1] (MDE) is a software engineering discipline in which
models play a central role throughout the entire development process. MDE
combines domain-specific modeling languages for modeling software systems and
model transformations for synthesizing them. Model transformations are in many
ways similar to traditional artifacts, i.e., they have to be used by multiple de-
velopers, have to be changed according to changing requirements and should
preferably be reused. Therefore, it is necessary to define and assess their quality.
Quality attributes such as modifiability, understandability and reusability need
to be understood and defined in the context of MDE, in particular for model
transformations. For most other types of software artifacts, e.g. source code and
models, there already exist approaches for measuring their quality. The goal of
our research is to make the quality of model transformations measurable. In this
paper, we focus on model transformations created using the ASF+SDF [2] term

� This work has been carried out as part of the FALCON project under the responsibil-
ity of the Embedded Systems Institute with Vanderlande Industries as the industrial
partner. This project is partially supported by the Netherlands Ministry of Economic
Affairs under the Embedded Systems Institute (BSIK03021) program.

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 239–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

240 M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand

rewriting system which is actively applied in MDE projects [3,4,5]. However, we
expect that our approach can be generalized and applied to other model trans-
formations formalisms such as ATL [6], QVT [7] and openArchitectureWare [8].

We propose the following six quality attributes for measuring the quality of
model transformations: understandability, modifiability, reusability, modularity,
completeness, and consistency. Most of these quality attributes have already
been defined earlier for software artifacts in general [9]. In [10], we explain why
they are relevant for model transformations in particular. We also define 27
metrics for ASF+SDF transformations as predictors for these quality attributes.
Some of these metrics are specific for ASF+SDF only, but for most metrics a
conceptually equivalent metric can be defined in other model transformation
formalisms as well. To assess whether the metrics are valid predictors for the
quality attributes, an empirical analysis has been conducted. Metrics have been
collected from a total of six transformations by a tool we created. The same
cases have also been manually assessed by ASF+SDF experts. We correlate the
metrics data with the expert data to explore the relations between the metrics
and the quality attributes. In this way we can assess whether the automatically
collected metrics are appropriate predictors for the quality attributes.

The remainder of this paper is structured as follows. In Section 2, the metrics
we define to predict the quality attributes are described. Section 3 describes
the results of our empirical study. Section 4 describes related work. Conclusions
and directions for further research are given in Section 5. Note that we will not
describe ASF+SDF here. Instead, the reader is referred to [2]. For an extended
version of this work the reader is referred to [10].

2 Metrics

This section describes the metrics we defined and measure with a tool we im-
plemented. The metrics described here are specific for ASF+SDF. However, for
most of them a conceptually equivalent metric can be defined for other model
transformation formalisms as well. All metrics are listed in Table 2.

2.1 Transformation Function Metrics

A measure for the size of a model transformation is the number of transforma-
tion functions it encompasses. A transformation function in ASF+SDF consists
of one or more signatures and one or more equations. The number of transfor-
mation functions is therefore defined as the number of signatures that are imple-
mented by at least one equation. The size of individual transformation functions
can be measured by the metrics number of signatures per function and number
of equations per function. These metrics measure the number of variants of a
transformation function. Equations may have conditions. We measure the size
of an equation as the number of conditions it has. Conditions can also be in-
cluded when measuring the size of a transformation function. This leads to the
metric number of equations and conditions per function. In this case, the number
of variants of a transformation function is measured along with their sizes.

Using Metrics for Assessing the Quality of ASF+SDF Model 241

Measurements for the complexity of a transformation function are the num-
ber of arguments it takes and the number of values it returns. In ASF+SDF, a
transformation function can be overloaded by defining multiple signatures and
equations for it. These signatures may have different arguments. We measure
the average number of arguments of a transformation function. This metric is
called val-in. In ASF+SDF, a transformation function can return only one value.
Therefore it does not make sense to measure the number of return values of a
transformation function, i.e., val-out. However, different signatures of an over-
loaded transformation function may return values of different types. Therefore,
we measure the number of distinct return types per function.

Transformation functions generally depend on other transformation functions.
To measure this dependency, we measure fan-in and fan-out of transformation
functions. Fan-in of a transformation function f is the number of times f is in-
voked by another transformation function f ′. Fan-out of a transformation func-
tion f is the number of times f invokes another transformation function f ′.

In ASF+SDF, there are a few mechanisms to influence the flow of control of
the transformation engine. These are, amongst others, conditions, default equa-
tions and traversal functions. Two types of conditions can be distinguished, viz.
matching conditions and (in)equality conditions. We measure how often the dif-
ferent condition types are used, by measuring the number of matching conditions
per equation and the number of (in)equality conditions per equation. The number
of matching conditions is of particular interest. It is possible to write equations
that express the same in different ways. One can either write relatively small
equations with a relatively large number of matching conditions, or relatively
large equations with relatively few matching conditions. Upon evaluation, de-
fault equations are always evaluated last. Transformation functions without a
default equation may be incomplete and hence may not rewrite properly. There-
fore, we measure the number of default equations per function. Traversal func-
tions can also be used to change the way evaluation of a transformation function
is performed. A traversal function visits every node of a tree once, whereas
a standard transformation function is applied to one node only. In this way,
traversal functions allow a collapse of the number of transformation functions
corresponding to a syntax directed translation scheme. Therefore we distinguish
traversal functions when measuring the number of transformation functions. In
other transformation formalisms, different mechanisms are used to influence the
transformation engine. For example, in ATL it is possible to use lazy matched
rules. A standard matched rule is applied only once, whereas a lazy matched
rule is applied as often as it is referred to [6].

2.2 Module Metrics

Most model transformation formalisms enable a modular definition of model
transformations. This is also the case for ASF+SDF. The number of modules
is a measure for the size of a model transformation. The size of an individual
module can be measured in different ways. We introduce three metrics to measure
the size of a module, viz. the number of transformation functions per module,

242 M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand

the number of signatures per module and the number of equations per module.
These metrics can be compared with the average values over all modules to assess
the balance of a module with respect to the rest of the model transformation.

Dependencies between modules can be measured on a module level. A mod-
ule m depends on another module m′ if module m imports module m′. To mea-
sure this type of dependency between modules, we measure the number of import
declarations per module and the number of times a module is imported by other
modules. Dependencies between modules can also be measured on the level of
transformation functions. Transformation functions may invoke transformation
functions defined in other modules. To measure this type of dependency between
modules, we measure fan-in and fan-out for modules. Fan-in of a module m is
the number of times a transformation function defined in module m is invoked by
a transformation function defined in another module m′. Fan-out of a module m
is the number of times a transformation function defined in module m invokes
a transformation function defined in another module m′.

2.3 Consistency Metrics

A transformation function in ASF+SDF consists of signatures and equations.
Each signature is related to one or more equations. A signature may have no
related equations. This can for instance occur when a transformation is still
under development. To detect this inconsistency, we measure the number of
signatures without equations. An equation that is not related to a signature will
be detected by ASF+SDF itself. Therefore we do not measure this.

Variables are usually defined in a hiddens section. This means that they can
only be used in the module they are defined in. Therefore, a variable needs to be
redefined if it is to be used in other modules. This may lead to inconsistencies in
variable naming, i.e., a variable name in one module can be related to a different
type in another module, or vice versa. It may also cause (re)definition of variables
that are not used in a module. To detect these inconsistencies, we measure the
number of (different) variable names per type, the number of (different) types
per variable name and the number of unused variables. A variable is unused in
a module if there are no instances of it used in the module it is defined in.

3 Empirical Exploration of the Metrics

The quality attributes relevant for the evaluation of model transformations in
practice are not directly measurable. Therefore, we are interested in the relation
between metrics and quality attributes. The purpose of the case study described
in this section is to explore this relation. In the case study, we used six model
transformations specified in ASF+SDF. For each of these transformations we
collected metrics data. To evaluate the quality attributes for each of the trans-
formations directly, we used a questionnaire that was completed by four experts
in ASF+SDF. In this section we describe the design of the case study and the
statistical analysis and interpretation of the collected data.

Using Metrics for Assessing the Quality of ASF+SDF Model 243

3.1 Objects, Subjects, Task and Instrumentation

The experimental objects are six model transformations specified in ASF+SDF.
These transformations are real-world transformations created by different devel-
opers in research projects. The transformations differ in size, style, structure and
functionality. Table 1 summarizes the characteristics of the transformations.

Table 1. Characteristics of the analyzed model transformations

Transformation LOC # Functions Purpose Reference

ACP2UML 5694 173 Transform process algebra models into UML [3]
SL2XMI 1851 70 Transform surface language into activities [4]
SLCheck 1430 58 Surface language wellformedness checker [4]
ASF2C 7096 396 Generate C code from ASF specifications [11]
UML2DOT 1553 28 Transform UML activities into the DOT language –
REPLEO 4058 47 Syntax-safe template engine [5]

The subjects in the study were four experienced users of ASF+SDF. All sub-
jects are researchers who have developed several ASF+SDF transformations.
None of the authors participated as subject in this study. Prior to their task,
the subjects were not informed about the particular purpose of the study. Their
task was to answer a questionnaire consisting of 23 questions. The questionnaire
contained at least three similar, but different questions for each of the quality
attributes. In each question, the subjects had to indicate their evaluation of one
of the quality attributes on a five-point Likert scale (1 indicating a very low value
and 5 indicating a very high value). The questionnaire can be found in [10]. For
each of the six transformations, the subjects used the same questionnaire. Five
transformations were evaluated by three subjects, the transformation “ASF2C”
was evaluated by all four subjects. During the evaluation, the subjects had the
transformation opened in the ASF+SDF Meta-Environment [12] on their own
computer. There was no time-bound for the evaluation task. In addition to the
quantitative evaluation of each of the transformations, a semi-structured inter-
view was conducted after the questionnaire task to obtain qualitative statements.

The metrics were collected using the metrics collection tool we implemented.
We collected the data without taking library modules into account since library
modules can severely affect the analysis results.

3.2 Relating Metrics to Quality Attributes

To establish the relation between metrics and quality attributes we analyze the
correlation between them. The data acquired from the questionnaire is ordinal.
Therefore, we use a non-parametric rank correlation test [13]. Since the data set is
small and we expect a number of tied ranks, we use Kendall’s τb rank correlation
test [14]. This test returns two values, viz. significance and correlation coefficient.
The significance indicates the probability that there is no correlation between
metric and quality attribute even though one is reported, i.e., the probability for
a coincidence. Since we are performing an exploratory study and not an in-depth
study, we accept a significance level of 0,10. The correlation coefficient indicates

244 M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand

Table 2. Kendall’s τb correlations

U
n
d
er

st
a
n
d
a
b
il
it
y

M
o
d
u
la

ri
ty

M
o
d
ifi

a
b
il
it
y

R
eu

sa
b
il
it
y

C
o
m

p
le

te
n
es

s

C
o
n
si
st

en
cy

Metric CC Sig. CC Sig. CC Sig. CC Sig. CC Sig. CC Sig.

1 # Transformation functions -,550 ,002 ,439 ,017 -,303 ,092 -,242 ,183 ,053 ,772 -,190 ,307
2 # Traversal Functions -,356 ,048 ,159 ,385 -,432 ,016 -,216 ,235 ,053 ,772 -,136 ,465
3 # Modules -,801 ,000 ,713 ,000 -,553 ,003 -,256 ,166 -,164 ,379 -,483 ,011
4 # Signatures without equations -,481 ,009 ,631 ,001 -,146 ,424 -,135 ,466 -,150 ,420 -,476 ,012
5 # Functions per module -,278 ,123 ,279 ,128 -,032 ,858 -,111 ,541 ,106 ,563 -,054 ,770
6 # Traversal functions per module -,006 ,971 -,120 ,515 -,058 ,747 -,163 ,369 ,093 ,613 ,149 ,422
7 # Signatures per module -,123 ,495 ,120 ,515 ,123 ,496 -,059 ,746 ,106 ,563 ,027 ,884
8 # Equations per module ,667 ,000 -,638 ,001 ,381 ,035 ,177 ,331 ,212 ,247 ,570 ,002
9 # Signatures per function ,032 ,858 ,040 ,828 ,019 ,914 -,033 ,857 -,172 ,347 -,203 ,274

10 # Equations per function -,265 ,141 ,279 ,128 -,213 ,237 ,033 ,857 -,146 ,426 -,285 ,125
11 # Default equations per function ,084 ,641 -,080 ,664 -,161 ,370 ,098 ,590 -,053 ,772 -,041 ,827
12 # Eqs. and conditions per function ,175 ,332 -,093 ,612 ,252 ,162 ,229 ,208 -,040 ,828 -,068 ,715
13 Function fan-in -,136 ,451 ,106 ,562 -,058 ,747 ,111 ,541 -,040 ,828 -,176 ,343
14 Function fan-out ,019 ,914 ,066 ,717 ,097 ,591 ,177 ,331 -,040 ,828 -,149 ,422
15 Module fan-in -,601 ,001 ,690 ,000 -,307 ,104 -,195 ,306 -,073 ,703 -,374 ,054
16 Module fan-out ,188 ,298 -,199 ,277 ,432 ,016 ,059 ,746 ,106 ,563 ,271 ,144
17 # Conditions per equation ,550 ,002 -,518 ,005 ,432 ,016 ,190 ,297 ,238 ,193 ,488 ,009
18 # Matching conditions per equation ,693 ,000 -,571 ,002 ,587 ,001 ,268 ,140 ,172 ,347 ,407 ,029
19 # Equality conditions per equation -,278 ,123 ,372 ,043 -,097 ,591 -,072 ,692 ,026 ,885 -,068 ,715
20 # Distinct return types per function -,537 ,003 ,465 ,011 -,355 ,049 -,150 ,408 -,093 ,613 -,515 ,006
21 # Import declarations per module -,162 ,370 ,319 ,082 ,148 ,410 -,059 ,746 -,172 ,347 -,258 ,165
22 # Times a module is imported -,655 ,000 ,658 ,000 -,393 ,032 -,175 ,343 -,232 ,213 -,566 ,003
23 # Variables per type -,758 ,000 ,678 ,000 -,432 ,016 -,268 ,140 -,053 ,772 -,407 ,029
24 # Distinct variables per type -,758 ,000 ,678 ,000 -,432 ,016 -,268 ,140 -,053 ,772 -,407 ,029
25 # Types per variable -,658 ,000 ,631 ,001 -,378 ,045 -,152 ,426 -,190 ,321 -,584 ,003
26 # Unused variables per module -,291 ,106 ,332 ,070 -,071 ,694 -,124 ,494 ,053 ,772 -,054 ,770
27 Average val-in -,123 ,495 ,080 ,664 -,136 ,452 -,098 ,590 -,172 ,347 -,231 ,215

CC: Correlation coefficient
Sig.: Two-tailed significance

the strength and direction of the correlation. A positive correlation coefficient
means that there is a positive relation between metric and quality attribute and a
negative correlation coefficient implies a negative relation. Note that correlation
does not indicate a causal relation between metric and quality attribute. Table 2
contains the correlations we acquired. The significant correlations are marked.

No metric correlates significantly with reusability. The reason for this is that
the experts cannot evaluate reusability properly because they do not see what
they can reuse parts of the transformations for. Also, no metric correlates sig-
nificantly with completeness. The reason for this is that the experts could not
evaluate completeness properly because they did not have the specification of
the analyzed transformations. Moreover, the time needed to get acquainted with
the source and target language of the transformations is large.

The metrics that indicate the size of a transformation, i.e., number of (traver-
sal) functions and number of modules correlate negatively with both under-
standability and modifiability. This indicates that larger model transformations

Using Metrics for Assessing the Quality of ASF+SDF Model 245

are harder to understand and to modify. The same size metrics correlate pos-
itively with modularity. In larger transformations the need for splitting func-
tionality over modules becomes higher. Therefore, a larger transformation often
implies more modules, and therefore a more modular transformation. However,
a high number of modules alone is not enough for a model transformation to be
modular. Functionality should be well-spread over these modules.

The metric number of modules correlates negatively with consistency. More
modules often implies a more complex transformation and more interfaces be-
tween modules. This may lead to inconsistencies. Also, when multiple developers
work on a transformation it is likely that they work on separate modules. Since
every developer has his own style, this may lead to inconsistencies.

The number of (matching) conditions per equation is positively correlated with
understandability and modifiability. When writing equations, a tradeoff has to
be made between writing a complex equation with little matching conditions
or writing a simple equation with more matching conditions. The correlation
indicates that simple equations with more matching conditions are preferred.

The number of equations per module correlates negatively with modularity.
Modularity means that functionality should be spread over modules. This usually
leads to smaller modules, i.e., modules with fewer equations.

In transformations consisting of multiple modules, modules depend on each
other. This is expressed by module fan-in, module fan-out, the number of times
a module is imported, and the number of import declarations. Therefore, mod-
ule fan-in and number of times a module is imported correlate significantly in a
positive way with modularity. These two metrics correlate negatively with mod-
ifiability. When a module on which other modules depend needs modifications,
attention should be paid that these dependencies remain correct.

The number of distinct return types per function correlates negatively with
modifiability and consistency. A function with multiple return types has multiple
equations. This has two disadvantages with respect to modifying a transforma-
tion. First, if only one, or a few equations need modifications, attention should
be paid that the correct equation is modified. Second, more equations imply
more modifications. The correlation with consistency is to be expected because
the return types are not consistent with each other.

The number of types per variable also correlates with consistency negatively.
This is to be expected, because a variable that is of a different type in different
modules is inconsistently defined. Related to this is the negative correlation
between the number of (distinct) variables per type on consistency. Redefinition
of variables may lead to inconsistent naming. In fact, the metric number of
(distinct) variables per type measures this directly.

3.3 Threats to Validity

Conducting empirical studies involve threats to validity. Here we discuss how we
addressed potential threats to validity in the presented study.

An important issue that must be taken into account for empirical studies
is the representativeness of the experimental design with respect to practice.

246 M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand

We selected experienced ASF+SDF experts as subjects in our study. Since our
experience shows that model transformations are developed and maintained by
experts in practice, we exclude the subject experience as a threat to the validity
in our study. The transformations used as objects in our study are designed in
and applied for practical purposes. Additionally, our sample of transformations is
heterogeneous with respect to several characteristics. Hence, we do not consider
the object selection as a threat to the validity of this study.

Our choice for the transformation formalism ASF+SDF could be discussed.
Future replications of our study must prove whether the findings for ASF+SDF
presented in this study will also hold for conceptually similar metrics for other
transformation formalisms. In our study the objects conducted an evaluation
task that is not representative for practical model engineering tasks, and there-
fore this is a potential threat to the validity. We addressed this threat in the
design of our study by using at least three self-controlled questions for each
quality attribute and we used the evaluations of four experts. The results were
relatively consistent between the experts and between the self-controlled ques-
tions, respectively. Therefore we minimized this threat to validity.

The number of observations in this study is rather small. This is a poten-
tial threat to the validity. It is difficult to find a larger number of experts in
ASF+SDF for participation in such a study. We accepted this threat to the
validity, because the study is only a first exploration of transformation quality
metrics.

4 Related Work

The authors of [15] discuss characteristics of MDE that should be taken into
account when developing a quality framework for it. They also define a quality
framework for MDE themselves. Like us, the authors recognize the need for eval-
uating the quality of model transformations. Therefore, they apply their frame-
work to this matter. This results in a set of quality attributes and a suggested
method for assessing them. Our approach complements theirs. The quality at-
tributes we propose include the ones they propose for model transformations. In
addition, we present metrics for assessing the quality attributes we defined.

In [16], a set of metrics is proposed to monitor iterative grammar develop-
ment in SDF. The authors took metrics developed by others that are applicable
to measure (E)BNF grammars and adapted them such that they can be used
to measure SDF grammars. The difference with our work is that they focus on
grammar development using SDF, whereas we focus on transformation develop-
ment using both ASF and SDF.

In [17], metrics are defined for functional programming languages. Since ASF
is a functional language, we were able to adapt some of the metrics they defined
such that they can be used to measure the quality of model transformations.

We assess the relation between metrics and quality attributes empirically.
Multiple experiments that use a similar approach are described in [18].

Using Metrics for Assessing the Quality of ASF+SDF Model 247

5 Conclusions and Future Work

5.1 Conclusions

We have addressed the necessity for a methodology to analyze the quality of
model transformations. In this paper, we proposed six quality attributes to eval-
uate the quality of model transformations. We also defined a set of 27 metrics
for predicting these quality attributes for model transformations created using
ASF+SDF. These metrics can automatically be collected from ASF+SDF model
transformation specifications by a tool we created.

For the evaluation of quality attributes of model transformations, it is nec-
essary to be able to select appropriate metrics as indicators for the quality at-
tributes. Our study is a first step into this direction and provides data that
supports the selection of metrics for particular quality attributes. For most of
the proposed quality attributes we found metrics that correlate with them. This
can, amongst others, be used to indicate possible points for improvements in
model transformations.

5.2 Future Work

The manual assessment of the quality of the model transformations was carried
out by four ASF+SDF experts. In the future, we would like to have feedback
from more experts and on more cases. In that way, the results will be more
significant. Also, we would like to perform a more in-depth statistical analysis.

In this paper, we focused on model transformations created using ASF+SDF.
We expect that our techniques can be generalized and applied to different model
transformation formalisms as well. Our focus will be on ATL [6]. The quality
attributes will be the same, but the metrics to predict the quality attributes will
differ. However, we expect that most metrics will be conceptually similar.

Once we have identified quality problems in model transformations, we can
propose a methodology for improving their quality. This methodology will prob-
ably consist of a set of guidelines which, if adhered to, lead to high-quality model
transformations.

Acknowledgements. We want to thank Mark Ligtvoet for his help with im-
plementing the tool and Jan Stoop for his help with the statistical analysis. We
also want to thank the ASF+SDF experts for participating in this research.

References

1. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25–31 (2006)
2. van Deursen, A.: An overview of ASF+SDF. In: Language Prototyping: An Al-

gebraic Specification Approach. AMAST Series in Computing, vol. 5, pp. 1–29.
World Scientific Publishing, Singapore (1996)

3. van Amstel, M.F., van den Brand, M.G.J., Protić, Z., Verhoeff, T.: Transforming
process algebra models into UML state machines: Bridging a semantic gap? In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
61–75. Springer, Heidelberg (2008)

248 M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand

4. Engelen, L.J.P., van den Brand, M.G.J.: Integrating textual and graphical mod-
elling languages. In: Proceedings of the 9th Workshop on Language Descriptions,
Tools and Applications (2009)

5. Arnoldus, B.J., Bijpost, J., van den Brand, M.G.J.: REPLEO: a syntax-safe tem-
plate engine. In: Proceedings of the 6th international conference on Generative
programming and component engineering, pp. 25–32. ACM, New York (2007)

6. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

7. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation specification. OMG Document formal/2008-04-
03, OMG (2008)

8. Völter, M.: OpenArchitectureWare: a flexible open source platform for model-
driven software development. In: Proceedings of the Eclipse Technology eXchange
workshop (eTX) at the ECOOP 2006 Conference (2006)

9. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:
Characteristics of Software Quality. North-Holland, Amsterdam (1978)

10. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Evaluating the quality of
ASF+SDF model transformations. CS-report, Eindhoven University of Technology,
Eindhoven, The Netherlands (2009)

11. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling rewrite
systems: The ASF+SDF compiler. ACM Transactions on Programming Languages
and Systems 24(4), 334–368 (2002)

12. van den Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: A component-based language
development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
365–370. Springer, Heidelberg (2001)

13. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach,
2nd edn. PWS Publishing Co. (1996)

14. Field, A.: Discovering Statistics using SPSS, 2nd edn. Sage, Thousand Oaks (2005)
15. Mohagheghi, P., Dehlen, V.: Developing a quality framework for model-driven engi-

neering. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 275–286. Springer,
Heidelberg (2008)

16. Alves, T., Visser, J.: Metrication of SDF grammars. Technical report, Departa-
mento de Informática da Universidade do Minho, Braga, Portugal (2005)

17. Harrison, R.: Quantifying internal attributes of functional programs. Information
and Software Technology 35(10), 554–560 (1993)

18. Lange, C.F.J.: Assessing and Improving the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Ph.D thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands (2007)

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 249–259, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Achieving Rule Interoperability Using
Chains of Model Transformations

Marcos Didonet Del Fabro1, Patrick Albert1, Jean Bézivin2, and Frédéric Jouault2

1 ILOG, an IBM Company
2AtlanMod Group (INRIA & EMN)

{marcos.ddf,albertpa}@fr.ibm.com,
{jean.bezivin,frederic.jouault}@inria.fr

Abstract. Model Driven Engineering (MDE) is rapidly maturing and is being
deployed in several situations. We report here on an experiment conducted in
the context of ILOG, a leader in the development of Business Rule Manage-
ment Systems (BRMS). BRMSs aim at enabling business users automating their
business policies. There is a growing number of BRMS supporting different
languages, but also a lack of tools for bridging them. In this paper, we present
an approach based on MDE techniques for bridging rule languages; the solution
has been fully implemented and tested on different BRMS. The success of the
experiment has led to the development and chaining of a significant number of
model transformations – no less than twenty. At the same time, this deployment
has shown new problems arising from the management of a high number of ar-
tifacts. We discuss the positive assessment of MDE in this field, but also the
need to address the complexity generated.

1 Introduction

This paper describes an experiment to apply MDE techniques to the field of Business
Rule Management Systems (BRMS). The experiment was conducted over one year
within an industrial environment (at ILOG), with a set of open source MDE tools
previously built at INRIA (the AMMA tool suite [18]).

The field of BRMS is characterized by a number of normative, open source, or
proprietary systems and languages (ILOG JRules [8], JBoss Drools [11], Fair-Isaac
Blaze Advisor [6], etc.), allowing the expression of various solutions to business
problems at a high abstraction level, but with heterogeneous sets of capabilities and
languages. Going from the initial problem (e.g., UML to Java translation) to a more
general problem of DSL (Domain Specific Language) to DSL translation is an impor-
tant step that we faced in this industrial case.

The question to answer in the project was thus about which help - if any - MDE
could bring to provide interoperability between BRMSs. A first limited experiment
had been conducted before to bridge normative business rule languages [1]. Though
our project has a much greater size and complexity, the former has provided us with
inspiration and reasonable hope for convergence.

Our goal was to take projects of the source BRMS (Drools) as input and to automati-
cally produce ready-to-use projects in the target BRMSs (ILOG JRules) and particularly

250 M.D. Del Fabro et al.

between languages in different abstraction levels. We developed two interoperability
tools (i.e., bridges): a reasonably simple one from DRL (Drools Rule Language [11]) to
IRL (ILOG Rule Language [8]), and a much more complex bridge that takes IRL rules
as input and that generates Business Rules written in the ILOG “Business Action Lan-
guage” (BAL) [8].

The experiment was much broader that typical one-to-one transformations, because
we had a higher number of artifacts that should be produced (e.g., different kinds of
project or control files). In particular, two major issues have risen. First, we had to do
an inventory of all artifacts and to create all the operations/transformations to produce
them. Second, we had to coordinate their execution in a coherent flow. We provide a
detailed description of the signature of the operations that we created, and how they
were composed to handle these issues.

To summarize, the major contributions of this paper are the following. We report on
an experiment that included a complex MDE architecture encompassing a large number
of input or output artifacts. We present in detail all the operations needed to transform a
technical into a business language. We apply our solution to different projects, going
from standard business rules benchmarks to real-life interoperability project.

This paper1 is organized as follows. Section 2 briefly introduces the field of
BRMS. Section 3 presents the interoperability solutions that have been developed.
Section 4 describes the lessons learned. Section 5 concludes.

2 Business Rule Management Systems

A BRMS [20] is composed of several components supporting the definition, man-
agement, and execution of business rules. The rules are written in Domain-specific
declarative languages as close as possible to the application domain and terminology.
The technical details of the rules and application are hidden by a “business-level”
front-end close to natural language.

This enables the policies owners to create and manage the rules by themselves with
little to no support from software developers. Being largely independent from IT, the
business users can react almost immediately to most policies changes by adding, re-
moving, or changing rules. Well-formalized processes guarantee that new or modified
rules are well managed.

2.1 Rules

The rules are written in domain specific languages, which may have different levels
of abstraction. In this section we present an overview of business rules.

2.1.1 Production Rules
Production rules (or simply rules) are used to help business organizations automating
their policies, providing properties such as reliability, consistency, and scalability.
The rules are mostly made of If-Then statements involving predicates and actions
about sets of business objects (as shown in Figure 1). Rules variables are bound to
objects of a certain type; when the condition part recognizes that a set of objects satis-
fies its predicates, the action is triggered.

1 An extended version of this paper is available as an INRIA Research Report, number 6747.

 Achieving Rule Interoperability Using Chains of Model Transformations 251

rule setInsuranceRatio {
 when ?c : Client (age > 18 && age < 25);

 then ?c.setInsuranceRatio (1.25);
}

Fig. 1. A simple production rule

2.1.2 Business Rules
The business rules approach is an attempt to bring the power of rules programming to
business users willing to automate business policies.

The business rules are expressed in a language close to natural language that can be
understood and managed by “business analysts”, for instance, “If the age of the client
is between 18 and 25, set the insurance ratio to 125%”. This Business-level language
is compiled into a lower-level technical language, i.e., at execution level; the ‘produc-
tion rules’ semantics remains unchanged. The “Business Layer” is composed of addi-
tional models supporting the definition of the rules, such as the business objects of the
domain (e.g., Client, age) and the corresponding terminology (e.g., “the clieant”, “the
age of the client”).

2.2 Drools and JRules

Drools is an open-source BRMS part of the JBoss foundation. Its rules language is
called DRL, for Drools Rule Language [10]. In this paper, we focused on the techni-
cal rules of Drools.

JRules is the product developed and marketed by ILOG. It supports the two differ-
ent levels of a full-fledged BRMS: the technical level targeted at software developers
and the business action language targeted at business users. They are explained below.

Technical rules: the technical rules of JRules are written in IRL. The complete speci-
fication of IRL may be found at [9].

Business Action Language (BAL): hides implementation details of IRL, allowing
business analysts to concentrate on the business logic (see an example in Figure 2).

definitions
 set 'client' to a client;
if
 the age of ‘client’ is between 18 and 25
then
 set the insurance ratio to 125%;

Fig. 2. Example of a rule in BAL

Business Object Model (BOM): defines the classes representing the objects of the
application domain. A BOM is in fact a simplified ontology defining the application
classes. The BOM is mapped to the execution objects that support the actual applica-
tion data. In the simplest cases, the BOM can be automatically extracted from the
classes definitions in Java, or C#.

252 M.D. Del Fabro et al.

Vocabulary (VOC): defines a text file with a controlled vocabulary that “closes” the
rules syntax on a fixed set of allowed words and fragments. The business rules editor
proposes only the valid terms while a business user creates or modifies a rule.

B2X and project files: the “Business To eXecution” model (B2X) describes how the
logical elements represented in the BOM are actually mapped to physical data struc-
tures (XOM), i.e., it is used when there is not an implicit 1-to-1 mapping towards
Java, C# or XML. Thus, the application developer might add new B2X constructs to
specify the way the new BOM elements are implemented with the target program-
ming language.

A JRules application has an additional project file - .ruleproject (RP) – which
specifies the project parameters, the folder organization.

3 Rule Interoperability

Our goal is to transform a set of rules of a source BRMS, into an executable set of
rules (and associated files) of a target BRMS.

The architecture follows the usual MDE pattern: inject, transform, extract, and
relies on core MDE practices and technologies: Domain Specific Languages (DSLs)
[18], metamodeling [18], model transformations [15] and projections across technical
spaces (i.e., injections and extractions) [17]. We have used the AMMA tool suite:
KM3 [14] for defining the metamodels, TCS [13] for defining the textual syntax, and
ATL [12] for the model transformations. There are several other tool suites similar to
AMMA (e.g., Epsilon [16] or oAW [19]). The closest one is oAW, which is also
available on the Eclipse.org platform. AMMA and oAW share the same model-centric
vision and only differ on some implementation choices.

In our scenario, we have two complementary objectives: translating a set of rules in
DRL into IRL and translating IRL into BAL. We first produce the IRL rules from the
DRL ones, and then we produce the BAL rules from IRL.

3.1 Model Management Operations

The bridge is composed of twenty four operations (as shown in Figure 3). The opera-
tions are identified by an initial letter depending on the category (eXternal JRules
operation, Injection, Extraction and translation, XML-ification and refactoring Trans-
formations), plus an integer increment. The labels indicate the kinds of artifacts that
are produced, for instance, a BOM model, or a BOM file.

An operation has the following signature:

<MOUT1 : MMOUT1, … , MOUTm : MMOUTm> =
 T[TSOUT-TSIN](<MIN1 : MMIN1, … , MINn : MMINn>).

T is the operation name; [TSOUT-TSIN] are markers with the output and input tech-
nical spaces. For instance, when injecting a textual file into a model, we mark the
operation with [MDE-EBNF]. These markers are optional and are not used when
specifying model transformations in the MDE technical space.

 Achieving Rule Interoperability Using Chains of Model Transformations 253

<MIN1 - MINn> are the set of input models (n >= 1); the input models conform to
the input metamodels <MMIN1 - MMINn>; the input metamodels may be equal; MOUT1
- MOUTm is the set of output models (m >= 1); the output models conform to the output
metamodels <MMOUT1 – MMOUTn>.

T10
T5

E3

E2

E7

E5

E6

E4

E1

I1

I2 I3

XMLB2X

BOM
VOC

IRL

BAL

BRL

XML

Execution
classes

BOM

VOC

RP XML

IRL

DRL DRL
T1

T2
T3

T4

T6
T7

T8

T9

T11

T12

X1 X2

DRL

BOM VOC

JRules
operation

Injection Transformation Extraction File Terminal
model

Legend:

VOC

BAL

BRL
IRL

BOM

RP

B2X

I4

Fig. 3. DRL IRL BAL complete process

3.1.1 DRL to IRL Operations
This bridge produces an ILOG JRules project including rules written in the IRL lan-
guage from a set of files written in DRL

drl1 : DRL = I1[MDE-EBNF] (drl : DRL) (1)

drl2 : DRL = T1 (drl1 : DRL) (2)

irl1 : IRL = T2 (drl2 : DRL) (3)

irl2 : IRL = T3 (irl1 : IRL) (4)

irl : IRL = E1[EBNF-MDE] (irl2 : IRL) (5)

The first operation (1) parses the textual file and it produces as output a model con-
forming to the DRL metamodel.

However, there are a few DRL expressions that are not natively supported by IRL:
we first run an endogenous refactoring transformation (2) that takes a DRL model as
input and that produces a refactored DRL model. Then, we translate the refactored
DRL model into an IRL model (3). The IRL model is refactored as well (4).

This separation enables the specification of a relatively simple “DRL to IRL”
transformation. Finally, the IRL models are extracted into the IRL files (5).

3.1.2 IRL to BAL Operations
This set of operations produces an ILOG JRules Project including rules written in the
BAL syntax. As this bridge is far more complex than the previous one – it includes

254 M.D. Del Fabro et al.

additional input and output models, such as the BOM, the VOC and the B2X. The
bridge is a composition of twenty (20) operations.

bom : BOM = X1 (java : JAVA) (6)
voc : VOC = X2 (bom : BOM) (7)
bom1 : BOM = I2[MDE-EBNF] (bom : BOM) (8)
voc1 : VOC = I3[MDE-EBNF] (voc : VOC) (9)

 irl2 : IRL = I4[MDE-EBNF] (irl : IRL) (10)

The first step in the bridge is the generation of the VOC and BOM - (6), (7).
Though these operations could be defined using model transformations, we rather use
the existing facilities provide by the JRules API. Then, the generated files, plus the
input IRL files are injected into models - (8), (9), (10). Note that (10) is optional when
the whole DRL IRL BAL bridge is executed, avoiding an extra injection.

bom1 : BOM = T5 (bom1 : BOM, irl2 : IRL) (11)

voc1 : VOC= T9 (bom1 : BOM, voc1 : VOC) (12)

bom : BOM = E2[EBNF-MDE] (bom1 : BOM) (13)

voc : VOC = E3[EBNF-MDE] (voc1 : VOC) (14)

However, the initial vocabulary is not always complete. For instance, BAL does
not natively support insert or retract actions and for and while statements. We aug-
ment the vocabulary and BOM - (11), (12) - to support these primitives. The aug-
mented models are extracted - (13), (14) - overriding the initial files.

b2x1 : B2X= T6 (bom1 : BOM) (15)

rp1 : RP = T4 (irl2 : IRL) (16)

b2x_xml1 : XML = T7 (b2x1 : B2X) (17)

xml2 : XML = E4[XML-MDE] (b2x_xml1 : XML) (18)

rp_xml1 : XML = T8 (rp1 : RP) (19)

xml1 : XML = E5[XML-MDE] (rp_xml1 : XML) (20)

A B2X mapping model is produced with all the new methods (15). The project
files are produced from the input IRL (16). However, the project files and the B2X
mappings do not have a concrete textual syntax, i.e., they are saved in a specific XML
format. We produce an XML model (XML-ification), conforming to an XML meta-
model - (17), (18). The XML model is extracted into and XML file - (19), (20).

bal1 :BAL=T10(irl2 : IRL, bom1 :BOM, voc1 :VOC) (21)

bal : BAL = E6[EBNF-MDE] (bal1 : BAL) (22)

brl1 : BRL = T11 (bal1 : BAL) (23)

brl_xml1 : XML = T12 (brl1 : BRL) (24)

xml3 : XML = E7[XML-MDE] (brl_xml1 : XML) (25)

 Achieving Rule Interoperability Using Chains of Model Transformations 255

The central operation of the bridge is the transformation of the IRL models into the
BAL models (21). The transformation must search the corresponding expressions in
the BOM and in the vocabulary. Once the verbalization is found and transformed into
the correct expressions (e.g., arithmetical expressions). Though the development of
this transformation has been quite challenging, its code is out of the scope of this
paper. The BAL models are extracted into their textual format (22). However, the
BAL rules are encapsulated into one more XML format, called BRL. Thus, the BAL
rules are transformed into BRL (23), which is in turn XML-ified - (24), (25).

3.2 Chaining and Parameterization

The correct chaining of transformations is an important factor of success of the pro-
ject, because the bridge must be easy to configure and to run, acting over several input
and output models. An operation cannot be fired until all its parameters are loaded.
Consequently, the dependency relations shown in Figure 3 must be respected.

We use the AM3 [3] tool to create scripts that execute chains of transformations.
AM3 provides a set of Ant tasks integrated with the Eclipse environment.

Consider the DRL to IRL bridge. The operations that have been defined take a
fixed number of models/files as input and they produce a fixed number of
files/models as output. However, a typical BRMS has hundreds or thousands of rules.
Thus, the operations must be executed several times, and the files must be created in
the correct folders. We illustrate below a script (using pseudo-code) that performs the
transformation of several DRL files.

procedure DRL2IRLBridge() {

Registry r = new Registry();
Transformation t1 = r.newTransformation(“DRLRefactor”);
Transformation t2 = r.newTransformation(“DRL2IRL”);
Transformation t3 = r.newTransformation(“IRLRefactor”);
FileList fList = readfiles(“/Input/”);
For each file in fList {
 Model drl = r.inject(aFile, “DRL”); //I1
 drl = t1.execute(drl);
 Model irl = t2.execute(drl);
 irl = t3.execute(irl);
 r.extract(irl, “/Output/”); //E1

 }
}

This script is implemented using a combination of native Ant and AM3 tasks. We
illustrate below three AM3-specific tasks: loadModel, atl and saveModel. The follow-
ing task reads the text file, and injects it into a model. The task uses and the TCS
injector implemented at DRL-parser.jar.

<am3.loadModel modelHandler="EMF" name="in_DRL" metamodel="DRL"
 path="/Inputfolder/drl1.drl">
 <injector name="ebnf">
 <param name="name" value="DRL"/>
 <classpath>
 <pathelement location="/DRL/Syntax/DRL-parser.jar"/>
 </classpath>
 </injector>
</am3.loadModel>

256 M.D. Del Fabro et al.

The task below executes the DRL2IRL transformation. We define the transforma-
tion path, the input and output models. The name attribute must be the same as the
one declared in the transformation header. The model attribute uses the unique names
that are previously affected to the models.

<am3.atl path="/DRL2IRL/DRL2IRL.atl">
 <inModel name="DRL" model="DRL"/>
 <inModel name="IN" model="in_DRL"/>
 <inModel name="IRL" model="IRL"/>
 <outModel name="OUT" model="out_IRL" metamodel="IRL"/>
</am3.atl>

Finally, the saveModel task extracts the transformed model (out_IRL) into the

specified path. It uses the IRL TCS extractor in order to produce the IRL file.

<am3.saveModel model="out_IRL" path="/Output/out.irl">
 <extractor name="ebnf">
 <param name="format" value="IRL.tcs"/>
 </extractor>
</am3.saveModel>

4 Lessons Learned

This experiment has shown that MDE tools reached a reasonable level of maturity
allowing their use in the context of industrial projects. The major advantage is the
possibility to concentrate on the problem specification and to apply a declarative and
modular approach using a small set of principles and tools.

The bridges have been first tested on the two standard business rules benchmarks:
manners and waltz [2] and on an “insurance claim” demonstration [7]. We have run
the manners benchmark with settings for 16, 32, 64, 128, 256 and 512 objects. Then,
the bridges were applied to the migration of more than 100 Drools rules used by a
banking application. The rules are executed over the Java objects provided with the
examples. In all cases – DRL, IRL and BAL - the execution of the rules produced the
same results. The execution was empirically validated. The IRL2BAL bridge has been
used to translated 1500+ rules.

In table 1, we summarize the major difficulties found and how we solved them.
KM3 enables the definition of the metamodels with no particular limitations. On

the syntax side, thought we could eventually reach our objective, we found more
difficulties with TCS, because of its context-free approach. Such a limitation has
introduced an unwanted level of complexity in our metamodels. We thus produced a
BAL metamodel covering a large subset of the language. We could have used some
existing code generation tool to produce the final BAL, because they have fairly good
capabilities. However, using a bidirectional specification enabled the reutilization of
the generated code into other applications.

 Achieving Rule Interoperability Using Chains of Model Transformations 257

Table 1. Summary of problems/solutions

Problem Solution

BAL is context-sensitive. Specification of the context-free part. This is enough
for extraction and injection of a large subset.

Composed operators: « is
not », « is not null », etc.

One element per operator : IsNotOpt, IsNotNullOpt,
etc. Main drawback: increases the metamodel’s size.

Languages with different
abstraction levels.

Separation in two bridges. Other technical-language
bridges can be plugged relatively easy.

Incompatible expressiveness
of DRL and IRL

Creation of endogenous refactoring transformations.
It simplifies the exogenous transformations.

Incomplete BOM and
Vocabulary (IRL is more
expressive than BAL).

Creation of augmentation transformations: inclusion
of new logical methods in the BOM, plus a mapping
to the execution layer.

Different input and output
formats.

Definition of injections, extractions and XML-
ification transformations.

Complex execution flow Definition of automation scripts (Ant + AM3).
Several input/output files
and folders.

Parameterization using property files. Theses files
can be easily changed for different projects.

Performance : several input
and output models.

Caching of operations (helpers) and saving the
models only on demand.

We have applied different kinds of operations: injections, extractions, and trans-
formations (XML-ifications, translation, augmentation and refactoring). The classifi-
cation of transformation kinds enables the factorization of knowledge, in order to
further study each kind of transformation separately.

Current solutions still need to improve their modularization capabilities. For in-
stance, we would like to have transformations and libraries separated by packages,
and with easy ways to navigate through the transformation code. We chose to modu-
larize the transformation code using separate library of helpers.

We believe that it is rather rare to have a project that executes a single transfor-
mation. Thus, the utilization of a script language coupled with property files has
proved very important in the usability of the bridges. The use of AM3 for writing
the operation chaining (based on apache Ant tasks) as a basis was very useful be-
cause it is a well-know tool that can be learned relatively fast. However, an inte-
grated repository, using graphical interfaces integrated within Eclipse would help a
lot. As a side consideration, we can observe here the need to get tools to handle
complex networks of transformations. This is a field where MDE has still to pro-
vide new solutions.

In addition, the scripts and the property files were not models, violating the base
principle “everything is a model” of a complete MDE approach. We think the script
language can be integrated into a megamodeling platform [5].

258 M.D. Del Fabro et al.

5 Conclusions

In this paper, we have presented an experiment to achieve interoperability between
industrial BRMS. The utilization of MDE techniques enabled to successfully develop
two bridges amongst rule languages with different degrees of expressiveness.

Our approach has been validated by executing the bridge on a set of well-known
benchmarks for business rules, on a demonstrative example and on industrial applica-
tions. The bridges produced the expected results.

To the best of our knowledge, this is the first approach implementing a solution for
transformations from a technical rule language into a business rule language with
such a large number of transformations. The transformations defined could be imple-
mented using different transformation languages. The discovery, development and
chaining of complex transformations has been a challenging task. This project and
particularly Figure 3, has been used by Don Batory [4], to illustrate the need for regu-
lar and complete frameworks for Model Driven Engineering.

The presence of several transformations, models and metamodels showed that
megamodeling is a crucial issue when dealing with large projects. The scripting lan-
guage is a first step that helped a lot, together with its parameterization. However, we
think much more work can still be done on that area, especially in the specification of
generic megamodeling platforms.

There are several possibilities for future work, such as the creation of similar
bridges amongst different rule languages. The parsing can be internationalized into
different languages, which is a common requirement of industry. Finally, we plan to
study how to parse context-aware grammars, or even natural language.

The main conclusion of this work is that MDE has reached a level of maturity that
allows using it to revisit traditional solutions to complex real-life problems and not
only to toy examples. However, care should be taken to control the inherent complex-
ity of the solution. New ways to manage important numbers of related modeling
artifacts are among the most urgent needs to prepare model driven engineering for
moving to full-scale industrial deployment.

Acknowledgments. This work has been partially supported by ANR IdM++ project.

References

1. Abouzahra, A., Barbero, M.: Implementing two business rule languages: PRR and IRL,
http://www.eclipse.org/m2m/atl/usecases/PRR2IRL/.03/07

2. Academic Benchmark performances (27-12-2007),
http://blogs.ilog.com/brms/2007/10/22/
academic-benchmark-performance/

3. Allilaire, F., Bézivin, J., Brunelière, H., Jouault, F.: Global Model Management. In: Proc.
of eTX Workshop at the ECOOP 2006, Nantes, France (2006)

4. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In:
Keynote talk at MODELS 2008 (2008)

 Achieving Rule Interoperability Using Chains of Model Transformations 259

5. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proc. of OOP-
SLA/GPCE: Best Practices for Model-Driven Software Development workshop (2004)

6. Blaze Advisor (April 2008),
http://www.fairisaac.com/fic/en/
product-service/product-index/blaze-advisor/

7. Drools Examples (31-03-2008),
http://download.jboss.org/drools/release/4.0.4.17825.GA/
drools-4.0.4-examples.zip

8. ILOG JRules (October 2008),
http://www.ilog.com/products/jrules/index.cfm

9. ILOG Rule Languages (November 2008),
http://www.ilog.com/products/jrules/documentation/jrules67

10. JBoss Drools User Guide (15-01-2008),
http://downloads.jboss.com/drools/docs/4.0.4.17825.GA/
html_single/index.html

11. JBoss Drools (September 2008), http://www.jboss.org/drools/
12. Jouault, F., Allilaire, A., Bézivin, J., Kurtev, I.: ATL: a Model Transformation Tool. Sci-

ence of Computer Programming 72(3), 31–39 (2008)
13. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual Concrete

Syntaxes in Model Engineering. In: Proc. of GPCE 2006, Portland, Oregon, USA, pp.
249–254 (2006)

14. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidel-
berg (2006)

15. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.) MoDELS
2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

16. Kolovos, D., Paige, R., Polack, F.: A Framework for Composing Modular and Interoper-
able Model Management Tasks. In: Proc. of Workshop on Model Driven Tool and Process
Integration (MDTPI), EC-MDA 2008, Berlin, Germany (2008)

17. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In: Meers-
man, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS,
vol. 2519, Springer, Heidelberg (2002)

18. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL Frameworks. In: Proc.
of Companion of OOPSLA 2006, Portland, OR, USA, October 22-26, pp. 602–616 (2006)

19. OpenArchitectureWare (November 2008),
http://www.openarchitectureware.com/

20. Owen, J.: Business rules management systems. Extract business rules from applications,
and business analysts can make changes without IT breaking a sweat. Infoworld
(25-06-2004)

Bidirectional Transformations:
A Cross-Discipline Perspective

GRACE Meeting Notes, State of the Art, and Outlook

Krzysztof Czarnecki1,
J. Nathan Foster2,

Zhenjiang Hu3,
Ralf Lämmel4,
Andy Schürr5,

and James F. Terwilliger6

1 University of Waterloo, Canada
2 University of Pennsylvania, USA

3 National Institute of Informatics, Japan
4 Universität Koblenz-Landau, Germany

5 Technische Universität Darmstadt, Germany
6 Microsoft Research, USA

Abstract. The GRACE International Meeting on Bidirectional Trans-
formations was held in December 2008 near Tokyo, Japan. The meeting
brought together researchers and practitioners from a variety of sub-
disciplines of computer science to share research efforts and help create
a new community. In this report, we survey the state of the art and
summarize the technical presentations delivered at the meeting. We also
describe some insights gathered from our discussions and introduce a
new effort to establish a benchmark for bidirectional transformations.

1 Introduction

Bidirectional transformations (bx) are a mechanism for maintaining the consis-
tency of two (or more) related sources of information. Researchers from many dif-
ferent areas including software engineering, programming languages, databases,
and document engineering are actively investigating the use of bx to solve a
diverse set of problems, for example:

– Model-Driven Software Development : to compute and synchronize views of
software models [5, 93, 97, 113].

– Graphical User Interfaces: to maintain the consistency of a GUI and the
underlying application model in the model-view-controller paradigm [79].

– Visualization With Direct Manipulation: to visualize abstract data and ani-
mate algorithms [100].

– Relational Databases : to construct updatable views [10, 16,27, 59].

R. Paige (Ed.): ICMT 2009, LNCS 5563, pp. 260–283, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Bidirectional Transformations: A Cross-Discipline Perspective 261

– Data Transformation, Integration, and Exchange: to map data across para-
digms, merge it from multiple sources, and exchange it between sources [44,
47,49,57, 68,82,86].

– Data Synchronizers : to bridge the gap between replicas in different for-
mats [17,41,58].

– Macro Systems: to give feedback to the programmer (e.g., from a type
checker or a debugger) in terms of the original program elements prior to
macro expansion [23,62].

– Domain-Specific Languages (DSLs): to translate between run-time values
of the object language (the DSL) and the corresponding values of the host
language in embedded interpreters [13,88].

– Structure Editors : to provide convenient interfaces for editing complicated
data sources [54, 55,75].

– Serializers: to mediate between external data (binary or sequential data
representations on the wire or the file system) and structured objects in
memory [32, 39].

Although researchers are actively working on bidirectional transformations in
several communities, so far there has been very little cross-discipline interaction
and cooperation. The purpose of the GRACE International Meeting on Bidirec-
tional Transformations (GRACE-BX), held in December 2008 near Tokyo, was
to bring together international elites, promising young researchers, and leading
practitioners to share problems, discuss solutions, and open a dialogue towards
understanding the common underpinnings of bx in all these areas.

This report summarizes the main results of the GRACE-BX meeting and
records the technical presentations that were delivered there. Section 2 surveys
the essential ideas and important papers in key disciplines of bx and describes the
specific work presented at the meeting. Section 3 identifies some of the common
themes and cross-links that emerged during the meeting. Section 4 describes the
beginning of an effort to develop a benchmark suite of canonical bidirectional
transformations for comparing the capabilities and characteristics of different
bx approaches, technologies, scenarios and implementations thereof. Section 5
concludes this report.

All of the material presented at the meeting is available at the GRACE-BX
website.1

2 Bidirectional Transformation Subcommunities

Bidirectional transformations are being used in a variety of disciplines including
programming languages, database management systems, model-driven engineer-
ing, and graph query and transformation systems. The precise details of how bx
work in each area vary greatly between disciplines, but there is general agree-
ment that a bx between two sources of information A and B (e.g., a database
1 http://grace.gsdlab.org/

http://grace.gsdlab.org/

262 K. Czarnecki et al.

source and view, two different software models or graph structures, or the input
and output of a program) comprises a pair of unidirectional transformations: one
from A to B and another from B back to A.2 In many cases, the flow of data
from A to B dominates the flow of data from B to A—i.e., A acts as a master
for B. In these cases, A is called the input (source, master) and B is called the
output (target, slave) of the bx. Consequently, the transformation from A to B
is often called the forward transformation and the transformation from B to A
is called the backward or reverse transformation.

In current practice, bx are usually implemented by programming (or specify-
ing) compatible forward and backward transformations in a unidirectional trans-
formation language. Recently, however, an exciting new approach has started to
be used in which bx are implemented in bidirectional transformation languages—
formalisms where every program (or specification) describes a forward and a
backward transformation simultaneously. A major advantage of this approach is
that the compatibility of the transformations can be guaranteed by construction.

In the rest of this section, we give a brief overview of uses of bx in each com-
munity and describe the presentations that were delivered at the GRACE-BX
meeting. We start with the area of bidirectional and reversible programming
languages, and continue with databases and data management, model-driven
engineering, graph query and graph transformation systems. We conclude this
section by describing presentations on novel applications of bx including cou-
pled grammar transformations and a system for computing updatable views of
configuration files.

2.1 Programming Languages

Recently, a number of researchershave investigatedprogramming languageswhere
programs can be run both forwards and backwards. Broadly speaking, these lan-
guages can be classified according to two features: the semantic laws obeyed by
programs and the mechanisms by which programs are made bidirectional.

At the level of semantics, the key distinction is between bijectiveness and
bidirectionality. In bijective languages, the forward transformation denoted by
every program is an injective function, and the backward transformation is the
corresponding inverse. By contrast, in bidirectional languages, the forward trans-
formation can be an arbitrary function. Since the forward transformation may
discard information in general, the backward transformation typically takes two
arguments: an updated output as well as the original input. It weaves these two
together, yielding a new input where the information contained in the output
has been propagated and the discarded information from the input has been
restored. Bidirectional programs are typically required to obey “round-tripping”
laws, which ensure that information is maintained by the transformation in each
direction.

Several mechanisms for equipping programs with a bidirectional semantics
have been investigated. In reversible models of computation, each step of
2 Generalizations to more than two sources of information have also been studied, but

are beyond the scope of this report; see [61] for an example.

Bidirectional Transformations: A Cross-Discipline Perspective 263

computation is invertible [116]. Although these models can only realize injective
functions, it has been shown that this does not represent a serious restriction—
arbitrary functions can be made injective by adding the information discarded
by the forward transformation, often called a complement, to its output. This ap-
proach is often used in bidirectionalization of unidirectional transformations. In
general, there are many ways to represent the discarded information [12, 55,77],
and each results in a different backward transformation. Recently, semantic ap-
proaches to bidirectionalization have also been explored [108].

Other languages do not require explicit reversibility at each step. For exam-
ple, programs in the languages biXid and XSugar, consist of pairs of intertwined
grammars [17,58], and the transformations are obtained by parsing according to
the rules in one grammar and pretty printing according to the rules in the other.
Another approach, used in many bidirectional languages, is to have primitives
that denote two transformations and combining forms that preserve bidirection-
ality [15, 16,42,43,84].

Presentations at the Meeting

Holger Bock Axelsen gave two presentations on reversible models of computa-
tion. In his first talk, he described a general class of reversible abstract machine
architectures and instruction sets. The individual instructions and control logic
are both reversible and are based on a notion of reversible updates [9]. His second
presentation described a result in computability theory: structured programming
using a reversible flowchart language is as expressive as unstructured program-
ming [117]. The result uses the concept of r-Turing completeness: a model of
computation is r-Turing complete if it is capable of simulating Turing machines
cleanly—i.e., without generating any extraneous output data. Unlike classical
approaches [12], reversible flowcharts are r-Turing complete.

Kazutaka Matsuda described recent work on bidirectionalization—i.e., the
task of deriving suitably-related backward transformations from the program
describing the forward transformations. He described a method that, given a
program written in ordinary λ-calculus notation, produces a corresponding well-
behaved backward transformation [76]. The method derives “complement” func-
tions and also uses an injectivity analysis to produce a backward transformation
capable of handling a broad class of updates. Using a tupling transformation, the
technique can also be cleanly extended to situations where the forward transfor-
mation duplicates parts of the input [77].

Janis Voigtländer presented a different approach to bidirectionalization that
works purely semantically [108]. He described a higher-order function that takes
a (polymorphic) forward transformation as an argument and constructs an ap-
propriate backward function as a result. No special language for describing the
forward transformation is needed, and the function that calculates the back-
ward transformation does not inspect the program used to describe the forward
function. The work is inspired by relational parametricity [89] and uses free
theorems [111] to prove several round-tripping laws.

264 K. Czarnecki et al.

Meng Wang described an application of bidirectionalization for building alge-
braic views [112]. In this context, a view is an abstraction of the actual imple-
mentation of an abstract data type that provides an interface that is convenient
for programmers to use and robust to changes [110]. Implementers of views
are typically required to come up with pairs of conversion functions that are
each other’s inverses, a condition that is difficult for programmers to check and
maintain. Using a bidirectionalization transformation, these properties can be
obtained automatically.

Nate Foster presented work on lenses [15,16,42] that addresses the problem of
handling inessential data in bidirectional transformations [43]. The foundation
of most bidirectional languages is rooted in “round-tripping” laws which require
that information be preserved in both directions. In practice, however, these laws
are too strong: realistic bidirectional transformations do not obey them “on the
nose,” but only modulo equivalence relations that capture the essential parts
of the data being manipulated. He described a general framework of quotient
lenses and gave a syntax and a type system for building and reasoning about
well-behaved quotient lenses.

Yingfei Xiong described Beanbag, a language for describing synchronization
policies for software models [114]. Whenever one part of a model is modified, the
Beanbag system computes the updates that need to be applied to the other parts
of the model (as well as to related models) to reach a consistent state. Beanbag
provides declarative syntax for describing inter-relations between models and
intra-relations within a single model.

2.2 Databases and Data Management

In database literature, the fundamental unit of data movement or transforma-
tion is the query, which leverages the structure of potentially large quantities of
data to provide declarative syntax, clean semantics, and efficient execution. The
specification of a transformation may occur at some higher level such as schema
matching, and is then compiled or converted into queries.

Until recently, most database research into bx studied whether an existing
transformation specified in a query language, e.g., SQL, Datalog, or XQuery,
can be “reversed” in some meaningful way, i.e., create a new transformation
from the target of the original transformation to its source, rather than starting
with bidirectionality by design, e.g., [27,37]. A database transformation between
models M and M′ can be bidirectional in two ways: operationally (by trans-
forming both read and write operations on M into equivalent operations on
M′) or by instance (by determining to what degree instances of M can remain
unaltered when being transformed into an instance of M′ and back again).

Instance-at-a-time transformation is also known as data exchange in database
literature [95,44]. The goal in data exchange is to transform instances of source
model S into instances of target model T in such a way that a set of constraints
ΣST that associate instances of S and T are satisfied. The constraints may be
specified in whatever query or logical language suits the models, such as tuple-
generating dependencies of first-order logic [38] or second-order logic [37] for

Bidirectional Transformations: A Cross-Discipline Perspective 265

relations or tree-based pattern matching for XML [7]. For a mapping (S, T , ΣST)
to be bidirectional, the goal is to construct another mapping (T ,S, ΣT S) such
that composing the two is the identity mapping [37]. Such inverses may not
always exist, or may only be partial [8].

A concrete case of instance-at-a-time transformation is the cross-metamodel
mapping, where the source and target models of a transformation are in different
metamodels. In database research, the most common cases involve translating
between three metamodels in particular: objects (O), XML (X), and relations
(R) [68]. The O-R case has well-established commercially-available tools and ma-
ture research [20,60,81,86]. The X-O and X-R cases are substantially more diffi-
cult, given the difference in the expressive power of the metamodels [69]. There
are several approaches to translating XML document instances into objects and
vice versa. The most common cases involve either constructing XML-like ob-
jects that support an XML-like interface [50,80] or compiling an XML schema
into a canonical class representation that supports translation of instances in
either direction [65, 66,73,115]. A more recent research effort allows declarative
mappings to be specified between classes and XML schemas [82, 103].

The operational case is often called the view update problem: given a target
model T specified as a set of views over a source model S by a set of queries Q,
determine if it is possible to intercept updates to T and instead update S such
that re-running queries Q on S regenerates the updated instance of T exactly.
The update to S must be unambiguous, i.e., there can be exactly one way to do
it [27]. Research into the view update problem generally focuses on identifying
semantic or syntactic constraints on Q that can determine if a view defined using
Q is updatable, and if the exact method of update translation can be determined
strictly by examining syntax.

One area of research around updatable views pertains to what invariants
should be respected with respect to view updates. For instance, the
constant complement property suggests that not only should base data be un-
ambiguously updatable, but that data not referenced by the view should remain
constant [10].

A recent development in bidirectional database transformations is the study
of smaller algebraic transformations with known properties. For instance, the
foundation of both relational lenses [16] and Both-as-View [78] is a collection
of atomic query transformations that are known to be bidirectional, from which
more complex transformations can be built.

In the proximity of bx, there is a data management scenario for co-evolution of
database schemas and database instances [48]. This is important when
schema-level transformations (e.g., schema refactorings) need to be coupled with
instance-level transformations so that existing instances can be adapted for
use with a new schema. Likewise, transformations of XML schemas and XML-
document transformations may be coupled [67]. Also, coupling is not limited to
schema and instance transformations. In addition, co-transformation of schema-
dependent programs may be an issue [22, 107]. These are all instances of the
notion of coupled transformations [14, 64, 106, 107].

266 K. Czarnecki et al.

Presentations at the Meeting

Jácome Cunha covered HaExcel, which is a tool that correlates spreadsheets and
databases, and prevents update anomalies in spreadsheet tables [24]. HaExcel
uses data mining techniques to discover functional dependencies in spreadsheet
data. These functional dependencies can be exploited to derive a normalized
relational database schema. Finally, HaExcel applies data calculation laws to
the derived schema in order to reconstruct a sequence of refinement steps that
connects the relational database schema back to the tabular spreadsheet.

James Terwilliger presented two bidirectional frameworks; the first was Mi-
crosoft Entity Framework (EF), which serves as an object-relational mapping
tool and is publicly available as part of the .Net framework [20]. In EF, the de-
veloper specifies a declarative mapping between an extended entity-relationship
model and a relational database. This specification is then compiled into a pair
of views (one view for query transformation, one for update transformation) that
translates model operations into equivalent database operations [81].

Finally, James presented Guava, a system that treats the user interface of
a business application as an updatable view of that system’s database. Guava
encapsulates middleware operations like data pivoting, unpivoting, merging and
partitioning, tuple augmentation with environment data, and role-based security
into algebraic operators. Each operator translates queries, updates, and schema
modifications on its input into equivalent expressions on its output [101, 102].

2.3 Model-Driven Engineering

Model-driven engineering (MDE) promotes the use of formal or structured speci-
fications, which are referred to as models, with the goal of automating the deriva-
tion of implementations from such specifications. The approach involves many
kinds of related models, such as requirements, design, and test specifications,
and developers have to maintain complex relationships among the models and
code. Examples of such relationships are refinement of design models to code
and the conformance of models to their respective metamodels. Model transfor-
mations are mechanisms for establishing—and re-establishing, in the presence
of change—the relationships among models and code [26]. Bidirectional model
transformations are of particular interest if the related artifacts can be edited
independently [5, 98]. Such edits are necessary if different stakeholders require
viewing information in different specialized notations, possibly at different ab-
straction levels, or some of the related artifacts contain independent pieces of
information that cannot be derived from other artifacts or both.

The Object Management Group (OMG) acknowledged the importance of
bx to MDE by including a bx language in their Query View Transformation
(QVT) standard. Interestingly, Perdita Stevens analyzed the language from the
viewpoint of the round-tripping laws (Section 2.1), pointing out several weak-
nesses. Other languages and systems to bidirectional model transformations have
been proposed; see [30, 45, 51, 113, 114] for some more recent discussions and
contributions.

Bidirectional Transformations: A Cross-Discipline Perspective 267

The model-transformation scenario for co-evolution of metamodels and mod-
els, where metamodel adaptations must be coupled with corresponding model
transformations [109], is closely related to bx. Such co-evolution is an instance
of the notion of coupled transformations [64, 106].

Presentations at the Meeting

Davide Di Ruscio gave a presentation on co-evolution of metamodels and models.
This work is based on the axiomthatmetamodels must be considered one of the ba-
sic concepts of MDE and, accordingly, they are expected to evolve during their life
cycle. As a consequence, models conforming to changed metamodels have to be up-
dated to preserve their well-formedness. The presented work dealswith the coupled
transformation of metamodels and models by using higher-order model transfor-
mationswhich take a differencemodel for themetamodel level as input andproduce
a model transformation able to co-evolve the involved models as output [21].

Antonio Vallecillo gave a presentation on correspondences in viewpoint
modeling for complex software systems. Viewpoint modeling is a technique for
specifying software systems in terms of a set of independent viewpoints and cor-
respondences between them. Correspondences specify the relationships between
the elements in different views, together with the constraints that guarantee the
consistency among these elements. Correspondences are hard to specify due to
a lack of adequate notations, mechanisms, and tools. Also, specifications be-
come unmanageable when the number of elements in a system is large. The
presentation described efforts that are focused on the development of a generic
framework and a set of tools to represent correspondences [104], which are able
to manage and maintain viewpoint synchronization in evolution scenarios, as
reported in [36]. The approach is based on modeling correspondences both in-
tensionally and extensionally and the use of model transformation techniques to
connect these two specifications.

Andrzej Wasowski gave a short progress report on his efforts to develop a flex-
ible editing model for feature diagrams, including reversible editing steps and
editing of broken (inconsistent) models. The presented topics included seman-
tics for the editing process and algorithms for validation and guidance during
modeling, under inconsistency. The aim of this work is to (ultimately) build a
‘very intelligent’ and highly flexible editor for feature models.

Bernd Fischer gave a short presentation of his work in progress on model-
based code generation. The transformations used to generate code are funda-
mentally unidirectional because the generated code contains significantly more
details than the model from which it was generated. This makes it hard to mod-
ify the generated code without causing model and code to get out of sync. In
round-trip engineering, the direction of code generation it to be complemented
by an inverse transformation (which is known to be a hard problem). In con-
trast, the presentation proposed to employ aspect-oriented techniques to achieve
the desired code modifications by controlled modifications of the transformation.
The core insight is that the concepts from the generator’s domain model can be
used to systematically derive the required join points.

268 K. Czarnecki et al.

Krzysztof Czarnecki first presented ongoing work (with Michal Antkiewicz)
on an infrastructure for mapping domain-specific languages (DSLs) to code
[2,4, 6,71]. The infrastructure supports extracting domain-specific models from
code as code views and bidirectional update propagation with conflict resolution.
The extraction and update propagation rely on declarative mapping definitions,
which relate elements of the DSL to structural and behavioral code patterns.
The mapping definitions can be executed bidirectionally thanks to predefined
code queries and code update transformations approximating the semantics of
the mappings. The second presentation outlined an ongoing effort (with Zinovy
Diskin and Michal Antkiewicz) to recast the design space of heterogeneous syn-
chronization [5] in terms of synchronizers with category-theoretic underpinnings.

Zinovy Diskin gave a presentation on the algebraic foundations of model man-
agement (work in progress). Model management scenarios are often described by
informal diagrams: nodes denote models and arrows are model transformations
(of different types). The goal of the work is to reveal diagrammatic algebraic
foundations underlying such diagrams and thus make the notation precise with-
out translating it into formula-based formalisms. Some general ideas can be
found in [29], and a recent promising application is described in [31].

2.4 Bidirectional Graph Transformation

The graph transformation research community, with its roots in the 1970’s,
can be considered today to be a special subarea of the model-driven engineering
community. If we replace the terms “model”, “metamodel”, and “model transfor-
mation” by the related terms “graph”, “graph type/schema”, and “graph trans-
formation”, then it becomes obvious that graph transformation languages and
tools are essentially model transformation languages and tools with a precisely
defined semantics. Roughly speaking, one can identify three different families of
graph transformations that either use category theory, non-standard logics, or set
theory as their foundation. For a survey of related activities, we refer the reader
to the LNCS Proceedings of the International Conference on Graph Transfor-
mation ICGT, as well as the set of so-called graph grammar handbooks [33,34].

One can distinguish at least two different sorts of bidirectional graph transfor-
mation approaches: (1) reversible graph transformation languages, which rewrite
a given input graph step by step into a new output graph, and (2) truly bidirec-
tional graph transformation languages, which manipulate pairs of graphs linked
together by means of so-called correspondence links. All graph transformation
languages that support the so-called “double pushout” category-theoretic graph
transformation approach can be classified as reversible transformation languages.
Conditions on rule application guarantee that all rewriting steps can be undone
by simply applying the involved rewrite rule with exchanged left- and right-
hand side [35]. Triple Graph Grammars (TGGs) [92, 94] as the descendants of
pair grammars [87] are a special brand of coupled grammars. They belong to the
class of bidirectional transformation languages [25]. Pairs of uni-directional for-
ward and backward transformations can be derived automatically from a given
TGG that defines a language of related pairs of graphs.

Bidirectional Transformations: A Cross-Discipline Perspective 269

Presentations at the Meeting

Andy Schürr gave a tutorial-style introduction to TGGs. TGGs are a bidirec-
tional model transformation formalism, where a single specification generates a
language of related graph tuples (pairs of models) together with an intermediate
correspondence graph (traceability link database). A single TGG specification is
used as input for a compiler that generates corresponding consistency checking,
traceability link creating, and forward/backward model transformation imple-
mentations. The TGG tutorial reviewed the history of TGGs and sketched their
formal definition relying on the theory of the algebraic/category-theoretic branch
of graph grammars. Finally, the meta-modeling tool MOFLON was presented.
MOFLON’s implementation of TGGs adopts the visual notation of QVT Rela-
tional, the OMG standard bidirectional model transformation language.

Soichiro Hidaka, Hiroyuki Kato, Shin-ChengMu, andKeisukeNakano gave pre-
sentations on different aspects of a functional approach to bidirectional graph
transformation. This work aims at the development of an algebraic framework for
bidirectionalmodel transformationby integrating the state-of-the-art technologies
on bidirectional tree transformations and the algebraic graph querying language
UnQL+ [52, 53], which is an extension of the known UnQL [18]. The theoretical
foundation of the work is related to the family of category-theoreticgraph transfor-
mations called algebraic graph transformations. The resulting bidirectional graph
transformation approach comes with a powerful automatic bidirectionalization
method for the automatic derivation of a backward graph transformation from a
given forward graph transformation. For this purpose, a bidirectional semantics
for an existing graph algebra based on structural recursion called UnCAL is used,
which has been well studied in the database community. Hence, this work belongs
to the class of reversible as well as to the class of truly bidirectional graph trans-
formation languages. Moreover, the algebraic framework supports the systematic
development of efficient large-scale bidirectional model transformations in a com-
positional manner.

2.5 Further Applications

GRACE-BX covered a number of presentations that we feel are best collected
in a list of “further applications”. It goes without saying that these applications
regularly interact with issues of programming languages for bx, data manage-
ment, or model-driven engineering.

Keisuke Nakano described the Vu-X approach to website construction that is
based on bidirectional transformations [85] (as opposed to unidirectional trans-
formations that simply translate data from a database into web content). Hence,
users can directly modify a generated website, and the modification is automati-
cally reflected in the database—without the need to update the database directly.
The Vu-X system is also implemented as a web server so that users can edit it
in WYSIWYG style within their web browsers.

Hui Song talked about runtime management of systems at the level of an
intuitive, high-level architecture model [56, 96]. Management agents use the ar-
chitecture model to monitor and control a running system. A key component

270 K. Czarnecki et al.

for architecture-based runtime management is the synchronizer that propagates
changes between the architecture model and the system state, and maintains
the correspondence between them. The presented approach supports automated
generation of such synchronizers based on bidirectional transformations.

David Lutterkort presented a configuration API for Linux systems called
Augeas [75]. Augeas parses configuration files in their native formats and trans-
forms them into a tree. Configuration changes are made by manipulating this
tree and saving it back into native configuration files. The string-to-tree trans-
formation is specified by lenses so that some details can be left out from the
tree level, but they are still preserved when writing back changes. For instance,
Augeas makes an effort to preserve comments and formatting in the textual
configuration files.

Kathleen Fisher presented recent work on PADS, a system for processing ad
hoc data sources (such as log files) [39]. The PADS compiler takes declarative
descriptions of data formats as input and generates a variety of software arti-
facts including a parser, an in-memory representation for the data, and a pretty
printer, among others. The presentation described a mechanism for generating
a suite of useful data processing tools, including a semi-structured query engine,
several format converters, a statistical analyzer, and data visualization routines
directly from ad hoc data, without human intervention [40]. The key technical
contribution is a multi-phase algorithm that automatically infers the structure
of an ad hoc data source and produces a format specification in the PADS data
description language. Programmers wishing to implement custom data analysis
tools can use such descriptions to generate printing and parsing libraries for
the data.

Ralf Lämmel talked about grammar transformations [63,70]—specifically on
coupled grammar transformations and their applications in XML-data binding
and concrete/abstract syntax mapping. Grammar transformations are expressed
in terms (of sequences) of primitive combinators, which can be applied both to
grammars and instances (such as parse trees or documents). In the simpler, bet-
ter understood cases, these grammar transformations are information-preserving,
and an inverse is defined for each possible combinator. In more general cases such
as mapping a rich concrete syntax to a more abstract syntax, bidirectionality is
more difficult to achieve, subject to future work.

Zhenjiang Hu gave a presentation on the use of automatic function inversion
as a means to obtain divide-and-conquer parallel programs from sequential pro-
grams [83]. This approach allows programmers to use the often more intuitive,
sequential encoding style, while, under certain conditions, efficient parallel pro-
grams in the form of list homomorphisms can be derived automatically. These
parallel programs would be more difficult to develop by programmers in the
first place. The heavy lifting of the approach for the extraction of a list ho-
momorphism is the automatic derivation of weak right inverses from sequential
programs. Experimental results show the practical efficiency of the automatic
parallelization algorithm and demonstrate that the generated parallel programs
achieve good speedups.

Bidirectional Transformations: A Cross-Discipline Perspective 271

3 Synthesis: Key Concepts and Properties of BX

The meeting included two discussion plenary sessions: one on the terminology
and key concepts used across the represented communities and another on prop-
erties of bx. We briefly summarize the main discussion points in this section.

Lack of common and well-established terminology. The participants generally
agreed that each represented community has developed its own terminology and
that there is little sharing of terms across disciplines. Moreover, central terms
such as “transformation” and “view” are overloaded. For example, “transforma-
tion” is sometimes used to mean “transformation specification”, “transformation
implementation”, or “transformation execution”. Likewise, although “view” has
a precise and well-established meaning in databases, it is used in a different way
in the programming languages community [110], and its meaning in MDE is not
clear.

Transformation vs. synchronization. A hotly-debated topic was the distinction
between transformation and synchronization. All of the participants shared a
common understanding of transformations as executable operations on struc-
tured artifacts (data, models, programs) that establish well-defined relation-
ships between the inputs and outputs, but the definition of synchronization was
less clear. After discussion, a key difference was identified: synchronization (re-
)establishes relationships among (partial) replicas, i.e., semantically overlapping
artifacts that exist in parallel. Thus, although synchronization can be viewed
as a kind of transformation, such as transforming code to make it consistent
with an updated design, not all transformations do synchronization. For exam-
ple, the reversible edits presented by Wasowski (see Section 2.3) are bx but not
synchronizers since they relate two consecutive revisions of a single artifact be-
ing edited. It was also noted that, in general, transformations may take place
in spaces with multiple dimensions including revisions, replicas, languages, and
features [11,31]. Exploring bx in these multidimensional spaces was proposed as
an important area for future work.

State-based vs. operation-based. Many of the projects presented at the meet-
ing focused on using bx to propagate changes made to the source or target of
the transformation. These update translators fall into two distinct categories.
In state-based approaches, the update translator operates on the source and
target structures themselves. For example, to translate an update made to the
target back to the source, the translator takes as an argument the post-update
state of the target (as well as the original state of the source) and calculates
an appropriately-modified source [15, 16,41,42]. By contrast, in operation-based
approaches, updates are expressed in a transformation language, and the update
translator propagates the updates themselves through the transformation. In ei-
ther case, update translation produces instances that are consistent with respect
to the bx [81,102].

Properties of bx Several different properties of bx were discussed at the meet-
ing. The properties of the relation that captures when the source and target are

272 K. Czarnecki et al.

consistent—e.g., whether the relation is an injective source-to-target function
or a total target-to-source function or both, or even if the relation is a func-
tion in either direction at all—impact bx in fundamental ways. Most systems
stipulate that the transformations a bx comprises must obey the definitional
properties of correctness and hippocraticness [97] (these properties roughly cor-
respond to PutGet and GetPut laws in the lens framework [42]; for details of
this correspondence, see elswhere [30, 99]), with undoability [97] (corresponding
to PutPut for lenses [42]) as an optional property. The reversibility of a trans-
formation was discussed as an example of an operational property: not only must
the inverse exist, it must also be computable efficiently. Lastly, properties such
as incrementality [46], minimality of changes [19,44], and preservation of recent
changes were classified as quality properties. Although these properties have in-
tuitive appeal, they are not well understood formally and are an important area
for further study.

Constructing bx Several different techniques for constructing bx were discussed
at the meeting. There are three main approaches. In the first approach, the
user programs the forward transformation and the backward transformation is
obtained (almost) for free, because the forward transformation either was built
from smaller primitives that are bidirectional (e.g., [78,101,102]) or can be made
bidirectional (e.g., [76,108]). The second approach, used in lenses, is similar but
subtly different: the programmer specifies the backward transformation and ob-
tains the forward transformation for free (e.g., [16, 42]). In the third approach,
the user defines a mapping—i.e., the specification of the relation that captures
when the source and target are consistent—and the forward and backward trans-
formations are derived from the mapping automatically, possibly with additional
manual refinement (e.g., [6,81,93]). A related topic is the composition of bidirec-
tional translators, e.g., lenses and synchronizers, into larger systems ([30,31,41]).

4 Towards a BX Benchmark

The GRACE-BX meeting clarified the need to have effective criteria for compar-
ing different bx approaches and assessing progress in the field. Benchmarks are
widely used in academia and industry as a framework for comparing competing
approaches and technologies. Insightful examples of benchmark suites exist for
scenarios with cross-discipline application, including graph transformation [105],
query and transformation of XML [91], generic programming (query and trans-
formation of tree-shaped data) [90], and schema mappings [1].

Accordingly, the meeting included a discussion session on a potential bench-
mark suite for bidirectional transformations, codenamed BXBenchmark. The fol-
lowing goals of BXBenchmark were identified:

– Provide a platform for comparing expressiveness, usability, and efficiency of
different bx approaches and technologies.

– Catalog proven bx scenarios and interesting variations thereof (e.g., the ubiq-
uitous classes-to-tables mapping and variations thereof).

Bidirectional Transformations: A Cross-Discipline Perspective 273

– Collect implementations of bx scenarios.
– Clarify the relevance of the scenarios across different approaches and tech-

nologies and thereby reveal commonalities and differences.

Organization of the Benchmark Suite

To help picturing the envisaged benchmark suite BXBenchmark, we sketch its
possible organization. At the top level, the suite is organized by a collection of
scenarios. Each scenario comprises components as described below. (We use the
ubiquitous classes-to-tables mapping as a running example.)

Name. For instance: “Classes to Tables”.
Rationale. For instance: “Cover a baseline scenario of model-driven develop-

ment with just a few modeling concepts for classes in the sense of the OO
paradigm and tables in the sense of the relational paradigm”.

Metadata. Based on an appropriate taxonomy of bidirectional transformations,
the scenarios are to be semantically annotated. To provide a simple example,
scenarios would be annotated as being graph- vs. string- vs. tree-based. (The
scenario of the running example is graph-based.) We discuss some elements
of an emerging taxonomy shortly.

Sample data. Each scenario will be accompanied by a collection of types (or
classes, schemas, regular expressions, or other relevant metamodel informa-
tion) that model sample data for the scenario, as well as actual conformant
sample data. In addition, generators and mappers for metamodels and sam-
ple data may provide access to sample data across platform, format, and
programming paradigm while meeting constraints on size or others.

Configurations. The term “configuration” is used here as a proxy for compre-
hensively describing the execution of a bidirectional transformation includ-
ing sample data (inputs and results), a description of updates and auxiliary
parameters such as size measures when data is generated.

Specialization. Scenarios may be related by specialization. For instance, we
may think of “Classes to Tables” as an abstract scenario with fundamentally
different O/R mapping options as concrete specializations.

Any scenario can now be implemented by any number of implementations using
particular technologies. For instance, one technology may address the scenario
by describing both directions of the bx scenario separately, whereas another
technology may leverage a designated transformation language for bx. We also
need some way of documenting the assumed difficulty, feasibility, completeness,
or infeasibility of a specific implementation (option). To this end, the role of
metadata, as announced above, will be extended.

An Emerging Taxonomy for Metadata

We expect this taxonomy to cover properties of bx that are useful in documenting
(by means of metadata) commonalities and differences between the different
scenarios, the different implementations thereof, the different bx approaches and
technologies. A few candidate properties are illustrated:

274 K. Czarnecki et al.

Injectivity. Given a scenario, is the basic forward transformation injective? If
it is not injective, what other properties are possibly exploited to obtain a
useful backward transformation?

Kinds of changes. Given a scenario or a bx approach, what kinds of changes
are needed or supported? For instance, one can distinguish updates vs. inser-
tion vs. deletion. When focusing on updates, one can distinguish structured
vs. primitive updates.

Synchronization orientation. Given an implementation of a scenario or a
technology, is synchronization involved? If so, how can we further classify
and qualify the form of synchronization at hand? (For instance, do we face
synchronization based on a constraint mechanism?)

Semantics preservation. Given a scenario that involves a sort of
(programming) language as the domain of the sources related by bx, does
the bx promise or require semantics preservation? (See the scenario “For-
loop Desugaring” presented shortly.) Other programming language-related
notions may be similarly leveraged to contribute properties for taxonomy,
e.g., type preservation and dependency on flow analysis.

Some Candidate Scenarios for BXBenchmark

“Roman/Arabic Number Conversion”. This is a trivial example which
can be used to provide a basic demonstration of any transformation tech-
nology. The conversions are bijective and can be reasonably represented by
a pair of unidirectional transformations.

“Add Index to Address Book” (inspired by [55]). Given a simple collection
of addresses of persons (say represented as an XML tree), an index for the
names of the persons is added by the forward transformation. The redun-
dancy created by the extra name index triggers update challenges.

“Classes to Tables”. This scenario (described earlier) is a baseline scenario of
model-driven development. Various technologies have readily addressed some
variant of it. It appears to be promising to try organizing all these variants.
Conceptually, it is an (O/R) mapping example which hence involves two
paradigms: the OO paradigm and the relational paradigm. Object models
and relational schemas may both be represented as graphs (with edges for as-
sociations or key constraints). In fact, whereas a tree-based approach suffices
for the previous scenario, a graph-based approach may be more appropriate
for the present scenario. (We view “Classes to Tables” as a representative
of the larger class of relatively direct metamodel transformations: WSDL
to/from EMF, BPMN to/from BPEL, EMF to/from XSD, UML sequence
to/from communication diagrams, etc.)

“Collapse/Expand State Diagrams”. Starting from a hierarchical state di-
agram (involving some nesting), a flat view is to be provided, and any mod-
ifications on the flat view should be reflected eventually in the hierarchical
view. The basic flattening transformation is non-injective, and hence, the

Bidirectional Transformations: A Cross-Discipline Perspective 275

view complement must be taken into account when mapping back the flat-
tened and possibly updated state diagram to a nested one.

“For-loop Desugaring”. Given a tiny (imperative) programming language,
provide a syntax desugaring transformation, e.g., the translation of for-loops
to while loops. The desugared syntax is further subjected to a refactor-
ing transformation. The bidirectional transformation challenge is to be able
to revert desugaring even past refactoring. Just like the previous scenario,
desugaring is non-injective. The specific contribution of the scenario lies in its
well-understood interaction with programming language types and seman-
tics. Ideally, one would want to establish, by construction, that desugaring
and its reversion are type- and semantics-preserving. (A related but dis-
tinctive scenario, inspired by [28,74], is the preservation of whitespace and
comments by transformations that abstract from whitespace and comments.)

“Round-trip Engineering for Java Applet Models and Code” (inspired
by [2, 3]). In the forward direction, JApplet framework use is expressed at
the modeling level in terms of a feature model, subject to a code-generating
interpretation of the model. In the backward direction, framework use is
extracted from code by queries and presented as feature models. Updates
may be performed both on code and feature model. This scenario stands out
with its involvement of two rather distant abstraction levels: imperative OO
code vs. more grammatical and declarative feature models. This scenario is
also relatively challenging in that it requires flow analysis.

“Textual and Graphical Program Editor”. Given (a subset of) a Java/
C#-like language, provide a capability for simultaneous editing in textual
and graphical mode. It is assumed that the graphical mode provides a limited
view on programs. For instance, it may be limited to types and relationships.
This scenario involves “Text to Model” and “Model to Text” components,
and thereby involves specific challenges such as layout preservation (of both
textual and graphical layout) and comment preservation (where we assume
that comments only appear in the textual representation). Further, this sce-
nario requires the ability to incrementally (locally) change the graphical view
in reply to local changes to the textual view, and vice versa.

“Reversible FFT” (inspired by [72, 116]). A Fast Fourier Transform is an ef-
ficient algorithm to compute the Discrete Fourier Transform and its inverse.
Compared to the above scenarios, this scenario specifically involves a com-
putationally expensive problem.

Status and Future Prospects

An open source project has been created to host future efforts on BXBenchmark.3

The project is actively seeking contributors. Designated workshops or bird-of-a-
feather sessions and hackathons may be scheduled to make progress on the suite.
Work on the benchmark suite is likely to feature prominently at any follow-up
meetings.

3 https://sourceforge.net/projects/bxbenchmark/

https://sourceforge.net/projects/bxbenchmark/

276 K. Czarnecki et al.

5 Conclusion

Bidirectional transformation is a field of interest that spans many sub-disciplines
of computer science. The GRACE-BX meeting served as a useful checkpoint to
match capabilities and research efforts, and to examine differences in approaches
and assumptions. The references cited in this report constitute the beginnings of
a comprehensive bibliography of bx-related work across the sub-disciplines. The
new benchmark suite will continue the collaboration effort by allowing researchers
with different research aims to contribute solutions to common problems. In addi-
tion to the emerging benchmark, we will continue to foster collaboration between
communities by applying for a Dagstuhl seminar. We may also hold workshops at
conferences as part of the effort to establish the benchmark.

Acknowledgments. We would like to thank all the participants of the GRACE-
BX meeting for their contributions at the meeting and their input during the
preparation of this report: Holger Bock Axelsen, Jean Bezivin, Jácome Cunha,
Davide Di Ruscio, Zinovy Diskin, Bernd Fischer, Kathleen Fisher, Soichiro
Hidaka, Robert Glück, Hiroyuki Kato, David Lutterkort, Kazutaka Matsuda,
Shin-Cheng Mu, Alfonso Pierantonio, Keisuke Nakano, Ali Razavi, Hui Song,
Antonio Vallecillo, Janis Voigtläender, Yingfei Xiong, Meng Wang, and Andrzej
Wasowski.

References

1. Alexe, B., Tan, W.-C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. In: Proceedings of the VLDB conference, vol. 1(1), pp. 230–244
(2008), http://www.stbenchmark.org/

2. Antkiewicz, M.: Framework-Specific Modeling Languages. Ph.D thesis, University
of Waterloo, Electrical and Computer Engineering (2008)

3. Antkiewicz, M., Bartolomei, T.T., Czarnecki, K.: Automatic extraction of
framework-specific models from framework-based application code. In: ASE 2007:
Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated Software Engineering, pp. 214–223. ACM, New York (2007)

4. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages with
Round-Trip Engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006)

5. Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization.
In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp.
3–46. Springer, Heidelberg (2008)

6. Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of Framework-
Specific Modeling Languages. IEEE Transactions on Software Engineering (2009)
(to appear)

7. Arenas, M., Libkin, L.: XML data exchange: Consistency and query answering.
Journal of the ACM 55(2) (2008)

8. Arenas, M., Pérez, J., Riveros, C.: The recovery of a schema mapping: bringing
exchanged data back. In: PODS 2008: Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
13–22. ACM, New York (2008)

http://www.stbenchmark.org/

Bidirectional Transformations: A Cross-Discipline Perspective 277

9. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Ab-
stract Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.)
CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

10. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans-
actions on Database Systems (TODS) 6(4), 557–575 (1981)

11. Batory, D.S., Azanza, M., Saraiva, J.: The objects and arrows of computational
design. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MOD-
ELS 2008. LNCS, vol. 5301, pp. 1–20. Springer, Heidelberg (2008)

12. Bennet, C.H.: Logical Reversibility of Computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

13. Benton, N.: Embedded interpreters. Journal of Functional Programming 15(4),
503–542 (2005)

14. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled Schema Transforma-
tion and Data Conversion for XML and SQL. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 290–304. Springer, Heidelberg (2006)

15. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: Proceedings of ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL 2008), January
2008, pp. 407–419 (2008)

16. Bohannon, A., Pierce, B., Vaughan, J.: Relational lenses: a language for updatable
views. In: PODS 2006: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 338–347. ACM, New
York (2006)

17. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual Syntax for XML Languages.
Information Systems 33(4-5), 385–406 (2008); Short version in DBPL 2005 (2005)

18. Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra
for semistructured data based on structural recursion. VLDB Journal: Very Large
Data Bases 9(1), 76–110 (2000)

19. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and anno-
tations through views. In: PODS 2002: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
150–158. ACM, New York (2002)

20. Castro, P., Melnik, S., OAdya, A.: ADO.NET entity framework: raising the level
of abstraction in data programming. In: SIGMOD 2007: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pp. 1070–1072.
ACM, New York (2007)

21. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating Co-evolution
in Model-Driven Engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, ECOC 2008, Proceedings, pp. 222–231. IEEE
Computer Society, Los Alamitos (2008)

22. Cleve, A., Hainaut, J.-L.: Co-transformations in Database Applications Evolution.
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp.
409–421. Springer, Heidelberg (2006)

23. Culpepper, R., Felleisen, M.: Debugging macros. In: GPCE 2007: Proceedings
of the 6th international conference on Generative programming and component
engineering, pp. 135–144. ACM, New York (2007)

24. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and
back. In: PEPM 2009: Proceedings of the 2009 ACM SIGPLAN workshop on Par-
tial evaluation and program manipulation, pp. 179–188. ACM, New York (2008)

278 K. Czarnecki et al.

25. Czarnecki, K., Helsen, S.: Classification Of Model Transformation Approaches.
In: 2nd OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture (2003),
http://www.softmetaware.com/oopsla2003/czarnecki.pdf

26. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

27. Dayal, U., Bernstein, P.A.: On the Correct Translation of Update Operations on
Relational Views. ACM Transactions on Database Systems (TODS) 7(3), 381–416
(1982)

28. de Vanter, M.L.V.: Preserving the Documentary Structure of Source Code in
Language-Based Transformation Tools. In: 1st IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2001), Proceedings, pp. 133–143.
IEEE Computer Society, Los Alamitos (2001)

29. Diskin, Z.: Mathematics of generic specifications for model management. In:
Rivero, Doorn, Ferraggine (eds.) Encyclopedia of Database Technologies and Ap-
plications, pp. 351–366. Idea Group (2005)

30. Diskin, Z.: Algebraic Models for Bidirectional Model Synchronization. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

31. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: algebraic
foundations and the tile notation. In: Comparison and versioning of software
models. 3rd Int. Workshop affiliated with ICSE 2009 (2009); To appear in IEEE
Digital Library

32. Eger, D.T.: Bit Level Types (2005) (unpublished manuscript),
http://www.yak.net/random/blt/blt-drafts/03/blt.pdf

33. Ehrig, Engels, Kreowski, Rozenberg (eds.): Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 1. World Scientific Publishing, Singa-
pore (1997)

34. Ehrig, Engels, Kreowski, Rozenberg (eds.): Handbook of Graph Grammars and
Computing by Graph Transformation, vol. 2. World Scientific Publishing, Singa-
pore (1999)

35. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

36. Eramo, R., Pierantonio, A., Romero, J., Vallecillo, A.: Change Management in
Multi-Viewpoint Systems using ASP. In: Proceedings of 5th International Work-
shop on ODP for Enterprise Computing (WODPEC 2008) (September 2008)

37. Fagin, R.: Inverting schema mappings. ACM Transactions on Database Systems
(TODS) 32(4) (2007)

38. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theoretical Computer Science 336(1), 89–124 (2005)

39. Fisher, K., Gruber, R.: PADS: a domain-specific language for processing ad hoc
data. In: PLDI 2005: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pp. 295–304. ACM, New York
(2005)

40. Fisher, K., Walker, D., Zhu, K., White, P.: From dirt to shovels: fully automatic
tool generation from ad hoc data. In: POPL 2008: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 421–434. ACM, New York (2008)

http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://www.yak.net/random/blt/blt-drafts/03/blt.pdf

Bidirectional Transformations: A Cross-Discipline Perspective 279

41. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Ex-
ploiting Schemas in Data Synchronization. Journal of Computer and System Sci-
ences 73(4) (June 2007); Short version in DBPL 2005 (2005)

42. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combi-
nators for bidirectional tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming Languages and Systems
(TOPLAS) 29(3) (2007)

43. Foster, J.N., Pilkiewcz, A., Pierce, B.C.: Quotient lenses. In: ICFP 2008: Proceed-
ing of the 13th ACM SIGPLAN international conference on Functional program-
ming, pp. 383–396. ACM, New York (2008)

44. Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data exchange. ACM
Transactions on Database Systems (TODS) 31(4), 1454–1498 (2006)

45. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2009)

46. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. In: ICDT 2009: Pro-
ceedings of the 12th International Conference on Database Theory, Proceedings,
pp. 212–224. ACM, New York (2009)

47. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update Exchange with
Mappings and Provenance. In: Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB 2007, pp. 675–686. ACM, New York (2007)

48. Hainaut, J.-L., Tonneau, C., Joris, M., Chandelon, M.: Schema Transformation
Techniques for Database Reverse Engineering. In: Elmasri, R.A., Kouramajian,
V., Thalheim, B. (eds.) ER 1993. LNCS, vol. 823, pp. 364–375. Springer, Heidel-
berg (1994)

49. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema Mediation in Peer Data
Management Systems. In: Proceedings of the 19th International Conference on
Data Engineering, ICDE 2003, pp. 505–516. IEEE Computer Society, Los Alami-
tos (2003)

50. Harren, M., Raghavachari, M., Shmueli, O., Burke, M., Bordawekar, R.,
Pechtchanski, I., Sarkar, V.: XJ: facilitating XML processing in Java. In: WWW
2005: Proceedings of the 14th international conference on World Wide Web, pp.
278–287. ACM, New York (2005)

51. Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Definitions for
Round-Trip Engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008)

52. Hidaka, S., Hu, Z., Kato, H., Nakano, K.: A Compositional Approach to Bidi-
rectional Model Transformation. In: New Ideas and Emerging Results Track of
31st International Conference on Software Engineering (ICSE 2009, NIER Track)
(May 2009) (to appear)

53. Hidaka, S., Hu, Z., Kato, H., Nakano, K.: Towards Compositional Approach to
Model Transformation for Software Development. In: 24th Annual ACM Sympo-
sium on Applied Computing (March 2009)

54. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: PEPM 2004: Proceedings
of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pp. 178–189. ACM, New York (2004); See [55] for
a journal version

55. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89–118 (2008); See [54] for a short version

280 K. Czarnecki et al.

56. Huang, G., Mei, H., Yang, F.: Runtime recovery and manipulation of software
architecture of component-based systems. Automated Software Engineering 13(2),
257–281 (2006)

57. Karvounarakis, G., Ives, Z.G.: Bidirectional Mappings for Data and Update
Exchange. In: Proceedings of 11th International Workshop on the Web and
Databases, WebDB 2008 (2008),
http://webdb2008.como.polimi.it/images/stories/WebDB2008/paper35.pdf

58. Kawanaka, S., Hosoya, H.: biXid: a bidirectional transformation language for
XML. In: Proceedings of ICFP 2006: Proceedings of the eleventh ACM SIG-
PLAN international conference on Functional programming, pp. 201–214. ACM,
New York (2006)

59. Keller, A.M.: The Role of Semantics in Translating View Updates. Com-
puter 19(1), 63–73 (1986)

60. Keller, A.M., Jensen, R., Agarwal, S.: Persistence software: bridging object-
oriented programming and relational databases. In: SIGMOD 1993: Proceedings
of the 1993 ACM SIGMOD international conference on Management of data, pp.
523–528. ACM, New York (1993)

61. Königs, A., Schürr, A.: MDI - a Rule-Based Multi-Document and Tool Integration
Approach. Journal of Software and System Modeling 5(4), 349–368 (2006); Special
Section on Model-based Tool Integration

62. Krishnamurthi, S., Erlich, Y.-D., Felleisen, M.: Expressing Structural Properties
as Language Constructs. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576,
pp. 258–272. Springer, Heidelberg (1999)

63. Lämmel, R.: Grammar Adaptation. In: Oliveira, J.N., Zave, P. (eds.) FME 2001.
LNCS, vol. 2021, pp. 550–570. Springer, Heidelberg (2001)

64. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First
International Workshop on Software Evolution Transformations, November 2004,
5 pages (2004),
http://homepages.cwi.nl/~ralf/CoupledSoftwareTransformations/

65. Lämmel, R.: LINQ to XSD. In: Proceedings, PLAN-X 2007, Programming Lan-
guage Technologies for XML, An ACM SIGPLAN Workshop collocated with
POPL 2007, pp. 95–96 (2007), http://www.plan-x-2007.org/plan-x-2007.pdf

66. Lämmel, R.: Style normalization for canonical X-to-O mappings. In: PEPM 2007:
Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pp. 31–40. ACM, New York (2007)

67. Lämmel, R., Lohmann, W.: Format Evolution. In: Proceedings of 7th Interna-
tional Conference on Reverse Engineering for Information Systems (RETIS 2001).
books@ocg.at, vol. 155, pp. 113–134. OCG (2001)

68. Lämmel, R., Meijer, E.: Mappings Make Data Processing Go ’Round. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 169–218.
Springer, Heidelberg (2006)

69. Lämmel, R., Meijer, E.: Revealing the X/O impedance mismatch (Changing lead
into gold). In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP
2006. LNCS, vol. 4719, pp. 285–367. Springer, Heidelberg (2007)

70. Lämmel, R., Zaytsev, V.: An Introduction to Grammar Convergence. In: Inte-
grated Formal Methods, 7th International Conference, IFM 2009, Proceedings.
LNCS, vol. 5423, pp. 246–260. Springer, Heidelberg (2009)

71. Lee, H., Antkiewicz, M., Czarnecki, K.: Towards a Generic Infrastructure for
Framework-specific Integrated Development Environment Extensions. In: 2nd In-
ternational Workshop on Domain-Specific Program Development (DSPD), in as-
sociation with GPCE (2008), http://www.labri.fr/perso/reveille/DSPD/2008

http://webdb2008.como.polimi.it/images/stories/WebDB2008/paper35.pdf
http://homepages.cwi.nl/~ralf/CoupledSoftwareTransformations/
http://www.plan-x-2007.org/plan-x-2007.pdf
http://www.labri.fr/perso/reveille/DSPD/2008

Bidirectional Transformations: A Cross-Discipline Perspective 281

72. Li, J.: Low noise reversible MDCT (RMDCT) and its application in progressive-
to-lossless embedded audio coding. IEEE Transactions on Signal Processing 53(5),
1870–1880 (2005)

73. Liquid, X.: http://www.liquid-technologies.com/
74. Lohmann, W., Riedewald, G.: Towards Automatical Migration of Transforma-

tion Rules after Grammar Extension. In: 7th European Conference on Software
Maintenance and Reengineering (CSMR 2003), Proceedings, pp. 30–39. IEEE
Computer Society, Los Alamitos (2003)

75. Lutterkort, D.: Augeas–A Configuration API. In: Proceedings of the Linux Sym-
posium, Ottawa, ON, July 2008, pp. 47–56 (2008)

76. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007: Proceedings of the 12th ACM SIGPLAN international conference on
Functional programming, pp. 47–58. ACM, New York (2007)

77. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalizing
Programs with Duplication through Complementary Function Derivation. JSSST
Journal: Computer Software 26(2), 5 (2009) (to appear) (in Japanese)

78. McBrien, P., Poulovassilis, A.: Data Integration by Bi-Directional Schema Trans-
formation Rules. In: 19th International Conference on Data Engineering, ICDE
2003, Proceedings, pp. 227–238. IEEE Computer Society, Los Alamitos (2003)

79. Meertens, L.: Designing Constraint Maintainers for User Interaction (June 1998)
(manuscript), http://www.kestrel.edu/home/people/meertens

80. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and
XML in the .NET framework. In: SIGMOD 2006: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pp. 706–706. ACM,
New York (2006)

81. Melnik, S., Adya, A., Bernstein, P.: Compiling mappings to bridge applications
and databases. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD in-
ternational conference on Management of data, pp. 461–472. ACM, New York
(2007)

82. Miller, R., Hernández, M., Haas, L., Yan, L., Ho, C., Fagin, R., Popa, L.: The Clio
Project: Managing Heterogeneity. ACM SIGMOD Record 30(1), 78–83 (2001)

83. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inver-
sion generates divide-and-conquer parallel programs. In: PLDI 2007: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, pp. 146–155. ACM, New York (2007)

84. Mu, S.-C., Hu, Z., Takeichi, M.: An Algebraic Approach to Bi-directional Up-
dating. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer,
Heidelberg (2004)

85. Nakano, K., Hu, Z., Takeichi, M.: Consistent Web Site Updating based on Bidi-
rectional Transformation. In: 10th IEEE International Symposium on Web Site
Evolution (WSE 2008) (October 2008)

86. Oliveira, J.: Transforming Data By Calculation. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 134–195. Springer, Hei-
delberg (2008)

87. Pratt, T.W.: Pair Grammars, Graph Languages and String-to-Graph Transla-
tions. Journal of Computer and System Sciences 5, 560–595 (1971)

88. Ramsey, N.: Embedding an interpreted language using higher-order functions and
types. In: IVME 2003: Proceedings of the 2003 workshop on Interpreters, virtual
machines and emulators, pp. 6–14. ACM, New York (2003)

http://www.liquid-technologies.com/
http://www.kestrel.edu/home/people/meertens

282 K. Czarnecki et al.

89. Reynolds, J.: Types, abstraction and parametric polymorphism. In: Information
Processing 1983, Proceedings, pp. 513–523. Elsevier, Amsterdam (1983)

90. Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira, B.:
Comparing libraries for generic programming in Haskell. In: Haskell 2008: Pro-
ceedings of the first ACM SIGPLAN symposium on Haskell, pp. 111–122. ACM,
New York (2008)

91. Schmidt, A., Waas, F., Kersten, M., Florescu, D., Manolescu, I., Carey, M.,
Busse, R.: The XML Benchmark Project. Technical report, CWI, Amsterdam,
The Netherlands, Technical Report INS-R0103 (April 2001),
http://www.xml-benchmark.org/

92. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
151–163. Springer, Heidelberg (1995)

93. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

94. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars - Research Challenges,
New Contributions, Open Problems. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidel-
berg (2008)

95. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A
Data EXtraction, Processing, amd REStructuring System. ACM Transactions on
Database Systems (TODS) 2(2), 134–174 (1977)

96. Song, H., Xiong, Y., Hu, Z., Huang, G., Mei, H.: A Model-Driven Framework for
Constructing Runtime Architecture Infrastructures. Technical report, National
Institute of Informatics, Japan, Technical Report GRACE-TR-2008-05 (December
2008), http://grace-center.jp/en/rsc_tr.html

97. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

98. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424.
Springer, Heidelberg (2008)

99. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 1–17. Springer, Heidelberg (2008)

100. Takahashi, S., Matsuoka, S., Miyashita, K., Hosobe, H., Kamada, T.: A
Constraint-Based Approach for Visualization and Animation. Constraints 3(1),
61–86 (1998)

101. Terwilliger, J., Delcambre, L., Logan, J.: Querying through a user interface. Data
& Knowledge Engineering 63(3), 774–794 (2007)

102. Terwilliger, J.F.: Graphical User Interfaces as Updatable Views. Ph.D thesis, Port-
land State University (2009)

103. Terwilliger, J.F., Melnik, S., Bernstein, P.A.: Language-integrated querying of
XML data in SQL server. PVLDB 1(2), 1396–1399 (2008)

104. Vallecillo, A.: A Journey through the Secret Life of Models. In: Model Engineering
of Complex Systems (MECS). Dagstuhl Seminar Proceedings, vol. 08331 (2008),
http://drops.dagstuhl.de/opus/volltexte/2008/1601

http://www.xml-benchmark.org/
http://grace-center.jp/en/rsc_tr.html
http://drops.dagstuhl.de/opus/volltexte/2008/1601

Bidirectional Transformations: A Cross-Discipline Perspective 283

105. Varró, G., Schürr, A., Varro, D.: Benchmarking for Graph Transformation. In:
VLHCC 2005: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 79–88. IEEE Computer Society, Los Alamitos
(2005)

106. Vermolen, S., Visser, E.: Heterogeneous Coupled Evolution of Software Languages.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

107. Visser, J.: Coupled Transformation of Schemas, Documents, Queries, and Con-
straints. ENTCS 200(3), 3–23 (2008)

108. Voigtländer, J.: Bidirectionalization for free! (Pearl). In: POPL 2009: Proceed-
ings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 165–176. ACM, New York (2009)

109. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

110. Wadler, P.: Views: a way for pattern matching to cohabit with data abstraction.
In: POPL 1987: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pp. 307–313. ACM, New York (1987)

111. Wadler, P.: Theorems for free! In: FPCA 1989: Proceedings of the fourth interna-
tional conference on Functional programming languages and computer architec-
ture, pp. 347–359. ACM, New York (1989)

112. Wang, M., Gibbons, J.: Translucent Abstraction: Safe Views through Bidirectional
Transformation (2008), http://www.comlab.ox.ac.uk/files/711/Bidi.pdf

113. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007: Proceedings of
the twenty-second IEEE/ACM international conference on Automated software
engineering, pp. 164–173. ACM, New York (2007)

114. Xiong, Y., Zhao, H., Hu, Z., Takeichi, M., Song, H., Mei, H.: Beanbag:
Operation-based Synchronization with Intra-relations. Technical Report GRACE-
TR-2008-04, Center for Global Research in Advanced Software Science and
Engineering, National Institute of Informat iontics, Japan (December 2008),
http://grace-center.jp/downloads/GRACE-TR-2008-04.pdf

115. XML Beans, http://xmlbeans.apache.org/
116. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a Reversible Programming

Language. In: CF 2008: Conference on Computing Frontiers, Proceedings, pp.
43–54. ACM, New York (2008)

117. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible Flowchart Languages and the
Structured Reversible Program Theorem. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

http://www.comlab.ox.ac.uk/files/711/Bidi.pdf
http://grace-center.jp/downloads/GRACE-TR-2008-04.pdf
http://xmlbeans.apache.org/

Author Index

Albert, Patrick 249
Apel, Sven 4

Bastarrica, Maŕıa Cecilia 197
Baudry, Benoit 148
Behring, Alexander 132
Bergmann, Gábor 20
Bertrand, Frédéric 116
Bézivin, Jean 229, 249
Bollati, Verónica Andrea 181
Brunelière, Hugo 197

Cicchetti, Antonio 35
Cuadrado, Jesús Sánchez 229
Czarnecki, Krzysztof 260

de Lara, Juan 83
Del Fabro, Marcos Didonet 249
Di Ruscio, Davide 35

Foster, J. Nathan 260
Fuentes-Fernández, Rubén 52

Garćıa-Magariño, Iván 52
Garćıa Molina, Jesús 229
Gómez-Sanz, Jorge J. 52
Grønmo, Roy 67
Guerra, Esther 83

Hettel, Thomas 100
Hillairet, Guillaume 116
Horváth, Ákos 20
Hu, Zhenjiang 213, 260

Janda, Florian 4
Jouault, Frédéric 197, 229, 249

Kästner, Christian 4
Krogdahl, Stein 67

Lafaye, Jean Yves 116
Lämmel, Ralf 260
Lange, Christian F.J. 239
Lawley, Michael 100

Marcos, Esperanza 181
Mottu, Jean-Marie 148
Møller-Pedersen, Birger 67
Mühlhäuser, Max 132

Orejas, Fernando 83

Petter, Andreas 132
Pierantonio, Alfonso 35
Pierce, Benjamin C. 1

Ráth, István 20
Raymond, Kerry 100

Schürr, Andy 260
Sen, Sagar 148
Song, Hui 213
Stevens, Perdita 165

Takeichi, Masato 213
Terwilliger, James F. 260
Trujillo, Salvador 4

van Amstel, Marcel F. 239
van den Brand, Mark G.J. 239
Vara, Juan Manuel 181
Varró, Dániel 20
Vela, Belén 181
Vignaga, Andrés 197

Xiong, Yingfei 213

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Paper
	Foundations for Bidirectional Programming
	References

	Full Papers
	Model Superimposition in Software Product Lines
	Introduction
	Software Product Lines and Feature Composition
	Analysis of Superimposition as Model Composition Technique
	Tool Support
	Case Studies
	Summary of Experiences

	Discussion: Simplicity vs. Expressiveness
	Related Work
	Conclusion
	References

	Efficient Model Transformations by Combining Pattern Matching Strategies
	Introduction
	Background
	Graph Patterns and Transformation
	Case Study
	Pattern Matching Strategies and Related Work

	Motivating Scenarios for Hybrid Pattern Matching
	Scenario:Match Set Cache Does Not Fit into Memory Limit
	Scenario: Construction Time Penalty
	Scenario: Expensive Model Updates
	Overall Performance on the Entire Case Study

	Towards Intelligent Selection of Matching Strategies
	Factors for Design-Time Selection of Matching Strategies
	Adaptive Runtime Optimization

	Conclusion and Future Work
	References

	Managing Dependent Changes in Coupled Evolution
	Introduction
	Metamodel Evolution and Model Co-evolution
	Related Work
	Supporting Complex Metamodel Changes

	Dealing with Parallel Dependent Changes
	Classification of Change Dependencies
	Identification and Resolution of Change Dependencies

	Conclusions and Future Work
	References

	Model Transformation By-Example: An Algorithm for Generating Many-to-Many Transformation Rules in Several Model Transformation Languages
	Introduction
	Background Definitions
	The MTBE Algorithm
	Allocation of Target Elements
	Simulation of the Input Side of Rules by Means of Constraints
	Generation of the Output Side of the Rule
	Mapping of Property Values between the Input and Output Models

	Evaluation
	Related Work
	Conclusions and Future Work
	References

	A Collection Operator for Graph Transformation
	Introduction
	Graph Transformation
	Concrete and Abstract Syntaxes

	The Collection Operator
	Mapping Collection Operator from Concrete to Abstract Syntax
	Collection Operator Formalized
	Inherent Tool Support for Rules with Collection Operators

	Simulating a Collection Rule by a Transactional Sequence of Collection Free Rules
	Examples
	Related Work
	Conclusions
	References

	Pattern-Based Model-to-Model Transformation: Handling Attribute Conditions
	Introduction
	Algebraic Approach to Model-to-Model Transformation
	Pattern-Based Model-to-Model Transformation
	Generation of Operational Mechanisms
	Parameterization and Heuristics for Rule Derivation

	Example
	Related Work
	Conclusions and Future Work
	References

	Towards Model Round-Trip Engineering: An Abductive Approach
	Introduction
	Abduction and RTE
	Abductive Logic Programming
	Reversing and RTE as an Abductive Problem

	Tefkat
	Running Example

	Reversing Transformations
	Logic Programming Representation
	Matching Target Patterns
	Formulating the Abductive Query
	Abducing Source Changes
	Compensating Side Effects
	Implementation

	Related Work
	Conclusion and Future Work
	References

	Rewriting Queries by Means of Model Transformations from SPARQL to OQL and Vice-Versa
	Introduction
	Related Work
	Context of This Work
	Bridging Object Oriented Applications and Semantic Web
	Object Ontology Mapping Language
	Specification, Implementation and Execution

	Query Languages
	Object Query Language
	RDF Query Language (SPARQL)

	Model Transformations
	Rewriting HQL in SPARQL
	Rewriting SPARQL in HQL

	Conclusion
	References

	Solving Constraints in Model Transformations
	Introduction
	Overview

	Constraints and Running Examples
	Transformation Examples

	Constraint Relational Transformations
	Extending the Syntax of QVT and OCL
	QVT Relations
	OCL
	Additional Solverational Features

	Implementation
	Algorithm

	Discussion
	Related Work
	Conclusions and Future Work
	References

	Automatic Model Generation Strategies for Model Transformation Testing
	Introduction
	Problem Description
	Transformation Case Study

	Automatic Model Generation
	Strategies to Guide Model Generation

	Qualifying Models: Mutation Analysis for Model Transformation Testing
	Empirical Comparison of Generation Strategies
	Experimental Methodology
	Experimental Setup and Execution
	Results and Discussion

	Related Work
	Conclusion
	References
	A Concise Version of Alloy Model Synthesized by Cartier

	A Simple Game-Theoretic Approach to Checkonly QVT Relations
	Introduction
	Background
	The Translation from QVT Relations to QVT Core
	Transformation Direction
	A Game-Theoretic Semantics for Checkonly QVT-R
	Discussion of the Treatment of When Clauses
	Variants of the Game

	Conclusions
	References

	Supporting Model–Driven Development of Object–Relational Database Schemas: A Case Study
	Introduction
	Object-Relational DB Development in MIDAS
	Modeling OR DB
	PIM to PSM Transformations for OR DB Development

	Case Study
	Conceptual Data Model
	PIM to PSM Mapping
	Code Generation

	Related Work
	Conclusions and Future Work
	References

	Typing in Model Management
	Introduction
	Global Model Management
	Global Model Management Conceptual Framework
	Limitations of the Current Typing Approach

	A Type System for GMM
	Textual Syntax
	Typing

	Application
	Example Revisited
	Implementation

	Related Work
	Conclusions and Further Work
	References

	Supporting Parallel Updates with Bidirectional Model Transformations
	Introduction
	Background: Properties of Bidirectional Model Transformation
	Requirements of Synchronizing Parallel Updates
	Model Difference, Three-Way Merger and Preservation
	Model Difference
	Three-Way Merger
	Preservation

	Algorithm
	Application
	Related Work
	Conclusion and Future work
	References

	Short Papers
	Experiments with a High-Level Navigation Language
	Introduction
	Motivation
	Technical Context
	The HLN Language
	Linking
	Navigation Path
	Opposite
	Transitive Closure
	Combining Constructs

	Related Work
	Conclusions
	References

	Using Metrics for Assessing the Quality of ASF+SDF Model Transformations
	Introduction
	Metrics
	Transformation Function Metrics
	Module Metrics
	Consistency Metrics

	Empirical Exploration of the Metrics
	Objects, Subjects, Task and Instrumentation
	Relating Metrics to Quality Attributes
	Threats to Validity

	Related Work
	Conclusions and Future Work
	Conclusions
	Future Work

	References

	Achieving Rule Interoperability Using Chains of Model Transformations
	Introduction
	Business Rule Management Systems
	Rules
	Drools and JRules

	Rule Interoperability
	Model Management Operations
	Chaining and Parameterization

	Lessons Learned
	Conclusions
	References

	Panel on Bidirectional Transformations
	Bidirectional Transformations: A Cross-Discipline Perspective
	Introduction
	Bidirectional Transformation Subcommunities
	Programming Languages
	Databases and Data Management
	Model-Driven Engineering
	Bidirectional Graph Transformation
	Further Applications

	Synthesis: Key Concepts and Properties of BX
	Towards a BX Benchmark
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

