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Abstract. The self-organizing mixture autoregressive (SOMAR) model regards 
a time series as a mixture of regressive processes. A self-organizing algorithm 
is used with the LMS algorithm to learn the parameters of these regressive 
models. The self-organizing map is used to simplify the mixture as a winner-
take-all selection of local models, combined with an autocorrelation coefficient 
based measure as the similarity measure for identifying correct local models. 
The SOMAR has been shown previously being able to uncover underlying 
autoregressive processes from a mixture. This paper proposes a generalized 
SOMAR that fully considers the mixing mechanism and individual model 
variances that make modeling and prediction more accurate for non-stationary 
time series. Experiments on both benchmark and financial time series are 
presented. The results demonstrate the superiority of the proposed method over 
other time-series modeling techniques on a range of performance measures.  

1   Introduction 

Time series modeling and forecasting is an active, challenging and reoccurring topic 
in statistics and signal processing owing to their wide use in real-world applications 
such as communications, speech processing, finance, astronomy and neuro-
physiology. Linear regression and autoregressive models such as autoregressive (AR), 
moving average (MA) and autoregressive moving average (ARMA), are commonly 
used methods. Most linear models assume that the time series being dealt with is 
stationary and uni-modal [3, 8] and assume a structured linear relationship of constant 
coefficients between the current value of the time series and its previous values and 
the error terms. Such conditions are not often met in practice. They are the pitfall of 
(linear) regressive models when the time series is non-stationary. Developing methods 
for modeling non-stationary and multimodal time series has become an active area of 
research. The autoregressive integrated moving average (ARIMA) [3], a generalized 
ARMA model, can better handle slow changing non-stationary time series by 
modeling the difference of the consecutive time series values instead of the value 
itself. The generalized autoregressive conditional heteroscedastic (GARCH) model 
[2] models the variance of the residual as a linear function of the previous variances, 
along with the autoregressive model of the time series. It has been a benchmark model 
for financial data, which exhibits varying volatilities from time to time. The mixture 



354 H. Yin and H. Ni 

autoregressive (MAR) model [17] represents another approach that considers the 
process as a mixture of regressive models and is a generalized Gaussian mixture 
transition distribution. It can handle non-stationary cycles and conditional hetero-
scedasticity and is often solved by the expectation and maximization (EM) method.  

Various adaptive neural networks have been adopted to extend linear regressive 
models such as multilayer perceptron (MLP), radial basis functions (RBFs), support 
vector machines (SVM) and recurrent networks [9]. Nonstationarity implies that the 
time series change their dynamics in different time regions. It is unreasonable for a 
single model to capture the dynamics of the entire series. A potential solution is to use 
a mixture model approach to divide the entire model into several smaller ones. Then 
regression and prediction are made by the local models. The self-organizing map 
(SOM) can be used to partition time series. For instance, Dablemont et al. [6] applied 
SOM-based local models with RBF networks as regressors. Cao [4] used SVM 
regressors on SOM-clustered local segments. However, these models are two-stage 
modeling. Both clustering and local modeling may not be jointly optimized.  

There were two early approaches to analyzing temporal signals or sequences with 
the SOM. One is to train a SOM on static states (i.e. time series values), and then 
temporal patterns or sequences of states can be identified by marking sequential 
locations of the state on the trained map. Such approaches can be used to monitor 
dynamic processes or trajectories of a temporal process such as industrial plants [1]. 
Another approach, which is often found in the literature, is to group consecutive time 
points into segments (using a sliding window). Then these segments are used as the 
input vectors to train the SOM. We term this method as vector SOM or simply SOM. 

Several variants have since been proposed to extend SOM’s ability for temporal 
modeling such as the recurrent SOM (RSOM) [10] and the recursive SOM (RecSOM) 
[16,15]. These variants integrate the information of a sequence via recursive 
operations. As they differ in the notion of context, their efficiency in terms of 
representing temporal context are different. Neural gas (NG) [12] is another variant of 
SOM. Instead of having a fixed network topology throughout, NG can dynamically 
deploy its resources to suit varying topology of the data and has been applied to tasks 
including temporal modeling [12] and has been enhanced by merge NG (MNG) [15].  

Earlier, Lampinen and Oja proposed a self-organizing map of spatial and temporal 
AR models [11], where each unit represents an AR model with its reference vector as 
the model parameters. The method in fact is a multiple AR model with the component 
models forming a spatial topology. However, the model has difficulties to converge to 
the underlying regressive models due to the simple error-based similarity measure. 
We have extended it to a mixture regressive model, termed the self-organizing 
mixture autoregressive (SOMAR) model [13,14], with a different partition 
mechanism and similarity measure to reflect the characteristics of homogeneous time 
series. Both the mixture and local models are jointly trained, and thus it offers better 
modeling performance [13,14]. Here the SOMAR model is further analyzed in light 
of the MAR model and generalized to a full mixture model. 

The remainders of the paper are as follows. Section 2 briefly describes various 
regressive models. Section 3 presents SOM-based autoregressive models and the 
proposed generalized SOMAR model, followed by experimental results on both 
benchmark data and real-world data and comparisons with several methods in Section 4. 
Finally, conclusions are given in Section 5. 
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2   Regressive Time Series Models 

2.1   Autoregressive Models: AR, ARMA, GARCH and ARIMA 

Linear regressive models have been the primary tool in modeling time series. An 
autoregressive model of order p, denoted as AR(p), can be described as, 
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input vector, c is a constant and ε is white noise of zero mean and variance σ2.  
An ARMA model with p-order AR terms and q-order MA terms is called 

ARMA(p, q) model and can be written as, 
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where },...,{ 0 qμμ  are the parameters of the moving average. The error terms are 

assumed to be independent identically-distributed (i.i.d.) random variables sampled 
from a normal distribution with zero mean and variance σ2. When this condition does 
not hold, the GARCH model provides a generalized alternative, in which the variance 
of the error terms is modeled by another regressive model. 

A standard GARCH(θ; q) model is characterized by Eq. (1) and the following 
variance model, 
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where εt is the error term with the assumption ttt vσε =  and vt is i.i.d. with zero mean 

and unit variance. {α} and {β} are the model parameters of the variance.  
ARIMA model uses lags or differencing of the time series in the ARMA model. 

ARIMA(p,d,q) model is characterized by the following equation, 
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where L is the lag operator, i.e. 1−= tt xLx  and p, d, and q are the orders of the 

autoregressive, integrated, and moving average parts of the model respectively. Note 

that ARMA(p,q), i.e. Eq. (1), can be expressed as t
i

q

i
it

p

i

i
i LxL εμφ )1()1(

11
∑∑

==

+=− .  

As can be seen, the ARIMA model operates on the difference of the lagged time 
series. Such simple transformation can be effective in dealing with slow changes in 
non-stationarity. That is, the difference operator transforms a slow drift non-stationary 
process into a stationary process.  
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2.2   Mixture Autoregressive (MAR) Model  

A nonlinear or non-stationary time series can be regarded as a mixture of stationary 
processes characterized by the standard autoregressive models. The K-component 
MAR model is defined by [17],  
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where )|( 1−ΓttxF  is the conditional distribution of xt given the past information up 

to t-1, Γt-1; ϕ(.) is the standard normal distribution; {π1,…,πK} are the mixing 
parameters and π1+…+πK=1, πk>0, k=1,…, K; pk is the order of the k-th AR model; 
and σk

2 is the variance of the k-th distribution. This model is denoted as MAR(K; 
p1,…,pK) model. The MAR has the ability to handle cycles and conditional 
heteroscedasticity in time series and its parameters are estimated via the EM 
algorithm and model selection by a Bayesian information criterion (BIC) [17]. 

3   Self-Organizing Mixture Autoregressive Models 

3.1   Self-Organizing AR (SOAR) Model 

Lampinen and Oja proposed a self-organizing AR (SOAR) network [11]. It is a map 
of neurons, each representing an AR model with its parameters as the reference vector 
wi. The experiment showed that the SOAR model can learn to distinguish texture 
images [11]. The method in fact is a multiple AR model. However the model has 
difficulties in converging to correct AR models. The training procedure is: 

1) At each time step t, find the best matching unit by measuring the estimation 

error of each node, )(
1,

p
t

T
itti xe −−= xw . In order to reduce the effect of the fluctuation 

or noise in the errors, an exponential average over the recent errors is used, 
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where λ is a smoothing factor, ei(t) is the current error of node i and ui(t-1) is the past 
averaged error. 

2) Update the best matching unit as well as its neighborhood on the map by the 
recursive LMS or Widrow-Hoff rule,  
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where η is learning rate and h(i,v) is the neighborhood function of indexes of node i 
and winner v.  

However the performance of the SOAR model in finding the underlying AR 
processes in the mixture is poor [13]. Due to the stochastic nature of AR processes, 
although the overall MSE decreases, at each input, one can always expect large 
fluctuation even when the true model parameters are used and further smoothing is 
applied. In other words, this method has difficulties in converging to the true model 
parameters of the underlying AR processes. Nevertheless, the SOAR model localizes 
the time series by local models. 
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3.2   Self-Organizing MAR (SOMAR) Model  

Based on the similar principle and the MAR model, the self-organizing MAR 
(SOMAR) was proposed [13]. It constitutes a simplified MAR model with the 
winner-take-all for local AR models. To ensure a robust learning, a new winner 
selection or similarity measure was proposed. A stochastic process is characterized by 
white noise residuals. As a sufficient condition, the modeling errors or the residuals 
should be or close to white noise if the modeling is following the correct path. 
Therefore, the autocorrelation of the error instead of the error itself is used to evaluate 
the similarity between the input vector and the neurons’ weights representing the 
model parameters. To estimate the autocorrelation, a small batch of the errors is used, 
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where m is the length of the batch, μe and σe
2 are the mean and the variance of the 

errors in the batch respectively.  
The winner is selected according to the sum of (absolute value of) autocorrelation 

coefficients (SAC), 
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The use of correlation measure for identifying local models is justified by the fact 
that a correct model produces white noise residuals. That is, if the model is correct or 
adequate, the residual is unpredictable or structure-less. Such effective correlation-
based tests are often used in statistics and neural networks for checking the fitness of 
a model, e.g. [5], though there are other whiteness tests in the literature. 

3.3   Generalized SOMAR (GSOMAR) Model  

Both the SOMAR and SOAR models represent a simplified, homescedastic and 
winner-take-all version of the MAR model. At any time, only one local AR model 
(the winner) is selected to represent the time series, all models are assumed of equal 
variance and the mixing factors are either unit for the winner or zero otherwise. 
Although some empirical use of neighboring nodes has been proposed for forecasting 
[13], the model is not a full mixture model. To fully employ the mixture model, all 
components will be required to contribute to the mixture coherently both in training 
and testing. The mixing factors and model variances have to be learnt as well. The 
SOM has been extended before to a mixture model. The self-organizing mixture 
network (SOMN) [18] is such an example, in which each node represents a 
conditional distribution. The SOMN has also been shown to converge faster and be 
more robust than the EM algorithm for heteroscedastic mixture distributions. To make 
the SOMAR a full mixture of AR models, the algorithm of the SOMN can be used to 
learn the mixing factors and variances. In addition to the weights (or AR model 
parameters), the mixing factors and model variances are updated in the training 
(modeling). Further assuming that the component models are uncorrelated, so their 
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covariances are zeros. The variances of local models are scalar. Then the updating 
rules for the mixing weights and variances have the following simple forms, 
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where iP̂  is the winning frequency and 2
,eiσ  is the error variance of node i. 

The trained mixture model, representing the MAR model, Eq. (5), can be fully 
used for forecasting the time series as well as model’s volatility. In forecasting, the 
learnt mixing factors are further weighted by the neighborhood function of the SOM, 
acts as the posterior probability of a component class given an input sample [18]. 

4   Experimental Results and Comparisons 

4.1   Artificial Data 

As an illustrative example, a mixture two AR(2) processes was generated with their 
model parameters set to [0.2, -0.3] and [0.4, -0.1] and variances to 3 and 5, 
respectively. The learning process of the GSOMAR is shown in Fig. 1. 
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Fig. 1. Parameter and variance estimation of a mixture of two AR(2) processes. Fine tuning 
phase [13] starts at t=15000. Dashed (red) lines represent one process and solid (blue) lines the 
other.  
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4.2   Mackey-Glass Data 

The Mackey-Glass series has been widely used as a benchmark data for testing 
nonlinear models. The data set was generated by a dynamic system defined by the 
following differential equation, 
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with the parameter values set as δ=17, α=0.2, and β= -0.1. In total 2000 points were 
generated. The Mackey-Glass data is regarded as consisting of a number of unknown 
AR processes. In the experiment, the series was grouped into 12 consecutive values as 
the input vectors. The order of the AR processes was chosen by the BIC. The 
prediction result is shown in Table 1. The performance of statistical benchmark 
models GARCH and ARIMA are 4.48 and 4.35 respectively. The results are the 
average over 10 independent runs on the same data set. Different data set may lead to 
slightly difference performance. However, it can be seen that GSOMAR and SOMAR 
markedly outperform the others and GSOMAR further improves on SOMAR. 

Table 1. Forecasting performance on Mackey-Glass data by various adaptive models 

 GSOMAR SOMAR SOAR SOM RSOM RecSOM NeualGas MNG SOM+ 
SVM 

MSE(-2) 3.24 3.62 4.29 4.48 4.32 4.10 4.38 4.35 4.52 

4.3   Foreign Exchange Rates 

The data was obtained from the PACIFIC Exchange Rate Service provided by W. 
Antwiler at UBCs Sauder School of Business. It consists of 15years’ daily exchange 
rates (British pound vs. US dollar, Euro and HK dollar) excluding weekends and bank 
holidays when the currency markets were closed. In total 3200 consecutive points 
were used, in which the first 3,000 points were used as the training set, the next 100 
points as the validation set, and the remaining 100 points as the test set. The training, 
validation and testing sets were windowed with the length of 15 points to form input 
vectors (again validated by the BIC). 

To compare with other regressive models, the following commonly used 
performance measures have been calculated: 

Predicted return (%): The percentage of correct prediction of the return 
( tt xx /ln 1+ ), which is also used as a criterion to check whether the prediction is made 

in the right direction. In other words, it shows how many percentages of the predicted 
returns have the same signs as their corresponding actual returns.  

MSE of predicted rate (-2): The MSE between the actual exchange rates and the 
predicted ones in the test set.  

Accumulated profit (P%): The accumulated profit is the percentage gain of the 
accumulated profits over the testing period, say 100 trading days. 
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Table 2. Performance on FX rate prediction by various adaptive models. The best performances 
are marked in bold. 

GBP        
vs 

GSOMAR SOMAR SOAR SOM RSOM RecSOM NeualGas MNG SOM+ 
SVM 

USD % 59.70 59.73 52.84 52.63 52.26 52.58 54.08 54.16 53.43 
USD -2 3.87 3.80 4.28 4.20 4.24 4.70 4.23 4.20 4.12 
USD P% 5.53 5.15 4.78 4.80 4.98 5.12 5.33 5.35 4.82 

EU % 57.43 56.42 52.62 52.12 53.05 53.17 54.24 54.27 54.09 
EU -2 3.96 4.11 4.73 4.32 4.64 4.95 4.51 4.50 4.62 
EU P% 5.41 5.12 4.62 4.73 4.63 4.60 4.72 4.75 4.70 

JPY % 57.95 57.30 53.22 54.29 52.48 52.33 53.46 53.47 52.10 
JPY -2 4.23 4.33 5.24 5.00 4.98 5.08 4.75 4.75 5.18 
JPY P% 5.32 5.03 4.68 4.89 4.91 4.87 4.73 4.76 4.65 

HKD % 56.37 56.31 53.50 53.95 53.88 54.02 54.21 54.22 54.13 
HKD -2 4.11 4.22 4.67 4.75 4.73 4.72 4.44 4.44 4.57 
HKDP% 5.32 5.02 4.50 4.59 4.57 4.63 4.62 4.68 4.60 

 
As reported before [13,14], the SOMAR model generally outperforms other 

adaptive methods as also shown in Table 2. The GSOMAR further improves on the 
SOMAR model in all these performance measures. As can be seen, both GSOMAR 
and SOMAR consistently outperform other methods by clear margins in the correct 
prediction percentages and modeling errors. The benefit of using the fuller GSOMAR 
model is that model variance parameters are readily available to indicate the volatility 
of the component regressive models and the mixture. Statistical model ARIMA 
performed the worse on these data sets with the predicted return (%) between 50-51% 
– only slightly better than random guess; while GARCH gave similar performances to 
SOM+SVM with the predicted return (%) between 53-54%. 

5   Conclusions 

A mixture model approach to tackling nonlinear and non-stationary time series has 
been proposed by using the generalized self-organizing mixture autoregressive 
(GSOMAR) model. It consists of a number of autoregressive models that are 
organized and learnt in a self-organized manner by the adaptive LMS algorithm. A 
correlation-based similarity measure is used for identifying correct AR models, thus 
making the model more effective and robust compared to the error-based measures. 
The GSOMAR further generalizes the winner-take-all SOMAR model by learning the 
mixing weights as well as the model variances. The experiments on various nonlinear, 
non-stationary time series show that the proposed model can correctly detect and 
uncover underlying regressive models. The results also show that the proposed 
method outperforms other methods in terms of modeling errors and prediction 
performances.  
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