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Abstract. The application of Self-Organizing Map (SOM) to hierarchi-
cal data remains an open issue, because such data lack inherent quan-
titative information. Past studies have suggested binary encoding and
Generalizing SOM as techniques that transform hierarchical data into
numerical attributes. Based on graph theory, this paper puts forward a
novel approach that processes hierarchical data into a numerical repre-
sentation for SOM-based clustering. The paper validates the proposed
graph-theoretical approach via complexity theory and experiments on
real-life data. The results suggest that the graph-theoretical approach
has lower algorithmic complexity than Generalizing SOM, and can
yield SOM having significantly higher cluster validity than binary
encoding does. Thus, the graph-theoretical approach can form a data-
preprocessing step that extends SOM to the domain of hierarchical data.
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1 Introduction

The Self-Organizing Map (SOM) [1] represents a type of artificial neural network
that is based on unsupervised learning; it has been applied extensively in the
areas of dimensionality reduction, data visualization, and clustering [2]. The
original formulation of SOM uses the Euclidean distance as a similarity metric [3,
p.4], and hence its domain of application is restricted to metric spaces [4]. SOM
has been extended to non-metric spaces by using generalized means and medians
as the distance measures and the batch variant of SOM [4]; for example, speech
recognition [5], and clustering of protein sequences [6]. An online algorithm for
SOM of symbol strings was provided by [7]. However, neither a metric distance
nor a string metric (e.g. Levenshtein distance) can yield meaningful results in
the domain of hierarchical data, and thus the application of SOM in this domain
remains an open issue. For example, consider clustering the data: {cat, rat,
mouse}. A string metric would find that {cat} and {rat} are more closely related
to each other than {rat} and {mouse} are, while a metric distance would produce
meaningless results.
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To address this issue, prior studies have suggested two main techniques that
transform hierarchical attributes into numerical attributes. First, the most preva-
lent technique encodes a categorical attribute in binary terms {1,0}, where 1 and
0 denote the presence and absence of an attribute respectively. The binary en-
coding is then treated as a numerical attribute in the range {1,0}. Second, Hsu
[8] introduced Generalizing SOM (GSOM), whereby a domain expert describes
a set of categorical data by means of a concept hierarchy, and then extends it to
a distance hierarchy in order to represent and calculate distances between the
categorical data. However, both techniques suffer from theoretical and practical
limitations.

Motivated by this open issue, the paper puts forward a graph-theoretical
approach that processes hierarchical data into a numerical representation, and
thus renders them amenable for clustering using SOM. To elaborate, based on
graph theory, the paper encodes a set of hierarchical data in the form of a rooted
and ordered tree. The root vertex represents the complete set of the hierarchical
data, and each vertex represents a sub-set of its “parent” vertex. An edge between
a pair of vertices is assigned a weight, which can be any positive real number,
representing the distance between the two vertices. Thus, the distance between
a pair of vertices, vi and vj , is the sum of the weighted-edges that exist in the
path from vi to vj . The paper uses a level-order traversal algorithm to calculate
the distances between each vertex and all other vertices. This process yields a
symmetric distance matrix D = (dij)nn, where n is the number of vertices, and
dij the distance between vi and vj .

In the present case, the paper encodes the animals that are contained in the
zoo-dataset [9] in the form of a rooted and ordered tree, and calculates the
distances between all pairs of animals by using a level-order traversal of the tree,
as shown in Fig. 1. The symmetric distance matrix D = (dij)nn thus derived
forms the numerical representation of the zoo-dataset, where n = 98 reflecting
the number of animals, and dij denotes the distance between a pair of animals.
The distance metric dij satisfies the conditions of a metric space, as follows [10,
p.65]: (i) dij ≥ 0, (ii) dij = 0 if and only if i = j, (iii) dij = dji, and (iv)
diz ≤ dij + djz . Each row in D represents an animal, and becomes an input
vector – xj ∈ R

98, j = 1, 2, . . . 98 – to SOM.1
The paper trains two SOMs, batch and sequence, for each of the two represen-

tations of the zoo-dataset, original binary encoding and paper’s graph-theoretical
approach. For each of the four combinations, the paper selects one hundred sam-
ples by using bootstrap; and for each of the 400 bootstrapped samples, it trains
a SOM with a Gaussian neighborhood and an 8 x 5 hexagonal lattice. The paper
evaluates the quality of each SOM in terms of: (i) the entropy of clustering, (ii)
quantization error, (iii) topographic error, and (iv) the Davies-Bouldin index.
Based on these quality measures, the paper uses the Wilcoxon rank-sum test
at the one-tailed 5% significance level to assess whether the graph-theoretical

1 The distance matrix D is symmetric, and hence the number of observations (i.e.
animals) is equal to the number of dimensions (i.e. 98), and selecting either rows or
columns as input vectors to SOM would yield the same result.
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approach can yield significantly better SOM than binary encoding does. Fur-
ther, the paper compares the algorithmic complexity of the graph-theoretical
approach with that of GSOM.

The results suggest that the graph-theoretical approach enjoys a lower algo-
rithmic complexity than Generalizing SOM does, and can yield SOM having
significantly higher cluster validity than binary encoding does.

The paper’s novelty and contribution lie in the formulation of the graph-
theoretical approach, and its application as a data-preprocessing step that can
extend SOM to the domain of hierarchical data.

The paper proceeds as follows. Section 2 describes briefly the SOM algo-
rithm, binary encoding, and Generalizing SOM. Section 3 formulates the graph-
theoretical approach. Section 4 outlines the design of experiments, and section
5 presents and discusses the results. Section 6 presents the conclusions.

2 Background and Related Work

2.1 The SOM Algorithm

In the context of this study, the SOM algorithm performs a non-linear projection
of the probability density function of the 98-dimensional input space to an 8 x 5
2-dimensional hexagonal lattice. A neuron i, i = 1, 2, . . .40, is represented by XY
coordinates on the lattice, and by a codevector, mi ∈ R

98, in the input space.
The formation of a SOM involves three processes [11, p.447]: (i) competition,
(ii) co-operation, and (iii) adaptation. First, each input vector, x ∈ R

98, is
compared with all codevectors, mi ∈ R

98, and the best match in terms of the
smallest Euclidean distance, ‖ x − mi ‖, is mapped onto neuron i, which is
termed the best-matching unit (BMU):

BMU = argmin
i

{‖ x − mi ‖} . (1)

In the co-operation process, the BMU locates the center of the neighborhood
kernel hci:

hci = a (t) · exp
[
−‖ rc − ri ‖2

2σ2 (t)

]
. (2)

where rc, ri ∈ R
2 are the radius of BMU and node i respectively, t denotes

discrete time, a (t) is a learning rate, and σ (t) defines the width of the kernel;
a(t) and σ(t) are monotonically decreasing functions of time [3, p.5].

In the adaptive process, the sequence-training SOM updates the BMU code-
vector as follows:

mi(t + 1) = mi(t) + hci(t) [x(t) − mi(t)] . (3)

The batch-training SOM estimates the BMU according to (1), but updates the
BMU codevector as [12, p.9]:

mi(t + 1) =

∑n
j=1 hci(t)xj∑n

j=1 hci(t)
. (4)
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To carry out the experiments, the paper uses both sequence-training (3) and
batch-training (4) SOM.

2.2 Binary Encoding and Generalizing SOM

Binary encoding converts a categorical variable into a numerical representation
consisting of values in the range {1, 0}, where 1 and 0 denote the presence and
absence of an attribute respectively. The binary encoding of each categorical
datum is then treated as a numerical attribute for SOM-based clustering.

To overcome the limitations associated with binary encoding, Hsu [8] intro-
duced Generalizing SOM (GSOM). Briefly, a domain expert extends a concept
hierarchy, which describes a data domain, to a distance hierarchy by associating
a weight for each link on the former. The weight represents the distance between
the root and a node of a distance hierarchy. For example, a point X in distance
hierarchy dh (X) is described by X = (NX , dX), where NX is a leaf node and
dX is the distance from the root to point X . The distance between points X and
Y is defined as follows:

| X − Y |= dX + dY − 2dLCP (X,Y ) . (5)

where dLCP (X,Y ) is the distance between the root and the least common point
of X and Y .

3 The Graph-Theoretical Approach

3.1 Preliminaries

A comprehensive review of graph theory lies beyond the scope of this paper; a
textbook account on this subject can be found in [10]. For the purposes of this
paper, it suffices to define a tree as a special type of graph, G = (V, E, w), that
satisfies at least two of the following three necessary and sufficient properties:
(i) G is acyclic, (ii) G is connected, and (iii) | E |=| V | −1; any two of these
properties imply the third [10, p.8]. Let T = (V, E, w) be a tree that is: (i)
rooted, with v0 the root vertex, and (ii) ordered, which means that there is a

Table 1. Notations and definitions

G = (V, E, w) A graph
V = {v1, v2, . . . vn} Set of vertices
E = {e1, e2, . . . em} Set of edges
w : E → R

+ Function assigning a positive real number to an edge
| V | Degree of graph, cardinality of V
| E | Order of graph, cardinality of E
e = {vi, vj} Edge connecting vertices vi and vj

dij = w (e) Distance between vi and vj

D = (dij)nn Distance matrix
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Fig. 1. Extract from the graph-theoretical representation of the zoo-dataset

linear ordering of its vertices such that for each edge e = {vi, vj} then vi < vj .
It can be easily deduced that in tree T : (i) all vertices excluding v0 have at
most one “parent” vertex, (ii) at least one vertex has no “child” vertices, and (iii)
there is a unique path between any two vertices. A tree can be traversed in a
level-order way; such a traversal starts from the root vertex, v0, and proceeds
from left-to-right to visit each vertex at distance d from v0 before it visits any
vertex at distance d + 1, as shown in Fig. 1.

3.2 Description

The graph-theoretical approach is motivated by the observation that hierarchical
variables have a set of states that can be ranked in a meaningful order. For
example, consider the variable “size” having five states: {very big, big, medium,
small, very small}. It is obvious that {very big} matches {big} more closely
than it matches {very small}. However, this piece of information is lost if binary
encoding is used, because such an encoding produces a dichotomous output: a
state either matches another state or does not.

The graph-theoretical approach operates in three phases. First, it encodes a
set of hierarchical data in the form of a rooted and ordered tree. The root vertex
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represents the complete set of hierarchical data, and all other vertices are ordered
in such a way that each vertex represents a sub-set of its “parent” vertex. The
edges indicate the covering relation between the vertices. For example, consider
a finite order set P ; x, y ∈ P ; T = (V, E, w); and vx, vy ∈ V correspond to x
and y respectively. If x is covered by y (i.e. x ≺ y), then vx is a “child” vertex of
vy. Each edge is assigned a weight, which can be any positive real number (i.e.
w : E → R

+).
Second, the graph-theoretical approach traverses the tree in a level-order man-

ner in order to calculate the distances between the root vertex and all other
vertices. The distance between the root vertex vo and a vertex vi is the sum of
the weighted-edges that exist in the unique path between vo and vi. This calcu-
lation has an algorithmic complexity of O (| V |). To calculate the distances for
all pairs of vertices, the graph-theoretical approach designates each vertex as the
root vertex and repeats the level-order traversal. Thus, the all-pairs distances
can be obtained in O

(| V |2). This process yields a symmetric distance matrix
D = (dij)nn, where dij denotes the distance between vertex vi and vertex vj ,
dij > 0 for all i �= j , dij = 0 if and only if i = j, dij = dji, and diz ≤ dij + djz .

Finally, the distance matrix D constitutes the numerical representation of the
set of hierarchical data and each of its rows becomes an input vector to SOM.

4 Data and Experiments

The design of experiments consists of six steps. First, the zoo-dataset [9] con-
tains 101 animals that are described by one numerical attribute and 15 binary
attributes, and classified into seven groups. The paper eliminates the instances
“girl” and “vampire” for obvious but unrelated reasons, and one instance of “frog”,
because it appears twice.

Second, to apply the graph-theoretical approach to the zoo-dataset, the paper
uses none of the original attributes. Instead, it uses a “natural” taxonomy that
classifies animals based on their “phylum”, “class”, and “family”. This taxonomy
can be expressed as a tree (Fig. 1), where the root vertex stands for the complete
set of animals. For the experiments, the weight for each edge is set to 1 (i.e.
w : E → 1 ), though it can be any positive real number and different for each
edge. The paper calculates the distances of all pairs of vertices by using a level-
order traversal of the tree, and thus derives a distance matrix that makes up the
numerical representation of the zoo-dataset.

Third, for each representation of the zoo-dataset, original binary encoding
and the paper’s graph-theoretical approach, the paper uses bootstrap to draw
one hundred random samples with replacement. Fourth, for each bootstrapped
sample, the paper trains two SOMs, batch and sequence, with a Guassian neigh-
borhood and an 8 x 5 hexagonal lattice. Fifth, the paper evaluates each SOM
in terms of four quality measures: (i) the entropy of clustering, (ii) quantization
error, (iii) topographic error, and (iv) the Davies-Bouldin index. Sixth, based
on the quality measures, the paper uses the Wilcoxon rank-sum test at the one-
tailed 5% significance level to assess whether the graph-theoretical approach can
yield significantly better SOMs than binary encoding does.
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Table 2. Wilcoxon rank-sum test

SOM-Training H(Z) QE TE DBI

Batch A<B A<B N.S A<B
Sequence A<B A<B N.S A<B

Further, the paper compares the algorithmic complexity of the proposed
graph-theoretical approach with that of Generalizing SOM [8]. An experimental
comparison was not possible, because GSOM was not available.2

4.1 Quality Measures

The quantization error, QE, and topographic error, TE, have been extensively
reviewed in the literature pertinent to SOM. Thus, this section concentrates on
two cluster validity indices: (i) the Davies-Bouldin index, and (ii) the entropy of
clustering.

The Davies-Bouldin index [13], DBI, is defined as:

DBI =
1
C

C∑
i=1

max
i�=j

{
Δ(Ci) + Δ(Cj)

δ(Ci, Cj)

}
. (6)

where C is the number of clusters produced by SOM, δ(Ci, Cj), and Δ(Ci) and
Δ(Cj) the intercluster and intracluster distances respectively.

Following [14], the entropy of clustering Z, H(Z), can be defined as:

H(Z) = −
C∑

j=1

mj

m

K∑
i=1

mij

mj
log2

mij

mj
. (7)

where C is the number of clusters produced by SOM, K = 7, the number of
groups of animals in the zoo-dataset, mij is the number of animals in group i
that are clustered by SOM in cluster j, mj is the size of cluster j, and m is the
size of all clusters.

5 Results and Discussion

The results (Table 2) suggest that the graph-theoretical approach yields SOMs
having statistically significant lower entropy of clustering, quantization error,
and Davies-Bouldin index than binary encoding does. In contrast, the difference
in topographic error is not significant. Further, the results are invariant to the
two SOM-training algorithms, batch and sequence.

Referring to Table 2, A and B stand for the graph-theoretical approach and
binary encoding respectively, A < B denotes that the difference between the
2 Personal correspondence with the author of Generalizing SOM.
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two approaches is statistically significant at the one-tailed 5% significance level,
whereas N.S implies that a significant difference does not exist.

To compare the algorithmic complexity of the graph-theoretical approach with
that of GSOM [8], the paper assumes that GSOM is applied to the zoo-dataset,
and that GSOM uses this paper’s tree (Fig. 1) as its distance hierarchy. As
discussed in Sect. 2.2, GSOM entails the following three tasks: (i) calculate
distances from the root to all nodes, a level-order traversal of the tree has O(| V |)
complexity; (ii) find the all-pairs least common point (LCP), the current fastest
algorithm has O

(| V |2.575
)

complexity [15]; and (iii) calculate distances from
the root to all LCPs, this takes O (l), where l is the number of LCPs.

Therefore, the algorithmic complexity of GSOM is O
(| V |2.575

)
, and hence

higher than the quadratic complexity, O
(| V |2), of the graph-theoretical ap-

proach.

5.1 Critique

The proposed graph-theoretical approach is not impervious to criticism. Like
binary encoding, it increases the dimensionality of the input space in direct
proportion to the number of states a hierarchical variable has. In turn, the di-
mensionality of the search space increases exponentially with the dimensionality
of the input space, a phenomenon aptly named “the curse of dimensionality” [16,
p.160]. Further, it assumes that the hierarchical data are static, and hence a
deterministic approach is sufficient. To deal with this limitation, future research
may explore a probabilistic variant of the graph-theoretical approach.

6 Conclusions

The paper’s novelty and contribution lie in the development and application of
a data-preprocessing step that is based on graph theory and can extend SOM to
the domain of hierarchical data. The results suggest that the proposed graph-
theoretical approach has lower algorithmic complexity than Generalizing SOM,
and can yield SOM having significantly higher cluster validity than binary en-
coding does. Further, the graph-theoretical approach is not confined only to
SOM, but instead it can be used by any algorithm (e.g. k-means) to process hi-
erarchical data into a numerical representation. Future research may consider a
probabilistic variant of the graph-theoretical approach as well as its application
in the area of hierarchical clustering. Notwithstanding its limitations, the paper
presents the first attempt that uses graph theory to process hierarchical data
into a numerical representation for SOM-based clustering.
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