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Abstract. Swarm-based methods are promising nature-inspired tech-
niques. A swarm of stochastic agents performs the task of clustering
high-dimensional data on a low-dimensional output space. Most swarm
methods are derivatives of the Ant Colony Clustering (ACC) approach
proposed by Lumer and Faieta. Compared to clustering on Emergent
Self-Organizing Maps (ESOM) these methods usually perform poorly in
terms of topographic mapping and cluster formation. A unifying rep-
resentation for ACC methods and Emergent Self-Organizing Maps is
presented in this paper. ACC terms are related to corresponding mech-
anisms of the SOM. This leads to insights on both algorithms. ACC
can be considered to be first-degree relatives of the ESOM. This ex-
plains benefits and shortcomings of ACC and ESOM. Furthermore, the
proposed unification allows to judge whether modifications improve an
algorithm’s clustering abilities or not. This is demonstrated using a set
of critical clustering problems.

1 Introduction

Flocking behaviour of social insects has inspired various algorithms in numerous
research papers over the last decade due to the ability of simple interacting enti-
ties to exhibit sophisticated self-organization abilities. A particularly interesting
field of application is cluster analysis, i.e. the retrieval of groups of similar ob-
jects in high-dimensional spaces. The idea behind Ant Colony Clustering (ACC)
is that autonomous stochastic agents, called ants, move data objects on a low-
dimensional regular grid such that similar objects are more likely to be placed
on nearby grid nodes than dissimilar ones. This task is referred to as topographic
mapping.

In the following sections, the basic ACC algorithm by Lumer/Faieta is intro-
duced in a notation consistent with SOM for non-vectorial data, i.e. Dissimilarity-
SOM. A unifying representation for both methods is therefore derived in Section
3. Sections 4 and 5 describe how to improve topographic mapping and cluster anal-
ysis of ACC methods on basis of SOM. Finally, in Section 6 the effect of altered
objective functions is empirically verified.
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2 Ant Colony Clustering

The ACC method proposed by Lumer and Faieta [9] operates on a fixed regular
low-dimensional grid � ⊂ �2. A finite set of input samples X from a vector
space with norm ‖.‖ is projected onto the grid by m : X → �. The mapping m
is altered by autonomous stochastic agents, called ants, that move input samples
x ∈ X from m(x) to new location m′(x). Ants move randomly on neighbouring
grid nodes. Ants might pick input samples when facing occupied nodes and drop
input samples when facing empty nodes. Probabilities for picking and dropping
actions, respectively, are determined using objective function φ : �× X → �

+
0 ,

at which φ(x, i) denotes the average similarity between x ∈ X and input samples
located on the so-called perceptive neighbourhood around node i ∈ G. Usually,
the perceptive neighbourhood consists of σ2 ∈ {9, 25} quadratically arranged
nodes at which the ant is located in the center. The set of input samples mapped
onto the perceptive neighbourhood around i ∈ � is denoted with Nx(i) = {y ∈
X : y �= x, m(y) neighbouring i}.

φx(i) =
1
σ2

∑

y∈Nx(i)

(
1 − ‖x − y‖

α

)
(1)

ACC methods lead to a local sorting of input samples on the grid in terms of
similarities. Ants gather scattered input samples into dense piles. In literature,
it has been noticed that ACC derivatives are prone to produce too many and
too small clusters [1] [5]. For illustration see Figure 1.

Fig. 1. Typical result of ACC methods. From left to right: gaussian data with 4
clusters, initial mapping of data objects, dense clusters appear, too many clusters with
topological defects have finally emerged [1].

3 Analysis of Ant Colony Clustering by Means of
Dissimilarity-SOM

The Self-Organizing Batch Maps (Batch-SOM) and its derivatives are particu-
larly interesting for analyiss of Ant Colony Clustering (ACC) methods. Batch-
SOM consist of grid �, codebook vectors wi ∈ �n, i ∈ � and a mapping function
m : X → � with m(x) = arg mini∈� ‖x − wi‖. It was shown in [5] how the ob-
jective φ of each ant is related to m : X → � of Batch-SOM.
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The so-called Dissimiliarity-SOM [8], often referred to as Median SOM, is
a generalization of the Batch-SOM for nonvectorial input data. For the sake
of simplicity, let ‖x − y‖ ∈ �

+
0 denote the dissimiliarity of each x, y ∈ X .

Codebook vectors are updated according to the generalized median, i.e. wi =
argminx∈X Φx(i). Here, h : G × G → [0, 1] denotes the neighbourhood function
of SOM.

Φx(i) =
∑

y∈X

h(m(y), i) · ‖x − y‖ with
∑

y∈X

h(m(y), i) = 1 (2)

In the following, the mechanism of picking and dropping ants is no longer
subject of consideration. In [10] it was shown that collective intelligence can be
discarded in ACC systems, i.e. same results were achieved without ants but using
objective function φ directly for probabilistic cluster assignments. This simpli-
fication is evident: over a sufficient period of time, randomly moving ants may
select any arbitrary subset of input samples, but re-allocation through picking
and dropping depends on φ only. Probability of selection is the same on all input
samples such that ants might be omitted in favor of any other subset sampling
technique.

A meaningful symmetrical neighbourhood function h : � × � → [0, 1] for
ACC methods is defined according to the perceptive neighbourhood of ants, i.e.
h(i, j) is 1 if j ∈ � is located in the perceptive neighbourhood of node i ∈ �
and 0 elsewhere. Equation 3 reformulates the ants’ objective φ by incorporating
Φ (see Equation 2).

φx(i) =
|Nx(i)|

σ2
·
(

1 − Φx(i)
α

)
with Φx(i) =

∑
y∈X h(m(y), i) · ‖x − y‖

∑
y∈X h(m(y), i)

(3)

The ACC method uses a fixed neighbourhood function with small radius,
whereas Dissimilarity-SOM uses shrinking neighbourhood functions with large ra-
diuses. ACC has a probabilistic update of mapping m : X → �, whereas
Dissimilarity-SOM is deterministic. The objective function of ACC algorithms de-
composes into an output density term |N |

σ2 and a term 1− Φ
α related to topographic

quality. Therefore, the ACC algorithm is easily convertible into a special case of
Dissimilarity-SOM, and vice versa. For a brief overview of differences see Table 1.

Table 1. varieties of Dissimilarity-SOM and Ant Colony Clustering

Dissimilarity-SOM ACC

neighbourhood large small,
h : �×�→ [0, 1] shrinking fixed

update of m : X → � deterministic probabilistic

searching for global local
update of m : X → � � ⊂ �
objective function Φ |N|

σ2 (1 − Φ
α
)

termination cooling scheme never
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4 Improvement of Ant Colony Clustering

From Dissimilarity-SOM, minimization of Φ is known to produce sufficiently to-
pography preserving mappings m : X → �, e.g. when using Dissimilarity-SOM.
In contrast to that, the output density term |N |

σ2 has some major flaws. First, the
output density term leads to maximization of output space densities, instead of
preservation. Obtained mappings are, therefore, not related to the configuration
of available clusters in the input space. Traditional ACC algorithms are not al-
lowed to assign two or more objects to a single grid node (see Section 2) in order
to prevent the mapped clusters from collapsing into a single grid node. Due to
that, densities of input data can hardly be preserved on grid �. In comparison
with the topographic term, the output density term is much easier to maximize
and, therefore, will distort the objective function φ. Accounting of output den-
sities is prone to distort the formation of correct topographic mappings because
it is responsible for additional local optima of φ.
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(a) chainlink data (b) traditional ACC

(c) emergent ACC (d) emergent SOM

Fig. 2. ACC projects looped cluster structures on a toroid grid. (a) Chainlink data
from FCPS [11]. (b) Traditional ACC with small σ produces too many small clusters.
(c) Emergent ACC enables the formation of looped clusters. (d) Emergent SOM enables
the formation of looped clusters.
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The topographic term 1 − Φ′
α of the ACC objective function depends on the

shape of the neighbourhood function h : � × � → {0, 1}. Usually, neighbour-
hoods’ sizes are chosen as σ2 ∈ {9, 25}, i.e. the immediate neighbours. From
SOM it is known that the cooling scheme of the neighborhood radius vitally in-
fluences the obtained topographic mapping quality. (see [6] for details). A bigger
radius enables a more continuous mapping in the sense that proximities exist-
ing in the original data are visible on the grid. This is evident because smaller
neighbourhoods are more likely to exclude parts of a cluster.

In order to cope with the shortcomings mentioned above, we introduce the
Emergent Ant Colony Clustering method. An ACC method is said be be emer-
gent if it fulfills the following conditions:

– Ants’ modifications of mapping m : X → � is directed by minimization of
Φ

– Ants do not account for output densities.
– The perceptive neighbourhood of ants is not limited to immediate neighbours

on grid �. Instead, bigger neighbourhood radiuses are to be chosen in order
to obtain SOM-like mappings.

Figure 2 illustrates the ability of emergent ACC method to preserve even looped
input space clusters, which is hardly possible for traditional ACC.

5 Data Analysis with Emergent Ant Colony Clustering

Emergent ACC usually will provide an ESOM-like projection, i.e. input samples
are uniformly mapped onto the grid. See Figure 2 for illustration. In this case,
cluster retrieval cannot be achieved according to sparse regions dividing dense
clusters on the grid.

A promising technique for cluster retrieval is based on so-called U-Maps [12].
Arbitrary projections from normed vector spaces onto grid � ⊂ �

2 are trans-
formed into landscapes, so-called U-Maps. The U-Map technique assigns each
grid node a height value that represents the averaged input space distance to
its’ neighbouring nodes and codebook vectors, respectively. Clusters lead to val-
leys on U-Maps whereas empty input space regions lead to mountains dividing
the cluster valleys. This is illustrated in Figure 3 using Fisher’s well-known iris
data [3]. Traditional ACC produces too many valleys, whereas Emergent ACC
preserves cluster structures.

The U*C cluster algorithm uses the so-called watershed transformation to
retrieve cluster valleys on U-Maps. See [13] for details.

6 Experimental Settings and Results

In order to measure the distortion of a topographic mapping method in question,
a collection of fundamental clustering problems (FCPS) is used [11]. Each data
set represents a certain problem that arbitrary algorithms shall be able to handle
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(a) Traditional ACC (b) Emergent ACC

Fig. 3. Well known iris data [3]: setosa (×), versicolor (�), virginica (�). U-Maps
shown as islands generated from toroid grids. Dark shades of gray indicate high inter-
cluster distances. (a) Too many small clusters emerge from traditional ACC. (b) Emer-
gent ACC preserves three clusters after the same number of learning epochs.

when facing unknown real-world data. Here, traditional and emergent ACC are
tested on which one delivers the best topographic mapping.

A comprehensive overview on topographic distortion measurements can be
found in [4]. Here, the so-called minimal path length (MPL) measurement is used.

Fig. 4. Improvement of topographic quality measured by minimal path length method:
percental z-scores of traditional over emergent ACC. Emergent ACC leads to improve-
ments between 50% to 400% when compared to traditional ACC on different FCPS
data sets.
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It is an easy-to-compute measurement that sums up input space distances of grid-
neighbouring data objects and codebook vectors, respectively.

mpl =
∑

x∈X

1
|Nx|

∑

y∈Nx

‖x − y‖ (4)

Lower MPL values indicate less topographic distortion when moving on the grid
and, therefore, a more trustworthy topographic mapping. Each algorithm is run
several times with the same parametrization. MLP values indicate if accounting
for output densities assists the formation of good topographic mappings, or not.
All data sets from the FCPS collection were processed with the same parameters
established in literature, i.e. α = 0.5, σ2 = 25, k1 = 0.3 and k2 = 0.1 on a 64× 64
grid with 100 ants during 100000 iterations. The results are illustrated in Figure
4. Accounting for output densities leads to increasing MPL values on an average,
i.e. worsenings of topographic mappings. Significance has been confirmed using a
Kolmogorov-Smirnovtest on a α = 5% level. All obtained p-values are below 10−5.

7 Discussion

This work shows a previously unknown relation of two topographic mapping
techniques, namely Dissimilarity-SOM and Ant Colony Clustering (ACC). It is
based on the assumption [10] that stochastic agents, e.g. ants, are nothing more
than an arbitrary sampling technique that is to be omitted for further analysis
of formulae. This simplification is evident but may be invalid for stochastic
agents guided by more than just randomness and topographic distortion, e.g. ants
following pheromone trails. Our analysis of formulae does not cover algorithms
that are not ACC derivatives following the Lumer/Faieta scheme. In contrast
to hybrid approaches, like KohonAnts [2], our work creates a unifying basis
for comprehension and creation of techniques from the fields of artificial neural
networks and swarm-intelligence.

Minimal path lengths (MPL), as proposed in Section 6, are well-known topo-
graphic distortion measures. The length of input space paths is normalized by
the cardinality |Nx| of the corresponding grid neighbourhood, i.e. the number
of objects mapped onto the grid neighbourhood. This is supposed to decrease
error values of locally dense mappings, as produced by traditional ACC, because
small radial neighbourhoods usually do not cover objects of another cluster,
since locally dense mappings imply sparse dividing grid regions around clusters.
Nevertheless, traditional ACC produces bigger MPL errors than emergent ACC
that is not accounting for densities. We conclude that the topographic mapping
quality is improved beyond our empirical evaluation.

Traditional and emergent ACC methods do not converge due to the archi-
tecture of stochastic agents. Instead, they enable perpetual machine learning.
ACC methods are, therefore, to be favored over traditional methods, like Self-
Organizing Maps and hierarchical clustering, when dealing with incremental
learning tasks.
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8 Summary

This work continues our last publication [5] at which the Ant Colony Clustering
(ACC) method by Lumer and Faieta [9] was related to Self-Organizing Batch
Maps [7]. The mechanism of picking and dropping ants was omitted in favor
of a formal analysis of the underlying formulae and comparison with Kohonen’s
Dissimilarity-SOM. It could be shown that a unifying framwork for both methods
does exist in terms of a common topographic error function. The ACC method is
to be considered a probabilistic, first-class relative of Batch-SOM and, especially,
Dissimilarity-SOM. The behaviour of ACC methods becomes explainable on that
unifying basis.

ACC methods exhibit poor clustering abilities because of distorted topo-
graphic mappings. Improvements of topographic mapping were derived by means
of SOM architecture. Perceptive areas are to be increased, and accounting for
density of mapped data is futile. The novel method Emergent ACC does not pro-
duce dense clusters any more but uniformly distributed, SOM-like projections.
Due to that, clusters are to be retrieved using U-Map technology. As predicted by
our theory, an empirical evaluation showed on critical clustering problems that
disregarding the density of mapped data improves the quality of topographic
mapping despite of unfavorable settings.
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