


Lecture Notes in Computer Science 5629
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



José C. Príncipe
Risto Miikkulainen (Eds.)

Advances in
Self-Organizing Maps

7th International Workshop, WSOM 2009
St. Augustine, FL, USA, June 8-10, 2009
Proceedings

13



Volume Editors

José C. Príncipe
Computational NeuroEngineering Laboratory
University of Florida, Gainesville, FL 32611, USA
E-mail: principe@cnel.ufl.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas, Austin, TX 78712-0233, USA
E-mail: risto@cs.utexas.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.1, I.2, D.2, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-02396-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02396-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12697267 06/3180 5 4 3 2 1 0



 

 

Preface 

These proceedings contain refereed papers presented at the 7th WSOM held at the 
Casa Monica Hotel, St. Augustine, Florida, June 8–10, 2009. We designed the work-
shop to serve as a regular forum for researchers in academia and industry who are 
interested in the exciting field of self-organizing maps (SOM). The program includes 
excellent examples of the use of SOM in many areas of social sciences, economics, 
computational biology, engineering, time series analysis, data visualization and com-
puter science as well a vibrant set of theoretical papers that keep pushing the envelope 
of the original SOM.    

Our deep appreciation is extended to Teuvo Kohonen and Ping Li for the plenary 
talks and Amaury Lendasse for the organization of the special sessions. Our sincere 
thanks go to the members of the Technical Committee and other reviewers for their 
excellent and timely reviews, and above all to the authors whose contributions made 
this workshop possible. Special thanks go to Julie Veal for her dedication and hard 
work in coordinating the many details necessary to put together the program and local 
arrangements.  
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Batch-Learning Self-Organizing Map for Predicting 
Functions of Poorly-Characterized Proteins Massively 

Accumulated 

Takashi Abe1, Shigehiko Kanaya2, and Toshimichi Ikemura1 

1 Nagahama Institute of Bio-Science and Technology, Tamura-cho 1266,  
Nagahama-shi, Shiga-ken 526-0829, Japan 

{takaabe,t_ikemura}@nagahama-i-bio.ac.jp 
2 Nara Institute of Science and Technology, Ikoma, Japan 

skanaya@gtc.aist-nara.ac.jp 

Abstract. As the result of the decoding of large numbers of genome sequences, 
numerous proteins whose functions cannot be identified by the homology 
search of amino acid sequences have accumulated and remain of no use to 
science and industry. Establishment of novel prediction methods for protein 
function is urgently needed. We previously developed Batch-Learning SOM 
(BL-SOM) for genome informatics; here, we developed BL-SOM to predict 
functions of proteins on the basis of similarity in oligopeptide composition of 
proteins. Oligopeptides are component parts of a protein and involved in 
formation of its functional motifs and structural parts. Concerning oligopeptide 
frequencies in 110,000 proteins classified into 2853 function-known COGs 
(clusters of orthologous groups), BL-SOM could faithfully reproduce the COG 
classifications, and therefore, proteins whose functions have been unidentified 
with homology searches could be related to function-known proteins. BL-SOM 
was applied to predict protein functions of large numbers of proteins obtained 
from metagenome analyses.  

Keywords: batch-learning SOM, oligopeptide frequency, protein function, 
bioinformatics, high-performance supercomputer. 

1   Introduction 

Unculturable environmental microorganisms should contain a wide range of novel 
genes of scientific and industrial usefulness. Recently, a sequencing method for mixed 
genome samples directly extracted from environmental microorganism mixtures has 
become popular: metagenome analysis. A large portion of the environmental sequences 
thus obtained is registered in the International DNA Sequence Databanks 
(DDBJ/EMBL/GenBank) with almost no functional and phylogenetic annotation, and 
therefore, in the least useful manner. Homology searches for nucleotide and amino-acid 
sequences, such as BLAST, have become widely accepted as a basic bioinformatics 
tools not only for phylogenetic characterization of gene/protein sequences, but also for 
prediction of their biological functions when genomes and genomic segments are 
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decoded. Whereas the usefulness of the sequence homology search is apparent, it has 
became clear that homology searches can predict the protein function of only 50% or 
fewer of protein genes, when a novel genome or mixed genomes from environmental 
samples are decoded. In order to complement the sequence homology search, methods 
based on different principles are urgently required for predicting protein function. 

Self-Organizing Map (SOM) is an unsupervised neural network algorithm devel-
oped by Kohonen and his colleagues [1-3], which provides an efficient and easy 
interpretation of the clustering of high-dimensional complex data using visualization 
on a two-dimensional plane. About 15 years ago, Ferran et al. [4] performed the 
pioneering and extensive SOM analysis of dipeptide composition in approximately 
2000 human proteins stored in the SwissProt Database and reported clustering of the 
proteins according to both biological function and higher-order structure. Although 
this unsupervised learning method can be considered useful for predicting protein 
functions, the study was conducted long before decoding of genome sequences, and 
proteins of unknown function were rarely recognized at that time. Furthermore, 
because a long computation time was required for the SOM analysis of the dipeptide 
composition (400 dimensional vectorial data) even using high-performance computers 
at that time and because the final map was dependent on both the order of data input 
and the initial conditions, the conventional SOM method has rarely been used for 
prediction of protein function. 

Previously, we developed a modified type SOM (batch-learning SOM: BL-SOM) 
for codon frequencies in gene sequences [5,6] and oligonucleotide frequencies in 
genome sequences [7-9] that depends on neither the order of data input nor the initial 
conditions. BL-SOM recognizes species-specific characteristics of codon or 
oligonucleotide frequencies in individual genomes, permitting clustering of genes or 
genomic fragments according to species without the need for species information 
during the BL-SOM learning. Various high-performance supercomputers are now 
available for biological studies, and the BL-SOM developed by our group is suitable 
for actualizing high-performance parallel-computing with high-performance 
supercomputers such as the Earth Simulator “ES” [10-12]. We previously used the 
BL-SOM for tetranucleotide frequencies for phylogenetic classification of genomic 
fragment sequences derived from mixed genomes of environmental microorganisms 
[13-16]. A large-scale phylogenetic classification was possible in a systematic way 
because genomic sequences were clustered (self-organized) according to species 
without species information or sequence alignment [7-9].  

In the present report, we describe use of the BL-SOM method for prediction of 
protein function on the basis of similarity in composition of oligopeptides (di-, tri- 
and tetrapeptides in this study) of proteins. Oligopeptides are elementary components 
of a protein and are involved in the formation of functional motifs and structural 
organization of proteins. BL-SOM for oligopeptides may extract characteristics of 
oligopeptide composition, which actualize protein structure and function, and 
therefore, separate proteins according to their functions. 

Sequences of approximately 8 million proteins are registered in the public 
databases, and about 500,000 proteins have been classified into approximately 5000 
COGs (clusters of orthologous groups of proteins), which are the functional categories 
identified with bidirectional best-hit relationships between the completely sequenced 
genomes using the homology search of amino acid sequences [17]. The proteins 
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belonging to a single COG exhibit significant homology of amino acid sequences over 
the whole range of the proteins and most likely have the same function. Therefore, 
COG is undoubtedly a useful categorization of proteins according to function while the 
biological functions of a half of COGs have not yet been identified conclusively. In the 
present study, we initially focused on oligopeptide compositions in the 110,000 
proteins classified into 2853 function-known COGs and prepared BL-SOMs under 
various conditions to search for conditions that would faithfully reproduce the COG 
classification. Then, we applied the BLSOM method to predict the functions of a large 
number of proteins obtained from metagenome analyses. 

2   Methods 

SOM implements nonlinear projection of multi-dimensional data onto a two-
dimensional array of weight vectors, and this effectively preserves the topology of the 
high-dimensional data space [1-3]. We modified previously the conventional SOM for 
genome informatics on the basis of batch-learning SOM (BL-SOM) to make the 
learning process and resulting map independent of the order of data input [5-8]. The 
initial weight vectors were defined by PCA instead of random values, as described 
previously [6]. Weight vectors (wij) were arranged in the 2D lattice denoted by i (= 0, 
1, . . . , I - 1) and j (= 0, 1, . . . , J - 1). I was set as 300 in Fig 1, and J was defined by 
the nearest integer greater than (s2/s1) × I; s1 and s2 were the standard deviations of 
the first and second principal components, respectively. Weight vectors (wij) were set 
and updated as described previously [5-8]. The BLSOM was suitable for actualizing 
high-performance parallel-computing with high-performance supercomputers. Using 
136 CPUs of “the Earth Simulator”, calculations in this study could be performed 
primarily within two days. 

Amino acid sequences were obtained from the NCBI COG database (http:// 
www.ncbi.nlm.nih.gov/COG/). Proteins shorter than 200 amino acids in length were  
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not included in the present study. We provided a window of 200 amino acids that is 
moved with a 50-amino acid step for proteins longer than 200 amino acids. To reduce 
the computation time, BL-SOM was constructed with tripeptide frequencies of the 
degenerate eleven groups of residues; {V, L, I}, {T, S}, {N, Q}, {E, D}, {K, R, H}, 
{Y, F, W}, {M}, {P}, {C}, {A} and {G}. BL-SOM was also constructed with 
tetrapeptide frequencies of degenerate six groups of residues; {V, L, I, M}, {T, S, P, 
G, A}, {E,D,N,Q}, {K,R,H}, {Y,F,W} and {C}. 

3   Results and Discussion 

3.1   BL-SOMs Constructed with Proteins Belonging to COGs 

For the test dataset to examine whether proteins are clustered (i.e., self-organized) 
according to function by BL-SOM, we chose proteins that had been classified into 
function known COGs by NCBI [17]. Using BL-SOM, dipeptide composition (202 = 
400 dimensional vectorial data) was investigated in 110,000 proteins belonging to the 
2853 function-known COGs. In addition to this BL-SOM for the dipeptide 
composition of 20 amino acids (abbreviated as Di20-BLSOM), the BL-SOM for the 
dipeptide or tripeptide composition were constructed after categorizing amino acids 
into 11 groups based on the similarity of their physicochemical properties, 112 (=121) 
or 113 (=1331) dimensional data (abbreviated as Di11- or Tri11-BLSOM, 
respectively). BL-SOM was also constructed for the tetrapeptide composition after 
categorization into 6 groups, 64 (=1296) dimensional data (abbreviated as Tetra6-
BLSOM). These four different BL-SOM conditions were examined to establish which 
gave the best accuracy and to what degree similar results were obtained among the 
four conditions. It should be noted that BL-SOMs for much higher dimensional data, 
such as those for the tripeptide composition of 20 amino acids (8000-dimensional 
data) and for the tetrapeptide composition after grouping 11 categories (14641-
dimensional data), was difficult in the present study because of the limitations of ES 
resources available to our group.  

In order to introduce a method that is less dependent on the sequence length of 
proteins, we provided a window of 200-amino acids that is moved with a 50-amino 
acid step for proteins longer than 200 amino acids, and the BL-SOM was constructed 
for these overlapped 200-amino acid sequences (approximately 500,000 sequences in 
total). Introduction of a window with a shifting step enabled us to analyze both 
multifunctional multidomain proteins primarily originating from the fusion of distinct 
proteins during evolution and smaller proteins, collectively. The 200-amino acid 
window was tentatively chosen in the present study because sizes of fictional domains 
of a wide range of proteins range from 100 to 300 amino acids.  

One important issue of the present method is at what level each lattice-point on a 
BL-SOM contains 200-amino acid fragments derived from a single COG. The 
number of the function-known COG categories is 2835, and the size of the BL-SOM 
was chosen so as to provide approximately eight fragments per lattice-point on 
average. If fragments were randomly chosen, the probability that all fragments 
associated with one lattice-point were derived from a single COG by chance should 
be extremely low, e.g. (1/2853)8 =2.3×10-28, while ensuring that this value depends on 
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the total number of fragments derived from proteins belonging to the respective COG. 
We designate here the lattice-point that contained fragments derived only from a 
single COG category as a “pure lattice-point”. 

We compared the occurrence level of pure lattice-points among four different BL-
SOMs. Although no COG information was given during BL-SOM learning, a high 
percentage of pure lattice-points (i.e., correct self-organization of sequences according 
to the COG category) was obtained (Fig. 1), despite the fact that the occurrence 
probability of a pure lattice-point as an accidental event is extremely low. The highest 
occurrence level of pure lattice-points was observed on the Tri11-BLSOM; 
approximately 45% of lattice-points on the Tri11-BLSOM contained sequences 
derived from only a single COG (Fig. 1). To graphically show the difference among 
these BL-SOMs, pure lattice-points were colored in red (Fig. 2A-C). The finding that 
the COG clustering (self-organization) with high accuracy was achieved indicates 
BL-SOM to be a powerful tool for function prediction of function-unknown proteins. 

In Fig. 3, the number of sequences at each pure lattice-point on the Tri11-BLSOM 
was shown with the height of the vertical bar with a color representing each of the  
 

(A) Di20-BLSOM (B) Tri11-BLSOM

■：pure lattice-point.  ■： lattice-point with seque nces having two C OGs.  ■： lattice-
point with sequences more than t hree COGs

(C) Tetra6-BLSOM

 

Fig. 2. The distribution of pure lattice-points colored in red 

■ [E] COG0133 Tryptophan synthase beta chain
■[J] COG0050 GTPases - translation elongation factors
■[J] COG0752 Glycyl-tRNA synthetase, alpha subunit
■[H] COG0214 Pyridoxine biosynthesis enzyme
■[H] COG0408 Coproporphyrinogen III oxidase
■[P] COG3627 Uncharacterized enzyme of phosphonate metabolism
■[E] COG0804 Urea amidohydrolase (urease) alpha subunit
■[M] COG3064 Membrane protein involved in colicin uptake
■[C] COG0056 F0F1-type ATP synthase, alpha subunit
■[N] COG5651 PPE-repeat proteins
■[L] COG5433 Transposase
■[G] COG1980 Archaeal fructose 1,6-bisphosphatase
■[C] COG1049 Aconitase B
■[P] COG0753 Catalase
■[M] COG3203 Outer membrane protein (porin)
■[G] COG2115 Xylose isomerase
■[L] COG2826 Transposase and inactivated derivatives, IS30 family
■[L] COG4584 Transposase and inactivated derivatives
■[C] COG1062 Zn-dependent alcohol dehydrogenases, class III
■[C] COG0055 F0F1-type ATP synthase, beta subunit

(C)  Tetra6-BLSOM

(A)  Di20-BLSOM (B)  Tri11-BLSOM

 
Fig. 3. Clustering of protein sequences according to COG (20 samples) 
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20 COG examples. Not only for these 20 examples, but also for a large portion of 
COG categories, sequences belonging to a single COG were localized in the 
neighboring points, resulting in a high peak composed of neighboring, high bars. In 
Fig. 3, a few high peaks with the same color located far apart from each other are also 
observed. Detailed inspection showed that these detached high peaks were mostly due 
to the different 200-amino acid segments (e.g., anterior and posterior portions) 
derived from one protein, which have distinct oligopeptide compositions and possibly 
represented distinct structural and functional domains of the respective protein. This 
type of major but distinct peaks appears to be informative for the prediction of 
functions of multifunctional multidomain proteins.  

3.2   Function Prediction of Proteins Obtained from Metagenome Analyses 

Most environmental microorganisms cannot be cultured under laboratory conditions. 
Genomes of the unculturable microorganisms have remained mostly uncharacterized 
but are believed to contain a wide range of novel protein genes of scientific and 
industrial usefulness. Metagenomic approaches that decode the sequences of the 
mixed genomes of uncultured environmental microbes [18-20] have been developed 
recently for finding a wide variety of novel and industrially useful genes. Venter et al. 
[21] applied large-scale metagenome sequencing to mixed genomes collected from 
the Sargasso Sea near Bermuda and deposited a large number of sequence fragments 
in the International DNA Databanks. 

The most important contribution of the present alignment-free and unsupervised 
clustering method, BLSOM, should be the prediction of the functions of an 
increasingly large number of function-unknown proteins derived from the less 
characterized genomes, such as those studied in the metagenomic approaches. To test 
the feasibility of BL-SOM for function prediction of environmental sequences, we 
searched in advance the Sargasso proteins that showed significant global homology 
with the NCBI COG proteins by using the conventional sequence homology search. 
Based on a criterion that in 80% or more of the region, 80% or more identity of the 
amino acid sequence was observed, 3924 Sargasso proteins (> 200 amino acids) could 
be related to NCBI COG categories (designated Sargasso COG sequences). Then, we 
mapped the 200-amino acid fragments derived from these Sargasso COG proteins 
onto Di20- and Tri11-BLSOMs, which were previously constructed with NCBI COG 
sequences in Figs. 1 and 2. For each lattice point on which Sargasso COG fragments 
were mapped, the most abundant NCBI COG sequences were identified, and the 
mapped Sargasso segments were tentatively assumed to belong to this most abundant 
NCBI COG category. After summing up these tentative COGs for each Sargasso 
protein, individual Sargasso proteins were finally classified into one NCBI COG 
category, if more than 60% of the 200-amino acid fragments derived from one 
Sargasso protein gave the same COG category. By mapping on Tri11-, Di20- or Tet6-
BLSOM, 87.5, 86.8 or 79.0% of the 3924 Sargasso COG proteins showed the COG 
category identical to that had been identified by the sequence homology search in 
advance. The highest identity level was found on Tri11-BLSOM. In Fig. 4, the 
number of Sargasso fragments thus classified into COGs on Di20-, Tri11- and Tetra6-
BLSOM was shown by the height of the vertical bar. In the next step, when the false 
prediction for the Sargasso COG proteins was checked in detail, the pairs of real and  
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(A)  Di20-BLSOM

(B)  Tri11-BLSOM

(C)  Tetra6-BLSOM

 
Fig. 4. Mapping of the Sargasso COG fragments on Di20- (A), Tri11- (B) and Tetra6- (C) 
BLSOM. The height of the vertical bar shows the number of fragments. 

 

falsely-assigned COGs corresponded to those that have the functions closely related 
with each other, such as those with paralogous relationships. According to the 
definition of COG (clusters of orthologous groups of proteins), paralogous gene 
proteins should belong to different COGs in spite of the similarity of functions. COG 
categorization appears be too strict to be used for function predictions of a wide 
variety of proteins. 

In the final analysis, we mapped the residual Sargasso proteins, which could not be 
classified into NCBI COGs using the sequence homology search, onto Di20-, Tri11- 
and Tetra6-BLSOMs. Approximately 15% of the Sargasso proteins (i.e., 
approximately 90,000 proteins) were associated with an NCBI COG category. For 
Sargasso proteins for which the consistency of the predicted function is obtained by 
separate analyses of di-, tri- and tetrapeptide frequencies, the reliability of the 
prediction should be very high. We plan to publicize the results of the assignments 
obtained concordantly with three BLSOM conditions (Tri11-, Di20- and Tetra6-
BLSOMs).  

To identify functions of a large number of function-unknown proteins accumulated 
in databases systematically, we have to construct a large scale-BL-SOM in advance 
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that analyzes all function-known proteins available in databases utilizing a high-
performance supercomputer such as ES [22,23]. This approach should serve as a new 
and powerful strategy to predict functions of a large number of novel proteins 
collectively, systematically and efficiently. The BLSOM data obtained by high-
performance supercomputers are unique in fields of genomics and proteomics and 
provide a new guideline for research groups, including those in industry, for the study 
of function identification of novel genes through experiment. 
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Abstract. We propose Merge Growing Neural Gas (MGNG) as a novel
unsupervised growing neural network for time series analysis. MGNG
combines the state-of-the-art recursive temporal context of Merge Neu-
ral Gas (MNG) with the incremental Growing Neural Gas (GNG) and
enables thereby the analysis of unbounded and possibly infinite time
series in an online manner. There is no need to define the number of
neurons a priori and only constant parameters are used. In order to fo-
cus on frequent sequence patterns an entropy maximization strategy is
utilized which controls the creation of new neurons. Experimental results
demonstrate reduced time complexity compared to MNG while retaining
similar accuracy in time series representation.

Keywords: time series analysis, unsupervised, self-organizing, incre-
mental, recursive temporal context.

1 Introduction

Time series represent the vast majority of data in everyday life and their handling
is a key feature of living organisms. Automatic processing of sequential data has
received a broad interest in action recognition, DNA analysis, natural language
processing and CRM systems, to name just a few.

The analysis of time series aims at two main goals, namely the identification
of the nature of the underlying phenomenon and the forecasting of future values.
Both goals depend upon a good representation of sequential patterns observed
from a given time series. One approach, that has proven to be successful, is to
build a temporal quantization of sequences in order to form a compact represen-
tation in an unsupervised way.

We propose Merge Growing Neural Gas (MGNG) as a recursive growing self-
organizing neural network for time series analysis. MGNG extends the state-
of-the-art Merge Neural Gas (MNG) [1] to an incremental network by utilizing
Growing Neural Gas (GNG) [2]. The theoretically founded recursive temporal
context of MNG represents the input history as an exponentially decayed sum
and is inherited for MGNG.

MGNG allows for online quantization of time series in previously unknown
and possibly infinite data streams by the use of constant parameters only. There’s

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 10–18, 2009.
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no need to know the number of neurons in advance due to the growing of the
network. The proposed algorithm exhibits faster runtime performance than
MNG while keeping similar accuracy in the time series representation.

The remainder of the paper is organized as follows: After a review of related
work in unsupervised time series analysis in Section 2, the MGNG algorithm is
explained in Section 3 in detail. We evaluate the performance of the proposed
approach in three experiments comparing our results with MNG and other mod-
els in Section 4. Conclusions and future prospects round off the work in Section
Section 5.

2 Related Work

Based on well known unsupervised models like the Self Organizing Map (SOM)
[3] and Neural Gas (NG) [4] several extensions have been proposed for sequential
input data. Common approaches use hierarchies [5], non-Euclidean sequence
metrics [6], time-window techniques [4], mapping to spatial correlations [7] and
there exist a wider field of recursive sequence models.

Recursive sequence models extend unsupervised neural networks by recur-
sive dynamics such as leaky integrators [8]. Hammer et al. give an overview
over recursive models [9] and present a unifying notation [10]. Temporal Koho-
nen Map (TKM) [11], Recurrent SOM (RSOM) [12], Recursive SOM (RecSOM)
[13], SOM for structured data (SOM-SD) [14], Merge SOM (MSOM) and Merge
Neural Gas (MNG) [1] represent popular recursive models which have been ap-
plied in several applications [15,16,17,18,19]. The specific models differ mainly
in their internal representation of time series, which influences the capacity of
the model, the flexibility with respect to network topology and the processing
speed. MNG has shown superior performance to the other recursive models for
acceptable time complexity.

All extensions towards quantization of temporal data have in common that
the optimal number of neurons has to be known in advance. However, too many
neurons waste resources and may lead to overfitting and too less neurons cannot
represent the input space well enough and might therefor lead to high quantiza-
tion errors.

Growing Neural Gas (GNG) was introduced by Fritzke [2] as an incremental
unsupervised neural network for non-temporal data. Starting with two neurons
GNG grows in regular time intervals up to a maximum size. Connections between
neurons are created by topology preserving Competitive Hebbian Learning [20].
Only the best matching neuron and its direct topological neighbors are updated
for each input signal leading to lower time complexity than SOM or NG where
the whole network is updated. All used learning parameters are constant and
enable the handling of infinite input streams. Also the variant GNG-U has been
introduced for non-stationary data distributions [21].

Kyan and Guan proposed Self-Organized Hierarchical Variance Map (SO-
HVM) [22] as another incremental network that unfortunately lacks the capabil-
ity of online processing due to declining parameters but shows better accuracy
with a higher complexity than GNG.
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To the best of our knowledge there exists no growing model which utilizes
recursive dynamics and their associated advantages yet.

3 Merge Growing Neural Gas

Merge Growing Neural Gas transfers the features of GNG into the domain of
time series analysis by utilizing the state-of-the-art temporal dynamics of MNG.

MGNG is a self-organizing neural network consisting of a set of neurons K
which are connected by edges E . Each neuron n ∈ K comprises of a weight vector
wn representing the current time step and a context vector cn representing all
past time steps of a sequence, both having the dimensionality of the input space.

An input sequence x1, . . . ,xt is assigned to the best matching neuron (also
called winner or best matching unit) by finding the neuron n with lowest distance
dn in time step t:

dn(t) = (1 − α) · ‖xt − wn‖2 + α · ‖Ct − cn‖2 (1)

The parameter α ∈ [0, 1] weights the importance of the current input signal over
the past. Ct is called the global temporal context and is computed as a linear
combination (merge) of the weight and context vector from the winner r of time
step t − 1:

Ct := (1 − β) · wr + β · cr (2)

The parameter β ∈ [0, 1] controls the influence of the far over the recent past
and C1 := 0.

When the network is trained, Ct converges to the optimal global temporal
context vector Copt

t that can be written as [1]:

Copt
t :=

t−1∑
j=1

(1 − β) · βt−1−j · xj (3)

The training algorithm for MGNG is depicted in Figure 1. Hebbian learning
takes place by adapting the winner neuron towards the recent input signal xt and
the past Ct based on the learning rate εb. Also, the winner’s direct neighbors are
adapted using the learning rate εn (see line 13). The connection between the best
and second best matching unit is created or refreshed following a competitive
Hebbian learning approach (see line 8 and 9). All other connections are weakened
and too infrequent connections are deleted depending on γ (see line 10 and 11).
The network grows at regular time intervals λ up to a maximum size θ by the
insertion of new nodes based on entropy maximization (see lines 15a-e).

3.1 Entropy Maximization

In time series analysis we are usually interested in a representation of frequent
sequence patterns. This is achieved by an entropy maximization strategy for
node insertion because the entropy of a network is highest if the activation of
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1. time variable t := 1
2. initialize neuron set K with 2 neurons having counter e := 0 and

random weight and context vectors

3. initialize connection set E ⊆ K ×K := ∅
4. initialize global temporal context C1 := 0
5. read / draw input signal xt

6. find winner r := arg minn∈K dn(t)
and second winner s := arg minn∈K\{r} dn(t)
where

dn(t) = (1 − α) · ‖xt − wn‖2 + α · ‖Ct − cn‖2

7. increment counter of r: er := er + 1
8. connect r with s: E := E ∪ {(r, s)}
9. age(r,s) := 0
10. increment the age of all edges connected with r

age(r,n) := age(r,n) + 1 (∀n ∈ Nr \ {s})
11. remove old connections E := E \ {(a, b)|age(a,b) > γ}
12. delete all nodes with no connections

13. update neuron r and its direct topological neighbors Nr:

wr := wr + εb · (xt − wr) and cr := cr + εb · (Ct − cr)

∀n ∈ Nr : wn := wn + εn · (xt − wi) and cn := cn + εn · (Ct − ci)

14. calculate the global temporal context for the next time step

Ct+1 := (1 − β) · wr + β · cr

15. create new node if t mod λ = 0 and |K| < θ

a. find neuron q with the greatest counter: q := arg maxn∈K en

b. find neighbor f of q with f := arg maxn∈Nq
en

c. initialize new node l
K := K ∪ {l}

wl := 1
2

(wq + wf )

cl := 1
2

(cq + cf )

el := δ · (ef + eq)

d. adapt connections: E := (E \ {(q, f)}) ∪ {(q, n), (n, f)}
e. decrease counter of q and f by the factor δ

eq := (1 − δ) · eq

ef := (1 − δ) · ef

16. decrease counter of all neurons by the factor η:

en := η · en (∀n ∈ K)

17. t := t + 1
18. if more input signals available goto step 5 else terminate

Fig. 1. Pseudocode for training of Merge Growing Neural Gas (MGNG)
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all neurons is balanced. At high entropy more neurons are used for frequent
sequences reducing the representation capacity for rare ones. This helps to fo-
cus on quantization of important information beside the usually combinatorial
explosion of time series.

Following Fritzke’s [23] proposed strategy we insert a new node in regions with
high activation frequency leading to an increase of the entropy of the network.
Frequency is tracked by a counter of every neuron that is incremented every time
the neuron is selected as the winner (see line 7). New nodes are inserted between
the most active neuron q and its most frequent topological neighbor f reducing
the likelihood of both nodes q and f to be selected as the winner and therefor
increasing the overall entropy of the network. The new node l is initialized as
the mean of the two selected nodes and inserted in-between them. The counters
of q and f are reduced to reflect the expected decrease of activation while the
new neuron takes over this activation. The parameter δ controls the amount
of the activation shift (see lines 15a-e). All counters are subject to exponential
decay by the parameter η in order to give recent changes a higher relevance (see
line 16). To further increase the entropy, nodes with no connections are deleted
because the last selection as the first or second best matching unit was too long
ago (see line 12).

In the entropy maximization strategy of MNG [1] the parameter α of the
distance function (see eq. (1)) is gradually increased and decreased based on the
entropy of the network describing a zigzag curve with diminishing amplitude.
This results in a training based alternately on weight and context vectors and
unfortunately causes a temporary destabilization of the network for extreme
values of α close to one, because winner selection is based on the past only
omitting the recent time step of a sequence. Our entropy maximization strategy
avoids these problems and is suitable for an online learning setting with constant
parameters only.

4 Experimental Results

Three experiments were conducted to evaluate MGNG’s performance in tempo-
ral quantization, density estimation and representation capacity.

4.1 Mackey Glass

The Mackey Glass time series is a 1-dimensional, continuous and chaotic function
defined by the differential equation dx

dτ = −0.1x(τ)+ 0.2x(τ−17)
1+x(τ−17)10 and is commonly

used to evaluate the temporal quantization of recursive models [13,1,24].
The experiment was conducted on the models SOM, NG, GNG, MNG and

MGNG which were trained with a time series of 150, 000 elements. After training,
the temporal quantization error [13] for up to 30 past time steps into the past
was calculated by re-inserting the time series and saving the winner unit for each
time step without modification of the network.

MGNG was configured using the following parameters: α = 0.5, β = 0.75,
θ = 100, λ = 600, γ = 88, εb = 0.05, εn = 0.0006, δ = 0.5, η = 0.9995. We
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Fig. 2. Experimental results for the Mackey Glass time series

used the same α and β for MNG and inherited the other parameters from [1].
Analogous parameters have been used for the non-temporal models SOM, NG
and GNG, where a 10 to 10 rectangular lattice was used for the SOM.

Figure 2 visualizes the temporal quantization error of the models for up to 30
time steps into the past.

MNG and MGNG have learned the temporal context and show a similar quan-
tization performance. However MGNG required just 8,018s for the computation
in contrast to 20,199s needed by MNG. The runtime advantage of MGNG is
based on the underlying GNG model, which in comparison to NG requires less
adaptions for each input signal.

Results for the recursive models RSOM, RecSOM and SOM-SD can be ob-
tained from [8]. As expected they are superior to non-temporal models SOM,
NG and GNG, but their performance lies below MNG’s and MGNG’s.

4.2 Binary Automata

The Binary automaton experiment has been proposed by Voegtlin [13] in order to
evaluate the representation capacity of temporal models. The experiment uses a
Markov automaton with states 0 and 1 and the probabilities P (0) = 4

7 , P (1) = 3
7 ,

P (0|1) = 0.4, P (1|1) = 0.6, P (1|0) = 0.3, P (0|0) = 0.7. A sequence with 106

elements was generated and trained in a network with 100 neurons. After training
the winner units for the 100 most probable sequences are determined and for
multiple winners only the longest sequence is associated. An optimal result would
be achieved if each of the 100 sequences has an unique winner. The experiment
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was carried out with MNG and MGNG using α = 0.5, β = 0.45 and the other
parameters are inherited from the previous experiment.

MGNG shows a slight improvement against MNG in the representation ca-
pacity and a clear advantage in computation time. A total number of 64 longest
sequences could be discriminated by MGNG requiring 69,143s and 62 sequences
were discriminated by MNG in 131,177s.

However, both models cannot discriminate all 100 sequences, because recur-
sive models that represent the temporal context as a weighted sum cannot dis-
criminate between sequences with repeated ’0’ signals (such as: 0, 00, 0000...0).
Choosing other values like ’1’ and ’2’ would improve the results.

4.3 Noisy Automata

The noisy automaton experiment originates from Hammer et al. [24] and its
goal is to evaluate the density estimating capabilities of a temporal model by
reconstructing the transition probabilities of a second order Markov model. Two-
dimensional input signals are generated from three normal distributions with the
means a = (0, 0), b = (1, 0) and c = (0, 1) and a common standard deviations
σ. Figure 3 visualizes the Markov automaton where the transition probabilities
can be configured with the parameter x.

In the first part, the experiment was carried out with different transition
probabilities x ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and with a constant σ =
0.1 using a total count of 106 input signals. In the second part x = 0.4 was
set constant while different σ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} were used. MNG was
configured with α = 0 and β = 0.5 MGNG with α = 0.5 and the same β. The
other parameters are equal to the previous experiments.

The transition probabilities are reconstructed based on the backtracking
method described in [24]. As can be seen in Tables 1(a) and 1(b) the transi-
tion probabilities for both MNG and MGNG could be reconstructed accurately
in the first part of the experiment. In the second part, MNG shows better results
for σ > 0.3. However unlike MNG, MGNG is able to identify clusters without any

Fig. 3. Transition probabilities of the
noisy automaton

Fig. 4. Kamada-Kawai based MGNG
Topology for x = 0.5
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Table 1. Experimental results for the noisy automaton experiment

(a) MNG varying x and σ separately.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.4
σ 0.1 0.2 0.3 0.4 0.5

P (a|ba) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.203 0.227
P (b|ba) 0.0 0.11 0.211 0.31 0.399 0.513 0.595 0.687 0.791 0.471 0.312 0.515 0.248
P (c|ba) 1.0 0.889 0.788 0.689 0.6 0.48 0.404 0.312 0.208 0.528 0.687 0.28 0.523
P (a|ca) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.122 0.0 0.0
P (b|ca) 1.0 0.884 0.787 0.689 0.599 0.482 0.404 0.341 0.205 0.55 0.387 0.554 0.735
P (c|ca) 0.0 0.115 0.212 0.31 0.4 0.517 0.595 0.658 0.794 0.449 0.49 0.445 0.264

(b) MGNG varying x and σ separately.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.4
σ 0.1 0.2 0.3 0.4 0.5

P (a|ba) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.216 0.409
P (b|ba) 0.0 0.098 0.201 0.302 0.398 0.498 0.603 0.699 0.796 0.501 0.591 0.576 0.389
P (c|ba) 1.0 0.901 0.798 0.697 0.601 0.501 0.396 0.3 0.203 0.498 0.408 0.207 0.201
P (a|ca) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.174 0.21 0.438
P (b|ca) 1.0 0.9 0.798 0.7 0.6 0.498 0.398 0.3 0.2 0.587 0.557 0.34 0.145
P (c|ca) 0.0 0.099 0.201 0.299 0.399 0.501 0.601 0.699 0.799 0.412 0.267 0.448 0.416

further post-processing. Every subgraph in MGNG can be interpreted as a clus-
ter and Figure 4 visualizes the six identified clusters using the Kamada-Kawai
graph drawing algorithm [25], representing all possible sequence triples.

5 Conclusions

We introduced MGNG as a novel unsupervised neural network for time series
analysis. By combining the advantages of growing networks and recursive tem-
poral dynamics our model exhibits state-of-the-art accuracy in quantization,
density estimation and representation of sequences. In contrast to all other re-
cursive networks no a-priori knowledge is required and only constant parameters
are used. Our approach is simple to implement and shows better runtime per-
formance than MNG. In future research we plan to investigate the extension of
MGNG with different node creation and deletion strategies based on the entropy
and maximum local variance to further improve the accuracy.
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Abstract. The application of Self-Organizing Map (SOM) to hierarchi-
cal data remains an open issue, because such data lack inherent quan-
titative information. Past studies have suggested binary encoding and
Generalizing SOM as techniques that transform hierarchical data into
numerical attributes. Based on graph theory, this paper puts forward a
novel approach that processes hierarchical data into a numerical repre-
sentation for SOM-based clustering. The paper validates the proposed
graph-theoretical approach via complexity theory and experiments on
real-life data. The results suggest that the graph-theoretical approach
has lower algorithmic complexity than Generalizing SOM, and can
yield SOM having significantly higher cluster validity than binary
encoding does. Thus, the graph-theoretical approach can form a data-
preprocessing step that extends SOM to the domain of hierarchical data.

Keywords: Clustering, hierarchical data, SOM, graph theory.

1 Introduction

The Self-Organizing Map (SOM) [1] represents a type of artificial neural network
that is based on unsupervised learning; it has been applied extensively in the
areas of dimensionality reduction, data visualization, and clustering [2]. The
original formulation of SOM uses the Euclidean distance as a similarity metric [3,
p.4], and hence its domain of application is restricted to metric spaces [4]. SOM
has been extended to non-metric spaces by using generalized means and medians
as the distance measures and the batch variant of SOM [4]; for example, speech
recognition [5], and clustering of protein sequences [6]. An online algorithm for
SOM of symbol strings was provided by [7]. However, neither a metric distance
nor a string metric (e.g. Levenshtein distance) can yield meaningful results in
the domain of hierarchical data, and thus the application of SOM in this domain
remains an open issue. For example, consider clustering the data: {cat, rat,
mouse}. A string metric would find that {cat} and {rat} are more closely related
to each other than {rat} and {mouse} are, while a metric distance would produce
meaningless results.

J.C. Príncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 19–27, 2009.
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To address this issue, prior studies have suggested two main techniques that
transform hierarchical attributes into numerical attributes. First, the most preva-
lent technique encodes a categorical attribute in binary terms {1,0}, where 1 and
0 denote the presence and absence of an attribute respectively. The binary en-
coding is then treated as a numerical attribute in the range {1,0}. Second, Hsu
[8] introduced Generalizing SOM (GSOM), whereby a domain expert describes
a set of categorical data by means of a concept hierarchy, and then extends it to
a distance hierarchy in order to represent and calculate distances between the
categorical data. However, both techniques suffer from theoretical and practical
limitations.

Motivated by this open issue, the paper puts forward a graph-theoretical
approach that processes hierarchical data into a numerical representation, and
thus renders them amenable for clustering using SOM. To elaborate, based on
graph theory, the paper encodes a set of hierarchical data in the form of a rooted
and ordered tree. The root vertex represents the complete set of the hierarchical
data, and each vertex represents a sub-set of its “parent” vertex. An edge between
a pair of vertices is assigned a weight, which can be any positive real number,
representing the distance between the two vertices. Thus, the distance between
a pair of vertices, vi and vj , is the sum of the weighted-edges that exist in the
path from vi to vj . The paper uses a level-order traversal algorithm to calculate
the distances between each vertex and all other vertices. This process yields a
symmetric distance matrix D = (dij)nn, where n is the number of vertices, and
dij the distance between vi and vj .

In the present case, the paper encodes the animals that are contained in the
zoo-dataset [9] in the form of a rooted and ordered tree, and calculates the
distances between all pairs of animals by using a level-order traversal of the tree,
as shown in Fig. 1. The symmetric distance matrix D = (dij)nn thus derived
forms the numerical representation of the zoo-dataset, where n = 98 reflecting
the number of animals, and dij denotes the distance between a pair of animals.
The distance metric dij satisfies the conditions of a metric space, as follows [10,
p.65]: (i) dij ≥ 0, (ii) dij = 0 if and only if i = j, (iii) dij = dji, and (iv)
diz ≤ dij + djz . Each row in D represents an animal, and becomes an input
vector – xj ∈ R

98, j = 1, 2, . . . 98 – to SOM.1
The paper trains two SOMs, batch and sequence, for each of the two represen-

tations of the zoo-dataset, original binary encoding and paper’s graph-theoretical
approach. For each of the four combinations, the paper selects one hundred sam-
ples by using bootstrap; and for each of the 400 bootstrapped samples, it trains
a SOM with a Gaussian neighborhood and an 8 x 5 hexagonal lattice. The paper
evaluates the quality of each SOM in terms of: (i) the entropy of clustering, (ii)
quantization error, (iii) topographic error, and (iv) the Davies-Bouldin index.
Based on these quality measures, the paper uses the Wilcoxon rank-sum test
at the one-tailed 5% significance level to assess whether the graph-theoretical

1 The distance matrix D is symmetric, and hence the number of observations (i.e.
animals) is equal to the number of dimensions (i.e. 98), and selecting either rows or
columns as input vectors to SOM would yield the same result.
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approach can yield significantly better SOM than binary encoding does. Fur-
ther, the paper compares the algorithmic complexity of the graph-theoretical
approach with that of GSOM.

The results suggest that the graph-theoretical approach enjoys a lower algo-
rithmic complexity than Generalizing SOM does, and can yield SOM having
significantly higher cluster validity than binary encoding does.

The paper’s novelty and contribution lie in the formulation of the graph-
theoretical approach, and its application as a data-preprocessing step that can
extend SOM to the domain of hierarchical data.

The paper proceeds as follows. Section 2 describes briefly the SOM algo-
rithm, binary encoding, and Generalizing SOM. Section 3 formulates the graph-
theoretical approach. Section 4 outlines the design of experiments, and section
5 presents and discusses the results. Section 6 presents the conclusions.

2 Background and Related Work

2.1 The SOM Algorithm

In the context of this study, the SOM algorithm performs a non-linear projection
of the probability density function of the 98-dimensional input space to an 8 x 5
2-dimensional hexagonal lattice. A neuron i, i = 1, 2, . . .40, is represented by XY
coordinates on the lattice, and by a codevector, mi ∈ R

98, in the input space.
The formation of a SOM involves three processes [11, p.447]: (i) competition,
(ii) co-operation, and (iii) adaptation. First, each input vector, x ∈ R

98, is
compared with all codevectors, mi ∈ R

98, and the best match in terms of the
smallest Euclidean distance, ‖ x − mi ‖, is mapped onto neuron i, which is
termed the best-matching unit (BMU):

BMU = argmin
i

{‖ x − mi ‖} . (1)

In the co-operation process, the BMU locates the center of the neighborhood
kernel hci:

hci = a (t) · exp
[
−‖ rc − ri ‖2

2σ2 (t)

]
. (2)

where rc, ri ∈ R
2 are the radius of BMU and node i respectively, t denotes

discrete time, a (t) is a learning rate, and σ (t) defines the width of the kernel;
a(t) and σ(t) are monotonically decreasing functions of time [3, p.5].

In the adaptive process, the sequence-training SOM updates the BMU code-
vector as follows:

mi(t + 1) = mi(t) + hci(t) [x(t) − mi(t)] . (3)

The batch-training SOM estimates the BMU according to (1), but updates the
BMU codevector as [12, p.9]:

mi(t + 1) =

∑n
j=1 hci(t)xj∑n

j=1 hci(t)
. (4)
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To carry out the experiments, the paper uses both sequence-training (3) and
batch-training (4) SOM.

2.2 Binary Encoding and Generalizing SOM

Binary encoding converts a categorical variable into a numerical representation
consisting of values in the range {1, 0}, where 1 and 0 denote the presence and
absence of an attribute respectively. The binary encoding of each categorical
datum is then treated as a numerical attribute for SOM-based clustering.

To overcome the limitations associated with binary encoding, Hsu [8] intro-
duced Generalizing SOM (GSOM). Briefly, a domain expert extends a concept
hierarchy, which describes a data domain, to a distance hierarchy by associating
a weight for each link on the former. The weight represents the distance between
the root and a node of a distance hierarchy. For example, a point X in distance
hierarchy dh (X) is described by X = (NX , dX), where NX is a leaf node and
dX is the distance from the root to point X . The distance between points X and
Y is defined as follows:

| X − Y |= dX + dY − 2dLCP (X,Y ) . (5)

where dLCP (X,Y ) is the distance between the root and the least common point
of X and Y .

3 The Graph-Theoretical Approach

3.1 Preliminaries

A comprehensive review of graph theory lies beyond the scope of this paper; a
textbook account on this subject can be found in [10]. For the purposes of this
paper, it suffices to define a tree as a special type of graph, G = (V, E, w), that
satisfies at least two of the following three necessary and sufficient properties:
(i) G is acyclic, (ii) G is connected, and (iii) | E |=| V | −1; any two of these
properties imply the third [10, p.8]. Let T = (V, E, w) be a tree that is: (i)
rooted, with v0 the root vertex, and (ii) ordered, which means that there is a

Table 1. Notations and definitions

G = (V, E, w) A graph
V = {v1, v2, . . . vn} Set of vertices
E = {e1, e2, . . . em} Set of edges
w : E → R

+ Function assigning a positive real number to an edge
| V | Degree of graph, cardinality of V
| E | Order of graph, cardinality of E
e = {vi, vj} Edge connecting vertices vi and vj

dij = w (e) Distance between vi and vj

D = (dij)nn Distance matrix
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Fig. 1. Extract from the graph-theoretical representation of the zoo-dataset

linear ordering of its vertices such that for each edge e = {vi, vj} then vi < vj .
It can be easily deduced that in tree T : (i) all vertices excluding v0 have at
most one “parent” vertex, (ii) at least one vertex has no “child” vertices, and (iii)
there is a unique path between any two vertices. A tree can be traversed in a
level-order way; such a traversal starts from the root vertex, v0, and proceeds
from left-to-right to visit each vertex at distance d from v0 before it visits any
vertex at distance d + 1, as shown in Fig. 1.

3.2 Description

The graph-theoretical approach is motivated by the observation that hierarchical
variables have a set of states that can be ranked in a meaningful order. For
example, consider the variable “size” having five states: {very big, big, medium,
small, very small}. It is obvious that {very big} matches {big} more closely
than it matches {very small}. However, this piece of information is lost if binary
encoding is used, because such an encoding produces a dichotomous output: a
state either matches another state or does not.

The graph-theoretical approach operates in three phases. First, it encodes a
set of hierarchical data in the form of a rooted and ordered tree. The root vertex
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represents the complete set of hierarchical data, and all other vertices are ordered
in such a way that each vertex represents a sub-set of its “parent” vertex. The
edges indicate the covering relation between the vertices. For example, consider
a finite order set P ; x, y ∈ P ; T = (V, E, w); and vx, vy ∈ V correspond to x
and y respectively. If x is covered by y (i.e. x ≺ y), then vx is a “child” vertex of
vy. Each edge is assigned a weight, which can be any positive real number (i.e.
w : E → R

+).
Second, the graph-theoretical approach traverses the tree in a level-order man-

ner in order to calculate the distances between the root vertex and all other
vertices. The distance between the root vertex vo and a vertex vi is the sum of
the weighted-edges that exist in the unique path between vo and vi. This calcu-
lation has an algorithmic complexity of O (| V |). To calculate the distances for
all pairs of vertices, the graph-theoretical approach designates each vertex as the
root vertex and repeats the level-order traversal. Thus, the all-pairs distances
can be obtained in O

(
| V |2

)
. This process yields a symmetric distance matrix

D = (dij)nn, where dij denotes the distance between vertex vi and vertex vj ,
dij > 0 for all i �= j , dij = 0 if and only if i = j, dij = dji, and diz ≤ dij + djz .

Finally, the distance matrix D constitutes the numerical representation of the
set of hierarchical data and each of its rows becomes an input vector to SOM.

4 Data and Experiments

The design of experiments consists of six steps. First, the zoo-dataset [9] con-
tains 101 animals that are described by one numerical attribute and 15 binary
attributes, and classified into seven groups. The paper eliminates the instances
“girl” and “vampire” for obvious but unrelated reasons, and one instance of “frog”,
because it appears twice.

Second, to apply the graph-theoretical approach to the zoo-dataset, the paper
uses none of the original attributes. Instead, it uses a “natural” taxonomy that
classifies animals based on their “phylum”, “class”, and “family”. This taxonomy
can be expressed as a tree (Fig. 1), where the root vertex stands for the complete
set of animals. For the experiments, the weight for each edge is set to 1 (i.e.
w : E → 1 ), though it can be any positive real number and different for each
edge. The paper calculates the distances of all pairs of vertices by using a level-
order traversal of the tree, and thus derives a distance matrix that makes up the
numerical representation of the zoo-dataset.

Third, for each representation of the zoo-dataset, original binary encoding
and the paper’s graph-theoretical approach, the paper uses bootstrap to draw
one hundred random samples with replacement. Fourth, for each bootstrapped
sample, the paper trains two SOMs, batch and sequence, with a Guassian neigh-
borhood and an 8 x 5 hexagonal lattice. Fifth, the paper evaluates each SOM
in terms of four quality measures: (i) the entropy of clustering, (ii) quantization
error, (iii) topographic error, and (iv) the Davies-Bouldin index. Sixth, based
on the quality measures, the paper uses the Wilcoxon rank-sum test at the one-
tailed 5% significance level to assess whether the graph-theoretical approach can
yield significantly better SOMs than binary encoding does.
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Table 2. Wilcoxon rank-sum test

SOM-Training H(Z) QE TE DBI

Batch A<B A<B N.S A<B
Sequence A<B A<B N.S A<B

Further, the paper compares the algorithmic complexity of the proposed
graph-theoretical approach with that of Generalizing SOM [8]. An experimental
comparison was not possible, because GSOM was not available.2

4.1 Quality Measures

The quantization error, QE, and topographic error, TE, have been extensively
reviewed in the literature pertinent to SOM. Thus, this section concentrates on
two cluster validity indices: (i) the Davies-Bouldin index, and (ii) the entropy of
clustering.

The Davies-Bouldin index [13], DBI, is defined as:

DBI =
1
C

C∑
i=1

max
i�=j

{
Δ(Ci) + Δ(Cj)

δ(Ci, Cj)

}
. (6)

where C is the number of clusters produced by SOM, δ(Ci, Cj), and Δ(Ci) and
Δ(Cj) the intercluster and intracluster distances respectively.

Following [14], the entropy of clustering Z, H(Z), can be defined as:

H(Z) = −
C∑

j=1

mj

m

K∑
i=1

mij

mj
log2

mij

mj
. (7)

where C is the number of clusters produced by SOM, K = 7, the number of
groups of animals in the zoo-dataset, mij is the number of animals in group i
that are clustered by SOM in cluster j, mj is the size of cluster j, and m is the
size of all clusters.

5 Results and Discussion

The results (Table 2) suggest that the graph-theoretical approach yields SOMs
having statistically significant lower entropy of clustering, quantization error,
and Davies-Bouldin index than binary encoding does. In contrast, the difference
in topographic error is not significant. Further, the results are invariant to the
two SOM-training algorithms, batch and sequence.

Referring to Table 2, A and B stand for the graph-theoretical approach and
binary encoding respectively, A < B denotes that the difference between the
2 Personal correspondence with the author of Generalizing SOM.



26 A. Argyrou

two approaches is statistically significant at the one-tailed 5% significance level,
whereas N.S implies that a significant difference does not exist.

To compare the algorithmic complexity of the graph-theoretical approach with
that of GSOM [8], the paper assumes that GSOM is applied to the zoo-dataset,
and that GSOM uses this paper’s tree (Fig. 1) as its distance hierarchy. As
discussed in Sect. 2.2, GSOM entails the following three tasks: (i) calculate
distances from the root to all nodes, a level-order traversal of the tree has O(| V |)
complexity; (ii) find the all-pairs least common point (LCP), the current fastest
algorithm has O

(
| V |2.575

)
complexity [15]; and (iii) calculate distances from

the root to all LCPs, this takes O (l), where l is the number of LCPs.
Therefore, the algorithmic complexity of GSOM is O

(
| V |2.575

)
, and hence

higher than the quadratic complexity, O
(
| V |2

)
, of the graph-theoretical ap-

proach.

5.1 Critique

The proposed graph-theoretical approach is not impervious to criticism. Like
binary encoding, it increases the dimensionality of the input space in direct
proportion to the number of states a hierarchical variable has. In turn, the di-
mensionality of the search space increases exponentially with the dimensionality
of the input space, a phenomenon aptly named “the curse of dimensionality” [16,
p.160]. Further, it assumes that the hierarchical data are static, and hence a
deterministic approach is sufficient. To deal with this limitation, future research
may explore a probabilistic variant of the graph-theoretical approach.

6 Conclusions

The paper’s novelty and contribution lie in the development and application of
a data-preprocessing step that is based on graph theory and can extend SOM to
the domain of hierarchical data. The results suggest that the proposed graph-
theoretical approach has lower algorithmic complexity than Generalizing SOM,
and can yield SOM having significantly higher cluster validity than binary en-
coding does. Further, the graph-theoretical approach is not confined only to
SOM, but instead it can be used by any algorithm (e.g. k-means) to process hi-
erarchical data into a numerical representation. Future research may consider a
probabilistic variant of the graph-theoretical approach as well as its application
in the area of hierarchical clustering. Notwithstanding its limitations, the paper
presents the first attempt that uses graph theory to process hierarchical data
into a numerical representation for SOM-based clustering.
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Abstract. In this paper we evaluate competitive learning algorithms
in the task of identifying anomalous patterns in time series data. The
methodology consists in computing decision thresholds from the distri-
bution of quantization errors produced by normal training data. These
thresholds are then used for classifying incoming data samples as nor-
mal/abnormal. For this purpose, we carry out performance comparisons
among five competitive neural networks (SOM, Kangas’ Model, TKM,
RSOM and Fuzzy ART) on simulated and real-world time series data.

1 Introduction

In recent years, it has been observed an increasing number of applications of the
Self-Organizing Map (SOM) to anomaly detection tasks [1,2,3,4], most of them
dealing with static data only. However, several real-world applications provide
data in a time-ordered fashion, usually in the form of successive measurements
of several variables of interest, giving rise to time series data. In industry, for ex-
ample, many process monitoring procedures involve the measurement of various
sensor readings continuously in time to track the state of the system [5,6].

Anomaly detection in time series is particularly challenging due to the usual
presence of noise, inserted by the measurement device, as well as of deterministic
features - such as trend and seasonality - that can mask the character of novelty
that may be present in data. Inherent non-stationary processes, such as regime-
switching time series, also impose additional limitations on time series modeling.
Furthermore, time-critical applications, such as fault detection and surveillance,
require on-line anomaly detection.

Despite the recent interest in unsupervised learning for time series analysis [7],
few clustering-based algorithms for anomaly detection are currently available in
the literature. This assertion is even stronger if we consider the use of SOM algo-
rithm as a clustering tool for anomaly detection systems. Most of the SOM-based
approaches usually converts the time series into a non-temporal representation
(e.g. spectral features computed through Fourier transform) and use it as an
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input to the standard SOM architecture [8]. Another common approach is to
use fixed-length tapped delay lines at the input of the SOM, again converting
the time series into a spatial representation.

Since the early 1990’s several temporal variants of the SOM algorithm have
been proposed to deal with time series data. However, to the best of our knowl-
edge, such temporal SOMs have never been used for anomaly/novelty detection
purposes. Thus, this paper aims at answering two questions: (1) Do temporal
competitive neural networks perform better than static ones in detecting anoma-
lies in time series data? (2) Do the types of memory used by the temporal SOMs
influence their performances in this task? For this purpose, we present temporal
variants of the standard SOM, such as the Kangas’ model [9], TKM-Temporal
Kohonen Map [10] and RSOM-Recursive SOM [11]. Then, the Fuzzy ART net-
work [12], which is a static competitive model with an inherent mechanism of
novelty detection, is described. All these algorithms were trained on-line and
computer simulations carried out in order to compare their performances.

The remainder of the paper is divided as follows. In Section 2 we describe
the self-organizing algorithms used in this work to perform anomaly/novelty
detection in time series. In this section, we also present in detail the decision-
support methodology used to run the simulations. In Section 4 the numerical
results and comments on the performance of all the simulated algorithms are
reported. Finally, the conclusions are presented in Section 5.

2 Time Series Clustering for Anomaly Detection

In this section we describe competitive learning algorithms adapted to perform
anomaly detection in time series. It is assumed that the algorithms are trained
on-line as the data samples are being collected. Thus, at time step t, input vectors
are built as fixed-length window as

x+(t) = [x(t) x(t − 1) · · · x(t − p + 1)]T , (1)

where p ≥ 1 is the memory-depth parameter. Weight updating is allowed for
a fixed number of steps, Tmax. The first four algorithms to be described are
based on the SOM algorithm, while the third one belongs to the family of ART
(Adaptive Resonance Theory) architectures. Once the networks are trained, de-
cision thresholds are computed based on the quantization errors for the SOM-
based methods. ART-based models have an intrinsic novelty-detection mecha-
nism, which can also be used for anomaly detection purposes.

2.1 Static Competitive Neural Networks

Standard SOM: SOM training is carried out using the set of vectors {x+(t)}Tmax
t=p

sequentially presented as inputs to the network. At time step t, the winning neu-
ron, i∗(t), is given by

i∗(t) = argmin
∀i

‖x+(t) − wi(t)‖, i = 1, . . . , Q, (2)
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where wi ∈ R
p is the prototype vector of the i-th neuron and Q is the number

of neurons. The weight vectors are updated by the following learning rule:

wi(t + 1) = wi(t) + η(t)h(i∗, i; t)[x+(t) − wi(t)], (3)

where h(i∗, i; t) is a gaussian function which control the degree of change imposed
to the weight vectors of those neurons in the neighborhood of the winning neuron:

h(i∗, i; t) = exp
(
−‖ri(t) − ri∗(t)‖2

2γ2(t)

)
, (4)

where ri ∈ R
2 and ri∗ ∈ R

2 denote the coordinates of neurons i and i∗ in
the output array, while γ(t) defines the radius of the neighborhood function
at iteration t. The learning rate (0 < η(t) < 1) and the neighborhood width
(γ(t) > 0) must decay in time to guarantee convergence of the network. In this
paper we use η(t) = η0 (ηT /η0)

−(t/Tmax), where η0 and ηT are, respectively, the
initial and final values of η, assuming Tmax training steps. We use the same
annealing method for the parameter γ(t).

The Fuzzy ART Algorithm: We also evaluate the performance of the Fuzzy
ART algorithm [12] on anomaly detection in time series, due to its simplicity of
implementation and low computational cost. The input vector x+(t) is presented
to a competitive layer of Q neurons. The winning neuron i∗ is selected if its choice
function Ti∗ is the highest one among all neurons:

i∗(t) = arg max
∀i

{Ti(t)} , (5)

where the choice function Ti is computed as follows:

Ti(t) =
|x+(t) ∧ wi(t)|

ε + |wi(t)|
, (6)

where 0 < ε 
 1 is a very small constant, and |u| denotes the L1-norm of the
vector u. The symbol ∧ denotes the component-wise minimum operator. The
next step involves a test for resonance. If |x+(t) ∧ wi∗(t)| ≥ ρ|x+(t)|, then the
weights of the winning neuron i∗(t) are updated as follows:

wi∗(t + 1) = η
(
x+(t) ∧ wi∗(t)

)
+ (1 − η)wi∗(t) (7)

where the parameters 0 < ρ < 1 and 0 < η < 1 are the vigilance parameter and
the learning rate, respectively.

If the resonance test for the current winning neuron i∗(t) fails, then another
neuron is selected as the winner, usually the one with the second highest value for
Ti(t). If this neuron also fails, then the one with the third highest value for Ti(t)
is selected, and so on until one of the selected winning neurons i∗(t) matches
the resonance test. If none of the existing prototype vectors resonates with the
current input vector, then the input vector is declared novel and turned into
a new prototype vector. The parameter ρ controls the sensitivity of the Fuzzy
ART algorithm to new input vectors. If ρ → 1, more prototypes are created in
the competitive layer. If ρ → 0, the number of prototypes decreases.
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2.2 Temporal Competitive Neural Networks

Kangas’ Model: Kangas’ model [9] is one of the simplest temporal SOM al-
gorithms available. The underlying idea of this model is to perform a temporal
smoothing on the input vector x+(t):

x(t) = (1 − λ)x(t − 1) + λx+(t), (8)

where 0 < λ < 1 is a memory decay parameter. The filtered vector x(t) is
then presented to the standard SOM algorithm, which follows its usual training
procedure as described above.

Temporal Kohonen Map (TKM): The TKM model introduces a short-term
memory mechanism for the activation ai(t) of each neuron in the map:

ai(t) = λai(t − 1) − 1
2
‖x(t) − wi(t)‖2, (9)

with 0 < λ < 1 being equivalent to the decay parameter defined for Kangas’
model. The winner i∗(t) is the one with the highest activation:

i∗(t) = arg max
∀i

{ai(t)}. (10)

The weight vectors are through Eq. (3). We set ai(0) = 0, i = 1, 2, . . . , Q.

Recurrent SOM (RSOM): In this variant, a temporal smoothing mechanism
acts over the difference vector d(t) = x+(t) − wi(t):

yi(t) = (1 − λ)yi(t − 1) + λd(t). (11)

The winning neuron is then redefined as

i∗(t) = arg min
∀i

{yi(t)}, (12)

and the learning rule in Eq. (3) is rewritten as

wi(t + 1) = wi(t) + η(t)h(i∗, i; t)yi(t), (13)

where the memory is now taken into account when updating the weights of the
winning neuron. We set yi(0) = 0, ∀i.

3 Detection Methodology

Unlike the Fuzzy ART algorithm, the SOM-based methods previously described
do not have an intrinsic mechanism to detect anomalous data. However, it has
become common practice to use the quantization error

eq(i∗, t) = ‖x+(t) − wi∗(t)‖, (14)
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as a measure of the degree of proximity of x+(t) to a statistical representation
of normal behavior encoded in the weight vectors of the SOM variants. Once the
network has been trained, we present the training data vectors once again to this
network. From the resulting quantization errors {eq(i∗, t)}Tmax

t=1 , computed for all
training vectors, we compute decision thresholds for the anomaly detection tests.
For a successfully trained network the sample distribution of these quantization
errors should reflect the ‘normal’ (i.e. not anomalous) behavior of the input
variable whose time series model is being constructed.

In order to compute decision thresholds we apply the method proposed in [2].
For a given significance level α (e.g. α=0.05 or 0.01), we are interested in an
interval within which we can certainly find a percentage of 100(1−α)% of normal
values of the quantization error. We then proceed with the computation of the
lower and upper boundaries of the detection interval as follows:
– Lower Limit (τ−): This is the 100α

2 th percentile1 of the distribution of
quantization errors associated with the training data vectors.

– Upper Limit (τ+): This is the 100(1 − α
2 )th percentile of the distribution

of quantization errors associated with the training vectors.

Once the decision interval [τ−, τ+] has been computed, any anomalous behavior
of the time series can be detected on-line by means of the simple rule:

IF eq(i∗, t) ∈ [τ−, τ+]
THEN x+(t) is NORMAL (15)
ELSE x+(t) is ABNORMAL

4 Simulations

The aforementioned competitive neural neworks are evaluated as anomaly detec-
tors using simulated and real-world time series data. The simulated time series
is built from four different dynamic systems, three of them being realizations of
chaotic series. The first one is composed by the x component of Lorenz equations

ẋ = σL(y − x), ẏ = x(αL − z) − y, ż = xy − εLz, (16)

which exhibits chaotic dynamics for σL = 10, αL = 28 and εL = 8/3. The second
and third realizations are generated from the Mackey-Glass dynamical system,
for two distinct values of the delay τ :

ẋ = Rx(t) + P
x(t − τ)

(1 + x(t − τ)10)
, (17)

with P = 0.2, R = −0.1 and τ = 17 (MG17) or τ = 35 (MG35). The fourth
realization is generated from a second order autoregressive process (AR2):

x(t + 1) = 1.9x(t − 1) − 0.99x(t − 2) + a(t), (18)

with a(t) is an additive gaussian white noise process with zero mean and variance
σ2

a = 10−3. Figure 1 depicts 300 samples of each signal.
1 The percentile of a distribution of values is a number Nα such that a percentage

100(1 − α) of the sample values are less than or equal to Nα.
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Fig. 1. Samples of simulated time series used in the simulations

The first experiment is designed to perform on-line detection of anomalous
signal samples, after training the networks with a sequence representing normal
(i.e. expected) behavior of the system being monitored. Each realization is pre-
sented one after the other to emulate a longer time series with different dynamic
regimes. The role of normal behavior is assigned to the Lorenz series, leaving
the Mackey-Glass and the AR(2) realizations as representing anomalous (i.e.
unknown) data. The three different testing sequences are presented sequentially
in this order: MG17, MG35 and AR2.

As a typical result, Figure 2 shows the quantization errors produced by the
Kangas’ model, for the first Tmax = 1000 samples of the training set generated
by the Lorenz equations. As expected, the model produced lower quantization
errors for known data (first 1000 samples), while for the remaining 3000 samples
the resulting quantization errors are considerably higher. For this experiment
we set Q = 20, p = 10, η0 = 0.5, ηT = 10−3, Tmax = 1000, γ0 = 10, γT = 0.1,
λ = 0.8, ε = 10−2 and ρ = 0.8.

The second experiment involves a comprehensive evaluation of the perfor-
mances of all competitive models on the same time series data through the
analysis of the Receiver Operating Characteristic (ROC) curves of the classifiers.
Let TP and FP denote the true positives and false positive ratios of a classi-
fier, respectively2. The coordinates (FP, TP) is a point in ROC space, and can
be used to visually identify good and bad binary classifiers. A perfect binary
classifier ideally achieve the (0,1) coordinate at ROC space. Now, if we change
the percentile Nα, the decision interval [τ−, τ+] in Eq. (15) is modified, and a
set of points in ROC space can be derived, allowing to verify the performances
of the classifiers under different degrees of tolerance for the quantization error.

2 A true positive is the classification of an incoming vector x+(t) as abnormal, when
it is truly an anomalous one, and a false positive is the classification of an incoming
vector x+(t) as abnormal when it is a normal one.
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Fig. 3. ROC curves for the evaluated competitive neural networks

Figure 3 shows a typical ROC curves for the comparative performance among
the networks, obtained with the same parameters of the first experiment.

Analysing the ROC curves, we arrive at the following conclusions: (i) the
original SOM algorithm performed poorly in detecting anomalous behavior in
simulated time series data, with a performance equivalent to a random classifier;
(ii) all the temporal variants of the SOM achieved very good performances; (iii)
there were no significant differences among the performances of the the temporal
variants of the SOM; and (iv) unlike the standard SOM, the Fuzzy-ART network
(which is a static model!) performed quite well on the detection task. From the
exposed, we can conclude that the temporal variants of the SOM are indeed more
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suitable to deal with time series data than static competitive neural networks.
Furthermore, since the temporal SOMs had equivalent performances, preference
is given to the Kangas’s model due to its implementational simplicity.

The last experiment involves testing the Kangas’ model in a real-world time
series data from the NASA shuttle program. The NASA valve data set [13]
consists of solenoid current measurements recorded on Marrotta series MPV-
41 valves as they are remotely opened and closed in a laboratory. These small
valves are used to actuate larger, hydraulic valves that control the flow of fuel
to the space shuttle engines. Sensor readings were recorded using either a shunt
resistor or a Hall effect sensor under varying conditions of voltage, temperature,
or blockage or forced movement of the poppet to simulate fault conditions.

Each opening/closing cycle of the valve consists of 1000 samples at a rate of
1 ms per sample. The whole time series comprises 5 cycles, with the first three
cycles being considered normal ones while the last two are anomalous cycles
(see Figure 4). Using the same training parameters of previous experiments, the
Kangas’ model is trained on-line with the first Tmax = 1000 samples and tested
with the remaining 4000 samples. The corresponding quantization error signal
is shown at Figure 5, including the thresholds [τ−, τ+] corresponding to the
5% and 95% percentiles of {eq(i∗, t)}1000

t=1 . As expected, the method performed
satisfactorily, since it correctly detected all abnormal valve states.

5 Conclusions

This paper described some results on the application of competitive neural net-
works for detecting novelties in time series data. We compared the performances
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of five unsupevised competitive learning architectures (SOM, Kangas’ Model,
TKM, RSOM and Fuzzy ART) on simulated and real-world time series data.
The obtained results indicate that temporal variants of the SOM are more suit-
able to deal with time series data than static competitive neural networks.

Acknowledgments. The authors thank CNPq (grant 474843/2008-4) for its
financial support.
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Abstract. Aircraft engines are designed to be used during several tens of years.  
Their maintenance is a challenging and costly task, for obvious security reasons. 
The goal is to ensure a proper operation of the engines, in all conditions, with a 
zero probability of failure, while taking into account aging.  The fact that the same 
engine is sometimes used on several aircrafts has to be taken into account too. 

The maintenance can be improved if an efficient procedure for the prediction 
of failures is implemented. The primary source of information on the health of 
the engines comes from measurement during flights.  Several variables such as 
the core speed, the oil pressure and quantity, the fan speed, etc. are measured, 
together with environmental variables such as the outside temperature, altitude, 
aircraft speed, etc. 

In this paper, we describe the design of a procedure aiming at visualizing 
successive data measured on aircraft engines. The data are multi-dimensional 
measurements on the engines, which are projected on a self-organizing map in 
order to allow us to follow the trajectories of these data over time. The 
trajectories consist in a succession of points on the map, each of them 
corresponding to the two-dimensional projection of the multi-dimensional vector 
of engine measurements. Analyzing the trajectories aims at visualizing any 
deviation from a normal behavior, making it possible to anticipate an operation 
failure. 

However rough engine measurements are inappropriate for such an analysis; 
they are indeed influenced by external conditions, and may in addition vary 
between engines. In this work, we first process the data by a General Linear 
Model (GLM), to eliminate the effect of engines and of measured environmental 
conditions. The residuals are then used as inputs to a Self-Organizing Map for 
the easy visualization of trajectories. 

Keywords: aircraft engine maintenance, fault detection, general linear models, 
self-organizing maps. 

1   Introduction 

Security issues in the aircrafts are a major concern for obvious reasons. Among the many 
aspects of security issues, ensuring a proper operation of engines over their lifetime is an 
important task. 
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Aircraft engines are built with a high level of security norms. They undergo 
regularly a full maintenance with disassembling, replacement of parts, etc. In 
addition, between two such maintenances, many parameters are measured on the 
engines during the flights. These parameters are recorded, and used both at short and 
long terms for immediate action and alarm generation respectively. 

In this work, we are interested in the long-term monitoring of aircraft engines.  
Measurements on the engines during flights are used to detect any deviation from a 
“normal” behavior, making it possible to anticipate possible faults. This fault 
anticipation is aimed to facilitate the maintenance of aircraft engines.   

Self-Organizing Maps are here used to provide experts a supplementary tool to 
visualize easily the evolution of the data measured on the engines. The evolution is 
characterized by a trajectory on the two-dimensional Self-Organizing Map.  Abnormal 
aging and fault appearance will result in deviation of this trajectory, with respect to 
normal conditions. The output of this data mining study is therefore a visual tool that 
can be used by experts, in addition to their traditional tools based on quantitative 
inspection of some measured variables.  Self-Organizing Maps are useful tools for fault 
detection and prediction in plants and machines (see [1], [2], [3], [4], [5], for example). 

Analyzing the rough variables measured on the engines during flights is however 
not appropriate. Indeed these measurements may vary from one engine to another, 
and may also vary according to “environmental” conditions (such as the altitude, the 
outside temperature, the speed of the aircraft, etc.). In this work, we first remove the 
effects of environmental (measured) variables, and the engine effects, from the rough 
measurements. The residuals of the regression are then used for further analysis by 
Self-Organizing maps. 

The following of this paper is organized as follows. In Section 2, the data are 
described and notations are defined. Section 3 presents the methodology: Section 3.1 
describes how the effects of engines and of environmental variables are removed by a 
General Linear Model, and Section 3.2 shows the visual analysis of the GLM residuals 
by Self-Organizing Maps. Section 4 describes the experimental results, before some 
conclusions in Section 5. 

2   Data 

Measurements are collected on a set of I engines.  On each engine i (1 ≤ i ≤ I), ni sets 
of measurements are performed successively.  Usually one set is measured during 
each flight; there is thus no guarantee that the time intervals between two sets of 
measures are approximately equal. Each set of observations is denoted by Zij, with 
1 ≤ i ≤ I and 1 ≤ j ≤ ni. 

Each set Zij contains both variables related to the behavior of the engine, and 
variables that are related to the environment.  Let us denote the p engine variables by 
Yij

1,…, Yij
p and the q environmental variables by Xij

1,…, Xij
q.  Each set of 

measurements is thus a vector Zij, where 

Zij = (Yij ,Xij) = (Yij
1,…, Yij

p, Xij
1, …, Xij

q) . (1) 
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In this study, the variables at disposal are those listed in Table 1. 

Table 1. Engine and environmental variables 

Engine variables Environmental variables 
Yij

1 core speed Xij
1 Mach 

Yij
2 oil pressure Xij

2 Engine bleed valve 1 
Yij

3 HPC discharge stat. pres. Xij
3 Engine bleed valve 2 

Yij
4 HPC discharge temp. Xij

4 Engine bleed valve 3 
Yij

5 Exhaust gas temp. Xij
5 Engine bleed valve 4 

Yij
6 Oil temperature Xij

6 Isolation valve left 
Yij

7 Fuel flow Xij
7 Altitude 

  Xij
8 HPT active clearance 

  Xij
9 LPT active clearance 

  Xij
10 Total air temperature 

  Xij
11 Nacelle temperature 

  Xij
12 ECS Pack 1 flow 

  Xij
13 ECS Pack 2 flow 

 
The goal of this study is to visualize the Yij vectors. The visualization of the 

successive measurements j for a specific engine i corresponds to a trajectory. 

3   Methodology 

Rough Yij measurements of the engine variables cannot be used as such for the 
analysis.  Indeed the Yij strongly depend on 

• engine effects, i.e. the fact that the engines may differ, and on 
• environmental effects, i.e. the dependence of the engine variables Yij on 

the environmental conditions Xij. 

Both dependences lead to differences in observed variables that have nothing to do 
with aging or fault anticipation. It is therefore important to remove these effects 
before further analysis. 

In this work, we use a GLM (General Linear Model) [6] to remove these effects, 
since the independent variables are of two types : categorical (engine effect) and real-
valued (environmental variables). The use of GLM implies two hypotheses.  First, it 
is assumed that the effect of the environment is effectively measured in the 
environmental variables Xij; obviously, non-measured effects cannot be removed.  
Secondly, it is assumed that the relation between the engine variables Yij and the 
environmental variables Xij is linear; this last assumption is probably not perfectly 
correct, but it will be shown in the experimental section that even under this 
hypothesis, the statistical significance of the Xij effects is high; this justifies a 
posteriori to remove at least the linear part (first-order approximation) of the relation. 

The residuals of the regression of the Yij variables over the Xij.ones and the motor 
effects are then used for the analysis. A Self-Organizing Map is used to visualize the 
two-dimensional projection of the residuals corresponding to each vector Yij. Then, the 
different states j (1 ≤ j ≤ ni) of a single engine are linked together to form a trajectory. 
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The next two subsections detail how to perform the GLM regression on the engine 
variables, and how to use the Self-Organizing Maps on the GLM residuals. 

3.1   Computation of the Residuals (So-Called Corrected Values) 

The computation of the values obtained by removing the effects of the environment 
variables and of the engine is done by using a General Linear Model, where the 
explanatory variables are of two kinds: one variable is categorical (the engine 
number), the others are real-valued variables (the environment variables). 

For each engine variable m = 1, …, p, the GLM model can be written as:  

Yij
m = μm + αi

m + λ1
m Xij

1 + … + λq
m Xij

q+ εij
m, (2) 

where i = 1,…, I, is the engine number, j is the flight number, αi
m is the engine effect 

on the m-th variable, Xij
1, …, Xij

q are the environmental variables, λ1
m ,…, λq

m are the 
regression coefficients for the m-th variable, and the error term εij

m is centered with 
variance σm

2.  The parameters αi
m, λ1

m,…, λq
m, are estimated by the least squares 

method, and in order to avoid colinearity, we have to add the constraint 0
1

=∑
=

I

i

m
iin α .  

Note that it is possible to model the motor effect by a random term Ai
m instead of 

the fixed effect αi
m ; Ai

m is also supposed to be centered with variance σA
2.  Even if 

the model is slightly different, the residuals are the same.  
Fisher statistics allows us to verify the significance of the models and to confirm 

the interest of the adjustment of engine variable for the environmental ones and the 
motor effect.  

Let us denote by Rij
m , m = 1, …, p the residuals (2), equal to the estimated values m

ijε̂ . 

The residuals are the values adjusted for the motor effect and the environment variables. 

3.2   Self-Organizing Maps on the Residuals 

Next we consider a n by n Kohonen map [7] and train it with the p-dimensional 
residuals Rij

m (m = 1, …, p).  We use the SOM toolbox for Matlab [8] for the 
experiments. In that way, each flight j of each engine i is projected on a Kohonen 
class on the map.  We can identify the different locations on the map by looking at the 
corresponding code-vectors and at their components, and then give a description of 
the clusters.  For each engine i, we define the sequence of the class numbers 
corresponding to the successive flights j = 1, …, ni.  This sequence is the trajectory of 
engine i.  In this way we get a visual representation of the successive states of the 
engines on the Kohonen map.  Then we can compare these trajectories by introducing 
a measure of distance between them. 

4   Experiments 

We consider real data which consist in the observation of I = 91 engines.  Each engine 
is measured for a number of flights between 500 and 800. There are 7 engine 
variables and 13 environment variables, as illustrated in Table 1. 
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4.1   Justification of the Computation of Adjusted Variables 

To justify the computation of the residuals (i.e. the values adjusted for engine effect 
and environment variables), we can for example show the result of a PCA on the raw 
data and use different colors for 5 different engines. We see (Fig.1, left) that each 
engine clearly defines a cluster in the projection on the first two principal components. 
Fig.1, right also shows that the histograms of the engine variables (Yij4 is illustrated) 
depend on the engine. 

 

 

Fig. 1. Left: the first two principal components for five engines. The data are the 7-dimensional 
engine variables. Right; the values of variable Y4 (HPC discharge temperature) for 4 engines. 

 

Fig. 2. Almost linear dependence between variable Y5 (EGT) and variable X10 (Total Air 
Temperature) 

 
The correlation between variables can be illustrated too. As an example, Figure 2 

shows variable Y5 (EGT) as a function of variable X10 (Total Air Temperature) in four 
engines. It is obvious that both variables are strongly dependent. 
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These few examples clearly show that it is necessary to remove the effects of the 
engine and of the environmental variables, by computing the residuals in model (2). 

4.2   Self-Organizing Maps on Adjusted Variables and Trajectories 

After the extraction of the residuals Rij as detailed in Section 3.1, the second step 
consists in training a 20 by 20 Kohonen map on these residuals. Figure 3 shows the map 
obtained, colored according to each of the 7 engine variables. It is clearly visible that the 
organization of the map is successful (all variables are smoothly varying on the map). 

 

Fig. 3. 20x20 self-organizing map on the residuals. The first plot shows the U-matrix, the other 
ones display the distribution of the 7 engine variables R1 – R7 over the map. 

We can see that variables R1, R3, R4, R5, R7 on one hand, and R2 and R6 on another 
hand, form high-correlated groups of variables (his property can be verified by 
computing the correlation matrix). 

The 400 classes are then grouped (hierarchical clustering) into 5 super-classes, as 
shown in Figure 4. Finally, Figure 5 shows the trajectories of the engines. As 
examples, the trajectories of engines 6, 25 and 88 are illustrated.  

 

Fig. 4. Five super-classes are shown after hierarchical clustering of the 400 classes. The 
centroids are also shown inside each class. 
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Fig. 5. Left, trajectories of engines 6, 25 and 88 on the Kohonen map; the dots color indicates 
the evolution along the trajectory (from red to blue, through yellow and green). The background 
shows the level of the EGT variable (R5). Right: the residuals for the same engines. 

We observe that the trajectories have different shapes.  Looking at the graphs of the 
7 adjusted engine variables (Figure 5 right), we conclude that the visual representations 
on the Kohonen map provide a synthetic representation for the temporal evolution of 
the engines. 

The next step is then to characterize the different shapes of trajectories, to define a 
suitable distance measure between these trajectories, and to define typical behaviors 
related to typical faults.  

5   Conclusions 

The proposed method is a useful tool to summarize and represent the temporal 
evolution of an aircraft engine flight after flight.  Further work will consist in defining 
classes for the trajectories and in associating each class to some specific behavior. 
Using the maintenance reports which contain the a posteriori measured data related to 
each engine, it will be possible to identify the classes with possible failures. So the 
visual examination of such trajectories will help anticipating faults in aircraft engines. 
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Abstract. Vector quantization methods are confronted with a model
selection problem, namely the number of prototypical feature represen-
tatives to model each class. In this paper we present an incremental
learning scheme in the context of figure-ground segmentation. In pres-
ence of local adaptive metrics and supervised noisy information we use
a parallel evaluation scheme combined with a local utility function to
organize a learning vector quantization (LVQ) network with an adap-
tive number of prototypes and verify the capabilities on a real world
figure-ground segmentation task.

1 Introduction

The appropriate choice of the number of model neurons is a principle problem in
vector quantization networks. In particular incremental learning offers a solution
to adjust the amount of resources needed versus classification performance to find
a tradeoff between representation quality and the avoidance of over-fitting. Vec-
tor quantization methods provide a simple algorithmic yet powerful framework
with applications, for example in image processing [1] or life-long learning [2,3].
We investigate such methods in the context of online figure-ground segmentation
where homogenous image regions are represented by single feature representa-
tives. Ideally the dimensionality of the network should represent the meaningful
entities in the data. As this problem is ill-posed (subjective), several researchers
have addressed this problem with heuristics in supervised or unsupervised set-
tings. One main criterion used for unsupervised setups is the distance of the
features to their representatives, namely the quantization error. The criterion in
Growing Neural Gas [4] (and similar for the Growing Cell structures [2]) aims at
a minimization of the quantization error and introduces new prototypes where
the quantization error is large, guaranteeing that the introduction of new proto-
types reduces this error. Supervised LVQ primarily aims at the minimization of
the classification error which offers another source of information. For example
Kirstein et al. [3] propose a heuristics to insert new prototypes at the decision
boundary using the misclassified data points together with a distance criterion
to determine the location for new prototypes.

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 45–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this contribution we investigate Generalized Learning Vector Quantization
(GLVQ [5]) with adaptive metrics and propose a framework for incremental and
online figure-ground segmentation which faces two problems. Firstly the local
adaptive metrics complicates distance-based criteria to place new prototypes,
where we use the confidence of the classification instead. Secondly the method
has to cope with noisy supervised information, that is, the labels to adapt the
networks are not fully confident. In particular we address the second problem by
using a parallel evaluation method on the basis of a local utility function, which
does not rely on global error optimization. After a short problem statement,
we describe the overall method to allow incremental learning in the presence of
non-confident supervised information together with the criteria to introduce and
remove prototypes from the network. Finally we evaluate the method on a real
world segmentation task and compare to previous results.

2 Method

2.1 Scenario

Our proposed method addresses the problem of online figure-ground segmenta-
tion for object learning and recognition. The application scenario consists of a
human presenter showing objects to a pan-tilt stereo camera system, which is
controlled by an attention system [6]. Using the concept of peripersonal space,
the depth estimation of the region in front of the system is analyzed with a
blob-detection within a specified depth interval (50cm-80cm). The most salient
object in front of the system is continuously tracked and centered in view by
setting the gaze direction. Additionally a square region of interest (ROI) is de-
fined based on a distance estimate of the tracked blob and normalized to a size
of I × I pixels, where we use I = 144. Both methods assure an approximate
invariance to position and size for the incoming stream of images showing the
object in front of cluttered background. A first cue for parts of the scene that
belong to the object can be derived from depth estimation which we call object
hypothesis. Because extracting 3D information from 2D images in general is an
ill-posed problem, the resulting hypothesis is characterized by a partially incon-
sistent overlap with the outline/region of the object. That is, some regions of the
background are indicated as foreground and vice versa. Since the learning and
recognition can be improved as the quality of the figure-ground segmentation is
enhanced, we follow the concept of hypothesis refinement to derive the significant
object parts (according to the underlying image features) from this initial guess.
In [1] we investigated methods for object segmentation that use prototypical fea-
ture representatives to model figure and ground. In particular, we used binarized
depth hypotheses as a supervised label for the image features to train a classifier
for figure and ground with GLVQ. In our previous setup an empirically prede-
fined number of prototypes were used, while the model selection problem was
left open.
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2.2 Generalized Learning Vector Quantization

From the camera system the following data is available for each frame. A stack
of M = 5 feature maps F := {F x,y

i |i = 1..M} corresponding to the RGB
color and position information of the pixels forms the dataset D := {ξ|ξx,y =
(F x,y

1 ..F x,y
M )T , 1 ≤ x, y ≤ I}, where every pixel defines a feature vector. To take

advantage from the temporal character of the data the features of T = 2 frames
are combined to one dataset. Switching to a new frame effectively replaces 50%
(or less if T is increased) of the data from one to another adaptation step.
Additionally to the data the hypothesis H is available indicating which pixels
belong to foreground Hx,y = 1 or background Hx,y = 0 which is used as label
c(ξx,y) := Hx,y for the image features. Assume that H is partially wrong (i.e. only
a small portion of the data is wrongly labeled), the goal is to derive a classifier
Ax,y

F ,H(ξx,y) for the pixel features that generalizes to the relevant foreground
(object) features.

The method of GLVQ is defined by a network of N class-specific prototypical
feature representatives P :=

{
wp ∈ R

M |p = 1..N
}
. For figure-ground segmen-

tation a two class setup is used where c(wp) ∈ {0, 1} encodes the user assigned
class-membership of every prototype. The goal of the learning dynamics is to
find the representatives in feature space to represent the data by minimizing
the classification error defined by the functional E[D,P ] =

∑
ξx,y∈D σ (μ(d))

with σ(x) = 1
1+e−x , μ(d) = dJ−dK

dJ+dK
. Here the variables dJ = d(ξx,y, wJ) and

dK = d(ξx,y, wK) represent the distance between ξx,y and the most similar pro-
totype wJ from the correct class with Hx,y = c(wJ ) and the distance to the most
similar prototype wK from an incorrect class. Since similarity-based clustering
and classification crucially depends on the underlying metrics, recently several
adaptive metrics were proposed [7]. In the most general case the similarity met-
rics is extended towards a Mahalanobis metrics d(ξ, wp) = (ξ−wp)T Λp(ξ−wp),
where the distance computation of the features to the representatives is extended
towards a prototype specific M × M matrix Λp of relevance factors (Localized
Generalized Matrix LVQ, LGMLVQ). In general, using the kernelized distance
computation introduces non-linear decision boundaries. As described in Cram-
mer et al. [8] this allows for a reduced number of prototypes while achieving a
comparable performance to standard LVQ with multiple prototypes.

The prototypes wJ and wK as well as the corresponding relevance factors
ΛJ and ΛK are optimized by means of gradient descent according to E on
10000·T randomly chosen pairs (ξx,y,Hx,y), which is described in more detail
in [1]. Since Λp has to be positive semi-definite to yield a valid metrics, i.e.
d(ξ, wp) = (ξ − wp)T ΩpΩ

T
p (ξ − wp) = (ΩT

p (ξ − wp))2 ≥ 0, this is assured
by adapting Ωp, where Λp = ΩpΩ

T
p . Additionally, the diagonal elements are

normalize by
∑M

i=1 Λi,i = 1. In general the prototypes are kept from one to the
consecutive frame and adapted to the new data.

To segment an image on the basis of such a network, it is partitioned into
N segments (binary maps) Vp ∈ {0, 1} by assigning all feature vectors ξx,y

(i.e. pixels of a particular frame) independently to the prototype wp with the
smallest distance d(ξx,y, wp). Using a prototype-based representation, the final
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segmentation A (binary map) is combined by choosing the binary maps from
the prototypes assigned to the foreground A =

∑N
p c(wp)Vp. For object learning

and recognition now A is used instead of H.

2.3 Incremental Framework

We showed [1] that this method is robust in the presence of the noisy H and the
increased model complexity using the adaptive metrics yields an improved seg-
mentation quality in absence of over-fitting effects when an appropriate network
dimensionality is chosen. Therefore the number of prototypes is an important
parameter which determines the performance of the network with respect to run-
time and generalization capability. Our main goal is here to adapt the number
of prototypes during online processing of the data to use as many prototypes as
necessary for the segmentation.

Fig. 1. The general algorithm to adapt the size of the network follows three main parts.
Standard adaptation of a network using the LGMLVQ update rules (yellow circles),
consisting of step 1 to 3 in Sec. 2.3. The green circles (plus) indicate an additional
step to add a new prototype. This step yields two networks which are evaluated in
parallel on the consecutive frame. Finally the red circle (minus) indicate an additional
contraction step, where one of the prototypes (if appropriate) is removed.

Incremental Online Processing: The proposed method consists of three parts,
a standard adaptation step, one method to add new prototypes and a local
criterion to remove prototypes from the network. To stabilize the incremental
learning of the network in presence of the noisy supervised information, we use
the temporal aspect of the data for a sequential processing together with a par-
allel evaluation scheme. That is, to avoid the adaptation to the hypothesis on a
particular frame, adding and removing prototypes are applied in a consecutive
manner where on a single frame only one prototype is added or removed. Ad-
ditionally due to the risk of disturbing the network with such operations while
online segmenting the image, we use a parallel evaluation scheme Fig. 1. The
prototypes are added to a second network, which is an exact copy of the first
one. After the evaluation a decision is applied whether the original network or
the modified network is kept for the following frame.
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Controlling the Network Size: Incremental learning in prototype-based networks
needs a mechanism to control the growing process to determine an appropriate
number of prototypes. A widely used possibility is a global quality assessment.
This information can be used to select the best performing set of prototypes
after the network grew until a predefined maximum number of prototypes was
reached [9], or to stop if the change in a quality measure does not significantly
vary by adding further prototypes. An online scenario as well as noisy supervised
information, which corrupt global quality assessments, prohibits such methods.
In our approach the network size is controlled by a local utility function without
a criterion of global classification performance or measure for model complexity.
In comparison to the work of Hamker [2] we avoid to use (non-normalized)
distance-based error criteria for the insertion and removal of prototypes from
the network which is attributed to the local metrics of the prototypes. We place
new prototypes according to a confidence criterion on the decision boundary and
rate this placement afterwards by the utility criterion.

Network Expansion: Since a confident global measurement of the representation
quality is not available to determine when it is necessary to introduce new pro-
totypes the network is expanded in specified time intervals. To decide where a
new prototype can be added possible criteria are random insertion, a placement
on false classified data or on the decision boundary. In prototype-based networks
the decision boundary can be characterized by a similar distance of a feature to
two prototypes from different classes. In particular the objective of GLVQ is to
minimize an error functional which represents not only the classification error
but also introduces an error term for unconfidently classified data points which
bases on the difference (the margin) in the nominator of the function μ(d). Us-
ing the margin for learning for example was proposed in the context of active
learning by Schleif et al. [10]. Here new data points for learning are acquired
on the basis of the margin criterion. But this information was not used in the
context of incremental learning before. Since the margin is implicitly optimized
by the GLVQ error function, we decide to add new prototypes in these regions
of low confidence, respectively directly on the decision boundary. Therefore for
each expansion step a new prototype is positioned at the training vector with the
minimum normalized margin m(ξi) = ‖di

J−di
K‖

di
J+di

K
. The label of the new prototype

is initialized according to the supervised information, while the relevance matrix
is taken from the best matching correct prototype according to this label. Since
the network size is not adapted on a single frame and the data is changing from
one to another frame, adding prototypes does not affect the optimization of the
margin but provides a better initialization of the network for the adaptation on
the next frame.

Network Contraction: To rate the importance of every single prototype in the
network a local utility criterion can be used. In the context of vector quantization
Fritzke [11] proposes to rate single neurons according to the quantization error of
a prototype by the following utility function U(wp) := E[D,P \wp]−E[D,P ] =∑

ξ∈D ‖ ξ−ws ‖2 − ‖ ξ−wp ‖2 where ws is the winning prototype from the set
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P \ {wp}. As the quantization error (which is also exploited by Hamker [2] for a
local utility function) is based on a global consistent metrics this method is not
appropriate for localized adaptive metrics. Therefore this inspires a utility u(wp)
function on the basis of the classification error. For a single training example ξ
this function is:

u(wp, ws, ξ) =

{
1 c(wp) = c(ξ), c(ws) �= c(ξ)
0 else

Finally the utility of the prototype on the whole dataset is normalized by the
number of activations n(wp) = |{ξ|d(wp, ξ) = min

q∈P
d(wq, ξ)}| of this proto-

type: U(wp) = 1
n(wp)

∑
ξ∈D u(wp, ws, ξ). If the value U(wp) falls below a given

threshold tu = 0.01 in our experiments, the prototype is regarded as a removal
candidate. After an expansion step, the new prototype is kept, if this one and all
other current prototypes are useful (i.e. U(wp > tu∀p ∈ P)), which assures to
avoid unnecessary instabilities of the network. Independent of the utility function
to evaluate the success of an expansion step, we use this function for separate
contraction steps of the whole network to determine possibly spare prototypes
or misplaced prototypes. Spare prototypes can be replaced by another prototype
without impairing the performance. Misplaced prototypes can be characterized
by an assignment to the wrongly labeled subset of data by the initial hypothesis
H. Usually this causes in the application/segmentation step that more image
portions of the background are assigned to the foreground. These badly placed
prototypes can be identified to cause a large classification error even on correctly
labeled data and therefore reduce the overall segmentation quality. Together with
the recorded activation n(wp) we use the utility criterion to remove such pro-
totypes. That is, additional to the utility criterion a prototype is removed if
n(wp)
|D| < tn, where tn = 0.005.

Algorithm

1. Input and preprocessing:
– feature maps and hypothesis from object ROI: Fx,y := {F x,y

i |i = 1..M},
Hx,y ∈ {0, 1}

– Preprocessing of feature maps F and hypothesis H, see Sec. 3
– Init codebook and metric (on first frame only) P = {wp|p = 1, .., N}

where N = 2, ∀wp ∈ P : wp = 1
|L|
∑

L ξ, L := {ξ|c(ξ) = c(wp)}
– Replace the data of the oldest frame by the data of current feature maps

F in the short term history D
2. Adaptation (for T update steps)

– Find best matching prototypes wJ for the correct label, wK for the in-
correct label according to a randomly selected ξi ∈ D.
e.g. wJ = {wp ∈ P|d(wp, ξ

i) = min
q,c(wq)=Hi

d(wq, ξ
i)}

– Update prototypes wJ,K by means of wJ,K ← wJ,K + α · ΔwJ,K with
learning rate α = 0.05 and similar the relevance factors ΛJ,K with α =
0.005
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3. Evaluation: for all pixels i ∈ D

– ∀wp ∈ P , V i
p :=

{
1 if d(ξi, wp) < d(ξi, wr), ∀r �= p, {r, p} ∈ P ,

0 else

– Determine the binary foreground segmentation A =
∑N

p c(wp) · Vp

– Compute margin for every feature m(ξi) = di
J−di

K

di
J+di

K

– Compute utility U(wp) and prototype activation n(wp), Sec. 2.3
4. (Optional) Network Expansion

– wnew = ξi where i = argminξi∈D m(ξi), c(wnew) = Hi, Λnew = ΛJ

– P = {P , wnew}, N = N + 1
5. (Optional) Network Contraction

– select wp with the smallest utility p = argminp∈P U(wp)
– remove wp if U(wp) < tu or n(wp) < tn, P = P \ {wp}, N = N − 1

3 Results

Data: Finally we evaluate the capabilities of this approach on challenging real
world image data and investigate the effort of the derived object segmentations
in the context of online object learning and recognition. Here we are using the
data from [6] consisting of 50 natural, view centered objects with 300 training
and 100 testing images. After the acquisition of the feature maps F and the hy-
pothesis H a pre-processing F x,y

i ← TF (F x,y
i ) of the feature maps F x,y

i (a gamma
correction and white balancing on the maps representing the RGB image data)
is performed first. From the available depth and skin information the hypothesis
H is computed where all skin-colored areas S,Sx,y ∈ {0, 1} are removed from the
hypothesis H ← TH(H), where (TH(H) := H ← H− (H∩S)). This is necessary
because the hand is strongly connected to every object/hypothesis and can be
regarded as systematic noise violating our assumptions. To compare the results
with previous work, the image regions defined by the foreground classification
(i.e. the presented objects) are fed into a hierarchical feature processing stage [6].
For object learning and recognition a separate nearest neighbor classifier is ap-
plied to the derived high dimensional shape features. The separation of training
and test data is used for the object classifier, while the incremental segmentation
is adapted on a subset of the pixel data for every single frame.

Network Dimensionality: First the behavior of the algorithm is analyzed on an
example of the training-dataset in Fig. 2. The change in object identity yields an
adaptation of the number of prototypes in particular for the foreground, which
shows significant differences for some of the objects dependent on their subjec-
tive visual complexity. To avoid an influence from the sequence of the presented
objects, the order of the 50 objects was randomly rearranged for the eight repe-
titions of the experiment. In contrast to previous work a reduced complexity of
the representation finally allows for a more efficient processing of single frames.
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Fig. 2. Number of prototypes for an application to the training-dataset (50 objects with
300 views, each bar is the average of 8 repetitions and 300 views each). On average over
all objects 4.35 prototypes are used for foreground and 3.07 are used for background.
Additional the object specific std. dev. of the average number of prototypes for multiple
repetitions is drawn, which shows that this number for a particular object is consistent
over multiple repetitions of the experiment. On top, examples for eight objects with
the highest and lowest number of prototypes are shown.

Table 1. Results of the incremental segmentation scheme compared to previous results
(average of 8 repetitions, except the last column). Dependent on the derived number of
prototypes (on average 3 for background and 4 for foreground) the proposed method
achieves a comparable performance to a predefined prototype setup, whereby the vari-
ance of the results is significantly reduced.

N (#bg/#fg) 2(1/1) 7(3/4) 20(15/5) [1] adaptive hypothesis[1]

mean 0.7442 0.8715 0.8828 0.8742 0.755
std. dev. 0.0132 0.0110 0.0252 0.0036 n.a.

Classification Performance: Compared to a predefined number of prototypes
in previous results (see Table 1) three aspects are important: i) the general
performance of the object classifier on the basis of the segmentation (an indirect
quality assessment, verified in [1]), ii) the used resources to derive the results and
iii) the variance in the results. Therefore we compare the incremental method
to the results derived by predefined number of prototypes (chosen according
to the average number of the incremental method). On the basis of the same
resources, a comparable performance can be achieved. Remarkably the variance
of the results is significantly decreased which indicates a higher robustness to the
noisy supervised data by discarding misplaced prototypes. Together with a faster
adaptation to the changing image data the incremental method also reduce the
dependency on the initialization of the prototypes. Since the initialization for the
fixed prototype setup was purely random this can explain the beneficial effect.
Compared to an offline parameter search the incremental segmentation might
not be able to reach the potentially maximum performance (for 20 prototypes,
15 background - 5 foreground on this dataset), but offers an application to data
with unknown “optimal” number of prototypes.
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4 Conclusion

In this paper we present an incremental learning scheme for GLVQ in the context
of figure-ground segmentation. In presence of local adaptive metrics and super-
vised noisy information we use a parallel evaluation scheme combined with a
local utility function to organize a learning vector quantization with an adaptive
number of prototypes. On our real world benchmark dataset we show, that the
incremental network is capable to achieve a comparable (to the results from [1])
performance in hypothesis refinement while maintaining a significantly smaller
variance of the results, thus is more robust. Due to the parallel evaluation scheme
the expansion of the network is free of additional computational load and does
not impair the current performance of the network.
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Abstract. We have proposed Supervised Pareto Learning Self Orga-
nizing Maps(SP-SOM) based on the concept of Pareto optimality for
the integration of multiple vectors and applied SP-SOM to the biomet-
ric authentication system which uses multiple behavior characteristics
as feature vectors. In this paper, we examine performance of SP-SOM
for the generic classification problem using iris data set. Furthermore,
we propose the incremental learning algorithm for SP-SOM and exam-
ine effectiveness in a classification problem and adaptation ability to the
change of the behavior biometric features by time.

1 Introduction

Recently, biometric authentication systems are often used to cover the weak
point of password authentication. Password authentication can be easily hacked
by illegal users who get the password phrase by peeping, guessing from per-
sonal information or using key logger software because password is a simple text
phrase. Biometric authentication uses biometric character of the user himself, so
the features used for the authentication can not be copied easily.

Biometric authentication is classified to 2 types, biometric authentication us-
ing biological characteristics and biometric authentication using behavior char-
acteristics. As the biological characteristics, fingerprint, face, vein patterns and
iris patterns are used. The authentication systems using biological characteris-
tics perform high accuracy, but for obtaining biological characteristics, special
hardware is required. Furthermore, some issues concerning the spoofing of the
fingerprint are reported. This weak point of biological characteristics comes from
the static nature of biological characteristics. Biological characteristics can not
be easily copied, but if it is copied once, the authentication system can not de-
tect spoofing users. As the behavior characteristics, key stroke timing[1], hand
written sign or pattern[2], sound spectrogram of voice and so on are used. Some
of the behavior characteristics can be obtained from the standard input devices
equipped to computers. Furthermore, behavior characteristics are the dynamic
features of the users’ own, so can not be easily imitated by illegal users. But, the
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accuracy of the authentication is inferior to that of biological characteristics be-
cause of the drift of the behavior at each authentication time. For this problem,
we proposed the authentication method using multiple behavior characteristics,
such as, combination of keystroke timing and key typing sound and combination
of keystroke timing and handwritten pattern[3]. For the integration of multi-
ple vectors, we used Self Organizing Map(SOM)s. But using the conventional
SOM, the weight values for each feature vector should be set according to the
validity and magnitude. The accuracy of the authentication differs depending on
the weight values. For this problem, we proposed Pareto learning Self Organiz-
ing Map(P-SOM)s. P-SOM organizes the input data composed of the multiple
independent vectors based on the Pareto optimal concept. Additionally, we pro-
posed Supervised Pareto learning SOM(SP-SOM)s to improve the accuracy of
authentication with supervised learning of the user id as a feature vector[4].

Apart from the application to the authentication system, P-SOM and SP-
SOM can be generally applicable to the integration of multi-modal vectors. Us-
ing conventional SOM, multi-modal input vectors are learned as a composed
vectors. P-SOM and SP-SOM can learn the multi-modal input vectors directly
without composing vectors and the multi-modal vectors are integrated on the
map based on the concept of Pareto optimality. In this paper, we examine the
classification ability of SP-SOM with the benchmark of classification problem
of iris data set registered in the UCI Machine learning repository. The iris data
set is composed of the multiple attributes of different features. To examine the
effect from the composition of vectors, we make some experiments that change
the combination of the attributes composed in each vector. After learning the
reference data, incremental learning of the test data may improve the accuracy of
classification during the test process of the classification problem. We introduce
the incremental learning algorithm to SP-SOM and confirm the effectiveness of
incremental learning. For the authentication system using behavior characteris-
tics, the change of the behavior over time should be considered. For example,
typing speed will be faster as the user accustomed to the computer, so the
keystroke timings will be changed. To adapt to the changes, incremental learn-
ing of the input data at each authentication time is considered to be effective.
We make authentication experiment with changing the input data artificially
and confirmed the adaptation ability of SP-SOM with incremental learning.

2 Pareto Learning Self Organizing Maps

2.1 Conventional SOM

Conventional SOM can be used for integrating the multi-modal vectors. The
multi-modal vectors x1,x2, . . . ,xn are simply composed as an vector as follows.

x = (x1,x2, . . . ,xn) (1)

In this case, all vectors are learned in same weight. Considering the feature of
each vector, multi-modal vectors should be composed in a vector x using the
weight value for each vector as follows.
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x = (w1x1, w2x2, . . . , wnxn) (2)

where wi is the weight value for vector xi. Using this method, the error e between
the vector m = (m1,m2, . . . ,mn) assigned to the i-th unit on the map and input
vector x is given by

e =

√√√√ n∑
j=1

e2
j (3)

ej = |wjxj − mj| (4)

where ej is error between the xj and mj. Because the map is organized accord-
ing to this error function, the resulting map is heavily depending on the weight
values wi.

2.2 Pareto Optimality

Pareto optimality is a concept in multi-modal optimization problem. Consider
the problem finding the vector x ∈ Y which minimize the set of objective func-
tions fi(x), i = 1, . . . , m. To solve the problem finding the vector which minimize
an objective function, weighted sum of the functions fi(x) can be used as the
objective function. But, how to set the weight values of each function dominates
the quality of the solution.

The Pareto set P which is composed of the vectors x that are not inferior to
others is defined as follows.

Definition 1. The Pareto set P is the set of the vectors in Y that are not strictly
dominated by any vector in Y. A vector x is said to be strictly dominated by y,
if fi(x) ≤ fi(y) for any i and fi(x) < fi(y) for some i.

All of the members in the Pareto set are the candidates of optimal solution.

2.3 Pareto learning SOM

Pareto learning SOM(P-SOM) is the SOM which uses the concept of Pareto
optimality for integrating multi-modal vectors. For Pareto learning SOM, the
input vector is given as the composition of distinct vectors as follows.

x = ({x1}, {x2}, . . . , {xn}) (5)

The algorithm of P-SOM is as follows.

P-SOM Algorithm

1. Initialization of the map
Initialize the vector mij which are assigned to unit U ij on the map using the
1st and 2nd principal components as base vectors of 2-dimensional map.
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2. Batch learning phase
(1) Clear all learning buffer of units U ij .
(2) For each vector xi, search for the pareto optimal set of the units P =
{Uab

p }. Uab
p is an element of pareto optimal set P, if for all units Ukl ∈ P−Uab

p ,
existing h such that eab

h ≤ ekl
h where

ekl
h =

∣∣xi
h − mkl

h

∣∣ (6)

(3) Add xi to the learning buffer of all units Uab
p ∈ P .

3. Batch update phase
For each unit U ij update the associated vector mij using the weighted av-
erage of the vectors recorded in the buffer of U ij and its neighboring units
as follows.
(1)For all vectors x recorded in the buffer of U ij and its neighboring units
in distance d ≤ Sn, calculate weighted sum S of the updates and the sum of
weight values W.

S = S + ηfn(d)(x − mi′j′) (7)
W = W + fn(d) (8)

where U i′j′s are neighbors of U ij including U ij itself, η is learning rate,
fn(d) is the neighborhood function which becomes 1 for d=0 and decrease
with increment of d.
(2) Set the vector mij = mij + S/W .

Repeat 2. and 3. with decreasing the size of neighbors Sn for pre-defined iterations.
As shown in step 2 of this algorithm, Pareto winner set for the integrated

input vector x are searched for based on the concept of Pareto Optimality using
the distance defined by (6) as objective function fh(x) for each element xh in
x. Thus, the multiple units become winners. The winners and their neighboring
units are modified in the update process in step 3. Overlapped neighbors are
updated multiply and the overlapped region will contribute to generalization
ability and integration ability of P-SOM.

In the beginning of learning, the size of Pareto winner set became very large
and it should be small in the termination of learning. But, even in the termination
of learning, the size was still large in some cases. A unit can be a member of
Pareto winner set if at least one of the objective function is superior to those of
others in Pareto optimal set. We make this condition stronger to reduce the size
of Pareto set.

Definition 2. M/N Pareto Optimality
The M/N Pareto set P is subset of vectors in Y that is composed of the vectors
which have at least M superior objective functions to those of others in P where
N is number of objective functions.

In the learning process of P-SOM, the Pareto winner set is searched for based on
the concept of M/N Pareto optimality and M is updated to larger value during
the learning process to reduce the size of Pareto winner set.
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The map is initialized using Principal Component Analysis (PCA) to avoid
the scattering of the elements in Pareto winner set. We also used batch learning
method to avoid the affect from the order of the presentation of each input vector.

2.4 Supervised Pareto Learning SOM(SP-SOM)

P-SOM can integrate the any kind of vectors which use different distance met-
rics. Thus, the category vector can easily integrated. It changes the learning al-
gorithm from unsupervised learning of conventional SOM to supervised learning
to improve the accuracy of classification. The integrated input vector including
category vector is composed as follows.

x́i = (xi, ci) (9)

ci
j =

{
1 xi ∈ Cj

0 otherwise
(10)

where Cj is j-th category. The learning algorithm is almost same as that of P-
SOM except that category vector can be used whether for finding Pareto winner
set or only for labeling the units. If the integrated vector including category
vector is used for finding the winners, the organization of the map is controlled
by the primal integrated vector and category vector. If the primal integrated
vector is used for finding the winners and the category vector is included only
for updating, the category vector is considered as mere label for the unit.

In the recalling process of SP-SOM, the category vector is also used. The re-
calling algorithm of SP-SOM is as follows.

SP-SOM - recalling algorithm

1. Searching for the Pareto set of units
For given test vector xt, search for the pareto optimal set of the units P =
{Uab

p }.
2. Determination of the category

Calculate

ct
k =

m∑
Uij∈P

cij
k (11)

where mij = (xij , cij). The category of xt is Cl for l = argmaxk(ct
k).

As shown in this algorithm, category for a test vector is determined by the sum
of the category vectors in Pareto set of units.

2.5 Incremental Learning of SP-SOM

As mentioned before, incremental learning will be effective for the learning of test
data in the classification problem and for adaptation to the temporal change of
input vectors. Two types of incremental learning mode, supervised learning and
unsupervised learning are considered depending on the condition of test data.
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In supervised learning, the vector for incremental learning is composed with the
category vector described in the previous sub-section. In unsupervised learning,
only the test vector is used for learning. The equation of the incremental learning
is as follows.

m′
ij = m′

ij + η′(x′ − m′
ij) (12)

where m′
ij is the vector associated to U ij ∈ P , P is the Pareto optimal set

for test vector x, x′ = (x, c) for supervised learning, x′ = x for unsupervised
learning, c is category vector of x and η′ is learning rate for incremental learning.
This equation is equivalent to the equation for updating the winner unit in SOM
except the targets are the units in Pareto winner set.

3 Experimental Results for Classification Problem

In this section, the experimental results for general classification problem using
SP-SOM are mentioned. As the classification problem, the iris data set obtained
from UCI machine learning database are used.

3.1 Description of Iris Data

The iris data set containes 3 classes of 50 instances of each, where each class is
refers to a type of iris plant. Each data contains 4 attributes, which are sepal
length(sl), sepal width(sw), petal length(pl) and petal width(pw) in cm.

3.2 Experimental Result for Classification Problem of Iris Data

At first, we made some experiments using SP-SOM with different combination
for making integrated input vector x. The following 4 cases are tested considering
the feature of each attribute.

– Case 1: x = (sl, sw, pl, pw) All attributes are composed in a vector.
– Case 2: x = ({sl, sw}, {pl, pw}) 2 vectors which represents the features of

sepal and petal respectively are integrated.
– Case 3: x = ({sl, pl}, {sw, pw} 2 vectors which represents the features of

length and width respectively are integrated.
– Case 4: x = ({sl}, {sw}, {pl}, {pw}) All attributes are integrated as the

independent vectors of length 1.

Case 1 is considered as the SOM using the category vector for supervised learn-
ing. Case 4 is the special case of SP-SOM which treats all attributes indepen-
dently. This integration method will be effective for the input vectors which is
composed from the attributes with unknown features. We call this Full Pareto
learning SOM(FP-SOM) or Supervised Full Pareto learning SOM(SFP-SOM).

For each cases, 50 iterations of experiments are done with changing the com-
bination of 40 data for learning and 10 data for testing. The parameters of
SP-SOM are as follows.
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– Map geometry: size=16x16 torus map
– Initial learning rate: 0.3
– Initial neighbor size: 4
– Pareto condition: 1/N Pareto optimality

Table 1. Accuracy of classification for iris data set using SP-SOM

Case 1 Case 2 Case 3 Case 4

Class1 1.000 1.000 1.000 0.996
Class2 0.930 0.948 0.946 0.918
Class3 0.928 0.928 0.948 0.910

Average 0.952 0.959 0.965 0.941

Table 2. Accuracy of classification for iris data set using SP-SOM

SOM LVQ with AC C4.5 OC1 LMDT

Average 0.899 0.951 0.916 0.939 0.955

The accuracy of classification is shown in Table 1. The accuracy of the clas-
sification changes according to the composition of integrated vector. In these
cases, case 3 is best and case 4, which uses FSP-SOM are worst. But, the differ-
ence is small in average. For the comparison, the results from [5] are shown in
Table 2. The condition of experiments is almost same except that the iterations
of experiments are 10 for these results. Except case 4, SP-SOM shows superior
results. Next, we made the experiments with changing the number of the data
for learning and testing. Fig.1 shows the results. X-axis of this graph denotes
the number of test data and the remainder (50-x) is used for learning. Case 4’
uses SFP-SOM whose Pareto condition is 2/4 Pareto optimality to improve the
accuracy of case 4. With decreasing the number of the data for learning the
accuracy becomes worse. But, for case 3 and case 4’ , the rates of decreasing is
smaller than those of others.

Next, the experimental results of incremental learning are shown. During the
test process, the test data are used for learning the map. For the fairness of
comparison, the test data are learned by unsupervised learning method with-
out including supervised category vectors. The result for case 3 with changing

Fig. 1. Changes of the accuracy with
changing number of test data

Fig. 2. Changes of the accuracy with in-
cremental unsupervised learning
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the number of test data is shown in Fig.2. Compared with the results without
learning, the accuracy is improved against the decreasing of learning data with
incremental learning. Even for the case of 5 learning data(45 test data), the
accuracy is kept over 96% with incremental learning.

From these results, SP-SOM can perform better classification accuracy with
setting the proper combination of the attributes as input vectors.

4 Experimental Results of Adaptive Authentication
System

As mentioned before, the biometric authentication system using behavior char-
acteristics should adapt to the change of behaviors over time. We reported the
authentication method using the keystroke timing and key typing sound as the
multi-modal behavior biometrics[6]. The keystroke timing data is the vector com-
posed of the intervals of the pushing and releasing the keys. The key typing sound
data is the vector composed of the maximum amplitudes of the sounds for each key
typing. From each of 10 examinees, 10 data typing the same phrase ”kirakira” are
sampled. For the experiments using the biometric data which changes over time,
we made the biometric data artificially from the sampled data because it will take
very long time to wait for the change of biometrics of examinees.

At first, the map for all biometric data is organized. The size of the map is 16x16
and the iteration of the learning is 50 batch cycles for all input vectors. Next, the
adaptation to the changes of the input vectors over time is examined. In the fol-
lowing experiment, 4 out of 15 keystroke timings and 2 out of 8 key typing sounds
in the input vector are selected randomly, multiplied by 0.9 and replaced with the
value before each authentication test. The case that test vectors are not learned,
the case that test vector are learned by unsupervised learning and the case that
test vectors are learned by supervised learning are compared. The tests are re-
peated 20 times. Fig.3 shows the result. FRR(False Reject Rate) is an index of
authentication accuracy which means the rate of rejecting the user falsely. With-
out learning, FRR becomes worse with iterations. On the other hand, FRR is kept
small with incremental learning. With supervised incremental learning, FRR is
kept almost 0 even if the input vectors are changing time over time. Fig.4 shows

Fig. 3. Changes of FRR with incremental
learning and without learning(1)

Fig. 4. Changes of FRR with incremental
learning and without learning(2)
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the results for the case that multiplier is set 0.8. In this case, FRR becomes worse
for all case, but FRR is kept under 0.1 with supervised learning.

5 Conclusion

We proposed Pareto learning SOM(P-SOM) and Supervised Pareto learning
SOM(SP-SOM) which based on the concept of Pareto optimality for integrating
multi-modal vectors. The performance for the classification problem is confirmed
in the iris classification problem. Additionally, it is shown that unsupervised
incremental learning of the test data can improve the accuracy of classification
and that incremental learning is also effective for the application of SP-SOM to
adaptive authentication system using multi-modal behavior biometrics.

P-SOM and SP-SOM can be used for integrating more generic input vectors
and the units on the map can be represented in more generic forms. For example,
using the sequence data and its features of DNA sequences as input vector, the
units can be represented using Hidden Markov Model for sequence data and
independent vectors for each feature. As the future works, we should examine
the performance of P-SOM and SP-SOM in variety of applications.
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Abstract. In this paper, we introduce the Gamma SOM model for temporal se-
quence processing. The standard SOM is merged with a new context descriptor
based on a short term memory structure called Gamma memory. The proposed
model allows increasing depth without losing resolution, by adding more con-
texts. When using a single stage of the Gamma filter, the Merge SOM model is
recovered. The temporal quantization error is used as a performance measure.
Simulation results are presented using two data sets: Mackey-Glass time series,
and Bicup 2006 challenge time series. Gamma SOM surpassed Merge SOM in
terms of lower temporal quantization error in these data sets.

1 Introduction

Self-organizing feature maps (SOMs) [1] have been recently extended for processing
data sequences that are temporally or spatially connected, such as words, DNA se-
quences, time series, etc. [2],[3],[4]. Hammer et al. [5] presented a review of recur-
sive self-organizing network models, and their application for processing sequential
and tree-structured data. An early attempt to include temporal context is the Tempo-
ral Kohonen Map (TKM) [6], where a neuron output depends on the current input and
its context of past activities. The neurons implement a local recurrence, acting as leaky
integrator of signals. In the Recursive SOM model [3],[11], time is represented by feed-
back connections. The original SOM algorithm is used recursively on both the current
input and a copy of the map at the previous time step. In addition to a weight vector,
each neuron has a context vector that represents the temporal context as the activation
of the entire map in the previous time step. This kind of context is computationally ex-
pensive, since the dimension of the context vectors is equal to the number of neurons in
the network.

In the Merge SOM (MSOM) [2] approach, the current context is compactly described
by a linear combination of the weight and the context of the last winner neuron. This
context representation is more space efficient than the one used for the Recursive SOM
model. MSOM represents the context in the data space, therefore the representation
capability is restricted by the data dimensionality [4]. Since MSOM context does not
depend on the lattice architecture, it can be combined with other self-organizing neural
networks such as Neural Gas [12]. The resulting model is called Merge Neural Gas
(MNG) [13].

A static neural network can be extended to a dynamical one, by adding a short term
memory structure to the net. De Vries and Principe [7] introduced the Gamma neural
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model, where the units can store their activation history in an adaptive gamma memory
structure. In particular, the authors studied the focused Gamma net where the memory
elements are restricted to the first layer, and then this input layer is fed to a strictly
static feedforward net. Under supervised learning, the memory parameters are adapted
by using a real time recurrent learning procedure.

In this paper, a new context model based on Gamma memory is added to SOM. When
the order of the Gamma filter is reduced to one, the Merge SOM model is recovered.
Gamma SOM and Merge SOM are compared using two time series and the temporal
error quantization as a performance criterion.

2 Merge SOM

In this section a brief overview of Merge SOM is given. Neurons are a vector tuple(
wi, ci

)
∈ �d ×�d, where d correspond to the dimensionality of the input signals, wi

is the weight vector, and ci is the context vector associated to the ith neuron. The con-
text corresponds to the merged content of the winner neuron in the previous time step.

Given the current entry x(n) of a sequence, the best matching neuron (BMU), In, is
the closest neuron according to the following recursive distance criterion:

di(n) = (1 − α) · ||x(n) − wi||2 + α · ||c(n) − ci||2 (1)

where the contributions of weight and context vectors to the distance are balanced by
the parameter α ∈ [0, 1]. This parameter should be set as to ensure that the weight’s con-
tribution is more relevant than the context’s contribution, in order to achieve a correct
context representation. The current context, c(n), corresponds to a linear combination
of the weight and context of the previous winner, In−1, i.e. the best matching unit in
the last time step. The current context is defined as:

c(n) = (1 − β) · wIn−1 + β · cIn−1 , (2)

where the parameter β permits to control the contribution of the weight and the context
of the previous winner to the current context representation. This parameter takes values
in the range 0 ≤ β < 1. Typically, c(0) = 0.

2.1 Merge SOM Update Rules

Training takes place by adapting both weight and context vectors towards the current
input and its context descriptor, respectively, using the following update rules:

�wi = εw(n) · hσ(n) (dG(i, i∗)) ·
(
x(n) − wi

)
(3)

�ci = εc(n) · hσ(n) (dG(i, i∗)) ·
(
c(n) − ci

)
where n is the current training epoch, ε is the learning rate, and hσ(n) is the neighbor-
hood function defined in the two-dimensional output grid. Typically, this neighborhood
function is a Gaussian centered in the winner unit i∗, defined as follows:

hσ(n) (dG(i, i∗)) = exp

(
−dG(i, i∗)

σ(n)

)
(4)
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where dG(i, i∗) is the distance in the 2D output grid between the ith and the i∗th
neurons, defined as

dG(i, i∗) = |xi − xi∗ | + |yi − yi∗ |. (5)

The parameter σ(n) is the neighborhood size and decreases exponentially during
training,

σ(n) = σ0 ·
(

σf

σ0

) n
nmax

(6)

where nmax is the maximum number of epochs. The learning rates εw(n) and εc(n) are
annealed in the same way as (6), i.e. they decay exponentially from an initial value to a
final value. It has been proved that Hebbian learning converges to the following optimal
weight and context vectors at time n (i.e., are stable fixed points):

wopt(n) = x(n), copt(n) =
n−1∑
j=1

(1 − β) · βj−1 · x(n − j),

provided that there are enough neurons and neighborhood cooperation is neglected, i.e.
for late stages of learning [5].

3 Gamma Memories

The Gamma filter is defined in the time domain as

y(n) =
K∑

k=0

wkck(n)

ck(n) = βck(n − 1) + (1 − β)ck−1(n − 1) (7)

where c0(n) ≡ x(n) is the input signal and y(n) is the filter output, and w0, · · · , wK , μ
are the filter parameters. It has been demonstrated [10] that stability is guaranteed when
0 < β < 1. The β parameter provides a mechanism to decouple depth (D) and res-
olution (R) from filter order. Depth refers to how far into the past the memory stores
information, a low memory depth can hold only recent information. Resolution refers
to the degree to which information concerning the individual elements of the input se-
quence is preserved. It has be shown [9],[10] that the mean memory depth for a Gamma
memory of order-K becomes

D =
K

(1 − β)
(8)

and its resolution is
R = 1 − β.

Therefore, depth and resolution can be adapted in Gamma memories by changing β.
The Gamma delay operator G(z) represents the transfer function using z-transform

of a single filter stage

G(z) =
(1 − β)
(z − β)

. (9)
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Eq. (9) can be interpreted as a leaky integrator, where β is the gain of the feedback loop.
The proposed recursive rule for context descriptor of order-K can be derived directly
from the transfer function (9), as follows:

Ck(z) = G(z)Ck−1(z) =
1 − β

z − β
Ck−1(z)

which can be rearranged as

Ck(z) = (1 − β)z−1Ck−1(z) + βz−1Ck(z). (10)

By using the inverse Z-transform, the recursive expression (7) is obtained. A more de-
tailed Gamma Filter analysis can be found in [7,8].

4 New Gamma Context Model

Let N = {1, . . . , M} be a set of neurons. Each neuron has associated a weight vector
wi ∈ �d, for i = 1, . . . , M , obtained from a vector quantization algorithm. The Gamma
context model associates to each neuron a set of contexts C =

{
ci
1, c

i
2, . . . , c

i
K

}
, ci

k ∈
�d, k = 1, . . . , K , where K is the Gamma filter order. Given a sequence s the context
set C should be initialized at a fixed value, e.g. 0. By increasing the filter order, the
Gamma context model can achieve an increasing memory depth without compromising
resolution.

Given a sequence entry, x(n), the best matching unit In is the neuron that minimizes
the following distance criterion,

di(n) = αw

∥∥x(n) − wi
∥∥2

+
K∑

k=1

αk

∥∥ck(n) − ci
k

∥∥2
(11)

where the parameters αw and αk, k ∈ {1, 2, . . . , K} control the contribution of the
different elements. The recursive distance (11) requires calculating every context de-
scriptor in the different filtering stages, which are built by using Gamma memories.
Formally, the K context descriptors of the current unit are defined as:

ck(n) = βc
In−1
k + (1 − β) c

In−1
k−1 ∀k = 1, . . . , K (12)

where c
In−1
0 ≡ wIn−1 and at n = 0 the initial conditions cI0

k , ∀k = 1, . . . , K are set
randomly. It is easy to verify that when K = 1, the merge context (2) is recovered.
Therefore, Merge SOM becomes a particular case of Gamma SOM when only a single
Gamma filter stage is used (K = 1).

Because the context construction is recursive, it is recommended that αw > α1 >
α2 > · · · > αK > 0, otherwise errors due to poor quantization in the first filter stages
would propagate through higher order contexts.
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4.1 Gamma SOM Algorithm

The Gamma SOM algorithm is a merge between SOM and Gamma context model. A
grid size of Ny × Nx is considered as in standard SOM. Neuron ith has associated a
weight vector, wi, and a set of contexts, ci

k, for k = 1, · · · , K .

1. Initialize randomly weights wi, and contexts, ci
k, for k = 1, · · · , K , i = 1, · · · , M .

2. Present input vector, x(n), to the network
3. Calculate context descriptors ck(n) using (12)
4. Find best matching unit (BMU), In, using (11)
5. Update neuron’s weight and contexts using the following rule

�wi = εw(n) · hσ(n) (dG(i, i∗)) ·
(
x(n) − wi

)
(13)

�ck
i = εc(n) · hσ(n) (dG(i, i∗)) ·

(
ck(n) − ck

i
)

6. Set n → n + 1
7. If n < L go back to step 2, where L is the cardinality of the data set.

5 Experiments

Experiments were carried out with two data sets: Mackey-Glass time series and Bicup
2006 time series1. The parameter β was varied from 0.1 to 0.9 with 0.1 steps. The
number of filter stages K was varied from 1 to 5. The number of neurons was set to
M = �0.15L�, where L is the length of the time series.

Training is done in two stages each one lasting 1000 epochs. In the first stage, mainly
the weight (codebook) vectors are updated while the context descriptors are adjusted
just a little. This is done by setting the followings parameters αw = 0.5, αck

= 0.5
K

for k = 1, . . . , K , in (11). The initial and final values of parameters used in (13) and
(4) were set as follows: σ0 = 0.1M , σf = 0.01, εw0 = 0.3, εwf = 0.001, εc0 = 0.3,
εcf = 0.001.

For the second training stage, parameter α is decayed linearly as follows:

αi =
K + 1 − i∑K
k=0(k + 1)

, i = 0 . . .K (14)

with αw ≡ α0. The initial and final values of parameters were the same as described
above, except for εw0 = 0.001. The latter parameter is kept fixed in the second stage
because the weight vectors have already converged during the first training stage.

After convergence of the algorithm, each neuron would have associated a receptive
field defined as the mean input sequence that triggers its selection. With the aim of
measuring performance, a time window of 30 past events is defined. The size of this
window does not affect the function of the model, and it is used for monitoring purposes
only. The temporal quantization error (TQE) [3] is used as a performance criterion.
TQE measures the average standard deviation of signals within the receptive field of
each neuron in the grid for a certain past input. This generates a curve of quantization
error versus the index of past inputs. This curve can be integrated to yield the area under
TQE curve measure.

1 Available at Times Series Data Library
http://www.robjhyndman.com/TSDL/data/bicup2006.dat
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5.1 Mackey-Glass Time Series

Figure 1 shows the Mackey-Glass time series, which is the solution of the differential
equation dx

dt = bx(t) ax(t−d)
1+x(t−d)10 , for a = −0.2, b = −0.1, and d = 17. Five hundred

points were taken from this time series. The SOM grid size was set as 9 × 8, with a
total number of 72 neurons (about 15% of the size of the data set). Figure 2 shows
the temporal quantization error for Merge SOM (K = 1) and Gamma SOM (K = 3,
K = 5). The parameter beta was varied between 0.1 and 0.9, and the best value for
Merge SOM was found (β = 0.7). This value is used in Fig. 2. It can be observed that
Gamma SOM (K = 3) outperformed Merge SOM (K = 1) in terms of TQE for any
value of the index of past inputs greater than 1.
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Fig. 1. Mackey-Glass time series
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Fig. 2. TQE for Mackey-Glass time series using Merge SOM (K = 1) and Gamma SOM (K = 3,
K = 5) with β = 0.7
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5.2 Bicup 2006 Time Series

Figure 3 shows the Bicup 2006 time series. It contains the number of passenger arrivals
at a subway bus terminal in Santiago, Chile, for each 15-minute interval between 6:30
hours and 22:00 hours for the period March 1-21, 2005.

Fig. 4 shows the TQE performance for K = 1, 2, 5, filter stages, and β = 0.9,
which corresponds to the best β value found for Merge SOM. It can be observed that
the TQE curve for K = 5 is below the curve for K = 1 for any index of past values
greater than 1. Fig. 5 shows the TQE performance for K = 1 and K = 5 filter stages,
and β = 0.5; 0.7; 0.9. It can be seen that the three curves obtained with Gamma SOM
have lower error than the curve corresponding to Merge SOM (K = 1), independent
of the β value explored. Fig. 6 shows the area under TQE curves as a function of K
values. A tendency is observed, so that the greater the K value the lower the area under
TQE curve. Fig. 7 shows a two-dimensional projection of the resulting temporal vector
quantization using principal component analysis (PCA) for the Bicup 2006 time series.
Fig. 7 shows the projection obtained with a) Merge SOM (K = 1) and b) Gamma SOM
(K = 5). The Gamma SOM projection is less noisy than the Merge SOM projection. In
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Fig. 4. TQE for Bicup 2006 time series using MSOM (K = 1, and Gamma SOM (K = 3,
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(a) Merge SOM, K = 1 (b) Gamma SOM, K = 5.

Fig. 7. PCA projection of temporal vector quantization result for Bicup 2006 time series, using a)
Merge SOM (K = 1, β = 0.9), and b) Gamma SOM (K = 5, β = 0.9)

Fig. 7b), the cyclic nature of the Bicup time series, having different cycle lengths, can
be clearly observed.

6 Conclusion

A new context model based on Gamma memories has been added to standard SOM
with the aim of processing temporal sequences. The so-called Gamma SOM model
is a generalization of Merge SOM, the latter being a particular case when a single
context is used. It has been shown empirically that by adding more contexts the temporal
quantization error tends to diminish, as well as the area under TQE curve. Since the
proposed context model is independent of the lattice topology, it can be combined with
other vector quantization algorithms such as Neural Gas, Growing Neural Gas, Learning
Vector Quantization, etc, being this a promising research line.
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Abstract. In this paper we extend the crisp Affinity Propagation (AP)
cluster algorithm to a fuzzy variant. AP is a message passing algorithm
based on the max-sum-algorithm optimization for factor graphs. Thus
it is applicable also for data sets with only dissimilarities known, which
may be asymmetric. The proposed Fuzzy Affinity Propagation algorithm
(FAP) returns fuzzy assignments to the cluster prototypes based on a
probabilistic interpretation of the usual AP. To evaluate the performance
of FAP we compare the clustering results of FAP for different experi-
mental and real world problems with solutions obtained by employing
Median Fuzzy c-Means (M-FCM) and Fuzzy c-Means (FCM). As mea-
sure for cluster agreements we use a fuzzy extension of Cohen’s κ based
on t-norms.

1 Introduction

Clustering of objects is a main task in machine learning. There exists a broad va-
riety of different algorithms for a large range of problems. The set of algorithms
includes basic ones like c-Means as well as more advanced algorithms like SOM
and Neural Gas. Recently some methods have been developed to work with gen-
eral similarities between the data only instead of the data points itself embedded
in a metric space. Examples are Median c-means, Median and Relational Neural
Gas and Affinity Propagation [5]. For recently developed affinity propagation
(AP) the requirement of completely known similarity matrix is relaxed.
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For some of the similarity based cluster algorithms both crisp and fuzzy vari-
ants are available, like Median Fuzzy c-Means (M-FCM) [7], which is an exten-
sion of standard Fuzzy c-means (FCM). The aim of this paper is to extend AP
in a way to obtain fuzzy cluster assignments. This is possible because of the
underlying statistical model of AP. After introduction of the new approach, we
give exemplary applications for artificial and real world data. The results are
compared with results given by recently developed M-FCM and FCM, the latter
one only applicable for metric data.

2 Affinity Propagation and Its Fuzzy Extension

2.1 Affinity Propagation

Affinity propagation introduced by Frey&Dueck in [5] is a cluster algorithm
based on message passing. Contrary to methods like c-means or neural maps,
where the number of prototypes has to be known beforehand, affinity propaga-
tion assumes all data points as potential prototypes (exemplars) and reduces the
number of respective prototypes in the course of calculation. Each data point
is interpreted as a node in a network which interacts with the other nodes by
exchanging real-valued messages until a set of prototypes and corresponding
clusters emerges.

AP can be seen as an exemplar-dependent probability model where the given
dissimilarities between N data points xi (potential exemplars) are identified as
log-likelihoods of the probability that the data assume each other as prototypes.
More specific, the dissimilarities s (i, k) between data points i and k may be
interpreted as log-likelihoods. The goal of AP is to maximize the cost function

S (I) =
∑

i

s
(
xi, xI(i)

)
+
∑

j

δj (I)

where I : N → N is the mapping function defining the prototypes for each data
point. δj (I) is a penalty function

δj (I) =
{

−∞ if ∃j, k I (j) �= j, I (k) = j
0 otherwise

The cost function can also be seen as proportional to log-probabilities

S (I) = log (ΠiP (xi, I (xi)) · P (I))

with P (xi, I (xi)) as the probability that I (xi) is the prototype for xi and P (I)
is the probability that this assignment is valid. We notice at this point that
normalization does not affect the solution.

During the computation two kind of messages are iteratively exchanged be-
tween the data until convergence: the responsibilities r (i, k) and the availabilities
a (i, k). The responsibilities

r (i, k) = s (i, k) − max
j �=k

{a (i, j) + s (i, j)}
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reflect the accumulated evidence that point k serves as prototype for data point
i. The availabilities

a (i, k) = min
{
0, r (k, k) +

∑
j �=i,k max {0, r (j, k)}

}
a (k, k) = maxj �=k {max {0, r (j, k)}}

describe the accumulated evidence how appropriately data point k is seen as a
potential prototype for the points i. Finally, the prototypes are determined by

I (i) = arg max
j

{a (i, k) + r (i, k)} . (1)

Hence, a (i, k) and r (i, k) can be taken as log-probability ratios [5]. The iter-
ative alternating calculation of a (i, k) and r (i, k) is caused by the max-sum-
algorithm applied for factor graphs [10], which can further be related to spec-
tral clustering [9]. The number of resulting clusters is implicitly handled by
the self-dissimilarities s (k, k) also denoted as preferences. The larger the self-
dissimilarities the finer is the granularity of clustering [5]. Common choices are
the median of input similarities or the minimum thereof.

2.2 Fuzzy Interpretation of Affinity Propagation

We now give a fuzzy interpretation of the AP. This interpretation follows from
the above probability description. We define the set of exemplars IE ⊂ N as
before according to (1). For each xi, xj ∈ IE we define the cluster member prob-
ability P (i, j) = 0 iff i �= j and P (i, i) = 1. As previously mentioned, the log-
probability ratio r (i, k) measures the degree to which point xk ∈ IE is suitable
to be the prototype for point xi. To ensure a probability description of cluster
assignments we introduce the normalized responsibilities for non-exemplars

r̂ (i, k) = C
r(i, k) − maxi|xi /∈IE

{r(i, k)}
maxi|xi /∈IE

{r(i, k)} − mini|xi /∈IE
{r(i, k)} . (2)

Then, the probabilities for mapping of data points xi onto the cluster prototype
xk can be defined by

P (i, k) = er̂(i,k), P (i, k) ∈ [0, 1] ,

if the normalization constant C in (2) is chosen appropriately based on the
variance of r(i, k). Thus, the definition of P (i, k) is compliant with the log-ratio
interpretation of the responsibilities r(i, k). In this way we obtain possibilistic
cluster assignments, which are taken as fuzzy degrees. A probabilistic variant
can be obtained by subsequent normalization of the P (i, k).

We denote the fuzzy-interpreted AP by Fuzzy Affinity Propagation (FAP).

3 Experiments

We perform three exemplary experiments to show the abilities of the new FAP.
The first experiment consists of clustering overlapping Gaussians. The distance
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matrix was generated using the Euclidean metric, since exact data points were
known. Thus the FAP can be compared with FCM as classic fuzzy clustering for
metric space data.

Subsequently, we apply the FAP algorithm to cluster text documents as ex-
amples for non-vectorial data. The first data set is from a multilangual The-
saurus of the European Union whereas the second one consists of transcripts of
dialogs from psychotherapy sessions. For the latter example, additional infor-
mation about meaningful clustering is available from clinical knowledge. Both
data sets have in common that they are non-metric examples. The dissimilar-
ities between the data are calculated using the Kolmogorov-complexity [1]. It
is based on the minimal description length (MDL) Zx of a single document x
and pairwise combined documents Zx,y. The respective normalized information
distance is given by:

NIDx,y =
Zxy − min(Zx, Zy)

max(Zx, Zy)
. (3)

Usually, the MDL is estimated by the compression length z according to a given
standard compression algorithm (here Lempel-Ziv-Markow-Algorithm provided
by 7-Zip). Due to technical reasons the estimation is non-symmetric. Therefore,
the symmetrized variant NIDs

x,y = (NIDx,y+NIDy,x)
2 is applied. Further, it has to

be noted that NIDx,x is non-vanishing in general but takes very small values [1].
For non-vectorial data the FCM is not applicable. Yet, recently a batch variant

of FCM was developed, which allows to cluster data sets for which the data
dissimilarities are given only [7]. It is called Median FCM (M-FCM).

3.1 Measures for Comparing Results

The agreement of crisp cluster solutions is typically judged in terms of Cohen’s
κC ∈ [−1, 1] [2],[3]. This measure yields the statement that, if the result is greater
than zero, the cluster agreements are not random but systematic. The values are
usually interpreted according to the scheme given in Tab.1. For fuzzy clustering a
respective method was recently described [4]. It is based on the observation that
the fuzzy cluster memberships can be combined using the concept of t-norms
[8]. Yet, due to the uncertainty in case of fuzzy sets the definition is not unique.
According to the considerations in [13] we suggest to apply the fuzzy-minimum-
norm.

Table 1. Interpretation of κ-values

κ - value meaning

κ < 0 poor agreement

0 ≤ κ ≤ 0.2 slight agreement

0.2 < κ ≤ 0.4 fair agreement

0.4 < κ ≤ 0.6 moderate agreement

0.6 < κ ≤ 0.8 substantial agreement

0.8 < κ ≤ 1 perfect agreement
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3.2 Two Toy Problems

The data set for the first toy problem is created from five overlapping Gaus-
sian distributions. We performed a fuzzy clustering based on the similarities
using FAP and M-FCM [7]. Additionally we applied FCM to the original data
points. According to the remark in Sec.2.1, the preferences for FAP are cho-
sen adequately to obtain the number of the given Gaussians. Figure 1 shows the
original clusters in comparison to the calculated fuzzy clustering. The agreement
between the solutions and the original data as well as between the solutions of
the different algorithms themselves is depicted in table Tab.2. Noticeable is the
relatively low agreement to the original data, which is due to the crisp assign-
ments of the original data.

The second toy problem is taken from the original paper by Frey&Dueck
[5]. Here, AP was applied to 25 two-dimensional data points, using negative
squared error as the similarity. The algorithm clusters the dataset into three
groups. Applying the modified FAP yields the same three clusters, yet the clus-
ter assignments are given as fuzzy values. Additionally, M-FCM was executed
on the original data set again delivering the same three prototypes. The compar-
ison using Cohen’s κ gives a value of 0.714 indicating a substantial agreement
according to Tab.1.

Fig. 1. Overlapping Gaussian distributions (left) and their color coded fuzzy cluster
assignments (right) as well as cluster centers obtained by FAP. (Colored versions of
these images can be obtained from the corresponding author).

Table 2. Cohen’s κ for different cluster algorithms for the overlapping Gaussians
example

Fuzzy AP

Original Data κ = 0.52

M-FCM κ = 0.79

FCM κ = 0.80
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3.3 Two Real World Problems

Detection of phase transitions in a psycho-dynamic psychotherapy
based on the narratives of the therapy sessions: In this first real world
experiment we analyze text transcripts of a series of 37 psychotherapy session
dialogs from a psychodynamic therapy. It is known that the therapy was a two-
phase process with the culminating point (phase transition) around session 17.
This fact is based on the evaluation of several clinical therapy measures [11].
The similarity between the transcripts is determined using the universal distance
description length (Kolmogorov complexity) estimated by the file length of the
compressed texts, for details see [6]. Again, the predefined number of clusters
determines the particular value of the preferences, here appropriately chosen as

s (k, k) = 2 ∗ min(s(j, k)).

As shown in [7], cluster algorithms like Median c-Means (M-CM) and Median
Neural Gas (M-NG) find similar cluster solutions separating the transcripts into
two groups reflecting the break through in therapy. This concordance led to the
hypothesis that narratives of the psychotherapy can be related to the therapeutic
process [11].

Clustering the same data using fuzzy assignments as with FAP and M-FCM
shows a smooth transition from phase one to phase two in the advised period
of the therapy. The κ-value describing the concordance of these two fuzzy clus-
tering algorithms has a value of 0.76, reflecting a substantial agreement, see
Fig.2. Further, the soft phase transition is obvious that means a soft transi-
tion is triggered by the therapeutic interventions. A similar result is obtained, if
psycho-physiological parameters are investigated, which were determined paral-
lely online during the therapy seesions [12]. However, the respective processing
is very time consuming. Thus, using the therapy narratives , a cheap alternative
is available.

Clustering of ‘Eurovoc’ documents: The first data set, also used as an exam-
ple in [6], consists of a selection of documents from the multilingual Thesaurus of
the European Union ‘Eurovoc’. This thesaurus contains thousands of documents,
which are available in up to 21 languages each. For the experiments we selected
a subset of 100 transcripts and 6 languages English, German, French, Span-
ish, Finnish and Dutch such that the overall database comprises 600 documents
roughly classified into 6 categories: International Affairs, Social Protection, En-
vironment, Social Questions, Education and Communications, and Employment
and Working Conditions. The dissimilarities are calculated by means of the Kol-
mogorov complexity [1]. It was shown in [6] that standard AP detects 6 clusters
mainly related to the language structure. Applying now FAP to this problem,
the resulting agreement in terms of Cohen’s κ is just a fair agreement, see Tab. 3.
However, this effect can be seen as a consequence of the rough discretization into
crisp cluster assignments for standard AP. To underline this postulation we also
performed M-FCM and median c-means (MCM). Both methods result also in 6
clusters as AP and FAP. And, again, there is large discrepancy between their



78 T. Geweniger et al.

Fig. 2. Transition of psychotherapy sessions from phase 1 (magenta) to phase 2 (blue),
the vertical axes is the number of the therapy session sequence. The clinical phase
transition is identified around session 17. Left - M-FCM, right - FAP. The fuzzy as-
signment is coded in a blue-magenta color range. Pure color indicates a clear cluster
decision whereas color shades stand for uncertain decisions. A nice agreement can be
observed, also reflected by the resultig κ = 0.76. (Colored versions of these images can
be obtained from the corresponding author)

Table 3. Cohen’s κ for the cluster solutions obtained by the different algorithms for
the ’Eurovec’ database

AP M-FCM MCM

FAP κ = 0.208 κ = 0.810 κ = 0.208

AP κ = 0.183 κ = 1.000

M-FCM κ = 0.183

results looking at the κ-values - only a slight agreement, see Tab. 3. However,
the agreement between the fuzzy variants FAP and M-FCM on the one hand
side, and between their crisp counterparts on the other hand, show both per-
fect agreement. Hence, one can conclude that the discretization causes the low
κ-values.

4 Conclusion

We extended the recently proposed Affinity Propagation algorithm to a fuzzy
AP. For this purpose the probabilistic interpretation of the AP is used. Follow-
ing this model the responsibilities calculated during standard AP can be used in
modified form for fuzzy membership assignments of the data to the cluster cen-
ters (exemplars/prototypes). Exemplary applications demonstrate the abilities
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of the improved method. We compared our method with other fuzzy cluster-
ing schemes. The agreement between the methods is determined by applying
the fuzzy variant of Cohen’s κ (here based on the minimum t-norm). The FAP
shows nice agreement with the other similarity based fuzzy clustering methods in
terms of high κ-values. Yet, as shown by Frey&Dueck in [5], AP is frequently
much faster than other clustering algorithms, and - in particular - than FCM.
The same behaviour can be observed for FAP versus M-FCM. Hence, FAP can
be taken as a fast alternative to M-FCM.
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Abstract. Swarm-based methods are promising nature-inspired tech-
niques. A swarm of stochastic agents performs the task of clustering
high-dimensional data on a low-dimensional output space. Most swarm
methods are derivatives of the Ant Colony Clustering (ACC) approach
proposed by Lumer and Faieta. Compared to clustering on Emergent
Self-Organizing Maps (ESOM) these methods usually perform poorly in
terms of topographic mapping and cluster formation. A unifying rep-
resentation for ACC methods and Emergent Self-Organizing Maps is
presented in this paper. ACC terms are related to corresponding mech-
anisms of the SOM. This leads to insights on both algorithms. ACC
can be considered to be first-degree relatives of the ESOM. This ex-
plains benefits and shortcomings of ACC and ESOM. Furthermore, the
proposed unification allows to judge whether modifications improve an
algorithm’s clustering abilities or not. This is demonstrated using a set
of critical clustering problems.

1 Introduction

Flocking behaviour of social insects has inspired various algorithms in numerous
research papers over the last decade due to the ability of simple interacting enti-
ties to exhibit sophisticated self-organization abilities. A particularly interesting
field of application is cluster analysis, i.e. the retrieval of groups of similar ob-
jects in high-dimensional spaces. The idea behind Ant Colony Clustering (ACC)
is that autonomous stochastic agents, called ants, move data objects on a low-
dimensional regular grid such that similar objects are more likely to be placed
on nearby grid nodes than dissimilar ones. This task is referred to as topographic
mapping.

In the following sections, the basic ACC algorithm by Lumer/Faieta is intro-
duced in a notation consistent with SOM for non-vectorial data, i.e. Dissimilarity-
SOM. A unifying representation for both methods is therefore derived in Section
3. Sections 4 and 5 describe how to improve topographic mapping and cluster anal-
ysis of ACC methods on basis of SOM. Finally, in Section 6 the effect of altered
objective functions is empirically verified.

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 80–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Ant Colony Clustering

The ACC method proposed by Lumer and Faieta [9] operates on a fixed regular
low-dimensional grid � ⊂ �2. A finite set of input samples X from a vector
space with norm ‖.‖ is projected onto the grid by m : X → �. The mapping m
is altered by autonomous stochastic agents, called ants, that move input samples
x ∈ X from m(x) to new location m′(x). Ants move randomly on neighbouring
grid nodes. Ants might pick input samples when facing occupied nodes and drop
input samples when facing empty nodes. Probabilities for picking and dropping
actions, respectively, are determined using objective function φ : �× X → �

+
0 ,

at which φ(x, i) denotes the average similarity between x ∈ X and input samples
located on the so-called perceptive neighbourhood around node i ∈ G. Usually,
the perceptive neighbourhood consists of σ2 ∈ {9, 25} quadratically arranged
nodes at which the ant is located in the center. The set of input samples mapped
onto the perceptive neighbourhood around i ∈ � is denoted with Nx(i) = {y ∈
X : y �= x, m(y) neighbouring i}.

φx(i) =
1
σ2

∑
y∈Nx(i)

(
1 − ‖x − y‖

α

)
(1)

ACC methods lead to a local sorting of input samples on the grid in terms of
similarities. Ants gather scattered input samples into dense piles. In literature,
it has been noticed that ACC derivatives are prone to produce too many and
too small clusters [1] [5]. For illustration see Figure 1.

Fig. 1. Typical result of ACC methods. From left to right: gaussian data with 4
clusters, initial mapping of data objects, dense clusters appear, too many clusters with
topological defects have finally emerged [1].

3 Analysis of Ant Colony Clustering by Means of
Dissimilarity-SOM

The Self-Organizing Batch Maps (Batch-SOM) and its derivatives are particu-
larly interesting for analyiss of Ant Colony Clustering (ACC) methods. Batch-
SOM consist of grid �, codebook vectors wi ∈ �n, i ∈ � and a mapping function
m : X → � with m(x) = arg mini∈� ‖x − wi‖. It was shown in [5] how the ob-
jective φ of each ant is related to m : X → � of Batch-SOM.
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The so-called Dissimiliarity-SOM [8], often referred to as Median SOM, is
a generalization of the Batch-SOM for nonvectorial input data. For the sake
of simplicity, let ‖x − y‖ ∈ �

+
0 denote the dissimiliarity of each x, y ∈ X .

Codebook vectors are updated according to the generalized median, i.e. wi =
argminx∈X Φx(i). Here, h : G × G → [0, 1] denotes the neighbourhood function
of SOM.

Φx(i) =
∑
y∈X

h(m(y), i) · ‖x − y‖ with
∑
y∈X

h(m(y), i) = 1 (2)

In the following, the mechanism of picking and dropping ants is no longer
subject of consideration. In [10] it was shown that collective intelligence can be
discarded in ACC systems, i.e. same results were achieved without ants but using
objective function φ directly for probabilistic cluster assignments. This simpli-
fication is evident: over a sufficient period of time, randomly moving ants may
select any arbitrary subset of input samples, but re-allocation through picking
and dropping depends on φ only. Probability of selection is the same on all input
samples such that ants might be omitted in favor of any other subset sampling
technique.

A meaningful symmetrical neighbourhood function h : � × � → [0, 1] for
ACC methods is defined according to the perceptive neighbourhood of ants, i.e.
h(i, j) is 1 if j ∈ � is located in the perceptive neighbourhood of node i ∈ �
and 0 elsewhere. Equation 3 reformulates the ants’ objective φ by incorporating
Φ (see Equation 2).

φx(i) =
|Nx(i)|

σ2
·
(

1 − Φx(i)
α

)
with Φx(i) =

∑
y∈X h(m(y), i) · ‖x − y‖∑

y∈X h(m(y), i)
(3)

The ACC method uses a fixed neighbourhood function with small radius,
whereas Dissimilarity-SOM uses shrinking neighbourhood functions with large ra-
diuses. ACC has a probabilistic update of mapping m : X → �, whereas
Dissimilarity-SOM is deterministic. The objective function of ACC algorithms de-
composes into an output density term |N |

σ2 and a term 1− Φ
α related to topographic

quality. Therefore, the ACC algorithm is easily convertible into a special case of
Dissimilarity-SOM, and vice versa. For a brief overview of differences see Table 1.

Table 1. varieties of Dissimilarity-SOM and Ant Colony Clustering

Dissimilarity-SOM ACC

neighbourhood large small,
h : �×�→ [0, 1] shrinking fixed

update of m : X → � deterministic probabilistic

searching for global local
update of m : X → � � ⊂ �
objective function Φ |N|

σ2 (1 − Φ
α
)

termination cooling scheme never
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4 Improvement of Ant Colony Clustering

From Dissimilarity-SOM, minimization of Φ is known to produce sufficiently to-
pography preserving mappings m : X → �, e.g. when using Dissimilarity-SOM.
In contrast to that, the output density term |N |

σ2 has some major flaws. First, the
output density term leads to maximization of output space densities, instead of
preservation. Obtained mappings are, therefore, not related to the configuration
of available clusters in the input space. Traditional ACC algorithms are not al-
lowed to assign two or more objects to a single grid node (see Section 2) in order
to prevent the mapped clusters from collapsing into a single grid node. Due to
that, densities of input data can hardly be preserved on grid �. In comparison
with the topographic term, the output density term is much easier to maximize
and, therefore, will distort the objective function φ. Accounting of output den-
sities is prone to distort the formation of correct topographic mappings because
it is responsible for additional local optima of φ.
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(a) chainlink data (b) traditional ACC

(c) emergent ACC (d) emergent SOM

Fig. 2. ACC projects looped cluster structures on a toroid grid. (a) Chainlink data
from FCPS [11]. (b) Traditional ACC with small σ produces too many small clusters.
(c) Emergent ACC enables the formation of looped clusters. (d) Emergent SOM enables
the formation of looped clusters.
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The topographic term 1 − Φ′

α of the ACC objective function depends on the
shape of the neighbourhood function h : � × � → {0, 1}. Usually, neighbour-
hoods’ sizes are chosen as σ2 ∈ {9, 25}, i.e. the immediate neighbours. From
SOM it is known that the cooling scheme of the neighborhood radius vitally in-
fluences the obtained topographic mapping quality. (see [6] for details). A bigger
radius enables a more continuous mapping in the sense that proximities exist-
ing in the original data are visible on the grid. This is evident because smaller
neighbourhoods are more likely to exclude parts of a cluster.

In order to cope with the shortcomings mentioned above, we introduce the
Emergent Ant Colony Clustering method. An ACC method is said be be emer-
gent if it fulfills the following conditions:

– Ants’ modifications of mapping m : X → � is directed by minimization of
Φ

– Ants do not account for output densities.
– The perceptive neighbourhood of ants is not limited to immediate neighbours

on grid �. Instead, bigger neighbourhood radiuses are to be chosen in order
to obtain SOM-like mappings.

Figure 2 illustrates the ability of emergent ACC method to preserve even looped
input space clusters, which is hardly possible for traditional ACC.

5 Data Analysis with Emergent Ant Colony Clustering

Emergent ACC usually will provide an ESOM-like projection, i.e. input samples
are uniformly mapped onto the grid. See Figure 2 for illustration. In this case,
cluster retrieval cannot be achieved according to sparse regions dividing dense
clusters on the grid.

A promising technique for cluster retrieval is based on so-called U-Maps [12].
Arbitrary projections from normed vector spaces onto grid � ⊂ �

2 are trans-
formed into landscapes, so-called U-Maps. The U-Map technique assigns each
grid node a height value that represents the averaged input space distance to
its’ neighbouring nodes and codebook vectors, respectively. Clusters lead to val-
leys on U-Maps whereas empty input space regions lead to mountains dividing
the cluster valleys. This is illustrated in Figure 3 using Fisher’s well-known iris
data [3]. Traditional ACC produces too many valleys, whereas Emergent ACC
preserves cluster structures.

The U*C cluster algorithm uses the so-called watershed transformation to
retrieve cluster valleys on U-Maps. See [13] for details.

6 Experimental Settings and Results

In order to measure the distortion of a topographic mapping method in question,
a collection of fundamental clustering problems (FCPS) is used [11]. Each data
set represents a certain problem that arbitrary algorithms shall be able to handle
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(a) Traditional ACC (b) Emergent ACC

Fig. 3. Well known iris data [3]: setosa (×), versicolor (�), virginica (�). U-Maps
shown as islands generated from toroid grids. Dark shades of gray indicate high inter-
cluster distances. (a) Too many small clusters emerge from traditional ACC. (b) Emer-
gent ACC preserves three clusters after the same number of learning epochs.

when facing unknown real-world data. Here, traditional and emergent ACC are
tested on which one delivers the best topographic mapping.

A comprehensive overview on topographic distortion measurements can be
found in [4]. Here, the so-called minimal path length (MPL) measurement is used.

Fig. 4. Improvement of topographic quality measured by minimal path length method:
percental z-scores of traditional over emergent ACC. Emergent ACC leads to improve-
ments between 50% to 400% when compared to traditional ACC on different FCPS
data sets.
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It is an easy-to-compute measurement that sums up input space distances of grid-
neighbouring data objects and codebook vectors, respectively.

mpl =
∑
x∈X

1
|Nx|

∑
y∈Nx

‖x − y‖ (4)

Lower MPL values indicate less topographic distortion when moving on the grid
and, therefore, a more trustworthy topographic mapping. Each algorithm is run
several times with the same parametrization. MLP values indicate if accounting
for output densities assists the formation of good topographic mappings, or not.
All data sets from the FCPS collection were processed with the same parameters
established in literature, i.e. α = 0.5, σ2 = 25, k1 = 0.3 and k2 = 0.1 on a 64 × 64
grid with 100 ants during 100000 iterations. The results are illustrated in Figure
4. Accounting for output densities leads to increasing MPL values on an average,
i.e. worsenings of topographic mappings. Significance has been confirmed using a
Kolmogorov-Smirnovtest on a α = 5% level. All obtained p-values are below 10−5.

7 Discussion

This work shows a previously unknown relation of two topographic mapping
techniques, namely Dissimilarity-SOM and Ant Colony Clustering (ACC). It is
based on the assumption [10] that stochastic agents, e.g. ants, are nothing more
than an arbitrary sampling technique that is to be omitted for further analysis
of formulae. This simplification is evident but may be invalid for stochastic
agents guided by more than just randomness and topographic distortion, e.g. ants
following pheromone trails. Our analysis of formulae does not cover algorithms
that are not ACC derivatives following the Lumer/Faieta scheme. In contrast
to hybrid approaches, like KohonAnts [2], our work creates a unifying basis
for comprehension and creation of techniques from the fields of artificial neural
networks and swarm-intelligence.

Minimal path lengths (MPL), as proposed in Section 6, are well-known topo-
graphic distortion measures. The length of input space paths is normalized by
the cardinality |Nx| of the corresponding grid neighbourhood, i.e. the number
of objects mapped onto the grid neighbourhood. This is supposed to decrease
error values of locally dense mappings, as produced by traditional ACC, because
small radial neighbourhoods usually do not cover objects of another cluster,
since locally dense mappings imply sparse dividing grid regions around clusters.
Nevertheless, traditional ACC produces bigger MPL errors than emergent ACC
that is not accounting for densities. We conclude that the topographic mapping
quality is improved beyond our empirical evaluation.

Traditional and emergent ACC methods do not converge due to the archi-
tecture of stochastic agents. Instead, they enable perpetual machine learning.
ACC methods are, therefore, to be favored over traditional methods, like Self-
Organizing Maps and hierarchical clustering, when dealing with incremental
learning tasks.
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8 Summary

This work continues our last publication [5] at which the Ant Colony Clustering
(ACC) method by Lumer and Faieta [9] was related to Self-Organizing Batch
Maps [7]. The mechanism of picking and dropping ants was omitted in favor
of a formal analysis of the underlying formulae and comparison with Kohonen’s
Dissimilarity-SOM. It could be shown that a unifying framwork for both methods
does exist in terms of a common topographic error function. The ACC method is
to be considered a probabilistic, first-class relative of Batch-SOM and, especially,
Dissimilarity-SOM. The behaviour of ACC methods becomes explainable on that
unifying basis.

ACC methods exhibit poor clustering abilities because of distorted topo-
graphic mappings. Improvements of topographic mapping were derived by means
of SOM architecture. Perceptive areas are to be increased, and accounting for
density of mapped data is futile. The novel method Emergent ACC does not pro-
duce dense clusters any more but uniformly distributed, SOM-like projections.
Due to that, clusters are to be retrieved using U-Map technology. As predicted by
our theory, an empirical evaluation showed on critical clustering problems that
disregarding the density of mapped data improves the quality of topographic
mapping despite of unfavorable settings.
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Abstract. This paper presents a simple way to compensate the magnification 
effect of Self-Organizing Maps (SOM) when creating cartograms using Carto-
SOM. It starts with a brief explanation of what a cartogram is, how it can  
be used, and what sort of metrics can be used to assess its quality. The 
methodology for creating a cartogram with a SOM is then presented together 
with an explanation of how the magnification effect can be compensated in this 
case by pre-processing the data. Examples of cartograms produced with this 
method are given, concluding that Self-Organizing Maps can be used to 
produce high quality cartograms, even using only standard software implemen-
tations of SOM. 

Keywords: Self-Organizing Maps, Cartograms, Magnification effect. 

1   Introduction 

Cartograms are a type of map used in various fields to convey information about data 
that is geo-referenced. An example of a cartogram of the population by state in the USA 
is given in Figure 1. The general shape of the country and of its states is recognizable, 
but the states with larger population are clearly identified as being “larger” than the 
others. The basic idea of a cartogram is to distort a geographical map by distorting the 
area of a region according to some variable of interest (e.g. population) while keeping 
the map, as much as possible, recognizable. 

Cartograms can be a powerful way to convey information regarding characteristics 
of geographic regions. In the example given in Figure 1, it becomes very clear that a 
few states, such as California, Florida, and a few East Coast states are, population 
wise, more important than their geographic area would indicate. The opposite happens 
with most mid-western states. 

An even more striking example of how useful cartograms are is presented in Figure 2 
[2], where the counties where candidates John Kerry and George W. Bush won in 2004 
are represented in different colours. In a standard map (i.e. using a common projection), 
Bush’s victory seems overwhelming. However, in a cartogram, it can clearly be seen 
that it was, in fact, a close call, since John Kerry won in counties with a high population 
density, and the total number of votes for each candidate was very similar. 
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Fig. 1. Population cartogram of USA. Although the general shape of the USA is still recognizable, 
each state has a size proportional to it's population, not it's area. 

 

  

a) Choropleth map b) Cartogram 

Fig. 2. USA 2004 presidential election results. Counties where John Kerry won are repre-
sented in blue, while the others are represented in red [2]. 

There are several algorithms for building cartograms. A good review of the work 
done in this area was written by Tobler [3] a few years ago.  None of the algorithms 
has proved to be universally better than any other, since the trade-offs made to get the 
desired result vary. A new method called Carto-SOM, based on Self-Organizing Maps 
(Kohonen’s Self-Organizing Maps or SOM) was recently proposed [1, 4].In this paper 
we present an overview of this method. One of the inconveniencies of SOM when 
producing cartograms is that the magnification effect [5] will introduce undesired 
distortions. We will show that a simple pre-processing technique can compensate this 
effect, for this particular case. A few examples of cartograms produced with this 
method are shown. 

2   Cartogram Creation 

As Keim et.al. [6] point out cartogram generation is a map deformation problem. The 
inputs of the problem are: 

 

• a polygon map composed of a set of regions, each with an initial area given by 
the true geographical area (each polygon matches a region); 

• a target value for the final area of each one of the polygons (regions), representing 
the variable of interest in that region. 

 
The goal of the map distortion is to approximate, as much as possible, the areas of 

the regions to the desired target.  
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The cartogram creation problem may be formally described as follows: 
 
Let M={R0, R1, … Rn} be a map M consisting on n regions Ri, each of which forms 

a polygon. 
Let T (M) be the contiguity matrix of M. 
Let each region Ri have an area of ai (area of its polygon) and a “value of interest” 

vi (usually population, average income, or some other variable).     
Produce a cartogram map C={R’0, R’1, … R’n} consisting of n regions R’i, each of 

which forms a polygon with area a’i = k vi, with k=Σa/Σv, and T(C)=T(M). 
 

There is still another goal, loosely described as “shape similarity”. Let S be the 
shape of M and S’ the shape of C. The objective is that S ≅ S’. The “shape similarity” 
is an elusive concept that translates the ability of a reader to recognize C as an 
instance of M. This property is difficult to measure and difficult to define rigorously. 
The ability to recognize C is not only dependent on the ability to preserve the shape of 
each Ri but also on preserving certain landmark points. For instance recognizing a 
certain cartogram as a cartogram of the United States is much more dependent on 
preserving the shape of Florida than on preserving the shape of North Dakota.  

There are many possible cartograms C that achieve the desired goal, but most 
mappings from M to C are the result of an iterative process, and only asymptotically 
get the desired result (or at least some approximation to it). 

2.1   Quantitative Evaluation of Cartograms 

While it is subjective to compare the visual quality of different cartograms, it is easy 
to define a numerical value that characterizes how well the cartogram shares the 
available area between different regions, according to the given variable of interest. 
Various such measures have been proposed. Keim et.al. [6]  proposes an area error 
function to determine the cartogram error in each region. This relative area error ei

rel 
of a region Ri is given by: 

current
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Where a’
i is the desired area of region Ri in the cartogram (to create a perfect 

cartogram) and acurrent
i is the area of region Ri in the cartogram.  

The error measure for the whole map may be computed as the mean quadratic error, 
weighed error, or simple absolute error of all regions, using the following expressions: 
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3   Building Cartograms Using SOM 

Our inspiration for using SOM to build cartograms stems from the fact that it can be 
seen as a density estimation tool [8-10], despite the limitations imposed by the 
magnification effect discussed later.  

The basic ideas of the Carto-SOM method are quite simple. We start by generating 
random points with a uniform distribution in each geographic region. The number of 
points in each region is proportional to the variable of interest (e.g. population, 
average income, rainfall) of that region. Those points will be characterized by two 
real variables that are the geographic coordinates, and a label to identify the region 
they belong to. A 2-dimensional SOM can then be trained with that 2 dimensional 
data, and labeled accordingly. The labeled SOM (seen in output space formed by the 
grid) can be viewed as a cartogram. If all units had the same number of points mapped 
to it (i.e. if the SOM had a uniform magnification factor of 1), it would be a perfect 
cartogram, from a purely quantitative point of view. The greater the number of units 
on the SOM, the smoother and more faithful to detail the cartogram can be. 

A graphical example can make the Carto-SOM process clearer. Figure 3 shows an 
example of this process, using a simplified instance with only two rectangular 
regions. The two regions are geographically identical but have distinct values for the 
variable of interest, represented by p.  The variable p has a high value in the dark 
region (i.e., this is a region with a high population density), and a smaller value in the 
lighter region. In the following step (Figure 3.b) we randomly produce points with a 
uniform distribution (represented with triangles) inside each region. The number of 
points created is a linear function of the value of population p. Figure 3.c shows an 
initialized two-dimensional SOM (with 4 x 4 units). The SOM units are initialized so 
as to form a regular grid in the input space, contrary to the usual practice, in which the 
units are randomly initialized in the input space. We then continue with a standard 
SOM training phase where the units adapt to the training patterns. This means that 
units are moved (in the input space) in such a way that their density mimics the 
density of the data patterns (Figure 3.d). The algorithm continues with the labeling 
process (Figure 3.e). This process gives each unit a label based on the data of the  
 

 

       
                 a )                              b)                                c)                                d) 

       
                 e)                                   f)                           g)                                   h)   

Fig. 3. Example of the proposed Carto-SOM method, applied to map with two rectangular 
regions with different population densities 
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region where it lies. In this case, the labels are the colors that identify each region, and 
thus each unit will be assigned the color of the region where it lies after training. 
Figure 3.g represents each unit mapped back at its initial position, and coincides with 
it’s coordinates in the output space. Based on the units’ positions and labels a final 
population cartogram is produced (Figure 3.h). In this cartogram the darker region 
(that had more population) is larger than the lighter one (that had less population), and 
thus the final area of the regions is proportional to their population. 

While most SOMs form a regularly shaped grid (usually rectangle), the regions of 
a geographic map, when considered all together, don’t. While it is possible to adjust 
the shape of the SOM to that of the geographic map, it is best to keep it rectangular 
and add a “outside” or “ocean” area to make the original map rectangular. The various 
ways of doing so are discussed in [4]. In this paper we will use a series of “outside 
regions” with a density equal to that of the neighboring region of interest. 

There are a few minor issues, namely the possibility of having units that do not 
match any data (and thus have no label), and the magnification correction discussed 
later, that make the complete algorithm a bit more lengthily, and a complete, detailed, 
step by step algorithm is presented in [1]. 

4   Compensating for the Magnification Effect of SOM 

The properties of the SOM as a density estimation tool have not yet been completely 
established, except for some very particular cases e.g. the one dimensional case [11, 12]. 
In these cases it has been found that the SOM has a bias towards low density areas i.e. 
Dunits = K*Ddata

μ, where K is a constant scaling factor, and μ,  known as magnification 
factor, is 2/3 for some known cases. A magnification effect of 1 would mean strict 
proportionality between the density of input patterns and the density of their assigned 
units. With a magnification factor of less then 1 low density areas will be proportionally 
over represented. Some work has been done to calculate the magnification factor in 
more general cases [9, 13, 14], and experimental evidence suggests that when using the 
original SOM algorithm the magnification factor is always less than one. Some methods 
have been proposed to explicitly control the magnification factor [5, 9, 15, 16]. These 
magnification control mechanisms require changes to the original SOM algorithm. In 
our proposed method, the standard SOM algorithm is used, but the original data is pre-
processed to compensate for magnification. 

This pre-processing consists on boosting the original data, so that low density areas 
will have even lower surrogate densities to compensate for the magnification. We can 
then use this surrogate dataset instead of the original one. Let us now see in detail 
how this dataset may be generated. 

For a 1-dimensional to 1-dimensional mapping, under the special conditions 
described by [17], the relationship between densities of units and data points is given by, 

μ
dataunits DkD 1=

 
(5) 

where Dunits is the density of SOM units, Ddata is the density of data points, k1 is a 
proportionality constant that results from the ratio between the total number of units 
and the total number of data points, and μ is the magnification factor. 
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To build a good cartogram, we want strict proportionality between the density of 
units and the density of the original data. To obtain this we must have a surrogate 
dataset where the density Dsurr is such that,  
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where k3 is (k2/k1)
1/μ. For the sake of simplicity we will not explicitly calculate each of 

the constants kx involved in these calculations, since in the end we will be able to 
calculate the necessary variables without them. 

Since we will be generating, for each region, a number of points proportional to the 
variable of interest V and not its density, we have, 
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where Vsurr is the surrogate variable of interest to be used instead of the variable of 
interest Vdata for each region with area A. The number N of data points generated for 
each region is proportional to the variable of interest, i.e., N=k4Vsurr. Combining this 
with the previous equation we obtain, for each region, 
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To compute the constant k5 we only need to know how many data points we want 
overall Ntotal, since,  
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If the original expression is valid for 2-dimensional to 2-dimensional mappings, 
and we knew the magnification factor exactly, then this correction would allow a 
proportional representation of each region, and thus a null error in the cartogram. 
Since that expression is just an approximation, the error will in fact be greater than 0. 
As for the magnification factor μ, it is reasonable, from empirical experience, to 
assume it is approximately 2/3 [1, 9]. The final number of points for each region i will 
thus be given by, 

2
3

3
1

iii VkAN =  (10) 

∑
=

i
ii

total

VA

N
k

2
3

3
1

 
(11) 



 Cartograms, Self-Organizing Maps, and Magnification Control 95 

Since the “ocean” region outside the region of interest does not have to be 
faithfully represented, this correction need not be applied to that region. 

5   Results 

To test the Carto-SOM method we used Portugal’s population data for 2001 (Figure 4) 
and USA’s population data for 2000 (Figure 5). To have a comparison with other 
cartogram algorithms, we used Dougenik’s Contiguous Area Cartogram [18], and 
Gastner’s Diffusion Cartogram [2] approaches, since these are the most widely used. 

To implement Carto-SOM method we used the MATLAB SOM-Toolbox [19]. 
Several training processes were performed, changing the initial SOM parameters. All 
the code used, including the pre-processing code and minor adjustments, is available 
at http://www.isegi.unl.pt/labnt/roberto. However, it should be stressed that any SOM 
implementation that supports labeling, together will basic data handling software 
(such as Ms-Excel) could be used. 

For Dougenik´s method, we used an ArcGIS script file to produce the cartograms 
[20]. This script allows the ArcGIS user to select an input layer and to choose the 
number of iterations used. In this test we used 5 iterations to produce Dougenik’s 
cartograms. For the diffusion cartogram we used an implementation produced by 
Michael Gastner available at his homepage [21]. 
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Fig. 4. Cartograms obtained for Portugal's population. Left to right: original map, Carto-SOM, 
Dougenik, and Gestner's method. 
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Fig. 5. Cartograms obtained for the population of the USA. Left to right: original map, Carto-
SOM, Dougenik, and Gestner's method. 

 



96 R. Henriques, F. Bação, and V. Lobo 

In Table 1 we present the cartogram errors obtained. Carto-SOM performance 
measured by this error is significantly better than the others for the USA, and is still 
quite competitive for Portugal. 

Table 1. Keim error evaluation using different criteria on the various datasets 

USA Portugal  
se 

(%) 
mqe 
(%) 

we 
(%) 

se 
(%) 

mqe 
  (%) 

we 
   (%) 

Dougenik 16.02 3.08 11.09 12.29 3.80 8.65 
Diffusion 5.33 1.45 4.71 1.57 0.46 1.18 

Carto-SOM    3.70 0.74 0.65 3.97 1.07 1.29 

6   Conclusions 

In this paper we presented a method for building cartograms, called Carto-SOM, 
which is based on the Self-Organizing Map (SOM) algorithm. The SOM is used to 
perform a 2-dimensional to 2-dimensional mapping, and input data is preprocessed to 
compensate for the magnification effect. Tests show that cartograms created using the 
Carto-SOM are good and accurate representations of the variables of interest. 
Visually we can see that Carto-SOM is an efficient cartogram building algorithm. 
Finally, it must be emphasized that, using the Carto-SOM method, the only software 
necessary to create a cartogram is a standard implementation of the SOM algorithm. 
Such implementations are widely available, both in commercial data analysis 
programs and public domain packages. 
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Abstract. In this paper, we discuss problems related to the basic Se-
mantic Web methodologies that are based on predicate logic and related
formalisms. We discuss complementary and alternative approaches. In
particular, we suggest how the Self-Organizing Map can be a basis for
making the Semantic Web more semantic.

1 Introduction

It is clear that the use of standardized formats within computer science is ben-
eficial. For instance, the widespread use of the World Wide Web would not have
been possible without the adoption of HTML–a standardized markup language for
describing the structure of hypertext documents and link relationships between
them. However, the approach of using metadata to describe the contents of doc-
uments has been found problematic and, for example, Google has abandoned the
use of keywords defined in HTML META elements due to their poor quality.

1.1 Standardization of Content

There are serious attempts to create standards for metadata. In the Semantic
Web, Resource Description Framework (RDF1), is a framework for describing
metadata of Web resources, such as the title, author, modification date, content,
and copyright information of a Web page. However, it is to be noted that formal-
izations such as RDF do not solve all interoperability and consistency problems.
A W3C Recommendation states that “RDF does not prevent anyone from mak-
ing assertions that are nonsensical or inconsistent with other statements, or the
world as people see it. Designers of applications that use RDF should be aware
of this and may design their applications to tolerate incomplete or inconsistent
sources of information.”2

1 Resource Description Framework, http://www.w3.org/RDF/
2 Resource Description Framework (RDF): Concepts and Abstract Syntax,

http://www.w3.org/TR/rdf-concepts/#section-anyone

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 98–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In information science, an ontology is a formal representation of a set of
concepts within a domain and the relationships between those concepts. It is
used to reason about the properties of that domain, and may be used to define
the domain. In general, the idea is that an ontology is a shared conceptual model
of the domain. The Web Ontology Language (OWL) is a family of knowledge
representation languages for authoring ontologies. eXtensible Markup Language
(XML) is often used to implement these descriptions.

In traditional artificial intelligence, it was assumed that one conceptual sys-
tem could be built to serve all purposes [1]. Later, with the Semantic Web de-
velopments, it was recognized that different, potentially mutually incompatible
ontologies can be built. To facilitate this, a specialized language called eXten-
sible Stylesheet Language Transformations (XSLT) has been developed for the
transformation of XML documents into other XML documents. Such formalisms
do not automate the conceptual mapping process. For instance, the developers of
these methodologies themselves describe the situation as follows: “If all the ap-
plications are changed to use XML, the programmer only has to learn to handle
XML data, not the full range of weird internal formats in which data could oth-
erwise be stored and transferred. This means that some of the application glue
can be constructed using XML tools such as XSLT, the transformation language
(http://www.w3.org/TR/xslt). The bad news is that the problem of effectively
exchanging data doesn’t go away. For every pair of applications, in fact for each
way in which they need to be linked, someone has to create an ’XML to XML
bridge.’ That is, if you take XML files from two different applications, you can’t
just merge them. To make a (XML) query on an XML document, but add in
some constraints from another document, you can’t just merge the two queries.
It’s not as though everything is in relational databases where common elements
can be used so that data is joined together.”[2]

1.2 Subjective and Complex Paths from Data to Metadata

When pictorial or sound data is considered, an associated metadata description
may be based on a pre-defined classification or framework, for instance, like an
ontology within the current Semantic Web technologies. However, even if some-
thing like the identity of the author or the place of publishing can usually be deter-
mined unambiguously, the same is not true for the description of the contents. In
the domain of information retrieval, it was found that in spontaneous word choice
for objects in five domains, two people favored the same term with less than 20%
probability [3]. It has also been shown that different indexers, well trained in an
indexing scheme, might assign index terms for a given document differently [4]. It
has been observed that an indexer might use different terms for the same docu-
ment at different times. The meaning of an expression (queries, descriptions) in
any domain is graded and changing, biased by the particular context.

Vygotski has stated that the world of experience must be greatly simplified
and generalized before it can be translated into symbols. This is the way how
communication becomes possible as the experience of an individual resides only
in his own mind and is not communicable as such [5]. Conceptualization is a
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Fig. 1. An illustration of two conflicting conceptual systems on the surface level. These
systems prioritize the distinctive features differently.

complex process that takes place in a socio-cultural context, i.e., within a com-
munity of interacting individuals whose activities result into various kinds of
cultural artifacts such as written texts.

It is a very basic problem in information retrieval and knowledge management
that different words and phrases are used for expressing similar objects of inter-
est. Natural languages are used for the communication between human beings,
i.e., individuals with varying background, knowledge, and ways to express them-
selves. When rich contents are considered this phenomenon should be more than
evident. Therefore, if the content description is based on a formalized and rigid
framework of a classification system, problems are likely to arise. Fig. 1 shows
a simple example of two conflicting formalizations at the intermediate level of a
hierarchical conceptual representation.

If a word or an expression is seen without the context there are more possi-
bilities for misunderstanding. Thus, for a human reader, contextual information
is often very beneficial. The same need for disambiguation can also be relevant
for information systems. As the development of ontologies and other similar
formalizations are, in practice, grounded in the individual understanding and
experience of the developers and their socio-cultural context, the status of in-
dividual items in a symbolic description may be unclear or ambiguous. Even if
an ontology is ambiguously defined and would, in principle, provide a machine
readable representation for content description, there is always a man-machine
interface needed at a conceptual level. This is because ontology-based informa-
tion systems do not deal with symbol grounding [6] and therefore they are finally
always dependent on human interpretation of the representations.

2 Semantic Processing with the SOM

There has been a lot of research attempting to create hybrid systems that
would combine the benefits of symbolic knowledge representation and reasoning
methods in one hand and the learning and symbol grounding abilities of artifi-
cial neural network and pattern recognition methods on the other [7,8,9]. Soft
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computing methods have also reached some popularity among Semantic Web
researchers [10].

The methods that are used to manage data should be able to deal with con-
textual information, or even provide the necessary context needed in the inter-
pretation of the data. In this article, the Self-Organizing Map (SOM) by [11] is
considered as an example of such a method.

2.1 Word Category Maps

The word category map is a self-organizing semantic map [12] that describes
relations of words based on their averaged short contexts. The ith word in the
sequence of words is represented by an n-dimensional real vector xi with random-
number components. The averaged context vector of this word reads

X(i) =

⎡
⎣E{xi−1|xi}

εxi

E{xi+1|xi}

⎤
⎦ , (1)

where E denotes the estimate of the expectation value evaluated over the text
corpus, and ε is a small scalar number. Now the X(i) ∈ �3n constitute the input
vectors to the word category map. In our experiments ε = 0.2 and n = 90. The
training set consists of all the X(i) with different xi.

The SOM is labeled after the training process by inputting the X(i) once
again to the word category map and labeling the best-matching units according
to symbols corresponding to the xi parts of the X(i). In this method a unit
may become labeled by several symbols, often synonymous or forming a closed
attribute set. Usually interrelated words that have similar contexts appear close
to each other on the map.

Ritter and Kohonen used artificially generated three-word sentences in the
generation of the word category maps [12]. Honkela et al. later used sentence
fragments from a natural corpus for the first time to create a meaningful two-
dimensional word category map [13]. In these experiments, short contexts were
used. This resulted into maps in which the overall order corresponded with
linguistic syntactic categorization and semantic categories emerged in the local
structures of the maps. If the context of a word consists of the whole document,
i.e. document-word matrices are used, the overall order on the map corresponds
more closely to some semantic topic structure. In such analysis it is advisable to
limit the selection of words to those for which the entropy over the document
collection is not high.

2.2 Conceptual Hierarchies

A SOM may span a conceptual hierarchy. This can be made explicit by clustering
of the SOM (see e.g. [14,15,16]). Vesanto and Alhoniemi explain the motivation
for clustering in which similar map units are grouped by the facilitation of quan-
titative analysis of the map and the data [14]. They have use both hierarchical
agglomerative and partitive clustering.
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To demonstrate how the SOM can be used to analyze the hierarchical struc-
ture of data, we use a non-hierarchical data set describing well known composers,
violinists, and pianists with a 11-dimensional feature vector (see Table 1).

Table 1. An excerpt of the data used in the experiment. The first six variables refer
to the persons status as composer, violinist and/or pianist and the next four variables
refer to the style period of composers (reneissance, baroque, classical or romantic). The
last variable gives the year of birth.

1 1 0 0 0 0 1 0 0 0 1520 Galilei

1 1 0 0 0 0 0 1 0 0 1685 Bach

1 1 0 0 0 0 0 0 1 0 1743 Boccherini

1 1 0 0 0 0 0 0 0 1 1822 Franck

0 0 1 1 0 0 0 0 0 0 1945 Perlman

0 0 0 0 1 1 0 0 0 0 1829 Rubinstein

U−matrix

Bach
Rameau

Rubinstein

Kempff

Albinoni

Buxtehude

Horowitz
Serkin

Gilels

Haydn
Boccherini

Taverner

Byrd
Galilei

Oistrakh
Gingold Perlman

Kagan
Zukerman

Berlioz

Wagner

Franck
Lalo

Grieg

Kuusisto

U−matrix

Bach
Albinoni
Rameau

Grieg

Gade
Sarasate

Buxtehude

Franck
Lalo

Berlioz
Wagner

Paganini
Spohr

TavernerByrd
Galilei

Haydn
Boccherini

Oistrakh
GingoldPerlman

Kagan
Zukerman
Kuusisto

Mozart

Chopin
Gottschalk

Liszt

Field

Rubinstein

Horowitz
Kempff
Gilels
Serkin

(a) (b)

Fig. 2. 25 composers, pianists and violinists on a SOM (a) and a SOM with 9 additional
composers, pianists and violinists (b)

In the first phase, a 10×10 SOM is trained using the data in Table 1 and the
U-matrix visualization of the resulting map is presented in Figure 2a. The birth
year column was scaled into [0, 1] for normalization purposes.

Then, the hierarchical structure of the clusters was analyzed using the un-
weighted average distance between the BMU units. The result of the cluster
analysis is presented in a dendrogram in Figure 3. Comparing the cluster hi-
erarchy with the corresponding regions in Figure 2a we can find the cluster of
Perlman, Kagan, Kuusisto and Oistrakh, who are all violinists. This cluster is
reflected in the hierarchy as a separate branch. The cluster in the upper left
corner of the map consists of composers from the baroque era (Bach, Rameau,
Albinoni) and is also found as a separate branch in the dendrogram.
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Fig. 3. Dendrograms based on the two SOMs

This analysis was then conducted with an extended set of data. Persons who
are both composers and violinists, or composers and pianists were added. The
map is shown in Figure 2b. In the new map, a cluster of composer-pianists
(Chopin, Gottschalk and Liszt) appears in the upper right corner and a cluster
of composer-violinists (Paganini and Spohr) appears in the lower left section of
the map. If the hierarchy had been fixed for the original data set the new clusters
would not be visible as the new samples would be categorized according to the
original hierarchy. By generating the hierarchy from the data itself, we can find
a meaningful categorization scheme without the need for fixed categories.

An interesting case from the point of view of traditional conceptual hierarchies
is the question of multiple inheritance. In these experiments, the first data set
was constructed so that there were no instances of multiple inheritance whereas
in the second experiment there were several including cases in which a person
was both a composer and a pianist or a composer and a violinist (consider e.g.
Paganini as a famous case).

As the SOM provides a convenient means to model concept formation and
symbol grounding, and can be used for implicit representation of conceptual hi-
erarchies, one can ask how would it be possible to conduct basic logical reasoning
within the SOM framework. Frank has presented a model in which basic logical
operations can be represented as some kind of Venn diagram manipulations on
the SOM surface [17].

2.3 Semantic Spaces Based on Documents and Images

The WEBSOM method was developed to facilitate an automatic organization
of text collections into visual and browsable document maps [18,19]. Based on
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the SOM algorithm [11], the system organizes documents into a two-dimensional
plane in which two documents tend to be close to each other if their contents
are similar. The similarity assessment is based on the full-text contents of the
documents. In the original WEBSOM method [20] the similarity assessment
consisted of two phases. In the first phase, a word-category map [12,13] was
formed to detect similarities of words based on the contexts in which they are
used. The Latent Semantic Indexing (LSI) method [21] is nowadays often used
for similar purpose. In the second phase, the document contents were mapped
on the word-category map (WCM). The distribution of the words in a document
over the WCM was used as the feature vector used as an input for the document
SOM. Later, the WEBSOM method was streamlined to facilitate processing of
very large document collections [22] and the use of the WCM as a preprocessing
step was abandoned.

The PicSOM method [23,24,25] was developed for similar purposes than the
WEBSOM method for content-based image retrieval, rather than for text re-
trieval. Also the PicSOM method is based on the SOM algorithm [11]. The
SOM is used to organize images into map units in a two-dimensional grid so that
similar images are located near each other. The PicSOM method brings three ad-
vanced features in comparison with the WEBSOM method. First, the PicSOM
uses a tree-structured version of the SOM algorithm (Tree Structured SOM,
TS-SOM) [26] to create a hierarchical representation of the image database.
Second, the PicSOM system uses a combination of several types of statistical
features. For the image contents, separate feature vectors have been formed for
describing colors, textures, and shapes found in the images. A distinct TS-SOM
is constructed for each feature vector set and these maps are used in parallel to
select the returned images. Third, the retrieval process with the PicSOM sys-
tem is an iterative process utilizing relevance feedback from the user. A retrieval
session begins with an initial set of different images uniformly selected from the
database. On subsequent rounds, the query focuses more accurately on the user’s
needs based on their selections. This is achieved as the system learns the user’s
preferences from the selections made on previous rounds.

This basic principle can be applied in multiple ways to provide a bridge be-
tween the raw data directly linked with some phenomenon and the linguistic and
symbolic description of its conceptual structure.

3 Conclusions

We have presented some motivation why the core technologies in Semantic Web
should not solely rely on predicate logic and related formalisms. In an early
account on similar concerns, Winograd and Flores emphasized context in un-
derstanding communication and information [27]. They criticized the notion of
context-independent knowledge that has been underlying traditional AI efforts.
In the Pragmatic Web manifesto, it is pointed out that most of the ontologies
used in practice assume a certain context and the perspective of some commu-
nity [28]. Ontologies are not fixed, but co-evolve with their communities of use.
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Communication partners have to agree continuously on what they can assume to
be the shared background. Often parties from different professional, social, and
cultural backgrounds need to understand each other [28]. It means that there is
a need for meaning negotiations and that there is a cost related to the use of
ontologies, not only to the development [29].

In this paper, we have argumented for a certain data-driven approach in which
the original data is analyzed automatically rather than relying on hand-crafted
ontologies and their use as a basis for choosing descriptors in the metadata. In
summary, the interplay between skeletal knowledge structures and the actual use
of knowledge is a highly complex process. In this area, dynamic and adaptive
unsupervised learning methods such as the SOM can be very useful.
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Abstract. The self-organizing map (SOM) is a classical neural network
method for dimensionality reduction and data visualization. Visualiza-
tion induced SOM (ViSOM) and growing ViSOM (gViSOM) are two
recently proposed variants for a more faithful, metric-based and direct
data representation. They learn local quantitative distances of data by
regularizing the inter-neuron contraction force while capturing the topol-
ogy and minimizing the quantization error. In this paper we first review
related dimension reduction methods, and then examine their capabili-
ties for face recognition. The experiments were conducted on the ORL
face database and the results show that both ViSOM and gViSOM sig-
nificantly outperform SOM, PCA and related methods in terms of recog-
nition error rate. In the training with five faces, the error rate of gViSOM
dimension reduction followed by a soft k -NN classifier reaches as low as
2.1%, making ViSOM an efficient approach for data representation and
dimensionality reduction.

1 Introduction

Dimensionality reduction techniques have been widely used for data prepro-
cessing, which provide basis for further analysis, management and storage of
the data. It extracts meaningful information from high-dimensional data and
represents the data by fewer dimensions, and thus can greatly facilitate data
analysis, clustering and classification. For instance, in face recognition, each face
is represented by a large number of pixel values. It is difficult or inefficient to
directly operate on such high-dimensional data. Thus reducing dimensionality
has become an important issue in data intensive pattern recognition.

Principal component analysis (PCA) is a primary technique and is regarded as
the foundation for many dimensionality reduction techniques. PCA seeks a linear
projection that best represents the data in the least-squares sense. It has been
widely used in data analysis due to its computational simplicity and analytical
tractability. Eigenface [1] is a famous application of PCA in face recognition.
However, the linearity of PCA limits its power for complex and increasingly large
data sets, as it is not capable of revealing nonlinear structure of the data defined
by beyond second order statistics. Several PCA-based nonlinear techniques for
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dimensionality reduction have been proposed recently. For example, kernel-PCA
[2] extends PCA to nonlinear by using a kernel function in the input space. Local
linear embedding (LLE)[3], a local PCA method, learns the underlying manifold
of the data by minimizing an embedding function; while Isomap [4] captures the
topology structure by computing the geodesic manifold distances between data
points. Meanwhile, there has been previous work on applying these nonlinear
techniques for face recognition [5,6,7,8].

Neural networks provide alternative approaches to nonlinear data projection
and dimension reduction. The SOM [9] is one of the classical methods for cluster-
ing, dimension reduction and data visualization. Dimension reduction is achieved
by establishing a topological order of the projection between input data and their
corresponding neurons on the map. The applications of SOM in face recognition
and comparisons with PCA-based methods can be found in [10,11]. For a more
natural and direct display of data structure, ViSOM [12] has been proposed and
improved recently by a growing variant, gViSOM [13]. The inter-point distances
are locally preserved on the map along with the topology. It has been shown that
ViSOM provides a better visual exhibition of data points and their distribution
on the map than SOM [12,13]. ViSOM (or gViSOM) represents a metric scaling
of the input space and has comparable capability for highly nonlinear manifold
learning with other nonlinear PCA methods, such as LLE and Isomap [13]. A
review on nonlinear dimensionality reduction is given in [14]. In this paper, we
apply the ViSOM and gViSOM for dimensionality reduction in face recogni-
tion. We examine their performances and compare them with SOM and several
PCA-based methods.

The rest of the paper is organized as follows. PCA-based algorithms, both lin-
ear and nonlinear, are briefly reviewed in Section 2, followed by the introduction
of SOM-based methods in Section 3. Section 4 presents the classifiers used in
the experiment, and the experimental details and results are shown in Section
5. Finally, Section 6 concludes the paper.

2 PCA-Based Methods

PCA [1] is a classical linear dimension reduction method aiming at finding prin-
cipal orthogonal directions from a data set by solving an eigenvalue problem.
While discarding a large number of minor components, a small number of prin-
cipal components are retained to form a linear, low-dimensional subspace, known
as eigenface in face recognition. Raw face images are projected onto the eigenface
subspace first, and the classification is carried out in the reduced space.

Kernel-PCA [2] projects input data onto a high-dimensional feature space by
using a hypothetic nonlinear function. Then the standard PCA is performed on
the high-dimensional data set via a kernel function. There are two commonly
used kernel functions: polynomial and Gaussian radial basis.

LLE [3] is a local PCA method and is capable of mapping high-dimensional
nonlinear data onto a single global coordinate system of lower dimensionality.
The neighborhood or topology is preserved in the embedding space by mini-
mizing the cost functions in the input space and output space respectively. The
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optimal weights of input data can be found by solving a least squares problem of
the cost function in the input space, while the embedding vectors in the output
space are computed as an eigenvalue problem.

Isomap [4] seeks to learn the underlying manifold structure of a data set by
computing the geodesic manifold distances between all pairs of data points. It
first defines a neighborhood graph, over which each point is connected to all its
neighbors in the input space. Then the geodesic distances of all pairs of points
are computed via the shortest path on the neighborhood graph (using Floyd’s
algorithm). Finally multidimensional scaling is applied to the distance matrix to
construct the embedding of the data to preserve intrinsic geometry structure of
the data.

Curvilinear component analysis (CCA) [15] is another method to represent
nonlinear data structure in a lower-dimensional space. The intrinsic geometric
property of the data is revealed by preserving local distance relationships via an
error function. A neighborhood function is used for local topology preservation
and emphases on maintaining shorter distances than longer ones.

3 SOM-Based Methods

3.1 SOM

SOM is an unsupervised learning loosely based on the retinatopic mapping: an
ordered projection of visual retina to visual cortex [16]. It uses a set of neurons
ranged often in a 2-D lattice to form a topological mapping of the input space.
The SOM learns the topological structure of the input by updating the weight
vectors of a neighborhood of the winning neurons when being presented with
an input. In the case of dimensionality reduction and data visualization, high-
dimensional data are projected onto a low-dimensional SOM, represented by the
order, location or index of the neuron on the map. The data structure learned by
SOM reveals the relative or ordinal relationships among input data. However,
it is unable to reproduce the quantitative distances between the input points
on the reduced space. In many applications, a more faithful and metric scaling
of the input space is more desirable in data visualization and dimensionality
reduction [12,13].

3.2 ViSOM

The visualization induced SOM (ViSOM) [12] has been proposed to extend the
SOM for faithful (local) distance preservation on the map. The ViSOM preserves
the distance quantities along with the topology of data set. The updating force
of SOM, [x(t)−wk(t)], can be decomposed into two components: [x(t)−wv(t)]+
[wv(t) − wk(t)]. The first term is the updating force from the winner v to the
input x(t), which is the same to the updating force of the winner. The second
term is a lateral force that brings the neighboring neurons to the winner. This
lateral contraction force is regulated in order to maintain a uniform inter-neuron
distance locally on the map in ViSOM [12]. The ViSOM algorithm is briefly
described below.
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1. Select the winner v when an input x(t) is presented, and update its weight

Δwv(t) = α(t)[x(t) − wv(t)] (1)

2. Update the weights of the nodes in the neighborhood according to

Δwl(t) = α(t)η(ϕ, l, t)[x(t) − wv(t)] + β[wv(t) − wl(t)] (2)

where β = dvl/(δDvl) − 1, dvl is the distance of neuron weights in the input
space, Dvl is the distance of neuron indexes on the map, and δ is the resolu-
tion parameter. The neighborhood function η is similar to that in the SOM,
the width of the neighborhood decreases from an initially large value to a
final small value but not just to one as in the SOM.

3. Refresh the map by using the weights of randomly chosen neurons as the
input at a small percentage of updating times.

The ViSOM learns the local quantitative distances of the input data by reg-
ularizing the inter-neuron contraction force, while it captures the ordering and
minimizes the quantization error. The distance of two (local) projected points
on the map is proportional to the distance of these two points in the input space,
making feature representation and data visualization more faithful and quantita-
tively measurable. The resolution of the map can be enhanced by incorporating
the local linear projection (LLP) method [17], which projects a data point onto
the sub plane spanned by the two closest edges instead of to the winner.

3.3 gViSOM

It has been shown that SOMs of prefixed size are difficult to converge to highly
nonlinear manifolds [13]. For improving the local distance-preserving capability
of ViSOM, an incremental or growing ViSOM (gViSOM) has been proposed [13]
for embedding and metric-scaling nonlinear manifolds. Details of the gViSOM
algorithm are as follows,

1. Start with a small initial map (e.g. 5×5) of either rectangular or hexagonal.
Place the initial map onto a linear subspace of either the entire or a local
region of the data space. Set the desired resolution and the neighborhood
size.

2. Randomly draw a data sample from the data space and find the winning
neuron with the shortest distance.

3. If the sample falls within the neighborhood, update the weights of the neu-
rons of the neighborhood using the ViSOM algorithm; otherwise go back to
Step 2.

4. At regular iteration intervals (e.g. 2000 iterations), if the growing condition
is met (that is, the data is underrepresented by the existing map), grow
the map by adding a column or row to the side with the highest activities
(measured by the winning frequencies). The added column or row is a linear
extrapolation of the existing map. Other growing structures can be used,
such as incrementing polygons instead of entire column or row for a free
structure of the map and efficient use of neurons.
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5. As in the ViSOM, at regular intervals (every certain number of iterations),
refresh the map (neurons) probabilistically.

6. Check if the map has converged. If not go back to Step 2.
7. Project all data samples onto the map, either to the neurons or by the LLP

resolution enhancement.

4 Classifiers

For classification, three common classifiers were used in our system: the Nearest-
Neighbor (NN), soft k -Nearest Neighbor (soft k -NN) and the Linear Discrimi-
nant Analysis (LDA). NN is the simplest classifier assigning a test sample to the
class of the most similar example in the training set. In soft k -NN classifier [11],
each principal component outputs a confidence value, which gives the degree
of support for each component in every face representation, and then the final
decision is given by considering all of these confidence values. LDA [18] is an
efficient and widely used linear classifier. It tries to find the linear projection of
the data set that minimizes within-class scatter while maximizes between-class
separation. The ratio of the determinant of the between-class scatter matrix and
the within-class scatter matrix in the projected space is maximized by solving
an eigenvalue problem.

5 Experiments and Results

In the experiment, the described methods were used for reducing data dimen-
sions in the preprocessing of raw face images, and then one of the classifiers was
used for classification. The performances of the dimension reduction methods
were evaluated based on the same classifier. The experiment was conducted on
a publicly available database, the ORL database (of Olivetti Research Labora-
tory), which consists of 40 subjects with 10 different face images for each subject.
All images in the database were taken against a dark homogeneous background
with an up-right, frontal position and have the same size of 92×112. Face images
vary slightly in term of lighting conditions, facial expressions or facial details.
Examples of two subjects are shown in Fig.1.

Fig. 1. Examples of ORL face images
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PCA-Based Methods. In PCA-based methods, the number of dimensions
(92 × 112) of face image is reduced to 60. Two types of kernel-PCA, polynomial
(KPCA1) and Gaussian Radial Basis (KPCA2), were used with degree of 2 and
radius of 30, respectively. The sizes of neighborhood used by LLE and Isomap
were set to 30 and 120 respectively. The 60-dimensional face representations are
then used for training and testing by a NN, soft k -NN or LDA classifier.

SOM-Based Dimensionality Reduction. The face images are first locally
sampled by moving a window of size 5 × 5 over the entire image by 4 pixels
each time. The sampled images are reconstructed to the sizes of 25 × 23 × 28
after sampling. That is, each sampled face image contains 23×28 25-dimensional
subsamples. These 25-dimensional samples are used as the inputs for SOM-based
maps, which are trained by implementing the SOM-based algorithms with 50000
updates. For each method, its size and parameters have been optimized to its
best performance. For example, the sizes of SOM, ViSOM and gViSOM varied
from 5 × 5 to 30 × 30, and the chosen sizes represent the cases with the best
performances (i.e. 10×10 for SOM, 30×30 for ViSOM with δ of 0.5 and 16×19
for gViSOM starting at 5 × 5 with δ of 0.6).

Then all 25-dimensional samples in each face image are passed through the
trained SOM, ViSOM and gViSOM, and represented by the 2-D index values
of the corresponding winners on the maps. Thereby, on the trained map, each
face image has a corresponding 2-D face projection (as shown in Fig. 2), which
is used for further classification. Each dimension of the face projection can be
reconstructed as a feature face (with size of 23×28, examples of two subjects are
shown in Fig. 3), which resemble features of the original face images. As can be
seen, ViSOM methods resemble better the original features due to its the metric
preserving property in feature extraction. For a full and objective evaluation,
the performances of SOM-based and PCA-based methods were investigated on
the same classifier for each experiment on all subjects of the ORL database.
The number of training images was varied from 3, 4, 5 to 6 per subject and
the remaining 7, 6, 5, and 4 were used as test images respectively. The results
reported are the average results of 10 independent implementations with different

Fig. 2. Face projections of SOM (left), ViSOM (center) and gViSOM (right)
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Fig. 3. Feature faces of SOM (left), ViSOM (center) and gViSOM (right)

Table 1. Error rates of PCA-based methods followed by a NN, soft k -NN or LDA
classifier

No.of Error rates(%)
training

PCA KPCA1 KPCA2 LLE ISOMAP CCA
faces

NN Classifier

3 13.25 13.54 12.25 11.25 14.21 12.25
4 8.08 8.64 7.17 7.29 8.54 8.17
5 5.65 5.75 5.80 5.70 6.85 5.80
6 3.56 3.56 4.06 4.13 4.13 4.06

soft k -NN Classifier

3 13.43 15.50 11.75 11.29 14.14 12.68
4 8.69 9.42 9.08 7.25 8.79 8.46
5 6.15 6.45 7.00 5.50 6.90 5.85
6 4.26 4.50 5.87 3.94 4.75 3.81

LDA Classifier

3 9.36 11.07 10.07 9.71 13.46 12.15
4 5.08 6.00 5.96 6.75 8.37 7.21
5 3.80 4.15 4.95 3.75 6.90 5.40
6 3.12 3.31 3.19 2.69 4.31 4.31

randomly chosen training images. Meanwhile, the same choices of training (and
test) images were used by all the methods to ensure an unbiased comparison. The
results of PCA-based methods followed by the NN, soft k -NN or LDA classifier
are shown in Tables 1. The performances of SOM-based methods with the NN
or soft k -NN classifier are listed in Table 2, V iSOM∗ and gV iSOM∗ denote the
projections with the LLP resolution enhancement.

The tables show that with more training samples, error rates decrease in
all methods as expected. The SOM have the similar performances to PCA-
based methods with the NN classifier; ViSOM and gViSOM yield markedly
improved performances than SOM and PCA-based methods with about 2% lower
error rates in every implementation. With soft k -NN classifier, LLE has slightly
lower error rates than other PCA-based methods; while SOM-based methods
have about 2-3% improvements over the LLE, and gViSOM with LLP has even
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Table 2. Error rates of SOM-based methods followed by a NN or soft k -NN classifier

No.of Error rates(%)
training

SOM ViSOM ViSOM∗ gViSOM gViSOM∗
faces

NN Classifier

3 11.57 10.61 10.50 10.86 10.79
4 7.50 6.42 6.37 6.46 6.54
5 5.85 4.30 4.35 4.40 4.50
6 3.81 2.69 2.63 2.75 2.88

soft k -NN Classifier

3 8.04 7.75 7.32 7.21 6.71
4 4.46 3.88 3.79 3.67 3.67
5 3.20 2.80 2.40 2.55 2.10
6 1.88 1.25 1.19 0.81 0.75

better performances with more than 1% further improvement. The error rates
of gViSOM with LLP in training five and six faces are as low as 2.1% and 0.75%
respectively. These results are also better than the results of the PCA-based
methods followed by a LDA classifier, with performance improvements of 2-6%
in error rate.

6 Conclusions

In this paper, we have applied the recently proposed ViSOM and gViSOM for
face recognition. The capabilities of them for dimensionality reduction and fea-
ture extraction are compared with the standard SOM and several nonlinear
PCA methods. The experimental results on a real-world face database show that
SOM-based methods achieve a comparable or better performance than widely
used PCA-based methods for feature extraction and dimensionality reduction;
while metric preserving ViSOM and gViSOM outperform the SOM and these
PCA-based methods with significant 2-6% improvement in the error rate. The
gViSOM followed by a soft k -NN classifier gives the lowest error rate. This
demonstrates that faithful representation of high dimensional data is important
in pattern recognition and ViSOM offers an effective nonlinear data projection
for face recognition.

References

1. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuro-
science 3, 71–86 (1991)
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Abstract. We propose a new gesture recognition method which is called “early
recognition”. Early recognition is a method to recognize sequential patterns at
their beginning parts. Therefore, in the case of gesture recognition, we can get a
recognition result of human gestures before the gestures have finished. We realize
early recognition by using sparse codes of Self-Organizing Map.

Keywords: Self-Organizing Map, Gesture Recognition, Early Recognition.

1 Introduction

Man-machine seamless 3-D interaction is an important tool for various interactive
systems such as virtual reality systems, video game consoles, etc. To realize such in-
teraction, the system has to estimate human gestures in real-time. Generally, gesture
recognition is achieved after all sequential postures, which make up a gesture, are input
to a system. Therefore, if a long gesture is input to the system, we have to wait for
the response for a certain time until the system output the recognition result. This is a
problem to realize “real-time” interaction between a human and a machine.

Recent years, a new approach called “early recognition” has been proposed for
gesture recognition[1,2]. The early recognition means that a system output a recog-
nition result before a gesture has finished. It is very useful technique to realize real-time
interaction. In this paper, we also propose another approach to realize early recognition.
Our approach uses Self-Organizing Map (SOM) and it is improved approach of gesture
recognition proposed by Shimada et al.[3]. In their approach, all postures which make
up gestures are learned by the SOM. Therefore, each gesture is represented by an acti-
vated pattern of neurons called “Sparse Code”. They let another SOM learn the sparse
codes of each gesture.

In our approach, we also use the sparse codes which represent each gesture pattern.
When a posture is input to the map, a neuron will activate for the posture. We estimate
which gesture will be observed when the neuron is selected as winner (activated neuron)
based on Bayesian estimation.

J.C. Prı́ncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 116–123, 2009.
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2 Sparse Code for Gesture Recognition

2.1 Self-Organizing Map

Self-Organizing Map (SOM) is one of the most widely used artificial neural network
algorithms proposed by Kohonen[4,5]. An input vector I has connections with all of
neurons (1, . . . , u, . . . ,N) on the map. Each neuron has a weight vector Wu. In the train-
ing phase, a neuron c that satisfies equation (1) is selected as the winner neuron and
then weight vectors are updated by equation (2).

c = argmin
u

(||I −Wu||) (1)

Wu(t + 1) =Wu(t) + hc,u(I(t) −Wu(t)) (2)

hcu is a neighborhood kernel defined by equation (3).

hc,u = α(t) · exp

(
−||rc − ru||2

2σ2(t)

)
(3)

With increasing ||rc−ru|| and t, hcu converges to zero. α(t) is a monotonically decreasing
function of t (0 < α(t) < 1), and σ2(t) defines the width of the kernel.

On the other hand, a neuron c is also selected as the winner in the recognition phase.
Generally, the category to which the c belongs is regarded as the recognition result.
Meanwhile, the weight vector Wc or the coordinate of the neuron c are also used as
the recognition result. In this paper, we define a vector O as an output for an input
vector I.

2.2 Sparse Code

We can represent a posture as I(t), (1, . . . , t, . . . , T ) which is an unit of a gesture, where
T is the time length of the gesture. Under defining the winner for the input I(t) as
c(t), we can get the c(t) for all of the postures which make up a gesture as shown in
Figure 1. In this figure, each circle shows a neuron of the SOM, and the bottom part
of this figure shows a gesture. The gray-colored neurons are winners for the sequential
postures (I(1), I(2), I(3)). Our approach uses not only these winners but also the other
neurons as the upper layer’s input. In other words, each neuron u has a state su that it is
winner for a gesture or not, and whole state of the neurons are used for the upper layer’s
input. The su is defined as follows.

su =

⎧⎪⎪⎨⎪⎪⎩
1, if u = c(t)|t∈T
0, otherwise

(4)

Therefore, the output vector of the first layer is represented as S = (s1, . . . , sN). This
output can be regarded as a “Sparse Code” which represents an activated pattern of
winner neurons for a gesture. There is a possibility that the same neuron is selected as
the winner more than once. In such a case, we set the neuron state su = 1. This helps the
upper layer’s SOM to achieve time invariant recognition since the sparse code is similar
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Fig. 1. Winner Neurons for a Gesture
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Fig. 2. Time Invariant Recognition with Sparse Code

between gestures whose time length is different from each other as shown in Figure 2.
In this figure, though the time length of the gesture is longer than the one in Figure 1,
the sparse code is the same.

3 Early Recognition

Shimada et al. directly utilized the sparse code S for training of gestures in the next
layer’s SOM. In contrast, we utilize a part of the sparse code to achieve early recogni-
tion of human gestures. We introduce Bayesian estimation method to acquire posterior
probability. At time t, a posture I(t) is observed by the motion capture system. What we
want to know is which gesture includes the posture I(t). In our approach, we acquire
posterior probability based on the sparse code of the map. In the SOM, only one neuron
will be activated for a posture. Therefore, we need a probability that a gesture will be
observed under the condition that a neuron is activated for the current posture. In the
following section, we expressly define the probability.

3.1 Representation of Probability

We denote m the class of gesture, Am the event of m and Xc(t) the event that the neuron
c is activated at time t . Our aim is to acquire Pt(Am|Xu) which is calculated by the prior
probability and likelihood.

Pt(Am|Xc(t)) =
P(Xc(t)|Am)Pt(Am)

Pt(Xc(t))
(5)

Pt(Xc(t)) =
∑

A

P(Xc(t)|Am)Pt(Am) (6)
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Fig. 3. Example of Sparse Code for Each Gesture
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Fig. 4. Example of LikelihoodPt(Xu|Am)

where P(Xc(t)|Am)) is the likelihood and Pt(Am) is the prior probability. The likelihood
is calculated by following equation.

P(Xu|Am) =
su,m∑

u

su,m

(7)

where su,m is a state of a neuron u for a sparse code of gesture m. Fig. 3 shows an ex-
ample of sparse code for each gesture. After training of gestures, neurons are activated
for each gesture. The activated neurons are painted in black. If su,m > 0, it denotes that
the neuron u is activated for the gesture m. From the other viewpoint, the neuron u will
be activated when the gesture m is observed. Therefore, the likelihood can be described
by the ratio of su,m. Fig. 4 shows an example of calculation of the likelihood. When the
neuron u = 2 is activated for the current posture, the likelihood of P(X2|A2) = 1/4 since
the neuron u = 2 is one of four neurons which are activated for the gesture m = 2. On
the other hand, P(X2|A3) = 0 since the neuron u = 2 is not activated for the gesture
m = 3.

On the other hand, Pt(Am) represents the probability of observation of each gesture.
Generally, we use Pt(Am) = 1/M (M is the number of gestures) for the prior probabil-
ity. However, a gesture actually consists of different length of postures from the other
gestures. Therefore, we use the ratio of activated neurons for each gesture as the prior
probability. And the ratio can be calculated from the sparse code of each gesture. The
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Pt(Am) becomes larger with increasing the number of activated neurons for the gesture
m. Actually, the Pt(Am) is calculated as follows.

Pt(Am) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
u

su,m

∑
u

∑
m

su,m

, if t = 1

Pt−1(Am|Xc(t))
∑

u

su,m

∑
m

⎧⎪⎪⎨⎪⎪⎩Pt−1(Am|Xc(t))
∑

u

su,m

⎫⎪⎪⎬⎪⎪⎭
, otherwise

(8)

We use the previous posterior probability to update the prior probability.

3.2 Algorithm of Early Recognition

The algorithm of early recognition consists of two steps; preprocessing to generate the
sparse code and online processing to estimate the gesture.

Generation of Sparse Code

Step 1. Let SOM learn all postures which are element of gestures.
Step 2. Acquire sparse code Sm for each gesture m(1, ...,m, ...,M).

Sm = (s1,m, ..., su,m, ..., sN,m) (9)

su,m =

⎧⎪⎪⎨⎪⎪⎩
1, if u = c(t)|t∈T,m∈M

0, otherwise
(10)

We denote su,m the state of neuron u whether it activates for gesture m.
Step 3. Gradate sparse codes by following Gaussian filter. This step is effective for

generation of shift invariant sparse code.

su =
∑

v

{
sv exp

(
−||rv − ru||2

2σ2

)}
(11)

Recognition

Step 1. Calculate the likelihood P(Xu|Am) and the initial prior probability at time P1(Am)
for all neurons and for all gestures by equation (7) and (8) respectively.

Step 2. Acquire the winner neuron c(t) which activates for current posture T(t) by
equation (1).

Step 3. Calculate the posterior probability Pt(Am|Xc(t)) for all gestures by equation (5).

Step 4. If Pt(Am|Xc(t)) > T H (TH is a threshold (
1
M
< th ≤ 1)), output the gesture m as

the result of early recognition. Otherwise, update the prior probability according to
equation (8) and jump to Step 1.
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4 Experimental Results

4.1 Conditions

We demonstrate the gesture recognition using motion data from Carnegie Mellon Uni-
versity’s Graphics Lab motion-capture database (http://mocap.cs.cmu.edu/). The mo-
tion data is composed of 25 measured markers. Each marker is composed of data of
(x, y, z)-axis. We used seven of all 3-D positions as the feature vector which represents
posture information. We extracted six kinds of gestures shown in Table 1. We used 120
training samples (20 samples for each gesture) and 60 test patterns (10 patterns for each
gesture).

4.2 Results

At first, we let the SOM learn the training samples. The initial size of the map was
50 × 50. After the training, we let the SOM generate the sparse code for each gesture.
Next, we input each test pattern into the map and investigated the posterior probabilities
which were calculated based on the sparse code. We set the threshold T H = 0.95(95%)
to output the result of early recognition. Table 2 shows the result. Each cell shows which
gesture was output as the result of early recognition when a gesture m had been input
to the map. For example, when test samples of gesture 5 had been input to the map, 9
of 10 samples were output correctly, and one of 10 samples was erroneously output as
gesture 6. Therefore, the accuracy of gesture 5 was 90%.

Table 1. Details of Each Gesture

Gesture Length Detail

1 9 ∼ 100 spread his hands and put them on his shoulder
2 7 ∼ 90 hold up his hands
3 7 ∼ 95 make a posture of Arm Shoulder Throw
4 12 ∼ 127 swirl his hands in front of his body
5 19 ∼ 259 move his hands up and down
6 18 ∼ 320 twist his right hand

Table 2. Result of Early Recognition

Output\Input Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Gesture 1 10 8 0 0 0 0
Gesture 2 0 2 0 0 0 0
Gesture 3 0 0 10 0 0 0
Gesture 4 0 0 0 10 0 0
Gesture 5 0 0 0 0 9 3
Gesture 6 0 0 0 0 1 7

Accuracy(%) 100 20 100 100 90 70
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Fig. 5. The Posterior Probability for Each Gesture

Finally, Fig. 5 shows a graph which represents the probability transition at each frame
when the longest test pattern was input to the map. The horizontal line is the frame
number and the vertical line is probability. We show the result of first 50 frame only
because of comparison among test patterns comprehensibly.

4.3 Discussion

We can see that the SOM could output the early recognition result about gesture 1, 3
and 4 successfully. On the other hand, there were a few mistake about gesture 5 and 6.
Especially, most of gesture 2 were recognized falsely. We investigated why the SOM
failed to recognize the test patterns of gesture 2, 5 and 6. All gestures have similar
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postures in the first few frame since each gesture starts from standing posture. In other
words, some postures in a gesture share the neuron with the other gesture which has
similar postures. For briefly, we define two kinds of gestures; gesture A and gesture B
which partially have common postures. When the common posture of gesture A and
B was input to the map, the likelihoods for each gesture were calculated. In this case,
the difference of likelihoods is not so large between gesture A and B. At this point, the
posterior probability of gesture A is also not different from gesture B. However, if such
a common posture continues for a while, the difference of posterior becomes larger.
This results in false recognition. Namely, there is a possibility of false recognition if the
common posture continues for a long time.

5 Conclusion

We have proposed a new framework of early recognition of human gestures. We have
used Self-Organizing Map (SOM) to learn human gestures. The SOM outputs sparse
codes for each gesture. We estimated a human gesture based on Bayesian estimation
using the sparse code. We got positive results of early recognition in the experiment.
We are now researching to tackle the problem of common postures which are included
in some gestures.
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Abstract. Bag of features is a well established technique for the visual
categorisation of objects, categories of objects and textures. One of the
most important part of this technique is codebook generation since its
within-class and between-class discrimination power is the main factor
in the categorisation accuracy. A codebook is generated from regions of
interest extracted automatically from a set of labeled (supervised/semi-
supervised) or unlabeled (unsupervised) images. A standard tool for the
codebook generation is the c-means clustering algorithm, and the state-
of-the-art results have been reported using generation schemes based
on the c-means. In this work, we challenge this mainstream approach
by demonstrating how the competitive learning principle in the self-
organising map (SOM) is able to provide similar and often superior
results to the c-means. Therefore, we claim that exploiting the self-
organisation principle is an alternative research direction to the main-
stream research in visual object categorisation and its importance for
the ultimate challenge, unsupervised visual object categorisation, needs
to be investigated.

1 Introduction

Visual object categorisation (VOC) means automatic detection of categories
(e.g., “face”, “motorbike”, etc.) of objects in images. During the last decade,
VOC has become an important and active research topic in computer vision. The
motivation originates from the desire to automatically search the vast amount of
digital image and video data distributed on the Internet. Researchers in this field
have accepted the “Bag-of-Features” (BoF) approach (see, e.g., [1,2,3] and Fig.
1) as the main processing principle and it has achieved the mainstream status.
In this work, we accept the main principle, but want also to revise one of its
intrinsic parts: the visual feature codebook generation. A standard tool for the
inter-category codebook generation is the c-means clustering. The state-of-the-
art results have been achieved by enhancing the standard c-means with more
sophisticated processing and optimisation.
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Very recently, an ultimate challenge of visual object categorisation has been
proposed [4,5]: unsupervised visual object categorisation. In the unsupervised
problem, there is no training or validation sets with manually labeled ground
truth, which, on the other hand, prevents using the most effective enhancements
in the codebook generation. Now we need to revisit and revise the standard parts
of the BoF approach. In this work we revisit the codebook generation part and
investigate whether a self-organisation principle, especially self-organising map
(SOM) [16], can provide novel or superior characteristics to the c-means.

2 Related Work

Due to the active past and current work in the field of supervised VOC, the
reported results are now very incremental. For example, there are two main
directions in the codebook generation algorithms: replacement of the c-means
with another “more tailored” clustering method and enhancement of the c-means
with application-specific parts. The latter one has been more successful.

Jurie and Triggs [6] have developed a clustering method which is more ro-
bust than the c-means. Their method avoids setting all cluster centres into high
density areas, which is typical to the c-means. Their algorithm first chooses N
samples randomly and then computes maximal density of the samples using
mean-shift estimator. Then it assigns a cluster centre point to the maximal den-
sity and eliminates all samples that are within a certain radius from the cluster
centre. Then the algorithm repeats these steps with remaining samples as long
as there are too many samples left or the number of clusters is too low. In-
terestingly, this “topology preserving” enforcement is very similar to the main
characteristic of self-organisation.

Gemert et al. [2] have developed a method based on the c-means. They re-
place the simple learning rule, which assigns a sample to the closest cluster, with
uncertainty, plausibility and distance values. These values are used in the code-
book generation. For example, if a data point is in the middle of two clusters, it
will be assigned with the proportion of 50% to the both clusters.

Problem-specific clustering approaches have been developed as well. Leibe
et al. [7] use hierarchical clustering to generate the codebook. Many other suc-
cessful methods, however, use directly the c-means [8,9]. The main property in
these enhancements is in locating the cluster centres to spread in a more intelli-
gent manner than converging to few high density regions of the input samples.

One problem-specific enhancement outside clustering is to utilise the spa-
tial information in the codebook generation or probing. For example, Lazebnik
et al. [10] reported a method which uses a spatial pyramid to organise descrip-
tors based on their appearance and location. These enhancements, however, are
particularly unsuitable for unsupervised methods.

In the recent work on unsupervised visual object categorisation, Sivic et
al. [4] presented an unsupervised method utilising Latent Dirichlet Allocation
(LDA) model. They improved the original LDA by introducing hierarchical
LDA (hLDA). With the hierarchy, they were able to improve the categorisation
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performance, but the results were reported only for a small number of categories
and it is not clear if the approach generalises well.

3 Bag-of-Features Framework and Self-organisation in
Codebook Generation

The general principle in the bag-of-features approach is very simple. First, in-
terest points are automatically detected from the images, e.g., by using the
SIFT [11], Maximal Stable Extremal Regions (MSER) [12] or salient region de-
tector [13]. Then, invariant region descriptors are formed around these interest
points (included to, e.g., the SIFT, Speeded Up Robust Features (SURF) [14]
and Gradient Location and Orientation Histogram (GLOH) [15]). Then comes
an important part: the descriptors are used to form a compact codebook. From
any observed image, the interest point detection and descriptor formation parts
are exactly the same, but then the contents in the image should be classified
according to the “loads” in the codebook. Prior to the categorisation, spatial
processing, such as segmentation, can be performed, but generally the main
structure is obeyed. Now, it is clear that the codebook plays an essential role in
this kind of system. The system is depicted in Fig. 1.

We are using bag-of-features approach, which is similar to the system which
was presented by Dance et al. [1], to generate feature histograms for the im-
ages. These feature histograms are used to describe images. Let D be a set of
descriptors which are extracted from an image using a local feature extractor
such as SIFT, and CB be a codebook which contains M words. In practice,
words in the CB are clusters’ centre points. Let N be the number of descriptors
extracted from the image. Then, an image feature image histogram F is gener-
ated according to the bag-of-features approach which is defined in Algorithm 1.
The Dist function calculates the Euclidean distance between two vectors. The
smaller the distance, the greater similarity is between two vectors. Hence, a word
that minimizes the distance from a descriptor is chosen as the best match, bm.

Algorithm 1. Feature generation using a bag-of-features approach
for i = 1 to N do

bm ← minj Dist(Di, CBj)
Fbm ← Fbm + 1

end for

Our main research question in this work is straightforward: what new or
superior properties we can achieve by replacing the c-means in the codebook
generation with the self-organising map [16] and how these properties can be
quantitatively measured? We claim that a proper evaluation procedure is to
perform a complete experiment on visual object categorisation and then test
the effect of replacing different parts in the system. In our work, we apply the
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Fig. 1. General structure and information flow in the “bag-of-features” approach. Note
that the codebook generation is performed only in the training phase for supervised
methods.

simplest form of the BoF principle described, e.g., in [1]. We compare the two
methods in supervised and unsupervised experiments with the same evaluation
measures and data sets as in the recent state-of-the-art papers [1,4]. Moreover,
we point out that their evaluation is lacking in some respect and claim that
the evaluation should actually investigate the performance as a function of the
number of categories. Only this asymptotic behaviour reveals information about
generality and extensibility of a method.

4 Experiments

As discussed above, we do not support the idea that there would be a single
evaluation criteria for the codebook selection, and therefore, we established the
complete VOC framework and conducted experiments through the complete
pipeline.

In the first experiment, we analyse BoF in its most typical structure, exactly
the one depicted in Fig. 1, and supervised visual object categorisation. In the
supervised VOC, we have a training set of labelled images (list of objects present
in the images). In particular, we replicate the system and experiments in Dance
et al. [1], except that we replace the support vector machine classifier with the
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Fig. 2. Image set for the first test: CalTech 4 and side images of cars [17]. CalTech 4
contains of images of aeroplanes, cars (rear), faces and motorbikes.

Table 1. C-means vs. SOM generated codebooks in the VOC framework in Dance et
al. [1] for the CalTech 4 + car side image set (optimal c-means codebook size is 100
and SOM 50)

Category c-means w/ 1-NN SOM w/ 1-NN (c-means w/ SVM) Dance et. al. [1]

Aeroplanes 0.760 0.753 0.963
Cars (rear) 0.893 0.953 0.977
Cars (side) 0.980 0.953 0.996
Faces 0.787 0.833 0.940
Motorbikes 0.593 0.707 0.927

Average 0.803 0.840 0.961

simple 1-NN decision rule. In this experiment, Caltech 4 together with side im-
ages of cars were used. One example image from each category is shown in Fig. 2.
The only tunable parameter for the SOM and c-means is the size of the code-
book which was optimised for the best results to facilitate reliable comparison.
The best results are given in Table 1 where it is evident that the basic SOM can
easily match the performance of the c-means and, in this case, also outperform
it. It should be noted that the results in [1] were achieved with tailored and
heavily optimised support vector machine (SVM) classifier. However, the simple
1-NN classifier performed comparably with no special optimisation.

In the second experiment, we moved from the supervised VOC problem to the
more recent challenge, unsupervised VOC. The unsupervised problem has been
investigated hitherto only in a few papers, and we utilised the same data and the
same performance measure as in Sivic et al. [4]. The performance of the system
is defined in Eq. 2 as average performance of nodes. The node performance, pt,
is computed as

pt = max
i

GTi ∩ Pt

GTi ∪ Pt
(1)

where GTi is the number of ground truth images from the category i, Pt is the
number of images assigned to the node t. The average performance, p, is then

p =
1

Nc

Nc∑
i=1

max
t

p(t,i) (2)

where Nc is the number of categories. In the equation, the highest perform-
ing node is chosen for each category and then adds performances together and
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Fig. 3. Image set for the second test: MSRC v1 [18]

Table 2. C-means vs. SOM codebook generation & c-means vs. SOM unsupervised
classification for the MSRC V1 image set

Category c-means w/
c-means

c-means w/
SOM

SOM w/ c-
means

SOM w/
SOM

Aeroplanes 0.248 0.263 0.430 0.485
Bikes 0.246 0.165 0.339 0.605
Buildings 0.258 0.165 0.149 0.251
Cars 0.123 0.187 0.211 0.271
Cows 0.217 0.261 0.159 0.263
Grass 0.203 0.356 0.174 0.461
Faces 0.252 0.178 0.250 0.245
Sky 0.196 0.206 0.170 0.209
Trees 0.265 0.233 0.346 0.450

Average 0.223 0.224 0.247 0.360

divided sum by the number of categories which give average categorisation
accuracy over all categories.

In the unsupervised scheme, the 1-NN rule must be omitted and replaced
with an unsupervised approach. As a simple approach, we fed the extracted
codebook loadings (histograms) again to the clustering method, and assigned
to each cluster the most representative category label afterwards. Knowledge
about labels of the images is not used in learning phase, but they are needed for
performance evaluation. Hence, data must have labels otherwise; it is not possible
to measure performance. The data used in Sivic et al. consists of nine manually
segmented object categories from the MSRC v1 image set [18]. Examples of the
images are shown in Fig. 3. We also adopted their performance measure despite
the fact that it is intended for measuring consistency of object hierarchies.

We tested all four combinations (c-means/SOM codebook generation & c-
means/SOM “category clustering”) and optimised the codebook sizes to report
the best performances. The results are shown in Table 2 where it is evident
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Fig. 4. Test results and feature histograms. (a) C-means vs. SOM codebook genera-
tion & 1-NN classification for the CalTech 101 database. Note that the SOM graphs
are coded with red and c-means with green colour. (b) Feature histograms from five
categories using 50 words and SOM. (c) Feature histograms from five categories using
500 words and SOM.

that the SOM-SOM combination provided distinctly better results than any
other combination, and again the SOM generated codebooks outperformed the
c-means. It should be noted that Sivic et al. reported the performance as high as
0.72, but it describes accuracy of object hierarchy which is not included to our
method at all. Moreover, the actual level of supervision is not very clear from
their report.

The previous two experiments demonstrated the superiority of the SOM in
the two previously reported test cases. However, we claim that in those test cases
the used performance measure and the amount of data were not adequate for
a reliable evaluation of unsupervised VOC performance. The important factor
is actually the asymptotic behaviour of the performance as a function of the
number of categories. After all, it is more important to know how a method
performs with hundreds and thousands of categories. Performance with some
specific number of categories can tell only about performance of the system
with a specific test set. When the performance of the system is tested with
different number of categories, it can tell overall performance of the system more
completely. To initiate a better practise, we performed the last experiment using
a more proper performance measure and with the well-known Caltech 101 [17]
database. Our evaluation procedure was adopted from Fei-Fei et al. [17], where 5
iterations were computed for 30 random images in the training set and another
20 random images in the testing set. We can observe two important results from
this experiment (see Fig. 4(a)). At first, collapse of the performance occurs quite
rapidly if more than 10 categories are used. Secondly, the SOM systematically
outperforms the c-means algorithm. The best overall performances for the SOM
were (codebook size 100) 0.898 accuracy for 5 categories, 0.589 for 10, 0.377
for 20 and 0.208 for 50 categories. The best performances for the c-means were
0.856, 0.471, 0.269 and 0.141 respectively. This experiment, we believe, is the
strongest proof of superiority of the SOM algorithm in the codebook generation.
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Table 3. Results in Fig. 4(a) listed in the table for different codebook sizes

SOM c-means

Num. of 50 100 200 500 1000 50 100 200 500 1000
categer. words words words words words words words words words words

5 0.894 0.898 0.898 0.836 0.654 0.766 0.846 0.856 0.806 0.752
10 0.554 0.589 0.586 0.533 0.393 0.450 0.444 0.471 0.426 0.487
20 0.376 0.377 0.372 0.371 0.236 0.249 0.267 0.269 0.260 0.284
50 0.204 0.208 0.217 0.206 0.112 0.109 0.117 0.141 0.133 0.141

Figs. 4(b) and 4(c) shows feature histograms. These two figures discover the
fact that when the size of the codebook increases, feature histograms gets less
distinctive to each other and thus it is more difficult to separate different images
and image categories.

5 Conclusions

In this work, we studied whether the self-organisation principle and especially
the self-organising map algorithm could provide novel or superior properties in
the codebook generation for the visual object categorisation problem. In all the
performed experiments, it was shown how the SOM matches, and in the most
of the cases, outperforms the c-means algorithm which is the standard in this
task. Lower performance of the c-means is a result of poor clustering. C-means
sets most of the cluster centre points near to density areas and thus centre
points cover well only a fraction of the data. SOM assigns cluster centre points
more evenly and thus they cover most of the data. It leads to better codebooks
which increases the performance of VOC system. Quantization error could be
decreased by increasing the size of the codebook, but it does not lead always
to good performance of the system. When the size of the codebook increases,
feature histograms get less distinctive and hence it is more difficult to separate
images from each other. This affects to the performance in negative manner. This
phenomenon is illustrated in Figures 4(b) and 4(c). The results motivate us in
the future work to further study the self-organising principle as the predominant
principle for realising visual object categorisation and especially unsupervised
visual object categorisation.
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Abstract. The self-organizing map (SOM) is related to the classical
vector quantization (VQ). Like in the VQ, the SOM represents a distri-
bution of input data vectors using a finite set of models. In both methods,
the quantization error (QE) of an input vector can be expressed, e.g., as
the Euclidean norm of the difference of the input vector and the best-
matching model. Since the models are usually optimized in the VQ so
that the sum of the squared QEs is minimized for the given set of train-
ing vectors, a common notion is that it will be impossible to find models
that produce a smaller rms QE. Therefore it has come as a surprise that
in some cases the rms QE of a SOM can be smaller than that of a VQ
with the same number of models and the same input data. This effect
may manifest itself if the number of training vectors per model is on the
order of small integers and the testing is made with an independent set of
test vectors. An explanation seems to ensue from statistics. Each model
vector in the VQ is determined as the average of those training vectors
that are mapped into the same Voronoi domain as the model vector. On
the contrary, each model vector of the SOM is determined as a weighted
average of all of those training vectors that are mapped into the “topo-
logical” neighborhood around the corresponding model. The number of
training vectors mapped into the neighborhood of a SOM model is gen-
erally much larger than that mapped into a Voronoi domain around a
model in the VQ. Since the SOM model vectors are then determined
with a significantly higher statistical accuracy, the Voronoi domains of
the SOM are significantly more regular, and the resulting rms QE may
then be smaller than in the VQ. However, the effective dimensionality of
the vectors must also be sufficiently high.

Keywords: self-organizing map, vector quantization, quantization error.

1 Introduction

Some attempts have been made to compare the quantization errors (QEs) in a
self-organizing map (SOM) vs. the same errors in classical vector quantization
(VQ), also named the k-means (clustering) algorithm. It is usually taken as self-
evident that if the models or “codebook vectors” are optimized in the VQ so
that the sum of the squared QEs is minimized for given training vectors, it will
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be impossible to find any other set of models that produces a smaller rms QE
(square root of the mean square of QE over independent test data). Thus the
rms QE also in the SOM is supposed to be larger. Therefore it has come as a
surprise that the rms QE of the SOM may sometimes be smaller than that of the
VQ (cf., e.g., [1] and [13]).

In a careful and systematic examination we found out that this effect depends
most strongly on the ratio of the number of training vectors and the number of
model vectors. If this ratio is small, on the order of small integers, the rms QE
of the SOM is usually smaller than that of the VQ. However, the training vec-
tors must also have a significant local variance in sufficiently many dimensions,
whereas the effect depends only weakly on the size of the SOM array.

2 A Possible Explanation of the Observed Ratio of
Quantization Errors

In vector quantization, the k-means algorithm usually minimizes the root-mean-
square quantization error. Then the point density of the VQ model vectors is
approximately equal to p(x)α, where p(x) is the probability density of the input
vectors x, α = n/(n + 2) , and n is the dimensionality of x [8], [11], [16]. The
corresponding point density expression is not known for the SOM of arbitrary di-
mensionality, but counterexamples from the one-dimensional case [14], [4] prove
that α can have a different value, whereupon the rms QE of the SOM is larger.
At the borders of the SOM array the network of model vectors is “shrunk” with
respect to the distribution of the input vectors. The strengths of these effects
depend on the effective radius of the neighborhood function.

The situation, however, is different with a small, finite set of training vectors,
when the evaluation of the rms QE is made using a statistically independent
set of test vectors. Consider now that every model vector in the VQ coincides
with the centroid of the training vectors mapped into the corresponding Voronoi
domain around this model, and is defined by them [8]. On the other hand, it
is generally known [9] that every model vector in the SOM coincides with the
weighted average of those training vectors that are mapped into the “topological
neighborhood” of this model vector. The weighting is made by the neighborhood
function. The effective size of each neighborhood in the SOM, however, is a
multiple of Voronoi domains. Since the sets of training vectors that determine
the model vectors in the SOM are thus generally much larger than the corre-
sponding sets that determine the codebook vectors in the VQ, the models of the
SOM are determined with a much higher statistical accuracy than the codebook
vectors of the VQ. Thus the spacings of the model vectors in the SOM are more
regular than those in the VQ, whereupon the Voronoi domains of the SOM are
also more regular than those of the VQ. We demonstrate first by a simple ex-
ample how the observed differences in the rms QEs may be explainable by this
regularity/irregularity condition.

Consider first two-dimensional input vectors x. Assume tentatively that the
centroid of the training vectors in a Voronoi domain coincides with that of the
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test vectors. Actually this is not exactly true with only few training vectors per
model and a set of independent test vectors, but we shall revert to this restriction
a bit later. If the set of test vectors is very large, and p(x) is further selected as
locally constant, the mean-square QE over this Voronoi domain is proportional
to the second (geometric) moment with respect to the centroid (denoted here
M2) of this domain.

The two-dimensional Voronoi domains are polygons with varying numbers of
sides. Consider the simplest polygon, an arbitrary triangle, where a perpendicu-
lar, drawn from some apex to the opposite side, divides this side into the parts a
and b, respectively. Let h be the length of the perpendicular and A = h(a+ b)/2
the area of the triangle, respectively. The M2 of this triangle is known to be
A(h2 + a2 + b2 + ab). Under the constraint that A has a constant value, the
minimal M2 is obtained when the triangle is equilateral. A similar condition is
derivable for an arbitrary polygon. Also it can be shown that the relative M2 of
a regular polygon is the smaller, the larger the number of its sides is.

In Fig. 1 we plot the variable
√

M2 vs. h/a for an isosceles triangle with the
base 2a and the height h, respectively. The

√
M2 is proportional to the rms QE

with respect to the centroid of the triangle, when A and p(x) are constant.
Actually, with only few training vectors, the (weighted) centroids of the train-

ing vectors and those of the independent test vectors neither coincide fully in
a Voronoi domain of the VQ, or in a “topological” neighborhood of the SOM.
However, the difference of these centroids is generally smaller in the SOM than
in the VQ, because the models of the SOM are determined with a much higher
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Fig. 1. The rms QE with respect to the centroid of a hypothetical Voronoi domain of
the form of an isosceles triangle, when its area and p(x) are constant. The triangle has
the base 2a and the height h, respectively. The minimum is obtained at the argument
value h/a =
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3, i.e., when the triangle is equilateral.
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statistical accuracy than those of the VQ, and thus the rms QE in the SOM,
compared with that in the VQ, will be still smaller.

It may now be conjectured that in the case of general dimensionality and form
of the Voronoi domains, the relative rms QE will be the smaller, the closer to a
hypersphere the Voronoi domains are on the average. Any mathematical proof
of this is beyond our capabilities for the time being.

Nonetheless, as we shall further specify in Subsections 4.1 and 4.4, the train-
ing vectors must additionally have a significant (local) variance in sufficiently
many dimensions so that the training samples have enough degrees of freedom
into which they can be scattered randomly. Only then are the Voronoi domains
irregular enough in order to reflect significant differences between the rms QEs
in the SOM and the VQ .

3 A Remark on the Convergence of the Batch SOM

The two main versions of the SOM [9] are the stepwise corrective algorithm and
the batchwise training algorithm, respectively, which are not quite equivalent [6].
The former includes the learning rate as a parameter, while this parameter is
lacking from the batch version. In both of these algorithms, the model vectors can
be initialized either as random vectors, or as a regular two-dimensional sequence
of vectors of the linear subspace spanned by those two eigenvectors of the input
autocorrelation matrix that belong to the largest eigenvalues. The latter option
is called linear initialization, and it results in a much faster convergence. In
practice, the linear initialization, combined with the batch computation, also
produces the most unique and stable SOMs.

We applied the batch training process with linear initialization to construct
the SOMs. The software package that we used is called the SOM Toolbox [15], and
it is downloadable from www.cis.hut.fi/projects/somtoolbox. The process usually
consists of two phases: the coarse one, in which the “topological” ordering of the
model vectors takes place, and the refining phase, in which the final values of
the SOM model vectors are determined.

It may not be generally known, however, that the batch training version of
the SOM algorithm may terminate in a finite number of iterations, i.e., the
corrections will become exactly zero after a certain number of iterations, if the
set of input vectors is finite and the neighborhood function does not change in
time. This has happened at least in all of the cases we studied closer, when
an approximate order had already been achieved in the coarse training phase.
If, namely, the convergence process has proceeded to a state where the map
is already “topologically” ordered and the model vectors are sufficiently close
to their asymptotic values, there will be a positive probability for all of the
training vectors being mapped into the same Voronoi sets as in the previous
iteration. If this really happens, the centroids of the training vectors in each
Voronoi set will be exactly the same as those in the previous iteration, and thus
the next distribution of the training vectors into the Voronoi sets around the
corresponding “winners” must be identical with the previous distribution. This
kind of an exact termination of the learning process was particularly useful in
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the present numerical comparisons of the SOMs, for checking that at least a
local optimum has been reached exactly.

4 Experiments

4.1 Artificially Generated Random Data

The first experiment was carried out with artificially generated random data.
Using a random-number generator, the training and test vectors were drawn from
high-dimensional normal distributions with zero mean and identity covariance.

The evaluation of the rms QEs was carried out for the dimensionalities of 10,
20, and 50 of the input vectors, and for two sizes of the SOM and the VQ (7x10
= 70 and 10x14 = 140 models, respectively.) The neighborhood function of the
SOMs was a two-dimensional Gaussian.

As we wanted to point out that the effect studied in this work depends most
strongly on the ratio of the number of input vectors and the number of model
vectors, we evaluated the rms QEs for a series of this ratio. Let us call the
selected values of the ratio the argument values.

The linear initialization of the SOM model vectors was used. This initialization
was carried out separately for each of the above finite sets of training vectors. In
order to increase the statistical accuracy, the initialization and training of the
SOMs and the VQs were repeated 20 times for each argument value (training
vectors per model), each time using a different (finite) set of training and test
vectors.

During training, the effective radius (normalized central second moment) of
the neighborhood function decreased linearly during the coarse training phase
from the value 2 (for the 7x10 array) or 3 (for the 10x14 array) to the value 1 in
20 iterations, and during the refinement phase it was held at the value 1 until
the iterations terminated automatically (cf. Sec. 3).

The model vectors of the VQs were computed by the kmeans algorithm of the
Matlab Version 7, with special precautions to avoid “empty clusters.” We used
the model values computed by the SOM algorithm as initial values for the VQ,
as often recommended.

Figs. 2 and 3 represent the results of this first experiment. With the input
dimensionality 10 the rms QE of the VQ was always smaller. For the dimen-
sionalities 20 and 50 and for the 7x10 SOM, the “break even” points (where the
rms QEs of the SOM and the VQ are equal) occurred at the argument values
3.2 and 12.2, and for the 10x14 SOM, at the values 2.1 and 10.0, respectively.
Below these points, the rms QEs were always smaller in the SOM. The lower
limit of the input dimensionalities for this effect to occur is between 10 and 20.
These results seem to verify the explanation suggested in Sec. 2, namely, that
the Voronoi domains are more irregular, when there are fewer training vectors
per model, and there is significant variance in more dimensions. Accordingly,
the rms QE in the SOM is then correspondingly smaller than in the VQ. On the
other hand, the size of the SOM array seems to have only a marginal effect on
this effect.
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Fig. 2. Ratio of the rms QEs in the SOM and the VQ for the artificially generated
random-data set, as a function of the number of training vectors per model, and for
the dimensionalities 10, 20, and 50, respectively. The number of models was 70.
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Fig. 3. Ratio of the rms QEs in the SOM and the VQ for the artificially generated
random-data set, as a function of the number of training vectors per model, and for
the dimensionalities 10, 20, and 50, respectively. The number of models was 140.

4.2 ISOLET Data

The input vectors in this experiment consisted of 617 acoustic features extracted
from spoken letters of the English alphabet [2]. Our task was to compute the
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SOM/VQ rms QE ratio for a series of argument values, viz. for different numbers
of training vectors per model, like with the artificial data.

In the construction and testing of each SOM/VQ pair, the training and test
vectors, as stated earlier, should be statistically independent of each other. Fur-
thermore, in order to achieve a sufficient statistical accuracy, the construction
and testing of each SOM/VQ pair should be repeated using independent data.

The problem in practice, however, is the limited availability of validated and
verified high-dimensional experimental data. A generally used method to increase
the statistical accuracy is the repeated holdout validation. In it, say, M training
samples are picked up at random from the available data set, while the rest of
it is set aside for testing. This randomized division into separate training and
test samples and performing of the experiment is repeated a wanted number of
times, whereafter the results are averaged.

In the ISOLET experiment we had 7797 input vectors available. For instance,
with the SOM array size 10x14 = 140 and the argument value 50, we selected M
= 140x50 = 7000 samples at random from the basic data set for the construction
of one SOM/VQ pair, while the rest were set aside for testing. At lower argument
values and with the 7x10 SOM array, less data are needed for the construction of
a SOM/VQ pair, whereupon more data can be reserved for testing. This random
selection of the training vectors was repeated 20 times for every argument value,
and a new SOM/VQ pair was constructed every time. The averages over the
repeated evaluations of the rms QEs were then formed for every argument value.

In the construction of the SOMs, linear initialization by the subset of the
chosen training vectors was used. During training, the neighborhood function
had the Gaussian form, and its effective radius decreased linearly with time
during the coarse training phase from the value 2 (for the 7x10 array) or 3 (for
the 10x14 array) to the value 1 in 20 iterations, and during the refinement phase,
the value was held equal to 1 until the iterations terminated automatically (cf.
Sec. 3). The Matlab kmeans function was used to construct the VQ models.

In Figs. 4 and 5 we display the ratio of the rms QEs in the SOMs and in
the VQs as a function of the number of training vectors per model. It can be
seen that the “break even” points (at which the rms QEs in the SOM and the
VQ are equal) are about 3.2 and 3.7 for the two array sizes, respectively. While
the dimensionality of the input data was 617 and thus much higher than that
of the 20-dimensional artificial data, the effect is anyway of the same order of
magnitude. A possible explanation of this result is the following. It is generally
known that the local variances of natural experimental data are usually very
different in different directions, whereupon the “average effective dimensionality”
of the data is much lower than their true dimensionality (cf. Subsection 4.4).

4.3 Reuters Data

Our third experiment was based on the text corpus collected by the Reuters
Corp. No original documents were available to us, but Lewis et al. [10] have
prepared a test data set on the basis of this corpus for benchmarking purposes,
preprocessing the textual data, removing the stop words, and reducing the words
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Fig. 4. Ratio of the rms QEs in the SOM and the VQ for the ISOLET data set, as a
function of the number of training vectors per model and for 70 models
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Fig. 5. Ratio of the rms QEs in the SOM and the VQ for the ISOLET data set, as a
function of the number of training vectors per model and for 140 models

into their stems (called “term” here). In our experiments the term i of document
j was weighted by the factor

wij = (1 + log(TFij))log(N/DFi) , (1)

where TFij is the “term frequency” (frequency of term i in document j), DFi is
the “document frequency” (telling in how many documents term i occurs), and
N is the number of documents [12].
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Fig. 6. Ratio of the rms QEs in the SOM and the VQ for the Reuters data set, as a
function of the number of training vectors per model and for 70 models.

0 5 10 15 20 25 30
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
Reuters data, 140 models

No. of training vectors / model

S
O

M
 / 

V
Q

 r
at

io
 o

f r
m

s 
Q

E
s

Fig. 7. Ratio of the rms QEs in the SOM and the VQ for the Reuters data set, as a
function of the number of training vectors per model and for 140 models.

J. Salojärvi of our laboratory picked up those 233 terms that appeared at
least 800 times in 4000 selected documents. Thus the dimensionality of the input
vectors was 233.

The general arrangement of this experiment was similar to that with the ISO-
LET data. This time we had only 4000 input samples available, which restricted
the definition of the argument values for 140 models only to about 26.5. This
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does not present any problem, since the interesting effect occurs at much lower
argument values.

The averaged results are shown in Figs. 6 and 7. The “break even” points with
the array sizes 7x10 and 10x14 are now about 2.48 and 2.45, respectively. Again,
a possible reason for these small values, in spite of the input dimensionality being
233, is the average effective dimensionality of the data manifold.

4.4 “Average Effective Dimensionality”

In this subsection we explicate the concept of the “average effective dimension-
ality” of the input data on which the ratio of the rms QEs in the SOM and the
VQ was supposed to depend.

Our objective is to estimate how many degrees of freedom the training vectors
have on the average. This would be given by the fractal dimension [5], which,
however, is difficult to estimate accurately for high-dimensional data.

On the other hand, an early measure named the intrinsic dimensionality [7]
related to the local variances of the data manifold. It was used mainly in optimal
feature selection, and it was introduced before the development of effective VQ
methods. Its computation is cumbersome, too. Therefore we suggest yet another
solution.

The linear extensions of any subset of vectorial data are describable by the
standard deviations

√
λi, where λi is the ith eigenvalue of the autocorrelation

matrix of the vectors in this subset. Consider the expression D =
∑

i

√
λi/

√
λm,

where λm is the maximum eigenvalue. If a subset of the λi were equal to λm,
while the rest of the eigenvalues were equal to zero, D would define the number
of degrees of freedom exactly. For general vectorial data D is now supposed to
give an estimate of the “effective dimensionality.”

In order to find the local dimensionalities, we first divide the data manifold
into k-means clusters and evaluate D for each cluster. Then we average D over
the clusters. Since the average D depends on k, we maximize it over k for every
data set. The average D, together with the optimal k, are given for each data
set in the table below.

Data Dimensionality Average D Optimal k
Random 10 8.6 3
Random 20 16.1 5
Random 50 33.8 6
ISOLET 617 34.8 15
Reuters 233 24.4 10

5 Discussion

It is easy to construct SOMs that graphically describe the metric relations and
clustering tendencies of the input samples reasonably well and facilitate an
overview of the data space. Contrary to that, if the SOM is intended for a
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tool in numerical problems, plenty of precautions must be taken into account in
order to obtain reliable and accurate results.

The present study dealt with the rms QE in the SOM when compared with
that in the VQ. Certain surprising results in some earlier studies gave rise to
us to carry out an extensive critical comparison of the SOM vs. the VQ in this
respect. It indeed transpired that the rms QE in the SOM may be smaller than
that in the VQ, but only if the number of training vectors per model is small,
on the order of small integers, and if the “average effective dimensionality” of
the data vectors used for training exceeds a certain limit.

Although we have not provided a complete analysis, we believe that we have
been able to narrow down the conditions in which this effect occurs. The main
explanation seems to ensue from statistics. Each model vector in the VQ is
determined as the centroid of those training vectors that belong to the same
Voronoi domain as the model vector, whereas the SOM model vectors coincide
with the weighted centroids of all those training vectors that belong to the much
larger “topological” neighborhoods around the corresponding models. With a
small number of training vectors per model, the statistical accuracy of the SOM
model vectors is therefore significantly higher than that of the VQ model vec-
tors, and their constellation in the data space is then significantly more regular,
resulting in more regular forms of Voronoi domains and correspondingly smaller
quantization errors on the average.

At any rate we can make the following conclusions. First, this phenomenon has
occurred in all of our numerous experiments (of which only a few are reported
here), when the input dimensionality has been high enough. The differences in
the “break even” points are probably due to differences in the local dimensional-
itites of the data manifolds and probably also in their forms. Second, the general
nature of the experimental curves, in which this effect occurs, is almost similar,
indicating that the phenomenon is some consistent function of the number of
training vectors per model. Contrary to that, the number of models has only a
marginal influence on the SOM/VQ rms QE ratio.
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Abstract. We show how the “Online Sparse Coding Neural Gas” algo-
rithm can be applied to a more realistic model of the “Cocktail Party
Problem”. We consider a setting where more sources than observations
are given and additive noise is present. Furthermore, we make the model
even more realistic, by allowing the mixing matrix to change slowly over
time. We also process the data in an online pattern-by-pattern way where
each observation is presented only once to the learning algorithm. The
sources are estimated immediately from the observations. In order to
evaluate the influence of the change rate of the time dependent mixing
matrix and the signal-to-noise ratio on the reconstruction performance
with respect to the underlying sources and the true mixing matrix, we
use artificial data with known ground truth.

1 Introduction

The problem of following a party conversation by separating several voices from
noise focusing on a single voice has been termed the “Cocktail Party Problem”.
A review is provided in [1]. This problem has been tackled by a number of
researchers in the following mathematical setting:

We are given a sequence of observations x(1), . . . ,x(t), . . . with x(t) ∈ IRN

that are a linear mixture of a number of unknown sources a(1), . . . ,a(t), . . . with
a(t) ∈ IRM :

x(t) = Ca(t) (1)

Here C = (c1, . . . , cM ), cj ∈ IRN denotes the mixing matrix. We may consider
the observations x(t) to be what we hear and the sources a(t) to be the voices
of M persons at time t. The sequence sj = a(1)j, . . . , a(t)j , . . . consists of all
statements of person j. Is it possible to estimate the sources sj only from the
mixtures x(t) without knowing the mixing matrix C? In the past, a number of
methods have been proposed that can be used to estimate the statements sj and
C when only the mixtures x(t) are known and one can assume that M = N [2],
[3]. Moreover, some methods assume statistical independence of the sources [3].

Unfortunately the number of sources is not always equal to the number of
observations, i.e., often M > N holds. Humans have two ears but a large number
of persons may be present at a party. The problem of having an overcomplete
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set of sources has been studied more recently [4,5,6,7]. Due to the presence of
a certain amount of additional background noise the problem may become even
more difficult. A model that introduces a certain amount of additive noise,

x(t) = Ca(t) + ε(t) ‖ε(t)‖ ≤ δ, (2)

has also been studied in the past [8]. The “Sparse Coding Neural Gas” (SCNG)
algorithm [9,10] can be used to perform overcomplete blind source separation
under the presence of noise as shown in [11]. Here we want to consider an even
more realistic setting by allowing the mixing matrix to be time dependent:

x(t) = C(t)a(t) + ε(t) ‖ε(t)‖ ≤ δ. (3)

For the time dependent mixing matrix C(t) = (c1(t), . . . , cM (t)), cj(t) ∈ IRN ,
we require ‖cj(t)‖ = 1 without loss of generality. For instance, in the case of
the cocktail party setting, this corresponds to party guests who change their
position during the conversation. We want to process the observations in an
online pattern-by-pattern mode, i.e., each observation is presented only once to
the learning algorithm and the sources are estimated immediately. We do not
make assumptions regarding the type of noise but our method requires that the
underlying sources sj are sufficiently sparse, in particular, it requires that the
a(t) are sparse, i.e., only a few persons talk at the same time. The noise level δ
and the number of sources M have to be known.

1.1 Source Separation and Orthogonal Matching Pursuit

We here briefly discuss an important property of the orthogonal matching pursuit
algorithm (OMP) [12] with respect to the obtained performance on the repre-
sentation level that has been shown recently [13]. It provides the theoretical
foundation that allows us to apply OMP to the problem of source separation.

Our method does not require that the sources sj are independent but it re-
quires that only few sources contribute to each mixture x(t), i.e., that the a(t)
are sparse. However, an important observation is that if the underlying sources
sj are sparse and independent, for a given mixture x(t) the vector a(t) will be
sparse, too.

Let us assume that we know the mixing matrix C(t) at time t. Let us further
assume that we know the noise level δ. Let a(t) be the vector containing a small
number k of non-zero entries such that equation (3) holds for a given observation
x(t). OMP provides an estimation a(t)OMP of a(t) by iteratively constructing
x(t) out of the columns of C(t). Let C(t)a(t)OMP denote the current approxi-
mation of x(t) in OMP and ε(t) the residual that still has to be constructed.
Let U denote the set of indices of those columns of C(t) that already have been
used during OMP. The number of elements in U , i.e., |U |, equals the number
of OMP iterations that have been performed so far. The columns of C(t) that
are indexed by U are denoted by C(t)U . Initially, a(t)OMP = 0, ε(t) = x(t) and
U = ∅. OMP works as follows:
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1. Select clwin(t) by clwin(t) = arg maxcl(t),l/∈U (cl(t)T ε(t))
2. Set U = U ∪ lwin

3. Solve the optimization problem a(t)OMP = arg mina ‖x(t) − C(t)Ua‖2
2

4. Obtain current residual ε(t) = x(t) − C(t)a(t)OMP

5. Continue with step 1 until ‖ε(t)‖ ≤ δ

It can be shown that
‖a(t)OMP − a(t)‖ ≤ ΛOMP δ (4)

holds if the smallest entry in a(t) is sufficiently large and the number of non-zero
entries in a(t) is sufficiently small. Let

H(C(t)) = max
1≤i,j≤M,i�=j

|ci(t)T cj(t)| (5)

be the mutual coherence of the mixing matrix C(t). The smaller H(C(t)), N/M
and k are, the smaller ΛOMP becomes and the smaller min(a(t)) is allowed to be
[13]. Since (4) only holds if the smallest entry in a(t) is sufficiently large, OMP
has the property of local stability with respect to (4) [13]. Furthermore it can
be shown that under the same conditions a(t)OMP contains only non-zeros that
also appear in a(t) [13]. An even globally stable approximation of a(t) can be
obtained by methods such as basis pursuit [13,14].

1.2 Optimized Orthogonal Matching Pursuit (OOMP)

The “Sparse Coding Neural Gas” algorithm is based on “Optimised Orthogo-
nal Matching Pursuit” (OOMP) which is an improved variant of OMP[15]. In
general, the columns of C(t) are not pairwise orthogonal. Hence, the criterion of
OMP that selects the column clwin(t), lwin /∈ U of C(t) that is added to U is not
optimal with respect to the minimization of the residual that is obtained after
the column clwin(t) has been added. Hence OOMP runs through all columns of
C(t) that have not been used so far and selects the one that yields the smallest
residual:

1. Select clwin(t) such that clwin(t) = arg mincl(t),l/∈U mina ‖x(t) − C(t)U∪la‖
2. Set U = U ∪ lwin

3. Solve the optimization problem a(t)OOMP = arg mina ‖x(t) − C(t)Ua‖2
2

4. Obtain current residual ε(t) = x(t) − C(t)a(t)OOMP

5. Continue with step 1 until ‖ε(t)‖ ≤ δ

Step (1) involves M − |U | minimization problems. In order to reduce the com-
putational complexity of this step, we employ a temporary matrix R that has
been orthogonalized with respect to C(t)U . R is obtained by removing the pro-
jection of the columns of C(t) onto the subspace spanned by C(t)U from C(t)
and setting the norm of the residuals rl to one. The residual ε(t)U is obtained
by removing the projection of x(t) to the subspace spanned by C(t)U from x(t).
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Initially, R = (r1, . . . , rl, . . . , rM ) = C(t) and ε(t)U = x(t). In each iteration, the
algorithm determines the column rl of R with l /∈ U that has maximum overlap
with respect to the current residual ε(t)U :

lwin = arg max
l,l/∈U

(rT
l ε(t)U )2 . (6)

Then, in the construction step, the orthogonal projection with respect to rlwin

is removed from the columns of R and ε(t)U :

rl = rl − (rT
lwin

rl)rlwin , (7)

ε(t)U = ε(t)U − (rT
lwin

ε(t)U )rlwin . (8)

After the projection has been removed, lwin is added to U , i.e., U = U ∪ lwin.
The columns rl with l /∈ U may be selected in the subsequent iterations of
the algorithm. The norm of these columns is set to unit length. If the stopping
criterion ‖ε(t)U‖ ≤ δ has been reached, the final entries of a(t)OOMP can be
obtained by recursively collecting the contribution of each column of C(t) during
the construction process, taking into account the normalization of the columns
of R in each iteration. The selection criterion (6) ensures that the norm of
the residual ε(t)U obtained by (8) is minimal. Hence, the OOMP algorithm
can provide an approximation of a(t) containing even less non-zeros than the
approximation provided by OMP.

2 Learning the Mixing Matrix

We want to estimate the mixing matrix C(t) = (c1(t), . . . , cM (t)) from the
mixtures x(t) given the noise level δ and the number of underlying sources
M . As a consequence of the sparseness of the underlying sources a(t), we are
looking for a mixing matrix C(t) that minimizes the number of non-zero entries of
a(t)OOMP, i.e., the number of iteration steps required by the OOMP algorithm
to approximate a(t) up to the noise level δ. Furthermore, let us assume that
the mixing matrix changes slowly over time such that C(t) is approximately
constant for some time interval [t − T, t]. Hence, we look for the mixing matrix
which minimizes

min
C(t)

t∑
t′=t−T

‖a(t′)OOMP‖0 subject to ‖x(t′) − C(t)a(t′)OOMP‖ ≤ δ . (9)

Here ‖a(t′)OOMP‖0 denotes the number of non-zero entries in a(t′)OOMP. The
smaller the norm of the current residual ε(t′)U is, the fewer OOMP iterations
have to be performed until the stopping criterion ‖ε(t′)U‖ ≤ δ has been reached
and the smaller ‖a(t′)OOMP‖0 becomes. In order to minimize the norm of the
residuals and thereby the expression (9), we have to maximize (rlwinε(t′)U )2.
Therefore, we consider the following optimization problem

max
r1,...,rM

t∑
t′=t−T

max
l,l/∈U

(rT
l ε(t′)U )2 subject to ‖rl‖ = 1 . (10)
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We maximize (10) by updating R and C(t) prior to the construction step (7) and
(8). The update step in each iteration of the OOMP algorithm is a combination
of Oja’s learning rule [16] and the Neural Gas [17,18]. As introduced in [9] one
obtains what we called “Sparse Coding Neural Gas” (SCNG) learning rule

Δrlk = Δclk(t) = α(t)e−k/λ(t)y
(
ε(t)U − y rlk

)
(11)

with learning rate
α(t) = α0 (αfinal/α0)

t/tmax , (12)

and neighbourhood-size

λ(t) = λ0 (λfinal/λ0)
t/tmax (13)

where

−
(
rT

l0ε(t)
U
)2 ≤ . . . ≤ −

(
rT

lkε(t)U
)2 ≤ . . . ≤ −

(
rT

lM−|U|
ε(t)U

)2

, lk /∈ U (14)

and y = rT
lk

ε(t)U . We have shown [10] that (11) implements a gradient descent
with respect to

max
r1,...,rM

t∑
t′=t−T

M∑
l=1

hλt(k(rl, ε(t′)U ))(rT
l ε(t′)U )2 subject to ‖rl‖ = 1, (15)

with hλt(v) = e−v/λt . k(rl, ε(t′)U ) denotes the number of rj with (rT
l ε(t′)U )2 <

(rT
j ε(t′)U )2, i.e., (15) is equivalent to (10) for λ(t) → 0. Due to (11) the updates

of all OOMP iterations are accumulated in the learned mixing matrix C(t).
Due to the orthogonal projection (7) and (8) performed in each iteration, these
updates are pairwise orthogonal. The columns of the original matrix emerge in
random order in the learned mixing matrix. The sign of the columns of the mixing
matrix cl(t) cannot be determined because multiplying cl(t) by −1 corresponds
to multiplying rl by −1 which does not change (15).

What happens for t > tmax? Assuming that after tmax learning steps have
been performed the current learned mixing matrix is close to the true mixing
matrix, we track the slowly changing true mixing matrix by setting α(t) = αfinal

and λ(t) = λfinal.

3 Experiments

We performed a number of experiments on artificial data in order to study
whether the underlying sources can be reconstructed from the mixtures. We
consider sequences

x(t) = C(t)a(t) + ε(t), t = 1, . . . , L, (16)

where ‖ε(t)‖ ≤ δ, x(t) ∈ IRN , a(t) ∈ IRM . The true mixing matrix C(t) slowly
changes from state Ci−1 to state Ci in P time steps. We randomly chose a
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sequence of true mixing matrices Ci, i = 1, . . . , �L/P � with entries taken from
a uniform distribution. The columns of these mixing matrices were set to unit
norm. At time t with (i − 1)P ≤ t ≤ iP the true mixing matrix C(t) is chosen
according to

C(t) =
(

1 − (t − (i − 1)P )
P

)
Ci−1 +

(t − (i − 1)P )
P

Ci. (17)

The norm of the columns of each true mixing matrix C(t) is then set to unit
norm. The sources a(t) were obtained by setting up to k entries of the a(t)
to uniformly distributed random values in [−1, 1]. For each a(t) the number of
non-zero entries was obtained from a uniform distribution in [0, k]. Uniformly
distributed noise e(t) ∈ IRM in [−1, 1] was added such that

x(t) = C(t)(a(t) + e(t)) = C(t)a(t) + ε(t) . (18)

We want to asses the error that is obtained with respect to the recontruction of
the sources. Hence, we evaluate the difference between the sources a(t) and the
estimation a(t)OOMP that is obtained from the OOMP algorithm on the basis
of the mixing matrix Clearn(t) that is provided by the SCNG algorithm:

‖a(t) − a(t)OOMP‖2. (19)

With (sOOMP
1 , . . . , sOOMP

M )T = (a(1)OOMP, . . . ,a(L)OOMP) we denote the esti-
mated underlying sources obtained from the OOMP algorithm. In order to eval-
uate (19) we have to assign the entries in a(t)OOMP to the entries in a(t) which is
equivalent to assigning the true sources sj to the estimated sources sOOMP

j . This
problem arises due to the random order in which the columns of the true mixing
matrix appear in the learned mixing matrix. Due to the time dependent mixing
matrix the assignment may change over time. In order to obtain an assignment
at time t, we consider a window of size sw:

(w1(t)OOMP, . . . ,wM (t)OOMP)T = (a(t − sw/2)OOMP, . . . ,a(t + sw/2)OOMP)
(20)

and
(w1(t), . . . ,wM (t))T = (a(t − sw/2), . . . ,a(t + sw/2)). (21)

We obtain the assignment by performing the following procedure:

1. Set Itrue : {1, . . . , M} and Ilearned : {1, . . . , M}.
2. Find and assign wi(t) and wj(t)OOMP with i ∈ Itrue, j ∈ Ilearned such that

|wj(t)OOMPwi(t)T |
‖wi(t)‖‖wj(t)OOMP‖ is maximal.

3. Remove i from Itrue and j from Ilearned.
4. If wj(t)OOMPwi(t)T < 0 set wj(t)OOMP = −wj(t)OOMP.
5. Proceed with (2) until Itrue = Ilearned = ∅.
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Fig. 1. Left: Mean distance between a(t) and a(t)OOMP for different SNR and P . Right:
Best performing final learning rate for each P and SNR.

For all experiments, we used L = 20000 and α0 = 1 for the learing rate as well
as λ0 = M/2 and λfinal = 10−10 for the neighbourhood size and tmax = 5000.
We repeated all experiments 20 times and report the mean result over the 20
runs. For the evaluation of the reconstruction error the window size sw was
set to 30 and the reconstruction error was only evaluated in the time interval
tmax < t < L. In all experiments an overcomplete setting was used consisting of
M = 30 underlying sources and N = 15 available oberservations. Up to k = 3
underlying sources were active at the same time.

In the first experiment, we varied the parameter P which controls the change
rate of the true mixing matrix as well as the SNR. The final learning rate αfinal

was varied for each combination of P and SNR such that the minimal recon-
struction error was obtained. For comparison purposes, we also computed the
reconstruction error that is obtained by using the true mixing matrix as well as
the error that is obtained by using a random matrix. The results of the first ex-
periment are shown in figure 1. On the left side the mean distance between a(t)
and a(t)OOMP is shown for different SNR and P . It can be seen that the larger
the change rate of the true mixing matrix (the smaller P ) and the stronger the
noise, the more the reconstruction performance degrades. But even for strong
noise and a fast changing true mixing matrix, the estimation provided by SCNG
clearly outperforms a random matrix. Of course, the best reconstruction per-
formance is obtained by using the true mixing matrix. On the right side of the
figure the best performing final learning rate for each P and SNR is shown. It
can be seen that the optimal final learning rate depends on the change rate of
the true mixing matrix but not on the strength of the noise. In order to assess
how good the true mixing matrix is learned, we perform an experiment that is
similar to an experiment that has been used to asses the performance of the K-
SVD algorithm with respect to the learing of the true mixing matrix [19]. Note,
that the K-SVD algorithm cannot be applied to the setting that is described in
the following. We compare the learned mixing matrix to the true mixinig matrix
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Fig. 2. We sorted the 20 trials according to the number of successfully learned columns
of the mixing matrix and order them in groups of five experiments. The figure shows
the mean number of successfully detected columns of the mixing matrix for each of the
five groups.

using the maximum overlap between each column of the true mixing matrix and
each column of the learned mixing matrix, i.e, whenever

max
j

(
1 − |ci(t)clearn

j (t)|
)

(22)

is smaller than 0.05, we count this as a success. We repeat the experiment 20
times with a varying SNR as well as zero noise. For each SNR, we sort the 20
trials according to the number of successfully learned columns of the mixing
matrix and order them in groups of five experiments. Figure 2 shows the mean
number of successfully detected columns of the mixing matrix for each of the five
groups for each SNR and P . The smaller the SNR and the smaller the change
rate of the true mixing matrix is, the more columns are learned correctly. If
the true mixing matrix changes very fast (P = 100) almost no column can be
learned with the required accuracy.

4 Conclusion

We showed that the “Sparse Coding Neural Gas” algorithm can be applied to
a more realistic model of the “Cocktail Party Problem” that allows for more
sources than observations, additive noise and a mixing matrix that is time de-
pendent, which corresponds to persons that change their position during the
conversation. The proposed algorithm works online, the estimation of the un-
derlying sources is provided immediately. The method requires that the sources
are sparse enough, that the mixing matrix does not change too quickly and that
the additive noise is not too strong. In order to apply this algorithm to real-world
data, future work is required. The problem of (i) choosing the number of sources
M based solely on the observations, (ii) determining the noise level δ based solely
on the observations and (iii) obtaining the temporal assignment of the sources
based solely on the estimated sources, i.e., thereby not using the sliding window
procedure described in the experiments section have to be investigated.
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Abstract. This paper is devoted to the analysis of career paths and em-
ployability. The state-of-the-art on this topic is rather poor in method-
ologies. Some authors propose distances well adapted to the data, but
are limiting their analysis to hierarchical clustering. Other authors apply
sophisticated methods, but only after paying the price of transforming
the categorical data into continuous, via a factorial analysis. The latter
approach has an important drawback since it makes a linear assumption
on the data. We propose a new methodology, inspired from biology and
adapted to career paths, combining optimal matching and self-organizing
maps. A complete study on real-life data will illustrate our proposal.

1 Introduction

The question of analyzing school-to-work transitions is a challenging topic for
the economists working on the labor market. In the current economic context of
the world, characterized by a significant unemployment rate of young people (in
France, 19.1% of the young people under 25 were unemployed during the second
semester of 2008), it is interesting to study the insertion of graduates and the
evolution of their career paths. The aim of this paper is to identify and analyze
career-paths typologies.

Let us recall that a career path is defined as a sequence of labor-market sta-
tuses, recorded monthly. The number and the labels associated to the statuses
are defined by experts. The experts take into account the fact that the more the
number of labels is detailed, the more the analysis of the career paths will be
accurate. We shall also remark that the labelling of the statuses is not neutral.
Indeed, the choice of different criteria for identifying the statuses introduces an
a priori separation between “good” and “bad” statuses. Generally, the number
and the labelling of the statuses are quite similar in the literature, with differ-
ent labels corresponding to employment and unemployment situations. The data
“Generation 98” used for this study are labelled according to nine possible sta-
tuses, five employment statuses (permanent-labor contract, fixed-term contract,
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apprenticeship contract, public temporary-labor contract, on-call contract) and
four unemployment statuses (unemployed, inactive, military service, education).

In the state-of-the-art, two approaches seem to be currently used for cluster-
ing career paths. The first approach consists in transforming categorical variables
into continuous variables by a factorial analysis and then apply usual clustering
algorithms for Euclidean data ([9],[8]). The second approach consists in comput-
ing adapted distances for the data ([12], [4]) and then cluster using an hierarchical
tree and a proximity criterion based on the distance matrix only. Both approaches
have some drawbacks: in the first case, the use of factorial methods implies quite
strong hypothesis concerning the linearity of the data; in the second case, hierar-
chical clustering is not suited for large data sets and does not provide any tools for
displaying and visualizing the results. In order to address these drawbacks,we pro-
pose to cluster career paths using a two-step methodology. The two steps of the
algorithm are independent and quite general. First, we compute a dissimilarity
matrix between the career paths. Second, a self-organizing map for dissimilarity
matrices is trained. Besides identifying the main typologies of career paths, we are
also looking for a graphical output representing the proximities and the evolutions
in the different career paths.

The rest of the document is organized as follows: Section 2 is devoted to
a description of the methodology and a short state-of-the-art on the subject.
Section 3 contains the results on the data “Generation 98” (CEREQ, France).
The conclusion and some perspectives are presented in the last section.

2 Methodology

From a statistical point of view, several problems arise when analyzing school-to-
work transitions. The data sets are usually containing categorical variables, often
in high dimension and have an important sample size. In order to handle these
data, we made the choice of splitting the analysis into two steps. The first step
consists in defining a distance or a dissimilarity measure well-suited to the data.
In the second step, a clustering method is used to build and define typologies.
The clustering method has to be general enough to “forget” the initial structure
of the data and determine classes on the unique basis of the dissimilarity matrix
computed in the previous step. This approach has the advantage of allowing a
wide choice for the dissimilarity measure in the first step.

2.1 Step 1 (Optimal Matching) – Choosing a Good Distance

The first step of the analysis consists in choosing a dissimilarity measure between
the career paths. Previous studies suggest the use of a multiple correspondence
analysis ([9]) and a transformation of the categorical variables into continuous.
This way, usual clustering algorithms based on the Euclidean distance can be
trained on the factorial components. This approach has an important drawback,
since it makes the assumption that data are linear. As there is no reason for this
assumption to hold in our case, we prefer to use a distance which avoids this
hypothesis.
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Optimal matching, also known as “edit distance” or “Levenshtein distance”,
was first introduced in biology by [13] and used for aligning and comparing
sequences. In social sciences, the first applications are due to [1]. Let us consider
two sequences of different lengths a = (a1, ..., an1) and b = (b1, ..., bn2), ai, bj ∈ S
where S is a finite state-space. How may the two sequences be aligned and what
is the distance between them? The underlying idea of optimal matching is to
transform the sequence a into the sequence b using three possible operations:
insertion, deletion and substitution. A cost is associated to each of the three
operations. The distance between a and b is computed as the cost associated
to the smallest number of operations which allow to transform a into b. The
method seems simple and relatively intuitive, but the choice of the costs is a
delicate operation in social sciences. This topic is subject to lively debates in the
literature ([3], [14]) mostly because of the difficulties in establishing an explicit
and sound theoretical frame. The interested reader may refer to [7] for a state-
of-the-art.

In the data set “Generation 98”, all career paths have the same length, the
status of the graduate students being observed during 94 months. Thus, we may
suppose that there are no insertions or deletions and that the only cost to be
computed is the substitution cost. The latter was computed using the transition
matrix between the statuses as proposed in [12]: the less transitions between two
statuses are observed, the more the statuses are different and the substitution
cost is high. The cost w for transforming ai into aj is computed as a function of
the observed longitudinal transitions:

w (ai, aj) = 2 − P (ai|aj) − P (aj |ai).

2.2 Step 2 – Self-Organizing Maps for Categorical Data

The methodology “optimal matching - clustering” has already been used ([4],
[12]) during the past few years for the analysis of career or life paths. The general
approach consists in computing a dissimilarity matrix using optimal matching,
build an hierarchical tree and make a description of the resulting typologies.
However, hierarchical clustering is limited in terms of displaying and visualizing
the results. Instead, we suggest a clustering method which provides, besides
clusters, a graphical representation preserving the proximity between paths.

Self-organizing maps (Kohonen algorithm, [11]) are, at the same time, a clus-
tering algorithm and a nonlinear projection method. The input data are pro-
jected on a grid, generally rectangular or hexagonal. The grid has the important
property of topology preservation: close inputs will be projected in the same
class or in neighbor classes. The algorithm was initially developed for contin-
uous data with a Euclidean distance. Since its first application, new versions,
suited for particular data structures, are regularly proposed. Let us mention [10],
who are using for the first time self-organizing maps and optimal matching for
the analysis of biological sequences.

For career-paths data, we used a general self-organizing map algorithm, pro-
posed by [5]. Their method does not take into account the initial structure of the
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data and uses only a dissimilarity matrix as input. The size and the structure of
the grid must also be provided as input. At the first step of the algorithm, the
prototypes are chosen at random in the input data. The rest of the algorithm
consists in repeating the following steps, until the partition is stable:

– Allocating step: each input is assigned to the class of the closest prototype
by minimizing a criterion of intra-class variance, extended to the neighbors.
During this step, the prototypes are fixed.

– Representing step : once the new partition is determined, the new prototypes
are computed by minimizing the same criterion.

The price of the generality of the method is the poverty of the space where the
inputs lie: the new prototypes have to be computed and chosen between the
inputs.

This algorithm is a generalization of K-means by introducing with a neigh-
borhood relation defined between classes. Since the algorithm is BATCH, it is
quite sensitive to the initializations.

3 Real-Life Data – “Generation 98” Survey

For illustrating the proposed methodology, we used the data in the survey
“Generation 98” from CEREQ, France (http://www.cereq.fr/). The data set
contains information on 16040 young people having graduated in 1998 and mon-
itored during 94 months after having left school. The labor-market statuses have
nine categories, labelled as follows: “permanent-labor contract”, “fixed-term con-
tract”, “apprenticeship contract”, “public temporary-labor contract”, “on-call
contract”, “unemployed”, “inactive”, “military service”, “education”. The fol-
lowing stylized facts are highlighted by a first descriptive analysis of the data
(Fig. 1):

– permanent-labor contract are representing more than 20% of all statuses
after one year and their ratio continues to increase until 50% after three
years and almost 75% after seven years;

– the ratio of fixed-terms contracts is more than 20% after one year on the
labor market, but it is decreasing to 15% after three years and then seems
to converge to 8%;

– almost 30% of the young graduates are unemployed after one year. This ratio
is decreasing and becomes constant, 10%, after the fourth year.

Considering the important ratio of permanent contracts obtained relatively
fast and its absorbing character, we decided to focus our analysis on the career
paths which don’t enter the “permanent contract” status in less than two years.
Thus, the data set is reduced to 11777 inputs, which represent almost 3/4 of the
initial data. This decision is also justified by some numerical problems such as
the storage of the dissimilarity matrix and the computation time.
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Fig. 1. Labor market structure

The inputs excluded from the analysis are grouped into a class corresponding
to a “fast access to stable employment”. The class contains 2032 inputs hav-
ing obtained a permanent contract in less than a year and 4263 inputs having
obtained a permanent contract in less than two years.

After having preprocessed the data, the analysis is conducted in three steps:

1. the transition matrix and the associated substitution-cost matrix are com-
puted;

2. the dissimilarity matrix is computed by optimal matching with the
substitution-cost matrix in step 1;

3. career paths are clustered with the self-organizing map algorithm, according
to the dissimilarity matrix in step 2.

For the first two steps, we used the R-package TraMineR, available in [6]. The
third step was implemented in R and is available on demand.

The cost matrix computed on the 11777 input data is the following:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1.968 1.976 1.989 1.977 1.973 1.975 1.985 1.987
1.968 0 1.991 1.994 1.978 1.927 1.957 1.979 1.976
1.976 1.991 0 1.999 1.994 1.980 1.989 1.998 1.997
1.989 1.994 1.999 0 1.998 1.984 1.993 1.998 1.997
1.977 1.978 1.994 1.998 0 1.951 1.973 1.979 1.988
1.973 1.927 1.980 1.984 1.951 0 1.954 1.971 1.966
1.975 1.957 1.989 1.993 1.973 1.954 0 1.977 1.947
1.985 1.979 1.998 1.998 1.979 1.971 1.977 0 1.996
1.987 1.976 1.997 1.997 1.988 1.966 1.947 1.996 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let us remark that the values in the cost matrix are very similar. Different
approaches for improving cost computation should be investigated, some per-
spectives are given in the conclusion.
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Fig. 2. SOM 8x8

When trying to compute the dissimilarity matrix, we were confronted to a nu-
merical problem: the impossibility of storing a matrix of size 11777. Actually, this
numerical problem constitutes the main drawback of the proposed methodology:
the sample size must be “reasonable”. The size of the data has to be reduced
before training the self-organizing map algorithm. In order to summarize the
career-path data, we used a K-modes algorithm, which may be trained directly
on the initial data set. Thus, the 11777 career-paths were summarized by 1000
representative paths and these 1000 paths were clustered with self-organizing
maps.

The dissimilarity matrix between the 1000 paths was computed with the op-
timal matching distance and the substitution-cost matrix C. Then, we trained
a self-organizing map on a rectangular grid 8 × 8. The resulting map is plotted
in Fig.2.

A lecture of the map summarizes the information on the career paths. Thus,
we can stress out the proximities between different paths and the evolution of
the career paths.

The most striking opposition appears between the career paths leading to a
stable-employment situation (permanent contract and/or fixed-term contract)
and the career-paths more “chaotic” (unemployment, on-call contracts, appren-
ticeship contracts). On the map in Fig.2, the “stable” situations are mainly
situated in the west region of the map.
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Thus, the first three columns contain essentially the classes where a permanent
contract was rapidly obtained. However, the north and the south regions of these
columns are quite different: in the north region, the access to a permanent con-
tract is achieved after a first contact with the labor-market through a fixed-term
contract, while the south classes are only subject to transitions through a military
service or education periods. At the halfway between north and south regions,
we may find several apprenticeship contracts or public temporary contracts.

The stability of the career-paths noticed in the west region of the map is
getting worse as we move to the east. In the north region, the initial fixed-
term contract is getting longer until becoming a poor employment situation
in the north-east corner. Thus, all the east region of the map is revealing for
difficult school-to-work transitions. Let us remark the on-call contracts situations
which may end by a stable contract or by unemployment. At the opposite, the
career-paths starting with an apprenticeship contract are most of the time ending
with a permanent contract. Finally, the south-east corner is characterized by
exclusion career-paths: inactive and unemployment. The inactivity may appear
immediately after the education period or after a first failure on the labor market.

The clustering with SOM provided interesting results by highlighting prox-
imities or oppositions between the career paths. In order to determine a small
number of typologies, we compute an hierarchical classification tree on the 64
prototypes of the map. Ward criterion was used for aggregating classes. The clus-
tering is represented in Fig.3. The final configuration with nine classes allows to
describe 8 career-path typologies:

1. relatively fast access to a stable situation (class 1 )
2. transition through a fixed-term contract before obtaining a permanent con-

tract(class 2 )
3. fixed-term contracts (class 3 )

Fig. 3. Final career-path typologies
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4. on-call contracts with periods of unemploymentnt (class 4 )
5. shorter or longer on-call contracts and finally a permanent contract(classes

5 and 6 )
6. inactivity after loosing a first job or immediately after school (class 7 )
7. apprenticeship contract ending with a fixed-term or a permanent-term con-

tract(class 8 )
8. long unemploymentnt period with a gradual return to employment (class 9 )

We may also add the first class which was excluded from the analysis:

9. fast access to stabl employment after leaving school.

The relative importance of every class is given in Table 1.

Table 1. Importance of final classes

Class Size Weight in the sample Weight in the whole sample

1. 5475 46.5% 34.1%

2. 968 8.2% 6.0%

3. 1082 9.2% 6.8%

4. 514 4.4% 3.2%

5. 1122 9.5% 7.0%

6. 328 2.8% 2.0%

7. 1002 8.5 6.3%

8. 1286 10.9 8.0%

9. 4263 NA 26.6%

4 Conclusion and Perspectives

Several typologies for career paths were highlighted by our analysis. The self-
organizing map allowed a detailed characterization of the proximities, opposi-
tions and transitions between the different career paths. The proposed method-
ology is thus well suited for this kind of data.

However, several aspects should be improved in this approach. Concerning
the labelling of the statuses, we remarked that the “military service” is not
representative in a employment-unemployment discrimination. The solution is
either to change the label of this status, either to delete this period. In the
latter case, we would no longer have equal-sized sequences and the question of
computing an insertion/deletion cost would arise.

The second remark concerns the computation of the substitution-cost matrix.
In this paper, it was computed using the observed transitions, but without taking
into account that these transitions change in time. Indeed, in a more realistic
frame we should consider the non-homogeneity of the transitions and probably
use non-homogeneous Markov chains in order to estimate the costs.
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Abstract. This study proposes Network-Structured Particle Swarm
Optimizer (NS-PSO) with various neighborhood topology. The proposed
PSO has the various network topology as rectangular, hexagonal, cylin-
der and toroidal. We apply NS-PSO with various topology to optimiza-
tion problems. We investigate their behaviors and evaluate what kind of
topology would be the most appropriate for each function.

Keywords: Particle Swarm Optimization (PSO), network structure,
Self-Organizing Map (SOM).

1 Introduction

Particle Swarm Optimization (PSO) [1] is an evolutionary algorithm to simulate
the movement of flocks of birds. Due to the simple concept, easy implementa-
tion and quick convergence, PSO has attracted much attention and is used to
wide applications in different fields in recent years. In PSO algorithm, there are
no special relationships between particles. Each particle position is updated ac-
cording to its personal best position and the best particle position among the
all particles, and their weights are determined at random in every generation.

On the other hand, the Self-Organizing Map (SOM) [2] is an unsupervised
learning and is a simplified model of the self-organizing process of the brain. The
map consists of neurons located on a hexagonal or rectangular grid. The neurons
self-organize statistical features of the input data according to the neighborhood
relationship of the map structure.

Various topological neighborhoods for PSO have been considered by re-
searches [3]–[7]. Each particle shares its best position among neighboring parti-
cles on the network. However, the information of each particle is not updated
according to the neighborhood distance on the network.

In our past study, we have applied the concept of SOM to PSO and have pro-
posed a new PSO algorithm with topological neighborhoods; Network-Structured
Particle Swarm Optimizer considering neighborhood relationships (NS-PSO) [8].
All particles of NS-PSO are connected to adjacent particles by a neighborhood re-
lation, which dictates the topology of the 2-dimensional network. The connected
particles, namely neighboring particles on the network, share the information of

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 163–171, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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their own best position. In every generation, we find a winner particle, whose
function value is the best among all particles, as SOM algorithm, and each par-
ticle is updated depending on the neighborhood distance between it and the
winner on the network. However, the relevance between the efficiently of op-
timization and the shape of network topology of NS-PSO was not completely
clear.

In this study, we propose NS-PSO with various neighborhood topology. We ap-
ply NS-PSO to the various network topology as rectangular, hexagonal, cylinder
and toroidal. NS-PSO with various topology are applied to eight test functions
which are unimodal and multimodal. We investigate their behaviors and evaluate
what kind of topology would be the most appropriate for each function. From
results, we find that the circular-topology is effective for the simple unimodal
functions, because this topology easily transmits the information of each best
position to the whole particles. We also confirm that the hexagonal-topology is
appropriate for the complex multimodal functions, because this topology con-
tains various kinds of particles and this effect averts the premature convergence.

2 Network-Structured Particle Swarm Optimizer
Considering Neighborhood Relationships (NS-PSO)

In the algorithm of the standard PSO, multiple solutions called “particles” coex-
ist. At each time step, the particle flies toward its own past best position and the
best position among all particles. Each particle has two informations; position
and velocity. The position vector of each particle i and its velocity vector are
represented by Xi = (xi1, · · · , xid, · · · , xiD) and V i = (vi1, · · · , vid, · · · , viD),
respectively, where (d = 1, 2, · · · , D), (i = 1, 2, · · · , M) and xid ∈ [xmin, xmax].

The algorithm of NS-PSO is based on both two structures; the standard PSO
and SOM. NS-PSO has following three key features.

1. All particles are connected to adjacent particles by a neighborhood relation
which dictates the topology of the network. In this study, we use various topol-
ogy networks shown in Fig. 1 and investigate their behaviors. The rectangular-
topology and the hexagonal-topology as Figs. 1(a)–(b) are the sheet shapes, and
the cylinder-topology and toroidal-topology as Figs. 1(c)–(d) are circular map.

(a) (b) (c) (d)

Fig. 1. Different map shapes with 10×10 particles used in this study. (a) Rectangular-
topology. (b) Hexagonal-topology. (c) Cylinder-topology. (d) Toroidal-topology.
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2. The particles share the local best position between the neighborhood particles
directly connected.
3. In every generation, we find a winner particle with best function value among
all particle as SOM learning.

By these features, each particle of NS-PSO is updated depending on its own best
position, the position of the winner and the neighborhood distance between it
and the winner on the network.

(NS-PSO1) (Initialization) Let a generation step t = 0. Randomly initialize
the particle position Xi, initialize its velocity V i for each particle i to zero,
and initialize P i = (pi1, pi2, · · · , piD) with a copy of Xi. Evaluate the objective
function f(Xi) for each particle i and find P g with the best function value
among all the particles. Define g as the winner c. Find Li = (li1, li2, · · · , liD)
with the best function value among the directly connected particles, namely own
neighbors.

(NS-PSO2) Evaluate the fitness f(Xi) and find a winner particle c with the
best fitness among the all particles at current time t;

c = arg min
i

{f (Xi(t))}. (1)

For each particle i, if f(Xi) < f(P i), the personal best position (called pbest)
P i = Xi. Let P g represents the best position with the best fitness among all
particles so far (called gbest). If f(Xc) < f(P g), update gbest P g = Xc, where
Xc = (xc1, xc2, · · · , xcD) is the position of the winner c.

(NS-PSO3) Find each local best position (called lbest) Li among the particle
i and its neighborhoods, which are directly connected with i on the network, so
far. For each particle i, update lbest Li, if needed.

(NS-PSO4) Update V i and Xi of each particle i depending on its lbest, position
of the winner Xc and the distance on the network between i and the winner c,
according to

vid(t + 1) = wvid(t) + c1rand(·) (lid − xid(t)) + c2hc,i (xcd − xid(t)) ,

xid(t + 1) = xid(t) + vid(t + 1),
(2)

where w is the inertia weight determining how much of the previous velocity
of the particle is preserved. c1 and c2 are two positive acceleration coefficients,
generally c1 = c2, rand(·) is an uniform random number sample from U(0, 1).
hc,i is the fixed neighborhood function defined by

hc,i = exp
(
−‖ri − rc‖2

2σ2

)
, (3)

where ‖ri−rc‖ is the distance between network nodes c and i on the network, and
the fixed parameter σ corresponds to the width of the neighborhood function.
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Therefore, large σ strengthens particles’ spreading force to the whole space, and
small σ strengthens their convergent force toward the winner.

(NS-PSO5) Let t = t + 1 and go back to (NS-PSO2).

3 Experimental Results

In order to evaluate the performance of NS-PSO with various topology, we use
eight benchmark optimization problems summarized in Table 1. f1, f2, f3 and
f4 are unimodal functions, and f5, f6, f7 and f8 are multimodal functions with
numerous local minima. All the functions have D variables, and the symmetric
landscape maps of Sphere, Rosenbrock, Rastrigin and Ackley functions with two
variables are shown in Fig. 2. Table 2 lists the dimensionality D, the optimum
solution x∗, the optimum function value f(x∗) and the initialization ranges. In
order to investigate the behaviors in various initialization spaces, we use the
symmetric and the asymmetric initialization spaces. The population size M is
set to 36 in PSO, and the network size is 6 × 6 in NS-PSO with each topology.
For PSO and NS-PSO, the parameters are set as w = 0.7 and c1 = c2 = 1.6.
The neighborhood radius σ of all NS-PSOs are 1.5. We carry out the simulations
repeated 30 times for all the optimization functions with 3000 generations.

Table 1. Eight Test Functions

Function name Test Function

Sphere function; f1(x) =

D−1∑
d=1

x2
d

Rosenbrock’s function; f2(x) =

D−1∑
d=1

(
100
(
x2

d − xd+1

)2
+ (1 − xd)

2
)

3rd De Jong’s function; f3(x) =
D∑

d=1

|xd|

4th De Jong’s function; f4(x) =
D∑

d=1

dx4
d

Rastrigin’s function; f5(x) =

D∑
d=1

(
x2

d − 10 cos (2πxd) + 10
)

Ackley’s function; f6(x) =

D−1∑
d=1

(
20 + e − 20e

−0.2
√

0.5(x2
d
+x2

d+1)

−e0.5(cos(2πxd)+cos(2πxd+1))
)

Stretched V sine wave; f7(x) =

D−1∑
d=1

(x2
d + x2

d+1)
0.25
(
1 + sin2(50(x2

d + x2
d+1)

0.1)
)

Griewank’s function; f8(x) =
D∑

d=1

x2
d

4000
−

D∏
d=1

cos

(
xd√

d

)
+ 1
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Fig. 2. Symmetric landscape of four test functions with two variables. First and second
variables are on the x-axis and y-axis, respectively, and z-axis shows its function value.
(a) Sphere. (b) Rosenbrock. (c) Rastrigin. (d) Ackley.

Table 2. Parameters for test functions

f D x∗ f(x∗)
Initialization Space

Symmetric Asymmetric

f1 50 [0, 0, . . . , 0] 0 [−5.12, 5.12]D [−2.56, 5.12]D

f2 50 [1, 1, . . . , 1] 0 [−2.048, 2.048]D [−1.024, 2.048]D

f3 50 [0, 0, . . . , 0] 0 [−2.048, 2.048]D [−1.024, 2.048]D

f4 50 [0, 0, . . . , 0] 0 [−1.28, 1.28]D [−0.64, 1.28]D

f5 50 [0, 0, . . . , 0] 0 [−5.12, 5.12]D [−2.56, 5.12]D

f6 50 [0, 0, . . . , 0] 0 [−10, 10]D [−5, 10]D

f7 50 [0, 0, . . . , 0] 0 [−30, 30]D [−15, 30]D

f8 50 [0, 0, . . . , 0] 0 [−600, 600]D [−300, 600]D

3.1 Symmetric and Asymmetric Functions

The performances with the minimum and mean function values over 30 inde-
pendent runs on eight functions with the symmetric initialization are listed in
Table 3. The best results of the mean values among all the algorithms are shown
in bold. All NS-PSOs with various topology evidently surpasses the standard
PSO on all the eight functions. In fact, the standard PSO has not obtained bet-
ter results than any other algorithms which consider the network-structure. From
these results, we can say that PSO, which has the specific network-structure, is
more effective than the standard PSO, which has no neighborhood relationship,
for the symmetric functions.

Table 4 shows the best result among the five algorithms and the differ-
ence between the best result and the result of each algorithm. NS-PSO with
rectangular-topology, with hexagonal-topology, with cylinder-topology and with
toroidal-topology achieve the best values 0, 3, 2 and 3 times, respectively. For the
unimodal functions as f1, f2, f3 and f4, NS-PSO with toroidal-topology has ob-
tained the best results most frequently, and the cylinder-topology delivers a very
small difference from the best results. However, for the multimodal functions as
f5, f6, f7 and f8, the differences between the results of toroidal-topology and the
best results are bigger than other three NS-PSOs although it is the best topol-
ogy for the unimodal functions. Meanwhile, NS-PSO with hexagonal-topology
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Table 3. Comparison results of PSO and NS-PSO with symmetric initialization on 8
test functions with D = 50

f PSO
NS-PSO

Rectangular Hexagon Cylinder Toroidal

f1
Mean 2.29e-20 8.22e-25 1.50e-23 1.62e-25 1.58e-25

Minimum 4.09e-27 1.51e-29 1.29e-22 9.59e-32 1.78e-31

f2
Mean 55.24 43.61 42.56 38.80 40.82

Minimum 36.74 38.48 35.56 31.04 30.33

f3
Mean 7.49e-06 1.23e-07 7.37e-09 3.93e-08 4.50e-08

Minimum 9.41e-11 3.15e-12 5.81e-13 1.85e-12 3.19e-11

f4
Mean 1.58e-35 1.51e-41 1.32e-41 2.90e-42 3.53e-44

Minimum 9.86e-42 7.96e-47 2.84e-46 3.90e-49 1.32e-50

f5
Mean 148.31 92.80 104.44 88.32 115.45

Minimum 94.52 52.73 60.69 45.77 29.85

f6
Mean 249.67 159.62 157.28 193.50 205.75

Minimum 97.84 67.60 41.13 64.90 66.46

f7
Mean 65.62 41.35 33.46 41.06 43.04

Minimum 39.36 21.95 17.68 18.90 21.78

f8
Mean 0.2440 0.0853 0.0448 0.0924 0.0350

Minimum 0 0 1.11e-16 1.11e-16 0

Table 4. Difference from the best result with symmetric initialization

Best Difference from the best mean result
f Mean

PSO
NS-PSO

Result Rectangular Hexagon Cylinder Toroidal

f1 1.58e-25 2.29e-20 6.64e-25 1.49e-23 4.72e-27 0

f2 38.80 16.44 4.82 3.77 0 2.02

f3 7.37e-09 7.48e-06 1.15e-07 0 3.19e-08 3.76e-08

f4 3.53e-44 1.58e-35 1.50e-41 1.32e-41 1.32e-41 0

f5 88.319 60.00 4.48 16.12 0 27.13

f6 157.28 92.39 2.34 0 36.22 48.47

f7 33.4615 32.16 7.89 0 7.60 9.58

f8 0.0350 0.2090 0.0503 0.0098 0.0574 0

obtains the best results on f6 and f7, and it can obtain stable good results, which
are small differences from the best results, for other two multimodal functions.
NS-PSO with rectangular-topology achieves the stable good results for both the
unimodal and multimodal functions even if it can not obtain the best results
among NS-PSOs for any benchmarks.

The performances over 30 independent runs on asymmetric functions are listed
in Table 5. Since the standard PSO can not obtain the best results among all
five PSOs for any benchmarks, PSO with some networks is more suitable for the
optimization problems than the standard PSO.
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Table 5. Comparison results of PSO and NS-PSO with asymmetric initialization on 8
test functions with D = 50

f PSO
NS-PSO

Rectangular Hexagon Cylinder Toroidal

f1
Mean 2.31e-21 2.03e-24 1.13e-23 4.95e-22 8.15e-26

Minimum 3.58e-26 2.96e-29 8.27e-28 3.99e-30 8.90e-31

f2
Mean 55.96 64.80 50.02 65.96 40.23

Minimum 6.22 15.47 0.1998 13.19 0.2033

f3
Mean 2.06e-05 2.56e-08 8.32e-09 7.60e-08 1.02e-07

Minimum 1.65e-10 5.86e-12 3.29e-12 2.38e-11 1.15e-11

f4
Mean 4.82e-36 4.72e-43 3.60e-39 3.44e-43 4.02e-44

Minimum 8.51e-41 2.74e-47 1.79e-46 1.41e-48 8.03e-51

f5
Mean 150.70 96.54 89.65 87.16 153.61

Minimum 104.47 57.71 49.75 53.73 34.63

f6
Mean 190.24 177.03 142.66 207.75 217.90

Minimum 69.48 69.13 37.87 81.76 35.02

f7
Mean 61.90 42.19 34.93 37.18 41.14

Minimum 37.86 21.84 19.00 21.87 18.33

f8
Mean 0.0521 0.0240 0.1199 0.0249 0.1576

Minimum 0 0 0 0 1.11e-16

Table 6. Difference from the best result with asymmetric initialization

Best Difference from the best mean result
f Mean

PSO
NS-PSO

Result Rectangular Hexagon Cylinder Toroidal

f1 8.15e-26 2.31e-21 1.95e-24 1.13e-23 4.95e-22 0

f2 40.23 15.73 24.57 9.79 25.73 0

f3 8.32e-09 2.06e-05 1.73e-08 0 6.77e-08 9.38e-08

f4 4.02e-44 4.82e-36 4.32e-43 3.60e-39 3.04e-43 0

f5 87.16 63.54 9.39 2.49 0 66.45

f6 142.66 47.58 34.37 0 65.09 75.24

f7 34.93 26.96 7.26 0 2.25 6.21

f8 0.0240 0.0281 0 0.0959 9.13e-04 0.1336

Table 6 shows the the difference between the best result and the result of
each algorithm. For the unimodal functions, NS-PSO with toroidal-topology can
obtain the best results on f1, f2 and f4, and also on f3, it is a very small differ-
ence from the best results. Therefore, we can say that toroidal-topology is the
most effective for the asymmetric unimodal functions as same as the symmet-
ric unimodal functions. However, for the multimodal functions, NS-PSO with
toroidal-topology obtain the worst results 3 times among five algorithms includ-
ing the standard PSO. On the other hand, NS-PSO with hexagonal-topology
obtains the best results 2 times, in particular, it evidently surpasses other four
algorithms on f6.



170 H. Matsushita and Y. Nishio

From these results, on both symmetric and asymmetric spaces, the circular-
shaped NS-PSO as toroidal-topology is more suitable for the unimodal functions,
and the sheet-shaped NS-PSO as hexagonal-topology is more effective for the
multimodal functions. In particular, we found that the toroidal-topology is not
suitable on the asymmetric multimodal functions.

3.2 Behaviors of NS-PSO with Various Topology

The convergence rate of NS-PSO is almost same or slower than the standard
PSO. In the standard PSO, the particles move toward gbest or toward pbest,
however, the direction, which more particles move toward, is decided at random
on every generation. On the other hand, the neighborhood gaussian function
is used in NS-PSO, then, the particles move according to the neighborhood
distance between the winner and them. The winner’s neighborhood particles
move toward the winner, so that they spread to whole space. For the particles
which are not 1-neighbors of the winner but are connected near the winner, the
gravitation toward the winner is strong. The other particles fly toward their
lbest. In other words, the roles of the NS-PSO particles are determined by the
connection relationship, and they produce the diversity of the particles. These
effects avert the premature convergence, and the particles of NS-PSO can easily
escape from the local optima.

Discussion about evaluation of each topology: Let us consider the net-
work topology and its behavior in terms of average node-to-node distance L,
which is also known as average shortest path length, and the average number of
particles in local neighbor Nl. On 6 × 6 map, the average shortest path length
L of respective topology; rectangular, hexagonal, cylinder and toroidal, are 6.6,
5.34, 5.8 and 5.0, respectively. The average number of particles Nl in local neigh-
bor including itself of respective topology; rectangular, hexagonal, cylinder and
toroidal, are 4.6, 6.18, 4.8 and 5.0. Because the cylinder and toroidal are the cir-
cular topology, the individuality of each particle is almost same. In other words,
on toroidal-topology, L and Nl is completely same for any of the particles. Fur-
thermore, L of toroidal-topology is the smallest in four NS-PSOs. From these
effects, it is easy to transmit the information of lbest to the whole particles,
therefore, the circular topology is effective for the unimodal function which is
simple. However, the premature communication produces the premature conver-
gence, then, toroidal-topology easily goes into local optima in the multimodal
functions. On the other hand, NS-PSO with hexagonal-topology contains various
kinds of particles which has different shortest path length and different size of
local neighbors, although L is small and Nl is big. Because these effects produce
the diversity of the particles and avert the premature convergence, the particles
of NS-PSO with hexagonal-topology can easily escape from the local optima.

4 Conclusions

In this study, we have proposed Network-Structured Particle Swarm Optimizer
(NS-PSO) with various neighborhood topology which is a collaboration between
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Self-Organizing Map (SOM) and PSO. All particles of NS-PSO are connected
to adjacent particles by a neighborhood relation, and their information are up-
dated by the neighborhood topology. We have applied NS-PSO with various
topology to optimization problems. and have confirmed that PSO, which has
the specific network-structure, is more effective than the standard PSO, which
has no neighborhood relationship. Furthermore, we have found that the toroidal-
topology and the hexagonal-topology are suitable for the unimodal and for the
multimodal function, respectively.
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Abstract. A long-standing problem in the field of connectionist language
processing has been how to represent detailed linguistic structure. Ap-
proaches have ranged from the encoding of syntactic trees in Raam to the
use of a mechanism to query meanings in a “gestalt layer”. In this article,
a technique called semantic self-organization is presented that allows for
the optimal allocation and explicit representation of semantic dependency
graphs on a Som-based grid. This technique has been successfully used in a
connectionist natural language processing architecture called InSomNet
to scale up the subsymbolic approach to represent sentences in the LinGO
Redwoods HPSG Treebank drawn from the VerbMobil Project and anno-
tated with rich semantic information. InSomNet was also shown to retain
the cognitively plausible behavior detailed in psycholinguistics research.
Consequently, semantic self-organization holds considerable promise as a
basis for real-world natural language understanding systems that mimic
human linguistic performance.

Keywords: Connectionist Natural Language Processing, Cognitive Ar-
chitecture, Self-Organizing Maps, Semantic Dependency Graphs.

1 Introduction

Historically research in statistical natural language processing has focused on
parsing sentences into syntactic representations as exemplified in the Penn Tree-
bank [1]. While the proper syntactic representation of a sentence does remain
controversial, the situation is even less clear with respect to semantics. This lack
of an annotation standard has left semantic corpora lagging far behind syntactic
corpora, although recent work has progressed on representing the semantics of
sentences in such projects as the LinGO Redwoods HPSG Treebank [2] and
FrameNet [3]. Yet, the accurate representation of sentence or discourse seman-
tics is absolutely imperative if true natural language systems are to be realized.

The technique of explicitly representing semantics introduced in this article
– callled semantic self-organization – has been developed not only to fill the
need for the representation of semantics, but also to do so in a manner that is
cognitively plausible. That is, the semantic representation of a sentence should
develop incrementally as a sentence is processed; sentence processing should be

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 172–181, 2009.
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robust to dysfluencies in the input; ambiguities should be resolved based on
context when possible; meaning should be graded; semantic priming should fol-
low from expectations about how a sentence is likely to continue; and sentence
meaning should be revisable if those expectations are contradicted by later sen-
tence input. These cognitive properties emerge automatically from subsymbolic
systems, and the use of self-organization is a way to develop a map-like layout
so that subsymbolic processes can operate on it.

The InSomNet sentence-processing system, for which the technique of seman-
tic self-organization was developed, has been described elsewhere [4,5,6]. This
article will focus on the primary innovation of InSomNet: the self-organization
of compressed semantic frame representations.

Section 2 will briefly describe Minimal Recursion Semantics (Mrs; [7]), the
semantic formalism used in InSomNet. Section 3 will then describe how that
formalism is rendered into a set of representations that are used to train and
test the network so that it processes sentences in a cognitively plausible manner.
Section 4 describes the results of a series of experiments designed to demonstrate
the feasibility of the approach. Section 5 provides a discussion of the system’s
capabilities and directions for future research.

2 Minimal Recursion Semantics

Minimal Recursion Semantics uses flat semantics in contrast to the nested struc-
ture of Predicate Logic traditionally used to represent sentence semantics. The
flat semantics of Mrs is thus amenable to representation on a grid with de-
pendencies represented by pointers. Figure 1 illustrates the Mrs representation
for the sentence the boy hit the girl with the ball, that features prepositional
phrase attachment ambiguity. Abbreviations are used for semantic annotations.
Each node in the graph has a label called a handle and a named predicate. The
subcategorization argument roles of the predicate are represented by the arcs
emanating from the node, labelled with abbreviations for the roles. Because the
Mrs representation is a DAG, some nodes are leaves. These leaves are called
feature nodes that characterize the predicates that reference them. Their roles
are filled with nominal or verbal features such as gender or tense, respectively.

the boy hit the girl with the ball

h0: prpstn_rel

h1: hit

SA

x0: FRI A1 with

h2: the

h3: boy

BV

IX
RE

x1: FRI

h4: the

h5: girl

x2: FRI

h6: the

h7: ball
BV

IX
RE

e0: EVT

with

A0EV

A0

A3

A3

IX
RE

BV

Fig. 1. An Mrs Dependency Graph. Sentence meaning is represented in a pointer-
based directed acyclic semantic graph.
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In order to understand the Mrs example completely, the semantic annotation
used in Figure 1 needs to be briefly explained. The sentence is a declarative
proposition, as indicated by the semantic relation prpstn rel in the top node
labeled by the handle h0. Sentence types subcategorize for a single role, state-of-
affairs, as indicated by the arc labeled SA. The filler for this role is the handle
h1, which is the label of the node for the main predication of the sentence, the
word hit. Transitive verbs such as hit have event, arg1, and arg3 arguments, that
denote the thematic roles of Event, Agent and Patient, respectively. These
three roles are represented in Figure 1 by the arcs labeled EV, A1, and A3.

The semantics of the noun phrases are represented by three sets of nodes.
Each noun phrase contains the following arguments: a noun that subcategorizes
for an instance (IX) argument (FRI), that describes the noun’s features; a
determiner that has both a bound variable (BV) argument, filled with the noun’s
instance handle and a restriction (RE) argument, filled with the noun’s handle.
In Figure 1, the agent boy and patient girl are labelled by the handles x0 and
x1, respectively. The handle x2 denotes the noun ball and fills the A3 role of the
preposition with. The preposition can either modify the verb for the instrumental
sense of the sentence, or the noun for the modifier sense. In Mrs, modification
is represented by conjunction of predicates; thus, big red ball would be denoted
by
∧

[big(x), red(x), ball(x)]. The n-ary connective
∧

is replaced by a handle,
which is distributed so that each predicate shares the same handle. For verb-
attachment, the verb hit and the preposition with both share the handle h1, and
the preposition’s A0 role is filled with the verb’s event structure handle e0. For
noun-attachment, with has the same handle h5 as girl, and its A0 role points
to the index x1 of girl. In this way, Mrs is a symbolic linguistic representation
that can be encoded with neural networks, as described next.

3 Learning and Representing Semantic Graphs

In this section, the technique of semantic self-organization used to develop rep-
resentations suitable for Mrs semantic dependency graphs is described. The
InSomNet architecture, for which the technique was originally developed, is
also briefly presented to make clear how those representations are utilized.

3.1 Semantic Graph Representation

The Mrs dependency graph is transformed into a frameset of representations
for each node and arc that serve as inputs and targets for InSomNet system,
where each frame shown in Figure 2 has the format
| Handle Word Semantic-Relation Subcategorization <Arguments> |

.For example, the node h1: hit in the Mrs graph in is represented by the frame
| h1 hit arg13 rel A0A1A3DMEV x0 x1 e0 |

The first element, h1, is the Handle (label) of the frame. The Handle serves
as a pointer that fills roles of other nodes in the semantic graph. Here, h1 fills
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the boy hit the girl with the ball
| h0 __   prpstn_rel       SA         h1   __   __  __   __  __ |

| h1 hit  arg13_rel        A0A1A3DMEV __   x0   x1  __   x0  __ |

| h1 with miscprep_ind_rel A0A3DMEV   e0   x2   __  __   __  __ |

| e0 __   EVT              DVASMOTN   bool -asp ind past __  __ |

| h2 the  def_explicit_rel BVDMRESC   x0   __   h3  __   __  __ |

| h3 boy  diadic_nom_rel   A3IX       __   x0   __   __  __  __ |

| x0 __   FRI              DVGNPNPT   __   masc 3sg prn  __  __ |

| h4 the  def_explicit_rel BVDMRESC   x1   __   h5  __   __  __ |

| h5 girl diadic_nom_rel   A3IX       __   x1   __  __   __  __ |

| h5 with miscprep_ind_rel A0A3DMEV   x1   x2   __  __   __  __ |

| x1 __   FRI              DVGNPNPT   __   fem  3sg prn  __  __ |

| h6 the  def_explicit_rel BVDMRESC   x2   __   h7  __   __  __ |

| h7 ball reg_nom_rel      IX         x2   __   __  __   __  __ |

| x2 __   FRI              DVGNPNPT   __   neu  3sg prn  __  __ |

Fig. 2. The Mrs Frameset. The Mrs Dependency Graph in Figure 1 is converted
into a set of frames that can be represented in a neural network.

the state-of-affairs (SA) slot in the topmost node, h0: prpstn rel. The second
element, hit, gives the Word for this frame. The third element is the Semantic-
Relation for the frame. The fourth element, A0A1A3DMEV, represents the
Subcategorization and is shorthand for the sequence A0 A1 A3 DM EV:
the argument roles that the semantic relation subcategorizes for. Recall that hit
is a transitive verb with three Arguments (the agent (A1), the patient (A3),
and the event (EV roles), the fillers for which are listed in the rest of the frame
as < x0 x1 e0> (the A0 and DM arguments are not filled). These handles
label those frames that represent the arguments’ role fillers.

There are two properties of Mrs Handles that have influenced the design of
InSomNet. First, a given Handle may denote more than one frame due to the
the need to represent predicate conjunction, as described in Section 2. Second, in
the symbolic Mrs formalism, Handles are arbitrary designators. However, in a
neural network, Handles have to be encoded as patterns of activation in a vec-
tor space and that can be learned. In InSomNet, the Handles are designed to
be dynamically associated with patterns that represent core semantic features,
such as predicate argument structure and role fillers. In this way, InSomNet
can learn to generalize these semantic features to process novel sentences. These
Handle representations are derived from compression of the frames they label
via auto-association of the frame components. How these Handle representa-
tions (which will be simply referred to as Handles to distinguish them from
the field Handle) are developed and self-organized is a central aspect of the
model that will be described in detail in Section 3.3 following a brief description
of the InSomNet sentence processing architecture in the next section to illus-
trate how a flat semantic representation such as Mrs can be incorporated into
a connectionist model.
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the boy hit the girl with the ball

context layer

hidden layer

girl

input layer

SARDNet

hit A0A1A3DMEV __arg13_relh1 x0 __x1 e0

Frame Map

Frame Node

Frame Node 
Modulator Map

Frame Node 
Indicator Map

Sequence Processor

Frame Selector
Semantic Frame Encoder/Decoder

Frame Node Decoder

Fig. 3. The InSomNet Architecture. The InSomNet model consists of three opera-
tional modules based on how they function together. The Sequence Processor reads the
input sentence incrementally and activates both the Frame Selector and the Semantic
Frame Encoder/Decoder. The Semantic Frame Encoder/Decoder encodes the Mrs de-
pendency graph representing the semantic interpretation of the sentence. The Frame
Selector select frames in the Frame Map in a graded manner.

3.2 The InSomNet Architecture

The InSomNet model, shown in Figure 3, will be used to motivate the tech-
nique of semantic self-organization that is used to encode, decode, and cluster
the Handles described above. The model consists of three operational compo-
nents: the Sequence Processor, the Semantic Frame Encoder/Decoder, and
the Frame Selector. Each is described in turn below.

The Sequence Processor is based on the Srn and processes a sentence one
word at a time. A SardNet Map [8], a type of sequential Som, retains an
exponentially decaying activation of the input sequence.

The self-organized Frame Map of the Semantic Frame Encoder/Decoder is
the main innovation of InSomNet. In the current model, each Frame Node in
the map itself consists of 100 units. The Frame Map itself is a 12×12 assembly of
these nodes. As a result of processing the input sequence, the Frame Selector
activates a number of these nodes to different degrees; that is, a particular pat-
tern of activation appears over the units of these nodes. Through the weights
in the Frame Node Decoder, these patterns are decoded into the corresponding
Mrs case-role frame representations. The same weights are used for the same
role in each Frame Node in the map. This weight-sharing enforces generalization
among common elements across all frames in the training and test sets.



Representing Semantic Graphs in a Self-Organizing Map 177

The Frame Map is self-organized on the basis of Handles. This process serves
to identify which nodes in the Frame Map correspond to which case-role frames in
the Mrs structure. Because the Handles are distributed representations of case-
role frames, similar frames will cluster together on the map according to common
semantic features. Accordingly, each node becomes tuned to particular kinds of
frames, but no particular Frame Node becomes dedicated to any particular frame.
Rather, the nodes are flexible enough to represent different frames from different
sentences on the basis of semantic similarity.

During training, each Frame Node serves as a second hidden layer and its
corresponding case-role frame as the output layer. The appropriate frames are
presented as targets for the decoded Frame Node, and the resulting error signals
are backpropagated through the Frame Node Decoder weights to the Frame Node
and the weights connecting it to the Srn.

While the Frame Map represents the contents of the target semantic frames,
The Frame Selector is used to indicate the degree of activation (ranging from 0.0
to 1.0) of those frames that comprise the current interpretation of a sentence. For
this reason, a threshold based on precision and recall is used to optimize target
frame activation against that of false positives and negatives. At the same time,
the Frame Selector also plays a crucial role in identifying the Frame Nodes that
correspond to the Handles for different frames. This process – the linchpin of
semantic self-organization – is described next.

3.3 Semantic Self-Organization

As previously mentioned, The Handles are developed by compressing frames
through auto-association. Frames with similar components develop similar rep-
resentations. In the limit, there would be as many distinct handles as there are
distinct frames, with the typical problem of information loss through repeated
compression using Raam. To avoid this problem, semantic self-organization re-
lies on pointer quantization. Pointer quantization instead uses the prototypical
codebook vectors of the Frame Node Indicator Map closest to the Handles to
represent the Handles themselves, as shown in Figure 4. Self-organization of

dia_n_relgirl A3IX __ x1

h5 h4

the def_ex_rel BVDMRESC x1 h5__ __

WD SE TY A3 WD RETY BV DMSE SC

SCREDMBVTYSEWD

i

WD SE TY A3o o o o

ii

IX

IX

o

i i i i i i i i i

o o o o o o o

Frame Node 
Indicator Map

Fig. 4. Handles as the Basis of Semantic Self-organization. Compressed rep-
resentations for two frames with Handles h4 and h5 are developed using auto-
association. A process called pointer quantization facilitates learning by restricting the
representations of Handles to the small set of codebook vectors developed in the Frame
Node Indicator Map, which, as a result of semantic similarities among frames, becomes
self-organized, and, for the same reason, the Frame Map that encodes the frames.
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the Frame Node Indicator Map (which is in one-to-one correspondence with the
Frame Map), occurs simultaneously with frame compression.

Pointer Quantization has two primary advantages. First, it constrains the
number of distinct pointer representations to the number of units in the Frame
Node Indicator Map, thus facilitating training. Second, whereas two similar frames
can map onto the same unit in a regular Som, the base architecture for the Frame
Node Indicator Map is SardNet (see Section 3.2). Because winning units are
removed from further competition, identical (or very similar) frame representa-
tions are assigned to distinct nodes with distinct codebook vectors. In this way,
the quantization of the Handle representations function as content-addressable
pointers to the Frame Node that in turn encodes the complete frame.

Figure 4 shows how the frame | girl diadic nom rel A3IX x1 | (without
the Handle field) is auto-associated through input and output weights for each
frame component, resulting in a Handle for the frame h5 in the auto-association
network. The codebook vector to this Handle in the Frame Node Indicator Map
is assigned h5, the label for this frame. The codebook vector is then used as
the Handle for fillers of other frames that reference h5, such as the frame
h4: | the def rel BVDMRESC x1 h5 |. These components are auto-
associated in turn, the closest codebook vector substituted as the Handle for
h4, and the process repeated over the entire DAG. Because the graph is acyclic,
a compressed representation for each frame in the Mrs dependency graph of
a sentence can be developed. The leaves of the graph serve as stable starting
points, and compressed representations of the frame corresponding to each frame
are developed recursively. While Handles such as h4 and h5 are arbitrarily
generated during training, the patterns they designate develop non-arbitrary
semantic content. Indeed, the network is able to predict which nodes frames are
likely to map to in order to generalize to novel sentences.

4 Simulations

Two simulations using InSomNet will be briefly described. Details are available
in the forementioned articles on InSomNet [4,5,6].

4.1 The Redwoods Treebank

To demonstrate that InSomNet could be scaled up to a corpus of realistic
natural language sentences, the model was evaluated on 4817 sentences from the
Redwoods Treebank for which at least one analysis was selected as correct by the
treebank annotator. The dataset contains the full Mrs representation, resulting
in 18,225 unique frames overall.

InSomNet was evaluated with respect to both its parsing performance; (i.e.,
precision and recall of targeted frames), as well as with respect to its compre-
hension performance; (i.e., were the targeted frames in fact correctly decoded?).
Ten-fold cross-validation was carried out, with an average parsing performance
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F-measure of 0.81 at a threshold of 0.7 on the test sets. Average comprehen-
sion performance on the test sets was 85%. A comparison of InSomNet with
a state-of-the-art grammar-based conditional log-linear parsing model [9] was
performed, with both models trained using ten-fold cross-validation on a sig-
nificantly simpler version of the dataset described above. InSomNet achieved
an overall parsing performance F-measure of 0.75 at a threshold of 0.7 and
comprehension performance of 85%, compared with an accuracy of 74.9% for
Toutanova’s model (Toutanova, personal communication).

A further simulation was carried out to evaluate the robustness of the model
when dysfluencies from the original VerbMobil transcriptions were included in
the test sentences. The parsing F-measure was 0.77 at a threshold of 0.7, and
comprehension was 84%, demonstrating that the network showed human-like
tolerance to typical speech errors. Also, the model was lesioned with increasing
levels of Gaussian noise added to the network’s weights, and its performance
degraded gracefully, as expected of subsymbolic models.

These simulations demonstrated that a connectionist system could be scaled
up to processing realistic natural language in a robust manner.

4.2 Cognitive Plausibility

InSomNet was further evaluated on a corpus originally created by McClelland
and Kawamoto in [10] and since used as a benchmark to demonstrate that a con-
nectionist system could learn to map syntactic constituents to thematic roles.
The corpus – expanded to 1475 sentences over 30 words for which semantic fea-
tures (e.g., animacy) were prespecified – was used [11]. Chief among the thematic
roles of interest were instrument and modifier, with some sentences being glob-
ally ambiguous. In the general case, however, which of the two roles was correct
was determined by sentence format, frequency, and the particular words in the
sentence. For example, the word ball in the sentence the boy hit the girl with the
ball was interpreted as an instrument, whereas the word doll in the sentence the
boy hit the girl with the doll was interpreted as a modifier. Other roles such as
the three elicited by the boy broke the window, the ball broke the window, and
the window broke, were also part of the cognitive phenomena tested.

InSomNet demonstrated nearly perfect performance on the unambiguous
sentences, correctly identifying the targeted thematic roles and their fillers. Fur-
thermore, the model showed sensitivity to frequency effects, both with respect
to individual words and their correlations with thematic roles, as well as to sen-
tence prefixes. Besides co-activating multiple senses in the face of ambiguity, the
model correctly disambiguated temporarily ambiguous sentences. InSomNet
exhibited expectations of likely sentence continuations, and semantic priming of
related words (such as hammer and hatchet). Finally, the model was able to revise
its interpretation when later input overrode a given thematic role assignment.

This simulation showed that InSomNet not only scales up, but does so in a
cognitively valid manner.
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5 Discussion and Future Work

The technique of semantic self-organization described in this article has been in-
strumental in allowing a connectionist model to scale up to real-world language
processing, while at the same time retaining the cognitively plausible behavior
that have made connectionist models the subject of considerable psycholinguistic
research. The resulting semantic representations are not only explicit, but also
exhibit the gradience that has long been recognized as a hallmark of natural lan-
guage [12]. Concepts tend to defy easy categorization at all levels of description,
a problem commonly recognized as the grain problem [13].

While connectionist models have become the systems of choice for researchers
interested in various aspects of human language performance, they have been
limited in their scope to well-defined, often “toy” problems. Due to memory lim-
itations, they have proven exceedingly difficult to scale up to processing corpora
that more traditional grammar-based statistical models routinely handle.

The use of a flat semantic representation such as Mrs laid out on a grid of cells
representing compressed frames and self-organized allows the circumvention of
the limitations of earlier models that used Raam to represent semantics based on
Predicate Logic. Such systems were very limited in the semantic detail that could
be captured due to the problem of repeated compression. Moreover, sentence
semantics that are best expressed in a graph structure were forced to conform to
tree structures for use with Raam, although clever ways were devised to allow
the representation of more generalized structure [14].

Future work will focus on improving memory and reusing nodes in the Frame
Map whose activation has fallen below threshold.

6 Conclusion

InSomNet is a subsymbolic sentence processing system that produces explicit
and graded semantic graph representations. The novel technique of semantic self-
organization allows the network to learn typical semantic dependencies between
arguments and their fillers that generalizes to novel sentences. The technique
makes it possible to assign case roles flexibly, while retaining the cognitively plau-
sible behavior that characterizes connectionist modeling. InSomNet was shown
to scale up to sentences of realistic complexity, including those with dysfluencies
in the input and damage in the network. The network also exhibits the crucial
cognitive properties of incremental processing, expectations, semantic priming,
and nonmonotonic revision of an interpretation during sentence processing. Se-
mantic self-organization therefore constitutes a significant step towards building
a cognitive parser that works with the everyday language that people use.
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Abstract. SOMs have proven to be a very powerful tool for data anal-
ysis. However, comparing multiple SOMs trained on the same data set
using different parameters or initialisations is still a difficult task. In most
cases it is performed only via visual inspection or by utilising one of a
range of quality measures to compare vector quantisation or topology
preservation characteristics of the maps. Yet, comparing SOMs system-
atically is both necessary as well as a powerful tool to further analyse
data: necessary, because it may help to pick the most suitable SOM out of
different training runs; a powerful tool because it allows analysing map-
ping stabilities across a range of parameter settings. In this paper we
present an analytic approach to compare multiple SOMs trained on the
same data set. Analysis of output space mapping, supported by a set of
visualisations, reveals data co-locations and shifts on pairs of SOMs, con-
sidering both different neighbourhood sizes at source and target maps.
A similar concept of mutual distances and relationships can be anal-
ysed at a cluster level. Finally, Comparisons aggregated automatically
across several SOMs are strong indicators for strength and stability of
mappings.

1 Introduction

Self-Organising Maps (SOMs) enjoy high popularity in various data analysis
applications. Experimenting with SOMs of different sizes, initialisations or dif-
ferent values for other parameters, is an essential part of this analysis process. In
many cases, users want to detect the influence of certain parameters or generally
want more details about the relations and differences between input data and
resultant clusters across these varying maps. In this paper we thus propose a
method to compare two or more SOMs, indicating the differences in how the
data was mapped on either of the SOMs. We introduce three quality measures
with supporting visualisations for comparing multiple SOMs. Its remainder is
structured as follows. Section 2 describes related work in the field of SOM qual-
ity measures and comparisons. Section 3 then describes three types of analysis,
which are illustrated along with experimental results in Section 4. In Section 5
we draw conclusions and give an outlook on future work.

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 182–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Analytic Comparison of Self-Organising Maps 183

2 Quality Measures for and Comparison of SOMs

A range of measures have been described for assessing the quality of either a
SOM’s quantisation, projection, or both; an overview is given in [7]. The probably
best known quantisation measure is the Quantisation Error, which sums the
distances between the input vectors and their best matching unit (BMU). Among
the measures assessing the projection quality, the Topographic Error increases an
error value if the BMU and the second BMU of an input vector are not adjacent
to each other on the map. The normalised sum over all local errors is used
as a global error value of a given map. The Topographic Product [1] measures
for each unit whether its k nearest neighbour units coincide, regardless of their
order, by assessing the distances of the model vectors in the input and output
space. Its result indicates whether the dimensionality of the output space is
too large or too small. The Neighbourhood Preservation [8] measure is similar
to the Topographic Product, but operates on the input data. Additionally [8]
introduces Trustworthiness, measuring whether the k-nearest neighbours of data
vectors in the output space are also close to each other in the input space. It thus
gives and indication of the expressiveness and reliability of a given mapping.

Only limited research has been reported for comparing two or more SOMs
with each other. An analysis of different distance measures for a supervised
version of the SOM and it’s application to the classification of rail defects, for
example, is studied in [2]. Quality measures for the evaluation of data distribution
across maps trained on multi-modal data are explored in [5], where the effect of
multiple modalities is shown by the example of song lyrics and acoustic features
for audio files. Both types of features are used for the same collection and the
resultant map is compared according to spreading features. These help to identify
musical genres with respect to their homogeneity in both dimensions. Analysis of
different map sizes or other parameter variations are not considered. Aligned Self-
organising Maps [6] are composed of several SOMs which are trained on the same
data with differently weighted features, with the aim of exploring the impact of
these differences on the resultant mappings. The maps are aligned as layers in
a stack, and a distance measure is defined between stacks for comparison of
units across layers. This measure is then used analogous to the distance between
units on one layer to preserve the topology across the stack. The Aligned SOMs
changes the SOM training algorithm so that each data vector is mapped onto a
similar position also in the vertically stacked SOMs. However, this method can
not be applied to maps with different sizes.

3 Analysing Data Shifts and Co-locations

The following methods allow comparisons of two or more SOMs trained on the
same data set. The parameters for the SOM training such as the size of the
map, the neighbourhood function, or the learning rate, can differ. Herein lies
the strength of these visualisations, namely to compare differences in these pa-
rameters or of SOMs trained with identical parameters but different (random)
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initialisations of the model vectors, with respect to distributions in the output
space. All the methods proposed below rely on one source map and one or more
target maps the source is compared to. The resulting description may either be
visualised by colour-coding the units, on the source map, or actually display-
ing the detailed components of the resulting measurement using the source and
target maps. In order to compare SOMs of radically different sizes, all methods
make use of a neighbourhood definition in both the source and target maps.

3.1 Data Shifts Analysis

This method analyses and displays changes in the position of co-located data
across multiple maps. For a given vector, it shows the position of the other
vectors mapped onto the same unit (or within a given source neighbourhood) on
a target map. This can be used to find out how stable the mapping is, and how
steadily a data vector is put into a neighbourhood of other vectors on different
SOMs. Put more abstractly, it measures how much of the data topology on the
map really is caused by attributes of the data, and how much of it is simply an
effect of different SOM parameters or initialisations, i.e. is caused by differences
in parameter settings and training process.

An introductory example for the Data Shifts Visualisation is given in Fig-
ure 1(a). The figure shows positions of data vectors between two maps in terms
of data and cluster shifts. The SOMs in Figure 1(a) are visualised by the two
rectangular grids (each square represents a unit of the SOM and the numbers
indicate the number of instances mapped to the respective unit). The arrows
show the movement of the four vectors lying on the lower left unit of the left
map. Three out of four vectors move to the unit of the right map pointed to by
the thick arrow.

The data shifts and their types can be formalised as follows: Let r1 and r2 be
the radii of the source and target neighbourhoods, and let d1 and d2 be the dis-
tance functions in the output space of the two SOMs. Let cs be the stable count
threshold and co be the outlier count threshold, which can be adjusted to ignore
shifts concerning only “few” vectors, and to define what “few” means. With xi

(a) Data Shifts (b) Shift Types (c) Cluster Shifts

Fig. 1. Positioning of data vectors across different SOMs 1(a). 1(b) shows all types of
shifts, and neighbourhood radii. The movement of clusters is shown in 1(c). The arrows
denote the movement of data vectors/clusters, respectively.



Analytic Comparison of Self-Organising Maps 185

denoting the data vector in question, its source and target neighbourhoods U1i

and U2i contain other data vectors as follows:

U1i = {xj |d1(xj , xi) ≤ r1}, U2i = {xj |d2(xj , xi) ≤ r2} (1)

The set of neighbours that are in both neighbourhoods, Si can easily be found,
as well as the set of vectors that are neighbours in the first SOM but not in the
second, Oi:

Si = U1i ∩ U2i, Oi = U1i \ U2i (2)

The input vector xi’s data shift is stable for a given absolute threshold if
|Si| ≥ cs, or if |Si|

|U1i| ≥ cs in the case of a relative threshold.
If the data shift is not a stable shift, it is an adjacent shift if there is another

data vector xs whose data shift is stable and it lies within the neighbourhood
radii.

d1(xi, xs) ≤ r1 ∧ d2(xi, xs) ≤ r2. (3)

Finally, if the shift is neither stable nor adjacent, it is an outlier shift if
|Oi| ≥ co in case of absolute, and |Oi|

|U1i| ≥ co for relative count threshold values.
Figure 1(b) illustrates all types of shifts, i.e. stable, adjacent and outlier shifts,

by green, cyan and red arrows, respectively. The circles indicate the neighbour-
hood for determining the neighbour count (green) and the adjacent shifts (cyan).

3.2 Cluster Shifts Analysis

The Cluster Shifts Analysis is conceptionally similar to the Data Shifts Analysis
but compares SOMs on a more aggregate level, by comparing clusters in the
SOM instead of singular units or neighbourhoods. Thus, we first employ Ward’s
linkage clustering [4] on the SOM units, to compute the same (user-adjustable)
number of clusters for both SOMs. The clusters found in both SOMs are linked
to each other, determined by the highest matching number of data points for
pairs of clusters on both maps – the more data vectors from cluster Ai in the first
SOM are mapped into cluster Bj in the second SOM, the higher the confidence
pij that the two clusters correspond to each other. This can be formalised as
follows: let the set Mij contain all data vectors x which are mapped onto the
units in Ai and in Bj . To compute the confidence pij that Ai should be assigned
to Bj , the cardinality of Mij is divided by the cardinality of Ai.

Mij = {x|x ∈ Ai ∧ x ∈ Bj}, pij =
| Mij |
| Ai | (4)

We then compute all pairwise confidence values between all clusters Ci in
the maps. Finally, they are sorted and we repeatedly select the match with
the highest values, until all clusters have been assigned exactly once. When the
matching is determined, the visualisation can easily be created, analogously to
the Visualisation of the Data Shifts. An example is depicted in Figure 1(c), which
shows a map trained on synthetic data of two slightly overlapping Gaussian
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clusters. The number of clusters to find was set to two. The cluster mappings
are indicated by blue arrows, whose thickness corresponds to the confidence of
the match. Data vectors which move from a cluster in the first SOM to the
matched cluster in the second SOM are considered ‘stable’ shifts’, and indicated
with green arrows; the red arrows represent ‘outlier’ shifts into other clusters.

3.3 Multi-SOM Comparison Analysis

While the previous two methods focus on a pair-wise comparison, the Multi-
SOM Comparison Analysis can be used to compare multiple SOMs trained on
the same data set. Its main focus is one specific SOM, the ‘source SOM’, to
be compared against a number of other maps. More precisely, the visualisation
colours each unit in the main SOM according to the average pairwise distance
between the unit’s mapped data vectors in the other s SOMs. To this end, we
find all k possible pairs of the data vectors on u, and compute the distances
dij of the pair’s positions in the other SOMs. These distances are then summed
and averaged over the number of pairs and the number of compared SOMs,
respectively. The mean pairwise distance vu of unit u is thus calculated as follows:

vu =

∑s
j=1

∑k
i=1 dji

k

s
(5)

Similarly, the computation of the variance wu is defined as:

wu =

∑s
j=1

∑k
i=1 d2

ji

k

s
− vu

2 (6)

where dji denotes the distance between the vectors of pair i in the output space
of SOM j.

When applied to the cluster based evaluation, we use the single linkage dis-
tance between the respective clusters r and s and their cluster members xri and
xsj as follows:

dSL(r, s) = min(d(xri, xsj)) (7)

Herein, the distance between two clusters is defined as the minimum distance
between any of their respective members. In our case, we use unit coordinates
of clusters in the SOMs as the features describing them. As a result of the
computations described in this section, we obtain quality measures for single
units with respect to the mapping of their data vectors on other SOMs.

4 Experiments

We present two sets of experiments, first with an artificial data set tailored to
specific challenges in data mining, and then with the Iris benchmark data set.
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Fig. 2. Data shifts of the multi-challenge data set across three SOMs of different sizes
trained on the same data

Fig. 3. Cluster shifts of the multi-challenge data set for two SOMs of varying sizes

4.1 Artificial ‘Multi-challenge’ Data Set

We created a 10-dimensional synthetic data set, which is used to demonstrate
how a data analysis method deals with clusters of different densities and shapes
when these different characteristics are present in the same data set 1. It con-
sists of five sub-sets, four of which live in a three-dimensional space. The subsets
themselves are composed of several clusters, thus in total we have 14 distin-
guishable patterns of data. The first subset consists of one Gaussian cluster, and
another cluster formed of three Gaussians, all of which are well separated. The
second subset consists of two overlapping, three-dimensional Gaussians, while
the third set is similar, but of ten dimensions. The fourth subset is the well-
known chainlink problem of two intertwined rings. Finally, the fifth subset is
sampled along a curve that consists of four lines that are patched together at
their endpoints.

Figure 2 illustrates three different map sizes trained on this data set, and
shows how the clusters slowly separate into their sub-clusters they are composed
of, when the map size increases. In the middle illustration, even with doubling
the number of units, only one cluster splits into two sub-clusters; finally, in the
right image, all clusters have split on two different units. Figure 3 shows the
cluster shifts for three selected clusters from a smaller map with twelve units
1 The data set is available at http://www.ifs.tuwien.ac.at/dm/

http://www.ifs.tuwien.ac.at/dm/
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(a) Data shifts (b) Variance Comparison

Fig. 4. Data Shifts and Variance Analysis on the Chainlink data set

to a bigger map with 48 units. The clusters are identical on both maps, thus
with a confidence of 100% each. It is, however, interesting to note that for the
cluster arranged in the top-left corner of both maps, the initial separation on
the smaller map does not prevail any more on the bigger map. Thus, the initial
assumption that could be drawn from the smaller map, namely that the items
found on the two units are clearly separable, could be refuted.

Figure 4 illustrates one specific subset, the Chainlink problem, for which it is
known that it cannot be projected to a two-dimensional space without severely
breaching the topology. The two rings are indicated by red and blue colour, re-
spectively. It can be well observed from the visualisation of the Data Shifts in
4(a) that even though the projection looks very similar in both cases, the break-
ing points in the two rings are actually different in the two maps. Further, the
illustration also depicts the mean values of the Multi-SOM comparison, evalu-
ated across eight target SOMs trained with different initialisation and iteration
parameters, with two nodes having high pairwise distances, and thus colour
black. Figure 4(b) shows the distance variance of the same map. It can be noted
that with this measure, we find a higher number of possible breaching points
than we were able to detect with the mean pairwise distance only. The intensity
of the grey-shade used denotes a higher variance of the distance in the different
SOMs, and thus indicates dislocations of vectors, which in this case reveal the
topology breach, with the black-filled units marking the points with the highest
probability.

4.2 Iris Data Set

Finally, we performed experiments on the benchmark data set Iris [3]. Two maps
were trained, with 25 and 100 units, respectively. The three different classes in
the data set are marked with yellow (setosa), dark blue (versicolor) and light
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(a) Setosa (b) Versicolor

Fig. 5. Data Shifts: stable shifts from Setosa (a), outlier shifts from Versicolor (b)

(a) Cluster Shifts (b) Comparison – Mean

Fig. 6. Iris: Cluster Shifts with three clusters and outliers (a), mean comparison (b)

blue (virginica). In Figure 5(a), we can see the data shifts from the setosa class.
The topology-preservation ability of the SOM can be easily observed: the vectors
from the rightmost setosa unit in the left map are mapped onto the top of the
elongated setosa area in the large map, the vectors from the middle unit onto the
middle of the elongated area, and the vectors on the leftmost unit are mapped
onto the bottom of the elongated area. The borders of the virginica area and the
versicolor area, however, are not as cohesive and spread over a wider area than
the border between the other two classes. Figure 5(b) shows only the outlier
shifts for the data shifts visualisation of the two SOMs. Most of the outlier shifts
emerge from units in the versicolor area or the border of the virginica area.

Figure 6(a) shows a Cluster Shifts Visualisation based on three clusters. The
setosa cluster is clearly separated from the others, and its mapping has 100%
confidence. The other two clusters each represent one of the other two classes
in the small map. In the large map the virginica cluster gets assigned quite a
few versicolor samples as well. These show up as the outlier shifts drawn in
in red. The virginica cluster match confidence is 100%, the versicolor clusters’
confidence is only 69%.

Finally, a Multi-SOM comparison was used to find the units in the smaller
SOM where the projection onto the two-dimensional SOM-grid is unstable, which
is visualised in Figure 6(b). The minimum pairwise distance threshold was set
to 2.5, to reduce the impact of the bigger size of the larger SOM – the data
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vectors spread over more units in the larger SOM, thus the vectors that lie on
one unit in the small SOM will spread over a couple of neighbouring units in
the large SOM. This would distort the conclusions we wish to draw from the
visualisation, therefore the threshold is used to compensate for the difference in
size. The units with the high mean pairwise distances (marked in shades of grey)
all are either on the border between the versicolor and virginica classes or within
the versicolor class. This points to the relative instability of the projection of
the versicolor class onto the SOM-grid: data vectors from the versicolor class
are projected differently in both SOMs. Yet again, these results suggest that the
setosa class and to some extend the core of the virginica class are well-defined
and distinct, while the border between virginica and versicolor and versicolor
class itself are a relatively unstable area in a SOM projection. Thus, the results
from the three visualisations support and reinforce each other.

5 Conclusions and Future Work

In this paper, we presented methods to analytically compare two or more SOMs
with each other, and showed the feasibility of the approach on two data sets.
Due to space limitations, we could not present experiments on further data sets
and had to limit the level of detail in our experiment discussion; more details
are availbale at http://www.ifs.tuwien.ac.at/dm/. Future work includes more
extensive experiments to provide evidence for certain types of shifts and viola-
tions, to eventually automate the process of SOM interpretation, as well as for
automatically setting useful threshold and analysis neighbourhood parameters.

References

1. Bauer, H.-U., Pawelzik, K.R.: Quantifying the neighborhood preservation of self-
organizing feature maps. Trans. Neural Networks 3(4), 570–579 (1992)

2. Fessant, F., Aknin, P., Oukhellou, L., Midenet, S.: Comparison of supervised self-
organizing maps using euclidian or mahalanobis distance in classification context. In:
Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 637–644. Springer,
Heidelberg (2001)

3. Fisher, R.A.: The use of multiple measurements in taxonomic problems. In: Annual
Eugenics, Part II, vol. 7, pp. 179–188 (1936)

4. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association 58(301), 236–244 (1963)

5. Neumayer, R., Rauber, A.: Multi-modal music information retrieval - visualisation
and evaluation of clusterings by both audio and lyrics. In: Proc. 8th Conf. Recherche
d’Information Assistée par Ordinateur (RIAO 2007) (2007)

6. Pampalk, E.: Aligned self-organizing maps. In: Proc. 4th Workshop on Self-
Organizing Maps (WSOM 2003), pp. 185–190 (2003)

7. Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps.
In: Proc. 5th Workshop on Data Analysis (WDA 2004), pp. 67–82 (2004)

8. Venna, J., Kaski, S.: Neighborhood preservation in nonlinear projection methods:
An experimental study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001.
LNCS, vol. 2130, pp. 485–491. Springer, Heidelberg (2001)



Modeling the Bilingual Lexicon
of an Individual Subject

Risto Miikkulainen1 and Swathi Kiran2

1 The University of Texas at Austin, Austin, TX 78712, USA
2 Boston University, Boston, MA 02215, USA

Abstract. Lexicon is a central component in any language processing system,
whether human or artificial. Recent empirical evidence suggests that a multilin-
gual lexicon consists of a single component representing word meanings, and
separate component for the symbols in each language. These components can
be modeled as self-organizing maps, with associative connections between them
implementing comprehension and production. Computational experiments in this
paper show that such a model can trained to match the proficiency and age of ac-
quisition of particular bilingual individuals. In the future, it may be possible to
use such models to predict the effect of rehabilitation of bilingual aphasia, result-
ing in more effective treatments.

Keywords: Lexicon, semantics, speech, language acquisition.

1 Introduction

The mental lexicon, i.e. the storage of word forms and their associated meanings, is
a major component of language processing. It is also one that is perhaps the best un-
derstood in terms of computational modeling. Partly the reason is that abundant data
exists about how the lexicon develops, how it is organized, how it functions, and how
it breaks down in dyslexia and aphasia; partly the reason is that lexical processes are
rather modular and therefore tend to be amenable to computational theories.

Although the physiological implementation and even the location of the lexicon in
the brain is still open to some debate, there is evidence from MRI and electrophysi-
ology that the lexicon may be laid out as a map, or multiple maps [16]. As a result,
self-organizing map (SOM) models are a natural way to model the lexicon. SOM mod-
els have been developed to understand e.g. how ambiguity is processed by the lexicon,
and how it breaks down in dyslexia and aphasia [12,13], and how the lexicon is ac-
quired during development [11]. The SOM-based lexicon has also turned out useful as
a component in larger systems of natural language processing [12].

Given that the majority of the world’s population is bilingual (or multilingual) [17],
an important extension of the SOM-based lexicon models, as well as lexical research in
general, is to account for lexica with multiple languages. A theoretically based approach
is developed in this paper, with the eventual aim of using the model to help rehabilitate
bilingual patients with aphasia.

More specifically, a bilingual lexicon model is built for individuals with different
proficiencies in the two languages, and different age at which the two languages were

J.C. Prı́ncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 191–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



192 R. Miikkulainen and S. Kiran

acquired. Based on recent theoretical models, a single semantic map is used, with sep-
arate maps for the words in the two languages, and six separate sets of connections
between the maps. Frequency of exposure, as opposed to age, is shown to primarily
determine the proficiency, with age affecting the way the maps are organized. In the
future, the model can be used to study how the multilingual lexicon breaks down with
damage and how it can be rehabilitated. By matching the proficiency and age of acqui-
sition with those of patients suffering from aphasia, it may be possible to use the model
to derive most effective treatment regimes for them individually.

2 Bilingual Lexical Processing

Current theoretical models of the bilingual lexicon generally agree that bilingual in-
dividuals have a shared semantic (or conceptual) system and that there are separate
lexical representations of the two languages. However, the models differ on how the
lexica interact with the semantic system and with each other.

The concept-mediation model [15] (Fig. 1a), proposes that both the first (L1) and
the second-language lexica directly access concepts. In contrast, the word-association
model assumes that second-language words (L2) gain access to concepts only through
first-language mediation (Fig. 1b). Empirical evidence [8] suggests that the word as-
sociation model is appropriate for low-proficiency bilinguals and concept mediation
model for high-proficiency bilinguals. As an explanation, De Groot [5] proposed the
mixed model (Fig. 1c), where the lexica of a bilingual individual are directly connected
to each other as well as indirectly (by way of a shared semantic representation). This
model was further revised with asymmetry by Kroll & Stewart [9] (Fig. 1d). The associ-
ations from L2 to L1 are assumed to be stronger than those from L1 to L2, and the links
between the semantic system and L1 are assumed to be stronger than those between the
semantic system and L2.

Fig. 1. Theoretical models of the bilingual lexicon. All four theories posit a common semantic
system with language specific representations in L1 and L2. The most recent theory (d) includes
connections between all maps, with connections of the most dominant language (L1 in this figure)
stronger than the others (solid lines indicate strong connections and dashed lines weak connec-
tions). This theory is used as the starting point for the computational model.
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A second important issue is whether activation of the semantic system spreads to
both lexica or only within that of the language being used. The prevailing theory sug-
gests that lexical access is target-language nonspecific [2], although, this view is con-
troversial [3]. A third issue is the extent to which proficiency in the two languages
and the age at which they are acquired (AoA) affect lexical access. There is evidence
that language proficiency, and not AoA, primarily determines the nature of semantic
processing [6]. For instance, Li and Farkas [10] showed that novice bilinguals have a
fuzzier representation of semantics and phonology than proficient bilinguals.

Adopting the asymmetric mixed model of Fig. 1d, this paper will systematically ex-
amine the extent to which language proficiency and AoA influence activation of targets
in the lexicon. The work will form a foundation for studying damage and rehabilitation
of aphasia in bilingual patients in the future.

3 Computational Models of the Lexical System

Artificial neural networks have been used to model various aspects of the lexical system
for over two decades. Most of the models aim to explain lexical processing with low-
level mechanisms, focusing on the timing of the process as well as on certain types of
performance errors and deficits. They are primarily process models, detached from the
physical structures, and designed as controlled demonstrations of how disambiguation
and production could be carried out in the lexical system [4,7,14].

One exception is the DISLEX model by Miikkulainen [12,13], which was further
developed as DEVLEX by Li and colleagues [11]. Its organization is modeled after the
cortical maps that underlie many perceptual processes and may also be the substrate for
the lexical system in the brain [16]. DISLEX consists of two self-organizing maps, one
for lexical symbols and the other for word meanings, as well as associative connections
between them (Fig. 2). The lexical map is a layout of the orthographic or phonetic
symbols in the language (orthography is used in the examples in this paper). It is a two-
dimensional array of computational units, or neurons, trained to represent the symbols
using the self-organizing map method. The symbols are vectors of gray-scale values
[0..1], representing the orthographic features of the word. Each word is represented by
a “blurry bitmap”, i.e. a coarse visual image of the word as a series of letters.

During training, such vectors are presented to the map one at a time, and each unit
computes the Euclidean distance d between its weight vector w and the symbol repre-
sentation v:

d =
√∑

k

(wk − vk)2. (1)

The unit with the smallest distance (unit (r, s)) is then found, and the weights of that
unit and those in its neighborhood (units (i, j)) are adapted towards the input vector:

w′
k,ij = wk,ij + α(vk − wk,ij)hrs,ij , (2)

where hrs,ij is a Gaussian function defining and α is the learning rate. This process has
two effects: the weight vectors become representations of the symbol vectors, and the
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Fig. 2. A single-language DISLEX model and representations. The orthographic input symbol
DOG is translated into the semantic concept dog in this example. The representations are vectors
of gray-scale values between 0 and 1, stored in the weights of the map units. The size of the unit
on the map indicates how strongly it responds. Only a few strongest associative connections of
the orthographic input unit DOG (and only that unit) are shown.

neighboring weight vectors become similar. Over several presentations of each lexical
symbol, the array of units then learns to represent the space of symbols in the language.

The semantic map is organized in a similar manner. The input vectors to this map
represent semantic meanings of words. Each component of the vector represents a se-
mantic microfeature (learned automatically based on word cooccurrence [12], and the
vectors as a whole represent similarities between word meanings. The self-organizing
map therefore learns the layout of the semantic space, i.e. the possible meanings of the
words in the language.

Associations between the two maps are learned at the same time as the two maps are
organized. A lexical symbol and its meaning are presented at the same time, resulting in
activations on both maps. Associative connections between the maps are then adapted
based on Hebbian learning, i.e. by strengthening those connections that link active units,
and normalizing all connections of each unit:

a′
ij,mn =

aij,mn + αηijηmn∑
uv(aij,uv + αηijηmn)

, (3)

where aij,mn is the weight on the associative connection from unit (i, j) in one map
to unit (m, n) in the other map and ηij is the activation of the unit. As a result of this
learning process, when a word is presented to the lexical map, its associated meaning
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is activated in the semantic map, and vice versa. DISLEX therefore models both com-
prehension and production in the lexicon.

The DISLEX model was evaluated in prior work in three ways: First, it was shown
to function well as a practical lexicon component in a large language processing system
called DISCERN [12], for processing script-based stories. Second, it was tested as a
cognitive model of human lexical processing. The spatial organization of the lexicon is
motivated by the maps in the brain, such as those suggested to underlie the lexical sys-
tem [16]. Because of this structure, local lesions to the system result in category-specific
impairments, similar to those documented in aphasic patients [18]. Noisy propagation
between maps gives a possible computational explanation to many dyslexic phenom-
ena [1], such as lexical errors (“ball” → “doll”), semantic errors (“lion” → “tiger”) and
combined errors (“sympathy” → “orchestra”). Third, the model was extended to model
lexical development [11,10,19]. The extended model, called DEVLEX, is trained with
gradually more words. It accounts for a range of phenomena in lexical acquisition,
including effects of lexical categories such as representation of nouns/verbs, word fre-
quency, word length and word density. AoA is considered to be an important factor in
the developing bilingual lexicon as well. For instance, the timing of L2 acquisition im-
pacts the structural representation of L1 and L2 maps. When L2 is acquired later than
L1, it becomes dependent upon the L1 semantic map in a “parasitic” way and induces
higher rates of errors [19].

DISLEX therefore forms a solid foundation for modeling bilingual lexical processing
and its breakdown and recovery as well. The first step is to extend it to two languages
with different proficiency and AoA, as described below.

4 The Bilingual DISLEX Model

The original DISLEX model was extended to include lexica for two languages, L1 and
L2. By varying the amount and timing of training in the two languages, the model can
represent an individual with a given proficiency and AoA of L1 and L2.

The bilingual lexicon model was constructed to match typical subjects in the empir-
ical studies: L1 is Spanish, L2 is English, and the AoA of English varies. Furthermore,
because the patients are typically more proficient in English than Spanish, English is
the dominant language (L2d) and Spanish is the weaker language (L1w). The L1 and
L2 lexical symbols are each laid out in a different map in the model (Fig. 3). To con-
struct such a model, 30 corresponding words, represented orthographically, were used
in each language, together with 18 distinct semantic meanings; the mapping from words
to meanings was thus many-to-many. As an example, the model was organized to simu-
late both early (Fig. 3a) and late acquisition of L2 (Fig. 3b) where L2 was the dominant
language.

In the early L2 acquisition model, each Spanish symbol - English symbol - meaning
triple was presented 45 times, and during the same time period, each English symbol -
meaning pair was presented an additional 15 times, modifying the input and associative
weights each time as described above. Such different amount of training in English and
Spanish corresponds to the different exposure to the two languages during acquisition.
In the late L2 acquisition model, the Spanish symbol - meaning pairs were first pre-
sented 25 times; then, the English - Spanish - meaning triples were shown 20 times,
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(a) (b)

Fig. 3. Bilingual DISLEX models of two typical (hypothetical) individuals. Following the
general architecture of Kroll & Stewart [9] (Fig. 1d), the bilingual DISLEX model consists of
a map of lexical symbols for each of the two languages, a common map of word meanings,
and associative connections between them. The solid arrows indicate strong and dashed weak
associative connections; the numbers stand for percentage proficiency of each component. The
model was trained in two different ways to match two different hypothetical patients, each with
a different L2 AoA but high L2 proficiency. In this manner, the level of AOA, proficiency and
impairment can each be altered to understand the individual contribution of each variable.

interleaved with 40 presentations of the English symbol - meaning pairs. In both cases,
the lexicon self-organized to represent the two languages and the mapping between
them (Fig. 4). Each lexical map is organized according to the similarity of the word
shapes (mostly word length and matching letters, which are the most prominent char-
acteristics of the “blurry bitmap” representation used). The semantic map is organized
according to the word meaning (i.e. animate words are clustered together, as are verbs
and objects).

When a meaning representation is given an input to the semantic map, the corre-
sponding units in the English or Spanish map are activated through associative connec-
tions. The main difference between early and late L2 maps is that while the early L2
map is organized relatively smoothly, the late L2 map is irregular and uneven. To quan-
tify the behavior of these models, the 18 meaning representations were each presented
to the semantic map in turn and propagated to the English map and to the Spanish map,
modeling naming in the two languages; similarly, the 30 English words and 30 Spanish
words were each presented as input to the appropriate map and propagated to the se-
mantic map, modeling word comprehension. In each case, the unit with the maximally
responding unit was found in the input map and in the associated map. If its weight
vector was closest to the correct representation, the output for the word in the lexicon
was correct.

A typical bilingual performance was observed in this process in both early and late
L2 models (Fig. 3). With early English AoA, English (L2d) dominated Spanish (L1w)
in production (53 vs. 47% accuracy) as well as in comprehension (90 vs. 80%). Impor-
tantly, the same was true of late English AoA both in production (58 vs. 35%) and in
comprehension (67 vs. 63%). (Note that only the relative proficiency is important; the
absolute proficiency can be adjusted by changing the amount and rate of learning in the
model). Most interestingly, an important asymmetry emerged between the L1 and L2
maps: An L1 word activates the corresponding L2 word more strongly than the other
way around (37 vs. 13% early, 43 vs. 30% late), showing more proficiency in English
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Fig. 4. A DISLEX model of normal bilingual behavior. The L1 and L2 maps are organized
according to the perceptual similarities (mostly word length), and the semantic map according
to semantic meaning (e.g. animals, objects, verbs). A word presented to one of the maps (in this
case semantic meaning doll) activates that map, and the activity propagates through associative
connections to the other maps (in this case L1 and L2, activating the units representing DOLL and
MUNECA, as well as a few neighboring units). The colors white → yellow → red → black indicate
increasing response. The connections to L1 are less specific (activating a wider area) and therefore
result in more errors than those to L2. Also, although both the early AoA L2 (bottom right) and
late AoA L2 (top right) result in roughly equal performance, the early map is better organized than
the late map (which consists of several small discontinuous clusters). In this manner, DISLEX
models bilingual naming and comprehension with different proficiencies and different age of
acquisition in the two languages.

(L2d) than in Spanish (L1w), and demonstrated dominance of English over Spanish
in transfer between the languages. This asymmetry is consistent with behavioral data
(Section 2) showing that lexical activation in the non-dominant language results in ac-
tivation of corresponding representations of the dominant language.

In a subsequent experiment, the role of the languages was reversed, resulting in a
model with Spanish as the dominant (L1d) and English as the weaker (L2w) language.
In a third experiment, the model was exposed equally frequently to the two languages
(L1 = L2), and neither language dominated the other in the resulting model. These re-
sults were obtained both with early and with late L2 training, with consistent differences
in the L2 map organization (Fig. 4). Together these experiments suggest that by train-
ing the model with different starting times and frequencies, the relative proficiency and
organization in the two languages can be tuned, making it possible to fit the model to a
particular individual’s performance and learning history.
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5 Discussion and Future Work

The model is consistent with behavioral data in two important ways. First, relative lan-
guage proficiency is modulated by the amount of exposure to each specific language.
Second, various levels of L2 language performance can be achieved with both early and
late L2 AoA. Further, the late L2 AoA results in less well organized L2 map even when
L2 achieves eventual high proficiency.

In the future, it may be possible to use the model to fit the pre-stroke performance and
learning history of an individual patient, and then used to derive an optimal treatment
for that patient. Damage to the lexical system can be modeled in DISLEX in two ways:
(a) Units or connections can be deleted from the model, and (b) noise can be added to
the connections. By controlling the type and extent of damage, it will be possible to
fit the model to the profile of an individual patient. In rehabilitation training, then, the
model will be presented with selected word-meaning pairs in the two languages and
it will continue self-organizing using the same mechanisms as during initial training.
By varying the types of words (such as concrete vs. abstract words, rare vs. frequent
words, short vs. long words, and word categories) and numbers of training pairs in the
two languages systematically, it should be possible to determine a training recipe that
leads to fastest and most complete recovery. Such an ability could greatly improve our
ability to treat bilingual aphasia in the future.

6 Conclusion

A bilingual lexicon model consisting of a common map of word meanings and a sepa-
rate maps for the words in the two languages is consistent with current theory of bilin-
gual processing in the mental lexicon. By varying the frequencies with which the maps
are trained, and the timing of the training in the two languages, models of individual
proficiency and order in the two languages can be developed. The approach can be
used to develop models of individuals, and in the future, may form a foundation for
discovering individually optimized recipes for treatment of aphasia.
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neme@nolineal.org.mx
2 Postgraduate and Research Section. School of Economics. National Polytechnic

Institute Plan de Agua Prieta No.66, Col. Plutarco Elas Calles, México D.F., México

Abstract. The training scheme in self-organizing maps consists of two
phases: i) competition, in which all units intend to become the best match-
ing unit (BMU), and ii) cooperation, in which the BMU allows its neigh-
bor units to adapt their weight vector. In order to study the relevance of
cooperation, we present a model in which units do not necessarily cooper-
ate with their neighbors, but follow some strategy. The strategy concept
is inherited from game theory, and it establishes whether the BMU will al-
low or not their neighbors to learn the input stimulus. Different strategies
are studied, including unconditional cooperation as in the original model,
unconditional defection, and several history-based schemes. Each unit is
allowed to change its strategy in accordance with some heuristics. We give
evidence of the relevance of non-permanent cooperators units in order to
achieve good maps, and we show that self-organization is possible when
cooperation is not a constraint.

1 Introduction

The self-organizing map (SOM) is presented as a model of self-organization of
neural connections, which is translated in the ability of the algorithm to produce
organization from disorder [1]. This property is achieved through a transforma-
tion of an incoming signal of arbitrary dimension into a low-dimensional discrete
map and by adaptively transform data in a topologically ordered fashion [2,3].

The SOM structure consists, generally, of a two-dimensional lattice of homo-
geneous units. Each unit maintains a dynamic weight vector which is the basic
structure for the algorithm to lead to map formation. The input space dimen-
sion is considered in the SOM by allowing each weight vector to have as many
components as dimensions in the input space. Each input vector x is mapped to
the unit i whose weight vector is closest to it.

The training scheme in the SOM is divided in two stages:

1. Competitive. The bets matching unit (BMU), identified as g is the one whose
weight vector is the closest to the input vector:

BMU = argming||x − wg|| (1)

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 200–208, 2009.
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2. Cooperative The cooperation stage has been identified as fundamental for
a proper map formation [4]. Within this stage, the adaptaion is diffused from
the BMU g to the rest of the units in the lattice through the learning equation:

wi(t + 1) = wi(t) + α(t)hi
g(t)(xj − wi(t)) (2)

In which hi
g is the neighborhood function from g to i, α is the learning param-

eter, and xj is the input vector. In this work, we study a modification to the stage
2 of training. In the original SOM, when a unit becomes the BMU it modifies
the map by affecting the weight vector of those units within its neighborhood.
This weight modification (cooperation) is the core of the map formation pro-
cess through the SOM algorithm. Here, we describe a variation in which units
may present alternatives to the cooperation scheme, refered as strategies, and
still there may be a proper map formation. Strategies may be cooperative (as
in the traditional SOM), non-cooperative, or based on the history of previous
interactions with other BMUs.

In section 2, we introduce some relevant aspects of game theory and present
the Non-Cooperative Self-Organized Map (SOM-NC), in section 3 several results
are presented and analyzed, and in section 4 some conclusions are stated.

2 The Model

Self-organization is a property present in several structures and phenomena,
ranging from biology to social situations [5]. Briefly, self-organization states that
an ordered structure may be achieved from an initial, possibly disordered state,
by means of local information and short-range interaction between components,
with the additional feature that there is not a global unit that guides the system
to global order [6].

It has been commonly stated that cooperation is the currency of self-
organization. Here, we study some consequences of interactions that may not
necessarily be cooperative, and give evidence that self-organization is still pos-
sible. We intend to study self-organization when unconditional cooperation be-
tween units is not a constraint. We do not intend to minimize an error measure,
but to analyze the dynamics of map formation in units that do not always co-
operate.

Units adapt their weight as the mechanism that leads to map formation. In
the proposed model, units may also adapt the strategy they follow when they
become BMU. The BMU will not necessarily affect its neighbors, but will do
what its own strategy dictates. Some units will always allow their neighbors
to adapt, some strategies will not allow neighborhood adaptation, and some
others will decide to allow adaptation or not based on their memory, whether
its neighbors allowed it to adapt or not in previous epochs.

The terms cooperation, non-cooperation and strategies are common in Game
Theory (GT). GT studies possible solutions to different situations in which play-
ers may cooperate or not in order to optimize a given quantity. In cooperative
games, players intend to optimize a global quantity. In a cooperative game there
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are two components: 1) a set of players (units), and 2) a characteristic function
that specifies the goodness of a possible alliance of players [7]. This function
states how good was for a given player to cooperate with other units. SOM
may be seen as a cooperative game in which units cooperate in order to achieve
self-organization (well-formed maps).

Although we do not intend to analize self-organizing maps in terms of GT
as, for example, in [8], we borrowed some of its concepts in order to elucidate
a language for presenting our model and some of its results. In the SOM algo-
rithm, there is not an optimizing principle [9]. However, SOM may be seen as a
cooperative game in which all units try to avoid a local map misformation. Units
try to form a map that preserves the topology present in the data space. In that
sense, each unit tries to, locally, form a map region that, when grouped to other
map regions, will lead to a good topographic map. In the SOM, misformation is
avoided through cooperation from BMUs to its neighbors. In other words, the
BMU allows its neighbors to adapt their own weight vectors to resemble the in-
put vector, and thus approximate the the data distribution in the feature space.

In SOM-NC each unit i is assigned a strategy σi. Table 1 shows the strategy
code, and a short description. Each strategy dictates to the BMU if it will allow
its neighbors to adapt its weight vector (C or 1) or not (D or 0). If a BMU’s
strategy states that it will defect from its neighbors (D), then all units within its
neighborhood will not adapt their weight vectors (see eq. 3). On the other hand,
if a unit has a strategy that cooperates (C), then when it becomes the BMU all
units within its neighborhood will be able to adapt their weight vectors.

Some of these strategies need a memory of interaction. Each unit i maintains
a record of what every other unit j has done to it during the training period,
Ωj

i . If unit i has been allowed by BMU j to adapt its weight vector say, two
times, and then j defect from i, then Ωj

i = {C, C, D}. The strategy that governs
i may take into account this memory to decide if it will cooperate with j or not.
Unit i will present the same strategy for every unit j in the lattice, but the final
decision may be affected by Ωj

i , which is not necessarily the same for all j.
The strategy σi(t) specifies if neuron i will allow its neighbors to adapt their

weight vector (σi(t) = 1) or not (σi(t) = 0) at time t. Derived from GT, we
will call the former case the cooperation scheme whereas the latter is the defect
scheme. A BMU will always cooperate with itself, in despite of its strategy. So,

Table 1. The studied strategies (σi(t)). BMU i will decide to cooperate or defect from
unit i as a function of its own strategy and memory of previous interactions.

Strategy id Description

C i will always cooperate (unconditional cooperator, σi(t) = 1)
D i will always defect (unconditional defector, σi(t) = 0)

T i will do as it was done in the last interaction (tit-for-tat, σi(t) = Ωj
i (t − 1))

R Random (the same probability of cooperation and defect)
A Alternating C and D (σi(t) = C, σi(t + 1) = D, ...)

M i will do whatever j has done to i most frequently (σi(t) = more frequent in Ωj
i )

N i will do whatever j has done to i less frequently (σi(t) = less frequent in Ωj
i )
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the adaptation equation now considers the strategy of unit i, and adaptation is
possible only when σi(t) = 1:

wi(t + 1) = wi(t) + α(t)hi
g(t)σi(t)(x − wi(t)) (3)

One of the strategies that is based on history is the so-called tit for tat (TFT).
Units with the TFT strategy, when selected as BMU, will start cooperating with
their neighbors, but from the second interaction on they will do as they were
done: if i becomes the BMU, and its strategy is TFT, then σi(t) = Ωg

i (t − 1),
which means that i will allow g to adapt its weight vector only if the last time g
became BMU, it allowed i to do so, otherwise, modification of g’s weight vector
is not permitted.

Units may modify their strategy. The heuristic that leads to strategy shifting
is as follows. Let wi be the weight vector for unit i and let wh the average weight
vector from i’s neighbors. If |wi − wh| ≤ θ, where θ is a threshold, then i will
change its strategy: σi(t + 1) �= σi(t).

The basis of the proposed heuristic lies in the fact that a unit whose weight
vector is very different from the weight vector of the units within its neighbor-
hood is perturbing the proper map formation because of its wrong strategy.

In GT terms, the characteristic function that evaluates the benefit of an al-
liance may be identified with the difference threshold θ. If unit i perceives that
its strategy does not benefit the local map quality as its weight vector is very
different from that of their neighbors, then it will shift to another strategy.

Another control parameter for strategy shift is the periodicity r. It states that
units may try to shift its strategy only every r epochs, if θ is exceeded.

Once unit i is able to change its strategy, it has to decide what strategy
to adopt. Three alternatives were explored. In the first one, it will change its
strategy to the more common strategy within its neighborhood. In the second
one, it will adopt that strategy from the BMU whose weight vector is closest
to the input vectors mapped to it. For the third strategy shift, it will chose
randomly a different strategy. These strategies shifting schemes are denoted by
s = 0, s = 1, and s = 2, respectively.

3 Experiments

In order to verify the map quality as well as the map formation process in the
SOM-NC, three data sets were studied in two different sets of experiments. The
ring (two-dimensional), the iris (four-dimensional), and the ionosphere (dimen-
sion 34) data sets were studied. In both experiments, network size was 20 × 20
and the learning parameter α is set to 0.1 at the beginning and exponentially
decreased to 0.0001.

In the first experiment, the strategy of each unit is determined in accordance
with a probability distribution. Here, p(D), p(C), p(T), p(R), p(N), p(A), and
p(M) represent the probability of each unit having strategies D, C, T, R, N, A or
M, respectively. These probabilities are chosen at random (see table 1). For each
data set 10000 maps were formed varying the initial probability distribution,
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the strategy shifting scheme, the θ threshold, the number of epochs, and initial
neighborhood width.

In the second experiment, pini(C) = 1 (all units are cooperators) and the only
possible strategy shifting scheme is that of random selection.

3.1 Phenomenology

In SOM, the topographic error (TE) is a common measure of self-organization
[10], defined as the average number of cases in which the BMU and second-best
matching unit are not adjacent in the lattice for each input vector. We measured
TE to compare the quality between the maps formed by SOM-NC with maps
formed by SOM.

To study SOM-NC, each map was formed under some constraints: 1) the initial
strategy probability distribution, refered as pini(i), i ∈ {C, T, D, A, R, M, N},
2) the strategy shift scheme (s), 3) the periodicity of strategy shifting (r), 4)
the number of epochs, and 5) initial neighborhood width. As units may shift
their strategy, there is also a final strategy probability distribution: pfinal(i),
ii ∈ {C, T, D, A, R, M, N} All these features define the paramater space.

In this first set of experiments, we tried to find a relation between the pa-
rameter space and maps with low TE. The method we applied to seek for this
relation is that of decision trees. In this method, each input vector contains the
description of an object. Every input vector is associated with a label, or class,
and the method tries to identify what variables and conditions are sufficient to
properly relate input vectors to classes. The algorithm seeks to summarize la-
beled data into a set of simple decision rules based on the mutual information
function [11].

Here, we applied C4.5 to the feature vector that describes the conditions in
which each map was formed, plus the final probability distribution. The class of
each entry is constructed through the TE: those maps with lower TE than the
TE shown by the original SOM model will be of class L, whereas those maps
with higher TE will be of class H. A decision tree was obtained for each data set
and for each of the strategies shifting schemes.

Partial trees for the three data sets are shown in fig. 1. For the three data
sets, the final probability for C units is highly informative. Low classification
errors were achieved for maps with low TE (L).

For the ring and iris data sets, the strategy shifting scheme s was not infor-
mative, that is, good map formation does not depend on how a new strategy is
chosen. However, for the ionosphere data set, the random strategy shifting never
formed maps with lower errors than those shown by SOM. Once again, there
was a tendency for the cooperative strategy C to diffuse to all the units so the
final strategy distribution is strongly biased towards it. If pfinal(C) is high, then
the formed maps are good ones (L).

For all i ∈ {T, C, D, R, A, M, N} the correlation between pini(i) and TE was
obtained, and for the three data sets pini(T ) is the most correlated (0.38, 0.42,
0.44, respectively). Also, the correlation for the final probabilities and TE was
also calculated and pfin(T ) was the highest for the studied data sets (0.51, 0.5,
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Fig. 1. Classification trees obtained by C4.5. pfinal(C) is highly informative for the
three data sets. L class is refered to conditions that lead to maps with lower errors than
that of the SOM, whereas H class refers to maps with higher error than the SOM.

Fig. 2. TE as a function of final and initial probability of T units (pfinal(T ), pini(T ))

0.6). Fig. 2 shows TE as a function of pini(T ) and pfinal(T ) for the three data
sets and for the same 10000 maps detailed in the previous analysis.

In the original SOM all units have C strategy for all the training process. In
SOM-NC there are several strategies and units may change their own strategy,
so it is important to study how relevant is the strategy shift in the well-formed
maps. Table 2 shows the difference of the final and initial distribution for each
strategy for 500 maps with the lowest TE and for all the 10000 maps. It is
observed that pfin(C) > pini(C), but this difference is higher for the group with
low TE than the difference observed for the 10000 maps, which means that a
shift to a C strategy leads to properly formed maps. In the well-formed maps,
the reduction of units with strategy D is clear, whereas for the 10000 maps, there
is not a clear reduction at all. It may be inferred that the remotion of strategy
D is also benefical for map formation.

Although C units are relevant for map unfolding, it is possible to achieve
a proper map formation when other strategies are also present. As a second
experiment, consider a lattice in which pini(C) = 1, which corresponds to the
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Table 2. Difference of the final and initial distributions for the seven strategies for
both, a) the 500 maps with the lowest TE, b) and for the 10000 maps, for each data
set (pfin(i) − pini(i))

Data set (best 500 maps) T C D R A M N

ring -0.107 0.083 -0.012 0.045 0.053 -0.010 -0.041
iris -0.046 0.056 -0.009 0.017 0.034 -0.016 -0.025
ion. -0.128 0.0161 -0.038 0.015 0.020 -0.032 0-017

Data set (All 10000 maps) T C D R A M N

ring -0.041 0.010 -0.003 0.005 0.023 -0.010 0.027
iris -0.023 0.004 -0.002 0.005 0.013 -0.005 0.019
ion. -0.044 0.009 -0.007 0.001 0.024 -0.008 0.039

Fig. 3. TE as a function of θ and periodicity (r), when pini(C) = 1 and s = 2. It is
shown the TE coresponding to the original SOM, for 300 epochs.

original SOM scheme. The only possible strategy shifting scheme is the random
one (s = 2). In order to study the map formation under this constraint, we varied
both θ and r, and plotted the TE of the achieved map in fig. 3. It is shown the
average TE obtained by 100 maps formed for the specifed θ and r.

It is observed that TE decreases when r increases, and θ becomes relevant
only when r is low. The weight unfolding for one of the maps with low TE and
pini(C) = 1 is shown in fig. 4. It is also shown the corresponding strategy for
each unit in the lattice. This map was achieved with r = 1 and θ = 0.005.
Units change their strategies when their weight vector differs from that of their
neighbors by more than θ. Several units have strategies different from C, and
still the formed map presents a very low TE (see fig. 4). In general good maps
(low TE) are formed if r > 1.

3.2 Analysis

If p(D) = 1, then the model would be equivalent to the k−means algortihm,
as the permanent defect strategy would be equivalent to a neighbordood of
0. However, units with defective strategy (D) are important for proper map
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Fig. 4. Map unfolding and strategy for each unit in the lattice, for pini(C) = 1, r = 1,
and θ = 0.005

formation. Units that are located in the neighborhood of two or more units
consistently selected to become BMUs may as well become BMU themselves and
affect the map formation. A unit whose strategy is D, will not affect the map
formation, as only its weight vector will be modified. D units may be affected
by BMUs, but they are not able to affect other units when become BMUs.

The existence of units with strategy T is also relevant. If it interacts with C
units, then it is equivalent to the case in which all of them cooperate. However,
when a T unit interacts with a D unit, it will not affect it, as stated in the
tit-for-tat strategy (see table 1).

The relevance of units with strategies R, A, M, and N is not completely clear,
but if they are not considered, the formed maps do not present low TE. Units
with R strategy may redirect an improper unfold by locally perturbing (or not)
the map. Once a BMU with this strategy is not locally forming a good map, it
should shift the strategy.

The shift of strategy locally affects the map formation and may lead to a
better unfolding. However, if this perturbation is locally incorrect, as stated by
the heuristic, then another strategy should be adopted. Only when the map is
locally correct, as stated by the heuristic, the strategy shift will not be applied.

4 Conclusions and Discussion

Self-organization is possible even when cooperation is not the only strategy fol-
lowed by active units (BMUs). In the traditional SOM, the BMU allows its
neighbors to adapt their weight vectors in accordance with the input vectors.
Here, we have shown that map formation is possible when some BMUs do not al-
low their neighbors to adapt, or when they decide to do so based on the memory
of previous interactions.
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The strategy each unit follows to cooperate or not with their neighbors is im-
portant to achieve good maps. Each unit may change its strategy. The heuristic
that leads to this shift is that if the unit’s weight vector is not similar to that
of its neighbors, then its strategy is wrong and is perturbing the proper map
formation.

For the three studied data sets, proper self-organization is possible when units
try to shift to another strategy every epoch and the difference threshold is very
low. That is, if some unit detects that its weight vector is not very similar to the
average neighbor’s weight vector, then it will shift to another strategy. The shift
scheme resembles the evaluation characteristic function in game theory, which
states the convenience of cooperative alliances. Here, a unit may decide not to
cooperate with some other units and thus avoiding certain alliances.
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Abstract. The complex phenomena of political science are typically
studied using qualitative approach, potentially supported by hypothesis-
driven statistical analysis of some numerical data. In this article, we
present a complementary method based on data mining and specifically
on the use of the self-organizing map. The idea in data mining is to
explore the given data without predetermined hypotheses. As a case
study, we explore the relationship between parliamentary election results
and socio-economic situation in Finland between 1954 and 2003.

1 Introduction

In this article, we examine the possibility of exploring the relationship between
the results of parliamentary elections over an extended period time and a number
of political and societal variables that might influence these results. The data
consists of (1) the results of the parliamentary elections between 1954 and 2003,
(2) data indicating the parties in the government by the time of and before each
election, and (3) a number of socio-economic variables such as unemployment
rate. We are interested in finding relevant relationships between these variables
(for related research within political science, see e.g., [6,16,18]). Rather than
focusing on a set of specific hypotheses, we wish to explore if potentially useful
relationships can be found by exploring a larger number of variables concurrently.
Section 2 introduces the method, related research and the data collection. Some
interesting and useful connections were found and they are reported in Section
3. We are aware that some of the conclusions are preliminary and would require
additional data or more detailed qualitative analyses. On the other hand, it also
seems that the SOM provides additional insight that would be difficult to gain
e.g. by plain inspection of the original data, by calculating correlations between
the variables, or by fitting some linear model over the data. There are some
alternative methods such as multidimensional scaling that could be considered
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but the SOM is a good choice especially when the trustworthiness is considered
[13,20].

2 Data and Method

The aim is to study the effect of socio-economic conditions on parties’ approval
ratings in Finnish parliamentary elections from the year 1954 to the year 2003.
During chosen period there were no wars or other highly exceptional circum-
stances in Finland. In addition, it is easy to obtain reliable and comparable
societal data from this period.

2.1 Data

The data consists of three parts. There are eleven variables of the elections,
twelve variables of national economic conditions and ten variables of government
responsibilities. The election data variables are the proportion of votes cast for
the nine most important parties and the group of other parties and the turnouts
in Finnish Parliamentary elections. The abbreviations, the English and Finnish
names, and the former names of the parties are listed here:

– KESK: Centre Party of Finland, Suomen keskusta, until 1962 the Agrarian
Union, in 1983 including Liberal Party.

– SDP: Social Democratic Party of Finland, Suomen sosiaalidemokraattinen
puolue.

– KOK: National Coalition Party, Kansallinen kokoomus.
– LEFT: Left Alliance, Vasemmistoliitto, until 1987 the Democratic League of

the People of Finland, in 1987 including Democratic Alternative.
– GREENS: Green League, Vihreä Liitto, in 1987 not as a party of its own.
– KD: Christian Democrats in Finland, Suomen kristillisdemokraatit, until

1999 Christian League of Finland.
– RKP: Swedish People’s Party, Ruotsalainen kansanpuolue.
– PS: True Finns, Perussuomalaiset, in 1962 and 1966 the Small Holders Party

of Finland and until 1995 the Finnish Rural Party.
– LIB: Liberals, Liberaalit, until 1966 the Finnish People’s Party, until 1999

Liberal Party.

The proportion of votes cast and voting turnout are based on the elections
data of Statistics Finland1. They are presented in Figure 1. The variables of
government responsibilities contain information if the party has been in govern-
ment or in opposition during the elections. The government data is based on the
Finnish Minister Database MIKO published by the Finnish Government [4].

National economic conditions are analyzed using four measurements. The
Change of Cost of Living Index (COLI) is used to measure inflation. The Unem-
ployment Rate (UNEM) has significant influence on the daily life of the voters.

1 http://www.stat.fi/index en.html
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Year KESK SDP KOK LEFT GREEN KD RKP PS LIB OTH. T.OUT

1954 24.1 26.2 12.8 21.6 6.8 7.9 0.6 82.9
1958 23.1 23.2 15.3 23.2 6.5 5.9 2.8 78.3
1962 23.0 19.5 15.0 22.0 6.1 2.2 6.3 5.9 86.1
1966 21.2 27.2 13.8 21.1 0.5 5.7 1.0 6.5 2.9 86.1
1970 17.1 23.4 18.0 16.6 1.1 5.3 10.5 6.0 2.0 83.2
1972 16.4 25.8 17.6 17.0 2.5 5.1 9.2 5.2 1.2 81.9
1975 17.6 24.9 18.4 18.9 3.3 4.7 3.6 4.3 4.3 80.1
1979 17.3 23.9 21.7 17.9 4.8 4.3 4.6 3.7 1.8 81.9
1983 17.6 26.7 22.1 13.5 3.0 4.9 9.7 2.5 81.2
1987 17.6 24.1 23.1 13.6 4.0 2.6 5.6 6.3 1.0 2.1 76.2
1991 24.8 22.1 19.3 10.1 6.8 3.1 5.5 4.8 0.8 2.7 71.0
1995 19.8 28.3 17.9 11.2 6.5 3.0 5.1 1.3 0.6 6.3 70.6
1999 22.4 22.9 21.0 10.9 7.3 4.2 5.1 1.0 0.2 5.0 66.8
2003 24.7 24.5 18.6 9.9 8.0 5.3 4.6 1.6 0.3 2.5 67.6

Fig. 1. Proportion of votes cast for different parties and voting turnout in Parliamen-
tary elections in 1954-2003 (%) (Statistics Finland 2004, p. 11 and p. 15)

The Change of Gross Domestic Product per Capita (CGDP) and the Change of
Total Consumption per Capita (CCONSUM) are good measures for economic
growth. These four monetary values are transformed into constant prices of the
year 2000. For each measurement, there are three variables included in the data:
the first at elections year (marked with COLI(T), UNEM(T), CGDP(T), and
CCONSUM(T)), the second at a year before elections (marked with COLI(T-1),
etc.) and the third at two years before elections (marked with COLI(T-2), etc.).
The Change of Cost of Living Index, the Change of Gross Domestic Product
per Capita and the Change of Total Consumption per Capita are based on the
data provided by the Statistics Finland [17]. The Unemployment Rate is based
on Keinänen’s unemployment and employment statistics [8].

2.2 Method and Earlier Work

The Self-Organizing Map (SOM) [9,10] has been used in a wide range of areas
such as medicine, economics or in the analysis of industrial processes. In a pa-
per closely related to this one, Kaski and Kohonen studied the socio-economic
status of the countries in the world based on World Bank data [7]. Deboeck and
Kohonen have edited a book that shows many examples of uses of the SOM
in the area of finance [3]. Länsiluoto et al. conducted analysis of economic and
competitive environment in the formulation of corporate strategies using the
SOM [12]. Tuia et al. have used the SOM combined with Ward’s classification to
classify the municipalities of Western Switzerland, interpret the socio-economic
landscape of the region [19]. Lendasse et al. [14] used the SOM in forecasting
electricty consumption. In our work, we did not aim, for instance, to predict the
results of next elections but rather provide a basis for interpreting the results
and their relation to some socio-economic variables.
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In the 2004 municipal and EU elections in Finland the candidates were
mapped according to their answers to a number of questions. The voters could
then use a web site of a major commercial broadcasting company that had an
interactive version of the map. The users could answer the same questions that
were presented to the candidates and then see where the like-minded candidates
are positioned on the map.[1,2]

The SOM organizes data in such a way that the variables with largest variance
affect the result most. In the case of relative approval ratings, no scaling is
required as the figures are comparable as such. However, if the data consists of
variables the status of which varies, scaling is needed. In the analysis described
in Section 3, we have both relative approval ratings and some societal variables
such as unemployment rate. In this study, data was normalized by dividing
every variable with its variance. More detailed discussion on data normalization
is provided e.g. in [10].

The study also shows how the value of different variables is distributed on
the map. For interdisciplinary understandability we refer to these distributions
as variable maps where the methodological community has often used the term
component plane. In this study, we implemented the SOM using Matlab 7.0.1
with the SOM Toolbox 2.0.

3 Results

In the following, we present the results of the SOM-based analysis. We show the
overall analysis of the relationship between the election years (Section 3.1) and
discuss some specific findings (Section 3.2).

3.1 Overall Results

Figure 2 presents the parliamentary election years organized by the SOM algo-
rithm. It is possible to see that the parliamentary election years form roughly
a kind of chain. Consecutive election years are typically close to each other on
the map. This feature most likely reflects the idea that societal changes happen
gradually.

On the right side of Figure 2, there is a distance map. The distance map
reflects distances between the locations of the map, with a lighter shade of gray
denoting a relatively longer distance. On Figure 3, there are the variable maps
that shows how the value of different variables is distributed on the map. The
elections of the years 1954, 1962 and 1966 form their own tight cluster. This
cluster corresponds to the post war years when the combined popularity of the
left wing parties and the Agrarian Union was high. The elections of the years
1958 and 1970 are slightly apart from this cluster. In the 1970 election, Finnish
Rural Party (PS in the variable maps) climbed up to 10.5 per cent, being only
at 1.0 per cent four years earlier. The party had been founded by a former
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Fig. 2. Parliamentary election years organized by the SOM algorithm

member of Agrarian Union. The Agrarian Union, at that time the Centre Party
(KESK) lost popularity: it dropped from 21.2 per cent to 17.1 per cent. This
change is clearly seen on the map. In 1958 election, the inflation rate a year
before the election was high (variable COLI(T-1)) as well as the popularity of
the Democratic League of the People of Finland (LEFT).

The elections of the years 1972 and 1975 form a cluster of their own. The
results of the 1972 elections were quite similar to those of the 1970 elections,
except that the National Coalition Party (KOK) fell from the second place to
the fourth in popularity. The variable maps show clearly that in that period the
inflation rate was exceptionally high.

The elections of the years 1979 and 1983 form their own tight cluster. After
a long period of being in the government, the Centre Party had lost much of its
earlier popularity whereas the popularity of the National Coalition Party was
increasing. The main issues in the 1979 parliamentary election were unemploy-
ment and taxation. In 1979, the unemployment rate was not as high as it is
nowadays (see UNEM variable maps) but it had clearly grown from the earlier
years.

The elections of the years 1987 and 1991 are distant from the main clusters.
This period of time was particularly turbulent in Finnish 20th century history
from the economical point of view. In October 1991, Finland and other EFTA
member countries agreed to form a European Economic Area (EEA) with the EU
from 1993 leading into Finland’s EU membership in 1995. In the 1987 elections,
the National Coalition Party (KOK) and conservative Prime Minister took office
in 1987, heading a coalition government that included the Social Democrats. This
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left the Center party as the opposition for the first time since independence. The
economic collapse of the USSR in 1991 caused a severe recession in Finland due
to severely decreasing exports to Russia. Another factor causing the recession
seems to be the liberalization of foreign loan policies. Korhonen describes this
change as follows: ”Perhaps the most significant change came with the granting
of permission in 1986-1987 to raise long-term loans from abroad. The largest
fundamental change occurred at the start of 1991, when the old comprehensive
restriction was finally repealed; from then on, all foreign exchange dealings not
specifically subject to approval by the Bank of Finland were unrestricted. Now
foreign exchange restrictions remained only on the raising of loans abroad by
private individuals and comparable corporate entities, and these were in turn
lifted in October 1991 in accord with the spirit of the EEA Agreement.”[11]
This change lead into excessive foreign loan taking that appeared to contribute
to the strong overall structural change including, among others, a strong increase
of unemployment. However, when we consider the SOM analysis, these kind of
conclusions cannot be drawn from the analysis results and diagrams alone. On
the other hand, we have taken some time dynamics into account in the analysis
by including ”delayed variables”: for instance, in addition to considering the
unemployment rate at the year of election, we have also included the rate one
and two years earlier.

The most recent elections of the years 1995, 1999 and 2003 form the cluster
that is clearly apart from other elections. The most distinctive aspects include
high level of unemployment, low popularity of the Left Alliance (LEFT), high
popularity of the Greens (GREENS), and low level of turnout (TURNOUT).
The low of turnout has raised questions about the passivity of the voters. How-
ever, at least two possible conclusions could be made. It could be, like often
mentioned, that the politics has become more distant to the citizens due vari-
ous reasons, one of which could be the EU membership and the relatively lower
importance of national legislation. On the other hand, the economical recovery
from the recession period of early 1990s may have increased the general feeling
of satisfaction. This is not supported, though, by the variable maps that indicate
the high degree of negative correlation between unemployment rate and turnout.

3.2 Specific Findings

It is commonly believed that being in the government will cause a popularity
reduction in the next election. Figure 4 shows that this is true for the four largest
parties: Centre Party (KESK), Social Democratic Party (SDP), National Coali-
tion Party (KOK) and Left Alliance (LEFT). This observation is not however
valid for the other parties.

There is a strong negative correlation between the Centre Party (KESK) and
inflation (COLI(T), COLI(T-1) and COLI(T-2)). During high unemployment
the popularity of the Centre Party has been decreasing and during low unem-
ployment it has been increasing. The Centre Party’s position as the largest party
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Fig. 3. The variable maps of all variables used in this study

that has been many times in the government could cause these findings. Voters
have punished it because of unfavorable economic situations or developments.
This interpretation is in harmony with a study made by Lewis-Beck with French
data[15]. The study shows that increasing unemployment and inflation result in
popularity reduction for the French president and prime minister.

The popularity of the National Coalition Party (KOK) has the same fea-
ture as the popularity of the Centre Party. During high unemployment it has
been decreasing and during low unemployment it has been increasing. During the
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existence of the Green League (GREENS) the approval ratings of the Social
Democratic Party and the Greens have had negative correlation. The popularity
of the Left Alliance (LEFT) has been decreasing within the whole period of the
study.

A change that took place in the late 1970s is clearly discernable. Many de-
pendences between variables changed their features. Correlations turned from
negative to positive and vice versa. For example, turnout has a positive cor-
relation with the Change of Gross Domestic Product per Capita (CGDP(T),
CGDP(T-1) and CGDP(T-2)) in the 1950s and 1960s. In the 1990s and 2000s,
there is, on the contrary, a negative correlation. Earlier economic growth has
potentially provided possibilities to be politically active and later it has made
people negligent.

Fig. 4. Being in the government causes popularity reductions for the four largest parties
in the next elections

4 Conclusions and Discussion

We have explored the relationship between parliamentary election results and
political and societal situation in Finland. The data consisted of the parliamen-
tary election results in Finland, the parties in the government by the time of and
before each election, and a number of socioeconomic variables. We have used the
self-organizing map algorithm as the data mining and visualization method. Us-
ing the method, we have been able to show how the parliamentary election results
seem to reflect both the political and societal conditions with a large number of
specific findings discussed above. We suggest that this approach can be used as a
method that can serve as a bridge between qualitative and quantitative methods
(see also [5]). The specific findings can serve as hypotheses that can be further
studied with other statistical methods. In summary, the main ideas for the use
of the data mining methodology includes the possibility of obtaining an overall
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picture, visual detection of correlations, and formation of hypothesis for further
analysis. Future research possibilities include adding other potentially relevant
variables and a more detailed analysis of time dependent phenomena.
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Abstract. A method for generating a self-organizing map of line images is pro-
posed. In the proposed method, called the NG×SOM, a set of data distributions is
represented by a product space organized by a set of neural gas networks (NGs)
and a self-organizing map (SOM). In this paper, it is assumed that the line images
dealt with by the NG×SOM have the same, yet unknown, topology. Thus the task
of the NG×SOM is to generate a map of line images with the same topology, in
which the images are continuously and naturally morphed from one into another.
We applied the NG×SOM to a handwritten character recognition task. The re-
sults obtained show that this method is effective, particularly when the number of
training data is small.

1 Introduction

Shape is one of the most important basic visual clues for recognizing objects. It is,
however, not easy to deal with shapes directly, owing to the difficulty in representing
shapes numerically without losing information. The most usual approach for classify-
ing a set of shapes using a conventional SOM is to transform each object shape into a
numerical vector that describes the shape features. This approach is called shape de-
scription. A large number of features for shape description have been proposed, such
as area-to-square-perimeter ratio, bending energy, moments and so on [1]. Using shape
description, the SOM is expected to represent the continuous change in shape features
in the map space, for example, from a round shape to a jagged shape. In other words,
an intermediate point between two shapes in the map space is expected to represent
the intermediate shape features. It is worth emphasizing that the phrase ‘intermediate
shape features’ does not mean ‘intermediate shape’, because these shape features only
describe the properties relevant to shape, and do not represent the entire shape informa-
tion. Thus it can happen that different shapes with similar features are mapped to the
same point in the SOM. Therefore, to obtain a map of shapes representing a continu-
ous morphing from one shape into another, an appropriate shape representation, that
preserves shape information, needs to be utilized.

One of the most popular approaches in the shape representation field is to represent
the contour or skeleton by a manifold [1,2]. To achieve this, a SOM or another similar
algorithm is employed to represent the manifold [3,4,5,6,7]. In this approach, each dot
in the contour or skeleton is regarded as a data point in the x–y space covered by the
SOM. Thus the shape information is represented by a joint vector (more precisely, a
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tensor of rank 2) of the reference vectors of the SOM. If we have n-object shapes, then
we can obtain n-joint reference vectors organized by n-SOMs. It is, therefore, expected
that a map of the shapes can be obtained, if a meta-SOM is able to deal with a set of
SOMs by regarding the joint vectors as a dataset.

Furukawa proposed an extension of the SOM called the SOM2 or ‘SOM of SOMs’,
that has the ability of dealing with a set of SOMs as a dataset [8,9]. In a SOM2, a set of
SOMs at the lower level (child SOMs or 1st-SOMs) organize maps of a set of datasets,
while a SOM at the upper level (parent SOM or 2nd-SOM) generates a map of the 1st-
SOMs. Since these processes proceed in parallel and have an affect on one another, the
1st-SOM maps are gradually homologized, and the 2nd-SOM represents the continuous
change in these 1st-maps. It has also been shown that a SOM2 can organize a map of
contours using the 1st-SOMs with a circular topology.

In the case of contour representation, it is known that contours have a one-dimensional
closed topology, whereas such prior knowledge is not available in the case of skeleton
representation. The most typical example of this is line image classification, such as
handwritten character recognition, where each character has its own inherent topology.
Therefore, the 1st-SOMs of the SOM2 need to be replaced by another type of vector
quantization technique, that does not have the topological restriction.

The purpose of this paper is to propose an algorithm for line image classification
based on the SOM2. In the proposed method, a set of line images are modeled by the
same number of neural gas (NG) networks instead of the 1st-SOMs. The 2nd-SOM
then classifies these NGs. The resulting architecture is called the NG×SOM. Although
the NG×SOM algorithm was first proposed by Furukawa [8,9], the algorithm intro-
duced here is an improved version that considers topological preservation. The im-
proved NG×SOM has been applied to handwritten character recognition, the results of
which are presented in this paper.

2 Theory and Algorithm

2.1 Theoretical Framework

To clarify the aim of this work, let us consider some typical results produced by an
NG×SOM. In Fig. 1, two maps of handwritten digits are presented. Each NG×SOM
represents the same digit in various handwritten shapes, that continuously morph from
one into another. A thick box indicates the best matching unit (BMU) of the training
data, while the other images are all interpolated by the NG×SOM. The dots constituting
the digits are reference vectors of the NGs. For the purpose of this paper, the task of an
NG×SOM is defined as follows.

– Organize a self-organizing map of line images, in which the images are continu-
ously morphed.

– The line images input into each NG×SOM are assumed to have the same (yet
unknown) topology. This means that the NG×SOM is expected to represent the
continuous shape change in the same character, e.g., a handwritten ‘A’ into another
handwritten ‘A’. Morphing from one character into another character (e.g., from ‘A’
into ‘B’) is not considered. This postulate is required to give a theoretical definition
of the distance measure between two images.
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Fig. 1. Maps of handwritten digits ‘3’, and ‘9’ organized by two NG×SOMs. Thick boxes indicate
the best matching units of the training data, while the other images are all interpolated.

(a)

(b) (c)

Fig. 2. One-dimensional NG×SOM map representing shapes morphing from a square into a cir-
cle. (a) Given line images. (b) Organized map. (c) Reference vectors of the NGs with the same
index form a ‘fiber’. Fibers are indicated by dotted lines.

To achieve this, the NG×SOM is required to solve the following tasks:

– Ascertaining key points in the given line images.
– Ascertaining the correspondence of key points in the given images.
– Ordering the given images so that the key points move continuously.
– Interpolating between given line images by tracing movements of the key points.

In an NG×SOM, such key points are represented by the reference vectors of the NGs.
Reference vectors with the same index are connected to one another by a string, known
as a ‘fiber’, which represents the continuous movement of the key point. Thus the mor-
phing from one image into another is represented by a bundle of fibers as illustrated
in Fig. 2.
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2.2 Architecture of the NG×SOM

Fig. 3 shows the architecture of the NG×SOM, which consists of a set of NGs called
‘1st-NGs’ and a meta-SOM called the ‘2nd-SOM’. The task of the 1st-NGs is to repre-
sent the shapes of the given line images, while the task of the 2nd-SOM is to organize
a map of shapes represented by the 1st-NGs. The 1st-NGs and 2nd-SOM are updated
reciprocally due to their ability of affecting one another.

Now suppose that we have I line images, consisting of black dots on a white back-
ground. The i-th image is regarded as a dataset Xi = {xi j} = {(xi j, yi j)}. Here (xi j, yi j)
denotes the position of the j-th black dot in the i-th image. More generally, it is also
possible to add some local feature information around the dots, such as line orientation,
color, and so on. By letting z(x, y) be the local feature at (x, y), each dot is represented
by a D-dimensional vector xi j = (xi j, yi j, z(xi j, yi j)) ∈ RD.

The task of the 1st-NGs is to model each data distribution using I 1st-NGs, all with
the same structure, i.e., the same number of reference vector units. Let the 1st-NGs
have L reference vectors, which are denoted by vil ∈ RD (l = 1, . . . , L). A tensor Vi =

(vi1, . . . , viL) ∈ RL×D is referred to as the ‘NG tensor’, which represents the i-th 1st-NG.
Suppose further that the 2nd-SOM has K reference vector units {W1, . . . ,WK}, where

Wk ∈ RL×D. Thus Wk is also regarded as a tensor of rank 2, consisting of L reference
vectors Wk = (wk1, . . . ,wkL). Here Wk is referred to as the ‘reference NG tensor’. The
2nd-SOM organizes a map of the 1st-NGs by regarding {Vi} as a dataset. A fiber is de-
fined as a string connecting reference vectors of the 2nd-SOM that have the same index.
Thus the l-th fiber is represented by Fl = (w1l, . . . ,wKl) ∈ RK×D. Here Fl is referred to
as the ‘fiber tensor’. The 2nd-SOM forms a nonlinear product space represented by the
reference NG tensors and the fiber tensors, in other words, a stack of sections {Wk}
and a bundle of fibers {Fl}. It is worth noting that every reference NG tensor acts as an
ordinary reference vector unit in the 2nd-SOM, and the NG×SOM does not consist of
NG modules.

The algorithm for the NG×SOM is summarized below [8,9]. The i-th 1st-NG learns
the dot distribution of the i-th line image, and updates the NG tensor Vi. The 2nd-
SOM learns a set of NG tensors by regarding them as ordinary data vectors. After the

1st-NGs

2nd-SOM

Given images

Fig. 3. Architecture of the NG×SOM. The given images are modeled by the same number of
1st-NGs. The 2nd-SOM organizes a map of the 1st-NGs by regarding them as data vectors. The
BMUs in the 2nd-SOM are fed back to the corresponding 1st-NGs as the initial state for the next
iteration.
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reference NG tensors {Wk} in the 2nd-SOM are updated, the best matching reference
NG tensor is copied to the corresponding NG tensor, which becomes the initial state
of the next iteration of the 1st-NG learning. Thus the 1st-NGs and the 2nd-SOM are
updated in parallel due to their affecting one another. By iterating these processes, the
key points represented by the 1st-NGs are gradually homologized, and a continuous
map of the NGs is organized in the 2nd-SOM.

2.3 Improved NG×SOM Algorithm

In the original NG×SOM proposal [8,9], the normal NG algorithm [10,11] is adopted
without any modifications. Thus each 1st-NG learns the data distribution independently,
and the 2nd-SOM then orders these. In the NG×SOM proposed in this paper, an essen-
tial improvement is made to consider topology preservation.

In the improved algorithm, both the 1st-NGs and the 2nd-SOM are connected by
fibers. Thus the l-th fiber represented by the 1st-NGs is defined as the fiber tensor Gl =

(v1l, . . . , vIl) ∈ RI×D. This means that the set of 1st-NGs can be regarded as a unified
1st-NG, the reference units of which are the fiber tensors {Gl}. Hereafter the {Gl} are
referred to as the ‘reference fiber tensor’ of the unified 1st-NG.

By introducing the concept of fibers, the algorithm for the 1st-NGs can be modified at
several points. The first modification involves introducing the concept of the neighbor-
hood function to the 1st-NGs as well. In the original NG×SOM algorithm, the learning
weight of each reference vector is determined independently for 1st-NGs. This means
that even if vil1 and vil2 are neighbors in the i-th NG (i.e., vil2 is given a large learn-
ing weight when vil1 becomes the winner of the data), this is not necessarily the same
in other NGs. In the improved algorithm, the learning weights are determined by the
neighborhood function as in the SOM. The neighborhood relations are the same for all
1st-NGs, because the distance is defined between two fibers. Now let d f (l1, l2) denote
the distance from the l1-th fiber to the l2-th fiber. In this paper, d f (l1, l2) is determined
as follows.

d f (l1, l2) �
1
K

K∑
k=1

rank(wkl1 ,wkl2 ) (1)

Here rank(wkl1 ,wkl2) gives the rank of wkl2 from wkl1 , i.e., rank(wkl1 ,wkl2 ) = n if wkl2 is
the n-th nearest neighbor of wkl1 . Note that d f (l1, l2) = 0 if, and only if, l1 = l2. (Strictly
speaking, d f (·, ·) is a quasi-distance measure, since d f (l1, l2) � d f (l2, l1).) The learning
weight is then determined by using the neighborhood function and this distance table.
Unlike in the SOM, the distance table d f (l1, l2) is also updated at every iteration of
the NG×SOM algorithm; if the distance table is fixed through learning, the algorithm
resembles that for the SOM2 instead of for the NG×SOM.

The second modification controls the winning rate. By using the NG algorithm, ev-
ery reference vector wins more or less an equal number of data points after learning.
(Strictly speaking, the magnification factor should also be considered.) This means that
the winning rates of the 1st-NGs are controlled individually in the original algorithm,
so that each reference vector unit becomes a BMU more or less equally. In the improved
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(b) (c)

(a)

Fig. 4. Winning rate control. (a) Three line images given to the NG×SOM. (b) Nonexistent strokes
appearing in the NG×SOM using the original algorithm. (c) Continuous change in strokes is well
represented using the improved algorithm.

algorithm, the winning rates of the fibers (Gl), not the reference vectors (vil), are con-
sidered. Thus the winning rates of the reference vectors will not necessarily be equal,
as long as the winning rates are almost equal for all fibers. The reason for this improve-
ment is that the key points (i.e., the reference vectors) are expected to be assigned to
the same stroke (line) in the images. For example, the reference vectors assigned to
the horizontal stroke of the letter ‘A’ are expected to represent the same stroke for all
images of ‘A’, regardless of whether the stroke is long or short.

Fig. 4 shows the difference between the original and the improved NG×SOM al-
gorithms. Using the original algorithm, the assigned stroke of each reference vector
is changed depending on the stroke length. As a result, nonexistent strokes appeared
between two existing strokes in the 2nd-SOM (Fig. 4 (b)). This phenomenon did not
occur when using the improved algorithm, and the assigned strokes were consistent for
all 1st-NGs.

2.4 Algorithm for the Improved NG×SOM

Taking the above points into consideration, the improved algorithm is described below.

Step 1: Learning process of the 1st-NGs
In step 1, each 1st-NG is updated by the following equations.

l∗i j(t) = arg min
l
‖xi j − ṽil(t)‖ (2)

βl
i j(t) =

p̄l∗i j

p
l∗i j

i

exp

⎡⎢⎢⎢⎢⎢⎣−d2
f (l, l

∗
i j(t))

2σ2
1(t)

⎤⎥⎥⎥⎥⎥⎦ (3)

vil(t) = (1 − ε)ṽil(t) + ε

∑J
j=1 β

l
i j(t)x

i j

∑J
j′=1 β

l
i j′ (t)

(4)

Here ṽil(t) is the initial state of vil at calculation time t, which is obtained from step 4
in the preceding iteration. σ1(t) is the neighborhood size of the 1st-NGs, and p̄l and pl

i
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are the winning rates of the l-th reference fiber and the l-th reference vector in the i-th
1st-NG, respectively. Thus,

pl
i �

∑J
j=1 δ(l

∗
i j, l)

J
(5)

p̄l �

∑I
i=1

∑J
j=1 δ(l

∗
i j, l)

IJ
. (6)

Here δ(·, ·) is Kronecker’s delta function.

Step 2: Learning process of the 2nd-SOM
In step 2, the 2nd-SOM is updated by the conventional batch SOM algorithm, whilst
regarding {Vi(t)} as a dataset.

k∗i (t) = arg min
k
‖Vi(t) −Wk(t)‖ (7)

αk
i = exp

⎡⎢⎢⎢⎢⎣−d2
s (k, k∗i (t))

2σ2
2(t)

⎤⎥⎥⎥⎥⎦ (8)

Wk(t) =

∑I
i=1 α

k
i (t)Vi(t)∑I

i′=1 α
k
i′ (t)

(9)

Here ds(k1, k2) gives the distance between two reference NG tensors in the map space.

Step 3: Updating the distance table
In step 3, the distance table d f (l1, l2) is updated according to (1).

Step 4: Feedback from the 2nd-SOM to the 1st-NGs
Finally, the best matching reference NG tensors are copied to the corresponding 1st-
NGs. Thus,

Ṽ(t + 1) =Wk∗i (t). (10)

The above four processes are iterated whilst reducing the neighborhood size.

3 Application to Handwritten Character Recognition

3.1 Method

To investigate the ability of the NG×SOM, we performed a recognition experiment
on handwritten digits using the NIST handwritten character database (NIST special
database 19) [12]. Before applying the NG×SOM, all images were processed by a me-
dian filter to remove noise. A set of angle filters was then used to describe the local
features (Fig. 5(a)). The output from these filters is the ratio of the “black pixels in the
fan shape area” to “all the pixels in the fan-shape area”. Twelve filters, tuned every 30◦,
were used to transform every dot into a 14-dimensional data vector.

To recognize digits, we used 10 NG×SOMs corresponding to ‘0’,. . . ,‘9’. After gen-
erating 10 maps of handwritten digits from the training dataset, the recognition rate
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was measured for 10,000 test data which were not used during the training phase. The
recognition rates were measured whilst changing the number of training data. To com-
pare the effectiveness, two different methods were employed. One is the simple nearest
neighbor method using all training data as reference patterns. The other method uses a
set of conventional SOMs, each of which represents pixel images of the corresponding
digit. In both methods, each pixel image was transformed into a data vector with (64
pixel)×(64 pixel)×(12 angle filters)= 49, 152 dimensions. The number of reference pat-
terns was 64 patterns/digit for the NG×SOMs and SOMs, which is equal to the number
of training patterns in the case of the simple nearest neighbor method.

Fig. 5 (b) shows the recognition rate of the NG×SOM, the conventional SOM and
the simple nearest neighbor method. Some of the representative maps generated by the
NG×SOMs are shown in Fig. 1 and Fig. 6 (b), while a map organized by the conven-
tional SOM is shown in Fig. 6 (a). In these figures, the number of training data was
100, i.e., 10 patterns/digit. In spite of the small number of training data, the average
recognition rate of the NG×SOM was sufficiently high (94.69%). When the number of
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Fig. 5. (a) Angle filter used in the simulation. (b) Recognition rate of handwritten digits.

(a) SOM (b) NG×SOM

Fig. 6. Maps of handwritten ‘4’ organized by SOM (a) and NG×SOM (b)
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training data was increased, the recognition rate of NG×SOM also improved to 98.32%.
The reason for the high recognition rate is that the NG×SOM interpolates ‘intermediate
digit shapes’ from the training images.

4 Conclusion

In this paper, we proposed a novel shape classification method using an NG×SOM. The
simulation results showed this method’s high ability for shape representation and clas-
sification. This ability was also confirmed by the high recognition rate of handwritten
characters.

In this paper, we assumed that the topology of shapes was homogeneous. It would
be interesting to investigate how to deal with shapes with heterogeneous topologies
and also natural images with similar topological structures, such as face images. These
issues will be explored in future studies.
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Abstract. In our earlier work, we found that feature space induced
by tactile receptive fields (TRFs) are better than that by visual recep-
tive fields (VRFs) in texture boundary detection tasks. This suggests
that TRFs could be intimately associated with texture-like input. In this
paper, we investigate how TRFs can develop in a cortical learning
context. Our main hypothesis is that TRFs can be self-organized us-
ing the same cortical development mechanism found in the visual cortex,
simply by exposing it to texture-like inputs (as opposed to natural-scene-
like inputs). To test our hypothesis, we used the LISSOM model of visual
cortical development. Our main results show that texture-like inputs lead
to the self-organization of TRFs while natural-scene-like inputs lead to
VRFs. These results suggest that TRFs can better represent texture than
VRFs. We further analyzed the effectiveness of TRFs in representing
texture, using kernel Fisher discriminant (KFD) and the results, along
with texture classification performance, confirm that this is indeed the
case. We expect these results to help us better understand the nature of
texture, as a fundamentally tactile property.

1 Introduction

Humans process sensory information from different specialized modalities (e.g.,
vision, touch, and hearing), yet relatively little is known about how specific input
stimuli affect the cortical organization. Textural patterns have been studied as
important cues that help form the sensory cortex [1]. In our earlier work, tactile
representation was found to be better than vision-based ones in texture tasks
[2]. Given computational models based on visual receptive fields (VRFs) [3]
and tactile receptive fields (TRFs) (Fig. 1) [4], those based on TRFs showed
a significantly superior texture boundary detection performance compared to
those based on VRFs (t-test: n = 100, p < 0.03) [2]. This suggests that TRFs
are intimately related with texture-like input, and that texture is fundamentally
tactile.

In this paper, we investigate how TRFs can self-organize and if texture-like
input play a key role. Our main hypothesis is that TRFs can be self-organized

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 228–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Self-Organization of TRF: Exploring Their Textural Origin 229

Fig. 1. Tactile Receptive Fields (TRFs). TRFs found in the somatosensory area 3b are
similar to visual receptive fields (VRFs) (marked C1 and C2, representing inhibitory
and excitatory blobs) but there is an added dynamic inhibitory component (marked
C3). C3’s position relative to the fixed components change, centered at “X”, depending
on the direction of scan of the tactile surface, e.g., the finger tip (right). The arrow on
the finger tip shows the scan direction; the solid outline box shows how the dynamic
inhibitory component is shifted (white arrow) in the opposite direction of the scan; and
the dotted outline box shows the resulting TRF shape. Adapted from [5] (also see [4]).

using the a visual cortical development model by simply exposing it to texture-
like inputs. In order to test our hypothesis, we used the LISSOM (Laterally
Interconnected Synergetically Self-Organizing Map) model which was originally
developed to model the self-organization of the visual cortex [6]. However, the
LISSOM model is actually a more general model of how the cortex (in general)
organizes to represent correlations in the sensory input, regardless of the input
modality. Thus, LISSOM should work equally well in modeling the development
of non-visual sensory modalities (e.g., see [7]).

Our main results show that texture-like inputs lead to the self-organization
of TRFs while natural-scene-like inputs lead to VRFs. This result proposes that
TRFs could have become accommodated to (surface) textures with a regular
repetition of pattern, while VRFs adjusted to handle natural scenes containing
various objects and backgrounds that do not repeat over space. We further an-
alyzed the effectiveness of the TRFs and VRFs in representing texture, using
kernel Fisher discriminant analysis (KFD) [8]. The results confirmed that TRFs
are better suited for textures than VRFs.

The rest of this paper is organized as follows. Section 2 describes the process
and results of self-organization using LISSOM. In section 3, a manifold analysis
(KFD) for the TRF and VRF feature space is given. Section 4 discusses issues
arising from our work, followed by the conclusion in section 5.
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Fig. 2. Self-organization process with LISSOM. Given a large image, motion of the
gaze window results in a sequence of inputs being generated on the LISSOM retina,
which in turn activates the lateral geniculate nucleus (LGN) ON/OFF sheets, one by
one, depending on the sheet’s built-in delay. After projecting the activities from the
LGN ON/OFF sheets, V1 (the primary visual cortex) self-organizes its RFs and lateral
connections (excitatory and inhibitory). LISSOM figure adapted from [6].

Fig. 3. Sample Input Patterns. The top row shows natural scenes and the bottom row
textures used in our experiments. Note that the texture set has texture elements at
varying scales. Adapted from [5].

2 Self-Organization of the Tactile Receptive Fields

In order to investigate the developmental origin of TRFs, we used the Topograph-
ica neural map simulator package (http://topographica.org) [9,6]. Topographica
implements a superset of the LISSOM model.

Fig. 2 shows the experimental process we followed to develop self-organized
RFs. We generated input stimulus that are natural-scene-like or texture-like,
while sampling across the input image with the retina. Fig. 3 shows the inputs
we used: natural-scenes and textures.

Given an image, we randomly picked an initial location and moved the gaze
window in a random direction along a straight line at a fixed interval. Moving
input on an image following a scanning direction are presented on the retina in
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discrete time steps, like frames of a movie. At each time step t, all LGN cells
calculate their activities with lag t one after another as a scalar product of a
fixed weight vector (standard on-center/off-surround and vice versa) and input
response on the retinal sheet. Each V1 neuron computes its initial response like
that of an LGN cell. After the initial response, the V1 activity settles through
short-range excitatory and long-range inhibitory lateral interaction. Note that
for the texture input, the above process simulates the somatosensory pathway,
starting with the texture image standing in for raw mechanoreceptor array acti-
vations. After the activity has settled, the connection weights of each V1 neuron
are modified according to the normalized Hebbian learning rule. The weakest
connections are eliminated periodically, resulting in self-organized patterns sim-
ilar to those observed in the cerebral cortex. See [6] for details.

For the simulation reported in this paper, four 24×24 LGN-ON cell sheets
and four 24×24 LGN-OFF cell sheets received input from a 48×48 retinal sheet,
and a 48×48 V1 sheet was used to self-organize the RFs. The learning param-
eters were the same as in the basic LISSOM model in Topographica [6] with
small modification of several scaling factors for low-contrast inputs of images as
described in the appendices of [6].

Fig. 4 shows the self-organized RFs of six representative V1 neurons trained
with texture-like input and natural-scene-like input after 20,000 training itera-
tions. The self-organized RFs produced from LISSOM with the texture input set
are visualized in Fig. 4a. The neurons developed spatiotemporal RFs strongly
resembling tactile RFs found in the somatosensory cortex (Fig. 1) [4]: excitatory
(bright) and inhibitory (dark) components of each neuron consists of ring and
blob-like features. Note that these RF shapes arise not because circular texture
elements dominate the texture input set we used. There are interesting varia-
tions as well, such as the last three columns in Fig. 4a. In those RFs, the polarity
is reversed, i.e., instead of an excitatory region in the middle and inhibitory re-
gion in the surround, these RFs have an inhibitory region in the middle and the
excitatory region in the surround.

On the other hand, RFs self-organized based on natural-scene-like inputs
show a significantly different pattern. Nearly all neurons in Fig. 4b developed
spatiotemporal RFs strongly selective for both direction and orientation. The re-
ceptive fields consist of excitatory (bright) and inhibitory (dark) lobes according
to the preferred orientation and direction of the neuron, showing spatiotemporal
preference. That is, each neuron is highly responsive to a line with a particular
orientation moving in a direction perpendicular to that orientation. Such prop-
erties of the receptive fields are similar to those of the receptive fields of neurons
found experimentally in the visual cortex [10].

The overall layout (i.e., map organization) of the RFs developed in these sim-
ulations is shown in Fig. 5 (roughly every 3rd neuron is plotted, horizontally and
vertically). The texture input set we used show texture elements at varying scales,
however, on closer observation, the size of the receptive field (15 × 15) is usually
smaller than the round or oval features in the texture input set. So, these receptive
fields are not direct memorization of the dominant features in the texture input
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(a) Texture-based (b) Natural-scene-based

Fig. 4. RFs Resulting from Self-Organization on the Natural Scene Input Set. Six
spatiotemporal RFs from (a) the texture (b) the natural-scene based experiments are
shown. Each column corresponds to an individual neuron’s RF, and each column rep-
resents the different time-lag. In (a), the RF shapes resemble the ring-like shape of
tactile RFs found in [4] (also see Fig. 1). In (b) we can see that the pattern moves in
a direction perpendicular to the orientation preference as in [10]. Adapted from [5].

(a) Texture-based (b) Natural-scene-based

Fig. 5. RFs Resulting from Self-Organization on (a) the Texture Input Set and (b) the
Natural-Scene Input Set. From the 48 × 48 cortex, only 15 × 15 are plotted (roughly
every 3rd RF) for a detailed view of the RFs. The RFs in (a) mostly resemble tactile
RFs while the RFs in (b) mostly resemble visual RFs. Adapted from [5].

set. Note that Fig. 5 only shows the first frame among the total of four (note that
these are spatiotemporal RFs). Fig. 5b shows the map trained with natural inputs,
and here we can see most RFs have a oriented Gabor-like property, just like in the
visual cortex [6]. Fig. 6 shows the orientation selectivity histograms for the two
maps: texture-based and natural-scene-based. The natural-scene based map (i.e.,
the “visual” map) shows a much higher orientation selectivity.

The results show that exposure to texture-like input can drive a general cor-
tical learning model to develop RFs that resemble tactile RFs, while exposure
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(a) Texture-based (b) Natural-scene-based

Fig. 6. Selectivity in Orientation Maps. The orientation selectivity histogram are shown
for the two 48 × 48 V1 sheets (maps): (a) texture-based map, and (b) natural-scene-
based map. As we can already see from Fig. 5, the map trained with natural scenes
show much higher selectivity (peak near 0.45), compared to the case with textures
(peak near 0.25). Note that higher selectivity means that RFs are more sharply tuned
to one specific orientation (i.e., RFs are more slender).

to natural-scene-like input leads to visual RFs. The significance of this results is
that it shows an intimate connection between texture and the tactile modality.

3 Manifold Analysis of RF Response

The responses of the RFs are represented in high-dimensional feature spaces, and
it is hard to interpret. An effective approach for analyzing the characteristics of
the responses is to assume that the responses of each RF lie on a non-linear low-
dimensional manifold embedded in the high dimensional feature space. Each
embedded manifold is spanned by a few dominant factors. In order to find the
dominant factors of the features, we applied kernel Fisher discriminant (KFD)
[11] to the feature spaces of the RF response. Here, we briefly review KFD.

KFD is a generalized version of Fisher discriminant analysis (or linear dis-
criminant analysis, LDA) using kernel trick as in support vector machines or
kernel principal component analysis [12]. The basis function in the feature space
can be obtained by maximizing the ratio of the within-class scatter matrix in
the feature space to the between-class scatter matrix in the feature space, as
in LDA. Let Xi = {xi

1, x
i
2, ..., x

i
li
}, (i = 1, ..., C), be samples from C classes and

X =
⋃C

i Xi. Suppose Φ(·) is a nonlinear mapping function to the feature space,
then the within-class scatter matrix in feature space, SΦ

W , is given by

SΦ
W =

C∑
i=1

∑
x∈Xi

(Φ(x) − mΦ
i )(Φ(x) − mΦ

i )T , (1)
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(a) TRF feature space (b) VRF feature space

Fig. 7. Kernel Fisher discriminant (KFD) feature spaces for TRF and VRF responses.
KFD analysis of (a) TRF and (b) VRF responses to texture-like input are shown. In
each plot, response samples from three different textures, projected on the 1st and 2nd
KFD axes, are shown. The ellipses show the 1.5 × σ equidistance trace from the class
centers. We can see that the classes in (a) are more separable than those in (b).

Fig. 8. Comparison of texture classification rate based on TRF response (left) and VRF
response (right) to texture-like input is shown. The box plot shows the quartile, me-
dian, and the upper quartile, while the whiskers show 1.5 times the interquartile range
(“+” marks outliers, n = 30). TRF-based response shows higher texture classification
performance.

where mΦ
i = 1

li

∑li
j=1 Φ(xi

j). The between-class scatter matrix in feature space
is given by SΦ

B = SΦ
T − SΦ

W , where the total scatter matrix in feature space,
SΦ

T , is given by

SΦ
T =

∑
x∈X

(Φ(x) − mΦ)(Φ(x) − mΦ)T , (2)

where mΦ = 1
|X |
∑C

i=1 lim
Φ
i and |X | is the sample size.

We applied KFD to the responses of TRF and VRF on texture-like inputs
(three textures were from Fig. 3). Fig. 7 shows the two different embedded
manifold (TRF-based and VRF-based) in two-dimensional space. We used the
square root function as the kernel function for both cases. The figure shows that
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the TRF responses give clusters that are more separable across texture classes
than those based on VRF responses.

In order to further quantify the merit of the different RF types in dealing
with texture, we measured the classification performance on the KFD results.
We ran the experiment for 30 times and for each experiment 50% of data set was
randomly chosen as training data and the rest as testing data. As a classifier,
k-nearest neighbor (kNN) was used. Fig. 8 shows the boxplot of the classification
rate for both RFs on texture-like inputs. The averages were 89.8% (for TRF-
based) and 83.4% (for VRF-based), respectively. We can see that TRF is better
than VRF in texture classification task. Another interesting thing is that the
standard deviation in the TRF case (= 0.0121) is less than that of the VRF case
(= 0.0156), which means that the performance of the TRF-based representation
is more stable than that of the VRF. We also conducted a similar experiment, this
time on natural-scene inputs, but the results were inconclusive, i.e., both TRFs
and VRFs showed an equal level of (high) performance in the scene classification
task. We are currently investigating the cause, since we expected VRFs to be
better than TRFs for this task.

4 Discussion and Conclusion

The main contribution of this work is to have shown a developmental and a
functional relationship between tactile RFs and texture. We have shown that
texture-like input can drive the self-organization of tactile RFs, and tactile RFs
are more effective in dealing with texture than visual RFs. The novelty of our
result is not that it showed changed RF organization due to altered stimulus
statistics, since that is already well-established (see [6] for a review). The novelty
of our work is more specific, by explicitly linking texture to tactile RF develop-
ment. The results in this paper further confirm our initial insight on the nature
of texture: texture as a surface property in 3D [13]. From a computational per-
spective, it is also interesting to note that the TRF response distribution shows
a power-law property, which is known to indicate sparse representations (see [5]
for the data). Sparse coding is known to provide an efficient representation for
natural scenes and receptive field characteristics, similar to those found in the
primary visual cortex [14]. Finally, it would be interesting to apply our finding
in the investigation of visuo-tactile integration in the blind. The use of texture
as the stimulus can help tease out the common functional processes in the two
different modalities (cf. [15]).

To conclude, the main objective of this work was to confirm the relationship
between tactile RFs and texture. The results suggest that tactile RFs can be
self-organized by texture-like input using a general cortical development model
(LISSOM) initially inspired by the visual cortex, and that the representations
from tactile RFs are better than vision-based ones for texture tasks. We expect
our results to help us better understand the nature of texture, as a fundamentally
tactile property.
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Abstract. We apply a recent formalization of visualization as informa-
tion retrieval to linear projections. We introduce a method that
optimizes a linear projection for an information retrieval task: retrieving
neighbors of input samples based on their low-dimensional visualization
coordinates only. The simple linear projection makes the method easy to
interpret, while the visualization task is made well-defined by the novel
information retrieval criterion. The method has a further advantage: it
projects input features, but the input neighborhoods it preserves can be
given separately from the input features, e.g. by external data of sample
similarities. Thus the visualization can reveal the relationship between
data features and complicated data similarities. We further extend the
method to kernel-based projections.

Keywords: visualization, information retrieval, linear projection.

1 Introduction

Linear projections are widely used to visualize high-dimensional data. They have
the advantage of easy interpretation: each axis in the visualization is a simple
combination of original data features, which in turn often have clear meanings.
Linear projections are also fast to apply to new data. In contrast, nonlinear pro-
jections can be hard to interpret, if a functional form of the mapping is available
at all. Some nonlinear methods also need much computation or approximation
of the mapping to embed new points. Kernel-based projections are a middle
ground between linear and nonlinear projections; their computation is linear in
the kernel space, and their interpretability depends on the chosen kernel.

The crucial question in linear visualization is what criterion to use for find-
ing the projection. Traditional answers include preservation of maximum
variance as in principal component analysis (PCA); preservation of an indepen-
dence structure as in independent component analysis; preservation of distances
and pairwise constraints as in [1]; or maximization of class predictive power as in
linear discriminant analysis, informative discriminant analysis [2], neighborhood
components analysis [3], metric learning by collapsing classes [4], and others.

When the linear projection is intended for visualization, the previous criteria
are insufficient, as they are only indirectly related to visualization. One must

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 237–245, 2009.
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first formalize what is the task of visualization, and what are good performance
measures for the task. This question has recently been answered in [5], where the
task of visualization is formalized as an information retrieval task, and goodness
measures are derived which are generalizations of precision and recall. Based on
the goodness measures one can form an optimization criterion, and directly op-
timize the goodness of a visualization in the information retrieval task ; however,
so far this approach has only been used for nonlinear embedding where output
coordinates are directly optimized without any parametric mapping [5,6].

We introduce a novel method for linear and kernel-based visualization called
Linear Neighbor Retrieval Visualizer (LINNEA): we apply the formalization of
visualization as an information retrieval task, and optimize precision and recall
of such retrieval. A useful property is that the input features being projected and
the distances used to compute the input neighborhoods can be given separately:
for example, features can be word occurrence vectors of text documents and
distances can be distances of the documents in a citation graph. In special cases,
LINNEA is related to the methods stochastic neighbor embedding [7] and metric
learning by collapsing classes [4], but it is more general; it can be used for
unsupervised and supervised visualization, and allows the user to set the tradeoff
between precision and recall of information retrieval. We show by preliminary
experiments that LINNEA yields good visualizations of several data sets.

2 Visualization as Information Retrieval

We briefly summarize the novel formalization of visualization introduced in [5].
The task is visualization of neighborhood or proximity relationships within a

high-dimensional data set. For a set of input points xi ∈ R
d0 , i = 1, . . . , N ,

a visualization method yields output coordinates yi ∈ R
d, which should reveal

the neighborhood relationships. This is formalized as an information retrieval
task : for any data point, the visualization should allow the user to retrieve its
neighboring data points in the original high-dimensional data. Perfect retrieval
from a low-dimensional visualization is usually not possible, and the retrieval
will make two kinds of errors: not retrieving a neighbor decreases recall of the
retrieval, and erroneously retrieving a non-neighbor decreases precision.

To apply the information retrieval concepts of precision and recall to visual-
ization, in [5] they are generalized to continuous and probabilistic measures as
follows. For each point i, a neighborhood probability distribution pi,j over all other
points j is defined; in [5] an exponentially decaying probability based on input
distances d(xi,xj) is used. In this paper we allow the d(xi,xj) to arise from any
definition of distance between points i and j. The retrieval of points from the
visualization is also probabilistic: for each point i a distribution qi,j is defined
which tells the probability that a particular nearby point j is retrieved from
the visualization. The qi,j are defined similarly to the pi,j , but using Euclidean
distances ||yi − yj || between visualization coordinates yi. This yields

pi,j =
e−d2(xi,xj)/2σ2

i∑
k �=i e−d2(xi,xk)/2σ2

i

, qi,j =
e−||yi−yj||2/2σ2

i∑
k �=i e−||yi−yk||2/2σ2

i

(1)
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where σi are scale parameters which can be set by fixing the entropy of the pi,j

as suggested in [5]. Since pi,j and qi,j are probability distributions, it is natural
to use Kullback-Leibler divergences to measure how well the retrieved distri-
butions correspond to the input neighborhoods. The divergence DKL(pi, qi) =∑

j �=i pi,j log(pi,j/qi,j) turns out to be a generalization of recall and DKL(qi, pi)
turns out to be a generalization of precision. The values of the divergences are
averaged over points i which yields the final goodness measures.

3 The Method: Linear Neighborhood Retrieval Visualizer

The generalizations of precision and recall above can be directly used as opti-
mization goals, but as both precision and recall cannot usually be maximized
together, the user must set a tradeoff between them. Given the tradeoff a sin-
gle cost function can be defined and visualizations can be directly optimized
in terms of the cost function. In the earlier works [5,6] this approach was used
to compute a nonlinear embedding, that is, the output coordinates yi of data
points were optimized directly. In this paper we instead consider a parametric,
linear projection yi = Wxi where W ∈ R

d×d0 is the projection matrix. We wish
to optimize W so that the projection is good for the information retrieval task
of visualization. We call the method Linear Neighborhood Retrieval Visualizer
(LINNEA). We use the same cost function as in [5], that is,

E = λ
∑

i

DKL(pi, qi) + (1 − λ)
∑

i

DKL(qi, pi)

=
∑

i

∑
j �=i

[
−λpi,j log qi,j + (1 − λ)qi,j log

qi,j

pi,j

]
+ const. (2)

where the tradeoff parameter λ is to be set by the user to reflect whether precision
or recall is more important. We simply use a conjugate gradient algorithm to
minimize E with respect to the matrix W. The gradient ∂E

∂W is

∑
i,j �=i

[
λ(pi,j −qi,j)+(1−λ)qi,j

(
DKL(qi, pi)− log

qi,j

pi,j

)] (yi − yj)(xi − xj)T

σ2
i

(3)

which yields O(N2) computational complexity per gradient step.

Optimization details. In this paper we simply initialize the elements of W to
uniform random numbers between 0 and 1; more complicated initialization, say
by initializing W as a principal component analysis projection, is naturally pos-
sible. To avoid local optima, we use two simple methods. Firstly, in each run we
first set the neighborhood scales to large values, and decrease them after each
optimization step until the final scales are reached, after which we run 40 con-
jugate gradient steps with the final scales. Secondly, we run the algorithm from
10 random initializations and take the result with the best cost function value.
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3.1 Kernel Version

We now present a kernel version of LINNEA. Instead of simple linear projections
we optimize projections from a kernel space: we set yi = WΦ(xi) where Φ(·) is
some nonlinear transformation to a potentially infinite-dimensional space with
inner products given by a kernel function k(xi,xj) = Φ(xi)T Φ(xj). As usual,
the kernel turns out to be all we need and knowing Φ is not required.

The task is the same as before: to optimize the projection (visualization) so
that it is good for information retrieval according to the cost function (2).

It is reasonable to assume that the rows wT
l of W can be expressed as lin-

ear combinations of the Φ(xi), so that wl =
∑

m al
mΦ(xm) where al

m are the
coefficients. Then the projection has the simple form

yi =
[∑

m

a1
mΦ(xm), . . . ,

∑
m

ad
mΦ(xm)

]T
Φ(xi) = AK(xi) (4)

where the matrix A ∈ R
d×N contains the coefficients A(l, m) = al

m and K(xi) =
[k(x1,xi), . . . , k(xN ,xi)]T . As before, the coordinates yi can be used to compute
the neighborhoods qi,j , the cost function, and so on.

To optimize this kernel-based projection, it is sufficient to optimize the cost
function with respect to the coefficient matrix A. We can again use a standard
conjugate gradient method: the gradient with respect to A is the same as equa-
tion (3), except that xi and xj are replaced by K(xi) and K(xj). Since A has
N columns, the computational complexity becomes O(N3) per gradient step.

3.2 Properties of LINNEA

A crucial property of LINNEA is that the input features xi being projected and
the distances d(xi,xj) used to compute the input neighborhoods can be given
separately. At simplest d(xi,xj) can be the Euclidean distance ||xi −xj ||, but it
can also be based on other data: for example, xi can be word occurrence vectors
of text documents and d(xi,xj) can be distances of the documents in a citation
graph (we test this example in Section 4). When distances are directly computed
from input features, the projection is unsupervised. When distances are given
separately the projection is supervised by the distances; then the projection is
optimized to allow retrieval of neighbors which are based on the separately given
distances, so it reveals the relationship between the features and the distances.

Note that a visualization based on the distances only, say multidimensional
scaling computed from citation graph distances between documents, would not
provide any relationship between the visualization and the features (document
content); in contrast, the LINNEA visualization is directly a projection of the
features, which is optimized for retrieval of neighbors based on the distances.

If we set λ = 1 in (2), that is, we maximize recall, this yields the cost function
of stochastic neighbor embedding (SNE; [7]); thus LINNEA includes a linear
version of SNE as a special case. More generally, the cost function of LINNEA
implements a flexible user-defined tradeoff between precision and recall.
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Another interesting special case follows if the input neighborhoods are derived
from class labels of data points. Consider a straightforward neighborhood pi,j :
for any point i in class ci, the neighbors are the other points from the same
class, with equal probabilities. It is easy to show that if we set λ = 1 in the cost
function (that is, we maximize recall), this is equivalent to maximizing

∑
i

∑
j �=i

δci,cj log
e−||yi−yj ||2/2σ2

i∑
j′ �=i e−||yi−yj′ ||2/2σ2

i

(5)

where δci,cj = 1 if the classes (ci, cj) are the same and zero otherwise, and for
simplicity classes are assumed equi-probable. This is the cost function of metric
learning by collapsing classes (MCML; [4]) which was introduced as a supervised,
linear version of SNE. LINNEA includes MCML as a special case. We thus give
a new interpretation of MCML: it maximizes recall of same-class points.

Note that LINNEA yields meaningful solutions for the above kind of straight-
forward input neighborhoods because the mapping is a linear projection of
input features. In contrast, methods that freely optimize output coordinates
could yield trivial solutions mapping all input points of each class to a single
output point. To avoid trivial solutions, such methods can e.g. apply topology-
preserving supervised metrics as in [6]; such complicated metrics are not needed
in LINNEA.

In summary, LINNEA can be used for both supervised and unsupervised
visualization; it is related to well-known methods but is more general, allowing
the user to set the tradeoff between the different costs of information retrieval.

4 Experiments

In this first paper we do not yet make thorough comparisons between LINNEA
and earlier methods. We show the potential of LINNEA in four experiments;
we use principal component analysis (PCA) as a baseline. We use the non-
kernel version of LINNEA (Section 3), and set the user-defined tradeoff between
precision and recall to λ = 0 (favoring precision only) in experiments 1-3 and
λ = 0.1 in experiment 4. Other parameters were defaults from the code of [5].

Experiment 1: Extracting the relevant dimensions. We first test LINNEA on
toy data where the visualization can perfectly recover the given input neighbor-
hoods. Consider a spherical Gaussian cloud of 500 points in the Hue-Saturation-
Value (HSV) color space, shown in Fig. 1 (left). One cannot represent all three
dimensions in one two-dimensional visualization, and without additional knowl-
edge one cannot tell which features are important to preserve, as the shape of
the data is the same in all directions. However, if we are also given pairwise
distances between points, they determine which features to preserve. Suppose
those distances have secretly been computed based only on Hue and Value; then
the correct visualization is to take those two dimensions, ignoring Saturation.
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Fig. 1. Projection of points in the Hue-Saturation-Value color space. Left: the original
three-dimensional data set is a Gaussian point cloud; coordinates correspond to Hue,
Saturation (grayishness-colorfulness) and Value (lightness-darkness) of each dot. Pair-
wise input distances were computed from Hue and Value only. Right: LINNEA has
correctly found the Hue and Value dimensions in the projection and ignored Saturation.

We optimized a two-dimensional projection with LINNEA; we gave the HSV
components of each data point as input features, and computed input neighbor-
hoods from the known pairwise distances. As shown in Fig. 1 (right), LINNEA
found the Hue-Value dimensions and ignored Saturation, as desired; the weight
of Saturation in the projection directions is close to zero.

Experiment 2: S-curve. We visualize data set having a simple underlying man-
ifold: 1000 points sampled along a two-dimensional manifold, embedded in the
three-dimensional space as an S-shaped curve as shown in Fig. 2 (left). No ex-
ternal pairwise distances are given and input neighborhoods are computed from
the three-dimensional input features. The task is to find a visualization where
original neighbors on the manifold can be retrieved well. Unfolding the manifold
would suffice; however, a linear projection cannot unfold the nonlinear S-curve
perfectly. The PCA solution in Fig. 2 (middle) leaves out the original Z-axis,
which is suboptimal for retrieving original neighbors as it leaves visible only one
of the coordinates of the underlying two-dimensional manifold. The LINNEA re-
sult in Fig. 2 (right) emphasizes directions Z and Y; this shows the coordinates
of the underlying manifold well and allows retrieval of neighbors of input points.

Experiment 3: Projection of face images. We visualize a data set of human faces
([8]; available at http://web.mit.edu/cocosci/isomap/datasets.html). The
data set has 698 synthetic face images in different orientations and lighting di-
rections; each image has 64 × 64 pixels. We first find linear projections of the
face images using the pixel images as input features, without giving any addi-
tional knowledge. As shown in Fig. 3 (top left), PCA reveals part of the data
structure, but the result is unsatisfactory for retrieving neighboring faces, since
PCA has clumped together the back-lit faces. In contrast, as shown in Fig. 3 (top
right), LINNEA spreads out both front-lit and back-lit faces. The projection di-
rections can be interpreted as linear filters of the images. For PCA the filter on the
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Fig. 2. Projections of an S-curve. Left: the original three-dimensional data. Middle:
PCA neglects the original Z-direction. Right: LINNEA finds a projection where neigh-
bors on the underlying manifold can be retrieved well from the visualization.

Fig. 3. Projections of face images. Top: unsupervised projections of the pixel images
by PCA (left) and LINNEA (right). The linear projection directions can be interpreted
as linear filters of the images, which are shown for each axis. Bottom: a supervised pro-
jection by LINNEA. Pairwise distances were derived from known pose/lighting param-
eters of the faces. LINNEA has optimized projections of the pixel images, for retrieving
neighbors having similar pose/lighting parameters. See the text for more analysis.

horizontal axis roughly responds to a left-facing head; the filter on the vertical axis
roughly detects left-right lighting direction. The LINNEA filters are complicated;
more analysis of the filters is needed in future work.
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Fig. 4. Projections of scientific documents. Documents are shown as dots and citations
between two documents are shown as lines. Left: PCA projection of document content
vectors does not reveal citation neighborhoods well. Right: projection by LINNEA
shows clusters of citing documents and connections between clusters.

Projection to retrieve known pose/lighting neighbors. For the face data the pose
and lighting parameters of the faces are available. We can then compute pairwise
input distances based on these parameters, and use LINNEA to find a supervised
visualization of the pixel images that best allows retrieval of the pose/lighting
neighbors of each face. The LINNEA projection is shown in Fig. 3 (bottom).
The face images are arranged quite well in terms of the pose and lighting; the
top left–bottom right axis roughly separates left and right-facing front-lit faces,
and the top right–bottom left axis roughly separates left and right-facing back-lit
faces. The corresponding filters are somewhat complicated; the filters on the ver-
tical axis and horizontal axis seem to roughly detect edges and lighting direction
respectively. The underlying pose/lighting space is three-dimensional and can-
not be represented exactly by a two-dimensional mapping, thus the filters are
compromises between representing several aspects of pose/lighting. Note that
running e.g. PCA on the known pose/lighting parameters would not yield fil-
ters of the pixel images, thus it would not tell how pixel data is related to
pose/lighting; in contrast, LINNEA optimizes filters for retrieval of pose/lighting
neighbors.

Experiment 4: Visualization of scientific documents. We visualize the CiteSeer
data set which contains scientific articles and their citations. The data set is avail-
able at http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html.
Each article is described by a binary 3703-dimensional vector telling which words
appeared in the article; we used these vectors as the input features. To reduce
computational load we took the subset of 1000 articles having the highest num-
ber of inbound plus outbound citations. We provide separate pairwise input
distances, simply taking the graph distance in the citation graph: that is, two
documents where one cites the other have distance 1, documents that cite the
same other document have distance 2, and so on. As a simplification we assumed
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citation to be a symmetric relation, and as a regularization we upper bounded
the graph distance to 10. We use LINNEA (with λ = 0.1) to optimize a two-
dimensional visualization where neighbors according to this graph distance can
be best retrieved. The result is shown in Fig. 4. In the baseline PCA projection
(left subfigure) citations are spread all over the data with little visible structure,
whereas the LINNEA projection (right subfigure) shows clear structure: clusters
where documents cite each other, and citation connections between clusters.
For this data each feature is a word; unfortunately the identities of the words
are unavailable. In general one can interpret the projection directions given by
LINNEA by listing for each direction the words having the largest weights.

5 Conclusions

We introduced a novel method for visualization by linear or kernel based projec-
tion. The projection is optimized for information retrieval of original neighbor
points from the visualization, with a user-defined tradeoff between precision and
recall. The method can either find projections for input features as such, or find
projections that reveal the relationships between input features and separately
given input distances. The method yields good visualization of several data sets.
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Abstract. Topographic maps are an appealing exploratory instrument for 
discovering new knowledge from databases. During the recent years, several 
variations on the Self Organizing Maps (SOM) were introduced in the 
literature. In this paper, the toroidal Emergent SOM tool and the spherical SOM 
are used to analyze a text corpus consisting of police reports of all violent 
incidents that occurred during the first quarter of 2006 in the police region 
Amsterdam-Amstelland (The Netherlands). It is demonstrated that spherical 
topographic maps provide a powerful instrument for analyzing this dataset. In 
addition, the performance of the toroidal Emergent SOM is compared to that of 
the spherical SOM, and it turned out to be superior to that of an ordinary 
classifier, applied directly to the data. 

Keywords: Topographic maps, domestic violence, knowledge discovery in 
databases, Emergent SOM, BLOSSOM. 

1   Introduction 

According to the department of Justice of the Netherlands, domestic violence can be 
characterized as serious acts of violence committed by someone of the domestic 
sphere of the victim. Violence includes all forms of physical assault. The domestic 
sphere includes all partners, ex-partners, family members, relatives and family friends 
of the victim. Family friends are those persons who have a friendly relationship with 
the victim and who regularly meet the victim in his/her home [1]. 
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Research has proven that domestic violence is a largely underestimated problem in 
our modern society [2,3,4,5]. Pursuing an effective policy against offenders is one of 
the top priorities of the police organization of the region Amsterdam-Amstelland in 
the Netherlands. Of course, in order to pursue an effective policy against offenders, 
being able to swiftly recognize cases of domestic violence and label reports 
accordingly is of the utmost importance. Still this has proven to be problematic. In the 
past, intensive audits of the police databases related to filed reports have established 
that many reports tended to be wrongly classified as domestic or as non-domestic 
violence cases. One of the conclusions was that there was a need for an in-depth 
investigation of this problem area.  

In the current paper, we develop an application in the problem area of topographic 
maps [7], which are particularly suited for high-dimensional data visualization. Two 
recent tools will be considered, the Emergent SOM and the spherical SOM, and their 
performances compared. The remainder of this paper is composed as follows. In 
section 2, we discuss the essentials of topographic map theory and in particular the 
Emergent SOM and Spherical SOM. In section 3, we elaborate on the dataset. In 
section 4, the results of the comparative analysis of the toroidal ESOM (using the 
Databionics tool) and the Spherical SOM (using the BLOSSOM tool) are presented. 
Section 5 concludes the paper. 

2   Topographic Map Essentials 

From a practitioner’s point of view, topographic maps are an especially appealing 
technique for knowledge discovery in databases [15]. It performs a non-linear 
mapping of a high-dimensional space to a low-dimensional one, usually a two-
dimensional one. It offers the user a useful tool for exploring the dataset [12]. It can 
be used to detect clusters and it maintains the neighborhood relationships that are 
present in the input space. It also provides the user with an idea of the complexity of 
the dataset, the distribution of the dataset (e.g. spherical) and the amount of overlap 
between the different classes. The lower-dimensional data representation is also an 
advantage when constructing classifiers. 

2.1   Emergent SOM 

An Emergent Self Organizing Map (ESOM) is a very recent type of topographic map 
[8]. It is argued to be especially useful for visualizing sparse, high-dimensional 
datasets, yielding an intuitive overview of its structure [10]. An Emergent SOM 
differs from a traditional SOM in that a very large number of neurons (at least a few 
thousand) are used [9]. Alfred Ultsch argues that the topology preservation of the 
traditional SOM projection is of little use when using small maps: the performance of 
a small SOM is almost identical to that of k-means clustering, with k equal to the 
number of nodes in the map [8]. An additional advantage of an ESOM is that it can be 
trained directly on the available dataset without first having to go through a feature 
selection procedure [11]. ESOM maps can be created and used for data analysis by 
means of the publicly available Databionics ESOM Tool. This tool allows the user to 
construct both flat and unbounded (i.e., toroidal) ESOM maps. 



248 J. Poelmans et al. 

2.2   Spherical SOM 

In a spherical SOM, the neurons are arranged on a sphere. Recently, several spherical 
self-organizing topographic maps have been introduced in the literature [6]. These 
maps are spherical or toroidal and, thus, not bounded as in the case of e.g. the 
traditional SOM and its many versions, and thus should not suffer from the border 
effect. The border effect is a phenomenon which occurs in flat maps because the 
number of neighborhood neurons of a neuron at the border of the map is smaller than 
the number of neighborhood neurons of a neuron at the center of the map [14]. This 
might cause distortions of the map, e.g. leading to a too small area for cluster detection 
near the edges of the map. The spherical SOM tool used here is BLOSSOM [13]. 

3   Dataset 

The dataset consists of 4146 police reports describing all violent incidents from the 
first quarter of 2006. All domestic violence cases from that period are a subset of this 
dataset. Unfortunately, many of these 4146 police reports did not contain the 
reporting of a crime by a victim, which is necessary for establishing domestic 
violence. This happens for example when a police officer was sent to an incident and 
later on wrote a report in which he/she mentioned his/her findings, while the victim 
did not make an official statement to the police. Therefore, we only retained the 2288 
documents in which the victim reported a crime to a police officer. From these 2288 
documents, we removed the follow-up reports referring to previous cases. This 
filtering process resulted in a set of 1794 reports. From these reports, the person who 
reported the crime, the suspect, the persons involved in the crime, the witnesses, the 
project code and the statement made by the victim to the police were extracted. Of 
these 1794 reports, 462 were cases of domestic violence; the others not. These data 
were used to generate the 1794 html-documents that were used during the research.  

We also have at our disposal a thesaurus – a collection of terms – that was obtained 
by performing word frequency analyses on these police reports. The relevant terms 
that occurred most often were retrieved and added to the initially empty thesaurus. 
This resulted in a set of 123 terms. In the categorical dataset, it is indicated for each 
police report which ones of these terms appear in the report. In the continuous dataset, 
the relevance of each term is indicated for each police report by means of a 
continuous value between 0 and 1. This value was calculated on the basis of the 
number of times the term appeared in the report. 

For each police report, some additional information is available. This information 
includes whether or not the suspect of the criminal offence is known, the gender of 
the victim, the age of the victim, whether the perpetrator and victim lived at the same 
address, etc. 

4   Experiment 

In a first step, a toroidal ESOM map was trained on the basis of these 2 datasets, in 
order to discover the distribution of the dataset. In the map displayed in Fig. 1, the 
best matching (nearest-neighbor) nodes are labeled in the two classes for the given  
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Fig. 1. Toroid ESOM map trained on the categorical dataset with all features 

test data set (red for domestic violence, green for non-domestic violence). By 
analyzing the ESOM map based on the categorical dataset, we found that there is one 
large domestic violence cluster running vertically through the center of the map, and 
one less clearly demarcated domestic violence cluster running to the left. The latter 
continues over the edge of the map and has an outlier on the right of the map. 
Therefore, it seems natural to use a spherical or toroidal SOM for visualizing this 
dataset. 

For both tools, it was possible to train a map directly on the entire dataset with more 
than 123 features. However, in order to prevent distortions on the map caused by 
irrelevant and redundant features, it was chosen to apply feature selection. A heuristic 
feature selection procedure called minimal-redundancy-maximal-relevance (mRMR), 
as described in [16], was considered. The aim was to select the 50 most relevant 
features. To obtain the optimal feature set, an SVM, a Neural Network, a kNN (with 
k=3) and a Naïve Bayes classifier were used to measure the classification performance 
for an increasing number of features. The classification performance was plotted as a 
function of the number of features and it was decided to retain the best 18 features. 

For the ESOM, a SOM with a lattice containing 50 rows and 82 columns of 
neurons was used (50x82=4100 neurons in total). The weights were initialized 
randomly by sampling a Gaussian with the same mean and standard deviation as the 
corresponding features. A Gaussian bell-shaped kernel with initial radius of 24 was 
used as a neighborhood function. Further, an initial learning rate of 0.5 and a linear 
cooling strategy for the learning rate were used. The number of training epochs was 
set to 20. Both a map with a toroidal topology of the neurons as well as a flat topology 
were used. For BLOSSOM, a network consisting of 642 neurons was used. The 
weights were initialized randomly. A Gaussian kernel with initial radius π  was used 
as a neighborhood function. Further, an initial learning rate of 0.9 and a linear cooling 
strategy for the learning rate were used. The number of training epochs was set to 50. 

The BLOSSOM map trained on the categorical dataset is displayed in Fig. 2. The 
BLOSSOM map trained on the continuous dataset is displayed in Fig. 3. The toroidal 
ESOM map trained on the categorical dataset is displayed in Fig. 4. The flat ESOM 
map trained on the categorical dataset is displayed in Fig. 5. 
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Fig. 2. Two views of the BLOSSOM map trained on the categorical dataset with 18 features. 
The grayscales on the surface indicate local densities (white= high density). The small 
tetrahedrons indicate the nearest-neighbor neurons for the two types of labels; “x” indicates a  
domestic violence case, “o” a non-domestic violence case. 

 

Fig. 3. Two views of the BLOSSOM map trained on the continuous dataset with 18 features 

Finally, a kNN classifier was built for the ESOM and BLOSSOM maps. For 
BLOSSOM, k was set to 1. In order to obtain the misclassification error of the 
BLOSSOM map, the Euclidean distance of each input vector to each weight vector 
was measured. For each weight vector (corresponding to a node of the map) it was 
calculated how many of the domestic and non-domestic violence cases had this 
weight vector as a best match. If the node dominantly contained domestic violence 
cases, it was labeled as a domestic violence node and the non-domestic violence cases  
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Fig. 4. Flat ESOM map trained on the categorical dataset with 18 features 

 

Fig. 5. Toroid ESOM map trained on the categorical dataset with 18 features 

that best matched to this node were considered to be wrong classifications. Because 
the ESOM map contained about 2 times as many best-matched neurons as the 
BLOSSOM map (680 vs. 316), k was set to 2 for the ESOM map. A best-matched 
neuron is a neuron for which there exists at least one input vector for which the 
Euclidean distance to the weight vector of this node is minimal. 

5   Analysis and Results 

The ESOM tool was first applied to the dataset containing all features for quickly 
obtaining an overview of the structure of the dataset. We observed that some of the 
clusters continued over the edges of the map, thereby making BLOSSOM an 
interesting candidate tool. A problem with the ESOM map is that the density profile 
of the map does not match the uniform distribution of the labeled data vectors. 
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Moreover, there is no ridge in the map that separates the domestic- from the non-
domestic violence cases. Therefore, the ‘watershed’ technique will not lead to a 
correct identification of the classes. This problem was not solved by lowering the 
number of features. Nevertheless, much more density variations can be observed in 
Fig. 5. BLOSSOM was problematic in that not all labels are visible on the map. Many 
of the labels at the upper side of the map were impossible to see because of the small 
window size used by the tool. 

By examining the BLOSSOM map shown in Fig. 2, one can conclude that there are 
no clearly demarcated clusters of domestic violence cases available in the categorical 
dataset. This was also the case for the spherical map trained on the dataset containing 
all 123 features. However, several clearly demarcated clusters of non-domestic 
violence cases can be observed in the map of Fig. 2. These clusters correspond to the 
white (= high density) areas of the map. 

We found that these clusters correspond to types of incidents that can be clearly 
distinguished from other types of incidents. In burglary cases e.g., the suspect is 
typically not known, neither a description of the suspect is provided, and one or more 
locations inside the house are mentioned. These typical characteristics result in a 
grouping of such cases by the BLOSSOM tool. From the map displayed in Fig. 3, one 
can conclude that this is also the case for the continuous dataset. However, it is 
conspicuous that the latter contains much less density variations.  

Another interesting result is that the map provides a good division between 
domestic and non-domestic violence cases. Many of the best matched nodes 
dominantly contain either domestic or non-domestic violence cases. This indicates 
that there is only a small amount of overlap between them. The observed overlap 
probably indicates that the feature set is not sufficiently refined to discriminate 
between the two classes. However, it should be considered that some cases might 
have been wrongly classified by police officers. The latter might be due to the 
vagueness of the domestic violence definition. 

When the flat ESOM map is compared to the toroidal ESOM map, one concludes 
that the toroidal map provides a better visualization of the dataset. The border effect is 
clearly present in the flat map resulting in undesired distortions of the map. Most of 
the observed clusters are located at the border of the map, which makes them smaller 
in area, and the large group of domestic violence cases is less clearly demarcated from 
the non-domestic violence cases. 

Finally, the results of the nearest neighbor classifiers based on the ESOM and 
BLOSSOM maps are displayed in table 1 and 2. These values are averages of the 
accuracy obtained during 40 runs of each method. 

Table 1. Classification performance on the categorical dataset 

 Overall accuracy False Positive Rate False Negative Rate 
BLOSSOM 1NN 90.4% 2.9% 29% 
Toroid ESOM 2NN 90.8% 8% 12.6% 
Flat ESOM 2NN 91.4% 6.8% 13.9% 
Toroid ESOM 1NN 95% 4% 7.6% 
Flat ESOM 1NN 95.1% 4% 7.4% 
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An interesting result is the striking difference in performance of the traditional 
kNN classifier (65%) and the kNN classifier based on the spherical BLOSSOM map 
(90,4%). This is due to the topographic map being a model of the data distribution: it 
forms an approximation of the data manifold, offering interpolating facilities, and it 
spends more neural hardware at clusters in the data, leading to a modeling of the local 
density. 

Table 2. Classification performance on the continuous dataset 

 Overall accuracy False Positive Rate False Negative Rate 
BLOSSOM 1NN 87% 3.7% 40% 
Toroid ESOM 2NN 88.7% 8.6% 20.6% 
Flat ESOM 2NN 88.9% 8.8% 18% 
Toroid ESOM 1NN 94.4% 0.3% 21% 
Flat ESOM 1NN 94.7% 0.3% 20% 

 
From table 1 and table 2, one may conclude that the overall accuracy of the 1NN 

classifier based on the BLOSSOM map and the overall accuracy of the 2NN classifier 
based on the ESOM map are almost equal. However, a clear difference can be 
observed in the false positive rates and the false negative rates. The false positive rate 
(i.e. the number of non-domestic violence cases that were incorrectly classified as 
domestic violence, divided by the number of non-domestic violence cases contained 
in the dataset) for the BLOSSOM map more than twice as good as the false positive 
rate for the ESOM map. The opposite is true for the false negative rate (i.e. the 
number of domestic violence cases that were not classified as such by the NN 
classifier, divided by the number of domestic violence cases contained in the dataset). 
Surprisingly, there is almost no difference in classification performance for the flat 
and the toroidal ESOM map. Although the former map contains many undesired 
distortions, this does not result in a lower classification accuracy. Another interesting 
result is that, although the overall classification accuracy on the continuous dataset is 
only slightly worse, there is a very large difference between the false negative rates 
for both datasets. Since false negatives are critical, the ESOM map is better suited for 
our case than BLOSSOM. Finally, it should be noted that more complex classifiers 
such as the SVM did not perform better than the ESOM or BLOSSOM, and that the 
currently used system for our case is a multi-layer perceptron, which does not provide 
any insight into the problem (since it is a black-box), and its performance is around 
80% only. 

6   Conclusions and Future Work 

In this paper, the usefulness of two recent SOM tools for studying an interesting 
police dataset was showcased. By applying the ESOM tool, it was possible to 
discover that the distribution of the dataset is spherical. By consequence, the spherical 
SOM tool BLOSSOM seemed natural to apply. By using this spherical SOM 
technique, interesting results for exploratory purposes of the data were discovered. 
Finally, a comparison between the ESOM and the BLOSSOM maps was performed 



254 J. Poelmans et al. 

by means of a nearest-neighbor classifier. However, it should be noted that a full-
fledged benchmarking of the ESOM and BLOSSOM tools, using the full 
dimensionality of 123 features, is beyond the scope of this paper and is a topic for 
future research.  

The authors are grateful to the Amsterdam-Amstelland Police, for providing us 
with the data. Jonas Poelmans is aspirant of the Research Foundation – Flanders. 
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Abstract. Monitoring volcanic activity is a task that requires people from a num-
ber of disciplines. Infrastructure, on the other hand , has been built all over the
world to keep track of these living earth entities, ie volcanoes. In this paper we
present an approach that merges a number of computational tools and that may
be incorporated to existing ones to predict important volcanic events. It mainly
consists of applying artificial learning, ontology, and software agents for the
analysis, organization, and use of volcanic-domain data for the communities of
people, living nearby volcanoes, benefit. This proposal allows domain experts to
have a view of the knowledge contained in and that can be extracted from the
Volcanic-Domain Digital Archives (VDDA). Specific-domain knowledge com-
ponents with further processing, and by embedding them into the digital archive
itself, can be shared with and manipulated by software agents. In this first study,
we deal with the issue of applying Self-Organizing Maps (SOM), to volcano-
domain signals originated by the activity of the Volcano of Colima, Mexico. By
applying this algorithm we have generated clusters of volcanic activity and can
readily identify families of important events.

1 Introduction

Every day the activity of quiet a few volcanoes in the world attract the attention of
the goverment and scientists. This activity varies in intensity. Volcanic eruptions are,
in most cases, one of the most deadly natural disasters in the world. In the worst case,
whole areas are devastated by erupting volcanoes, including communities living near
by. A number of computational architectures and resources have been set up all around
the world to monitor, forecast, and alert people regarding volcano activity. This paper
is a first approach to the problem of analysing volcanic seismology signals from the
computational perspective, in particular applying Self-Organizing Maps.

The next generation of volcano domain computational tools require that the huge
amount of information generated by volcanoes and contained into VDDA is structured
[8, 4, 19]. In the last few years a number of proposals on how to represent knowledge via
ontology languages have paraded [5, 13]. Now that OWL has become a standard [18],
the real challenge, in the context of semantics, has started. Eventually, the knowledge
contained into VDDA will become semantic knowledge, ie software agents will be able
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Table 1. Seismic signal sample file

TipEvent EZV4 EZV5 Lat. Long. Mag. Prof. VelAp. #E Archivo
ve 408 416 19.519 -103.629 3.8 0.8 17.97 6 02030131.rss
lp 38 46 19.528 -103.612 1.0 2.8 14.68 6 02030202.rss
ve 380 385 19.525 -103.607 3.7 2.9 11.57 6 02030240.rss
lp --- 25 19.831 -103.526 0.6 15.0 10.43 3 02030255.rss
lp 26 26 19.815 -103.489 0.7 15.0 12.09 3 02030257.rss
lp 34 24 19.826 -103.512 0.8 15.0 10.31 3 02030258.rss
rf 75 --- ------ ------- --- --- ----- 1 02030640.rss
lp 12 12 19.827 -103.516 -0.1 15.0 11.00 3 02030813.rss
ve 401 410 19.525 -103.628 3.7 1.7 17.00 6 02031045.rss

to understand, manipulate, and even carry out inferencing and reasoning tasks for us.
Converting such as digital archives into semantic ones is to take much longer if no semi-
automatic approaches are taken into account to carry out this enterprise. This is what our
paper is all about, a step forward towards the realization of semantic volcano-domain
digital archives.

The remainder of this paper is organized as follows. Some related work is presented
in section 2, including volcanology signal processing, ontology, and artificial learning
concepts. Our approach is described in section 3. Some results are reported in section 4.
The paper concludes in section 5 with thoughts on the approach we have applied to
analyse volcanic-domain data and some future work.

2 Related Work

One of the most important aspects of monitoring volcano activity is forecasting. An im-
portant number of research papers on this area are found in the literature [21, 15, 23, 7].
On the other hand, in the context of semantics, perhaps the most important aspect is
related to mapping unstructured data into software agent enable knowledge [1, 4].

2.1 Volcanology

A volcano is a vent in the crust of earth from which melted rock, gas, steam and ash
from inside earth sometimes burst. Explosion sequences are common hazards at many
volcanoes. Statistical analyses of such sequences form the basis of forecasting models
and reveal underlying processes. Some mathematical models have been proposed to
describe th behavior of processes occurring within volcanoes [3]. However, no single
statistical model describes what is going on exactly in there, ie interexplosion repose
intervals in vulcanian systems [16]. Artificial learning techniques, such as the one de-
scribed in this paper may help here.

The Volcano of Colima. This is an andesitic 3860m high stratovolcano. It is one of
the most active in Mexico and in the world. Located in the western part of the country
(103.62◦W, 19.514◦N) has had significant eruptive activity over the last five centuries
[2]. The seismic stations of the Telemetric Seismic Network (RESCO) systematically
record the seismic signals produced by the Volcano of Colima [23].
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Table 2. A excerpt of a volcano ontology

<owl:Class rdf:about="#Volcano">
<rdfs:subClassOf rdf:resource="#TopographicalRegion"/>
<rdfs:subClassOf rdf:resource="#VolcanicSystem"/>

.

.

.
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#primarySubstance"/>
<owl:someValuesFrom rdf:resource="&substance.owl;#Magma"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

2.2 Signal Processing

The analysis and processing of signals of volcano-domain signals requires the avail-
ability of a formal description. This mathematical description may be referred to as the
signal model. In Table 1, an excerpt of volcano signal sampling file is presented, some
data are omitted.

Deterministic vs random. Any observed data representing a physical phenomenon can
be broadly classified as being either deterministic or nondeterministic. Deterministic
refers to the fact that past, present and future values of a signal are known by means of
a mathematical expression. Random signals, on the other hand, evolve in time in an
unpredictable manner, ie a physical phenomenon, such a volcanic process, cannot be
described by an explicit mathematical relationship, because each observation is unique,
ie random.

Stationary vs nonstationary. Nondeterministic (random) data may be further classified.
Stationary random data refers to the fact that a set of moments and joint-moments of
the datasets are time-invariant. For instance, if we take the mean-value, ie first moment,
of the random process at time t1 and t2 we find that these values do not vary signifi-
cantly in time. Nonstationary, on the other hand, refers to random processes where
the moments, and usually also the joint-moments, vary in time.

Volcanic processes. Volcanoes are then complex, dynamic, nonlinear systems [14].
These systems are the results of a number of subsystems interacting. A sample record
of random data is also known as a sample function x(t, s). The set of sample functions
of the phenomenon is a random process denoted as X(t, S) where t represents time,
S the sample space of all possible sample functions, and s is a value of the sample
space, s ∈ S. For the sake of simplicity, the variables s, S are usually dropped, so the
random process is denoted as X(t) and a single realization as x(t).

A vast source of information for research can be found in [22]. In this book, the
properties of volcano-tectonic earthquakes are described. A methodology and some
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applications for predicting eruptions are discussed. A classification of volcanic earth-
quakes is also presented. A study of volcanic explosions carried out onto four volcanoes
is described in [20]. This study focuses on applying several basic statistical techniques
to small-scale events in trying to find clustering properties. An important software tool
for volcanic-domain data is visualization. In [9] a study that explores these techniques
is presented. Researchers in the geoscience areas consider increasingly important using
visualization and clustering software tools as an useful device to analyse data.

2.3 The Purpose of Ontology

Scientists among disciplines require a framework in order to be able to interact with
each other. Ontology is a framework that makes it possible for people and software
agents to communicate in a consistent, complete, and distributed way. Even more, we
are able to encode, for a particular domain, say a volcano-domain, the following:

– entities, objects, processes, and concepts.
– relationships of entities, objects, processes, and concepts.
– relationships across discipline areas.
– domain-dependant axioms.
– multilingual knowledge of the domain.
– assumptions, parameter settings, experimental conditions as well.

In Table 2, an excerpt of a volcano ontology written in OWL [18] and defined by the Se-
mantic Web for Earth and Environmental1Terminology is presented. Some superclasses
are shown. From this, a taxonomy can then be derived and viceversa in a semi-automatic
way by means of appropriate ontology software tools.

2.4 Artificial Learning

Creating a volcano domain taxonomy scheme may help improve existing forecasting
software systems. Perhaps the most well-known SOM project is [11], where the results
of applying it as a document organization, searching and browsing system, to a set of
about 7 million electronic patent abstracts was described. In this case, a document map
is presented as a series of HTML pages facilitating exploration. A specified number
of best-matching points are marked with a symbol that can be used as starting points
for browsing. Documents are grouped using self-organizing maps, and then a graphical
real-world metaphor is used to present the documents to users.

3 Our Approach

As we have mentioned, by merging a number of computational tools, we are able to de-
liver enhanced forecasting software systems. In the first stage of our approach, we focus
on applying artificial learning to VDDA in order to create a volcano-domain taxonomy
that may be of help for the creation of a basic volcano-domain ontology. Our system can
be regarded as a set of software tools that helps in the semi-automatic construction of

1 http://sweet.jpl.nasa.gov
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domain-specific ontologies, in particular by clustering together a number of elements of
the following sets 1) set of objects (entities, concepts), 2) set of functions (for example
is-a), 3) set of relations (has for instance). Of course, finding functions and relations
is a domain-dependant task. In our case, we are just looking for objects, ie families of
seismic signals to create a basic volcano-domain ontology. Domain experts are always
needed in order to validate the ontology components that have been identified.

3.1 Constructing Ontologies

The obvious source of information for constructing a volcano-domain ontology is the
data contained in the digital archives themselves. Datasets can be regarded as high di-
mensional vector spaces and can be represented either in a tabular form as shown in the
following table:

X v1 · · · vm

x1 a11 · · · a1m

...
...

. . .
...

xn a1n · · · anm

or in a mathematical way as follows:

xj =
∑

k

ajkek (1)

where {v1, · · · , vn} are n-dimensional variables, and {x1, · · · , xn} are m-dimensional
samples, ek is the unit vector and ajk is the value of vj in xk. For the volcano-domain
ontology construction process, it is important to identify knowledge components and
not to start from scratch. A good ontology assures scientists that software agents can
reason properly about the domain knowledge and, for instance, forecast important events
on our behalf. It is very important to bear in mind that a domain expert, ie a volcanolo-
gist, must be always part of the taxonomy creation team for validating the ontology.

3.2 Visualizing Ontology Components

By using SOM we are able to visualize, clustered together, volcano-domain ontology
components. Self-Organizing Maps can be viewed as a model of unsupervised learning
and an adaptive knowledge representation scheme. Adaptive means that at each iteration
a unique sample is taken into account to update the weight vector of a neighbourhood
of neurons [10]. Adaptation of the model vectors take place according to the following
equation:

mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)] (2)

where t ∈ N is the discrete time coordinate, mi ∈ �n is a node, and hci(t) is a neigh-
bourhood function. The latter has a central role as it acts as a smoothing kernel defined
over the lattice points and defines the stiffness of the surface to be fitted to the data
points. This function may be constant for all the cells in the neighbourhood and zero
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elsewhere. A common neighbourhood kernel that describes a natural mapping and that
is used for this purpose can be written in terms of the Gaussian function:

hci(t) = α(t) exp(−||rc − ri||2
2σ2(t)

) (3)

where rc, ri ∈ �2 are the locations of the winner and a neighbouring node on the grid,
α(t) is the learning rate (0 ≤ α(t) ≤ 1), and σ(t) is the width of the kernel. Both α(t)
and σ(t) decrease monotonically.

Our system consists of two applications: Spade and Grubber [17]. The former pre-
processes data and creates a dataspace suitable for training purposes. The latter is fed
with the dataspace and produces knowledge maps that allow us visualize ontology com-
ponents contained in the digital archive. As we have mentioned, in a semantic context,
they may later be organized as a set of Entities, Relations, and Functions. Problem
solvers use this triad for inferring new data from the domain [1, 6] and carrying out
reasoning. The major steps of our approach are as follows:

1. Produce a dataspace. A dataset is created with the individual vector spaces from the
domain by spade. In some cases, when the dataset already exists, spade carries out
a pre-processing validation task, ie merging sample files, removing headers from
files.

2. Construct the SOM. Once the dataset is a valid one, a second software tool, grubber,
is fed and trained with the dataset and ontology maps are then created.

4 Results

In this section the results of the experiments we have carried out are presented. Three
stages have been clearly identified regarding volcanic activity: 1) preliminary seismic
activity stage 2) period from the first to the largest explosion stage 3) post-explosion
activity stage. For our study we have used data from a second stage. From the bulk
of data, including long-period (LP), rockfall, explosion, only three kind of events have
been select, namely hybrid, volcano-tectonic, and tremor. In particular, apparent veloc-
ity (kms/s), type of event, and coda (duration of the event in secs) and magnitude (Mb)
of prior eruption events were used (cf.table 1). By simple observation, volcano-domain
experts have been able to classify volcanic events [22]. In figure 1 a visual represen-
tation of the events studied is presented. These events usually occur before erupting
activity. However, they may also occur during erupting stages.

It took over 56 minutes on a Pentium 4 CPU 2Gb RAM computer training 22x22
SOM (1.4 × 106 iterations) fed with a 4k sample dataset selected from a 40k bulk
dataset. Background knowledge is very important. Domain experts, ie volcanologists,
have to validate our findings in order to create a good ontology. Browsing the SOMs
gives us a clear idea and helps us understand what the domain is all about.

Volcano-domain ontology components can be visualized clustered together from the
knowledge maps created. We start with a randomly initialized map and after a train-
ing process, clusters of volcano-domain ontology components can be readily identified
from the map. After the maps are trained through repeated presentations of all the sam-
ples in the collection, a labelling phase is carried out. Neighbouring nodes that contain
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Fig. 1. Volcano-tectonic event (above). Tremor event (below). On the left, the time-series. On the
right, the frequency-series.

the same winning elements merge to form concept regions. The resulting maps repre-
sent areas where neighbouring elements are similar to each other. The software interface
we have created allows us to relate information from the samples in such a way that each
node has a feature that relates to its corresponding subfeatures. This can be seen as we
browse the maps and help us understand the clusters that have been formed. A brief
definition of the clusters found is given as follows.

Volcano-tectonic. VT events are usually the result of pressure from magma cracking
solid rock. Also known as high-frequency and type-A events. VT seismograms look just
like typical earthquake seismograms. VT activity is an early sign of volcanoes becoming
active. These are generated 1-20km down the volcano. They occur in swarms and
generally have a 1-5Hz frequency, a 0-2.2Mb magnitude, an apparent velocity 0-50kms,
and a duration of days to years.

Tremor. Sudden changes in pressure within magma filled cracks and channels cause
this kind of events. These are long duration low frequency surface wave occurrences.
These are a good indicator of forthcoming eruptions. Volcanic tremors have a irregular
sinusoid form compared with earthquakes of the same magnitude. They have a 0.5-3Hz
frequency, and a duration of minutes to months.

Hybrid. Volcanoes produce a variety of pre-eruptive seismic signals. VT activity some-
times generate tremors and viceversa. This kind of seismic signal contains a mixture
of VT and tremor data. Hybrid activity comprises a class of signals usually having
high-frequency onsets followed by low-frequency. This kind of event has a 1.5-4.5Hz
frequency, a magnitude 0-2.5Mb, an apparent velocity 0-100kms, and a duration of
hours to weeks.

These preliminary results were surprisingly close to our intuitive expectations. The
created clusters correspond to hybrid, volcano-tectonic, and tremor, consistent to other
studies [21, 23]. However, as can be seen from figure 2 some other new clusters have
emerged. After this, some other ontology tools such as editors can be used to organize
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Fig. 2. After a training process, a randomly initialized SOM (left) becomes a categorized one
(middle). Then an ontology can be derived with the help of a domain-expert (right).

this knowledge. Then, it can be embedded into the digital archive where it was extracted
from by means of any of the ontology languages that exist.

5 Conclusions

The vast amount of data generated by volcanoes has eventually to be transformed into
semantic data such that software agents are able to carry out, on our behalf, inference
and reasoning tasks, including forecasting. The acquisition and representation of knowl-
edge needs to take into account the complexity that is often present in domains. Volcano-
domain experts are always needed in order to assure the quality of the ontology created.
In this paper we have presented a novel approach that generates clusters of volcanic
activity and readily help us create basic volcano-domain ontologies, and later iden-
tify situations of risk for predicting important events. However, some more research
is required in order to fine tune the semi-automatic specific-domain ontology creation
process.

In further stages of this research we are to analize some more specific families of
volcanic seismic signals, in particular extrusions and temor families, as well as the ones
emerging from our study.
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Abstract. We propose a method to eliminate unnecessary neurons in
Variable-Density Self-Organizing Map. We have defined an energy func-
tion which denotes the error of the map, and optimize the energy function
by using graph cut algorithm. We conducted experiments to investigate
the effectiveness of our approach.

Keywords: Self-Organizing Map, Elimination of Neurons, Graph Cut.

1 Introduction

Self-Organizing Map (SOM) proposed by Kohonen[1,2] is one of the most widely
used artificial neural network algorithms which uses unsupervised learning. There
are two types of learning algorithms. One is batch learning and the other is in-
cremental learning. Generally, the batch learning algorithm is effective when
all of the training samples are given preliminarily. Meanwhile, the incremental
learning algorithm should be used when learning data are input into SOM se-
quentially. In the incremental leaning of SOM, it is very difficult to determine
the number of neurons in the map since the number of training samples is usu-
ally unknown. In addition, a new training sample affects the weights of neurons.
Therefore, the SOM tends to forget training data previously given. Shimada et
al. proposed an incremental learning algorithm which resolves these problems[3].
In this algorithm, new neurons are inserted into the map when the number of
neurons is not enough to learn a new training sample (see detailed algorithm
in section 2). However, the algorithm has a problem that topological relation is
destroyed among the inserted neurons and the existing neurons. This is because
some neurons including inserted neurons and the existing neurons become use-
less neurons which destroy the topological relation in the process of incremental
learning. Therefore, we propose an approach to eliminate such useless neurons
from the map. The elimination method is summarized as follows: 1) find can-
didate neurons which destroy the topology of the map, 2) calculate an error
energy of the map after eliminating candidate neurons, 3) minimize the error
energy according to the Graph Cuts algorithm[4].

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 264–271, 2009.
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2 Incremental Learning of Self-Organizing Map

In this section, we explain the incremental learning algorithm of Self-Organizing
Map. We call the incremental learnable Self-Organizing Map “VDSOM (Vari-
able Density Self-Organizing Map)”[3] derived from its appearance. VDSOM has
three types of neurons in its map.

– Weight-fixed neuron
– Weight-quasi-fixed neuron
– Normal neuron

In the following section, we will give an explanation of these neurons. And then,
we will show the algorithm of incremental learning.

2.1 Weight-Fixed Neuron

A weight vector of weight-fixed neuron is no longer updated in the training pro-
cess. This helps SOM remember a training sample previously given. Therefore,
one of the neurons is inevitably selected the weight-fixed neuron to remember
the training sample. On the other hand, weight vectors of neurons surround-
ing a weight-fixed neuron should not be updated easily because they need to
have similar weight vector with the weight-fixed neuron. We call such a neuron
“weight-quasi-fixed neuron”. Finally, normal neurons are far from a weight-fixed
neuron. Their weight vectors are updated in the same way as a standard SOM.

2.2 Learning Algorithm

Step 1. Initializing the weights of neurons randomly.
Step 2. A neuron which satisfies equation (1) is selected as the winner neuron

uc.
c = argmin

i
(||x − wi||) (1)

where x is an input vector of training sample, and wi is the weight vector
of neuron ui.

Step 3. If the uc is weight-fixed neuron, eight neurons are inserted around the
neuron uc. Otherwise, jump to Step 5.

Step 4. The initial weights of the newly inserted neurons wnew are calculated
as follow. If uc is the nearest weight-fixed neuron from the neuron unew,

wnew = hc,newwc (2)

otherwise,

wnew =
hc,newwc + hf,newwf

hc,new + hf,new
(3)

f denotes the nearest weight-fixed neuron. ha,b is a neighborhood kernel
defined by equation (4):

ha,b = exp
(
−||ra − rb||2

2σ2(t)

)
(4)
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where ra is position vector of neuron ua. σ(t) is monotonically decreasing
function calculated as follow.

σ(t) = σi

(
σf

σi

)t/T

(5)

T is the limit of iterations, σi is the initial value of σ(t) and σf is the last
value of σ(t).

Step 5. Weight vectors are updated by equation (6). However, the weight-fixed
neurons are not updated.

wi(t + 1) = wi(t) + H(d)α(t)hc,i(x(t) − wi(t)) (6)

α(t) is also monotonically decreasing function.

α(t) =
−α0(t − T )

T
(7)

α0 is the initial value of training rate. H(d) is the function which defines the
distribution weight-quasi-fixed neurons.

H(d) =
1 − exp(−d · k)
1 + exp(−d · k)

(8)

d is the position distance between a neuron u and its nearest weight-fixed neu-
ron. k is a coefficient to determine the slope of the function H(d). This func-
tion is about 0 with decreasing the value of d. Therefore, the weights of neu-
rons around a weight-fixed neuron are not updated easily. On the other hand,
with increasing the value of d, the function H(d) comes close to 1. Therefore,
the weights of neurons are updated in a similar way to standard SOM. This
function enables SOM to spread weight-fixed neurons all over the map.

Step 6. The same training sample is learned by Step 2 to Step 5 iteratively
until the weight-fixed condition; U < df is satisfied, where U is the distance
between the input vector x and the weight of the winner neuron wc and df

is a given threshold.
Step 7. If one of the neurons satisfies the weight-fixed condition, the next train-

ing sample is input to VDSOM.

2.3 Negative Effects of Incremental Learning

The VDSOM grows the map by inserting new neurons adaptively. This is very
effective to learn a new training sample incrementally. However, it has some
problems summarized as follows.

– The newly inserted neurons are not always useful for the map. In other words,
some neurons are useless to memorize training samples previously given.

– Some neurons come to destroy the proximity of the map since the newly
inserted neurons have initial weights which are not rigorously but simply
calculated according to the surrounding neurons.

To solve above problems, we have to find “useless neurons” in the map and
eliminate them.
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3 Elimination of Useless Neurons

3.1 Labeling for Neuron

We define a topographic error of SOM[5] by following equation (9):

Et =
1
K

K∑
k=1

f(xk)

f(xk) =

{
1, uk

f and uk
s non-adjacent

0, otherwise

(9)

where K is the number of training samples and xk is an input vector of a training
sample. We denote a neuron which has nearest weight vector for the input vector
xk with uk

f and second-nearest weight vector with uk
s . The Et comes close to 0

with decreasing the topographic error.
At the next step, we define two kinds of labels for each neuron ui. One is

a label about topographic error (equation (10)) and the other is a label about
winner neuron (equation (11)).

lEi =

{
1, all ui between uk

f and uk
s when f(xk) is 1

0, otherwise
(10)

lWi =

⎧⎪⎨
⎪⎩

1, if ui is best-match unit
2, if ui is second-best-match unit
0, otherwise

(11)

For these labeling, neurons are divided into 6 types according to the combination
of two kinds of labels (lEi and lWi ). These labels are used when an error energy
of the map is calculated (see detailed explanation in the next section). Finally,
we define another label about elimination.

lDi =

{
1, if ui is useless
0, otherwise

(12)

The labeling for lDi is achieved after minimizing the error energy of the map.
The neuron whose label is lDi = 1 will be eliminated from the map.

3.2 Error Energy of Self-Organizing Map

The error energy of the map is defined by equation (13).

P (lD; u) =
∑
i∈N

PL(lDi ; ui) +
∑

(i,j)∈M

PS(lDi , lDj ; ui, uj) (13)

We denote PL the data term for neuron’s label and PS the smoothing term. The
N and M are a set of all neurons and a set of neighboring neurons respectively.
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The data term is calculated by equation (14).

PL(lDi = 0; ui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if lEi = 1, lWi = 0
1, if lEi = 0, lWi = 1
1/df,s, if lEi = 0, lWi = 2
α, if lEi = 1, lWi = 1
α/df,s, if lEi = 1, lWi = 2
1/2, otherwise

PL(lDi = 1; ui) = 1 − PL(lDi = 0; ui)

(14)

where α(0 ≤ α ≤ 1) is a parameter to handle the neuron which has labels of
lEi = 1 and lWi ≥ 1. Such a neuron has bilateral characters; one is that the
neuron is useless because of lEi = 1, the other is that the neuron is required by
a training sample because of lWi ≥ 1. If the value of alpha is small, the neuron
is easily regarded as useless. In addition, if lWi = 2, we calculate df,s (position
distance between best-match unit neuron and second-best-match neuron), and
let the data term small by dividing itself by df,s.

The smoothing term is defined by equation (15).

PS(lDi , lDj ; ui, uj) =
β

di,j

|lEi − lEj | + |lWi − lWj |
ln (||wi − wj ||2 + 1 + ε)

(15)

where wi is the weight vector of neuron ui. The β is a parameter to adjust the
degree of incidence of smoothing term, and ε 
 1.

3.3 Minimization of Error Energy

It is a combinational optimization problem to minimize the error energy of the
map P (lD; u) for labels of all neurons simultaneously. We use the Graph Cuts
algorithm[4] to acquire the global optimum solution. We make a graph which
has nodes and edges shown in Fig. 1. First, we prepare nodes corresponding to
neurons in VDSOM, a terminal node (source T ) which denotes the useful neuron
and a terminal node (sink R) which denotes the useless neuron. Next, we make
edges between nodes which have costs q(i, j) calculated by equation (15).

q(i, j) = q(j, i) = PS(lDi , lDj ; ui, uj) (16)

Edges are also made between a node and a terminal, which have costs q(t, i) or
q(i, r).

q(t, i) = λ · PL(lDi = 0; ui) (17)

q(i, r) = λ · PL(lDi = 1; ui) (18)

Therefore, the error energy of the map (equation (13)) is acquired by calculating
sum of costs.

P (lD; u) ≈ Q(T, R) =
∑

x∈T,y∈R

q(x, y) (19)
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t

r Min-Cut

Source T

Sink R

q(i,j)

q(t,i)

q(i,r)

Fig. 1. Graph for minimizing the error energy

The Graph Cuts algorithm will give us the global optimum solution which
minimize the error energy. Finally, a neuron which has the label lDi = 1 will be
eliminated from the map.

4 Experimental Results

We generated 125 kinds of colors arbitrarily. The VDSOM learned the colors
one by one incrementally. The initial map of the VDSOM consisted of 16(4× 4)
neurons and we set each parameter: α0 = 0.9, σi = 1.0, σf = 0.3, k = 0.3. After
the training process, there were 307 neurons in the map (see Fig. 2). In the
Fig. 2, we painted each neuron in a color which the neuron had memorized after
the training. We have also marked an area which enlarged the topographic error
of the map. We can see that the color gradient is not smooth in the area.

Topographic Error Area

Fig. 2. The VDSOM after finishing the training process
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Next, we eliminated some neurons which had enlarged the topographic error ac-
cording to minimization of error energy. We have evaluated the topographic error
Et (equation (9)) and the quantization error defined by following equation (20).

Eq =
1
K

K∑
k=1

||xk − wk
f || (20)

If we eliminate too much neurons, Et will become smaller. However, the Eq will
become larger since the number of neurons is too short to memorize all training
samples. Therefore, we have to reduce Et without increasing the Eq. We show
the changes of the Et and Eq between before and after elimination of useless
neurons. We can see that the parameter beta affected the Et. The Ets after
elimination were smaller than the one before elimination. The error was smallest
in 0.2 to 1.0 range of beta. On the other hand, the Eqs were not changed be-
tween before and after elimination. This showed that only useless neurons had
been eliminated from the map by minimizing the error energy of the map. We

Fig. 3. The VDSOM after elimination of useless neurons

Table 1. Topographic error, quantization error and the number of neurons before and
after elimination of useless neurons

after elimination before elimination

β 0 0.15 [0.2 − 1] 2 –

Et[×10−2] 8.8 7.2 6.4 7.2 16.8

Eq [×10−3] 2.6 2.6 2.6 2.6 2.6

N 256 245 [241 − 230] 226 307



Elimination of Useless Neurons in Incremental Learnable SOM 271

show the map after elimination of useless neurons in Fig. 3. The color gradient
becomes smooth compared with the area marked in Fig. 2.

5 Conclusion

We have proposed the method to eliminate useless neurons in Variable-Density
Self-Organizing Map. We have defined the error energy of the map and have
minimized the energy by using Graph Cuts algorithm. The method gave good
results in our experiment. We are going to investigate a timing to eliminate
useless neurons in our future work.
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Abstract. In this paper we present an extended version of Evolving
Trees using Oja’s rule. Evolving Trees are extensions of Self-Organizing
Maps developed for hierarchical classification systems. Therefore
they are well suited for taxonomic problems like the identification of
bacteria. The paper focus on clustering and visualization of bacteria
measurements. A modified variant of the Evolving Tree is developed
and applied to obtain a hierarchical clustering. The method provides
an inherent PCA analysis which is analyzed in combination with the
tree based visualization. The obtained loadings support insights in the
classification decision and can be used to identify features which are
relevant for the cluster separation.

Keywords: tree som, bacteria identification, mass spectrometry,
hierarchical PCA, unsupervised feature selection.

1 Introduction

The identification of bacteria in medical and biological environments by means
of classical methods like gram stain is time consuming and frequently leads to
mistakes in separation of species or even genus. These data are categorized in
a taxonomical tree-structure. It can be expected that the supporting measure-
ments reflect such a structure. Further its known that for some bacteria molec-
ular finger prints exist [9]. Taking these two aspects into account we derive the
Hierarchical PCA-based Evolving Tree to obtain an optimal compact encoding
and tree-structured representation of such data based on Evolving Trees [13] and
Oja-PCA learning [12].

The utilization of mass spectrometry (MS) provides a fast and reproducible
way to receive bio-chemical information to identify bacteria cultured on nutri-
ent solution. One task in this line is an appropriate classification of the high-
dimensional mass spectra. This requires a reasonable classification structure to
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achieve adequate storage and retrieval performance. It is further valuable to
obtain interpretable visualizations of the data for a later expert analysis. Ex-
isting approaches are based on the direct comparison of spectra with manually
selected reference spectra by means of a (pre-filtered) peak matching including
their intensity as well as their mass position [9,11].

The application of MS for bacteria identification is quite new and a repre-
sentation of the taxonomic (tree-) nature of bacteria is difficult. The problem
of discriminating bacteria species with MS is described in [1]. Forero et al. use
extracted features from images of bacteria to identify them [5]. Discrimination
of bacteria can be done also by bio-markers based on MS spectra [10]. Most
of those approaches are also based on the evaluation of the peak intensities. In
case of bacteria even the peak intensities alone are an unsafe criterion. Further,
the encoded peaks (line spectra) to be compared are huge-dimensional vectors
representing a functional relation. Fast and reliable investigation of line spectra
requires, on the one hand side, an adequate processing, which preserves the rele-
vant information as good as possible. On the other hand, optimum interpretable
data structures are required.

This contribution provides new aspects for efficient information-preserving
representation of line spectra by a data-driven tree generation using the Hierar-
chical PCA-based Evolving Trees (ET).

2 Evolving Trees and Hierarchical PCA

As mentioned above the ’natural’ identification methodology in taxon-
omy/analysis of bacteria is tree structured. Therefore, in context of machine
learning, decision trees (DT) may come into mind. However, DTs don’t inte-
grate structural data information like data shape and density in an adequate
manner during tree generation. An alternative is presented by Pakkanen et
al. – the evolving trees (ET) for which we provide a formal definition later on.
The ET-approach is an extension of the concept of self-organizing maps (SOMs)
introduced by Kohonen [6].

SOMs project high-dimensional vectorial data onto a predefined low-
dimensional regular grid usually chosen as a hypercube. This mapping is topol-
ogy preserving under certain conditions, i.e. in case of no violations similar data
points in the data space are mapped onto the same or neighbored grid nodes. For
this purpose, to each node a weight vector, also called prototype, is assigned. A
data point is mapped onto this node, the prototype of which is closest according
to a similarity measure in the data space, usually the Euclidean distance. This
rule is called winner-take all. In this sense, all data points mapped onto the
same node are called receptive field of this node and the respective prototype is
a representative of this field.

2.1 Evolving Trees

Yet, the usual rectangular lattice as output structure is only mandatory. Other
choices are possible depending on the task. ETs use trees as output structures
and, hence, are potentially suited for mapping of vectorial data with an inherent
hierarchical structure.
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Suppose we consider an ET T with nodes r ∈ RT (set of nodes) and root r0

which has the depth level lr0 = 0. A node r with depth level lr = k is connected
to its successors r′ with level lr′ = k + 1 by directed edges εr→r′ with length is
unit. The set of all direct successors of the node r is denoted by Sr. If Sr = ∅

is valid, the node r is called a leaf. The degree of a node r is δr = #Sr, here
assumed to be constant δ for all nodes except the leafs. A sub-tree Tr with
node r as root is the set of all nodes r′ ∈ RTr such that there exists a directed
cycle-free path pr→r′ = εr→m ◦ . . . ◦ εm′→r′ with m, . . . , m′ ∈ RTr and ◦ as the
concatenation operation. Lpr→r′ is the length of path pr→r′ , i.e. the number of
concatenations plus 1. The distance dT (r, r′) between nodes r, r′ is defined as

dT (r, r′) = Lpr̂→r
+ Lpr̂→r′ (1)

with paths pr̂→r and pr̂→r′ in the sub-tree Tr̂ and RTr̂
contains both r and r′

and the depth level lr̂ is maximum for all sub-trees Tr̂′ which contain r and r′. A
connecting path between a node r and a node r′ is defined as follows: let pr̂→r′

and pr̂→r be direct paths such that Lpr̂→r′ · Lpr̂→r
is dT (r, r′). Then pr→r′ is

the reverse path pr′→r̂ · pr̂→r and the node set of P is denoted by Npr→r′ . As
for usual SOMs, each node r is equipped with a prototype wr ∈ R

D, provided
that the data to be processed are given by v ∈V ⊆ R

D. Further, we assume
a differentiable similarity measure dV : R

D × R
D → R. The winner detection

is different from usual SOM but remains the concept of winner-take-all. For a
given subtree Tr with root r the local winner is

sTr (v) = arg min
r∈Sr

(dV (v,wr)) (2)

If sTr (v) is a leaf then it is also the overall winner node s (v). Otherwise, the
procedure is repeated recursively for the sub-tree TsTr

. The receptive field Ωr of
a leaf r (or its prototype) is defined as

Ωr = {v ∈V |s (v) = r} (3)

and the receptive field of root r′ of a sub-tree Tr′ is defined as

Ωr′ = ∪r′′∈RT
r′

Ωr′′ (4)

The adaptation of the prototypes wr takes place only for those prototypes,
where the nodes r of are leafs. The other nodes remain fixed. This learning for
a randomly selected data point v ∈V is neighborhood-cooperatively as in usual
SOM:

�wr = εhSOM (r, s (v)) (v − wr) (5)

with s (v) being the overall winner and ε > 0 a small learning rate. The neigh-
borhood function hSOM (r, r′) is defined as a function depending on the tree
distance dT usually of Gaussian shape

hSOM (r, r′) = exp
(− (dT (r, r′))2

2σ2

)
. (6)

with neighborhood range σ.
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Unlike for the SOM we cannot guarantee that s(v) is the true best match-
ing unit (bmu), because the tree model is subject of a stochastic optimization
process.

The whole ET learning is a repeated sequence of adaptation phases according
to the above mentioned prototype adaptation and tree growing beginning with
a minimum tree of root r0 and its δ successors as leafs. The decision, which
leafs become roots of sub-trees at a certain time can be specified by the user.
Subsequently for each node r a counter br is defined. This counter is increased
if the corresponding node becomes a winner and the node is branched if a given
threshold θ ∈ N, θ > 0 is reached.

Possible criteria might be the variance of the receptive fields of the prototypes
or the number of winner hits during the competition. The prototypes of the new
leafs should be initialized in a local neighborhood of the root prototype according
to dV . Hence, the ET also can be taken as a special growing variant of SOM as
it is known for example from [2].

Since ETs are extended variants of usual SOM one can try to transfer eval-
uation methods known from SOMs to ETs. Unknown samples can be identified
using the ET in the following way. The ET is fully labeled by assignment of a
label to each node by an analysis of the receptive fields of the corresponding sub-
trees. The root node remains unlabeled. For each receptive field a common label
is determined by a majority voting of the contained samples and their labels. An
unknown, new item is preprocessed as described later on. For this item the bmu
in the tree is determined in accordance to Equation (2) and s(v) is calculated.
The label of the receptive field of s(v) defines the label of the item.

2.2 Hierarchical PCA by Evolving Tree Learning Using Oja’s Rule

In [12] a learning rule for neuron models has been proposed which inherently
provides a principal component analyses of the represented data. This rule was
recently used in [7] to get an optimal data encoding and proven to be effective
in learning using neighborhood cooperativeness. We combine this approach with
the learning of Evolving Trees such that the prototype representing a data cluster
become the first eigenvector of this cluster. In this way a hierarchical PCA can
be calculated. We replace the learning rule of Equation (5) by the following Oja
based learning dynamic but keeping the neighborhood cooperativeness of ET:

� wr = εhET (r, s (v))O (v − Owr) (7)
O =< v,wr > (8)

Further the winner determination of Equation (2) is changed accordingly

sTr (v) = argmax
r∈Sr

(< v,wr >) (9)

As pointed out in [12] the update for the weight vector wr as defined by Equa-
tion (7) will, neglecting statistical fluctuations, tend to the dominant eigenvector
c of the input correlation matrix C of the input data v limited to the receptive
field of wr. Using this approach we obtain eigenvectors for each cluster, at each
depth level lr for each node of the tree. The first eigenvector as obtained from an



276 S. Simmuteit et al.

analysis of the prototype wr at lro is the regular first principal component of the
whole data set. With increasing depth of the tree the data are clustered by the
Tree-SOM approach and a hierarchical PCA analysis of the sub-clusters become
available. The principal components can be used to analyse and visualize the
cluster separability. Further the obtained loadings provide insights in a variance
based analysis of the individual input dimensions of the clusterings such that
separating features become apparent.

3 Evolving Tree Applied on Mass Spectra of Bacteria

The introduced Hierarchical PCA-based Evolving Tree is now applied to investi-
gate MS-spectra for identification of bacteria. These data are spectra of different
species of Vibrio- and Listeria-bacteria. Thereby we use the spectra in a pre-
processed form of line spectra. The resulting identification is visualized and it is
shown how the obtained hierarchical PCA model can be interpreted.

3.1 Data, Measurement and Pre-processing

The data used in the experiments are MS spectra of 56 different vibrio species
and 7 different Listeria species. Every data-set contains about 20 − 40 single
spectra, being measurements of the same bacterium. Together there are 1452
spectra of vibrio and 231 spectra of Listeria. Each MS measurement is processed
as described later on. Biological details on the bacteria samples can be obtained
from [4].

Details on the mass spectrometry technique can be found in [8]. At the end of
the measurement process one obtains for each measurement a spectrum with a
mass axis in m/z respectively Dalton and an unit-less intensity for every mass.
The spectrum is encoded as a high-dimensional vector (profile spectrum) of
intensities, often visualized as a function of mass.

The standard pre-processing to generate a line spectrum (consisting only of
peaks) is provided by the measurement system as detailed in [3]. A line spectrum
typically consists of around 100−500 peaks depending on the sample complexity
and system mode while the profile spectra are original given as measurements
with around 40 000 sample points. In order to the line spectra for our approach
the input vectors of peak lists are mapped onto a global mass vector covering
every appearing peak within a predefined tolerance (here 500 ppm) depending
on the expected measurement accuracy.

The resulting aligned peak-lists are now located in the same data space, still
very high-dimensional. For the Listeria data the line spectra have a dimensional-
ity of D = 1181 (peak positions) whereas for the vibrio data the dimensionality
is given as D = 2382.

3.2 Experiments

Euclidean distance is used to find the bmu. δr = 3 for all nodes without leafs.
The learning is done in accordance to the standard SOM approach, thereby the
initial learning rate α0 is defined as α0 = 0.2 which is logarithmically decreased
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Fig. 1. Evolving Tree of seven Listeria species

during learning to a final value of αend = 0.01. The neighborhood cooperation
value σ is initialized with σ = 1 and logarithmically decreased to σ = 0.35 in
accordance to suggestions given in [15]. The total number of learning iterations I
is determined depending on the number of training samples, the desired number
of clusters #C, δr and θ as shown in [14].

We apply the proposed methodology on the two data sets. In the first exper-
iment an hierarchical PCA using the ET is generated for the Listeria and the
Vibrio data. This is a simplified example of a bacteria identification on the genus
level. In a second experiment we consider the Listeria bacteria only. Thereby we
assume that the genus of the considered bacteria is already identified as Lis-
teria using the first tree and the remaining task consists in an identification
and visualization of the species and subspecies level. For both settings we gen-
erate the tree, analyze the hierarchical, local PCA visualizations and identify
relevant mass positions (features) by means of PCA loadings. For simplicity we
provide the plots for the Listeria data, only. In Figure 1 the Evolving-Tree for
the Listeria data is shown1. We observe a quite clear separation of the differ-
ent Listeria species in the tree, but also some mixed clusters occur. Especially
for the monocytogenes data subclusters can be identified, this however is a in-
tended effect because the monocytogenes group is known to be diverse. Here
a single taxonomical label does not perfectly reflect the biochemical picture2.
In Figure 5 we analyze the loadings of the local PCA of node 6, as obtained
in the hierarchical PCA using the ET. We observe a cut in the loadings his-
togram such that 2 − 7 dimensions can be considered to be relevant. Taking

1 Here we show the subtree from the Listeria/Vibrio-Tree, but an individual generated
tree is actually very similar, ignoring permutations.

2 This effect becomes even more explicit for e.g. bacillus data - which are in fact
multiple subgroups (genera) (not distinctly labeled in the taxonomy of bacteria).
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Fig. 2. Box plot of the pc’s at the 2 node, branching the Listeria and most of the
Vibrio data in an ET on the bacteria data

these input dimensions into account a Pseudo-Gelview can be generated as de-
picted in Figure 3 showing a top/gelview of the spectra restricted to the peaks
intensities at the masses indicated by the PCA. Some peaks differentiate be-
tween Listeria groups by means of intensity variations, as e.g. in the first peak
with moderate intensity values for the ivanonvii, a missing peak situation for
the grayi and high intensities else. We noticed that in general a 0/1 encoding of
the peak intensities (peak absent/present) is sufficient but for some species and
subspecies the incorporation of intensity information is valuable. In addition a
box plot of the projected data on the principal component as depicted in Figure
2 may provide further information on the separation potential of the hierarchi-
cal PCA based clustering. Doing a traversal through the feature loadings over
the different tree levels the approach identified the following masses most rel-
evant 4276.4Da, 4278.0Da, 5181.0Da, 9751.0Da. The first three dimensions are
relevant to separate the vibrio data from the Listeria and to get separations
with the vibrio genus, separating different (but not all) vibrio species. The last
dimension is a clear indicator for the presents of Listeria.

In the Table 4 the most relevant dimensions for the Listeria experiment iden-
tified by the hierarchical PCA at node 6 are depicted. Similar analyses can be
done for the other nodes as well. It should be noted that the identified masses at
a specific node are interpreted as those dimensions explaining the largest vari-
ance of the data presented in the underlying clustering. This is an unsupervised
interpretation, hence the relevant dimensions may not be relevant with respect to
a provided labeling. For bacteria data however we observed, that the highlighted
dimensions are in general meaningful for the taxonomy as well.
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Fig. 3. Gelview of the Listeria data restricted to the identified most relevant masses

Rank Contribution Dim. Relevant Mass
1 0.6859 2243 9751.11
2 0.5860 897 4876.13
3 0.2190 1764 7402.22
4 0.1987 1441 6362.80
5 0.1879 664 4323.25
6 0.1323 1449 6388.37
7 0.1074 1307 6006.82

Fig. 4. Relevant masses contributing to
the first principal component in the tree
node (6) pooling all Listeria subspecies

Fig. 5. Analysis of the loadings (truncated
to 100) of the local PCA for node 6

4 Conclusions

A method for an unsupervised hierarchical PCA based analysis of bacteria spec-
tra from mass spectrometry has been presented. One obtains a hierarchical rep-
resentation of the bacteria by means of a Evolving Tree with local principal
components in a hierarchical manner. This can be used to get a better inter-
pretation of the underlying clustering. The approach is unsupervised but nicely
reflects the expected taxonomical ordering of the data. The approach can be
used to identify masses which are relevant for the clustering in a hierarchical
way, e.g. by traversing through the different levels of the tree. If the clustering
fits to an added set of meta information, as in our case, the taxonomy of bac-
teria the identified dimensions could be interpreted in a supervised scheme as
well. The approach can be used to get highly interpretable representations of
bacteria spectra and to get quick identifications with a logarithmic number of
comparisons.
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Abstract. The distribution of a class of objects, such as images depict-
ing a specific topic, can be studied by observing the best-matching units
(BMUs) of the objects’ feature vectors on a Self-Organizing Map (SOM).
When the BMU “hits” on the map are summed up, the class distribution
may be seen as a two-dimensional histogram or discrete probability den-
sity. Due to the SOM’s topology preserving property, one is motivated
to smooth the value field and spread out the values spatially to neigh-
boring units, from where one may expect to find further similar objects.
In this paper we study the impact of using more map units than just the
single BMU of each feature vector in modeling the class distribution. We
demonstrate that by varying the number of units selected in this way
and varying the width of the spatial convolution one can find an optimal
combination which maximizes the class detection performance.

1 Introduction

In many crucial information processing applications, such as high-level index-
ing and querying on multimedia data, it has proven to be very useful to have
models of semantically related classes, i.e. meaningful subsets of the full dataset
under study [1]. When a Self-Organizing Map (SOM) [2] is trained on a large
dataset, mapping the data vectors of some semantic class to their best-matching
units (BMUs) produces a distribution characterizing that particular class in the
context of the full dataset. For example, when studying a database of animal
images, one could map the class of objects depicting lions on a SOM trained
from color features extracted from all the images. The SOM may then be used
for example in an image retrieval task for detecting images of lions in a new
batch of unannotated images.

The rest of this paper is organized as follows: Section 2 describes modeling
of class distributions with BMUs, Section 3 smoothing in the spatial and fea-
ture domains. In Section 4 an image retrieval experiment is shown, and finally
conclusions are drawn in Section 5.
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme (FP7/2007–2013) under grant agreement
n◦ 216529, Personal Information Navigator Adapting Through Viewing, PinView.
Mats Sjöberg has been supported by a grant from the Nokia Foundation.
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2 Modeling Class Distributions with BMUs

For any database of objects, feature vectors can be extracted for analyzing the
properties of the objects. If the features are selected properly they should be of
moderate dimensionality, while still preserving semantically important informa-
tion of the objects and their distribution. Figure 1 (left), visualizes how the origi-
nal very-high-dimensional pattern space is first projected to a lower-dimensional
feature space, the vectors of which are then used in training a SOM. The dark
areas in the figure illustrate how a class of objects might be projected, ideally
to a compact distribution in the feature space if the discriminative properties of
the class are well represented in the feature extraction process.

If the best-matching units of the objects of a specific semantic class are marked
with a positive impulse, the “hits” on a SOM surface form a sparse value field.
When these values are summed up and properly normalized, the formed dis-
tribution can be seen as a two-dimensional discrete probability density that
characterizes the object class. Such distributions were studied in an earlier ar-
ticle [3] in the context of our content-based retrieval system PicSOM [4], and
information-theoretic measures were proposed for evaluating their properties.

Due to the topography-preserving property of the SOM, we can now expect
to find more similar objects in the map areas with many nearby hits. In order
to spread the values to such neighboring units the value field is, in the Pic-
SOM system, low-pass filtered with a tapered kernel. This facilitates finding
new unannotated objects of the same class, and also aids in visual inspection of
the map distribution. It also serves to emphasize areas with many hits close-by
and deemphasize areas with only a few sporadic hits. A visual example is shown
in Figure 1 (right) where a class of video frames depicting scenes with “explosion
or fire” have been mapped to a SOM trained from Color Layout feature vectors.
Areas occupied by objects of the concept in question are shown with gray shades.
Clearly the hits from this class seem to be concentrated into the bottom right
corner of the map.

These class-conditional distributions or class models can be considered as
estimates of the true distributions of the semantic concepts in question, not on
the original feature spaces, but on the discrete two-dimensional grids defined
by the used SOMs. Thereby, instead of modeling probability densities in the

SOM grid

SOM

formation

feature

extraction

feature spacepattern space

Fig. 1. Left: Stages in creating a class model from the very-high-dimensional pattern
space through the high-dimensional feature space to the two-dimensional SOM grid.
Right: An example of image class model “explosion or fire” on a Color Layout SOM.
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high-dimensional feature spaces, the PicSOM system is essentially performing
kernel-based estimation of discrete class densities over the SOM grid. Depending
on the variance of the kernel function, these kernels will overlap and weight
vectors close to each other will partially share each other’s probability mass. As
an example, the most representative objects of a given semantic class can be
obtained by locating those SOM units, and the objects mapped to these units,
that have the highest responses on the estimated class distribution.

In this paper, we study the use of more than just one BMU when mapping
the members of a semantic class to a SOM. We sort all the model vectors of
the map in ascending order of the distance to the input vector and apply a
weighting kernel to this set, giving the highest weight to the best-matching unit,
and decreasing weights according to the list rank. By varying the width of this
kernel we can choose the number of nearest units selected for each input vector.
We call this number the “BMU depth”. For example, for BMU depth equal
to three, we select the second and third best-matching units (generally with
decreasing weights) in addition to the normal BMU. Thus, we use both spatial
SOM surface smoothing and smoothing in the BMU depth, i.e. we spread the
“hit” values both in the SOM grid and feature space domains.

To compare, the WEBSOM system [5] for interactive browsing of large text
document databases, used only the BMU depth approach, not spatial smoothing.
An idea similar to ours was explored in [6], where the cluster structure of the
data could be visualized on different levels of detail by varying the smoothing
parameter (equivalent to our BMU depth). Another related concept is to force
the map convolution to follow the form of the U-matrix, i.e. the convolution
span is inversely proportional to the distance between the SOM units [7]. The
advantage of the proposed approach over U-matrix based weighting is compu-
tational simplicity; instead of tuning the convolution separately for each unit
we need only select a small set of best-matching units. Finding BMUs is very
fast, especially in the PicSOM system that implements the tree-structured SOM
variant [8] which does BMU search in logarithmic time.

3 Smoothing in the SOM and Feature Spaces

In this paper we introduce smoothing in the feature space domain in combination
with the traditional spatial SOM surface smoothing. Instead of only using the
single best-matching unit, we order the list of SOM model vectors by increasing
distance from the input vector. Such ordered lists can be generated off-line for
each database object storing only a restricted set of the best matches.

Let us assume that we have a set R of training set objects j whose membership
value rj in the studied object class is known. Then

rj =

⎧⎪⎨
⎪⎩

+ρ+ , if j is a member of the class
0 , if j’s membership in the class is unknown ,

−ρ− , if j is not a member of the class
(1)
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where ρ+ and ρ− are properly selected non-negative weights for the member and
non-member samples, respectively. In PicSOM, the values of ρ+ and ρ− have
been inverses of the number of positive and negative samples and consequently∑

j rj = 0.
A membership score for any point x can then be estimated as a sum of kernel

functions hj(·) centered in the locations of the points xj with known membership
assessments:

r(x) =
∑
j∈R

rjhj(x − xj). (2)

In the PicSOM system, the kernel functions hj(x−xj) have been replaced by
the use of a function h(·) that can be calculated from the difference between the
BMU coordinates on the SOM surfaces. Let b(x) =

(
bx(x), by(x)

)
denote the

discrete two-dimensional coordinates of the best-matching unit of x. One should
note that the values of the BMU function b(xj) can be calculated and tabulated
offline for each object j as soon as the SOM has been trained. The membership
value estimate for x can thus be written as

r(x) =
∑
j∈R

rjh
(
bx(x) − bx(xj), by(x) − by(xj)

)
=
∑
j∈R

rjg
(
bx(x) − bx(xj)

)
g
(
by(x) − by(xj)

)
. (3)

The latter notation follows from the practice of using separable and symmetric
kernels h(·). Now the extent and shape of the scalar function g(·) determines
the effect of the SOM surface smoothing. In PicSOM we have used a simple
triangular kernel with different widths.

In order to take the BMU smoothing into the formulation, one needs to ex-
tend the BMU function b(xj) with the BMU depth index k to be bk(xj) =(
bx,k,j, by,k,j

)
, where k = 1, . . . , kmax. Now we have

r(x) =
∑
j∈R

rj

kmax∑
k=1

f(k)g
(
bx(x) − bx,k,j

)
g
(
by(x) − by,k,j

)
. (4)

Function f(k) determines the extent of smoothing in the BMU order. Note
that the BMUs bx,k,j and by,k,j of the objects j in the database can be calculated
and tabulated offline.

A linear kernel f(·) has been used in our experiments, i.e. the weight decreases
linearly with the rank in the ordered list. We have also tried several other shapes
of f(·), including Gaussian and one-per-rank, but the linear kernel worked best
overall. In our experiments, the most important parameter turned out to be the
width of the kernel, not the particular type.

Figure 2 illustrates the smoothing in the two domains separately and com-
bined. The images depict a small neighborhood of a SOM surface trained with
Scalable Color features, and a single image of an airplane mapped to its BMU.
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The first column shows this single BMU convolved on the map surface with two
kernel widths: 3 and 7. This illustrates the traditional approach in PicSOM,
where only the map topology is taken into account. The second column shows
the same BMU, but now using a BMU depth of 10 or 30, and no map convo-
lution. The values are thus spread to the 10, respectively 30, nearest units in
the feature space. It can be readily observed that the two cases on the first row
are very similar. Not surprisingly, the nearest units are located closely around
the best-matching unit. A map convolution width of 3 encompasses roughly the
same amount of units. The difference is that the selection in the first column
is done based on the map grid neighborhood, and in the second column on the
feature space neighborhood.

On the second row of images in Figure 2 we can see a difference, when the
topology of the feature space stretches the BMU depth distribution to the upper
right, while the center-symmetric regular map convolution does not take this
into account. A similar effect could be achieved with the method of tuning the
map convolution to the U-matrix distances [7]. The proposed method, however,
is computationally much simpler.

In Figure 2 the last column shows the result of combining the two first
columns, i.e. first the values are smoothed in the BMU depth domain, and then
the result is smoothed in the SOM surface domain. This combined approach
turned out to give the best results in our concept detection experiments.

single BMU BMU depth=10 BMU depth=10
convolution=3 no convolution convolution=3

single BMU BMU depth=30 BMU depth=30
convolution=7 no convolution convolution=7

Fig. 2. The first column shows a single BMU with SOM convolutions of increasing
width. The single impulse is marked with black and decreasing values with shades of
gray, with white indicating zero. The second column shows the hits with increasing
BMU depth, without SOM convolution. The last row shows the combination of both
the BMU depth and the SOM convolution.
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4 Image Retrieval Experiment

We experimented with SOMs trained on several different features extracted from
a set of images from the Pascal Visual Object Class (VOC) 2007 Challenge1.
The VOC dataset includes several predefined object classes including images
annotated according to class membership. The classes are: aeroplane, bicycle,
bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train and TV/monitor. The full dataset of 9963
images is divided roughly evenly into training and test sets.

4.1 Features

The features used were Color SIFT, Edge Fourier, Edge Histogram, IPLD and
Scalable Color. These were selected from a larger set of features because they
were the 5 best performing ones (both with and without variable BMU depth).
The Color SIFT feature is a 256-bin histogram of Opponent-SIFT (opponent
color space) features calculated from interest points detected with the Harris-
Laplace algorithm [9]. Edge Fourier is a 16×16 FFT of a Sobel edge image, Edge
Histogram is a histogram of five edge types in 4×4 subimages. The IPLD feature
is based on 256-bin histograms of interest point features. The interest points were
detected using a combined Harris-Laplace and Difference-of-Gaussian detector,
and SIFT features [10] were calculated for each interest point. The Scalable Color
is a Haar transform of the quantized HSV color histogram. Both Edge Histogram
and Scalable Color are implemented following the MPEG-7 standard [11].

4.2 Performance Measures

Given a training set of example objects belonging to a specific class, one can now
calculate the membership score of novel objects from a test set by using Eq. (4)
as implemented in the PicSOM algorithm. If the correct answers are known the
quality of the SOM model can be measured by standard information retrieval
performance measures, such as precision and recall.

In this paper we have opted for the use of non-interpolated average precision
(AP) as the performance measure. AP is formed by calculating the precision
after each retrieved relevant object. The final measure is obtained by averaging
these precisions over the total number of relevant objects, when the precision
is defined to be zero for all non-retrieved relevant objects. This measure can be
said to incorporate both precision and recall in a single number [12].

4.3 Experiment

The convolution width on the map surface was varied from 1 (a single impulse)
to 20 units. This was deemed a realistic interval due to the 64 × 64 size of
the maps. In the feature space, the convolution width, or BMU depth, kmax

1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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was varied from 1 to 100. For each run the average precision was calculated.
We selected the parameters (convolution width, or both convolution width and
BMU depth) with the best average precision results separately for each class
and feature combination, with a single BMU and with variable BMU depth. The
average precision was calculated as the average over a 6-fold cross validation in
the training set, i.e. each of the six subsets were in turn left out and used for
validation. Typically, the optimal map convolution was wider when using a single
BMU. This is not surprising, since using a greater BMU depth kmax in Eq. (4)
spreads the values to more units, and a smaller convolution width is needed to
reach the same amount of units. The median spatial convolution width changed
from 7 to 4 when introducing BMU depth.

The optimal BMU depths found are summarized in Table 1 for each class–
feature combination. As can be seen the optimal kmax varies quite a lot, and for
some cases the optimum is one, i.e. the same as the baseline algorithm which
does not use more than one BMU. The feature-wise medians are shown in bold
face at the bottom of each column. The class-wise medians are at the end of
each row, and 25 in the bottom right corner is the median over the entire table.
Some classes vary quite a lot, while some clearly seem to prefer a high (bus, dog,
person) or low (aeroplane, horse) BMU depth.

Table 2 summarizes the percentage changes in average precision as measured
in the test set when introducing variable BMU depths. Where the optimal BMU
depth was one, i.e. there was no improvement above the baseline (in the training
set), the table cell has been intentionally left empty. It can be seen that in most
cases the result is an improvement in performance, however in some instances
there is a small decrease. In some situations, for example the sheep class and

Table 1. Optimal BMU depths kmax for each class and feature: Color SIFT (cSIFT),
Edge Fourier (EF), Edge Histogram (EH), IPLD and Scalable Color (SC). Medians of
each row and column are shown in bold face. A priori probabilities of classes are shown
in parentheses.

class cSIFT EF EH IPLD SC
aeroplane (4.47%) 1 5 10 1 10 5
bicycle (5.07%) 20 5 80 1 5 5
bird (6.24%) 1 10 45 10 10 10
boat (3.65%) 10 20 30 70 5 20
bottle (5.04%) 50 25 50 10 55 50
bus (3.81%) 20 50 60 55 100 55
car (15.42%) 1 15 75 5 55 15
cat (6.79%) 30 15 40 10 100 30
chair (11.21%) 30 1 5 80 65 30
cow (2.74%) 45 60 1 20 10 20
dining table (5.12%) 40 60 40 50 5 40
dog (8.66%) 35 95 70 75 85 75
horse (5.75%) 5 20 25 5 5 5
motorbike (4.84%) 30 45 25 5 40 30
person (42.08%) 100 20 45 65 65 65
potted plant (5.29%) 25 5 25 1 70 25
sheep (1.96%) 10 50 5 90 5 10
sofa (7.30%) 45 10 1 15 30 15
train (5.24%) 35 1 90 20 30 30
tv/monitor (5.36%) 5 10 5 75 50 10

27.5 17.5 35 17.5 35 25
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Table 2. Average precision changes in percent for each class and feature combination,
given in percentage. Averages of each row and column are shown in bold face. A priori
probabilities of classes are shown in parentheses.

class cSIFT EF EH IPLD SC
aeroplane (4.47%) 2.22 3.26 -0.85 0.93
bicycle (5.07%) -1.84 -7.80 4.60 5.84 0.16
bird (6.24%) 0.12 -7.05 -5.77 -0.34 -2.61
boat (3.65%) 7.40 2.59 4.88 3.86 3.82 4.51
bottle (5.04%) 4.80 0.35 1.32 0.38 -10.27 -0.69
bus (3.81%) 25.45 4.84 -3.35 -0.49 -0.01 5.29
car (15.42%) -4.06 -1.07 0.19 -3.42 -1.67
cat (6.79%) 2.09 -1.72 1.44 -5.97 2.03 -0.43
chair (11.21%) -4.45 -0.08 -5.62 4.25 -1.18
cow (2.74%) 22.73 -4.23 1.21 -0.50 3.84
dining table (5.12%) -0.70 -5.38 -4.95 11.37 2.97 0.66
dog (8.66%) -7.23 -0.13 5.95 -1.22 2.69 0.01
horse (5.75%) -1.87 2.40 -7.41 18.67 9.36 4.23
motorbike (4.84%) 8.57 -2.92 -7.76 0.00 5.21 0.62
person (42.08%) 1.03 0.52 1.08 0.46 1.02 0.82
potted plant (5.29%) 1.57 0.54 4.41 4.53 2.21
sheep (1.96%) 9.82 10.77 26.98 5.55 3.95 11.41
sofa (7.30%) -2.86 -0.92 -0.86 1.84 -0.56
train (5.24%) 4.26 -6.53 35.48 0.00 6.64
tv/monitor (5.36%) -1.06 -2.97 -14.29 2.44 -0.56 -3.29

3.39 -0.29 0.07 2.98 1.58 1.55

the Edge Histogram features, there is a dramatic improvement. The overall im-
provement is 1.55%. If we select the best single feature for each class the mean
average precision increases from 0.2358 to 0.2402, i.e. a 1.86% increase.

It must be emphasized that the parameters of the methods were optimized in
the training set, which is separate from the test set. This means that the results
should indeed give a realistic indication of the generalization ability of the two
different methods. If we optimized the performance directly with the test set, we
would get an even more significant performance increase, but this scenario is not
realistic as the parameters can easily “overlearn” some features of the dataset
and thus not be generally applicable.

5 Conclusions

We have proposed a class density estimation method that takes into account the
nearest SOM units of projected data vectors both in the feature space and in
the SOM grid. In the baseline approach previously used in the PicSOM system
the value field on the SOM grid was convolved after projecting an object class
to its best-matching units. This is now preceeded by a convolution in the “BMU
domain”, i.e. in the set of nearest SOM units in the original feature space.

The distribution formed on the SOM surface can be seen as a two-dimensional
discrete probability density, and can be used to find unannotated objects which
are similar to the modeled class. We have demonstrated that the proposed ap-
proach can improve the accuracy when using the PicSOM technique to retrieve
objects belonging to the same semantic class in an image database. However,
the approach can be more generally applied to any kind of retrieval scenario.
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The initial results presented in this paper are promising, however not as
conclusive as we had hoped. There is no satisfactory general rule of picking
the optimal BMU depths for different class and feature combinations. It thus
remains as an open research question what properties of the semantic class
and the feature extraction method could explain the optimal value of the kmax

parameter.
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Abstract. This paper presents a new methodology for missing value im-
putation in a database. The methodology combines the outputs of several
Self-Organizing Maps in order to obtain an accurate filling for the miss-
ing values. The maps are combined using MultiResponse Sparse Regres-
sion and the Hannan-Quinn Information Criterion. The new combination
methodology removes the need for any lengthy cross-validation procedure,
thus speeding up the computation significantly. Furthermore, the accu-
racy of the filling is improved, as demonstrated in the experiments.

1 Introduction

The presence of missing values in the underlying time series is a recurrent prob-
lem when dealing with databases [1]. Number of methods have been developed
to solve the problem and fill the missing values.

Self-Organizing Maps [2] (SOM) aim to ideally group homogeneous individ-
uals, highlighting a neighborhood structure between classes in a chosen lattice.
The SOM algorithm is based on unsupervised learning principle where the train-
ing is entirely stochastic, data-driven. No information about the input data is
required. Recent approaches propose to take advantage of the homogeneity of
the underlying classes for data completion purposes [3]. Furthermore, the SOM
algorithm allows projection of high-dimensional data to a low-dimensional grid.
Through this projection and focusing on its property of topology preservation,
SOM allows nonlinear interpolation for missing values.

This paper describes a new method, which combines several SOMs in order to
enhance the accuracy of the nonlinear interpolation. The combination is achieved
with a simple linear regression performed on an extracted sample from the data.
The maps to be combined are selected first using a ranking of the maps by
Multiresponse Sparse Regression (MRSR) and then choosing the best SOMs
using the Hannan-Quinn Information Criterion. The combination improves the
accuracy of the imputation as well as speeds up the process by removing the
cross-validation scheme [4].
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The global methodology is presented in the next section, including all the
methods combined in the global methodology. The Section 3 demonstrates the
accuracy of the methodology.

2 Global Methodology

The global methodology is summarized in Figure 1.

Fig. 1. Global methodology summarized

The core of the methodology is the Self-Organizing Map (SOM). Several SOMs
are trained using different number of nodes and the imputation results of the
best SOMs are linearly combined.

In order to create the linear system, we have to remove a calibration set
from the data before any processing. Then, the SOM estimations of the removed
calibration data are used as the variables of the linear equations and the removed
data itself as the outputs of the equations. The linear system is summarized in
the following formula:⎡

⎢⎢⎢⎣
ŝ1,1 ŝ1,2 · · · ŝ1,Q

ŝ2,1 ŝ2,2 · · · ŝ2,Q

...
...

. . .
...

ŝL,1 ŝL,2 · · · ŝL,Q

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

α1

α2

...
αQ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s1

s2

...
sL

⎤
⎥⎥⎥⎦ , (1)

where si denotes the ith removed calibration sample, ŝi,j denotes the ith cali-
bration data sample estimated by jth SOM, L denotes the number of calibration
data points, Q the number of the best SOMs used and, finally, the vector α

denotes the linear system parameters. The number of SOMs Q is determined
by the MultiResponse Sparse Regression and the Hannan-Quinn Information
Criterion.

When the α is solved, it can be used to estimate the originally missing values
of the dataset from the best SOM estimations selected.

In the following subsections, each of the methods is explained more deeply.

2.1 Imputation Using SOM

The SOM algorithm is based on an unsupervised learning principle, where train-
ing is entirely data-driven and no information about the input data is required
[2]. Here we use a 2-dimensional network, composed of c units (or code vectors)
shaped as a square lattice. Each unit of a network has as many weights as the
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length T of the learning data samples, xn, n = 1, 2, ..., N . All units of a network
can be collected to a weight matrix m (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the unit i at time t and t represents
the steps of the learning process. Each unit is connected to its neighboring units
through a neighborhood function λ(mi,mj , t), which defines the shape and the
size of the neighborhood at time t. The neighborhood can be constant through
the entire learning process or it can change in the course of learning.

The learning starts by initializing the network node weights randomly. Then,
for a randomly selected sample xt+1, we calculate the Best Matching Unit
(BMU), which is the neuron whose weights are closest to the sample. The BMU
calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 − mi (t)‖} , (2)

where I = [1, 2, ..., c] is the set of network node indices, the BMU denotes the
index of the best matching node and ‖.‖ is a standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be
solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and
Letrémy [5], is used. The randomly drawn sample xt+1 having missing value(s)
is split into two subsets xT

t+1 = NMxt+1 ∪ Mxt+1 , where NMxt+1 is the subset
where the values of xt+1 are not missing and Mxt+1 is the subset, where the
values of xt+1 are missing. We define a norm on the subset NMxt+1 as

‖xt+1 − mi (t)‖NMxt+1
=

∑
k∈NMxt+1

(xt+1,k − mi,k(t))2 , (3)

where xt+1,k for k = [1, ..., T ] denotes the kth value of the chosen vector and
mi,k(t) for k = [1, ..., T ] and for i = [1, ..., c] is the kth value of the ith code
vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{
‖xt+1 − mi (t)‖NMxt+1

}
. (4)

When the BMU is found the network weights corresponding to the non-
missing values of xt+1 are updated as

mi (t + 1) = mi (t) − ε(t)λ
(
mBMU(xt+1),mi, t

)
[mi (t) − xt+1] , ∀i ∈ I, (5)

where ε(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the weight
update depends on the neighborhood function λ(mi,mj , t). The number of neu-
rons, which need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure is started again by finding the BMU of the sample.
The learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing
our data. Cottrell and Letrémy proposed to fill the missing values of the dataset
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by the coordinates of the code vectors of each BMU as natural first candidates
for the missing value completion:

π(Mx) (x) = π(Mx)

(
mBMU(x)

)
, (6)

where π(Mx) (.) replaces the missing values Mx of sample x with the correspond-
ing values of the BMU of the sample. The replacement is done for every data
sample and then the SOM has finished filling the missing values in the data.

The procedure is summarized in Table 1. There is a toolbox available for
performing the SOM algorithm in [6].

Table 1. Summary of the SOM algorithm for finding the missing values

1. SOM node weights are initialized randomly
2. SOM learning process begins

(a) Input x is drawn from the learning data set X

i. If x does not contain missing values, BMU is
found according to Equation 2

ii. If x contains missing values, BMU is found ac-
cording to Equation 4

(b) Neuron weights are updated according to Equation
6

3. Once the learning process is done, for each observation
containing missing values, the weights of the BMU of
the observation are substituted for the missing values

2.2 MultiResponse Sparse Regression

Multiresponse Sparse Regression, proposed by Timo Similä and Jarkko Tikka
in [7] is a variable ranking technique and an extension of the Least Angle Re-
gression (LARS) algorithm [8].

The main idea of the algorithm is the following: Denote by X = [x1 . . .xm]
the n × m regressor matrix. MRSR adds each column of the regressor matrix
one by one to the model Ŷk = XWk, where Ŷk = [ŷk

1 . . . ŷk
p ] is the target

approximation of the model. The Wk weight matrix has k nonzero rows at kth
step of the MRSR. With each new step a new nonzero row, and a new column
of the regressor matrix is added to the model.

More specific details of the MRSR algorithm can be found from the original
paper [7].

An important detail shared by the MRSR and the LARS is that the ranking
obtained is exact, if the problem is linear. Here, in this paper, we linearly combine
the SOM estimations of the missing values and, therefore, we have an exact
ranking of the estimations.
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2.3 Hannan-Quinn Information Criterion

Because the MRSR only ranks the SOM estimations, we need a method to
actually select the optimal number of input variables. This kind of selection can
be considered as a complexity selection or input variable selection.

There are many possible criteria for complexity selection used in machine
learning. Typical examples are Akaike’s information criterion (AIC) [9] or the
Bayesian Information Criterion (BIC) [10]. Their expression is usually based
on the residual sum of squares (Res) of the considered model (first term of the
criterion) plus a penalty term (second term of the criterion). Differences between
criteria mostly occur on the penalty term. The AIC penalizes only according to
the number of parameters p of the model, shown in Equation 7, whereas the BIC
takes into account also the number of samples N used for the model training,
Equation 8.

BIC = N × log
(

Res

N

)
+ p × log N, (7)

AIC = N × log
(

Res

N

)
+ 2 × p. (8)

The AIC is known to have consistency problems: while minimizing the AIC, it
is not guaranteed that the complexity selection will converge toward an optima,
if the number of samples goes to infinity [11]. The main idea raised by this
observation is about trying to balance the underfitting and the overfitting when
using such a criterion. This is achieved through the penalty term, for example,
by having a log N based term in the penalty, which the BIC has. Unfortunately,
in our previous experiments, the BIC criterion failed to give proper results in
terms of complexity.

The Hannan-Quinn Information Criterion (HQ) [12] is very close to the other
two criteria. The HQ is defined as

HQ = N × log
(

Res

N

)
+ 2 × p × log(log N). (9)

The idea behind the design of this criterion is to provide a consistent criterion,
unlike the AIC, and in which the penalty term 2 × p × log(log N) grows with a
very slow rate regarding the number of samples.

In this paper, the HQ criterion is used to select an optimal number of already
ranked SOM estimations to be combined. The number of samples corresponds to
the number of selected training points from the training dataset and the number
of parameters to the number of SOM estimations to be combined.

3 Experiments

In the following experiments, we use a financial fund dataset. The dataset is clas-
sified and, therefore, our possibilities to mention any specifics are very limited.
The dataset can be downloaded from [13].
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The dataset contains 120 time series of funds from a total of 121 months each.
The data has been normalized and rescaled. The series are correlated in time and
between series and there are no missing values originally present in the dataset.
Figure 2 shows 15 example series of the original 120 rescaled fund values.
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Fig. 2. Rescaled and normalized fund values of 15 funds present in the database

Before running any experiments, we randomly remove 20 percent of the data
as a test set. The test set contains roughly 2900 values. In our methodology, there
is no need for actual validation set, but in order to calculate the linear model
parameters for the SOMs, we have to remove a set of data that will be used as
output of the linear model. For that purpose, 20 percent of the remaining data
are removed, which corresponds to roughly 2300 values, and the set is called
calibration set.

According to the methodology, several SOMs are trained using different amount
of nodes. Figure 3 shows the training evaluation errorwith respect to the SOM size.
In this paper, the SOM size is actually the length of the dimension of the square
lattice. So, for example, size 10 means a square SOM grid of size 10×10, a total of
100 nodes.

From Figure 3 we can see that the best SOM size, according to this simple
calibration evaluation, is 6. It means that the som with only 36 nodes is the
most optimal to fill in the missing training evaluation values.

Of course, if we would use a standard SOM for the filling, we should use a
lengthy Cross-Validation scheme to validate the SOM size. But even that lengthy
process does not guarantee that the SOM to be used to fill the test set values is
properly validated.

Figure 4 shows the Hannan-Quinn Information Criterion values with respect
to the number of SOMs in the combination.

From Figure 4 we can see that the most optimal value is reached with 12
SOMs. The selected SOM sizes are 7, 9, 12, 16, 18, 20, 21, 22, 23, 24, 25 and
26. Here the maximum SOM grid size was 26. From the previous list we can
clearly see that the small SOM grids are not accurate enough to be included in
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Fig. 4. Hanna-Quinn Information Criterion values for the selection of SOMs in the
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the combination, but several larger sizes are. Comparing this to Figure 4 it is
also clear that after the 12 selected SOMs the HQ value starts to increase, which
means that the rest of the SOMs do not improve the results.

After the calibration, the obtained models are used to fill in the test set. In
Table 2 the errors are summarized.

From Table 2 we can see that the Combination of the SOMs clearly outper-
forms the single SOM decreasing the test error by 18 percent.

Table 2. Test Errors for the SOM and the Combined SOMs

10−3 Training Evaluation Error Test Error

SOM 1.8 1.6
Combined SOMs 1.3
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4 Conclusions

As the experiments demonstrate, the new methodology combining several Self-
Organizing Maps is at least as accurate in filling of the missing values than
single SOM alone. At the same time, the calculation time is reduced significantly
(almost divided by 10), because of the removal of the cross-validation phase from
the SOM.

Further work consists of finding other ways to combine the SOMs and compare
the achieved performance to other popular imputation methods.
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4. Sorjamaa, A., Liitiäinen, E., Lendasse, A.: Time series prediction as a prob-

lem of missing values: Application to estsp2007 and nn3 competition bench-
marks. In: IJCNN, International Joint Conference on Neural Networks, Documa-
tion LLC, Eau Claire, Wisconsin, USA, August 12-17, pp. 1770–1775 (2007),
doi:10.1109/IJCNN.2007.4371429

5. Cottrell, M., Letrémy, P.: Missing values: Processing with the kohonen algorithm.
In: Applied Stochastic Models and Data Analysis, Brest, France, May 17-20, pp.
489–496 (2005)

6. SOM Toolbox, http://www.cis.hut.fi/projects/somtoolbox/
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Abstract. We explore generic mechanisms to introduce structural hints
into the method of Unsupervised Kernel Regression (UKR) in order to
learn representations of data sequences in a semi-supervised way. These
new extensions are targeted at representing a dextrous manipulation
task. We thus evaluate the effectiveness of the proposed mechanisms on
appropriate toy data that mimic the characteristics of the aimed manip-
ulation task and thereby provide means for a systematic evaluation.

1 Introduction

Learning of control manifolds is emerging as one of the key challenges in unsu-
pervised learning. Here, the Self-organising Map (SOM) has been influential in
various pertinent approaches (cp. e.g.[1]). One more recent method, Unsuper-
vised Kernel Regression (UKR, [6,4]), can be seen as a successor bridging between
earlier ”Parametrised SOM” (PSOM, [11]) and kernel methods (e.g.[8]).

In previous work [9], we have shown that UKR is well suited for representing
human manipulation data. However, due to UKR being unable to incorporate
prior knowledge about the data structure, generating Manipulation Manifolds
(cp. [9]) from training sequences of hand posture data had been realised as
supervised construction instead of automatic learning. In this paper, we present
extensions to UKR for learning (periodic) sequences of chronologically ordered
data and regularising intra-sequence characteristics which are aimed at learning
Manipulation Manifolds in a semi-supervised manner. As basis for several error
measures and thus a systematic evaluation of the new extensions, we perform an
analysis on appropriate toy data which mimic the intrinsic characteristics of the
targeted manipulation data. Whereas toy data always bare the risk of lacking
transferability to the real data case, we here present promising first real data
results in our targeted domain of dextrous manipulation.

We briefly recall UKR in Section 2 and present the new extensions in Section
3. Section 4 briefly summarises the original manipulation data and Section 5
addresses the corresponding toy data generation. Section 6 then uses this data
for the evaluation of the new UKR extensions. Section 7 concludes the work.

2 Unsupervised Kernel Regression (UKR)

UKR is a recent approach to learning non-linear continuous manifolds, that is,
finding a lower dimensional (latent) representation X=(x1, . . . ,xN ) ∈ R

q×N of

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 298–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a set of observed data Y=(y1, . . . ,yN ) ∈ R
d×N and a corresponding functional

relationship y = f(x). UKR has been introduced as the unsupervised counter-
part of the Nadaraya-Watson kernel regression estimator by Meinecke et al. in
[6]. Further development has lead to the inclusion of general loss functions, a
landmark variant, and the generalisation to local polynomial regression [4]. In
its basic form, UKR uses the Nadaraya-Watson estimator [7,12]:

f(x) =
N∑

i=1

yi
KH(x − xi)∑
j KH(x − xj)

(1)

as smooth mapping f : x ∈ R
q → y ∈ R

d from latent to observed data space
(KH: Kernel with bandwidth H). X = {xi}, i = 1..N now plays the role of input
data to the regression function (1) and is treated as set of latent parameters
corresponding to Y. As the scaling and positioning of the xi’s are free, the
formerly crucial bandwidths H become irrelevant and can be set to 1.

UKR training, that is finding optimal latent variables X, involves gradient-
based minimisation of the reconstruction error

R(X) =
1
N

∑
i

‖ yi − f(xi;X) ‖2=
1
N

‖ Y − YB(X) ‖2
F . (2)

Here, B(X) with (B(X))ij = K(xi−xj)∑
k K(xk−xj)

is an N×N basis function matrix.
To avoid poor local minima, i.e. PCA [3] or Isomap [10] can be used for

initialisation. These eigenvector-based methods are quite powerful in uncovering
low-dimensional structures by themselves. Contrary to UKR, however, PCA is
restricted to linear structures and Isomap provides no continuous mapping.

To avoid a trivial solution by moving the xi infinitively apart from each other
(B(X) becoming the identity matrix), several regularisation methods are possible
[4]. Most notably, leave-one-out cross-validation (LOO-CV: reconstructing each
yi without using itself) is efficiently realised by zeroing the diagonal of B(X)
before normalising its column sums to 1. The inverse mapping x = f−1(y;X)
can be approximated by x� = g(y;X) = argminx ‖y − f(x;X)‖2.

3 UKR for Data Sequences

To enable the originally purely unsupervised UKR training to benefit from prior
knowledge about the data structure, we introduce extensions which a) especially
consider ordered data sequences, b) explicitly allow for periodic sequences, c)
propagate the original intra-sequence order to their latent representations and d)
propagate stability of non-temporal sequence parameters within the sequences.

a) We consider given affiliations to sequences which enables us to influence
the latent parameter adaptation such that sequence-specific mechanisms can be
involved in the training. To this end, we distinguish between one latent temporal
intra-sequence dimension and the other inter -sequence parameter dimensions.
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b) Periodic sequences consist of one periodic temporal and one/several (usu-
ally) non-periodic dimensions. To allow for such structure, we provide differ-
ent univariate kernels Kl for different latent dimensions l. The basis functions
(B(X))ij (cp. Sec.2) then consist of their normalised products (parametrised by
Θl):

(B(X))ij =
∏q

l=1 Kl(xi,l − xj,l;Θl)∑N
k

∏q
l=1 Kl(xk,l − xj,l;Θl)

. (3)

In the non-periodic case, the univariate versions of the kernels used in original
UKR can be applied (e.g. Gaussian: Kg(xi −xj ; Θ) = exp

[
− 1

2Θ2(xi − xj)2
]
). In

analogy to original UKR, we assume no need for bandwidth control. However,
to analyse potential cross-effects with the following new extensions, we also in-
vestigate different bandwidths for this case. For the periodic case, we propose
the following cyclic kernel with bandwidth parameter Θ, periodic in [0;π]:

K�(xi − xj ; Θ) = exp
[
−1

2
Θ2 sin2(xi − xj)

]
. (4)

Up to normalisation and scaling, the kernel is equivalent to the von Mises distri-
bution [5] which has been already used by Bishop et al. [2] to represent periodic
data characteristics. We chose the presented form for convenience reasons.

In the periodic case, kernel bandwidth regulation is needed since the effective
space in corresponding dimensions is constrained due to its periodic nature and
fixed bandwidths cannot be compensated by scaling the latent parameters.

c) ”cyclic data order”: To propagate the original chronological order of NS

data sequences Sσ =(yσ
1 , ..,yσ

Nσ
), σ=1..NS to the corresponding latent parame-

ters (xσ
1 , ..,xσ

Nσ
), the values xσ

i,dt
, i = 1..Nσ in the temporal latent dimension dt

need to reflect the order of the original data sequence. In the periodic case, such
condition is difficult to induce without any assumptions about the underlying
sequences. However, by providing sequences of complete cycles, we can consider
the first data point in the sequence as successor of the last one: xσ

0 = xσ
Nσ

. If so,
a penalty term in the loss function can preserve the cyclic data order:

Ecseq(X) =
NS∑
σ=1

Nσ∑
i=1

sin2(xσ
i,dt

− xσ
(i−1),dt

). (5)

d) One strong assumption which we want to be reflected in the latent space
is, that the values of the non-temporal dimensions are approximately constant
within single sequences. This consideration stems from the generation of our
manipulation data (see next Section for a short description). The basic idea is
that the underlying movement parameters usually do not change during single
sequences – e.g., for cap turning, the radius of the cap does not change during
the turning. We realise this regularisation of intra-sequence parameter variations
as penalty term to the loss function which penalises high variances in the non-
temporal dimensions k = 1..q, k �= dt:

Epvar(X) =
NS∑
σ=1

∑
k �=dt

1
Nσ

Nσ∑
i=1

(
xσ

i,k − 〈xσ
·,k〉
)2 (6)
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Fig. 1. Example of a hand posture sequence corresponding to a training manipulation
of a bottle cap (r = 2.0cm). Note the periodic nature of the movement.

The overall loss function then can be denoted as E(X)=R(X)+λcseqEcseq(X)
+ λpvarEpvar(X). The new parameters are (Θ1, . . . , Θq, λcseq, λpvar).

4 Manipulation Data

As described in Sec.1, the presented extensions are aimed at learning the repre-
sentation of a manipulation task (i.e. turning a bottle cap). The set of training
data, which has been used already for the initial manifold construction in [9], con-
sists of sequences of hand postures (each a 24D joint angle vectors) recorded dur-
ing the turning movement for different cap radii (r=1.5cm, 2.0cm, 2.5cm, 3.0cm
and 3.5cm). The movement itself is periodic in the sense that the beginning and
end postures are (in principle) the same. For each radius, we produced five to
nine sequences of about 30 to 45 hand postures each – in total 1204 for all
sequences and all radii. Figure 1 exemplary visualises one of such sequences.

5 Toy Data for Evaluation

To evaluate the new UKR extensions, we generate toy data with similar intrin-
sic characteristics as the manipulation data in [9] briefly described in the last
section. The utilisation of toy data provides us with knowledge about underly-
ing true structures and enables us to compute a variety of error measures not
accessible otherwise (cp. Sec. 6 for details). As basis for an adequate toy data
generation, we thoroughly investigate the real data. Here, we especially try to
uncover the intrinsic data structures reflecting our prior knowledge of the gener-
ated manipulation data. From the generation process, we assume the existence of
a periodic structure reflecting the periodic nature of the cap turning movement
and an additional non-periodic expansion reflecting the different cap radii used
for the sequence generation. By using Isomap [10] – a powerful method for un-
covering hidden intrinsic structures in large data sets – we are able to reinforce
these assumptions: a three-dimensional Isomap embedding of our manipulation
data (see Fig.2a) reveals a cylinder-like structure describing a periodicity living
in the x/y dimensions and a non-periodic extension in z direction.

To unfold the 2D representation of the periodicity, we can apply atan2 on
the x/y-part of the embedding data yielding the basis for the corresponding 1D
”angle” ∈ [0; π]. In combination with the original z component, we receive a 2D
representation of the formerly 3D Isomap embedding and of the 24D original
hand posture data, respectively. This data can be used as latent initialisation of
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Fig. 2. (a) 3D Isomap embedding of 24D hand posture data recorded during the turn-
ing movement of a bottle cap. Different colours encode different cap radii. (b) atan2-
mapping of (a). (c) noise-free training data (red, connected); test data (black, single
points). (d) noisy training/test data. (e) Toy data Isomap embedding (cp. (a)). (f)
atan2-mapping of (e). (g-h) Results for toy (g) and real (h) data.

the UKR model1 as visualised in Fig.2b. Here, it turns out that the different se-
quences (connected) are not clearly separated and even sequences corresponding
to different cap radii (encoded by different colours) partly overlap.

To reflect similar characteristics in our toy data and to provide an informa-
tive basis for the later evaluation, we aim at a simple low-dimensional toy data
structure that produces Isomap embeddings of a similar form as the real data.
To this end, we generate ordered (connected) data samples from the surface of a
cylinder geometry (height=1, radius=1, Fig.2c) living in 3D together with noisy
versions (Gaussian noise, σ = 0.1, e.g. Fig.2d). Such data then yield Isomap em-
beddings which a) provide a periodicity b) a non-periodic parameter expansion
and c) are organised in chronologically ordered sequences (”trials”) and thus
are quantitatively similar to the Isomap embedding of the real data (Fig.2a/e)
and its 2D mapping (Fig.2b/f). Within this cylinder structure, cross sectional
rings of different height levels model sequences for different cap radii in the real
data. As basis for the evaluation, we generated six training data rings and six
overlapping together with five intermediate test data rings (cf. Fig.2c).

In anticipation of the following, Fig.2(g-h) depict the resulting latent param-
eters from training with toy and real data, respectively, having considered the
results from the next section. The similarity of both latent structures supports
the appropriateness of the toy data for the use with our real manipulation data.

6 Evaluation and Results

We evaluate the new extensions to UKR with the training/test data described in
the last section. We incorporate our prior knowledge about the data – periodic
sequences and non-periodic height levels corresponding to the periodic movement
and the non-periodic radii variation in the manipulation data – in form of the
1 The 2D latent space with one periodic kernel has the topology of a cylinder surface.
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Fig. 3. Evaluation results (a-d) for λcseq = λpvar = 1 and (e-h)(Θ1, Θ2) = (12, 4),
red lines:λcseq/λpvar =0. Please refer to text for further explanation.

specification of two associated latent dimensions: one periodic (K1(·; Θ1) = K�)
temporal and one non-periodic (K2(·; Θ2) = Kg) parameter dimension. The
loss function then consists of the reconstruction error and the penalty terms
introduced in Section 3: E(X) = R(X) + λcseq · Ecseq(X) + λpvar · Epvar(X).

As proposed in the last section, we compute 3D Isomap embeddings (for this
data very robust in the choice of the neighbourhood parameter; here K = 10)
of the noisy training data Y (cf. Fig.2e), and again use atan2 to retrieve a 2D
latent initialisation for the UKR model (Fig.2f).

The evaluation focusses on the effect of different combinations of the in-
verse bandwidths Θ1, Θ2, and the penalty weightings λcseq, λpvar . From our
toy data structure, we derive initial guesses for good bandwidth parameters
(Θ1 = 14, Θ2 = 5 based on average inter-point distances) and evaluate cor-
respondingly Θ1 for values {7, 8, .., 14, .., 21} and Θ2 for {3, 3.5, .., 5, .., 7}. As
for λcseq and λpvar , no assumptions could be made, we choose λcseq , λpvar ∈
{0, 10−4, 10−3, 10−2, 10−1, 100, 101}. For each tuple (Θ1,Θ2,λcseq ,λpvar), 10 train-
ing runs with 10 noisy versions of the training data are conducted. Each run con-
sists of 500 optimisation steps including LOO-CV (exemplary result: Fig.2(g)).
Initial tests yielded the most promising results for λcseq = λpvar = 1 which thus
provides a good starting point for the evaluation of Θ1 and Θ2.

Fig.3(a-d) depict the corresponding reconstruction errors for varyingbandwidth
parameters Θ1, Θ2. Fig.3a shows the normalised mean square error (nMSE) be-
tween noise-free test data YT (the underlying true cylinder geometry) and its
UKR reconstructions f(g(YT )), visualising UKR’s ability to generalise to unseen
data from the underlying structure. Fig.3b shows the nMSE between YT and
the reconstruction of its noisy versions f(g(YTn)), visualising UKR’s robustness
in representing the underlying structure and its ability to correct noisy input
data. The bias of f(g(·)) towards the inner of the underlying structure (a known
problem in original UKR) is depicted in Fig.3c for noisy training data Yn.

Fig.3(a-b) show a clear error dependency on Θ1 and minimal errors for Θ1 =
12 (Fig.3a) or Θ1 = 10 (Fig.3b). However, as the bias significantly increases
with decreasing Θ1 (Fig.3c), we use Θ1 =12 for further evaluation. As assumed
before, there is no significant dependency on Θ2 due to the free positioning of
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Fig. 4. Application err’s (Θ1,Θ2)=(12, 4), Red line: λcseq/λpvar =0 (details: see text)

the latent parameters in the non-periodic dimensions. This is shown in Fig.3:
whereas the errors stay approximately constant (Fig.3(a-c)), the variance in the
latent parameter dimension varies strongly for changing Θ2 (Fig.3(d)).

Fig.3(e-h) depict errors for fixed bandwidth parameters (Θ1, Θ2)=(12, 4) and
different combinations of λcseq , λpvar . Fig.3(e-f) reveal that high values of λcseq

– which stronger force correctly ordered latent parameters – negatively influence
the reconstruction error. However, high values of λpvar damp the reconstruction
error in general and are able to overrule the negative effect of the sequence order
penalty. Indeed, as depicted in Fig.3g, both high weightings of Ecseq and Epvar

yield high radius errors. Logically consistent, high values of λpvar strongly damp
the variance in the latent data dimension (cp. Fig.3h).

For applications exploiting the aimed sequence-reflecting latent structure, not
only the pointwise nMSE, but also structure-related errors are of interest. Fig.4a
shows a normalised variance in the latent parameter dimension (”nVAR”) of
observed fix-parameter sequences (lines in observed space) mapped into latent
space (g(rYT)) providing a measure for the distortion of the line projection and
thus for the distortion in the parameter dimension. The plot uncovers that high
weightings of Epvar (reducing general reconstruction errors; cp.Fig.3(e-h)) only
result in stable sequence projections for strongly weighted Ecseq. Fig.4b shows
the inverse projection direction, corresponding to reproducing/synthesising se-
quences in original data space with fixed sequence parameters. Again, only com-
bined high Epvar- and Ecseq-weightings produce stable sequences. Fig.4(c-d) in-
vestigate the corresponding inverse situations. Fig.4c visualises temporal syn-
chronisation distortions of the latent space projections of sequence parameter
modulations in observed space for fixed points in time. To take account for the
periodic nature of the latent temporal dimension, we calculate nMSEs on the
angular deviations from the mean (”nCMSE”) of the analysed line and take the
underlying kernel period into account. Like this, the nCMSE has similar charac-
teristics as the nVAR for non-periodic dimensions. Here, high λcseq-weightings
result in higher distortions of the projections. However, for the targeted high
weightings of Epvar , the negative effect of higher values for λcseq still is in a rea-
sonable region. Fig.4d visualises the inverse mapping, measuring the distortions
of projections of lines in latent space with zero-variance in the temporal dimen-
sion back into observed space. Again, for high λpvar, the effect of the sequence
penalty Ecseq is strongly dominated by the effect of Epvar.

To sum up: whereas the choice of Θ2 is less important, the inverse bandwidth
Θ1 should be set to a value (slightly) smaller than the inverse of the average point
distance in the corresponding dimension (here: Θ1 =12). The results for varying
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Fig. 5. Promising results for the targeted manipulation task. Horizontal dim.: time;
vertical dim.: cap radius. Depicted are reprojections f(x;X) of regularly sampled la-
tent positions x of the trained UKR. Please consider also the video available under
http://www.techfak.uni-bielefeld.de/∼jsteffen/mov/wsom2009/.

λcseq/λpvar are relatively robust. Here, they optimally effect the generation of
the desired latent structures for λcseq/λpvar =1.

7 Conclusion

We presented extensions to the unsupervised manifold learning method UKR,
which now allow for semi-supervised learning of structured manifolds. We evalu-
ated the new extensions on toy data in a general and manipulation relevant con-
text as basis for future work on real manipulation data. First promising results
using our new insights are visualised in Fig. 5: the targeted task of representing
the periodic movement of turning a bottle cap has been successfully achieved.
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Abstract. Among the popular lifestyle-related diseases are smoking,
overweight and stress. A daily health check is important because there
is no clear objective symptom for these diseases. We developed diagnotic
software which shows the state of the blood vessels using a Basic SOM
model, and performs synthetic plethysmogram analysis of 4 components
using the map location (the state of the blood vessel, vascularity), loose-
ness, pulse/minute, and pulse stability.

Keywords: plethysmogram, SOM, clinical case study.

1 Introduction

To carry oxygen and nutrition all over the body is a blood vessel’s most im-
portant task. When healthy, the blood vessel has the elasticity and flexibility
corresponding to the pressure of the blood. When dangerous factors such as
smoking, overweight, stress and other lifestyle-related diseases influence a blood
vessel, arteriosclerosis gets worse. It causes cerebral infarction and cerebral hem-
orrhages due to a high blood pressure. These accidents can happen suddenly
without clear symptoms, so that a daily check is becoming increasingly impor-
tant for prevention.

From the fingertip, the acceleration plethysmogram is obtained without sub-
jective stress in a short period of time. We developed diagnotic software which
graphically shows the state of the blood vessel by using a Basic SOM model.

Much information is included in the plethysmogram about the blood move-
ment in the vessel, which goes from the center (heart) to the end (fingertips).
The bloodstream travels through the blood vessels from the heart to the capil-
lary vessels in a wave-like motion. The plethysmograph is affected by the ictus
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Fig. 1. The left figure shows the set-up for measuring the plethysmogram. The pan-
els in the right figure are 1©Volume plethysmogram, 2©Velocity plethysmogram and
3©Acceleration plethysmogram.

cordis, the haemodynamics and the physiological condition caused by the change
in the properties of an arteriole. The effects can be observed as distortions in the
wave profiles. The inside diameter of the blood vessel changes due to a swelling
of the blood vessel. The wave motion that occurs at that time is called the vol-
ume plethysmogram (refering Fig. 1 1©.). The volume plethysmogram has the
problem that the base line never becomes stable. Therefore, it is difficult to esti-
mate the inflection point because the wave becomes sparse when it raises. Hence,
techniques to differentiate the waveform have been proposed. The acceleration
plethysmogram (2nd derivative) is one recent example that has considered and
evaluated [1]. The volume plethysmogram by a volumetric change of the blood
vessel, the velocity plethysmogram (1st derivative) and the acceleration plethys-
mogram (2nd) are shown in Fig. 1. A departure from flatness is more visible
in the acceleration plethymogram than in the volume plethysmogram, and it
becomes, thus, easier to evaluate the waveform. The plethysmogram used for
the diagnosis at present is the acceleration plethysmogram (referring Fig. 1 3©),
and a doctor is evaluating the plethysmogram by watching the location of the
inflection point or by calculating a blood vessel age formula.

The waveforms of the acceleration plethysmogram and the presently used
characteristics (or features) are shown in Fig. 2. Waveforms are typically cate-
gorized into seven classes, as illustrated in Fig. 2. The figure shows the gradual
changes from the waveform of a healthy signal (Group A) to a possibly un-
healthy waveform (Group G), which could be caused by an incomplete blood
circulation [1]. When the labels “a” to “e” are put on the wave extremal points,
“b” is smallest for a healthy subject and “d” smallest when an incomplete circu-
lation is possible (refer to Fig. 2). Doctors and researchers can assess the state
of the blood vessel from the waveforms, but a non-specifically trained person.
The plethysmogram analysis software described below has been developed using
a Self Organizing Maps (SOM) [2,3] so that a non-trained person may inter-
pret the waveform. The conventional tool is calculating the vein age by Eq. (1),
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Fig. 2. The features of the acceleration plethysmogram. The group (a) in the right
hand side show healthier waves than the one (b).

Fig. 3. The pre-processing of the acceleration Plethysmogram pulse wave before de-
veloping the SOM
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which the medical doctor [4] has developed using the peak values of a , b, c, d, e
shown in Fig. 2 (almost all of the commercial tools work this way). Our tool has
cut down 50 points from the sampling points of the acceleration plethysmogram
wave using the algorithm which is described below (Fig. 3) and which tried to
classify the wave forms using the Self-Organizing Maps (SOM) [2,3]. It is devel-
oped in such a way that our tool Pulsar-SOM [5,6] becomes more easy to use,
even by the general public. Thus, our tool Pulsar-SOM is developed for the gen-
eral public for easily easily assessing the condition of their capillary vessels [5,6].

[V ein age] = 43.5 × (b − c − d − e)
a

+ 65.9 (1)

2 Synthetic Plethysmogram Diagnosis

Pulser SOM is an application which obtains the state of the blood stream from
the plethysmogram. The waveform of the acceleration plethysmogram, to differ-
entiate the volume plethysmogram, obtained from the fingertip, has the charac-
teristic of predicting the state of the blood stream. This characteristic cannot be

Fig. 4. The general pulse wave analysis tool in which the pulse wave analysis and the
clinical example can be seen on the same screen. At present, an acceleration Plethysmo-
gram pulse wave is analyzed, by pushing the button “the pulse wave” of 2©. Then, the
analysis can be moved to the general pulse wave analysis by pushing the button 1© and
using the data of 1 - 4 in the figure. Putting the mark in the button 4©, the Japanese
explanation of each color region on the map of an acceleration Plethysmogram pulse
wave analysis mode appears.



Construction of a General Physical Condition Judgment System 311

Fig. 5. Examples of a classification as healthy

understood by the non-trained individual, only by doctors and researchers. How-
ever, a non-trained person, who doesn’t have the special knowledge, can predict
the state of the blood vessel using Pulser SOM. Pulser SOM uses the plethys-
mogram sensor of U-Medica Inc. First, we explain what role each part of this
software has. This software is developed based on the algorithm [5,6] in Fig. 3.

We show the example of the measurement in Fig. 4. As shown in Fig. 4, the
plethysmograms classify from “Group A” in the upper right to “Group G” in
the lower left. The upper right section in each sub-figure of Fig. 5 shows an
example of a healthy person. Dr. Maniwa, who is one of the authors, tried to
classify the clinical examples of the plethysmogram [7]. Each region of the map
in Fig. 6 shows a clinical example. As shown in Fig. 6, there are 6 clinically
explained/relevant regions: “healthy”, “healthy, but pulse frequent tendency”,
“metabo recoverable group: acylglycerol and/or blood sugar high level”, “fatigue,
stress, shortage of sleep”, “climacteric disorder”, “arteriosclerosis”. Although the
plethysmogram of the examinee in Fig. 4 is in the healthy region of “2”, its
clinical example in Fig. 6 is in the “metabo recoverable group”.

As shown in Fig. 4, the position of the partial wave is shown by a point (The
point can be expanded, so that the partial wave number becomes readable.) on
the map. To the center of gravity of this point group corresponds the colors of
A-G in the “legend”, and a comment which corresponds to its color is shown
in an editbox of “vascularity”. In this research, the A-G colors are converted
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Fig. 6. “The clinical example” of the examinee is shown by pushing button 3© in Fig. 4
which is the button of “the clinical examples”. This examinee corresponds to the area
of “metabo recoverable group” by the color of “the clinical examples” on the left of the
figure. Also, the black mark surrounded by the line which is linked by five points of
Wave1-Wave5 in the figure is the center of gravity (or the representative point ), where
Wave6 is hidden among Wave1- Wave5. Putting the mark in the button 4© which is
already shown in Fig. 4, the Japanese explanation of each color region on the map of
“the clinical example” analysis mode of the examinee appears.

into numbers 1-7. The transition of the partial wave shown on the map is tied
with the shortest distance as defined by TSP (Traveling Salesman Problem),
and its distance is shown by “looseness”. Next “pulse” and “pulse stability”
are also described by numbers. Using four items, and pushing the button 1© of
“Synthetic plethysmogram diagnosis” in Fig. 4, a new map is created in Figs.
7 and 8. Figures 4, 5 and 6 are obtained from the Basic SOM model. However,
Figures 7 and 8 are obtained from Torus-type SOM. For the basic SOM model,
the number of input data points is 1500, the number of neurons 60 80, the
number of iterations 10,000, the learning coefficient 0.4, and the neighborhood
radius 60, gaussian. For the torus-type SOM, the number of input data points
is 400, the number of neurons 20 30, the number of iterations 100,000 times, the
learning coefficient 0.01, and the neighborhood radius 10, gaussian.

The data in the upper right section of Fig. 7 shows “vascularity” 2.0, “loose-
ness” 27.5, “pulse” 70.7, “pulse stability” 3.8. The position of the center of
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Fig. 7. The mark (point) SOM map which was analyzed using the 4 components ob-
tained in the pulse wave analysis shown in Fig. 4 (the values of the weight in the
following Eq. (2) are described in the upper right in red letters as Vascularity: 3,
Looseness: 2, Pulse: 1.5, and Pulse stability: 1.5).

gravity in the map of Fig. 4 is classified as “Group B”, therefore, it is 2.0 if the
group region exchanges the number. The others are shown as the number of data
on the left hand side in Fig. 4. The number of data is calculated using Eq. (2).

MHPi = √
n∑

n=1
Wn(WVn − NV )2 −

√
n∑

n=1
Wn(Xni − NV )2

√
n∑

n=1
Wn(WVn − NV )2

× 100 (2)

with WVn the worst value of each component, and NV the normal value 1, Xni

the value of examinee i of the nth component, Wn the value of the weight of
the nth component. The weights Wn are given by Dr. Y. Maniwa (one of the
authors) from his medical points. The values of the weights in Figs. 7 and 8
are described as Vascularity: 3, Looseness: 2, Pulse: 1.5, and Pulse stability: 1.5.
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Fig. 8. The component SOM map which was analyzed using the 4 components obtained
in the pulse wave analysis shown in Fig. 4 (the values of the weight in the following eq.
1 are described in the upper right corner in red letters as Vascularity: 3, Looseness: 2,
Pulse: 1.5, and Pulse stability: 1.5).

The MHP (Myakuha Health Mark Point) is converted into the plethysmogram
score calculated as 100 − MHP . When the plethysmogram score becomes high,
all four components go to a bad situation. When it becomes low, they go to a
good situation. As shown in Fig. 7, the color has 5 grades. If the examinee gets the
worst value for each component, the MHP is 0 points, therefore 100−MHP is
100 points. When the plethysmogram score becomes high, the plethysmogram’s
healthy condition goes to a bad situation. The worst region is shown by the “red”
color. The component SOM mapping in Fig. 8 shows the region of the worst value
for each of the components. “Vascularity” has a “green” color, “Looseness” a
“blue” color, “Pulse” a “red” color, “Pulse stability” a “purple” color. Because
the examinee has the normal value for all components, he is in the position of the
normal value “0”, and its color is “light blue”. As a result, we can evaluate the
examinee’s data quantitatively by developing a SOM map of four components.

3 Conclusion

We developed the diagnosis help software which shows the state of the blood
vessel (vascularity) graphically using the Basic SOM model, and performs a
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synthetic plethysmogram diagnosis of 4 components using the map location (the
state of the blood vessel, vascularity), looseness, pulse/minute, and stability of
a pulse. In addition, we developed the classification of the clinical examples us-
ing the waveform of the plethysmogram. As a result, the examinee can assess
the present health state quantitatively because the health state is given by a
numerical value. We are convinced that the 4 components and the clinical ex-
ample classification provide suggestive evidence to medical doctors, researchers
and non-experts.
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Abstract. This paper discusses biological aspects of self-organising maps
(SOMs) which includes a brief review of neurophysiological findings and classi-
cal models of neurophysiological SOMs. We then discuss some simulation stud-
ies on the role of topographic map representation for training mapping networks
and on top-down control of map plasticity.

1 Introduction

Experience driven development and learning is of central importance in the brain,
and self-organizing maps (SOMs) have long been a principle model for such systems
(Kohonen, 1982; Willshaw and von der Malsburg, 1976). Work has continued in refin-
ing models for better matches with experiments and enhanced theoretical treatments
(e.g. Tanaka, 1991). While map plasticity is generally celebrated as physical evidence
of learning, learning-theoretic studies of the role of SOMs for learning on a cognitive
level have been sparse.

This paper provides some discussions on modelling biological SOMs. We briefly
point to some of the basic biological findings and literature on cortical maps, with some
concentration on issues of top-down control of learning. We then review recent re-
sults by Zhou and Merzenich (2007) which demonstrate enormous changes in tonotopic
maps of adult animals and the importance of behavioral relevant learning for map for-
mation. The following brief review of biological models discusses the differences, and
the relations, between some classical papers (Willshaw and von der Malsburg, 1976;
Amari, 1977; Kohonen, 1982). Finally, we show that topographic map representations
can assist learning of feed forward networks and address some questions of top-down
control of map formation.

2 Topographic Maps in the Brain

Topographic maps are a common feature of cerebral cortical areas that process sensory
information. The features that are mapped in the various sensory cortices differ some-
what, being mostly spatial in visual cortex (with visual space corresponding to position
on the retina) and somatosensory cortex (position on the body surface) as compared to
sound frequency in auditory cortex which results from a transformation of frequency to
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position on the cochlea. An important characteristic of all maps and in all species stud-
ied is that there is significant distortion in the maps such that the parts of the sensory
sheet that are biologically most important to the animal have a larger representational
area. This is often called a magnification factor and results in the well-known distorted
picture of the body representation in somatosensory cortex termed the homunculus in
which the finger and lip representations are proportionally much larger than on the body
itself. This enlargement of specific subregions in some animals has also provided im-
portant model systems that have facilitated the study of these maps, for example the
high-frequency regions of auditory cortex of the bat that are involved in echolocation
or the whisker region of rodent somatosensory cortex in which anatomically discrete
barrels have a one-to-one correspondence to the large whiskers on the animals snout.

The original formation of topographic maps is largely a developmental problem in-
volving chemical signaling between neurons in addition to network activity that results
from sensory experience. While we can study how the framework of topographic maps
can be laid down in the absence of neural activity (by applying drugs that block the elec-
trical signals), it is impossible to do the reverse. Consequently, the role of network ac-
tivity can best be studied in the more mature animal, after the developmental processes
are complete, by perturbing some aspect of the map and observing how the mapping
functions react. One approach is to remove one part of the input, say by denervating
one part of the body or producing a small lesion in the cochlea or retina. A common
finding of such experiments is that the deprived regions of cortex do not remain qui-
escent, but gradually begins to respond to stimulation of adjacent parts of the sensory
sheet (Rasmusson, 1982; Robertson and Irvine, 1989; Kaas et al., 1990); it is often said
that the map reorganizes itself. A related technique is to directly lesion part of the cor-
tical map; again a consistent finding is that the surrounding regions gradually begin to
respond to adjacent sensory inputs (Winship and Murphy, 2008). A second approach is
to ask whether the map can be changed by increased neural activity, either by enhanced
sensory input or by direct stimulation of a small part of the cortex. Here the usual
finding is that the representational area enlarges with progressive stimulation, whether
in the somatosensory cortex with finger stimulation (Jenkins et al., 1990), or the audi-
tory system with repeated presentations of specific sound frequencies (Recanzone et al.,
1993).

Before the precise mechanisms underlying these reorganizations can be uncovered,
it is necessary to ask where exactly does plasticity occur, that is, where are the synaptic
connections that are being changed during reorganization. The cortical responses are
the result of a chain of three or more neurons proceeding from the sensory sheet to the
cortex; at each level of processing there is a similar topographic map. It is possible,
therefore, that plasticity occurs at one of these preceding levels and that the cortical
response is simply a reflection of reorganization at these earlier stages. The cortex was
the original focus of most early studies largely because it is more easily accessible.
In fact, recent studies have demonstrated some degree of reorganization in the thala-
mus, which contains the final projection neurons that go to the cortex. The problem that
arises here is that each of these sensory pathways is not only a bottom-up system with
projections only going upstream. Feedback from the cortex to the thalamus has long



318 T. Trappenberg, P. Hartono, and D. Rasmusson

been known and in fact outnumbers thalamocortical fibers by 10 to 1 (Steriade et al.,
1997). A new thalamic response might then be due to reorganization within the cortex
relayed back to the thalamus or to plasticity within the thalamus itself.

3 Goal-Directed Learning Controls Topographic Map Plasticity

While most of the work on the formation of topographic maps is targeted towards early
development, we concentrate on the ongoing refinements of cortical maps during adult
plasticity. A nice demonstration of representational plasticity in adult mammals was
recently given by Zhou and Merzenich (2007) and is shown in Fig. 1. They raised rat
pups in a noisy environment that severely impaired the development of tonotopicity in
the primary auditory cortex (A1), which lasted into adulthood. An example of such a
map in an adult rat is shown in Fig. 1A. The hatched areas represent areas with neurons
that showed abnormal, poor frequency tuning. These rats did not recover a normal tono-
topic representation in A1 even though they were stimulated in adulthood with sounds
of different frequencies. However, when the same sound pattern were used to train the
rats in a discrimination task in order to get food reward, the developmentally degraded
rats were able to recover a normal tonotopic map as shown in Fig. 1B. This example
demonstrates that goal directed learning can influence map plasticity. A purely bottom-
up stimulation of networks, which is the common focus in SOM modelling, is certainly
not enough to explain the results by Zhou and Merzenich (2007). Before returning to
questions on modelling these results, we first review classical SOM models in the next
section.

A. Passively stimulated rat B. Trained rat

Dorsal

Anterior
1mm

2kHz

8kHz

32kHz

Fig. 1. (A) Frequency map in A1 of a rats that was developmentally degraded by being raised in
noisy environments. The hatched areas contain neurons with poor frequency tuning. (B) Tono-
topic map of an adult rat that recovered with training on a frequency discrimination task. [Data
courtesy of Xiaoming Zhou and Micheal Merzenich.]

4 Basic Cortical Map Models

A model for activity-dependent, self-organized development of topographic cortical
maps was studied over 30 years ago by Willshaw and von der Malsburg (1976). They
considered a two dimensional cortical sheet as illustrated in Figure 2A. The states
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Fig. 2. Common architecture of self-organizing maps

of the nodes in this cortical sheet represent activation rates in localized neuronal
populations with a leaky integrator dynamics. Population models were derived by
Wilson and Cowan (1972) with separate excitatory and inhibitory populations, and sub-
sequently studied with centre-surround architectures (Wilson and Cowan, 1973). Amari
(1977) abstracted these models further in two important ways, by combining the exci-
tatory and inhibitory populations, and by using a continuous descriptions of the neural
sheet. The dynamics of the neural sheet described by neural field equations,

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
y

w(x,y)r(y, t)dy + Iext(x, t) (1)

r(x, t) = g(u(x, t)), (2)

of which the equations by Willshaw and von der Malsburg are an discretized example.
The general activation function g, which often has the form of a sigmoid, relates the
internal state variable, u, to an externally observable rate variable, r. The integration
kernel w describes the interaction within the cortical sheet (recurrent network), and has
typically the characteristics of short-distance excitation and long-distance inhibition.
For example, with a cortical sheet on a torus to minimize boundary effects, a common
interaction kernel is a shifted Gaussian,

w(|x − y|) = Aw

(
e−(x−y)2/4σ2 − C

)
, (3)

where Aw, σ, and C are constants, and x and y are the locations of the interacting
neural populations. This kernel can be learned through Hebbian learning (Stringer et al.,
2002), but most studies of self-organizing maps consider this interaction kernel as fixed
when learning the afferent (input) weights to this neural sheet. Neural field models are
widely used to model reaction times in cognitive neuroscience (e.g. Trappenberg, 2009).

The activity-dependent self-organization of the inputs to the neural sheet is also based
on Hebbian learning as outlined in (Willshaw and von der Malsburg, 1976). Briefly, the
neural sheet implements a maximum-likelihood estimator (Wu et al., 2001), where the
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estimate is given by a localized activity packet that develops through competitive neu-
ral field dynamics (Amari, 1977). This process is approximated by a winner-takes-all
mechanism and a neighborhood function in Kohonen’s formulation (Kohonen, 1982) .
The neural activity in the activity packet is then correlated with the input pattern through
Hebbian learning, with most active nodes in the centre of the activity packet strength-
ened more than nodes in the periphery of the activity packet.

A final approximation in Kohonen’s formulation of SOMs is the replacement of dis-
tributed activity patterns for feature values in the input sheet with a direct represen-
tation of feature values in an input vector (Figure 2B). Note that we discuss here the
case where the dimensionality of the feature space is the same as the dimensional-
ity of the feature map, although SOMs can be used to map high dimensional feature
spaces into lower dimensional maps (Obermeyer et al., 1990). The activity packet that
develops though the neural dynamics determines the tuning curves in neural sheets (see
Trappenberg, 2009 for an illustration). Therefore, the radial basis function nodes in
Kohonen’s network can be seen as a model of unimodal tuning curves, and the input
weights in Kohnonen’s formulation correspond to the centre of the tuning curve. This
centre of the tuning curve is often called the preferred response (orientation in V1) of a
neuron.

Kohonen’s formulation, while more abstract, has several advantages to the model by
Willshaw and von der Malsburg. Integrating the neural field dynamics is usually very
time consuming, and the replacement of neural field representations with tuning curves
reduces the computational burden dramatically. Furthermore, topographic organizations
are easily observable when plotting centers of tuning curves, which are directly mod-
elled in Kohonen’s model. This information has first to be decoded in the neural field
formulation. However, the neural field dynamics need to be considered when studying
the dynamics of responses in neural tissue. Also, it is not clear how multiple concurrent
objects in a sensory field can be simulated in Kohonen’s model.

5 The Importance of Topographic Representations in Learning
Mapping Functions

To demonstrated how topographic representations can help train mapping networks, we
provide here a basic example of a system that must learn to solve a decoding task. The
decoding task is to convert an analog signal to a digital representation (binary output
vector). The system includes SOM in Kohonen’s formulation, which receives the analog
input, and a simple perceptron to map SOM states to the desired local, binary represen-
tation as shown in Figure 3A. The SOM was then trained on random examples of analog
input signals for a specific number of training steps before using this representation to
train the perceptron.

Such a decoding task can, in principle, be solved with a perceptron with one hidden
layer since such machine learning systems are universal approximators (Hornik et al.,
1989). Thus, why should we complicate the system with a SOM layer? To demonstrate
this we use a simple perceptron (no hidden layers) as the output module of the network.
Avoiding hidden layers makes it harder to solve the mapping problem. Also, a simple
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Fig. 3. Example of a decoder resulting from training a perceptron on self-organized representa-
tions. (A) Illustration of the architecture. (B) Learning curves for the perceptron with different
number of learning steps in the SOM. (C) Weight values of the perceptron with well organized
SOM and trained perceptron.

perceptron can be viewed as a reinforcement learner, which is the desired architecture
to model the results of Zhou and Merzenich (2007).

Training curves for the perceptron are shown Figure 3B. The different curves cor-
respond to different number of steps (= 2k) of training the SOM before training the
perceptron. We found that some organization was necessary for the perceptron to learn,
and that further self-organization helped the perceptron to reduce its training time to
reach a desired accuracy. We found similar results in more complicated mapping tasks
in which multilayer perceptrons were used as the output layer (not shown here).

Given enough training steps for SOM learning and perceptron learning, the decoder
was able to accurately learn the decoding task. The weights of the perceptron after train-
ing are shown in Figure 3C. The pattern of weights has a centre-surround organization.
This is a consequence of extended activity packets in the SOM layer and the forced,
localized output representation. As some of the neighboring nodes are activated in the
SOM layer, the output layer learns to suppress these activation through cente-suround
inhibition.

6 Modelling Top-Down Control of SOM Plasticity

The above example demonstrate the usefulness of topographic organizations in inter-
mediate layers of mapping networks. The next question is how top-down control of map
plasticity can be implemented. One possible direction, which we are currently explor-
ing, is using the error signal of the output layer as modulation signal for learning.

Two key components of the behavioral task by Zhou and Merzenich are attention and
motivation. In the mammalian brain, both of these functions involve analysis in systems
outside the traditional sensory systems and would contribute to sensory plasticity in a
top-down manner. One example is the basal forebrain neurons that use acetylcholine
as a neurotransmitter to project to many regions in cortex. Acetylcholine has been im-
plicated in many models of plasticity (Rasmusson, 2000) and these neurons are pref-
erentially activated during tasks with high attentional demands (Sarter et al., 2003). The
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prefrontal cortex is one higher cognitive region that regulates activity of the basal fore-
brain neurons and could thus provide modulatory acetylcholine to the sensory cortices
in such a top-down manner (Rasmusson et al., 2007).

The following simulations of experiments similar to the ones by Zhou and Merzenich-
were were done with a standard Kohonen model. The activation of a node i, ri, was
determined by the tuning curve, t(x, ci), of the neuron with preferred feature ci

ri = η + bt(x, ci), (4)

in addition to some uniformly distributed noise, η. The strength value b was altered in
the experiments to simulate attentional processes. To represent the initial noise-reared
case, we simulated the map development with an environment in which the response
of each node in the SOM layer was noise-dominated by setting b = 0.1. With this
parameter, no map development was achieved. Similar, even if we start the system with
a perfect topographic organization (left graph in Figure 4), the map deteriorates with
training (middle graph).

After these initial 1000 training steps, we simulate the effect of top-down control
resulting from goal-directed training in the experiments in two ways. While standard
procedures in SOM development call for a reduction of the learning rate to stabilize
learning (stability over plasticity), and to narrow the neighborhood function to allow
better local organizations after an initial global phase, we keep the learning rate and
width of the neighborhood function constant throughout the simulations. This can be
seen as an increase in the case when the parameters are lowered with time. There are
several possible explanations for ongoing adult plasticity. For example, it is possible
that the apparent slowdown in adult plasticity might only be a reflection of the dynamic
reinforcement of existing representations after the brain has developed a model that can
sufficiently model world states. But it is also possible that neural plasticity is actively
modulated. The current model does not distinguish between these possible sources of
adult plasticity. The second important ingredient is the boosting of the signal relative
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Fig. 4. Examples of organization in a Kohonen map. The map is started form a perfect organiza-
tion and then trained for 1000 training steps in the presence of dominating noise which deterio-
rates the map considerably. After this, the map is further trained with an enhanced input signal
relative to noise, which helps to recover the map.



Top-Down Control of Learning in Biological Self-Organizing Maps 323

to noise by using b = 10. This reflects the outcome of goal-directed learning via moti-
vation and attention that facilitates the enhancement of the relevant signals. With these
changes, the maps starts to organize with continuous SOM learning. After 2000 further
training steps, the map recovered dramatically, as shown in the right graph of Figure 4.

7 Conclusion

We discussed biological SOMs with a focus on ongoing adult plasticity and top-down
controle. New experimental findings have clearly demonstrated that there can be con-
siderable changes in cortical maps resulting from goal-directed learning, and that atten-
tional processes are important for map formation.

The above discussions provide some background and simulations with a basic model.
In particular, we simulated two factors which seem necessary to explain the results of
experiments by Zhou and Merzenich. These two factors are the continuation of sensible
plasticity thresholds, and the enhancement of task-relevant activity. The demonstration
in this paper leave, of course, many open questions. For example, the differences of the
contributing factor should be studied in more detail to guide further experimental work.
Also, the experiments by Zhou and Merzenich not only show a deficit in tonotopic
map organization, but also in the development of tuning curves with clear preferred fre-
quency tuning. Such details can only be studied with more detailed models such as the
Willshaw-von der Malsburg model. A better knowledge of such learning mechanisms
could ultimately help to enhance teaching methods or to develop effective pharmaco-
logical interventions to promote recovery after brain injuries.
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Abstract. In this paper we present a method for functional principal
component analysis based on the Oja-learning and neural gas vector
quantizer. However, instead of the Euclidean inner product the Sobolev
counterpart is applied, which takes the derivatives of the functional
data into account and, therefore, uses information contained in the
functional shape of the data into account. We investigate the theoretical
foundations of the algorithm for convergence and stability and give
exemplary applications.
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1 Introduction

Data processing of functional data is a challenging topic in machine learning data
analysis [11]. There is a broad area of application: biomedicine, chemometrics
and chemistry, physics and astrophysics as well as geosciences and remote sensing
analysis, to name just a few. The problems to be solved range from time series
analysis and prediction, identification of characteristic patterns and classification
to spectral data analysis.

The characteristic feature distinguishing usual vectorial data from functional
one is that the vector components represent functions vi = f (xi). Hence, data
processing method should not proceed the vector components independently but
taking into account their spatial position within the vector. However, there exist
only few methods in machine learning, which make use of this property [6],[12].
In this work we investigate the usability of Sobolev-metrics for an adequate func-
tional data handling. The main advantage of this metric family in comparison to
others is that it can be related to an inner product. Thus, Sobolev-metrics can
be used in machine learning methods using derivatives of norms or inner prod-
ucts. In this paper we mainly concentrate on Oja’s Hebbian learning of principal
components. Applying the respective Sobolev-inner-product (SIP) to this model
we obtain a method for functional principal component analysis (FPCA).
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2 Functional Metrics, Norms and Inner Products

There exist only few data processing methods which are specifically designed
to process functional data paying attention to the property of inherent spatial
dependencies. Most of them deal with the function description in terms of basis
functions like Fourier-, Laplace-, wavelet expansions or others, such that meth-
ods can be applied to the respective coordinate space [11],[12]. An interesting
alternative was proposed by Lee&Verleysen in [6]. The functional norm by
Lee&Verleysen motivated by geometrical considerations is defined as

‖f‖fc
p =

(
D∑

k=1

(Ak (f) + Bk (f))p

) 1
p

(1)

with f = (f1, . . . , fD) and fk = f (xk), xk ∈ X ⊆ R whereby we assume w. l.
o. g. that xk < xk+1 for all k. Frequently we have equidistant values xk = k · h
with h being a constant. Further, Ak and Bk are defined as

Ak (v)=

{
τ
2 |vk| if 0 ≤ vkvk−1

τ
2

v2
k

|vk|+|vk−1| if 0 > vkvk−1
and Bk (v)=

{
τ
2 |vk| if 0 ≤ vkvk+1

τ
2

v2
k

|vk|+|vk+1| if 0 > vkvk+1

(2)
with the usual choice τ = 1. The ‖f‖fc

p -norm is based Minkowski-p-norm ‖f‖p

with ‖f‖fc
p ≤ ‖f‖p. It was successfully applied in functional vector quantization

as demonstrated in [6]. However, it does not fulfill the parallelogram equation
for norms ‖·‖:

‖f − g‖2 + ‖f + g‖2 = 2
(
‖f‖2 + ‖g‖2

)
(3)

and, hence, it can not be related to an inner product [15].
The ‖f‖p-respective function space is Lp (X), which forms a Hilbert-space for

p = 2 with Euclidean inner product

〈f, g〉E =
∫

X

f (x) g (x) dx (4)

generating the norm ‖f‖2 [14].
We now introduce the p−Sobolev-norm (p−SIP) of degree K. Let f ∈ CK (X)

be a K−times continuous-differentiable integrable function (in the Lebesgue
sense) over X . Then the norm is defined as

‖f‖Sp,K = ‖f‖p +
∑

1≤j≤K

∥∥∥f (j)
∥∥∥

p
" ‖f‖p +

∥∥∥f (K)
∥∥∥

p
(5)

which defines a distance sSp,K (f, g) = ‖f − g‖Sp . The space CK (X) together with
the norm (5) forms a Banach-space Sp,K .1 Further, in case of p = 2 the space
S2,K becomes a Hilbert-space with the inner product given by
1 Yet, there are more general definitions possible. We here restrict ourself to this simpli-

fication which are sufficient for the most applications of machine learning problems.
For a further reading we refer to [1] or [2].
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〈f, g〉S,K = 〈f, g〉E +
∑

1≤j≤K

〈
D(j)f, D(j)g

〉
E

" 〈f, g〉E +
〈
D(K)f, D(K)g

〉
E

(6)

and D(k) being the kth differential operator [2]. Moreover, for this case an in-
teresting connection to the Fourier-analysis can be made using the Parseval-
equation: The Sobolev-norm can equivalently determined by

‖f‖SK =

√∫ ∞

−∞
(1 + ωK)2

∣∣∣f̂ (ω)
∣∣∣2 dω. (7)

whereby f̂ is the Fourier-transform of f .
Clearly, all definitions can be transferred to vectorial representations of func-

tions replacing the integrals by sums and taking the differential operators D(k)

as difference operators. Further, the Sobolev-norm can also be defined in a
parametrized form

‖f‖Sp,K,α = ‖f‖p + α
∥∥∥f (K)

∥∥∥
p

(8)

with the respective inner product for p = 2

〈f, g〉S,α,K = 〈f, g〉E + α
∑

1≤j≤K

〈
D(k)f, D(k)g

〉
E

. (9)

3 Functional Principal Component Analysis (FPCA)

In this chapter we will give two approaches for FPCA. The first method uses
the function representation in terms of orthogonal basis functions, whereas the
second approach utilizes the Sobolev-inner-product 2−SIP.

3.1 FPCA Based on Orthogonal Basis Functions

In this section we assume that the real function f, g over X ⊆ R can be rep-
resented by orthogonal basis functions φk which form a basis of the functional
space containing f and g. Thereby, orthogonality is defined by 〈φk, φj〉E = δk,j .
The basis may contain a infinite number of basis functions. Prominent exam-
ples for basis systems are the the set of monomials 1, x, x2, . . . , xk, . . . or the
Fourier-system of sin (kωx),cos (kωx) with k = 0, 1, 2, . . ..

Using a basis system of K linear independent functions an arbitrary function f
can be approximated by f (x) =

∑K
k=1 αkφk (x), which can be seen as a discrete

Euclidean inner product 〈α, φ (x)〉E of the coordinate vector α = (α1, . . . , αk)T

with the function vector φ = (φ1 (x) , . . . , φk (x))T. If the basis functions are
the Fourier functions and f given as functional vector f , then the Sobolev-norm
‖f‖Sk can be immediately computed via (7).

We denote by A the function space spanned by all basis functions φk: A =
span (φ1, . . . , φk) .Following the suggestions in [11] and [12] to transfer the ideas



328 T. Villmann and B. Hammer

of usual multivariate PCA to FPCA. We consider the Euclidean inner product
〈f, g〉E from (4), which can be rewritten in terms of the basis functions as

〈f, g〉E =
K∑

k=1

K∑
j=1

αkβj 〈φk, φj〉E (10)

whereby in the second line the Fubini-lemma was used to exchange the integral
and the sums. Let Φ be the symmetric matrix spanned by Φk,j = 〈φk, φj〉E using
the symmetry of an inner product. Using this definition, the last equation can
be rewritten as 〈f, g〉E = 〈f, g〉Φ with the new inner product 〈f, g〉Φ = αTΦβ.
We remark that Φ is independent of both f and g. If the basis is orthogonal, Φ
is diagonal with entries Φk,k = 1. Thus, the inner product of functions is reduced
to the inner product (10) of the coordinate vectors

〈f, g〉E = 〈α, β〉E (11)

For handling non-orthogonal basis systems we refer to [12].
Looking at (11) we see that performing elementary vector operations on the

coordinate vectors in the Euclidean space R
K equipped with the (discrete) Eu-

clidean inner product (4) is equivalent to the respective operations in the in-
ner product space A with the Euclidean inner product (4). This statement al-
lows a straightforward application to FPCA: FPCA can performed on a set
F = {fk}k=1...N of functions fk by usual vectorial PCA analysis of the respec-
tive set of coordinate vectors αk as explained in [11].

3.2 Oja’s PCA-Learning for Functional Data

E. Oja developed an online-learning algorithm to determine the first principal
component of data vectors v ∈V ⊆ R

n adaptively [8],[9]. The first principal com-
ponent w related to the maximum eigen value for the data set V is obtained by
the stochastic adaptation. For a given input v the learning rule is

�w = εtO (v − Ow) (12)

with O being the output

O = vT · w = wT · v.

Formally, the output O can be written as an inner product O = 〈v,w〉E. Then,
the update yields

�w (t) = εt 〈w (t) ,v〉E (v − 〈w (t) ,v〉E w (t)) . (13)

with εt > 0, εt →
t→∞

0 ,
∑

t εt = ∞ and
∑

t ε2
t < ∞, which is a converging

stochastic process [3].
Obviously, this variant can be immediately applied to the above outlined

approach of FPCA based on function representations using orthogonal basis
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functions. However, if the functional data are given in vectorial form, there exist
an interesting alternative. Instead of the Euclidean inner product we plug the
(parametrized) 2−SIP of degree K (9) into the learning rule (13) and get

�w = εt

[
〈w,v〉S,α,K

(
v − 〈w,v〉S,α,K w

)]
(14)

as new update rule for a functional data vector. We denote the equilibrium vector
w∗ of this dynamic as functional (first) principal component.

In the following, we will analyze the dynamic in more detail. Obviously, for
small (vanishing) values of α, the original Oja-learning rule is preserved. For
non-vanishing α we consider the first term T1 = 〈v,w〉S,α,K v in (14), which can
be approximately written as

T1 = v 〈v,w〉E v + α

K∑
k=1

v
〈
D(k)v,D(k)w

〉
E

(15)

with D(k) being the matrix approximating the kth differential operator. Using〈
D(k)v,D(k)w

〉
=
(
D(k)v

)T · D(k)w we obtain

T1 = v · vT (1+αD)w

with D =
∑K

k=1

(
D(k)

)T D(k). Hence, the equation (14) describes the usual
PCA-learning according the Oja-learning rule (12) modified by the distortion
controlled by the α-strength and the maximum degree K of the differential
operators.

As in the original PCA-learning, the second term T2 = 〈w,v〉2S,α,K w in (14)
ensures the stability of the dynamic. We consider for its analysis the vectors

v̂ ∈V (K) = V ⊗ D(1)V ⊗ . . . ⊗ D(K)V

taken as concenation of v and its derivatives αD(k)v. The new prototypes ŵ are
defined analogously. Using the linearity of differential operators, the functional
PCA-learning can be reformulated in terms of the original Oja-learning in the
now extended data space V (K):

�ŵ = ε (〈ŵ, v̂〉E (v̂ − 〈ŵ, v̂〉E ŵ)) . (16)

Then, the equilibrium solution w∗ of the functional PCA (14) is obtained simply
by the projection of the equilibrium of (16): P0ŵ∗ = w∗. Therefore, it follows
immediately from the stability analysis of the original Oja-learning given in [8]
that the equilibrium ŵ∗ of (16) is the first principal component in V (K) and,
hence, the update (14) converges to its projection P0ŵ∗.

Finally, we remark that the approach can obviously applied in complete anal-
ogy to the full adaptive PCA-approach following the Oja-Sanger-update [13],
which we do not explain here because the lack of the space.
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3.3 Sparse Coding for Functional Data

Sparse coding (SC) of data is biologically motivated coding approach [10]. SC
by means of Oja-learning was recently proposed – the sparse coding neural gas
(SCNG) [4]. It takes into account the accelerated convergence by neighborhood
cooperativeness provided by the involved neural gas algorithm [7]. Hence, there
is a natural way to transfer the new FPCA approach to SCNG.

For sparse coding it is supposed that N data fk are available according to a
distribution P , each containing D values, i.e. fk ∈ F ⊆R

D and ‖fk‖ = 1. We here
assume that the fk are functional data vectors. A set of M , may be overcomplete
but constrained or a may be non-orthogonal basis function vectors φj ∈ R

D

should be used for representation of the data in form of linear combination:

fk =
∑

j

αj,k · φj + ξk (17)

with ξk ∈ R
D being the reconstruction error vector and αj,k are the weighting

coefficients with αj,k ∈ [0, 1],
∑

j αj,k = 1 and αk = (α1,k, . . . , αM,k). The cost
function

Ek = ‖ξk‖
2 − λ · Sk

for fk has to be minimized. Thereby, the regularization term Sk serves as con-
straint judging the sparseness of the representation and can be taken as the
entropy Sk = H (αk) of the vector αk. Then, minimum sparseness is achieved
iff αj,k = 1 for one arbitrary j and zero elsewhere. Using this scenario, optimiza-
tion is reduced to minimization of the description errors ‖ξk‖

2 or equivalently
to the optimization of the basis vectors φj . Optimum vectors for a set of data
vectors are such φj , which are chosen as principal components of subsets of F .
Minimum principal component analysis requires at least the determination of
first principal component. Taking into account higher components improves the
approximation. However, if the data space is nonlinear, principal component
analysis (PCA) may be suboptimal. One possible way to overcome this problem
is to split the data space into subsets and to carry out a PCA on each but with
only a few PCA-components. SCNG takes only the first principal component
but automatically detects the partition of the data for a predefined number N
of subsets Ωi according to usual neural gas. In functional SCNG N prototypes
W = {wi} approximate the FPCA φi of the subsets Ωi. A functional data vec-
tor fk belongs to Ωi iff its correlation to φi defined by the inner product (9) is
maximum:

Ωi =
{
fk|i = argmax

j
〈φj , fk〉S,α,K

}
(18)

The approximations wi of φi are obtained via the FPCA according to (14)
combined with neural gas following the idea of SCNG. During learning, in each
time step a data vector fj ∈ F is selected according to P and the prototypes w
are updated according to

�ŵi = εhσ

(
f̂j ,W, i

)〈
ŵ, f̂j

〉
S,α,K

(
f̂j −

〈
ŵ, f̂j

〉
S,α,K

w
)

(19)
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using the previously introduced embedding procedure.

hσt (fk,W, i) = exp

⎛
⎝−ri

(
f̂k,W

)
σt

⎞
⎠

is the neural gas neighborhood function with neighborhood range σt > 0. For
t → ∞ the range is decreased as σt → 0 and, hence, only the best matching
prototype is updated in (19) in the limit. The function ri

(
f̂k,W

)
is the rank

function

ri

(
f̂k,W

)
= N −

N∑
j=1

θ
(〈

ŵi, f̂k
〉

E
−
〈
ŵj, f̂k

〉
E

)
(20)

counting the number of pointers ŵj for which the relation
〈
ŵi, f̂k

〉
E

>
〈
ŵj , f̂k

〉
E

is valid [4]. θ (x) is the Heaviside-function. Then, in the equilibrium of the
stochastic process (19) one has Ωi (t) → Ωi for a certain subset configuration,
which is related to the data space shape and the density P [16]. Further, one
gets φi = P0ŵ∗

i in the limit for each Ωi. We denote this functional SCNG by
FSCNG.

4 Example Application

We applied the FSCNG for to data sets. The first consists of the monthly aver-
aged temperature of 35 Canadian weather stations and the second one are the
respective precipitation profiles both taken from [5]. The settings were identical
for both experiments: We used 2 prototypes and performed two runs of FSCNG
using the Sobolev inner product 〈f, g〉S,α,K for α = 0.5 with K = 0 and K = 1,
respectively. Accordingly, for K = 0 the FSCNG is reduced to standard SCNG

Fig. 1. FSCNG applied to the temperature profiles of 35 Canadian weather stations.
The (normalized) profiles are depicted left. Right, the prototype results from FSCNG
are shown (dashed, K = 0; solid, K = 1; ◦ - prototype 1, +- prototype 2).
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Fig. 2. FSCNG applied to the precipitation profiles of 35 Canadian weather stations.
The (normalized) profiles are depicted left. Right, the prototype results from FSCNG
are shown (dashed, K = 0; solid, K = 1; ◦ - prototype 1, +- prototype 2).

and for K = 1 the first derivative is taken into account. The results are depicted
in Fig.1 for the temperature values and in Fig.2 for the precipitation profiles. We
clearly state for both experiments the influence of the derivative for prototype
learning. In particular, one observes for the first temperature data set that blue
solid lines, which correspond to the K = 1 value, show a stronger curved shape
as consequence of taking the first derivative into account.

5 Conclusion

In contribution we propose the application of Sobolev inner products for PCA-
learning in case of functional data based on Oja’s Hebbian online learning, which,
however, takes the derivatives into account. We provide the theoretical back-
ground for this methodology. In particular, on the one hand side, we have shown
that this variant can be seen as pertubation of the standard Oja-learning. In
this view the controlling parameter α determines the strength of the distortion.
On the other hand, the stability analysis can be carried out in complete anal-
ogy to the standard rule if the respective embedding space is considered there
instead of the usual data space and the solution prototypes are the projection of
the prototypes in the embedding space onto the original data space. Hence, the
Sobolev inner product application in Oja-learning converges to the maximum
eigenfilter solution in the embedding space and such that to its respective pro-
jection in the original data space. We plugged this learning rule into the recently
introduced sparse coding neural gas and demonstrate the abilities of the result-
ing functional eigen analysis for two exemplary real world data sets. Further, it
should be mention here that the corresponding Sobolev norms can be applied
for each machine learning algorithm which takes the norm or its derivatives
into account. This particularly concerns algorithms like all variants of learning
vector quantization, self-organizing maps, neural gas etc. Doing so a functional
vector quantizer can be obtained as alternative to plugging the functional norm
provided by Lee&Verleysen into it.
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Abstract. We introduce the Exploration Machine (Exploratory Obser-
vation Machine, XOM) as a novel versatile instrument for scientific data
analysis and knowledge discovery. XOM systematically inverts structural
and functional components of topology-preserving mappings. In contrast
to conventional approaches known from the literature, this novel com-
putational framework for self-organization does not require to incorpo-
rate additional graphical display or coloring techniques, or to modify
topology-preserving mapping algorithms by additional regularization in
order to recover the underlying cluster structure of inhomogeneously dis-
tributed input data. Thus, XOM can be seen as an approach to bridge
the gap between nonlinear embedding and classical topology-preserving
feature mapping. At the same time, XOM results in tremendous com-
putational savings when compared to conventional topology-preserving
mapping, thus allowing for direct structure-preserving visualization of
large data collections without prior data reduction.

1 Introduction

A classical approach to exploratory data analysis has been contributed by so-
called ‘topology-preserving mappings’ which have been pioneered by Kohonen’s
discovery of the Self-Organizing Map (SOM) almost three decades ago. In the
meantime, several thousands of scientific publications have documented the im-
portance of topology-preserving mappings as a useful instrument for pattern
recognition and machine learning, for bibliographical data see e.g. [9]. The con-
ventional way of looking at topology-preserving mappings can be characterized
as follows: Data are presented to an input space, often referred to as ‘feature
space’. These data are then processed by means of a topological structure defined
in a different space often referred to as ‘grid’ or ‘index space’. In this context, the
general convention is that input data are not used directly to define the topology
of the ‘grid space’. The key issue of this paper is to raise the question whether
one might disregard this convention, i.e. use the input data directly in order to
define the topology of the ‘grid space’. The systematic pursuit of this simple
idea leads to the concept of the Exploration Machine (Exploratory Observation
Machine, XOM) presented in this contribution. Although the resulting modified
perspective of topology-preserving mappings may at first appear unconventional,

J.C. Pŕıncipe and R. Miikkulainen (Eds.): WSOM 2009, LNCS 5629, pp. 334–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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it leads to a novel computational framework that can simultaneously contribute
to different domains of advanced machine learning and scientific visualization.

In the remainder of this paper, we first motivate the Exploration Machine al-
gorithm by a didactic pictorial application to incremental optimization in order
to illustrate its relation to topology-preserving mappings. Second, we formally
summarize its algorithmic steps. Third, we demonstrate its applicability to dif-
ferent tasks of advanced machine learning, as exemplified by structure-preserving
dimensionality reduction and data clustering. Fourth, we quantitatively evaluate
the performance of XOM in comparison to classical and advanced recent embed-
ding algorithms on a real-world data set. Finally, we discuss how its capability
to perform both structure-preserving visualization and data partitioning quali-
fies XOM as a novel flexible workflow framework for exploratory data analysis.
Here, it is a specific virtue of XOM that it combines originally separated domains
of machine learning, namely structure-preserving dimensionality reduction and
data clustering from a unified viewpoint within a single computational approach.

2 A Pictorial Introduction to XOM

In order to specify the fundamental differences of the Exploration Machine ap-
proach in comparison to the Self-Organizing Map (SOM) or other topology-
preserving mappings, a simple application should be discussed as a pictorial
illustration of how the XOM algorithm systematically inverts the data process-
ing workflow in topology-preserving mappings. For this application, both the
XOM and the SOM approach can be used, thus allowing for a conceptual com-
parison. We emphasize that, for this special application, XOM does not provide
any specific advantage when compared to SOM. Instead, it is only presented
here in order to motivate the XOM algorithm and to clarify its relation to SOM
and other topology-preserving mappings as known from the literature.

Finding approximate solutions to the Travelling Salesman Problem (TSP) is
a classical subject of ‘connectionist’ computing techniques. Figs. 1A–B visualize

SOM
Observation Space O

Embedding Space E

(A) (B)

XOM
Observation Space O

Embedding Space E

(C) (D)

Fig. 1. Didactic comparison of the Exploration Machine (XOM) and the Self-
Organizing Map (SOM) for finding approximate solutions of a Travelling Salesman
Problem (TSP). (A), (B) SOM; (C), (D) XOM. For explanation, see text.
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the concept of finding TSP solutions by topology-preserving mappings as de-
scribed in the literature, e.g. [11,3,1], whereas Figs. 1C–D illustrate the XOM
approach for comparison. – The classical strategy is explained in Figs. 1A–B: In
order to find the shortest closed-loop path through a set of cities (red line), the
city coordinates representing the input data (red dots) are defined within the
‘embedding space’ E which is often referred to as ‘data space’ or ‘feature space’
in the literature, see Fig. 1A. In a second step, a ‘structure hypothesis’ is defined
by a set of local information-processing units, so-called ‘neurons’ (green dots)
arranged in a ring-shaped topology within a different space O which is often re-
ferred to as ‘grid space’, ‘index space’, or ‘model cortex’. In the following, we will
call this space O the ‘observation space’. – Subsequently, to each neuron in O
a so-called ‘image vector’ is attributed in space E, e.g. by random initialization
(blue dots, Fig. 1B). Note that the number of neurons may exceed the number
of cities. By using a topology-preserving mapping T , the image vectors are ar-
ranged to match the city coordinates in E. Once the training of the mapping is
completed, the ring topology of the corresponding neurons in the space O can
be used to define a path through the image vectors in E (blue line). By some
appropriate heuristics, this path through the image vectors can be transformed
into a path through the cities (red line in Fig. 1B).

For comparison, Figs. 1C–D illustrate the XOM approach: For XOM, in con-
trast to Figs. 1A–B, the city coordinates, i.e. the input data, are directly used
to define a topological structure in the observation space O. Thus, each city is
represented by a single neuron (green dots). In a second step, a ring-shaped uni-
form distribution is defined in the embedding space E representing a structure
hypothesis (red line in Fig. 1C). During the training phase of T , data points
are randomly sampled from this distribution. Subsequently, to each input data
item, i.e. each city in O, an image vector is attributed in the embedding space
E, e.g. by random initialization on the ring (blue dots in Fig. 1D). During train-
ing of T , data points are randomly sampled from the ring-shaped distribution
in E, and the positions of the image vectors are incrementally updated, where
the image vectors can move about the ring in order to represent the topology
induced by the cities. Once the training of T is completed, the final arrangement
of the image vectors on the ring in E can be used to define a path through the
input vectors in O, which is equivalent to a path through the cities (green line
in Fig. 1D). For completeness, it should be mentioned that it is not necessary
to constrain the migration of the image vectors onto the ring, this restriction is
only introduced to keep the illustration as simple as possible. – Again, it should
be noted that in the TSP application of Fig. 1, the use of XOM instead of SOM
does not provide any specific advantage, and that it is only introduced for didac-
tic reasons. Here, neither SOM nor XOM can compete with specialized methods
described in the literature for finding solutions of the TSP, in particular, if larger
TSPs are considered.

In summary, Figs. 1A–B illustrate the data processing workflow according to
the literature on topology-preserving mappings, where input data are presented



A Computational Framework 337

Observation space Input data

Embedding space Structure hypothesis

Structural Functional
components components

SOM

SOM

XOM

Fig. 2. Functional and structural components of topology-preserving mappings (such
as SOM) and their systematic inversion introduced by XOM. For explanation, see text.

in the embedding space E, and a structure hypothesis is defined in the obser-
vation space O. In contrast, the XOM approach in Figs. 1C–D introduces a
fundamental change w.r.t. these conventions by completely inverting the role of
input data and structure hypotheses: The input data are directly used to define
a topological structure in the observation space O, whereas the structure hy-
potheses are represented by sampling distributions in the embedding space E.
Thus, XOM systematically reverses the relation between functional and struc-
tural components of topology-preserving mappings, as summarized in Fig. 2.

In the XOM algorithm, it is the input data that directly determines the topo-
logical structure represented by the mapping. As an immediate consequence,
each input data item is mapped directly, i.e. assigned to its own specific image
vector. Hence, no implicit approximation of input data items by image vectors
is involved. Instead, sampling and adaptation of the image vectors is entirely
restricted to the embedding space. Moreover, this reduces the number of free
parameters in topology-preserving mappings by one, namely the number of ‘neu-
rons’, which can be set equal to the number of input data items.

When used for nonlinear embedding, the systematic inversion of input data
and structure hypotheses in XOM provides important advantages: In particular,
the formulation of the dynamics in the embedding space entails a substantial re-
duction of computational costs in comparison to topology-preserving mappings,
as the best-match search in each iteration step does not require computational
operations in the high-dimensional input data space, but now occurs in the
usually low-dimensional embedding space. This leads to tremendous savings in
computation time in the case of high-dimensional input data. Finally, based on
the inversion of input data and structure hypotheses, the Exploration Machine
can analyze non-metric input data directly, i.e. without the need to transform
such input data into metric representations prior to processing.

Based on the pictorial motivation presented in the previous section, we can
now formally summarize the Exploration Machine algorithm as follows: For sim-
plicity, let us first consider N real-valued input vectors rj in the observation
space O, each of dimensionality D. The XOM algorithm can then be resolved
into three simple steps:
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The Exploration Machine (XOM) Algorithm:

1. Define topology of input data in the observation space O by computing dis-
tances d(ri, rj) between data vectors ri, i ∈ {1, . . . , N}. This step is omitted,
if input data is already given as a set of distances between input data items.

2. Define a ‘hypothesis’ on the structure of the data in the embedding space E,
represented by ‘sampling’ vectors xk ∈ E, k ∈ {1, . . . , K}, K ∈ IN, and
initialize an ‘image’ vector wi ∈ E, i ∈ {1, . . . , N} for each input vector ri.

3. Reconstruct the topology induced by the input data in O by moving the
image vectors in the embedding space E using the computational scheme of
a topology-preserving mapping T . The final positions of the image vectors wi

represent the output of the algorithm.

A simple choice for T is Kohonen’s self-organizing map algorithm [9], e.g. in
its basic incremental version, which is used for all computer simulations in this
contribution. However, any other topology-preserving mapping described in the
literature may be selected for T . Besides numerous variants of Kohonen’s self-
organizing map algorithm, such as ‘batch’ versions, various kinds of topographic
vector quantizers, e.g. [7] as well as modifications of the quoted methods should
be mentioned. In essence, the algorithmic concept of XOM is independent of the
specific choice of T . However, the respective properties of T determine theoretical
convergence properties, the number of free parameters, mapping performance,
and computational complexity.

3 Properties and Applications of XOM

Structure-Preserving Visualization: The XOM algorithm specified above
can be used for structure-preserving visualization. Here, the sampling distribu-
tion in step 2 of the algorithm may typically be chosen as a uniform distribution
on a low-dimensional mainfold which not necessarily has to be a subset of a linear
space. Thus, XOM can be used for dimensionality reduction of high-dimensional
observations, or even for non-metric data, given as distances, ‘similarities’, or
‘proximities’ between input data items. In this context, it should be mentioned
that conventional topology-preserving feature mapping has substantially con-
tributed to many domains of real-world data analysis and found numerous ap-
plications ranging from self-organizing semantic maps to web interfaces. For an
overview, we refer to [9]. However, a major drawback of these feature maps is
that they cannot accurately recover the underlying structure of inhomogeneously
distributed data, in particular, boundaries between eventual clusters cannot be
detected and visualized directly. Numerous heuristic approaches have been pro-
posed to alleviate this problem, i.e. to integrate the advantages of structure-
preserving visualization into the field of topology-preserving data representa-
tion. These approaches include specific graphical display and coloring techniques,
e.g. [12,5,8], or generalizations of the SOM algorithm motivated on mathemati-
cal [6] grounds or from modeling processes of biological structure formation [13].
– Here, the Exploration Machine can be seen as an approach to bridge the gap
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between structure-preserving visualization and topology-preserving data repre-
sentation without the necessity to incorporate additional graphical display or
coloring techniques, or to modify topology-preserving mapping algorithms by
additional regularization. Unlike conventional topology-preserving feature maps
described in the literature, XOM can consistently recover and directly visualize
the underlying cluster structure of inhomogeneously distributed data, as shown
for the real-world data set in Fig. 3 below.

Data Clustering by XOM: It is important to realize that there is no prin-
cipal restriction to the choice of the structure hypothesis in the second step of
the XOM algorithm specified above. This flexibility to choose arbitrary sampling
distributions in the embedding space leads to the discovery that XOM can be
used for data partitioning, i.e. clustering as well. The key idea is to simply select
the sampling vectors from ‘clustered’, i.e. non-uniform distributions, e.g. from a
mixture of several distributions centered at different positions in the embedding
space. A typical choice could be a mixture of Gaussian distributions centered at
different locations in the image space. In detail, we propose to proceed as fol-
lows: (i) Use the input data to define the observation space directly, as has been
discussed above in the context of the Travelling-Salesman Problem example. (ii)
Choose an appropriate structure hypothesis in the embedding space consisting
of a mixture of ‘clustered’ distributions. As a typical example, a sampling dis-
tribution may be selected that consists of several Gaussian distributions with
arbitrary parameters. The centers of the Gaussian distributions may define an
arbitrary topological structure, e.g. they may be located on a regular grid or on
the vertices of a regular simplex. However, there are no restrictions w.r.t. the
specific choice of the sampling distributions used for this purpose. (iii) Run the
XOM algorithm as explained in section 2. (iv) Assign the resulting image vectors
to the specific sampling distributions of the embedding space in a hard or fuzzy
way, e.g. by computing and comparing the distances of the image vectors to
the centers of the respective sampling distributions. By definition of appropriate
distance measures, e.g. the assignment likelihood, this can be performed in a
fuzzy manner as well. Note that XOM can also support non-metric clustering.

4 Experiments on a Real-World Data Set

To prove the applicability of our approach to the machine learning domains spec-
ified above, we present results on real-world data, see Fig. 3. The data consists of
147 feature vectors in a 79-dimensional space encoding gene expression profiles
obtained from microarray experiments.

Visualization by Dimensionality Reduction: Fig. 3A shows a XOM visu-
alization result obtained from a structure-preserving dimensionality reduction
of gene expression profiles related to ribosomal metabolism, as a detailed visu-
alization of a subset included in the genome-wide expression data taken from
Eisen et al. [4]. The figure illustrates the exploratory analysis of the 147 genes
labeled as ‘5’ (22 genes) and ‘8’ (125 genes) according to the cluster assignment
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(A) (B) (C) (D)

Fig. 3. Visualization of genome expression profiles related to ribosomal metabolism
using the Exploration Machine. (A) Genome map obtained by structure-preserving
dimensionality reduction using the Exploration Machine. (B) Enlarged section of (A).
(C) Result obtained by SOM. (D) XOM clustering result. For explanation, see text.

by Eisen et al. [4]. Besides several genes involved in respiration, cluster ‘5’ (blue)
contains genes related to mitochondrial ribosomal metabolism, whereas cluster
‘8’ (orange) is dominated by genes encoding ribosomal proteins and other pro-
teins involved in translation, such as initiation and elongation factors, and a
tRNA synthetase. – In the XOM genome map of Fig. 3A, it is clearly visible
at first glance that the data consists of two distinct clusters. Comparison with
the functional annotation known for these genes [2] reveals that the map overtly
separates expression profiles related to mitochondrial and to extramitochondrial
ribosomal metabolism. Fig. 3B shows an enlarged section of the map indicated
by the small frame in Fig. 3A. Fig. 3C shows a data representation obtained by
a SOM trained on the same data using a regular grid of 30 × 30 ‘neurons’. As
can be clearly seen in the figure, the SOM cannot achieve a structure-preserving
mapping result as provided by the Exploration Machine in Fig. 3A: Although the
genes related to mitochondrial and to extramitochondrial ribosomal metabolism
are collocated on the map, the distinct cluster structure underlying the data
remains invisible, if the color coding is omitted.

In other words, the Exploration Machine, in contrast to the Self-Organizing
Map, makes the underlying input data cluster structure visible in this example.
At the same time, in comparison to the SOM result in Fig. 3C, the computational
expense for XOM embedding in Fig. 3A is reduced by a factor of more than 1400
(!) for this data set.1 The reason for this tremendous computational saving is
that for XOM the nearest neighbor search required to identify the winner neuron
has only to be performed in the two-dimensional embedding space instead of
the 79-dimensional input data space. In addition, as each input data item is
attributed directly to its own image vector, only 147 instead of 900 ‘neurons’
have to be updated in each iteration. Finally, if it is argued according to [9]
that the number of iterations should be some multiple of the number of neurons,

1 The observed computational benefit of XOM vs. SOM in Tab. 1 is lower than the the-
oretically predicted value, which is due to implementation using completely different
software platforms.
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Table 1. Comparative evaluation of computation times and structure preservation for
nonlinear embedding of the ribosome gene expression data of Fig. 3. The table lists
average computation times using an ordinary PC (Intel Pentium 4 CPU, 1.6 GHz,
512 MB RAM). A scale-invariant version of the Sammon error E′ was computed as a
measure of structure preservation, absolute and relative values compared to the XOM
result are given. The free parameters of all the methods examined in the comparison
(except PCA) were optimized to obtain the best results, i.e. to minimize E′. Note that
XOM yields competitive structure preservation at acceptable computation times.

Method Comp. Time (s) E′ Rel. E′

XOM 0.72 2.21 · 103 1.00

Sammon 8.25 2.45 · 103 1.11

LLE 1.36 2.77 · 103 1.25

PCA 0.03 2.82 · 103 1.28

Isomap 0.27 3.36 · 103 1.52

SOM 21.6 10.19 · 103 4.61

i.e. image vectors, the number of iterations in the SOM has to be increased by a
factor of 900/147 when compared to XOM in this example. In summary, we end
up with an overall computational saving as quoted above. – We conjecture that
these properties of the Exploration Machine, i.e. the combination of superior
structure preservation with tremendous savings in computational expense, can
serve as important assets for its applications to ‘data mining’ and ‘knowledge
discovery’ in large data bases, such as text mining in large document collections.
A quantitative comparison of the embedding result shown in Fig. 3A with several
other embedding algorithms is summarized in Tab. 1.

Clustering Based on Structure Hypothesis from Visualization: Fig. 3D
shows the XOM clustering result of the ribosome gene expression data set using
the method explained in section 3. As can be seen in Fig. 3D, the two clusters
are separated completely. Note that the decision to use two clusters – instead of
any different number of clusters – can be conveniently based on the results of
structure-preserving XOM visualization in Fig. 3A, which can, thus, serve as a
useful preprocessing step to clustering. The visualization obtained by the Self-
Organizing Map in Fig. 3C, however, is not clearly indicative for the presence of
exactly two clusters. Note that to perform XOM clustering in Fig. 3D, only the
structure hypothesis is changed from a uniform distribution on a unit square as
used in Fig. 3A to a set of two Gaussians centered at different locations of the
exploration space, here at the top and the bottom of a unit square.

5 Discussion

In this paper, we have shown that the Exploration Machine is capable of cre-
ating low-dimensional representations of high-dimensional inputs for structure-
preserving visualization. In this context, we have shown that the Exploration
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Machine, when compared to the Self-Organizing Map, better preserves an un-
derlying cluster structure of high-dimensional input data. At the same time,
XOM provides a tremendous reduction of computational expense when com-
pared to SOMs. Finally, we have shown that XOM can be used to serve as a
method for data clustering as well. Further extensions, variants, and applications
of the Exploration Machine, such as related to supervised learning, analysis of
non-metric data, out-of-sample extension, and constrained incremental learning,
have been thoroughly investigated in [14]. – In summary, the ribosome gene
expression data set example shows how XOM can serve as an integrative frame-
work for exploratory analysis of complex high-dimensional data sets: (i) In a first
step, nonlinear embedding by XOM can be performed as explained in section 3
in order to detect an eventual cluster structure and to create an estimate of how
many clusters may be appropriate for data partitioning. This problem is often
referred to as ‘cluster validity’ estimation2 (ii) In a second step, clustering by
XOM as explained in section 3 can be performed by simply choosing an ade-
quate sampling distribution in the embedding space, i.e. a distribution which
corresponds to the estimated structure assumptions that have been developed
based on visual inspection of the embedding results obtained in the first step.

We recommend the combination of both steps as a pragmatic unified workflow
approach for exploratory data analysis. Specifically, this method can approach
the ‘cluster validity’ issue which is still an unsolved problem of pattern recogni-
tion3. To the best of our knowledge, the Exploration Machine is the first method
in the literature that can be used for both clustering and cluster validity estima-
tion by structure-preserving data visualization. – Numerous methods for solving
one of either steps above have been described in the literature, i.e. to perform
either nonlinear embedding or data clustering, i.e. these tasks have often been
treated as independent problems of pattern recognition. As shown in this con-
tribution, the Exploration Machine can approach both domains from a unified
viewpoint within a single computational framework.
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Abstract. We present a novel method for structure-preserving dimen-
sionality reduction. The Exploration Machine (Exploratory Observation
Machine, XOM) computes graphical representations of high-dimensional
observations by a strategy of self-organized model adaptation. Although
simple and computationally efficient, XOM enjoys a surprising flexi-
bility to simultaneously contribute to several different domains of ad-
vanced machine learning, scientific data analysis, and visualization, such
as structure-preserving dimensionality reduction and data clustering.

1 Motivation

The exceedingly growing amount of available data obtained by retrieval in com-
puter-based data collections and web resources raises the question of how to
organize and extract useful knowledge, given this abundance of information.
Structure-preserving data reduction can frequently be accomplished by two al-
ternative approaches, namely data partitioning in the sense of ‘clustering’ and
dimensionality reduction often referred to as ‘embedding’.

We introduce a novel algorithm called ‘Exploration Machine’ (Exploratory
Observation Machine – XOM) that can approach both domains from a unified
viewpoint within a single computational framework. After introducing the XOM
algorithm, we perform a quantitative evaluation by computer simulations on
benchmark data sets. Finally, we present results on real-world data.

2 The Exploration Machine Algorithm

The Exploration Machine (XOM) algorithm can be resolved into simple, geomet-
rically intuitive, steps. For simplicity, let us first consider N real-valued input
vectors ri in the ‘observation space’ O, each of dimensionality D.

1. Define the topology of the input data in the observation space O by comput-
ing distances d(ri, rj) between the data vectors ri, i ∈ {1, . . . , N}. This step
is omitted, if the input data is already given as a set of distances between
input data items.
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2. Define a ‘hypothesis’ on the structure of the data in the embedding space E,
represented by ‘sampling’ vectors xk ∈ E, k ∈ {1, . . . , K}, K ∈ IN, and
initialize an ‘image’ vector wi ∈ E, i ∈ {1, . . . , N} for each input vector ri.

3. Reconstruct the topology induced by the input data in O by moving the
image vectors in the embedding space E using the computational scheme of
a topology-preserving mapping T . The final positions of the image vectors wi

represent the output of the algorithm.

It should be noted that there is no restriction whatsoever to the distance
measure used in the first step of the XOM algorithm. In particular, geodesic
distances, an ordinal rank metric, or even nonmetric dissimilarities may be used
as well. In addition, there is no need to compute a complete distance matrix
in this step, i.e. distances between specific pairs of input data items may not
be defined. The choice of the distance measure used for defining the topology
of the input data may depend on the specific focus of the XOM application.
For completeness, we emphasize that wherever the terms ‘vector’ and ‘distance’
are used throughout this paper (e.g. for data, sampling, or image ‘vectors’),
generalization to arbitrary non-vectorial data structures and arbitrary distance
measures between these structures is straightforward. For simplicity and clarity,
however, this is not explicitly mentioned every time.

In the second step of the XOM algorithm, there is no principal restriction to
the choice of the sampling distribution serving as structure hypothesis on the
data: It may be selected from arbitrary underlying probability distributions, or
just simply represent a list of given sampling items xk ∈ E. As shown later, it is
this inherent flexibility that allows XOM to contribute to different domains of sci-
entific data analysis. Typical choices for sampling distributions are: for structure-
preserving visualization, use uniform distribution (e.g. in a 2D square, as used in
figs. 2 and 3); for data clustering use several Gaussian distributions with different
centers (e.g. located on the nodes of a regular simplex, as used in fig. 4.)

In the third step of the XOM algorithm, the topology-preserving mapping T
can be considered as a free variable. A simple choice for T is Kohonen’s self-
organizing map algorithm [4], e.g. in its basic incremental version. Here, the
image vectors wi are incrementally updated by a sequential learning procedure.
For this purpose, the neighborhood couplings between the input data items are
represented by a so-called cooperativity function ψ. Typically, ψ is chosen as a
Gaussian

ψ(r, r′(x(t)), σ(t)) := exp
(
− (r − r′(x(t)))2

2σ(t)2

)
(1)

or a characteristic function on a D-dimensional hypercube around r′(x(t)). In
the XOM context, r′(x(t)) represents the ‘best-match’ input data vector. For a
randomly selected sampling vector x(t) ∈ E, the best-match input data vector
is identified by: ‖x − wr′‖ = minr ‖x − wr‖. Once the best-match input data
vector has been identified, the image vector wr is updated by the sequential
adaptation step according to the learning rule

wr(t + 1) = wr(t) + ε(t)ψ(r, r′(x(t)), σ(t)) (x(t) − wr(t)), (2)
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where t represents the iteration step, ε(t) a learning parameter, and σ(t) a mea-
sure for the width of the neighborhood taken into account by the cooperativity
function ψ. In general, σ(t) as well as ε(t) are changed in a systematic manner
depending on the number of iterations t by some appropriate annealing scheme.
A typical choice is an exponential decay, e.g.

κ(t) = κ(0)
(

κ(tmax)
κ(0)

) t
tmax

t ∈ [0, tmax], (3)

where κ := ε or κ := σ, respectively. The algorithm is terminated, once a
problem-specific cost criterion is satisified, or a maximum number of iterations
has been completed.

Although the above computational scheme is formally identical to Kohonen’s
self-organizing map algorithm, the meaning of the variables r, w, and x com-
pletely differs in the Exploration Machine: Whereas in Kohonen’s algorithm the
sampling vectors x represent the input data, this role is attributed to the vec-
tors r in XOM. As an important consequence, in contrast to Kohonen’s self-
organizing map algorithm, each image vector w is attributed to its own specific
input data vector. Hence, no implicit approximation of input data items by im-
age vectors is involved. Instead, sampling and adaptation of the image vectors
is entirely restricted to the embedding space. In other words, XOM completely
inverts the role of input data and structure hypotheses, given the conventions of
topology-preserving mappings as known from the literature. Note that, besides
the afore mentioned basic incremental self-organizing map algorithm, any other
topology-preserving mapping described in the literature may be selected for T .
Besides numerous variants of Kohonen’s self-organizing map algorithm, such as
‘batch’ versions, various kinds of topographic vector quantizers, e.g. [3] as well as
modifications of the quoted methods should be mentioned. In essence, the algo-
rithmic concept of XOM is independent of the specific choice of T . However, the
characteristics of T determine theoretical convergence properties, the number of
free parameters, mapping performance, and computational complexity.

Algorithmic Properties of XOM: There are deep differences between the
Exploration Machine approach and the use of topology-preserving mappings
as known from the literature. Specifically, these differences induce that (i) the
dynamics of self-organization is formulated directly in the embedding space E
in which structure formation occurs, and not indirectly via movements in the
space O of the high-dimensional input data. As shown later, this can lead to
tremendous computational savings. Second (ii), the coupling of the movements
of the image vectors is now governed by the actual distance topology of the
input data and not by the possibly inaccurate structure hypothesis as in existing
approaches1.

As in topology-preserving mappings, we still need a structure hypothesis.
But now it is succinctly spelled out in the choice of the sampling distribution
1 A typical choice for defining such structure hypotheses in topology-preserving map-

pings is to use two-dimensional, discrete, periodic (e.g. quadratic or hexagonal) grids.
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and its underlying space E that govern the exploration movements of the im-
age vectors without affecting their interactions. Therefore, when compared to
topology-preserving mappings, the Exploration Machine algorithm can be inter-
preted compactly as an inversion of the roles of structure hypotheses and input
data w.r.t. observation and embedding spaces.

The new scheme endows XOM with a surprising flexibility to contribute to
many domains of scientific data analysis and visualization beyond structure-
preserving dimensionality reduction, as exemplified below. It also induces favor-
able algorithmic properties: In particular, the formulation of the dynamics in
the embedding space entails a substantial reduction of computational complex-
ity in comparison to topology-preserving mappings, as the best-match search
in each iteration step does not require computational operations in the high-
dimensional input data space, but now occurs in the usually low-dimensional
embedding space. This leads to tremendous savings in computation time in the
case of very high-dimensional real-world data, such as for the embedding example
of the whole-genome gene expression data in fig. 3.

Clustering by XOM: Although the Exploration Machine has originally been
invented as a novel method for structure-preserving dimensionality reduction,
it is essential to realize that XOM can be applied to other domains of data
analysis as well. Data clustering, for example, can be performed by exploiting
the flexibility to design arbitrary structure hypotheses in the embedding space.
Here, the key idea is to simply select the sampling vectors from non-uniform
distributions, e.g. from a mixture of several distributions centered at different
positions in the embedding space. A typical choice could be a mixture of Gaussian
distributions centered at different locations in the image space2. After running
the XOM algorithm, the image vectors can be assigned to these distributions,
e.g. by computing and comparing the distances of the image vectors to the centers
of the respective distributions. By definition of appropriate distance measures,
e.g. the assignment likelihood, this can be performed in a fuzzy manner as well.

3 Experiments

‘Hepta’ Data Sets. In order to quantitatively evaluate the quality of di-
mensionality reduction by XOM and to relate its results to other methods
known from the literature, we have performed extensive computer simulations.
To this end, we have investigated the degree of structure preservation which
can be achieved by classical and advanced recent nonlinear embedding methods,
namely Principal Component Analysis (PCA), Locally Linear Embedding [5],
and Isomap [7]. For this purpose, we used 40 data sets similar to a synthetic
benchmark data set called ‘Hepta’ proposed in [8] for the evaluation of structure
preservation. A single realization of a ‘Hepta’ data set is depicted in Fig. 1. It

2 An extreme choice for a structure hypothesis suitable for clustering in step 2 of the
algorithm would be to repetitively sample from a set of K isolated points, if one
wishes to perform clustering using K clusters.
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Fig. 1. ‘Hepta’ Data Set

Fig. 2. XOM embedding of the ‘Hepta’ data sets. The figure depicts the best (A) and
the worst (B) embedding result obtained by XOM for the 40 data sets constructed
according to the specifications explained in Fig. 1.

consists of 2300 points randomly sampled from seven Gaussian distributions,
thus forming ‘clusters’ in IR3. The centroids of the six non-central Gaussian dis-
tributions span the coordinate axes of the IR3, the respective clusters consist
of 300 data points each. The central Gaussian distribution consists of 500 data
points, i.e. the respective point selection can be interpreted as a cluster whose
density is higher than the density of the surrounding six clusters. For our inves-
tigation, we created 40 ‘Hepta’ data sets according to these specifications. – To
quantitatively evaluate structure preservation, we used a scale-invariant version
of Sammon’s error [6].

Our results are summarized in Tab. 1. On average, XOM outperformed LLE
and Isomap with regard to structure preservation, although Isomap yielded bet-
ter results in a few data sets. Interestingly, we frequently obtained poor results
for PCA. This is caused by the spatial symmetry of the data set which makes
the projection axis in PCA very sensitive to noise, i.e. to the random choice
of data points sampled from the Gaussian distributions specified in the ‘Hepta’
data set construction. Thus, different clusters are frequently projected onto each
other in the embedding result, i.e. cannot be separated, which leads to impaired
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Table 1. Comparative evaluation of computation times and structure preservation
for nonlinear embedding of 40 ‘Hepta’ data sets as specified in Fig. 1. Average and
minimum values as well as the standard deviation of Sammon’s error E′ were computed
as a scale-invariant measure of structure preservation. The free parameters of all the
methods examined in the comparison (except PCA) were optimized to obtain the best
results, i.e. to minimize E′. Note that XOM yields competitive structure preservation
at acceptable computation times.

Method Comp. Time (s) E′ min(E′) σ(E′)

Isomap 468 1.851 · 105 1.319 · 105 0.384 · 105

LLE 11600 3.681 · 105 1.776 · 105 1.267 · 105

PCA 0.3 2.216 · 105 1.279 · 105 0.608 · 105

XOM 4.6 1.732 · 105 1.426 · 105 0.247 · 105

structure preservation. For illustration, the best and the worst of the 40 embed-
ding results obtained by XOM are shown in Fig. 2. Tab. 1 also lists computation
times using an ordinary PC (Intel Pentium 4 CPU, 1.6 GHz, 512 MB RAM).
PCA outperformed all other methods with regrad to computation time. XOM
required considerably smaller computation times than LLE and Isomap. – We
emphasize that the results depicted in Tab. 1 depend on the structure of the data
set, and do not allow to draw final conclusions on the overall performance of the
nonlinear embedding algorithms with regard to the general degree of structure
preservation or their computational expense. In addition, the choice of other
measures for structure preservation may also result in different ranking scenar-
ios. For example, we conjecture that PCA will be superior in situations where the
data is approximately located in a linear subspace of the observation space. LLE
and Isomap will perform better in situations where the data is not distributed
inhomogeneously in the observation space, i.e. does not exhibit an underlying
distinct cluster structure of almost isolated data patches, but rather consists of
a ‘connected’ single cluster. In such data sets, both LLE and Isomap can accu-
rately reconstruct the data with a smaller number of nearest neighbors, which
will also reduce their computational expense considerably. – However, even tak-
ing all these limitations into account, our investigation at least shows that there
exist classes of data sets where XOM yields competitive results in comparison
to the methods known from the literature.

Visualization of Genome-Wide Expression Patterns: We used the Ex-
ploration Machine to visualize genome-wide expression patterns by structure-
preserving dimensionality reduction. Fig. 3 (A) shows a genome map created by
nonlinear XOM embedding of gene expression profiles in the yeast Saccharomyces
cerevisiae obtained from DNA microarray hybridization experiments. The data
is taken from [2], where it is described in detail. It includes 79-dimensional vec-
tors representing concatenated time courses obtained for 2467 genes functionally
annotated in the Saccharomyces Genome Database [1]. The expression profiles
were average-corrected and scaled to unit variance. – Each of the 2467 points on
the map represents the 79-dimensional expression profile of a single gene. Specific
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(A) (B)

Fig. 3. Visualization of genome-wide expression profiles by the Exploration Machine.
(A) Genome map created by nonlinear XOM embedding of 2467 79-dimensional gene
expression profiles in the yeast Saccharomyces cerevisiae obtained from DNA mi-
croarray hybridization experiments, data published in [2]. (B) Enlarged section of the
genome map depicted by the inset in (A). For further explanation, see text.

groups of genes related to each other with respect to their biological function
according to a cluster annotation by Eisen et al. [2] are color-coded and labeled
by numbers. In detail: ‘1’: spindle pole body assembly and function, ‘2’: the pro-
teasome, ‘3’: mRNA splicing, ‘4’: glycolysis, ‘5’: the mitochondrial ribosome, ‘6’:
ATP synthesis, ‘7’: chromatin structure, ‘8’: the ribosome and translation, ‘9’:
DNA replication, and ‘10’: the tricarboxylic acid cycle and respiration.

Fig. 3 (B) shows the enlarged section of the genome map depicted by the
inset in (A). For the practical use of XOM genome maps as presented in Fig. 3,
appropriate graphical user interfaces can easily be implemented that supply an-
notation information on the map when needed. Correspondingly, plots of the
individual expression profiles can easily be projected onto the map. A notable
result from the visualization in fig. 3 is that genes of similar biological function
are collocated on the map. Our computation time for the XOM genome map
was 72 seconds on an ordinary PC (Intel Pentium 4 CPU, 1.6 GHz, 512 MB
RAM). We quantitatively compared our result of fig. 3 with the results obtained
by several other embedding algorithms using Sammon’s error function [6] as a
criterion for embedding quality: We obtained error values of 5.91 · 105 (1.00) for
XOM, 6.50 · 105 (1.10) for Sammon’s mapping, 6.56 · 105 (1.11) for Principal
Component Analysis (PCA), and 7.24 · 105 (1.22) for a SOM with a regular
grid of 125 × 125 neurons, where numbers in brackets indicate relative values
compared to the XOM result. Computation times were 72 s for XOM, 216 s for
Sammon’s mapping, 2 s for PCA, and 881 s for SOM. – The example shows
that XOM is particularly suited to contribute to knowledge discovery in large
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Fig. 4. Exploration Machine cluster analysis in human brain mapping, based on a
functional MRI visual stimulation experiment. (A) Cluster assignment maps. White
regions denote pixels assigned to a respective cluster. (B) Cluster-specific prototypical
time-series, i.e. ‘codebook vectors’ and cluster-specific correlation coefficients between
codebook vectors and stimulus function. Cluster numbers correspond to assignment
maps in (A).

high-dimensional data collections, such as databases from biology, by succeeding
in fast and concise structure-preserving visualization.

Functional MRI for Human Brain Mapping: In the previous section, the
Exploration Machine has been successfully applied to structure-preserving di-
mensionality reduction. To demonstrate its applicability to data clustering as
well, we performed exploratory functional MRI analysis for human brain map-
ping in a visual stimulation experiment. Here, the basic idea is to group pixels
according to their similarity of pixel-specific signal dynamics time-series. Ex-
perimental protocols, data acquisition and pre-processing have been published
previously [10]. Each functional MRI slice includes approximately 5 − 10 · 103

pixels, with a number of 98 acquisitions over a time of 300 s. Thus, the task is to
cluster several thousand time-series vectors in IR98. Figures 4 (A) and (B) show
an example of cluster assignment maps and corresponding cluster-specific pro-
totypical signal-time series, so-called ‘codebook vectors’, that can be interpreted
as the average time-series of all the pixels belonging to a specific cluster. As can
be seen from the figures, clusters 21 and 23 clearly identify task-related activity
in the visual cortex, reflected by the high correlation between codebook vectors
and the box-car shaped stimulus function used in this experiment. Cluster 24
includes pixels representing cerebrospinal fluid of internal ventricles, whereas
cluster 4 is indicative for a through-plane motion artifact. A quantitative ROC
analysis revealed areas under ROC curves of 0.984 ± 0.03 for XOM, 0.983 ±
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0.02 for Minimal-Free-Energy VQ [10], and 0.979 ± 0.02 for SOM for the detec-
tion of task-related activation. We conclude that our method is well-suited to
perform sophisticated high-dimensional cluster analysis tasks in functional MRI
real-world data yielding competitive results comparable to those obtained by
established algorithms published in the literature of this domain [10].

4 Conclusion

In this paper, we have introduced the Exploration Machine as a novel method
for nonlinear embedding based on a systematic inversion of the data processing
workflow in topology-preserving mappings. We have shown that XOM is capable
of structure-preserving dimensionality reduction as demonstrated for real-world
applications to data visualization and data clustering. – Further analyses, exten-
sions, variants, and applications of the Exploration Machine, such as related to
computational complexity, supervised learning, analysis of non-metric data, out-
of-sample extension, and constrained incremental learning, have been thoroughly
investigated in [9]. – In the current literature, clustering and structure-preserving
dimensionality reduction are frequently treated as independent problems of infor-
mation processing. As shown in this paper, XOM creates a link between these sub-
jects by simultaneously contributing to different fundamental domains of machine
learning within a single computational framework for exploratory data analysis.
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Abstract. The self-organizing mixture autoregressive (SOMAR) model regards 
a time series as a mixture of regressive processes. A self-organizing algorithm 
is used with the LMS algorithm to learn the parameters of these regressive 
models. The self-organizing map is used to simplify the mixture as a winner-
take-all selection of local models, combined with an autocorrelation coefficient 
based measure as the similarity measure for identifying correct local models. 
The SOMAR has been shown previously being able to uncover underlying 
autoregressive processes from a mixture. This paper proposes a generalized 
SOMAR that fully considers the mixing mechanism and individual model 
variances that make modeling and prediction more accurate for non-stationary 
time series. Experiments on both benchmark and financial time series are 
presented. The results demonstrate the superiority of the proposed method over 
other time-series modeling techniques on a range of performance measures.  

1   Introduction 

Time series modeling and forecasting is an active, challenging and reoccurring topic 
in statistics and signal processing owing to their wide use in real-world applications 
such as communications, speech processing, finance, astronomy and neuro-
physiology. Linear regression and autoregressive models such as autoregressive (AR), 
moving average (MA) and autoregressive moving average (ARMA), are commonly 
used methods. Most linear models assume that the time series being dealt with is 
stationary and uni-modal [3, 8] and assume a structured linear relationship of constant 
coefficients between the current value of the time series and its previous values and 
the error terms. Such conditions are not often met in practice. They are the pitfall of 
(linear) regressive models when the time series is non-stationary. Developing methods 
for modeling non-stationary and multimodal time series has become an active area of 
research. The autoregressive integrated moving average (ARIMA) [3], a generalized 
ARMA model, can better handle slow changing non-stationary time series by 
modeling the difference of the consecutive time series values instead of the value 
itself. The generalized autoregressive conditional heteroscedastic (GARCH) model 
[2] models the variance of the residual as a linear function of the previous variances, 
along with the autoregressive model of the time series. It has been a benchmark model 
for financial data, which exhibits varying volatilities from time to time. The mixture 
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autoregressive (MAR) model [17] represents another approach that considers the 
process as a mixture of regressive models and is a generalized Gaussian mixture 
transition distribution. It can handle non-stationary cycles and conditional hetero-
scedasticity and is often solved by the expectation and maximization (EM) method.  

Various adaptive neural networks have been adopted to extend linear regressive 
models such as multilayer perceptron (MLP), radial basis functions (RBFs), support 
vector machines (SVM) and recurrent networks [9]. Nonstationarity implies that the 
time series change their dynamics in different time regions. It is unreasonable for a 
single model to capture the dynamics of the entire series. A potential solution is to use 
a mixture model approach to divide the entire model into several smaller ones. Then 
regression and prediction are made by the local models. The self-organizing map 
(SOM) can be used to partition time series. For instance, Dablemont et al. [6] applied 
SOM-based local models with RBF networks as regressors. Cao [4] used SVM 
regressors on SOM-clustered local segments. However, these models are two-stage 
modeling. Both clustering and local modeling may not be jointly optimized.  

There were two early approaches to analyzing temporal signals or sequences with 
the SOM. One is to train a SOM on static states (i.e. time series values), and then 
temporal patterns or sequences of states can be identified by marking sequential 
locations of the state on the trained map. Such approaches can be used to monitor 
dynamic processes or trajectories of a temporal process such as industrial plants [1]. 
Another approach, which is often found in the literature, is to group consecutive time 
points into segments (using a sliding window). Then these segments are used as the 
input vectors to train the SOM. We term this method as vector SOM or simply SOM. 

Several variants have since been proposed to extend SOM’s ability for temporal 
modeling such as the recurrent SOM (RSOM) [10] and the recursive SOM (RecSOM) 
[16,15]. These variants integrate the information of a sequence via recursive 
operations. As they differ in the notion of context, their efficiency in terms of 
representing temporal context are different. Neural gas (NG) [12] is another variant of 
SOM. Instead of having a fixed network topology throughout, NG can dynamically 
deploy its resources to suit varying topology of the data and has been applied to tasks 
including temporal modeling [12] and has been enhanced by merge NG (MNG) [15].  

Earlier, Lampinen and Oja proposed a self-organizing map of spatial and temporal 
AR models [11], where each unit represents an AR model with its reference vector as 
the model parameters. The method in fact is a multiple AR model with the component 
models forming a spatial topology. However, the model has difficulties to converge to 
the underlying regressive models due to the simple error-based similarity measure. 
We have extended it to a mixture regressive model, termed the self-organizing 
mixture autoregressive (SOMAR) model [13,14], with a different partition 
mechanism and similarity measure to reflect the characteristics of homogeneous time 
series. Both the mixture and local models are jointly trained, and thus it offers better 
modeling performance [13,14]. Here the SOMAR model is further analyzed in light 
of the MAR model and generalized to a full mixture model. 

The remainders of the paper are as follows. Section 2 briefly describes various 
regressive models. Section 3 presents SOM-based autoregressive models and the 
proposed generalized SOMAR model, followed by experimental results on both 
benchmark data and real-world data and comparisons with several methods in Section 4. 
Finally, conclusions are given in Section 5. 
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2   Regressive Time Series Models 

2.1   Autoregressive Models: AR, ARMA, GARCH and ARIMA 

Linear regressive models have been the primary tool in modeling time series. An 
autoregressive model of order p, denoted as AR(p), can be described as, 
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An ARMA model with p-order AR terms and q-order MA terms is called 
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where },...,{ 0 qμμ  are the parameters of the moving average. The error terms are 

assumed to be independent identically-distributed (i.i.d.) random variables sampled 
from a normal distribution with zero mean and variance σ2. When this condition does 
not hold, the GARCH model provides a generalized alternative, in which the variance 
of the error terms is modeled by another regressive model. 

A standard GARCH(θ; q) model is characterized by Eq. (1) and the following 
variance model, 
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where εt is the error term with the assumption ttt vσε =  and vt is i.i.d. with zero mean 

and unit variance. {α} and {β} are the model parameters of the variance.  
ARIMA model uses lags or differencing of the time series in the ARMA model. 

ARIMA(p,d,q) model is characterized by the following equation, 
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where L is the lag operator, i.e. 1−= tt xLx  and p, d, and q are the orders of the 

autoregressive, integrated, and moving average parts of the model respectively. Note 

that ARMA(p,q), i.e. Eq. (1), can be expressed as t
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As can be seen, the ARIMA model operates on the difference of the lagged time 
series. Such simple transformation can be effective in dealing with slow changes in 
non-stationarity. That is, the difference operator transforms a slow drift non-stationary 
process into a stationary process.  
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2.2   Mixture Autoregressive (MAR) Model  

A nonlinear or non-stationary time series can be regarded as a mixture of stationary 
processes characterized by the standard autoregressive models. The K-component 
MAR model is defined by [17],  
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where )|( 1−ΓttxF  is the conditional distribution of xt given the past information up 

to t-1, Γt-1; ϕ(.) is the standard normal distribution; {π1,…,πK} are the mixing 
parameters and π1+…+πK=1, πk>0, k=1,…, K; pk is the order of the k-th AR model; 
and σk

2 is the variance of the k-th distribution. This model is denoted as MAR(K; 
p1,…,pK) model. The MAR has the ability to handle cycles and conditional 
heteroscedasticity in time series and its parameters are estimated via the EM 
algorithm and model selection by a Bayesian information criterion (BIC) [17]. 

3   Self-Organizing Mixture Autoregressive Models 

3.1   Self-Organizing AR (SOAR) Model 

Lampinen and Oja proposed a self-organizing AR (SOAR) network [11]. It is a map 
of neurons, each representing an AR model with its parameters as the reference vector 
wi. The experiment showed that the SOAR model can learn to distinguish texture 
images [11]. The method in fact is a multiple AR model. However the model has 
difficulties in converging to correct AR models. The training procedure is: 

1) At each time step t, find the best matching unit by measuring the estimation 

error of each node, )(
1,

p
t

T
itti xe −−= xw . In order to reduce the effect of the fluctuation 

or noise in the errors, an exponential average over the recent errors is used, 
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where λ is a smoothing factor, ei(t) is the current error of node i and ui(t-1) is the past 
averaged error. 

2) Update the best matching unit as well as its neighborhood on the map by the 
recursive LMS or Widrow-Hoff rule,  
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where η is learning rate and h(i,v) is the neighborhood function of indexes of node i 
and winner v.  

However the performance of the SOAR model in finding the underlying AR 
processes in the mixture is poor [13]. Due to the stochastic nature of AR processes, 
although the overall MSE decreases, at each input, one can always expect large 
fluctuation even when the true model parameters are used and further smoothing is 
applied. In other words, this method has difficulties in converging to the true model 
parameters of the underlying AR processes. Nevertheless, the SOAR model localizes 
the time series by local models. 
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3.2   Self-Organizing MAR (SOMAR) Model  

Based on the similar principle and the MAR model, the self-organizing MAR 
(SOMAR) was proposed [13]. It constitutes a simplified MAR model with the 
winner-take-all for local AR models. To ensure a robust learning, a new winner 
selection or similarity measure was proposed. A stochastic process is characterized by 
white noise residuals. As a sufficient condition, the modeling errors or the residuals 
should be or close to white noise if the modeling is following the correct path. 
Therefore, the autocorrelation of the error instead of the error itself is used to evaluate 
the similarity between the input vector and the neurons’ weights representing the 
model parameters. To estimate the autocorrelation, a small batch of the errors is used, 
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where m is the length of the batch, μe and σe
2 are the mean and the variance of the 

errors in the batch respectively.  
The winner is selected according to the sum of (absolute value of) autocorrelation 

coefficients (SAC), 
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The use of correlation measure for identifying local models is justified by the fact 
that a correct model produces white noise residuals. That is, if the model is correct or 
adequate, the residual is unpredictable or structure-less. Such effective correlation-
based tests are often used in statistics and neural networks for checking the fitness of 
a model, e.g. [5], though there are other whiteness tests in the literature. 

3.3   Generalized SOMAR (GSOMAR) Model  

Both the SOMAR and SOAR models represent a simplified, homescedastic and 
winner-take-all version of the MAR model. At any time, only one local AR model 
(the winner) is selected to represent the time series, all models are assumed of equal 
variance and the mixing factors are either unit for the winner or zero otherwise. 
Although some empirical use of neighboring nodes has been proposed for forecasting 
[13], the model is not a full mixture model. To fully employ the mixture model, all 
components will be required to contribute to the mixture coherently both in training 
and testing. The mixing factors and model variances have to be learnt as well. The 
SOM has been extended before to a mixture model. The self-organizing mixture 
network (SOMN) [18] is such an example, in which each node represents a 
conditional distribution. The SOMN has also been shown to converge faster and be 
more robust than the EM algorithm for heteroscedastic mixture distributions. To make 
the SOMAR a full mixture of AR models, the algorithm of the SOMN can be used to 
learn the mixing factors and variances. In addition to the weights (or AR model 
parameters), the mixing factors and model variances are updated in the training 
(modeling). Further assuming that the component models are uncorrelated, so their 
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covariances are zeros. The variances of local models are scalar. Then the updating 
rules for the mixing weights and variances have the following simple forms, 
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where iP̂  is the winning frequency and 2
,eiσ  is the error variance of node i. 

The trained mixture model, representing the MAR model, Eq. (5), can be fully 
used for forecasting the time series as well as model’s volatility. In forecasting, the 
learnt mixing factors are further weighted by the neighborhood function of the SOM, 
acts as the posterior probability of a component class given an input sample [18]. 

4   Experimental Results and Comparisons 

4.1   Artificial Data 

As an illustrative example, a mixture two AR(2) processes was generated with their 
model parameters set to [0.2, -0.3] and [0.4, -0.1] and variances to 3 and 5, 
respectively. The learning process of the GSOMAR is shown in Fig. 1. 
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Fig. 1. Parameter and variance estimation of a mixture of two AR(2) processes. Fine tuning 
phase [13] starts at t=15000. Dashed (red) lines represent one process and solid (blue) lines the 
other.  
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4.2   Mackey-Glass Data 

The Mackey-Glass series has been widely used as a benchmark data for testing 
nonlinear models. The data set was generated by a dynamic system defined by the 
following differential equation, 
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with the parameter values set as δ=17, α=0.2, and β= -0.1. In total 2000 points were 
generated. The Mackey-Glass data is regarded as consisting of a number of unknown 
AR processes. In the experiment, the series was grouped into 12 consecutive values as 
the input vectors. The order of the AR processes was chosen by the BIC. The 
prediction result is shown in Table 1. The performance of statistical benchmark 
models GARCH and ARIMA are 4.48 and 4.35 respectively. The results are the 
average over 10 independent runs on the same data set. Different data set may lead to 
slightly difference performance. However, it can be seen that GSOMAR and SOMAR 
markedly outperform the others and GSOMAR further improves on SOMAR. 

Table 1. Forecasting performance on Mackey-Glass data by various adaptive models 

 GSOMAR SOMAR SOAR SOM RSOM RecSOM NeualGas MNG SOM+ 
SVM 

MSE(-2) 3.24 3.62 4.29 4.48 4.32 4.10 4.38 4.35 4.52 

4.3   Foreign Exchange Rates 

The data was obtained from the PACIFIC Exchange Rate Service provided by W. 
Antwiler at UBCs Sauder School of Business. It consists of 15years’ daily exchange 
rates (British pound vs. US dollar, Euro and HK dollar) excluding weekends and bank 
holidays when the currency markets were closed. In total 3200 consecutive points 
were used, in which the first 3,000 points were used as the training set, the next 100 
points as the validation set, and the remaining 100 points as the test set. The training, 
validation and testing sets were windowed with the length of 15 points to form input 
vectors (again validated by the BIC). 

To compare with other regressive models, the following commonly used 
performance measures have been calculated: 

Predicted return (%): The percentage of correct prediction of the return 
( tt xx /ln 1+ ), which is also used as a criterion to check whether the prediction is made 

in the right direction. In other words, it shows how many percentages of the predicted 
returns have the same signs as their corresponding actual returns.  

MSE of predicted rate (-2): The MSE between the actual exchange rates and the 
predicted ones in the test set.  

Accumulated profit (P%): The accumulated profit is the percentage gain of the 
accumulated profits over the testing period, say 100 trading days. 
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Table 2. Performance on FX rate prediction by various adaptive models. The best performances 
are marked in bold. 

GBP        
vs 

GSOMAR SOMAR SOAR SOM RSOM RecSOM NeualGas MNG SOM+ 
SVM 

USD % 59.70 59.73 52.84 52.63 52.26 52.58 54.08 54.16 53.43 
USD -2 3.87 3.80 4.28 4.20 4.24 4.70 4.23 4.20 4.12 
USD P% 5.53 5.15 4.78 4.80 4.98 5.12 5.33 5.35 4.82 

EU % 57.43 56.42 52.62 52.12 53.05 53.17 54.24 54.27 54.09 
EU -2 3.96 4.11 4.73 4.32 4.64 4.95 4.51 4.50 4.62 
EU P% 5.41 5.12 4.62 4.73 4.63 4.60 4.72 4.75 4.70 

JPY % 57.95 57.30 53.22 54.29 52.48 52.33 53.46 53.47 52.10 
JPY -2 4.23 4.33 5.24 5.00 4.98 5.08 4.75 4.75 5.18 
JPY P% 5.32 5.03 4.68 4.89 4.91 4.87 4.73 4.76 4.65 

HKD % 56.37 56.31 53.50 53.95 53.88 54.02 54.21 54.22 54.13 
HKD -2 4.11 4.22 4.67 4.75 4.73 4.72 4.44 4.44 4.57 
HKDP% 5.32 5.02 4.50 4.59 4.57 4.63 4.62 4.68 4.60 

 
As reported before [13,14], the SOMAR model generally outperforms other 

adaptive methods as also shown in Table 2. The GSOMAR further improves on the 
SOMAR model in all these performance measures. As can be seen, both GSOMAR 
and SOMAR consistently outperform other methods by clear margins in the correct 
prediction percentages and modeling errors. The benefit of using the fuller GSOMAR 
model is that model variance parameters are readily available to indicate the volatility 
of the component regressive models and the mixture. Statistical model ARIMA 
performed the worse on these data sets with the predicted return (%) between 50-51% 
– only slightly better than random guess; while GARCH gave similar performances to 
SOM+SVM with the predicted return (%) between 53-54%. 

5   Conclusions 

A mixture model approach to tackling nonlinear and non-stationary time series has 
been proposed by using the generalized self-organizing mixture autoregressive 
(GSOMAR) model. It consists of a number of autoregressive models that are 
organized and learnt in a self-organized manner by the adaptive LMS algorithm. A 
correlation-based similarity measure is used for identifying correct AR models, thus 
making the model more effective and robust compared to the error-based measures. 
The GSOMAR further generalizes the winner-take-all SOMAR model by learning the 
mixing weights as well as the model variances. The experiments on various nonlinear, 
non-stationary time series show that the proposed model can correctly detect and 
uncover underlying regressive models. The results also show that the proposed 
method outperforms other methods in terms of modeling errors and prediction 
performances.  
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Abstract. Near-Infrared reflectance spectra of planets can be used to
infer surface parameters, sometimes with relevance to recent geologic
history. Accurate prediction of parameters (such as composition, tem-
perature, grain size, crystalline state, and dilution of one species within
another) is often difficult because parameters manifest subtle but sig-
nificant details in noisy spectral observations, because diverse parame-
ters may produce similar spectral signatures, and because of the high
dimensionality of the feature vectors (spectra). These challenges are of-
ten unmet by traditional inference methods. We retrieve two underly-
ing causes of the spectral shapes, temperature and grain size, with an
SOM-hybrid supervised neural prediction model. We achieve 83.0±2.7%
and 100.0±0.0% prediction accuracy for temperature and grain size, re-
spectively. The key to these high accuracies is the exploitation of an
interesting antagonistic relationship between the nature of the physical
parameters, and the learning mode of the SOM in the neural model.

Keywords: Self-Organizing Map, parameter prediction, Near-Infrared
spectra, New Horizons Space Mission, Pluto-Charon system.

1 Machine Learning for Parameter Prediction from
Spectra, Motivated by the New Horizons Space Mission

1.1 Investigation of Surface Conditions from Near-Infrared Spectra

Near-infrared reflectance spectroscopy offers an extremely powerful remote probe
of planetary surfaces. Numerous physical parameters, such as composition,
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texture, and thermal state of surface materials, influence the observable re-
flectance, from which the parameters can potentially be retrieved. Icy outer
Solar System surfaces present a natural application for such retrieval algorithms,
since cryogenic ices such as H2O, N2, and CH4 possess distinctive spectral con-
trasts which change in known ways as a function of temperature [1,2]. NASA’s
New Horizons spacecraft, which is en route to the Pluto system [3], will map
the surfaces of Pluto, Charon, Nix, and Hydra at wavelengths from 1.25 to 2.5
microns with its infrared imaging spectrometer [4] in 2015. By extracting the
surface parameters from these spectral maps, it will be possible to determine
what processes are at work sculpting the exotic landforms New Horizons will
discover.

However, the complexity of the measured spectra, their shapes, the often
subtle changes in the spectral curves in response to relevant changes in the
underlying causes (the implicit physical parameters of the surface), the interplay
between the underlying causes, and the high dimensionality of the feature vectors
(spectra), poses significant challenges for accurate retrieval of the parameters.
Traditional approaches, based on iteratively inverting spectral mixing models
[5] do not give entirely satisfactory results in real world applications [6]. Such
techniques work very well for the relatively simple version of the problem posed
here, but with the machine learning approach we propose we expect to be able
to infer parameters also from complicated noisy real spectra. Specifically, we
approach this challenge with a hybrid supervised neural architecture, which has
a Self-Organizing Map (SOM) as its hidden layer. In this paper we focus on the
inference of two surface parameters, grain size and temperature. We investigate
inference capabilities of the neural model for a single material, crystalline water
ice, which is common on Solar System surfaces. Results gained will be used
in follow-up work to infer parameters from other types of ices (SO2, CO, CO2,
NH3) possibly occurring in the Pluto system and elsewhere in the Solar System.

1.2 Forward Training with Synthetic Spectra and Reverse
Engineering from Real Spectra

The training of the neural machine requires a great number of spectra, which
should span the meaningful ranges of the physical parameters with appropri-
ate resolutions. However, real spectra collected from icy planetary surfaces are
scarce, and not representative of the desired granularity of the prediction. To
help this, synthetic or laboratory data have been used for model development
in several areas, where real data are hard to obtain [7,8,9]. In our study the
SOM-hybrid neural prediction model is trained with synthetic spectra, which
are generated through radiative transfer code described in [10] based on the
Hapke model, the most common way to represent the interaction of a solid sur-
face with incident sunlight [5,11]. The synthetic spectra are generated on a grid
of temperatures and grain sizes where the temperature ranges from 20 to 270
K with 2 K spacing, and the grain size takes 9 values logarithmically spaced
from 0.0003 to 3.0 cm. This set of parameters encompasses the range of possible
surface conditions of the icy Solar System bodies of our interest, at sufficient
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resolution for scientific study. The spectral resolution, 230 band passes from 1
to 2.5 μm, is close to the resolution of the sensor used on the New Horizons
spacecraft.

1.3 The SOM-Hybrid Supervised Architecture

The supervised neural architecture we use in this study is a fully connected
feed-forward network with an SOM as the middle layer and an output layer con-
nected to the SOM by the Widrow-Hoff rule [12]. A 230-band spectrum is taken
as an input vector at every learning step. The learning consists of two stages.
The first stage is unsupervised, in which the SOM layer captures the structure
of the data manifold. The knowledge represented in the SOM is then utilized
in the second stage, which is supervised training of the output layer. This con-
struction generally helps achieve good prediction accuracy [13,14]. Its additional
merits include ease and economy of training and handling of high-dimensional
data, compared to other, more frequently used neural approaches. We use the
Conscience variant [15] of the original Kohonen SOM [16]. It introduces a bias to
achieve equal winning probabilities across all neural units thus producing more
faithful pdf matching than the Kohonen SOM. Briefly, the weight vector wi of
neural unit i in the SOM lattice A of N neural units, is updated iteratively
through a two-step procedure. First, a winner (or best matching unit, BMU) wi

is selected for a given input vector x such that with the bias bj for neural unit j

‖ wi − x ‖2 −bi ≤‖ wj − x ‖2 −bj, ∀j ∈ A. (1)

The bias bj is computed from the winning frequency pj , of neural unit j, as

bj = γ(t) × ((N × pj) − 1), (2)

where γ is a parameter. Second, all weight vectors wj are updated:

wnew
j = wold

j + α(t)hi,j(t)(x − wold
j ). (3)

Here, hi,j(t) is a neighborhood function, α is the learning rate. With the Con-
science algorithm hi,j(t) can be fixed and of small size (e.g., the immediate
neighbors in a diamond or square configuration), instead of a large neighbor-
hood (e.g., Gaussian) that has to decrease with time.

2 Relationship of the Underlying Causes of Spectra as
Seen from the SOM

The two physical parameters have different influences on the spectral shapes.
As shown through two representative examples in Fig. 1, there is a substantial
difference in the reflectance values of the spectra between two neighboring grain
sizes, deepening of the absorption bands as well as shifting to lower values, in
a linear fashion without crossing over. The increase in temperature from 30
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GS = 0.003 cm, T from 30 to 270 K with 20 K spacing
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Fig. 1. Sample synthetic spectra of crystalline water ice. Left: variation in the spectral
shape as a function of temperature, for one fixed grain size, 0.003 cm. Right: variation
of the spectral shape as a function of grain size, at 50 K.
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Fig. 2. Left: A 20×20 SOM trained with synthetic spectra of crystalline water ice.
The colors represent the known grain size labels as keyed at right. The “fences” drawn
between cells have grey scale intensities proportional to the Euclidean distance of the
respective weights. White is large distance (dissimilarity). Black cells within double
fences separating grain size groups indicate empty weights (no data mapped to them).
Other black areas indicate weights representing spectra of other ices (N2, CH4 etc.).
Right: An example of how spectra are organized within a grain size group, according
to temperatures. Shown here are the learned weight vectors in the respective SOM cells,
for the 0.003 cm (yellow) group. We can observe a continuous change in the spectral
shapes from left to right, caused by increasing temperature. The red boxes and circles
exemplify differences in absorption features at low and high temperatures, respectively.

to 270 K causes much smaller changes in reflectance but the direction of the
change varies with wavelength. For example, the absorption at 1.65 μm gradually
weakens with increasing temperature, while in the neighboring window of 1.7
– 1.9 μm the reflectances decrease with increasing temperature, resulting in
crossovers. Fig. 1 suggests that the (Euclidean) distance between two grain size
groups is larger at most wavelengths than the variations caused by temperature
within that group. This dominance is reflected in the SOM after unsupervised
learning by clearly separated clusters with respect to grain size (Fig. 2, left).
Within each grain size cluster, the weight vectors show the continuous change in
the spectral shapes caused by temperature, seen in Fig. 1. Fig. 2, right, illustrates
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this for the 0.003 cm grain size (yellow) group. The weight vectors learned from
spectra with low temperatures have a strong absorption at 1.65 μm (in red
boxes). This feature gradually disappears for high temperatures (in red circles).

3 Conjoined Twin Machines

3.1 Two Modes of the SOM during Supervised Learning

The SOM can be used in two modes during supervised training. One is the
widely used winner-take-all (WTA) mode, in which one SOM neuron fires (has
an output signal of 1) in response to a given input vector, the rest send 0 to
the weighted sums formed at the output layer. The other possibility is to divide
the winning credit among k SOM nodes by assigning each an output value that
is inversely proportional to the distance between its associated weight vector
and the input vector (such that the credits add up to 1). This can be called
“interpolating mode”. For practical purposes k can be a number much lower than
the number of neurons in the SOM, based on the assumption that the winner
weight’s Voronoi cell has a relatively low number of neighbor Voronoi cells in
data space. For k > 1 we will use the term “interpolation on” or “interpolating
mode”, and use “interpolation off” or “non-interpolating mode” for k = 1.

For this data set, the Voronoi cells of all weight vectors of the SOM in Fig. 2,
left, except for one, have at most 3 neighbors. We see this from the numbers
of connections to Voronoi neighbors (pairs of BMUs and second BMUs formed
by weights and their Voronoi neighbors) [17], shown in the order of the most
to least connected, in Table 1. The connection strength (the number of data
samples selecting a weight and its Voronoi neighbor as a pair of BMU and second
BMU) between the one weight that has a fourth neighbor, and that fourth most
connected neighbor is 1 (negligible). This justifies k = 3 for interpolating mode.

Table 1. Number of connections to Voronoi neighbors, from the most connected to
the least connected, summed across all SOM weights

Most Second most Third most Fourth most
connected connected connected connected

Number of connections 280 214 13 1

3.2 The Effect of SOM Modes on the Prediction Accuracies of
Temperature and Grain Size

As observed in Section 2 the grain size dominance on the reflectance spectra
causes clustering primarily by grain size in the SOM. Closer inspection reveals
that, without exception, all spectra mapped to any weight vector within a grain
size cluster have the same grain size label. This provides a good basis for perfect
learning of grain size in non-interpolating mode, where only the BMU fires. In
interpolating mode, each input spectrum stimulates the second and the third
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Fig. 3. The learned weight vectors shown in the respective SOM cells. The white boxes
highlight weight vectors on the boundary between the yellow and orange groups, which
represent 0.003 and 0.0001 cm grain sizes, respectively. The light blue box indicates an
empty weight vector inside the yellow group.

BMUs, too, which may belong to the boundary area like the empty weight vec-
tors in white boxes in Fig. 3. Their shapes are similar to both neighbors, which
makes them candidates to be the second or third BMU for an input vector from
either group. This introduces possible confusions in the supervised training. In
contrast, the second and third BMUs may help refine the prediction of tem-
perature. Since 126 spectra with different temperature parameters are forced
to share approximately 25 – 30 SOM weights in a grain size cluster (Fig. 3,
left), each weight forms an average (a mixture) of spectra, and each spectrum
is likely to contribute to the mixture in several neighboring weights (smearing
across neighbor weights) during training. None of these mixtures will match any
specific temperature exactly, but a specific temperature may be reconstructed
from several neighboring weight vectors by training the output weights to form
their appropriate mixture. This includes empty weight vectors within any grain
size group too, such as the one in the light blue box in Fig. 3.

The above discussion suggests conflicting preferences for SOM modes in the
prediction of the two parameters. Supervised training results shown as corre-
lations between predicted and true values in Fig. 4 confirm this. Since both
physical parameters have large ranges, we quantify the prediction accuracies as

Table 2. The prediction accuracies of grain size (GS) and temperature (T) for two
separate data sets, containing 9 and 81 grain sizes, respectively, with 20×20 and 40×40
SOMs, each in interpolating and non-interpolating modes. Results for the data with
9 GS are averages of 10 jack-knife runs. Results for the data with 81 GS are from a
single run for reasons of time limitations. Further jack-knife runs are in progress.

Data with 9 grain sizes Data with 81 grain sizes

SOM mode Non-interpolating Interpolating Non-interpolating Interpolating

20×20 GS 100.0±0.0% 76.4±4.4% 73.0% 77.9%
SOM T 76.2±2.6% 83.0±2.7% 32.9% 53.7%

40×40 GS - - 97.7% 54.3%
SOM T - - 61.2% 77.3%
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Fig. 4. Correlation of predicted (retrieved) and true values of temperature (left block)
and grain size (right block). Data are shown as orange dots. Top: results obtained
with the SOM in non-interpolating mode. Bottom: results obtained with the SOM
in interpolating mode. The blue, red and green dashed lines indicate 5%, 10% and
50% error envelopes, respectively. Temperature has a smaller prediction error with
interpolating mode. The prediction of grain size is better with non-interpolating mode.

the percentages of test data samples with less than 5% relative error. We achieve
100.0± 0.0% accuracy for grain size in non-interpolating mode, and 83.0± 2.7%
for temperature in interpolating mode (Table 2, left block). Contrary to expecta-
tion, increasing the grid resolution of the grain size in generating training spectra
does not help improve the prediction accuracy in interpolating mode, as shown
in Table 2, right block. In fact, with a 20×20 SOM, the predictions of both
temperature and grain size are significantly worse (or at best comparable), in
both SOM modes, than results produced with 9 grain sizes. This is likely a result
of the softening of boundaries between grain size groups due to an additional
eight spectral curves between each two in Fig. 1, right. For this comparison we
use an augmented training set generated with 81 grain sizes, equally spaced on
a logarithmic scale in the same 0.0003 – 3.0 cm range as, and including, the
training set with 9 grain sizes. Increasing the size of the SOM to 40×40 still
does not improve the prediction of either parameter in interpolating mode. In
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Fig. 5. Conceptual diagram of the Conjoined Twin Machines. One head of the Con-
joined Twins works in non-interpolating mode, using the output from the BMU (red
neuron in the SOM) to predict grain size. The other head, working in interpolating
mode, uses, in addition, the second and third BMUs (pink) to predict temperature.

non-interpolating mode grain size prediction recovers to 97.9% because the space
in the larger SOM allows the boundaries to become better defined again. How-
ever, it is unable to recover to 100% accuracy, because some of the boundary
weight vectors still represent spectra with inhomogeneous grain size labels. On
average, the 40×40 SOM allocates ∼ 19 weight vectors to each grain size group,
which is ∼ 2/3 of the number allocated by the 20×20 SOM for 9 grain size
groups. This is likely to be the cause of the unresolved boundaries.

We can conclude from the above that larger SOM size and more grain size
samples do not get us closer to better overall prediction with a uniform interpo-
lation scheme. While it is possible that with an even larger SOM we may be able
to achieve the same accuracies as in Table 2, left block, the extra resources and
time required make that solution undesirable for practical purposes. Instead, we
can exploit the knowledge that the two parameters have opposing preferences
for interpolation, and encode this duality into the learning machine to combine
the advantages of the two SOM modes. This is the concept of the Conjoined
Twin Machines (Fig. 5), which includes a shared SOM, containing the learned
view of the manifold topology. Two identical “heads” both pull information from
this shared SOM but each interprets it somewhat differently. One uses only the
output of the BMU, and treats the rest of the SOM outputs as zeros thus not
allowing them to influence the learning. This corresponds to non-interpolating
mode and therefore will help best predict the grain size. While this grain size
specialist head has a second output node identical to its twins’, the prediction
resulting from that node is discarded. Similarly, the second “head” specializes on
temperature, by pulling the outputs of the first three BMUs into the weighted
sums for training the output layer. This corresponds to interpolating mode with
k = 3 and helps predict the temperature accurately while the grain size predic-
tion is discarded. The final output of this machine is the grain size prediction
from the first, and the temperature prediction from the second “head”.
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4 Conclusions and Future Work

This paper proposes an effective approach to predict two underlying physical
parameters from near-infrared synthetic spectra with high accuracies. The ar-
chitecture of the learning machine is in the form of Conjoined Twin SOM-hybrid
supervised networks. We achieve 100.0±0.0% and 83.0±2.7% prediction accura-
cies for grain size and temperature, respectively. This means that for Charon,
where temperatures in illuminated regions are likely to range up to 65 K, the
neural model should be able predict temperatures with less than ∼ 3 K error, for
80 – 86% of the measured spectra. This is valuable in resolving diurnal tempera-
ture changes on Charon, which provides the boundary condition to discover the
processes in Charon’s interior and in its atmosphere. To prepare for the real data
returned by New Horizons, a noise sensitivity analysis is in progress to gauge
the predictive power of learned models (learned with clean as well as noisy data)
from spectra obtained in real circumstances.

Because of the observed interplay of the two parameters, in this study we could
justify the choices of 1 and 3 for the interpolation granularity k for grain size and
temperature, respectively. These choices are obviously data dependent, therefore
cannot be automatically applied to other data without prior exploration of the
data properties. Future work will include more — potentially interdependent
— underlying parameters, in which case the Conjoined Twins can be extended
to Conjoined Triplets, Quadruplets, or possibly to other tuplets, each with a
different value of k. This will in turn motivate looking for automated ways to
determine the optimal value of k for each machine, perhaps with meta-learning.
Moving from a conceptual prototype to an integrated piece of software in the
implementation of the “Conjoined Twins” is a short-term task, that will help
with such future extensions.
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Niemelä, Pyry 209
Nieminen, Ilari T. 133
Nishio, Yoshifumi 163

Ohkita, Masaaki 307
Olteanu, Madalina 154
Otani, Makoto 219

Park, Choonseog 228
Peltonen, Jaakko 237
Poelmans, Jonas 246
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