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Three Conceptions of Musical Distance 
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Abstract. This paper considers three conceptions of musical distance (or in-
verse “similarity”) that produce three different musico-geometrical spaces: the 
first, based on voice leading, yields a collection of continuous quotient spaces 
or orbifolds; the second, based on acoustics, gives rise to the Tonnetz and re-
lated “tuning lattices”; while the third, based on the total interval content of a 
group of notes, generates a six-dimensional “quality space” first described by 
Ian Quinn.  I will show that although these three measures are in principle quite 
distinct, they are in practice surprisingly interrelated.  This produces the chal-
lenge of determining which model is appropriate to a given music-theoretical 
circumstance.  Since the different models can yield comparable results, unwary 
theorists could potentially find themselves using one type of structure (such as a 
tuning lattice) to investigate properties more perspicuously represented by an-
other (for instance, voice-leading relationships). 
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1   Introduction 

We begin with voice-leading spaces that make use of the log-frequency metric.1  
Pitches here are represented by the logarithms of their fundamental frequencies, with 
distance measured according to the usual metric on R; pitches are therefore “close” if 
they are near each other on the piano keyboard.  A point in Rn represents an ordered 
series of pitch classes.  Distance in this higher-dimensional space can be interpreted 
as the aggregate distance moved by a collection of musical “voices” in passing from 
one chord to another.  (We can think of this, roughly, as the aggregate physical dis-
tance traveled by the fingers on the piano keyboard.) By disregarding information—
such as the octave or order of a group of notes—we “fold” Rn into an non-Euclidean 
quotient space or orbifold.  (For example, imposing octave equivalence transforms Rn 
into the n-torus Tn, while transpositional equivalence transforms Rn into Rn–1, or-
thogonally projecting points onto the hyperplane whose coordinates sum to zero.)  
Points in the resulting orbifolds represent equivalence classes of musical objects—
such as chords or set classes—while “generalized line segments” represent equiva-
lence classes of voice leadings.2 For example, Figure 1, from Tymoczko 2006, 

                                                           
1 For more on these spaces, see Callender 2004, Tymoczko 2006, and Callender, Quinn, and 

Tymoczko 2008. 
2 The adjective “generalized” indicates that these “line segments” may pass through one of the 

space’s singular points, giving rise to mathematical complications. 
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represents the space of two-note chords, while Figure 2, from Callender, Quinn, and 
Tymoczko 2008, represents the space of three-note transpositional set classes.  In both 
spaces, the distance between two points represents the size of the smallest voice lead-
ing between the objects they represent. 
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Fig. 1. The Möbius strip representing voice-leading relations among two-note chords 

Let’s now turn to a very different sort of model, the Tonnetz and related structures, 
which I will describe generically as “tuning lattices.”  These models are typically 
discrete, with adjacent points on a particular axis being separated by the same inter-
val.  The leftmost lattice in Figure 3 shows the most familiar of these structures, with 
the two axes representing acoustically pure perfect fifths and major thirds.  (One can 
imagine a third axis, representing either the octave or the acoustical seventh, project-
ing outward from the paper.)  The model asserts that the pitch G4 has an acoustic 
affinity to both C4 (its “underfifth”) and D5 (its “overfifth”), as well as to Ef4  and B4 
(its “underthird” and “overthird,” respectively).  The lattice thus encodes a fundamen-
tally different notion of musical distance than the earlier voice leading models: 
whereas A3 and Af3 are very close in log-frequency space, they are four steps apart 
our tuning lattice.  Furthermore, where chords (or more generally “musical objects”) 
are represented by points in the voice leadings spaces, they are represented by poly-
topes in the lattices.3 

Finally, there are measures of musical distance that rely on chords’ shared interval 
content. From this point of view, the chords {C, Cs, E, Fs} and {C, Df, Ef, G}  
resemble one another, since they are “nontrivially homometric” or “Z-related”: that is, 
they share the same collection of pairwise distances between their notes.  (For in-
stance, both contain exactly one pair that is one semitone apart, exactly one pair that 
is two semitones apart, and so on.)  However, these chords are not particularly close 

                                                           
3 For a modern introduction to the Tonnetz, see Cohn 1997, 1998, and 1999.  
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in either of the two models considered previously.  It is not intuitively obvious that 
this notion of “similarity” produces any particular geometrical space.  But Ian Quinn  
has shown that one can use the discrete Fourier transform to generate (in the familiar 
equal-tempered case) a six-dimensional “quality space” in which chords that share the 
same interval content are represented by the same point.4  We will explore the details 
shortly.  

 

Fig. 2. The cone representing voice-leading relations among three-note transpositional set 
classes 

                     

C4F3 G4 D5 A5

Af3Df3 Ef4 Bf4 F5

E4A3 B4 Fs5 Cs6

C4F3 G4 D5 A5

  A3 D3   E4   B4 F5

E4A3 B4   F5  C6

 

Fig. 3. Two discrete tuning lattices. On the left, the chromatic Tonnetz, where horizontally 
adjacent notes are linked by acoustically pure fifths, while vertically adjacent notes are linked 
by acoustically pure major thirds. On the right, a version of the structure that uses diatonic 
intervals. 

 

Clearly, these three musical models are very different, and it would be somewhat 
surprising if there were to be close connections between them.  But we will soon see 
that this is in fact this case. 

                                                           
4 See Lewin 1959, 2001, Quinn 2006, 2007, Callender 2007. 
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Fig. 4. (left) Most efficient voice-leadings between diatonic fifths form a chain that runs 
through the center of the Möbius strip from Figure 1. (right) These voice leadings form an 
abstract circle, in which adjacent dyads are related by three-step diatonic transposition, and are 
linked by single-step voice leading. 
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Fig. 5. (left) Most efficient voice-leadings between diatonic triads form a chain that runs 
through the center of the orbifold representing three-note chords. (right) These voice leadings 
form an abstract circle, in which adjacent triads are linked by single-step voice leading.  Note 
that here, adjacent triads are related by transposition by two diatonic steps. 

2   Voice-Leading Lattices and Acoustic Affinity 

Voice-leading and acoustics seem to privilege fundamentally different conceptions of 
pitch distance: from a voice-leading perspective, the semitone is smaller than the 
perfect fifth, whereas from the acoustical perspective the perfect fifth is smaller than 
the semitone.  Intuitively, this would seem to be a fundamental gap that cannot be 
bridged.   
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Fig. 6. Major, minor, and augmented triads as they appear in the orbifold representing three-
note chords. Here, triads are particularly close to their major-third transpositions. 

Things become somewhat more complicated, however, when we consider the 
discrete lattices that represent voice-leading relationships among familiar diatonic 
or chromatic chords.  For example, Figure 4 records the most efficient voice lead-
ings among diatonic fifths—which can be represented using an irregular, one-
dimensional zig-zag near the center of the Möbius strip T2/S2.  (The zig-zag seems 
to be irregular because the figure is drawn using the chromatic semitone as a unit; 
were we to use the diatonic step, it would be regular.)  Abstractly, these voice lead-
ings form the circle shown on the right of Figure 4.  The figure demonstrates that 
there are purely contrapuntal reasons to associate fifth-related diatonic fifths: from 
this perspective {C, G} is close to {G, D}, not because of acoustics, but because the 
first dyad can be transformed into the second by moving the note C up by one dia-
tonic step.  One fascinating possibility—which we unfortunately cannot pursue 
here—is that acoustic affinities actually derive from voice-leading facts, at least in 
part: it is possible that the ear associates the third harmonic of a complex tone with 
the second harmonic of another tone a fifth above it, and the fourth harmonic of the 
lower note with the third of the upper, in effect tracking voice-leading relationships 
among the partials. 

Figures 5-7 present three analogous structures: Figure 5 connects triads in the C 
diatonic scale by efficient voice leading, and depicts third-related triads as being par-
ticularly close; Figure 6 shows the position of major, minor, and augmented triads in 
three-note chromatic chord space, where major-third-related triads are close5; Figure 7 
shows (symbolically) that fifth-related diatonic scales are close in twelve-note chro-
matic space.  Once again, we see that there are purely contrapuntal reasons to associ-
ate fifth-related diatonic scales and third-related triads.   

                                                           
5 This graph was first discovered by Douthett and Steinbach (1998).   
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Fig. 7. Fifth-related diatonic scales form a chain that runs through the center of the seven-
dimensional orbifold representing seven-note chords.  It is structurally analogous to the circles 
in Figures 4 and 5. 

  Correlation 

Bach .96 

Haydn .93 

Mozart .91 
MAJOR 

Beethoven .96 

Bach .95 

Haydn .91 

Mozart .91 
MINOR 

Beethoven .96 

Fig. 8. Correlations between modulation frequency and voice-leading distances among scales, 
in Bach’s Well-Tempered Clavier, and the piano sonatas of Haydn, Mozart, and Beethoven.  
The very high correlations suggest that composers typically modulate between keys whose 
associated scales can be linked by efficient voice leading. 

This observation, in turn, raises a number of theoretical questions. For instance: 
should we attribute the prevalence of modulations between fifth-related keys to the 
acoustic affinity between fifth-related pitches, or to the voice-leading relationships 
between fifth-related diatonic scales? One way to study this question would be to 
compare the frequency of modulations in classical pieces to the voice-leading dis-
tances among their associated scales.  Preliminary investigations, summarized in 
Figure 8, suggest that voice-leading distances are in fact very closely correlated to 
modulation frequencies.  Surprising as it may seem, the acoustic affinity of perfect 
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fifth-related notes may be superfluous when it comes to explaining classical modula-
tory practice.6 

 

Fig. 9. On this three-dimensional Tonnetz, the C7 chord is represented by the tetrahedron whose 
vertices are C, E, G, and Bf. The Cø7 chord is represented by the nearby tetrahedron C, 
Ef, Gf, Bf,  which shares the C-Bf edge. 

3   Tuning Lattices as Approximate Models of Voice Leading 

We will now investigate the way tuning lattices like the Tonnetz represent voice-
leading relationships among familiar sonorities.  Here my argumentative strategy will 
by somewhat different, since it is widely recognized that the Tonnetz has something to 
do with voice leading.  (This is largely due to the important work of Richard Cohn, 
who has used the Tonnetz to study what he calls “parsimonious” voice leading.7)  My 
goal will therefore be to explain why tuning lattices are only an approximate model of 
contrapuntal relationships, and only for certain chords. 

The first point to note is that inversionally related chords on a tuning lattice are 
near each other when they share common tones.8  For example, the Tonnetz represents 
perfect fifths by line segments; fifth-related perfect fifths, such as {C, G} and {G, D} 
are related by inversion around their common note, and are adjacent on the lattice 
(Figure 3).  Similarly, major and minor triads on the Tonnetz are represented by trian-
gles; inversionally related triads that share an interval, such as {C, E, G} and {C, E, 
A}, are joined by a common edge.  (On the standard Tonnetz, the more common 
tones, the closer the chords will be: C major and A minor, which share two notes, are 
closer than C major and F minor, which share only one.)  In the three-dimensional 
Tonnetz shown in Figure 9, where the z axis represents the seventh, C7 is near its 

                                                           
6 Similar points could potentially be made about the prevalence, in functionally tonal music, of 

root-progressions by perfect fifth.  It may be that the diatonic circle of thirds shown in Figure 
5 provides a more perspicuous model of functional harmony than do more traditional fifth-
based representations. 

7 See Cohn 1997. 
8 This is not true of the voice leading spaces considered earlier: for example, in three-note 

chord space {C, D, F} is not particularly close {F, Af, Bf}. 
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inversion Cø7.  The point is reasonably general, and does not depend on the particular 
structure of the Tonnetz or on the chords involved: on tuning lattices, inversionally 
related chords are close when they share common tones.9 

The second point is that acoustically consonant chords often divide the octave rela-
tively evenly; such chords can be linked by efficient voice leading to those inversions 
with which they share common notes.10  It follows that proximity on a tuning lattice 
will indicate the potential for efficient voice leading when the chords in question are 
nearly even and are related by inversion.  Thus {C, G} and {G, D} can be linked by 
the stepwise voice leading (C, G)→(D, G), in which C moves up by two semitones.  
Similarly, the C major and A minor triads can be linked by the single-step voice lead-
ing (C, E, G)→(C, E, A), and C7 can be linked to Cø7 by the two semitone voice-
leading (C, E, G, Bf) (C, Ef, Gf, Bf).  In each case the chords are also close on the 
relevant tuning lattice.  (Interestingly, triadic distances on the diatonic Tonnetz in Fig. 
3 exactly reproduce the circle-of-thirds distances from Fig. 5.)  This will not be true 
for uneven chords: {C, E} and {E, Gs} are close on the Tonnetz, but cannot be linked 
by particularly efficient voice leading; the same holds for {C, G, Af} and 
{G, Af, Df}.  Tuning lattices are approximate models of voice-leading only when one 
is concerned with the nearly-even sonorities that are fundamental to Western tonality. 
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Fig. 10. On the Tonnetz, F major (triangle 3) is closer to C major (triangle 1) than F minor 
(triangle 4) is. In actual music, however, F minor frequently appears as a passing chord between 
F major and C major. Note that, unlike in Figure 3, I have here used a Tonnetz in which the 
axes are not orthogonal; this difference is merely orthographical, however. 

 
Furthermore, on closer inspection Tonnetz-distances diverge from voice-leading 

distances even for these chords.  Some counterexamples are obvious: for instance, {C, 
G} and  {Cs, Fs} can be linked by semitonal voice leading, but are fairly far apart on 
the Tonnetz.  Slightly more subtle, but more musically pertinent, is the following 
example: on the Tonnetz, C major is two units away from F major but three units from 

                                                           
9 In the general case, the notion of “closeness” needs to be spelled out carefully, since chords 

can contain notes that are very far apart on the lattice.  In the applications we are concerned 
with, chords occupy a small region of the tuning lattice, and the notion of “closeness” is 
fairly straightforward. 

10 See Tymoczko 2006 and 2008a.  The point is relatively obvious when one thinks geometri-
cally: the two chords divide the pitch-class circle nearly evenly into the same number of 
pieces; hence, if any two of their notes are close, then each note of one chord is near some 
note of the other. 
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F minor (Figure 10).  (Here I measure distance in accordance with “neo-Riemannian” 
theory, which considers triangles sharing an edge to be one unit apart and which de-
composes larger distances into sequences of one-unit moves.)  Yet it takes only two 
semitones of total motion to move from C major to F minor, and three to move from 
C major to F major.  (This is precisely why F minor often appears as a passing chord 
between F major and C major.)  The Tonnetz thus depicts F major as being closer to C 
major than F minor is, even though contrapuntally the opposite is true.  This means 
we cannot use the figure to explain the ubiquitous nineteenth-century IV-iv-I progres-
sion, in which the two-semitone motion ^6 ^5 is broken into a pair of single-semitone 
steps ̂6 f ^6 ^5 . 

One way to put the point is that while adjacencies on the Tonnetz reflect voice-
leading facts, other relationships do not.  As Cohn has emphasized, two major or 
minor triads share an edge if they can be linked by “parsimonious” voice-leading in 
which a single voice moves by one or two semitones.  If we are interested in this 
particular kind of voice leading then the Tonnetz provides an accurate and useful 
model. However, there is no analogous characterization of larger distances in the 
space.  In other words, we do not get a recognizable notion of voice-leading distance 
by “decomposing” voice leadings into sequences of parsimonious moves: as we have 
seen, (F, A C)→(E, G, C) can be decomposed into two parsimonious moves, while it 
takes three to represent (F, Af, C)→(E, G, C); yet intuitively the first voice leading is 
larger than the second.  The deep issue here is that it is problematic to assert that “par-
simonious” voice leadings are always smaller than non-parsimonious voice-leadings: 
by asserting that (C, E, A)→(C, E, G) is smaller than (C, F, Af)→(C, E, G), the theo-
rist runs afoul what Tymoczko calls “the distribution constraint,” known to mathema-
ticians as the submajorization partial order.11 Tymoczko argues that violations of the 
distribution constraint invariably produce distance measures that violate intuitions 
about voice leading; the problem with larger distances on the Tonnetz is an illustration 
of this general point. 

Nevertheless, the fact remains that the two kinds of distance are roughly consistent: 
for major and minor triads, the correlation between Tonnetz distance and voice-
leading distance is a reasonably high .79.12  Furthermore, since Tymoczko’s “distribu-
tion constraint” is not intuitively obvious, unwary theorists might well think that they 
could declare the “parsimonious” voice leading (C, E, G)→(C, E, A) to be smaller 
than the non-parsimonious (C, E, G)→(Cs, E, Gs). (Indeed, the very meaning of the 
term “parsimonious” would seem to suggest that some theorists have done so.)  Con-
sequently, Tonnetz-distances might well appear, at first or even second blush, to re-
flect some reasonable notion of “voice-leading distance”; and this in turn could lead 
the theorist to conclude that the Tonnetz provides a generally applicable tool for 

                                                           
11 See Tymoczko 2006, and Hall and Tymoczko 2007.  Metrics that violate the distribution 

constraint have counterintuitive consequences, such as preferring “crossed” voice leadings to 
their uncrossed alternatives.  Here, the claim that A minor is closer to C major than F minor 
leads to the F minor/F major problem discussed in Figure 10. 

12 Here I use the L1 or “taxicab” metric.  The correlation between Tonnetz distances and the 
number of shared common tones is an even-higher .9; however, “number of shared common 
tones” is not interpretable as a voice-leading metric. 
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investigating triadic voice-leading. I have argued that we should resist this conclu-
sion: if we use the Tonnetz to model chromatic music, than Schubert’s major-third 
juxtapositions will seem very different from his habit of interposing F minor between 
F major and C major, since the first can be readily explained using the Tonnetz 
whereas the second cannot.13  The danger, therefore, is that we might find ourselves 
drawing unnecessary distinctions between these two cases—particularly if we mistak-
enly assume the Tonnetz is a fully faithful model of voice-leading relationships. 

4   Voice Leading, “Quality Space,” and the Fourier Transform 

We conclude by investigating the relation between voice leading and the Fourier-
based perspective.14  The mechanics of the Fourier transform are relatively simple: for 
any number n from 1 to 6, and every pitch-class p in a chord, the transform assigns a 
two-dimensional vector whose components are: 

Vp, n = (cos (2πpn/12), sin (2πpn/12)) 

Adding these vectors together, for one particular n and all the pitch-classes p in the 
chord, produces a composite vector representing the chord as a whole—its “nth Fou-
rier component.”  The length (or “magnitude”) of this vector, Quinn observes, reveals 
something about the chord’s harmonic character: in particular, chords saturated with 
(12/n)-semitone intervals, or intervals approximately equal to 12/n, tend to score 
highly on this index of chord quality.15  The Fourier transform thus seems to quantify 
the intuitive sense that chords can be more-or-less diminished-seventh-like, perfect-
fifthy, or whole-toneish.  Interestingly, “Z-related” chords—or chords with the same 
interval content—always score identically on this measure of chord-quality.  In this 
sense, Fourier space (the six-dimensional hypercube whose coordinates are the Fou-
rier magnitudes) seems to model a conception of similarity that emphasizes interval 
content, rather than voice leading or acoustic consonance. 

However, there is again a subtle connection to voice leading: it turns out that the 
magnitude of a chord’s nth Fourier component is approximately linearly related to the 
(Euclidean) size of the minimal voice leading to the nearest subset of any perfectly 
even n-note chord.16  For instance, a chord’s first Fourier component (FC1) is ap-
proximately related to the size of the minimal voice leading to any transposition of 
{0}; the second Fourier component is approximately related to the size of the minimal 
voice leading to any transposition of either {0} or {0, 6}; the third component is ap-
proximately related to the size of the minimal voice leading to any transposition of 
either {0}, {0, 4} or {0, 4, 8}, and so on.  Figure 11 shows the location of the subsets 

                                                           
13  See Cohn 1999. 
14 This material in this section appears in Tymoczko 2008b. It is influenced by Robinson 

(2006), Hoffman (2007), and Callender (2007). 
15 Here I use continuous pitch-class notation where the octave always has size 12, no matter 

how it is divided.  Thus the equal-tempered five-note scale is labeled {0, 2.4, 4.8, 7.2, 9.6}. 
16 Here I measure voice-leading using the Euclidean metric, following Callender 2004.  See 

Tymoczko 2006 and 2008a for more on measures of voice-leading size. 
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of the n-note perfectly even chord, as they appear in the orbifold representing three-
note set-classes, for values of n ranging from 1 to 6.17  Associated to each graph is one 
of the six Fourier components.  For any three-note set class, the magnitude of its nth 
Fourier component is a decreasing function of the distance to the nearest of these 
marked points: for instance, the magnitude of the third Fourier component (FC3) de-
creases, the farther one is from the nearest of {0}, {0, 4} and {0, 4, 8}.  Thus, chords 
in the shaded region of Figure 12 will tend to have a relatively large FC3, while those 
in the unshaded region will have a smaller FC3.  Figure 13 shows that this relationship 
is very-nearly linear for twelve-tone equal-tempered trichords. 

FC1, subsets of {0} FC2, subsets of {0, 6}

FC3, subsets of {0, 4, 8} FC4, subsets of {0, 3, 6, 9}

FC5, subsets of {0, 2.4, 4.8, 7.2, 9.6} FC6, subsets of {0, 2, 4, 6, 8, 10}
 

Fig. 11. The magnitude of a set class’s nth Fourier component is approximately linearly related 
to the size of the minimal voice leading to the nearest subset of the perfectly even n-note chord, 
shown here as dark spheres. 

                                                           
17 See Callender 2004, Tymoczko 2006, Callender, Quinn, and Tymoczko, 2008.  These trian-

gles result from bisecting the cone in Figure 2.  Every point represents a set class, while 
every line segment represents an equivalence class of voice leadings. 
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Fig. 12. Chords in the shaded region will have a large FC3 component, since they are near 
subsets of {0, 4, 8}.  Those in the unshaded region will have a smaller FC3 component. 
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Fig. 13. For trichords, the equation FC3 = –1.38VL + 3.16 relates the third Fourier component 
to the Euclidean size of the minimal voice leading to the nearest subset of {0, 4, 8} 

Table 1. Correlations between voice-leading distances and Fourier magnitudes 

 FC1 FC2 FC3 FC4 FC5 FC6 
Dyads -.97 -.96 -.97 -1 -.97 -1* 
Trichords -.98 -.97 -.97 -.98 -.98 -1* 

Tetrachords -.96 -.96 -.95 -.98 -.96 -1* 
Pentachords -.96 -.96 -.95 -.98 -.96 -1* 
Hexachords -.96 -.96 -.95 -.96 -.96 -1* 
Septachords -.96 -.96 -.96 -.97 -.96 -1* 
Octachords -.96 -.96 -.95 -.98 -.96 -1* 
Nonachords -.96 -.96 -.96 -.98 -.96 -1* 

Decachords -.96 -.96 -.96 -.98 -.96 -1* 

* Voice leading calculated using L1 (taxicab) distance rather 
than L2 (Euclidean). 

 
Table 1 uses the Pearson correlation coefficient to estimate the relationship be-

tween the voice-leading distances and Fourier components, for twelve-tone equal-
tempered multisets of various cardinalities.  The strong anti-correlations indicate that 
one variable predicts the other with a very high degree of accuracy. Table 2 calculates 
the correlation coefficients for three-to-six-note chords in 48-tone equal temperament.  
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These strong anticorrelations, very similar to those in Table 1, show that there contin-
ues to be a very close relation between Fourier magnitudes and voice-leading size in 
very finely quantized pitch-class space.  Since 48-tone equal temperament is so finely 
quantized, these numbers are approximately valid for continuous, unquantized pitch-
class space.18 

Table 2. Correlations between voice-leading distances and Fourier magnitudes in 48-tone equal 
temperament   

 FC1 
Trichords -.99 
Tetrachords -.97 
Pentachords -.97 

Hexachords -.96 

Explaining these correlations, though not very difficult, is beyond the scope of this 
paper. From our perspective, the important question is whether we should measure 
chord quality using the Fourier transform or voice leading.19  In particular, the issue is 
whether the Fourier components model the musical intuitions we want to model: as 
we have seen, the Fourier transform requires us to measure a chord’s “harmonic qual-
ity” in terms of its distance from all the subsets of the perfectly even n-note chord.  
But we might sometimes wish to employ a different set of harmonic prototypes.  For 
instance, Figure 14 uses a chord’s distance from the augmented triad to measure the 
 

 

Fig. 14. The mathematics of the Fourier transform requires that we conceive of “chord quality” 
in terms of the distance to all subsets of the perfectly even n-note chord (left).  Purely voice-
leading-based conceptions instead allow us to choose our harmonic prototypes freely (right).  
Thus we can voice leading to model a chord’s “augmentedness” in terms of its distance from 
the augmented triad, but not the tripled unison {0, 0, 0} or the doubled major third {0, 0, 4}. 

                                                           
18 It would be possible, though beyond the scope of this paper, to calculate this correlation 

analytically.  It is also possible to use statistical methods for higher-cardinality chords.  A 
large collection of randomly generated 24- and 100-tone chords in continuous space pro-
duced correlations of .95 and .94, respectively. 

19 See Robinson 2006 and Straus 2007 for related discussion. 
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trichordal set classes’ “augmentedness.”  Unlike Fourier analysis, this purely voice-
leading-based method does not consider the triple unison or doubled major third to be 
particularly “augmented-like”; hence, set classes like {0, 1, 4} do not score particu-
larly highly on this index of “augmentedness.”  This example dramatizes the fact that, 
when using voice leading, we are free to choose any set of harmonic prototypes, 
rather than accepting those the Fourier transform imposes on us. 

5   Conclusion 

The approximate consistency between our three models is in one sense good news: 
since they are closely related, it may not matter much—at least in practical terms—
which we choose.  We can perhaps use a tuning lattice such as the Tonnetz to repre-
sent voice-leading, as long as we are interested in gross contrasts (“near” vs. “far”) 
rather than fine quantitative differences (“3 steps away” vs. “2 steps away”).  Simi-
larly, we can perhaps use voice-leading spaces to approximate the results of the Fou-
rier analysis, as long as we are interested in modeling generic harmonic intuitions 
(“very fifthy” vs. “not very fifthy”) rather than exploring very fine differences among 
Fourier magnitudes.   

However, if we want to be more principled, then we need to be more careful.  The 
resemblances among our models mean that it is possible to inadvertently use one sort 
of structure to discuss properties that are more directly modeled by another.  And 
indeed, the recent history of music theory displays some fascinating (and very fruit-
ful) imprecision about this issue.  It is striking that Douthett and Steinbach, who first 
described several of the lattices found in the center of the voice-leading orbifolds—
including Figure 6—explicitly presented their work as generalizing the familiar Ton-
netz.20 Their lattices, rather than depicting parsimonious voice leading among major 
and minor triads, displayed single-semitone voice leadings among major, minor, and 
augmented triads; and as a result of this small difference, every distance can be inter-
preted as representing voice-leading size. However, this difference only became ap-
parent after it was understood how to embed their discrete structures in the continuous 
geometrical figures described at the beginning of this paper.  Thus one could say that 
the continuous voice-leading spaces evolved out of the Tonnetz, by way of Douthett 
and Steinbach’s discrete lattices, even though the structures now appear to be funda-
mentally different. Related points could be made about Quinn’s “quality space,” 
whose connection to the voice-leading spaces took several years—and the work of 
several authors—to clarify. 

There is, of course, nothing wrong with this: knowledge progresses slowly and fit-
fully.  But our investigation suggests that we may want to think carefully about which 
model is appropriate for which music-theoretical purpose.  I have tried to show that 
the issues here are complicated and subtle: the mere fact that tonal pieces modulate by 
fifth does not, for example, require us to use a tuning lattice in which fifths are 

                                                           
20 See Douthett and Steinbach 1998.  The same is true of Tymoczko 2004, which uses the term 

“generalized Tonnetz” to describe another set of lattices appearing in the voice-leading 
spaces. 
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smaller than semitones. (Indeed, the “circle of fifths” C-G-D-… can be interpreted 
either as a one-dimensional tuning lattice incorporating octave equivalence, or as a 
diagram of the voice-leading relations among diatonic scales, as in Figure 7.)  Like-
wise, there may be close connections between voice-leading spaces and the Fourier 
transform, even though the latter associates “Z-related” chords while the former does 
not. The present paper can be considered a down-payment toward a more extended 
inquiry, one that attempts to determine the relative strengths and weaknesses of our 
three different-yet-similar conceptions of musical distance. 
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