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Preface

These proceedings comprise 26 refereed research papers that were presented at
the Second International Conference on Mathematics and Computation in Music
(MCM 2009), which met in conjunction with the John Clough Memorial Con-
ference during June 19-22, 2009, at Yale University in New Haven, Connecticut,
USA.

The International Conference on Mathematics and Computation in Music
(MCM) is the flagship conference of the Society for Mathematics and Compu-
tation in Music. The inaugural conference of the society took place in 2007 in
Berlin. The study of mathematics and music dates back to the time of the ancient
Greeks. The rise of computing and the digital age has added computation to this
august tradition. MCM aims to provide a dedicated platform for the communi-
cation and exchange of ideas amongst researchers in mathematics, informatics,
music theory, composition, musicology, and related disciplines.

The John Clough Memorial Conference honors a mathematical music theorist
whose research modeled the virtues of collaborative work across the disciplines,
and who generously fostered a cooperative attitude with and among younger
researchers. The quadrennial conferences that Clough first organized at Buffalo
in 1993 positioned neo-Riemannian theory on the map of musical scholarship.
The John Clough Memorial Conference carries the spirit of those sessions beyond
his passing in 2003, while embracing the entire domain of mathematical music
theory.

High-quality contributions — including research papers, invited sessions or
panels, tutorials, and exhibits — were solicited in all areas related to the mission
of the society.

To promote objectivity and fairness in judging research paper contributions,
the peer review process was double-blind, and consisted of two stages. Follow-
ing the submission of the paper reviews by Program Committee members, au-
thors were given the opportunity to respond to these reviews in order to correct
possible misconceptions, so as to produce more accurate assessments of their
work. After the author response period, the Program Committee Members could
then re-visit their reviews in light of the authors’ comments, discuss amongst
themselves the merit of the papers, and offer their final recommendations for
acceptance.

Of 38 submissions received, 26 were accepted for presentation at the confer-
ence and publication in these proceedings. Six more were accepted for presenta-
tion at the conference in the form of posters.

One panel and three tutorials were selected for inclusion in the conference
program:
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Panel: “Embodiment of Mathematical Formulas in Musical Gestures?”
Moderator: Guerino Mazzola

(University of Minnesota, USA)
Speakers: Emmanuel Amiot

(Lycée Arago, France)
Moreno Andreatta

(Inst. de Recherche et Coordination Acoustique/
Musique / Centre National de la Recherche
Scientifique, France)

Rachel Hall
(Saint Joseph’s University, USA)

Thomas Noll
(Escola Superior de Música de Catalunya, Spain)

Tutorial: “A Tutorial on Mathematical Models in Computer-Aided Music
Theory, Analysis, and Composition via OpenMusic”

Leaders: Carlos Agon
(Inst. de Recherche et Coordination Acoustique/
Musique, France)

Moreno Andreatta
(Inst. de Recherche et Coordination Acoustique/
/ Musique Centre National de la Recherche
Scientifique, France)

Tutorial: “Hands-on Workshop in Geometrical Music Theory”
Leaders: Rachel Hall (Saint Joseph’s University, USA)
Tutorial: “Measuring the Complexity of Musical Rhythm: Mathematical

and Psychological Models”
Leaders: Godfried T. Toussaint (McGill University, Canada)

As part of the conference, the Beinecke Rare Book and Manuscript Library
at Yale University mounted a special display of music and mathematics material
from their collection. A related keynote address, “The End of Pythagoreanism:
Musica theorica, Natural Science, and Aristotle’s Philosophy of Mathematics,
c.1300-c.1600,” was given by David Cohen (Columbia University, USA).

We wish to acknowledge the generous support of Susan Adler and Roberta
Hudson of Yale Conference Services; Scott Petersen, Yale Music Department,
for technical support; Eric Bianchi, PhD student in Music History at Yale, for
curating the exhibit of historical materials; Kathryn James of Yale’s Beinecke
Library, for arranging the exhibit and reception; Edward Gollin of Williams
College for program guidance; and David Cohen of Columbia University for
providing a keynote lecture.

Richard Cohn
Ian Quinn

Elaine Chew
Adrian Childs
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Foreword: In Celebration of Clough’s
Collaborative Cerebration

For centuries, music theorists have engaged in a dance of attraction and
aversion with the physical and mathematical sciences. The alternate sporting
and doffing of science is visible in music theory’s values, methods, and voices; but,
curiously, not in one aspect of its sociology. Perhaps because Musikwissenschaft
has been slow to detach from its roots in the heroic ethos of high Romanticism,
its practitioners have largely toiled on their own. Their reluctance to adopt the
collaborative habits characteristic of other theoretical and empirical disciplines
has created obstacles to progress on some fundamental issues, at least in the
view of some colleagues in the scientific and mathematical communities.1

1 For two expressions of exasperation, see John Backus, “Die Reihe — A Scientific
Evaluation,” Perspectives of New Music 1.1 (1962): 160-171, and Eric Regener,
“Allen Forte’s Theory of Chords,” Perspectives of New Music 13.1 (1974): 199.
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John Clough (1930–2003) had no such reluctance. Trained as a music theorist
in the 1950s, Clough did significant systematic work in the 1960s and -70s,
notably his important response to Allen Forte’s initial proposal of a classification
for atonal sets, and two early papers on diatonic set theory (developing some
ideas of mathematician Eric Regener).2

These latter papers initiated a line of research that leaped forward when
Clough began to co-author articles with researchers whose primary training was
in mathematics: initially Gerald Myerson, who was for a time a colleague at
SUNY Buffalo; eventually the Albuquerque-based Jack Douthett, with whom
Clough collaborated continually during his last 15 years.3

Clough imported the collaborative habit into his work with other music re-
searchers, co-authoring papers with Lewis Rowell and N. Ramanathan, and with
then-PhD students Stefan Ehrenkreutz, John Cuciurean, Nora Engebretsen, and
Jonathan Kochavi. (He also co-authored textbooks with Joyce Conley and Claire
Boge.) The appearance of his name on a paper always denoted not only spon-
sorship and guidance (as one finds in scientific disciplines), but also a full en-
gagement and commitment at every stage. Clough welcomed students as equal
intellectual partners if they earned that status, and relished what he learned
from them.

John Clough’s eagerness to encourage the work of younger scholars was by no
means limited to his own students. In the summer of 1993, after an extended set
of communications exploring the modeling of triadic progressions in chromatic
music, Clough invited 15 music scholars to SUNY-Buffalo for a three-day working
conference. A subsequent Buffalo gathering in 1997 led to the publication of a
specially dedicated topical issue of the Journal of Music Theory (volume 42,
number 2, 1998), and was succeeded by a third such event in 2001. Upon receiving
an invitation to the latter affair, David Lewin wryly remarked, “I sense a certain
Viertaktigkeit.” After John died in 2003, his co-organizers (David Clampitt, Jack
Douthett, and I) determined to sustain the periodicity of these events. The
University of Chicago provided the funds for the first John Clough Memorial
Conference in June 2005, and its generous sponsorship was matched by Yale
University when I assumed a position there in the fall of that year.

2 John Clough, “Pitch-Set Equivalence and Inclusion: A Comment on Forte’s
Theory of Set-Complexes.” Journal of Music Theory 9 (1965): 163-171; “As-
pects of Diatonic Sets.” Journal of Music Theory 23 (1979): 45-61; “Dia-
tonic Interval Sets and Transformational Structures,” Perspectives of New Mu-
sic 18 (1979-80): 461-482. A complete list of Clough’s writings is given at
http://www.music.buffalo.edu/theory/cloughpub.shtml.

3 A recent summary of this line of research can be found in introductions to two recent
volumes dedicated to extending it: David Clampitt’s “The Legacy of John Clough in
Mathematical Music Theory,” Journal of Mathematics and Music 1.2 (July 2007):
73-78; and Norman Carey, Jack Douthett, and Martha M. Hyde’s introduction to
Music Theory and Mathematics: Chords, Collections, and Transformations, ed. Jack
Douthett et. al. (Rochester: University of Rochester Press, 2008): 1-8.
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Four months before John Clough passed away, Robert Peck attracted an in-
ternational group of mathematical music theorists to Baton Rouge, Louisiana, for
a special session of the American Mathematical Society. Although John was too
ill to attend, the spirit of his personality, as much as the content of his thought,
infused the proceedings. The synchronization of Clough’s Viertaktigkeit with the
projected binary periodicity of the meetings of the recently formed Society for
Mathematics and Computation in Music suggested the one-time merger of the
two events, even though it would produce an event with a different scale and
tone than its predecessors. That suggestion was solidified into a commitment as
soon as I began to imagine John’s excitement, had he survived to witness the
founding of this scholarly society—a commingling of musicians, mathematicians,
and systems scientists, with membership and leadership from both sides of the
Atlantic, producing a thrice-annual periodical, and a periodic conference with
proceedings from a major publisher. It is difficult to imagine that, for a math-
ematical music theorist as dedicated, equanimous, and magnanimous as John
Clough, dreams could get any wilder than that.

Richard Cohn
Battell Professor of the Theory of Music

Yale University
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Hamiltonian Cycles 
in the Topological Dual of the Tonnetz 

Giovanni Albini and Samuele Antonini 

Department of Mathematics, University of Pavia, Italy 

Abstract. The Hamiltonian cycles in the topological dual of the Tonnetz (i.e. 
the successions of triads connected only through PLR-transformations which 
visit every minor and major triad only once) will be introduced, enumerated on, 
studied, and classified both from a theoretical and analytical point of view. 

Keywords: Neo-Riemannian Theories, Triads, Nineteenth Century Harmony, 
PLR-transormations, Tonnetz, GIS, Tone-network, Graph theory, Hamiltonian 
cycles. 

1   Introduction 

In [3], Richard Cohn explains the practical uses of Neo-Riemannian theories by show-
ing that they are "an efficient technology and descriptive language for making and 
communicating new discoveries about the properties of triads and related structures, 
and the relational systems in which they participate." Recently this framework has 
been almost exclusively studied from a theoretical and analytical point of view. The 
aim of the present paper is to show some cycles of the topological dual of the Tonnetz 
(i.e. some successions of triads connected only through PLR-transformations) which 
could be useful as a compositional device. Properties of minimal cycles of this graph 
have been widely studied (we can mention [1] and [4]), but no attention has yet been 
given to the Hamiltonian class of cycles. 

In mathematics a Hamiltonian cycle (or circuit)1 is a closed path through the verti-
ces of a graph which includes every vertex exactly once. So Hamiltonian cycles in the 
topological dual of the Tonnetz represent complete sequences through all twenty-four 
major and minor triads using PLR-transformations in which each major and minor 
triad is used only once. These cycles are exclusively triadic and overall completely 
chromatic, since every pitch class is used exactly six times. As we shall see, the suc-
cession can also be more or less diatonic, depending on the patterns of the transforma-
tions that are employed. So these classes of cycles could be a useful compositional 
device to define harmonic structures that are triadic (and in some cases locally dia-
tonic) but without any real tonal center. In fact some contemporary composers, like 
Paul Glass in his “Corale I for Margareth”, for string orchestra (1995) or young com-
poser Jeremy Vaughan in his “Violin Sonata” (2008), used successions of triads 
                                                           
1 It's worthwhile to know that the Hamiltonian cycles has been used in Music Theory also in 

some formalizations of the Art of Change-Ringing. 
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connected almost completely by Neo-Riemannian transformations, showing a particu-
lar interest on an explicit use of major and minor triads that is different than the one of 
tonality. 

After a formal generalization of the Tonnetz starting from Lewin's Generalized In-
terval System (GIS), and after the proof of an useful theorem about the automorphism 
group of the topological dual of the well tempered Tonnetz (section 2), all the Hamil-
tonian cycles in that graph will be identified and classified (section 3). The properties 
of the most 'symmetric' of them, which was even used by Beethoven in his Ninth 
Symphony, will then be analyzed even deeper (section 4). Their properties and their 
utility as a compositional device is therefore underlined (section 5). 

2   Tone-Networks, the Tonnetz and Its Topological Dual 

In a definition similar to the one given in [9], a Generalized Interval System (GIS) can 
be defined as follows:  

 

2.1 Definition. A GIS is a couple (X, G) where X is a set of pitches, and G is an abe-
lian group which acts freely2 on X and whose action is transitive.3 X is the pitch set, 
and G is the group of intervals. 

 
2.2 Definition. We call (Pc, I) the GIS with Pc being the set of the twelve well tem-
pered pitch classes, and I being the group of intervals in the octave that is isomorphic 
to the cyclic group Z/12Z. 

 
2.3 Definition. Given a GIS (X, G) and H as a subset of G, a tone-network is a simple 
vertex labeled graph which has exactly one vertex for each of the elements of X, and 
an edge between two vertices x1 and x2 if, and only if, there exists g1 in H which maps 
x1 in x2 , or there exists g2 in H which maps x2 in x1 .  

 
Notice that g1 and g2 are the inverse of one other in the group G, and that it is not nec-
essary for them to both belong to H, because the tone-network is a simple graph, so 
no more than one edge can be between two vertices. To give both of them while de-
fining a tone-network is important for having a complete vision of the model in the 
spcific instance of a set of pitch classes, as it shall be done for the Tonnetz. 

Now, reminded that a graph is vertex-transitive if and only if every pair of vertices 
is equivalent under some element of its automorphism group (i.e. no vertex can be 
distinguished from any other) the following Theorem can be given. 

 

2.4 Theorem. A tone-network is always vertex-transitive. 

Proof. The group of intervals (G), whose action on the set of vertices is given by its 
action on their labelling, always map adjacent vertices in adjacent vertices, so G is a 
subgroup of the automorphism group of the tone-network. So for every ordered cou-
ple of vertices there is an element of the automorphism group which maps the first in 
the second.                                                                                                                     ● 
                                                           
2 A group action is called free if any element of the set is fixed only by the identity of the 

group. 
3 A group action is transitive if it possesses only a single orbit. 
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The previous result is interesting because it underlines that in each GIS, and conse-
quently in every tone-network built on it, there is theoretically no way to distinguish 
two pitches/vertices and it shows a property of particular interest while providing the 
abstract case of pitch classes as we shall do. 

Now the tonnetz can be easily defined: 
 

2.5 Definition. The Tonnetz, or more simply Ton, is a tone-network defined on the 
GIS (Pc, I) as it has been given in definition 2.2, where H contains only the following 
intervals: major and minor thirds, the fifth and their inverses. 

 
Reminded that the topological dual of a simple planar graph is a simple graph that 

has vertices each of which corresponds to a face of the first graph and that are con-
nected if the corresponding faces have an edge in common, and noticed that Ton has 
no edges crossing if embedded in the torus, the topological dual of the Tonnetz can be 
defined: 

 

2.6 Definition. D(Ton), the topological dual of the Tonnetz, is a simple labeled graph 
whose vertices are labeled with the triads defined by the pitch classes that bound the 
corresponding face.  

 
Because two vertices are connected in D(Ton) if the corresponding triads share two 
pitch classes, also edges can be labelled through the basic Neo-Riemannian operators 
P, L and R. The pictures of Ton and D(Ton) are given in Figure 1 and Figure 2.4 

Before giving the last theorem, let's introduce another object necessary to its proof. 
 

2.7 Definition. Given the GIS (Pc, I), we will call T-I the group acting on Pc and gen-
erated by the group of intervals G (the twelve translations) and by the inversion ele-
ment which fixes C and F# and exchange C# and B, D and A#, D# and A, E and G#, F 
and G. 

 

Fig. 1. A planar view of Ton. Numbers outside the graph show adjacency. 

                                                           
4 Triads will be represented giving the fundamental and the sign + for major triads and the sign 

– for minor ones. 
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Fig. 2. A planar view of D(Ton). Numbers outside the graph show adjacency. 

2.8 Lemma. T-I is isomorphic to D12. 

Proof. Translations correspond to rotations, and the inversion element is the element 
of order two.                                                                                                                   ● 
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The proof that the action through labelling of T-I on Ton maintain adjacency is left to 
the reader.5 

Let's now concentrate on the main result of the section, that's original, and that will 
be useful for counting Hamiltonian cycles in D(Ton). 
 
2.9 Theorem. Aut(DTon), the automorphism group6 of D(Ton), is isomorphic to the 
dihedral group D12. 

Proof. Considering its labelling there is no doubt that Aut(DTon) has at least 24 ele-
ments, because of the action of T-I on triads that comes out directly from its actions 
on pitch classes. It also guarantess that Aut(DTon) is vertex transitive. If it is showed 
that Aut(DTon) has no more elements than these, the theorem would be proved, since 
T-I is isomorphic to D12. Because of the vertex transitivity of the graph it is sufficient 
to consider one vertex (we shall take C+) and to show that given an element f of 
Aut(DTon) which does not fix that vertex, the composition between f and the element 
g of T-I that put back f(C+) in C+ can be only the identity element. In fact, in that 
case, f would be the inverse of an element of T-I, so it would belong to it itself. So the 
theorem would be proved if it is showed that only the identity element can fix a vertex. 
Because C+ is only connected to C-, A- and E-, is sufficient to show that none of the 
permutations of these three vertices, apart of the identity, maintain the adjacency be-
tween all the vertices of Dton, and to show that if C+, C-, A- and E- are fixed so all 
the vertices would be fixed too.                                                                                      ● 

 
Before introducing the Hamiltonian cycles in D(Ton) it would be interesting to focus 
on the omnipresence of the group D12 while considering the GIS of the twelve well 
tempered pitch classes as defined in the definition 2.2. It can be shown that the group 
T-I, which both act on the pitch classes and, consequently, on the triads, and the PLR-
group, which just act on triads, with the automorphism groups of Ton and DTon, 
Aut(Ton) and Aut(DTon), are all isomorphic to the dihedral group D12. This isomor-
phism between groups which represents aural and visual transformations can lead to 
some cognitive considerations on how we represent them mentally in a similiar way. 
In [10] Hugo Riemann anticipated this concept: "In this fashion, the hearing of 
changes in pitch level is transformed into a vision of changes in location, and we al-
ready have a presentiment of the ultimate identification of the essence of visual and 
aural imagination." 

3   Hamiltonian Cycles in D(Ton) 

A software7 has been used to find the Hamiltonian cycles in D(Ton): the result are the 
62 cycles shown in Figure 3. 

                                                           
5 It is also possible, with a proof similar to the one of theorem 2.9, to prove that T-I is isomor-

phic to the automoprhism group of Ton. 
6 The automorphism group of a graph is the group of bijective mappings from the vertices of 

the graph to the vertices of the same graph which preserve adjacency. 
7 Groups and Graph, version 3.2 for MacOSX (2006), by William Kocay and William Palmer. 
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The number which gives the name to the cycle depends on the order of output of 
the software. 

Now we can begin to study them considering the action of Aut(DTon), classifying 
them in terms of the succession of transformations (independently from the direction 
of the path covered) instead of triads. In fact, given a Hamiltonian cycle, if n elements 
of Aut(DTon) transform it to itself, then there are exactly 24/n different Hamiltonian 
cycles sharing the same model of transformation. Eight models can be recognized, 
named H1, ... , H8: 

 
H1: Only the cycle #41. 
Characterized by the repetition of the model LR (or, in the opposite direction, RL). 

This cycle is mapped into itself by all the elements of Aut(DTon). It will be analyzed 
further in the fourth section. 

 
H2: The cycles #32 and #45. 
Characterized by the repetition of the model PRLR (or RLRP). These cycles are 

mapped into themselves by 12 elements of Aut(DTon). 
 
H3: The cycles #4, #13 and #62. 
Characterized by the repetition of the model LPLPLR (or RLPLPL). These cycles 

are mapped into themselves by 8 elements of Aut(DTon). 
 
H4: The cycles #33, #38, #40  and #44. 
Characterized by the repetition of the model PRPRPRLR (or RLRPRPRP). These 

cycles are mapped into themselves by 6 elements of Aut(DTon). 
 
H5: The cycles #34, #39, #42  and #43. 
Characterized by the repetition of the model PRPRLRLR (or RLRLRPRP). These 

cycles are mapped into themselves by 6 elements of Aut(DTon). 
 
H6: The cycles #6, #7, #8, #9, #10, #19, #21, #22, #27, #30, #31  and #58. 
Characterized by the repetition of the model LPLPLRPLPLPRPLPLPRPLPLPR 

(or RPLPLPRPLPLPRPLPLPRLPLPL). These two cycles are mapped into them-
selves by 2 elements of Aut(DTon). 

 
 

H7: The cycles #3, #12, #15, #17, #26, #28, #35, #46, #51, #52, #56  and #61. 
Characterized by the repetition of the model PLRPLPRLPLRLPRLRPRLRPLRL 

(or LRLPRLRPRLRPLRLPLRPLPRLP). These two cycles are mapped into them-
selves by 2 elements of Aut(DTon). 

 
H8: The 24 remaining cycles. 
Characterized by the model LRLPLRLPRLRLPLRPLPRPLRPR (or 

RPRLPRPLPRLPLRLRPLRLPLRL). Only the idendity map them into themselves. 
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Fig. 3. The 62 Hamiltonian Cycles in D(Ton) 

4   The Hamiltonian Cycle #41 and Beethoven's Ninth Symphony 

Before studying the trivial cycle #41, let us introduce some useful definitions. 
 

4.1 Definition. We call diatonic pitch class set, a subset of seven elements of Pc that 
can be ordered through perfect fifths. It will be named both with the minor and major 
scale that can be built with its pitches. 

4.2 Example. The set {C, D, E, F, G, A, B} is a diatonic pitch class set, since its pitch 
classes can be ordered by perfect fifths in the following way: F, C, G, D, A, E, B. It 
will be called the C major / A minor diatonic set. 
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Fig. 4. Cycles #41 (H1, most symmetrical), and #1 (H8, least symmetrical) 

On every diatonic set only six major and minor triads can be built. In Figure 5 the 
Neo-Riemannian relations between the six triads of the C major / A minor diatonic set 
are shown. 

It is easy to see that two diatonic sets that are at a distance of a perfect fifth (for ex-
ample C major / A minor and  G major / E minor) share six pitch classes and four 
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Fig. 5. The six triads of the C major / A minor diatonic set 

triads. So using alternating L and R transformations it is possible to move through 
triads in the most gradual way from a diatonic point of view, as the succession 
smoothly covers all the common triads of closely related diatonic systems.  

Between measures 143 and 176 of the second movement of his “Ninth Smphony”, 
Ludwig Van Beethoven, after a perfect cadence on C+, covers 19 triads applying the 
trivial cycle #41, from C+ to A+. It is interesting to notice that, after that E- is 
reached through a chromatic passage, its tonal center is confirmed. But E- is the triad 
just before C+ in cycle #41, so the chromatic passage could be seen as a jump to 
complete the cycle. He takes the longest cyclical journey to connect closely related 
tonalities and closely related triads from a Neo-Riemannian point of view.  

5   Hamiltonian Cycles as a Compositional Tool 

Hamiltonian cycles of D(Ton) are not only characterized by Neo-Riemannian trans-
formations, but they also guarantee two interesting conditions, both contradicting 
tonality: 1) they are characterized by an overall pitch class completeness, since every 
pitch class is used exactly six times; 2) as cycles, there are no favourite starting or 
ending triads. So they allow the 'simplicity' of the parsimonious voice leading8, and an 
use of triads that cannot be seen as tonal. Composer Giovanni Albini started to study 
them looking for successions of triads satisfying conditions 1) and 2), and has used 
them in his three “Corali”, for string quartet, for orchestra, and for violin and guitar. 
Each of them is based on a different Hamiltonian cycle, treated in different ways. So 
the present paper is mainly born from a compositional necessity. 

The Authors think that Hamiltonian cycles could also be an useful compositional 
tool from a general point of view, for example considering different GIS or different 
tone-networks. By starting the article with the GIS, and basing the definition of a 
tone-network on it, the purpose is to give a theoretical framework upon which it is 
possible to build other networks based on the same GIS or on other ones (as the Au-
thors would like to do in future papers). The Hamiltonian cycles built on their dual 

                                                           
8 Simplicity is intended from a Riemannian point of view. In [10] Riemann wrote: «Let atten-

tion be drawn here to the definite inclination of the interpreting mind to find its way easily 
through the confusion of endless possibilities of tonal combinations (in melody and harmony) 
by means of preferring simple relationship over more complicated ones. This Principle of 
Greatest Possible Economy for the Musical Imagination moves directly toward the rejection 
of more complicated structures.» 
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could be interesting from a compositional point of view, again guaranteeing condi-
tions 1) and 2), and a specific voice leading depending on the tone-network. 
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Abstract. The Hexachordal Theorem may be interpreted in terms of
scales, or rhythms, or as abstract mathematics. In terms of scales it
claims that the complement of a chord that uses half the pitches of a
scale is homometric to—i.e., has the same interval structure as—the orig-
inal chord. In terms of onsets it claims that the complement of a rhythm
with the same number of beats as rests is homometric to the original
rhythm. We generalize the theorem in two directions: from points on a
discrete circle (the mathematical model encompassing both scales and
rhythms) to a continuous domain, and simultaneously from the discrete
presence or absence of a pitch/onset to a continuous strength or weight of
that pitch/onset. Athough this is a significant generalization of the Hex-
achordal Theorem, having all discrete versions as corollaries, our proof
is arguably simpler than some that have appeared in the literature.

We also establish the natural analog of what is sometimes known as
Patterson’s second theorem: if two equal-weight rhythms are homomet-
ric, so are their complements.

1 Introduction

1.1 Basic Definitions

We are concerned with cyclic musical rhythms consisting of k onsets (pulses,
beats) and n−k rests, represented by n evenly spaced points on a circle, with
arithmetic mod n, i.e., in the group Zn. This representation has been used as
early as the 13th century, as accounted by Wright [Wri78], but it has been used
recently again; see [Vuz85], [Tou05], among others. Alternately, the k onsets
(points) may be considered as k pitches making up a musical chord or scale
selected from a universe of n pitches [Tym06]. Such sets of points on a circle are
called cyclotomic sets in the crystallography literature [Pat44], [Bue78]. We will
emphasize the rhythms model in this paper, but all results hold equally in the
pitch model or the crystallography model.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 11–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Every pair of the points on the circle determines an inter-onset duration in-
terval (the geodesic between the pair of points around the circle) [Bue78]. The
histogram of this multiset of distances in the context of musical scales and chords
is called its interval content [Lew59]. Two rhythms which are congruent to each
other obviously have the same interval content. Here by congruence we mean
geometrical congruence, i.e., equivalence under rotation or reflection. However,
two rhythms with the same histograms need not be congruent. Two sets of points
with the same multiset of distances are said to be homometric, a term introduced
by Patterson in 1939 [Pat44], who first discovered them. In the music literature,
two pitch-class sets (or two rhythms) with the same intervalic content are termed
as having the Z-relation or isomeric relation [For77].

One of the fundamental theorems in this area is the so-called Hexachordal
Theorem, which states that complementary sets with k=n/2 (and n even) are
homometric. Two examples are shown in Figs. 1 and 2. In Fig. 1, the k=4 onsets
occur at (0, 1, 4, 7), and the complementary rhythm has onsets precisely where
the first rhythm has rests: (2, 3, 5, 6). The histogram of intervals is identical.

Fig. 2 shows two complementary (n, k)=(12, 6) rhythms, again with identical
histograms.

An important convention we follow is that the pair of onsets separated by the
diameter d = n/2 contributes two counts to the interval d in the histogram. This
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Fig. 1. Example of the Hexachordal Theorem, (n, k)=(8, 4). Note that the distance
d=4 is counted twice.
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Fig. 2. Another example of the Hexachordal Theorem, (n, k)=(12, 6). Note that the
distance d=6 is counted twice.

convention simplifies the proofs but changes nothing substantively. This issue is
further addressed in Section 2.5.

The term “hexachordal” derives from Schönberg’s use of 6-note chords in a
12-tone chromatic scale, and the name “hexachordal” has been retained even
though the theorem holds for arbitrary even n.

1.2 History

The earliest proof of the Hexachordal Theorem in the music literature is, to our
knowledge, due to Lewin. In 1959 he published a paper [Lew59] on the intervalic
relations of two chords that contained an embryonic proof of the Hexachordal
Theorem; such a proof was refined in a subsequent paper [Lew60]. In 1974 Re-
gener [Reg74] found an elementary simple proof of this theorem based on the
combinatorics of pitch-class sets. Many other proofs have appeared since then,
often rivalling in conciseness. Short proofs can be found, for instance, in the
work of Mazzola [Maz03] or Jedrzejewski [Jed06]. Amiot [Ami07] gave an ele-
gant, short proof based on the discrete Fourier transform. Perhaps, one of the
simplest proofs, in the sense of using no structures such as groups or discrete
Fourier transforms, was discovered by Blau [Bla99]. His proof relies on a straight-
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forward analysis of the situation in which two complementary hexachords switch
two neighbouring elements.

The music theorists appear to be unaware that this theorem was known
to crystallographers about thirty years earlier [Pat44]. It seems to have been
proved by Patterson [Pat44] around 1940, but he did not publish a proof. In
the crystallography literature the theorem is called Patterson’s second theo-
rem [Bue76]. The first published proof in the crystallography literature is due
to Buerger [Bue76]; it is based on image algebra, and is non-intuitive. A much
simpler and elegant elementary proof was later found by Iglesias [Igl81]. An-
other simple proof, purely based on geometry, has been recently discovered by
Senechal [Sen08].

The Hexachordal Theorem has been generalized in various ways, for exam-
ple, considering rhythms of different cardinalities; see [Lew76], [Lew87], [Igl81],
[Mor90], [Sod95], [AG00] for several directions of generalization. We believe the
proof we present in Sec. 2.3 below is not only simple, but also establishes a
significant generalization from discrete rhythms to continuous rhythms.

1.3 Outline

We will first introduce weighted rhythms as a generalization of usual rhythms.
This generalization will consist of associating certain weights to the onsets and
rests of a rhythm. Next we will state and prove the Hexachordal Theorem in
terms of such weighted rhythms. We will then generalize the Hexachordal Theo-
rem to a continuous version of it , where rhythms will be considered as continuous
functions on the interval [0, 1]. From this version we will prove again the discrete
Hexachordal Theorem as a straightforward corollary of the continuous version.

2 The Continuous Hexachordal Theorem

2.1 Weighted Rhythms

In order to state our generalization of the Hexachordal Theorem, we introduce a
different viewpoint. Each onset i is assigned a weight of wi = 1, and each rest is
assigned a weight of 0. Thus, the rhythm in Fig. 1 (top) has a weight signature
(1, 1, 0, 0, 1, 0, 0, 1). The total weight of a rhythm R is W (R) =

∑n−1
i=0 wi, the

number of onsets k in R. The complementary rhythm R is obtained by comple-
menting the weights with respect to 1: wi = 1 − wi. Let HR be the histogram
of intervals determined by rhythm R. This records, for each possible interval
distance d, the number of times it occurs in the rhythm. In Fig. 1, we have:

Height: 2 1 2 2
Distance d: 1 2 3 4

This may be viewed as a function of the interval distance d: HR(d) is the height
of the histogram at distance d. With this notation, the Hexachordal Theorem
may be stated as follows:
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Theorem 1. If R is a rhythm on n points, n even, and W (R) = n/2, then R
and R are homometric: for all distances d, HR(d) = HR(d).

Before proceeding to the continuous domain, we need Lemma 1 below, which
expresses the histogram function in terms of the weights. This lemma is known
in the music literature as the “common-tone theorem” [Joh03]. See [JK06] for a
proof in the context of group theory. For the sake of completeness, we include
our own proof.

Lemma 1. HR(d) =
∑n−1

i=0 wiwi+d.

Proof. Point i is separated by a distance d from the point at i+d, where we
interpret addition mod n, i.e., in Zn. If both are onsets, then wi = wi+d = 1,
and wiwi+d = 1. If either point is a rest, then wiwi+d = 0. Thus, for each fixed
d, summing wiwi+d over all i counts 1 for each occurrence of d.

We now argue that each pair of points realizing a distance d contributes just
once to the sum. A pair (i, i + d) would contribute twice if i + 2d = i so that
(i+d, i) would be counted as well. Because d is a shortest path, we have d ≤ n/2.
Thus, i+2d ≤ i+n, and this equals i (in Zn) only when d = n/2 is the diameter.
Our convention is indeed to count a pair realizing the diameter twice.

Consider, for example, the n = 12 example in Fig. 2 (top). For d = n/2 = 6,
both w0w6 and w6w12=w6w0 contribute to HR(6) = 2. Indeed, the reason we
follow the convention of double-counting each realization of the diameter is that
it naturally fits this weight viewpoint. This point will be revisited in Section 2.5.

2.2 The Continuous Generalizations

We generalize in two directions. First, the circle of n discrete points is generalized
to a continuous circle of points. We take its circumference to be 1 without loss of
generality. Second, the discrete set of weights wi is generalized to a real-number
weight f(x) ∈ [0, 1] for x ∈ [0, 1]. Here x specifies a point on the circle, measured
by distance clockwise from the zero-position (conventionally at the 12 o’clock
position as in Figures 1 and 2), and f(x) the weight of that point. So now the
total weight W (R) =

∫ 1
0 f(x) dx. Note the maximum possible total weight of

any rhythm is achieved by the constant “rhythm” with weight f(x) = 1 for all
x, in which case W (R) = 1.

We define the complement of a rhythm analogously to the discrete case:

Definition 1. For each point x in rhythm R with weight f(x), the corresponding
point x in the complementary rhythm R has weight f(x) = 1 − f(x).

The histogram HR(d) is generalized to a function over the domain d ∈ [0, 1
2 ].

We need the continuous analog of Lemma 1. In fact, we take the analog of that
lemma as the definition of the histogram in the continuous domain:

Definition 2. HR(d) =
∫ 1
0 f(x)f(x + d) dx.

For example, if two points x and x+ d each have weight 1
2 , they contribute 1

4 to
the height of HR at distance d.
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2.3 Continuous Hexachordal Theorem and Proof

The Continuous Hexachordal Theorem says that for any rhythm on the continu-
ous circle as described above, if the rhythm has weight 1

2 , then it is homometric
to its complement. More formally, it may be stated as:

Theorem 2. If R is a integrable rhythm on the continuous circle, and W (R) =
1
2 , then for all distances d, HR(d) = HR(d).

Proof. The proof fixes d and establishes that HR(d) = HR(d). From the his-
togram Definition 2 we have:

HR(d) =
∫ 1

0
f(x) f(x + d) dx.

From the complement Definition 1 this is:

=
∫ 1

0
[1 − f(x)][1 − f(x + d)] dx.

Multiplying out terms yields:

=
∫ 1

0
(1 − f(x) − f(x + d) + f(x)f(x + d)) dx.

Separating integrals gives:

=
∫ 1

0
1 dx −

∫ 1

0
f(x) dx −

∫ 1

0
f(x + d) dx +

∫ 1

0
f(x)f(x + d) dx

The first integral is just 1, and the second two1 are each 1
2 by the assumption of

the theorem that W (R) = 1
2 :

= 1 − 1
2
− 1

2
+
∫ 1

0
f(x)f(x + d) dx

=
∫ 1

0
f(x)f(x + d) dx

= HR(d)

The last step again follows from the Definition 2, and so we have established that
HR(d) = HR(d) for all d, i.e., the histograms are identical and R is homometric
to R.

The weight function f(x) need not be a continuous function in the technical
mathematical sense.2 We only need that it be integrable,3 i.e., a function for
which an appropriate “area under the function graph” may be defined.
1 Shifting x to x + d shifts the graph of f( ) but does not change the area underneath it.
2 A function f is continuous if, for all c in the domain, limx→c f(x) = f(c).
3 For example, Lebesgue integrable suffices.
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Fig. 3. (a) Weight step function f(x) corresponding to Fig. 1 (top), (n, k)=(8, 4).
(b) Corresponding histogram integral H(d).

We should note that the above proof can be directly discretized to yield a
parallel proof of the Discrete Hexachordal Theorem. Instead, we show below
that the freedom to use any integrable weight function renders the Discrete
Hexachordal Theorem 1 an immediate corollary of the Continuous Hexachordal
Theorem 2.

2.4 Discrete Theorem as Corollary

Suppose a discrete rhythm R has weights (w0, w1, . . . , wn−1), with each weight
either 1 or 0. Then define the step function f(x) = wi for i

n ≤ x < i+1
n . For

example, Fig. 3(a) shows the step function corresponding to the top rhythm
in Fig. 1, whose discrete weights are (1, 1, 0, 0, 1, 0, 0, 1). Note that the total
weight/area is 4·18 = 1

2 , which accords with the discrete weight of 1
2n= 1

28=4.
We formalize this correspondence between continuous and discrete as follows:

Corollary 1. The Discrete Hexachordal Theorem 1 follows from the Continuous
Hexachordal Theorem 2.

Proof. We use the notation
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χA(x) =
{

1, for all x ∈ A
0, otherwise

to represent the 1/0 characteristic function of a set A.
We convert the discrete rhythm (w0, w1, . . . , wn−1) into the continuous rhythm

f(x) =
n−1∑
i=0

(
wi · χ[ i

n , i+1
n )

)
.

This has the feature,mentioned above, that for allx ∈
[

i
n , i+1

n

)
, we have f(x) = wi.

Because of the horizontal compression involved in this conversion, the discrete
histogram contribution HR(d) =

∑n−1
i=0 wiwi+d corresponds to the continuous

histogram contribution

HR

(
d

n

)
=
∫ 1

0
f(x)f

(
x +

d

n

)
dx

=
∫ 1

0

[
n−1∑
i=0

(
wi · χ[ i

n , i+1
n )

)]
f

(
x +

d

n

)
dx

=
n−1∑
i=0

[
wi

∫ 1

0
χ[ i

n , i+1
n ) · f

(
x +

d

n

)
dx

]

=
n−1∑
i=0

[
wi

∫ i+1
n

i
n

f

(
x +

d

n

)
dx

]

=
n−1∑
i=0

[
wi

∫ i+d+1
n

i+d
n

f (x) dx

]

=
n−1∑
i=0

[
wi

∫ i+d+1
n

i+d
n

wi+d dx

]

=
1
n

n−1∑
i=0

wiwi+d

So, the continuous histogram is proportional to the discrete histogram at integral
values of d (see Fig. 3(b)), and the conclusion of the Continuous Hexachordal
Theorem 2 that R is homometric to R implies the same in the discrete case,
which is precisely the claim of the Discrete Hexachordal Theorem 1.

2.5 Double-Counting Diameter Intervals

We return to the the issue of double-counting an interval that equals the di-
ameter (d = n/2 in the discrete case or d = 1

2 in the continuous case) in the
histogram HR(d). In music the diameter in the case of an equal-temperament
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scale corresponds to a tritone. Recall from Definition 2 that the continuous his-
togram is defined by the equation HR(d) =

∫ 1
0 f(x)f(x + d) dx. Applying this

for d = 1
2 to the step function f(x) in Figure 3 results in

HR(
1
2
) =

∫ 1

0
f(x)f(x +

1
2
) dx.

When x ∈ [0, 1
8 ), the product f(x)f(x + 1

2 ) is 1. And also when x ∈ [12 , 5
8 ),

the product is again 1, because x + 1
2 wraps around to [0, 1

8 ). For all other x,
the product is 0. So HR(1

2 ) = 2 · 1
8 = 1

4 , which corresponds to the height 2 for
d = 4 in the discrete case in Figure 1. Thus, the continuous histogram analog
also “double-counts” the diameter d = 1

2 .
Moreover, we can see that this is the natural definition, by considering d =

1
2 − ε for some small ε > 0. The same integral leads to HR(1

2 − ε) = 2(1
8 − ε)

which goes to 1
4 as ε → 0. Thus, the height HR(1

2 ) is consistent with the limit
for d < 1

2 . Stipulating that d = 1
2 should be treated specially would destroy this

natural correspondence.

2.6 Patterson’s First Theorem

Patterson’s first Theorem [Pat44] goes beyond the k = n/2 precondition of the
Discrete Hexachordal Theorem 1. It may be stated as: two homometric (n, k)-
rhythms have homometric complements. In our continuous generalizations, two
rhythms with the same number k of onsets have the same weight. So the gener-
alization is:

Theorem 3. If R1 and R2 are two integrable rhythms on the continuous cir-
cle with equal weights, W (R1) = W (R2), and they are homometric, i.e., for
all distances d, HR1(d) = HR2(d), then their complements are homometric:
HR1

(d) = HR2
(d).

Proof. Let the weight function of R1 be f(x) and that of R2 be g(x). Fix a dis-
tance d. We compute HR1

(d) and show it is equal to HR2
(d). From Definitions 2

and 1, we have

HR1
(d) =

∫ 1

0
f(x) f(x + d) dx

=
∫ 1

0
(1 − f(x))(1 − f(x + d)) dx

Multiplying out terms and separating integrals yields

=
∫ 1

0
1 dx − 2

∫ 1

0
f(x) dx +

∫ 1

0
f(x)f(x + d) dx

= 1 − 2
∫ 1

0
f(x) dx +

∫ 1

0
f(x)f(x + d) dx
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Now, because W (R1) = W (R2), we have
∫ 1
0 f(x)dx =

∫ 1
0 g(x)dx, and because

R1 and R2 are homometric, we have
∫ 1
0 f(x)f(x + d)dx =

∫ 1
0 g(x)g(x + d)dx:

= 1 − 2
∫ 1

0
g(x) dx +

∫ 1

0
g(x)g(x + d) dx

However, we know, by the same reasoning, that this expression is

=
∫ 1

0
g(x) g(x + c) dx

And we have therefore established that the complementary rhythms are homo-
metric: ∫ 1

0
f(x) f(x + d) dx =

∫ 1

0
g(x) g(x + d) dx

HR1
(d) = HR2

(d)

3 Open Problems

Our results may be interpreted in terms of polyphonic rhythms, in which several
instruments are linearly combined [OTT08]. For instance, to model three identi-
cal drums playing together, interpret the weight f(x) = 1

3 to mean that one drum
is struck on a particular beat, while the weight f(x) = 1 would mean all three
are struck. It would be interesting to explore whether homometric polyphonic
rhythms have a musical significance.

We know that two sets of points with different cardinalities and different
weights may be homometric, but we neither understand the constraints here
mathematically nor know if there is any musical interpretation of such sets.

Theorem 2 generalizes to weights in [0, 1] on a sphere, with distances measured
by geodesics, and with W (R) = 1

2 corresponding to the integral over a hemi-
sphere equalling 1

2 . The discrete analog is “distance regular” points on a sphere,
e.g., the vertices of a Platonic solid. Is there any musical analog for spheres in
any dimension?
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Abstract. I present some conceptual and computational tactics related to the 
metric analysis of speech rhythms. An utterance can be considered metered 
when it approaches isochrony at the level of the syllable (note) and/or foot 
(beat). Since the timing patterns of spoken speech resemble those of music, we 
can apply knowledge of musical meter and expressive timing to the study of 
speech. However, speech rhythms tend to be more amorphous than musical 
rhythms, which makes the task of modeling meter in speech far from straight-
forward. The lack of a score or implicit rhythmic template leads to a meter-
finding methodology that juggles the oftentimes incompatible outcomes of 
different metric frameworks: quantization as opposed to categorical perception, 
and subdivision isochrony as opposed to beat isochrony. 

Keywords: speech, rhythm, meter, categorical perception, duration ratios. 

1   Introduction 

The goal of this paper is to present some conceptual and computational tactics related 
to the metric analysis of speech rhythms. The parsing of speech by syllable stress is 
similar to metric grouping in music. The two domains also inhabit similar temporal 
regions. The kinship is evident not only in various forms of song, but also in explicitly 
speech-based works by composers such as Steve Reich, Hermeto Pascoal, Jason 
Moran, and many others. Despite a widespread interest in the temporal similarities 
between speech and music, there is almost no published work on the music-temporal 
structure of speech. 

The literature on speech rhythms is vast and complex [1]. With titles such as “Tri-
ple Threats to Duple Rhythm” [2], articles on poetry analysis might be a good place to 
begin our investigation. But they, like most works in metrical phonology, are more 
interested in patterns of stress than in patterns of duration [3]. On the flipside, we find 
precise durational measurements in phonetics and phonology. However, it is often 
difficult to discern how their findings translate to a music-based conception of 
rhythm. (What are we to make of the observation that the vowel in “bids” is on aver-
age 25 ms longer than the vowel in “bits”? [4]) When direct comparisons between 
speech and musical rhythms are made, they take the form of statistical correlations 
rather than rhythmic analyses [5]. 

In the following paragraphs I will show that the timing patterns of speech can be 
analyzed in musically relevant ways. Before proceeding, I should emphasize that 
there is no agreed upon methodology for marking syllable onsets. Nick Campbell [6] 
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notes: “We can make no claim that clear definable boundaries exist between all pho-
neme-sized speech sounds, and in many cases the assignment of a label to a portion of 
speech can be quite arbitrary” (p. 302). A common approach, used here, is to tag the 
first vowel in the syllable. 

2   Assessing Local Meter 

The study of speech rhythms amounts to a tough workout in rhythmic analysis. De-
viations from metricality are also frequent in music, although there is often a tem-
plate, such as a score or implicit mental schema, serving as a point of comparison. 
Such a template is rarely evident in speech. 

For speech to be metered, it should abide by the well-formedness prerequisites typi-
cally enforced in music. Meter is well-formed when its underlying subdivisions are 
(nominally) isochronous, and rhythm is well-formed when its onsets align with one of 
the subdivisions. An onset that is off course can be nudged left or right onto the coor-
dinate we think it belongs. This can be achieved by quantization or categorization. 

Let us examine a short spoken phrase in order to illustrate these two processes. We 
begin with the first beat (foot) in Figure 1. 

B1 B3 B4 B5B2  

Fig. 1. Syllable IOIs (in milliseconds) for the five-beat phrase “I can remember during the 
nineteen nineties,” recorded from the radio by the author. The beat is equivalent to a foot, 
which “starts with a [syllable] stress and contains everything that follows that stress up to, but 
not including, the next stress” [7]. 

The timing pattern for B1 falls squarely between two possible grids, one triple and 
one quadruple (long-short-short). To choose the one that will provide the better fit, we 
can turn to the literature on categorical rhythm perception. On Desain and Honing’s 
[8] categorization experiments, most subjects transcribed this pattern as a 2-1-1—that 
is, as a quadruple grid composed of one eighth plus two sixteenths.1 But this response 
was by no means unanimous; the pattern sits right on a category boundary between 
triple and quadruple in the authors’ time-clumping map. 

                                                           
1 The exact IOIs were 421-263-316, which are proportionally similar to B1’s 263-164-189. 



24 F. Benadon 

Another way to assess the grid of B1 is to quantize it. While various algorithms ex-
ist, the basic strategy involves looking for a goodness of fit between the performance 
data and one of several competing grids. In the language of preference rules, we 
would say that we prefer a grid that minimizes error distances between sounded 
onsets and metrical subdivisions. Figure 2 places B1’s IOIs next to a triple and a quad-
ruple grid.  The dashed error tails in the graph show that the two candidate grids pro-
duce roughly equal amounts of total error, with the triple grid (74 ms) having a very 
slight edge over the quadruple grid (80 ms). 

B1

 

Fig. 2. B1 IOIs in relation to two metronomic grids: triple and quadruple 

Logically, the deviation error can be minimized with larger subdivision cardinal-
ities (provided the subdivision IOIs do not fall below the 100 ms threshold; [9]).  This 
strategy is tested in Figure 3, where the onsets are now compared to quintuplet and 
sextuplet grids. The total error for the former is 74 ms; for the latter, 61 ms—the low-
est error yet.  

B1

 

Fig. 3. B1 IOIs in relation to more fine-grained grids: quintuple and sextuple 

The improved goodness of fit that the sextuple grid provides should be rejected on 
three grounds. One: the first syllable (“I”) is 263 ms long and therefore hardly divisi-
ble into three parts, as the sextuple grid asks of us. Two: the error difference (12 ms) 
between the triple and sextuple grid is too small a reward for the computational price 
being paid. I would rather endure an extra 12 ms in total error and subdivide 1+1+1 
(triple) instead of 3+1+2 (sextuple). Three: the error tails now point in two directions, 
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requiring us to hear an anticipation followed by a delay. It seems computationally 
advantageous to stick to one consistent mode of deviation, as was the case with the 
triple grid. The moral is that goodness-of-fit scores are helpful but should be evalu-
ated in light of relevant cognitive factors. 

In sum, B1 can either lean toward the quadruple grid (based on categorical percep-
tion) or toward the triple grid (based on quantization). Neither tendency is strong 
enough to rule out the other. This leaves us with a first beat that is either inherently 
non-metric or only temporarily non-metric until further evidence becomes available in 
the upcoming beats. 

Now we turn our attention to B2. Our task is twofold: to determine its meter and to 
reconcile its timing pattern with that of B1. 

The meter of B2 is most likely duple. The first syllable (“mem”) is 25 ms shorter 
than the second one (“ber”), yielding a .88 ratio. Just as we compared the earlier 
three-syllable rhythm to Desain and Honing’s categorical perception data, we can 
gauge the meter of this two-syllable rhythm by referring it to experiments that test the 
perception of two-note rhythms.2 Specifically, we need to confirm that the mild short-
long asymmetry of B2 can be coded as an even duple rather than a short-long triplet 
(1+2).3 In a tapping experiment devised by Povel [10], subjects heard sequences of 
two-note rhythms that varied in their short-long ratio. As predicted, subjects simpli-
fied most ratios in the direction of .5—that is, toward a triple 1-to-2 ratio.  However, 
there was disagreement regarding the .8 ratio. Some subjects exaggerated the duration 
difference in the direction of triple (.5), while others lessened the difference in the 
direction of duple (1.0). The ratio of B2 (.88) is closer to 1.0 than the experiment’s 
highest ratio (.8), which tips the scale in favor of duple meter.   

Further experimental support for a duple B2 comes from time-shrinking studies, 
which show that listeners tend to underestimate the duration of the second time inter-
val in a short-long ratio [11]. For instance, the sequence (in ms) 160-190 is perceived 
as being in a 1:1 ratio even though the actual ratio is .89. The 1:1 effect persists even 
with ratios as uneven as .72. These observations leave us with little doubt concerning 
the even (duple) partition of B2. 

3   Glued at the Subdivision 

How concordant are our conclusions from both beats? B1 is 620 ms; it is either quad-
ruple (by the time clumping map) or triple (by quantization). B2 is 390 ms; it is most 
likely duple (by time-shrinking and quantization). A good metric frame for this two-
beat span should support a running isochrony at the subdivision level. Figure 4 com-
pares three scenarios. The quadruple-plus-duple combo shown in (a) is a poor choice 
because B1’s average sixteenth-note is 155 ms (620÷4) and B2’s is 195 ms (390÷2)—
a 26% change. We can reduce the discrepancy with a triple division of B1, as shown 
in (b). (Note that this is not a triplet, but a group of three sixteenths.) This metric 
sequence exhibits only a 6% change in average subdivision speed: from 207 to 195 
                                                           
2 Strictly speaking, a “two-note” rhythm is really a three-note rhythm consisting of two IOIs. 

Likewise, a “three-note” rhythm consists of four IOIs: three attacks plus a “downbeat.” 
3 There is no need to check for quintuple (2+3) or septuple (3+4), since these subdivisions are 

inadmissibly small given the size of B2. 
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ms. For those reluctant to relinquish a quadruple hearing of B1, (c) offers an adjusted 
measurement window that is smaller than the full beat. Leaving out the first syllable, 
the total duration of B1’s last two syllables is 350 ms, or an average of 175 ms per 
sixteenth. This constitutes an 11% change from the end of B1 to B2. Hence the level of 
metric concordance depends on the size and location of the measurement windows. I 
will not pursue this idea further due to space constraints; consider flexible windows 
duly placed on the pile of soon-to-be explored metric conundrums. 

B1 B2 x

155 , 195

=

207 , 195

175 , 195

(a)

(b)

(c)

26 %

- 6 %

11 %
 

Fig. 4. Evenly subdivided beats and their resulting subdivision durations. The full duration of 
B1 is subdivided in (a) and (b), whereas (c) employs a narrower window for improved confor-
mity with B2. The preferred metric analysis is (b): 3/16 + 2/16. 

Let us continue on to B3, the three-syllable foot “during the.” At this point in the 
game, the reader will be glad to bypass the detailed report in favor of a quick diagno-
sis: this beat is basically triple (its IOIs are roughly equal). Does it maintain the sub-
division tempo established by the previous two beats? Dividing the total size of B3 by 
3 yields metronomic subdivisions of 177 ms, a 9% decrease from the subdivisions in 
B2 and a 15% decrease from B1. Though we need not answer it now, we should ask 
the question we have been dodging: How much tempo drift are we willing to tolerate 
before we deem the sequence non-metrical? 

B4, the duple foot “nine-teen,” has the same duration as B1. But B1 has three short 
syllables and B4 has two long ones. On the face of it, the metric solution seems sim-
ple: give B4 eighth-notes (or four sixteenths) and B1 eighth-note triplets. We will see 
later that this kind of tuplet approach can be beneficial because it retains isochrony at 
the beat level when subdivision isochrony begins to wobble. But in this case, it is 
unclear whether the kinship between B1 and B4 also satisfies the timing patterns of 
the intervening beats. The ideal meter should weigh the global needs of all beats 
in the phrase. It also should take into account the sequential unfolding of events. From 
the sixteenths in B3 to those in B4, there is a 12% decrease in duration. Our analytical 
tolerance for this percentage drift is assuaged by recalling that subdivision speeds 
have been increasing almost linearly since B1: 207-195-177-155. This trend may be 
heard as a gradual accelerando of an otherwise fixed subdivision grid. Had the beats 
been ordered differently (e.g., B3-B1-B4-B2), we would have walked a different ana-
lytical path, leading either to a different metric solution or perhaps to a blind alley. 
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4   Beyond the Eighth-Note 

The average syllable duration in spontaneous American English is roughly 200 ms [1, 
p. 113]. Not unexpectedly, the syllables in our preceding example have clustered 
around that value (cf. Fig. 1). This explains why the transcriptions have favored a 
binary set of subdivision values: the sixteenth-note and the eighth-note. For a syllable 
to be divisible into three parts, it should be around 300 ms or greater [9]. Therefore, 
slower speaking rates expand the subdivision palette, as Figure 5 shows. 

B1 B2 B3 B4 B5

x = 137 130 112 116 120

0 % - 5 % - 14 % 4 % 3 %  

Fig. 5. Lalla Ward reading “and each one is a distinct full language” [12]. Syllables longer than 
300 ms open the door for three-way (“one”) and four-way (“tinct”) subdivision. The chain of 
mixed meters is held together by a fairly steady—often implicit—average sixteenth-note subdi-
vision from beat to beat. 

5   The Tuplets 

My main argument thus far has been that speech can be modeled as metered when its 
subdivisions approach isochrony. The process often produces mixed meters sharing a 
common subdivision value. When subdivision isochrony between beats is tenuous, we 
might reconcile them as an overall tempo curve, as we did earlier. There is another 
way to prop up meter when it falters at the subdivision. 

One perceptually feasible alternative is to switch our focus from subdivision 
isochrony to beat isochrony. The reason I view beat-level isochrony as a second resort 
rather than as the norm is that most sentences contain feet with unequal syllable counts, 
resulting in variable beat durations best explained by mixed meters.4 In some cases, 
                                                           
4 Some linguists once believed that speakers adjust syllable length to maintain interstress 

isochrony between feet containing different numbers of syllables. The claim has since been 
refuted [13]. 
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however, two beats may be the same size even if their subdivision count is different. 
This translates into non-isochrony at the subdivision, for if two beats are the same size 
and contain a different number of subdivisions, they cannot share the same subdivision 
value. The alternative to subdivision isochrony is beat isochrony via the tuplet. 

The first two beats in Figure 6 are quadruple and share a common subdivision du-
ration (within 10%, values not shown). The third beat is triple. Seeking subdivision 
isochrony—a running sixteenth throughout—increases the sixteenth-note of the third 
beat by almost 30%. Since the size of the third beat is within 5% of the first two, 
modeling the third beat as three triplets (rather than three sixteenths) helps to preserve 
a sense of isochrony. 

 

Fig. 6. John Searle reading from [14]. Sixteenths on the third beat would not agree with those in 
the preceding beats, so we slip into something more comfortable. 

3 : 4
2 : 3

 

Fig. 7. Percentage change relationship between subdivision size and beat size. The lines corre-
spond to tuplet groupings. 

Figure 7 shows the inverse relationship between subdivision and beat isochrony.  
The y-axis plots percentage change in subdivision duration between two beats (usu-
ally adjacent). A change of 0% means that there is perfect subdivision isochrony be-
tween them. If the subdivision duration changes by a large enough amount from one 
beat to the next, the new duration might lock into a tuplet value. The lower line plots a 
quadruple-to-triple shift, such as the one in Figure 6. The third beat from that phrase 
is marked here with a circle. Increasing the subdivision difference decreases the beat 
size difference according to different tuplet configurations. A point near either axis 
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bodes well for meter: we get little change either in subdivision or in beat size. Meter 
breaks down when a point is roughly half-way along a tuplet line.  Returning to our 
unanswered question concerning allowable metric drift, we might propose a ±10% 
threshold for either the subdivision or the beat. A deviation of more than 10% at both 
levels debilitates the sense of meter. For instance, the circle on the upper triple-to-
duple line corresponds to the middle beat in Figure 8. All of the phrase’s five beats 
are snug 3/16’s, except for the smaller third beat. If we treat it as a beat of 2/16 in 
order to seek subdivision concordance with the surrounding beats, we encounter a 
21% increase in subdivision duration. If we assign a tuplet (2-in-place-of-3) in order 
to seek concordance at the beat level, we encounter a 20% drop in beat duration. 
Where to turn? This beat may be lost in the land of no meter. 

 

Fig. 8. Noam Chomsky reading from [15]. Of the two boxed-in metrically feasible options, 
neither one complies with the surrounding isochrony.  

Figure 7 included only the quadrant where subdivision size increases, beat size de-
creases, and the tuplet’s numerator is smaller than its denominator. Figure 9 zooms 
out to reveal all possible combinations. Five tuplet lines (and their reciprocals) are 
shown: 1:2, 4:7, 2:3, 3:4, and 4:5.5 A tuplet is most useful as it crosses the y-axis, 
where it yields little or no change in beat size. For instance, suppose that a beat with 
100-ms subdivisions is followed by another containing 150-ms subdivisions, a 50% 
increase (lower dashed line). We can model this deviation according to different tu-
plet frameworks, each yielding a different amount of error. With a 4:5 tuplet (circle) 
we get a beat that is 20% too big. The 2:3 tuplet (triangle) gives the right fit. 

For every subdivision change, there is a corresponding tuplet configuration that 
provides a perfect fit in beat size. The catch, of course, is that only a small handful of 
tuplet ratios are user friendly, and only one of these will match our desired subdivi-
sion count given the syllables in the foot. For instance, a 70% subdivision increase 
(upper dashed line in Fig. 9) can be counterbalanced by a 10:17 tuplet. Clearly this is 
not a viable metric solution. What other, more reasonable fractions cross the 70% 
horizontal coordinate? The 4:7 tuplet (square) offers an appealing beat difference of  
- 4%; also workable is the 2:3 tuplet (diamond), although at 12% its beat difference is 
significantly larger. Figure 10 illustrates how these two tuplet options might work in 
different phrases with hypothetical (but feasible) timing patterns. 

                                                           
5 The reciprocal of the tuplet ratio equals the slope of the line; for instance, the 2:3 tuplet line 

has a slope of 1.5. Only ratios between 1.0 and 2.0 (and their reciprocals) are given. I include 
1:2 (and 2:1) to provide a visual frame, even though this ratio is not generally thought of as a 
tuplet. 
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1 : 2

4 : 7

2 : 3

3 : 4

4 : 5

 

Fig. 9. An expansion of Figure 7 

x = 120 204

beat - 4 %

sub 70 %

x = 120 204

beat 12 %

sub 70 %  

Fig. 10. The number of subdivisions in the beat helps determine which tuplet form is most 
appropriate. The top and bottom phrases correspond to the square and diamond in Figure 9, 
respectively. Both phrases undergo the same increase in subdivision duration (70%), resulting 
in different beat size deviations depending on the tuplet count. 
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6   Conclusion 

Rather than lead us to a yes-or-no decision on the metrical status of a given speech 
pattern, the various approaches described above suggest a more nuanced view that 
weighs beat proximity, degree of isochrony within the beat, type of isochrony be-
tween beats, and magnitude of deviation. My future work will integrate these 
approaches into a model that can compute concordance scores for different metric 
solutions of a given speech sequence. The results could be useful for composers, 
whose speech-based works are guided by musical intuition; music theorists, who have 
no duration-based tools for comparing text that has been set to music with its speech 
state; and popular music scholars who have noted speech-like rhythms in jazz and 
blues music.  
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Abstract. This paper formally characterizes the expressiveness of three
approaches for polyphonic pattern representation and matching: R (rela-
tional patterns); H (Humdrum); and SPP (Structured Polyphonic Pat-
terns). Relational networks have the highest expressiveness but H and
SPP admit faster matching algorithms. It is shown how H and SPP
can be cast as different restrictions of R, both providing an expressive
subset of full relational networks. In addition, the intersection of H and
SPP yields yet another language: SPPseq, a restriction of SPP based
on sequences of layered components. This new language is expressive
enough to capture basic polyphonic patterns such as suspensions and
parallel fifths and may be a new, more efficient approach to pattern ex-
traction. The formal arguments contained in this paper are illustrated
with musical examples extracted from J.S. Bach chorale harmonizations.

1 Motivation

Polyphony forms a large part of the western musical heritage and its essence
— having multiple concurrent streams of musical events (with the temporal
relations this implies) — is encountered in most kinds of modern music. However,
there are few computational approaches for the expression and efficient matching
of polyphonic patterns. This paper formally compares the expressiveness of three
such languages and proposes a new one, establishing the hierarchy of Figure 1. To
facilitate this presentation, arguments are restricted to patterns containing only
two voices; results may however be generalized to denser polyphonic textures.

As a motivating example, consider the two-voice suspension of Figure 2. This
typical polyphonic pattern is expressed in Figure 3 in the languages R (relational
patterns); Humdrum; and SPP (Structured Polyphonic Patterns). As illustrated
by the R expression (Figure 3i), even this simple pattern requires sophistication:
variables to be instantiated by three events; inequality statements ensuring that
the mapping from variables to events is injective; temporal relations between
events (discussed below); and pitch relations such as consonance and dissonance.

This paper restricts its attention to the following binary temporal relations:
i) m(a, b) (a meets b: a finishes when b begins), ii) the symmetric st(a, b) (a and b
start together), iii) sw(a, b) (a starts while b is sounding) and iv) the symmetric
ov(a, b) (a and b overlap: they sound together as some point in time). Figure 4
restates the relations in the notation of Allen [1] and Figure 2ii illustrates their
musical relevance.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 32–42, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Suspension
•

Embellished
tritone resolution

•

Layered
passing tones

•

Dislocated chord
•

SPPseq

SPP
H

R

Fig. 1. Expressiveness of four polyphonic pattern languages: R (relational), H (Hum-
drum), SPP (Structured Polyphonic Patterns) and SPPseq (SPP restricted to se-
quences of layered components)

(i)
time

C3

F2

E4
F4

pitch

a

e
sw

c

st

d

b

m

(ii)

Fig. 2. (i) A 4-3 suspension between bass and alto voices in bars 16-17 of Bach’s chorale
BWV 283 and (ii) A piano-roll representation of the alto and bass voices

The Humdrum toolkit is widely-used for pattern matching in symbolic music
data. Although Humdrum supports polyphony, it can be difficult to use for even
simple patterns [5,2]. For example, Figure 3ii shows a Humdrum suspension
pattern expressed with regular expressions. These typically do two things : i)
match the beginning of events, the continuation of events or possibly no event
at all (a “don’t care” option) and ii) match features of those events by matching
corresponding values in additional columns (this is the purpose of the “t” tokens
at the end of the each lines, the first one matching a consonance feature and the
second a dissonance feature).

In [4], the difficulties of Humdrum are circumvented by implementing a Prolog
query that extracts all parallel fifths occurring in a corpus of J.S. Bach chorale
harmonizations. The approach requires expert Prolog programming knowledge
however, and even a slight reordering of Prolog clauses may have dramatic effects
on pattern matching tractability. In general, the relational matching problem is



34 M. Bergeron and D. Conklin

(i)

event(a) voice(a, x) m(a, b)
event(b) voice(b, x) sw(e, a)
event(e) voice(e, y) sw(b, e)
a �= b x �= y diss(a, e)
a �= e cons(b, e)
b �= e

(ii) [a-g A-G]+[- # n]*[ˆ)]*[(] [a-g A-G]+[- # n]*.*.*t$
[a-g A-G]+[- # n]*[)] [ˆ(]*[a-g A-G]+[- # n]*.*t$

(iii) −{}x

−{}y

;
{sw cons(y) : t}x

−{sw diss(x) : t}y

Fig. 3. A suspension pattern using (i) relations; (ii) Humdrum and (iii) SPP

m(a, b) is a m b
a b

a “meets” b

st(a, b) covers

8>>>>>>>>><
>>>>>>>>>:

a s b

b

a
a “starts” b

b s a
a

b

b “starts” a

a = b
a

b

a “equals” b

sw(a, b) covers

8>>>>>>>>><
>>>>>>>>>:

b o a

b

a
b “overlaps with” a

a d b
a

b

a “during” b

a f b
a

b

a “f inishes” b

ov(a, b) covers all the cases above (and their inverse), except a m b

Fig. 4. The temporal relation analyzed in this paper expressed in the notation of
Allen [1]

a subgraph isomorphism problem, which is known to be NP-complete. More-
over, not all networks are satisfiable and it is also NP-complete to determine
satisfiability. Hence, it is not practical to base a pattern extraction approach on
relational patterns. In [2], the latter results are replicated with SPP , an abstract
polyphonic pattern representation based on sequencing and layering operators.
In Figure 3iii for example, the sw cons and sw dis pattern components are
layered to form a temporal relation. This layering holds for events forming a
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︸ ︷︷ ︸
(i)

︸ ︷︷ ︸
(ii)

Fig. 5. Dislocated V7 chords captured by Pattern 1 : BWV 284 bar 15 (i) and BWV
318 bar 13 (ii)

consonance and dissonance with opposite voices, and satisfying the sw temporal
relation. SPP is further elaborated in Section 4.

2 Relational Patterns

A relational pattern r is simply a set of temporal relations over event variables ε:
Definition 1. r ∈ R ::= ω, . . . , ω with ω ::= m(ε, ε)

| ov(ε, ε)

| st(ε, ε)

| sw(ε, ε)

With appropriate pitch relations, the pattern below could represent the “dis-
located” V7 chords shown in Figure 5. It enforces that chord tones eventually
overlap with the root of the chord, but no other temporal relation is enforced:
Pattern 1. ov(a, b), ov(a, c), ov(a, d)

Alternatively, relational patterns can be represented as directed labelled graphs,
where nodes represent event variables and edges represent relations (see Figure 6).

3 Humdrum

By contrast to R, temporal relations in H are specified indirectly via a token
matrix:

Definition 2. h ∈ H ::=
⎡⎢⎣h11 h12

h21 h22
...

⎤⎥⎦ with hij ::= ε

| (ε)

| �

The token ε refers to the beginning of a new event; the token (ε) is the continu-
ation of the preceding event and the token � is the special “don’t care” symbol
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that enforces no temporal relation. Note that time “flows” from top to bottom
in Humdrum, e.g. the token h11 is followed by the token h21. A H pattern is
interpreted as follows with respect to the temporal relations it enforces:

Lines

H R[
a b

]
� st(a, b)[

(a) b
]
� sw(b, a)[

a (b)
]
� sw(a, b)[

(a) (b)
]
� ov(a, b)[

a �
]
,
[
� a

]
,
[

� (a)
]
, . . .,

[
� �

]
� ∅

Columns

H R[
a

b

]
� m(a, b)

[
(a)

b

]
� m(a, b)

[
a

(a)

]
,
[

�

a

]
, . . .,

[
�

�

]
� ∅

The Humdrum pattern of Figure 3ii can be simplified to the following (variable
names correspond to those of Figure 2ii):

Example 1.
[

e (a)
(e) b

]
� sw(e, a), sw(b, e),

m(a, b)

See Figure 6ii for the corresponding temporal network.

d

c

a

b

ov

ov

ov

(i)

a

e

b
m

sw
sw

(ii)

a

e

b

d

m

m

sw
sw

ov(iii)

a

d

b

c

m

m

st(iv)

a

d

b

c

m

st st(v)

Fig. 6. Temporal networks enforced by (i) Pattern 1, (ii) Example 1, (iii) Example 2
(the dashed edge is implied by the network), (iv) Pattern 2 and (v) Pattern 3. The
network (iv) can be represented in SPP but not in Humdrum. The network (v) can
be represented in Humdrum but not in SPP .
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4 Structured Polyphonic Patterns

Patterns in SPP are defined according to the syntax below, where ε stands for
an event and −ε for a modified event (when layered, modified events start earlier
than other events in the layer); the “;” operator joins two patterns in sequence
(such that one finishes as the other starts) and the “==” operator layers two
patterns (such that both start at the same time):

Definition 3. φ ∈ SPP ::= ε

| − ε

| φ ; φ

|
φ

φ

A SPP pattern is interpreted as follows with respect to the temporal relations
it enforces:

Layers

SPP R

a

c
� st(a, c)

−a

c
� sw(c, a)

a

−c
� sw(a, c)

−a

−c
� ov(a, c)

Sequences

SPP R

a ; b � m(a, b)

−a ; b � m(a, b)

a ; −b� m(a, b)

−a ; −b� m(a, b)

Layers of sequences

SPP R

a ; . . .

c ; . . .
� st(a, c)

−a ; . . .

c ; . . .
� sw(c, a)

a ; . . .

−c ; . . .
� sw(a, c)

−a ; . . .

−c ; . . .
� ov(a, c)

Sequences of layers

SPP R

a

c
;

b

d
� m(a, b), m(c, d)

−a

c
;

b

d
� m(a, b), m(c, d)

a

−c
;

b

d
� m(a, b), m(c, d)

a

c
;
−b

d
� m(a, b), m(c, d)

...
...

−a

−c
;
−b

−d
� m(a, b), m(c, d)

When ignoring pitch relations, the suspension example of Figure 3iii is sim-
plified to the following pattern (also Figure 6iii):
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︸︷︷︸
(i)

︸ ︷︷ ︸
(ii)

Fig. 7. Layered passing tones captured by Pattern 2: BWV 255 bar 2 (i) and BWV
320 bar 19 (b)

Example 2. −a

−d
; b

−e

� ov(a, d), sw(b, e),
m(a, b), m(d, e)

One can verify that the temporal relations enforced by example Example 2 are
indeed consistent with those of a suspension.

5 H and SPP are Distinct

Claim 1. SPP �⊆ H: there exists at least one pattern in SPP that has no
equivalent in H.

Consider the following SPP pattern (also Figure 6iv):

Pattern 2. a ; b

c ; d

� st(a, c), m(a, b),
m(c, d)

With appropriate pitch relations, the pattern can capture layered passing tones
(Figure 7), including pairs of passing tones that do not share the same rhythm:
cases when b and d start together (Figure 7i) and cases when they are not
synchronized (Figure 7ii).

Pattern 2 is not representable in Humdrum, due to the absence of a temporal
relation between b and d. To capture the st(a, c), m(a, b) and st(c, d) temporal
relations enforced by the SPP pattern, the following three Humdrum patterns
are possible: [

a c
b d

] ⎡⎣ a c
(a) d
b �

⎤⎦ ⎡⎣a c
b (c)
� d

⎤⎦
All of the above patterns enforce an additional temporal relation that is not

enforced by the SPP pattern, respectively st(b, d), sw(d, a) and sw(b, c). �
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︸ ︷︷ ︸
(i)

︸ ︷︷ ︸
(ii)

Fig. 8. Tritone resolutions captured by Pattern 3: BWV 257 bar 2 (i) and BWV 315
bar 13 (ii)

Claim 2. H �⊆ SPP: there exists at least one pattern in H that has no equiv-
alent in SPP .

Consider the following Humdrum pattern (also Figure 6v):

Pattern 3.
⎡⎣ a c

(a) �
b d

⎤⎦ � st(a, c), st(b, d),
m(a, b)

With appropriate pitch relations, this captures both embellished and unem-
bellished tritone resolutions (Figure 8). Figure 8ii, for example, is matched by
Pattern 3 even if the A forming the tritone in the tenor voice does not meet
with the G of the final chord. Rather, there is an embellishment in the form of
an anticipation.

Clearly, the Humdrum pattern enforces st(a, c) and st(b, d). The only way to
do that in SPP is to join a,c and b,d with the “==”operator. As the Humdrum
pattern also enforces m(a, b), these two must be joined by the “;”operator:

a

c
;

b

d

But then, the SPP pattern will also enforce the temporal relation m(c, d)
which is clearly not enforced by Pattern 3. �

By similar arguments, one can prove that the dislocated chord pattern (Pattern 1
and Figure 5) cannot be represented in either Humdrum or SPP . This explains
its place in the language hierarchy of Figure 1. This is also why the figure shows
that R properly subsumes H and SPP .

6 The Common Denominator SPPseq

Characterizing the intersection between Humdrum and SPP , the pattern lan-
guage SPPseq restricts SPP to sequences of layers:
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Definition 4. ϕ ∈ SPPseq ::= ψ

| ϕ ; ψ

with ψ ::= ε

| −ε

|
ψ

ψ

With the additional restriction that there can by only one “−” operator per
layer, except for the first layer, in which any number of “−” may appear. One
can easily check, for example, that the suspension pattern (e.g. Example 2 ) is in
SPPseq. Also, as SPPseq can be interpreted the same way as the unrestricted
SPP (Section 4), it follows that SPP subsumes SPPseq.

Claim 3. SPPseq ⊆ H: for every ϕ ∈ SPPseq there exists a pattern h ∈ H
enforcing the same temporal network.

The proof proceeds by structural induction over the “;” operator (i.e. the claim
holds as the sequence grows). The base cases are:

a

c

−a

c

a

−c

−a

−c

Those are clearly covered by the following Humdrum patterns:[
a c

] [
(a) c

] [
a (c)

] [
(a) (c)

]
Now, suppose there exists a pattern h ∈ H that covers the SPPseq pattern ϕ.

The induction cases are as follows (the case with two modified events −ε does
not appear; by definition of SPPseq, this is only allowed in the first layer):

ϕ ;
a

c
ϕ ;

−a

c
ϕ ;

a

−c

Suppose h has n lines. The induction cases are covered by:

h
·[

a c
]

[
...

hn1 hn2

]
·[

a (hn2)
(a) c

]
[

...
hn1 hn2

]
·[

(hn1) c
a (c)

]
The last two cases enforce an extra temporal relation (respectively sw(a, hn2)

and sw(c, hn1)) that the SPPseq pattern does not enforce. However, that rela-
tion can be inferred by the temporal relations that the SPPseq pattern do en-
force. That is, referring back to Figure 2ii, whenever the relations m(a, b), m(d, e),
sw(b, e) and ov(a, d) are present, then sw(e, a) can be inferred. This inference is
also indicated in Figure 6iii by a dashed edge. �
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7 Discussion

This paper has presented three approaches that can accurately represent net-
works of temporal relations. Alternative approaches to polyphonic patterns often
lack that accuracy. For example, vertical patterns [3] can only match polyphonic
sources that have been expanded and sliced to yield a homophonic texture, hence
not supporting the sw relation. A point set pattern representation [6] can only
encode temporal relations with fixed duration ratios (capturing every instance of
a sw relation would require a set of patterns, the size of which can grow quickly
as many different ratios are likely to be found in the source). Techniques that
rely on approximate matching to a source fragment [7] can confuse simultane-
ous notes with notes that overlap without being simultaneous, hence lacking
precision with respect to the st relation.

With a little practice the musicologist should find it easy to write SPP pat-
terns, in contrast to Humdrum, which requires extensive knowledge of Unix
command line and regular expression tools. Relational patterns tend to be ver-
bose and one quickly loses sight of the overall temporal structure of the pattern,
where as the structure is syntactically expressed in SPP . In Humdrum, this is
readable when using the matrix form which this paper has developed. However,
negations and disjunctions that can in principle appear in the regular expressions
of a Humdrum pattern are not supported.

Finally, notice that R can express a great many temporal networks with un-
clear musical relevance (e.g. sw(a, b), sw(b, c)) and even networks that are unsat-
isfiable (e.g. m(a, b), st(a, b)). Perhaps there exists a restriction of R to “common
sense” musical patterns. Ideally, such a restriction would preserve most of R’s
expressiveness, while being conducive to efficient pattern matching algorithms.
Both Humdrum and SPP are candidate restrictions, yielding relational graphs
that are always satisfiable. The graphs are also always connected and perhaps
this connectedness is an interesting avenue to explore for future research. In par-
allel, a website with tools and tutorials is being developed in an effort to make
the languages presented in this paper more easily applicable to musicological
tasks.
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Maximally Smooth Diatonic Trichord Cycles 

Steven Cannon* 

Abstract. In the usual seven-note diatonic scale, the maximally smooth cycle of 
triads contains a long section that uses only major and minor triads, the same 
triad that forms maximally smooth cycles within the twelve-note chromatic 
scale. Tonal music exploits this property of the scale to create sequences of 
similar chords. The goal of this study is to determine the extent to which such 
long chains containing inversionally related species exist in maximally smooth 
trichord cycles within microtonal scale systems that share certain properties 
with the diatonic. The study thus combines neo-Riemannian theory, especially 
Cohn’s concept of maximally smooth cycles, with the diatonic scale theory de-
veloped by Clough and other authors. The patterns of maximally smooth 
trichord cycles depend on the type of scale within which they occur, and on the 
cardinalities of the scales. Among all scales, the usual diatonic supports the 
longest possible chain.  

1   Introduction 

An important feature of tonal music is its affinity for smooth motion from one har-
mony to another, maximizing common tones and minimizing melodic motion. In the 
diatonic scale, triads take part in such motion easily. The thrift of triadic chord pro-
gressions has led Richard Cohn to characterize the major and minor triads as parsi-
monious trichords [1]. Generally, theorists discuss the progressions in a chromatic 
context, but neo-Riemannian concepts are useful even within the limits of the diatonic 
set. To better understand how triads fit within the familiar diatonic, I will explain how 
they behave in scales from microtonal universes that use equal divisions of the octave 
other than the usual twelve. To my knowledge, this intersection of scale theory and 
neo-Riemannian theory has not yet been explored in detail in microtonal settings. 
While a number of essays in the recent collection Music Theory and Mathematics: 
Chords, Collections, and Transformations do bridge the gap between scale theory and 
neo-Riemannian theory, they mostly stay within the usual 12-edo [2]. 

2   Maximally Smooth Cycles and Parsimonious Triads 

Cohn has shown that all scale systems, regardless of their cardinalities, contain a 
trichord capable of forming maximally smooth cycles [3]. The maximally smooth 
trichord cycle in the seven-note diatonic is given as Figure 1.1 A striking feature of this 
cycle is the pattern with which the species of the chords change: the cycle contains a 

                                                           
* The author gratefully acknowledges the financial support of the Social Sciences and Humani-

ties Research Council of Canada. 
1 To save space, I use common music-analytical symbols to indicate the qualities of chords: “+” 

or major, “−” for minor, and “°” for diminished. 
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Fig. 1. Diatonic sequence of triads with root motion of falling thirds 

long chain of alternating major and minor triads, two species that are related by inver-
sion and thus, in a sense, equivalent. The major and minor triads are “parsimonious 
trichords” within the larger chromatic universe, but the diminished triad is not.  

Cohn further explains how to find parsimonious sets within other chromatic uni-
verses when he notes that major and minor triads (as well as half-diminished and 
dominant sevenths) represent “minimal perturbations of a symmetrical division of the 
octave” (see [2], p. 39, n. 40). In scale systems where the cardinality of the chromatic 
universe is a multiple of three, the parsimonious trichord will be this kind of minimal 
perturbation. In systems where the cardinality of the chromatic set is not a multiple of 
three, the parsimonious trichord will simply be the closest approximation of an equal 
division of the chromatic scale. Since the generic triad is the closest approximation of 
an equal division of the diatonic scale into three, it is what Clough and Douthett call 
“maximally even,” or “ME” within the diatonic. The diatonic scale is itself a maxi-
mally even distribution of seven notes within the twelve chromatic scale steps, so the 
triad is thus “second-order ME” [4]. In addition, it is a “generated” set, whose genera-
tor has a diatonic length (dlen) of two scale steps, or a third.2 

3   Useful Scales 

While it is clear enough that parsimonious trichords exist in all chromatic universes, 
how they fit in scales embedded within these universes has not yet been examined in 
much detail. Before proceeding any further, however, it is first necessary to decide 
which of the many possible scales we should examine. Clough and Myerson have de-
scribed important features of the usual diatonic, including cardinality equals variety 
(CV) and partitioning [5]. In scales that share such features, the cardinalities of the 
chromatic universe (c for short) and the scale (d for short) relate in one of the follow-
ing two ways, provided that d is odd:  

c = 2d − 1 (1) 

or  

c = 2d − 2 . (2) 

                                                           
2 The abbreviations “dlen” and “clen” are also from Clough and Douthett. 
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Eytan Agmon was first to describe these classes of scales [6], which Clough and 
Douthett later named “family A” and “family B” respectively. Clough and Douthett 
call scales in family B “diatonic,” setting the familiar 7-out-of-12 scale aside with the 
term “usual diatonic”; this usage has become standard in current literature. No useful 
adjective has been coined yet for the first class of scale, which most theorists (proba-
bly correctly) consider less interesting, so I adopt Clough and Douthett’s term and say 
that these scales are members of “family A.” I use the terms “family B scale” and 
“diatonic scale” interchangeably. I do, however, also occasionally use the term “dia-
tonic” more loosely: the terms “maximally smooth diatonic cycle” and “diatonic 
length” (or “dlen”) apply to both family A and family B scales. In scales of family A, 
c is always odd, and the scale generator (gd for short) is always clen 2. The clen of gd 
in diatonic scales is always equal to the value of d, and c is always a multiple of 4. 
Notably, chromatic universes in which c is even but not divisible by four (that is, 6, 
10, 14, 18, 22, etc.) do not contain any useful scales. In Clough, Engebretsen, and Ko-
chavi’s taxonomy, members of F-set 1 and F-set 2 are both diatonic, and the 
complements of these scales fall into F-set 5; family A scales are members of what 
Clough and colleagues call F-set 4, which also includes the complements of family A 
scales [7]. I have omitted Clough and colleagues’ F-set 3, which contains a type of 
scale first described by Gerald Balzano [8], because at higher cardinalities of d, 
trichords that are parsimonious within the full chromatic set are not subsets of the 
smaller scale.  

I borrow several terms from the usual diatonic when describing scales in family A 
and family B. I call all clen 2 intervals “whole-tones” and all clen 1 intervals “semi-
tones,” regardless of the real size of these intervals. Family B scales have two semi-
tones, separated as much as possible by whole tones. I call the highest note in the lar-
ger series of whole-tones the leading-tone, and the following note the tonic. I also 
number scale-degrees in ascending order starting with the tonic as 1. The lowest note 
in the larger series of whole-tones is the original note in the generating cycle—F in 
the usual diatonic with no key signature—which has a semitone below it. I call this 
 

 

Fig. 2. Family B, or “diatonic” scale: 11/20 
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note the “origin.” Figure 2 gives an example of a diatonic scale. Each circle in the 
clock-face represents a note in the chromatic scale, with the notes of the diatonic scale 
blacked in. Scales in family A contain but one scale-step of clen 1, with all other 
scale-steps having clen 2. I consider the note directly above this single semitone to be 
the tonic, and the note below it to be the leading-tone. See Figure 3 for an example of 
a family A scale. In family A, 1 is also the origin, but 1 is the first generated note after 
the origin in family B. To save space, I use a shorthand resembling a fraction to indi-
cate the cardinalities of scales: the number before the slash indicates the value of d, 
and the number after the slash is the value of c. The scale is always a maximally even 
distribution of the smaller value within the larger.  

 

Fig. 3. Family A scale: 8/15 

I have chosen to focus this study on family A and B in order to give these scale 
types thorough treatment, but the results are also applicable to the complements of 
such scales. Specifically, the pattern of the maximally smooth cycle for the second-
order ME trichord is the same for a family A scale with a given value for d as it is for 
another set with the same value for d that is the complement of a family A scale. This 
is also true for family B scales and their complements. For example, the cycles in 8/15 
and 8/17 share a common structure. Similarly, the structure of the cycle in the usual 
7/12 diatonic, shown in Figure 1, also appears in the 7/16 “hyperpentatonic.”  

4   Trichord Species and Their Multiplicities 

Species of second-order ME trichords in all universes may be categorized in the same 
way as they are in the usual diatonic, and much of the terminology from tonal theory 
is applicable. Since these trichords are generated, they have a “root,” and as such, 
they can be arranged in “root position.” According to MP, all generic intervals come 
in two specific sizes, which we can continue to call “major” (+) and “minor” (−). If 
the generating interval of the trichord (gt for short) immediately above the root is ma-
jor or minor, we can use this label for the trichord as a whole. Symmetrical trichords 
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are augmented in some scales (two adjacent major gt’s) but diminished in others (two 
adjacent minor gt’s), so I use the term “symmetrical,” (abbreviated as ⓢ) rather than 
diminished or augmented.  

To determine the structure of maximally smooth diatonic trichord cycles, we 
must first know how many chords of each species exist in the scale, and how they 
relate to each other. Fortunately, Clough and Myerson provide methods for finding 
this information quickly. An important feature implied by MP and CV is structure 
yields multiplicity (SM). According to Clough and Myerson, “within a particular 
genus, the number of chords in each species … is directly inferable from the generic 
structure” (p. 250). This structure must be given in terms of the scale’s generator 
(gd), as measured in generic scale steps. That is, we can measure any interval not 
only in clen and dlen, but also by the number of gd intervals it would take to gener-
ate it (gdlen for short).3 When calculating gdlen, we must always count in generic, 
rather than specific gd intervals, since specific intervals would give us different val-
ues for the two species of gt. The notes of any diatonic scale form a gd cycle, which 
we know as the cycle of fifths in the usual diatonic scale. In these diatonic scales, 
gdlen = 2(dlen); this doubling often forces us to octave-reduce the results, or at least 
to count shortest distance as a descending interval rather than ascending (this is 
equivalent to taking the complementary value within the modulus). In family A, 
gdlen is the same as dlen, so no translation is necessary, and the gd cycle is identical 
to the scale itself.  

To calculate the multiplicities of second-order ME trichord species we can start by 
finding their generators as measured in gdlen. These chords divide the diatonic scale 
as evenly as possible, so to find the generator ge (measured in dlen) of any second-
order ME chord of any cardinality e, we simply divide the cardinality of the scale by 
the cardinality of the chord, and round to the nearest integer: 

ge = 
d

e

⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
 . (3) 

For trichords,   gt = 
d

3

⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
 . (4) 

Once we know the dlen chord generator, we must then translate it into gdlen (only 
necessary for family B scales) and generate the sets. Lastly we reduce the generated 
set to within one modular cycle (mod d), and find the multiplicity of each species by 
counting how many gd intervals lie between each pair of adjacent notes.  

For trichords in family A scales, the value of gt in dlen also gives the multiplicities 
of the major and minor species. To find this value, divide d by three and round to the 
nearest integer, as in (4) above. The multiplicity of symmetrical species is what re-
mains once the major and minor trichords are deducted from d, as in (6) below. 

                                                           
3 Clough and Myerson have different ways of abbreviating the scale generator to show whether 

it is measured in clen or dlen. In clen it is d′ and in dlen it is c′. They do not describe trichord 
or tetrachord generators. 
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Multiplicities of Trichord Species in Family A Scales 

no. of major or minor trichords   =   gt   =   
d

3

⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
 . 

 

(5) 

no. of symmetrical trichords   =   d − 2
d

3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 . 

 

(6) 

To determine the multiplicities of major and minor trichords in diatonic scales, we 
have to alter the formulas to include a translation of dlen into gdlen, as in (7) below, 
and to measure descending rather than ascending intervals. The multiplicity of major 
and minor species is the complement of gt, as measured in gdlen, as in (8). The multi-
plicity of symmetrical species is what remains once the major and minor are deducted 
from d, as in (9). 

Multiplicities of Trichord Species in Family B Scales 

gt measured in gdlen    =    2
d

3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 . 

 

(7) 

no. of major or minor trichords   =    d − 2
d

3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 . 

 

(8) 

no. of symmetrical trichords   =   d − 2 d − 2
d

3

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟    =   4

d

3

⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ 
− d  . (9) 

Inputting different values for d, we can discard those that are multiples of 3, since 
scales of these cardinalities will not support maximally smooth diatonic cycles, and CV 
will not hold for harmonic trichords (although it will hold for three-note melodic lines).  

5   Trichord Cycles 

The patterns of the maximally smooth trichord cycles depend on the type of the scale, 
and on the cardinality of d, so we will consider each case in turn with one example of 
a specific scale. If d ≡ 2 (mod 3) in a family A scale, the trichords have the following 
properties: 

• The parsimonious trichord is asymmetrical, and will give the major and mi-
nor species. 

• The number of symmetrical trichords is fewer than the number of major or 
minor trichords. 

See Figures 4 and 5 for illustrations of how trichords fit in this kind of scale. Each 
scale-degree number is accompanied by a symbol (+, −, or ⓢ) indicating the species 
of trichord generated from that scale-degree. The arrows within the clock-face trace 
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the minor trichord that has 8 as its root, which is parsimonious within the chromatic 
scale and is not inversionally symmetrical.4 In these clock-face diagrams, the arrows 
always indicate parsimonious trichords, which are different species in different scales. 
We may now form a maximally smooth diatonic cycle in this universe, which is 
analogous to the cycle in Figure 1: pairs of adjacent trichords maintain two common 
tones, and the one voice that moves will only proceed by scale-step. The root motion 
along this cycle is by intervals of dlen gt. The complete cycle is given in Figure 5. 
Note that inversionally related major and minor trichords always come in pairs, with 
the symmetrical trichords distributed as evenly as possible between these pairs. Since 
there are three pairs of major and minor chords, but only two symmetrical chords, two 
of the pairs must be adjacent. These adjacent pairs form a chain of four alternating 
major and minor trichords in a row, which is the longest such chain in the cycle.  

 

Fig. 4. Second-order ME trichord in 8/15 
c = 15 
d = 8 
gd = clen 2    
gt = dlen 3 
major species prime form (0,5,9) 
minor species prime form (0,4,9) 
symmetrical species prime form (0,3,9) 

 

longest chain

5̂+, 8̂ , 3̂+, 6̂ , 1̂ , 4̂+, 7̂ ,  ̂2
 

Fig. 5. Maximally smooth diatonic trichord cycle in 8/15 

In family B scales where d ≡ 1 (mod 3), the situation is similar except that the gt in-
tervals must be translated from dlen into gdlen. Figure 6 shows a thirteen-note diatonic 
                                                           
4 Although 8 is the root in as much as it is the note from which the chord is generated, the so-

nority will sound to our ears as if 6 is the root because the chord’s tuning is fairly similar to 
that of a minor triad in the usual diatonic. 
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scale in 24-edo. Figure 7 gives the cycle of gd for this scale. The arc using a dotted line 
between 13 and 7 indicates the short gd, equivalent to the diminished fifth between B and 
F in the usual diatonic.5 The leading tone always occurs just before the short gd, the ori-
gin immediately after, and proceeding clockwise the tonic appears next after the origin. 
The directions of the arrows appear to change from clockwise in Figure 6 to counter-
clockwise in Figure 7 when the intervals are doubled to translate them from dlen to 
gdlen. Figure 7 also demonstrates SM well. The multiplicity of each species is given by 
the distance between the notes in the gd cycle: moving counter-clockwise from the root 
of the chord, the distances are 5, 5, and 3, which match the multiplicities of 
 

 

Fig. 6. Second-order ME trichord in 13/24, within scale cycle 

 

Fig. 7. Second-order ME trichord in 13/24, within gd cycle 
c = 24  
d = 13 
gd = clen 13 = dlen 7 
gt = dlen 4 = gdlen 8 
major species prime form (0,8,15) 
minor species prime form (0,7,15) 
symmetrical species prime form (0,7,14) 

                                                           
5 I follow Clough and Myerson, who also indicate the short fifth in this way.  
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major, minor, and symmetrical trichords respectively. Looking at Figure 7, we notice 
that the trichord is not maximally even within the gd cycle, so the multiplicities of spe-
cies are not as balanced as they are in family A. The maximally smooth cycle is given in 
Figure 8. Notice again that the longest chains are four chords long.  

1̂0 , 1̂+, 5̂ , 9̂+, 1̂3 , 4̂ , 8̂+, 1̂2 , 3̂ , 7̂+, 1̂1 , 2̂+,  ̂6  

Fig. 8. Maximally smooth diatonic trichord cycle in 13/24 

Four chords may be shorter than the series of six in the usual diatonic, but in other 
scales the chains are shorter still. In family A scales with d ≡ 1 (mod 3), and in family B 
scales with d ≡ 2 (mod 3), second-order ME trichords have the following properties: 

• The parsimonious trichord is symmetrical. 
• The number of symmetrical trichords is greater than the number of major or 

minor trichords. 

Illustrations of second-order ME trichords in this kind of scale are given in Figures 
9–13. Figures 9–10 illustrate a scale in family A, and Figures 11–13 illustrate a scale 
in family B. Note the lack of any long chains, as indicated by the short brackets above 
the cycles. At most, the chains are two chords long.  

 

 

Fig. 9. Second-order ME trichord in 10/19 
c = 19    
d = 10 
gd = clen 2    
gt = dlen 3 
major species prime form (0,6,11) 
minor species prime form (0,5,11) 
symmetrical species prime form (0,6,12) 
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Fig. 10. Maximally smooth diatonic trichord cycle in 10/19 

 

Fig. 11. Second-order ME trichord in 11/20, within scale cycle 

 

Fig. 12. Second-order ME trichord in 11/20, within gd cycle 
c = 20   
d = 11  
gd = clen 11 = dlen 6  
gt = dlen 4 = gdlen 8  
major species prime form (0,7,12) 
minor species prime form (0,5,12) 
symmetrical species prime form (0,6,13) 

More abstract clock-faces appear in Figures 14–17. The circles represent an un-
specified value of d. I do not indicate specific notes, but instead reckon the propor-
tional number of notes using the lengths along the circumference. In family A scales, 
 

1̂ 4̂ 7̂+, 1̂0 , 3̂ 6̂+, 9̂ , 2̂ ^̂ ̂5+, 8̂
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Fig. 13. Maximally smooth diatonic trichord cycle in 11/20 

 

Fig. 14. Root progression of trichord cycles in family A scales with d ≡ 2 (mod 3) 

 

Fig. 15. Root progression of trichord cycles in family B scales with d ≡ 1 (mod 3) 

distances along the circumference are measured in dlen; in family B scales, distances  
are measured in gdlen. The arrows inside the circle trace the root progressions in se-
quences of four trichords from maximally smooth cycles. The arcs for both major and 
minor species, as well as all of the arrows, all have the same value: gt. Figures 14 and 
15 illustrate scales with longer chains of alternating chords. Note that gt is greater than 

1̂1  ̂4 8̂ , 1̂+,  ̂5  ̂9 2̂ , ^̂6+, 1̂0 , 3̂ , ^̂7+
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d/3, such that the third arrow places the root of the fourth chord past the root of the 
first chord, and the arrows cross. Since the number of symmetrical trichords is less 
than gt, no symmetrical chords are adjacent in any maximally smooth diatonic cycles; 
since the numbers of major trichords and minor trichords are equal to gt, they will al-
ways come in adjacent pairs. Moreover, at least one section of the cycle always has a 
chain of alternating major and minor trichords that is four chords long.  

Figures 16 and 17 illustrate scales without long chains. Here gt is less than d/3: the 
root of the fourth chord in the cycle does not pass the root of the first chord, and the 
arrows do not cross. Since the number of symmetrical trichords is greater than gt, 
there will be at least one pair of adjacent symmetrical trichords in the maximally 
smooth diatonic cycle. Major and minor trichords still come in pairs, but at least one 
symmetrical trichord always sits between these pairs; no section of the cycle will have 
a chain longer than two chords. 

 
 

Fig. 16. Root progression of trichord cycles in family A scales with d ≡ 1 (mod 3) 

 
Fig. 17. Root progression of trichord cycles in family B scales with d ≡ 2 (mod 3) 
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6   Conclusions 

No scale, in either family A or B can support a maximally smooth diatonic trichord 
cycle with as long segment of alternating major and minor trichords as the usual dia-
tonic can. This segment includes six chords, as in Example 1, but the longest such 
segment in any other scale uses only four chords. The patterns of root progressions il-
lustrated in Figures 14–17 show that the only way to get more than four chords in the 
segment is to have a very low number of symmetrical trichords, in proportion to the 
major and minor trichords. Specifically, the ratio of symmetrical to major (or minor) 
must be less than 0.5. Figures 18–22 illustrate. Major and minor trichords always 
come in pairs, as indicated by the brackets. The symmetrical trichords must be dis-
tributed as evenly as possible in the cycle without breaking up any pairs. If the ratio is 
greater than 1 (as it is when c is not a multiple of 3), some symmetrical trichords must 
be adjacent to one another, as in Figure 18. An extreme case is the five-note diatonic 
scale in eight-tone equal temperament with three adjacent symmetrical trichords, 
shown in Figure 19. If the ratio is less than 1 the pairs of major and minor trichords 
must be adjacent to each other, creating longer chains. In Figure 20, the cycle includes 
two segments with four adjacent major and minor trichords. Figures 21 and 22 dem-
onstrate cycles in which the ratios are less than 0.5. The cycle in Figure 21 cannot ex-
ist in any real scale, since the cardinalities of major, minor, and symmetrical trichords 
cannot satisfy the formulas given above. Indeed, the only real scale that has a ratio 
less than 0.5 is the usual diatonic, so the longest possible chain of alternating major 
and minor trichords is the six-chord sequence depicted in Figure 1 and repeated below 
in Figure 22.  

 

Fig. 18. Maximally smooth diatonic trichord cycle in 11/20 
• Ratio of symmetrical to major: 1.667 
• Major/minor pairs cannot be adjacent, but two symmetrical 

trichords can 
• Longest chains: 2 chords 

 

Fig. 19. Maximally smooth diatonic trichord cycle in 5/8 
• Ratio of symmetrical to major: 3 
• Major/minor pairs cannot be adjacent but two symmetrical 

trichords can 
• Longest chain: 3 chords 
 

, +, , +, , , +

, , , , +
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Fig. 22. Maximally smooth diatonic trichord cycle in 7/12 (usual diatonic) 
• Ratio of symmetrical to major: 0.333 
• Major/minor pairs can be adjacent 
• Longest chain: 6 chords 
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Fig. 20. Maximally smooth diatonic trichord cycle in 13/24 
• Ratio of symmetrical to major: 0.6 
• Major/minor pairs can be adjacent 
• Longest chains: 4 chords 
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Fig. 21. Maximally smooth diatonic trichord cycle in fictional scale system 
• Ratio of symmetrical to major: 0.286 
• Major/minor pairs can be adjacent 
• Longest chain: 8 chords 
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Towards a Symbolic Approach to Sound Analysis
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Abstract. In this article we will propose a new approach for music
description, based on the connection between the symbolic (logic) level
and the signal level. This approach relies on the possibility of representing
sounds in terms of types inferred by some low-level descriptions of signals
and subsequent learning stages. We will present simple type theory and
we will introduce a twofold process to create aggregate representations
with different degrees of abstraction thus making possible to describe
and manipulate music at variable conceptual levels.

1 The Levels of Representation

Music, in its final stage of performance, can be described in many ways: it can be
viewed as a time-varying signal and can be described by expressing the evolution
of its physical properties over time. Music can be also viewed as a symbolic sys-
tem exploiting relationships between sonic objects1 and can be described with
a formal language able to express these relationships over time. Common ap-
proaches for music description generally take into account the different points
of view by selecting a particular degree of abstraction in the domain of the
representation: either they rely on the signal level, either on the symbolic level
or on a fixed mixture of both. The latter case is generally known as mid-level
representation: this term is used in the computer audition community to indi-
cate intermediate modelings of hearing usually based on perceptual criteria [2].
While signal-level representations are computationally efficient, invertible2 and
express some physical properties associated to the signal, they lack in abstrac-
tion and usually don’t provide any kind of information about hierarchies, formal
relationships between sonic-objects and so forth; they are unable to manipulate
concepts other than the basis of the analysis itself (such as sinusoids, wavelets,
etc.). The usual way to represent the signal-level decomposition of a signal x[n]
into expansion functions is a linear combination of the form:

x[n] =
K∑

k=1

αkgk[n]. (1)

1 With this expression, here, we intuitively mean any kind of event that appears in
the musical flow; a precise definition of sonic-objects is exactly the scope of any
representation.

2 With invertibility, here, we mean the possibility to go back to the signal domain
from the representation itself.
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Signal level Symbolic level

generality expressivity

physical
connection abstractness

Mid-levelMid-levelMid-levels

Fig. 1. The levels of representation

The coefficients αk are derived from the analysis stage, while the functions
gk[n] can or cannot be determined by the analysis stage and are used during the
synthesis stage; both stages are related to a particular signal model [4].

On the other hand, symbolic-level representations can express complex rela-
tionships and hierarchies but are inefficient, non-invertible and are hardly related
to the physical nature of sound: they are usually based on logical rules that can-
not be verified by any model3.

Mid-level representations, finally, try to address the issue related to the lack of
generality by focusing on relatively simple concepts that are, however, more ab-
stract than the basis of the analysis. These concepts areusuallybased onperceptual
criteria related to the low-level hearing and are situated in between the constraints
imposed on them by lower and higher levels. The power of this kind of representa-
tions stands in the fact that they are usually invertible and that the logical rules
they involve are generally verifiable by some models related to perception.

All the representation levels discussed so far can be used to describe music; they
are different because each one of them captures particular aspects of the sound.
However, they share two common drawbacks: first, all of them have a fixed degree
of abstraction. In other words, they are not scalable: once a representation level has
been selected it is not possible to go smoothly to another level; while signal-level
representations are very useful from numerical and computational points of view,
higher level representations are essential to human reasoning. Second, all of them
impose their own concepts onto the signal: each representation models the signal
with it’s own concepts, even if they are completely irrelevant to that particular
signal; figure 1 roughly depicts the described ideas.

The main purpose of this article is to propose a representation method for
music that, while being generic enough to be used for different signals, fulfills
by-design the following requirements:

– signal-dependent semantics: the underlying logic and the involved con-
cepts of the representation should be inferred from the signal, using learning
techniques; this creates the possibility to describe concepts that are really
related to the sound being analysed (adaptive);

– scalability: it should be possible to change the degree of abstraction in
the representation, ranging from the signal level to the symbolic level in a

3 In the context of this article, with symbolic-level representations we mean highly for-
malized descriptions of music, possibily based on a formal language and on its under-
lying logic [1]. First attempts to apply formal logic to music rely mainly on a deductive
system called first-order logic. Later on, inspired by linguistic ideas, other extensions
of logic have also been tested (temporal, modal, non-monotonic, etc.) [5], [6].
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continuous manner; the degree of abstraction becomes a parameter of the
representation;

– weak invertibility: the representation method should be able to generate
the represented signal; this possibility does not imply, however, that the
generated signal must be waveform-identical to the original one, but only
that relevant parts of it can be reconstructed (that’s why we call it weak);
this also means that the representation has been able to capture salient
aspects of a signal;

– generativity: it should be possibile to generate sounds other than the orig-
inal one, according to some parameters in the domain of the representation
that can be estimated from a given signal or deliberately created.

Defining such a kind of representation method is not an easy task; it in-
volves, first of all, the selection of an underlying logic that is able to scale over
abstraction and supports some special features like poly-valued semantics. Con-
sequentially, it also involves the usage of specific signal processing techniques
able to retrieve information from a signal (for example low-level features) and
model that information statistically to find salient properties in order to provide
a validation model for the underlying logic.

2 Sound Types

Symbolic-level and signal-level representations are complementary views of an
underlying world: the former are expressive but don’t relate easily with the
modeled reality, the latter are physically-connected but lack in abstraction. The
following sections will propose a connection between the signal and the simbolic
level by suggesting a representation based on types inferred by some low-level
descriptions of signals and subsequent learning stages. From a logical point of
view, the concept of type is formalized in the so-called theories of types ; from a
computational point of view, low-level descriptions and statistical learning build
to the so-called audio indexing theory.

2.1 Simple Type Theory

In order to avoid some set-theoretical paradoxes, Bertrand Russell proposed in
1908 a logic now known as ramified theory of types, subsequently expanded to the
so-called simple type theory (STT) by Alonzo Church. There are many variants
of STT; the presentation we give here is due to [3].

STT syntax is made of two principal objects: types and expressions. The for-
mer is a nonempty set of values used to build expressions. The latter denotes
values including true and false. A type of STT is defined by the following for-
mation rules:

T1. i is the type of individuals;
T2. � is the type of truth values;
T3. if α, β are types, then α → β is the type of functions from elements of type

α to elements of type β.
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Rules T1 and T2 define he so-called atomic types while rule T3 defines com-
pound types. The logical symbols of STT are defined as follows: function appli-
cation: @, funcion abstraction: λ, equality: =, definite description: ι, an infinite
set of symbols called variables: ν. We can now define a language of STT as the
ordered pair L = (C, φ) where:

1. C is a set of symbols called constants ;
2. ν ∩ C = � (the sets are disjoint);
3. φ : C → τ is a total function, where τ is a set of types of STT.

In other words, a language is a set of symbols with types that have been
assigned. It is now possible to define an expression of the language L with another
set of formation rules:

E1. if α is a type and x ∈ ν, then x : α is an expression of type α (variable);
E2. if c ∈ C, then c is an expression of type φ(c) (constant);
E3. if A is an expression of type α and F is an expression of type α → β, then

F@A is an expression of type β (function application);
E4. if x ∈ ν, α is a type and B is an expression of type β then λx : α.B is an

expression of type α → β (function abstraction);
E5. if E1 and E2 are expressions of type α, then E1 = E2 is an expression of

type � (equality);
E6. if x ∈ ν, α is a type and A is an expression of type �, then ιx : α.A is an

expression of type α (definite description).

2.2 Models for Simple Type Theory

For the languages of STT, like for first-order languages, it is possible to define a
semantics based on models. A standard model for a language L = (C, φ) of STT
is an ordered triple M = (D, E, I) such as:

1. D = {Dα : α ∈ τ} is a set of nonempty domains;
2. D� = {true, false};
3. for α, β ∈ τ, Dα→β is the set of all functions from Dα to Dβ ;
4. E = {eα : α ∈ τ} is a set of values such that eα ∈ Dα, ∀α ∈ τ (eα is called

the canonical error for α);
5. I maps each c ∈ C to a member of Dτ(c).

Given a model M = (D, E, I) for a language of STT, with variable assignment
into M we mean a function ψ that maps each variable expression x : α to a
member of Dα. Given a variable assignment ψ into M , an expression x : α
and d ∈ Dα, let ψ(x : α → d) be a variable assignment ψ′ into M such that
ψ(x : α) = d and ψ′(v) = ψ(v), ∀v �= x : α. Then, with valuation function
we mean the binary function V M that, for all variable assignments ψ and all
expressions E of L, satisfies the following conditions:

1. if E = x : α, then V M
ψ (E) = ψ(x : α);
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2. if E = C, then V M
ψ (E) = I(E);

3. if E is of the form F@A, then V M
ψ (E) = V M

ψ (F )V M
ψ (A);

4. if E is of the form λx : α.B with B of type β, then V M
ψ (E) is the function

f : Dα → Dβ such that ∀d ∈ Dα, f(d) = V M
ψ(x:α→d)(B);

5. if E is of the form E1 = E2 and V M
ψ (E1) = V M

ψ (E2), then V M
ψ (E) = true;

otherwise V M
ψ (E) = false;

6. if E is of the form Ix : α.A with A of type α and there is a unique d ∈ Dα

such that V M
ψ(x:α→d)(A) = true, then V M

ψ (E) = d; otherwise V M
ψ (E) = eα.

Let E be an expression of type α of L and A be a formula of L. We will call
V M

ψ (E) the value of E in M with respect of ψ. We also say that A is valid in M

(M ‖= A) if V M
ψ (A) = true for all variable assignments ψ into M . With sentence

we mean a closed formula of L; A is a semantic consequence of a set of sentences
Σ (Σ ‖= A) if M ‖= A for every standard model M such that M ‖= B for
all B ∈ Σ. With theory of STT we mean an ordered pair T = (L, Γ ) where L
is a language of STT and Γ is a set of sentences called axioms of T ; a formula
A, therefore, is a semantic consequence of T (T ‖= A) if Γ ‖= A. Finally, a
standard model of T is a standard model M for L such that M ‖= B, ∀B ∈ Γ .

2.3 Low-Level Features and Audio-Indexing

Low-level features are numerical values describing the contents of an audio sig-
nal according to different kinds of inspection: temporal, spectral, perceptual, etc.
The computation of the features is done by processing a given signal with spe-
cific algorithms on a small time scale (often called short-term analysis window)
which is usually between 40 ms and 80 ms; different kinds of temporal modeling
(like mean and variance computation) can then be applied to the features on
larger time scales. A typical example of low-level feature is the so-called spectral
shape, represented by the statistical moments of the spectrum: mean, variance,
skewness and kurtosis. The probabilistic computation of the features takes the
frequencies of the spectrum as the observed data and the amplitudes as the
probabilites to observe the data; see [7] for more information.

A main field of application of low-level features is audio indexing: by com-
bining different techniques it is possible to group together signals that share
common properties. A typical approach to audio indexing is based on the pro-
jection of low-level features computed over a set of sounds (usually called popula-
tion) in a multi-dimensional space (usually called features space); similar sounds,
then, tend to project onto similar positions of the space, producing clusters. By
analysing the space with some combined geometrical and statistical techniques
(like Gaussian Mixture Models, Principal Component Analysis, etc.) it is possi-
ble to find the clusters of sounds present in the space.
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2.4 The Typed Model

We are now ready to present a new approach to sound and music description
based on the concept of sound type. The basic idea, is to represent sound and
music by means of a given theory of types while providing a verifiable
model for that theory through low-level descriptors plus statistical learning.

From a logical point of view, simple type theory provides a variable abstraction
level by means of syntax constraints on functions: from a given set of elements it
is possible to create a subset by applying a function only if that function exists
for the original set. Mathematically, we want to be able to translate a signal-level
representation into other forms involving different elements and operators (mid
to symbolic-level representations) while providing real examples of such elements
and operators. More formally:

x[n] =
∑K

k=1 αkgk[n]
= α1g1[n] + . . . + αkgk[n]
= β1f1[n] + . . . + βjfj [n]

...
= ω1h1[n] + . . . + ωtht[n].

In the equations above α, β, . . . , ω are weighting coefficients, gk, fj, . . . , ht are
variables belonging to different types, + and · are relations defined for each type
and t < j < . . . < k (i.e. last equation has less elements than first equation).
Notice that + and · are not algebraical sum and multiplication and are not
required to be commutative: they can be any kind of binary relation defined over
specific types. As long as it is possible to convert, say, from type gk to type ht and
to define relations on both we can perform the translation. A model for the set of
equations above is defined by providing real types, relations and functions that
make all the equations true; in other words, we need some validation functions
that clearly define whether a given variable belongs to a given type and whether
a binary relation exists on that type and how it is possible to convert from a type
to another. A possible way to achieve these requirements is by means of clusters
of low-level descriptors in the features space. In order to provide a verifiable
model for the proposed theory, we need a twofold process divided into different
stages:

– types inference: during this stage the types involved in the representations
are discovered;

– rules inference: a second stage is needed to discover the relations between
the types and their conversions.

Since the + relation is not the algebraical sum, we will suppose that our
symbolic-level representation is a sequence of types and that + is the successor
function (i.e. g + f means that variable f of type F follows variable g of type
G4; remember that if F and G are types then G →+ F is a type).

4 The successor relation is evidently non-commutative.
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The following algorithm shows a possible implementation of the twofold pro-
cess, using low-level descriptors plus statistical learning for types inference and
Markov models for rules inference; a precomputational stage (atomic decompo-
sition) is also performed to prepare the original signal for the analysis:

1. (atomic decomposition): subdivide a sound into small grains of approx-
imately 40 ms called atoms or 0-types overlapping in time and frequency
(let’s label them with integer numbers);

2. (1-types inference): compute a set of low-level descriptors on each atom
obtained in the previous step, project the descriptors in a multi-dimensional
space and compute the clusters by means of statistical techniques; each clus-
ter will represent a 1-type (let’s label them g1, f1, . . .);

3. (1-rules inference): implement a Markov model to describe the sequences
of types present in the analysed sound (1-rules);

4. (n-types inference): compute a set of low-level descriptors on the whole
sequences found in the previous step (for example g1 + f1); project again
the descriptors and compute again the clusters: each cluster will represent a
n-type (let’s label them gn, fn, . . .);

5. (n-rules inference): repeat from step 3 until there are no more sequences
(n-rules).

The number of iterations of the whole process are the abstraction levels of the
representation. In terms of atomic decomposition, all the sets of the discovered
types are time-frequency atoms with different time scales and spectral content;
the higher the level of a type the less it is generic, the more expressive.

Figure 2 illustrates the approach.

sounds

types

inference

rules

inference

atomic

decomposition

types

inference

rules

inference

types

inference

rules

inference

symbolic

representations 1
symbolic

representations 2

symbolic

representations n
signa1-level

representations

1-types, 1-rules 2-types, 2-rules n-types, n-rules

0-types (atoms)

Fig. 2. An outline of the proposed algorithm for types and rules inference

Low-level descriptors and statistical techniques are not used to classify dif-
ferent sounds, but parts of a single sound; another approach could take into
account a real population of sounds and compute sound types over a whole
database; since different atoms and sequences (moleculae) belong to the same
type as long as they share common properties (defined by the set of descriptors),
they could theoretically be shared between different sounds. From an acoustical
point of view, the information amount increases dramatically from level to level,
ranging from the so-called acoustical quanta to segments of sounds that could
be even recognized as sections of a musical composition.
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2.5 Properties of Sound Types

The proposed model fulfills all the requirements of section 1:

– signal-dependent semantics: the atoms of the underlying signal-level rep-
resentation and the + relations discovered by Markov models are derived
from the signal;

– scalability: the possibility to scale over abstraction is implicit to theories
of types; in the previous section we showed how it is possible to translate a
representation to another;

– weak invertibility and generativity: there are many possibilities to create
a signal back from sound types; simple ways could be to pick up randomly
an element of each cluster or to generate a weighted sum of all the elements
of a cluster.

3 Conclusions and Perspectives

The theory of sound types is still in an early stage and much work must
be done: expansions and improvements of the theory should deal with both the
logical level and the signal-processing level. Sound types seem to be promising
entities to represent music because they are physically related to sound, are in-
vertible and are also capable to represent formal relationships and hierarchies.
In conclusion, we think that the strength of the proposed approach for music
description stands in the connection between the underlying symbolic system
(based on simple type theory) and the provided model (based on low-level de-
scriptors plus statistical learning); a twofold process, divided into a types infer-
ence stage and a rules inference stage, represents the conceptual link between
the two worlds. Since theories of types are able to scale over abstraction, the
resulting method is a scalable representation, ranging from sound to music in
the broadest sense.
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Plain and Twisted Adjoints of Well-Formed
Words

David Clampitt, Manuel Domı́nguez, and Thomas Noll

Abstract. This paper studies the mathematical basis for a new study of
modes of well-formed (WF) scales, and presents a new characterization
of special standard Sturmian morphisms.

We introduce WF words, which coincide with the step-interval pat-
terns of modes of well-formed scales. WF words can be represented as
conjugates of some Christoffel word (generalized Lydian mode).

To every WF word we may assign a pair of affine automorphisms
fw and gw. These assignments induce a pair of involutions over the set
of WF words: the plain adjoint and the twisted adjoint. We study the
properties of these adjoints; in particular we show how the plain adjoint
coincides with duality over the set of Christoffel words and also that
the twisted adjoint extends Sturmian involution to the set of WF words.
Thomas Noll’s divider incidence result holds, inter alia, that w is special
standard if and only if fw(1) = 1.

1 Geometrical Motivations

In [7], two topics were connected: step-interval patterns of WF scales (see [4]
and [5]) and Christoffel words (see [9], [1] and [10]). This connection initiated
the possibility of further integration of the algebraic combinatorial theory of
words into mathematical scale theory, and possibly reciprocally. Further music-
theoretical interpretation of the results herein are explored in [6].

We consider the monoid {x, y}∗ of words on a two-letter alphabet A = {x, y},
{x, y}∗ = {w|w = w1 . . . wN ; wi ∈ A}. The empty word, denoted ε, belongs to
{x, y}∗ and the monoid operation is concatenation of words. If F is an endo-
morphism of {x, y}∗, F (w) = F (w1 . . . wN ) = F (w1) . . . F (wN ), so F is entirely
determined by the images of x and y. The monoid St of Sturmian morphisms
on {x, y}∗ can be generated by the following morphisms:

G : x → x
y → xy

D̃ : x → xy
y → y

G̃ : x → x
y → yx

D : x → yx
y → y

E : x → y
y → x.

We define the monoid of special Sturmian morphisms, denoted by St0, as the
monoid St0 = 〈G, D, G̃, D̃〉. We use the word theory notations |w| to refer to the
length of the word w, i.e., the total number of letters it contains, while |w|x means
the number of appearances of the letter x in the word w, and similarly for |w|y .
We make use also of the rotation operator γ which transforms w = w1 . . . wN

into γ(w1 . . . wN−1wN ) = wNw1 . . . wN−1.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 65–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Given an irrational number 0 < θ < 1, we know that the scale of N notes gener-
ated by θ is well-formed if and only if N is the denominator of a (semi-) convergent
of θ. The succession of (semi-)convergents of θ produces an ordered infinite fam-
ily of well-formed scales called a hierarchy of WF scales generated by θ. If the two
distinct step intervals are of sizes a and b with a < b, then the larger step inter-
val splits into two intervals of sizes a and b − a in the next level of the hierarchy.
We can start from the two-note scale, {0, θ}, which has step-interval pattern xy,
then, every subsequent step-interval pattern of the hierarchy can be obtained as
the image of xy by an element of the monoid 〈G, D̃〉. These morphisms, G and D̃
connect two consecutive cases in the hierarchy, (see Figure 1, (a) and (b)).

Let us consider generalized generated sets of the type

Σk = {{−k · θ}, . . . , {(N − 1 − k) · θ}}, with k ∈ ZN ,

where {x} means decimal part of x. These sets are rotations of the scale of N
notes generated by θ. Recall that the generator θ coincides with the arc length
swept clockwise from every note on the circle σi to the next one in generation
order σi+1. Thus, modes of a scale can be represented by generalized generated
sets Σk. It follows from the circular representation of the scale that morphisms
D and G̃ connect consecutive cases of WF modes when notes are added to the
scale in the negative direction (see Figure 1, (c) and (d)).

(a) G(xyy) = (xxyxy) (b) D̃(xxxyxxy) = (xyxyxyyxyxyy)

(c) G̃(xyy) = (xyxyx) (d) D(yx) = (yyx)

Fig. 1. Geometrical interpretation of the monoid
〈
G, D, G̃, D̃

〉

The proposition below relates rotations of the step pattern of a WF scale with
step patterns of generalized generated sets.

Proposition 1. Given a WF scale Σ with step pattern w, Σ|w|x·k has as step
pattern γkw.
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Proof. One has just to recall that the homothecy h|w|y(k) = |w|y · k mod N
transforms scale order into generation order, and thus h|w|x transforms scale
order into generation order in negative direction.

We say that two words u, v are conjugated if u = xy and v = yx for some
words x, y. Notice that conjugation can be thought of as an equivalence rela-
tion via circle rotations, if we write the words around a circle. Therefore the
last proposition asserts that generalized generated scales have conjugated step-
interval patterns. This geometric interpretation suggests that the modes of WF
scales may be presented as words that encode rotations of generalized WF sets.
The next section will define such words as WF words, which will be shown to
be conjugates of Christoffel words.

2 Well-Formed Words

If we take as point of departure the geometrical interpretations of generalized
generated scales and their step-interval patterns, we can define in a purely word-
theoretical context a well-formed (WF) word.

Definition 1. Let w ∈ {x, y}∗ be a word formed by letters x and y.

1. The balance map of w is the map βw : {1, . . . , |w|} −→ Z with

βw(k) =
{

|w|y for wk = x
−|w|x for wk = y

.

2. The accumulation map of w is the map αw : Z|w| −→ Z with

αw(0) := 0 αw(k) :=
k∑

r=1
βw(r).

Let {n · θ}n=0,...,N−1 be a WF scale with step pattern w ∈ {x, y}∗. The size
of the jumps between consecutive notes in generation order is {θ} and {1 − θ}.
On the other hand, these jumps will be |w|y steps clockwise or N − |w|y =
|w|x counterclockwise, since |w|y is the diatonic length of the generator (see
[5], [3]). Thus, the balance map can be seen as the number of step intervals of
the generator in each appearance, with positive sign for clockwise and negative
for counterclockwise, whereas the accumulation map transforms scale order into
(generalized) generation order.

Definition 2. A word w is called well-formed if there exists an integer μw ∈
{0, . . . , |w|−1} such that {αw(0)+μw, . . . , αw(|w|−1)+μw} = {0, . . . , |w|−1}.
μw is called the mode of w.

The notion of a well-formed word was introduced by Thomas Noll in [11] and it
is a generalization of a Christoffel word, as the following proposition states.

Proposition 2. A word w of length |w| = N is well-formed with mode 0 if and
only if it is a Christoffel word.
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Proof. The accumulation map of a given word w can be represented geomet-
rically as a path that starts from (0, 0), ends in (−p · q,−p · q) and consists
of |w|x = p horizontal segments of length |w|y = q and q vertical segments of
length −p (see Figure 2 (b)). If we apply a pair of dilatations, namely x′ = 1

q x

and y′ = −1
p x we will have transformed the previous path into another one made

of vertical and horizontal segments of length 1 (see Figure 2 (a)). This last path
represents a mechanical word of slope p

q if and only if the N −1 points (k, αw(k))
for k = 1, . . . , N − 1 in Figure 2 (b) are above the segment that joins (0, 0) with
(−p · q,−p · q) ⇔ the values of the accumulation map are non-negative.

(a) The mechanical word aaabaab (b) Accumulation graph of aaabaab

Fig. 2. The accumulation map in the Christoffel case

The next step is the characterization of the set of well-formed words.

Lemma 1. If w is well-formed, γkw is also well-formed, furthermore:

μγkw = μw + k · |w|y mod |w|.

Proof. We just show that γw is well-formed whenever w is so. By the definition
of the balance map one has:

βγw(k) = βw(k + 1) ∀k = 1, . . . , |w| − 1
βγw(|w|) = βw(1).

Therefore, we have that

αγw(k) =
k∑

r=1

βγw(r) =
k∑

r=1

βw(r + 1) =
k+1∑
r=2

βw(r) = αw(k + 1) − βw(1),

and thus μγw = − inf αγw(k) = −(inf αw(k + 1) − βw(1)) = μw + βw(1) ≡
μw + |w|y .
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This last result, together with proposition 2 and the fact that a morphism of
words F is Sturmian if and only if the word F (xy) is conjugated with some
Christoffel word, yields the central result of this section:

Theorem 1 (Characterization of well-formed words). A word is well-
formed ⇐⇒ it is conjugated with some Christoffel word. The set of all well-
formed words coincides with the set of all words of the type w = F (xy) where
F ∈ St.

We conclude the section with a description of special standard words in terms
of well-formed words of mode |w|y − 1.

Lemma 2. The special standard word w = uxy and the Christoffel word xuy
are conjugated and one has

γ|w|−1
y −1w = xuy.

Proof. A word w is special standard ⇔ w = w1 · w2 with (w1, w2) a standard
pair. Following [10, Lemma 2.2.8] we have

either
{

w1 = pyx = qr
w2 = qxy

or
{

w1 = qyx
w2 = pxy = qr

.

where p, q and r are in PAL (the set of palindromes). In the first case we have
that

γ|w1|−1w = x · qxyp · y = x · qrq · y.

Therefore γ|w1|−1w = xuy with u ∈ PAL ∩ PALxyPAL that coincides, by [10,
Corollary 2.2.9], with the set of central words. xuy is thus a Christoffel word.
The second case is completely analogous. Notice finally that |w1| = |w1 · w2|−1

y

mod |w| and |w2| = |w1 · w2|−1
x mod |w|.

Corollary 1. A well-formed word w is a special standard word ⇐⇒ μw = |w|y−1

Proof. Proof. We have just to compute the mode of the special standard word
w depending on the mode of the Christoffel word γ−(|w|−1

y −1)w, which is zero:

μw = 0 − (|w|−1
y − 1) · |w|y = |w|y − 1.

Let us finally relate the step-interval pattern of generalized generated sets Σk to
WF words. With that purpose we denote by σi = {i·θ} the i-th note in generation
order (where i may be negative), and by Σ0 = {0 = ρ0 < ρ1 < . . . < ρN−1} the
scale order of the associated WF scale.

Proposition 3. If Σ = Σ0 is a WF scale with N notes, the scale pattern of Σk

is a WF word w of mode k for every k ∈ ZN and one has:

ρ(i+k|w|−1
x )modN = σ(|w|y·i)modN−k, ∀i ∈ ZN .
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3 Plain and Twisted Adjoints

Given a WF word w of mode μ, we introduce two affine automorphisms of ZN ,
fw (plain affinity) and gw (twisted affinity), associated with the word w and
defined by the formulas below.

fw(k) = |w|y · k − μ mod N gw(k) = |w|x · k + N − 1 − μ mod N.

If w is the step pattern of a WF mode Σμ, −μ and N − 1− μ are the minimum
and the maximum, respectively, of the accumulation map αw and therefore the
morphism fw transforms scale order (starting from the first note in generation
order σ−k = {−k·θ}) into generation order. On the other hand, the morphism gw

starts from the last generated note σN−1−k and it covers the scale in a negative
direction (see Figure 3).

Fig. 3. Generated scale of pattern (xyx, yx) = D̃G̃(x, y)

Definition 3. Given a WF word w, we call the plain adjoint of w, denoted by
w�, the unique word whose associated affinity coincides with the inverse affinity
of w. In other words, the plain adjoint w� is defined by the equation:

fw� = (fw)−1

Example 1. We show in the following table the conjugation class of the diatonic
step pattern xxxyxxy in relation with the conjugation class of the dual pattern
(plain adjoint).

w xxxyxxy xxyxxyx xyxxyxx yxxyxxx xxyxxxy xyxxxyx yxxxyxx
fw(k) 2k 2k − 2 2k − 4 2k − 6 2k − 1 2k − 3 2k − 5
fw�(k) 4k 4k − 6 4k − 5 4k − 4 4k − 3 4k − 2 4k − 1

w� xyxyxyy yyxyxyx yxyyxyx yxyxyyx yxyxyxy xyyxyxy xyxyyxy
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Observe that the inverse of an affinity g(k) = a ·k+b is the affinity g−1(k) = a−1

mod n · k + (−a−1 · b) mod n. Thereby one has that

βw�(k) = αw�(k) − αw�(k − 1) = |w|−1
y mod |w|.

Therefore the balance of the word w� is equal to

βw�(k) =
{

|w|−1
y for w�k = x

−|w|−1
x for w�k = y.

If w is a Christoffel word, its plain adjoint w� is also a Christoffel word
because its mode is 0. In fact, it coincides with the Christoffel word of slope
|w|−1

y

|w| . Recall that this last word coincides by definition (see [2]) with the dual
word of w. Thus, we have shown:

Proposition 4. For Christoffel words, the plain adjoint w� coincides with the
dual word w∗.

The canonical injection St0 ↪→ WF associates to every Sturmian morphism F

the WF word F (xy). If we focus on the monoid of Christoffel morphisms
〈
G, D̃

〉
we have the following result:

Proposition 5. The diagram:〈
G, D̃

〉
�

� � ��

rev

��

WF

〈
G, D̃

〉
� � �� WF

��

�

is commutative or, in other words:

f(xy)� = f rev(xy)

where F rev denotes the retrogradation of F as a word in
〈
G, D̃

〉
.

Proof. Observe that w� is the dual of w and the Christoffel morphisms related
to dual words are retrograde (see [7, Proposition 10]).

One has also the same result for the standard monoid:

Proposition 6. The following diagram is commutative (where F rev denotes the
retrogradation of F as a word in 〈G, D〉):

〈G, D〉

�

� � ��

rev

��

WF

〈G, D〉 � � �� WF
��
�

,



72 D. Clampitt, M. Domı́nguez, and T. Noll

Proof. The square in the proposition may be decomposed in the following way:

〈G, D〉 � � ��

ρ

���
��

��
���

�

��

WF

�

��

〈
G, D̃

〉
rev

��

�� Ch

�

��

φ

������������

〈
G, D̃

〉
�� Ch

φ

���
��

��
��

��
�

〈G, D〉

ρ
�����������

� � �� WF

where ρ :
G → G

D → D̃
and φ(xuy) = uxy. One has just to show that every smaller

square commutes. The left square trivially commutes and the square in the center
is commutative by proposition 5. If the characteristic morphism of a Christoffel
word xuy is F, then the characteristic morphism of uxy is ρ(F ). Thus upper
and lower squares also commute. The commutativity of the square on the right,
finally, is equivalent to the formula

uxy� = u′xy,

where u′ is the central word of the dual of xuy.

The problem is that this nice formula F (xy)� = F rev(xy) does not extend to
the whole special Sturmian monoid St0. That is, the following diagram is not
commutative:

St0

�

� � ��

rev

��

WF

St0
� � �� WF

��
�

Notice that G̃(xy)� = (y, xx) is not a morphic WF word. That is, a so-called
bad conjugate, not the image of a morphism.

We can solve this problem by giving a definition in a parallel way to the plain
adjoint, namely the twisted adjoint :

Definition 4. Given a well-formed word w, we define the twisted adjoint of the
word w by the same formula as the plain adjoint, but using the morphism gw

instead:
gw� = g−1

w .

In other words, twisted maps associated to words which are twisted adjoints of
each other are each other’s inverses.
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Example 2. The following table shows the twisted adjoints of all words conju-
gated with the diatonic step pattern xxxyxxy.

w xxxyxxy xxyxxyx xyxxyxx yxxyxxx xxyxxxy xyxxxyx yxxxyxx
gw(k) 5k + 6 5k + 4 5k + 2 5k 5k + 5 5k + 3 5k + 1
fw�(k) 3k + 3 3k + 2 3k + 1 3k 3k + 6 3k + 5 3k + 4

w� yxyxyxy yxyxyyx yxyyxyx yyxyxyx xyxyxyy xyxyyxy xyyxyxy

We define the Sturmian involution as the anti-automorphism ∗ over the monoid
of special Sturmian morphisms St0

∗→ St0, which fixes G and G̃ and exchanges
D and D̃. Sturmian involution extends Christoffel duality to the monoid of
Sturmian morphisms (see [2] Proposition 4.1). In a parallel way, the twisted
adjoint extends the involution of special Sturmian morphisms to the set of WF
words:

Proposition 7. The following diagram is commutative:

St0

�

� � ��

∗
��

WF

St0
� � �� WF

��
�

To prove this result we need to recall the description of the set of special
Sturmian morphisms F such that F (xy) is conjugated with a given Christof-
fel word w. There are exactly N − 1 such morphisms, and they can be ordered
as F1, F2, . . . , FN−1 with F1 a special standard morphism (generated by G and
D) and γFi(xy) = Fi+1(xy) for all i = 1, . . . , N − 2 (see [2]).

Lemma 3. Given a WF word w and let F1, F2, . . . , FN−1 be the set of special
Sturmian morphisms related to w. Then, the twisted affinity associated with the
special Sturmian morphism Fi is gFi(k) = |w|x · k + |w|x · i.

Proof. From [2], Lemma 4.2 we have that F|w|−1
y

(xy) = u is a Christoffel word,
and thus its twisted affinity is gu(k) = |w|x · k + N − 1. By definition of twisted
affinity one has that gγjw ≡ gw + j · |w|x mod N and thus, we have that F1 =
γ(|w|−1

x +1)F|w|−1
y

has as twisted affinity

gF1(xy)(k) = |w|x ·k+N−1+(|w|−1
x +1)·|w|x = |w|x ·k+N +|w|x ≡ |w|x ·k+|w|x

We close the argument by recursion.

Proof. (Proposition 7) Notice that gw� is a homothecy ⇔ νw = 0 ⇔ αw(k) ≤
0 ∀k = 0, . . .N − 1 ⇔ w is an amorphic word (w = yux with u a central word),
that is, w is a negative Christoffel word. Then the twisted adjoint sends amorphic
words to amorphic words and therefore it sends morphic words to morphic words.

Recall a last result from [2]: if F1, F2, . . . , FN−1 (resp. F ′
1, F

′
2, . . . , F

′
N−1) is the

succession of special Sturmian morphisms related to a Christoffel word w (resp.
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to w�) then one has F ∗
i = F ′

i|w|y . It is enough to show that the twisted affinities
associated to Fi and F ′

i·|w|y are inverses one of each other. By the previous lemma
one has:

gF∗
i

= gF ′
i·|w|y

= |w|−1
x · k + |w|−1

x · |w|y · i = |w|−1
x · k + |w|−1

x · (N − |w|x) · i ≡

≡ |w|−1
x · k − i = (|w|x · k + |w|x · i)−1 = g−1

Fi
,

which completes the proof.

We conclude the section with a result that analyzes the concatenation of plain
and twisted adjoints. Let WFN denote the set of WF words w of length N
in {x, y}∗ and let Aff∗(ZN ) denote the group of affine automorphisms of the
cyclic group ZN of order N . Let furthermore j�, j� : ZN → ZN denote the
affine automorphisms given by the formulas j�(k) = −k+1 mod N and j�(k) =
−k − 1 mod N , respectively.

Proposition 8. The concatenation � ◦ � is an involution over the set WFN .
Furthermore, we have:

� ◦� = � ◦� : WFN → WFN ,

and the application induced over Aff ∗ (ZN ) is an inner automorphism:

fw�� = j� ◦ fw ◦ j−1
� and gw�� = j� ◦ gw ◦ j−1

� .

Proof. Notice that Δ(fw��) = fw��(k+1)−fw��(k) = Δ(j� ◦gw ◦ j−1
� ) = |w|y

and therefore one has just to check that j� ◦ gw ◦ j−1
� (0) = fw��(0) to conclude

that the affinities fw�� and j� ◦gw ◦j−1
� coincide. An analogous argument yields

that gw�� = j� ◦ gw ◦ j−1
� .

4 Divider Incidence

In this section we extend Noll’s result for plain adjointness (see [12]), Divider
Incidence, which holds, inter alia, that a word w is positive standard Sturmian if
and only if fw(1) = 1. (See Figure 4). Before we can explain, why fw(1) = 1 (and
likewise in the twisted case gw(1) = 1) are expressions of divider incidence, we
shall first understand the difference between plain and twisted adjoint in terms
of height and width trajectories. First recall the plain case (see left graph in
Figure 4 and [12] for details), where the height trajectory of a word w is built as
a point sequence Φ : {0, . . . , N} → Z

2, whose difference vectors Φ(k) − Φ(k − 1)
are either va = (|w|b, 1) or vb = (−|w|a, 1). The sequence of indices (i.e., of a’s
and b’s), which is associated with the sequence of vectors (Φ(1)−Φ(0)), (Φ(2)−
Φ(1)), ..., (Φ(N) − Φ(N − 1)), coincides with the order of the letters a and b in
the word w. The width trajectory of the plain adjoint word w� is the point
sequence Ψ : {0, . . . , N} → Z

2, whose difference vectors Ψ(k) − Ψ(k − 1) are
either vx = (1, |w�|y) or vy = (1,−|w�|x). Here again the sequence of indices
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Fig. 4. Divider Incidence for plain adjoints

x or y, which is associated with the sequence of vectors (Ψ(1) − Ψ(0)), (Ψ(2) −
Ψ(1)), ..., (Ψ(N) − Ψ(N − 1)), coincides with the order of the letters x and y
in the word w�. Thereby we have an equality of point sets: {Φ(0), . . . , Φ(N −
1)} = {Ψ(0), . . . , Ψ(N − 1)}. What characterizes the construction of the plain
adjoint is the fact that in the primary vectors va = (1, |w|b) as well as in vx =
(|w�|y, 1) both coordinates have the same sign. In the twisted case the signs
differ from one another. In the present paper we choose the primary vectors va =
(−1, |w|b) and vx = (|w�|y,−1), i.e., we switch the direction of the trajectories
Φ′, Ψ ′ : {0, . . . , N} → Z

2, while keeping the positive coordinates |w|b and |w�|y
(see also Figure 5). Thereby we have again the defining equality of point sets:
{Φ′(0), . . . , Φ′(N − 1)} = {Ψ ′(0), . . . , Ψ ′(N − 1)}.

In terms of the height and width trajectories both equations fw(1) = 1 and
gw(1) = 1 mean that the point (1, 1) represents the divider in both trajecto-
ries. In the plain case we have Φ(|w�|y) = Ψ(|w|b) = (1, 1) and in the twisted

Fig. 5. Divider Incidence for twisted adjoints
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case it is Φ′(|w�|y) = Ψ ′(|w|b) = (1, 1). Why is it the point (1, 1)? For any spe-
cial Sturmian morphism F the accumulation at the divider of w = F (x)|F (y)
is αw(|F (x)|) = 1. This is a consequence of the known fact that the inci-

dence matrix MF =
(
|F (x)|x |F (y)|x
|F (y)|x |F (y)|y

)
is an element of SL2(Z) (see [10]):

αw(|F (x)|) = |w|y |F (x)|x−|w|x|F (x)|y = (|F (x)|y+|F (y)|y)|F (x)|x−(|F (x))|x+
|F (y)|x)|F (x)|y) = |F (y)|y|F (x)|x − |F (y)|)|F (x)|y = Det(MF ) = 1. Thus the
main point in the equations fw(1) = 1 and gw(1) = 1 is the assertion that it
is precisely the argument 1, where the affine morphisms fw and gw take this
accumulation value 1.

Theorem 2 (Divider Incidence). Given a WF word w of length N , which is
the step-interval pattern of a generated mode Σk = {σ−k, . . . , σN−1−k}, then:

1. The following assertions are equivalent (D.I. for plain adjoint):
(a) w = F (xy) with F ∈ 〈G, D〉 a special standard morphism.
(b) fw(1) = 1 where fw is the plain affinity associated to w.
(c) The notes σ−k and σ1 are consecutive in scale order, i.e., the origin of

the scale folding is the divider predecessor in scale order.
2. The following assertions are also equivalent (D.I. for twisted adjoint):

(a) w = F (xy) with F ∈
〈
G̃, D̃

〉
· G ·

〈
G̃, D

〉
.

(b) gw(1) = (1) with gw the twisted affinity associated with w.
(c) The notes σ1 and σN−1−k are consecutive in scale order, i.e., the origin

of the scale folding is the divider successor in scale order.

Proof. We shall first show that the conditions (b) and (c) are equivalent in both
cases (1) and (2). Remember that in the plain case the value fw(0) is the reduc-
tion modulo N of the minimal accumulation. Condition (1b) is therefore equiv-
alent to the condition (1c), namely that the index with minimal accumulation is
the divider predecessor (simply because 0 proceeds 1 in the ascending order of
the arguments). In the twisted case, the value gw(0) is the reduction modulo N
of the maximal accumulation, and condition (2b) is therefore equivalent to the
condition (2c), namely that the index with maximal accumulation is the divider
successor (because 0 follows 1 in the descending order of the arguments). The
main part of the proof is therefore to show the equivalence of either (b) or (c)
with condition (a).

For the plain case this is done in [12] by means of structural induction down the
free monoid 〈G, D〉 of special standard morphisms. The same technique applies
to the twisted case. But some comments should be made in the beginning, as
the set T =

〈
G̃, D̃

〉
· G ·

〈
G̃, D

〉
is redundantly presented here. To begin with,

the redundant presentation perfectly shows that T is invariant under Sturmian
involution: If we have a special Sturmian morphism F = F1 · G · F2 with anti-
standard morphism F1 ∈

〈
G̃, D̃

〉
and anti-Christoffel morphism F2 ∈

〈
G̃, D

〉
we obtain F ∗ = F ∗

2 · G · F ∗
1 , which is also in T because F ∗

2 is anti-standard
and F ∗

1 is anti-Christoffel. In other words, the formulation of condition (2a) is
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consistent with Proposition 7. To remove the redundancy in the presentation
of T , recall that the special Sturmian monoid St0 =

〈
G, D, G̃, D̃

〉
is known to

satisfy a number of relations. Among these we find:

G̃D̃kG = GDkG̃, for k = 0, 1, 2, . . . .

This leads to the (non-redundant) presentation T =
〈
D̃
〉
· G ·

〈
G̃, D

〉
.

We are interested in the orbit T (x|y) of the pair (or divided word) x|y. The
same set of pairs is also the orbit of x|y under the following monoid of trans-
formations (see [10] or [12]): T =

〈
Γ̃ , Δ

〉
· Γ ·

〈
Δ̃
〉
, where for any ordered pair

w1|w2 of words

Γ (w1|w2) = w1|w1w2 Δ(w1|w2) = w2w1|w2

Γ̃ (w1|w2) = w1|w2w1 Δ̃(w1|w2) = w1w2|w2.

We need to understand an important aspect of the behavior of the accumula-
tion maps αΓ (w1|w2)(t), αΔ(w1|w2)(t), αΓ̃ (w1|w2)(t), and αΔ̃(w1|w2)(t) in compari-
son to the accumulation map αw1|w2(t). For each factor w1 or w2 within the four
words w1w1w2, w2w1w2, w1w2w1, w1w2w2 we may consider maps such as ω :
αw1w1w2({0, 1, ..., |w1|}) → αw1w2({0, 1, ..., |w1|}) sending the local accumulation
values to those of the original factors in w1w2, e.g. ω : αw1w1w2(t) �→ αw1w2(t)
for t ∈ {0, 1, ..., |w1|}. Each of these maps ω sends a set of integers to a set of
integers bijectively. The relevant aspect for our proof is the fact that these maps
are completely order-preserving. Although the concrete accumulation values dif-
fer from factor to factor they strictly preserve their relative order relations. In
particular, if in w2 the highest accumulation αw1|w2(t) occurs after the second
letter of w2, i.e., at t = |w1|+1, this remains locally the case for every occurrence
of w2 in the four words w1w1w2, w2w1w2, w1w2w1, w1w2w2.

For the structural induction we go down the binary
〈
Γ̃ , Δ

〉
tree, with an

initial map Γ · Δ̃k prepended (from the right). Therefore, as the initial part for
structural induction we inspect the special type of pair

w = w1|w2 = Γ · Δ̃k(x|y) = Γ (xyk|y) = xyk|xyky = D̃k(x|xy) = D̃k · G(x|y).

The balance and accumulation maps are given as

βw(1) = βw(k + 2) = 2k + 1,
βw(2) = βw(3) = · · · = βw(k + 1) = βw(k + 3) = · · · = βw(2k + 3) = 2,
αw(0) = 0, αw(1) = 2k + 1, αw(2) = 2k − 2 + 1, . . . , αw(k + 1) = 1,
αw(k + 2) = 2k + 2, αw(k + 3) = 2k, αw(k + 4) = 2k − 2, . . . , αw(2k + 3) = 0.

The associated affine morphism satisfies (with μ = 0 and N = 2k + 3)

gw(t) = |w|x · k + N − 1 − μ = 2t + (2k + 3) − 1 − μ = 2t − 1 mod (2k + 3).
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Thus, gw(1) = 1 and the maximal value gw(0) = 2k+2 is the successor of value 1
in scale order. Now suppose, we have a pair w = w1|w2, for which the maximum
value of the accumulation is reached after the first letter of w2. Furthermore
— for technical reasons — we suppose that either w1 is a prefix of w2 (which
is actually the case in our initial situation, where w1|w2 = xyk|xyky) or that
w2 is a prefix of w1 in such a way that the factorization w1 = wn

2 w3 satisfies
w2 = w3w4 for some non-empty word w4 and some n ≥ 1. We need to study two
cases:

1. Γ̃ (w1|w2) = w1|w2w1. If w1 is a prefix of the divider suffix w2 (in w1|w2) it
is also a prefix of the longer divider suffix w2w1 in Γ̃ (w1|w2). If, however,
w2 is a prefix of the divider prefix w1 = wn

2 w3 (in w1|w2) such that there
is a factor w4, satisfying w2 = w3w4 and thus w1 = (w3w4)nw3, then w1
is a prefix of the new divider suffix w2w1 = w2(w2)nw3 = (w3w4)n+1w3 =
((w3w4)nw3)w4w3 in Γ̃ (w1|w2). This means that the second (technical) part
of the induction hypothesis is satisfied for Γ̃ (w1|w2).

We already noticed that highest accumulation value αw1|w2w1(t) within
the factor w2 is still at the index t = |w1| + 1. We must exclude the
possibility that a higher value is being reached in one of the two w1 fac-
tors. There are three accumulation values, which we immediately know:
αw1|w2w1(0) = 0, αw1|w2w1(|w1|) = 1 and αw1|w2w1(|w1w2w1|) = 0. We con-
clude that αw1|w2w1(|w1w2|) = −1. From this we may conclude that, if the
global maximum is being reached in one of the two w1 factors, it needs to
be the first one. But as w1 is a prefix of the new divider suffix w2w1 its
accumulation must behave analogously to this prefix, up to a shift by some
number. But we know this shift explicitly. The accumulation at the divider
is 1, while the accumulation at the beginning of the word is 0, by definition.
So conclude that the global maximum of the accumulation is reached after
the first letter after the divider.

2. Δ(w1|w2) = w2w1|w2. If w1 is a prefix of the divider suffix w2 = w1w3
(in w1|w2), we obtain Δ(w1|w2) = w1w3w1|w1w3, which satisfies the second
(technical) part of the induction hypothesis in this case. If, however, w2 is
a prefix of the divider prefix w1 = wn

2 w3 (in w1|w2) such that there is a
factor w4, satisfying w2 = w3w4 and thus w1 = (w3w4)nw3, then, of course,
w2 is again a prefix of the new divider prefix w2w1. But it also satisfies the
factorization property with the same factor f4 and power n+1 instead of n:
w2w1 = (w3w4)(w3w4)nw3 = (w3w4)n+1w3 in Δ(w1|w2). This means that
also in this case the second (technical) part of the induction hypothesis is
satisfied. With the maximal accumulation we may argue as in the previous
case. The first factor w2 starts with accumulation 0, while divider successor
w2 starts with accumulation 1. The possibility to reach a maximum within
w1 can be excluded because the order of the accumulation values of the
factor w1w2 within w2w1w2 needs to be the same as in the original word
w1w2, where the maximum was reached after the first letter of w2 by the
induction hypothesis. �
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Fig. 6. xyxyxyy and xxxyxxy: prefixes of the Sturmian words of slopes log2( 3
2 ) and

− 1
log2( 3

2 )

5 Final Remarks

1. David Clampitt objected to the musical interpretation (that is to say, to
the graphical representation) of twisted adjoints in the present formulation.
When our treatment is extended to the free group of two letters (that is, when
inverse letters are admitted), the proper representations may be given for
the twisted cases, which for St0 are connected with upward step-interval pat-
terns/backward scale-folding patterns (i.e., negative generation orders), and
downward step-interval patterns/forward scale-folding patterns (i.e., positive
generation orders). This extension is proposed in [6].

2. For the diatonic scale of 7 notes, the step-interval pattern and scale-folding
pattern can be generated as prefixes of two Sturmian words of perpendicular
slopes (see Figure 6). One can check that this is not always the case, but
there is a tight connection between WF duality, reverse of morphisms and
retrogradation of the continued fraction representation of the generator. A
further investigation of this subject is presented in [8], where the description
of modes in terms of hight and width coordinates determined by generator
vector (1, g) and its perpendicular (−g, 1) is taken into account.
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Abstract. Norman Carey and David Clampitt observed in [4] that each
region has two well-formed scales as its prefixes. If one looks at this
finding from the viewpoint of word theory, one observes that regions are
central words and the two prefixes are their independent periods. More
precisely, each region, understood as a word in a two-letter alphabet,
contains two distinct prefixes, both of which represent well-formed scales.
One period is a special standard word, and the other period is a non-
special standard word. Thomas Noll proposed in [13] to generalize the
authentic Ionian mode through special standard words. He showed that
the property of divider incidence characterizes these words among their
conjugates. Thus there are two parallel lines of generalization which can
be further enriched by observations from [7], [8], as well as by further
combinatorial connections between central and standard words.

Two independent lines of research turn out to have so many conceptual cross-
links, that a productive synergy emerges immediately from their contact (see
[10], [6], [13], [14]). In the past two decades Norman Carey and David Clampitt
developed mathematical music theory for the study of scales, regions and related
concepts. At the same time mathematicians such as Aldo de Luca, Jean Berstel,
Valérie Berthé, Christian Kassel, and Christophe Reutenauer investigated a cer-
tain branch of algebraic combinatorics on two-letter words, which includes the
study of central words, standard words, Christoffel words. We refer the reader
to chapter 2 in [11], as well as to [3], [12], [1], [2].

1 Regions

In [4] Carey and Clampitt attempted a rational reconstruction of certain pitch-
space diagrams found in medieval treatises, such as the heptactys in Scolica
enchiriadis and elsewhere and the diamond-shaped diagrams in the Micrologus
of Guido of Arezzo. They were motivated by a care to understand aspects of
diatonicism that were perhaps more available to medieval theorists, who were
not so in the thrall of the notion of pitch class, i.e., octave equivalence. The
notion of a region arises from an alternative path suggested at the outset of their
earlier article, [5]: “At the . . . purely mathematical level, the octave and the fifth
play perfectly symmetrical roles: they are simply numbers which generate other
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c© Springer-Verlag Berlin Heidelberg 2009



82 D. Clampitt and T. Noll

numbers. At the level of the formal theory presented here, however, octave and
fifth are presumed to play fundamentally dissimilar roles: the octave establishes
a primary equivalence relation — octave equivalence — while the fifth generates
the different pitch and interval classes. The fifth generates material which fills
the frame provided by the octave.” What are the implications of taking seriously
the symmetry announced at the beginning of this quotation? It implies first of
all that the imposed asymmetry may be reversed: as opposed to the procedure
in [5] where, for example, the diatonic scale is generated by the perfect fifth with
periodicity at the octave, we may understand the perfect fifth as the frame of
a scale with diatonic step intervals that is generated by the octave. The latter
case is precisely the dasian scale of the Enchiriadis treatises. In both cases, the
scales satisfy the well-formedness condition: generated sets where the generator
is everywhere spanned by the same number of step intervals. Abolishing the
asymmetry, rather than reversing it, leads to the notion of a region, a pitch-
space construction within which modes of the two alternative well-formed scales
are enclosed.

We will not need the very concrete instantiations of regions that the definition
in [4] provides, but for definiteness we consider a small region, the heptactys. If
we consider the perfect octave and perfect twelfth as co-generators, either one is
potentially the frame of a non-degenerate well-formed scale with step intervals
perfect fourth (a), and whole step (b): C F G C’ yields the step-interval pattern
aba, while C F G C’ F’ G’ yields the step-interval pattern abaab. The largest
pitch space within which modes of both well-formed scales may coexist is the
region C F G C’ F’ G’ C”: above the region if the note F” were chosen, that
would confirm the octave above F’ but would contradict the twelfth above G,
D”, and conversely were D” to be chosen. Similarly, below the region a choice
is forced between the B-flat a twelfth below F’ and the octave below G. The
heptactys is the maximal space within which both well-formed scales remain in
balance, in the above sense.

The heptactys region corresponds to the palindromic word abaaba, and the driv-
ing conception behind the paper — that always two well-formed scales of dif-
ferent periods have modes within an enveloping region — can be rephrased in
terms of the mathematical fact that the two prefixes of a central word that are
the fundamental patterns for its two periodicities are standard words: namely, one
positive standard word and one negative standard word. On the other hand, the
driving idea of an enveloping region was already subverted by another example in
[4], Guido’s hexachord: a region enclosed within a well-formed scale par excellence,
the diatonic (major) scale. This countervailing conception is similarly realized in
word theory in the mathematical fact that every central word may be extended in
two ways to standard words; every region extends into two standard modes.

1.1 Ut-Re-Mi-Fa-Sol-La

Let us consider that prominent music-theoretical object, the Guidonian hexa-
chord. Figure 1 displays two arrangements of its six notes, namely (Ut, Re, Mi,
Fa, Sol, La) (step order) and (Fa, Ut, Sol, Re, La, Mi) (generation order folded



Regions and Standard Modes 83

into an octave). Both arrangements deploy binary interval patterns, namely as-
cending major and minor seconds in the step pattern and ascending fifths and
descending fourths in the folding of the chain of fifths into the ambit of one
octave. We represent these binary patterns in terms of two two-letter words,
namely u = aabaa (for the step-interval pattern with letters a and b represent-
ing the ascending major and minor seconds respectively) and u′ = yxyxy (for
the folding pattern with letters x and y representing the ascending fifth and de-
scending fourth, respectively). Let q = aaba and p = aab denote the two prefixes
of u of lengths 4 and 3, respectively. When we write u = qa, we see that u has a
periodic continuation as qq = (aaba)(aaba). When we write u = paa, we see that
u has also a periodic continuation as pp = (aab)(aab). An analogous observation
can be made with the folding pattern u′ = yxyxy and its two prefixes q′ = yx of
length 2 and p′ = yxyxy of length 5: u′ has the potential periodic continuation
qqq = (yx)(yx)(yx), and p = (yxyxy) is exactly a complete period of p, and can
still be extended to pp = (yxyxy)(yxyxy).

Fig. 1. Step pattern and fifth/fourth folding of the Guidonian hexachord as instances
of central palindromes

The possibility for such a potential double periodicity is only given for words
which are short enough. It turns out that for periods 4 and 3, the length 5 =
3 + 4 − 2 is already the maximum. The same length 5 = 2 + 5 − 2 is also the
maximum for the periods 2 and 5. The following proposition is a well-known fact
in the algebraic combinatorics on words. It provides the minimal word length,
for which such a potential double-periodicity becomes impossible.

Proposition 1 (Theorem of Fine and Wilf). (c.f. [11], prop. 1.2.1)
Let q and p be words of lengths n = |q| and m = |p|, respectively. Let d =
gcd(n, m) denote the greatest common divider of n and m. If two powers qk =
qq...q and pl = pp...p of q and p have a common prefix v of length at least
n + m − d, then q and p are powers of the same word.

We inspect again the words q = aaba of length n = 4 and p = aab of length
m = 3 in the light of this theorem. The longest common prefix of the powers qq =
aabaaaba and pp = aabaab is indeed the word aabaa of length 5 = 4 + 3− 2, the
step-interval pattern of the Guidonian hexachord. 5 is the largest number below
the threshold m + n− gcd(m, n) = 6 in the presupposition of the theorem. And
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Fig. 2. Construction of two new central words aabaaabaa and aabaabaa from the cen-
tral word aabaa

therefore it is still possible to have double-periodicity without the consequence
of the theorem, namely that the words q and p would necessarily be powers of
one and the same word.

1.2 Central Words

The present paper focuses exactly on the generalization of this limiting case,
where the word length of u undercuts the critical length n + m − gcd(n, m) of
the theorem of Fine and Wilf by 1. We also restrict ourselves to the case where
the two periods m and n are mutually co-prime, i.e., where gcd(n, m) = 1,
and where |u| = m + n − 2. The double-periodic two-letter words of this type
are known as central words or central palindromes in the literature. There are
two ways to arrange the central words in a strict binary tree structure and the
relation between these two trees can be interpreted as a duality.

We look again at the example aabaa in order to explain how the central tree
is organized. Figure 2 shows the two successor nodes of the node u = aabaa.
We write Pa(u) = qu = aabaaabaa for the successor to the left and Pb(u) =
pu = aabaabaa for the successor to the right. Each successor is defined as the
concatenation of one of the two prefixes q or p with the word u itself. We shall
check that these successors are both double-periodic. Recall, that the concrete
node u = aabaa is double-periodic with respect to its two prefixes q = aaba and
p = aab. Each of the two successors inherits one of the two periodicities and
abandons the other: qu = aabaaabaa inherits period n = 4 with pattern q and
abandons period m = 3, while pu = aabaabaa inherits period m = 3 with prefix
p and abandons period n = 4 with pattern q. In both cases one new period comes
into play, namely n+m = 7. The associated prefixes are the two concatenations
qp and pq of the original prefixes q and p. The other prefix of Pa(u) = qu is
qp = uab = aabaaab, and the other prefix of Pb(u) = pu is pq = uba = aabaaba.
Note that the sum 7 = 3 + 4 is co-prime with both 3 and 4, and therefore both
new pairs of periods, 4 and 7, as well as 3 and 7 are co-prime.

The example can be easily generalized. For every double-periodic word u in
letters a and b with co-prime periods n and m and associated prefixes q of length
n = |q| and p of length m = |p| we construct
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Fig. 3. Beginning of the infinite binary tree of central words

1. the left successor Pa(u) = qu with co-prime periods n and n + m and asso-
ciated prefixes q and qp,

2. the right successor Pb(u) = pu with co-prime periods m and m + n and
associated prefixes p and pq.

The entire tree (see Figure 3) starts from the empty word ε, which — some-
what counterintuitively, but for good systematic reasons — is supposed to have
the periods n = m = 1 and associated “ghost-prefixes” q = a and p = b. This
exotic behavior continues along the outermost branches of the tree, where either
only a’s or b’s occur.

1.3 Duality for Central Words

In this subsection we want to generalize and thereby explain the nature of the
relation between the step-interval pattern u = aabaa and the associated folding
pattern u′ = yxyxy of the hexachord. Figure 1 helps to acknowledge these pat-
terns on the basis of music-theoretical background knowledge. Likewise, we may
use our music-theoretical intuition in order eventually to find an octave/twelfth-
folding pattern in association with the step-interval pattern abaaba of the hep-
tactys region. In this case the tones C F G C’ F’ G’ C” (in ascending height
order) are re-ordered as G G’ C C’ C” F F’ with the folding pattern xyxxyx.
What we are looking for is a word-theoretic explanation for the associations
below:

aabaa ↔ yxyxy abaaba ↔ xyxxyx

The tree in Figure 3 provides an alternative reading, which opens an additional
perspective on central words: Central words are palindromes of a very special
kind, (which is why they are also called central palindromes in the literature).
Every node u on the tree can be constructed as an iterated right palindromic
extension of its associated directive word, which encodes the path on the tree
from the root to the node u. The (simple) right palindromic extension of a
word w is the unique shortest palindrome w+ having w as a prefix. This means:
one writes w = w1w2 with w2 being the longest palindromic suffix of w. If w̃1
denotes the reversal of the word w1 one obtains w+ = w1w2w̃1. The iterated
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Fig. 4. Compilation of the binary tree of central words with its dual tree. In each box
the word u ∈ {a, b}∗ (on left side) denotes a node of the central tree, while the word
u′ ∈ {x, y}∗ (on the right side) denotes the associated dual central word, which belongs
to the associated node of the dual tree.

right palindromic closure Pal(w) of a word w = w′wn is defined recursively as
(Pal(w′)wn)+, where wn denotes the last letter of w. The recursion terminates
with Pal(ε) := ε for the empty word ε. One can easily prove that the map Pa

associates any central word u with the right palindromic extension (ua)+ of ua,
and likewise Pb maps u to the right palindromic extension (ub)+ of ub. In our
hexachord example the central palindrome u = aabaa = Pb(Pa(Pa(ε))) is the
iterated palindromic extension u = Pal(aab) of the directive word dir(u) = aab,
because Pal(aab) = (((a+)a)+b)+ = (aab)+ = aabaa.

The central palindrome u′ is the iterated right palindromic extension
u′ = Pal(yxx) of the directive word dir(u′) = yxx, because Pal(yxx) =
(((y+)x)+x)+ = ((yx)+x)+ = (yxyx)+ = yxyxy. Observe that — up to a re-
naming of the letters (x � a, y � b) — the directive words aab and yxx are
retrogrades of each other. Without proof we mention that the retrogradation of
the directive words provides an appropriate duality for central words. An ex-
pression of this duality is the conversion of periods into letter-frequencies and
vice versa. More precisely: Let q′ and p′ denote the periodic prefixes of the dual
word u′ of a central word u with periods n = |q| and m = |p|, and let n′ = |q′|
and m′ = |p′| denote the periods of u′. Then the letter frequencies |u|a, |u|b,
|u′|x, u′|y satisfy

|u|a + 1 = n′, |u|b + 1 = m′ and |u′|x + 1 = n, |u′|y + 1 = m.

Systematically adjoining every node u in the tree of Figure 3 with its dual central
word u′ (written in letters a and b instead of x and y), we construct a dual binary
tree (c.f. 4).

The dual of the central tree can also be defined directly, i.e., in terms of two
maps specifying the left and right successors for each node of the dual central
tree. We postpone their definitions to the subsequent section.
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2 Standard Modes

In the previous section we studied central words with two prefixes q and p.
Thereby the genealogy of central words down the tree goes along with the it-
erated concatenations of the two prefixes. The ordered pair (q, p) (of prefixes
for u) has the two successors (q, qp) (of prefixes for Pa(u) = qu) and (pq, p) (of
prefixes for Pb(u) = pu). The first prefix q in the ordered pair (q, p) is identified
by the property that it ends with letter a, while the second one, p, ends with
letter b. The present section is dedicated to the study of these pairs.

2.1 Do-Re-Mi-Fa-Sol-La-Ti-(Do′)

We return to our prominent music-theoretical example, but now in relation to
an historically much later, equally if not more prominent example: the diatonic
major (Ionian) mode. In consideration of this historical disjunction, we will use
modern solmization syllables, replacing Ut with Do and adjoining Ti. The main
subject of this section is the interdependence of central words and (positive)
standard words as well as the close connection between the two dualities (i.e.,
between the duality for central words on the one hand and the duality for positive
standard words on the other). The adjunction of the note Ti and of Do′ (the
repetition of the finalis Do one octave higher) to the hexachord is a quite natural
procedure from the viewpoint of word theory.

As mentioned in the introduction to Section 1, every region encompasses par-
ticular modes of two well-formed scales. Closer inspection of [4] under the per-
spective of central words reveals that these two modes coincide with the periodic
prefixes q and p. Well-formed scales are mostly known as scales with a period-
icity at the interval of the octave. In this case, however, the tones Do, Re, Mi,
Fa, (Sol) with step-interval pattern q = aaba form a well-formed scale modulo
perfect fifth, which is generated by the major second, starting from Fa. Anal-
ogously, the tones Do, Re, Mi, (Fa) with step-interval pattern p = aab form a
well-formed scale modulo perfect fourth, which is also generated by the major
second, starting from Do.

When we concatenate these two scales, we obtain the fifth-generated diatonic
scale Do, Re, Mi, Fa, Sol, La, Ti, (Do′) modulo octave. More precisely, we
obtain the well-formed Ionian mode with step-interval pattern aabaaab from the
concatenation of two shorter well-formed modes with step-interval patterns aaba
and aab. Note that under this concatenative construction of the Ionian mode
from the two shorter modes aaba and aab the music-theoretical interpretation of
the letters a and b does not change: a stands for (ascending) major second and
b stands for (ascending) minor second. What does change is the modulus, the
interval of periodicity. We see below, that this concatenation qp is an instance
of a transformation on word pairs. Henceforth we use the notation w1|w2 for
word pairs (w1, w2) with the additional meaning that we regard this pair as two
factors of the concatenation w1w2.

For any such pair w1|w2 we define two successors, namely

Γ (w1|w2) := w1|w1w2 and Δ(w1|w2) := w2w1|w2.
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Starting from the pair a|b we obtain aaba|aab as

Δ(Γ (Γ (a|b))) = Δ(Γ (a|ab)) = Δ(a|aab) = aaba|aab.

There is an entirely different way to construct the Ionian mode of the diatonic
scale of the basis of transformations. This is based on substitutions rather than
concatenations. For the free monoid {a, b}∗ of finite words with letters a and b
let Ga,b and Da,b denote the following monoid morphisms. For single letters we
define:

Ga,b(a) = a, Ga,b(b) = ab and Da,b(a) = ba, Da,b(b) = b.

For words with more than two letters the transformations are applied to each
letter and the images are concatenated. For pairs w1|w2 we may trace the
images separately, i.e., we write Ga,b(w1|w2) = Ga,b(w1)|Ga,b(w2) as well as
Da,b(w1|w2) = Ga,b(w1)|Ga,b(w2).

Again, starting from the pair a|b we obtain aaba|aab as

Ga,b(Ga,b(Da,b(a|b))) = Ga,b(Ga,b((ba|b)) = Ga,b(aba|ab) = aaba|aab.

Note, that with respect to the substitutive transformations it is music-
theoretically meaningful to assume a common modulus before and after the
transformation and to change the interpretation of the letters a and b instead:

authentic division: a|b = P5 |P4
tetractys: ba|b = P4 M2 |P4
pentatonic: aba|ab = M2 m3 M2 |m3 M2
diatonic: aaba|aab = M2 M2 m2 M2 |M2 M2 m2

What remains constant in the meaning of the letters a and b under substitu-
tion notwithstanding their change in size, is the interpretation of a as a primary
step-interval and of b as a secondary step-interval. The substitutive transforma-
tions are the heart of the hierarchy of well-formed scales.

Fig. 5. Authentic Division of the Ionian Mode. The figures to the right display height-
and width-trajectories in association with the step-interval pattern and the folding
pattern of the Ionian mode.
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For a moment we leave the two transformational constructions of the step-
interval pattern aaba|aab aside and consider their common result simply as an
extension of the hexachord step-interval pattern aabaa by the suffix ab. As Figure
5 suggests, we may analogously append the suffix xy to the folding pattern yxyxy
of the hexachord. The penultimate note achieved by both patterns is T i, whereas
the ultimate notes Do′ (in the step-interval scale) and Fa� (in the folding) are
not equal. It can be shown however (see [13]) that the intervals P8 (the octave
between Do and Do′ and A1 (the augmented prime between Fa and Fa�) are
duals of each other in a music-theoretically very convincing way. Observe, for
example, that the augmented prime A1, i.e., the ambit interval of the folding, is
also the difference a−b between the ascending major and minor steps. Dually, the
octave P8, i.e., the ambit interval of the step-interval scale, is also the difference
x − y between the ascending fifth and the descending(!) fourth.

Figure 5 includes a division yx|yxyxy of the folding pattern of the Ionian
mode. This is consistent with the two periods 2 = |q′| and 5 = |p′| of the folding
pattern yxyxy of the hexachord. We return now to the two constructions of
aaba|aab by concatenative and substitutive transformations. We may find two
strictly dual constructions of the pair yx|yxyxy:

Γ (Γ (Δ(x|y))) = Γ (Γ (yx|y)) = Γ (yx|yxy) = yx|yxyxy.

Dx,y(Gx,y(Gx,y(x|y))) = Dx,y(Gx,y(x|xy)) = Dx,y(x|xxy) = yx|yxyxy

Closer inspection shows that the chain of pairs x|y �→ yx|y �→ yx|yxy �→
yx|yxyxy, which we obtain by the concatenative transformations Δ, ΓΔ and
ΓΓΔ are precisely the folding patterns to the chain of pairs a|b �→ ba|b �→
aba|ab �→ aaba|aab, which are the result of the iterated substitutional transfor-
mations Ga,b, Ga,bGa,b, and Da,bGa,bGa,b. Under this view the interpretation of
x as ascending fifth and y as descending fourth remains constant. Conversely, the
intermediate stages x|y �→ x|xy �→ x|xxy �→ yx|yxyxy of the substitutive con-
struction of the folding pattern yx|yxyxy via Gx,y, Gx,yGx,y and Dx,yGx,yGx,y

are precisely the folding patterns of the intermediate stages of the concate-
native construction of aaba|aab along a|b �→ ba|b �→ aba|ab �→ aaba|aab via
Γ, ΓΓ and ΔΓΓ . In this case the more abstract music-theoretical meaning of x
and y (namely, primary vs. secondary folding interval) remains unchanged under
transformation, while the actual sizes of these intervals change.

In figure Figure 5 there is a vertical line, connecting the dividing note Sol of
the step-interval pattern with the dividing note Sol of the folding. For ascending
scales and forward foldings (ascending fifths) this is characteristic for the Ionian
mode among all other modes (c.f. [13]).

2.2 Standard Pairs and Their Duality

The concrete example may easily be turned into a definition for the general
case. Every central word u has two periodic prefixes q and p and we can write
qp = uab. Its dual central word u′ has periodic prefixes q′ and p′ and again we
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Fig. 6. Complilation of four binary trees: central words and positive standard words.
Observe that the duality is manifest through the operation of path reversal.
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can write q′p′ = u′xy. Figure 6 extends Figure 4. In each of the 2×2-boxes there
are now four nodes from four different — by highly related — binary trees:

1. The tree of central words (displayed in the left upper fields of each node-box).
The left and right successors of node u are the nodes Pa(u) = qu = (ua)+

and Pb(u) = qu = (ub)+, respectively.
2. The dual tree of central words (displayed in the right upper fields of each

node-box). The left and right successors of node u′ are the nodes Ca(u′) =
Gx,y(u′)a and Cb(u′) = Dx,y(u′)b, respectively.

3. The tree of standard pairs (displayed in the left lower fields of each node-
box). The left and right successors of node q|p are the nodes Γ (q|p) = q|qp
and Δ(q|p) = pq|p, respectively.

4. The dual of this tree of standard pairs (displayed in the right lower fields
of each node-box). The left and right successors of node q|p are the nodes
Gx,y(q|p) and Dx,y(q|p), respectively.

Concluding Remark: In [9] we take a closer look at the way in which the central
word u (with period-prefixes q and p) interacts with the authentic standard mode
q|p and its conjugate modes. This paper revisits observations by the first author
(see [7]) in connection with Guido’s and Hermannus’s concept of affinity in
the light of the double periodicity of the central words. It also investigates the
sensitive interval between divider and leading tone by means of generalization.

Acknowledgments. The authors thank Emmanuel Amiot and Norman Carey
for stimulating discussions. We also thank Fabian Singler for dedicating his thesis
([15]) to this research subject.
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Abstract. Focusing on the daily practice of musicians, we give flexibility to the 
mathematical treatment of musical notes, tuning systems and the relations be-
tween them. This allows us to connect the theory and the practice of music. Us-
ing the techniques of fuzzy logic, we describe the concepts with fuzzy sets and 
introduce the α-compatibility as a degree of interchangeability between tuning 
systems. To show how our proposal works, we use a fragment of Haydn and 
analyze the compatibility of the notes taken from 48 recordings for the tuning 
systems of Pythagoras, Zarlino and Equal Temperament of 12 notes. 

Keywords: Tuning Systems, Fuzzy Sets, Fuzzy Numbers.  

1   Introduction 

Different criteria have been used to select the sounds that music uses. A set containing 
these sounds (musical notes) is called a tuning system. Most of them have been 
obtained through mathematical arguments. The numerical nature of these systems 
facilitates their transmission and the manufacture of instruments, etc. However, the 
harshness of the mathematical arguments relegated these tuning systems to theoretical 
studies while in practice musicians tuned in a more flexible way. They implicitly deal 
with complex mathematical processes involving some uncertainty in the concepts. In 
fact, most of the musicians in a classical orchestra must adjust their instruments to 
tune well. For instance, wind instrument players modify the air pressure or the finger 
positions to fit their notes to the ensemble. Because of this, many musicians feel that 
the mathematical arguments that justify tuning systems are impractical. 

Sometimes, probability distributions are useful for handling uncertainty (stochastic 
uncertainty) [7],[8], but in other cases it cannot be justified that the given concepts 
follow a predetermined distribution (fuzzy uncertainty). As musicians need flexibility 
in their reasoning, the use of fuzzy logic to connect music and uncertainty is appropri-
ate (see [6],[7],[10]). Therefore, we propose to model the notes as fuzzy sets and 
analyze the compatibility between them. With this idea, we can extend the concept of 
tuning systems, connecting theory and practice, and understand how musicians work 
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in real-life. In order to compare the notes that constitute theoretical tuning systems 
and those performed by musicians, we have studied the compatibility of a set of notes 
(recorded by a professional musician) with the corresponding notes of the Pythago-
rean, Zarlinean and Equal Temperament of 12 notes systems. 

2   Some Concepts and Notation 

We will identify each musical note with the frequency of its fundamental harmonic 
(the frequency that chromatic tuners measure). The usual way to relate two frequen-
cies is through their ratio; this number is called the interval. It is well known that, in 
the middle zone of the audible field, the “pitch sensation” changes somewhat accord-
ing to the logarithm of the frequency, so the distance between two sounds whose 
frequencies are f1 and f2 can be estimated by means of the expression 

d ( f1, f2) = 1200 × log2
f1
f2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,                                        (1) 

where the logarithm in base 2 and the factor 1200 have been used in order to express 
d in cents [5], [6].  Let us mathematically define the well-known concept of an octave: 
 

Definition 1. Given two sounds with frequencies f1 and f2, we say that f2 is one octave 
higher than f1 if f2 is twice f1. 

Two notes one octave apart from each other have the same letter-names. This naming 
corresponds to the fact that notes an octave apart sound like the same note produced at 
different pitches and not like entirely different notes. Based on this idea, we can de-
fine in R+ (the subset of all the frequencies of all the sounds) a binary equivalence 
relation, denoted by R, as follows: 

f1 e  f2 if and only if  ∃ n ∈ Z  such that f1 = 2n × f2 . 

Therefore, instead of dealing with R+, we can analyze the quotient set R+/e, which 
for a given fixed note f0 (diapason) can be identified with the interval [f0, 2f0[. However, 
for the sake of simplicity, we will assume that f0 =1 and work in the interval [1, 2]. 

Tuning systems based on a unique interval (like the Pythagorean) admit a direct 
mathematical construction. However, the definition of systems generated by more 
than one interval requires specifying when and how many times each interval appears. 
Next, we give a give a general definition of a tuning system (see [1], [10]): 

 

Definition 2. Let Λ = λ i{ }i=1
k ⊂ [0,1[  be a family of functions F = hi : Z → Z{ }i=1

k . 

We call the tuning system generated by the intervals 2λi{ }
i=1

k and F the set 

  

SΛ
F = 2cn :  cn = λ ihi (n) −

i=1

k
∑ λ ihi (n)

i=1

k
∑

⎢ 

⎣ 
⎢ 

⎥ 

⎦ 
⎥ ,  n ∈ Z

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

                          (2) 

where x⎣ ⎦ is the integer part1 of x. 

                                                           
1 Note that the integer part in (2) is added to gain octave equivalence. 
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If every element in the tuning system is a rational number, we say that it is a tuned 
system, whereas if some element is an irrational number then the system is a tem-

perament. The advantage of expressing the tuned notes as 2cn  is that if our reference 
note is 20, in accordance with (1) the exponent cn provides the pitch sensation. Let us 
mention that the family of integer-valued functions F mark the “interval locations”. In 
those systems generated by one interval (for instance the Pythagorean) they are not 
really necessary. However, in the other systems they are. For instance, in the Just 
Intonation h1(n) and h2(n) indicate the position of the t fifths and the thirds considered 
as tuned. Table 1 displays some examples of tuning systems. 

Table 1. Examples of generators of some tuning systems  

S Λ  F 
Pythagorean λ1 = log2 (3 / 2)  h1(n) = n  
 
Equal Temperament  

 
λ1 = 7 12 

 
h1(n) = n  

 
Zarlinean 
(Just Intonation) 

 
λ1 = log2 (3/ 2)  
λ2 = log2 (5/ 4)  

 
h1(n) = n − 4h2(n) 

 
 h2 (n) = n +1

7

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ n + 4

7

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 
 

 
Neidhart’s temperament  
 (1/2 & 1/6 comma) 

 
λ1 = log2 (3 / 2)  

λ2 = 1/6 ⋅ log2 212 /36( ) 
λ3 = 7 12 

 
an = n −12 n /12⎣ ⎦ 

h1(n) = an + 2
12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 
+ n + 3

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 
+ an +10

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ n +11
12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

h2 (n) = an + 6

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ n + 7

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ an + 8

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 
+ n + 9

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

h3(n) = an +1

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ n + 4

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

+ an + 5

12

⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 
 

In this article we only analyze Pythagorean, Zarlinean and Equal Temperament 
(with 12 notes) systems [5]. However, note that the study of other tuning systems 
would be similar. 

3   Introducing Fuzzy Logic 

The main idea in Fuzzy Logic is to substitute the characteristic function of set A, 
which takes the value 1 when the element belongs to A and 0 otherwise, with a mem-
bership function μ ˜ A (x) which takes values in the interval [0, 1] (see [11]). The value 

μ ˜ A (x)  is understood as the membership degree of element x to the set. A nule mem-

bership degree is understood as non-membership, 1 as membership in the Boolean 
sense, and intermediate numbers imply that membership is uncertain, which will be 
understood in different ways, depending on the case [3]. If the initial reference set is 
X, the most usual way of denoting the fuzzy sets is the following: 

 

  
˜ A = x,  μ ˜ A (x)( ),  x ∈ X{ }.                                            (3) 

In our context, if we take the note A = 440Hz (diapason) as our fixed note, a fre-
quency of 442Hz, from the point of view of the Boolean logic, would be out of tune. 



96 A. del Corral, T. León, and V. Liern 

However, for every musician, or anybody that hears it, that note is slightly more out 
of tune than another note of 450Hz. The step between tuned or not tuned is repre-
sented as a fuzzy set in which a tolerance level has been fixed (see Fig. 1).  

 

Fig. 1. Membership and characteristic functions for the fuzzy and classical membership func-
tions 

Before explaining how the tolerance levels are fixed, we will introduce the idea of 
a fuzzy number [4]: 

Definition 3. A fuzzy number is a fuzzy set whose membership function is piecewise 
continuous and convex and there is a value whose membership degree is equal to one.  
 
In this paper we will use a particular case of fuzzy numbers, the LR-fuzzy numbers 
[3], [4] and the relationship between them.  

Definition 4. A fuzzy number ˜ M  is said to be an LR-fuzzy number, 
˜ M = (mL ,mR ,α L ,α R ), if its membership function has the following form: 

μ ˜ M (x) =

L
mL − x

α L

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , x < mL

1 mL ≤ x ≤ mR

R
x − mR

α R

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , x > mR

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

where L and R are reference functions, i.e.,  L,R :[0, + ∞[→ [0, 1]  are strictly de-

creasing in 
 
supp ˜ M = x :  μ ˜ M (x) > 0{ } and upper semi-continuous functions such 

that L(0) = R(0) = 1. If   supp ˜ M is a bounded set, L and R are defined on [0, 1] and 
satisfy L(1)=R(1)=0. Moreover, if L and R are linear functions, the fuzzy number is 
called trapezoidal (see Fig. 2) and their arithmetic is easy to perform. They are de-

fined by four real numbers,   
˜ A = (aL , aR ,αL ,α R ), and values below aL −αL  and 

above aR +αR  are not acceptable. 
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4   Fuzzy Musical Notes 

It is well known that the human ear perceives notes with very close frequencies as if 
they were the same note [2]. In 1948, N. A. Garbuzov made thousands of experiments 
and used them to assign band frequencies to every musical interval, called the Garbu-
zov zones (see [7], [8]). In this study, he showed that we perceive as the same note, 
unison, two frequencies that are 12 cents apart. Other authors reduce this interval to 6 
cents. For the purpose of our work, we will define this band of unison as: 

f 2−ε , f 2ε] [≅ f                                                         (4) 

where ε > 0, and 1200ε  expresses, in cents, the accuracy of the human ear to the 
perception of the unison. 

Moreover, if the amount of notes per octave is q, we can divide the octave into q in-
tervals with a length of 1200/q cents. So, we can express the interval of the note f  as: 

f 2−δ , f 2δ] [,                                                          (5) 

where δ = 1 (2q), the quantity Δ = 1200δ  expresses, in cents, the tolerance that we 
admit for every note. Actually, this is what chromatic tuners do: they assign 12 divi-
sions per octave, δ = 1 (2 ×12) , and then, the tolerance corresponding to every note is 

Δ = 1200 1
2×12

= 50 cents. 

 
Remark 1. It is necessary thatε < q since a tuning system with more notes than the 
human ear can distinguish would have no practical sense. 
 

 
 

Fig. 2. Membership function of a musical note 

Taking into account (4) and (5), we can express a musical note as a trapezoidal 

fuzzy number with peak [ f 2−ε , f 2ε ]  and support [ f 2−δ , f 2δ ] . Besides, according to 

Definition 2, the notes are expressed as powers of two, 2cn , so it is more practical to 
express the fuzzy musical notes using their exponent, cn . 

 
Definition 5. Let ˜ t = (t −ε, t +ε,δ ,δ) be a symmetric trapezoidal fuzzy number, 
where t,δ ∈ [0,1]. A fuzzy musical note can be defined as the following trapezoidal 
fuzzy number: 
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2
˜ t = (2t−ε ,2t+ε ,αL ,αR ) , 

where α L = 2t−ε (1− 2−δ ) , α R = 2t+ε (2δ −1) and its membership function is 

  

μ
2t (x) =

1− 2t−ε −x
2 t−ε −2 t−ε−δ , 2t−ε−δ < x ≤ 2t−ε

1, 2t−ε < x ≤ 2t+ε

1− x−2t+ε

2 t+ε+δ −2 t+ε 2t+ε < x ≤ 2t+ε+δ

0, otherwise.

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

Let us point out that two trapezoidal fuzzy numbers are involved in the definition 
of a fuzzy musical note: one for the exponent, ˜ t , which reflects the pitch sensation 
and therefore is a symmetric fuzzy number, and the other for the fuzzy note  which is 
non-symmetric, as the expression of its membership function shows.  

5   Measuring Compatibility 

Let us recall the definition of intersection or similitude between two fuzzy sets [3]. 
 

Definition 6. The fuzzy intersection of the fuzzy sets  ̃  A  and  ̃  B  is a new fuzzy set 
˜ A ∩ ˜ B  with membership function 

 

μ ˜ A ∩ ˜ B (x) = min μ ˜ t (x),μ ˜ s (x){ }.                                     (6) 
 

The concept of compatibility between two notes can be derived from this definition 
[10].  
 

Definition 7. Let 2
˜ t and 2˜ s  be two musical notes, where ˜ t = (t −ε, t +ε,δ ,δ)  and 

˜ s = (s −ε,s +ε,δ ,δ) . We define the degree of compatibility between 2
˜ t and 2˜ s  as 

  Comp[2
˜ t ,2 ˜ s ] = maxx μ ˜ s ∩˜ t (x) ,                                 (7) 

and we say that 2
˜ t  and 2˜ s  are α-compatible, α ∈ [0,1], if  Comp[2

˜ t ,2 ˜ s ] ≥ α . 
 
Although the compatibility between notes could have been defined for notes with 
different degrees of tolerance δ and δ ' (withδ ≠ δ ' ), in practice we are equally tolerant 
of all the notes in an octave.  
 

 

Fig. 3. Graph showing the concept of α-compatibility between two notes 
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Figure 3 illustrates Definition 7 and shows that the intersection of two trapezoidal 
numbers is not necessarily trapezoidal. 

By a direct calculus we can obtain the next result that allows us to calculate the 
compatibility between notes. 
 

Proposition 1: Two musical notes 2
˜ t and 2˜ s , where ˜ t = (t −ε, t +ε,δ ,δ)  and 

˜ s = (s −ε,s +ε,δ ,δ) , are α-compatible, α ∈ [0,1] if and only if t − s ≤ 2δ (1−α) + 2ε . 
 

Taking into account (7) and Proposition 1, the compatibility can be expressed as: 

  
Comp[2

˜ t ,2 ˜ s ] = max 0,1−
t − s − 2ε

2δ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

.                                 (8) 

However, for musicians it is usually more convenient to calculate the compatibility 
between two notes in terms of their frequencies. Hence, given two notes with fre-
quencies f1 and f2, for which we admit a tolerance of Δ  cents, according to (8), the 
compatibility between f1 and f2 is given by 

  
Comp[ f1, f2 ] = max 0,1− d ( f1, f2) − 2E

2Δ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

,                             (9) 

where d is the distance defined in (1), Δ = 1200 ×δ  and E = 1200 ×ε . 
 

In order to extend the concept of compatibility to tuning systems, we need to define 
the fuzzy tuning systems. 
 

Definition 8. Let δ ∈ [0,1], Λ = λ i{ }i=1
k ⊂ [0,1[  and a family of functions 

F = hi : Z → Z{ }i=1
k . We call a fuzzy tuning system generated by the intervals 

2λi{ }
i=1

k and F the set 

 

˜ S Λ
F (δ) = 2 ˜ c n :  ˜ c n = λ ihi (n) −

i=1

k
∑ λ ihi (n)

i=1

k
∑
⎢ 

⎣ 
⎢ 

⎥ 

⎦ 
⎥ ,  δ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,  n ∈ Z

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
.                    (10) 

Next, we introduce the concept of compatibility between two systems which reflects 
both the idea of proximity between their notes and also whether their configuration is 
similar. 
 
Definition 9. Let ˜ S q (δ) , ˜ T q (δ) be two tuning systems with q notes. We say that ˜ S q (δ)  

and ˜ T q (δ) are α-compatible, if for each 2˜ s i ∈ ˜ S q (δ) there is a unique 2
˜ t i ∈ ˜ T q (δ) such that 

 Comp[2˜ s i ,2
˜ t j ] ≥ α . 

The quantity α is the degree of interchangeability between ˜ S q (δ)  and ˜ T q (δ) and the 

uniqueness required in Definition 9 guarantees that these systems have a similar dis-
tribution in the cycle of fifths.  
 

Remark 2. It is important to note that the α-compatibility does not define a binary 
relation of equivalence in the set of tuning systems, because the transitive property is 
not verified.  
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6   Computational Results 

We have made 48 recordings of 23 bars2 of the Concert in E flat major Hob. VIIe, N. 
1 for trumpet and orchestra of Franz Joseph Haydn (1732-1809) (see Fig. 4). All the 
recordings were played by the same player with a Bach® trumpet in Bb. 

 

Fig. 4. Piece of the concert in Eb Major of Haydn 

Our aim is to analyze the compatibility between the notes recorded and the tuned 
notes in the Pythagorean, Zarlinean and Equal Temperament (with 12 notes) systems. 
In our approach both kinds of notes are fuzzy.  

The frequencies corresponding to a practical note (which is performed slightly dif-
ferently at each recording) belong to the interval 

[ fmin, fmax], 

where fmin  (resp. fmax ) is its lowest (resp. its highest) interpreted frequency (see Col-
umns 1—2 in Table 2). The exact frequencies of some tuning systems3 appear in 
Columns 3—6. The logarithms in base 2 of the frequencies in the table provide the 
values for t in Definition 5 and we also take Δ = 50 cents (as the chromatic tuners) 
and E = 6 cents as tolerances (see [8], [10]). 
 
 
                                                           
2 The different notes that appear in the fragment are Eb

3, F3, G3, B
b
3, A

b
3, B

b
3, C4, D4, E

b
4, F4, 

G4, B
b
4, B3 and A3. 

3 To be more precise, the Just Intonation system is a family of tuning systems and we have 
selected the Zarlinean [5]. 



 Compatibility of the Different Tuning Systems in an Orchestra 101 

Table 2. Exact frequencies of the notes that appear in the piece of Haydn 

 
Note Lower Upper Pythagor. Zarlinean Temp. (12)  

Eb 305 316 309,0261 310,8272 311,127 

F 346 356 347,6543 350,3555 349,2282 

G 376 398 391,1111 396 391,9954 

Bb 226 239 231,7695 233,5703 233,0819 

Ab 406 414 412,0347 414,4362 415,3047 

Bb 453 479 463,5391 467,1406 466,1638 

C 502 533 521,4815 528 523,253 

D 571 598 586,6667 594 587,3296 

Eb 587 636 618,0521 621,6544 622,254 

F 668 713 695,3086 700,7109 698,4564 

G 781 795 782,2222 792 783,9908 

Bb 548 570 549,3797 559,4889 554,3652 

B 487 498 495 497,3235 493,8833 

A 440 443 440 440 440 

Making use of (9) we construct the compatibility intervals obtained as 

 Comp(lower,  tuning system),Comp(upper,  tuning system) [ ]   

where the tuning systems considered are those in Table 2.  

Table 3. Compatibility of the notes that appear in the piece by Haydn 
 

Note 
Interval of comp. 

Temp(12) 
Interval of comp. 

Pythag. 
Interval of comp. 

Zar. 

Eb [0,6556,   0,7309] [0,6136,   0,7729] [0,6723,   0,7142] 
F [0,6675,   0,8392] [0,5893,   0,9174] [0,7834,   0,7233] 
G [0,2787,   0,7368] [0,3178,   0,6977] [0,1027,   0,9127] 
Bb [0,4658,   0,5659] [0,4681,   0,5635] [0,4295,   0,6021] 
Ab [0,6077,   0,9455] [0,7445,   0,9176] [0,6439,   0,9817] 
Bb [0,5041,   0,5297] [0,4319,   0,6018] [0,4678,   0,5659] 
C [0,2821,   0,6804] [0,3408,   0,6217] [0,1257,   0,8368] 
D [0,5118,   0,6882] [0,5313,   0,6687] [0,3163,   0,8838] 
Eb [0,            0,6217] [0,1075,   0,5044] [0,0069,   0,6050] 
F [0,2281,   0,6432] [0,3063,   0,5650] [0,1723,   0,6990] 
G [0,7585,   0,9338] [0,7194,   0,9729] [0,7578,   0,9345] 
Bb [0,5184,   0,8001] [0,3621,   0,9564] [0,6407,   0,6777] 
B [0,7570,   0,8562] [0,7179,   0,8953] [0,6368,   0,9764] 
A [0,8823,    1        ] [0,8823,    1        ] [0,8823,    1        ] 
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In Table 3, we have underlined the compatibility intervals that are lower than 0.6. 
This means that its compatibility is lower than 60%. If we fix this percentage as the 
minimum to accept that the notes are compatible, we can see in the table that 50% of 
the notes are not acceptable in all the tuning systems.  

These results are very useful to the player that needs to modify the pressure and/or 
the position to raise the level of compatibility. 

7   Conclusions 

Many musicians think that the technical treatment of musical concepts comes into 
conflict with their daily practice. However, their methods are used in this paper to 
make the concept of a musical note more flexible. In this framework, fuzzy mathe-
matical rules and practice are the same thing. In fact, the adjustments that the musi-
cians make constitute a method for increasing the compatibility level among systems. 
In this way, describing the tuning systems as fuzzy sets allows us to include the daily 
reality of musicians and their theoretical instruction in a mathematical structure. In 
our opinion, this constitutes a good model of reality. 

From the idea of compatibility, the possibility of substituting a tuning system with 
another one arises. Therefore, when a tuning system presents many harmonic difficul-
ties, such as not allowing certain transpositions, we can use a compatible system to 
avoid these disadvantages. On the other hand, knowing the compatibility between 
notes allows musicians to improve their performance by choosing between different 
tune positions, increasing lip pressure, etc.  

Finally, we find it necessary to warn that many players and composers have diffi-
culties when they work with proposals from the area of science. So, we should con-
tinue our attempts to make them feel more comfortable with technical arguments. 
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Formal Diatonic Intervallic Notation 

Jack Douthett1 and Julian Hook2 

1 University of New Mexico, Albuquerque, NM, USA 
douthett@comcast.net 

2 Indiana University, Bloomington, IN, USA 
juhook@indiana.edu 

Abstract. Numbers called quality modifiers are used to identify interval quali-
ties: 0 numerically represents perfect, ½ represents major, –½ represents minor, 
and so on. These modifiers are linked with diatonic class intervals as ordered 
pairs that mimic common interval notation. For example, a minor third is repre-
sented by (–½, 2). A binary operator is constructed that allows these ordered 
pairs to be added consistent with our expectations. Similarly, accidental modifi-
ers numerically identify the number of sharps or flats attached to a given note: 0 
indicates no attached accidentals, negative integers indicate the number of flats 
attached, and positive integers indicate the number of sharps attached. These 
modifiers are linked with diatonic classes as ordered pairs that mimic common 
note names. For example, the note Gb  is represented by (–1,4) and Gx  by (2,4). 
Intervals and notes represented by these ordered pairs are said to be in MD-
notation (MD for modifier-diatonic). A group action and generalized interval 
system are defined for intervals and notes in MD-notation. An implied quarter-
tone system is also discussed. 

Keywords: quality modifier, accidental modifier, diatonic class, diatonic class 
interval, PD-notation, MD-notation, enharmonic system, maximally even set, 
generalized interval system. 

1   Introduction 

While current numerical diatonic intervallic notations reveal much about diatonic in-
tervals, these notations in general do not mimic what we call common diatonic nota-
tion; that is, the interval qualities (major, minor, perfect, …) are not immediately  
apparent in the notation. As it turns out, to mimic common diatonic notation in a 
mathematically consistent way is surprisingly complicated. For example, sometimes 
the sum of two major intervals yields an augmented interval (M2 + M3 = A4), and 
other times the sum yields another major interval (M2 + M2 = M3). How would one 
construct a group of intervals that mimic common intervals and overcome this seem-
ing ambiguity? This problem is addressed in Sections 2 and 3. In Section 4 Hook’s [1] 
notation that models common notes (e.g., Ab, F#,  …) by linking accidental modifiers 
and diatonic classes is coupled with Clough and Douthett’s [2] algorithm for maxi-
mally even sets to define a set of notes on which the group described above will act. 
Section 5 addresses the generalized interval system induced by this action, and Sec-
tion 6 briefly discusses extensions of this notation to other equal-tempered systems. 
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2   Quality Modifiers 

In this section and all that follow, mod 7 diatonic class intervals (dcis) will be repre-
sented by italicized uppercase letters A and B, and mod 12 pitch class intervals (pcis) 
will be represented by italicized lowercase letters a and b. We will shortly define 
quality modifiers, which will be represented by lowercase Greek letters α  and β . 
For interval qualities, lowercase letters d and m will denote diminished and minor in-
tervals, while uppercase letters P, M, and A will denote perfect, major, and aug-
mented intervals. 

Intuitively, the adjectives used to describe interval quality—perfect, major, minor, 
augmented, diminished—convey something about how large a given interval is rela-
tive to an “average” interval of the same numerical (generic) size. For example, a m3 
is a little smaller than an “average” third, while an A6 is quite a bit larger than an “av-
erage” sixth. With the aim of making this intuition precise, we first consider what is 
meant by an “average” interval. 

Since there are seven generic steps to the octave, it seems logical to say that the av-
erage interval of a dci, call it A, is the fraction A/7 of an octave; that is, the average 
second (dci 1) is 1/7 of an octave, the average third (dci 2) is 2/7 of an octave, and so 
on. Equivalently, measured in equal-tempered semitones, the average interval of dci A 
is 12A/7: the average second is 12/7, the average third is 24/7, and so on. Note that we 
could have arrived at the same result by averaging the interval sizes within the dia-
tonic scale. For example, in any diatonic scale there are four m3s (of size 3 semitones) 
and three M3s (4 semitones), and the mathematical average of four 3s and three 4s is 
again 24/7. 

Table 1 tabulates the intervals of all common qualities in the usual 12-note equal-
tempered system (12-ETS). The first column gives the common names of the inter-
vals. The next two columns give the dci and pci, respectively, of the interval—the  
generic and specific sizes of the interval in the terminology of Clough and Myerson 
[3, 4]. The fourth column gives the size of the corresponding “average” interval as de-
scribed above; that is, 12A/7 where A is the dci, or equivalently an interval of size A in 
a 7-ETS measured in 12 equal-tempered semitones. The fifth column labeled “Differ-
ence” tabulates the difference between the pci and the average 7-ETS interval, 
counted positive if the pci is larger than average and negative if the pci is smaller than 
average (Column 3 less Column 4). The last column is the quality modifier (qm) of 
the interval, which is the difference in Column 5 rounded to the nearest half-integer. 
Thus, if [ ⋅ ] is the function that rounds to the nearest integer, then the qm of an inter-
val with dci A and pci a is 

( )1 12
2

2 7

A
a a l Aα ⎡ ⎤⎛ ⎞= − = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 where ( ) 1 24

2 7

A
l A

⎡ ⎤= ⎢ ⎥⎣ ⎦
. (1) 

Observe that (1) may be used to determine a from α  and A, or to determine l(A) from 
a and α . Some combinations of a and α  are not realized, however, as l(A) takes on a 
limited number of values. (The values of l(A) for A = 0, 1, L , 6 are 0, 1½, 3½, 5, 7, 
8½, 10½.) 
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Table 1. Interval qualities in the familiar 12-ETS 

Common 
Interval Name 

dci pci 
7-ETS Int. 
 (mod 12) 

Difference qm 

Quality-Size A a 
12

7

A
 

12

7

A
a −  ( )a l Aα = −  

d11 0 –1 (11) 0 –1 –1 

P1 0 0 0 0 0 

A1 0 1 0 1+  +1 

d2 1 0 5
71  5

71−  –1½ 

m2 1 1 5
71  5

7−  –½ 

M2 1 2 5
71  2

7+  +½ 

A2 1 3 5
71  2

71+  +1½ 

d3 2 2 3
73  3

71−  –1½ 

m3 2 3 3
73  3

7−  –½ 

M3 2 4 3
73  4

7+  +½ 

A3 2 5 3
73  4

71+  +1½ 

d4 3 4 1
75  1

71−  –1 

P4 3 5 1
75  1

7−  0 

A4 3 6 1
75  6

7+  +1 

d5 4 6 6
76  6

7−  –1 

P5 4 7 6
76  1

7+  0 

A5 4 8 6
76  1

71+  +1 

d6 5 7 4
78  4

71−  –1½ 

m6 5 8 4
78  4

7−  –½ 

M6 5 9 4
78  3

7+  +½ 

A6 5 10 4
78  3

71+  +1½ 

d7 6 9 2
710  2

71−  –1½ 

m7 6 10 2
710  2

7−  –½ 

M7 6 11 2
710  5

7+  +½ 

A7 6 12 (0) 2
710  5

71+  +1½ 

                                                           
1 In practice d1 can be interpreted as d8. The notation d1 is used here because the dcis are re-

duced mod 7.  
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When the differences in Column 5 of Table 1 are rounded to the nearest half-
integer, the results range from –1½ (for “much smaller than average” intervals) to 
+1½ (for “much larger than average” intervals). These differences and the half-
integers to which they round (qms) are reorganized and consolidated in the first two 
columns of Table 2. The last column of Table 2 reorganizes and consolidates the 
common names in Column 1 of Table 1 so that they correspond to their qms in Col-
umn 2 of Table 2. The intervals whose qms are 0 are perfect (middle row in Table 2); 
the intervals whose qms are +½ or –½ are major or minor, respectively, and those 
with larger qms (positive or negative) are augmented or diminished; a raised or low-
ered perfect interval has a qm of +1 or –1, respectively, while a raised major or low-
ered minor interval has a qm of +1½  or –1½. 

Table 2. Differences, Quality Modifiers, Interval Quality, and Examples 

Differences qm Quality Common Names 

5
71− , 4

71− , 3
71− , 2

71−  –1½ d (lowered m) d2, d3, d6, d7 

1
71− , 1− , 6

7−  –1 d (lowered P) d1, d4, d5 

5
7− , 4

7− , 3
7− , 2

7−  –½ m m2, m3, m6, m7 

1
7− , 0, 1

7+  0 P P1, P4, P5 

2
7+ , 3

7+ , 4
7+ , 5

7+  +½ M M2, M3, M6, M7 

6
7+ , 1+ , 1

71+  +1 A (raised P) A1, A4, A5 

2
71+ , 3

71+ , 4
71+ , 5

71+  +1½ A (raised M) A2, A3, A6, A7 

The qms of multiply augmented and diminished intervals can also be determined. 
For example, the dci and pci of a doubly augmented sixth (AA6) are 5A =  and 

11a = , respectively. Then 

1 24 5
11 2½

2 7
α ⋅⎡ ⎤= − = +⎢ ⎥⎣ ⎦

. (2) 

So the qm of AA6 is 2½. In general, to get the qm of a kth-augmented (diminished) 
interval, one adds 1k −  to (subtracts 1k −  from) the qm of the respective augmented 
(diminished) interval. Thus, since the qm of A6 is 1½, the qm of AA6 is 2½. 

3   Group Structures 

In previous work on musical intervals, Brinkman [5] and Agmon [6] define an inter-
val as an ordered pair in which the first and second coordinates are a pci and dci, re-
spectively. We say these intervals are in PD-notation and denote the group of all such 
intervals as PD 12 7I I I= ×  where 12I  and 7I  are the groups of pcis and dcis. This 
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group is a cyclic group of order 84 generated by 7,4  (the musical fifth).2 The binary 
operator + sums intervals coordinate-wise: the first coordinates are summed mod 12, 
and the second are summed mod 7. Then the sum of common intervals such as 

M2 M3 A4+ =  and M2 M2 M3+ =  (3) 

are represented in PD-notation as 

2,1 4,2 6,3  and 2,1 2,1 4,2 . (4) 

While it is easy for musicians to determine the quality of the intervals in (4), the 
notation by itself gives no hint of interval quality. If, however, the pcis in the first co-
ordinates of the intervals are replaced by their corresponding qms as determined by 
(1), the qualities of the intervals are immediately obvious in the notation: 

½,1 ½,2 1,3  and ½,1 ½,1 ½,2 . (5) 

While coordinate-wise addition works for the first sum in (5) (½ ½ 1+ = ), it does 
not work for the second ( ½ ½ ½+ ≠ ). So, it is necessary to construct a binary opera-
tor that sometimes adds coordinate-wise and other times does not. Thus ⊕  is adopted 
as the binary operation instead of the usual + . 

In the process of constructing this binary operation, we first let 

{ }12 ,5½, 5, 4½ ,5½,6Q −= - - L  (6) 

be the group of qm classes under addition mod 12, and let MDI  be the image of the 
map PD MD: I Iτ →  defined by 

,a A A,  where 12a l A Q . (7) 

We say that the intervals in MDI  are in MD-notation (MD for modifier-diatonic). 
From (1), τ  is a bijection and maps each interval in PD-notation to the same interval 
in MD-notation. To discover how intervals are summed in MD-notation so that they 
mirror the sum of common intervals, we require that τ  map the sum of intervals in 
PD-notation to the sum of the same intervals in MD-notation; that is, 

, , , ,a A b B a A b B .
 (8) 

Finding the binary operator ⊕  is somewhat backwards from many problems in group 
theory texts, which give the binary operations of two groups and ask the reader to find 
a map (homomorphism) between the groups that preserves the operations. Our task is: 
given the binary operator of one group and a map that preserves binary operations, 
find the binary operator of the other group. 

Proposition 1. Let 7,A B I∈ , and define f as follows: 

( ) ( ) ( ) ( ),f A B l A l B l A B= + − + . (9) 

Let 
MD, , ,A B I . If (8) holds then 

                                                           
2 We use double brackets to denote intervals to avoid confusion with parenthetical ordered pairs 

which will later be used to represent notes. 
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MD, , , ,A B f A B A B I .
 (10) 

Proof: Let  and ,a A ,b B  be the preimages of , A  and , B  under τ , re-
spectively. Then by (1), (7), and (8), 

MD

, , , ,

, ,

,

,

,

, , .

A B a A b B

a A b B

a b A B

a b l A B A B

l A l B l A B A B

f A B A B I

 

It follows that MDI  is a cyclic group of order 84 and PD MD: I Iτ →  is an isomorphism. 
Moreover, for any given 7,A B I∈ , ( ),f A B  takes on only one of three values mod 
12: ½− , 0, or ½ . Thus, f either leaves the sum of the qms unchanged ( ( ), 0f A B = ), 
or it nudges their sum by the smallest non-zero amount ( ( ), ½f A B = ± ). Hence 

( ),f A B  can be thought of as a measure of the deviation from the sum of the qms. 
Returning to (5), note that ( )1,2 0f =  for the first sum (1½ + 3½ – 5 = 0). Thus, 

the resultant qm is simply the sum of the other two. For the second sum, ( )1,1 ½f = −  
(1½ + 1½ – 3½ = –½); so, the resultant qm is ½ less than the sum of the other qms. 

4   Group Actions 

In what follows, pitch classes (pcs) will be represented by italicized lowercase letters 
m and n. The set of all pcs will be denoted 12U . Similarly, diatonic classes (dcs) will 
be represented by italicized uppercase letters M and N, and the set of all dcs will be 
denoted 7U . Now let PD 12 7U U U= × . We say the notes (ordered pairs) in PDU  are in 
PD-notation. The action of PDI  on PDU  is defined by 

PD, , ,a A m M a m A M U  (11) 

where the first and second coordinates are reduced mod 12 and mod 7 [5, 6]. 
Consider the following statements: 

Statement 1. A P5 above Eb  is Bb. 

Statement 2. A M3 above Eb  is G. 
(12) 

In PD-notation, these statements correspond to 

7,4 3,2 10,6  and 4,2 3,2 7,4 ,
 

(13) 

which are consistent with (11). Note that neither the interval qualities nor the acciden-
tals attached to the notes in the statements in (12) are conveyed in the notation in (13). 
While MD-notation solves this problem for intervals, another notation is needed for 
accidentals attached to notes. Following Hook’s [1] work on enharmonic systems, we 
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define accidental modifiers (ams)—represented with lowercase Greek letters μ  and 
ν —as follows: A note with k flats (sharps) attached has an am of kμ = −  ( kμ = + ). 

Now let 12A  be the set of am classes mod 12: 

{ }12 5, 4, , 1,0,1, ,5,6A = − − −L L  (14) 

Then each note ( ) PD,M m U∈  is associated with precisely one am class in 12A . For 
example, ( ) PD7,3 U∈  is some type of F (dc 3) that is 7 half-steps above C (pc 7). 
Therefore the note is Fx, implying that the am is 2. 

To determine the am of a note given its pc and dc, the Clough-Douthett [2] algo-
rithm for maximally even sets is needed: 

( ){ } 1

, , 0

dr r
c d c d k

J J k
−

=
=  where ( ),

r
c d

ck r
J k

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦
. (15) 

The symbol ,
r
c dJ  is called the J-representation of the set, and the subscripts c and d 

are the chromatic and diatonic cardinalities, respectively. The superscript r, called the 
mode index, is an integer between 0 and 1c − . For 12c = and 7d = , and for each r, 
0 11r≤ ≤ , 12,7

rJ  is a pcset that represents a diatonic scale. For 0r = , the pcset repre-
sents Db major; for 1r =  it is Ab, F#,  major, and so on. The set representing the C 
major scale—the set of all pcs associated with no sharps or flats—is obtained when 

5r = : 

( ){ } { }65 5
12,7 12,7 0

0, 2,4,5,7,9,11
k

J J k
=

= = . (16) 

It follows that the am of any ( ) PD,m M U∈  is 

( )5
12,7m J Mμ = − . (17) 

Then for ( ) PD7,3 U∈  ( Fx), (17) implies 7 5 2μ = − = . 
As illustrated in (13), in PD-notation the action of PD,a A I  on the note 

( ) PD,m M U∈  is simply a matter of adding the interval and note coordinate-wise. But 
in MD-notation, statements 1 and 2 in (12) are expressed as 

0,4 1,2 1,6  and ,½ 2 1,2 0,4 . (18) 

Coordinate-wise addition works for the first equation (0 + (–1) = –1), but not for the 
second (½ + (–1) ∫ 0). As with interval composition in MD-notation, our task is to 
find an action that sometimes adds coordinate-wise and other times does not. 

Let PD MD:U Uθ →  be defined by 

( ) ( ), ,m M Mθ μ=  where ( )5
12,7 12m J M Aμ = − ∈ . (19) 

Then by (17) ( )MD PDU Uθ= , and θ  is a bijection that maps each note in PD-notation 
to the same note in MD-notation. Since (11) defines the appropriate action for com-
mon intervals and notes in PD-notation, we need to “translate” (11) into MD-notation: 

MD, , , ,a A m M a A m M U . (20) 

Group actions related in this way are said to be permutation isomorphic [7, 8]. 
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Proposition 2. Let 7A I∈  and 7M U∈ , and define g as follows:  

( ) ( ) ( ) ( )5 5
12,7 12,7,g A M l A J M J A M= + − + . (21) 

Let 
MD, A I  and ( ) MD, M Uμ ∈ . If (20) holds, then the action of MDI  on MDU  is 

given by 

MD, , , ,A M g A M A M U .
 (22) 

Proof: Let ,a A  be the preimage of , A  under τ , and let ( ),m M  be the preimage 
of ( ), Mμ  under θ . It follows from (1), (11), (17), and (20) that 

5
12,7

5 5
12,7 12,7

MD

, , , ,

, ,

,

,

,

, , .

A M a A m M

a A m M

a m A M

a m J A M A M

l A J M J A M A M

g A M A M U

 

Since the action of PDI  on PDU  is simply transitive, the action of MDI  on MDU  
must also be simply transitive. Also similar to f, the function g is a measure of devia-
tion from the sum α μ+ , but now for each 7A I∈  and 7M U∈ , ( ),g A M  takes on 
one of five values mod 12: –1, –½, 0, ½, or 1. 

Returning to the first action in (18), ( )4,2 0g =  (7 + 4 – 11 = 0). It follows that the 
am of the resultant note is the sum of the qm of the interval and the am of the note on 
which it acts. On the other hand, ( )2,2 ½g =  in the second action (3½ + 4 – 7 = ½). 
So the am of the resultant note is ½ more than the sum of the qm of the interval and 
the am of the note. 

5   Generalized Interval Systems 

Since in both PD- and MD-notations the actions of the groups of intervals on the sets 
of notes are simply transitive, there are GISes [9] associated with both notations. The 
construction of a GIS in PD-notation is straightforward: For ( ) ( ) PD, , ,m M n N U∈ , 
the GIS ( )PD PD PD, , intU I  in PD-notation is defined by 

PD PDint , , , ,m M n N n m N M I . (23) 

As with interval composition and group action, the definition for MDint  in the GIS 
( )MD MD MD, , intU I  is a bit more complicated than PDint . 

Proposition 3. Let 7,M N U∈ , and define h as follows: 

( ) ( ) ( ) ( )5 5
12,7 12,7,h M N J N J M l N M= − − − . (24) 
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Let ( ) ( ) MD, , ,M N Uμ ν ∈ . Then the GIS ( )MD MD MD, , intU I  is defined by 

MD MDint , , , , ,M N h M N N M I .  (25) 

Proof: Let ( ),m M  and ( ),n N  be the preimages of ( ), Mμ  and ( ), Nν  under θ , re-
spectively. Then by (7) and (17), 

MD

5 5
12,7 12,7

MD

int , , , ,

,

,

, , .

M N n m N M

n m l N M N M

J N J M l N M N M

h M N N M I
 

In MD-notation, the statement “the interval from Eb  to G is a M3” corresponds to 

MDint 1, 2 , 0, 4 ½, 2 . (26) 

From (24), (25), and the left side of (26), the qm of the resultant interval should be 
( ) ( )0 1 2,4 0 1 7 4 3 ½  ½h− − + = + + − − = , which is consistent with the right side of 

(26). Although tedious, it is straightforward to verify that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )MD MD MDint , , , int , , , int , , ,M N N P M Pμ ν ν ρ μ ρ⊕ =  (27) 

for all ( ) ( ) ( ) MD, , , , ,M N P Uμ ν ρ ∈ . 
Similar to f and g in (9) and (21), the function h in (24) takes on only a few values 

mod 12: –½, 0, and ½. But unlike f and g, which measure deviations in the sums of 
modifiers, h measures the deviation in the difference of modifiers ν μ− . 

6   Coda 

There is a surprise ending for MD-notation; within this notation there is a disguised 
quartertone system. Recall that there are 84 intervals in MDI , and they all come from 
the set 12 7Q I× . But the cardinality of 12 7Q I×  is 168. Thus MDI  contains only half 
the members of the set 12 7Q I× . So, what happens if we adopt ⊕  as the binary opera-
tor for 12 7Q I× ? In fact, it can be shown that MDI  is a subgroup of ( )*

MD 12 7 ,I Q I= × ⊕  
and that in this parent group, every interval comes in perfect, minor, and major fla-
vors. Moreover, *

MDI  is a cyclic group of order 168 generated by 0,2 ,  which can be 
interpreted as a P3 and lies halfway between a m3 and a M3. Thus, the length of the 
P3 is 3½ semitones. That this length is half that of the P5 (7 semitones) is reflected in 
the following composition in *

MDI : 

0,4 0,2 0,2 . (28) 

To define an action for *
MDI , it is necessary to double the size of 12A : 

{ }*
12 ,5½, 5, 4½ ,5½,6A −= - - L . (29) 
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Then the set of quartertone notes is * *
MD 12 7U A U= × . An am of –½ corresponds to a 

half-flat. For example, ( )½,2−  represents a half-flatted E, which lies halfway be-
tween E and Eb  (between ( )0,2  and ( )1,2− ). Similarly, a half-sharped F ( )½,3  lies 
halfway between F and F# (between ( )0,3  and ( )1,3 ). With this machinery in place, 
it is not difficult to construct the GIS ( )* * *

MD MD MD, , intU I . 
This approach can also be easily generalized to other microtonal universes. Con-

sider Balzano’s [10] 20-fold system. The scales in this 20-tet system are nine-note 
maximally even sets with J-representations 20,9

rJ  where 0 19r≤ ≤ . If B 20a I∈  and 

B 9A I∈  are corresponding pcis and dcis in this system, then the qm for this pair is 

( )B
B B B B B

201
2

2 9

A
a a l Aα ⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 where ( ) B
B B

401

2 9

A
l A

⎡ ⎤= ⎢ ⎥⎣ ⎦
. (30) 

Then similar to the dcis in the 12-tet system, each dci in the 20-tet system comes in 
either major and minor intervals (ams ½ and –½) or in a perfect interval (am 0), but 
not both: dcis 2, 3, 6, and 7 come in major and minor flavors and dcis 0, 1, 4, 5, and 8 
come in perfect flavors. In view of the important role the major scale plays in Western 
music, it would seem reasonable to ask which rotations of Balzano’s scales might rep-
resent the “major” scales. By observing that the intervals from the root of a major 
scale in the 12-tet system are either major or perfect, one might speculate that the 
same is true for Balzano’s scales. Then in terms of pcs mod 20, 

0,2,5,7,9,11,14,16,18  (31) 

would be Balzano’s “major scale” that begins on pc 0. The set in (31) can also be in-
terpreted as the set of natural notes; that is, in MD-notation (31) can be written as the 
note set 

(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8) .
 

(32) 

If pc 0 represents the note C in the 20-tet system, (31) can also determine the 20-tet 
keyboard configuration; (31) is the set of white keys and its complement is the set of 
black keys. 

This approach can also apply to the study of scale systems investigated by Bohlen 
[11], Mathews et al. [12], Agmon [6], Clough and Douthett [2], Brinkman [5], 
Zweifel [13], Krantz and Douthett [14], Hook [1], and others. 
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Determining Feature Relevance in Subject
Responses to Musical Stimuli

Morwaread M. Farbood1 and Bernd Schoner2

1 Music and Audio Research Laboratory (MARL),
35 W. 4th St., New York University, New York, NY 10012, USA
2 ThingMagic Inc., One Broadway, Cambridge, MA 02142, USA

Abstract. This paper presents a method that determines the relevance
of a set of signals (musical features) given listener judgments of music in
an experimental setting. Rather than using linear correlation methods,
we allow for nonlinear relationships and multi-dimensional feature vec-
tors. We first provide a methodology based on polynomial functions and
the least-mean-square error measure. We then extend the methodology
to arbitrary nonlinear function approximation techniques and introduce
the Kullback-Leibler Distance as an alternative relevance metric. The
method is demonstrated first with simple artificial data and then ap-
plied to analyze complex experimental data collected to examine the
perception of musical tension.

1 Introduction

There are two generic types of responses that can be collected in an experi-
mental setting where subjects are asked to make judgments on musical stimuli.
The first is a retrospective response, where the listener only makes a judgment
after hearing the musical excerpt; the second is a real-time response where judg-
ments are made while listening. The latter has become increasingly popular
among experimental psychologists as an effective means of collecting data. In
particular, studies on musical tension have often employed real-time collection
methods (Nielsen 1983; Madson and Fredrickson 1993; Krumhansl 1996; Bigand
et al. 1996; Bigand & Parncutt 1999; Toiviainen & Krumhansl 2003; Lerdahl
& Krumhansl 2007). The validity of this type of data collection is indicated
by the high inter- and intra-subject correlation between subject responses and,
more importantly, the indication that these responses correspond to identifiable
musical structures (Toiviainen & Krumhansl 2003).

In this paper we propose a method to detect and quantify the relevance of in-
dividual features in complex musical stimuli where both the musical features de-
scribing the stimuli and the subject responses are real-valued. While the method
can be used with most types of auditory or visual stimuli and most types of
responses,1 the method discussed here was developed for the purposes of under-
1 For example, the response signal can be brain activity, as measured by imaging

technology (Schoner 2000), a general biological response such as skin conductivity
(Picard et al. 2001), or direct subject input by means of a computer interface.
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standing how musical structures affect listener responses to tension. Our analysis
is based on the assumption that perceived tension is a function of various salient
musical parameters varying over time, such as harmony, pitch height, onset fre-
quency, and loudness (Farbood 2006). It is the objective of this paper to formu-
late a mathematically sound approach to determine the relative importance of
each individual feature to the perception of tension.

In the following sections, we will first provide a methodology based on poly-
nomial functions and the least-mean-square error measure and then extend the
methodology to arbitrary nonlinear function approximation techniques. We will
first verify our approach with simple artificial data and then apply it to complex
data from a study exploring the perception of musical tension.

2 Prior Work

In this paper we rely on prior art from two distinct fields: (A) the statistical
evaluation of experimental and continuous data, mostly using variants of lin-
ear correlation and regression (Gershenfeld 1999b) and (B) feature selection for
high-dimensional pattern recognition and function fitting in machine learning
(Mitchell 1997).

(A) is helpful for our task at hand, but its limitation stems from the assump-
tion of linearity. The importance of a feature is determined by the value of the
correlation coefficient between a feature vector and a response signal: the closer
the correlation value to 1 or to -1, the more important the feature. A variant
of this approach—based on the same mathematical correlation—uses the coeffi-
cients in a linear regression model to indicate the relevance of a feature.

(B) offers a large amount of literature mostly motivated by high-dimensional,
nonlinear machine-learning problems facing large data sets. Computational lim-
itations make it necessary to reduce the dimensionality of the available feature
set before applying a classifier algorithm or a function approximation algorithm.
The list of common techniques includes Principle Component Analysis (PCA),
which projects the feature space on the most relevant (linear) subset of com-
ponents, and Independent Component Analysis (ICA), which is the nonlinear
equivalent of PCA (Gershenfeld 1999b). Both PCA and ICA are designed to
transform the feature set for the purpose of estimating the dependent signal,
but they do not relate an individual feature to the dependent signal. In fact,
most prior work in machine learning is focused on estimating the dependent
signal, not the significance of individual features.

Prior art can also be found in the field of information theory. Koller & Sahami
(1996) developed a methodology for feature selection in multivariate, supervised
classification and pattern recognition. They select a subset of features using a
subtractive approach, starting with the full feature set and successively removing
features that can be fully replaced by a subset of the other features. Koller &
Sahami use the information-theoretic cross-entropy, also known as KL-distance
(Kullback & Leibler 1951) in their work.
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3 Feature Relevance Measured by Polynomial
Least-Mean Square Estimation

In this paper, we estimate the relevance of a particular musical feature xi by
computing the error between the actual subject response signal y and the es-
timation ŷ of the same. We first build a model based on the complete feature
set F and derive the least-mean-square error E from ŷ and y. We then build
models for each of the feature sets Fi, where Fi includes all the features except
xi, and compute the errors Ei based on ŷi and y. We define the Relevance Ra-
tio Ri = E/Ei and postulate that Ri is a strong indicator of the relevance of
xi for y.

We start by selecting an appropriate model to estimate ŷ, keeping in mind
our goal of overcoming the linearity constraint of common linear techniques.
We consider nonlinear function fitting techniques for the underlying estimation
framework, and observe that such techniques can be classified into two major
categories: linear coefficient models (discussed in this section) and nonlinear
models (discussed in the next section). Linear coefficient models and generalized
linear models use a sum over arbitrary nonlinear basis functions fk(x) weighted
by linear coefficients ak,

y(x) =
K∑

k=1

ak fk(x). (1)

A prominent example of this architecture is the class of polynomial models,
which takes the form

f(x) = a0 +
M∑

m=1

amΨm(x), with (2)

Ψm(x) =
∏

i

x
ei,m

i .

M denotes the number of basis functions and ei,m depends on the order of
polynomial approximation. For example, a two-dimensional quadratic model in-
cludes a total of M = 5 basis functions: (x1), (x2), (x1

2), (x1x2) and (x2
2).

The parameters in this model are typically estimated in a least-mean-square
fit over the experimental data set, which is computationally inexpensive for
small to medium dimensional feature sets (Gershenfeld 1999b). Using the model
we compute ŷ = f(x) for all data points (xn, yn), and subsequently derive
E =

∑
N (ŷn − yn)2/N .

It is a well-known fact that we can cause the error E to shrink to an arbi-
trarily small value by adding more and more resources to the model—that is, by
increasing the number of parameters and basis functions. However, in doing so
we are likely to model noise rather than the underlying causal data structure. In
order to avoid this problem, we cross-validate our model and introduce a global
regularizer that constrains our model to the “right size.”

We divide the available data into two data sets. The training data set (x, y)tr is
used to optimize the parameters of the model, whereas the test data set (x, y)test
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(a)

(b)

Fig. 1. (a) 1-D plot of features x1, x2, x3, and function yB and (b) 3-D plot of function
yB (4)
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is used to validate the model using Etest. As we slowly increase the number of
model parameters, we find that the test data estimation error Etest decreases
initially, but starts to increase as soon as the extra model parameters follow the
randomness in the training data. We declare that the model resulting in the
smallest estimation error

Em =
∑

Ntest

(ŷn,m − yn)2/Ntest (3)

represents the best model architecture for the data set at hand.
Given these considerations, we can now provide a step-by-step algorithm to

determine the Relevance Ratio Ri:

1. Divide the available experimental data into the training set (x, y)tr and
(x, y)test. (x, y)test typically represents 10%−30% of the data. If the amount
of data set is very limited more sophisticated bootstrapping techniques can
be applied (Efron 1983).

2. Build a series of models m based on the complete feature set F , slowly
increasing the complexity of the model, i.e. increasing the polynomial order.

3. For each model m compute the error Em =
∑

Ntest
(ŷm − y)2/Ntest. Choose

the model architecture m that results in the smallest Em. Next, build models
mi for all sets (xi, y), where the vector xi (Fi) includes all features F , except
for xi.

4. Compute Ei =
∑

Ntest
(ŷi − y)2/Ntest for all feature sets Fi and derive the

Relevance Ratio Ri = Em/Ei for all features xi.

Ri = 1 indicates that a feature xi is irrelevant for the response y. A value of
Ri close to 1 indicates little relevance whereas a small value of Ri indicates a
high level of relevance. Ri is dimensionless.

Table 1. Application of the polynomial estimator to functions yA and yB (4): (a)
indicates the error for the different model m based on x; (b) and (c) indicate the
resulting Relevance Ratios for features x1, x2, and x3

(a)
Polynomial Order

Function 1 2 3 4 5 6

A Training Set Error 0.8960 0.0398 0.0398 0.0397 0.0395 0.0392
Test Set Error 0.8938 0.0396 0.0396 0.0398 0.0399 0.0413

B Training Set Error 0.9989 0.1123 0.1121 0.0740 0.0728 0.0546
Test Set Error 1.0311 0.1204 0.1210 0.0848 0.0898 0.0924

(b)
Function A Feature Set

F1 F2 F3

Error Training Set 0.8960 0.1452 0.0398
Error Test Set 0.8938 0.1480 0.0396

x1 x2 x3

Relevance Ratio 0.0443 0.2674 0.9995

(c)
Function B Feature Set

F1 F2 F3

Error Training Set 0.2328 0.8406 0.0745
Error Test Set 0.2478 0.8590 0.0842

x1 x2 x3

Relevance Ratio 0.3423 0.0988 1.0072
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Before we use the method on experimental data, we demonstrate it here on
two artificial data sets: A three dimensional set of 5,000 feature data is generated
using xi = 10 ·N(0, 1), where N(μ, σ) denotes the normal distribution. We define
functions A and B as

yA = x2
1 + 5 · x2 + 0 · x3 + 30 · N(0, 1) (4)

yB = 100 · log(x1) + x2
2 + 0 · x3 + 20 · N(0, 1)

Figure 1 shows a one-dimensional and three-dimensional plot of x and yB.
Applying our algorithm we obtain the results indicated in Table 1. In the case

of function A it can be seen that the polynomial model correctly determines that
the data is drawn from a second-order model. For both function A and B, the
model correctly assigns a value of R3 = 1 indicating that x3 was not used to
generate y as is indeed the case.

4 Extension to General Nonlinear Estimators and
Probabilistic Models

Polynomial models and generalized linear models have many nice properties, in-
cluding the fact that parameter sets are easily understood. The drawback of these
models is that the number of basis terms increases exponentially with the dimen-
sionality of x, making them computationally prohibitive for high-dimensional
data sets.

The second category of nonlinear models uses variable coefficients inside the
nonlinear basis functions

y(x) =
K∑

k=1

f(x,ak). (5)

The most prominent examples of this class of models are artificial neural net-
works, graphical networks, and Gaussian mixture models (GMM). The models
are exponentially more powerful, but training requires an iterative nonlinear
search. Here we demonstrate the methodology with GMM’s which, as a subclass
of Bayesian networks, have the added benefit of being designed on probabilistic
principles.

GMM’s are derived as the joint probability density p(x, y) over a set of data
(x, y). p(x, y) is expanded as a weighted sum of Gaussian basis terms and hence
takes on the form

p(y,x) =
M∑

m=1

p(y,x, cm) (6)

=
M∑

m=1

p(y|x, cm)p(x|cm)p(cm) . (7)
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Table 2. Application of the GMM estimator to functions yA and yB (4): (a) indicates
the error for the different model m based on x; (b) and (c) indicate the resulting
Relevance Ratios for features x1, x2, and x3

(a)
Number of Clusters

Function 2 4 6 8 10 12 14 16 18 20
A Training Set error 0.414 0.056 0.044 0.043 0.041 0.040 0.041 0.041 0.041 0.040

Test Set Error 0.413 0.056 0.046 0.044 0.041 0.041 0.042 0.042 0.043 0.041
B Training Set Error 0.343 0.151 0.095 0.075 0.052 0.044 0.040 0.035 0.033 0.028

Test Set Error 0.362 0.161 0.106 0.081 0.056 0.050 0.046 0.041 0.038 0.033
22 24 26 28 30 32 34 36 38 40

A Training Set error 0.040 0.040 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
Test Set Error 0.043 0.042 0.041 0.041 0.041 0.041 0.041 0.043 0.042 0.041

B Training Set Error 0.027 0.029 0.024 0.025 0.024 0.022 0.021 0.024 0.024 0.021
Test Set Error 0.029 0.035 0.027 0.030 0.028 0.024 0.026 0.029 0.029 0.026

(b)
Function A Feature Set

F1 F2 F3

Error Training Set 0.8950 0.1464 0.0403
Error Test Set 0.8958 0.1515 0.0408

x1 x2 x3

Relevance Ratio 0.0453 0.2676 0.9928

(c)
Function B Feature Set

F1 F2 F3

Error Training Set 0.2502 0.7630 0.0209
Error Test Set 0.2575 0.8646 0.0233

x1 x2 x3

Relevance Ratio 0.0912 0.0272 1.0096

We choose

p(x|ck) =
|P−1

k |1/2

(2π)D/2 e−(x−mk)T ·P−1
k ·(x−mk)/2 , (8)

where Pk is the weighted covariance matrix in the feature space. The output
distribution is chosen to be

p(y|x, ck) =
|P−1

k,y |1/2

(2π)Dy/2 e−(y−f(x,ak))T ·P−1
k,y·(y−f(x,ak))/2 , (9)

where the mean value of the output Gaussian is replaced by the function f(x, ak)
with unknown parameters ak.

From this we derive the conditional probability of y given x

〈y|x〉 =
∫

y p(y|x) dy (10)

=
∑K

k=1 f(x,ak) p(x|ck) p(ck)∑K
k=1 p(x|ck) p(ck)

,

which serves as our estimator of ŷ. The model is trained using the well-known
Expectation-Maximization algorithm.

The number of Gaussian basis functions and the complexity of the local models
serve as our global regularizers, resulting in the following step-by-step algorithm
analogous to the polynomial case discussed before:
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1. Divide the data into training set (x, y)tr and test set (x, y)test.
2. Build a series of models m based on the complete feature set F , slowly

increasing the number of Gaussian basis functions.
3. For each model m compute the error Em = (ŷm − y)2/Ntest. Choose the

model architecture m that results in the smallest Em. Build models mi for
all sets (xi, y).

4. Compute Ei =
∑

Ntest
(ŷi − y)2/Ntest for all feature sets Fi and derive the

Relevance Ratio Ri = Em/Ei for all features xi.

Applying this new approach to our artificial data sets from before (4), we
obtain the results in Table 2.

5 Kullback-Leibler Distance

The linear least-mean-square error metric is without doubt the most commonly
used practical error metric, however, other choices can be equally valid. The
framework of the Gaussian mixture model allows for the introduction of a prob-
abilistic metric, known as the cross entropy or Kulback-Leibler distance (KL-
Distance) (Kullback & Leibler 1951). The KL-Distance measures the divergence
between two probability distributions P (x) and Q(x):

DKL(P ||Q) =
∫

x

P (x)log
P (x)
Q(x)

dx (11)

where P (x) is typically assumed to be the “true” distribution, and DKL is a
measure for how much Q(x) deviates from the true distribution.

For our task at hand we are interested in how much the distribution p(y|xi)
deviates from p(y|x∗), where once again xi includes all the elements of x except
for xi. This leads us to the definition

DKL(p||pi) =
∫
x,y

p(x, y)log
p(y|x)
p(y|xi)

dxdy (12)

and given our definitions above, we obtain

DKL(p||pi) =
∫
x,y

p(x, y)[log(p(y|x) − log(p(y|xi))]dxdy (13)

≈ 1
N

N∑
n=1

[log(p(yn|xn) − log(p(yn|xi,n))] ,

Here we replaced the integral over the density with the sum over the observed
data (which itself is assumed to be drawn from the density).

To compute DKL(p||pi) we need to first estimate p(yn|xi,n). However, this step
consists of estimating the local model parameters only, a relatively minor task.
All other parameters needed to numerically evaluate this equation are already
part of the model built in the first place.
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(a)

(b)

Fig. 2. Features xi and three subject responses (same subject) for (a) the Brahms
excerpt (Fig. 5) and (b) the Bach-Vivaldi excerpt (Fig. 4). H = harmony, L = loudness,
M = melodic expectation, PB = pitch height of bass line, PS = pitch height of soprano
line.
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6 Experimental Results

6.1 Data Set

Data was collected in an experiment that recorded real-time, continuous re-
sponses to musical stimuli. Thirty-five subjects, drawn from the faculty and stu-
dent body at MIT, participated in the experiment. Subjects were asked to move
a slider on a computer interface to indicate how they felt tension was changing
in the music. They were instructed to raise the slider if they felt a general feeling
of musical tension increasing, and to lower it when they felt it lessening. Each
musical excerpt was played four times; after each iteration, subjects were asked
to rate the confidence level of their response on a scale of 1 to 5. Slider positions
were sampled at 50Hz.

Ten musical examples were used as stimuli in the experiment. Six of these
examples were short (under 10 seconds) and composed specifically for the study.
They featured simple and clear changes in tempo, onset frequency, loudness, har-
mony, and pitch contour. In addition, there were four excerpts taken from the
classical repertoire: Schoenberg Klavierstück, Op. 11 No. 12, Beethoven Sym-
phony No. 1 (Fig. 3), J. S. Bach’s organ transcription of Vivaldi’s D Major
concerto (RV 208) (Fig. 4), and Brahms Piano Concerto No. 2 (Fig. 5). The
longer examples were 20 seconds to one minute in length and considerably more
complex than any of the short examples.

Musical parameters included in the feature set were harmonic tension, melodic
expectation, pitch height of soprano and bass lines, onset frequency, and loud-
ness. Not all features were relevant to all musical examples from the experiment.
For the purposes of quantifying harmonic tension and melodic expectation, Ler-
dahl’s (2001)2 and Margulis’s (2005) models were applied respectively.

Fig. 3. Score of Beethoven excerpt

6.2 Results

The key results for all of the complex tonal examples are represented in Table 3.
We use both the polynomial models and GMMs and apply our method to various
subsets of the feature space. The results are largely robust against variations in

2 Without the melodic attraction component; this factor is taken into account sepa-
rately with Margulis’s model.
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Table 3. Summary of experimental results for the musical tension study. For each
experiment we indicate the type of estimation (polynomial or GMM), the global reg-
ularizer (polynomial order or number of Gaussians) and the Relevance Ratio of each
feature: H = harmony, L = loudness, M = melodic expectation, O = onset frequency,
PB = pitch height of bass line, PS = pitch height of soprano line.

Brahms

Type POLY Relevance Ratio
Polynomial order 3 H L M O PB PS
Num. Gaussians N/A 1.0166 1.0099 1.0306 1.0247 1.0251 0.9571

Type POLY Relevance Ratio
Polynomial order 3 H L M PB PS
Num. Gaussians N/A 0.8869 0.6133 0.8527 1.0099 0.8366

Type POLY Relevance Ratio
Polynomial order 4 H L PB PS
Num. Gaussians N/A 0.8460 0.4795 0.6787 0.6367

Type POLY Relevance Ratio
Polynomial order 4 H L M
Num. Gaussians N/A 0.8623 0.3228 0.5750

Type GMM Relevance Ratio
Polynomial order N/A H L M PB PS
Num. Gaussians 16 0.7230 0.2953 0.6583 0.7478 0.9509

Bach-Vivaldi

Type POLY Relevance Ratio
Polynomial order 2 H L M O PB PS
Num. Gaussians N/A 0.6950 1.1549 0.9703 0.7653 0.8047 0.9472

Type POLY Relevance Ratio
Polynomial order 3 H L M PB PS
Num. Gaussians N/A 0.7413 1.1131 0.9780 1.0115 0.9696

Type POLY Relevance Ratio
Polynomial order 3 H M PB PS
Num. Gaussians N/A 0.6436 0.8953 0.9265 0.8112

Type POLY Relevance Ratio
Polynomial order 3 H L M PS
Num. Gaussians N/A 0.7514 1.0195 0.8625 0.8717

Type GMM Relevance Ratio
Polynomial order N/A H L M PS
Num. Gaussians N/A 0.6667 1.0439 0.9362 0.8945

Beethoven

Type POLY Relevance Ratio
Polynomial order 2 H L M O PB PS
Num. Gaussians N/A 1.0575 0.9699 0.9689 0.9644 0.9375 1.0822

Type POLY Relevance Ratio
Polynomial order 2 H L M PB PS
Num. Gaussians N/A 1.0607 0.9749 1.0604 1.0580 1.0252

Type POLY Relevance Ratio
Polynomial order 2 H L PB PS
Num. Gaussians N/A 0.9502 0.4230 1.0448 1.0289

Type GMM Relevance Ratio
Polynomial order N/A H L PB PS
Num. Gaussians 4 1.2435 0.4087 0.8488 1.1299
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Fig. 4. Score of Bach-Vivaldi excerpt

the model architecture. Relevance is always rewarded with a Relevance Ratio
significantly smaller than 1. However, the relative Ratio between features can
vary from model to model.

We observe that the model performs best with a modest number of features.
The fewer the available feature dimensions, the cleaner the results. We therefore
start with a larger feature set and successively remove the least relevant features
from the set until the model provides a robust estimate of the feature relevance.
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Fig. 5. Score of Brahms excerpt

Mathematically, this phenomenon can be explained by the fact that the features
are not statistically independent and that the relevance of one feature may be
entirely assumed by an other feature (or a set of features) (Koller & Sahami
1996).

We observe in the case of the Brahms excerpt that loudness is clearly the
predominant feature and hence has the smallest Relevance Ratio. In the case of
the Bach-Vivaldi excerpt, harmony is primarily responsible for perceived tension.
In the Beethoven excerpt, like the Brahms, loudness has the most impact on the
response. This makes qualitative sense, as there are no clear changes in the



128 M.M. Farbood and B. Schoner

dynamics for the Bach-Vivaldi example, unlike the case for the Brahms and
Beethoven, where change in loudness is a salient feature.

The Relevance Ratio confirms that listeners relate salient changes in mu-
sical parameters to changes in tension. While there are multiple factors that
contribute to how tension is perceived at any given moment, one particular fea-
ture may predominate, depending on the context. The Relevance Ratio reveals
the overall prominence of each feature in the subject responses throughout the
course of a given excerpt. While it could be argued that listeners respond more
strongly to certain features (e.g. loudness over onset frequency), it is the degree of
change in each parameter that corresponds most strongly to tension, regardless
of whether the feature is purely musical, as in the case of harmony and melodic
contour, or expressive, as in the case of tempo and dynamics.

Summary

We have introduced an new estimator called the Relevance Ratio that is derived
from arbitrary nonlinear function approximation techniques and the least-mean-
square error metric. To demonstrate the functionality of the Relevance Ratio, it
was first applied to a set of artificial test functions where the estimator correctly
identified relevant features. In a second step the estimator was applied against
a data set of experimental subject responses where we gained valuable insights
into the relevance of certain salient features for perceived musical tension. Ad-
ditionally, we introduced the KL-Distance as an alternative estimator defined in
purely probabilistic terms.
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Sequential Association Rules in Atonal Music
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Abstract. This paper describes a preliminary study on the structure of
atonal music. In the same way as sequential association rules of chords
can be found in tonal music, sequential association rules of pitch class set
categories can be found in atonal music. It has been noted before that
certain pitch class sets can be grouped into 6 different categories [10].
In this paper we calculate those categories in a different way and show
that virtually all possible pitch class sets can be grouped into these cat-
egories. Each piece in a corpus of atonal music was segmented at the bar
level and of each segment it was calculated to which category it belongs.
The percentages of occurrence of the different categories in the corpus
were tabulated, and it turns out that these statistics may be useful for
distinguishing tonal from atonal music. Furthermore, sequential associ-
ation rules were sought within the sequence of categories. The category
transition matrix shows how many times it happens that one specific
category is followed by another. The statistical significance of each pro-
gression can be calculated, and we present the significant progressions as
sequential association rules for atonal music.

Keywords: pitch class set categories, atonal music, sequential associa-
tion rules, similarity measures.

1 Introduction

A typical structure can usually be revealed in tonal music, when it is analyzed
harmonically. The chord progressions like the ones shown in Table 1 show some
general rules that can often be found in Western tonal music. Atonal music,
on the other hand, is not structured around a tonal center like tonal music.
Therefore, for atonal music, a progression table like this is impossible. Pitch
class set theory can be used to analyze atonal music and more analysis theories
have been proposed to analyze atonal music [7]. However, no analogy to chord
progression in tonal music has been proposed. In this paper, we will ask ourselves
the question whether any kind of progression rules for atonal music can be found
which could reveal partly the structure of atonal music.
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Table 1. Chord progression in major mode, taken from [9]

Chord is followed by sometimes by less often by
I IV, V VI II, III
II V IV, VI I,III
III VI IV I, II, V
IV V I, II III, VI
V I VI, IV III, II
VI II, V III, IV I
VII III I

1.1 Atonal Music and Pitch Class Set Theory

A distinction is often made between “free” atonal music and twelve tone or serial
music. Twelve tone music differs from free atonal music in two important ways:
all 12 pitch classes are used and ordered. In this paper, when we speak about
atonal music, we mean both free atonal music and serial music.

For the analysis of atonal music, pitch class set theory has been developed.
Pitch class set theory has been described in 1973 by Alan Forte [4]. A pitch
class is a number between 0 and 11 and is an abstraction of a musical note. All
12 pitch classes represent the semitones from one octave. Collections of pitch
class sets (harmonic or melodic) can be analyzed according to pitch class set
theory. Forte [4] assumed two types of equivalence (besides the octave equivalence
and enharmonic equivalence that belong to pitch classes) related to collections,
namely transpositional equivalence and inversional equivalence. Furthermore,
the term ‘set’ covers permutation equivalence and cardinality equivalence. For
example, the set {0, 4, 7} represents all the chords/melodies that are composed
of these three pitch classes (including repetitions). Without these equivalence
classes, the number of possible pitch class sets would be huge. But taking these
equivalence relations into account, the list of possible pitch class sets are more
limited and each set in the list can be characterized by the so-called prime form of
the pitch class set (see e.g. [4] for more information). An other way of describing
a pitch class set is to characterize it by its intervallic content. The interval-class
vector or IcV is an array that expresses the intervallic content of a pitch class set.
Since in pitch class set theory an interval is equal to its inverse, an IcV consists
of six numbers instead of twelve, with each number representing the number
of times an interval class appears in the set. For example, the pitch class set
{0, 4, 7} has interval class vector [0 0 1 1 1 0] since it consists of 1 ‘minor third
or major sixth’, 1 ‘major third or minor sixth’, and 1 ‘perfect fourth or perfect
fifth’. An IcV represents a pitch class set together with all its transformations
according to the above mentioned equivalence classes.

Although the list of different pitch class sets according to Forte may be limited,
it still consists of 351 sets (that is the list of different prime forms, [4]), and
therefore similarity measures are sometimes useful.
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2 Pitch Class Set Categories in Atonal Music

Many similarity measures have been developed for pitch class sets, for example
Isaacson’s IcVSIM [6], Forte’s Rn relations [4], Morris’ SIM [8], Rahn’s MEMB
[11], Rogers’ cosθ [12] and Scott and Isaacson’s Angle [13]. Many of these similarity
measures are based on the interval-class vector (IcV), i.e. those measures compare
two different IcV’s and output a value that characterizes their similarity.

At first sight, these similarity measures seem to be not so much related to
each other. They differ in range, intention, way of calculation and more [10].
However, Quinn argues that those similarity measures have actually a lot in
common: they tend to group the IcV’s in six different categories, each of which
can be said to correspond to a cycle of one of the six interval classes [10]. A cycle
of interval classes can be thought of in the following way. A cycle of the interval
1 will read: 0,1,2,3,4, ... A cycle of the interval 2 will read: 0,2,4,6,.... A cycle of
the interval 3 will read: 0,3,6,9,... , and so on. Using a cluster analysis, Quinn
groups the tetrachords and pentachords in six categories according to several
different similarity measures. He identifies for each category a prototype. If a
certain pitch class set is grouped into a certain category, this pitch class set is
similar to the prototype of that category, according to the similarity measure
used. The set {0, 1, 2, 3, 4} (IcV=[4 3 2 1 0 0]) is the prototype of the Interval
Category 1 (IC1) in the pentachord classification, the set {0, 2, 4, 6, 8} (IcV=[1 3
1 2 2 1]) the prototype of IC2, and so on. The cycles of IC’s that have periodicities
that are less than the cardinality of their class (for example, pitch class 4 has a
periodicity of 3: {0,4,8}) are extended in the way described by Hanson [5]: the
cycle is shifted to pitch class 1 and continued from there. For example, the IC-6
cycle proceeds {0, 6, 1, 7, 2, 8...} and the IC-4 cycle proceeds {0, 4, 8, 1, 5, 9, 2, ...}.
Thus for every cardinality, a separate prototype characterizes the category. For
example, category IC4 has prototype {0, 4} for sets of cardinality 2, prototype
{0, 4, 8} for set of cardinality 3 and so on. Tables 2 and 3 give an overview of the
prototypes of pitch class set categories. Prototypes have been listed for sets from
2 to 10 notes. Pitch class sets with less than 2 notes or more than 10 notes do not
make sense. One pitch class set of cardinality 1 exists, {0}, with interval vector [0
0 0 0 0 0] and it belongs equally to every category. The same is true for cardinality
11: only one prime form pitch class set exists: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with
interval vector [10 10 10 10 10 5] and belongs to every category equally. The
pitch class set of cardinality 12 contains all possible pitch classes.

Although the general classification into six categories is clear from the cluster
analysis by Quinn [10], some differences can still be found between classifications
with respect to different similarity measures. Comparing the clusters that are ob-
tained from the cluster analysis by Quinn on IcVSIM [6] and SATSIM [1], it ap-
pears that two sets, {0, 1, 2, 5, 7} and {0, 1, 3, 6, 8}, that are categorized by IcVSIM
as IC5 are categorized by SATSIM as IC6 (see [10]). More differences exist in the
classifications when a comparison is made with more similarity measures. Aiming
to group the pitch class sets uniformly, in this paper a slightly different approach
will be used to classify the pitch class sets. We have used the prototypes them-
selves to classify pitch class sets into the aforementioned six categories by using
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Table 2. Prototypes expressed in pitch class sets for the six categories

prototypes (pc sets)
IC1 {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, etc.
IC2 {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, etc.
IC3 {0, 3}, {0, 3, 6}, {0, 3, 6, 9}, etc.
IC4 {0, 4}, {0, 4, 8}, {0, 1, 4, 8}, etc.
IC5 {0, 7}, {0, 2, 7}, {0, 2, 5, 7}, etc.
IC6 {0, 6}, {0, 1, 6}, {0, 1, 6, 7}, etc.

Table 3. Prototypes expressed in interval class vectors for the corresponding classes
of different cardinality

prototypes (IcV)
IC1 IC2 IC3 IC4 IC5 IC6

duochord
classes

[1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1]

trichord
classes

[2 1 0 0 0 0] [0 2 0 2 0 0] [0 0 2 0 0 1] [0 0 0 3 0 0] [0 1 0 0 2 0] [1 0 0 0 1 1]

tetrachord
classes

[3 2 1 0 0 0] [0 3 0 2 0 1] [0 0 4 0 0 2] [1 0 1 3 1 0] [0 2 1 0 3 0] [2 0 0 0 2 2]

pentachord
classes

[4 3 2 1 0 0] [1 3 1 2 2 1] [1 1 4 1 1 2] [2 0 2 4 2 0] [0 3 2 1 4 0] [3 1 0 1 3 2]

hexachord
classes

[5 4 3 2 1 0] [0 6 0 6 0 3] [2 2 5 2 2 2] [3 0 3 6 3 0] [1 4 3 2 5 0] [4 2 0 2 4 3]

heptachord
classes

[6 5 4 3 2 1] [2 6 2 6 2 3] [3 3 6 3 3 3] [4 2 4 6 4 1] [2 5 4 3 6 1] [5 3 2 3 5 3]

octachord
classes

[7 6 5 4 4 2] [4 7 4 6 4 3] [4 4 8 4 4 4] [5 4 5 7 5 2] [4 6 5 4 7 2] [6 4 4 4 6 4]

nonachord
classes

[8 7 6 6 6 3] [6 8 6 7 6 3] [6 6 8 6 6 4] [6 6 6 9 6 3] [6 7 6 6 8 3] [7 6 6 6 7 4]

decachord
classes

[9 8 8 8 8 4] [8 9 8 8 8 4] [8 8 9 8 8 4] [8 8 8 9 8 4] [8 8 8 8 9 4] [8 8 8 8 8 5]

the chosen similarity measure to calculate to which prototype a pitch class set is
closest. When doing this, the categorization of pentachords according to the afore-
mentioned similarity measures IcVSIM and SATSIM are identical, so Quinn’s [10]
claim about the six categories could be made even stronger. Even more similar-
ity measures could be compared in this respect. We have compared the measures
IcVSIM [6], SATSIM [1], ASIM [8] and cosθ [12], and found they all come up with
the same classification for the duochords, pentachords, heptachords, octachords,
nonachords and decachords, and the classifications for the trichords, tetrachords
and hexachords differ at most by 3 pitch class sets. This shows that similarity mea-
sures are not too different in this respect, they agree on the classification in the
six categories as we find a very high overlap.

We will base our choice of which similarity measure to use, on the ambiguity
it produces. It turns out that Rogers’ cosθ produces the least ambiguity: when
using it to calculate the category of a pitch class set, it outputs virtually always
only one category.
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3 Sequential Association Rules

Each category can be seen to as having a particular character resulting from the
intervals that appear most frequently. Category 1 (see Table 2 for the prototypes)
consists of all semitones and is the category of the chromatic scale. Category 2 is
the category of the whole-tones or whole-tone scale. Category 3 is the category
of the diminished triads or diminished scale. Category 4 is the category of the
augmented triads or augmented scale. Category 5 is the category of the diatonic
scale. Category 6 is the category of the tritones or D-type all-combinatorial
hexachord (see [5]).

As we have shown above, four similarity measures group the pitch class sets
into the same categories. Since similarity plays a role in the analysis of music,
this might suggest that those categories play a structural role in atonal music.
In this paper we will try to discover sequential association rules between those
categories in a corpus of atonal music such as to come up with a table of ‘category
progressions’ for atonal music similar to that of Piston [9] for tonal music. A
sequential association rule is a progression a → b, where the probability p(b|a)
is higher than chance level, meaning that category b tends to follow category a
more often than expected [2].

3.1 The Method

The method has been implemented in Java, using parts of the Musitech Frame-
work [14], and operates on MIDI data. The MIDI file is segmented on the bar
level, as a first step to investigate the raw regularities that occur on this level.
The pitches from each bar form a pitch class set. From each pitch class set,
the interval class vector can be calculated after which the category it belongs
to can be calculated. Using Rogers’ cosθ as similarity measure we calculate the
similarity to all prototypes of the required cardinality. The prototype to which
the set is most similar, represents the category to which the set belongs. If the
the pitch class set that is constructed from a bar contains less than 2 or more
than 10 different pitch classes, the category is not calculated since this does not
make any sense, as we explained in Sect. 2. Therefore, if a set (bar) contains
more than 10 different pitch classes, the bar is divided into beats and the beats
are treated as new pitch class sets. If a set contains less than 2 pitch classes, this
set is added to the set that is constructed from the next bar.

First of all, the number of occurrences of all categories are counted, such that
we get an overview of the piece in terms of the percentages of occurrence of
the different categories. Furthermore, the instances of each progression from one
category to another are counted.

A measure for the over-representation of a progression a → b is the ‘lift’. This
measure is taken from [2] and defined as follows:

lift(a → b) =
p(b|a)
p(b)

, (1)
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where p(x) denotes the probability of category x. The lift can be understood as
the number of observed progressions divided by the number of expected progres-
sions due to chance. If the lift is greater than 1, there is a positive correlation,
if the lift is smaller than 1, there is a negative correlation.

4 Results

As described in the previous section, the occurrences of each category can be
counted. It can be expected that different types of music will show a different
occurrence rate for each category. To start with a tonal piece, for example, the
distribution of categories of the fourth movement of Beethoven’s ninth symphony
is shown is Table 4. One can observe that category 5 dominates the whole piece.
This turns out to be quite typical for tonal music. In the previous section we
have mentioned that each category can be seen as having a specific character
and category 5 represents the diatonic scale. Therefore, it is not surprising that
a piece of tonal music based on the diatonic scale is dominated by category 5.

Table 4. Distribution of categories of the fourth movement of Beethoven’s ninth
symphony

category number of
occurrences

percentage of
occurrence

1 102 11.40 %
2 69 7.71 %
3 78 8.72 %
4 89 9.94 %
5 552 61.68 %
6 5 0.56 %

For atonal music, we expect something different. We have run the program on
atonal music of Schoenberg, Webern, Stravinsky and Boulez. The complete list
of music is shown in Table 5. On average, the distribution as shown in Table 6
was found, using this corpus of atonal music. One can see that this distribution
is totally different from Table 4 and as such this method might be useful in
discrimination tasks. We can see that the music is not dominated anymore by
category 5 but a much more equal distribution is present in atonal music.

A transition matrix can be made with our method (Table 7), listing how many
times category i is followed by category j. We have calculated the lift matrix
as described in the previous section (Table 8) from which one can see which
progressions have a positive relation and which have a negative relation.

To answer the question which progressions are meaningful, we have to perform
a significance test. We would like to know which progressions have an occurrence
rate that is significantly higher or lower than chance level. We use a chi-square
test on the data of Table 7 to calculate which progressions cannot be explained
by our null hypothesis: the probability of class j following class i does only
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Table 5. The atonal music used in the method

composer piece

Schoenberg Pierrot Lunaire part 1, 5, 8, 10, 12, 14, 17, 21
Schoenberg Piece for piano opus 33
Schoenberg Six little piano pieces opus 19 part 2, 3, 4, 5, 6
Webern Symphony opus 21 part 1
Webern String Quartet opus 28
Boulez Notations part 1
Boulez Piano sonata no 3, part 2: “Texte”
Boulez Piano sonata no 3, part 3: “Parenthese”
Stravinsky in memoriam Dylan Thomas Dirge canons (prelude)

Table 6. Distribution of categories from music of Schoenberg, Webern, Stravinsky and
Boulez

category number of
occurrences

percentage of
occurrence

standard
deviation

1 313 28.25 % 10.56 %
2 117 10.56 % 6.14 %
3 166 14.98 % 7.68 %
4 179 16.16 % 7.97 %
5 138 12.45 % 7.15 %
6 195 17.60 % 6.20 %

depend on the overall number of j’s in the music. We calculate the chi-square
statistics for every progression separately by making a 2 × 2 contingency table
(with fields i → j, i → ¬j, ¬i → j, ¬i → ¬j), and calculate the probability from
the probability density function of the chi-square distribution with 1 degree of
freedom (Table 9). If we take the significance level to be 5%, the progressions
that are significantly meaningful are printed in boldface in Table 9.

Now that we can identify the meaningful progressions for our corpus of atonal
music, we can make a table for categories analogue to Piston’s table for chords.
From the lift value in Table 8 can be seen whether a significant progression rep-
resents a positive or negative association. These significant rules can be found in
Table 9 under the headings “is followed by” (positive association) and “less often
by” (negative association). One can see that there is a tendency for categories
to follow itself, so that large regions in the music are represented by just one
category. This is in accordance with observations by Ericksson [3], who describes
7 categories similar to the ones described above and says that “it is often pos-
sible to show that one region [category] dominates an entire section of a piece”.
Besides these ‘repetitions’ of categories, one other progression can be identified
to present a sequential association rule: the progression from 5 to 4, and four
other progressions can be identified to present a negative association, sequential
‘avoidance’ rules: the progression from category 1 to 2, from 1 to 4, from 1 to 5,
and from 5 to 6.
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Table 7. The transition matrix

To
category 1 2 3 4 5 6

From

1 109 23 49 36 28 62
2 27 21 12 15 18 22
3 49 18 30 21 24 22
4 44 17 29 39 15 32
5 33 17 15 29 27 16
6 47 20 28 34 22 38

Table 8. The lift matrix

To
category 1 2 3 4 5 6

From

1 1.23 0.70 1.04 0.71 0.72 1.13
2 0.82 1.70 0.68 0.79 1.24 1.07
3 1.04 1.03 1.21 0.78 1.16 0.75
4 0.87 0.90 1.08 1.35 0.67 1.02
5 0.85 1.17 0.73 1.30 1.57 0.66
6 0.85 0.97 0.96 1.08 0.91 1.11

Table 9. The significance matrix of the results displayed in Table 7

To
category 1 2 3 4 5 6

From

1 0.001 0.020 >0.5 0.009 0.026 0.111
2 0.150 0.003 0.097 0.288 0.179 >0.5
3 >0.5 >0.5 0.135 0.159 0.252 0.079
4 0.201 >0.5 >0.5 0.008 0.059 >0.5
5 0.163 0.438 0.104 0.047 0.003 0.030
6 0.167 >0.5 >0.5 0.345 1.222 0.254

Table 10. Category progression in atonal music

Category is followed by sometimes by less often by
1 1 3,6 2,4,5
2 2 1,3,4,5,6
3 1,2,3,4,5,6
4 4 1,2,3,5,6
5 4,5 1,2,3 6
6 1,2,3,4,5,6

5 Concluding Remarks

Although this work serves as a preliminary study on sequential association rules
in atonal music, some interesting things can be said. To sum up the results
of this paper, we showed first of all that the 6 different pitch class categories
described in [10], can be found in a different way by comparing all pitch class sets
to certain prototypes according to a specific similarity measure. Four different
similarity measures agree virtually always on the grouping of all possible pitch
class sets into these 6 categories. Furthermore, the distribution of notes into
these categories appears to be distinguishing between atonal and tonal music
and could perhaps be used as a tool for this purpose. Finally, a number of
sequential association rules have been found in a corpus of atonal music. A
sequential association rule is a progression from category i to j that appears in
the music significantly more often than one would expect due to chance. These
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progression rules may reveal a structure of atonal music that was not known
before.

Acknowledgements

We wish to thank our colleague Mathieu Bergeron for presenting this paper at the
second international conference of the Society for Mathematics and Computation
in Music 2009.

References

1. Buchler, M.: Relative saturation of interval and set classes: A new model for under-
standing pcset complementation and resemblance. Journal of Music Theory 45(2),
263–343 (2001)

2. Conklin, D.: Melodic analysis with segment classes. Machine Learning 65(2-3),
349–360 (2006)

3. Ericksson, T.: The ic max point structure, mm vectors and regions. Journal of
Music Theory 30(1), 95–111 (1986)

4. Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1973)
5. Hanson, H.: Harmonic Materials of Modern Music. Appleton-Century-Crofts, New

York (1960)
6. Isaacson, E.J.: Similarity of interval-class content between pitch-class sets: the

IcVSIM relation. Journal of Music Theory 34, 1–28 (1990)
7. Lerdahl, F.: Atonal prolongational structure. Contemporary Music Review 4(1),

65–87 (1989)
8. Morris, R.: A similarity index for pitch-class sets. Perspectives of New Music 18,

445–460 (1980)
9. Piston, W., DeVoto, M.: Harmony. Victor Gollancz Ltd. (1989) revised and ex-

panded edition
10. Quinn, I.: Listening to similarity relations. Perspectives of New Music 39, 108–158

(2001)
11. Rahn, J.: Relating sets. Perspectives of New Music 18, 483–498 (1980)
12. Rogers, D.W.: A geometric approach to pcset similarity. Perspectives of New Mu-

sic 37(1), 77–90 (1999)
13. Scott, D., Isaacson, E.J.: The interval angle: A similarity measure for pitch-class

sets. Perspectives of New Music 36(2), 107–142 (1998)
14. Weyde, T.: Modelling cognitive and analytic musical structures in the MUSITECH

framework. In: UCM 2005 5th Conference Understanding and Creating Music,
Caserta, pp. 27–30 (November 2005)



Badness of Serial Fit Revisited

Tuukka Ilomäki
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Abstract. David Lewin introduced the notion of Badness of Serial Fit,
or BSF, to analyze the relation between two twelve-tone rows. It is based
on Milton Babbitt’s idea of the protocol made of the shared ordered pairs
of pitch classes of two rows and aims to evaluate how distinctive the pro-
tocol is. While BSF has been mentioned several times in the music theory
literature, so far little progress has been made in the analysis of its prop-
erties. This paper formalizes BSF in terms of partial orders and links the
musical discourse to the pertinent literature in mathematics and computer
science. BSF is analyzed in terms of computational complexity and it is
shown to be related to the notion of “presortedness” used in the analysis
of sorting algorithms. It is proven that the logarithms of the values of BSF
define a metric for twelve-tone rows. This new metric is several orders of
magnitude finer than any other measure discussed in the literature.

1 Introduction

The relations between twelve-tone rows have been an integral part of the twelve-
tone system from the very beginning. The early composers used informal meth-
ods to relate rows. However, in the 1940s, Milton Babbitt initiated the process
of formalizing the theory of twelve-tone rows and their relations.

Babbitt was interested in ordered pairs throughout his writings. In particular,
he introduced the notion of the twelve-tone row as a protocol that defines the
order in which the pitch classes appear in it (Babbitt 1962).

A natural way to relate rows is to compare the ordered pairs they comprise.
Rothgeb (1967) formalized this idea as the first similarity measure for twelve-
tone rows: the more ordered pairs two rows share the more similar they are. David
Lewin’s (1976) notion of Badness of Serial Fit, or BSF, builds on the ordered pairs
of pitch classes as well. However, it does not measure the differences between two
rows, but rather picks out their similar features and counts the number of rows
that share them. The more similar two rows are, the more common properties they
have, and the more distinctive this combination of properties is and, therefore, the
fewer rows there are with these properties.

It is rather extraordinary that Lewin introduces a new similarity measure, but
does not give a single nontrivial example of calculating it. He measures a row
against itself resulting in the value 1 (a row defines a protocol that is satisfied only
by itself since no other row contains precisely the same set of ordered pairs; hence,
BSF(X, X) = 1 for any twelve-tone row X), and a row against its retrograde
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resulting in the value 479001600 (retrograde-related rows do not share a single
ordered dyad and the protocol they define is empty; since any row satisfies an
empty protocol, BSF(X, RX) = 12! = 479001600 for any twelve-tone row X).
Similarly, later authors, for example Starr (1984) and Morris (2001), have failed
to provide nontrivial examples. Ward (1992, 100) enumerates the values of his
own variant of BSF for segments of sizes 2 to 6, and remarks that “there are
limits to the feasibility of Badness of Serial Fit in the large cardinalities, when
potentially hundreds of millions of permutations must be examined.”

In general, the more pairs the protocol has, the more refined it is and the
fewer rows satisfy it; this relationship is very complex, however, and the size of
the protocol is a poor indicator of the BSF value. I will show below that com-
puting the BSF of two arbitrary rows is an intricate task, but with an effective
algorithm, it is nowhere close to being as hopeless as Ward implies. In particular,
we certainly do not need to examine “hundreds of millions of permutations.”

2 Badness of Serial Fit and Partial Orders

Two observations are needed to relate Badness of Serial Fit to partial orders.
First, a twelve-tone row as a total order on the set of twelve pitch classes is
also a partial order: a special type partial order in which the order of every
element is defined, but a partial order nevertheless. Secondly, the intersection
of any two partial orders on a given set is a partial order on that set. Conse-
quently, the protocol defined by two rows – the set of shared ordered pairs – is
simply the intersection of the partial orders that the rows define. For the sake
of brevity, let us consider the “three-tone rows” 012 and 120 (instead of twelve-
tone rows). They define partial orders {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)} and
{(1, 1), (1, 2), (1, 0), (2, 2), (2, 0), (0, 0)}, respectively. The intersection of these
partial orders is {(0, 0), (1, 1), (1, 2), (2, 2)} and there are three three-tone rows
that satisfy this protocol: 012, 102, and 120. The method for creating the pro-
tocol Lewin gives in the appendix of his article is much more cumbersome than
simply calculating the intersection of two partial orders.

Badness of Serial Fit has a counterpart in the theory of partial orders: the
concept of a linear extension. A linear extension of a partial order is a total order
that is a superset of the partial order. The number of linear extensions describes
how much the partial order has left undecided. The set of linear extensions is
what Starr (1984) labels the total order class: the set of rows that satisfy a
protocol. Thus, BSF is the number of linear extensions of the intersection of the
protocols that the rows define.

Counting the linear extensions of a given partial order is not a trivial task.
In fact, Brightwell and Winkler (1991) have proved that it is a #P-complete
problem.1 Thus, it is difficult to say from looking at a partial order what is
1 In complexity analysis #P-complete problems are a class of problems in which the

number of accepting states of a nondeterministic polynomial time Turing machine
are counted. It is believed that there is no polynomial-time algorithm for solving
#P-complete problems.
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the exact number of its linear extensions. (This translates directly into the fact
that it is difficult to say from looking at two twelve-tone rows what the Badness
of Serial Fit value is.) However, Pruesse and Ruskey (1997) have developed an
efficient algorithm for generating linear extensions; its running time depends on
the number of linear extensions to be generated. In technical terms the algorithm
is O(N), where N is the number of objects generated. However, as the size of the
set increases, the maximum number of linear extensions of a partial order grows
exponentially and thus the calculation time required grows exponentially.

The complexity associated with partial orders is reflected also in the number
of existing partials orders: the number of possible partial sets on a set grows
exponentially with respect to the cardinality of the set. For instance, Erné and
Stege (1991A) have calculated that the number of partial orders that can be
defined on the set of cardinality twelve is 414864951055853499. Incidentally,
since 12! · 12! < 414864951055853499, this also shows that not all partial orders
can be expressed in terms of an intersection of two linear orders.

3 Logarithmic BSF and the Metric

Lewin (1976, 256) suggests using logarithmic values for Badness of Serial Fit.

For various technical reasons, I suspect that the logarithms of these
numbers would provide an even better measure, both intuitively and in
light of what seem to me to be some interesting information-theoretic
implications. But at the present time, I am nowhere near working out
this matter to my own satisfaction.

I do not wish to second-guess the rationale for using the logarithmic values of
Badness of Serial Fit that Lewin had in mind. However, at least two reasons can
be found: the issues of the metric and distribution.

Definition 1. Mapping d : X × X → R+ ∪ {0} defines a metric on set X if it
satisfies the four following requirements for all x, y, z ∈ X: (i) d(x, x) = 0, (ii)
d(x, y) = d(y, x), (iii) d(x, z) ≤ d(x, y) + d(y, z), and (iv) d(x, y) = 0 implies
x = y.

It is easy to show that BSF does not define a metric for two reasons. First,
the value of BSF for two identical rows is not zero and, secondly, the triangle
inequality does not hold. For example, using integers 0, 1, . . . , 11 for pitch classes
(A and B standing for the integers 10 and 11, respectively), we have

BSF(0123456789AB, 0123456789BA)+ BSF(0123456789BA, 012345678BA9)
= 2 + 3 < 6 = BSF(0123456789AB, 012345678BA9).

Using logarithmic values solves both of these problems. Independently of what
we select as the base of the logarithm, we obtain log 1 = 0. Secondly, the following
theorem by Sidorenko (1992) can be used to prove that triangle inequality holds
for the logarithmic values.
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Theorem 1 (Sidorenko). If the incomparability graph of a partial order P can
be covered by the incomparability graphs of partial orders P1, P2, . . . , Pk, then
e(P ) ≤ e(P1)e(P2) · · · e(Pk).

Here e(P ) denotes the number of linear extensions of partial order P . A key
observation here is that the incomparability graph of X ∩ Z is covered by the
incomparability graphs of X∩Y and Y ∩Z. In order to apply Sidorenko’s theorem
to the current setting, let us take k = 2 and thus obtain the following corollary:

Corollary 1. If X, Y , and Z are three linear orders on the same set, then the
inequality e(X ∩ Z) ≤ e(X ∩ Y )e(Y ∩ Z) holds.

Let us now examine the triangle inequality for Badness of Serial Fit in more
detail. We obtain the following inequality from Corollary 1:

BSF(X, Y ) · BSF(Y, Z) ≥ BSF(X, Z).

Since the logarithm is a monotonously ascending function and the Badness of
Serial Fit values are positive, we can take logarithms on both sides of the in-
equality, and thereby obtain the following inequality:

log(BSF(X, Y ) · BSF(Y, Z)) ≥ log(BSF(X, Z)).

By applying the rules of logarithms we then obtain the following inequality:

log(BSF(X, Y )) + log(BSF(Y, Z)) ≥ log(BSF(X, Z)).

Let us define similarity measure Logarithmic Badness of Serial Fit, or LOGBSF,
simply as logarithmic values of Badness of Serial Fit. Thus, LOGBSF(X, Y ) =
log(BSF(X, Y )). For the present purposes the base of the logarithm could be
any real number greater than 1, but below I will provide some arguments for
selecting 2 as the base. Since the LOGBSF values are simply logarithms of the
BSF values we can write the above inequality as follows:

LOGBSF(X, Y ) + LOGBSF(Y, Z) ≥ LOGBSF(X, Z).

Thus, triangle inequality holds for Logarithmic Badness of Serial Fit.
These inequalities concerning Logarithmic Badness of Serial Fit also give us

a better understanding of the Badness of Serial Fit values. Namely, triangle in-
equality holds for Badness of Serial Fit if the binary operation is not an addition
but a multiplication. It also gives us an estimation of how its values behave.
Nevertheless, it should be noted that even if BSF can be turned into a metric
by using logarithm, metric is not by any means an absolute requisite for a suc-
cessful measure of similarity. Scattering (Morris 1987) is another example of a
similarity measure for twelve-tone rows that does not define a metric (since it is
not symmetric).

The second reason for using logarithmic values concerns their distribution.
Of course, the values are simply scaled values of the “ordinary” BSF: scaling
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BSF LOGBSF

Fig. 1. The distributions of BSF and LOGBSF. The distribution of BSF goes almost
along the axes and is therefore difficult to discern in the picture.

the values using logarithms does not, in a sense, give us any new information.
However, we obtain a better perspective by using the logarithmic values. As
shown in Figure 1, the distribution of values in BSF is extremely skewed, while
the distribution of the logarithmic values creates curve resembling the bell curve.

According to BSF the most similar non-identical rows are those in which two
adjacent pitch classes have been exchanged. For example, the only difference
between rows 0123456789AB and 1023456789AB is the order of the adjacent
pitch classes 0 and 1. These two rows are the only ones that satisfy the protocol
they define. Hence BSF(0123456789AB, 1023456789AB) = 2. If we select 2 as the
base we get LOGBSF(0123456789AB, 1023456789AB) = 1. Therefore, a minimal
difference results in conveniently the value 1.

4 Transformational Similarity and Presortedness of
Permutations

So far the discussion has focused on comparing two partial orders. Let us now
turn the focus on comparing a linear order to a linear order that could be con-
sidered to be normative. We wish to examine how “sorted” a permutation is; in
the literature on sorting algorithms this is termed the “presortedness” of a per-
mutation (Mannila 1985). Normativeness depends on the context. Naturally, in
the context of twelve-tone rows there is no normative order for the pitch classes
(in particular, twelve-tone row 0123456789AB is in no way normative). However,
if we consider the transformational relations between twelve-tone rows, we find
a natural interpretation for the normative transformation.

At this point, a few notes on the formalization of twelve-tone theory are due.
Strictly speaking, rows and row operations are properly formalized as the group
of row operations acting on the set of twelve-tone rows. Pitch-class operations are
conveniently interpreted as group S12 of permutations acting on the set of pitch-
class rows and, similarly, order-number operations are interpreted as group S12 of
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permutations acting on the set of order-number rows. However, we can perform
calculations as if both rows and row operations were members of the group S12
without sacrificing correctness. In a similar vein, it is convenient to note that
the order-number row corresponding to pitch-class row as a permutation is its
inverse. Using the convention of writing order-number rows in bold, we can write
X = X−1. For instance, the order-number row corresponding to pitch-class row
5409728136AB is 2758109463AB and these two – taken as permutations – are
inverse permutations. Nevertheless, it should be kept in mind that rows and row
operations are very different kinds of entities.

The concept of left invariance is useful in the analysis of similarity measures.2

Definition 2. Metric d on group Sn is left invariant if d(π, σ) = d(τπ, τσ) for
all π, σ, τ ∈ Sn.

Left invariance guarantees that distances between objects do not depend on how
the they are labeled. In Definition 2, permutation τ is applied to permutations
π and σ to “relabel” the entities in them.3 Variables π and σ can be interpreted
as pitch-class rows and variable τ as an pitch-class operation. In this context,
left invariance means that we are thinking purely in permutational terms and
only the ordering relations of the twelve pitch classes matter. Correspondingly,
variables π and σ can be interpreted as order-number rows and variable τ as an
order-number operation.

All similarity measures that measure the ordering aspect of rows provide left
invariance for pitch-class rows. In other words, even if we do not customarily
think in such terms, any pitch-class operation, such as a transposition, could
be seen as relabeling the pitch classes. Hence, the application of any pitch-class
operation to pitch-class rows amounts to a relabeling of the pitch classes, but
the order relations between the elements of the rows are not changed.

Assume now that we are measuring the Badness of Serial Fit of rows X and
Y . It can be proved that BSF does not depend on how the entities are labeled
(the proof would entail showing that a given row satisfies a given protocol if and
only if the relabeled row satisfies the relabeled protocol); thus it is left invariant.
Let us now relabel the pitch classes in such a way that row Y becomes row id =
0123456789AB. The new rows will now be Y −1X and Y −1Y = 0123456789AB,
and the BSF value for the original rows X and Y is identical to that for rows
Y −1X and Y −1Y . Now, since order-number operations and twelve-tone rows
can both be reinterpreted as permutations, we can reinterpret row Y −1X as the
order-number operation YX−1 that transforms order-number row X into order-
number row Y (since pitch-class row X interpreted as a permutation is identical

2 The concept of left invariance is often known as right invariance since right orthog-
raphy is usually used; see, for example, Mannila (1985) and Estivill-Castro, Mannila
and Wood (1993). However, as I use left orthography here I define the concept as
left invariance.

3 In fact, this strategy of relabeling the elements is used by Wong and Ruskey in the
implementation of an algorithm devised by Pruesse and Ruskey (1997) to calculate
the number of linear extensions of a partial order.
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to the order-number row X−1 interpreted as a permutation, applying order-
number operation Y −1X = YX−1 to order-number row X results in YX−1X,
that is the order-number row Y). Therefore Badness of Serial Fit is a measure of
the complexity of the order-number operation that maps one row into the other
(with respect to the identity transformation that is normative transformation).

Putting the above observations into larger context, BSF measures the presort-
edness of a permutation. Using logarithmic values makes it a metric; hence, it
provides a value describing the complexity of a permutation that is equivalent to
an absolute value or norm in other spaces. Furthermore, its resolution is several
orders of magnitude finer than any other measure discussed in the literature: the
number of distinct values for twelve-tone rows in BSF is 569573 whereas that in
other similarity measures is at most a few hundred.

5 Conclusions

The simple idea behind Badness of Serial Fit gives rise to enormous complexity,
which makes the measure truly fascinating. Results in mathematics have reg-
ularly informed music theory, but only rarely have music-theoretic results lead
to new ideas in mathematics. That is the case here as David Lewin’s intuition
about using logarithmic values in BSF lead to the search and definition of a new
metric for permutations.
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Abstract. This paper proposes a method to estimate the tonalness of a pitch-
class set using transpositional types. For each set under consideration the 
method uses the corresponding transpositional type to generate note collections 
from acoustical instrument sounds and subsequently calculates a learned 
projection of that set into a low-dimensional space. The structure in this 
representation is then compared to the structure of a low-dimensional tonal key 
space learned from audio recordings of labeled tonal music. The term tonalness 
refers to how strongly the input suggests congruence to pitch use distributions 
in common-practice tonality. The method is tested on pitch-class sets of 
cardinality 3 and compared with measures from other work. 

Keywords: Tonalness, Tonal Key Spaces, Pitch-class Set, Transpositional 
Type. 

1   Introduction 

After hundreds of years of common practice tonality, over the 20th century, 
composers of atonal music have explored ways to avoid tonal centers in their music. 
They have purposefully organized the same 12 pitches in ways that perceptually 
preclude any pitch from assuming a more stable and central role. Serialism and in 
particular the 12-tone technique was the point at which an even pitch distribution was 
spelled out by rules. Of course, in the broadest sense of atonality,  not all musical 
works were serial. Some composers even in the late 19th century explored the means 
of avoiding tonal centers in some of their works. From that time onward, the 
compositional possibilities now extending from tonal to atonal brought about the 
questions of how to choose pitch sets to achieve the desired level of atonality. 
Furthermore, on the analytical side there would be need for a new framework to 
compose, understand and analyze these works. 

Pitch-class set analysis has been devised mainly for use in analyzing atonal music. A 
pitch-class representation employs principles of octave equivalence and enharmonic 
equivalence, a property that makes it convenient when dealing with acoustical input. On 
the whole, the 12 pitch classes form a closed modulo 12 system in which operations 



 Estimating the Tonalness of Transpositional Types 147 

such as transposition and inversion are defined. Nonetheless, the same formalism can be 
used to systematically study pitch-class sets in terms of their tonal implications, whether 
they are taken from a diatonic collection or chosen more arbitrarily. 

Given a pitch-class set of any cardinality, a transpositional type (Tn-type) [1] 
represents a collection of 12 distinct transpositions of the pitches in that set. For 
example, a Tn-type for a major triad comprises the pitch class sets {0,4,7}, {1,5,8}, 
{2,6,9} ... {4,8,11}...  and can be represented by the generator pattern in prime form - 
the one that starts at index 0. Each transposition can be shown as {0,4,7}Tn for n=0..11. 

Temperley [2] proposed a probabilistic framework for measuring tonal implication, 
tonal ambiguity and tonalness for pitch-class sets. According to Temperley, tonal 
implication is the key the pitch-class set implies. Ambiguity refers to whether a set 
implies a single key or more than one key. Tonalness is the degree to which a set is 
characteristic of common-practice tonality. In this work we draw from these 
definitions in order to quantify tonalness as a single measure.  

Van Egmond and Butler [3] carried out a systematic analysis of pitch-class sets in 
order to relate them to the common diatonic pitch collections. They listed the 
connotations of Tn-types of cardinalities between two and six for the major, harmonic 
minor and ascending minor sets. 

Huron [4] has shown that the pitch-class sets that provide the most consonant 
interval-class collections are the major diatonic scale, the harmonic and melodic 
minor scales. He further points out that consonant harmonic intervals are found more 
often in these sets than in other possible sets that can be drawn from the 12 equally 
tempered pitch chromas. 

Brown [5] suggested that there were two approaches to the perception of tonality: 
structural and functional approaches. The structural approach assumes that a 
distribution obtained by integration of pitches over time can be used to determine the 
key. The key with the most similar distribution to the one calculated is selected as the 
key of the musical fragment. Due to the choice of long integration periods this 
approach in insensitive to the order of notes. This is in contrast to the functional view 
which maintains that the sequence and organization of notes play an important role in 
how people perceive the tonal center.  

In this work, we concentrate on a structural approach to explore the tonalness of Tn-
sets constructed using real audio. We use a low dimensional representation obtained 
from accumulated spectral information over long-term windows that span many chords 
and even phrases in the quantification of tonal ambiguity. For this reason, we do not 
distinguish between successive and simultaneous occurrences of the pitches in the Tn-
sets. Most of the models in the literature that deal with the problem of key finding from 
audio accumulate spectral information in a similar manner and utilize key profiles as 
reference points ([6]; see [7] for a survey of key finding methods). 

This paper outlines a method for estimation of the tonalness of pitch-class sets 
constructed using acoustical instrument sounds. Being mindful of the multidimensional 
and abstract nature of tonality, the term tonalness, in this work, refers to how strongly 
the input suggests congruence to the pitch use in the common practice of tonal music. 
Tonal strength can be understood as the opposite of an atonal quality. In other words, 
tonalness indicates that a listener can identify a tonal center and even follow 
modulations into other keys. The lack of tonalness or tonal ambiguity, however, would 
not allow for a clear tonal center to be established and therefore, works of this nature 
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would not have the flexibility of using the full extent of tonal key space. A generalized 
measure is defined in this work that aims at quantifying this property of pitch class sets. 

2   Low Dimensional Tonal Key Space 

In this section we describe the construction of a low dimensional tonal key space 
using audio recordings of tonal music. The recordings comprise of a collection of 
key-labeled audio in which each of the 12 major and 12 minor keys is represented. 
The key distribution is shown in Figure 1. 

 

Fig. 1. Key distribution of the recordings used 

Chroma based features are very robust representations and have been shown to 
work well in problems such as key finding, chord recognition, harmonic change 
detection, audio segmentation and audio alignment (i.e. [8], [9], [10], [11], [7], [12], 
[13]). Chromagrams try to capture the pitch content of the audio input by mapping 
pitch-class semitone frequency ranges into their corresponding chromagram bins. 
They are, however, susceptible to variations in timbre and especially to the spectral 
distribution of partials. They therefore only approximate a pitch-class distribution of 
the input music. 

To obtain the key space, the audio is first filtered and down-sampled to fs = 5512.5 
samples per second. An N=2048 point sliding window Fast Fourier Transform (FFT) 
with a Hann window and 50% overlap is calculated for the duration of the signal of 
interest. Next, a 12-element chromagram vector, C, is calculated for each FFT frame 
with bin j mapping to chromagram bin cb(j): 
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Where X(j) is the FFT magnitude of bin j and fA4 is the reference frequency of A4 : 
440 Hz. These chromagrams are then averaged to form a single summary 
chromagram. It has been shown that further dimensionality reduction of the 
chromagrams can reveal music theoretical structures such as the circle of fifths and 
toroidal tonal spaces ([14], [15], [16]). This has also been demonstrated by Burgoyne 
and Saul [17] using Lerdahl's distances [18]. 

In this work an n-dimensional representation of a key space is obtained using 
Principal Component Analysis (PCA). The input matrix Z contains observations, the 
summary chromagrams of the audio recordings, in its rows. The summary 
chromagrams are calculated from the first 45 seconds of each piece in a database of 
180 tonal pieces recorded from the Naxos site (www.naxos.com). This is done 
without regard to any modulations that might be taking place during that time. A 
summary chromagram consists of the averages of the individual chromagram 
calculations  (Eq. 1). While the key distribution is not completely flat, care was taken 
for each key to be sufficiently represented. The data is standardized by subtracting the 
mean and dividing by the standard deviation for each variable. Next, the eigenvalues 
and eigenvectors of the covariance matrix R of the input matrix Z are calculated. The 
eigenvectors are then rearranged in descending order of the eigenvalues and scaled to 
have unit length. The mapping matrix A is constructed from the eigenvectors of the n 
largest eigenvalues. Finally, the input is transformed to the new axes by the 
transformation ZA. The entity n is the number of dimensions to be kept in the 
transformation. While eliminating dimensions, it is important to monitor the total 
variance explained by the dimensions to be kept so as to understand how much of the 
original variation is explained in the retained data. 

3   Mapping Tn-Type Sets to the Tonal Key Space 

The mapping matrix obtained from the audio database in the previous section can be 
used to map data points that were not part of the original data during the PCA 
calculation. The audio for a Tn-type is generated by mixing musical instrument 
sounds for the notes in this set over two octaves ranging from A2 to Ab4. Piano tones 
were used in the experiments reported here although other instruments were also 
tested and not found to change the results significantly. For a given pitch-class set, P, 
in prime form, the note mixtures are realized with 12 different starting positions 
according to PTn, n=0..11. A chromagram is obtained for each of these chromatic 
positions to form another input matrix Y. Finally, the projection is found using the 
transformation YA. The idea is that this projection will show congruence to the 
circular structure of the tonal key space if the tonalness of the Tn-type is significant.  

Figure 2 shows the data for the learned tonal key space and examples of a few 
trivial pitch sets. Only the first two dimensions are shown because they are easy to 
understand visually although they only account for 52% of the variance. This means 
that these plots do not completely represent the data but are visually informative in 
the first two dimensions. Two of the examples are the commonly used tonal pitch sets 
for the diatonic major and harmonic minor. The last one is the chromatic pitch set 
with cardinality 12. We observe that the learned tonal space in the first two 
dimensions is roughly circular. Furthermore, we also observe that, in general, pitch 
collections that have unambiguous tonal implications tend to form circular patterns 
 



150 Ö. İzmirli 

 

Fig. 2. Visualization in the first two dimensions. The transformed data points from the tonal 
pieces (top left). The data points for the diatonic major set of cardinality 7 projected onto the 
original space (top right). The projection for the harmonic minor set (bottom left). The 
projection for the chromatic set of cardinality 12 (bottom right). 

with radii comparable to the structure of the learned space. On the other hand, pitch 
sets that have weak tonal implications, such as the chromatic set, tend to form small 
clusters (in the first two dimensions) possibly due to the variance being spread to 
other dimensions - their inter-distance patterns not being similar to the learned ones. 

4   Evaluation 

The method is evaluated by comparing the results to a generalized version of root 
ambiguity measure proposed by Parncutt [19]. We interpret root ambiguity of a pitch-
class set to inversely reflect the degree of tonalness. In a Tn-type, if the root 
ambiguity is low then the implication of key will be strong for every transposition. 
This will result in a pattern resembling a diatonic set in the tonal key space. On the 
other hand if the ambiguity is high then it will not manifest such a pattern. Parncutt 
originally proposed this measure for sequential tones but we employ it without 
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Table 1. Pitch-class sets of cardinality 3 used in this study. Sets are given by Forte name and 
prime form without inversional equivalence 

Number Forte Name Prime Form Number Forte Name Prime Form 
1 3-1    012 11 3-7 025 
2 3-2 013 12 3-7B 035 
3 3-2B 023 13 3-8 026 
4 3-3 014 14 3-8B 046 
5 3-3B 034 15 3-9 027   
6 3-4 015 16 3-10   036 
7 3-4B 045 17 3-11 037 
8 3-5 016 18 3-11B 047 
9 3-5B 056 19 3-12 048 
10 3-6 024    

 
distinguishing between sequential or simultaneous due to our structural approach to 
the problem. Tonal profiles are calculated from Krumhansl and Kessler's [20] key 
profiles. The profiles represent probabilities that each chromatic scale degree will be 
perceived as tonic. A profile for a particular Tn-type is calculated as follows: The 
range of the key profiles is mapped to the interval [0,1]. Then a weight, w(k) 
(k=0..23), for each of the 24 profiles is calculated by summing the profile value of the 
pitches present in the Tn-type. The tonal profile is given by the weighted sum of all 
major and minor key profiles, where the weights are w(k). The root ambiguity 
measure is calculated by dividing the sum of 12 elements of the tonal vector by the 
maximum element and then taking the square root. We employ the same method to 
calculate the tonal profiles using other profiles found in the literature, namely, 
Temperley's profile [21] and Aarden's profile [22]. These profiles have been 
suggested for improving the Krumhansl and Kessler profiles and Aarden's profile is 
based on different assumptions. We include them for comparison reasons. 

Table 1 shows the Tn-types of cardinality 3 used for the evaluation. The first 
column shows the index and the second column shows Forte's naming for the Tn-
types. The last column lists the pitch classes present in the corresponding Tn-types 
arranged to start from pitch class 0. Figure 3 shows the ambiguity for the proposed 
model and various key profiles. The Tn-type number in this figure corresponds to the 
index in the first column in Table 1.  
From the observation that the data is projected in roughly circular patterns onto the 
first two dimensions with the radii correlating with tonalness, the ambiguity for the 
proposed model is calculated by simply summing the variances in n dimensions, 
mapping the maximum and minimum to a [0,1] range and subtracting the total from 1. 
All other profiles were also mapped to the same range for comparison. The number of 
dimensions from 2 to 7 were tested. While a 2-dimensional solution gave satisfactory 
results, n=4, resulted in the highest correlation for the Krumhansl and Kessler profile 
based ambiguity measure. The 4 dimensions were able to explain 76% of the variance 
of the data. The correlation coefficients between the model's results and the ambiguity 
calculated from other profiles are Krumhansl & Kessler 0.83, Temperley: 0.79, Aarden: 
0.84 and diatonic: 0.78 (p < 0.0001 in all of them). It can be seen that all measures are in 
agreement with the least ambiguous Tn-type {027}Tn and mostly in agreement with 
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Fig. 3. Ambiguity measures for all Tn-types in Table 1. The proposed method is compared to 
ambiguity measures using 4 other profiles. 

next low-ambiguity sets: {025}Tn, {035}Tn, {037}Tn and {047}Tn. Also all except one 
measure are in agreement with the most ambiguous Tn-type {012}Tn. 

4   Conclusions 

We have outlined a method to estimate the tonalness of transpositional type pitch-
class sets realized with real audio. A low-dimensional space is used to gain intuition 
into the topological nature of the key space and the transformed data. The method is 
tested on pitch-class sets of cardinality 3 and compared with measures from other 
work. The results are reported as ambiguity measures which indicate the inverse of 
tonalness. That is, a Tn-type with a high ambiguity measure is less likely to have 
strong tonalness in reference to common-practice tonality. The model's output 
correlates well with ambiguity measures derived from other key profiles and flat 
diatonic profiles. Future work will involve experiments with higher cardinality and 
also recorded music chosen from different tonal and atonal styles.  
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Abstract. Since the pioneer works of composer Tom Johnson, many
questions arise about block designs. The aim of this paper is to propose
some new graphical representations suitable for composers and analysts,
and to study the relationship between pcsets and small t-designs. Af-
ter a short introduction on the combinatorial aspects of t-designs, we
emphasize the musical perspectives open by these mathematical objects.

1 t-Designs: A Brief Survey

A t-design t-(v, k, λ) is a pair D = (X,B) where X is a set of v elements (i.e. a
v-set) and B a set of k-subsets of X called blocks such that every t-subset of X
is contained in exactly λ blocks. D is simple if it has no repeated block.

The 2-design is called a Balanced Incomplete Block Design (BIBD) or simply a
Block Design and denoted (v, k, λ). If the index λ = 1, t-designs are called Steiner
Systems. For k = 3, t-(v, 3, 1) are Triple Systems (TS), 2-(v, 3, 1) are Steiner
Triple Systems (STS) and 2-(v, 4, 1) are Steiner Quadruple System (SQS). A
symmetric design is a BIBD (v, k, λ) such that the number of blocks is equal to
the cardinality of the set (b = v). There are no known examples of non trivial
t-designs with t ≥ 6 and λ = 1. But it is known that 5-(24, 8, 1) is a Steiner
System. Two t-designs (X1,B1) and (X2,B2) are said to be isomorphic if there
is a bijection ϕ : X1 → X2 such that ϕ(B1) = B2. One of the simplest block
design is Fano plane. It is a 2-(7, 3, 1) design whose blocks are written (vertically)
by this matrix: ⎛⎝0 0 0 1 1 2 3

1 2 4 2 5 3 4
3 6 5 4 6 5 6

⎞⎠
If the set X of a (X,B) design is identified with musical objects such as

pitch classes, modes, rhythms, etc. the combinatorial structure of blocks can
be used to create a path through this musical material, linking blocks by their
common objects. Composer Tom Johnson has explored these properties in Block
Design for piano built on the 4-(12, 6,10) design defined by 30 base blocks and
one automorphism of the permutation group over 12 elements, namely, in cyclic
notation, σ = (0 1 2 3 4 5 6 7 8 9 10)(11). In Kirkman’s ladies, he uses a
large (15, 3, 1) design with 13×35 blocks. In Vermont Rhythms, he uses 42×11

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 154–165, 2009.
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rhythms based on the (11,6,3) design, a system worked out by Jeffery Dinitz and
his student Susan Janiszewski. Another example is the mapping of Messiaen’s
modes on the set X : Mode 2 with (6,3,2) 10 blocks, Mode 3 with (9,3,1) 12
blocks, Mode 4 with (8,4,3) 14 blocks, Mode 5 with (8,4,6) 28 blocks Mode 6
with (8,3,6) 56 blocks, Mode 7 with (10,4,2) 15 blocks.

As we have previously remarked, a t-design has only four parameters t-(v, k, λ).
From these quantities, we can easily derive some combinatorial properties. For
example, the number of blocks that contain any i-set is given by

bi = λ

(
v − i

t − i

)
/

(
k − i

t − i

)
, i = 0, 1, ..., t (1)

where
(

a
b

)
= a!/b!(a − b)! indicates the binomial coefficient. In particular, the

number of blocks of a t-design is

b = λ
v!

(v − t)!
(k − t)!

k!
(2)

And by setting

r = λ
(v − 1)!
(v − t)!

(k − t)!
(k − 1)!

(3)

we get the following relation
bk = vr (4)

As we have seen, two t-designs are isomorphic if there is a bijection between there
blocks, and this reduces the research of representative. From a set theoretical
perspective, the knowledge of a t-design D = (X,B) leads to the knowledge of
its complement Dc = (X, X\B) where X\B is the set of blocks

X\B = {Bc, B ∈ B}

The complement of t − (v, k, λ) design is the t − (v, v − k, μ) design with

μ = λ

(
v − t

k

)
/

(
v − t

k − t

)
= λ

(v − k)!
(v − t − k)!

(k − t)!
k!

(5)

Remark that D and Dc have the same number of blocks, and for t = 2, the block
design D with b blocks

b =
v(v − 1)λ
k(k − 1)

, r = λ
(v − 1)
(k − 1)

, bk = vr (6)

has a complement Dc with b blocks and (v, v − k, b − 2r + λ). For example,
the complement of the Fano Plane (7, 3, 1) is (7, 4, 2) with blocks {0, 1, 2}c =
{3, 4, 5, 6}, etc.

An automorphism of a design D is a permutation of the point set that preserves
the blocks. The group of all automorphims of D will be indicated by Aut(D).
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For example, the D = (7, 3, 1) design has an automorphism group Aut(D) equal
to the goup L3(2) of 168 elements with presentation

L3(2) =
〈
a, b | a2 = b3 = (ab)7 = [a, b]4 = 1

〉
(7)

where a and b are the permutations (in cyclic notation) of seven elements

a = (0 3 4 1 2 5 6), b = (1 2 0 3 5 6 4) (8)

We end this section by a characterisation of Steiner Systems. The proof of these
theorems can be found in [2] and [7].

Theorem 1 (Wilson). Let pm be a prime power. If 3-(v + 1, pm + 1, 1) and
3-(w + 1, pm + 1, 1) are Steiner Systems then 3-(vw + 1, pm + 1, 1) is a Steiner
System.

Theorem 2 (Kirkman, 1847). A Steiner Triple System of order v exists if
and only if v ≡ 1, 3 (mod 6), (i.e. v = 6n + 1 or v = 6n + 3, i.e. for 7, 9, 13,
15, etc.)

Examples of Steiner Systems: Let q = pm be a prime power

• 2 − (qn, q, 1), n ≥ 2
• 3 − (qn + 1, q + 1, 1), n ≥ 2
• 2 − (qn + ... + q + 1, q + 1, 1), n ≥ 2
• 2 − (q3, q + 1, 1),
• 2 − (2r+s + 2r − 2s, 2r, 1), 2 ≤ r < s (Denniston systems)

2 Drawing t-Designs

Until now t-designs have rarely been used for musical purposes. Moreover, there
exists no canonical way to draw a t-design. Usually, musical transformations are
not considered in the mathematical litterature of t-designs. We will restrict to
the most common musical transformations, namely

1. Transpositions:
Tn(x) = x + n (mod v) (9)

2. Inversions
In(x) = −x + n (mod v) (10)

3. Affine transformations

Mm,n(x) = mx + n (mod v) (11)

In Kirkman’s Ladies, a strong unity of the score is obtained by considering
parallel classes, i.e. sets of blocks that partition the point set. A design (v, k, λ)
is resolvable if its blocks can be partitioned into parallel classes. For example,
the (9,3,1) design is resolvable, as shown on table 1.
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Table 1. The (9,3,1) design

0,1,2 0,3,6 0,4,8 0,5,7
3,4,5 1,4,7 1,5,6 1,3,8
6,7,8 2,5,8 2,3,7 2,4,6

The Kirkman problem (see also [8]) has been stated in 1850 by Thomas P.
Kirkman: Fifteen young ladies in a school walk out abreast for seven days in
succession : it is required to arrange them daily, so that no two walk twice abreast.
Since that time, we define a Kirkman Triple System (KTS) as a resolvable Steiner
Triple System, also called the social golfer problem in computer science. The
following theorem limits the cardinality of the point set.

Theorem 3. A Kirkman Triple System of order v exists if and only if v ≡ 3
(mod 6)

For v = 15, it has been shown that there are eighty Steiner Triple Systems
(15,3,1). One solution is given in table 2:

Table 2. The Kirkman Triple system (15, 3, 1)

Monday 0,1,2 3,9,11 4,7,13 5,8,14 6,10,12
Tuesday 0,3,4 1,8,10 2,10,14 5,7,11 6,9,13
Wednesday 0,5,6 1,7,9 2,11,13 3,12,14 4,8,10
Thursday 1,3,5 0,10,13 2,7,12 4,9,14 6,8,11
Friday 1,4,6 0,11,14 2,8,9 3,7,10 5,12,13
Saturday 2,3,6 0,7,8 1,13,14 4,11,12 5,9,10
Sunday 2,4,5 0,9,12 1,10,11 3,8,13 6,7,14

The musical question is: how to draw this solution showing each parallel class
and considering musical transformations between them? Reinhard Laue [9] stud-
ied some visualizations of Steiner Systems which make resolvability obvious, and
Tom Johnson [6] gave some drawings considering sub-networks in t-designs. For
a simplier design such as (6,3,2), which is the best representation? Is it a graph
where the set of vertices is the point set, or a graph where vertices are blocks ?
(fig. 1).

In figure 1, the opposite borders are supposed to be glued together in the sense
of the arrows, in such a way that if you leave the bottom through the line [3, 4] of
the triangle {2, 3, 4}, you enter by the top through the same line in the triangle {1,
3, 4}. Each triangle has three neighbours. A compositional problem would be to
find Hamiltonian paths (i.e. paths that visit each vertex exactly once) or Hamil-
tonian circuits (i.e. cycles that visit each vertex exactly once and return to the
starting vertex), when vertices are blocks of a t-design. In figure 1, it corresponds
to the second graph (on the right) or to the dual graph of the first graph (on the
left).



158 F. Jedrzejewski, M. Andreatta, and T. Johnson

Fig. 1. Two dual representations of the (6,3,2) design

Another point of view is to consider affine transformations between blocks. In
the previous example (6,3,2), it leads to a graph with two connected components
(fig. 2).

Fig. 2. The affine transformations in the (6,3,2) design

The graph shows all affine transformations modulo 6. The translation T2
(adding 2 modulo 6) has an inverse T4 and each inverse transformation In acts
both ways. This kind of graph is suitable for neo-riemannian analysis. In the next
section, we will see another type of graph, where the musical transformations
are permutations on base blocks.

3 Cyclic Representations

In some cases, blocks can be constructed from generators under the action of
a group. This is the case when q = pα is a prime power, and the action is
the translation T1 of the cyclic group. The Steiner Triple Systems 2-(q2 + q +
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1, q +1, 1) are examples of projective geometries and denoted by PG(2, q). More
generally, symmetric designs are projective geometries with parameters PG(m−
1, q) corresponding to block designs

2 −
(

qm − 1
q − 1

,
qm−1 − 1

q − 1
,
qm−1 − 1

q − 1

)
(12)

The following table (table 3) shows the first designs. Observe that there is no
Steiner Triple System for PG(2, 6), since 6 is not a prime power.

Table 3. Generators of PG(2, p)

(7, 3, 1) PG(2, 2) (0, 1, 3)
(13, 4, 1) PG(2, 3) (0, 1, 3, 9)
(21, 5, 1) PG(2, 4) (0, 1, 4, 14, 16)
(31, 6, 1) PG(2, 5) (0, 1, 3, 8, 12, 18)
(57, 8, 1) PG(2, 7) (0, 1, 3, 13, 32, 36, 43, 52)
(73, 9, 1) PG(2, 8) (0, 1, 3, 7, 15, 31, 36, 54, 63)
(91, 10, 1) PG(2, 9) (0, 1, 3, 9, 27, 49, 56, 61, 77, 81)

The parameters of designs are given in the first column, the second column
gives the prime power pα written PG(2, pα) and the last column gives a gen-
erator. The action of the translation T1 in Zp2+p+1 yields to the set of blocks.
Namely for (7,3,1), the blocks are B = {0, 1, 3}, T1(B) = {1, 2, 4}, T 2

1 (B), etc.
Can this construction be generalized for (7, 3, n) design with n > 1 ? Unfor-
tunately not. Look at the first values of n. For n = 1, the design (7, 3, 1) is
generated by B = {0, 1, 3} and the translation T1(x) = x + 1 mod 7, which
is also the permutation in cyclic notation σ = (0 1 2 3 4 5 6). This design is
represented by a heptagone with outer triangles, corresponding to the blocks.
For n = 2, the design (7,3,2) is not generated by one block and a translation.
However, it is generated by two blocks and two actions: the block B1 = {0, 1, 2}
and the permutation σ = (0 1 5 3 4 2 6) and the block B2 = {0, 1, 3} and the
permutation σ2 = (0 5 4 6 1 3 2) which is the square of the previous permu-
tation. The drawing of (7,3,2) is a triangulation of two concentric heptagones,
the vertices of each heptagone are labelled by the cyclic notation of the previ-
ous permutations. For n = 3, the design (7,3,3) is generated by the action of
σ = (0 1 3 5 2 6 4) on the blocks B1 = {0, 1, 3} and B2 = {0, 1, 2}, and the
action of σ4 = (0 2 1 6 3 4 5) on the block B3 = {0, 2, 3}. The drawing (fig. 3)
shows the design (7, 3, 1).

Another question is to determine the generators of a t-design. We sumarize
now some results: Netto Theorem and Singer Difference Sets.

Theorem 4 (Netto, 1893). Let p prime, n ≥ 1, pn ≡ 1 (mod 6). Let Fpn be a
finite field on X of size pn = 6t + 1 with 0 as its zero element and α a primitive
root of unity. The sets
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Fig. 3. The (7,3,1) design

Bi = {αi, αi+2t, αi+4t} mod pn (13)

for i = 1, 2, ..., t− 1 are generators (Tj(B) = j + B mod pn) of the set blocks of
an STS(pn) on X.

The proof of this theorem is given in [3]. As an example of how the theorem
works, consider the (7,3,1) design. As p = 7, n = 1, t = 1, and α = 3 is a
generator of F7, then the set {1, α2, α4} mod 7 = {1, 2, 4} � {0, 1, 3} up to
transposition, is a cyclic generator of B.

Singer Difference Sets are introduced in [4]. Let p be a prime, and m a non-
negative integer. Let f(x) be a primitive polynomial of degree m in Fp.

f(x) = xm + a1x
m−1 + ... + am−1x + am (14)

Consider the recurrence relation

u0 = 1, u1 = · · · = um−1 = 0 (15)
un = −(a1un−1 + · · · + am−1u1 + am)

Theorem 5. The Singer Difference Set

B =
{

i, 0 ≤ i <
pm − 1
p − 1

, ui = 0
}

(16)

is a generator of the set of blocks.

Example. For p = 7, m = 3, f(x) = x3 + 3x + 2 is a primitive polynomial of
F7. The sequence defined by the relations u0 = 1, u1 = 0, u2 = 0,

un = −3un−2 − 2un−3 = 4un−2 + 5un−3 mod 7 (17)

leads to the first values u3 = 5, u4 = 0, u5 = 6, u6 = 4. The index i such that
ui = 0 determines the base block of the cycle B = {1, 2, 4}.
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4 Pcsets and Designs

We would like now to study the relationship between Forte’ pcsets and t-designs.
Precisely, we would like to investigate the question: is there a t-design t-(v, k, λ)
with v ≤ 12 such that k-blocks include all k-pcsets in Forte classification ? Such
a design is called a Forte design. If the point set is identified with pitch classes
(v ≤ 12), each block can be considered a chord. If all chords are described by the
design, the design is a Forte design. A computer program analyzing the 2-designs
given by the Encyclopedia of t-designs shows that the 2-designs do not lead to a
Forte design. In table 4, the first column gives the parameters of the design, the
second column the number of blocks b in the design, the third column gives the
complement of the design. In the fourth column is the Forte name of at least a
missing k-chord. Stars indicate autocomplementation, and n a positive integer.
To have a complete pcset of k-chords, at least two sets of blocks are required. For
example, the (9, 3, 1)-design has under the action of σ1 = (2 6)(3 8)(4 7)(0)(1)(5)

B1 =

⎛⎝0 0 0 0 1 1 1 4 2 3 5 2
1 2 3 4 3 4 2 6 6 5 7 3
6 8 7 5 8 7 5 8 7 6 8 4

⎞⎠ (18)

all Forte’s trichords except 3-7 and 3-12. And under the action of σ2 = (2 7 8 6
5 4 3)(0)(1)

B2 =

⎛⎝0 0 0 0 1 1 1 2 3 4 2 5
1 2 3 4 2 3 4 7 5 6 3 6
7 5 6 8 6 8 5 8 7 7 4 8

⎞⎠ (19)

it contains all Forte’s trichords except 3-8 and 3-11. That way, using two sets of
blocks of the same design, a composer can use the whole set of trichords.

To conclude this section, we would like to mention the link of t-design with
Mathieu Groups. First, as it has been underlined in [5] Olivier Messiaen’s Ile de
feu 2 use two permutations in cyclic notation

Table 4. Missing at least a Forte chord

(v, k, λ) b (v, k, λ)c Missing
(6, 3, 2n) 10n (6, 3, 2n)∗ 3-5
(7, 3, n) 7n (7, 4, 2n) 3-1
(8, 4, 3n) 14n (8, 4, 3n) 4-5
(9, 3, n) 12n (9, 6, 5n) 3-2
(9, 4, 3n) 18n (9, 5, 5n) 4-3
(10, 4, 2n) 15n (10, 6, 5n) 4-2
(10, 5, 4n) 18n (10, 5, 4n)∗ 5-1
(11, 5, 2n) 11n (11, 6, 3n) 5-2
(12, 3, 2n) 44n (12, 9, 24n) 3-2
(12, 4, 3n) 33n (12, 8, 14n) 4-1
(12, 6, 5n) 22n (12, 6, 5n)∗ 6-1
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a = (1 7 10 2 6 4 5 9 11 12)(3 8) (20)
b = (1 6 9 2 7 3 5 4 8 10 11)(1 2)

which generate Mathieu’s group M12 of order 95040. In the same way, Les
yeux dans les roues (O. Messiaen, Livre d’orgue VI) is built on six permuta-
tions (a permutation and five actions): σ0 = (1 11 6 2 9 4 8 10 3 5) and
for j = 1, ..., 5, σj = Ajσ0, the actions are defined by: Extremes au centre:
A1 = (2 12 7 4 11 6 10 8 9 5 3), Centre aux extrêmes: A2 = (1 6 9 2 7 3 5 4 8 10
11); Rétrograde: A3 = (1 12)(2 11)(3 10)(4 9)(5 8)(6 7), Extrêmes au centre,
rétrograde: A4 = A1A3 and Centre aux extrêmes, rétrograde: A5 = A2A3. If we
set a = A−1

2 A1 and b = A3
2A1A

2
2A1 these permutation generate the Mathieu

group M12 of presentation

M12 =
〈
a, b | a2 = b3 = (ab)11 = [a, b]6 = (ababab−1)6 = 1

〉
(21)

Table 5 gives the links between Mathieu Groups and t-designs.

Table 5. Mathieu groups and t-designs

Groups Order t-design # blocks
M11 7 920 4-(11,5,1) 66
M12 95 040 5-(12,6,1) 132
M22 443 520 3-(22,6,1) 77
M23 10 200 960 4-(23,7,1) 253
M24 244 823 040 5-(24,8,1) 759

The two first Mathieu groups are built with eleven or twelve points. Neither
M11, nor M12 are Forte designs. In M11 11 pcsets are missing (5-1, 5-3, 5-5,
etc.), and in M12 12 pcsets are missing (6-1, 6-4, 6-7, etc.). In M12 if we take
only three notes in each block, we get neither 3-12, nor 3-1.

5 A Compositional Application

To show a specific compositional application for all this, and also to summarize
the combinations and graphs that come together in block designs, we offer a
brief analysis of the third movement of Johnson’s Twelve for Piano (2008) (the
score is reproduced in Annexe). This one-page piece uses the precise four-note
chords produced by one of the over 17 million possible solutions of the (12,4,3)
design, where 12 elements (notes) are partitioned into 33 subsets (chords) of four
elements (notes), such that each pair of notes appears in exactly three of the
chords.

To write this music, the composer needed to map the system, so as to see
how the 33 chords related to one another, and to do this he drew a graph
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Fig. 4. Graph for Twelve for piano

by connecting chords when they had no notes in common. The graph would be
different for each of the 17 million solutions, but In this case it takes the shape of
the three hexagonal formations shown here. The three shaded triangles represent
three parallel classes, three cases where chords with no notes in common come
together as a collection of all 12 notes. These nine chords form the central section
of the piece, beginning with (1,3,7,9) (4,6,10,12) (2,5,8,11). The remaining 24
chords, those in the other two hexagons, form the opening and closing sections.

The first four phrases of the piece, the first 12 chords, come from the hexagon
at the lower right, beginning with the inner ring: (5,7,8,12) (1,2,3,6) (4,9,11,12)
and (5,6,7,10) (1,3,4,8) (2,9,10,11) followed by the outer ring: (3,4,5,8) (1,2,6,11)
(7,8,9,12) and (3,5,6,10) (1,4,11,12) (2,7,9,10). The final four phrases follow the
hexagon at the lower left in this same manner. We have not shown the numbers
on the accompanying score, but this is rather easy to decipher, since 1 is the
lowest note of the scale and 12 is the highest.

Simply following the connections in this way produces a number of remarkable
symmetries, symmetries that are difficult to imagine in a rigorous 12-tone music,
and surely impossible in any non-rigorous music.

• Consider first of all the cadences. The first and second phrases both end
on D-F-sharp, and the third and fourth phrases both end on B-flat-D. The final
four phrases in the piece rhyme in this same way.

• The notes marked “a” appear twice in the same phrase. These same notes
are omitted either in the phrase just before or in the phrase just after. Each of
the 12 notes appears exactly 11 times in the piece.

• The intervals marked “b” occur at the same place in two subsequent phrases.



164 F. Jedrzejewski, M. Andreatta, and T. Johnson

• The “c” interval of the first phrase appears again in the third phrase, and
there is a similar pair of “c” intervals in the last section of the piece.

• In the middle section, containing three complete sets of 12 notes, one finds
three “d” intervals, three “e” intervals and three “f” intervals, though it is dif-
ficult to explain why they fall as they do. But then, it is difficult to explain all
these other symmetries as well. The music produced by this block design simply
does not behave like music we already know.
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Abstract. Two approaches for characterising scales are presented and
compared in this paper. The first one was proposed three years ago by
the musician and composer Pierre Audétat, who developed a numerical
and graphical representation of the 66 heptatonic scales and their 462
modes, a new cartography called the Diatonic Bell. It allows sorting and
classifying the scales according to their similarity to the diatonic scale.

The second approach uses the Discrete Fourier Transform (DFT) to
investigate the geometry of scales in the chromatic circle. The study of
its coefficients brings to light some scales, not necessarily the diatonic
one, showing remarkable configurations. However, it does not lead to an
evident classification, or linear ordering of scales.

1 Introduction

Over centuries, western musicians have extensively used half a dozen of hepta-
tonic scales, but combinatorics teach us that they represent only a tenth of the
totally available musical material. Many catalogues exist, but they often reduce
to numerical tables, that may not be easy to handle for composers.

The musician and composer Pierre Audétat [2] developed a numerical and
graphical representation of all 66 heptatonic scales and their 462 associated
modes. Such a cartography, called the Diatonic Bell, opens a field of experiment
equally relevant for composition and analysis, and presents interesting develop-
ments for teaching.

The first part of this paper deals with the classification and ordering of
scales obtained with the diatonic bell, presenting a mathematical formulation
of Audétat’s original empirical work. The second part investigates scales in the
chromatic circle using the Discrete Fourier Transform (DFT) in order to exhibit
certain scales with remarkable properties.

David Lewin proposed this tool in 1958 for analysing intervallic relationships.
The idea was pursued by Ian Quinn [7] for classifying chords and by Emmanuel
Amiot [1] for redefining Clough and Douthett’s maximal evenness [4]. Inspired
by this work, we will see how DFT coefficients reflect the geometric configuration
of a scale in the chromatic circle, and how they can be used to characterise scales.
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The two methods differ structurally, the former being tonal, the latter atonal.
We will discuss in the conclusion some points of convergence between these two
approaches.

2 The Diatonic Bell

Modes play a key role in Jazz. The first diatonic bell was produced by hand in
an effort to investigate the 66 heptatonic scales and their 462 modes. The reader
interested in how this system displays a network of musical relations offering
new opportunities in composition and may facilitate the modal approach of
improvisation, is invited to consult the online documentation.1 We will focus on
the step by step procedure, along with the mathematical formulas necessary for
a complete construction.

The general idea is to consider every scale as an alteration of a reference,
natural scale. We will call it diatonic, but it may be another maximally even
scale. Scales are ordered according to their increasing degree of alteration, from
the maximally even to its maximally compact counterpart.

Two different musical spaces are successively used in the process. We first enu-
merate scales in the finite chromatic circle before moving to the infinite diatonic
spiral — a generalisation of the spiral of fifths to microtonal contexts — for the
graphical representation. This is to avoid the ambiguity induced by enharmony:
alterations of the diatonic scale such as G� = [5+1]12 = [6]12 = [7−1]12 = A� are
not distinguishable in the chromatic circle, whereas they represent two different
points on the diatonic spiral.

Two conditions need to be fulfilled before we can compare scales:

1. They need to be centred, or aligned on the symmetry axis of the diatonic
scale.

2. We have to make sure that their representation on the diatonic spiral is as
compact as possible.

2.1 Input Parameters

Only two parameters are necessary. The size c of the chromatic universe of
pitch classes, and the size d of the scale. The procedure works under certain
conditions:

1. (a) d must be odd. This is to avoid a hole at the origin (symmetry axis) in
the diatonic spiral.

(b) d must be prime. It guarantees the existence and the unicity of a cen-
tred scale in each transposition class, and we avoid scales with internal
symmetries (e.g. Messiaen’s modes with limited transposition), as a by-
product.

2. The parameters must be coprime (i.e. < c, d >= 1). This guarantees exis-
tence and unicity of a reference scale.

1 http://www.cloche-diatonique.ch/
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2.2 Find All Scales

The chromatic gamut is modelled by the chromatic circle Cc = Z/cZ, or cyclic
group. The pitch classes are modular integers [x]c := x + c · Z. A scale S is an
unordered subset of Cc. We define the set of all d-notes scales of Cc as

Sd
c := {S ⊆ Cc|d = Card(S)}. (1)

This set has cardinality
(

c
d

)
and contains all possible transpositions of a same

scale, a c times redundant information. The cyclic group Zc of transpositions
acts on Sd

c , and the quotient space will be indicated by Sd
c /Zc. A transposition

class contains all scales equivalent by translation T[l]c where [l]c ∈ Zc:

S′ ∼Zc S :⇔ ∃[l]c ∈ Zc : S′ = T[l]c(S) S, S′ ∈ Sd
c . (2)

The most economical way to enumerate all transposition classes is to generate
all intervallic structures that uniquely define each class. This can be done by
searching for all integer partitions of c into d parts, see [6].

2.3 Find All Centred Scales

In each transposition class [S]Zc ∈ Sd
c /Zc, find the unique scale S� centred

around [0]c: Its chromatic coordinates (pitch classes) sum to zero. The fact that
d is coprime with c guarantees the existence and unicity of such a centred scale
for each transposition class.

S�d
c := {S ∈ Sd

c |
∑

[x]c∈S

[x]c = [0]c} (3)

2.4 Find the Reference Scale

We search for the maximally even scale S�
0 [4]. Here again, the condition <

d, c >= 1 guarantees existence and unicity of such a scale [1]. It will also be
generated in the sense of [3], and the most compact in the diatonic spiral. We
set it to be the reference scale in our representation. It can be found using the
discrete Fourier transform F

{
S
}

of a scale S ∈ Sd
c

F
{
S
}

: Cc −→ C

[k]c �−→
∑

[x]c∈Cc

1lS([x]c) · e−i 2π
c ·x·k (4)

where 1lS is the indicator (or characteristic) function of the subset S. The max-
imally even scale will maximise the module of the d-th coefficient.

S�
0 := argmaxS�∈S�d

c

∣∣F{S�
}
([d]c)

∣∣ (5)
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m
(0)
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0

Fig. 1. The diatonic scale’s dorian mode is the reference centred mode m
([0]d)
S�
0

in the
usual context (c = 12 and d = 7). It begins with a D ([0]12).

2.5 Find the Reference Mode

Order makes the difference between scales and modes. While a scale is defined
as an unordered subset, the cyclic ordering of its steps is essential to distinguish
between its d modes. We define a mode mS of a scale S ∈ Sd

c to be a function
mS : Cd −→ Cc whose image is exactly the subset S

Im(mS) = S (6)

and which preserves the cyclic sequence of the element of the circles (consider
them as cyclic oriented graphs G).

V (G) = {[0]c, . . . , [c − 1]c}
([x]c, [x′]c) ∈ A(G) ⇔ [x′]c = [x + 1]c.

(7)

Since d was chosen to be prime, all d modes of a scale S are distinct (no lim-
ited transposition modes). A cyclic permutation π = ([0]d[1]d . . . [d − 1]d) of the
diatonic circle Cd connects them altogether.

m
([k]d)
S := m

([0]d)
S ◦ πk ∀k ∈ Z (8)

We choose the centred mode m
([0]d)
S�

0
, to be the one starting at [0]c:

m
([0]d)
S�

0
([0]d) = [0]c. (9)

Fig. 1 shows the example of the diatonic scale.

2.6 Find All Centred Modes

For every scale S� ∈ S�d
c , find the centred mode m

([0]d)
S� that implies the minimum

amount of alterations of the reference centred mode m
([0]d)
S�

0
.

m
(0)
S� = argminmS�

∑
[k]d∈Cd

dCc(mS([k]d), m
(0)
S0

([k]d)) (10)

where dCc is the circle distance:
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dCc : Cc × Cc → IN
([x]c, [x′]c) �−→ argminn∈[x]c,n′∈[x′]c |n − n′|Z

(11)

2.7 Construct All Representations

Once we have a centred mode m
(0)
S� , we can associate the chromatic coordinate

[x]c = m
(0)
S� ([k]d) of each step [k]d with its original pitch classes [x0]c in the

reference mode m
(0)
S�

0
and compute the chromatic alteration [a]c necessary to

obtain the new pitch classes

[x]c = [x0 + a]c (12)

a processes graphically depicted in Fig. 2.

[0]7
[1]7

[2]7

[k]7[4]7

[5]7

[6]7

C7

[0]12 [1]12

[2]12

[3]12

[4]12

[x0]12[6]12
[x]12

[8]12

[9]12

[10]12

[11]12

C12m
(0)
S�

0

m
(0)
S�

a

Fig. 2. Chromatic alteration. Two sharps ([a]12 = [+2]12) alter a G ([x0]12 = [5]12).

Before changing our representation space for the diatonic spiral, modelled by
the integers Z, an unfolding operation of the chromatic circle is needed. We
already defined a distance on Cc; we still need to know the direction from one
chromatic coordinate [x]c to another [x′]c.

sgnCc : Cc × Cc → {−1, +1}

([x]c, [x′]c) �−→
{

+1 [x′ − x]c ∈ {[0]c, . . . , [� c−1
2 �]c}

−1 otherwise

(13)

Both functions combine into the unfolding operation uCc .

uCc : Cc −→ Z

[x]c �−→ sgnZc([x]c) · dZc([x]c)
(14)

It is now possible to compute the original diatonic coordinate ξ0 and the diatonic
alteration α on the diatonic spiral for every step [k]d ∈ Cd of a mode.

α := d · uCc([a]c)

ξ0 := uCc([d]−1
c · [x0]c)

(15)
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[0]7
[1]7

[2]7

[k]7[4]7

[5]7

[6]7

C7

Z . . . −3 −2 ξ0 0 1 2 3 . . . 12 ξ 14 . . .

m
(0)
S�

0

m
(0)
S�

α

Fig. 3. The diatonic alteration corresponding to Fig. 2. The diatonic spiral is modelled
by the discrete line of integers. G�� is indexed by 13 = −1 + 7 · 2.

The same relation as in (12) holds for the diatonic space. The final diatonic
coordinate is given by

ξ := ξ0 + α, (16)

a process depicted in Fig. 3. Note that it is impossible for two different pairs
(ξ0, α) to correspond to a same ξ. On the diatonic spiral we have G� = −1+7 =
+6 �= −6 = +1 − 7 = A�. This is due to the fact that Z = {−3, . . . , +3} ⊕ 7Z.

2.8 Order All Scales

The distribution of a centred mode’s diatonic coordinates can be used to define
a linear ordering on the set of centred scales, from the most compact (the di-
atonic) to the most widely spread (the chromatic). This order is preserved by
inversion, and in case a scale is not symmetric, we need to distinguish between
two members of an antisymmetric pair. Thus, each transposition class [S]Zc re-
ceives two indices: The first one designates the rank of the dihedral class [S�]Dc

(equivalence through transposition and/or inversion) in the compactness order,
whereas the second one tells if it is a palindrome (0), or which member of an
antisymmetric pair (−1 and +1) it is.

We want to express a scale’s compactness around the symmetry axis 0Z. So
we compare diatonic coordinates from the edge to the centre. The permutation
o : Cd → Cd orders them by decreasing absolute value.∣∣ξ(o([0]d))

∣∣ ≥ ∣∣ξ(o([1]d))
∣∣ ≥ . . .

∣∣ξ(o([d − 1]d))
∣∣ (17)

We define an ordering of scales by comparing these ordered vectors:

S > S′ :⇔ ∃k ∈ IN : ρ([k]d) > ρ′([k]d) and ρ([k̃]d) = ρ([k̃]d), ∀k̃ < k (18)

where ρ = ξ◦o. In case of an antisymmetric pair, the scale containing the greatest
positive coordinate is given index +1, and the scale with the greatest negative
coordinate index −1. Fig. 4 shows an example of his construction.

This procedure was first applied to the heptatonic scales, the result can be
seen in Fig. 5.
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S�
(12,+1)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

7 6 4 4 2 2 1

S�
(11,−1)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

7 6 3 3 2 2 1

≥ = = ≥ . . .

Fig. 4. Two successive classes, 11 and 12, of antisymmetric pairs −1 and +1 are being
compared by testing for the spread of their diatonic distribution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
A## 15 -15
D## 14 -14 •
G## 13 -13 • •
C## 12 -12 • •
F## 11 -11 • • •
B# 10 -10 • • •
E# 9 -9 • • •
A# 8 -8 • • • • • •
D# 7 -7 • • • • • • •
G# 6 -6 • • • • • • • •
C# 5 -5 • • •
F# 4 -4 • • •
B 3 -3 • • •
E 2 -2 • • • • • •
A 1 -1 • • • • • • • • •
D 0 0
G -1 1 • • • • • • • • • • •
C -2 2 • • • • • • • • • • •
F -3 3 • • • • • • • • • •
Bb -4 4 • • • • • • • • •
Eb -5 5 • • • • • • • •
Ab -6 6 • • • • • • • • • • •
Db -7 7 • • • • • • • • •
Gb -8 8 • • •
Cb -9 9 • •
Fb -10 10 •
Bbb -11 11 • •
Ebb -12 12 •
Abb -13 13
Dbb -14 14
Gbb -15 15

Fig. 5. c©2006 Pierre Audétat. His original diatonic bell for heptatonic scales, as pro-
posed in [2]. Each cell represents a note and the mode corresponding to it. Each column
contains a dihedral class, consisting either of a single symmetric scale or a pair of in-
verse scales. Alterations increase from the diatonic scale on the left to the maximally
altered chromatic scale on the right. Each row represents a diatonic coordinate. The
origin of the vertical axis is D, units are in steps of fifths. Black cells are symmetric
notes, gray cells anti-symmetric notes, the bullet distinguishes the negative scale from
the positive.

2.9 Modal Transposition

The online catalogue offers many musical examples of a same melody trans-
formed into each of the 462 heptatonic modes. There are two possibilities to
transform pitches in order to preserve their role from the diatonic to the target
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scale, depending on the presence or absence of notes foreign to the diatonic scale
(black keys). In the first case, only the scale (along with its complement) can be
mapped. Information about a possible mode gets lost. In the second case, it is
possible to play with modes, and even to transpose a melody from one mode to
the other within a same scale.

In the diatonic scale, we can identify every pitch class [x0]c with a specific
step [k]d of a given mode m

([n0]c)
S�

0
of the reference scale S�

0 , and then map it to

the same step of a given mode m
([l]c)
S� in the target scale S�.

orig. pitch orig. pc mode’s step new pc new pitch

IN −→ Cc

(m([n0]c)
S�
0

)−1

−→ Cd

m
([l]c)
S�−→ Cc −→ IN

x0 �−→ [x0]c �−→ [k]d �−→ [x]c �−→ x

Note that some freedom is left for converting the pitch classes back into integer
pitches in the last step. The octave equivalence can be used to alter the melody
as least as possible.

3 The DFT Analysis of Scales

The Discrete Fourier Transform (4) is a measure of periodicity. Traditionally, its
modulus has been used in greater extend than its phase, because of its is greater
ability to pinpoint some quantities invariant under transposition and inversion.
Characteristics of scales or chords in music theory, energy in signal processing.

On the other hand, the phase may often be as complex and difficult to in-
terpret as the original data. Making again an analogy with signal processing,
phases are not perceptually relevant for stationary sounds, but are critical when
it comes to transients. In our case, it depends on the particular transposition of
a scale. This arbitrariness disappears when we use the centred representatives
of each transposition class used in the diatonic bell. Hence, the phase provides
information about the symmetric character of a scale.

In order to interpret the DFT coefficients, we first identify the chromatic circle
with the unit circle in the complex plane, see Fig. 6.

Cc −→ C

[k]c �−→ ei 2π
c k

(19)

Computing the [k]c-th DFT coefficient reduces to the vector addition of d unit
vectors pointing to the (possibly multi-) set [k]c · S�, as shown by [1].

Is the index k coprime with c, the sum (4) will be computed on a shuffled
regular c-polygon. Otherwise, it is computed on a polygon having fewer vertices,
possibly populated with more than one pitch class. Such situations are described
in [7]. They are called balances, because the DFT coefficients then point to a lack
of equilibrium in the pitch class distribution.

If we display all pitch classes that accumulate in a given angle, we get stars
with c

k branches, as in Fig. 7. Pitch classes occupying symmetric positions at
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Fig. 6. The embedding of the diatonic scale S�
1,0 in the unit circle S1 of the complex

plane C. A unit vector e−i 2π
c

·x points to each chromatic coordinate [x]c.
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Fig. 7. The four DFT balances of the diatonic scale S�
1,0. The arrow represents the

[k]12-th coefficient, in this case a unit vector always pointing to a single unbalanced
pitch class.

diameters, or regular triangles cancel each other out. The vector resulting from
their sum points at the origin and yields a null DFT coefficient. Only pitch
classes in “excess”, that are not balanced by some other ones, contribute to the
coefficient.
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The choice of coprimes c and d has a direct consequence on the balance of
the diatonic scale S�

1,0: there will always be at least one unbalanced pitch for a
coefficient not coprime with c. The scale size d was also chosen to be odd, so
that it is impossible to cancel all pitch classes out with opposite pairs.

F
{
S
}
([k]c) �= 0 ∀[k]c ∈ Cc : k|c (20)

But a triple cancellation is possible in the hexagonal [2]12-th balance. This is
achieved by the melodic minor, S�

2,0, as well as S�
12,±1 and S�

29,0.
The coefficients of the DFT show a particularly nice behaviour for two op-

erations common in music. Both preserve the dihedral class numbering of the
diatonic bell.

1. Inversion. It is connected to the scales symmetry. The real part of the DFT
coefficients is an even function, the imaginary part an odd one. In case of
a palindromic (symmetric) scale, it hence must disappear. Corresponding
phases of asymmetric pairs will have opposite signs.

2. Complementation. Moving from a pentatonic S� to a heptatonic scale S�c

preserves DFT modules, and inverses phases of non null even coefficients
This follows from the linearity of the DFT,

d · δk,0 = F
{
Cc

}
([k]c) = F

{
S
}
([k]c) + F

{
Sc
}
([k]c) ∀[k]c ∈ Cc (21)

and the additional rotation of π radians necessary to centre the complement:

S�c� = −S�c. (22)

Also notice that the indicator function of a scale is a real function, so its DFT
is symmetric: there are only � c

2� + 1 independent coefficients.
Having restated those general principles, we now turn to the interpretation of

particular phases and modules. We keep coefficient F
{
S�c

}
([0]c) aside. It always

points towards the positive real direction (null phase), and its length measures
the (already given) scale’s cardinality.

3.1 Phases

Coefficient F
{
S�
}
([ c

2 ]c) tells if there is an excess of even or odd pitch classes. In
the first case, the phase will be null, in the second case, the coefficient points to
the negative region of the real axis, and the phases is ±π.

For all other coefficients, the phase indicates the direction of the resulting
unbalanced excess. Fig. 7, shows how class B ([9]12) is unbalanced for the second
coefficient: it is the famous tritonus B-F that populates twice one corner of the
hexagon. The coefficient will thus point to −1 and the phase be equal to ±π.

Since coefficients of palindromic scales are real, their phases will be either 0
(positive) or ±π (negative). For asymmetric scales, the phases will be opposites.
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3.2 Modules

We will measure three different aspects of the geometric configuration of scales
with help of the modules a DFT. They all have to deal with the idea of uniform
distribution of pitch classes across the chromatic circle. The integers d and c are
coprime, which prevents us from finding an absolutely regular d-polygon, where
the three criteria would be confounded.

Symmetry. The first coefficient of the DFT becomes the sum of unit vectors
pointing to each of the pitch classes.

σ : Sd
c −→ IR

S �−→
∣∣F{S

}
([1]c)

∣∣ (23)

A lower index indicates a higher degree of symmetry, the perfect case being
achieved when the sum is null (all vectors cancel out). In c = 12, only the
double harmonic scale (S�

5,0) shows a perfect balance (Fig. 8). The chromatic
scale (S�

38) being compactly grouped on one side of the circle shows the worst
results.

Double Harmonic Chromatic
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Fig. 8. Vector addition and symmetry index σ. The perfectly symmetrical double har-
monic scale is built with an augmented triad [0]12 , [4]12, [8]12 that forms a regular trian-
gle and two triton pairs [1]12, [7]12 and [5]12 , [11]12. In the least symmetrical chromatic
scale, only the triton [3]12, [9]12 is neutralised, leaving five unbalanced pitch classes.

3.3 Periodicity

It is well known that the DFT measures periodicity. The higher the modulus of
the [k]c-th coefficient, where k|c, the more c

k -periodic is the pitch class distribu-
tion. We define an index measuring the periodicity of a scale with:

π : Sd
c −→ IR

S �−→ max
k|c

∣∣F{S
}
([k]c)

∣∣. (24)

A higher index shows higher periodicity. It is maximal for the unitonic scale
(S�

4,0), see Fig. 9.
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Unitonic

[0]12[1]12 [2]12[3]12 [4]12[5]12 [6]12[7]12 [8]12[9]12 [10]12[11]12

π = 5

Fig. 9. Periodicity π and the [6]12-th balance. The unitonic scale contains all odd
pitch classes, that form one of the two whole tone scales, whose periodicity is 12

6 = 2.
This achieves an excess of 5 odd pitch-classes, the maximum reachable in c = 12.
The diatonic scale, whose maximal evenness ensures no excess greater than 1 on any
coefficient, obtains the worst score, see Fig. 7.
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Fig. 10. Comparison of the three module based DFT indices σ, π and ε versus the
diatonic bell’s linear ordering of dihedral classes. Numbering of heptatonic scales goes
from 1 on the left for the diatonic scale S�

1,0, towards the chromatic scale S�
38,0 on the

right.

3.4 Chord Quality

As mentioned in Sec. 2.4, the [d]c-th modulus called chord quality by Quinn [7]
serves also for a new definition of maximall evenness.

ε : Sd
c −→ IR

S �−→
∣∣F{S

}
([d]c)

∣∣ (25)

It is related to the symmetry index σ through an affine permutation of the
coefficients.

Despite some correlation appearing between the symmetry index σ and the di-
atonic bell’s ordering, the three indices do not lead to a progressive classification
from a diatonic to chromatic character, see Fig. 10.
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4 Conclusion

The diatonic bell and the DFT differ in their structure. Whereas the underlying
space of the former is infinite, the usual definition of a DFT requires finiteness.
Nevertheless, both are constructed on an analogous principle: the balance. The
idea of a physical balance lies behind the process of centring scales in the diatonic
bell, and this image also helps for interpreting Fourier coefficients.

By lifting up scales from the chromatic circle to the spiral of fifths, the diatonic
bell adds a tonal structure to the atonal combinatorics of musical set theory.
Although the DFT is defined on the chromatic circle and, in this sense, is purely
atonal, it shares some elements with the diatonic bell, namely the relevance of
symmetry and the ability of pinpoint the diatonic flavour of some scales.

4.1 Symmetry

The role pitch class D plays as a symmetry axis in both the chromatic and
diatonic worlds is clearly shown. This remarkable fact was already noticed by
the french music theorist and composer Camille Durutte in his treatise of 1855
[5], where he described pitch classes with 31 integers, ranging from −15 to +15,
centred around D = 0, and ordered by fifths. The diatonic bell’s horizontal axis
thus already appeared in the first historic attempt to formalise pitch classes
algebraically.

The symmetry axis is also essential for the DFT, since it lies on the real axis
of the complex plane. Inversion then corresponds to complex conjugation.

Using the centred and compact representatives of the diatonic bell has two
advantages. The comparison between transpositional classes makes sense and
interpreting phases of the DFT coefficients becomes more accessible: it eliminates
a great amount of uninformative components that would have been induced by an
arbitrary rotation. The most striking fact is that the coefficients of palindromic
scales are purely real.

4.2 Measuring the Diatonic Character of a Scale

The diatonic bell displays scales as a deformation of the diatonic scale and
arranges them according to the their degree of compactness on the spiral of
fifths, ranging over all dihedral classes from the diatonic to the chromatic. Our
initial intention was to use this linear ordering to define a measure of a scale’s
diatonic or chromatic character. The former being the maximally even scale, the
latter the minimally even one, we expected to observe the same trend with DFT
coefficients measuring regularity in the geometric configurations. As shown in
Fig. 10, DFT-based indices did not confirm the bell’s ordering. The chromatic
or diatonic character of a scale does not reduce to a one-dimensional question,
at least not this way.

On the other hand, almost all measures succeed in isolating the diatonic and
chromatic scales as poles. What happens in between is less clear, but both ap-
proaches converge in distinguishing a group of particular scales, formed by the
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six first scales located on the left side of the diatonic bell. They correspond
exactly to those used in the western tradition: diatonic (S�

1,0), melodic minor
(S�

2,0), harmonic major (S�
3,−1) and minor (S�

3,+1), unitonic (S�
4,0) and double

harmonic (S�
5,0).

One reason may be that they have to be the most compact, so that the
tonic pitch class D, is surrounded with its dominant A and subdominant G, a
feature essential for tonal music. Note that only three other scales show a similar
behaviour: S�

22,±1 and S�
28,0. Optimums of the geometrical measurements defined

with help of DFT modules in Sec. 3 systematically exhibit scales from this same
harmonic block.

– Diatonic is the most even: ε(S�
1,0) = 3.73.

– Minor melodic is also one of the three balanced scales with regard to the
triton periodicity: F

{
S�

2,0
}
([2]12) = 0.

– Unitonic is the most periodic: π(S�
4,0) = 5.00.

– Double harmonic is the most symmetric: σ(S�
5,0) = 0.00.

In that case, the diatonic bell’s requirement for compactness seems to agree with
those of he DFT for regularity. This follows from the property of the diatonic
scale to be generated by a succession of fifths, and that this sequence is not
degraded too much for the first scales. Convergence between musical practice
and mathematical interest as personified by the diatonic scale seems to extend
also to the neighbour scales.

We are currently working on the implementation of these two approaches (the
diatonic bell and the DFT) within OpenMusic visual programming language, as
a package included in the MathTools environment. These new tools will allow
the user to automatically generate diatonic bells and musical transpositions for
the heptatonic and pentatonic scales. Divisions of the octave other than c = 12
will also be handled, as long as the requirements on the parameters are fulfilled
(Sec. 2.1). One simply should take care about the exponential growth of the
diatonic bell in microtonal context.
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The Geometry of Melodic, Harmonic, and 
Metrical Hierarchy 

Jason Yust 

Abstract. Music is hierarchically structured in numerous ways, and all of these 
forms of organization share essential mathematical features. A geometrical 
construct called the Stasheff polytope or associahedron summarizes these 
similarities. The Stasheff polytope has a robust mathematical literature behind it 
demonstrating its wealth of mathematical structure. By recognizing hierarchies 
that arise in music, we can see how this rich structure is realized in multiple 
aspects of musical organization. In this paper I define hierarchic forms of 
melodic, harmonic, and metrical organization in music, drawing on some 
concepts from Schenkerian analysis, and show how each of them exhibits the 
geometry of the Stasheff polytope. Because the same mathematical construct is 
realized in multiple musical parameters, the Stasheff polytope not only 
describes relationships between hierarchies on a single parameter, but also 
defines patterns of agreement and conflict between simultaneous hierarchies on 
different parameters. I give musical examples of conflict between melodic and 
rhythmic organization, and show how melodic and harmonic organization 
combine in melody and counterpoint. 

1   General Characteristics of Musical Hierarchy 

Hierarchies operate in a number of different modalities in tonal music, and forms of 
musical hierarchy generally share some essential properties. This fact opens the door 
to a rich application of a mathematical conception of hierarchy to music. 

Hierarchical accounts in the basic modalities melody, harmony, and metrical 
rhythm play crucial roles in understanding tonal music. All of these types of hierarchy 
share principal underlying features: (1) they involve objects ordered in time, (2) they 
are better represented by hierarchies on intervals between successive objects rather 
the objects themselves, and (3) they are accurately captured by strictly binary 
bracketings. Together these features imply a robust mathematical description captured 
by the geometry of the Stasheff polytope or associahedron. 

The graph-theoretical object of a rooted tree represents the concept of hierarchy 
in its most general sense. Property (1) for musical hierarchies implies that they 
correspond more specifically to plane trees, trees in which the children of each node 
are ordered from left to right (where for our purposes left corresponds to prior in time, 
etc.). Plane trees are equivalent to ways of bracketing series of objects (the objects 
corresponding to the leaves of the tree). 

As for property (2), consider the passing-tone figure in Figure 1. Formal accounts 
of Schenkerian theory often represent the hierarchy of this type of musical figure with 
a plane tree that takes musical notes as its objects, as in Figure 2 (Cohn and Dempster 
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Fig. 1. The passing tone of second species counterpoint 

   

Fig. 2–3. Plane trees with musical notes or motions between notes as objects 

1998, Marsden 2005, Lerdahl and Jackendoff 1983, Rahn 1979, Smoliar 1980). This 
type of hierarchy involves an arbitrary assignment of either of the consonant tones as 
the parent of the dissonant one, obfuscating the symmetry of the musical figure. 
Larson 1997 criticizes this aspect of the theory of Lerdahl and Jackendoff 1983, and 
Lerdahl’s response (1997) is dismissive and inadequate.  Proctor and Higgins 1988 
and Yust 2006 have pointed out that such “reductionist” theories inaccurately 
represent Schenker’s own analytical practice. In more recent computational 
applications that take this formal model as the standard (Marsden 2005 and 2007), the 
requirement for multiply-embedded arbitrary decisions results in a combinatorial 
explosion within the acceptable analysis of short musical phrases. Yust 2006 proposes 
a solution to the the interpretive awkwardness of hierarchies with notes as objects: 
bracketing intervals between successive notes, rather than the notes themselves, as 
shown in Figure 3.  

Meter presents a precisely analogous situation: it is not a bracketing on timepoints 
but on timespans (intervals between timepoints). In the rhythm of Figure 1, a whole-
note duration divides into two half-note durations; the weak-beat timepoint does not 
group with either the preceding or following strong beat by virtue of the meter.  
Unlike models of tonal hierarchy proposed by music theorists, models of metrical 
hierarchy typically take intervals between events (durations) as their objects rather 
than the events themselves (timepoints). Presumably the difference treatment of 
parameters comes from musical notation, which reifies durations and pitches rather 
than timepoints and intervals. As a result, studies that discuss relationships and 
conflict between meter and tonal structure (Komar 1971; Lerdahl and Jackendoff 
1983; Rahn 1979; Schachter 1976, 1980, 1987; Yeston 1976) present models in which 
time and pitch are treated in fundamentally different ways.  Construing tonal 
hierarchy in terms of intervals rather than notes corrects this situation, so that 
rhythmic and tonal patterns can be compared directly in terms of hierarchic structure.  



182 J. Yust 

 

Fig. 4. The bijection between binary plane trees and triangulations of a polygon as 
representations of musical hierarchy 

Property (3) provides a useful heuristic for present purposes. Although non-binary 
relationships can exist in melodic, harmonic, and rhythmic hierarchies, binary 
structures are the most important and demonstrate the essential properties of hierarchy 
in these modalities. Therefore I will focus here on the binary plane tree, in which all 
nodes that are not leaves (called internal nodes) have exactly two children, a left 
child and a right child. The application of the Stasheff polytope is more general 
however, describing the relationships between all possible plane trees.  (See the end 
of section 3 below). 

Though the objects the musical hierarchies explored here are intervals rather than 
more concrete musical objects, networks visually convey their musical implications 
more clearly when the nodes correspond to concrete objects. The bijective 
equivalence of binary plane trees and triangulations of polygons makes it possible to 
create a network on musical objects that gives a hierarchy on directed intervals 
between them. Figure 4 illustrates this bijection—which replaces the nodes of the tree 
with edges—and shows how to redraw the polygon to show the left-to-right ordering 
on the vertices clearly. Note that internal edges in the triangulation (which correspond 
to internal nodes in the tree) can be described as upward- or downward-slanting. 

2   Harmonic, Melodic, and Metrical Forms of Hierarchy 

2.1   Harmonic Hierarchy 

Schenker (1987) had the fruitful insight of taking the passing-tone figure of second 
species counterpoint as a paradigm for hierarchical relationships in music. However, 
the passing-tone figure can only serve as a paradigm of tonal hierarchy if it is 
somehow generalized, because literal passing figures alone do not embed one another 
recursively. Schenker (1979, 1997) addressed this by harmonizing the dissonant 
passing note, as in the Ursatz of Figure 5, and horizontalizing the resulting vertical 
consonance so that he could then fill it with new passing motion, as shown in Figure 
6. The process implies a tonal hierarchy, also shown in Figure 6, that generalizes the 
passing-tone figure as a symmetrical binary division of step-class intervals. That is, 
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Fig. 5. Schenker’s Ursatz (From Der Freie Satz) 

 

Fig. 6. Schenker’s Ursatz with a horizontalized dominant 

the passing tone divides the step-class interval of a third into two equal step-class 
intervals (seconds) and similarly, the second divides into two fifths, the harmonization 
of the passing tone, the fifth divides into two thirds which complete the triad that 
supports the passing tone, and new passing motion then fills the horizontalized thirds. 
(This process of division is an order-3 automorphism of the group of step-class 
intervals, a cyclic group of order seven; see Yust 2007) 

I will call this type of hierarchy harmonic structure. Because its building blocks 
include triads and series of fifths, it is useful for describing harmonic patterns in tonal 
music, particularly sequential harmonic patterns. Its main shortcoming, from the 
perspective of music analysis, is also one of its assets: it cuts across compositional 
voices and registers, collapsing tonal content into a single hierarchy that can only 
show one melodic progression at a time. Therefore, a description that recognizes 
counterpoint and the continuity of voices requires a different form of hierarchy on 
tones, a purely melodic type of hierarchy, to complement this one. 

2.2   Melodic Hierarchy 

A melodic hierarchy is one on tones strictly ordered in time and belonging to one 
voice. One particularly useful melodic hierarchy emerges from the principles, first, 
that the line it represents should be conceived as constantly in motion at every level 
(so that the line can include no repeated tones or neighboring motions); and second, 
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Fig. 7. Incomplete neighbor figures for melodic elaboration 

that the hierarchy reflect the process—characteristic of Schenkerian analysis—of 
locating stepwise connections and stepwise passing motions within a musical line at 
various levels. 

Again, the passing-tone figure is a model, and the problem of its inability to embed 
itself reappears. Expanding seconds with incomplete neighbors gives a solution that 
prioritizes stepwise motion. Figure 7 shows two such possibilities for the descending 
second. We can equate these different incomplete neighbor figures under a system of 
equivalence classes consisting of notes separated by diatonic fourths. These 
equivalence classes identify the position of tones within a system of conjunct 
tetrachords, so we can call them tetrachordal positions. For melodies of restricted 
range, a sequence of three distinct tetrachordal positions may represent a literal 
stepwise passing motion, any incomplete neighbor figure involving a leap of a third, 
or arpeggiations of a close-position triad. Unlike harmonic hierarchies, melodic 
hierarchies built out of tetrachordal passing motions do not recognize octave 
equivalence, and so are most useful in confined registral ranges. 

2.3   Metric Hierarchy 

Another useful form of hierarchy is the metric hierarchy of an unsyncopated rhythm. 
For present purposes, we will consider only strictly binary metrical schemes. (See the 
end of the next section regarding mixed binary-triple schemes). An exemplary binary 
metrical scheme is 4/4 meter, possibly extending hypermetrically to regular four- and 
eight-bar phrases and so forth. An unsyncopated rhythm within such a scheme is a 
succession of timepoints (1) that begins and ends on the metrically strongest 
timepoints within its span, and (2) where no unarticulated timepoint is stronger than 
the articulated one immediately preceding it. Like the assumption of strict binary 
organization, the no-syncopation assumption sacrifices musical generality for 
mathematical simplicity and can be corrected after the basic mathematical framework 
is established. 

3   Musical Realizations of the Stasheff Polytope 

These three forms of hierarchy enable a musical exploration of the Stasheff polytope.  
The vertices of the Stasheff polytope correspond to the possible binary hierarchies, 
and its geometrical properties represent much of the structure implicit in the concept 
of hierarchy.  The work of mathematician Jean-Louis Loday and others demonstrates 
the great depth of this structure. (Stasheff 1963; Loday 2004, 2005, 2007; Loday and 
Ronco 2002) This convex polytope can be constructed in any dimension. In  
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Fig. 8. The possible hierarchies on five events as trees and triangulations 

 

Fig. 9. The two-dimensional Stasheff polytope 

n-dimensional space, the vertices of the polytope correspond to binary trees with n + 2 
leaves, or triangulations of an (n + 3)-gon. 

For example, let us construct the two-dimensional Stasheff polytope, whose points 
correspond to the binary plane trees with four leaves or the triangulations of a 
pentagon. Figure 8 shows the possible hierarchies on series of five musical objects, 
both as trees and as triangulations. We define a point in three-dimensional space for 
each triangulation where the coordinates of the point correspond to the vertices of the 
triangulation from left to right (which in turn correspond to musical events in the 
sequence) excluding the first and last (uppermost) vertices. The value for each 
coordinate is given by taking the highest edges to the left and right of that point, 
counting the number of boundary edges below them, and multiplying the two 
numbers. Figure 8 shows the resulting coordinates for triangulations of the pentagon. 

The Stasheff polytope is the convex hull of these points. The dimension of the 
polytope is one less than the number of coordinates because the points are constrained 
to lie on the plane ∑xi = n(n + 1)/2 (in dimension n). In musical examples, the 
numbers define relative weights (e.g., metrical accent) for the corresponding objects. 
The edges in the geometry represent elementary “flip” operations that move exactly 



186 J. Yust 

one internal edge in the triangualtion. A leftward flip replaces an upward-slanted edge 
with a downward-slanted one; a rightward flip does the opposite. Figure 9 gives the 
2-dimentsional polytope, with arrows pointing in the direction of leftward flips; as 
Loday (2007) observes, they establish an important partial ordering on the hierarchies. 

It is possible to define operations that relate rhythmic and melodic sequences 
whose hierarchies share an edge in the polytope (i.e., are related by a flip). Figure 10 
presents a series of melodies that traverse the two-dimensional polytope starting at 
( 1 4 1 ) and moving counterclockwise around the perimeter until arriving back at 
( 1 4 1 ) with simultaneous rhythmic and tonal operations. Figure 11 shows the 
Stasheff polytope in three dimensions. Figure 12 gives an (arbitrary) sample traversal 
that circles the three-dimensional polytope through a series of flips in coordinated 
rhythmic-melodic structures.  

 

Fig. 10. A melodic traversal of the two-dimensional Stasheff polytope 

 

Fig. 11. The three-dimensional Stasheff polytope 
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Fig. 12. A melodic traversal of the three-dimensional Stasheff polytope 

The Stasheff polytope structures the relationships not only between binary 
hiearchies, but between any hierarchy representable by a plane tree.  All types of 
structure described here admit of mixed binary-ternary hierarchies, which are 
necessary for dealing with, e.g., triple and compound meter. The cells of the polytope 
correspond to the plane trees with n + 1 leaves, with higher-dimensional cells 
corresponding to trees with fewer internal nodes. The binary trees, with a maximum 
of internal nodes, correspond to the 0-cells (points) of the polytope. Mixed 
binary/ternary trees correspond to higher dimensional cells (edges, faces, etc.) 
depending on the number of ternary branchings they include.  

4   Relating Hierarchies on Different Musical Parameters 

4.1   Conflict between Melodic and Metric Structures 

The generalization of the concept of hierarchy to different musical parameters means 
that not only can one geometrically relate different hierarchies on a given parameter, 
but also hierarchies existing simultaneously on different parameters. Figure 13 shows 
the rhythmic operations of Figure 10 on a sequence with an unchanging melodic 
structure, resulting in various kinds of conflict between simultaneous rhythmic and 
melodic structure. 

Schenker used such rhythmic operations on occasion to add emphasis to his tonal-
hierarchical analyses of musical passages. Figure 14 reproduces a portion of his 
analysis of the theme from the C minor fugue of Bach’s Well-Tempered Clavier. (It 
excludes the upper part of the compound melody and normalizes syncopations). The 
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background of the theme is a descending line G–F–Eb. Schenker gradually adds new 
elements in coordinated rhythmic and melodic structure, and then transforms rhythmic 
structure to misalign the two hierarchies. Thus, rhythm helps to clarify the structure of 
the melody at each introduction of a new element, while progressive transformations 
bring it gradually in line with the actual rhythm of the fugue theme. The end result is 
a combination of hierarchies far apart in the five-dimensional Stasheff polytope—a 
heavily left-weighted tonal structure against a right-weighted rhythm. 

 

Fig. 13. Rhythmic transformations against a constant melodic structure 

 

Fig. 14. Rhythmic transformations in Schenker’s analysis of the C minor fugue subject 
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4.2   Melodic Structures in Counterpoint 

Geometrical relationships between hierarchies can also describe aspects of tonal 
counterpoint. Counterpointing melodies with melodic and rhythmic structures in 
perfect coordination produce successions of consonant thirds and sixths, as in the first 
counterpoint of Figure 15. Transforming the melodic and rhythmic structures in one 
voice against the other voice creates oblique dissonances. Adding conflict between 
melodic and rhythmic structures within one voice to the conflict between voices 
produces accented dissonances. For example, Figure 16 transforms the rhythm of the 
upper voice in the fourth counterpoint of Figure 15. 

 

Fig. 15. Transformations of melodic/rhythmic hierarchy in counterpoint with a constant melody 

 

Fig. 16. Accented dissonance as a relationship of three hierarchies 

4.3   Relationships between Melodic and Harmonic Structure 

Melodic structures also relate to harmonic structures through the properties of their 
hierarchies. Melodic and harmonic structures, however, relate through the contraction 
of their hierarchies, and therefore invoke the relationships between Stasheff polytopes 
in different dimensions. The fifths-sequence figure distinguishes harmonic hierarchies 
from melodic ones, so the contraction of thirds from below the fifths sequences of a 
harmonic hierarchy creates an associated melodic hierarchy. Figure 17 shows this 
relationship; notice that the contraction here preserves the stepwise passing motions 
of the harmonic structure and introduces some new stepwise relationships, such as the 
step from leading tone to tonic. The contracted edges appear as vertical intervals in 
the musical notation of Figure 17. 
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Fig. 17. Melodic structure as a contraction of harmonic structure 

 

 

Fig. 18. Two melodies in counterpoint (from the G# minor prelude of Bach’s WTC I) as 
differing contractions of a harmonic structure 
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In general, there might be no such contractions of a harmonic structure that do not 
annihilate parts of it. In such an instance, a compete representation of the harmonic 
structure requires multiple melodic structures in counterpoint, each a contraction 
of a common harmonic structure. Figure 18 shows a sequence from the G# minor 
prelude of the WTC I (mm. 19–21). The imitative counterpoint of the two upper 
voices consists of two different contractions of the underlying harmonic structure, and 
the two voices together express the complete structure of the harmonic sequence. 

Each contraction in Figure 18 requires two vertex deletions. Geometrically, a vertex 
deletion defines an n-simplex in the n-dimensional Stasheff polytope (consisting of all 
the hierarchies reducing to a common structure with the deletion of one foreground 
vertex). The intersections of these n-simplexes reflect the corresponding simplicial 
structure on the (n – 1)-polytope. Two successive vertex deletions therefore define an (n 
– 1)-simplex of intersecting n-simplexes. Two melodic structures in counterpoint define 
a precise harmonic structure when the uncontracted melodic structures correspond to 
two (simplexes of simplexes of . . . ) simplexes in some Stasheff polytope that intersect 
in precisely one point. For instance, the first half of the harmonic structure in Figure 18 
(from G# to F#) corresponds to a point on the 4-dimensional Stasheff polytope. The 
deletions of this structure for each melodic voice, (G#-F#-E-C#-F# and G#-C#-B-A#-F#) 
each correspond to 3-simplexes (tetrahedrons) of intersecting 4-simplexes in the 4-
dimensional polytope. The two sets of sixteen points encompassed by each of these 
intersects in one point, which corresponds to the overall harmonic structure of the 
passage. 

5  Conclusion 

The geometry of hierarchy is fascinating by virtue of its depth of mathematical 
structure alone. Indeed, we have only scratched the surface of that mathematical 
structure here. Given the myriad ways that music is hierarchically organized this 
geometry illuminates it from many angles, showing the nature of relationships 
between different ways of hierarchically organizing rhythms or tonal patterns, conflict 
between the simultaneous rhythmic and tonal organization of a melody or multiple 
melodies in counterpoint, and the relationships between different types of hierarchical 
organization that apply to tonal patterns. All of these relationships not only 
demonstrate the importance of hierarchy in tonal music, but also give the lie to the 
idea, implicit in Schenkerian analysis, that musical hierarchy is a unitary 
phenomenon. Indeed, a single hierarchy is too simple an object to represent the 
complex interactions that bring life to music in the tonal idom. 
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Abstract. This paper presents a method for analyzing expressive tim-
ing data from music performances. The goal is to uncover rules which
explain a performer’s systematic timing manipulations in terms of struc-
tural features of the music such as form, harmonic progression, texture,
and rhythm. A multi-tiered approach is adopted, in which one first iden-
tifies a continuous tempo curve by performing non-linear regression on
the durations of performed time spans at all levels in the metric hier-
archy. Once the effect of tempo has been factored out, subsequent tiers
of analysis examine how the performed subdivision of each metric layer
(e.g., quarter note) typically deviates from an even rendering of the next
lowest layer (e.g., two equal eighth notes) as a function of time. Struc-
tural features in the music are identified that contribute to a performer’s
tempo fluctuations and metric deviations.

1 Introduction

The study of expressive musical performance has been the subject of experi-
mental as well as computational research [1,2]. It is generally acknowledged that
expressive timing—a performer’s deviations from an exact temporal rendering
of the score—is an important component of musical expression. By manipulat-
ing timing, a performer is able to communicate musical structure and shape a
listener’s experience of the music. This paper presents a method for analyzing ex-
pressive timing data, extracted through audio analysis of recorded performances.
The purpose is to uncover rules which explain a performer’s systematic timing
manipulations in terms of structural features such as form, harmonic progression,
texture, and rhythm.

A fundamental assumption of this analysis is that a performer controls a hier-
archically structured metrical cycle of measure, beat, and subdivision levels [3,4].
At each point in time, the performer’s mental clock fires at a given tempo, which
is evidenced by the cumulative effect of all the levels in the metrical cycle. The
performer’s clock rate as a function of time is represented by a tempo curve.
Identifying this curve forms a natural first tier of analysis.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 193–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Once the effect of tempo has been factored out, it is possible to examine
how the performance rendering of subdivisions between adjacent metrical layers
(e.g., the subdivision of a quarter note into two eighth notes) deviates from the
corresponding exact duration ratios (e.g., 0.5 / 0.5). In the subsequent tiers of
analysis, systematic deviations of this type are identified at each level in the
metric hierarchy.

As justification for the proposed multi-tiered approach, we first note that
it is supported by informal musical discourse: terms such as ritardando and
accelerando typically refer to the first tier of expressive timing, whereas terms
such as rubato, notes inégales, or “swing” most commonly represent deviations
in the subsequent tiers.

More to the point, it appears that, in principle at least, a skilled performer
can control each tier independently. For instance, a performer may be asked to
manipulate the tempo of a performance, while maintaining even metric subdivi-
sions. Conversely, the performer may be requested to perform at steady tempo,
while producing various types of uneven metric subdivisions. Moreover, these
uneven subdivisions can be executed independently at any particular metric
level—up to a certain depth—while maintaining even timing at higher metrical
levels.

One of the challenges of expressive performance research is to understand
the cognitive mechanisms that underlie expert expressive rendering of a musical
score. In line with current views on cognitive modeling, it is natural to seek
modular rules that specialize in responding to specific features of the musical
structure (such as metric accent) by shaping the expression in specific ways
(such as lengthening the strong half of a subdivision). This modularity require-
ment poses challenges for any analytical approach to expressive performance
data, which must identify and isolate the effect of individual rules from their
surrounding context, where other rules may be simultaneously contributing to
expressive deviations. It is in this spirit that the present analysis is offered; it
represents work aiming towards a complete rule system for expressive timing.
We believe that the multi-tiered analytical approach proposed in this paper can
help identify and isolate the right ingredients in this complex multi-faceted man-
ifestation of expert musical skill.

2 Related Previous Research

Several studies have focused on modeling specific aspects of expressive perfor-
mance, such as rubato [5] or the final ritardando (see [6] for a review). In addition,
some research groups have aimed for comprehensive models that integrate many
different components of performance expression. As expected, timing plays a
central role in such models.

An important early attempt at an integrated model was the work of Eric
Clarke [7]. Clarke proposed nine generative rules to explain expressive devia-
tions in terms of the performed piece’s structural features, such as grouping and
meter. These rules were derived from measurements of piano performances in
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experimental studies by Clarke and collaborators. Another important contribu-
tion was the KTH model by Sundberg and his group [8]. This model represents a
synthetic approach, where expression rules were formulated by querying expert
performers as to their expressive deviation practices.

The approach proposed in the present paper is inspired in part by the work of
Gerhard Widmer and his collaborators [9,10,2], perhaps the most sophisticated
proposal to date for an integrated model of expressive performance. Widmer’s
group applied machine learning techniques to analyze measurements of expres-
sive performance by skilled musicians.

Most relevant to our approach is the fact that Widmer employed a two-tiered
data analytic model, in which local note-to-note expressive deviations were sepa-
rated from the more global expressive shaping of grouping units, such as phrases.
Following earlier research [11], Widmer hypothesized that each grouping unit in
the music contributes a parabolically shaped accelerando-ritardando component
to the performance’s tempo curve. The overall tempo curve is assumed to be the
product of all such contributions coming from each grouping unit.

The first tier of Widmer’s analysis consisted of identifying the parabolic co-
efficients corresponding to each unit of grouping. The process started from the
highest grouping level and proceeded to the lowest. At each level, the coeffi-
cients were identified by least-squares fitting. After each level’s contribution was
factored out, the analysis was repeated at the next lowest level, until all lev-
els of grouping were accounted for. The residual timing deviations were then
attributed to local note-to-note expressive timing rules, which were extracted
from the data via a machine learning algorithm.

The present work extends and modifies Widmer’s approach in two different
ways. First, we do not make the assumption that grouping is the only factor
contributing to the shape of the tempo curve. Instead, we consider sources of ad-
ditional contributions, such as texture and the tonal/formal function of phrases
and sections. As we will see, there is indeed evidence that such factors come into
play in determining a performance’s tempo fluctuations.

The second difference between Widmer’s approach and ours is that, rather
than examining a single layer of low-level residual timing deviations, we analyze
separately the deviations at each subdivision level in the metric hierarchy. As
we will see, there is evidence that this separation could lead to simpler, more
modular rules. At the same time, this allows us to develop rules that are specific
to the absolute time scale of metric subdivision, as measured in seconds. Indeed,
different time scales of pulsation can have different cognitive properties, as evi-
denced by several experimental studies, which are nicely summarized in [4] (see
especially Chapter 2).

3 Tempo Curve Calculation Using a Non-parametric
Regression Model

If we give up a specific functional dependence of the tempo curve on grouping,
as implemented by the fitting of parabolic segments, we must consider the most
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general options for calculating the tempo curve from the timing data. This nat-
urally leads to a non-parametric regression analysis, which does not assume a
specific functional form for the tempo curve.

For the purposes of this study, we found it most flexible to use a non-linear
regression model based on radial basis functions. The technique was first pro-
posed in [12,13], and is a particular instance of density estimation using Parzen
windows [14]. In its simplest form, the process can be illustrated as follows:

Let {xi : i = 1 . . .N} be a set of values for the independent variable X , and
let {yi : i = 1 . . .N} be the corresponding values of the dependent variable Y ,
so that (xi, yi) are the coordinates of the i-th point in the data set. Then the
regression curve y(x) obtained from the above data set is given by

y(x) =
∑N

i=1 yi exp[−(x − xi)2/2σ2]∑N
i=1 exp[−(x − xi)2/2σ2]

under the assumption of a Gaussian Parzen window. This expression, calculated
through the Parzen density estimation formula, has a simple interpretation: it
tells us that the predicted value of y at point x is equal to a weighted sum of the
yi observed at each xi. The weights are determined by the distance of each xi

from x, and decay rapidly with that distance, according to a Gaussian function.
The variance σ of the Parzen window is also known as the window width,

and can be viewed as a kind of smoothing parameter. Thus, the regression is
formally equivalent to a (Gaussian-weighted) moving average filter. However, it
should be noted that the window width is not set a priori, but it is inferred from
the data. Indeed, a central problem of this regression analysis is to determine
the right value of σ: If the latter is too large, the regression curve becomes too
coarse to capture the meaningful fluctuations in the data. Conversely, when σ
is too small, the regression curve displays over-fitting, i.e., it captures random
noise fluctuations in the data and is a poor predictive model. A simple, yet
effective way to determine the appropriate value of σ is through a form of N -fold
cross-validation. This is effected by minimizing a cost function that represents a
least-squares error on the cross-validation training sets (see [13] for more details).

The starting point for our analysis is a performance’s set of inter-onset dura-
tions. These are extracted from the audio recording using Tristan Jehan’s Echo
Nest API. The latter is a programming toolkit for digital audio analysis that
contains a tool for automatic note onset detection1. Depending on the value of a
resolution parameter, the algorithm can miss a real note onset (if the resolution
is too low), or detect a spurious one (e.g. caused by reverb, if the resolution is
too high). There is no single optimal resolution, and so it is generally safest to
perform onset detection using a relatively high value, to ensure that no notes
have been missed. As a result, any spurious onsets detected by the algorithm
must be filtered out manually by listening. The algorithm produces the time of
each onset in seconds, correct to four decimal places, from which the inter-onset
duration values can be calculated at the same precision.

1 See http://developer.echonest.com/pages/overview (last visited March 2009)
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Since each note’s inter-onset duration reflects not only the local tempo, but
also the note’s nominal duration value (e.g., quarter-note, eighth note, etc.),
we must normalize each of the raw inter-onset durations by dividing it by the
corresponding note’s nominal value, where a whole note equals 1.0, a quarter
note equals 0.25, etc. This way, each normalized inter-onset duration is a con-
sistent indicator of the local tempo: its value reflects the whole-note duration
corresponding to the tempo at that specific point in time. Our solution is essen-
tially equivalent to Widmer’s representation of his timing data using percentage
deviations instead of absolute durations, but has the added advantage that it
keeps track of absolute tempo information, and not just its relation to some
average. The normalized inter-onset durations for each performance were used
as data presented to the non-linear regression model, in order to obtain that
performance’s tempo curve.

Figure 1 shows the application of the above analysis to a recording of Bach’s
F minor prelude, BWV 881, from the Well-Tempered Clavier, Book 2. The piece
is performed on the harpsichord by an expert, and is recorded on a commercially
available CD. This performance will be used as an illustration throughout the
paper. In Figure 1, the data points corresponding to the normalized inter-onset
durations are shown in grey. The tempo curve derived from the regression is
shown in black.

The performances of three contrasting Bach preludes (BWV 845, 863, 881)
were analyzed, each of them performed by two different harpsichordists. The
most salient factors shaping the tempo curve appear to be

– an initial small accelerando;
– a pronounced final ritardando;
– less pronounced, but consistent ritardandi leading to important cadences,

with magnitude usually reflecting the cadence’s hierarchical depth in the
Schenkerian sense;

– small but measurable contrasts in tempo to highlight sections marked off by
distinctive texture or tonal function (e.g., extended dominant pedal).

Once the effect of tempo is factored out, one can examine the lengthening or
shortening of individual measures with respect to their neighbors, in response to
specific features of the music. This individual manipulation of measure lengths
is distinct from overall tempo change, and can be represented in a graph such as
that of Fig. 2. Identified variations of this type include lengthening a measure
that

– begins a hypermetric pair;
– effects tonal arrival or resolution of a dissonant chord;
– contains unexpected material, such as a highly chromatic chord in a diatonic

context.

One intriguing feature of the non-parametric regression analysis is that the
optimal Parzen window width σ leading to each tempo curve emerges out of the
regression analysis through the process of cross-validation. The absolute value of
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σ is usually in the range of 2–4 seconds (2.0591 secs for the curve of Fig. 1). It is
an open question whether this value may hold some special significance, either
in terms of tempo, or the structure of the piece, or even in terms of psychological
properties of time perception and production.

4 The Hierarchy of Metric Deviations

The performed subdivision of each metric layer (e.g., quarter note) typically
deviates from an even rendering of the next lowest layer (e.g., two equal eighth
notes) as a function of time. This information can be represented in a graph
such as that of Figures 3 and 4. The nature of such deviations varies with metric
depth. They are often embedded in a small amount of random noise, which
reflects limits in the perception and production of exact rhythmic ratios [15].

However, some systematic variations are noteworthy. For instance, a consistent
lengthening of the metrically strongest half in a two-fold subdivision highlights
its stronger metric position through agogic accent. This is in line with findings
reported in many other approaches [7,8,9]. In our analysis, such specialized rules
are generally arrived at by inspection, and are subsequently confirmed using
standard statistical tests. The possibility of employing some machine-learning
classifier to uncover such rules algorithmically, in a manner akin to [9], is cur-
rently under investigation.

It is perhaps most remarkable that, even though deviation from exact sub-
division is free to vary on a point-by-point basis, the deviations observed in
performance often vary smoothly over extended time spans, which typically cor-
responding to formal units such as phrases (see Figs 3 and 4). This suggests
that manipulation of subdivisions is not always controlled on a pulse-by-pulse
basis, which might impose excessive demands on real-time processing. Instead,
it is shaped by broader gestures in a performer’s motor programs, coordinated
so as to reinforce communication of musical structure. We would like to suggest
that our multi-tiered analysis, which separates each layer of subdivision in the
metric hierarchy, makes it easier for such patterns to be identified.

It should be added that the same non-parametric regression technique that
is used to construct the tempo curve has been applied to subdivision timing
data such as those of Figs 3 and 4, in order to extract the underlying envelope.
Once that envelope is identified, one can seek rules that cause the subdivisions
of particular pulses to deviate from the overall envelope. Such deviations can be
typically attributed to the need to project some type of accent.

5 Conclusions and Future Directions

The present paper proposed a data analytic method that aims to uncover rules
linking musical structure to specific expressive timing gestures in music perfor-
mance. Several links were suggested between musical structure and expressive
timing at one or several tiers in a hierarchy. The description of structure-to-
timing associations remains to some extent qualitative at this stage. This could
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perhaps be partly attributed to an inevitable element of unpredictability that
may exist from performance to performance, even for the same player under
different circumstances. However, given the present analysis, there are many
ways to explore the possibility of precise quantitative relations between musical
structure and expressive timing deviations.

For instance, correlations between structural features of the music and specific
expressive deviations can be established by (i) annotating the score with a large
number of potentially relevant features, some of them objectively identifiable
(e.g., location of cadences), and some requiring annotations by independent mu-
sical experts; (ii) seeking correlations between the above features and expressive
deviation gestures such as peaks in the tempo curve, lengthened measures, or
lengthened beats. Such features can be tabulated in contingency tables, to which
standard statistical tests can be applied.

Another analytical approach might involve modeling the exact shape of the
tempo curve, seeking a quantitative predictive model of tempo fluctuations as
a function of specific musical features. This would entail (i) quantification of
all the possibly relevant features as continuous functions of time [16], and (ii)
complex regression analysis to identify features that are the best predictors of the
tempo curve. We are currently exploring certain multivariate time-series models
that could lead to such quantitative relations. As for the expressive subdivisions
within each layer of the metric hierarchy, they can be effectively modeled as they
unfold in time using the technique of Hidden Markov Models.
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Abstract. Hidden Markov Models (HMMs) have been successfully em-
ployed in the exploration and modeling of musical structure, with appli-
cations in Music Information Retrieval. This paper focuses on an aspect
of HMM training that remains relatively unexplored in musical applica-
tions, namely the determination of HMM topology. We demonstrate that
this complex problem can be effectively addressed through search over
model topology space, conducted by HMM state merging and/or split-
ting. Once successfully identified, the HMM topology that is optimal
with respect to a given data set can help identify hidden (latent) vari-
ables that are important in shaping the data set’s visible structure. These
variables are identified by suitable interpretation of the HMM states for
the selected topology. As an illustration, we present two case studies that
successfully tackle two classic problems in music computation, namely
(i) algorithmic statistical segmentation and (ii) meter induction from a
sequence of durational patterns.

1 Introduction

Hidden Markov Models have been successfully employed in the exploration and
modeling of musical structure [1,2], with applications in Music Information Re-
trieval [3].

Simply put, a Hidden Markov Model is a probabilistic version of a Finite
State Machine (FSM), or formal specification of a finite state grammar. A FSM
is formally defined by states and transitions, graphically represented by circles
and arrows respectively. A FSM generates a symbolic sequence by traversing a
path of states connected by transitions, following the direction of the arrows.
The generated sequence is the string of output symbols encountered in the path.
A FMS is a simple and flexible way to specify finite-memory constraints on
the symbolic values of variables that characterize musical structure (e.g., pitch,
duration, etc.) and as such offers useful formal characterizations of the structure
of musical sequences.

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 205–217, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A Hidden Markov Model (HMM) is a FSM with probabilities attached to its
transitions and output symbols [4,5]. The generation of a sequence through a
specific HMM path has probability equal to the product of all transition and
output probabilities encountered in traversing the generating path.

What gives the HMM technique its strength and flexibility is the fact that
selecting the best HMM for a given data set can be generally accomplished
through efficient algorithms. For instance, given a data set of symbolic sequences
whose structure we wish to explore, it is customary to assume a HMM of fixed
topology (i.e., number of states, and how they are connected by transitions) and
identify the model parameters (i.e., transition and output probabilities) that
best fit the data set, in the sense of Maximum Likelihood Estimation, using the
so-called Baum-Welch algorithm.

This paper focuses on an aspect of HMM training that remains relatively un-
explored in musical applications, namely the determination of HMM topology.
Our aim is to algorithmically construct models whose topologies consist of states
interpretable as values of latent (“hidden”) variables that may play important
role in the determination of musical structure. In a given application, one may
wish to focus on a particular (“visible”) musical variable, aiming to model syn-
tactical constraints on its successive values (e.g., stylistically acceptable patterns
of note durations). The states of a HMM obtained through topology-sensitive
search should indicate which additional variables must be taken into consider-
ation (e.g., metric position) in order to understand the syntax of the original
“visible” variable that one set out to model. This can be accomplished by show-
ing a close correspondence between HMM states and particular values of the
candidate “hidden” variables.

For an HMM topology to be interpretable in the manner suggested in the
preceding paragraph, special effort must be put in the topology selection algo-
rithm. If one simply relies on Baum-Welch optimization of the HMM parameters,
one will in most cases obtain HMMs whose states are not readily interpretable,
however well these models may fit the data. Previous studies that attempted to
address this complex problem have generally employed some form of search over
model topology space, which was conducted by HMM state merging [6] or split-
ting [7]. In this paper, we use the same basic search procedure, except that we
allow state merging and splitting to be combined in the same search. In addition,
we evaluate each candidate model using a Bayesian approach, in which a HMM’s
prior probability is determined through the Minimum Description Length prin-
ciple. This prior is optimal in that it leads to models that are neither too large
nor too small, and has been found to provide a reliable termination criterion for
the state merging/splitting search.

We will illustrate our method with the help of two case studies that success-
fully tackle two classic problems in music computation, namely (i) algorithmic
statistical segmentation and (ii) meter induction from a sequence of durational
patterns.
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2 HMM Training and Topology Identification

The proposed method of topology identification takes place in the framework of
Bayesian model selection. More specifically, given data set D, we seek the model
M that maximizes the probability P (M |D) of the model given the data. The
latter is obtained through Bayes’s Law as

P (M |D) =
P (D|M)P (M)

P (D)

It is customary to use the simpler form

P (M |D) ∝ P (D|M)P (M) (1)

since P (D) is constant over models M and therefore does not affect the maxi-
mization problem. P (M) is known as the model prior probability, assigned to the
model on general grounds before the data set is consulted. Likewise, P (M |D) is
known as the model posterior probability, and represents the probability of the
model after the data has been taken into consideration.

Topology identification is achieved through a suitable choice of model prior
P (M), defined as a function of model topology alone, and designed to reward
model simplicity. For a fixed topology, P (M) is fixed, and so maximization of
the model posterior amounts to maximizing the P (D|M) part in eq. (1). This
is achieved through the Baum-Welch (BW) algorithm, which chooses the model
parameters maximizing the probability of the data set using the Expectation-
Maximization principle. Overall, the maximization problem defined by eq. (1)
is a concrete implementation of Occam’s Razor, and achieves optimal balance
between goodness-of-fit and model simplicity.

We have shown elsewhere [8] that an optimal choice for P (M) is a model
complexity prior given by

P (M) = Ke−D(M) (2)

where the function D(M) is defined by

D(M) ≡ L(nS) + L(d) + nS log
(d + nS + 1)!

d!nS !
+ nT log

(d + nA + 1)!
d!nA!

(3)

and L(n) is the universal prior for integers [9, pp. 34–5], defined by

L(n − 1) = c + log(n) + log(log(n)) + log(log(log(n))) + . . . (4)

Here nS is the number of HMM states, nA is the number of distinct output
symbols in the data sequences, and K and c are suitably chosen normalization
constants. An additional integer d represents the decimal precision needed to
express the real-valued HMM model parameters. The expression in eq. (3) was
derived in [8] with the help of the Minimum Description Length principle [9,10].

The best way to tackle the problem of HMM topology selection is by system-
atizing the search over all possible HMM graphs. Such a search scheme typically
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begins with an extreme graph which is maximally simple or maximally complex.
Incremental improvements are subsequently performed on each candidate graph
by either (i) splitting one of its states, if the graph is too simple, or (ii) merging
two of its states if the graph is too complex. As an illustration, the following
procedure formalizes the state-splitting search:

1. Begin with a one-state HMM. This model has only one transition, namely the
one from the single state to itself. The output probabilities on that transition
can be determined by the BW algorithm.

2. For this and each subsequent candidate model,
(a) Choose a state to split. Determine the new graph that results from the

splitting.
(b) Perform BW estimation of the new graph’s parameters.
(c) Evaluate the resulting HMM’s posterior probability using eq. (1) with

the model complexity prior (eqs 2–4).
Continue Steps (a–c) until all the states have been tried for splitting. The
split-state HMM with the best posterior becomes the next candidate model,
and Step 2 is repeated for as long as the candidate models’ posterior prob-
ability continues to improve.

3. The process terminates once the posterior probability of the candidate model
begins to deteriorate, and the HMM with the highest overall posterior is
identified as the optimal HMM for the given data set.

One can modify Step 2(a) above to replace state-splitting by state-merging. Al-
ternatively, one can consider both possibilities at each step, choosing the option
that maximizes the model posterior at that step.

The above HMM topology selection process will now be illustrated with the
help of two case studies.

3 Case Study I: Statistical Segmentation of Symbolic
Sequences

Statistical segmentation is used to refer to the process of identifying grouping
boundaries in sequences based solely on the patterns of occurrences of symbol
combinations, without relying on explicit cues or annotations for such
boundaries.

The process can be illustrated with the help of a data set D1 based on a
language that was artificially synthesized to investigate statistical learning of
tone sequences by people in an experimental setting [11]. The set of symbols,
or alphabet, for this artificial language consists of pitches of the chromatic scale,
to be represented by the symbols {C, C�, D . . .B}. The data sequences of D1 are
built out of the following six three-symbol artificial segments (“words”):

A D B D F E G G� A F C F� D� E D C C� D

These words appear randomly with equal probability in the sequences of our
data set D1. (Word combinations were more restricted in Saffran’s stimuli, due
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Table 1. Calculation of model posteriors for all the HMMs considered in the word
segmentation example involving data set D1. Each model is obtained from the previous
one by state splitting. The first column shows the HMM’s number of states nS . The
second column shows the state split from which that model was obtained. Negative
logarithms of probability values are used throughout. The selected model maximizes
the model posterior or, equivalently, minimizes the value in Column 5. This model is
marked with an asterisk in Column 1.

nS State Split −log2P (D|M) −log2P (M) −log2P (M |D)
1 - 20365.8 84.2112 20450.1
2 0 15539.9 159.162 15699
3 0 13570.1 220.761 13790.9
4 1 12116.8 300.335 12417.2
5 3 11091.5 326.96 11418.4
6 2 10250.1 439.757 10689.8
7 0 9527.7 400.767 9928.47
8 1 8607.96 480.044 9088
9 4 7992.11 409.265 8401.38
10 7 7385.11 428.647 7813.76
11 6 6798.11 448.685 7246.8
12 5 6220.11 469.327 6689.44
13* 0 5653.91 624.18 6278.09
14 2 5653.91 670.633 6324.54

to the experimental design.) A typical sequence in D1 will therefore look like
this:

G G� A A D B D� E D A D B C C� D D F E (5)

The output of the segmentation will be the same sequence annotated with word
boundaries as follows:

G G� A / A D B / D� E D / A D B / C C� D / D F E

Our HMM analysis was applied to a data set D1 constructed in the above
manner, consisting of 200 randomly generated sequences with an average length
of 27.21 symbols. A state-splitting search was performed to identify the best
HMM topology. Each candidate split was followed by Baum-Welch estimation of
the HMM parameters. The results of this search are summarized in Table 1. The
model identified as the winner is the one that carries the maximum posterior
probability. This model is marked with an asterisk in the first column of the
table. The model’s graph structure is given in Figure 1.

To illustrate how the HMM of Figure 1 performs segmentation on a data
sequence, it is helpful to consider the most likely HMM path that generates the
sequence in question, also known as the sequence’s Viterbi path [4,5, pp. 331–3].
For the sequence of example (5), this path turns out to be the following:

BEGIN G G� A A D B D� E D
s0 → s1 → s2 → s3 → s1 → s8 → s9 → s1 → s12 → s4 → s1
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Fig. 1. The best HMM for data set D1, obtained through state-splitting

A D B C C� D D F E END
s1 → s8 → s9 → s1 → s11 → s4 → s1 → s7 → s6 → s1 → s0

(6)

With the help of this Viterbi path, all word boundaries in the sequence are clearly
identified through the HMM state s1. The significance of that state as a marker
of word boundaries can also be confirmed by observing the graph structure of
Figure 1 and following the derivation path of any sequence generated by that
graph.

This simple example serves to illustrate that, just like the experimental sub-
jects in the study by Saffran et al. [11], the HMM topology selection technique
presented here can exploit the statistical structure of symbolic sequences to seg-
ment them into grouping units. This result is replicated with other similar data
sets and suggests that—at least in certain cases—segmentation can be performed
on the basis of statistical information alone, without recourse to other structure,
such as Gestalt principles of grouping.

4 Case Study II: Meter Induction from Rhythmic
Patterns

Meter induction refers to the inference of metrical structure from a pattern
of note durations. Our second case study illustrates this process by analyzing
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patterns of durations found in Palestrina’s vocal music. Table 2 lists all the
possible note and rest durations employed in the style.

It should be noted that the goal of this application is not to do meter induction
per se. Rather, we seek to model Renaissance rhythm by establishing a syntax of
note durations. With the help of the HMM topology selection technique, we hope
to identify any other variable(s) that may be most relevant in constraining and
shaping the style’s duration patterns. In this instance, the most crucial variable
turns out to be metric placement, and is identified by the interpretation of HMM
states as explained below.

The HMM analysis of the present case study was performed on a sample of
melodies taken from the corpus of Palestrina’s masses. The corpus was obtained
from the Internet in Humdrum-encoded form.1 The sample was constructed as
follows:

1. The corpus of Palestrina masses was subdivided into movements, or sections
of movements. Each such section was further subdivided into individual vocal
lines. This processing was carried out using standard Humdrum tools. The
result was a database of 5034 vocal lines covering the entire corpus.

2. Out of these 5034 vocal lines, fifty were chosen at random to form the sample,
using a random number generator.

3. Each of the fifty lines was further subdivided into one or more data sequences.
The divisions were made at places where there was a rest of one complete bar
or longer. This subdivision was intended to ensure that the data sequences
represented units close to the phrase level.

4. Finally, the durations of each data sequence were extracted and encoded
using the symbols listed in the fourth column of Table 2.

An example of this encoding is shown above the staff in Figure 3. The resulting
sample consisted of 190 such sequences with an average length of 34.48 symbols.

The results of HMM inference algorithm are shown on Table 3. The HMM
with the highest posterior probability was a 6-state model, marked with an
asterisk in the first column of the table. Figure 2 shows the model in graph
form.

As in the previous case study, the model’s structure will be easier to interpret
with the help of the data sequences’ Viterbi path. As an illustration, the Viterbi
path for a typical melody in the data set is given in Figure 3.

Examination of the state sequences in the model’s Viterbi paths reveals one
striking property: there is a close correspondence between the HMM states and
the various metric positions in the compositions’ underlying 4/2 meter. As can
be seen from the example of Figure 3, states s1 and s3 occur exclusively on
strong beats (1 or 3), whereas state s2 only occurs on weak beats (2 or 4);
moreover, state s4 only occurs on weak quarters, and the rare occurrence of
state s5 coincides with a weak eighth-note subdivision. In other words, the HMM
appears to be “aware” of metric placement for each duration it generates. This

1 URL: http://csml.som.ohio-state.edu/HumdrumDatabases/classical/Renaissance/
Palestrina/Masses/ (last visited March 2009).
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Table 2. The note and rest durations available to the Renaissance vocal style. These are
shown along with the corresponding symbolic value of the duration variable, as encoded
for the HMM analysis of the present project. The rightmost column records the possible
metric placements for each duration, as prescribed in counterpoint instruction.

Music symbol Renaissance name Modern name Encoding Metric position

Longa L beats 1, 3

Breve B beats 1, 3

Semibreve Whole note W beats 1, 2, 3, 4

Minim Half note H beats 1, 2, 3, 4

Semiminim Quarter note Q any quarter

Fusa Eighth note E pairs, weak quarter

Dotted Longa L. beats 1, 3

Dotted Breve B. beats 1, 3

Dotted Semibreve Dotted whole note W. beats 1, 3

Dotted Minim Dotted half note H. beats 1, 2, 3, 4

Semibreve rest Whole note rest Rw beats 1, 3

Minim rest Half note rest Rh beats 1, 3

awareness is embodied in the HMM states, whose job is to encapsulate the
most decisive factors that determine the next output at each point in time. The
fact that each HMM state has chosen to incorporate metric information should
perhaps come as no surprise, given the generally acknowledged role of metric
constraints in the style’s rhythmic syntax. What is perhaps most remarkable is
that metric position was not originally encoded explicitly in the data sequences.
The HMM inference algorithm was able to detect the importance of this variable,
based on statistical regularities in the sequential combinations of note durations.
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Table 3. Calculation of model posteriors for all the HMMs considered in the analysis of
Palestrina rhythm. As in the earlier example, each model is obtained from the previous
one by state splitting. The columns of this table carry the same interpretation as those
of Table 1.

nS State Split −log2P (D|M) −log2P (M) −log2P (M |D)
3 - 14091.2 826.489 14917.7
3 0 14091.2 826.489 14917.7
4 1 12950.7 942.963 13893.7
5 0 12161.9 1051.110 13213.0
6* 4 12002.0 1204.640 13206.6
7 0 12002.0 1363.340 13365.3

Examination of the HMM states reveals a close correspondence between HMM
states and the rules of metric placement found in standard Renaissance coun-
terpoint textbooks [12,13], including the constraints on each duration’s metric
placement, and the general tendency to find longer note values near the begin-
nings and ends of phrases. The latter property is reflected in the differentiation
between the two “strong beat” states s1 and s3; the former represents strong
beats near the beginning and end of phrases, whereas the latter occurs in the
phrases’ interior positions.

5 Conclusions

The two case studies presented in this paper have demonstrated how topology-
sensitive HMM training can successfully uncover hidden structure underlying
the observable behavior of symbolic data sequences. Indeed, generic application
of the Baum-Welch algorithm would not have resulted in readily interpretable
graphs such as those of Figures 1 and 2. Only when HMM training incorporates
model topology identification, in a way that is sensitive to the data set’s statis-
tical regularities, will the HMM states be readily interpretable in terms of the
processes underlying the data sequence’s generation. In such cases, we can in-
terpret the different HMM states as representing the values of hidden, or latent,
variables that are most crucial in shaping the structural constraints of the data
sequences.

More specifically, one salient latent variable underlying Case Study I could be
identified as “word completion status” with the two values ‘yes’ (corresponding
to state s2) and ‘no’ (corresponding to states s1 s3, and s4); furthermore, a
second latent variable of “word label” could account for the differences among
the non-boundary states s1 s3, and s4. For Case Study II, the most salient latent
variable seemed to be “metric position” with most HMM states representing
distinct values. A second latent variable representing “position in the phrase”
was found to differentiate between states s1 and s3.

Of course, in both the above examples, identification of the relevant latent
variables is relatively straightforward. This is because the HMM graphs are
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rather small, and so the correspondence between HMM states and latent vari-
able values can be directly perceived. In more complicated situations, however,
this need not be the case. We must have a way of interpreting HMM states
that is more reliable than simple inspection. In general, the interpretation pro-
cess could be systematized by compiling contingency tables that show how each
HMM state aligns, or doesn’t align, with the values of a set of candidate latent
variables along the HMM paths that generate the data set (the Viterbi path
offering the dominant contribution).

Finally, it should be noted that, as our experiments with various data sets in-
dicate, our MDL prior of eq. (2–4) is an essential ingredient for the identification
of the right model topology. Other priors that we have tried typically produce
smaller graphs—e.g., caused by premature termination of state-splitting—whose
states are not consistently interpretable. In general, whenever the data is abun-
dant, it is found that the result is less sensitive to the choice of prior. However,
that choice really matters when data is scarce, which is the case, for example, in
historically delimited musical corpora (e.g. “all D-mode Gregorian tracts”). The
MDL approach is a strongly motivated and principled way of choosing a prior,
which in the majority of cases leads the topology search to discover interpretable
graphs.

It should be also noted that a simple splitting/merging search over model
topologies, unaided by other search heuristics, does not always yield readily
interpretable graphs, especially in data sequences with rich alphabets of symbols.
The problem is that the splitting/merging search is a form of “best first” search
that guarantees an optimal next step in the search, leading to a local maximum
of the model posterior; however, it cannot guarantee that the maximum reached
in this way will be optimal in the global sense. This is of course a concern for
any optimization problem. We have found that, in order to produce interpretable
results in the most general cases, the search proposed in this paper has to be
augmented with heuristics that determine an appropriate starting point for the
splitting or merging. This issue is currently under investigation, and will be
presented in a future work.
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Abstract. Universal Timed Concurrent Constraint Programming (utcc) is a
declarative model for concurrency tied to logic. It aims at specifying mobile re-
active systems, i.e., systems that continuously interact with the environment and
may change their communication structure. In this paper we argue for utcc as a
declarative model for dynamic multimedia interaction systems. Firstly, we show
that the notion of constraints as partial information allows us to neatly define
temporal relations between interactive agents or events. Secondly, we show that
mobility in utcc allows for the specification of more flexible and expressive
systems. Thirdly, by relying on the underlying temporal logic in utcc, we show
how non-trivial temporal properties of the model can be verified. We give two
compelling applications of our approach. We propose a model for dynamic in-
teractive scores where interactive points can be defined to adapt the hierarchical
structure of the score depending on the information inferred from the environ-
ment. We then broaden the interaction mechanisms available for the composer
in previous (more static) models. We also model a music improvisation system
based on the factor oracle that scales up to situations involving several players,
learners and improvisers.

1 Introduction

Process calculi provide a language in which the structure of terms represents the struc-
ture of processes together with an operational semantics to represent computational
steps. Concurrent Constraint Programming (CCP) [13] has emerged as a declarative
model for concurrency tied to logic. In CCP, concurrent systems are specified by means
of constraints (e.g. x+y ≥ 10) representing partial information about certain variables.
This way, agents (or processes) interact with each other by telling and asking informa-
tion represented as constraints in a global store: A process tell(c) adds the constraint
c, thus making it available to other processes. A positive ask when c do P remains
blocked until the store is strong enough to entail c; if so, it behaves like P .

Interactivity in multimedia systems has become increasingly important. The aim is to
devise ways for the machine to be an active partner in a collective behavior constructed

� This work has been partially supported by FORCES, an INRIA’s Equipe Associée between the
teams COMETE (INRIA), the Music Representation Research Group (IRCAM), and AVISPA.
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dynamically by many actors. In its simplest form, a musician signals the computer when
processes should be launched or stopped. In more complex forms the machine is always
actively adapting its behavior according to the information derived from the activity of
the other partners. To be coherent these machine actions must be the result of a complex
adaptive system composed of many agents that should be coordinated in precise ways.
Constructing such systems is a challenging task. Moreover, ensuring their correctness
poses a great burden to the usual test-based techniques. In this setting, CCP has much to
offer: CCP calculi are explicitly designed for expressing complex coordination patterns
in a very simple way by means of constraints. In addition, their declarative nature allows
formally proving properties of systems modeled with them.

Interactive scores [3] are models for reactive music systems adapting their behavior
to different types of intervention from a performer. Weakly defined temporal relations
between components in an interactive score specifies loosely coupled music processes
potentially changing their properties in reaction to stimulus from the environment (say,
a performer). An interactive score defines a hierarchical structure of processes. Musical
properties of a process depend on the context in which it is located. Although the hierar-
chical structure has been treated as static in previous works, there is no reason it should
be so. A process, in reaction to a musician action, for example, could be programmed
to move from one context to another or simply to disappear. Imagine, for instance, a
particular set of musical materials within different contexts that should only be played
when an expected information from the environment actually takes place. Modeling this
kind of interactive score mobility in a coherent way is greatly simplified by using the
calculus described in this paper.

Musical improvisation is another natural context for interacting agents. Improvisa-
tion is effective when agents behavior adapts to what has been learned in previous inter-
actions. A music style-learning/improvisation scheme such as Factor Oracle (FO) [1,5]
can be seen as a reactive system where several learning and improvising agents react to
information provided by the environment or by other agents. In its simplest form three
concurrent agents, a player, a learner and an improviser must be synchronized. Since
only three independent processes are active, coordination can be implemented without
major difficulties using traditional languages and tools. The question is whether such
implementations would scale up to situations involving several concurrent agents. For
an implementation using traditional languages the complexity of such systems would
most likely impose many simplifications in coordination patterns if behavior is to be
controlled in a significant way. A CCP model, as described here, provides a compact
and simple model of the agents involved in the FO improvisation, one in which co-
ordination is automatically provided by the blocking ask construct of the calculus.
Moreover, additional agents could easily be incorporated in the system. As an extra
bonus, fundamental properties of the constructed system can be formally verified in
the model.

In this paper we argue for Universal Timed CCP (utcc) [10] as a declarative lan-
guage for the modeling and verification of multimedia interaction systems. The utcc
calculus is a timed extension of CCP with the ability to model mobile reactive sys-
tem, i.e., systems that continuously interact with the environment and may change their
communication structure.
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After a brief introduction of utcc in Section 2, our contributions are as follows. In
Section 3, we propose a utcc model for interactive scores where the interactive points
allow the composer to dynamically change the hierarchical structure of the score. We
then broaden the interaction mechanisms available for the user in previous (more static)
models, e.g., [4], where temporal objects cannot be moved to different contexts accord-
ing to the information derived from the environment. We also provide a framework
based on the underlying linear temporal logic of utcc to formally verify fundamen-
tal properties of the constructed system. For instance, we can verify if certain musi-
cal structure is not played due to the absence of a stimulus from the environment. In
Section 4 we model a music improvisation system based on the factor oracle that scales
up to situations involving several agents and offers a more compact and efficient repre-
sentation of the data structure wrt the model in [5]. Section 5 concludes the paper.

An extended version of this work, including further details, is available at [8].

2 Preliminaries

CCP-based languages are parametric in a constraint system [13] defining the kind of
constraints that can be used in the program. Here, constraints c, d, . . . are understood as
formulae in a first-order language. If the information of d can be entailed (or deduced)
from the information represented by c we write c � d (e.g. pitch > 64 � pitch > 48).

Universal timed CCP (utcc) [9] extends Timed CCP (tcc) [12] for mobile reactive
systems. Time in utcc is conceptually divided into time intervals (or time-units). In a
particular time-unit, a utcc process P gets an input c from the environment, it exe-
cutes with this input as the initial store, and when it reaches its resting point, it outputs
the resulting store d to the environment. Furthermore, the resting point determines a
residual process, which is then executed in the next time interval.

Processes in utcc are built by the following syntax:

P, Q := skip | tell(c) | (abs x; c)P | P ‖ Q | (localx; c)P |
nextP | unless c next P | ! P

A process skip represents inaction. A process tell(c) adds c to the store in the
current time interval, thus making it available to other processes.

In utcc, the CCP ask operator when c do P (executing P if c can be deduced)
is replaced by the abstraction operator (abs x; c)P . This construct is a parameterized
ask where P [t/x] is executed for all the terms t s.t c[t/x] is entailed by the store.

A process P ‖ Q denotes P and Q running in parallel possibly “communicating”
via the common store. The process (localx; c)P behaves like P but the information c
about the variables in x is local to P . We shall omit c in (localx; c)P when c ≡ true.

From a programming language perspective, x in (localx; c)P can be viewed as the
local variables of P while x in (abs x; c)P as the formal parameters of P . This way,

abstractions can encode recursive definitions of the form X(x) def= P (see [8]).
The unit-delay nextP executes P in the next time interval. The (weak) time-out

unless c nextP executes P in the next time-unit iff c cannot be entailed by the final
store at the current time interval. The replication ! P means P ‖ next P ‖ next 2P...,
i.e. unboundedly many copies of P but one at a time.
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We shall also use the derived operator (wait x; c) do P that waits, possibly for sev-
eral time-units, until for some t, c[t/x] holds and then it executes P [t/x] (see [10]).

An Example. The abstraction operator allows us to communicate (local) names or vari-
ables between processes, i.e., mobility in the sense of the π-calculus [7]. Let us give a
simple example of this situation. Let P be a process modeling a musician playing notes
at different time-units, and Q be an improvisation system which after “reading” the note
played by P performs some action R. Roughly, this scenario can be modeled as follows

P
def= tell(play (A)) ‖ next (tell(play (G)) ‖ next tell(play (B))) . . .

Q
def= ! (abs x; play(x)) R

When executing P ‖ Q, we observe, e.g., R[G/x] in the second time-unit. This means
that P and Q synchronized on the constraint play(·) and the note played by P (i.e. G)
was read by Q and then processed by R. See [8] for a more involved example defining
synchronization of multiple agents.

Logic Characterization. The utcc calculus enjoys a declarative view of processes as
first-order linear-time temporal logic (FLTL) formulae [6]. This means that processes
can be seen, at the same time, as computing agents and as logic formulae.

Formulae in FLTL are built from the following syntax

F, G, . . . := c | F ∧ G | ¬F | ∃xF | ◦F | �F.

where c is a constraint. The modalities ◦F and �F stand for resp., that F holds next
and always. We use ∀xF for ¬∃x¬F , and the eventual modality �F as an abbreviation
of ¬�¬F . See [6] for further details on this logic.

Processes in utcc can be represented as FLTL formulae as follows:

[[skip]] = true [[tell(c)]] = c [[P ‖ Q]] = [[P ]] ∧ [[Q]]
[[(abs y; c) P ]] = ∀y(c ⇒ [[P ]]) [[(localx; c) P ]] = ∃x(c ∧ [[P ]])
[[nextP ]] = ◦[[P ]] [[unless c next P ]] = c ∨ ◦[[P ]] [[! P ]] = �[[P ]]

Let A = [[P ]]. Roughly, A � �c (i.e., c eventually holds in A) iff the process P
eventually outputs c (see [8,9] for further details).

3 A Model for Dynamic Interactive Scores

An interactive score [3] is a pair composed of temporal objects and Allen temporal
relations [2]. In general, each object is comprised of a start-time, a duration, and a
procedure. The first two can be partially specified by constraints, with different con-
straints giving rise to different types of temporal objects, so-called events (duration
equals zero), textures (duration within some range), intervals (textures without proce-
dures) or control-points (a temporal point occurring somewhere within an interval ob-
ject). The procedure gives operational meaning to the action of the temporal object. It
could just be playing a note or a chord, or any other action meaningful for the composer.
Figure 1, based on one from [3], shows an interactive score where temporal objects are
represented as boxes. Objects are Ti, durations Di. Object T4 is a control point, whereas
T0 and T3 are intervals. Duration D3 should be such that Ds ≤ D3 ≤ Df .
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Fig. 1. Interactive score

The whole temporal structure is determined by the hierarchy of temporal objects.
Suppose that, as a result of the information obtained by the occurrence of an event,
object T2 should no longer synchronize with a control-point inside T1 but, say, with a
similar point inside T5. This very simple interaction cannot be modeled in the standard
model of interactive scores [3]. Another example is an object waiting for some interac-
tion from the performer within some temporal interval. If the interaction does not occur,
the composer might then determine to probe the environment again later when a similar
musical context has been defined. This amounts to moving the waiting interval from
one box to another.

The model. Figure 2 shows our model for dynamic interactive scores. The process
BoxOperations may perform the following actions:

– mkbox(id, d): defines a new box with id id and duration d. The start time is defined
as a new (local) variable s whose value will be constrained by the other processes.

– destroy(id): firstly, it retrieves the box sup which contains the box id. If the box
id is not currently playing, in the next time-unit, it drops the boundaries of id by
inserting all the boxes contained in id into sup.

– before(x, y): checks if x and y are contained in the same box. If so, the constraint
bf(x, y) is added.

– into(x, y): dictates that the box x is into the box y if x is not currently playing.
– out(x, y): takes the box x out of the box y if x is not currently playing.

Process Constraints adds the necessary constraints relating the start times of each
temporal object to respect the hierarchical structure of the score. For each constraint of
the form in(x, y), this process dictates that the start time of x must be less than the one
of y. Furthermore, the end time of y (i.e. dy + sy) must be greater than the end time of
x. The case for bf(x, y) can be explained similarly.

The process Persistence transfers the information of the hierarchy (i.e. box decla-
rations, in and bf relations) to the next time-unit.

The process Clock defines a simple clock which binds the variable t to the value v
in the current time-unit and to v + 1 in the next time-unit.

The process Play(x, t) adds the constraint play(x) during t time-units. This in-
forms the environment that the box x is currently playing.

The process Init(t) waits until the environment provides the constraint init(x) for
the outermost box x to start the execution of the system. Then, the clock is started and
the start time of x is set to 0. The rest of the boxes wait until their start time is less or
equal to the current time (t) to start playing.
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BoxOperations
def= (abs id, d; mkbox(id, d))

(local s) tell(box(id, d, s))
‖ (abs id; destroy(id))

(abs x, sup; in(x, id) ∧ in(id, sup))
unless play(id) next tell(in(x, sup))

‖ (abs x, y; before(x, y))when ∃z(in(x, z) ∧ in(y, z)) do
unless play (y) next tell(bf(x, y))

‖ (abs x, y; into(x, y))unless play (x) next tell(in(x, y))
‖ (abs x, y; out(x, y))when in(x, y) do

unless play (x) next (abs z, in(y, z); tell(in(x, z)))

Constraints
def= (abs x, y; in(x, y)) (abs dx, sx; box(x, dx, sx))

(abs dy, sy; box(y, dy, sy))
tell(sy ≤ sx) ‖ tell(dx + sx ≤ dy + sy)

‖ (abs x, y; bf(x, y)) (abs dx, sx; box(x, dx, sx))
(abs dy, sy; box(y, dy, sy)) tell(sx + dx ≤ sy)

Persistence
def= (abs x, y; in(x, y))when play(x) do next tell(in(x, y))

‖ unless out(x, y) ∨ destroy(x) next tell(in(x, y))
‖ (abs x, y; bf(x, y))when play(y) do next tell(bf(x, y))

‖ unless (out(x, y) ∨ destroy(y) next tell(bf(x, y))
‖ (abs x; box(x, dx, sx))when play(x) do next tell(box(x, dx, sx))

‖ unless destroy(x) next tell(box(x, dx, sx))

Clock(t, v) def= tell(t = v) ‖ next Clock(t, v + 1)

Play(x, t) def= when t ≥ 1 do tell(play(x)) ‖ unless t ≤ 1 next Play(x, t − 1)

Init(t) def= (wait x; init(x)) do
(abs dx, sx; box(x, dx, sx))

Clock(t, 0) ‖ tell(sx = t) ‖
! (wait y, dy, sy; box(y, dy, sy) ∧ sy ≤ t) do Play(y, dy)

System
def= (local t) Init(t) ‖! Persistence ‖! Constraints ‖! BoxOperations ‖ UsrBoxes

Fig. 2. A utcc model for Dynamic Interactive Scores

Finally, the whole system is the parallel composition between the previously defined
processes and the specific user model, e.g.:

UsrBoxes
def= tell(mkbox(a, 22) ∧ mkbox(b, 12) ∧ mkbox(c, 4)) ‖

tell(mkbox(d, 5) ∧ mkbox(e, 2)) ‖
tell(into(b, a) ∧ into(c, b) ∧ into(d, b) ∧ into(e, d)) ‖
tell(before(c, d)) ‖
whenever play(b) do unless signal next

tell(out(d, b) ∧ mkbox(f, 2) ∧ into(f, a)) ‖
tell(before(b, f) ∧ before(f, d))

This system defines the hierarchy in Figure 3(a). When b starts playing, the system asks
if the signal signal is present (i.e., if it was provided by the environment). If it was
not, the box d is taking out from the context b. Furthermore, a new box f is created such
that b must be played before f and f before d as in Figure 3(b). Notice that when the
box d is taken out from b, the internal box e is still into d preserving its structure.

Verification of the Model. The processes defined by the user may lead to situations
where the final store is inconsistent as in st < 5 ∧ st > 7 where st is the start time
of a given box. Take for example the process UsrBoxes above. If the box f is defined
with a duration greater than 5, the execution of f (and then that of d) will exceed the
boundaries of the box a which contains both structures.
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(a) (b)

Fig. 3. Example of an Interactive Score Execution

In this context, the declarative view of utcc processes as FLTL formulae provides a
valuable tool for the verification of the model: The formula A = [[P ]] allows us to verify
whether the execution of P leads to an inconsistent store. Thus, we can detect pitfalls
in the user model such as trying to place a bigger box into a smaller one or taking a box
out of the outermost box.

In the following, we present some examples of temporal properties we could verify
in an interactive score represented as the process P .

– [[P ]] � �∃x,dx,sx,y,dy,sy(box(x, dx, sx) ∧ box(y, dy, sy) ∧ in(x, y) ∧ sx + dx >
sy + dy): The end time of the box y is less than the end time of the inner box x.
I.e., the box y cannot contain x.

– [[P ]] � ∀x(∃dx,sx(box(x, dx, sx) ⇒ �play(x)): All the musical structures are
eventually played.

– [[P ]] � �∀x,y(in(x, y)∧play(x) ⇒ play(y)): The execution of the internal box
implies the execution of the outer box.

– [[P ]] � �∀x(∃dx,sx box(x, dx, sx) ⇒ init(x)∨∃y(in(x, y))): Every box is either
the initial box or it is contained in another box.

– [[P ]] � �∀x(∃dx,sx(box(x, dx, sx) ⇒ play(x)): At some point all the boxes are
playing simultaneously.

– [[P ]] � signal∨�play(x): The signal signal is present or else the box x
must be played.

Remark. For the sake of presentation we only defined here the before relation.
Our model can be straightforwardly extended to support all Allen temporal relations
[2]. Making use of the into and out operations, we can define also the operation
move(a, b) meaning, move the structure a into the structure b.

4 A Model for Music Improvisation

As described above, in interactive scores the actual musical output may change depend-
ing on interactions with a performer, but the framework is not meant for learning from
those interactions, nor to change the score (i.e. improvise) accordingly.

Music improvisation provides a complex context of concurrent systems posing great
challenges to modeling tools. In music improvisation, partners behave independently
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but are constantly interacting with others in controlled ways. The interactions allow
building a complex global musical process collaboratively. Interactions become effec-
tive when each partner has somehow learned about the possible evolutions of each
musical process launched by the others, i.e, their musical style. Getting the computer
involved in the improvisation process requires learning the musical style of the human
interpreter and then playing jointly in the same style. A style in this case means some
set of meaningful sequences of musical material the interpreter has played. A graph
structure called factor oracle (FO) is used to efficiently represent this set [1].

A FO is a finite state automaton constructed in an incremental fashion. A sequence of
symbols s = σ1σ2 . . . σn is learned in such an automaton, which states are 0, 1, 2 . . . n.
There is always a transition arrow (called factor link) labeled by the symbol σi going
from state i− 1 to state i, 1 ≤ i < n. Depending on the structure of s, other arrows will
be added. Some are directed from a state i to a state j, where 0 ≤ i < j ≤ n. These
also belong to the set of factor links and are labeled by symbol σj . Some are directed
“backwards”, going from a state i to a state j, where 0 ≤ j < i ≤ n. They are called
suffix links, and bear no label (represented as ’�’ in our processes below). The factor
links model a factor automaton, that is every factor p in s corresponds to a unique factor
link path labeled by p, starting in 0 and ending in some other state. Suffix links have
an important property : a suffix link goes from i to j iff the longest repeated suffix of
s[1..i] is recognized in j. Thus suffix links connect repeated patterns of s.

The oracle (see Figure 4) is learned on-line. For each new input symbol σi, a new
state i is added and an arrow from i − 1 to i is created with label σi. Starting from
i − 1, the suffix links are iteratively followed backward, until a state is reached where
a factor link with label σi originates (going to some state j), or until there is no more
suffix links to follow. For each state met during this iteration, a new factor link labeled
by σi is added from this state to i. Finally, a suffix link is added from i to the state
j or to state 0 depending on which condition terminated the iteration. Navigating the
oracle in order to generate variants is straightforward : starting in any place, following
factor links generates a sequence of labelling symbols that are repetitions of portions
of the learned sequence; following one suffix link followed by a factor links creates
a recombined pattern sharing a common suffix with an existing pattern in the original
sequence. This common suffix is, in effect, the musical context at any given time.

In [5] a tcc model of FO is proposed. This model has three drawbacks. Firstly, it
(informally) assumes the basic calculus has been extended with general recursion in
order to correctly model suffix links traversal. Secondly, it assumes dynamic construc-
tion of new variables δiσ set to the state reached by following factor link labelled σ
from state i. This construction cannot be expressed with the local variable primitive in
basic tcc. Thirdly, the model assumes a constraint system over both finite domains
and finite sets. We use below the expressive power of the abstraction construction in

Fig. 4. A FO automaton for s = ab
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FO
def= Counter ‖ Persistence

‖! (abs Note; play(Note)) whenever ready do Step1(Note)
Counter

def= tell(i = 1) ‖! (abs x; i = x) (when ready do next tell(i = x + 1)
‖ unless ready next tell(i = x))

Persistence
def= ! (abs x, y, z; edge(x, y, z))next tell(edge(x, y, z))

Step1(Note) def= tell(edge(i − 1, i, Note)) ‖ Step2(Note, i − 1)
Step2(Note, E) def= when E = 0 do

(abs k; edge(E, k, Note)) (tell(edge(i, k, �)) ‖ next tell(ready))
‖ unless ∃k edge(E, K, Note) next (tell(ready) ‖ tell(edge(i, 0, �)))

when E 
= 0 do
(abs j; edge(E, j, �))

when ∃k edge(j, k, Note) do
(abs k; edge(j, k, Note)) (tell(edge(i, k, �)) ‖ next tell(ready))

‖ unless ∃k edge(j, k, Note) nextwhen j 
= 0 do tell(edge(j, i, Note))
‖ Step2(Note, j)

Fig. 5. Implementing the FO into utcc

utcc to correct all these drawbacks (see Figure 5). Furthermore, our model leads to a
compact representation of the data structure of the FO based on constraints of the form
edge(x, y, N) representing an arc between node x and y labeled with N .

Process Counter signals when a new played note can be learned. It can be learned
when all links for the previous note have already been added to the FO. Process Per-
sistence transmits information about already constructed arcs (factor and suffix) to all
future time-units. Process Step1 adds a factor link from i − 1 to i labelled with a just
played note and launches traversal of suffix links from i−1. When state zero is reached
by traversing suffix links, process Step2 adds a suffix link from i to a state reached
from 0 by a factor link labelled Note, if it exists, or from i to state zero, otherwise. For
each state k different from zero reached in the suffix links traversal, process Step2 adds
factor links labelled Note from k to i.

The inclusion of a new agent in our FO model (e.g. a learner agent for a second
performer) entails a new process and new interactions, both with the new process and
among the existing ones. In traditional models this usually means major changes in
the synchronization scheme, which are difficult to localize and control. In utcc, all
synchronization is done semantically, through the available information in the store.
Each agent would thus have to be incremented with processes testing for the presence
of new information (e.g. a factor link with some label in the other agent’s FO graph).
The new synchronization behavior that this demands is automatically provided by the
blocking ask (abstraction) construct.

5 Concluding Remarks

Here we argued for utcc as a declarative framework for modeling and verifying dy-
namic multimedia interaction systems. We showed that the synchronization mechanism
based on entailment of constraints leads to simpler models that scale up when more
agents are added. Moreover, we showed that systems can be formally verified with
the underlying temporal logic in utcc. We modeled two non trivial interacting sys-
tems. The model proposed for interactive scores in Section 3 improved considerably the
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expressivity of previous models such as [3]. It allows the composer to dynamically
change the structure of the score according to the information derived from the envi-
ronment.

The results presented here are so far encouraging although much remains to be done
at the implementation level. Currently, to guarantee reliable responses in time, we are
working on assessing the behavior of utcc processes in real-time contexts. We plan
to provide a more principled notion of time where the duration of each time-unit can
be related to the amount of computation involved in it. We also plan to enrich our FO
model with probabilistic traversals of the graph in the lines of [11].
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Abstract. The notion of voice exchange in ordered pitch-class space conforms 
closely to that of contextual inversion in neo-Riemannian theory: the melodic 
dyad (a, b) in one voice inverts in another voice, and we define an axis of inver-
sion respectively for all such pairs.  We may thus apply many of the transforma-
tional concepts of neo-Riemannian theory to a study of voice exchange. We 
draw our musical examples from the Prelude to Richard Wagner’s Tristan und 
Isolde, for which a separate analytical thread exists that considers aspects of to-
nality in relation to the voice exchange in the resolution of the Tristan Chord. 

Keywords: voice exchange, neo-Riemannian theory, contextual inversion, 
Wagner, Tristan chord. 

1   Introduction 

The notion of voice exchange in ordered pitch-class space conforms closely to that of 
contextual inversion in neo-Riemannian theory: the melodic dyad (a, b) in one voice 
inverts in another voice, and we define an axis of inversion respectively for all such 
pairs.  A connection to the Parallel Exchange exists.  Given a C major triad in a neo-
Hauptmannian sense [1] with an Einheit C and a Zweiheit G, these pitch-classes invert 
about a contextual axis under the P operation, with G’s assuming the Einheit function 
and C’s assuming that of Zweiheit in the resulting C minor triad.  We substitute order 
positions for chordal factors in translating this concept to voice exchange; therefore, 
“Einheit” becomes “first coordinate” and “Zweiheit” “second,” and the ordered dyad 
(C, G) becomes (G, C).  We may thus apply many of the transformational concepts of 
neo-Riemannian theory to a study of voice exchange.   

We draw our musical examples from the Prelude to Richard Wagner’s Tristan und 
Isolde, for which a separate analytical thread exists that considers aspects of tonality 
in relation to the voice exchange (or “interchange” [2]) in the resolution of the Tristan 
Chord [3,4,5].  Other recent research on the Prelude considers aspects of voice-
leading efficiency, particularly in various resolutions of the Tristan Chord, wherein 
voice exchanges are viewed as surface embellishments of a more fundamental step-
wise structure [6].  This notion follows from a more general conceptualization of 
voice exchanges as permutations, the attitude taken implicitly in [7]. 

We adopt here a transformational approach, wherein we regard voice exchanges as 
being aligned with contextual inversion.  To highlight this connection, we model 
voice exchanges using pitch classes, hence in the integers modulo 12. The theory 
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presented here, however, is easily extendable to other models of pitch in more robust 
number systems, including infinite pitch space using the integers, continuous pitch 
space using the reals, and so on.  The transformational perspective allows us ultimate-
ly to relate voice exchanges—including various chromatic exchanges and those in 
differing harmonic contexts—to one another in terms of a transformational scheme by 
which we may describe networks that model processes in the music. 

1.1   Connection to Contextual Inversion 

We note four particular desiderata in the connection of voice exchange to contextual 
inversion.  First, voice exchanges are defined in terms of the objects within the set on 
which the exchange acts, rather than abstractly [8].  Hence, the contextual axis of 
inversion in the above example is (a + b)/2 for any pair (a, b), not a fixed point in 
pitch or pitch-class space.  Second, like contextual inversions, voice exchanges are 
involutions.  Therefore, it does not matter if (C, G) appears in register above or below 
(G, C); both voicings represent the same exchange.  Third, it is necessary that voice 
exchanges commute with the usual transposition and inversion operations, and are 
consequently preserved under their conjugation [9].  The voice exchange (C, G) ↔ 
(G, C) is accordingly equivalent to its images under Tn and In for all n.  Hence, its 
image (C#, G#) ↔ (G#, C#) under T1, (C, F) ↔ (F, C) under I0, and so on, are all 
instances of the same operation.  It follows as a consequent of this desideratum that if 
(a, b) exchanges with (c, d), then any dyad whose interval belongs to the same inter-
val class as that of (a, b) will exchange with a dyad whose interval belongs to the 
interval class that includes (c, d).  Fourth, if 0 < b – a ≤ 5 mod 12, then 6 < d – c ≤ 11 
mod 12, or vice versa.  This last point ensures a kind of contrary motion in pitch-class 
space, relating such operations further to inversion. 

2   Generalized Voice Exchange 

We define a preliminary operation X in which to model a voice exchange: X := (a, b) հ (b, a), for all (a, b) ∈ ℤ12 × ℤ12 (1) 

noting that X satisfies all four of the above criteria.  That is: we define it contextually; 
it is an involution; it commutes with transposition and inversion; and it exhibits con-
trary motion. 

 

Fig. 1. Tristan Prelude, mm. 2-3 
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We find two voice exchanges labeled in X in the first seven measures of the Tristan 
Prelude (Figures 1 and 2).  In the first exchange, the minor third (G#, B) of the sopra-
no voice inverts to (B, G#) in the tenor; the second presents a sequential image of the 
first under T3.  In both instances, we note that (a, b) and (b, a) as ordered intervals are 
inverses of one another and belong to the same interval class. 

 

Fig. 2. Tristan Prelude, mm. 6-7 

2.1   Generalized Chromatic Voice Exchange: The Variable i ∈ ℤ12 

Another situation exists for chromatic voice exchanges: those in which (a, b) and its 
image have intervals that do not belong to the same interval class.  Let us take the 
subsequent, altered leg of the above sequence in the Tristan Prelude as an example 
(Figure 3).  Here, the previously ascending minor third in the soprano is extended to a 
major third (D, F#), while the tenor’s descending minor third is diminished (F, D#)—
a doubly chromatic exchange.  We could define a transformation1  X′ := (a, b) հ (b – 1, a + 1), for all (a, b) ∈ ℤ12 × ℤ12 (2) 

in which to label this exchange, but as it does not commute with inversion, X′ fails as 
a contextual inversion. 

 

Fig. 3. Tristan Prelude, mm. 10-11 

The centralizer of the T/I group’s action on ℤ12 × ℤ12 in the symmetric group on the 
same set 

                                                           
1 Throughout this article, we assume all arithmetic to be performed modulo 12, unless other-

wise indicated. 



 Generalized Voice Exchange 231 

(ܫ/ܶ)ܥ  = ௌ௬௠(ℤభమܥ × ℤభమ)ܶ/(3) ܫ 

provides all 7,644,119,040 operations on ℤ12 × ℤ12 that commute with both transposi-
tion and inversion.  C(T/I) is the direct product of centralizers of two T/I orbit restric-
tions.  One restriction is to the union of melodic dyads that belong to set classes [0, 1] 
through [0, 5], a wreath product of order 245 · 5!; the other is to the union of set 
classes [0, 0] and [0, 6], another wreath product of order 22 · 2! [10].  We may use an 
involution from this centralizer, X9,4, to model all three of the above voice exchanges, 
including the chromatic example.  In the definition of such a function, we incorporate 
the interval between a and b in pitch-class space 

i = b – a mod 12 (4) 

contextually, thereby facilitating the commutative property with both transposition 
and inversion.   

ܺ9,4 =׷ (ܽ, ܾ) հ  ቐ ൫ܾ െ 9 െ ݅, ܽ െ 2 + (݅ + 4 mod 5)൯, for 0 ൏ ݅ ≤ 5൫ܾ + 9 െ ݅, ܽ െ 2 + (݅ + 3 mod 5)൯, for 6 ൏ ݅ ≤ 11(ܾ, ܽ),          for ݅ = 0 mod 6 (5) 

As we will see below, the subscript 9 in the label of this function associates with the 
initial harmonic interval in the exchange, whereas the subscript 4 relates to a particu-
lar permutation of T/I orbits. 

We note the essential difference in the actions of X9,4 on the T/I orbits of melodic 
unisons and tritones (those for which i = 0 mod 6) and on those of all other dyads.  
This variance is a consequence of the structure of the centralizer, as the action of T/I 
restricted to an orbit from among the former set is not permutation isomorphic to one 
from among the latter.  Specifically, the orbits of melodic unisons and tritones have 
two fixed points each under I0: (0, 0), (6, 6) and (0, 6), (6, 0), respectively, whereas 
the remaining orbits have no such fixed points.  

As these three voice exchanges involve melodic thirds, we are particularly interest-
ed in the action of X9,4 on dyads with intervals in interval classes 2 (as diminished 
thirds), 3 and 4.  Table 1 summarizes this action; in particular, we note the two ex-
changes within interval class 3, and that within interval classes 2 and 4.  More gener-
ally, interval class 3 is stabilized under X9,4, and any melodic interval in interval class 
3 + n will exchange with an interval in interval class 3 – n (where n ≤ 2).   

Table 1. Exchanges under X9,4 

0 < i ≤ 5 
IC 1 IC 2 IC 3 IC 4 IC 5 

  8 11 11 2 
 

11 8  2 11 

2    6 
 

5    3 

 

IC 5 IC 4 IC 3 IC 2 IC 1 
6 < i ≤ 11 
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2.2   Permutations of the Orbits: The Variable p ∈ ℤ5 

Voice exchanges in which only one voice is altered chromatically require different, but 
related, operations.  One such example derives from Rothstein’s [11] reading of the 
Tristan Prelude’s first two measures (Figure 4): here the bass voice’s implied ascend-
ing minor third (D, F) inverts to a descending diminished third (F, D#) in the alto.   

 

Fig. 4. Tristan Prelude, mm. 1-2 (after Rothstein [11]) 

We may model this exchange by using one such associated function: 

ܺ9,0 =׷ (ܽ, ܾ) հ  ቐ ൫ܾ െ 9 െ ݅, ܽ െ 2 + (݅ + 0 mod 5)൯, for 0 ൏ ݅ ≤ 5൫ܾ + 9 െ ݅, ܽ െ 2 + (݅ + 2 mod 5)൯, for 6 ൏ ݅ ≤ 11(ܾ, ܽ),           for ݅ = 0 mod 6 (6) 

Whereas X9,4 exchanges members of set classes [0, 1] with [0, 5], and [0, 2] with [0, 4] 
(as in Table 1), X9,0 exchanges members of [0, 1] with [0, 4], and [0, 2] with [0, 3] 
(Table 2).  Therefore, the ascending minor third in the implied bass of the example 
inverts to the descending diminished third in the alto.   

Table 2. Exchanges under X9,0  

6 < i ≤ 11 
IC 1 IC 2  IC 3 IC 4 IC 5 

     5    3 
 
    2    5 

   

IC 4 IC 3 IC 2 IC 1 IC 5 
0 < i ≤ 5 

 
The resulting permutation of T/I orbits between functions (5) and (6) obtains from 

the variance in their respective modulo 5 components.  In (5), we had (i + 4 mod 5) 
and (i + 3 mod 5), whereas in (6) we have (i + 0 mod 5) and (i + 2 mod 5).  We note 
that for each pair, we may derive the latter addend by subtracting the former from 2 
mod 5. That is, in (5), we may derive i + 3 from i + 4 by observing that 2 – 4 = 3 mod 
5.  In the same way, in (6), we have i + 0 and i + 2.  Again, the latter addend follows 
from the former: i + (2 – 0 mod 5) = i + 2.  Henceforth in our generalization, let p 
represent the integer modulo 5 which is added to i whenever 0 < i ≤ 5, then (2 – p 
mod 5) is added to i for 6 < i ≤ 11.  Therefore, in (5), p = 4, and in (6), p = 0. 
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We observe that X9,4 stabilizes set class [0, 3] as a set, while X9,0 stabilizes [0, 5].  
We may use p in determining these fixed sets, as well.  In the former case, [0, 3] con-
sists of all dyads with intervals in interval class 3; in the latter, [0, 5] consists of those 
in interval class 5.  Then,  

(p – (1 – p mod 5) mod 5) + 1 (7) 

yields the corresponding interval class.  Hence, p = 4 for X9,4; therefore, the interval 
class of intervals in the stabilized set class is (4 – (1 – 4 mod 5) mod 5) + 1 = 3.  For 
X9,0, (0 – (1 – 0 mod 5) mod 5) + 1 = 5. 

2.3   Initial Harmonic Intervals: The Variable q ∈ ℤ12 

All four of the examples above feature an initial harmonic interval in interval class 3: 
a major sixth in the first three examples, and a minor tenth in the last.  Per our fourth 
desideratum, let (a, b) represent some melodic dyad in an exchange for which 0 < b – 
a ≤ 5 mod 12 , and let (c, d) represent its image for which 6 < d – c ≤ 11 mod 12.  
Then, for our purposes, let 

q = a – c mod 12 (8) 

represent this initial interval.  In each of the previous examples, q = 9.  It is possible, 
however, to describe voice exchanges with initial harmonic intervals in other interval 
classes by incorporating q into functions like (5) and (6) above. 

For example, consider Figure 5, which presents m. 20 in the Tristan Prelude.  Here 
we find a chromatic voice exchange for which q = 8 lies in interval class 4.  We may 
model this exchange using the following function: 

ܺ8,3 =׷ (ܽ, ܾ) հ  ቐ ൫ܾ െ 8 െ ݅, ܽ െ 1 + (݅ + 3 mod 5)൯, for 0 ൏ ݅ ≤ 5൫ܾ + 8 െ ݅, ܽ െ 3 + (݅ + 4 mod 5)൯, for 6 ൏ ݅ ≤ 11(ܾ, ܽ),           for ݅ = 0 mod 6 (9) 

noting that b – 8 and b + 8 in (9) now replace b – 9 and b + 9 in the former functions.  
In other words, b – q and b + q provide the generalization.  Further, the previous in-
stances of a – 2 in (5) and (6) now read in (9) as a – 1 and a – 3 for 0 < i ≤ 5 and 6 < i ≤ 11, respectively.  These values may be derived from q, as well.  For cases in which 
0 < i ≤ 5, put a – (q – 7); for those in which 6 < i ≤ 11, put a – (11 – q).  Then, as q = 
9 in (5) and (6), we have q – 7 = 2 and 11 – q = 2.  In (9), q = 8; therefore, q – 7 = 1 
and 11 – q = 3. 

 

 
Fig. 5. Tristan Prelude, m. 20 
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Table 3 outlines the exchanges within interval classes 1 to 5 for X8,3.  In particular, 
we note the exchange within interval classes 4 and 3, for an initial harmonic interval q 
= 8, as seen in Figure 5.  Moreover, as p = 3 for this example, we observe via (7) the 
stabilization of set class [0, 1], whose dyads have intervals in interval class (3 – (1 – 3 
mod 5) mod 5) + 1 = 1. 

Table 3. Exchanges under X8,3 

0 < i ≤ 5 
IC 1 IC 2 IC 3 IC 4 IC 5 

      
 

     0    4 
 

4    1 

 

IC 1 IC 5 IC 4 IC 3 IC 2 
6 < i ≤ 11 

3   Conclusions: The Group R and Transformational Networks 

Thus far, we have described three operations on ℤ12 × ℤ12 in which to model voice 
exchanges with varying initial harmonic intervals (the variable q) and T/I-orbit per-
mutations (the variable p).  As q and p vary respectively within ℤ12 and ℤ5, we find 12 ∙ 5 = 60 such operations in the following format: 

ܺ௤,௣ =׷  (ܽ, ܾ) հ ቐ൫ܾ െ ݍ െ ݅, ܽ െ ݍ) െ 7) + (݅ + ݌ mod 5)൯, for 0 ൏ ݅ ≤ 5൫ܾ + ݍ െ ݅, ܽ െ (11 െ (ݍ + (݅ + (2 െ ݌ mod 5) mod 5)൯, for 6 ൏ ݅ ≤ 11(ܾ, ܽ),                        for ݅ = 0 mod 6 (10) 

Each of these sixty operations, then, represents twelve specific voice-leading patterns 
while i varies in ℤ12.  Moreover, these operations are conjugate to each other in the 
centralizer of the transposition group’s action on ℤ12 × ℤ12: ܥ(ܶ) = ௌ௬௠(ℤభమܥ × ℤభమ)ܶ (11) 

a wreath product of order 1212 · 12!.  Specifically, we may define an order 60 sub-
group R < C(T), R := 〈Rq , Rp | (Rq)12 = (Rp)5 = 1〉 (12) 

where ܴ௤ =׷ (ܽ, ܾ) հ ൜ (ܽ, ܾ), for ݅ ≤ 6(ܽ + 1, ܾ + 1), for ݅ ൐ 6  (13) 

and  ܴ௣ =׷ (ܽ, ܾ) հ  ൜ (ܽ, ܾ), for ݅ ≤ 6(ܽ, ܽ + 7 + (݅ െ 1 mod 5)), for ݅ ൐ 6  (14) 
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isomorphic to ℤ12 × ℤ5. The set of conjugates of any Xq, p under the members of R 
consists of all sixty operations in the form of (10).  Using members of R, we may thus 
construct a network that relates the exchanges in all five of the previous examples 
(Figure 6). 
 

ܺ9,0 ሱۛ   4(݌ܴ)    ۛۛ ሮۛ ܺ9,4 ሱۛ   4(݌ܴ)ݍܴ    ۛۛ ۛۛ ሮ ܺ8,3 
 mm. 1-2 mm. 2-3 m. 20 
  mm. 6-7 
  mm. 10-11 

Fig. 6. Network of exchanges in the Tristan Prelude, mm. 1-20 

R provides us with a natural transformational scheme for relating these exchanges.  
For instance, (Rp)

4 gives us the specific T/I-orbit permutation that sends the exchange 
in mm. 1-2 into the three exchanges in mm. 2-11, and from those into the one in m. 
20.  Moreover, the first four exchanges have initial harmonic intervals in the same 
interval class.  Rq, then, represents the particular shift in m. 20 to another initial inter-
val.  In this way, we may model additional instances of voice exchange within the 
Prelude, as well as in further repertoire. 

References 

1. Gollin, E.: Some Aspects of Three-Dimensional Tonnetze. Journal of Music Theory 42(2), 
195–206 (1998) 

2. Mitchell, W.J.: The Tristan Prelude: Techniques and Structure. The Music Forum 1, 162–
203 (1967) 

3. Harrison, D.: Supplement to the Theory of Augmented-Sixth Chords. Music Theory Spec-
trum 17(2), 170–195 (1995) 

4. Rothgeb, J.: The Tristan Chord: Identity and Origin. Music Theory Online 1(1) (1995) 
5. Rothstein, W.: The Tristan Chord in Historical Context: A Response to John Rothgeb. Mu-

sic Theory Online 1(1) (1995) 
6. Tymoczko, D.: Scale Theory, Serial Theory, and Voice Leading. Music Analysis 27(1), 1–

49 (2008) 
7. Callender, C., Quinn, I., Tymoczko, D.: Generalized Voice-Leading Spaces. Science 320, 

346–348 (2008) 
8. Kochavi, J.: Contextually Defined Musical Transformations. Ph.D. dissertation, State Uni-

versity of New York, Buffalo (2002) 
9. Peck, R.: Transformational Preservation and Set-Multiclasses. In: The Thirty-first Annual 

Meeting of the Society for Music Theory, Nashville, Tennessee (2008) 
10. Hook, J.: Uniform Triadic Transformations. Ph.D. dissertation. Indiana University-

Bloomington (2002) 
11. Rothstein, W.: The Tristan Chord in Historical Context: A Response to John Rothgeb. Mu-

sic Theory Online 1(1) (1995) 
 



Representing and Estimating Musical
Expression in Melody�

Christopher Raphael

School of Informatics, Indiana University, Bloomington

Abstract. A method for expressive melody synthesis is presented seek-
ing to capture the prosodic (stress, direction, and grouping) element of
musical interpretation. An expressive performance is represented as a
note-level annotation, classifying each note according to a small alpha-
bet of symbols describing the role of the note within a larger context. An
audio performance of the melody is represented in terms of two functions
describing the time-evolving frequency and intensity. A method is pre-
sented that transforms the expressive annotation into the frequency and
intensity functions, thus giving the audio performance. The problem of
expressive rendering is then cast as estimation of the most likely sequence
of hidden variables corresponding to the prosodic annotation. Examples
are presented on a dataset of around 50 folk-like melodies, realized both
from hand-marked and estimated annotations.

1 Introduction

A traditional musical score represents music symbolically in terms of notes,
formed from a discrete alphabet of possible pitches and durations. Human perfor-
mance of music often deviates substantially from the score’s cartoon-like recipe,
by inflecting, stretching and coloring the music in ways that bring it to life.
Expressive music synthesis seeks algorithmic approaches to this expressive ren-
dering task, so natural to humans.

There is really a great deal of past work on expressive synthesis — more than
can be summarized here, though some of the leading authors give an overview
of several important lines of work in [1]. Most past work, for example [2], [3], [4],
as well as the many RENCON piano competition entries, for example [5] [6], has
concentrated on piano music. The piano is attractive for one simple reason: a
piano performance can be described by giving the onset time, damping time, and
initial loudness of each note. Since a piano performance is easy to represent, it
is easy to define the task of expressive piano synthesis as an estimation problem:
one must simply estimate these three numbers for each note. In contrast, we treat
here the synthesis of melody, which finds its richest form with “continuously con-
trolled” instruments, such as the violin, saxophone or voice. This area has been
treated by a handful of authors, including the KTH group [7], [8], as well as a
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number others, including a commercial singing voice system. Continuously con-
trolled instruments simultaneously modulate many different parameters, leading
to wide variety of tone color, articulation, dynamics, vibrato, and other musical
elements, making it difficult to represent the performance of a melody. However,
it is not necessary to replicate any of these familiar instruments to effectively
address the heart of the melody synthesis problem. We will propose a minimal
audio representation we call the theremin, due to its obvious connection with the
early electronic instrument by the same name [9]. Our theremin controls only
time-varying pitch and intensity, thus giving a relatively simple, yet capable,
representation of a melody performance.

The efforts cited above include some of the most successful attempts to date.
All of these approaches map observable elements in the musical score, such as
note length and pitch, to aspects of the performance, such as tempo and dynam-
ics. One example the rule-based KTH system, which represents several decades
of focused effort. In this system, each rule maps various musical contexts into
performance decisions, which can be layered, so that many rules can be simul-
taneously applied. The rules were chosen, and iteratively refined, by a music ex-
pert seeking to articulate and generalize a wealth of experience into performance
principles, in conjunction with the KTH group. In contrast, the work of Wid-
mer [2], [4] takes a machine learning perspective by automatically learning rules
from actual piano performances. We share the perspective of machine learning.
In [4], phrase-level tempo and dynamic curve estimates are combined with the
rule-based prescriptions through a case-based reasoning paradigm. That is, this
approach seeks musical phrases in a training set that are “close” to the phrase
being synthesized, using the tempo and dynamic curves from the closest train-
ing example. As with the KTH work, the performance parameters are computed
directly from the observable score attributes with no real attempt to describe
any interpretive goals such as repose, passing tone, local climax, surprise, etc.

Our work differs significantly from these, and all other past work we know
of, by explicitly trying to represent aspects of the interpretation itself. Previous
work does not represent the interpretation, but rather treats the consequences of
this interpretation, such as dynamic and timing changes. We introduce a hidden
sequence of variables representing the prosodic interpretation (stress and group-
ing) itself by annotating the role of each note in the larger prosodic context.
We believe this hidden sequence is naturally positioned between the musical
score and the observable aspects of the interpretation. Thus the separate prob-
lems of estimating the hidden annotation and generating the actual performance
from the annotation require shorter leaps, and are therefore easier, than directly
bridging the chasm that separates score and performance.

Once we have a representation of interpretation, it is possible to estimate the
interpretation for a new melody. Thus, we pose the expressive synthesis problem
as one of statistical estimation and accomplish this using familiar methodology
from the statistician’s toolbox. We present a deterministic transformation from
our interpretation to the actual theremin parameters, allowing us to hear both
hand labeled and estimated interpretations. We present a data set of about 50
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hand-annotated melodies, as well as expressive renderings derived from both the
hand-labeled and estimated annotations. A brief user study helps to contextu-
alize the results, though we hope readers will reach independent judgments.

2 The Theremin

Our goal of expressive melody synthesis must, in the end, produce actual sound.
We introduce here an audio representation we believe provides a good trade-off
between expressive power and simplicity.

Consider the case of a sine wave in which both frequency, f(t), and amplitude,
a(t), are modulated over time:

s(t) = a(t) sin(2π

∫ t

0
f(τ)dτ). (1)

These two time-varying parameters are the ones controlled in the early electronic
instrument known as the theremin. Continuous control of these parameters can
produce a variety of musical effects such as expressive timing, vibrato, glissando,
variety of attack and dynamics. Thus, the theremin is capable of producing a
rich range of expression. One significant aspect of musical expression which the
theremin cannot capture is tone color — as a time varying sine wave, the timbre
of the theremin is always the same. Partly because of this weakness, we have
modified the above representation to allow tone color to change as a function
of amplitude. Thus our sound is still parametrized by f(t) and a(t), while we
increase the perceived dynamic range.

3 Representing Musical Interpretation

There a number of aspects to musical interpretation which we cannot hope to
do justice to here. Palmer [10] gives a very nice overview of current thinking on
this subject from the the Psychology perspective.

Our focus here is on musical prosody — the placing, avoidance, and foreshad-
owing of local (note-level) stress and the associated low-level groupings that
follow. Clearly this is only a piece of the larger interpretive picture. We make
this choice because we believe the notion of “correctness” is more meaningful
with prosody than with other aspects of interpretation, in addition to the fact
that musical prosody is somewhat easy to isolate. The music we treat consists
of simple melodies of slow to moderate tempo where legato phrasing is appropri-
ate. Thus the range of affect or emotional state has been intentionally restricted,
though still allowing for much diversity.

We introduce now a way of representing the desired musicality in a manner
that makes clear interpretive choices and conveys these unambiguously. Our
representation labels each melody note with a symbol from a small alphabet,

A = {l−, l×, l+, l→, l←, l∗}
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Fig. 1. Amazing Grace (top) and Danny Boy (bot) showing the note-level labeling of
the music using symbols from our alphabet

describing the role the note plays in the larger context. These labels, to some
extent, borrow from the familiar vocabulary of symbols musicians use to notate
phrasing in printed music. The symbols {l−, l×, l+} all denote stresses or points
of “arrival.” The variety of stress symbols allows for some distinction among the
kinds of arrivals we can represent: l− is the most direct and assertive stress; l× is
the “soft landing” stress in which we relax into repose; l+ denotes a stress that
continues forward in anticipation of future unfolding, as with some phrases that
end in the dominant chord. Examples of the use of these stresses, as well as the
other symbols are given in Figure 1. The symbols {l→, l∗} are used to represent
notes that move forward towards a future goal (stress). Thus these are usually
shorter notes we pass through without significant event. Of these, l→ is the
“garden-variety” passing tone, while l∗ is reserved for the passing stress, as in a
brief dissonance, or to highlight a recurring beat-level emphasis, still within the
context of forward motion. Finally, the l← symbol denotes receding movement
as when a note is connected to the stress that precedes it. This commonly occurs
when relaxing out of a strong-beat dissonance en route to harmonic stability. We
will write x = x1, . . . , xN with xn ∈ A for the prosodic labeling of the notes.

These concepts are illustrated with the examples of Amazing Grace and Danny
Boy in Figure 1. Of course, there may be several reasonable choices in a given
musical scenario, however, we also believe that most labellings do not make
interpretive sense and offer evidence of this is Section 7. Our entire musical
collection is marked in this manner and available for scrutiny at

http://www.music.informatics.indiana.edu/papers/mcm09

4 From Labeling to Audio

Ultimately, the prosodic labeling of a melody, using symbols from A, must be
translated into the amplitude and frequency functions we use for sound synthesis.
We have devised a deterministic mapping from our prosodically-labeled score to
the actual audio parameter outlined here.

Our synthesis of frequency begins with a literal interpretation of frequency,
f(t) as given by the score. To this we add vibrato, as indicated by the length of
notes and by the score annotation (the prosodic labels), and pitch bending to
encourage a sense of legato. Figure 2 shows a short piece of this pitch function
over the transition between two notes.
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Fig. 2. A graph of the frequency function, f(t), between two notes. Pitches are bent
in the direction of the next pitch and make small glissandi in transition.
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Fig. 3. The functions f(t) (green) and a(t) (red) for the first phrase of Danny Boy.
These functions have different units so their ranges have been scaled to 0-1 to facilitate
comparison.

The heart of the transformation, however, is in the construction of the am-
plitude function a(t). This function is constructed through a series of soft con-
straints that are placed on the amplitude, constructed from the annotation and
score. Through a quadratic penalty function, we encourage increasing amplitude
through forward-moving notes and decreasing amplitude through receding notes.
We also encourage fixed high values for the various kinds of stresses, and fixed
low values for the beginning of phrases (changes in direction of the prosodic
labels). While the details are many, we construct such an objective function
and solve for the value of the amplitude at “knot” locations by minimizing our
quadratic objective function. We then interpolate to produce a continuous a(t)
function. An example of both the a(t) and f(t) functions for a familiar examples
are given in Figure 3.

5 Does the Labeling Capture Musicality?

The theremin parameters, f(t), a(t), and hence the audio signal, s(t), depend
entirely on our prosodic labeling, x, and the musical score, through the mapping
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described in Section 4. We want to understand the degree to which x captures
musically important interpretive notions. To this end, we have constructed a
dataset of about 50 simple melodies containing a combination of genuine folk
songs, folk-like songs, Christmas carols, and examples from popular and art
music of various eras. The melodies were chosen to have simple chords, simple
phrase structure, all at moderate to slow tempo, and appropriate for legato
phrasing, and to be widely known. Examples include Danny Boy, Away in a
Manger, Loch Lomond, By the Waters of Babylon, etc. These melodies were
painstakingly hand-annotated by the author.

We rendered these melodies into audio according to our hand-marked anno-
tations and the process of Section 4. For each of these audio files we provide
harmonic context by superimposing sustained chords, as indicated in the scores.
The entire collection of symbolic melodies along with audio files describing this
synthesis is available at the aforementioned web site.

We do observe some aspects of musical interpretation that are not captured
by our representation. For example, the interpretation of Danny Boy clearly
requires a climax at the highest note, as do a number of the musical examples.
We currently do not represent such an event through our markup. It is possible
that we could add a new category of stress corresponding to such a highpoint,
though we suspect that the degree of emphasis is continuous, thus not well
captured by a discrete alphabet of symbols. Another occasional shortcoming is
the failure to distinguish contrasting material, as in O Come O Come Emmanuel.
This melody has a Gregorian chant-like feel and should mostly be rendered with
deliberate calmness. However, the short outburst corresponding to the word
“Rejoice” takes on a more declarative affect. Our prosodically-oriented markup
simply has no way to represent such a contrast of styles. There are, perhaps
some other general shortcomings of the interpretations, though we believe there
is quite a bit that is “right” in them, especially considering the simplicity of our
representation of interpretation.

6 Estimating the Interpretation

The essential goal of this work is to algorithmically generate expressive renderings
of melody. Having formally represented our notion of musical interpretation, we
can generate an expressive rendering by estimating the hidden sequence of note-
level annotations, x1, . . . , xN . Our estimation of this unobserved sequence will
be a function of various observables, y1, . . . , yN , where the feature vector yn =
y1

n, . . . , yJ
n measures various attributes of the musical score at the nth note.

The features we consider come mostly from surface-level attributes of the
musical score. While a great many possibilities were considered, we ultimately
culled the set to the metric strength of the onset position, the first difference of
note length in seconds, the first difference of pitch.

Our fundamental modeling assumption is that our label sequence has a Markov
structure, given the data:
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p(x|y) = p(x1|y1)
N∏

n=2

p(xn|xn−1, yn, yn−1) (2)

= p(x1|y1)
N∏

n=2

p(xn|xn−1, zn)

where zn = (yn, yn−1). The intuition behind this assumption is the observation (or
opinion) that much of phrasing results from a cyclic alternation between forward
moving notes, {l→, l∗}, stressed notes, {l−, l+, l×}, and optional receding notes
{l←}. Usually a phrase boundary is present as we move from either stressed or
receding states to forward moving states. Thus the notion of state, as in a Markov
chain, seems to be relevant. However, it is, of course, true that music has hierar-
chical structure not expressible through the regular grammar of a Markov chain.

We estimate the conditional distributions p(xn|xn−1, zn) for each choice of
xn−1 ∈ A, as well as p(x1|y1), using our labeled data. We will use the notation

pl(x|z) = p(xn = x|xn−1 = l, zn = z)

for l ∈ A. In training these distributions we split our score data into |A| groups,
Dl = {(xli, zli)}, where Dl is the collection of all (class label, feature vector)
pairs over all notes that immediately follow a note of class l.

Our estimation method makes no prior simplifying assumptions and follows the
familiar classification tree methodology of CART [11]. That is, for each Dl we be-
gin with a “split,” zj > c separating Dl into two sets: D0

l = {(xli, zli) : zj
li > c}

and D1
l = {(xli, zli) : zj

li ≤ c}. We choose the feature, j, and cutoff, c, to achieve
maximal “purity” in the sets D0

l and D1
l as measured by the average entropy over

the class labels. We continue to split the sets D0
l and D1

l , splitting their “off-
spring,” etc., in a greedy manner, until the number of examples at a tree node
is less than some minimum value. pl(x|z) is then represented by finding the ter-
minal tree node associated with z and using the empirical label distribution over
the class labels {xli} whose associated {zli} fall to the same terminal tree node.

Given a piece of music with feature vector z1, . . . , zN ,we can compute the
optimizing labeling

x̂1 . . . , x̂N = arg max
x1,...,xN

p(x1|y1)
N∏

n=2

p(xn|xn−1, zn)

using dynamic programming.

7 Results

We estimated a labeling for each of the M = 50 pieces in our corpus by training
our model on the remaining M − 1 pieces and finding the most likely labeling,
x̂1, . . . , x̂N , as described above. When computing the most likely labeling for
each melody in our corpus we found a total of 678/2674 errors (25.3%) with
detailed results as presented in Figure 4.
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l∗ l→ l← l− l× l+ total
l∗ 135 112 0 18 2 0 267
l→ 62 1683 8 17 0 0 1770
l← 3 210 45 6 2 0 266
l− 49 48 4 103 15 0 219
l× 5 32 2 65 30 0 134
l+ 0 3 0 12 3 0 18
total 254 2088 59 221 52 0 2674

Fig. 4. Confusion matrix of errors over the various classes. The rows represent the true
labels while the columns represent the predicted labels. The block structure indicated
in the table shows the confusion on the coarser categories of stress, forward movement,
and receding movement.

The notion of “error” is somewhat ambiguous, however, since there really is
no correct labeling. In particular, the choices among the forward-moving labels:
{l∗, l→}, and stress labels: {l−, l×, l+} are especially subject to interpretation.
If we compute an error rate using these categories, as indicated in the table, the
error rate is reduced to 15.3%.

One should note a mismatch between our evaluation metric of recognition
errors with our estimation strategy. Using a forward-backward-like algorithm it
is possible to compute p(xn|y1, . . . , yN ). Thus if we choose

x̄n = arg max
xn∈A

p(xn|y1, . . . , yN),

then the sequence x̄1, . . . , x̄N minimizes the expected number of estimation errors

E(errors|y1, . . . , yN ) =
∑

n

p(xn �= x̄n|y1, . . . , yN )

We have not chosen this latter metric because we want a sequence that behaves
reasonably. It the sequential nature of the labeling that captures the prosodic in-
terpretation, so the most likely sequence x̂1, . . . , x̂n seems like a more reasonable
choice.

In an effort to measure what we believe to be most important — the perceived
musicality of the performances — we performed a small user study. We took a sub-
set of the most well-known melodies of the dataset and created audio files from the
random, hand, and estimated annotations. We presented all three versions of each
melody to a collection of 23 subjects who were students in the Jacobs School of
Music at Indiana University, as well as some other comparably educated listeners.
We regard the cohort as highly educated and sophisticated, musically speaking.
The subjects were presented with random orderings of the three versions, with
different orderings for each user, and asked to respond to the statement: “The per-
formance sounds musical and expressive” with the Likert-style ratings 1=strongly
disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree, as well as to rank the
three performances in terms of musicality (the ranking does not always follow from
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the Likert ratings). Out of a total of 244 triples that were evaluated in this way,
the randomly-generated annotation received a mean score of 2.96 while the hand
and estimated annotations received mean scores of 3.48 and 3.46. The rankings
showed no preference for the hand annotations over the estimated annotations
(p = .64), while both the hand and estimated annotations were clearly preferred
to the random annotations (p = .0002, p = .0003).

Perhaps the most surprising aspect of these results is the high score of the
random labellings — in spite of the meaningless nature of these labellings, the
listeners were, in aggregate, “neutral” in judging the musicality of the examples.
We believe the reason for this is that musical prosody, the focus of this research,
accounts for only a portion of what listeners respond to. All of our examples
were rendered with the same sound engine of Section 4 which tries to create a
sense of smoothness in the delivery with appropriate use of vibrato and timbral
variation. We imagine that the listeners were partly swayed by this appropriate
affect, even when the use of stress was not satisfactory. The results also show
that our estimation produced annotations that were, essentially, as good as the
hand-labeled annotations. This demonstrates, to some extent, a success of our
research, though it is possible that this also reflects a limit in the expressive
range of our interpretation representation. Finally, while the computer-generated
interpretations clearly demonstrate some musicality, the listener rating of 3.46
— halfway between “neutral” and “agree” — show there is considerable room
for improvement.
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Evaluating Tonal Distances between Pitch-Class
Sets and Predicting Their Tonal Centres by

Computational Models

Atte Tenkanen

Abstract. The pitch-class set belongs to the core concepts within musi-
cal set theory. The mathematical properties of pitch-class sets (in terms
of interval-class content, evenness, etc.) as well as their mutual relations
to other sets have been widely studied. In this paper, we concentrate
on investigating them as carriers of tonal implications. Results provided
by four algorithmic models, which propose hypothetical tonal centres
for pitch-class sets, are compared. In addition to finding reference pitch
class(es) for each set class of cardinality 3-9, the models are used for
evaluating tonal distances between pitch-class sets. They are applied as
’similarity measures’ in conjunction with an automated, computer-aided
analysis method called comparison set analysis.

1 Introduction

In its narrowest sense, the concept of tonality is encapsulated within the concept
of tonal centre (TC). Following Huovinen [1, xvii], the tonal centre is defined as a
’reference pitch class that attains the greatest stability in a musical passage or in
a tonally perceived local musical object’. A pitch-class set (PCS) may be seen as
such an object. Traditionally, music theorists have not conceived of pitch-class sets
primarily as carriers of tonal implications. Instead, the discussions have centred
on their symmetrical properties, interval-class contents and other features that
are easily verified. However, all PCSs except the empty set and the chromatic ag-
gregate are –at least in theory– able to induce tonal implications [2].

There are two main aims in this paper: four different algorithmic models
are applied 1) to predict the tonal centre(s) for any unordered PCS and 2) to
evaluate a ’tonal distance’ or ’tonal stability’ between two PCSs. Our models take
a PCS as an input vector and produce a 12-dimensional vector, which includes
resulting weights related to each pitch class (0-11). For the first aim, one pitch-
class set is entered into the model (see Figure 1a). An index (0-11), which attains
the greatest value in the resulting vector, is a hypothetical TC of the PCS. In
order to evaluate the tonal distance between two PCSs, their 12-dimensional
resulting vectors are compared using the correlation distance. Both procedures
have been exploited using similar algorithms (c.f.[3], [4]). The latter approach
is used in conjunction with comparison set analysis (CSA) [5] in Section 4. The
main aim in CSA is to create representations of extensive musical surfaces that,
for their part, expose the prevalence of a particular comparison set throughout

E. Chew, A. Childs, and C.-H. Chuan (Eds.): MCM 2009, CCIS 38, pp. 245–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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ALGORITHMIC
MODEL (1,3,4)
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PC-set 2

12D-vector

12D-vector

Correlation
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ALGORITHMIC
MODEL (1-4)

PC-set 12D-vector

Tonal centre=
index of the

maximum value

a)

b)

INPUT: OUTPUT: RESULT:

Fig. 1. Two applications that are based on the algorithmic models. The first application
(a) produces a hypothetical tonal centre or centres for any pitch-class set. Another
application (b) evaluates the tonal distance between two pitch-class sets.

a lengthy musical piece1. Instead of using a set class as a comparison set, a
pitch-class set (containing transposition information) is applied in the present
context.

Unlike in other well-known cases of key-finding algorithms, like those of
Krumhansl and Schmuckler [4] and Chew [6], which are especially taken to re-
flect cognitive pitch-class (pc) hierarchies in tonal contexts, we consider PCSs
independently of the key contexts.

Our algorithmic models, presented in Sections 2.1-2.4, consist of two parts: 1)
hypotheses, and 2) a function that generalizes the tonal properties of the hypothe-
ses across all the pitch-class sets. The hypotheses are either intuitively selected
’constraints’ (Figure 2) or based on empirical results. They are used in conjunction
with three linear models (in algorithms 1, 3 and 4) and with one function based on
the Circle-Of-Fifths (2). The first three algorithms utilize methods applied in the
field of artificial intelligence: these models are trained using the hypotheses. The
first and fourth algorithms are modified versions of models introduced by Parncutt
[3,2]. The second and the third algorithmic model are developed by the authors.
The information presented above is compiled in Table 1.

Table 1. The basic properties of the four algorithmic models presented in Sections
2.1-2.4

Section Hypotheses Math. model Is it trained? Origin
2.1 ’Tonal’ constraints (Fig. 2) Linear function Yes [3]
2.2 ’Tonal’ constraints (Fig. 2) ’COF-relation’ Yes [7]
2.3 Empirical results [1] Linear function Yes (MLP) New
2.4 (K-K profiles) Linear function No [2]

1 This might be, for example, a pitch-class collection or a numerical string of rhythmic
units.
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By using several different models, we aim to obtain more generic results than
is possible when using only a couple of them. In fact, the hypotheses and models
could be combined in other ways as well in order to produce even more alterna-
tives. Regarding the tonal distance applications, if the results significantly agree
they may be safely applied to CSA.

However, we do not suggest that there are ’correct’ and unambiguous answers
as far as TCs are concerned. On the contrary, we see alternative solutions as
being equally plausible, in the same way that different listeners may have diverse
strategies for selecting a TC for a chord [1, x]. The degree to which the results
are reliable is an issue that requires further comparisons between the model
predictions and the results of perceptual and cognitive experiments.

In Section 3, we discuss differences between the results provided by the differ-
ent methods and explain our findings in Table 4 (Appendix C) which presents
TC candidates for some sample set classes2 along with some other information
in condensed form. Although all SCs of cardinality ranging from 3 to 9 are used
to make comparisons between all the approaches (Fig. 5) we have included only
some results involved in the SCs of cardinality 3 and 6 for demonstration pur-
poses. Finally in Section 4, we apply the distance-based method to tonal analysis
of the Intermezzo from the opera Wozzeck by Alban Berg in order to show that
the methods are intended to apply to all kinds of pitch class sets, not only to
sets familiar from tonal contexts, which has often been the case in studies on
tonality induction.

2 Algorithmic Models

2.1 Training the Weights of a Linear Polynomial with Tonal
Constraints

Parncutt [3,2] uses a first-order polynomial W (t) = pw(t) for predicting the per-
ceptual root(s) of a PCS. Vector w contains ’root-support weights’. In [8] he pro-
poses w as {10,0,1,0,3,0,0,5,0,0,2,0}, which are estimations of the root-support
weights for the ordered intervals between the fundamental of a harmonic complex
tone and its first eight harmonics. p denotes the components of a PCS as a binary
vector: for example, in the case of C-major triad p = {1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0}.
t (t = 0...11) indicates a cyclic permutation of w. Thus, the result vector W is a
series of pc-weights. For the C-major triad W = {18, 0, 3, 3, 10, 6, 2, 10, 3, 7, 1, 0},
which means that when a C-major triad is sounded, C (W = 18) is more salient
than, for example, E or G (W = 10)3.

We used Parncutt’s model in our first algorithm, but instead of estimating the
weights using the overtone approximations, the procedure was turned around:
the weights were ’tuned’ anew by defining the desired TCs for a limited amount
of PCSs and by requiring that the function satisfies all these constraints. This
2 I.e., prime-form PCSs.
3 E.g. for the C-major triad, W (0) = pw(0):
{1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0} ∗ {10, 0, 1, 0, 3, 0, 0, 5, 0, 0, 2, 0} = 10 + 3 + 5 = 18.
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Fig. 2. The selected constraints used in the first algorithm

kind of procedure is called a constraint satisfaction problem (CSP)4. We defined
our constraints by using the C-major scale, the harmonic a-minor scale, and some
of their subsets as referential sets: the most common chord types in tonal music
(major, minor, diminished and augmented triads, plus a dominant 7th chord)
are represented together with their ’fundamentals,’ or the degree to which they
most probably resolve themselves (Figure 2). There may be other alternatives
for the constraints.

After training the model 5 ∗ 106 times by assigning random values between 0
and 100 to each weight w(0)...w(11) and selecting only those alternatives that ful-
fil all seven of the constraints, the normalized vector of averaged weights (i.e. w)
converged to {0.144, 0.052, 0.106, 0.095, 0.094, 0.125, 0.043, 0.129, 0.033, 0.037,
0.036, 0.106}5. The new weighting vector seems to emphasize the pure fifths be-
tween pc5-pc0 (i.e. F and C) and p0-pc7 (C and G), which form the first pitches
in the diatonic chain of fifths and, at the same time, the rarest interval class of the
diatonic scale, i.e. the tritone between pc5 and pc11, which can be interpreted as
an interval between the outermost pitch classes of the diatonic chain of fifths.

2.2 Circle-of-Fifths-Based Algorithm

Our second algorithm utilizes the Circle-of-Fifths (COF), which has been seen
modelling tonal distances between pitch classes, TCs or keys [4]. If the COF-
distance between two pitch classes a fifth apart is defined as 1, it follows that
the most distant pitch classes (e.g. C and F#) would have a COF-distance of 66.
All COF-distances between pairs can be represented in a COF-distance profile:
(0, 5, 2, 3, 4, 1, 6, 1, 4, 3, 2, 5).

The COF-based relation between any two PCSs A and B, proposed by Tenka-
nen and Gualda [7], is defined as

cofrel(A, B) =
√∑

i∈A,j∈B(cij)2/
√

(|A| ∗ |B|)

4 "Basically, a CSP is a problem composed of a finite set of variables, each of which
is associated with a finite domain, and a set of constraints that restricts the values
the variables can simultaneously take. The task is to assign a value to each variable
satisfying all the constraints." [9, 1] A more precise and formal explanation can be
found in [10, 137].

5 The resulting vector of a Monte Carlo process was normalized by the sum of the vector
components.

6 I.e., by using the generator
〈
7
〉

of a cyclic group Z12 under addition modulo 12, all
pitch classes can be obtained from any given pitch class. This allows for distance
measurements between any two pitch classes.
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where cij includes all the COF-distances between the PCSs A and B. To demon-
strate, the cofrel -value between the PCSs
A = {0, 4, 7, 10} and B = {0, 5, 9} is

(
√

02 + 12 + 32 + ... + 22 + 12 + 52)/
√

(4 ∗ 3) ≈ 2.75.7

If a single COF-distance is interpreted as representing the degree of tonal
stability between the two pitch classes, the cofrel -value may be interpreted as
the normalized sum of stability values between the two PCSs: the smaller the
value, the greater the tonal stability between the PCSs. It must be noted that
the COF-relation does not obey any metric axioms other than symmetry and
non-negativity.

In order to apply the COF-relation for evaluating reference pitch classes in
PCSs, either A or B has to be maintained as a constant reference set (but
allowing for all 12 transpositions in calculating hypothetical TCs), i.e. our TC-
algorithm consists of the cofrel-function and a suitable reference set. A valid set
was found by utilizing our constraints introduced in the previous section. This
time, we entered all Tn-type SCs and their transpositions to the COF-relation
function and asked the procedure to investigate in each case whether or not all
of the seven constraints were fulfilled. Both PCS {0,2,3,4} and {2,3,4,7,8,9,10}
fulfilled them all8.

In our previous model (Section 2.1), the learning information was condensed
into the vector of weights, but in the present case it is included in the pitch classes
of the reference set. The first reference set {0,2,3,4} will be used in comparisons
in Section 3 because it is in closer agreement with the results achieved by the
other three models. Figure 3 represents the system in its entirety.

2.3 Training a Neural Network with Empirical Results

The previous algorithms were based on the constraint satisfaction problem, in
which the constraints were selected intuitively. On the other hand, why not use
empirical results that directly reflect intuitive knowledge related to the TCs of
PCSs?

For his studies concerning the perception of tonal centricity, Huovinen [1]
carried out six experiments using specially-composed samples of pitch strings
derived from particularly selected SCs. He tested his subjects individually, and
asked them to sing or hum what they felt to be the most stable tone in relation
to the tones they heard [1, 108]. He noticed that there is no single cognitive
structural basis for the perceptual phenomenon that we call tonality, even if the
principal importance of P4 and P5 intervals was confirmed.9

7 I.e., the COF-distances between pc:s (0,0)=0, (0,5)=1, (0,9)=3,..., (10,0)=2,
(10,5)=1 and (10,9)=5.

8 Thus, pitch classes 1, 5, 6, and 11 were missing.
9 Nearly half of Huovinen’s subjects were students and colleagues at Turku University’s

Department of Musicology, and the rest ranged from music amateurs to professional
musicians. [1, p. 249, 283].
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Selected reference set ’B’ which
satisfies all the constraints,
e.g.: (0,2,3,4)+Transp.

Desired constraints:
TC(0,4,7)=0
TC(0,4,9)=9

TC(0,4,7,10)=5
... etc

Proposing alternatives for the reference set:
(0,1)
(0,2)
...

(0,1,2,3,4,5,6,7,8,9,10)

2. LEARNING PART

ANALYTICAL OUTPUT:
The transposit ion giving the smallest value:

e.g. TC(2,5,9,11)=2

ANALYTICAL INPUT:
Pitch-class set ’A’
e.g. (2,5,9,11)

3. ANALYTICAL PART

1. MAIN COMPONENTS

Core function: COF-relation(A,B)

Fig. 3. The COF-based algorithm in its details. In the example, the algorithm proposes
pc2 (d) as a TC for the d-minor triad with an added major sixth {2,5,9,11}.

We selected three response distributions10 from Huovinen’s study [1, 258,
259, 290] (table 9.4.1 from experiment 5 is included in Table 2, Appendix A)
and used them to train a multilayer perceptron (MLP) with one hidden layer
and a back-propagation algorithm.

Each row in the response distribution tables now represented an input pattern
(pc-set components) – desired output pattern (response values) pair. Only the
three greatest values from the rows were taken into consideration to reduce
’noise’. The components of an input pattern were entered as a binary vector. For
an example of pcset–response values pair, look at Figure 4. The PCS 6-Z19A, i.e.
{0,1,3,4,7,8} and the three greatest values associated with it are found in Table 2.
These pairs were entered in random order 5000 times11 into the network during
one training period. The results given by the other three models were used as a
reference set12 for finding the optimal parameters for the network13.

10 These were tables 9.4.1, 9.4.2 and 10.3.1.
11 We found that 5000 epochs was enough to attain optimal fitting.
12 Such a procedure forms a kind of ’circular argument’ in this context, but, since

there are no ’right’ extrinsic answers as far as the tonal centres in pitch-class sets
are concerned, we did not have any other alternatives.

13 In the MLP, the number of input and output neurons is determined by the data.
In this case the number of input and output neurons was 12 (see Figure 4). The
number of hidden neurons, which determines the fitting of data accuracy, was set
randomly to 20-40 in each training period. A sigmoid f(x) = 1

1+exp(−x) was used as
an activation function in all the mlp-neurons. A learning coefficient was initially set
to 0.7 but its value was decreased smoothly towards 0 during each iteration.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

r0 r1 r2 r3 t4 r5 r6 r7 r8 r9 r10 r11

INPUT LAYER

OUTPUT LAYER

HIDDEN LAYER

1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0

32,53, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0Desired output:
Subject responses

Input pattern:
pc-set

. . . . . . . . . . . . . . . . .

Fig. 4. Training the MLP, used in the third TC-algorithm. Binary vector
{1,1,0,1,1,0,0,1,1,0,0,0} is associated with the SC 6-Z19A, cf. the first row of Table
2, Appendix A.

After training the network weights, all of the SCs of cardinality 3 to 9 were
entered into the network and for each of them a vector of TC-weights was cal-
culated. This procedure was repeated 300 times and, finally, a normalized mean
vector was assigned for each SC. These (’tonal profile-’) vectors were used as the
basis for the information in column 5 of Table 4 in Appendix C.

2.4 The Tonal Profile of a PCS as a Weighted Mean of KK-Profiles

Our last algorithm also originates from studies by Parncutt [2]. It is based on
the Krumhansl-Kessler (K-K) key profiles, which are taken to reflect important
cognitive pitch-class hierarchies in a tonal context: in all major and minor K-K
profiles, each pitch class is assigned a relative numerical value [4]. The idea of the
algorithm is that a PCS can be heard in any key, but with different probabilities,
and that K-K profile values are seen as probability values. The tonal profile of
a PCS is calculated as a weighted mean of all 24 K-K profiles. The tonal profile
tp for a PCS pcset is

tp = vpcsetM
|pcset|

where the PCS is represented as a row matrix vpcset = (v0, v1, ...v11). The value
of vi is 1 if there is a pitch class i in the PCS, otherwise the entry is 0. For
example, for PCS {2,5,9,11} vpcset = (0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1). The columns
of the matrix M consist of all 24 K-K profiles from the C-major profile to the
b-minor profile14. The values are standardized by the length of the pcset-vector.
The d-minor triad with added major sixth {2,5,9,11} produces a tonal profile
14 The key profile for C major is (6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66,

2.29, 2.88) and for C minor (6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69,
3.34, 3.17) [11].
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HKKP

COFP

463

585

550

685

549

523

Fig. 5. The number of TC candidates in common between the four algorithms. P refers
to the first, COF to the second, H to the third and KKP to the fourth algorithm, as
presented in Section 2.

(3.53, 2.82, 4.38, 2.82, 3.45, 4.23, 2.92, 3.84, 2.68, 4.08, 3.67, 3.37, 3.23, 3.15, 4.79,
3.30, 3.58, 3.54, 4.01, 3.55, 3.32, 4.34, 3.30, 4.40). Hence, the greatest probability
values are assigned to d minor (4.79).

3 Comparing and Combining Predictions

In order to compare our models, we entered all the SCs of cardinality 3-9 (336
pcs) into the four TC-algorithms (henceforth abbreviated as P, COF, H and
KKP) and selected the three most probable TCs15 predicted by each algorithm
for each SC. The resulting values concerning some selected trichordal and hexa-
chordal SCs are represented in Table 4, columns 3-6. The leftmost value always
denotes the most probable TC according to the algorithm, and so forth.

The number of TC candidates in common between each pair of algorithms
is given in Figure 5. The first two models have more candidates in common
( 685
1008 = 68%). The order of three TC candidates is not taken into account.

Although the models are quite different, using the same constraints in both
algorithms seems to produce similar results. The model based on KKP-profiles
seems to differ most from the others. All of the algorithms propose the same
three TC candidates for four SCs (for SCs 4-7, 6Z-19B, 6-20 and 7-6A).16

15 That means 3*336=1008 TC candidates per algorithm, except that the last algorithm
might introduce the same TC two times, i.e. for the same major and minor tonality,
e.g. F major and f minor in the case of SC 3-4A. See Table 4 in Appendix C, the
KKP column. It produced 948 different TC candidates altogether.

16 If we think about the consistency of the results across four algorithms, four cases
out of 336 (1.1%) appear to be quite insignificant. On the other hand, if all of the
TC-combinations consisting of three candidates were equally probable in the results
for each algorithm, the theoretical probability that they all would give the same
three candidates would be as small as 1/

(12
3

)3 = 9.4∗10−8. It has to be remembered,
however, that the algorithms are based on different underlying assumptions and,
thus, they ’speak with a different voice’.
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Which pitch classes are then the best TC candidates for a SC according to the
results? For example, for SC 3-1 there are 6 candidates altogether (see Appendix
C, the last ’dispersion’-column refers to the number of different TC candidates
predicted by these models): 9, 0, 1, 7, 2 and 6. To answer the question about
the best TC candidates for a SC, we ranked all the candidates in each cell and
counted ’points’: the best candidates for SC 3-1 are thus pc0 and pc2 (see the
’Rank’ column), because pc0 is ranked once in the first position (3 points) and
twice in the second position (2*2 points), which gives 7 out of a maximum 12
points (2+3+0+2). The second candidate, pc2, also scores 7 points and the third
candidate, pc7, scores 4 points.

In addition, we checked if the winning candidates form pure fifths between
them. There is a p5 between pc0 and pc7 as well as between pc7, and pc2 for
SC 3-1. Thus, both of their ’bottom pitch classes’, pc0 and pc7, are marked as
’tonic’ in Tonic-column. Finally, we observed the difference between the tonic
candidates according to their position in the SC: tonic pitch classes that are
not members of that SC are underlined. A SC that exhibit such a quality is
paralleled by the dominant chord.

To present a more challenging example, we considered the TC candidates of
the Promethean SC 6-34A. The first and second algorithms rank pc10 as the
strongest TC but the third and fourth algorithms rank pc9 and pc0 instead. Jim
Samson [12, 156-7] has pointed out that in Scriabin’s music this chord may take
on a dominant quality of Eb or A (i.e. pc3 or pc9, Samson’s sample chord is
in this case in prime form transposition). Nevertheless, we can accept the pc10-
interpretation given by the models as well, by playing the Promethean chord
and the Bb-note or Bb-major triad successively.17 The authors are not aware of
whether or not Scriabin used his Promethean chord in this way: that would be
an issue for further study.

4 Is Alban Berg’s Invention on a Key in D Minor?

In the previous two sections, we have concentrated on investigating tonality
within the context of the most local harmonic objects, pitch-class sets. TCs
were calculated according to resulting 12-dimensional profiles produced by the
algorithms. Such profiles can also be used to evaluate the tonal similarity between
two PCSs, as represented in Figure 1. This is done most easily by calculating a
correlation between two profiles. We thus define a correlation distance between
profiles x and y as d(x, y) = 1 − corr(x, y), where corr stands for the Pearson
correlation. The cofrel -value of the second algorithm was defined as the stability
between two PCSs and, as such, it can be applied to a similar task. Instead of
finding hypothetical TCs for separate PCSs in a musical piece, the correlation
17 In theory, this may however lead to a voice-leading problem: if the sample chord is

followed by the Bb-major triad, C# has to progress to D (?) and thus, C, for its
part, to Bb. Since G, most probably, would move to F, this may lead to the parallel
fifths (C-Bb, G-F) depending on the arrangement of the pitches in the Promethean
chord. On the other hand, this may be avoided by using a suspension.



254 A. Tenkanen

Fig. 6. Alban Berg: Intermezzo from Wozzeck. Correlation distances (P, H, KKP)
and tonal stability values (COF) calculated using the harmonic d-minor collection
{1,2,4,5,7,9,10} as a comparison set. The comparison curve produced by using the K-K
d-minor profile is also added to the figure (KK, gray line).

distance and the cofrel-stability offer a more flexible way to evaluate tonalities in
the piece. A suitable comparison set is required against which musical segments,
derived from the piece, are compared.

For analysis, we chose the movement Intermezzo (’Invention on a Key (d
minor)’) from the opera Wozzeck by Alban Berg. It is found in the fourth Scene
of the third Act, bars 320-371. We wanted to assess to what extent the d-minor
tonality actually occurs in the section.

To begin with, all of the note onsets of the Intermezzo were clustered into PCSs
of cardinality 7, according to their temporal proximity to their nearest neighbours.
In practice, thatmeans that a heptachord consisting of the nearest pitch classeswas
assigned to each unique note onset time (we follow here the segmentation method
introduced by in [13]). These heptachordal segments were compared with the har-
monic d-minor scale {1,2,4,5,7,9,10} using the correlation distance along with the
first (P), the third (H), the fourth (KKP) algorithm and the cofrel-stability func-
tion (COF) as such. Musical properties like duration, voicing and loudness were
not taken into consideration. Thereafter, the correlation distance values assigned
to individual segments were averaged over each bar and the resulting values were
normalized to a zero mean and unit variance for the purpose of comparability. To
facilitate comparison, we added a curve by using a K-K d-minor profile. For each
pitch-class in each heptachordal segment18 was assigned a value according to the d-
minor key profile and these values were averaged over each bar. Thus, five different
curves, seen in Figure 6, were produced.

D minor seems to dominate the tonality in the beginning and the end of the
section as well as in bars 345 and 365. All five approaches –even the COF-relation,
which is based on a purely mathematical model– seem to correlate strongly with
each other. The result is confirmed numerically through correlation estimates,
calculated between the different curves (Table 3, Appendix B).

Another question is: How would the average distance-values look like if some
other transposition of the harmonic minor scale or another type of reference
18 Thus, the basis of calculations was equal to all approaches.
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set is used instead? After using every transposition of the harmonic minor scale
and calculating the mean of bar averages (without normalization), the d-minor
collection was found to produce the lowest mean value. Furthermore, when all
heptachordal PCSs were entered into the procedure, the lowest mean value was
attained by the PCS {0,1,2,5,7,9,10}, which differs from the harmonic d-minor
scale only in that pc4 is replaced by pc0. Although the music is quite chromatic19

throughout, the d-minor key thus not only articulates it at the beginning and
the end but also dominates it in terms of statistical significance.

5 Conclusions

We have considered PCSs as carriers of tonal implications, independent of mu-
sical context. By using four different algorithmic models, we predicted TCs for
all SCs of cardinality 3 to 9 and compared the results noticing that they agree
quite strongly. Additionally, we showed that our algorithmic models are useful
in music analysis. The results obtained through CSA in Section 4 encourage
us to apply the tonality models in a similar way as CSA is used with abstract
set-classes (c.f. [5]).

However, as the experiments with the perception of reference pitch classes has
shown, it is a highly subjective process, in which there are no right answers con-
cerning the TCs [1]. Thus, TCs might be better viewed from the perspective of
probability (c.f. the distribution table by Huovinen in Appendix A). The results
concerning the hypothetical TCs may thus serve as a point of departure for fur-
ther empirical studies. In computer-aided analysis, one interesting issue might be
to compare the relationships between hypothetical TCs and chordal bass notes.
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APPENDIX A

Table 2. A response distribution for the trials in Experiment 5 by Huovinen, table 9.4.1
in [1, 258]. The SCs are shown in their prime forms with the set members underlined.

6-Z19A 32 53 1 11 7 5 2 10 50 0 0 1
6-Z19B 52 35 1 1 13 41 0 11 13 1 3 1
6-20 14 36 6 2 13 27 3 2 15 46 3 5
6-Z26 40 25 1 12 0 12 3 15 55 2 4 3
6-Z29 17 29 0 8 4 0 26 1 64 20 2 1
6-32 59 2 28 1 10 15 1 17 2 33 1 3

6-33A 38 1 18 14 3 55 0 12 0 20 10 1
6-33B 24 1 55 2 16 2 12 17 1 38 0 4
6-Z49 14 8 5 10 29 1 4 7 5 84 1 4
6-Z50 16 20 4 3 12 0 25 10 2 75 2 3

APPENDIX B
Table 3. Correlation estimates between the different approaches, explained in Section 4

P COF H KKP KK
P 1 0.81 0.81 0.98 0.94

COF 0.81 1 0.49 0.79 0.75
H 0.81 0.49 1 0.79 0.82

KKP 0.98 0.79 0.79 1 0.92
KK 0.94 0.75 0.82 0.92 1

Average 0.91 0.77 0.78 0.90 0.89

http://www.iua.upf.es/~rramirez/MML08/abstracts.pdf
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APPENDIX C

Table 4. Predicted TCs for some set classes of cardinality 3 and 6
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Three Conceptions of Musical Distance 
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Abstract. This paper considers three conceptions of musical distance (or in-
verse “similarity”) that produce three different musico-geometrical spaces: the 
first, based on voice leading, yields a collection of continuous quotient spaces 
or orbifolds; the second, based on acoustics, gives rise to the Tonnetz and re-
lated “tuning lattices”; while the third, based on the total interval content of a 
group of notes, generates a six-dimensional “quality space” first described by 
Ian Quinn.  I will show that although these three measures are in principle quite 
distinct, they are in practice surprisingly interrelated.  This produces the chal-
lenge of determining which model is appropriate to a given music-theoretical 
circumstance.  Since the different models can yield comparable results, unwary 
theorists could potentially find themselves using one type of structure (such as a 
tuning lattice) to investigate properties more perspicuously represented by an-
other (for instance, voice-leading relationships). 

Keywords: Voice leading, orbifold, tuning lattice, Tonnetz, Fourier transform. 

1   Introduction 

We begin with voice-leading spaces that make use of the log-frequency metric.1  
Pitches here are represented by the logarithms of their fundamental frequencies, with 
distance measured according to the usual metric on R; pitches are therefore “close” if 
they are near each other on the piano keyboard.  A point in Rn represents an ordered 
series of pitch classes.  Distance in this higher-dimensional space can be interpreted 
as the aggregate distance moved by a collection of musical “voices” in passing from 
one chord to another.  (We can think of this, roughly, as the aggregate physical dis-
tance traveled by the fingers on the piano keyboard.) By disregarding information—
such as the octave or order of a group of notes—we “fold” Rn into an non-Euclidean 
quotient space or orbifold.  (For example, imposing octave equivalence transforms Rn 
into the n-torus Tn, while transpositional equivalence transforms Rn into Rn–1, or-
thogonally projecting points onto the hyperplane whose coordinates sum to zero.)  
Points in the resulting orbifolds represent equivalence classes of musical objects—
such as chords or set classes—while “generalized line segments” represent equiva-
lence classes of voice leadings.2 For example, Figure 1, from Tymoczko 2006, 

                                                           
1 For more on these spaces, see Callender 2004, Tymoczko 2006, and Callender, Quinn, and 

Tymoczko 2008. 
2 The adjective “generalized” indicates that these “line segments” may pass through one of the 

space’s singular points, giving rise to mathematical complications. 
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represents the space of two-note chords, while Figure 2, from Callender, Quinn, and 
Tymoczko 2008, represents the space of three-note transpositional set classes.  In both 
spaces, the distance between two points represents the size of the smallest voice lead-
ing between the objects they represent. 
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Fig. 1. The Möbius strip representing voice-leading relations among two-note chords 

Let’s now turn to a very different sort of model, the Tonnetz and related structures, 
which I will describe generically as “tuning lattices.”  These models are typically 
discrete, with adjacent points on a particular axis being separated by the same inter-
val.  The leftmost lattice in Figure 3 shows the most familiar of these structures, with 
the two axes representing acoustically pure perfect fifths and major thirds.  (One can 
imagine a third axis, representing either the octave or the acoustical seventh, project-
ing outward from the paper.)  The model asserts that the pitch G4 has an acoustic 
affinity to both C4 (its “underfifth”) and D5 (its “overfifth”), as well as to Ef4  and B4 
(its “underthird” and “overthird,” respectively).  The lattice thus encodes a fundamen-
tally different notion of musical distance than the earlier voice leading models: 
whereas A3 and Af3 are very close in log-frequency space, they are four steps apart 
our tuning lattice.  Furthermore, where chords (or more generally “musical objects”) 
are represented by points in the voice leadings spaces, they are represented by poly-
topes in the lattices.3 

Finally, there are measures of musical distance that rely on chords’ shared interval 
content. From this point of view, the chords {C, Cs, E, Fs} and {C, Df, Ef, G}  
resemble one another, since they are “nontrivially homometric” or “Z-related”: that is, 
they share the same collection of pairwise distances between their notes.  (For in-
stance, both contain exactly one pair that is one semitone apart, exactly one pair that 
is two semitones apart, and so on.)  However, these chords are not particularly close 

                                                           
3 For a modern introduction to the Tonnetz, see Cohn 1997, 1998, and 1999.  
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in either of the two models considered previously.  It is not intuitively obvious that 
this notion of “similarity” produces any particular geometrical space.  But Ian Quinn  
has shown that one can use the discrete Fourier transform to generate (in the familiar 
equal-tempered case) a six-dimensional “quality space” in which chords that share the 
same interval content are represented by the same point.4  We will explore the details 
shortly.  

 

Fig. 2. The cone representing voice-leading relations among three-note transpositional set 
classes 

                     

C4F3 G4 D5 A5

Af3Df3 Ef4 Bf4 F5

E4A3 B4 Fs5 Cs6

C4F3 G4 D5 A5

  A3 D3   E4   B4 F5

E4A3 B4   F5  C6

 

Fig. 3. Two discrete tuning lattices. On the left, the chromatic Tonnetz, where horizontally 
adjacent notes are linked by acoustically pure fifths, while vertically adjacent notes are linked 
by acoustically pure major thirds. On the right, a version of the structure that uses diatonic 
intervals. 

 

Clearly, these three musical models are very different, and it would be somewhat 
surprising if there were to be close connections between them.  But we will soon see 
that this is in fact this case. 

                                                           
4 See Lewin 1959, 2001, Quinn 2006, 2007, Callender 2007. 
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Fig. 4. (left) Most efficient voice-leadings between diatonic fifths form a chain that runs 
through the center of the Möbius strip from Figure 1. (right) These voice leadings form an 
abstract circle, in which adjacent dyads are related by three-step diatonic transposition, and are 
linked by single-step voice leading. 
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Fig. 5. (left) Most efficient voice-leadings between diatonic triads form a chain that runs 
through the center of the orbifold representing three-note chords. (right) These voice leadings 
form an abstract circle, in which adjacent triads are linked by single-step voice leading.  Note 
that here, adjacent triads are related by transposition by two diatonic steps. 

2   Voice-Leading Lattices and Acoustic Affinity 

Voice-leading and acoustics seem to privilege fundamentally different conceptions of 
pitch distance: from a voice-leading perspective, the semitone is smaller than the 
perfect fifth, whereas from the acoustical perspective the perfect fifth is smaller than 
the semitone.  Intuitively, this would seem to be a fundamental gap that cannot be 
bridged.   
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Fig. 6. Major, minor, and augmented triads as they appear in the orbifold representing three-
note chords. Here, triads are particularly close to their major-third transpositions. 

Things become somewhat more complicated, however, when we consider the 
discrete lattices that represent voice-leading relationships among familiar diatonic 
or chromatic chords.  For example, Figure 4 records the most efficient voice lead-
ings among diatonic fifths—which can be represented using an irregular, one-
dimensional zig-zag near the center of the Möbius strip T2/S2.  (The zig-zag seems 
to be irregular because the figure is drawn using the chromatic semitone as a unit; 
were we to use the diatonic step, it would be regular.)  Abstractly, these voice lead-
ings form the circle shown on the right of Figure 4.  The figure demonstrates that 
there are purely contrapuntal reasons to associate fifth-related diatonic fifths: from 
this perspective {C, G} is close to {G, D}, not because of acoustics, but because the 
first dyad can be transformed into the second by moving the note C up by one dia-
tonic step.  One fascinating possibility—which we unfortunately cannot pursue 
here—is that acoustic affinities actually derive from voice-leading facts, at least in 
part: it is possible that the ear associates the third harmonic of a complex tone with 
the second harmonic of another tone a fifth above it, and the fourth harmonic of the 
lower note with the third of the upper, in effect tracking voice-leading relationships 
among the partials. 

Figures 5-7 present three analogous structures: Figure 5 connects triads in the C 
diatonic scale by efficient voice leading, and depicts third-related triads as being par-
ticularly close; Figure 6 shows the position of major, minor, and augmented triads in 
three-note chromatic chord space, where major-third-related triads are close5; Figure 7 
shows (symbolically) that fifth-related diatonic scales are close in twelve-note chro-
matic space.  Once again, we see that there are purely contrapuntal reasons to associ-
ate fifth-related diatonic scales and third-related triads.   

                                                           
5 This graph was first discovered by Douthett and Steinbach (1998).   
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Fig. 7. Fifth-related diatonic scales form a chain that runs through the center of the seven-
dimensional orbifold representing seven-note chords.  It is structurally analogous to the circles 
in Figures 4 and 5. 
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Bach .96 

Haydn .93 

Mozart .91 
MAJOR 

Beethoven .96 

Bach .95 

Haydn .91 

Mozart .91 
MINOR 

Beethoven .96 

Fig. 8. Correlations between modulation frequency and voice-leading distances among scales, 
in Bach’s Well-Tempered Clavier, and the piano sonatas of Haydn, Mozart, and Beethoven.  
The very high correlations suggest that composers typically modulate between keys whose 
associated scales can be linked by efficient voice leading. 

This observation, in turn, raises a number of theoretical questions. For instance: 
should we attribute the prevalence of modulations between fifth-related keys to the 
acoustic affinity between fifth-related pitches, or to the voice-leading relationships 
between fifth-related diatonic scales? One way to study this question would be to 
compare the frequency of modulations in classical pieces to the voice-leading dis-
tances among their associated scales.  Preliminary investigations, summarized in 
Figure 8, suggest that voice-leading distances are in fact very closely correlated to 
modulation frequencies.  Surprising as it may seem, the acoustic affinity of perfect 
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fifth-related notes may be superfluous when it comes to explaining classical modula-
tory practice.6 

 

Fig. 9. On this three-dimensional Tonnetz, the C7 chord is represented by the tetrahedron whose 
vertices are C, E, G, and Bf. The Cø7 chord is represented by the nearby tetrahedron C, 
Ef, Gf, Bf,  which shares the C-Bf edge. 

3   Tuning Lattices as Approximate Models of Voice Leading 

We will now investigate the way tuning lattices like the Tonnetz represent voice-
leading relationships among familiar sonorities.  Here my argumentative strategy will 
by somewhat different, since it is widely recognized that the Tonnetz has something to 
do with voice leading.  (This is largely due to the important work of Richard Cohn, 
who has used the Tonnetz to study what he calls “parsimonious” voice leading.7)  My 
goal will therefore be to explain why tuning lattices are only an approximate model of 
contrapuntal relationships, and only for certain chords. 

The first point to note is that inversionally related chords on a tuning lattice are 
near each other when they share common tones.8  For example, the Tonnetz represents 
perfect fifths by line segments; fifth-related perfect fifths, such as {C, G} and {G, D} 
are related by inversion around their common note, and are adjacent on the lattice 
(Figure 3).  Similarly, major and minor triads on the Tonnetz are represented by trian-
gles; inversionally related triads that share an interval, such as {C, E, G} and {C, E, 
A}, are joined by a common edge.  (On the standard Tonnetz, the more common 
tones, the closer the chords will be: C major and A minor, which share two notes, are 
closer than C major and F minor, which share only one.)  In the three-dimensional 
Tonnetz shown in Figure 9, where the z axis represents the seventh, C7 is near its 

                                                           
6 Similar points could potentially be made about the prevalence, in functionally tonal music, of 

root-progressions by perfect fifth.  It may be that the diatonic circle of thirds shown in Figure 
5 provides a more perspicuous model of functional harmony than do more traditional fifth-
based representations. 

7 See Cohn 1997. 
8 This is not true of the voice leading spaces considered earlier: for example, in three-note 

chord space {C, D, F} is not particularly close {F, Af, Bf}. 
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inversion Cø7.  The point is reasonably general, and does not depend on the particular 
structure of the Tonnetz or on the chords involved: on tuning lattices, inversionally 
related chords are close when they share common tones.9 

The second point is that acoustically consonant chords often divide the octave rela-
tively evenly; such chords can be linked by efficient voice leading to those inversions 
with which they share common notes.10  It follows that proximity on a tuning lattice 
will indicate the potential for efficient voice leading when the chords in question are 
nearly even and are related by inversion.  Thus {C, G} and {G, D} can be linked by 
the stepwise voice leading (C, G)→(D, G), in which C moves up by two semitones.  
Similarly, the C major and A minor triads can be linked by the single-step voice lead-
ing (C, E, G)→(C, E, A), and C7 can be linked to Cø7 by the two semitone voice-
leading (C, E, G, Bf) (C, Ef, Gf, Bf).  In each case the chords are also close on the 
relevant tuning lattice.  (Interestingly, triadic distances on the diatonic Tonnetz in Fig. 
3 exactly reproduce the circle-of-thirds distances from Fig. 5.)  This will not be true 
for uneven chords: {C, E} and {E, Gs} are close on the Tonnetz, but cannot be linked 
by particularly efficient voice leading; the same holds for {C, G, Af} and 
{G, Af, Df}.  Tuning lattices are approximate models of voice-leading only when one 
is concerned with the nearly-even sonorities that are fundamental to Western tonality. 

Bff Ff Cf Gf Df

F C G D A

A E B Fs Cs
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Fig. 10. On the Tonnetz, F major (triangle 3) is closer to C major (triangle 1) than F minor 
(triangle 4) is. In actual music, however, F minor frequently appears as a passing chord between 
F major and C major. Note that, unlike in Figure 3, I have here used a Tonnetz in which the 
axes are not orthogonal; this difference is merely orthographical, however. 

 
Furthermore, on closer inspection Tonnetz-distances diverge from voice-leading 

distances even for these chords.  Some counterexamples are obvious: for instance, {C, 
G} and  {Cs, Fs} can be linked by semitonal voice leading, but are fairly far apart on 
the Tonnetz.  Slightly more subtle, but more musically pertinent, is the following 
example: on the Tonnetz, C major is two units away from F major but three units from 

                                                           
9 In the general case, the notion of “closeness” needs to be spelled out carefully, since chords 

can contain notes that are very far apart on the lattice.  In the applications we are concerned 
with, chords occupy a small region of the tuning lattice, and the notion of “closeness” is 
fairly straightforward. 

10 See Tymoczko 2006 and 2008a.  The point is relatively obvious when one thinks geometri-
cally: the two chords divide the pitch-class circle nearly evenly into the same number of 
pieces; hence, if any two of their notes are close, then each note of one chord is near some 
note of the other. 
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F minor (Figure 10).  (Here I measure distance in accordance with “neo-Riemannian” 
theory, which considers triangles sharing an edge to be one unit apart and which de-
composes larger distances into sequences of one-unit moves.)  Yet it takes only two 
semitones of total motion to move from C major to F minor, and three to move from 
C major to F major.  (This is precisely why F minor often appears as a passing chord 
between F major and C major.)  The Tonnetz thus depicts F major as being closer to C 
major than F minor is, even though contrapuntally the opposite is true.  This means 
we cannot use the figure to explain the ubiquitous nineteenth-century IV-iv-I progres-
sion, in which the two-semitone motion ^6 ^5 is broken into a pair of single-semitone 
steps ̂6 f ^6 ^5 . 

One way to put the point is that while adjacencies on the Tonnetz reflect voice-
leading facts, other relationships do not.  As Cohn has emphasized, two major or 
minor triads share an edge if they can be linked by “parsimonious” voice-leading in 
which a single voice moves by one or two semitones.  If we are interested in this 
particular kind of voice leading then the Tonnetz provides an accurate and useful 
model. However, there is no analogous characterization of larger distances in the 
space.  In other words, we do not get a recognizable notion of voice-leading distance 
by “decomposing” voice leadings into sequences of parsimonious moves: as we have 
seen, (F, A C)→(E, G, C) can be decomposed into two parsimonious moves, while it 
takes three to represent (F, Af, C)→(E, G, C); yet intuitively the first voice leading is 
larger than the second.  The deep issue here is that it is problematic to assert that “par-
simonious” voice leadings are always smaller than non-parsimonious voice-leadings: 
by asserting that (C, E, A)→(C, E, G) is smaller than (C, F, Af)→(C, E, G), the theo-
rist runs afoul what Tymoczko calls “the distribution constraint,” known to mathema-
ticians as the submajorization partial order.11 Tymoczko argues that violations of the 
distribution constraint invariably produce distance measures that violate intuitions 
about voice leading; the problem with larger distances on the Tonnetz is an illustration 
of this general point. 

Nevertheless, the fact remains that the two kinds of distance are roughly consistent: 
for major and minor triads, the correlation between Tonnetz distance and voice-
leading distance is a reasonably high .79.12  Furthermore, since Tymoczko’s “distribu-
tion constraint” is not intuitively obvious, unwary theorists might well think that they 
could declare the “parsimonious” voice leading (C, E, G)→(C, E, A) to be smaller 
than the non-parsimonious (C, E, G)→(Cs, E, Gs). (Indeed, the very meaning of the 
term “parsimonious” would seem to suggest that some theorists have done so.)  Con-
sequently, Tonnetz-distances might well appear, at first or even second blush, to re-
flect some reasonable notion of “voice-leading distance”; and this in turn could lead 
the theorist to conclude that the Tonnetz provides a generally applicable tool for 

                                                           
11 See Tymoczko 2006, and Hall and Tymoczko 2007.  Metrics that violate the distribution 

constraint have counterintuitive consequences, such as preferring “crossed” voice leadings to 
their uncrossed alternatives.  Here, the claim that A minor is closer to C major than F minor 
leads to the F minor/F major problem discussed in Figure 10. 

12 Here I use the L1 or “taxicab” metric.  The correlation between Tonnetz distances and the 
number of shared common tones is an even-higher .9; however, “number of shared common 
tones” is not interpretable as a voice-leading metric. 
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investigating triadic voice-leading. I have argued that we should resist this conclu-
sion: if we use the Tonnetz to model chromatic music, than Schubert’s major-third 
juxtapositions will seem very different from his habit of interposing F minor between 
F major and C major, since the first can be readily explained using the Tonnetz 
whereas the second cannot.13  The danger, therefore, is that we might find ourselves 
drawing unnecessary distinctions between these two cases—particularly if we mistak-
enly assume the Tonnetz is a fully faithful model of voice-leading relationships. 

4   Voice Leading, “Quality Space,” and the Fourier Transform 

We conclude by investigating the relation between voice leading and the Fourier-
based perspective.14  The mechanics of the Fourier transform are relatively simple: for 
any number n from 1 to 6, and every pitch-class p in a chord, the transform assigns a 
two-dimensional vector whose components are: 

Vp, n = (cos (2πpn/12), sin (2πpn/12)) 

Adding these vectors together, for one particular n and all the pitch-classes p in the 
chord, produces a composite vector representing the chord as a whole—its “nth Fou-
rier component.”  The length (or “magnitude”) of this vector, Quinn observes, reveals 
something about the chord’s harmonic character: in particular, chords saturated with 
(12/n)-semitone intervals, or intervals approximately equal to 12/n, tend to score 
highly on this index of chord quality.15  The Fourier transform thus seems to quantify 
the intuitive sense that chords can be more-or-less diminished-seventh-like, perfect-
fifthy, or whole-toneish.  Interestingly, “Z-related” chords—or chords with the same 
interval content—always score identically on this measure of chord-quality.  In this 
sense, Fourier space (the six-dimensional hypercube whose coordinates are the Fou-
rier magnitudes) seems to model a conception of similarity that emphasizes interval 
content, rather than voice leading or acoustic consonance. 

However, there is again a subtle connection to voice leading: it turns out that the 
magnitude of a chord’s nth Fourier component is approximately linearly related to the 
(Euclidean) size of the minimal voice leading to the nearest subset of any perfectly 
even n-note chord.16  For instance, a chord’s first Fourier component (FC1) is ap-
proximately related to the size of the minimal voice leading to any transposition of 
{0}; the second Fourier component is approximately related to the size of the minimal 
voice leading to any transposition of either {0} or {0, 6}; the third component is ap-
proximately related to the size of the minimal voice leading to any transposition of 
either {0}, {0, 4} or {0, 4, 8}, and so on.  Figure 11 shows the location of the subsets 

                                                           
13  See Cohn 1999. 
14 This material in this section appears in Tymoczko 2008b. It is influenced by Robinson 

(2006), Hoffman (2007), and Callender (2007). 
15 Here I use continuous pitch-class notation where the octave always has size 12, no matter 

how it is divided.  Thus the equal-tempered five-note scale is labeled {0, 2.4, 4.8, 7.2, 9.6}. 
16 Here I measure voice-leading using the Euclidean metric, following Callender 2004.  See 

Tymoczko 2006 and 2008a for more on measures of voice-leading size. 
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of the n-note perfectly even chord, as they appear in the orbifold representing three-
note set-classes, for values of n ranging from 1 to 6.17  Associated to each graph is one 
of the six Fourier components.  For any three-note set class, the magnitude of its nth 
Fourier component is a decreasing function of the distance to the nearest of these 
marked points: for instance, the magnitude of the third Fourier component (FC3) de-
creases, the farther one is from the nearest of {0}, {0, 4} and {0, 4, 8}.  Thus, chords 
in the shaded region of Figure 12 will tend to have a relatively large FC3, while those 
in the unshaded region will have a smaller FC3.  Figure 13 shows that this relationship 
is very-nearly linear for twelve-tone equal-tempered trichords. 

FC1, subsets of {0} FC2, subsets of {0, 6}

FC3, subsets of {0, 4, 8} FC4, subsets of {0, 3, 6, 9}

FC5, subsets of {0, 2.4, 4.8, 7.2, 9.6} FC6, subsets of {0, 2, 4, 6, 8, 10}
 

Fig. 11. The magnitude of a set class’s nth Fourier component is approximately linearly related 
to the size of the minimal voice leading to the nearest subset of the perfectly even n-note chord, 
shown here as dark spheres. 

                                                           
17 See Callender 2004, Tymoczko 2006, Callender, Quinn, and Tymoczko, 2008.  These trian-

gles result from bisecting the cone in Figure 2.  Every point represents a set class, while 
every line segment represents an equivalence class of voice leadings. 
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Fig. 12. Chords in the shaded region will have a large FC3 component, since they are near 
subsets of {0, 4, 8}.  Those in the unshaded region will have a smaller FC3 component. 
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Fig. 13. For trichords, the equation FC3 = –1.38VL + 3.16 relates the third Fourier component 
to the Euclidean size of the minimal voice leading to the nearest subset of {0, 4, 8} 

Table 1. Correlations between voice-leading distances and Fourier magnitudes 

 FC1 FC2 FC3 FC4 FC5 FC6 
Dyads -.97 -.96 -.97 -1 -.97 -1* 
Trichords -.98 -.97 -.97 -.98 -.98 -1* 

Tetrachords -.96 -.96 -.95 -.98 -.96 -1* 
Pentachords -.96 -.96 -.95 -.98 -.96 -1* 
Hexachords -.96 -.96 -.95 -.96 -.96 -1* 
Septachords -.96 -.96 -.96 -.97 -.96 -1* 
Octachords -.96 -.96 -.95 -.98 -.96 -1* 
Nonachords -.96 -.96 -.96 -.98 -.96 -1* 

Decachords -.96 -.96 -.96 -.98 -.96 -1* 

* Voice leading calculated using L1 (taxicab) distance rather 
than L2 (Euclidean). 

 
Table 1 uses the Pearson correlation coefficient to estimate the relationship be-

tween the voice-leading distances and Fourier components, for twelve-tone equal-
tempered multisets of various cardinalities.  The strong anti-correlations indicate that 
one variable predicts the other with a very high degree of accuracy. Table 2 calculates 
the correlation coefficients for three-to-six-note chords in 48-tone equal temperament.  
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These strong anticorrelations, very similar to those in Table 1, show that there contin-
ues to be a very close relation between Fourier magnitudes and voice-leading size in 
very finely quantized pitch-class space.  Since 48-tone equal temperament is so finely 
quantized, these numbers are approximately valid for continuous, unquantized pitch-
class space.18 

Table 2. Correlations between voice-leading distances and Fourier magnitudes in 48-tone equal 
temperament   

 FC1 
Trichords -.99 
Tetrachords -.97 
Pentachords -.97 

Hexachords -.96 

Explaining these correlations, though not very difficult, is beyond the scope of this 
paper. From our perspective, the important question is whether we should measure 
chord quality using the Fourier transform or voice leading.19  In particular, the issue is 
whether the Fourier components model the musical intuitions we want to model: as 
we have seen, the Fourier transform requires us to measure a chord’s “harmonic qual-
ity” in terms of its distance from all the subsets of the perfectly even n-note chord.  
But we might sometimes wish to employ a different set of harmonic prototypes.  For 
instance, Figure 14 uses a chord’s distance from the augmented triad to measure the 
 

 

Fig. 14. The mathematics of the Fourier transform requires that we conceive of “chord quality” 
in terms of the distance to all subsets of the perfectly even n-note chord (left).  Purely voice-
leading-based conceptions instead allow us to choose our harmonic prototypes freely (right).  
Thus we can voice leading to model a chord’s “augmentedness” in terms of its distance from 
the augmented triad, but not the tripled unison {0, 0, 0} or the doubled major third {0, 0, 4}. 

                                                           
18 It would be possible, though beyond the scope of this paper, to calculate this correlation 

analytically.  It is also possible to use statistical methods for higher-cardinality chords.  A 
large collection of randomly generated 24- and 100-tone chords in continuous space pro-
duced correlations of .95 and .94, respectively. 

19 See Robinson 2006 and Straus 2007 for related discussion. 
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trichordal set classes’ “augmentedness.”  Unlike Fourier analysis, this purely voice-
leading-based method does not consider the triple unison or doubled major third to be 
particularly “augmented-like”; hence, set classes like {0, 1, 4} do not score particu-
larly highly on this index of “augmentedness.”  This example dramatizes the fact that, 
when using voice leading, we are free to choose any set of harmonic prototypes, 
rather than accepting those the Fourier transform imposes on us. 

5   Conclusion 

The approximate consistency between our three models is in one sense good news: 
since they are closely related, it may not matter much—at least in practical terms—
which we choose.  We can perhaps use a tuning lattice such as the Tonnetz to repre-
sent voice-leading, as long as we are interested in gross contrasts (“near” vs. “far”) 
rather than fine quantitative differences (“3 steps away” vs. “2 steps away”).  Simi-
larly, we can perhaps use voice-leading spaces to approximate the results of the Fou-
rier analysis, as long as we are interested in modeling generic harmonic intuitions 
(“very fifthy” vs. “not very fifthy”) rather than exploring very fine differences among 
Fourier magnitudes.   

However, if we want to be more principled, then we need to be more careful.  The 
resemblances among our models mean that it is possible to inadvertently use one sort 
of structure to discuss properties that are more directly modeled by another.  And 
indeed, the recent history of music theory displays some fascinating (and very fruit-
ful) imprecision about this issue.  It is striking that Douthett and Steinbach, who first 
described several of the lattices found in the center of the voice-leading orbifolds—
including Figure 6—explicitly presented their work as generalizing the familiar Ton-
netz.20 Their lattices, rather than depicting parsimonious voice leading among major 
and minor triads, displayed single-semitone voice leadings among major, minor, and 
augmented triads; and as a result of this small difference, every distance can be inter-
preted as representing voice-leading size. However, this difference only became ap-
parent after it was understood how to embed their discrete structures in the continuous 
geometrical figures described at the beginning of this paper.  Thus one could say that 
the continuous voice-leading spaces evolved out of the Tonnetz, by way of Douthett 
and Steinbach’s discrete lattices, even though the structures now appear to be funda-
mentally different. Related points could be made about Quinn’s “quality space,” 
whose connection to the voice-leading spaces took several years—and the work of 
several authors—to clarify. 

There is, of course, nothing wrong with this: knowledge progresses slowly and fit-
fully.  But our investigation suggests that we may want to think carefully about which 
model is appropriate for which music-theoretical purpose.  I have tried to show that 
the issues here are complicated and subtle: the mere fact that tonal pieces modulate by 
fifth does not, for example, require us to use a tuning lattice in which fifths are 

                                                           
20 See Douthett and Steinbach 1998.  The same is true of Tymoczko 2004, which uses the term 

“generalized Tonnetz” to describe another set of lattices appearing in the voice-leading 
spaces. 
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smaller than semitones. (Indeed, the “circle of fifths” C-G-D-… can be interpreted 
either as a one-dimensional tuning lattice incorporating octave equivalence, or as a 
diagram of the voice-leading relations among diatonic scales, as in Figure 7.)  Like-
wise, there may be close connections between voice-leading spaces and the Fourier 
transform, even though the latter associates “Z-related” chords while the former does 
not. The present paper can be considered a down-payment toward a more extended 
inquiry, one that attempts to determine the relative strengths and weaknesses of our 
three different-yet-similar conceptions of musical distance. 
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Abstract. Some pitch-class collections may be represented as subsets of a two-
dimensional lattice or generalised Tonnetz. Whereas a well-formed scale of car-
dinality n is formed as a simple interval chain, and thus defined unambiguously 
by the size of its generating interval, there are a great number of inequivalent 
ways of forming connected n-subsets of the two-dimensional lattice defined by 
a given pair of basis intervals. Only very few of these connected subsets or lat-
tice animals ever turn out to correspond to collections that possess the pairwise 
well-formed property. Pwwf scales are found to correspond to members of a 
small family of lattice animals that is independent of the generators at the basis 
of the lattice. Finally a method is shown for constructing a pair of generators 
that will yield any given heptatonic pwwf scale; the method is easily extended 
to other cardinalities. 

Well-Formed Scales 

Carey and Clampitt [1] introduced the concept of a well-formed scale to the music-
theoretical community; these collections had earlier been investigated by Erv Wilson 
[2] under the name “Moments of Symmetry”. For the purposes of the present paper an 
important characteristic of a well-formed scale can be expressed as follows: it is a 
scale with exactly two step sizes, whose “tokenised” cyclic interval list (e.g.  
aaabaaabaab) has the property that each token is maximally evenly distributed 
among the other tokens. Well-formed scales are generated; that is, they are formed by 
the iteration of a single generating interval, with the resulting pitches collapsed into 
an octave. The properties of such collections have been extensively researched in re-
cent music-theoretical literature; see for example [3]. 

Pairwise Well-Formed Scales 

Clampitt [4] introduced a generalisation of the well-formed scale: the pairwise well-
formed scale. In his elegant study Clampitt demonstrates a number of interesting 
structural and transformational features of pwwf scales and locates examples from 
world musics as well as from 20th-century Western music. A simple characterisation 
of these scales that serves our current purposes is as follows: a pwwf scale has exactly 
three sizes of step (I will call such scales three-stepped), and its token list has the 
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property that each token is maximally evenly distributed among the others. Only odd 
cardinalities of pwwf scale are possible, and the multiplicity of each step size must be 
coprime to the scale cardinality. Clampitt gives the example of the diatonic scale in 
Zarlino’s syntonic tuning [5], whose scale steps enjoy the following frequency ratios 
relative to C: 1:1, 9:8, 5:4, 4:3, 3:2, 5:3, 15:8, 2:1. Setting the step sizes a=9:8, 
b=10:9, c=16:15 we obtain the token list abcabac, which is easily verified to have the 
relevant property: the a’s are as evenly distributed as three items could be among 
seven; the b’s are as evenly distributed as two items could be; likewise for the c’s.   

The Syntonic Diatonic as a Generated Collection 

Zarlino’s syntonic diatonic may be characterised as generated by two intervals, for 
example 3:2 and 5:4. This is easily seen in a Tonnetz representation as in Figure 1. 
The horizontal arrows show intervals of a perfect fifth, and the vertical arrows a major 
third.1  

 

Fig. 1.  

But whereas a singly-generated scale of n notes is unambiguously defined by the 
size of its generator, a doubly-generated scale like this one needs aspects of its Ton-
netz geometry to be specified before it is uniquely determined. To illustrate, two other 
scales of cardinality 7 generated by the same pair of intervals are shown in Figure 2; 
these others are not pairwise well-formed and while the first at least is three-stepped, 
the second has more than three step sizes. 

 

Fig. 2.  

Not all doubly-generated scales, then, are three-stepped, much less pairwise well-
formed. Later on we shall be interested in the converse question: are all pairwise well-
formed scales doubly-generated? 

                                                           
1 This pair is not the only choice of generators; we could just as easily have chosen the pair 

(3:2, 16:15), in which case the corresponding diagram would have the upper row offset by 
one position towards the left. 
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An Alternative Lattice Representation  

The syntonic diatonic is often represented on a triangular lattice in order to emphasise 
the pure triads that characterise this scale. On such a lattice the connections by minor 
third are evident, as well as those by perfect fifth and major third; this third axis how-
ever does not represent an independent lattice dimension, because the minor third is 
the difference between the two generating intervals. It is well-known that the triangu-
lar lattice is dual to the hexagonal lattice: the nodes of the former become the cells of 
the latter; the edges of the former become connected hexagonal faces of the latter. In 
this manner the syntonic diatonic is represented as in Figure 3. 

 

Fig. 3.  

Animals on the Hexagonal Lattice—The Heptatonic Case  

The first question to consider is: how many different connected configurations of n 
notes can we construct on this lattice? We shall start by considering n=7. We shall 
need to count as distinct those configurations that are related by symmetry operations 
on the hexagonal lattice (except for translation)—this is because rotating or reflecting 
amounts to permuting or inverting the generating intervals, which results in distinct 
scales. These configurations are analogous to polyominoes on a square grid, which 
have played an important role in recreational mathematics. Somewhat less studied are 
the extensions of polyominoes to other lattices such as the hexagonal one here; there 
are various names for these arrangements, like “polyhexes” but here I prefer the more 
whimsical name mathematicians sometimes use: lattice animals.2 The number of n-
animals on a hexagonal lattice increases surprisingly quickly. As with polyominoes 
and other polyforms, no formula is known for enumerating them directly; the animals 
must be explicitly generated by an algorithm whose runtime and memory require-
ments increase exponentially with n. The computation becomes prohibitively expen-
sive when n reaches somewhere in the 30s.  For n varying from 3 to 9 we obtain the 
following sequence for the number of n-animals on the hexagonal lattice: 11, 44, 186, 
814, 3652, 16689, 77359. These numbers thus represent the quantity of distinct n-note 
scales that can be formed by concatenating generators of two given sizes in all possi-
ble arrangements.3 A small number of the 3652 hepta-animals are depicted in Figure 4 
to convey the variety of forms that are possible. Note that all connections are 
 

                                                           
2 When we count rotations and reflections as distinct, we are enumerating fixed as opposed to 

free animals. 
3 These numbers include the animals formed by iterating only one of the two generators, along 

each of the three axes of the lattice. If we wished to exclude these “one-dimensional” animals, 
we would subtract 3 from these numbers.  
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Fig. 4. 

 

Fig. 5.  

face-connections—in other words it is not enough for each note of a scale to be repre-
sentable as some sum of the generators; the notes must form a connected subset (not 
necessarily simply connected, as the first animal in Figure 5 shows). A disconnected 
quasi-animal such as the second of Figure 5 is not enumerated here; of course if we 
relaxed the connectivity constraints to allow Figure 5 we would have an infinite num-
ber of scales to consider. Still, the large size of our bestiary of connected lattice ani-
mals would initially appear to be a confounding factor in the study of the relationship 
between animals and pwwf scales.  

Three-Stepped Animals on the Tonnetz of Fifths and Thirds 

The author wrote a computer program that generates all animals of a given size and 
evaluates the scale corresponding to each. Of the 3649 scales of 7 notes that use both 
generators (and remember we’re dealing only with the Tonnetz generated by the pair 
(3:2, 5:4) for now), just 63 of them are restricted to three step sizes. 

Pwwf Animals on the Tonnetz of Fifths and Thirds 

Of the 63 three-stepped scales generated above, a third of them, 21, have the pairwise 
well-formed property. The corresponding 21 animals are shown in Figure 6; they are 
all row-convex for all three orientations of “row” (i.e. they have no gaps in the chains 
of generators, looked at from whatever angle) and they are “nice” in other ways de-
veloped below. As well as the syntonic diatonic mentioned above, we find an 
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Fig. 6. 
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alternative diatonic tuning (this one has also previously been noted by Clampitt as 
pwwf) where the note D is a syntonic comma lower than in Zarlino’s scale; this vari-
ant appears in the 16th-century treatise by Fogliano [6] which slightly predates Zar-
lino’s. A third pwwf tuning of a diatonic set, where G, E and B appear a syntonic 
comma lower than in the Fogliano tuning, is one I have not come across before. It 
contains four justly-tuned triads, one fewer than the other two diatonic tunings. Its 
mirror image (reflected in a vertical axis) is not diatonic; it is a tuning for the Hungar-
ian gypsy scale which Clampitt [4] has previously identified as pwwf. Two other 
pwwf scales on this lattice contain four justly tuned triads; all the scales mentioned in 
this paragraph are shown labelled with note names in Figure 7.  

 

Fig. 7.  

In Figure 6 a list of step size tokens was associated with each scale; Clampitt [7] 
has recently identified this kind of list with the words of mathematical word theory. 
Each word has been put in a sort of prime form: among all the mappings of tokens to 
step sizes, and all the rotations of the word, the one with lowest lexical position (i.e. 
soonest in alphabetical order) has been selected as representative of the whole word 
class. Reducing to these primeform words shows that the 21 pwwf scales on this lat-
tice belong to just four classes: aaabaac, aabacab, abababc, and abacabc.  These in 
fact exhaust the pwwf words possible for scales of cardinality 7.  

In none of the 21 pwwf animals are all three of the axis intervals—the perfect fifth, 
major third and minor third—required to construct the scale.4 This means each of the 
animals is generated by only two intervals—but they may be any two. If we are more 
strict about the generators, and only enumerate animals that require exclusively the 
perfect fifth and major third, we will eliminate all those that have “unsupported left-
leaning segments”, and find there are 12 animals remaining in our bestiary; they are 
the ones marked with an asterisk in Figure 6, which I call the “strict list” for the gen-
erator pair (3:2, 5:4). The unmarked animals also turn out to be generated by just two 
intervals—but those two intervals are the fifth and minor third; or the major and mi-
nor thirds. The corresponding scales would appear in the strict lists for the lattices 
formed by those pairs of generators.5  

                                                           
4 To illustrate, an example of a (non-pwwf) collection that does require all three intervals is 

shown in Figure 8.   
5 An alternative formulation for the results of this paper would restrict itself to the strict lists. In 

that formulation a square rather than hexagonal grid would be appropriate, where scales are 
represented by polyominoes. This eliminates the possibility of animals that require 
connections along the third axis of the hexagonal grid. 
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Fig. 8.  

Pwwf Animals on Other Lattices 

Once we begin to experiment with lattices generated by different intervals, a remark-
able fact emerges empirically. Scales exhibiting pairwise well-formedness correspond 
 

Table 1.  

Pair of generators Three-stepped 
heptatonic scales 

on this lattice 

Pairwise well-
formed scales on 

this lattice 

PWWF scales, 
strict list ** 

3:2, 5:4 63 21 12 
3:2, 7:4 105 44 13 
5:4, 7:4 91 42 14 

3:2, 11:8 83 22 16 
5:4, 11:8 93 23 16 
7:4, 11:8 62    19 * 14 
3:2, 13:8 95 26 12 
5:4, 13:8 72 26 17 
7:4, 13:8 115 22 12 

11:8, 13:8 70 46 14 
 
 *: The {7:4, 11:8} lattice includes one PWWF scale that is singly—not doubly—
generated. That is, the seven-note chain formed by stacking the interval 11:7 has the 
pwwf property. The resulting scale has the form aabacab. Clampitt has previously re-
marked that some of these symmetrical pwwf scales may be generated by a single in-
terval. Since a scale formed by iterating a single generator can have at most three step 
sizes, and since these scales can be pwwf (as in this example) or not (as in every other 
simply generated scale on any of the lattices in Table 1), such one-dimensional animals 
that “live” on a single row do not have a place in the healthy/unhealthy opposition 
scheme for two-dimensional lattice animals. It is trivial to find a lattice where this scale 
appears also as a two-dimensional animal: one generator is 11:7, and the other is 
14641:2401, or 11:7 stacked four times. 
 

**: In the “strict list” column only those scales are enumerated that can be built using 
the given generators literally, rather than using their combination or difference. This is 
a stricter requirement than that the collections form connected portions of the resulting 
lattices—although any collection that forms a connected portion of a lattice is strictly 
generated in this sense on some lattice.  
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again and again to a small group of recognisable animals from among the more than 
 

three thousand candidates, no matter the size of the generators of the lattice. First, a 
few statistics on the number of three-stepped and pwwf heptatonic scales for various 
combinations of generators are presented in Table 1.6 As shown, different generators 
result in different counts. 

As in the case of the lattice of Fifths and Thirds, pwwf animals on other lattices also 
only ever require two generators out of the three axis intervals. In fact we can make a 
stronger statement: pwwf animals only ever require two directed generators and it is 
possible to start from one cell and cumulatively generate all others using a pair of 
directed arrows, as shown in the first animal of Figure 9. Here the animal requires ex-
clusively arrows to the right and arrows at an angle of 60 degrees (measured counter-
clockwise from horizontal). The second animal shown also does not require any arrows 
that point along the third axis—but it does need arrows pointing in both directions on 
the horizontal axis in order to reach everywhere from an initial cell, so it cannot be 
constructed using only two directed generators. The third animal shown requires only 
two directed generators, but cannot be generated from a single starting cell.7 

 

Fig. 9.  

Healthy Animals 

I designate as healthy those two-dimensional animals that, on some lattice, yield 
pairwise well-formed collections. Thus for example all the animals shown in Figure 6, 
that yield pwwf scales on the lattice of fifths and thirds, are healthy. Being healthy is 
not a guarantee that the corresponding scale is pwwf on every lattice. But the empiri-
cal evidence suggests that being healthy and three-stepped is sufficient. In other 
words if one of the healthy animals turns out to have three step sizes in its scale on a 
certain lattice, then those three step sizes will always be ordered as one of the pwwf 
words. And conversely, any three-stepped scale corresponding to an unhealthy animal 
is guaranteed not to be pwwf. At the time of submission these results have been 

                                                           
6 The generators entabulated here happen to be intervals from the harmonic series; any 

generators may of course be used, with the caveat that degenerate scales may result when it 
is possible to form identical sums of the two generators in more than one way. 

7 The ways in which the second and third animals shown in Figure 9 fail to meet the condition 
are in fact interchangeable: the middle animal could be redrawn to only require two directed 
generators if we had two “starting” cells; and the third animal could be redrawn with a single 
starting cell if we allowed one of the generating intervals to be used both upwards and down-
wards. 
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experimentally verified for a large number of generator-pairs, but the statement re-
mains a conjecture for now.  

Healthy heptatonic animals fall into what I identify as three families, shown in 
Figure 10. Type I animals (upper left of Figure 10) have two parallel chains of gen-
erators, of lengths 3 and 4, along any of the three axes. Type II animals (right-hand 
side) have three parallel chains of generators, of lengths 2, 3 and 2—in fact there are 
three different ways of seeing a Type II animal as three parallel chains of generators 
of lengths 2, 3 and 2, as shown in Figure 11. The Type III animal (lower left) has 
four parallel chains of generators, of lengths 2, 2, 2, and 1. Figure 12 shows there are 
two ways of seeing a Type III animal as four parallel chains of generators of lengths 
2, 2, 2, and 1. 

 

Fig. 10.  

 

Fig. 11.  

 

Fig. 12.  

Several symmetries obtain: if a given Type I or Type III animal is pwwf on a given 
lattice, then so is its rotation by 180 degrees. Type II animals are rotationally symmet-
rical at 180 degrees; each Type II animal, if pwwf on a given lattice, will be accom-
panied by its mirror reflection if it is distinct.  
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While all the examples shown in Figure 10 were positioned so their generator 
chains run along the horizontal axis, any of these animals can be transformed into any 
of its rotations or reflections by permuting and/or inverting the generators used—the 
different orientations, if they are distinct, will represent the same scale on different 
lattices. Counting all the distinct rotations and reflections of the eight free animals 
shown in Figure 10 we find a total of 58 healthy animals as an upper limit for the 
number of heptatonic pwwf scales on any given lattice. 

Type I animals support the pwwf words aaabaac, abababc and abacabc. Type II 
animals support exclusively the word aabacab (and I emphasise that this is true inde-
pendent of the lattice’s basis intervals). Type III animals, like Type I animals, support 
the words aaabaac, abababc and abacabc. In fact we see in Figure 13 how Type III 
animals may be decomposed into parallel chains of the same generator, of lengths 4 
and 3; by substitution of generators, then, they will correspond to Type I animals on a 
different lattice. 

 

Fig. 13.  

Further, it is easy to see how the four varieties of Type I animals are equivalent to 
one another under a substitution of generator, as are the three varieties of Type II. 

We can conclude that if we are allowed to specify the lattice, we can construct 
every heptatonic pwwf scale discovered so far using only two animals: Type Ia for 
words aaabaac, abababc and abacabc, and Type IIa for the word aabacab.  

It must not be imagined that the “unhealthy” heptatonic animals are uniformly mis-
shapen. As the gallery of all non-pwwf three-stepped animals on the lattice of fifths 
and thirds in Figure 14 shows, many animals that support three-stepped scales that are 
not pairwise well-formed are nonetheless symmetrical, or present double chains of 
generators of other lengths than 4+3.  

Arbitrary Heptatonic Pwwf Scales 

Earlier we wondered whether all pwwf scales were doubly generated, just as all well-
formed scales are generated by iterating a single interval. We could rephrase the ques-
tion as follows: given the step-sizes a, b and c and a particular pwwf word, can we 
select a pair of generators such that the scale sought appears on that lattice? It turns 
out that the answer is yes: we can use a scale whose generators we already know, and 
reverse-engineer the required generators from the scalar mapping.  For example, let us 
say we wish to construct a scale of the form abacabc, with step sizes a=150.7 cents, 
b=65.0 cents, and c therefore equal to 381.5 cents. We know the syntonic diatonic ex-
hibits the same word; here that scale is shown on the lattice of fifths and thirds, where 
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Fig. 14.  
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the numbers appearing on the nodes of the lattice indicate the scalar position of the 
corresponding pitch, when the scale is rotated to match the primeform word abacabc 
(i.e. in Lydian mode): 

abacabc; a=203.9, b=182.4, c=111.7 

. . . . . . . . . . . . . . 

 . . . . 3 7 4 . . . . . .  

. . . . 1 5 2 6 . . . . . .  

 

The step sizes of the scale we seek to generate are completely unrelated to those of 
the syntonic diatonic, but we can use the pattern traced out by the scalar ordering to 
calculate new generators. The first scale step, 1-2, is comprised of two horizontal 
generators—this is apparent in the segment 1-(5)-2 on the lower row. Since the inter-
val between degrees 1 and 2 (i.e., token a) is bissected by another scale degree on the 
lattice, we define GEN1 = (a+1200)/2. The other generator, ascending to the right on 
the lattice, connects scale degrees 1 and 3 (or 5 and 7, or 2 and 4). The word abacabc 
tells us that each of these generic thirds is  the sum of step sizes a and b. So we define 
GEN2 = (a+b). Substituting the desired step size values a=150.7 and b=65.0 we ob-
tain GEN1 = 694.05 and GEN2 = 213.8.  

Likewise, by examining the mapping between scalar order and lattice arrangement 
for representative scales of each of the other heptatonic pwwf words, we can obtain 
suitable expressions for their generators as a function of their step sizes:8 

 

abacabc: GEN1 = (a+1200)/2;  GEN2 = (a+b); animal is Type Ia. 
abababc : GEN1 = a+b;   GEN2 = b ;  animal is Type Ia. 
aaabaac: GEN1 = a;   GEN2 = 3a+b;  animal is Type Ia. 
aabacab: GEN1 = 2a+b+c;  GEN2 = –a;  animal is Type IIa. 
 
Since the four words account for all heptatonic pwwf scales, it follows that every 

heptatonic pwwf scale is doubly generated.9 

Pwwf Scales of Other Cardinalities  

We find similar results for other cardinalities of scale: a given n-animal is either 
healthy or unhealthy, and the families of healthy animals are analogous to the hepta-
tonic ones. The non-singular pwwf scales can be constructed as near-equal pairs of 
generator chains (for example, of lengths 5 and 4 when the scale cardinality is 9), cor-
responding to Types I and III. But we find no analogues to Type II animals for non-
heptatonic scales: as Clampitt [4] has shown, the heptatonic pattern aabacab is unique 
among all pwwf words in having three different multiplicities of step sizes.  

There are considerably fewer pwwf collections of cardinality 9 than for cardinality 
7 on a given lattice, especially when considered relative to the hugely expanded num-

                                                           
8 In each case these are not the only expressions that would work. 
9 Some pwwf scales have an additional interpretation, as generated by a single interval. See the 

footnote to Table 1. 
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ber of candidate animals. The lattice of fifths and thirds, for example, only possesses 
four pwwf scales of cardinality 9 among over 77,000 candidate animals. A search for 
scales of cardinality 5 yields 20 pwwf scales among 186 animals on the same lattice. 
For n=5 and n=9 I have been able to use the above method for arbitrary pwwf scales 
to find formulae for the generator pairs as a function of the desired step sizes. I con-
jecture this will be possible for higher odd cardinalities, too. 
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Abstract. The paper connects two notions originating from different
branches of the recent mathematical music theory: the neo-Riemannian
Tonnetz and the property of well-formedness from the theory of the gen-
erated scales. These notions are mathematized and their properties are
rigorously investigated. As the first result, the concepts of the generalized
Tonnetze and of the multidimensional (i.e. based on multiple generators)
generated tone-systems (GTS) are formally defined. Secondly, we prove
a theorem stating that a normal two-dimensional GTS is well-formed if
and only if it is closed. This is the main mathematical result of the pa-
per and it can be considered a generalization of Carey-Clampitt’s work
on one-dimensional generated scales to GTS’s with two generators. Fi-
nally, we illustrate power of the proposed theoretical framework. It covers
various theoretical concepts found in different musical contexts. Besides
the neo-Riemannian Tonnetze and Carey-Clampitt’s generated scales,
our examples include Mazzola’s ‘harmonic band,’ the pitch helix known
from the psychology of hearing, the ancient Chinese system of lü-lü, the
Arabic 24-n̄ım system, and the ancient Indian 22-śruti system. In par-
ticular, we give a possible explanation of the number 22 in the Indian
system.

1 Inspirations

The neo-Riemannian theory and its use of the concept of the Tonnetz (see e.g.
Cohn 1998, Gollin 1998) provided a source of inspiration for this paper. In this
context, a very special role plays David Lewin’s (1998) illuminating analysis of a
passage from Bach’s F� minor fugue.1 The analysis is based on an original idea
that a Tonnetz might also be generated by other intervals than the fifth and the
third.2 This way, Lewin modifies the basic neo-Riemannian concept and applies
it in a different, yet very meaningful analytical situation.

Another stream of inspiration comes from Carey-Clampitt’s diatonic the-
ory. Carey and Clampitt (1989) defined a very powerful property of the well-
formedness and showed that (one-dimensional) generated scales commonly
� This paper was supported by the Fulbright Foundation through a fellowship awarded

to the author.
1 For an interesting visualization of Lewin’s structural ideas see (Reed and Bain 2007).
2 Clough (2002) used other generalized Tonnetze in an analysis of Kurtág’s music.
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encountered in music usually have this property. As the main result, they proved
that there is a direct relation between the acoustical ‘closeness’ of the end points
of the generated scale and its structural well-formedness.3

2 Generalized Tonnetz

The proposed theory relies on David Lewin’s concept of the Generalized Interval
Systems (GIS) and the concept of labeled directed graphs. For a definition of
GIS see e.g. (Lewin 2007).

Definition 1. We say that an ordered sextuple (N, A, LN , lN , LA, lA) is a la-
beled directed graph if the following conditions hold.

1. N is a non-empty set of nodes.
2. A is a set of ordered pairs of nodes (i.e. a subset of the direct product N×N)

and its elements are called arrows.
3. LN and LA are non-empty sets of node labels and arrow labels, respectively.
4. lN : N → LN is a mapping assigning node labels to nodes.
5. lA : A → LA is a mapping assigning arrow labels to arrows.

The quadruple (N, A, LA, lA) is an arrow-labeled directed graph.

Definition 2. Let G = (N, I, int∗) be a commutative GIS and assume that the
group I is generated by a finite subset X. A generalized Tonnetz (g-Tonnetz)
T (I; X) is the arrow-labeled directed graph (N, A, X, int) where A denotes the
complete inverse image of X under int∗, A = int∗−1[X ], and int denotes the
restriction of int∗ to A, int = int∗|A. Further, we say that the dimension of
the g-Tonnetz T (I; X) is n if X has exactly n distinct elements.

The complete inverse image of X under int∗ : N ×N → I is the set of all ordered
pairs of nodes (p, q) such that their image int∗(p, q) is in X . (See also Fig. 2.) The
asterisk will be omitted in the notation of int∗ if there is no risk of confusion.

Example 1. It is important to recognize the difference between the g-Tonnetz
and the underlying group of intervals (or GIS). A single group may corre-
spond to different g-Tonnetze if different sets of generators are selected. Consider
the diatonic system, usually modeled as Z7. If we think of it as generated by the
fifth f = 4 we get the g-Tonnetz T (Z7; 4), which gives the usual depiction of the
diatonic on a circle with seven points.

On the other hand, if we think of the diatonic system as being generated
simultaneously by the fifth = 4 and the third = 2, the resulting g-Tonnetz
T (Z7; 4, 2) is quite different. It is two dimensional and can be depicted on the
Möbius strip. It is shown in Fig. 1. Mazzola (2002) describes this g-Tonnetz and
calls it a ‘harmonic band.’ It models the space of simple diatonic harmonies.

3 For a related, independently formulated concept of ‘the moments of symmetry,’ see
also (Wilson 1975).
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Fig. 1. The diatonic system as a two dimensional g-Tonnetz T (Z7; 4, 2)

As Kolman (2004) showed, two GIS’s are isomorphic if and only if their underly-
ing interval groups are isomorphic. Therefore, a g-Tonnetz is, up to isomorphism,
determined by the group of intervals and the selected set of generators. Thus,
a complete study of the commutative groups and their generating subsets is
sufficient for the complete understanding of the g-Tonnetze.

For our study of the g-Tonnetze, we will rely on representations of Abelian
groups as quotient groups of free Abelian groups. Any Abelian group I may be
represented as a quotient group of the free Abelian group Z(X) where Z(X) =
{
∑n

i=1 kiξi | ki ∈ Z, ξi ∈ X}.

Lemma 1. Let an Abelian group I be generated by the finite set X of n elements.
Then there exists a subset K of Z(X) with m elements where m ≤ n and Z(X)/K
is a representation of I. If I is finite then m = n.

Definition 3. Let X = {ξ1, . . . , ξn}, K = {κ1, . . . , κm} and m ≤ n. Assume
the g-Tonnetz T = T (Z(X)/K; X). We say that the elements κi, 1 ≤ i ≤ m are
commas and K is a set of commas of T .

According to Lemma 1, the assumptions of the previous definition cover, up to
isography, any g-Tonnetz and we may limit our investigation of the g-Tonnetze
to those of this type. In other words, any g-Tonnetz is fully determined by the set
of generators and a set of commas. For the rest of the paper, let (N, I, int) denote
a commutative GIS with the group of intervals I = Z(X)/K, and (N, A, X, int)
denote the g-Tonnetz T (I; X). Figure 2 shows the mappings related to a g-
Tonnetz. The arrows with curved tails denote the natural injections of the subsets
A and X in their supersets N × N and I, respectively.

Example 2. We return to our previous example of two g-Tonnetze based on Z7.
The first one, applicable to the Pythagorean heptatonic scale, is determined by
one generating interval f and one comma 7f . The other example, applicable to
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N × N I
int∗ �� I Z(X)/K�� ��

A X
int ��

��

		

��

		

X

Z(X)/K

��������

Fig. 2. Diagram of mappings related to a g-Tonnetz

Fig. 3. The diatonic system with one generator

the diatonic heptatonic scale in pure tuning, is determined by two generating
intervals f and th and two commas, e.g. 3f + th and f − 2th. These situations
are shown in Figures 3 and 4.

Fig. 4. The diatonic system with two generators

3 Unpitched Generated Tone System

Definition 4. An unpitched generated tone system (UGTS) is a labeled directed
graph (N, A, X, int,Z(X), gen) where the following conditions are satisfied.
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1. (N, A, X, int) is a finite g-Tonnetz.
2. [gen(t)] + int∗(t, u) = [gen(u)] for all pairs (t, u) ∈ A.

The mapping gen is called a generating function. We say that a UGTS is n-
dimensional if the underlying g-Tonnetz is n-dimensional.

The UGTS differs from a g-Tonnetz in that it specifies how the tones are gener-
ated from the generators. While the g-Tonnetz is a perfectly symmetrical struc-
ture, the generating function brings the ‘imperfectness’ into the picture. E.g.,
in the case of the Pythagorean heptatonic, the underlying structure is Z7, in
which there is no difference between the perfect fifths and the diminished fifth.
The generating function defines how the tones are generated and so yields the
information about the imperfectness.

For a given g-Tonnetz, the tones may be generated in many ways. However,
only some of them are of real interest. A basic requirement is that they are
‘compactly’ positioned within Z(X). The compactness means that we take one
compact block of elements of the corresponding free group marked by the selected
commas. Such blocks are shown also in Figures 3 and 4 where the chosen elements
are colored. The following definition formalizes this idea.

Definition 5. Assume an n-dimensional UGTS S = (N, A, X, int,Z(X), gen).
Fix a set of commas K = {κ1, . . . , κn} and a node o ∈ N . Let denote:

R(o, K) = {gen(o) + z ∈ Z(X) | z =
∑
κ∈K

r(κ)κ, r(κ) ∈ [0, 1)}

We say that S is compact with respect to K and o if gen[N ] = R(o, K).

Example 3. Figure 5 shows a UGTS which is not compact.

Lemma 2. Let S = (N, A, X, int,Z(X), gen) be a compact UGTS with respect
to o ∈ N and a set of commas K, and e : K → {−1, 1} be a mapping. Assume
the following conditions.

1. Ke = {e(κ)κ | κ ∈ K}.
2. A mapping gene : N → Z(X) is defined in the following way. For any

t ∈ N , gen(t) − gen(o) =
∑

κ∈K rt(κ)κ, consider the set K(t) = {κ ∈
K | rt(κ) = 0, e(κ) = −1}. The mapping gene assigns the value gene(t) =
gen(t) +

∑
κ∈K(t) κ.

Then Se = (N, A, X, int,Z(X), gene) is a compact UGTS with respect to o and Ke.

Definition 6. Assume the notation from Lemma 2. UGTS’s S and Se are called
neighboring. The elements gene(o) of Z(X) are called corners of S.

Definition 7. Let S be a UGTS, compact with respect to a node o and a set of
commas K. Further, assume a node t ∈ N , i.e.:

gen(t) = gen(o) +
∑

r(κ)∈[0,1), κ∈K

r(κ)κ.

We say that, with respect to o and K:
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Fig. 5. A non-compact UGTS

1. o is the origin.
2. t is an edge node (or a λ-edge node) if r(κ) = 0 for some λ ∈ K and for

all κ ∈ K, κ �= λ.
3. t is an inner node if r(κ) �= 0 for all κ ∈ K.

Example 4. Figures 6 and 7 show two of possible interpretations of the 12-tone
chromatic scale as a UGTS. In both cases, there are some edge nodes besides
the origin: D in the first and C and 1E in the second approach.

Definition 8. A UGTS is called normal if it is compact and for any neighboring
Se there exist ξ ∈ X and an inner node t ∈ N such that gene(t) + ξ = gene(o)
or gene(t) − ξ = gene(o) in Z(X).

Example 5. In a normal UGTS, the corners are accessible from an inner tone
through a pure generator. It can be shown that in a normal UGTS, any two
tones can be connected by a chain of pure generators. Figure 8 shows a UGTS
which is not normal.

4 Generated Tone System

Definition 9. A generated tone system (GTS) is a pair (S, pitch) where S is a
UGTS and pitch : X → R12 is a mapping. The mapping pitch is called pitch
function. A GTS is called compact, neighboring or normal if the underlying
UGTS is compact, neighboring or normal, respectively.
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Fig. 6. Chromatic scale as a two-dimensional system

Fig. 7. Chromatic scale as a two-dimensional system – another approach

We notate R12 = [0, 12) the left-closed, right-open interval of real numbers
between 0 and 12. From the definition of the free group, it follows that there
is a unique group homomorphism pitch∗ : Z(X) → R12 such that pitch(ξ) =
pitch∗(ξ) for all ξ ∈ X . In notating this homomorphism, we will omit the asterisk
and also call it a pitch function if there is no risk of confusion. For the rest of
the paper we assume a GTS S = (N, A, X, int,Z(X), gen, pitch).
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Fig. 8. A non-normal UGTS

Definition 10. We define a ternary relation ‘between’ on Z(X). Let α1, α2, α3
be elements of Z(X). We say that α2 is between α1 and α3 and write �(α1, α2, α3)
if there are real numbers 0 ≤ p, q < 12 such that the following conditions hold.

1. pitch(α1) ⊕ p = pitch(α2).
2. pitch(α2) ⊕ q = pitch(α3).
3. p + q ≤ 12.

Further, if αi = gen(ti) for ti ∈ N and i = 1, 2, 3 then we also say that t2 is
between t1 and t3 and write �(t1, t2, t3).

Notice that the regular addition of real numbers in the last condition from the
previous definition cannot be replaced by addition modulo 12. Addition modulo
12 is distinguished from regular addition by using the symbol ‘⊕’.

Definition 11. Consider two nodes t, u ∈ N . We say that the span of the or-
dered pair (t, u) is (k − 1) if there are exactly k distinct nodes between t and
u. We denote the span of (t, u) by span(t, u). Further, the ordered pair (t, u) is
called a step if span(t, u) = 1.

Definition 12. Consider two elements α, β ∈ Z(X). The size of the ordered
pair (α, β) is the real number r ∈ [0, 12) for which pitch(α) ⊕ r = pitch(β). We
denote the size of (α, β) by size(α, β).

Notice that in general the span is not invariant for neighboring GTS’s. However,
we require this in the definition of the well-formedness.
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Definition 13. Consider a GTS S. We say that:

1. S is semi-well-formed if for all t1, u1, t2, u2 ∈ N :

int(t1, u1) = int(t2, u2) ⇒ span(t1, u1) = span(t2, u2)

2. S is well-formed (WF) if for any e : K → {−1, 1} and all t1, u1, t2, u2 ∈ N :

int(t1, u1) = int(t2, u2) ⇒ span(t1, u1) = spane(t2, u2),

where spane denotes the the span function in the neighboring GTS Se.

Example 6. We give an example of a GTS which is semi-WF but not WF. As-
sume the GTS depicted in Fig. 6. The GTS which includes the node F is semi-
WF. The span of any fifth is 3 and the span of any third is 1. On the other hand,
the neighboring GTS containing the corner 1B
 is not semi-WF. The span of
the fifth (C, G) is 2 and the span of the fifth (G, D) is 4. Therefore the system
is not WF.

Fig. 9. A semi-WF and not WF GTS

Definition 14. Consider a GTS S, compact with respect to a node o and a set
of commas K. We say that:

1. S is open if for some κ ∈ K there are two nodes m, n ∈ N such that
�(gen(o), gen(m), gen(o) + κ) and �(gen(o) + κ, gen(n), gen(o)).

2. S is closed if it is not open.

Example 7. Loosely speaking, in an open GTS there is a node between two
(neighboring) corners whose distance is a comma. Therefore the comma is not
sufficiently small. The system from the previous example shown in Fig. 9 is
open (i.e. not closed) because the comma (gen(1B
)− gen(F )) is too large: G is
between F and 1B
 and D is between 1B
 and F . The systems from Figures 3,
4, 6, and 7 are closed. Also the non-normal system from Fig. 8 is closed.
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5 The Main Theorem

We are ready to state the main result of the paper. It asserts that a normal
two-dimensional GTS is well-formed if and only if it is closed.

Theorem 1. Let S be a two-dimensional GTS. Assume that S is normal with
respect to a node o ∈ N and a set of commas K ⊆ Z(X). Then S is closed if
and only if S is well-formed.4

As mentioned before, this theorem can be considered a generalization of the fa-
mous results of (Carey and Clampitt 1989). Carey and Clampitt formulated a ‘clo-
sure condition’ and a ‘symmetry condition’ for the category of one-dimensional
generated scales. Their main conclusion was that these two conditions are equiva-
lent. They coined the term ‘well-formed scales’ referring to the scales meeting the
two equivalent conditions.

In the present approach, the category of two-dimensional generated tone sys-
tems is considered. The closure condition is generalized through the property
of being ‘closed’ as defined in Definition 14. The situation with the symmetry
condition is more complex. Carey and Clampitt’s symmetry condition can be ex-
pressed in several different versions which are equivalent for the one-dimensional
case. In our generalization, we consider the following version: The intervals of
same generation orders have same scale step orders. (In particular, every gen-
erating interval is of the same span.) The generation order of intervals is gen-
eralized in the multi-dimensional case through the int function – see Section 2.
The scale step order is generalized through the span function, which depends on
the pitch function – see Definition 11. This way Carey and Clampitt’s symmetry
condition is generalized here by the property of ‘well-formedness’ as defined in
Definition 13.

6 A Case Study: The System of Śrutis

The concepts of g-Tonnetz and GTS apply to surprisingly many phenomena
encountered in various musical contexts. They are suitable to model situations
where two (or more) basic elements are freely combined to built complex, sym-
metrical structures. The diatonic scale and the chromatic scale in pure tuning
are basic examples of this procedure.

In this section, we want to focus on the systems where the generating elements
are the perfect fifth and a small interval of the size approximately a half of
semitone. These generators are important for various music cultures, notably
for Arabic and Indian music. In the Indian music theory the small interval is
usually called śruti and we will use this name. So we consider a g-Tonnetz with
two generators f and s. The basic problem is to specify the commas.

One comma is easy to think of. When we move from a given point by f in
opposite directions we arrive to points a whole tone apart (considering the octave

4 The proof of this theorem can be found in (Žabka 2009).
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Fig. 10. The g-Tonnetz of 24 n̄ıms

ga ni ma sa pa

ri

dha

Fig. 11. The g-Tonnetz of 22 śrutis with high-lighted sa-grāma

equivalence, of course). Now if we bend the lower one upwards by two śrutis and
the upper one by the same amount downwards we obtain almost the same tone.
This is the basis of the first comma: −f + 2s ≈ f − 2s, which gives the comma
κ = 4s − 2f .

The other comma is related to the one underlying the Pythagorean pentatonic.
A tone tuned as the fifth perfect fifth is lower than the starting tone just by a
small interval. By bending the fifth fifth upwards results in a comma. However,
there is an issue: Should it be bent by two or by one śruti? In the first case,
the other comma is λ1 = 5f + 2s. In the second case, it is λ2 = 5f + 1s. It
is fascinating that both options seem to have been (unconsciously) applied by
major music cultures – the Arabic and the Indian. Figures 7 and 8 show the
g-Tonnetze T1(Z(f, s)/{κ, λ1}; f, s) and T2(Z(f, s)/{κ, λ2}; f, s).
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0
0

Fig. 12. Two views of the ancient Indian 22-śruti g-Tonnetz

The first solution leads to a 24-tone GTS. The Arabic music theory knows
a system of 24 small intervals called n̄ıms. It is usually explained as a result of
splitting each tone of the 12-tone chromatic system into two quarter tones. Our
approach provides an alternative explanation for the structure of this system. In
this explanation, the n̄ıms do no have to be (acoustically) uniform.

More striking is the fact that the GTS implied by the second set of commas
comprises 22 elements. It seems to model suitably the Indian system of 22 śrutis.
There is no generally accepted explanation for the number of 22 in this system.5

Our explanation of this number is very simple and surprisingly accurate. It only
relies on four basic assumptions:

1. The perfect fifth and the śruti are basal.
2. A fifth down and two śrutis up equals approximately a fifth up and two

śrutis down.
5 As an example from the recent mathematical music theory, Clough et al. (1993)

investigated this system. However, they did not address the question of the total
number of śrutis.
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3. Five fifths up equals approximately one śruti bellow.
4. The resulting system is symmetrical.

Notice that we did not have to specify the exact value of a śruti. It is sufficient
that it is approximately a half of semitone. Then both resulting GTS’s are closed
and well-formed. As a final illustration, Fig. 9 shows a model of the 22-śruti g-
Tonnetz.

Acknowledgements. I would like to express my thanks to David Clampitt and
Richard Cohn for inspiring discussions during the initial phase of my work at
the present theory. I received also many useful comments from my anonymous
reviewers which helped me improve the final version of the paper.
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İzmirli, Özgür 146
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